

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Multi-Period Sales Districting

Problem

Saranthorn Phusingha

Doctor of Philosophy
University of Edinburgh

2020

Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(Saranthorn Phusingha, May 2021)

iii

To my lovely family

iv

Acknowledgements

First, I would like to express my gratitude to the Development and Promotion of Science
and Technology Talents Project (DPST) for financial support during my MSc and PhD study.
Without this scholarship, I would not have had the opportunity to study abroad and broaden
my horizons.

Next, my deepest appreciation goes to Dr.Joerg Kalcsics for being such a great supervisor.
Your generous guidance and effort have contributed enormously to this work. Thanks very
much for teaching me how to write good work. More importantly, thanks for being a lovely
and supportive brother.

My work was greatly improved with the help of several people. Paula Fermı́n Cueto, thank
you for your valuable comments which helped to improve Chapters 1 and 2. Thank you so much
for drawing the examples in Chapter 1. Tom and Helen Byrne, you are fantastic proofreaders.
This work would contain many more horrible grammatical errors without your help. Moreover,
I wholeheartedly appreciated feedback from Akshay Gupte and Daniel Gartner, my internal
and external examiners. I was grateful for your valuable suggestions during the corrections.

My life in Edinburgh would be really boring without these friends: Minerva, Tom, Maria,
Marion, Ivet, Rodrigo, Wenyi, Xavier, Ivona, Paula, Nagisa, Shunee, and Julian. Thank you all
for every fun moment during my PhD. Your friendship means a lot to me. Moreover, I would
like to thank the Edinburgh Research Group in Optimization (ERGO) for valuable academic
experience during my studies. Also, I would like to thank my family and friends in Thailand.
I really appreciate your support and encouragement, especially from my Mum, my sister, and
my brother who always trust in me and support my decisions. Moreover, I would like to thank
my Dad who became an angel in heaven. I am sure that you are always proud of me.

I am deeply grateful to Ian and Elaine Auld. Thank you for providing me with a new sweet
home and accepting me as a new member of your lovely family. Finally, I would like to show
my greatest appreciation to Graeme Auld, my amazing boyfriend. I really appreciate your
time helping me proofread this thesis before submission. Also, thank you for comforting me
whenever I feel depressed and encouraging me to continue doing my best. Every day is a special
day, even during the most exhausting time from writing a thesis, because of you. Thank you
for being a part of my life.

v

vi

Lay Summary

Sales promotion is one of the most crucial strategies to boost a business. Most manufacturing
and consumer product companies usually send salesmen to visit their customers’ sites regularly
to promote sales and provide information about their new product range. Typically, a sales-
man is assigned to a specific group of customers for the long term, as they can build personal
relationships with customers, which is beneficial to customers’ satisfaction. Since a salesman
has to travel to their customers’ sites, the location of customers mainly affects their working
performance. Suppose the locations of customers to get a service on the same day are signifi-
cantly far from each other. In that case, a salesman tends to waste a significant amount of time
travelling from one place to another, resulting in low productivity and morale. Eventually, this
affects overall sales performance and company profit. Therefore, the decisions on allocating
customers for each salesman are of paramount importance.

One way to reduce unnecessary travel time is to allocate customers who are geographically
close to each other to the same salesman. At the same time, the total workload arising from
providing the service should be approximately equal for each salesman to promote fairness. In
this case, each customer requires recurring services with different visiting frequencies such as
every week or two weeks during a fixed planning horizon. Therefore, valid visiting schedules
for the salesmen corresponding to the customers’ visiting requirements are also required. This
kind of requirement can be seen in regular engineering maintenance or sales promotion by
manufacturers. Here, we aim for weekly schedules such that each week has an almost equal
weekly workload and customers who get service in the same week are geographically close to each
other. The latter provides more flexibility to modify the plan of visiting for salesmen, without
increasing the travel time too much compared to the original plan. This is advantageous to
salesmen especially when they have essential reasons to postpone a visit to another day.

Although the geographical proximity of customers has been considered in several studies
for the problem of allocating customers to each salesman, it has not been considered as useful
information for creating schedules. Therefore, we first focus on creating effective schedules for
a salesman where the set of their customers is known. We propose two solution approaches:
Benders’ decomposition and tabu search. Benders’ decomposition is a solution approach that
can find the optimal solution, while tabu search is a method that can find a good solution
quickly but is not guaranteed to find the optimal one. We develop the solution approaches
by employing sophisticated techniques and test them separately on small data instances that
contain 30−50 customers. The results show that Benders’ decomposition struggles when the
number of customers increases. On the other hand, tabu search performs well in every case.

Due to the success of tabu search in finding effective schedules, we extend the method to
solve the whole problem, i.e., partitioning customers to each salesman and determining effective
schedules at the same time. The extended method is successful in solving instances of 100−300
customers.

This research shows the challenge of partitioning customers and deriving high-quality sched-
ules simultaneously, so further studies, including the creation of more effective solution ap-
proaches, are still required.

vii

viii

Abstract

In the sales districting problem, we are given a set of customers and a set of salesmen in
some area. The salesmen have to provide services at the customers’ locations to satisfy their
requirements. The task is to allocate each customer to one salesman, which partitions the set of
customers into subsets, called districts. Each district is expected to have approximately equal
workload and travel time for each salesman to promote fairness among them. Also, the districts
should be geographically compact since they are more likely to reduce unnecessary travel time,
which is desirable for economic reasons. Moreover, each customer can require recurring services
with different visiting frequencies such as every week or two weeks during a planning horizon.
This problem is called the ‘Multi-Period Sales Districting Problem (MPSDP)’ and can be found
typically in regular engineering maintenance and sales promotion.

In addition to determining the sales districts, we also want to get valid weekly visiting
schedules for the salesmen corresponding to the customers’ visiting requirements. The schedules
should result in weekly districts with the following desirable characteristics: each weekly district
should be balanced in weekly workload and geographically compact. The compactness in the
schedules provides benefits when a salesman has to deal with short-term requests from customers
or change a visiting plan during the week. Namely, the salesman can postpone a visit to another
day if necessary, without increasing the travel time too much compared to the original schedule.
This is beneficial when the salesman has to deal with unexpected situations, for example, road
maintenance, traffic jams, or short notice of time windows from customers. Although the
problem is very practical, it has been studied only recently. Since most of the previous literature
on general scheduling problems did not consider compactness, a few recent studies have begun
to focus on solving the scheduling part of the problem.

The purpose of this research is to develop a more sophisticated exact solution approach
as well as an efficient high-quality heuristic to solve the scheduling part. Eventually, with an
effective elaborate method to solve the scheduling part, we aim for a robust algorithm to solve
the districting and scheduling part of the problem simultaneously.

This thesis contains three main parts. The first part introduces the problem and provides a
mixed-integer linear programming formulation for only the scheduling part and formulation for
the whole problem. The second part presents solution approaches, including an exact method
and a heuristic, for only the scheduling part. The last part is dedicated to further development
of a successful approach from the second part to solve the districting and scheduling part of
the problem simultaneously.

For solving the scheduling part, Benders’ decomposition is developed as a new exact solution
method. The linear relaxation of the problem is strengthened by adding several Benders’ cuts
derived from fractional solutions at the beginning of the algorithm. Moreover, a good-quality
integer solution derived from a location-allocation heuristic is used to generate cuts beforehand,
which significantly improves the upper bound of the objective function value. Nondominated
optimality cuts are implemented to guarantee the strongest Benders’ cuts in each iteration.
Also, instead of generating a Benders’ cut per iteration, we exploit the decomposable structure
of the problem formulation to generate multiple cuts per iteration, resulting in a noticeable
improvement in the lower bound of the objective function value. In the classical Benders’
decomposition, one of the main factors that slow down the algorithm is that one has to solve
the integer programmes from scratch in each iteration. To alleviate this problem, a modern
implementation creates only one branch-and-bound tree and adds Benders’ cuts derived from a
solution in each node in a solution cut pool. This method is called branch-and-Benders’ cut. To
assess the suitability of the algorithm, we compare its performance on small data instances that

ix

contain 30−50 customers to the Benders’ algorithm in CPLEX and show that our algorithm is
highly competitive.

Since an exact solution method usually struggles to solve realistic large data instances,
a meta-heuristic called tabu search is proposed. A high-quality initial solution to start the
algorithm is derived from the location-allocation heuristic. Three different neighbourhoods
based on information about week centres or customers’ week patterns are created within which
we search for the best solution. An infeasible solution is allowed in the search to expand the
search space. During the search, the size of a whole neighbourhood can be excessively large, so
we limit the search to promising areas of the solution space to save computational time. Also,
a surrogate objective value is used to save on computational time in cases when computing the
real objective value is too time-consuming. Although the tabu search defines a list of forbidden
moves to avoid the cycle of solutions, the algorithm can still struggle to avoid being trapped
around a local optimum. Therefore, a diversification scheme is proposed for such cases. The
algorithm is also accelerated by combining all neighbourhoods and selecting the appropriate
neighbourhood for each iteration by a roulette wheel selection. It shows impressive results in
small data instances that contain 30−50 customers. The comparison with built-in heuristics in
CPLEX confirms the robustness of the tabu search algorithm. Finally, we combine the tabu
search algorithm with our developed Benders’ decomposition. Numerical results show that
the tabu search method improves the upper bound of the Benders’ decomposition algorithm.
However, the overall performance is not satisfying so the combination of these two techniques
still requires more proper development.

As the tabu search algorithm performs well on the scheduling part, it is extended to solve the
whole problem, i.e., the districting and scheduling part at the same time. Computational results
on large data instances, which contain between 100 and 300 customers, demonstrate its capacity
to derive a high-quality solution within a reasonable amount of time, i.e., less than 17 minutes.
At the same time, the Benders’ decomposition algorithm in CPLEX, which is a benchmark in
this case, and the built-in heuristics in CPLEX cannot even find any feasible integer solution
for most of the instances within an hour. Importantly, there is a conflict between the districting
part and the scheduling part so we recommend solving both parts simultaneously for tackling
the MPSDP.

The multi-period sales districting problem is highly practical and challenging to solve. To
the best of our knowledge, we are the first to propose a single integrated solution approach to
solve the whole problem. Further studies including adding more realistic planning requirements
into consideration and effective solution approaches to solve the problem are still required.

x

Contents

Lay Summary vii

Abstract ix

List of Figures xiii

List of Tables xv

List of Algorithms xix

1 Introduction 1
1.1 Districting Problems . 1

1.1.1 Application: Classical Sales Districting Problem 4
1.1.2 Solution Approaches . 5

1.2 Outline of Thesis . 5

2 Multi-Period Sales Districting Problem (MPSDP) 7
2.1 Problem Statement . 7
2.2 Literature Review . 8

2.2.1 Mathematical Formulations . 8
2.2.2 Solution Approaches . 10

2.3 Contributions of the Research . 11
2.4 Mathematical Formulations . 12

2.4.1 Scheduling Part of the Problem . 12
2.4.2 The MPSDP . 13

2.5 Experiment on Small Data Instances . 15

3 Benders’ Decomposition for the Scheduling Part 19
3.1 Benders’ Reformulation . 22
3.2 Classical Benders’ Decomposition . 24
3.3 Benders’ Decomposition for our Model . 25
3.4 Accelerating Benders’ Decomposition . 28

3.4.1 Two-Phase Benders’ Decomposition . 28
3.4.2 Initial Integer Solution . 29
3.4.3 Manual Derivation of an Optimality Cut from an Integer Master Solution 31
3.4.4 Nondominated Optimality Cut . 33
3.4.5 Multiple Optimality Cuts . 38
3.4.6 Branch-and-Benders’ Cut . 39

3.5 Data Generation and Programme Set-Up . 40
3.6 Computational Results . 41

3.6.1 Comparison between Different Nondominated Optimality Cuts 42
3.6.2 Advantages of Multiple Optimality Cuts 45
3.6.3 Benefit of the Initial Integer Solution . 47
3.6.4 Further Investigation on Cut Strategies 50
3.6.5 Comparison between Developed Benders’ Algorithm and CPLEX 52
3.6.6 Conclusion . 57

xi

4 Tabu Search for the Scheduling Part 59
4.1 General Framework of Tabu Search for our Model 63
4.2 Week Centre Neighbourhood . 67

4.2.1 Improving the Search in the Week Centre Neighbourhood 67
4.3 Week Pattern Neighbourhoods . 68

4.3.1 Restricted Search in the Week Pattern Neighbourhoods 70
4.4 Mixed Neighbourhood . 71
4.5 Data Generation and Programme Set-Up . 73
4.6 Computational Results . 75

4.6.1 Benchmark for Tabu Search . 76
4.6.2 Comparison between the Initial Solutions and the Benchmark 76
4.6.3 Experiments on the Week Centre Neighbourhood 77
4.6.4 Experiments on the Switching Week Pattern Neighbourhood 80
4.6.5 Experiments on the Swapping Week Pattern Neighbourhood 84
4.6.6 Experiments on the Mixed Neighbourhood 87
4.6.7 Effectiveness of the Diversification in the Tabu Search 93
4.6.8 Improvement on the Initial Solutions by the Tabu Search 93
4.6.9 Comparison between the Tabu Search and Benchmark 96
4.6.10 Comparison between the CPLEX’s Heuristics and the Tabu Search 97
4.6.11 Improvement on the Benders’ Decomposition by the Tabu Search 101
4.6.12 Conclusion . 102

5 Extended Tabu Search for the MPSDP 107
5.1 Extension of the Tabu Search Algorithm . 107

5.1.1 Tabu Search for the Districting Part . 109
5.1.2 Integrated Tabu Search for the MPSDP 113

5.2 Data Generation and Programme Set-Up . 114
5.3 Computational Results . 115

5.3.1 Benchmark for Tabu Search . 116
5.3.2 Comparison between the Initial Solutions and the Benchmark 116
5.3.3 Effectiveness of Different Size Reductions on the Districting Neighbourhood118
5.3.4 Advantages of the Districting Neighbourhood 121
5.3.5 Improvement on the Initial Solutions by the Tabu Search 125
5.3.6 Comparison between the Tabu Search and the Benchmark 126
5.3.7 Comparison between the CPLEX’s Heuristics and the Tabu Search 129
5.3.8 Conclusion . 131

6 Conclusion and Further Study 133
6.1 Conclusion . 133
6.2 Further Study . 134

A Figures from the Best Solution 137
A.1 The Best Solution in Figures 5.1 and 5.2 . 137

Bibliography 145

xii

List of Figures

1.1 An example of districts where basic units are customers. 1
1.2 More examples of districts [Figure 25.1 in Kalcsics & Ŕıos-Mercado (2019)]. . . . 2
1.3 Annual trend of districting problems according to https://www.scopus.com. . . . 2
1.4 Examples of districts that are low in either contiguity or compactness [Drawn by

Paula Fermı́n Cueto]. 2

2.1 Compact weekly schedules. 8

3.1 The instances that an initial cut from Papadakos improves the objective value
of the root node immediately. 45

3.2 The instances that Papadakos reaches a better relative percentage gap before
branching the root node. 46

3.3 The instances that the multiple cuts enhance the initial cuts from Papadakos. . . 49
3.4 The change of relative percentage gaps at the root node in more difficult instances

by AutoBD and Papa. 54

4.1 The performance of the single neighbourhoods in some complicated data instances. 90

5.1 The districts from the best solution in an instance of 100 1. 123
5.2 The weekly schedules for week 2 from the best solution in an instance of 100 1. . 125

A.1 The weekly schedules for week 1 from the best solution in an instance of 100 1. . 137
A.2 The weekly schedules for week 2 from the best solution in an instance of 100 1. . 138
A.3 The weekly schedules for week 3 from the best solution in an instance of 100 1. . 139
A.4 The weekly schedules for week 4 from the best solution in an instance of 100 1. . 140
A.5 The weekly schedules for week 5 from the best solution in an instance of 100 1. . 141
A.6 The weekly schedules for week 6 from the best solution in an instance of 100 1. . 142
A.7 The weekly schedules for week 7 from the best solution in an instance of 100 1. . 143
A.8 The weekly schedules for week 8 from the best solution in an instance of 100 1. . 144

xiii

xiv

List of Tables

1.1 Examples of solution methods in districting problems. 6

2.1 The performance of CPLEX by the default setting. 16

3.1 The performance of the manual and nondominated optimality cuts in the form
of a single cut (1). 42

3.2 The performance of the manual and nondomainated optimality cuts in the form
of a single cut (2). 43

3.3 The performance of a different initial core point for the Pareto-optimal cuts. . . . 44

3.4 The performance of the Pareto-optimal cuts in the form of a single cut and
multiple cuts (1). 48

3.5 The performance of the Pareto-optimal cuts in the form of a single cut and
multiple cuts (2). 49

3.6 The performance of multiple Pareto-optimal cuts with and without an initial
integer solution. 51

3.7 The performance of the different cut strategies. 52

3.8 The performance of the different threshold relative percentage gaps of the im-
provement at the root node. 53

3.9 The performance of CPLEX and our best version (1). 55

3.10 The performance of CPLEX and our best version (2). 56

3.11 Further information on the comparison between CPLEX and our best version. . 58

4.1 Summation of features of every single neighbourhood. 71

4.2 The information about the best-found solutions from the exact solution ap-
proaches in Chapter 3. 77

4.3 The performance of the initial solution from the location-allocation heuristic
compared to the benchmark. 78

4.4 The effectiveness of the aspiration criterion on tabu search with EWC (1). 79

4.5 The effectiveness of the aspiration criterion on tabu search with EWC (2). 80

4.6 The performance of the different size reductions in the week centre neighbour-
hood (1). 81

4.7 The performance of the different size reductions in the week centre neighbour-
hood (2). 82

4.8 The performance of the different size reductions in the week centre neighbour-
hood (3). 82

4.9 The performance of tabu search with 0.1-WC and EWC-QAP (1). 83

4.10 The performance of tabu search with 0.1-WC and EWC-QAP (2). 84

4.11 The comparison of different size reductions on tabu search with QAP (1). 85

4.12 The comparison of different size reductions on tabu search with QAP (2). 86

4.13 The comparison of different size reductions on tabu search with QAP (3). 86

4.14 The effectiveness of the aspiration criterion on tabu search with Switch (1). . . . 86

4.15 The effectiveness of the aspiration criterion on tabu search with Switch (2). . . . 87

4.16 The performance of the different size reductions on tabu search with Switch and
the aspiration criterion (1). 88

xv

4.17 The performance of the different size reductions on tabu search with Switch and
the aspiration criterion (2). 89

4.18 The performance of the different size reductions on tabu search with Switch and
the aspiration criterion (3). 89

4.19 The effectiveness of the aspiration criterion on tabu search with Swap (1). 89
4.20 The effectiveness of the aspiration criterion on tabu search with Swap (2). 90
4.21 The performance of the different size reductions on tabu search with Swap and

the aspiration criterion (1). 91
4.22 The performance of the different size reductions on tabu search with Swap and

the aspiration criterion (2). 92
4.23 The performance of the different size reductions on tabu search with Swap and

the aspiration criterion (3). 92
4.24 Summation of the best configuration for each single neighbourhood. 92
4.25 The performance of the best configuration in every single neighbourhood and the

mixed neighbourhood (1). 94
4.26 The performance of the best configuration in every single neighbourhood and the

mixed neighbourhood (2). 95
4.27 The performance of the best configuration in every single neighbourhood and the

mixed neighbourhood (3). 95
4.28 The effectiveness of diversification in each neighbourhood. 95
4.29 The performance of the tabu search with the mixed neighbourhood to improve

the initial solution. 96
4.30 The comparison of the performance between the best-found solutions in Chapter

3 and the mixed neighbourhood. 98
4.31 The performance of the feasibility pump compared to the location-allocation

heuristic. 99
4.32 The performance of RINS and the solution polishing compared to the tabu search

(1). 100
4.33 The performance of RINS and the solution polishing compared to the tabu search

(2). 100
4.34 The performances of the Benders’ decomposition algorithm with the tabu search

compared to our previously developed Benders’ decomposition. 103
4.35 The overall performance of different Benders’ decomposition algorithms (1). . . 104
4.36 The overall performance of different Benders’ decomposition algorithms (2). . . 105

5.1 The information about the best-found solutions by the Benders’ decomposition
algorithm in CPLEX. 116

5.2 The performance of the initial solutions in terms of the compactness on the
district level for the data instances with 100 customers. 117

5.3 The performance of the initial solutions in terms of the compactness on the week
level for the data instances with 100 customers. 118

5.4 The performance of the initial solutions in terms of the objective value for the
data instances with 100 customers. 118

5.5 The performance of the reduced search in the districting neighbourhood in terms
of the compactness on the district level. 119

5.6 The performance of the reduced search in the districting neighbourhood in terms
of the compactness on the week level. 120

5.7 The performance of the reduced search in the districting neighbourhood in terms
of the objective value. 122

5.8 The average computational time of the different size reductions in the districting
neighbourhood. 123

5.9 The performance of the extended tabu search compare to the one without the
districting neighbourhood in terms of the compactness on the district level and
on the week level. 124

5.10 The performance of the extended tabu search compared to the one without the
districting neighbourhood in terms of the objective value. 125

xvi

5.11 The improvement on the initial solutions by the tabu search algorithm in terms
of the compactness on the district level and on the week level. 127

5.12 The overall improvement on the initial solutions by the tabu search algorithm. . 128
5.13 The performance of the extended tabu search compared to the Benders’ decom-

position method in CPLEX in terms of the compactness on the district level for
the data instances with 100 customers. 128

5.14 The performance of the extended tabu search compared to the Benders’ decom-
position method in CPLEX in terms of the compactness on the week level for
the data instances with 100 customers. 128

5.15 The performance of the extended tabu search compared to the Benders’ decom-
position method in CPLEX in terms of the objective value for the data instances
with 100 customers. 128

5.16 The average computational time of the tabu search compared to those of the
Benders’ decomposition method in CPLEX. 129

5.17 The performance of the feasibility pump compared to the tabu search method
in terms of the compactness on the district level for the data instances with 100
customers. 130

5.18 The performance of the feasibility pump compared to the tabu search method
in terms of the compactness on the week level for the data instances with 100
customers. 130

5.19 The performance of the feasibility pump compared to the tabu search method in
terms of the objective value for the data instances with 100 customers. 130

5.20 The average computational time of the feasibility pump. 130
5.21 The performance of RINS and the solution polishing compared to the tabu search

algorithm in terms of the compactness on the district level for the data instances
with 100 customers. 131

5.22 The performance of RINS and the solution polishing compared to the tabu search
algorithm in terms of the compactness on the week level for the data instances
with 100 customers. 131

5.23 The performance of RINS and the solution polishing compared to the tabu search
algorithm in terms of the objective value for the data instances with 100 customers.132

5.24 The average computational time of the tabu search, RINS and the solution pol-
ishing. 132

xvii

xviii

List of Algorithms

1 The Classical Benders’ Decomposition in General (Nemhauser & Wolsey 1988) . 25
2 The Classical Benders’ Decomposition Algorithm 27
3 Two-Phase Benders’ Decomposition . 29
4 Magnanti-Wong Algorithm . 34
5 Method to Generate an Initial Core Point . 35
6 Independent Magnanti-Wong . 36
7 Branch-and-Benders’ Cut − Part 1 : Strengthening the root node 40
8 Branch-and-Benders’ Cut − Part 2 : Tree search 41
9 The tabu search algorithm . 66
10 Exhaustive Search in the Week Centre Neighbourhood (EWC) 67
11 Exhaustive Search with QAP in the Week Centre Neighbourhood (EWC-QAP) . 69
12 Exhaustive Search in the Switching Week Pattern Neighbourhood (Switch) . . . 70
13 Exhaustive Search in the Swapping Week Pattern Neighbourhood (Swap) 70
14 The Tabu Search Algorithm for the Mixed Neighbourhood (Mix) 74
15 The Operation to Move Customer b From District i to District j on a solution

D (Move(D, b, i, k)) . 111
16 Exhaustive Search in Districting Neighbourhood of solution D (ED(D)) 112
17 Tabu Search for the Districting Part . 113
18 Tabu Search for solving the MPSDP . 114

xix

Chapter 1

Introduction

In this chapter, Section 1.1 introduces districting problems and some of the challenges on how to
formulate them. Also, in Section 1.1, we present one of the applications of districting problems,
the classical sales districting problem, which is the precursor of the multi-period sales districting
problem. Prominent solution approaches to solve districting problems are also included. Finally,
the outline of the thesis is described in Section 1.2.

1.1 Districting Problems

According to Kalcsics & Ŕıos-Mercado (2019), districting is a problem that attempts to partition
a given set of small units, called basic units, into several larger groups of basic units called
districts. Examples of basic units are customers, streets, or zip code areas.

Figure 1.1 shows an example where the basic units are customers. In Figure 1.1a, the
enlarged symbols and the black dots represent, respectively, offices of salesmen and customers.
We aim to allocate customers to each salesman. As a result, a set of customers that are served
by the same salesman is a district in this context. Figure 1.1b shows four districts where the
small symbols represent customers in a corresponding district. Other examples of districts
where basic units are streets and zip code areas are presented in Figure 1.2, which are from
Figure 25.1 in Kalcsics & Ŕıos-Mercado (2019).

(a) Before partitioning basic units into
districts

(b) After partitioning basic units into dis-
tricts

Figure 1.1: An example of districts where basic units are customers.

Districting problems have been studied extensively and Figure 1.3 shows the number of
papers related to districting problems each year from Scopus.

Districting problems are more advanced than general clustering problems that only aim to
group similar objects since all districts are supposed to satisfy the following three attributes:
balance, compactness, and contiguity. First, balance is an attribute that says each district
should have an approximately equal size, where the specific size measurement depends on the
context of each problem. Second, compactness indicates that the geographical distance among

1

(a) Districts for streets (b) Districts for zip code areas

Figure 1.2: More examples of districts [Figure 25.1 in Kalcsics & Ŕıos-Mercado (2019)].

Figure 1.3: Annual trend of districting problems according to https://www.scopus.com.

basic units in each district is not too large. Note that a compact district tends to be round-
shaped. Finally, contiguity describes whether it is possible to travel between all basic units
of the district without having to pass through other districts, i.e., distinct districts should not
overlap or at least have a small overlap. Each attribute provides different benefits depending
on the specific applications under consideration. Figure 1.1b is an example of highly contiguous
and compact districts. We also provide examples of districts that are low in either contiguity or
compactness in Figure 1.4. Figure 1.4a shows districts that are compact but low in contiguity,
as their basic units overlap in the middle of the area. In contrast, Figure 1.4b presents districts
that are contiguous but low in compactness: see the distorted shape of every district.

(a) Low contiguity (b) Low compactness

Figure 1.4: Examples of districts that are low in either contiguity or compactness [Drawn by
Paula Fermı́n Cueto].

Unfortunately, ways of quantifying the desired attributes of districts are unclear and usually
specific to the context of problems, especially the geometric representation of the basic units.

2

As a result, districting problems do not have a unique model formulation. Here we will provide
a brief overview of the limitation and difficulties relating to the measurement of each attribute.
For more details, we refer the interested reader to Kalcsics & Ŕıos-Mercado (2019).

Basic units are usually allocated to only one district so it is challenging to guarantee that
every district will have the same size. Therefore, common approaches to measuring the local
balance are related to the imbalance of districts. The first approach is to evaluate the deviation
from the mean of the district size (Ŕıos-Mercado & Fernández 2009, de Assis et al. 2014). The
second approach is to define an acceptable range of the district size, for example, Bozkaya et al.
(2011). These bounds can be derived from a defined acceptable deviation level from the mean
of the district size, or any restrictions related to the problem, for example, the limited working
time. In terms of the global balance, it is usually derived from the maximum balance of a
district. Another option is from the sum of balance from every district (Bozkaya et al. 2003).
These two options for the global balance have a disadvantage; the maximum balance does not
include the information of every district, while the sum balance is at risk of bias since well-
balanced districts might compensate for noticeably unbalanced districts. Therefore, another
possible approach is to consider the convex combination of these two options (Butsch et al.
2014).

The ways to define balance are easily derived as linear expressions. However, it is not clear
how to treat the balance attribute in a model formulation. Some works treat the balance as
a hard constraint in form of an acceptable range (Fleischmann & Paraschis 1988, Zoltners &
Sinha 2005); others set balance as the objective function (Blais et al. 2003, de Assis et al. 2014).

Regarding contiguity and compactness, they do not have rigid mathematical definitions.
In particular, they mostly depend on the geometric representation of basic units, e.g., points,
polygons, or lines.

In terms of contiguity, it is easy to define neighbourhoods where the basic units are lines or
polygons. For example, if the basic units are polygons, they belong to the same neighbourhood
if they share a common border. In particular, it is easy to identify the connectedness among
basic units. Contiguity in such cases is usually defined as a hard constraint (Drexl & Haase
1999, Shirabe 2009).

However, it is ambiguous and difficult to measure contiguity when the basic units are repre-
sented by points since it is not clear how to define the shape of districts. A possible approach
is to define a proximity graph to approximately represent the adjacency of the basic units, e.g.,
Gabriel graph or Voronoi diagram (Gross & Yellen 2003, Lei et al. 2012). Nevertheless, this
approach is not popular and, instead, most previous studies ignore contiguity and consider a
suitable compactness measure to get a small amount of overlap between districts.

Regarding compactness, measures are specific to the geometric types of basic units. For
basic units that are polygons, the local compactness usually relies on the area or the perimeter
length of districts. This geometric measure, however, is not applicable for basic units that are
lines or points.

For basic units that are lines or points, a distance-based measurement is popular. This
is also suitable when travelling within districts is a key component of the problem, e.g., mail
service or salesman visiting customers. The most common approach is a centre-based measure
which is derived from the sum of the distance between every basic unit in the district and the
district centre. Note that the distances can be squared or weighted. There are other ways to
measure the local compactness that are more intuitive such as pairwise distances, i.e., the sum
of distances between each pair of basic units. This can lead to difficulties in solving the model
(Bender et al. 2016). Instead of summation, it is possible to consider the local compactness from
the maximum distance from a district centre or among basic units (Ŕıos-Mercado & Fernández
2009, Elizondo-Amaya et al. 2014, Rios-Mercado & Escalante 2016). However, this is much less
common. In terms of global compactness, it is usually either a summation or the maximum of
the local compactness of every district.

As we discussed before, when basic units are points, the majority of works in such cases
rely on the compactness measurement to get a small overlap among districts. A way to select
such a proper compactness measure, however, is challenging since each compactness measure
can lead to a different level of contiguity in different problems. Also, several factors influence
how much overlap among districts there is. The distribution of the district centres is also a key
factor. If the centres are close to each other, the districts are at risk of overlapping. Also, a

3

strict acceptable range for the balance tends to result in more overlapping districts.

Most model formulations of districting problems set compactness as the objective function.
The distanced-based measurement provides a benefit in this case as it is easy to express in a
linear form, or a quadratic form in the case of the pairwise-distanced approach.

The ways to measure the desired quantities are strongly dependent on the context of the
problem so there is no unique mathematical model formulation for districting problems. As
the particular application of districting problems plays a crucial role in the design of model
formulations, we will present the main applications of districting problems in the next section.
One of the applications is the classical sales districting problem which is the precursor of our
problem.

1.1.1 Application: Classical Sales Districting Problem

Districting problems can be categorised into four major types corresponding to their areas of ap-
plications: sales districting, service districting, distribution districting and political districting.
Sales districting problems focus on assigning customers who require service at their locations
to each salesman. Service districting problems can be classified into two main types. The first
type relates to allocating residential areas to shared social facilities, for example, hospitals and
schools. The second type partitions areas in such a way that each household in the same area
receive services such as postal delivery and bin collection service from the same workers. Distri-
bution districting problems divide up areas for pickup and delivery services. Finally, political
districting problems aim to determine electoral constituencies in a city.

This research focuses on an extension of the classical sales districting problem. More de-
tails of the other three applications in terms of problem formulations and proposed solution
approaches can be found in Kalcsics & Ŕıos-Mercado (2019).

Problem Statement

The classical sales districting problem consists of a given set of customers and salesmen. Cus-
tomers are located in some specific area and require services from salesmen at their locations.
Salesmen travel from their office to provide services within the limitation of their working time.
The task in this problem is to allocate customers to each salesman so that each customer is
served by a unique salesman. As a result, each salesman is assigned a set of customers or a
district to work in. Each district is supposed to have the desired attributes that were mentioned
earlier since they are beneficial to the overall performance of the salesmen. Balance in workload,
which is calculated from total service time and travel time, enhance fairness among salesmen.
Contiguity guarantees non-overlapping districts which can avoid competition between salesmen
for customers with a high sales potential (Kalcsics & Ŕıos-Mercado 2019). Moreover, con-
tiguous and compact districts are believed to reduce unnecessary travel time, leading to more
productive work for salesmen (Zoltners & Sinha 2005, Kalcsics & Ŕıos-Mercado 2019). Zoltners
& Sinha (2005) convincingly claimed that compact, contiguous and balanced districts could
increase profit for a company due to better utilisation of work time by salesmen.

However, there are difficulties with measuring these desirable attributes. Regarding the bal-
ancing criterion, service time and travel time should be balanced for every salesman. However,
exact travel time is intractable and costly to compute in reality and it is affected by many
complicating factors. For example, some customers may require an exact time to be visited;
or some unexpected occasions such as road maintenance or traffic jams can delay a service.
Therefore, the travel time is usually approximated in practice (Bard & Jarrah 2009, Lei et al.
2012, 2015). Another common approach is to rely on compactness and contiguity instead since
these attributes directly influence travel time. One of the most prominent ways to reduce un-
productive travel time is to maximise compactness and ensure contiguity. Unfortunately, both
of these attributes do not have rigorous expressions since basic units are represented by points.
As we discussed before, most previous studies focus on a suitable compactness measure to get
fewer overlapping districts. In this context, the most popular measurement for compactness is
a centre-based measure where the district centres in this case are usually the offices of salesmen.

4

Mathematical Formulation

Due to ambiguity in how to quantify these attributes, there are varieties of proposed math-
ematical formulations for districting problems. The most common model for sales districting
problems is to maximise the compactness of all districts while ensuring that districts are bal-
anced. Note that a typical way to maximise compactness is to minimise the total distance-based
measurement. This model was first proposed by Hess et al. (1965) to solve a political districting
problem. For a given set of voters, the problem aims to derive balanced districts in the number
of voters. Usually, the number of districts is predefined. For calculating compactness, the centre
of each district is selected among the voters, and then the centre-based distance is computed.
In particular, the decisions in the problem concern not only partitioning the voters but also
selecting the proper district centres for measuring the compactness. Hess & Samuels (1971)
adapted the model of Hess et al. (1965) for the sales districting problem by replacing voters
with customers and keeping balance in terms of total service time in each district instead.

There are a few different proposed goals in mathematical models for the classical problems.
Since the primary goal for each company is to get the largest profit, some studies aimed to
maximise profit by assigning customers to each salesman and also the optimal service time (for
example, Lodish (1975)). However, Zoltners & Sinha (2005) stated that these two problems
should be separately considered since they are revised in a different period. The districting prob-
lem is considered for the long term. In contrast, the time allocation is required to be updated
more frequently, as it can be influenced by short-time effects, for example, sales of beverages in
different weather. Some previous studies defined the objective function by maximising profit
and ignoring balance in districts. Drexl & Haase (1999) implemented a mathematical model for
a beverage company in Germany and showed good computational results. However, Zoltners
& Sinha (2005) argued that it is hard in practice since profit depends on many aspects which
are tricky to include entirely in one model, and salesmen usually prefer workload balance.

1.1.2 Solution Approaches

Many solution approaches, including exact methods and heuristics, have been proposed for
districting problems. Some examples are summarised in Table 1.1.

As an exact solution approach usually struggles to solve large data instances, heuristics are
attractive to solve these cases. One of the most well-known heuristics is a location-allocation
heuristic adapted from Cooper (1964). The method was applied to solve the mathematical
formulation in Hess et al. (1965). It divides the problem into two phases. The first phase, the
location phase, consists of finding the location of suitable district centres for given districts.
Then, with the fixed district centres from the location phase, customers are allocated to the
district centres while ensuring the balancing criterion in the allocation phase. These two phases
are solved sequentially in an alternating manner until both of them reach the same objective
value. This technique is effective and has been successfully applied in several studies.

According to Kalcsics & Ŕıos-Mercado (2019), meta-heuristics have gained more attention
recently due to their flexibility in dealing with complicated constraints, for example, the Greedy
Randomised Adaptive Search Procedure (GRASP), tabu search, and genetic algorithm. More
details can be found in Kalcsics & Ŕıos-Mercado (2019).

1.2 Outline of Thesis

In Chapter 2, we introduce an extension of the sales districting problem called the multi-period
sales districting problem, including the literature review and model formulations. Then, we
propose sophisticated solution approaches for solving only the scheduling part of the problem.
The methods include Benders’ decomposition as an exact solution approach and tabu search
as a meta-heuristic, presented in Chapter 3 and 4, respectively. As the tabu search algorithm
proves highly successful in solving the scheduling part, we extend the method to solve both parts
of the problem at the same time: see Chapter 5. Finally, Chapter 6 provides the conclusion
and further study.

5

Catagory Method Reference

Exact solution approach Branch-and-price algorithm
Mehrotra et al. (1998)
Bender et al. (2018)

Branch-and-bound combined
with a cut generation strategy

Salazar-Aguilar et al. (2011)

Heuristic Location-allocation heuristic
Hess et al. (1965)
Bender et al. (2016)

Meta-heuristic GRASP
Ŕıos-Mercado & Salazar-Acosta (2011)
Salazar-Aguilar et al. (2013)

Tabu search
Bozkaya et al. (2003)
Haugland et al. (2007)

Simulated Annealing D’Amico et al. (2002)

Genetic algorithm
Tavares-Pereira et al. (2007)
Steiner et al. (2015)

Table 1.1: Examples of solution methods in districting problems.

6

Chapter 2

Multi-Period Sales Districting
Problem (MPSDP)

The problem considered in this thesis is an extension of the classical sales districting problem
called the Multi-Period Sales Districting Problem (MPSDP), which was first introduced by
Bender et al. (2016). This problem is much more complicated and realistic than the classical
problem. The classical problem is considered in only one period, while this new problem covers
multiple periods. Moreover, the MPSDP includes a regular requirement from customers which,
however, has only been studied recently, namely, obtaining recurring service with a specific
preference of frequency. In this case, customers may require service every week, every two
weeks, or even every month. This kind of problem can be seen in regular sales promotion at
customers’ sites or engineering field maintenance (Bender et al. 2016).

2.1 Problem Statement

The MPSDP aims to partition customers into districts and, at the same time, determine sched-
ules for visiting customers that fulfil their frequency requirement. In this section, we will
introduce the notation used to formulate the problem and present characteristics of schedules
that provide benefit to the performance of salesmen.

In the problem, we consider a period in terms of weeks. The planning horizon is the total
number of weeks that we are considering for the schedules. A required frequency to obtain
service for each customer is called a week rhythm. Note that each customer can require a
different frequency of visiting, e.g., every week or every month. A visiting week of a customer
is a week that a salesman visits the customer. We call the combinations of visiting weeks
corresponding to customers’ week rhythms week patterns. For example, if we consider the
planning horizon over eight weeks and a customer demands services every two weeks, then
there are two week patterns; the first week pattern has week 1, 3, 5 and 7, while the other one
has week 2, 4, 6, 8. Note that the number of week patterns corresponds to a week rhythm. The
set of customers who belong to the same visiting week is called a week cluster.

Now, for the predefined planning horizon, the tasks of this work are not only to determine
a responsible district for each salesman but also visiting weeks for customers that satisfies their
week rhythms. In particular, we aim for schedules that result in balanced and compact week
clusters. Balance helps to avoid overload of work during the planning horizon, while compact-
ness is advantageous for the performance of salesmen since it can help to reduce unnecessary
travel time each week. More importantly, a salesman can easily modify a plan to visit customers
within a week, especially when unexpected situations happen, for example, road maintenance,
traffic jams, or short notice of time windows from customers. In these cases, the salesman can
postpone the visits to another day, without increasing the travel time significantly compared
to the original plan (Bender et al. 2016). Examples of compact weekly schedules are presented
in Figure 2.1, where Figures 2.1a and 2.1b show week clusters of customers who require service
every week and every two weeks. However, Bender et al. (2016) warned that these desirable
attributes also depend on how customers of different week rhythms spread across a district.

7

For example, if many customers who require weekly services are spread across a district, it is
inevitable for a salesman to travel around the whole district every week.

(a) Week 1 (b) Week 2

Figure 2.1: Compact weekly schedules.

Apart from the weekly schedules, the problem also aims for daily schedules with the same
desirable characteristic, i.e., compactness and balance. These attributes, especially compact-
ness, are beneficial to salesmen during the day. The compactness in the daily schedules provides
the flexibility in arranging a sequence of customers to get service on the same day. For example,
customers might have a specific time window suddenly so that they have to meet a salesman
later than the original schedule. The salesman can visit other customers first and then return
to visit these customers later. In this case, he does not increase substantially time from the
original plan since every customer who gets the service on the same day are supposed to be
close to each other.

The daily schedules are more essential in some applications that customers may require
more than one service per visiting week and have specific days to get the service. For example,
replenishment of beverages or cigarettes in a machine usually requires more than one visit per
week. Note that necessary notations for the daily schedules are analogous to the week level,
namely, visiting days, weekday patterns and day clusters.

Designing daily routes is also a part of the planning. However, Bender et al. (2016) reported
that some customers usually request changes of a visiting day to another day in the short term,
resulting in a frequent update in the daily routing plan. Therefore, the authors suggested sep-
arating the routing plan from the main problem and solving it just whenever every operational
detail is ready.

Although the MPSDP is very relevant in practice, it has only been studied recently, as we
discuss in Section 2.2.

2.2 Literature Review

The classical sales districting problem has been the focus of substantial research in mathematical
formulations and solution methods. However, the study of the MPSDP is still very scarce.

2.2.1 Mathematical Formulations

Prior to Bender et al. (2016), all previous studies of sales districting problems failed to address
at least one crucial aspect of the MPSDP.

There are only a few studies of districting problems with multiple periods. Lei et al. (2015)
presented a problem where customers require one visit from salesmen in each period of a plan-
ning horizon. In this case, a period consists of several weeks and every salesman travels from
a depot that belongs to the set of available depots. The specific characteristic of the problem
is that customers are changed dynamically and then revealed at the beginning of a period. In
other words, the set of customers in every period is known in advance. The goal of this problem
is to design districts in each period where each of the districts is then assigned to a salesman
who stays in the closest depot. Every district is further partitioned into sub-districts for specific
working days. Namely, a salesman visits customers in a sub-district once on a particular day

8

during the period. The objective function is to minimise a weighted sum of four measures:
the number of districts, the sub-district compactness, the difference of districts in subsequent
periods, and the variance on the average of salesman profit in each period. Note that the profit,
in this case, is derived from the difference between revenue from visiting customers and the
travel costs in the sub-districts. Although the authors considered compactness as one criterion
for sub-districts, customers do not require recurring services with different frequencies over the
planning horizon, which is an essential feature of the multi-period sales districting problem.
Therefore, we cannot use the problem in Lei et al. (2015) to represent the MPSDP.

Multi-period scheduling problems can be found in various applications, for example, mainte-
nance problems (Wei & Liu 1983), and logistics (Campbell & Hardin 2005, Kazan et al. 2012).
A closely related problem to the MPSDP was presented by Núñez-del-Toro et al. (2016). The
authors proposed a mathematical formulation for a multi-period service scheduling problem,
where there are a given set of customers who require recurring service over a finite planning
horizon and a set of operators which can serve a limited number of customers in each period.
The task is then to allocate the customers to the operators, such that the customers’ demands
are satisfied and the capacity of each operator is not exceeded in each period. Usually, oper-
ators provide service in periods that strictly correspond to customers’ week rhythms. In this
work, the authors also considered the effect of relaxing customers’ week rhythms, i.e., allowing
an operator to serve its customers before the periods that customers request. They proposed
mathematical formulations for serving customers in both cases: strict and relaxed customers’
week rhythms. They formulated periodic services for customers by using binary variables to
decide if customers will receive service in a week or not. Although this problem includes the
requirement of the customers obtaining recurring service with different frequencies, the com-
pactness of customers in each period is not taken into account. Moreover, the goal of this
problem is to minimise the number of utilised operators along the planning horizon, which is
entirely different from ours. Therefore, we cannot adapt their mathematical formulations to
our problem.

Periodic vehicle routing problems have one common feature to our problem: customers re-
quire recurring services over a multi-period planning horizon. The usual tasks of these problems
are to assign customers to each vehicle and determine vehicle routes simultaneously in such a
way that the cost of routing is minimal. Also, these problems do not emphasise the compactness
of a cluster of customers: see Francis et al. (2008) and Irnich et al. (2014) for more details.
Therefore, they do not apply to our problem.

The study by Mourgaya & Vanderbeck (2007) is different to those works in the periodic
vehicle routing problems. As well as assigning schedules to customers, the authors allocated
customers to a vehicle in such a way that a cluster of customers for each vehicle is balanced and
compact. Usually, the optimised route is determined in the periodic vehicle routing problem
but the authors suggested deciding it at a later stage. The objective function is to maximise
the compactness of clusters while keeping them balanced in terms of workload. Nevertheless,
the planning horizon in this work is only up to six days which is not enough to consider week
clusters. In fact, this problem does not include a plan to serve customers at both week and day
level like the MPSDP.

To the best of our knowledge, Bender et al. (2016) were the first to address the aspect that
customers require recurring services with different frequencies in the sales districting problem.
In their study, the customers can request more than one visit in each visiting week and have
a specific preference on a visiting day(s). Moreover, customers might require different service
time in each visit so their service time can be varied during the planning horizon. Note that
the information regarding service times for every customer is known in advance.

The multi-period sales districting problem is extremely challenging to solve optimally for
large scale instances using a standard linear solver (Bender et al. 2016). Moreover, districts and
schedules for salesmen are required to be updated on different time scales. Districts for salesmen
run for several years, while schedules are usually revised more frequently, for example, every few
months. Therefore, Bender et al. (2016) suggested splitting the problem into two main parts.
The first one is the districting part, which is similar to the classical sales districting problem:
customers are partitioned into districts with the satisfactory attributes for each salesman. In
each district, the authors then separately considered the scheduling part. For the predefined
set of customers, this part attempts to design high-quality schedules to serve the customers.

9

In particular, the authors determined schedules that satisfy customers’ frequency requirements
and have desirable attributes; compactness, contiguity and workload balance. Now, when only
schedules are required to be revised, the scheduling part is solved where the set of customers in
each district is unchanged. Whenever districts are required to update, the authors suggested
solving both parts sequentially, i.e., first the districting part and then the scheduling part.

As the study of compactness in schedules is still rare in the literature, they focused on
solving only the scheduling part for a given compact and balanced district. They proposed a
mixed-integer programming formulation for the scheduling part. In this case, they aimed for
weekly schedules and daily schedules that satisfy customers’ visiting requirement in both levels.
Both schedules are required to be compact and balanced as these two attributes provide benefit
to the performance of salesmen.

The main tasks of the scheduling part are to determine visiting weeks and also visiting days
in those weeks for each customer. At the same time, the centre in each week cluster and daily
cluster, which can be any customer in the district, has to be decided for measuring compactness.
The weekly and daily compactness are calculated from the total centre-based distance in every
week cluster and every daily cluster, respectively. The objective function, in this case, is to
maximise the convex combination between the weekly compactness and the daily compactness.
At the same time, the workloads on the week level and on the day level have to be within the
acceptable ranges.

According to preliminary tests in Bender et al. (2016), even the scheduling part of the
MPSDP is difficult to solve for small data instances, e.g., 30−50 customers with four weeks and
five days per week. A modern linear solver struggles to reach even a small optimality gap within
an hour in the tests, due to a large number of variables. More importantly, solutions for the
scheduling part are highly symmetrical, i.e., it is possible to rearrange week clusters in different
ways without changing the objective function value: see an example in Bender et al. (2016).
Therefore, the scheduling part requires more sophisticated approaches to derive high-quality
solutions as we will discuss in the next subsection.

2.2.2 Solution Approaches

The scheduling part of the MPSDP has been studied only recently and it is challenging to
solve even for small data instances. To the best of our knowledge, there are only two solution
approaches proposed so far.

First, Bender et al. (2016) implemented a location-allocation heuristic. To the best of
our knowledge, this was the first extension of Hess et al. (1965) to apply to a multi-period
framework.

Initial week and day centres are required to start the location-allocation heuristic. Usually, in
the case of a single-period districting problem, initial centres are selected in such a way that they
distribute evenly across an area of study to avoid overlapping initial districts. Unfortunately,
any standard method used to create initial centres in a single-period case is not applicable to the
MPSDP since week patterns and weekday patterns of customers must be taken into account.
Bender et al. (2016) adapted the k-means++ algorithm (Arthur & Vassilvitskii 2007) to derive
initial week and day centres. In particular, the authors favoured customers who tend to be
good centres. First, customers who have a smaller week rhythm should have more chance to
be selected as initial week or day centres since they tend to be presented in most of the week
clusters. Additionally, at each level, customers who are close to already selected centres should
be avoided as they increase the risk of overlapping districts. Moreover, day centres should be
determined in such a way that they are close to their week centre.

The algorithm was tested on real-world data instances which are related to business that
requires salesmen to visit retailers regularly, for example, supermarkets and gas stations. The
number of customers in the instances was 115 on average. The planning horizon was 16 weeks
where each week consists of 5 days. Bender et al. (2016) evaluated the solution in terms of
compactness, approximate total travel time, and balance of schedules. Namely, the compactness
in the evaluation was measured from the average distance between any two customers who are in
the same week or day cluster. The authors approximated the total travel time by the summation
of daily routes. Here, the daily routes were derived by solving a symmetric travelling salesman
problem (TSP), where every salesman starts and ends their routes at their offices. They also

10

checked the total approximate travel time inside day clusters to gain more insights. Finally, the
weekly and daily balance of schedules were derived from the maximum relative deviation from
the average weekly and daily service time, respectively.

The computational results showed that the method generates high-quality solutions quickly
within 5 minutes which is an acceptable amount of time for real practitioners. They also studied
the effect on travel time by the weekday regularity, i.e., when customers have specific weekday
patterns. More precisely, they compared solutions where customers strictly require the same
weekday pattern in every visiting week (called strict weekday regularity) to those solutions
that allow deviation from the regular weekday patterns (called partial weekday regularity).
The results confirm that the weekday regularity increases travel time in general. However, it
is inconclusive if the strict or the partial weekday regularity tend to increase more amount of
travel time. This is because the service time and the week rhythms are key factors on how
much the travel time increases.

Bender et al. (2018) proposed another solution method for the scheduling part of the
MPSDP, in particular, they aimed to design weekly and daily schedules for customers who
require recurring services. However, there are a few differences in the problem details. Here,
customers require only one service per visiting week. Also, customers do not have any specific
requirement on visiting days, i.e., the weekday regularity is not considered in this case. More-
over, the service time of every customer is fixed during the planning horizon. Although the
problem is more specific than the one in Bender et al. (2016), Bender et al. (2018) assured that
this problem is still highly relevant. The authors proposed a branch-and-price technique as an
exact method to solve the scheduling part. The main novelty in implementation here is an ad-
ditional feature to reduce the symmetry in a solution during the branching process. Numerical
experiments were conducted on real-world small data instances with at most 55 customers on
a planning horizon of 4 weeks and 5 days per week. The instances were based on data from a
German manufacturer of paints and coatings. The results showed this new feature reduces the
computational time by 98.1% compared to a standard linear solver.

As we can see, there are only a few approaches for solving the scheduling part of the
MPSDP. Moreover, any single integrated method for solving the MPSDP has not been proposed
yet. Although Bender et al. (2016) suggested solving the scheduling part and the districting
part sequentially for the MPSDP, this approach is at risk of providing sub-optimal solutions.
Therefore, we aim to fulfil the need for more approaches to the MPSDP. Our contribution will
be presented in Section 2.3.

2.3 Contributions of the Research

In our research, we extend the work of Bender et al. (2018). Namely, we assume that each
customer requires one visit per visiting week and does not have any restriction on visiting day.
According to Bender et al. (2016), a fifth of customers change their visiting day in the short
term. Since now every customer can be served any day during a week in this case, we believe
that it is more efficient to plan daily schedules later, e.g., nearer the operation time. Therefore,
we emphasise only weekly schedules and do not focus on designing daily schedules here.

Our contributions are as follows:
1. We formally present a model formulation for the multi-period sales districting problem,

i.e., a formulation that combines the districting part and the scheduling part.
2. We propose more elaborate solution approaches, including an exact method and a heuris-

tic, to solve the scheduling part. Here, we develop Benders’ decomposition as an exact
solution method, and tabu search as a heuristic by using various sophisticated techniques.
We perform the computational experiments to evaluate their effectiveness and efficiency
on randomly generated data instances with 30−50 customers and a maximum of 15 weeks.

3. For the first time, we develop a sophisticated technique that solves the districting part
and the scheduling part simultaneously. In particular, we extend the tabu search that
solves the scheduling part to solve the whole problem. Numerical results on large ran-
domly generated data instances with 100−300 customers and a maximum of 15 weeks are
presented. To support the robustness of our algorithm, we also show that a modern linear
solver like CPLEX struggles to solve these large data instances, while our algorithm is

11

capable of providing high-quality solutions within a reasonable amount of time.

2.4 Mathematical Formulations

2.4.1 Scheduling Part of the Problem

A mathematical formulation for the scheduling part of the problem was, for the first time,
proposed by Bender et al. (2016). As we consider only weekly schedules and assume that each
customer requires only one visit per visiting week, we simplify the original model as follows.

Let B be the set of customers and W = {1, ..., |W |} be the set of weeks in a planning
horizon, where |W | is the total number of weeks. Pb defines the set of possible week patterns
for customer b ∈ B, and P =

⋃
b∈B Pb is the set of all possible week patterns. A parameter ψwp ,

p ∈ P,w ∈W , defines a week in a week pattern, as shown below.

ψwp =

{
1, if week pattern p ∈ P includes week w ∈W,

0, otherwise.

In this model, each customer b ∈ B has the specific week rhythm rb ∈ N+, i.e., they require
service every rb weeks. As a result, |W | should be the least common multiple of {rb}b∈B to
guarantee that weekly schedules can be repeated. We assume that all customers demand one

visit per visiting week. Therefore, there are |W |rb visits for customer b during the planning
horizon.

Let tb be the constant service time for customer b ∈ B. The average weekly service time

is denoted by µweek = TWL
|W | , where TWL =

∑
b∈B tb ·

|W |
rb

is the total workload during the

planning horizon. τweek represents a predefined maximum deviation from the average workload,
which is used to define the acceptable ranges of workload each week.

Regarding decision variables for this model, the ones to choose a week pattern for each
customer are defined as

gbp =

{
1, if week pattern p ∈ P is selected for customer b ∈ B,
0, otherwise.

Since we approximate compactness by a centre-based measurement, we must define more
decision variables to choose week centres and allocate the associated customers to the centre of
each week. Therefore, more decision variables are presented in the following way:

xwb =

{
1, if customer b ∈ B is the week centre in week w ∈W,

0, otherwise;

uwbi =

{
1, if customer b ∈ B is assigned to week centre i ∈ B in week w ∈W,

0, otherwise.

The objective function of the model is to maximise the compactness by minimising the
total centre-based distance incurred in the planning horizon, where cbi represents the distance
between customers b and i, for i, b ∈ B.

Our formulation for the scheduling part of the multi-period sales districting problem is

12

shown below.

min
∑
b∈B

∑
i∈B

∑
w∈W

cbiu
w
bi (OriginalSchedule)

s.t.
∑
p∈Pb

gbp = 1 b ∈ B (2.1)

∑
i∈B

uwbi =
∑
p∈Pb

ψwp gbp b ∈ B, w ∈W (2.2)

uwbi ≤ xwi b, i ∈ B, w ∈W (2.3)∑
b∈B

xwb = 1 w ∈W (2.4)∑
b∈B,p∈Pb

tbψ
w
p gbp ≥ (1− τweek)µweek w ∈W (2.5)

∑
b∈B,p∈Pb

tbψ
w
p gbp ≤ (1 + τweek)µweek w ∈W (2.6)

gbp ∈ {0, 1} b ∈ B, p ∈ Pb (2.7)

xwb ∈ {0, 1} b ∈ B, w ∈W (2.8)

uwbi ≥ 0 b, i ∈ B, w ∈W. (2.9)

The objective function of (OriginalSchedule) is to minimise the total distances between cus-
tomers and their week centres in every weekly district during the planning horizon. Constraints
(2.1) guarantee one week pattern for each customer. Constraints (2.2) and (2.3) ensure that
if a customer requires service in a specific week, they must be assigned to the week centre of
that week. Constraints (2.4) ensure a unique week centre in every week. Constraints (2.5) and
(2.6) define the acceptable ranges of total service times in each week. These are to guarantee
the workload balance of every week cluster. Finally, Constraints (2.7)−(2.9) are the domain
constraints for the decision variables. Although the variables uwbi are not defined as binary, they
will be binary due to the objective function, and Constraints (2.2) and (2.3).

2.4.2 The MPSDP

In the scheduling part, we assume that we already have a compact and balanced district to
determine desirable weekly schedules. Here, we assume that we have a set of customers and a
set of salesmen. An additional task from the scheduling part is to allocate customers to each
salesman so that every district is compact and workload balanced. In other words, this time,
we aim to construct balanced and compact districts, and, at the same time, desirable weekly
schedules for salesmen.

Let D = {1, . . . , |D|} be the set of districts for salesmen, where |D| is the number of the
districts. B = {1, . . . , |B|} is the set of customers, where |B| is the total number of customers.

To create districts, we introduce new binary variables to allocate customers to each district,
vbd, b ∈ B, d ∈ D, which are defined in the following way:

vbd =

{
1, if customer b ∈ B is assigned to district d ∈ D,

0, otherwise.

For the information on the customers such as their locations and week rhythms, we use the
same notation as in Section 2.4.1. Let tb and rb be the constant service time and the week
rhythm of customer b ∈ B. Assuming that all customers require one visit in each visiting

week, the total service time along the planning horizon is TWL =
∑
b∈B tb ·

|W |
rb

. The average

workload for each district is represented by µdis = TWL
|D| . The maximum acceptable deviation

from the average workload in each district is controlled by a parameter τdis.

Concerning the weekly workload balance constraints, the average workload each week in

every district is µweek = µdis

|W | and τweek is the acceptable deviation from the weekly average.

13

Regarding weekly schedules for each district, all notation is similar to that used in Section
2.4.1. Let W = {1, . . . , |W |} be the set of weeks in schedules, where |W | is the planning horizon.
Pb defines the set of possible week patterns for customer b ∈ B. P =

⋃
b∈B Pb is the set of all

possible week patterns in the problem. A parameter ψwp , p ∈ P,w ∈ W , denotes a week in a
week pattern, i.e.,

ψwp =

{
1, if week pattern p ∈ P has week w ∈W,

0, otherwise.

Decisions on the week pattern for each customer in a district, the week centre in each week,
and the customer allocation to the week centres have to be made, similarly to the scheduling
part from Section 2.4.1. We use the same notation of variables for those decisions but introduce
another dimension: the set of districts D.

gbpd =

{
1, if week pattern p ∈ P is for customer b ∈ B in district d ∈ D,
0, otherwise;

xwbd =

{
1, if customer b ∈ B is the week centre in w ∈W of district d ∈ D ,

0, otherwise;

uwibd =

{
1, if customer b ∈ B in district d ∈ D is assigned to week centre i ∈ B in week w ∈W,

0, otherwise.

We still use a centre-based measurement to qualify the compactness on the district level and
on the week level. On the district level, the district centres have been predefined already. In
this case, they are offices of salesmen. On the week level, the centres of week clusters are
determined during the optimisation process. The compactness on the district level is the total
distance between customers and their district centres, while the compactness on the week level
is quantified by the total distance between customers and their week centres. Let cbd be the
distance between customer b ∈ B and the centre of district d ∈ D. The distance between
customer i and b, i, b ∈ B is represented by cib. The objective function for the problem is
to minimise the convex combination between the compactness on the district level and on the
week level, where λ is a weight on the compactness in the district level.

14

A mathematical model formulation for the MPSDP is shown below.

min λ
∑
d∈D

∑
b∈B

cbdvbd + (1− λ)
∑
d∈D

∑
b∈B

∑
i∈B

∑
w∈W

cibu
w
ibd (Model MPSDP)

s.t.
∑
d∈D

vbd = 1 b ∈ B (2.10)∑
d∈D

∑
p∈Pb

gbpd = 1 b ∈ B (2.11)

gbpd ≤ vbd b ∈ B, p ∈ Pb, d ∈ D (2.12)

uwibd ≤ xwid b, i ∈ B, w ∈W, d ∈ D (2.13)∑
i∈B

uwibd =
∑
p∈Pb

ψwp gbpd b ∈ B, w ∈W, d ∈ D (2.14)

∑
b∈B

xwbd = 1 w ∈W, d ∈ D (2.15)

∑
b∈B

tb · |W | · vbd
rb

≥ (1− τdis)µdis d ∈ D (2.16)

∑
b∈B

tb · |W | · vbd
rb

≤ (1 + τdis)µdis d ∈ D (2.17)∑
b∈B,p∈Pb

twb ψ
w
p gbpd ≥ (1− τweek)µweek w ∈W, d ∈ D (2.18)

∑
b∈B,p∈Pb

twb ψ
w
p gbpd ≤ (1 + τweek)µweek w ∈W, d ∈ D (2.19)

gbpd ∈ {0, 1} b ∈ B, p ∈ Pb, d ∈ D (2.20)

vbd ∈ {0, 1} b ∈ B, d ∈ D (2.21)

uwibd ≥ 0 b, i ∈ B, d ∈ D, w ∈W (2.22)

xwbd ∈ {0, 1} b ∈ B, d ∈ D,w ∈W. (2.23)

The objective function here is to maximise the convex combination of the compactness
on the district level and on the week level. Constraints (2.10) ensure that every customer is
assigned to a unique district. Constraints (2.11) show that only one week pattern is assigned
for each customer. Constraints (2.12) guarantee that a customer can have a week pattern in
a district only when they are assigned to the district. Constraints (2.13) and (2.14) ensure
that if a customer requires service in any specific week, they must be assigned to the week
centre of the corresponding week cluster. Constraints (2.15) limit one week centre in each week
cluster for every district. Constraints (2.16)−(2.19) define the acceptable workload in each
district and each week cluster. Finally, Constraints (2.20)−(2.23) are the domain of decision
variables. Although uwibd’s are continuous variables, they are binary variables under the influence
of Constraints (2.13) and (2.14), similarly to (OriginalSchedule).

2.5 Experiment on Small Data Instances

As we discussed in the literature review, the scheduling part of the MPSDP is already hard to
solve. To emphasise the complexity of the problem, in this section we will show that CPLEX
12.7.1 which is a state-of-the-art linear solver struggles to solve the scheduling part even on
small data instances.

All of the results are derived using a computer with an Intel Core i5-8365U processor and
16 GB of RAM under a 64-bit-Windows 10 operating system. All code is written in Java in
Eclipse IDE for Java Developers using CPLEX 12.7.1 to solve a mixed-integer programme.

We generate random data instances, containing the information of customers and their week
rhythms, for our experiment as follows. First, we generate the instances with a group of 30, 40
and 50 customers. For each group of customers, there are three sets of possible week rhythms

15

Data
Best

%Gap
%Gap

Worst
%Gap

#Opt
(45)

Total
time (s)

30 1 0.00 0.01 0.01 5 15
30 2 0.00 0.01 0.01 5 120
30 3 2.57 7.81 23.54 0 900

40 1 0.00 0.01 0.01 5 30.8
40 2 0.01 0.01 0.01 5 291.2
40 3 14.60 23.34 28.53 0 900

50 1 0.01 0.01 0.01 5 50.8
50 2 3.47 4.57 6.21 0 900
50 3 23.20 32.10 41.33 0 900

Total 25

Table 2.1: The performance of CPLEX by the default setting.

with a different planning horizon. Let fi be the week rhythm of customer i in a data instance.
The sets of the possible week rhythms are:

1. fi ∈ {1, 2, 4, 8} in a total of eight weeks, i.e., customers demanding service from a sales-
person every week, two weeks, 4 weeks or 8 weeks in the total planning horizon time of 8
weeks.

2. fi ∈ {1, 2, 3, 4} in a total of 12 weeks.
3. fi ∈ {2, 3, 5} in a total of 15 weeks.

We have nine combinations of the number of customers and the set of possible week rhythms.
Throughout the current and subsequent chapters, the name of each combination is denoted by
the number of customers the set of week rhythms. For example, 30 3 defines the combination
which contains 30 customers, and each of them can have a week rhythm of two weeks, three
weeks or five weeks in a 15-week plan. For each combination, we generate 5 data instances
randomly so there are 45 instances in total in the experiment. Note that the more customers
and the longer the planning horizon, the more challenging it becomes to solve for optimality
due to the increasing number of integer variables.

For each instance, the week rhythm for each customer is drawn from a discrete uniform dis-
tribution. The constant service time for each customer in each visiting week follows a discrete
uniform distribution between 15 and 80 minutes. The location of each customer is represented
by a point in the two-dimensional Cartesian coordinate system where each coordinate, inde-
pendently, follows a continuous uniform distribution between 0 and 10. The distance between
customers is squared Euclidean distance. The maximum deviation from the average weekly
workload (τweek) is 0.05.

The experiment is run on a single thread. The satisfactory tolerance level between the
bounds in the tree is 0.01%, which is the default value for CPLEX. The maximum computational
time for each data instance is 900 seconds (15 minutes).

Table 2.1 compares the results in terms of the relative percentage gaps between the upper
bound and the lower bound of the objective value, and the average total execution time in sec-
onds. For each combination, we present the best, the average, and the worst relative percentage
gaps among five instances in Best %Gap, %Gap, and Worse %Gap, respectively. Note that the
best and the worst value are, respectively, the minimum and the maximum relative percentage
gap among these five data instances. Further information that relates to the relative percentage
gaps is the total number of instances in each combination that find the optimal solution, i.e.,
those whose relative percentage gaps are less than 0.01%. This information is presented in
Column #Opt, where the number in brackets is the maximum total number of #Opt, which,
in this case, is the total number of instances in the experiment. The last row, Total, presents
the total of #Opt from every combination for each algorithm to show the overall results. The
last column, Total time (s), shows the average computational time in seconds.

For the less complicated combinations, e.g., 30 1, 30 2, 40 1, 40 2, and 50 1, CPLEX man-
ages to find the optimal solution in every instance within the reasonable computational time on

16

average, i.e., less than 5 minutes. However, for the rest of the more complicated combinations,
CPLEX cannot find the optimal solution under the limitation of time. In the worst cases, the
relative percentage gaps can reach between 23% and 42%, which are noticeably high. Overall,
CPLEX can find the optimal solutions in only around 55% of the total instances.

Obviously, the modern linear solver cannot always solve the scheduling part to optimality
even for the small number of customers. Therefore, we propose sophisticated solution ap-
proaches to derive efficient schedules in the next chapters.

17

18

Chapter 3

Benders’ Decomposition for the
Scheduling Part

Benders (1962) first proposed Benders’ decomposition for solving mixed-variables programming
problems. The method is beneficial for problems that become simpler after the values of compli-
cating variables (the variables that make the problems more difficult to solve) are temporarily
fixed. It is also suitable for problems where the constraint matrix exhibits a partitioning or block
structure. Benders (1962) mainly focused on a problem that reduces to a linear programme
when the complicating variables (for example, integer variables in a mixed-integer problem)
are fixed. Here, we are interested in the same kind of problems. For more general cases, the
interested reader is referred to Geoffrion (1972).

According to Geoffrion (1970a) and Geoffrion (1970b), Benders’ decomposition contains a
process of projection, outer linearisation, and relaxation. It begins with projecting the feasible
region of the problem onto the subspace of the complicating variables. For fixed values of the
complicating variables, the problem thus reduces to an ordinary linear programme; it is then
dualised and used to generate optimality cuts and feasibility cuts from its extreme points and
extreme rays, respectively. Note that the outer linearisation is used to define the optimality
cuts from the extreme points. The optimality cuts provide the information of the projected
costs, while the feasibility cuts are the feasibility requirements for the complicating variables
(Rahmaniani et al. 2017). With these processes, we can derive a reformulation that contains the
complicating variables, their associated constraints, and the optimality cuts and the feasibility
cuts resulting from the projection. Since the total number of optimality cuts and feasibility cuts
is usually huge, the reformulation is often intractable, or even impossible to solve. Therefore, we
relax the optimality cuts and the feasibility cuts, and then add only those which are necessary
to find the optimal solution.

Namely, in the beginning, the relaxation of the reformulation, called the master problem,
has only constraints for the complicating variables and does not have any optimality cuts and
feasibility cuts. The master problem is solved for the complicating variables. Then, it provides
the complicating variable values to a subproblem. With the fixed complicating variables, the
subproblem generates an optimality cut or a feasibility cut that has been violated. That cut is
added to the master problem to guide further processes. The method repeats these steps until
it reaches a stopping criterion.

Since Benders’ decomposition can exploit the structure of problems to reduce the computa-
tional burden, it has gained a lot of attention, especially in this decade, when tackling various
types of optimisation problems. According to Rahmaniani et al. (2017), the method is popular
not only in linear mixed-integer programming (Contreras et al. 2012, de Sá et al. 2013, Taşkın
& Cevik 2013, Gelareh et al. 2015, Kergosien et al. 2017, Fontaine & Minner 2018), but also in
stochastic problems (Santoso et al. 2005, Contreras et al. 2011b, Adulyasak et al. 2015, Boland
et al. 2016). Moreover, it is successful in tackling nonlinear problems: see de Camargo et al.
(2011); Gendron et al. (2013); Mariel & Minner (2017); Tapia-Ubeda et al. (2018).

Regarding applications, to the best of our knowledge, the method has never been applied
to districting problems. However, it shows success in closely related applications like facility

19

location (Tang et al. 2013, Naoum-Sawaya & Elhedhli 2013, Vatsa & Jayaswal 2016, Fischetti
et al. 2017, Pearce & Forbes 2018); network design (Cordeau et al. 2006, Santibanez-Gonzalez
& Diabat 2013, Pishvaee et al. 2014, Gendron et al. 2016, Rahmaniani et al. 2018); and hub
location problems (de Camargo et al. 2009, Üster & Agrahari 2011, Contreras et al. 2011a,
de Sá et al. 2018). Therefore, the method is promising to try on our model.

According to Rahmaniani et al. (2017), the original Benders’ decomposition often struggles
to solve problems with instances of practical size due to the following limitations. First, after
the projection and the relaxation process in the decomposition, the master problem loses some
information about the original problem to the subproblem. As a result, the master problem
usually has a weak relaxation, especially in the first few iterations, which directly affects the
quality of a cut derived from its solution. Also, solutions of the master problem might show
an oscillation behaviour when they approach the optimal solution. Namely, the current master
solution can move significantly far away from those of previous iterations. These effects increase
with the number of iterations and slow down the convergence of the algorithm. Time consump-
tion in each iteration is also a main bottleneck of the algorithm. This can stem from solving
the time-consuming master problem to optimality, or poor-quality cuts generated from the sub-
problem. Therefore, many acceleration techniques for the master problem and the subproblem
to increase the algorithm’s efficiency have been proposed. Here we provide brief details on some
of those methods. More thorough information of enhancements to Benders’ decomposition can
be found in Rahmaniani et al. (2017).

Tightening the relaxation of the master problem, in the beginning, speeds up the algorithm.
In the first iterations, the quality of the solutions is often poor due to a lack of information
from the subproblem. Warm-start strategies are usually used to tackle this problem. One of the
common strategies is using heuristics to generate a set of initial high-quality feasible solutions.
Those solutions are used not only for deriving initial cuts to tighten the relaxed master problem,
but also for providing a good upper bound in the case of minimisation problems (Contreras
et al. 2011a). Another conventional approach is adding valid inequalities to the master problem.
Some valid inequalities aim to improve an initial lower bound of the master problem: see, e.g.,
Adulyasak et al. (2015). Some valid inequalities are for avoiding infeasible solutions, thereby
excluding feasibility cuts from the master problem, since feasibility cuts do not improve a bound
of a problem (Pishvaee et al. 2014, Mariel & Minner 2017).

Strengthening the relaxation of the master problem is the main key to enhance the al-
gorithm. For mixed-integer master problems, a popular approach is the two-phase Benders’
decomposition by McDaniel & Devine (1977). The authors showed that Benders’ cuts gener-
ated from solutions of the linear programming (LP) relaxation of the master problem are valid
for a problem. They exploited this fact in the first phase; they considered the LP relaxation of
the master problem and generated cuts from fractional solutions. Then, in the second phase,
they reintroduced the integrality conditions back to the master problem and implemented the
classical Benders’ decomposition. This technique tightens the LP relaxation of the master prob-
lem and shows success in many studies, e.g., Papadakos (2009), Botton et al. (2013), Adulyasak
et al. (2015). When the subproblem has a decomposable structure, i.e., it contains smaller inde-
pendent problems, generating each cut from each independent problem can also strengthen the
relaxation of the master problem. Successful results have been reported in many papers, e.g.,
Pishvaee et al. (2014), Mariel & Minner (2017), Fontaine & Minner (2018), Pearce & Forbes
(2018). However, this strategy directly increases the size of the master problem. If there are
too many cuts, the master problem will have more computational burden instead. Therefore,
it needs careful implementation. To exploit this strategy, Birge & Louveaux (1997) suggested
that the total number of cuts from these smaller subproblems in each iteration should not be
much larger than the total number of constraints of the master problem without the Benders’
cuts. Contreras et al. (2011a) showed how to create multiple cuts properly for an uncapacitated
hub location for a multi-commodities problem. With a predetermined decision on opening hubs
from the master problem, the subproblem is a transportation problem that can be separated
either for each commodity or for each hub node. The total number of commodities can be much
larger than the total number of hubs for each instance in the study. Therefore, the authors
decomposed the subproblem for each hub node to avoid too many cuts per iteration.

A procedure to solve the master problem also affects the computational time of each iter-
ation. In case the master problem is an integer programme, solving the integer programme

20

iteratively to optimality is a main computational burden (Magnanti & Wong 1981). Geoffrion
& Graves (1974) suggested a way to reduce the computational time by not solving the master
problem to optimality, especially in the first iterations. More significantly, an effective and
modern technique is the branch-and-Benders’ cut. This strategy builds a single search tree for
the master problem and generates Benders’ cuts from each node (either with fractional solu-
tions or integer solutions) in the tree. This can save a significant amount of time since we do
not create a new branch-and-bound tree for the integer programme and solve it from scratch in
every iteration. Also, nowadays, state-of-the-art optimisation solvers have accessible features to
intervene in the branch-and-bound tree and facilitate a manual design on generating cuts inside
the tree. Therefore, this method has gained much more attention in this decade, especially for
tackling problems with large-sized instances (for example, Contreras et al. (2012), de Sá et al.
(2013), Botton et al. (2013), Fischetti et al. (2017)). A decision about when to generate cuts in
the tree is also important because it directly affects the size of the tree. It can vary from adding
cuts at every feasible node (with either a fractional solution or an integer solution) to adding
cuts only at nodes with integer solutions. Botton et al. (2013) do not recommend generating
cuts in every node. They suggested adding as many Benders’ cuts from fractional solutions as
possible only at the root node to tighten the LP relaxation of the master problem, similarly
to the first phase of two-phase Benders’ decomposition. After branching the root node, it is
sufficient to add cuts only at a node with an integer solution. Many studies confirmed that this
cut strategy is effective in tackling difficult problems: see Fortz & Poss (2009), de Camargo
et al. (2011), Adulyasak et al. (2015), de Sá et al. (2018), Pearce & Forbes (2018).

Regarding instability on solutions of the master problem, regularised decomposition, trust-
region and level decomposition are regular techniques to overcome the issue. These techniques,
however, add complexity to the master problem and they are not practical for combinatorial
optimisation problems (Rahmaniani et al. 2017). Therefore, we do not focus on them here.

The quality of Benders’ cuts is another essential factor for the effectiveness of the algorithm.
When the subproblem is highly degenerate, there can be multiple dual solutions that produce
Benders’ cuts of different strengths. Magnanti & Wong (1981) defined a Pareto-optimal cut as a
nondominated optimality cut. For a given optimal objective value of the dual subproblem, the
authors proposed an auxiliary subproblem to create the strongest cut from a dual subproblem
solution with the same optimal objective value. The auxiliary problem utilised a core point
which is a point in the relative interior of the convex hull of the master problem. Papadakos
(2008) addressed the weakness of the idea from Magnanti & Wong (1981) as the auxiliary
problem tends to have a numerical instability issue. Also, core points are usually not easy
to find. Papadakos (2008) proposed a way to remove the instability issue by modifying the
auxiliary problem to be independent of the optimal objective value of the dual subproblem.
Also, the author showed how to update a new core point for every iteration: it is a convex
combination of a previously used core point and a solution of the master problem. This way
requires only an initial valid core point to start. However, this does not apply when a master
solution yields an infeasible primal subproblem. de Sá et al. (2013) extended the work of
Papadakos (2008) for such a case; they adjusted the weight on the convex combination so that
the updated core point is still valid to generate a Pareto-optimal cut. Naoum-Sawaya & Elhedhli
(2013) contributed another way to generate Pareto-optimal cuts. They substituted a core point
with an analytic centre and proved that it generates a Pareto-optimal cut. The approach showed
promising results in solving the capacitated facility location and multi-commodity capacitated
fixed-charge network design problems. Nevertheless, the success of the algorithm mainly relies
on the quality of the core points and the efficiency of the re-optimisation methods.

Deriving core points is usually the main challenge in the process of generating Pareto-optimal
cuts because they are not easy to find for some complicated problems (see, for example, Mercier
et al. (2005)). For those problems, approximate core points are always used instead. For
example, Santoso et al. (2005) used a solution from the linear relaxation of the master problem;
Papadakos (2008) used a master solution from the first iteration as a substitution for the initial
core point. However, these methods do not guarantee the generation of Pareto-optimal cuts and
might not improve the efficiency of the algorithm. Sherali & Lunday (2013) addressed this issue
by introducing another kind of a nondominated optimality cut called maximal nondominated.
This cut generation is less strict than the Pareto-optimal cut from Magnanti & Wong (1981).
Its main advantage is that it requires only a positive weight vector instead, thereby avoiding

21

the challenges related to generating valid core points.

Moreover, the algorithms proposed in Magnanti & Wong (1981) and Papadakos (2008) do
not always provide a net computational benefit due to having to solve two linear programmes in
every iteration, i.e., the dual subproblem and the auxiliary dual subproblem (Mercier & Soumis
2007). Therefore, in the process of generating the maximal nondominated cuts, Sherali &
Lunday (2013) combined these two linear programmes into one problem under a multi-objective
optimisation framework. In particular, the objective function of the model reformulation is a
weighted sum of the objective functions of these two problems. In experiments on instances
of the fixed-charge network problem, the method showed superior results to the benchmark,
which was using the Pareto-optimal cuts by Magnanti & Wong (1981) with the core point
approximation method from Papadakos (2008). However, the technique still has one main
issue: a proper value of the weight parameter in the objective function is not practical to derive.
Oliveira et al. (2014) then suggested dynamically adjusting the value of the weight parameter
so that it mostly focuses on improving the original objective function of the dual subproblem
at a later stage of the algorithm. This is to ensure the convergence of the algorithm to be the
same as the classical Benders’ decomposition scheme. Experiments on instances of two-stage
stochastic programming supported the robustness of the algorithm which was superior to those
of Magnanti & Wong (1981) and Sherali & Lunday (2013).

Typically, Benders’ cuts are generated separately according to the subproblem status; an
optimality cut from a subproblem which is solved to optimality and a feasibility cut from an in-
feasible subproblem. Fischetti et al. (2010) proposed a different way to generate Benders’ cuts.
They reformulated the subproblem as a pure feasibility problem that can generate both opti-
mality cuts and feasibility cuts in the same framework. The computational results on instances
of the multi-commodity network flow problems supported the robustness of the algorithm.

This chapter provides the theoretical background of Benders’ reformulation on a mixed-
integer linear programme in Section 3.1. Then, the classical Benders’ decomposition is presented
in Section 3.2. We show how to apply the method to our model in Section 3.3. However, the
technique usually struggles to deal with instances whose size is practically relevant. Therefore,
Section 3.4 presents techniques to improve the efficiency of the method. These include the two-
phase Benders’ decomposition, a heuristic for warm-start, nondominated optimality cuts (either
Pareto-optimal cuts or maximal nondominated cuts), multiple cuts from the decomposable
subproblem, and the modern branch-and-Benders’ cut. Section 3.5 provides the details of the
programme set-up for our experiment, followed by the discussion about the effectiveness of
every technique and the comparison of results between our developed method and the Benders’
decomposition algorithm of CPLEX in Section 3.6.

3.1 Benders’ Reformulation

In this section, we show how to derive Benders’ reformulation for a mixed-integer linear pro-
gramme. Here, we assume that the complicating variables are integer variables. Once the
integer variables are fixed, the problem is reduced to a linear programme, and a standard
duality theory is exploited to derive the reformulation.

A mixed integer linear programme can be represented as follows:

min fT y + cTx

s.t. Ay = b (OriginalBD)

By +Dx = d

x ≥ 0

y ≥ 0 and integer.

Suppose that y satisfying Ay = b are the fixed integer variables. Then, we get the resulting
linear programme as the following:

min
x≥0
{cTx | Dx = d−By}. (SPBD(y))

22

Since (SPBD(y)) is a linear programming problem, we can consider its dual problem instead.
Let π be the dual variables corresponding to the constraints Dx = d−By. The corresponding
dual problem is

zLP (y) := max {πT (d−By) | πTD ≤ cT , π is free}. (dualSPBD(y))

Next, we can represent the polyhedron of (dualSPBD(y)) in terms of its extreme points and
extreme rays.

Let R be the feasible region of (OriginalBD) where

R = {(x, y) | Ay = b, By +Dx = d, x ≥ 0, y ≥ 0 and integer}.

Let F be the feasible space for (dualSPBD(y)), i.e., F = {π | πTD ≤ cT , π is free}. Note
that F is independent of the choice of y. Assume that F is not empty. The set of extreme
points and extreme rays of F are defined by the set E and Q, respectively.

Since we have fixed the value of y, we can consider the projection of a point (x, y) ∈ R
into the subspace Hy = {(x, y) ∈ R | Ay = b}. We denote the projection as ProjHy (R). The
projection can be derived by Theorem 3.1.1 (Theorem 4.10 in Nemhauser & Wolsey (1988)).

Theorem 3.1.1. Let R be the feasible region of (OriginalBD) and Hy = {(x, y) ∈ R | Ay = b}.
Then

ProjHy (R) = {y | rTq (d−By) ≤ 0 ∀q ∈ Q, y ≥ 0 and integer}

where {rq}q∈Q are the extreme rays of Q = {r | rTD ≤ 0, r is free}.

Then, the (OriginalBD) problem can be reformulated as follows:

min
y∈ProjHy (R)

fT y + zLP (y).

If zLP (y) where y ∈ ProjHy (R) has a finite optimal solution, we can represent it in the form
of extreme points.

zLP (y) = max
e∈E

πTe (d−By)

where {πe}e∈E are the extreme points of F .
Consequently, we can derive the equivalent formulation for (OriginalBD) below:

min
y

fT y + {max
e∈E

πTe (d−By)}

s.t. Ay = b

rTq (d−By) ≤ 0 ∀q ∈ Q
y ≥ 0 and integer.

Let η ∈ R be the continuous variable to represent the value of the optimal extreme point,
i.e.,

η = max
e∈E

πTe (d−By).

Finally, we get Benders’ Reformulation which is an equivalent form of (OriginalBD).

min
y,η

fT y + η

s.t. Ay = b (BR)

η ≥ πTe (d−By) ∀e ∈ E
rTq (d−By) ≤ 0 ∀q ∈ Q
y ≥ 0 and integer

η ∈ R.

The characterisation of solutions of (BR) is included in Theorem 3.1.2, which is derived from

23

Theorem 3.1 (Partitioning theorem for mixed-variables programming problems) from Benders
(1962).

Theorem 3.1.2. (Partitioning theorem for mixed-variables programming problems)

1. Problem (OriginalBD) is not feasible if and only if the (BR) is not feasible, i.e., if and
only if the feasible region is empty.

2. Problem (OriginalBD) is feasible without having an optimum solution, if and only if the
(BR) is feasible without having an optimum solution.

3. If (x, y) is an optimum solution of problem (OriginalBD) and fT y+ η = fT y+ cTx, then
(η, y) is an optimum solution of problem (BR) and x is an optimum solution of the linear
programming problem (SPBD(y)).

4. If (η, y) is an optimum solution of (BR), then (SPBD(y)) is feasible and the optimum
value of the objective function in this problem is equal to η. If x is an optimum solution of
(SPBD(y)), then (x, y) is an optimum solution of problem (OriginalBD), with optimum
value fT y + η for the objective function.

3.2 Classical Benders’ Decomposition

Although it is possible to derive Benders’ Reformulation, it is very hard to find all extreme
points and extreme rays a priori. Moreover, the size of the set of extreme points and extreme
rays is usually large. Even if we were able to include all of them in the formulation, they would
become a major computational burden. Therefore, we start with the relaxation of (BR), called
the master problem, where the corresponding set of extreme points and extreme rays is empty.
The master problem is solved for the optimal solution y. Then, (dualSPBD(y)), which is the
dual subproblem corresponding to y, can be unbounded or have an optimal solution. In the
former case, we obtain so-called feasibility cuts; in the latter case, we obtain optimality cuts.
The cuts are added to the master problem to either provide the feasibility requirements or
improve the quality of the integer solution. The master problem and the subproblem are solved
iteratively. The algorithm stops when we find the optimal solution or some other conclusions,
for example, infeasibility or unboundedness for (OriginalBD).

According to Nemhauser & Wolsey (1988), a rigorous algorithm for the classical Benders’
decomposition in general is shown in Algorithm 1. Initially, the master problem has subsets of
extreme points and extreme rays, E1 and Q1, respectively, which are usually empty. As the
algorithm progresses, the master problem at iteration t is represented by (MPBDt).

zt = min
y,η
{fT y + η | (η, y) ∈ StR} (MPBDt)

where StR is the current feasible region for the master problem corresponding to the set Et and
Qt, i.e.,

StR = {η ∈ R, y ≥ 0 and integer | Ay = b, η ≥ πTe (d−By) ∀e ∈ Et, rTq (d−By) ≤ 0 ∀q ∈ Qt}.

Line 4 shows that if the master problem, which is the relaxation of the original problem,
is infeasible, then the original problem is also infeasible. For the other cases, shown in Lines
5−9, we can derive a master solution (ηt, yt). We then solve the corresponding dual problem
of (SPBD(yt)), called the dual subproblem at the iteration t, represented in (dualSPBD(yt)).

zLP (yt) = ztLP = max {πT (d−Byt) | πTD ≤ c, π free}. (dualSPBD(yt))

If the dual subproblem is infeasible, then the primal subproblem is unbounded. In such
a case, (BR) is also unbounded, since there is a feasible master solution that can lead to
unboundedness for the original problem. Otherwise, we can derive an extreme ray or extreme
point: see Lines 13−17.

Line 18 is the optimality test for the current solution. If it does not pass the test, it means
that at least one constraint of (BR) is violated. Lines 21−27 show how to update an optimality
cut and a feasibility cut. The algorithm repeats the process until it reaches a stopping criterion,

24

which can be a restriction of the computational time or the acceptable gap between the upper
bound and the lower bound.

Regarding the bounds for (BR), the master problem provides a lower bound, while the
subproblem gives an upper bound. Assuming that at iteration t, (ηt, yt) is the optimal integer
solution of (MPBDt), the objective function of the master problem, fT yt + ηt, is a lower
bound since (MPBDt) is a relaxation of (BR). Whenever we can solve the corresponding
(dualSPBD(yt)) optimally, the optimal subproblem solution xt is derived easily from the optimal
dual solution πt by the complementary slackness conditions. Now, (xt, yt) is a feasible solution
for (BR), and, therefore,

fT yt + πt
T

(d−Byt) = fT yt + cTxt

is an upper bound of (BR).

Algorithm 1 The Classical Benders’ Decomposition in General (Nemhauser & Wolsey 1988)

Input: E1 ⊆ E, Q1 ⊆ Q
Initial:

t := 1
1: while It does not reach any stopping criterion do
2: Solve (MPBDt)
3: if (MPBDt) is infeasible then
4: Stop. (BR) is infeasible
5: else if (MPBDt) is unbounded then
6: Find a feasible solution pair (ηt, yt) with ηt > ω for some large value ω
7: else
8: Derive the optimal solution (ηt, yt)
9: end if

10: Solve (dualSPBD(yt))
11: if (dualSPBD(yt)) is infeasible then
12: Stop. (BR) is unbounded
13: else if (dualSPBD(yt)) is unbounded then
14: Following Farkas’ Lemma, we can find an extreme ray rt

15: else if (dualSPBD(yt)) is finite then
16: Get the dual solution πt and the corresponding primal solution xt

17: end if
18: if fT yt + ηt ≥ fT yt + cTxt then . Optimality Test
19: Stop. (xt, yt) is the optimal solution of (BR)
20: else if fT yt + ηt < fT yt + cTxt or (dualSPBD(yt)) is unbounded then . Violation
21: if (dualSPBD(yt)) is finite then
22: Update set Et+1 = Et ∪ {πt}
23: Update St+1

R = StR ∩ {(η, y) | η ≥ πtT (d−By)} . Update the optimality cut
24: else if (dualSPBD(yt)) is unbounded then
25: Update set Qt+1 = Qt ∪ {rt}
26: Update St+1

R = StR ∩ {(η, y) | rtT (d−By) ≤ 0} . Update the feasibility cut
27: end if
28: end if
29: Update t := t+ 1
30: end while

3.3 Benders’ Decomposition for our Model

To apply Benders’ decomposition to our model, we separate our mathematical formulation into
the master problem and the subproblem in the usual way. We keep all the integer variables (the
week centre and week pattern variables) and their associated constraints in the master problem,
and the rest in the subproblem. Then, the master problem is a mixed-integer programme, and
the subproblem is a linear problem.

25

We assume that we have an integer solution from the master problem, (g, x), where

• g ≡ (gbp)b∈B,p∈P , satisfying Constraints (2.1), (2.5), (2.6), and (2.7) for the unique week
pattern per customer and weekly workload balance.

• x ≡ (xwb)b∈B,w∈W , satisfying Constraints (2.4) and (2.8) to ensure that there must be
exactly one week centre each week.

The Benders’ subproblem corresponding to (g, x) is

min z(u) :=
∑
b∈B

∑
i∈B

∑
w∈W

cbiu
w
bi (SP(g, x))

s.t.
∑
i∈B

uwbi =
∑
p∈Pb

ψwp gbp b ∈ B, w ∈W (3.1)

uwbi ≤ xwi b, i ∈ B, w ∈W (3.2)

uwbi ≥ 0 b, i ∈ B, w ∈W.

Let αwb and βwbi be the dual variables for (3.1) and (3.2), respectively. The dual of the
Benders’ subproblem as follows:

max z(α, β) :=
∑
b∈B

∑
w∈W

∑
p∈Pb

αwb ψ
w
p gbp −

∑
b∈B

∑
i∈B

∑
w∈W

βwbix
w
i (dualSP(g, x))

s.t. αwb − βwbi ≤ cbi b, i ∈ B, w ∈W (3.3)

αwb ∈ R b ∈ B, w ∈W (3.4)

βwbi ≥ 0 b, i ∈ B, w ∈W. (3.5)

After solving the dual subproblem, we generate a cut and add it to the master problem.
According to Rahmaniani et al. (2017), feasibility cuts increase the number of iterations with-
out improving the lower bound and they slow down the algorithm. Fortunately, the primal
subproblem here is always feasible for every choice of weekly centres and week patterns since
the task for the problem is only to calculate the corresponding total centre-based distance.
Therefore, we only get optimality cuts for the master problem.

The master problem is presented below.

min η (MP)

s.t.
∑
p∈Pb

gbp = 1 b ∈ B (3.6)

∑
b∈B

xwb = 1 w ∈W (3.7)∑
b∈B,p∈Pb

tbψ
w
p gbp ≥ (1− τweek)µweek w ∈W (3.8)

∑
b∈B,p∈Pb

tbψ
w
p gbp ≤ (1 + τweek)µweek w ∈W (3.9)

∑
b∈B

∑
w∈W

∑
p∈Pb

αwb ψ
w
p gbp −

∑
b∈B

∑
i∈B

∑
w∈W

βwbix
w
i ≤ η (α, β) ∈ πSPpoints (3.10)

gbp ∈ {0, 1} b ∈ B, p ∈ Pb (3.11)

xwb ∈ {0, 1} b ∈ B, w ∈W (3.12)

η ∈ R.

Constraints (3.6)−(3.9), and (3.11)−(3.12) are for the integer variables from our orig-
inal model. The optimality cuts are (3.10), where (α, β) denote α ≡ (αwb)b∈B,w∈W and
β ≡ (βwbi)b,i∈B,w∈W , and πSPpoints is the set of extreme points of the feasible region of the dual
subproblem.

We derive bounds for the problem in the way that we described in the previous section.
At iteration t, let (ηt, gt, xt) be the optimal solution of the master problem. ηt, which is
the objective value of the master problem, provides the lower bound. If the corresponding

26

dual subproblem is solved optimally, we can derive the optimal solution of the subproblem
ut ≡ (uwbi)b,i∈B,w∈W . Then, (gt, xt, ut) is a feasible solution for the original problem and gives
an upper bound. In particular, the objective value of the subproblem is already an upper bound
since its objective function is the total centre-based distance corresponding to the predetermined
week centres and week patterns.

Finally, there are several potential criteria to stop the algorithm.
1. The gap between the lower bound and upper bound is within a predefined tolerance. In

this work, we consider the relative percentage gap. Let UB and LB be the upper bound
and the lower bound of the problem, respectively. The relative percentage gap PG is given
as

PG =

{
(UB−LB)×100

UB , UB > 0,

100, otherwise.
(3.13)

2. The limitation in the total time to run the algorithm.
3. The original model is infeasible or unbounded.
The complete algorithm of Benders’ decomposition for our model is presented in Algorithm

2, where maxTime and ε are the parameters for the stopping criteria: the maximum time and
the threshold of the acceptable relative percentage gap, respectively.

In iteration t, the master problem is solved for an integer solution. Unless the master
problem is infeasible, we derive an integer solution and update LB, the lower bound for the
problem. Afterwards, the dual subproblem corresponding to the integer solution is solved. Since
the task for the subproblem is just to calculate the total centre-based distance for the predefined
week patterns and week centres, it is always solved optimally. It generates an optimality cut
and updates the upper bound UB: see Lines 12−15. Regarding the stopping criteria for the
algorithm, Lines 16 and 17 update the relative percentage gap PG and the current time Time,
respectively.

Algorithm 2 The Classical Benders’ Decomposition Algorithm

Parameter: maxTime, ε
Initial:

LB:= 0, UB:=1e10, t:=0, Time := 0, πSPpoints := ∅
1: while Time < maxTime and PG > ε do
2: t := t+ 1 . Update the number of iterations
3: Solve (MP)
4: if (MP) is infeasible then
5: (OriginalSchedule) is infeasible. Stop the algorithm
6: else if (MP) is unbounded then
7: Find any reasonable feasible solutions (gt, xt)
8: else
9: Get the optimal solution of (MP), (gt, xt)

10: Update LB:= max{LB, ηt}
11: end if
12: Solve (dualSP(gt, xt))
13: Derive (α, β) and update the set of πSPpoints
14: Generate the corresponding optimality cut (3.10)
15: Update UB:= min{UB, z(α, β)}
16: Update PG by (3.13)
17: Record current time in Time
18: end while

However, there are several well-known drawbacks of the classical Benders’ decomposition.
First, the master problem always provides a poor quality of integer solutions in the beginning
since there is not much information from the subproblem. It results in a slow increase in the
lower bound. Secondly, there is no guarantee in the strength of the cuts from the subproblem,
so it is possible to provide poor cuts for the master problem. Moreover, we solve the master
problem, an integer problem, with more constraints from scratch in each iteration. As a result,
it becomes a major computational burden as the algorithm progresses (Rahmaniani et al. 2017).

27

Therefore, in the next section, we propose acceleration techniques to improve the efficiency of
Benders’ decomposition.

3.4 Accelerating Benders’ Decomposition

In this section, we show the various developments on the classical Benders’ decomposition
to improve its efficiency for solving our model. To strengthen the LP relaxation of the master
problem, thereby enhancing the efficiency of generating the integer solution, we apply two-phase
Benders’ decomposition. Moreover, we use a high-quality integer solution from a heuristic to
generate optimality cuts beforehand. This is to improve the upper bound of the objective value
at the beginning. Regarding optimality cuts in the algorithm, we can derive them by hand
because of the particular structure of the subproblem. However, the cuts might not be the
strongest, since the subproblem is highly degenerate. Namely, the dual subproblem can have
several optimal solutions that produce cuts of different strength. A nondominated optimality
cut is used in such a case as it is guaranteed to be the strongest cut. We also exploit the
decomposable structure of the subproblem to generate multiple cuts per iteration. Finally, we
propose a modern implementation called the branch-and-Benders’ cut. Instead of solving the
master problem from scratch in every iteration, we consider a single branch-and-bound tree of
the master problem and generate Benders’ cuts from a node in the tree.

3.4.1 Two-Phase Benders’ Decomposition

As we mentioned above, the master problem always struggles to provide a good quality of integer
solutions in the first iterations since it lacks the information from the subproblem. McDaniel &
Devine (1977) addressed this problem and proposed an idea to improve the quality of solutions
of the master problem, called the two-phase Benders’ decomposition. They separate a problem
into two phases: the relaxed Benders’ decomposition and the Benders’ decomposition. In the
first phase, they relax the integrality conditions in the master problem and generate Benders’
cuts from fractional solutions. This leads to a tighter linear programming relaxation for the
master problem. Then, they apply the classical Benders’ decomposition in the second phase
by adding the integrality conditions back into the master problem. This algorithm is effective
and easy to implement, so it is popular in the literature (for example, Papadakos (2009), de Sá
et al. (2013), Botton et al. (2013), Kergosien et al. (2017), de Sá et al. (2018)).

We have two criteria for ending the first phase: reaching the predetermined maximum num-
ber of iterations to add cuts and the relative percentage gap of improvement. The first criterion
is to make sure that we will not add too many cuts before starting the next phase. The latter
one considers the relative percentage gap of the objective value of the master problem between
two consecutive iterations. If the relative percentage gap is under the predetermined threshold,
it suggests that the recent cuts are not very helpful. A way to calculate this measurement is
represented below.

Let ηt be the objective value of the master problem at iteration t. PImp is the relative
percentage gap of the improvement for t = 2, 3, . . . as follows:

PImp =

{
(ηt−ηt−1)·100

ηt−1 , ηt−1 > 0, t = 2, 3, . . . ,

100, otherwise.
(3.14)

When any of these stopping criteria is reached, the algorithm moves to the second phase
and follows the steps in Algorithm 2.

Algorithm 3 shows the additional first phase. We introduce new parameters for the specific
stopping criteria of the first phase: N is the maximum number of iterations to add optimality
cuts from a fractional solution, and ε1st is the acceptable improvement tolerance of the relative
percentage gap on the objective value of the master problem. The modified algorithm starts
by creating the LP relaxation of the master problem, called (MPRelax). Then, most of the
steps in the first phase are almost the same as the classic version. Note that all solutions of
the master problem in the first phase are fractional and, thus, not feasible for the original
problem. Therefore, we cannot update the upper bound of the algorithm in the first phase.

28

Line 4 updates the relative percentage gap of the improvement for the stopping criterion. When
we finish the first phase, we reintroduce the integrality conditions in the master problem. Also,
the total number of iterations, t, is reinitialised. Line 8 updates the current time in Time to
include the total computational time of the first phase into the second phase. Usually, the
first phase finishes quickly since it deals only with a linear programme. Then, the algorithm
continues with the procedure of the classical version.

Algorithm 3 Two-Phase Benders’ Decomposition

Parameter:
For the first phase : N , ε1st

For the second phase : maxTime, ε
Initial:

LB:= 0, UB:=1e10, t:=0, Time := 0, πSPpoints := ∅
1: Relax the integrality conditions, (3.11) and (3.12), in (MP). We call it (MPRelax)
2: while PImp > ε1st and t < N do
3: Follow Lines 2−14 of Algorithm 2

. Solve (MPRelax) and the dual subproblem, and derive the optimality cut
4: Update PImp by using (3.14)
5: end while
6: Reintroduce the integrality conditions, (3.11) and (3.12), in (MP)
7: t := 0 . Reinitialise the number of iterations for the next phase
8: Update the current time in Time . Include the solving time for the first phase
9: Run Algorithm 2

3.4.2 Initial Integer Solution

The master problem determines the week pattern of each customer and the week centres by
means of the week pattern and the week centre variables, respectively. To generate a high-
quality initial solution for the master problem, we adopt Cooper’s location-allocation heuristic
from Cooper (1964).

The heuristic is usually applied in a facility location problem to decide on warehouse lo-
cations and allocate customers to those warehouses (for example, Hess & Samuels (1971)). It
splits the problem into two separate problems: the location problem and the allocation prob-
lem. The location problem determines optimal warehouse locations, given that the allocations
of customers to warehouses are fixed. The allocation problem optimally allocates the customers
to the fixed warehouse locations. The two problems are solved repeatedly until both of them
reach the same objective value. Transferred to the context of districting problems, customers
correspond to basic units and warehouses to district centres. The heuristic is usually quick to
solve and provides a high-quality solution. Bender et al. (2016) demonstrated its success in
solving the multi-period sales districting problem for large data instances.

Here we design the location problem for the week centre variables and the allocation vari-
ables, where the values of the week pattern variables are fixed. Regarding the allocation prob-
lem, we determine the week patterns of customers for fixed values of the centre variables.

For the location problem with fixed week pattern values, we know all customers who require
a service each week from their fixed week patterns. Hence, we determine the week centres that
minimise the total centre-based distance for all week clusters. Let g be a matrix of fixed values
of the feasible week pattern variables that satisfy Constraints (3.6), (3.8), (3.9), and (3.11).

29

The location problem corresponding to g is represented in the following problem (Location(g)).

min zL :=
∑
b∈B

∑
i∈B

∑
w∈W

cbiu
w
bi (Location(g))

s.t.
∑
i∈B

uwbi =
∑
p∈Pb

ψwp gbp b ∈ B, w ∈W

∑
b∈B

xwb = 1 w ∈W

uwbi ≤ xwi b, i ∈ B, w ∈W
uwbi ≥ 0 b, i ∈ B, w ∈W
xwb ∈ {0, 1} b ∈ B, w ∈W.

This problem is very easy to solve by hand since the only remaining task is to find a customer
who should be the week centre each week, i.e., which customer provides the minimum total
centre-based distance in each week cluster. Corresponding to the information of g, let Bw =
{b ∈ B |

∑
p∈Pb

ψwp gbp > 0} denote the set of customers in week w ∈ W . The week centre of
week w, bw, can be derived by solving the following:

bw = arg min
i∈B

∑
b∈Bw

cbi. (3.15)

Then, we can derive the values of the centre variables immediately from the following equations
(3.16).

xwb =

{
1, b = bw,

0, otherwise;
(3.16)

These week centres and the set of customers in each week imply the corresponding allocation
variables values in (3.17) as shown below.

uwbi =

{
1, b ∈ Bw and i = bw,

0, otherwise.
(3.17)

Afterwards, we can derive the location objective value zL.

Regarding the allocation problem, assume that we have centre variable values x̄ that satisfy
(3.7) and (3.12). The objective function for the problem is a little bit different from the original
one. The total centre-based measurement in this problem is based on the week pattern variables
and the distance between each customer and the predetermined week centres. The task is to
select a week pattern for each customer that minimises the total centre-based distance for the
fixed week centres.

Let cwb (x) be the distance between customer b ∈ B and the week centre in week w corre-
sponding to x, i.e.,

cwb (x) =

{
cbi, where xwi = 1, i ∈ B,

0, otherwise.

The allocation problem for a given x is shown in (Allocation(x)) as follows.

30

min zAL :=
∑
b∈B

∑
w∈W

∑
p∈Pb

cwb (x)ψwp gbp (Allocation(x))

s.t.
∑
p∈Pb

gbp = 1 b ∈ B

∑
b∈B,p∈Pb

tbψ
w
p gbp ≥ (1− τweek)µweek w ∈W

∑
b∈B,p∈Pb

tbψ
w
p gbp ≤ (1 + τweek)µweek w ∈W

gbp ∈ {0, 1} b ∈ B, p ∈ Pb.

To start the location-allocation heuristic, we create an initial matrix of week centre values by
picking a customer randomly to be a week centre each week. We restrict ourselves to selecting
customers for the random week centres who have the smallest week rhythm in the planning
horizon. The reason is that they are most likely to appear in many week clusters.

Let r = minb∈B rb be the smallest week rhythm of the customers and let set Br represent
the set of customers whose week rhythm is r. In particular, Br = {b ∈ B | rb = r}. In week
w ∈ W , we randomly select bw ∈ Br as the week centre. Then, we use (3.16) to derive the
corresponding matrix for the week centre variable values x. The heuristic starts by solving the
allocation problem with x, and it continues solving the location and the allocation problem
alternatingly until both objective values reach the same value. This yields an initial feasible
integer master solution (g0, x0). Moreover, we generate an optimality cut from this solution
and add it at the beginning of Benders’ decomposition algorithm. Since the heuristic usually
generates a high-quality solution, this optimality cut tends to tighten the feasible region of the
master problem effectively.

3.4.3 Manual Derivation of an Optimality Cut from an Integer Master
Solution

Since week centres and week patterns for customers have been determined already in the master
problem, we can directly derive the allocation variables’ values and calculate the compactness
of the schedules.

Assuming that (g, x) is an integer solution of the master problem, we derive set Bw of
customers requiring service in week w, i.e., Bw = { b ∈ B |

∑
p∈Pb

ψwp gbp > 0 }. Concerning
the week centres, let i(w) be the customer who is the week centre in week w, i.e., xwi(w) = 1.
Then, the values of the allocation variables can be derived immediately as follows:

uwb,i(w) = 1 b ∈ Bw
uwbi = 0 b ∈ Bw, i ∈ B \ {i(w)}
uwbi = 0 b 6∈ Bw, i ∈ B.

Let us consider the complementary slackness conditions below.

(
∑
i∈B

uwbi −
∑
p∈Pb

ψwp gbp) · αwb = 0 b ∈ B, w ∈W (3.18)

(xwi − uwbi) · βwbi = 0 b, i ∈ B, w ∈W (3.19)

(αwb − βwbi − cbi) · uwbi = 0 b, i ∈ B, w ∈W. (3.20)

Then, we can derive an optimal solution for the dual subproblem by inspection from the
conditions (3.18)−(3.20) as follows.

For customer b ∈ Bw in week w ∈W , the corresponding uwb,i(w) = 1. From (3.20), we get

αwb − βwb,i(w) = cb,i(w) (3.21)

31

The objective function of (dualSP(g, x)) shows that the coefficients of {αwb }b∈B,w∈W are
positive, while those of {βwbi}b,i∈B,w∈W are negative which they are by definition of Constraints
(3.5). To optimise the objective function, we choose the maximum possible positive values of
αwb and the minimum possible values of βwbi. Therefore, according to (3.21), we select

αwb = cb,i(w) (3.22)

βwb,i(w) = 0.

For the rest of βwbi where i ∈ B \ {i(w)}, their feasible values are according to (3.3), (3.22),
and (3.5), i.e.,

βwbi ≥ cb,i(w) − cbi and βwbi ≥ 0.

Therefore, their possible minimum values are

βwbi = max {0, cb,i(w) − cbi} = (cb,i(w) − cbi)+.

For customer b /∈ Bw in week w ∈W and customer i ∈ B, feasible dual values that obviously
satisfy the complementary slackness conditions (3.18)−(3.20) are

αwb = βwbi = 0.

In conclusion, a solution of the dual subproblem that we derive manually is shown below.

αwb = cb,i(w) b ∈ Bw (3.23)

βwbi = max {0, cb,i(w) − cbi} = (cb,i(w) − cbi)+ b ∈ Bw, i ∈ B (3.24)

αwb = βwbi = 0 b 6∈ Bw, i ∈ B. (3.25)

Then, we can create an optimality cut for the master problem directly, i.e.,

∑
w∈W

∑
b∈Bw

cb,i(w)

∑
p∈Pb

ψwp gbp −
∑
i∈B

(cb,i(w) − cbi)+xwi

 ≤ η. (3.26)

However, we can derive more than one dual solution for the dual subproblem. In particular,
the objective function of the dual subproblem does not take into account the customers who
do not require service each week and those who are not the week centres. Therefore, we can
change the dual values associated with those customers and still get the same objective value.

Namely, for customer b 6∈ Bw, w ∈ W , the dual variables αwb do not appear in the dual
subproblem objective function because their corresponding coefficient values are zero, i.e.,∑
p∈Pb

ψwp gbp = 0. Similarly to βwbi, i ∈ B \ {i(w)}, their coefficients correspond to xwi = 0.
Therefore, the values of αwb and βwbi in (3.25) can be changed to any values that satisfy Con-
straints (3.3)−(3.5), without changing the dual subproblem objective value. For example, we
can increase the values of these αwb and βwbi to be similar to those for the customers who require
service in (3.23) and (3.24), respectively.

αwb = cb,i(w) b 6∈ Bw
βwbi = max {0, cb,i(w) − cbi} = (cb,i(w) − cbi)+ b 6∈ Bw, i ∈ B.

These are feasible for the dual subproblem and do not increase the objective value of the
dual subproblem.

The dual subproblem is highly degenerate as we showed in the above example. Therefore,
(3.26) might not be the strongest possible cut, and this can lead to a potentially weak improve-
ment of the bounds. In the next section, we use the concept of a nondominated optimality cut
to derive the strongest cut in each iteration.

32

3.4.4 Nondominated Optimality Cut

According to Section 3.2, for a given integer solution y, we solve the corresponding dual sub-
problem (dualSPBD(y)), i.e.,

zLP (y) := max {πT (d−By) | πTD ≤ cT , π is free}

to generate a Benders’ cut.

If we can solve the dual subproblem to optimality, we will derive a dual solution π to generate
an optimality cut as follows:

η ≥ πT (d−By). (3.27)

In case that the dual subproblem is degenerate, it is possible to derive more than one
optimal solution. As a result, we might generate an optimality cut with different strength. To
guarantee the efficiency of the algorithm, we aim for generating the strongest optimality cut in
every iteration. A few important approaches are presented in this subsection.

Pareto-Optimal Cut by Magnanti & Wong (1981)

Magnanti & Wong (1981) defined the strongest cut or a Pareto-optimal cut as shown below.

Definition 1. A cut η ≥ π∗T (d − By) dominates or is stronger than η ≥ π0T (d − By), if
π∗T (d−By) ≥ π0T (d−By) for all y ∈ Y with a strict inequality for at least one point y ∈ Y ,
where Y is the set of all feasible solutions of the master problem

Definition 2. A cut is Pareto-optimal if it is not dominated by any other cut.

To derive Pareto-optimal cuts for a given master solution, Magnanti & Wong (1981) sug-
gested solving the subproblem twice. The first subproblem is the standard subproblem whose
objective value is used to derive a set of alternative optimal solutions. The second subproblem
determines a Pareto-optimal cut among these solutions. In particular, the second one is solved
using a so-called core point. A core point is any point in the relative interior of the convex hull
of the set of feasible points of the master problem.

Let y and zLP (y) be a given master solution and the objective value of the corresponding
standard dual subproblem, respectively. Let y0 be a core point. The formulation of the second
dual subproblem is below.

max πT (d−By0) (MWGeneral(y0))

s.t. πT (d−By) = zLP (y) (3.28)

πTD ≤ cT

π is free.

There are few differences to the standard subproblem: the core point substitutes the integer
solution in the objective function, and (3.28) is an additional constraint to guarantee that a
dual solution here has the same objective value as in the standard subproblem. According to
Theorem 1 from Magnanti & Wong (1981), the optimal dual solution from the above problem
generates a Pareto-optimal cut.

To adapt the cut generation approach to our model, let (g0,x0) be a core point for the
week pattern and the week centre variables, and (g,x) be an integer solution from the Benders’
master problem (MP). After solving (dualSP(g, x)) for the corresponding dual solution (α, β),
we then solve the following problem (MW(g0, x0)) which is a modified subproblem for the core

33

point.

max z(α, β) :=
∑
b∈B

∑
w∈W

∑
p∈Pb

αwb ψ
w
p g

0
bp −

∑
b∈B

∑
i∈B

∑
w∈W

βwbix
0w
i (MW(g0, x0))

s.t.
∑
b∈B

∑
w∈W

∑
p∈Pb

αwb ψ
w
p gbp −

∑
b∈B

∑
i∈B

∑
w∈W

βwbix
w
i = z(α, β) (3.29)

αwb − βwbi ≤ cbi b, i ∈ B,w ∈W
αwb ∈ R b ∈ B, w ∈W
βwbi ≥ 0 b, i ∈ B, w ∈W.

The modified algorithm is represented in Algorithm 4. It shows the additional steps after
solving the standard subproblem in Lines 4−7. A core point (g0, x0) is generated. Then, the core
point and the dual solution of the standard subproblem (α, β) are for creating (MW(g0, x0)).
The solution (α′, β′) from (MW(g0, x0)) is used to generate the Pareto-optimal cut for the
master problem.

Algorithm 4 Magnanti-Wong Algorithm

Parameter: maxTime, ε
Initial:

LB:= 0, UB:=1e10, t:=0, Time := 0 πSPpoints := ∅
1: while Time < maxTime and PG > ε do
2: Follow Lines 2−12 in Algorithm 2 . Solve the master and the dual subproblem
3: Get the corresponding dual optimal solution (α,β)
4: Find a core point (g0,x0)
5: Use (g0,x0) and (α,β) to create (MW(g0, x0))
6: solve (MW(g0, x0)) for (α′,β′) and update the set of πSPpoints
7: Generate the Pareto-optimality cut (3.10) from (α′,β′)
8: Update UB:= min{UB, z(α, β)}
9: Update the relative percentage gap PG and the recent time in Time like in Algorithm 2

10: end while

Modified Pareto-Optimal Cut by Papadakos (2008)

Papadakos (2008) addressed a main drawback of the idea from Magnanti & Wong (1981): Con-
straint (3.28) in (MWGeneral(y0)) is a major cause for numerical instability, especially when the
subproblem is difficult to solve optimally. The author proved that with a new core point in every
iteration, the problem (MWGeneral(y0)) without Constraint (3.28) can still generate Pareto-
optimal cuts. Namely, Constraint (3.28) can be eliminated from problem (MWGeneral(y0)) to
avoid the numerical issue, thereby resulting in an independent problem (IndMWGeneral(y0)),
as shown below.

max πT (d−By0) (IndMWGeneral(y0))

s.t. πTD ≤ cT

π is free.

Moreover, (IndMWGeneral(y0)) no longer requires the master problem and the dual sub-
problem to be solved beforehand, since it is independent of the dual subproblem objective
value. Therefore, given a core point, we can create a Pareto-optimal cut before solving the
master problem to improve the quality of a solution from the master problem. In particular,
at the beginning of the algorithm, we can add a Pareto-optimal cut from a core point to the
master problem for a head start.

In our Benders’ decomposition, the independent second subproblem is as follows.

34

max z(α, β) :=
∑
b∈B

∑
w∈W

∑
p∈Pb

αwb ψ
w
p g

0
bp −

∑
b∈B

∑
i∈B

∑
w∈W

βwbix
0w
i (IndMW(g0, x0))

s.t. αwb − βwbi ≤ cbi b, i ∈ B, w ∈W
αwb ∈ R b ∈ B, w ∈W
βwbi ≥ 0 b, i ∈ B,w ∈W.

Furthermore, Papadakos (2008) recommended a way to derive a new core point in each
iteration. It is simply the convex combination between the current solution of the master
problem and the previously used core point. Therefore, it is enough to have only one valid
initial core point at the start.

At iteration t where t ≥ 1, let (gt, xt) and (g0,t−1, x0,t−1) be a current integer solution from
the master problem and a previously used core point, respectively. The new core point for the
week centre and week pattern variables is given below.

g0,t :=
1

2
gt +

1

2
g0,t−1 (3.30)

x0,t :=
1

2
xt +

1

2
x0,t−1. (3.31)

To get a valid initial core point (g0,0, x0,0), we create a number of feasible integer solutions
and calculate the average value for each integer variable. As we generate the initial core point
from a set of feasible solutions, (g0,0, x0,0) is a point in the relative interior of the convex hull.
To create a feasible solution quickly, we first randomly select a customer bw ∈ B as the week
centre for week w ∈ W . Then, we derive the corresponding week centre value matrix x by
Equations (3.16) and solve (Allocation(x)) for the optimal week pattern values. Each feasible
solution is different as we have different week centre values each time, i.e., no solution has
identical week centres for the whole planning horizon.

The way to generate the initial core point is presented in Algorithm 5, where Ng is the
predefined total number of feasible integer solutions. Note that in Line 3, in case a set of week
centres is identical to that of any previous solutions, we discard this set and create a new one.
Finally, the initial core point is derived from the average of the integer feasible solutions: see
Lines 6 and 7.

Algorithm 5 Method to Generate an Initial Core Point

Parameter: Ng

Initial:
t:=0

1: while t < Ng do
2: t := t+ 1
3: Generate xt by randomly selecting the week centres which cannot be entirely identical

to those of the previous feasible solutions
4: Solve (Allocation(xt)) for gt

5: end while
6: x0,0 :=

∑
t x

t

Ng

7: g0,0 :=
∑

t g
t

Ng

Output: (x0,0, g0,0)

For problems where we cannot find any core points easily (for example, Mercier et al. (2005)
and Papadakos (2009)), Papadakos (2008) also suggested an alternative point, called Magnanti-
Wong point, for a substitution. It is capable of generating a Pareto-optimal cut, although it
is not a real core point or not even a feasible point for the master problem. However, this
point can be derived for only a specific problem structure. The interested reader is referred to
Papadakos (2008) for more information.

The independent Magnanti-Wong algorithm is presented in Algorithm 6. The difference

35

between this version and Magnanti & Wong (1981) is that a Pareto-optimal cut can be generated
from a core point before solving the master problem. This allows the algorithm to generate a
Pareto-optimal cut from an initial core point for a head start, shown in Lines 1−3. Similarly,
Lines 9−11 create a new core point and generate the corresponding Pareto-optimal cut, before
solving the master problem in the next iteration.

Algorithm 6 Independent Magnanti-Wong

Parameter: maxTime, ε
Initial:

LB:= 0, UB:=1e10, t:=0, Time := 0, πSPpoints := ∅
1: Generate an initial core point (g0,0, x0,0) and solve (IndMW(g0, x0)) for (α′, β′)
2: Use (α′, β′) to update set πSPpoints
3: Generate a Pareto-optimal cut (3.10) from (α′,β′)
4: Update the current time in Time
5: while Time < maxTime and PG > ε do
6: t := t+ 1
7: Follow Lines 3−12 in Algorithm 2 . Solve (MP) and (dualSP(gt, xt)) like the classical

version
8: From the dual solution (α, β) from (dualSP(gt, xt)), we update UB:= min{UB, z(α, β)}
9: Update an approximate core point (g0,t, x0,t) by equations (3.30) and (3.31), and solve

(IndMW(g0, x0)) for (α′, β′)
10: Use (α′,β′) to update the set of πSPpoints
11: Generate a Pareto-optimal cut (3.10) from (α′,β′)
12: Update the relative percentage gap PG and the current time in Time like in Algorithm

2
13: end while

Maximal Nondominated Cut by Sherali & Lunday (2013)

Although Papadakos (2008) suggested the ways to deal with core points, those approaches
are still not always applicable for complicated problems. First, it is not always easy for these
problems to derive even one valid core point. In such a case, Papadakos (2008) introduced
a Magnanti-Wong point, which is not necessarily a real core point, as an alternative point to
generate Pareto-optimal cuts. Nevertheless, this point is limited to only a specific problem
structure. Therefore, finding core points is still the main difficulty to generate the Pareto-
optimal cuts.

Another possible implementation issue in Magnanti & Wong (1981) and Papadakos (2008)
comes from having to solve two subproblems in every iteration. Although Pareto-optimal cuts
tend to reduce the total number of iterations, this might not compensate for the effort to solve
the increasing number of linear programmes in each iteration (Mercier & Soumis 2007).

Sherali & Lunday (2013) addressed these main issues by proposing a maximal nondominated
cut. This cut does not require any core points. Also, the algorithm solves only one linear
programme in each iteration.

Let Π = {π |πTD ≤ cT , π is free} be the feasible region of the dual subproblem. For a given
master solution y, the set of alternative optimal solutions corresponding to the master solution
is represented by Πalt(y), i.e.,

Πalt(y) = {π ∈ Π | πT (d−By) = zLP (y)}.

Sherali & Lunday (2013) rewrote an optimality cut (3.27) in the following form.

η ≥ πT d+

n∑
j=1

(−πT bj)yj

where bj is the jth column of matrix B which has n columns in total, and yj is a master variable
at index j.

36

Then, a maximal nondominated optimality cut is described in the following definition.

Definition 3. Given a master solution y, a cut η ≥ πT (d − By) is nondominated, or more
distinctly, is maximal if there does not exist any π∗ ∈ Πalt(y) for which π∗T d ≥ πT d and
(−π∗T bj) ≥ (−π∗T bj), for j = 1, 2, . . . , n, with at least one of these (n + 1) inequalities being
strict.

This nondominated cut has a less strict definition than a Pareto-optimal cut. It is clear that
a Pareto-optimal cut by Magnanti & Wong (1981) and Papadakos (2008) is maximal given that
a core point consists of positive values. However, it is not always true for the other way round.

Sherali & Lunday (2013) formulated a way to generate a maximal nondominated cut by
means of the following multiple objective linear programmes.

max {πT d,−πT b1,−πT b2, . . . ,−πT bn | π ∈ Πalt(y)}.

We can solve the above multiple objective linear programmes by solving a positive weighted
sum of the multiple objective functions, as shown below.

max {πT d+

n∑
j=1

(−πT bj)ŷj | π ∈ Πalt(y)} (3.32)

where ŷ ∈ Rn is a positive weight vector and ŷj is its value at index j, .
Now, in order to generate a maximal nondominated cut, we do not need a core point

anymore. Therefore, we can select ŷ to be any positive weight vector, for example, ŷj = 1 for
j = 1, 2, . . . , n. Note that if ŷ is a core point, (3.32) is the same as (MWGeneral(y0)), where
y0 = ŷ. In such a case, a generated optimality cut will be both maximal and Pareto-optimal.

Moreover, Sherali & Lunday (2013) asserted that solving two subproblems in every iteration,
like in Magnanti & Wong (1981) and Papadakos (2008), might decrease the efficiency of the
algorithm. This is particularly for problems that require significant computational effort to solve
the subproblem. Therefore, the authors combined those two subproblems into a preemptive
priority multiple objective programme framework. Namely, the priority here is to solve the
standard dual subproblem. Next, it focuses on selecting alternative solutions to derive the
strongest cut. The formulation of the preemptive priority multiple objective programmes is
presented in (3.33).

max {πT (d−By)� πT (d−Bŷ) | π ∈ Π} (3.33)

According to Sherali & Soyster (1983), we can equivalently represent (3.33) as a weighted-
sum problem where µ > 0 is a positive weight that is sufficiently small, as shown below.

max {πT (d−By) + µπT (d−Bŷ) | π ∈ Π}. (3.34)

This can be seen as a small perturbation on the right-hand side of the subproblem where µ
is a magnitude of the perturbation.

However, it is not usually practical to derive the weight µ to guarantee the equivalence of
(3.33) and (3.34) (Sherali & Lunday 2013, Oliveira et al. 2014). Instead, Sherali & Lunday
(2013) provided an alternative value of µ that generates an ε0-optimal nondominated maximal
Benders’ cut in (3.35).

µ =
ε0
Mθ

(3.35)

where ε0 is a predefined acceptance level on the absolute optimality gap; M is a sufficiently
large penalty for a violation of any constraints of the subproblem. θ = ε0 + max{0,max

i
{d̂i}}−

min{0,min
i
{d̂i}} where d̂ ≡ d−Bŷ.

Oliveira et al. (2014) further developed how to derive a proper value of µ in practice. At the
beginning of the algorithm, the dual solutions usually provide poor descriptions of the project
cost which directly affects the quality of a Benders’ cut. Then, at a later stage, the algorithm
should focus more on improving the solution of the standard dual subproblem. This is to ensure
the convergence to be the same as in the classical Benders’ decomposition. Therefore, Oliveira

37

et al. (2014) suggested dynamically adjusting the value of µ such that it gradually decreases
during the process of the algorithm. Recommended characteristics of a sequence of µ in the
algorithm, represented by {µ(t)}t=1,...,∞, are as follows:

1. µ(t) → 0 as t→∞.

2.
∑∞
t=1 µ

(t) →∞.

Under the above conditions, the convergence of the algorithm is guaranteed because

lim
µ→0

πT (d−By) + µπT (d−Bŷ) = πT (d−By).

To generate a near-optimal maximal nondominated cut in our model, we choose the initial
core point from Algorithm 5 as the positive weight vector. Let (g, x) and (ĝ, x̂) be a master
solution and the positive weight vector (i.e., the initial core point) in our model. The modified
subproblem to generate a near-optimal maximal nondominated cut is represented below.

max z(α, β) := Θ(g, x) + µΘ(ĝ, x̂) (Maximal(g, x))

s.t. αwb − βwbi ≤ cbi b, i ∈ B, w ∈W
αwb ∈ R b ∈ B, w ∈W
βwbi ≥ 0 b, i ∈ B, w ∈W

where Θ(g, x) ≡
∑
b∈B

∑
w∈W

∑
p∈Pb

αwb ψ
w
p gbp −

∑
b∈B

∑
i∈B

∑
w∈W βwbix

w
i .

Regarding a proper value of {µ(t)}t=1,...,∞, we follow the suggestion of Oliveira et al. (2014)
to have the satisfying characteristics that we have presented before. Note that we favour a
sequence of µ which converges to 0 and also renders into a divergent series.

Given µ(t) as a value of µ in iteration t for t = 1, . . . ,∞, the value of µ in the next iteration
is as follows.

µ(t+1) = κ(t+1)µ(t)

where κ(t+1) = 2
t .

According to Oliveira et al. (2014), µ for the first iteration or µ1 is from (3.35). However,
it is not practical for us since our subproblem is always feasible and then a value of M is not
explicit. Therefore, we choose a fixed value for µ1 which is sufficiently small. In this way, we
have implicitly selected a specific value of M .

In terms of the algorithm description, we can simply change Line 12 of Algorithm 2 to solve
(Maximal(g, x)) instead, where (g, x) is a master solution.

3.4.5 Multiple Optimality Cuts

Instead of generating a single optimality cut in each iteration, Santoso et al. (2005) showed
the benefit of disaggregating an optimality cut for a decomposable subproblem. The authors
applied Benders’ decomposition on a stochastic problem for supply chain network design, where
the subproblem consists of solving N independent scenarios. They created an optimality cut
for each scenario, so the subproblem provides N optimality cuts per iteration. This improves
the lower bound significantly. However, the master problem can grow rapidly as the algorithm
progresses and directly increases the required computational time. In such a case, we believe
that it is an acceptable trade-off for the improvement on the lower bound, which leads to the
better convergence of the algorithm.

The dual subproblem of our model can be separated into n smaller problems, where n =
|B| · |W |. In particular, each of them is specific for each customer in each week. The dual
subproblem can be represented in the following way.

z(α, β) :=
∑
b∈B

∑
w∈W

Lwb (αwb , β
w
b) (dualSPMultiAll)

38

where βwb ≡ (βwb1, β
w
b2, . . . , β

w
b|B|) ∈ R|B|+ and Lwb (αwb , β

w
b) is the independent problem for cus-

tomer b ∈ B in week w ∈W as follows:

Lwb (αwb , β
w
b) = max

(αw
b ,β

w
b)∈Xw

b

∑
p∈Pb

αwb ψ
w
p gbp −

∑
i∈B

βwbix
w
i (dualSPMultiAll(b, w))

where Xw
b is a feasible region for the corresponding independent problem, i.e.,

Xw
b ={(αwb , βwb) : αwb − βwbi ≤ cbi, αwb ∈ R, βwbi ≥ 0, i ∈ B}.

We derive an optimality cut from the independent problem (dualSPMultiAll(b, w)) and there
are n optimality cuts per iteration.

We refine the objective function of (MP) and the optimality cuts for the multi-cut version.
The other constraints for the integer variables are similar to those of the original one. The
modified master problem is shown below.

min
∑
b∈B

∑
w∈W

ηwb (MPMultiCutAll)

s.t. (3.6)− (3.9)

(3.11)− (3.12)∑
p∈Pb

αwb ψ
w
p gbp −

∑
i∈B

βwbix
w
i ≤ ηwb (αwb , β

w
b) ∈ πSPpoints (3.36)

ηwb ≥ 0.

3.4.6 Branch-and-Benders’ Cut

Naoum-Sawaya & Elhedhli (2013) and many researchers (e.g., Fortz & Poss (2009), de Sá et al.
(2013), Botton et al. (2013), Adulyasak et al. (2015), de Sá et al. (2018)) agreed that one
of the main drawbacks of the classical Benders’ algorithm is solving an integer programme
in the master problem from scratch repeatedly. It takes an incredible amount of time as the
algorithm progresses, due to the increasing number of constraints from optimality cuts and
feasibility cuts. The branch-and-Benders’ cut technique is used for alleviating this problem.
This approach starts from a single branch-and-bound tree for the master problem. Benders
(1962) and McDaniel & Devine (1977) asserted that Benders’ cuts are global in a branch-and-
bound tree, i.e., Benders’ cuts in each node are valid for every node of the tree and the original
problem. A formal proof can be found in Naoum-Sawaya & Elhedhli (2013). Therefore, we
create a cut pool to collect all Benders’ cuts from any previous nodes in the tree and provide
this information to the new child nodes as a warm-start. Here, we choose to generate multiple
optimality cuts (3.36) and they are Pareto-optimal cuts from Papadakos (2008) to guarantee
the strength of the cuts.

Moreover, adapting the idea of two-phase Benders’ decomposition, we add Benders’ cuts
derived from fractional solutions to strengthen the linear programming relaxation of the master
problem at the root node, as in the first phase. However, too many cuts from fractional solutions
can become a computational burden instead. Therefore, we limit the number of those Benders’
cuts in the root node. We define the stopping criteria of adding cuts similar to the classical two-
phase version: the improvement on the objective value at the node and the maximum number
of iterations to add cuts. After that, we branch the root node, and whenever we find an integer
solution in a child node, we generate the corresponding optimality cuts and add them to the cut
pool. The stopping criteria for the algorithm are either reaching the maximum computational
time or no more non-fathomed nodes to explore.

Algorithms 7 and 8 show the warm-start at the root node and the search in the tree after
branching the root node, respectively. maxTime represents the limitation of the computational
time, which is one of the stopping criteria for both algorithms.

In Algorithm 7, the root node has additional parameters to control the number of cuts
as follows: εr and Nr are the threshold of the improvement on the objective value and the
maximum number of iterations to add cuts, respectively. Also, we define the necessary variables

39

for the algorithm as follows. Let t be the counter for the number of iterations to add cuts at a
node. Let PImp be the relative percentage gap of the improvement between the objective values
from two consecutive iterations. Time and P represent the current time and the cut pool for
the tree, respectively.

We begin Algorithm 7 with the LP relaxation of the master problem at the root node. In the
case of Pareto-optimal cuts by Papadakos (2008), we exploit the independent Magnanti-Wong
problem and the decomposable subproblem to add multiple Pareto-optimal cuts from an initial
core point beforehand: see Lines 3−4. Line 6 shows the conditions to generate new valid cuts
at the node. If we pass the criteria for controlling the number of cuts and the limitation of
computational time, we generate multiple nondominated optimality cuts for a fractional solution
of the LP relaxation of the master problem in the next iteration. Otherwise, we branch the root
node and continue the process in Algorithm 8. Note that if the LP relaxation of the master
problem at the root node is infeasible, it implies that the original problem is also infeasible. In
that case, we stop the algorithm: see Line 9.

The tree search after branching the root node is shown in Algorithm 8. We introduce a
new variable UB to record the best objective value of the incumbent in the search. Here, we
generate multiple nondominated optimality cuts only from integer solutions. We fathom a node
when one of these situations happens: the node provides an integer solution, the LP relaxation
of the master problem at the node is infeasible, or the objective value of the LP relaxation
of the node is worse than the incumbent value: see Lines 9 and 11, respectively. Otherwise,
we branch the node. The algorithm continues until there are no more non-fathomed nodes to
explore or we reach the maximum time.

Algorithm 7 Branch-and-Benders’ Cut − Part 1 : Strengthening the root node

Parameter: maxTime, εr, Nr

Initial:
t:=0, PImp := 100, Time := 0, P := ∅,

1: Start with the LP relaxation of the master problem (MP) called (MPRelax)
2: if We select Pareto-optimal cuts by Papadakos (2008) for optimality cuts then
3: Derive an initial core point and generate multiple Pareto-optimal cuts (3.36)
4: Add the cuts to (MPRelax) at the node and to the cut pool P
5: end if
6: while t < Nr, PImp > εr, and Time < maxTime do
7: Solve (MPRelax)
8: if (MPRelax) is infeasible then
9: (OriginalSchedule) is infeasible. Stop the algorithm

10: else
11: t := t+ 1
12: Get the optimal solution of (MPRelax)
13: Generate multiple nondominated optimality cuts (3.36)
14: Add the cuts to (MPRelax) at the node and to the cut pool P
15: Update PImp from (3.14)
16: end if
17: Update the current time in Time
18: end while
19: Branching the node and continue in Algorithm 8

3.5 Data Generation and Programme Set-Up

To test the efficiency of our proposed Benders’ algorithm, we run the experiment on the same
small data instances in the same computer from Section 2.5.

According to the experiment in Section 2.5, the combinations with more customers and
longer planning horizon, for example, 30 3, 40 3, and 50 3 are significantly harder to solve to
optimality. The parameter value of τweek is 0.05 which is the same.

40

Algorithm 8 Branch-and-Benders’ Cut − Part 2 : Tree search

Parameter: maxTime
Initial:

UB := 1e10
1: while There is non-fathomed node and Time < maxTime do
2: Select a non-fathomed node from the tree
3: Solve (MPRelax) at the node
4: Get the optimal solution of (MPRelax), (g, x), with the objective value η
5: if (g, x) is integer then
6: Generate the corresponding multiple nondominated optimality cuts (3.36)
7: Add the cuts to (MPRelax) at the node and to the cut pool P
8: Update UB := min{UB, η}
9: Fathom the node

10: else if η > UB or (MPRelax) is infeasible then
11: Fathom the node
12: else
13: Branching the node
14: end if
15: Update the current time in Time
16: end while

The experiment is run on a single thread with no pre-processing. The satisfactory tolerance
level between the bounds in the tree is 0.01%, which is the default value for CPLEX. The
maximum computational time for each data instance is 900 seconds (15 minutes).

Regarding a nondominated optimality cut, we focus on a Pareto-optimal cut from Papadakos
(2008) and a maximal nondominated cut from Sherali & Lunday (2013). For a Pareto-optimal
cut, we set the number of feasible solutions to generate an initial core point (Ng) in Algorithm
5 at 10. For a maximal nondominated cut, we use the initial core point as the positive weight
vector and select 10-6 for the initial value of µ.

The values of the parameters that control the number of Benders’ cuts from fractional
solutions at the root node in Algorithm 7, εr and Nr, are 0.5% and 100, respectively. Concerning
the location-allocation heuristic, we can solve the location problem quickly by hand, so we use
CPLEX to solve only the mixed-integer programme of the allocation problem. We set 10 seconds
as the maximum time to solve the allocation problem.

To set up the branch-and-Benders’ cut in CPLEX, we use the callback classes: user cut
callback and lazy constraint callback. According to IBM ILOG CPLEX Optimization Studio
CPLEX User’s Manual (2017), user cuts are cuts defined by a user to tighten the feasible
region of the LP relaxation and do not cut off any feasible integer solutions. Note that the user
cut callback can be activated for generating cuts at every node except when a feasible integer
solution is found. In contrast, lazy constraints are used for checking violations of Benders’
optimality cuts for integer solutions. Therefore, the user cut callback is invoked only at the
root node for adding Benders’ cuts from fractional solutions, while the lazy constraint callback
is activated for every integer solution found in the tree.

3.6 Computational Results

First, we compare the performance of a manual optimality cut from (3.26) and a nondominated
optimality cut from Papadakos (2008) and Sherali & Lunday (2013) in the form of a single
optimality cut (3.10). This is to show the strength of a nondominated optimality cut. Then,
we show the advantages of using multiple optimality cuts and a high-quality initial integer
solution. Also, we investigate different cut strategies on the branch-and-Benders’ cut. Finally,
we compare our best version of the algorithm to the modern branch-and-cut and the Benders’
decomposition algorithm in CPLEX.

41

Data
Best %Gap %Gap Worst %Gap

Manual Papa Maxi Manual Papa Maxi Manual Papa Maxi

30 1 0.01 0.01 0.01 8.08 7.90 8.93 15.38 14.87 16.71
30 2 13.06 12.15 13.63 25.81 25.38 26.23 38.23 38.82 38.29
30 3 53.53 50.94 57.31 64.64 61.15 65.22 84.71 80.86 84.88

40 1 2.01 1.95 2.54 14.11 12.34 14.70 21.86 17.95 24.85
40 2 14.71 14.62 14.66 24.85 24.79 25.40 36.09 36.92 36.10
40 3 58.80 57.27 61.60 67.32 64.93 68.79 79.99 76.88 81.92

50 1 2.83 2.81 4.13 12.91 12.64 14.54 16.77 16.86 19.06
50 2 26.31 25.05 28.63 28.97 27.14 29.64 33.56 31.92 32.95
50 3 61.25 60.41 62.14 69.23 66.74 68.99 77.76 73.56 77.80

Table 3.1: The performance of the manual and nondominated optimality cuts in the form of a
single cut (1).

3.6.1 Comparison between Different Nondominated Optimality Cuts

Table 3.1 and 3.2 show the comparison of the overall results between a manual optimality cut
(3.26) and a nondominated optimality cut from Papadakos (2008) and Sherali & Lunday (2013),
where they are in the form of a single optimality cut. Manual, Papa, and Maxi, respectively,
represent the manual optimality cut from Section 3.4.3, a Pareto-optimal cut from Papadakos
(2008), and a maximal nondominated cut from Sherali & Lunday (2013).

Similarly to Section 2.5, we focus on the solution quality and the average computational time
in seconds. Table 3.1 shows the information of the relative percentage gaps where Best %Gap,
%Gap, Worst %Gap are the best, average, and the worst value of the relative percentage gaps
among five data instances, respectively. Overall, Papa performs best, especially in the most
difficult combinations such as 30 3, 40 3, and 50 3. Manual is the second-best, while Maxi
comes last. Additionally, we show the number of data instances that can find the optimal
solution within the limitation of time in Columns #Opt (45) of Table 3.2, where the number
in brackets is the total number of data instances. The last row of the table, Total, presents the
total of #Opt from every combination for each algorithm to show the overall results. There is,
however, no difference in the number of #Opt as every method can find the optimal solution
in a few instances of 30 1 which is the least challenging combination.

In terms of the average computational time, Column Total time (s) of Table 3.2 shows that
there is no significant difference among the three techniques.

From the above results, Papa has the best overall performance. It is also interesting that
Manual tends to perform slightly better than Maxi although it does not have any guarantee
on the cuts’ strength. We suspect that we do not exploit the main strength of a maximal
nondominated cut, since we can find an initial core point easily and the subproblem is quick to
solve. In particular, such characteristics reinforce a Pareto-optimal cut as shown in the further
investigation below.

Further Investigation on a Pareto-optimal Cut by Papadakos (2008)

To see the real advantages of the Pareto-optimal cuts, we investigate further the step-by-step
change of the objective value at the root node. CPLEX updates the objective value after any
cut has been added at the root node. In the case of Papa, the first objective value shows the
effect of an initial cut from Papadakos (2008), which we add before starting the branch-and-
Benders’ cut. It should be noted that apart from Benders’ cuts from fractional solutions added
by the user cut callback, CPLEX provides additional cuts, for example, cover cuts, zero-half
cuts, and Gomory fractional cuts, for further tightening the LP relaxation (IBM ILOG CPLEX
Optimization Studio CPLEX User’s Manual 2017). Here, we let CPLEX add all of its cuts
before our user cuts. Moreover, CPLEX uses its heuristic to generate an integer solution. In
that case, the lazy constraint callback is evoked to create a Benders’ cut.

We select some representative data instances and then plot a graph for each of them to

42

Data
#Opt (45) Total time (s)

Manual Papa Maxi Manual Papa Maxi

30 1 2 2 2 554.8 553.8 576.6
30 2 0 0 0 900 899.8 901.4
30 3 0 0 0 900 906.4 912.8

40 1 0 0 0 900 900.2 900.6
40 2 0 0 0 900 900.2 901.4
40 3 0 0 0 900 903 907.2

50 1 0 0 0 900 900 901
50 2 0 0 0 900 900.6 901.4
50 3 0 0 0 900 902.8 904.4

Total 2 2 2

Table 3.2: The performance of the manual and nondomainated optimality cuts in the form of
a single cut (2).

present the change of its objective value at the root node. Here, we consider the relative
percentage gap between the objective value and the best-found integer solution of the corre-
sponding data instances (found by either Manual, Papa, or Maxi) for a fair comparison. Figures
3.1a−3.1e show the trend of those relative percentage gaps of the instances for the combinations
30 1, 30 2, 40 1, 40 2, and 50 2 respectively. To separate the objective value that is improved
by the CPLEX cuts, its symbol on the graph is not filled with colour. Every figure shows that
after CPLEX adds all its cuts, our cuts are capable of further improving the objective value.
Moreover, for these data instances the initial cut from Papa can improve the objective value
immediately: see the first relative percentage gap in each figure.

In more difficult data instances, the initial cut from Papa, however, does not always improve
the objective value at the beginning. Nevertheless, Papa manages to reach smaller relative
percentage gaps more quickly before branching the root node, as shown in Figure 3.2. Note
that the main reduction in the relative percentage gap of the bounds happens at the root node.
Therefore, a smaller relative percentage gap in the root node tends to achieve better convergence
of the bounds.

Also, we test the effect of a different choice of an initial core point. In addition to the
initial core point from Algorithm 5, we generate an initial (approximate) core point from a
solution of the LP relaxation of the master problem. This approximation of core points can be
found in Santoso et al. (2005). The results of Pareto-optimal cuts from Papadakos (2008) with
different initial core points are shown in Table 3.3. LPR and Feasible represent those where an
initial core point is generated from the LP relaxation of the master problem and Algorithm 5,
respectively.

Although the two methods do not have different results in the number of #Opt, Feasible
shows superior performance in terms of the average and the best relative percentage gap in
every combination of the data instances. Regarding Worst %Gap, Feasible clearly has better
performance than those of LPR when the data instances are more difficult to solve. This is
not surprising since the initial (approximate) core point from the LP relaxation is more likely
to not be a real core point. As a result, the point might require some time to be updated by
Equations (3.30) and (3.31), before actually converging to a real core point to generate a real
Pareto-optimal cut. This results in a slower convergence. In terms of the average time, both
algorithms are similar.

The results confirm that the choice of an initial core point affects the overall performance
of the Pareto-optimal cuts. Also, Algorithm 5 provides a good initial core point for generating
the Pareto-optimal cuts.

The further investigation provides more insightful information to understand the best per-
formance of the Pareto-optimal cuts. In particular, it shows that the Pareto-optimal cuts can
improve the objective values at the root node immediately or derive better objective values be-

43

D
a
ta

B
e
st

%
G

a
p

%
G

a
p

W
o
rst

%
G

a
p

#
O

p
t

(4
5
)

T
o
ta

l
tim

e
(s)

L
P

R
F
e
a
sib

le
L

P
R

F
e
a
sib

le
L

P
R

F
e
a
sib

le
L

P
R

F
e
a
sib

le
L

P
R

F
e
a
sib

le

3
0

1
0.01

0.01
8
.1

6
7
.9

0
1
4
.6

8
1
4
.8

7
2

2
555.6

553.8
3
0

2
1
3.08

12.15
2
5
.6

2
2
5
.3

8
3
7
.3

9
3
8
.8

2
0

0
900

899.8
3
0

3
5
4.53

50.94
6
2
.9

1
6
1
.1

5
8
0
.1

1
8
0
.8

6
0

0
900

906.4

4
0

1
2.58

1.95
1
4
.0

1
1
2
.3

4
2
0
.7

3
1
7
.9

5
0

0
900

900.2
4
0

2
1
5.51

14.62
2
5
.5

4
2
4
.7

9
3
6
.0

1
3
6
.9

2
0

0
900

900.2
4
0

3
6
0.40

57.27
6
7
.0

0
6
4
.9

3
7
7
.2

0
7
6
.8

8
0

0
900

903

5
0

1
2.86

2.81
1
3
.5

6
1
2
.6

4
1
7
.4

7
1
6
.8

6
0

0
900

900
5
0

2
2
6.88

25.05
2
8
.2

3
2
7
.1

4
3
2
.2

9
3
1
.9

2
0

0
900

900.6
5
0

3
6
2.45

60.41
6
7
.9

5
6
6
.7

4
7
6
.4

0
7
3
.5

6
0

0
900

902.8

T
o
ta

l
2

2

T
ab

le
3
.3

:
T

h
e

p
erfo

rm
a
n

ce
o
f

a
d

iff
eren

t
in

itia
l

co
re

p
o
in

t
fo

r
th

e
P

a
reto-op

tim
al

cu
ts.

44

(a) Data instance for 30 1. (b) Data instance for 30 2.

(c) Data instance for 40 1. (d) Data instance for 40 2.

(e) Data instance for 50 2.

Figure 3.1: The instances that an initial cut from Papadakos improves the objective value of
the root node immediately.

fore branching the root node. The main reason for the algorithm efficiency is the high-quality
initial core point that is easy to derive.

Due to the advantages of the Pareto-optimal cuts that we have discussed, we conclude that
a Pareto-optimal cut is the most suitable nondominated optimality cut for our model. We
then select it as an optimality cut in the remainder. However, Papa still struggles to solve the
problem as they cannot find the optimal solutions in other combinations but 30 1 within the
limitation of time. Therefore, more accelerating techniques are still necessary for the algorithm.

3.6.2 Advantages of Multiple Optimality Cuts

Next, we focus on the performance of a Pareto-optimal cut in the form of the single optimality
cut and the multiple cuts. We showed in Section 3.4.5 that the subproblem can be decomposed

45

(a) Data instance for 30 2. (b) Data instance for 30 3.

(c) Data instance for 40 3. (d) Data instance for 50 3.

Figure 3.2: The instances that Papadakos reaches a better relative percentage gap before
branching the root node.

into a smaller problem for each customer and each week. To study the effect of a strategy to
decompose the subproblem, we also consider the multiple cuts from the partially decomposed
subproblem. Namely, we decompose the subproblem for only one of each week or each customer.
Each optimality cut, then, for the former case and the latter case, is represented for each week
and each customer, respectively. We generate the optimality cuts for those cases by partially
aggregating the multiple optimality cuts (3.36). To represent an optimality cut for each week,
we aggregate the optimality cuts of all customers in that week, shown in (3.37). Similarly,
(3.38) is an optimality cut for a particular customer created by aggregating the corresponding
optimality cuts from every week.

∑
b∈B

∑
p∈Pb

αwb ψ
w
p gbp −

∑
i∈B

βwbix
w
i

 ≤ ηw (αwb , β
w
b) ∈ πSPpoints (3.37)

∑
w∈W

∑
p∈Pb

αwb ψ
w
p gbp −

∑
i∈B

βwbix
w
i

 ≤ ηb (αwb , β
w
b) ∈ πSPpoints (3.38)

where ηw ≡
∑
b∈B η

w
b and ηb ≡

∑
w∈W ηwb .

The comparison of the results for the different forms of the Pareto-optimal cuts is in Tables
3.4 and 3.5. Single, Week, Cus, and All denote the single optimality cut (3.10), the partially
aggregated cuts (3.37), (3.38), and the completely disaggregated cuts (3.36), respectively.

In terms of relative percentage gaps, Table 3.4 shows that every form of the multiple cuts
improves upon the performance of the single cut. In particular, All, Cus, and Week perform the
best, the second best and the third-best, respectively. Clearly, All provides outstanding results.
It improves the average relative percentage gap of Single by more than 91% in all cases except

46

in the most complicated combinations, such as 40 3 and 50 3. The improvements for those are
74% and 69%, respectively, which are still considerable amounts. The outperformance of All
is also supported by the information of Best %Gap and Worst %Gap in every combination.
Moreover, All has significantly more instances that find the optimal solution, especially in the
more complicated combinations like 30 2, 30 3, and 40 2: see Columns #Opt (45) in Table 3.5.
As a result, it has the highest total of #Opt, which is 22 instances more than that of Single.

Regarding the computational time in Table 3.5, for less complicated combinations, e.g., 30 1,
30 2, 40 1, and 50 1, an increasing number of Benders’ cuts per iteration tends to reduce the
computational time on average. All considerably outperforms the other algorithms in almost
all of these combinations. For example, compared to Single, it reduces the time massively in
50 1 by more than one order of magnitude. However, it does not perform best in 30 1. In such
combination, Cus spends the least amount of time which is around 32% less time on average to
reach the same average relative percentage gaps as All. However, All spends only 40 seconds
on average which is still an acceptable amount of time. Therefore, All is still outstanding in
terms of computational time.

Overall, All performs best. This implies that a larger number of cuts per iteration results
in significantly improved performance. Although there is a risk of adding too many cuts at the
root node, our stopping criteria of adding cuts, especially the relative percentage gap on the
improvement, manage to avoid that problem.

Multiple Cuts Improve the Efficiency of the Initial Cuts

Further investigation shows that the multiple cuts can improve the efficiency of the initial cuts
from Papadakos (2008). We choose some data instances and plot graphs in a similar way
to Figures 3.1 and 3.2 for Single, Week, Cus, and All. Namely, we focus on the change in
the relative percentage gap between the objective values at the root node and the best-found
integer solution value for each of those data instances. The best found integer solution here
is from the best one among Single, Week, Cus, and All for any corresponding data instance.
Also, we separate the objective value that is improved by CPLEX’s cuts; It is represented by a
symbol without colour inside.

Figure 3.3 shows the graphs of the change in the relative percentage gap at the root node for
the data instances from the more challenging combinations, such as 30 3, 40 3, 50 2, and 50 3.
In these data instances, the initial cut from Papadakos (2008) in the completely aggregated form
struggles to improve the objective value at the beginning: see the graphs of Single in Figures
3.3a−3.3d. Week and Cus face almost the same situation for most of the data instances.
However, Figure 3.3c shows that the initial cuts in the partially aggregated form can improve
the objective values at the beginning. It is clear that the initial cuts from All are helpful and
reduce the relative percentage gap immediately. Therefore, the completely disaggregated form
for the Pareto-optimal cuts enhances the quality of initial cuts the most, thereby providing an
excellent start for the algorithm.

3.6.3 Benefit of the Initial Integer Solution

We now study the benefit of an initial integer solution from Section 3.4.2 that is used to generate
cuts and set the upper bound of the problem before the branch-and-Benders’ cut. Table 3.6
presents the comparison of the performance of the completely disaggregated Pareto-optimal
cuts without and with the initial integer solution to start, where NoHeu and Heu represent the
former and the latter, respectively.

In terms of the average relative percentage gap, both algorithms are quite competitive in
most combinations except the most challenging combinations, such as 40 3 and 50 3. For these
two complicated combinations, Heu shows a better performance. This is also consistent with
the corresponding information of Best %Gap and Worst %Gap. Although NoHeu has smaller
average relative percentage gaps in less difficult combinations, like 30 3, 40 2, and 50 2, those of
Heu are not significantly different. Regarding the number of instances which found the optimal
solution, NoHeu gets more of those instances in a few combinations, for example, 30 3, and
40 2, but overall Heu is still competitive with it: see the total of #Opt.

47

D
a
ta

B
e
st

%
G

a
p

%
G

a
p

W
o
rst

%
G

a
p

S
in

g
le

W
e
e
k

C
u
s

A
ll

S
in

g
le

W
e
e
k

C
u

s
A

ll
S

in
g
le

W
e
e
k

C
u
s

A
ll

3
0

1
0.01

0.01
0
.0

0
0
.0

0
7
.9

0
1
.6

3
0
.0

1
0
.0

1
14.87

4.71
0.01

0.01
3
0

2
1
2.15

3.85
0
.0

1
0
.0

1
2
5
.3

8
1
7
.8

1
4
.4

7
0
.7

9
38.82

29.14
12.55

3.91
3
0

3
5
0.94

33.48
1
1
.7

3
0
.0

1
6
1
.1

5
4
1
.0

6
1
8
.3

8
3
.9

7
80.86

54.21
31.38

13.38

4
0

1
1.95

0.01
0
.0

1
0
.0

1
1
2
.3

4
3
.8

2
0
.1

7
0
.0

5
17.95

9.57
0.82

0.24
4
0

2
1
4.62

8.09
3
.7

6
0
.0

1
2
4
.7

9
1
7
.4

0
5
.5

5
0
.0

7
36.92

28.39
7.67

0.30
4
0

3
5
7.27

44.48
2
2
.4

9
5
.7

6
6
4
.9

3
5
1
.7

5
2
8
.6

5
1
6
.8

3
76.88

60.33
34.79

24.16

5
0

1
2.81

0.01
0
.0

1
0
.0

1
1
2
.6

4
3
.1

5
0
.0

1
0
.0

1
16.86

5.69
0.01

0.01
5
0

2
2
5.05

17.24
5
.5

1
0
.6

9
2
7
.1

4
2
1
.7

2
7
.9

7
2
.2

9
31.92

25.81
10.31

4.62
5
0

3
6
0.41

50.46
2
7
.7

6
1
6
.7

1
6
6
.7

4
5
6
.1

9
3
1
.0

0
2
0
.7

9
73.56

60.12
35.86

23.44

T
a
b

le
3.4:

T
h

e
p

erform
a
n

ce
o
f

th
e

P
a
reto

-o
p

tim
a
l

cu
ts

in
th

e
fo

rm
o
f

a
sin

g
le

cu
t

an
d

m
u

ltip
le

cu
ts

(1).

48

Data
#Opt (45) Total time (s)

Single Week Cus All Single Week Cus All

30 1 2 3 5 5 553.8 484.2 27.4 40.4
30 2 0 0 1 4 899.8 901.6 776.8 316.4
30 3 0 0 0 2 906.4 909.8 906.6 817.8

40 1 0 1 4 4 900.2 723.2 308.6 234.4
40 2 0 0 0 4 900.2 902 900.6 640.6
40 3 0 0 0 0 903 905.6 902.8 903.6

50 1 0 1 5 5 900 737.6 291.2 81.6
50 2 0 0 0 0 900.6 900.8 900.2 902
50 3 0 0 0 0 902.8 902.2 902 902.2

Total 2 5 15 24

Table 3.5: The performance of the Pareto-optimal cuts in the form of a single cut and multiple
cuts (2).

(a) Data instance for 30 3. (b) Data instance for 40 3.

(c) Data instance for 50 2. (d) Data instance for 50 3.

Figure 3.3: The instances that the multiple cuts enhance the initial cuts from Papadakos.

In terms of the average execution time, Heu shows between 5% and 81% of improvement in
all combinations that do not reach the maximum time, except 40 2. In that combination, the
computational time by Heu is around 14% higher than that of NoHeu. However, this is still an
acceptable amount.

In conclusion, the results show that the initial integer solution reduces the average com-
putational time to reach similar relative percentage gaps to those of NoHeu. This is because
the location-allocation heuristic generates a high-quality initial integer solution whose objec-
tive value helps to prune more nodes during the search. Therefore, the initial integer solution

49

improves the performance, especially for more challenging data instances.

3.6.4 Further Investigation on Cut Strategies

Different Cut Strategies for Benders’ Cuts from Fractional Solutions

According to Botton et al. (2013), a recommended cut strategy for the Benders’ cuts from
fractional solutions is adding them only at the root node, since adding those cuts at every
node is not effective. Here, we will check the advantages of the recommended cut strategy by
comparing it to the one that adds those cuts at every node. For adding those cuts at every
node, we modify Algorithm 8 by also allowing for Benders’ cuts from fractional solutions to be
added in each node. These cuts aim at strengthening the LP relaxation of the node, similar
to those at the root node. We apply the identical stopping criteria for adding the cuts at any
child node: the improvement on the objective value at the node and the maximum number
of iterations to add the cuts. The stopping criteria for the child nodes are stricter to avoid
generating too many cuts in the tree. The threshold of the improvement on the objective value
is 1% and the maximum number of iterations to add cuts is 5.

We set up the experiment on the completely disaggregated Pareto-optimal cuts with an
initial integer solution. The results of the different cut strategies are shown in Table 3.7, where
OR and E stand for adding Benders’ cuts from fractional solutions at only the root node and
every node, respectively.

OR has the overall best performance in the solution quality, especially when data instances
become more complicated. Namely, OR has superior average percentage gaps. Also, the best
relative percentage gap for every combination of OR is better than that of E : see Column Best
%Gap. Furthermore, the total of #Opt shows that overall OR manages to find the optimal
solutions in more data instances.

In terms of the computational time, OR outperforms E in almost every combination. OR
requires a significantly smaller amount of computational time in 30 1, 40 1, and 50 1. Also,
OR can complete the experiment before reaching the maximum time in 30 3, while E spends
the full time and still has the worst relative percentage gap on average. The only combination
that OR perform worse than E is 40 2. However, it spends more time by only 15% which is
not a considerable amount.

In conclusion, the above observation confirms that the cut strategy of adding Benders’ cuts
from fractional solutions only at the root node is more effective.

Different Parameter Values for the Stopping Criterion at the Root Node

The threshold of the relative percentage gap of the improvement at the root node, εr, is the main
stopping criterion that controls the number of Benders’ cuts from fractional solutions added at
the root node. We have shown so far that the algorithm performs well with a parameter value
of 0.5%. Now, we will test the effect of a different range of values for this parameter. The
additional values that we will compare the results with are 0.05% and 5%. We keep the values
small since Botton et al. (2013) suggested adding as many cuts as possible at the root node.

Table 3.8 shows the performance of the different values of parameter εr at the root node for
the completely disaggregated Pareto-optimal cuts with the initial integer solution.

Regarding the relative percentage gaps, overall 0.5% performs best in most combinations,
including the more challenging ones such as 40 3, 50 2, and 50 3. Although it does not perform
best in some aspects, for example, in terms of the best percentage gap in 40 3, it is still
competitive with the best ones. In terms of the total of #Opt, there is no significant difference
in any algorithm.

Regarding the average time, we focus on only the combinations that do not reach the
limitation of time, e.g., every combination except 40 3, 50 2, and 50 3. Overall, 0.5% still
performs well. It has the best performance in 30 2, 40 1, and 50 1. For the rest of these
combinations, 0.5% does not spend the least average computational time but its performance
is still comparable to the best ones. In 30 1, 0.5% spends almost the same time as 5%. For
30 3 and 40 2, 0.5% spends more time than the best one (0.05%), but by only 12% and 1.5%,
respectively, which are still acceptable amounts.

50

D
a
ta

B
e
st

%
G

a
p

%
G

a
p

W
o
rs

t
%

G
a
p

#
O

p
t

(4
5
)

T
o
ta

l
ti

m
e

(s
)

N
o
H

e
u

H
e
u

N
o
H

e
u

H
e
u

N
o
H

e
u

H
e
u

N
o
H

e
u

H
e
u

N
o
H

e
u

H
e
u

30
1

0.
00

0.
00

0
.0

1
0
.0

1
0
.0

1
0
.0

1
5

5
4
0
.4

7
.6

30
2

0.
01

0.
01

0
.7

9
0
.0

1
3
.9

1
0
.0

1
4

5
3
1
6
.4

2
6
1

30
3

0.
01

0.
01

3
.9

7
4
.9

2
1
3
.3

8
1
5
.4

3
2

1
8
1
7
.8

7
7
7
.8

40
1

0.
01

0.
01

0
.0

5
0
.0

1
0
.2

4
0
.0

1
4

5
2
3
4
.4

1
0
2

40
2

0.
01

0.
01

0
.0

7
0
.4

9
0
.3

0
0
.9

5
4

2
6
4
0
.6

7
2
7
.2

40
3

5.
76

4.
12

1
6
.8

3
1
4
.2

1
2
4
.1

6
1
9
.0

9
0

0
9
0
3
.6

9
0
4

50
1

0.
01

0.
01

0
.0

1
0
.0

1
0
.0

1
0
.0

1
5

5
8
1
.6

6
6
.4

50
2

0.
69

1.
04

2
.2

9
2
.7

3
4
.6

2
4
.8

9
0

0
9
0
2

9
0
1
.8

50
3

16
.7

1
13

.4
8

2
0
.7

9
1
7
.6

0
2
3
.4

4
2
1
.1

0
0

0
9
0
2
.2

9
0
2
.6

T
o
ta

l
2
4

2
3

T
ab

le
3.

6:
T

h
e

p
er

fo
rm

an
ce

o
f

m
u

lt
ip

le
P

a
re

to
-o

p
ti

m
a
l

cu
ts

w
it

h
a
n

d
w

it
h

o
u

t
a
n

in
it

ia
l

in
te

g
er

so
lu

ti
o
n

.

51

Data
Best %Gap %Gap Worst %Gap #Opt (45) Total time (s)

OR E OR E OR E OR E OR E

30 1 0.00 0.00 0.01 0.01 0.01 0.01 5 5 7.6 70.4
30 2 0.01 0.01 0.01 0.13 0.01 0.63 5 4 261 377.4
30 3 0.01 0.30 4.92 5.66 15.43 13.60 1 0 777.8 908

40 1 0.01 0.01 0.01 0.14 0.01 0.66 5 4 102 348
40 2 0.01 0.01 0.49 0.30 0.95 1.00 2 3 727.2 619.4
40 3 4.12 5.08 14.21 15.92 19.09 24.73 0 0 904 903.4

50 1 0.01 0.01 0.01 0.01 0.01 0.01 5 5 66.4 196.6
50 2 1.04 1.86 2.73 3.76 4.89 5.85 0 0 901.8 901.4
50 3 13.48 15.04 17.60 18.06 21.10 20.60 0 0 902.6 901.8

Total 23 21

Table 3.7: The performance of the different cut strategies.

From the investigation of the solution quality and average computational time, the original
value of εr is still appropriate for our algorithm.

3.6.5 Comparison between Developed Benders’ Algorithm and CPLEX

Summing up, the best version of our branch-and-Benders’ cut is using the multiple Pareto-
optimal cuts (3.36) with an initial integer solution from the location-allocation heuristic. Finally,
we compare its performance to the modern branch-and-cut and the Benders’ decomposition
algorithm in CPLEX. Tables 3.9 and 3.10 show the performance of CPLEX and our best
version. Default and AutoBD represent the results of the modern branch-and-cut and the
Benders’ decomposition algorithm from CPLEX, while Papa is from our proposed branch-and-
Benders’ cut. Note that the results of Default were shown before in Section 2.5.

Concerning the relative percentage gaps in Table 3.9, there is no significantly difference
among the algorithms for the less challenging combinations, e.g., 30 1, 30 2, 40 1, 40 2, and
50 1. When the data instances become more complicated, AutoBD and Papa reach better
relative percentage gaps than Default. For 30 3 and 40 3, AutoBD reaches the smallest average
relative percentage gaps; It improves the average percentage gaps of Default by 70% and almost
50%, respectively. Papa comes second with better average relative percentage gaps than those
of Default by almost 40% in these two combinations. For 50 2 and 50 3, AutoBD and B&C
Papa become competitive and improve the average relative percentage gaps of Default by almost
40%. This is supported by the corresponding results of Best %Gap and Worst %Gap.

Columns #Opt (45) in Table 3.10 supports the outstanding performances of AutoBD. In
the combinations like 30 3 and 40 3 that the other algorithms struggle to find the optimal
solutions, AutoBD is successful in this task, resulting in the highest total of #Opt shown in the
last row. Papa manages to find the optimal solution in one data instance of such challenging
combinations. However, it is not successful in finding the optimal solutions in the data instances
of 40 2. As a result, it has the least total of #Opt.

Columns Total time (s) of Table 3.10 shows the average computational time to solve each
combination. For 30 1, Papa spends the least average time. However, it is not significantly
different from the others since all three methods manage to finish the algorithm fast. For the
other less challenging instances, e.g., 30 2, 40 1, and 40 2, Default shows superior performances.
In particular, Default spends around 55% and almost 60% less time than the other algorithms
on 30 2 and 40 2, respectively. For 40 1, Default spends 70% and 40% less time than Papa and
AutoBD, respectively. However, when the instances become more complicated like 30 3 and
40 3, AutoBD is the best in this aspect.

In conclusion, Default seems to outperform the other algorithms for the less challenging
instances, e.g., 30 1, 30 2, 30 2, 40 1, and 40 2. However, AutoBD and Papa show overall
superior performance for more difficult combinations. In particular, AutoBD and Papa performs
best and second best, respectively.

Next, we will further investigate the performances of AutoBD to understand its superiority

52

D
a
ta

B
e
st

%
G

a
p

%
G

a
p

W
o
rs

t
%

G
a
p

#
O

p
t

(4
5
)

T
o
ta

l
ti

m
e

(s
)

0
.0

5
%

0
.5

0
%

5
%

0
.0

5
%

0
.5

0
%

5
%

0
.0

5
%

0
.5

0
%

5
%

0
.0

5
%

0
.5

0
%

5
%

0
.0

5
%

0
.5

0
%

5
%

30
1

0
.0

1
0.

00
0.

00
0
.0

1
0.

0
1

0.
0
1

0
.0

1
0
.0

1
0.

0
1

5
5

5
1
0

7
.6

7
30

2
0
.0

1
0.

01
0.

01
0
.3

2
0.

0
1

0.
2
8

1
.5

5
0
.0

1
1.

3
8

4
5

4
28

1
.6

26
1

2
6
5.

4
30

3
0
.0

1
0.

01
0.

01
4
.8

1
4.

9
2

4.
3
0

18
.3

9
15

.4
3

1
7.

3
1

2
1

2
6
9
6

7
7
7
.8

7
8
7.

8

40
1

0
.0

1
0.

01
0.

01
0
.0

4
0.

0
1

0.
0
1

0
.1

7
0
.0

1
0.

0
1

4
5

5
26

1
.4

10
2

1
4
2.

8
40

2
0
.0

1
0.

01
0.

01
0
.3

7
0.

4
9

0.
4
2

1
.1

5
0
.9

5
0.

9
2

3
2

2
71

6
.8

72
7
.2

73
8

40
3

3
.1

2
4.

12
7.

17
1
4
.5

2
1
4.

2
1

1
5.

2
1

24
.8

0
19

.0
9

22
.1

3
0

0
0

90
3
.8

9
0
4

90
4

50
1

0
.0

1
0.

01
0.

01
0
.0

1
0.

0
1

0.
0
1

0
.0

1
0
.0

1
0.

0
1

5
5

5
8
0
.6

6
6
.4

96
.2

50
2

0
.9

2
1.

04
1.

38
2
.7

6
2.

7
3

2.
8
6

4
.6

0
4
.8

9
5.

2
5

0
0

0
90

2
9
0
1
.8

9
0
1.

6
50

3
16

.3
9

1
3.

48
14

.8
5

2
0
.1

3
1
7.

6
0

1
8.

1
5

25
.0

7
21

.1
0

21
.2

1
0

0
0

90
2
.6

90
2
.6

90
2
.6

T
o
ta

l
2
3

2
3

2
3

T
ab

le
3.

8:
T

h
e

p
er

fo
rm

an
ce

of
th

e
d

iff
er

en
t

th
re

sh
o
ld

re
la

ti
ve

p
er

ce
n
ta

g
e

g
a
p

s
o
f

th
e

im
p

ro
v
em

en
t

a
t

th
e

ro
o
t

n
o
d

e.

53

over Papa.

Further Investigation on AutoBD and Papa

We now further analyse the results of CPLEX and our best version to see how CPLEX derives
better relative percentage gaps. First, we check the root node as it is the main place to reduce
the percentage gap. Figure 3.4 represents graphs of the improvement in the relative percentage
gap at the root node, similar to Figures 3.1−3.3, for the more difficult data instances, such as
30 3, 40 3, 50 2, and 50 3. In this case, the objective value of the LP relaxation at the root
node is compared to the best-found integer solution by either CPLEX, AutoBD, or Papa for
each data instance. For Papa, symbols without and with filling colour represent the objective
values that are improved by CPLEX’s cuts and by our cuts, respectively.

It is clear that the initial cuts from Papadakos (2008) in Papa reduce the relative percentage
gap immediately, while there is no improvement in AutoBD at the beginning. Also, the graphs
show that these two methods reach almost the same relative percentage gaps before branching
the node, i.e., their objective values at the root node are not different at the beginning of
the tree search. In fact, Papa spends much less computational time on average at the root
node, especially for those difficult instances, as shown in Columns TimeRN (s) of Table 3.11.
These results imply that Papa actually outperforms AutoBD at the root node. Therefore, the
observation at the root node is inconclusive, i.e., it cannot explain to us why AutoBD derives
better percentage gaps at the end.

(a) Data instance for 30 3. (b) Data instance for 40 3.

(c) Data instance for 50 2. (d) Data instance for 50 3.

Figure 3.4: The change of relative percentage gaps at the root node in more difficult instances
by AutoBD and Papa.

Since the information at the root node cannot provide any clear reason for AutoBD ’s out-
standing performances to us, we then observe the information about the upper bound and the
lower bound in every data instance. The upper bound and the lower bound of each data instance
are from the best-found integer solution and the best bound of the tree search, respectively.

54

D
a
ta

B
e
st

%
G

a
p

%
G

a
p

W
o
rs

e
%

G
a
p

D
e
fa

u
lt

A
u

to
B

D
P

a
p

a
D

e
fa

u
lt

A
u

to
B

D
P

a
p

a
D

e
fa

u
lt

A
u

to
B

D
P

a
p

a

30
1

0.
00

0
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
30

2
0.

00
0
.0

1
0
.0

1
0
.0

1
0
.4

6
0
.0

1
0
.0

1
2
.2

5
0
.0

1
30

3
2.

57
0
.0

1
0
.0

1
7
.8

1
2
.3

4
4
.9

2
2
3
.5

4
8
.2

9
1
5
.4

3

40
1

0.
00

0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
40

2
0.

01
0
.0

1
0
.0

1
0
.0

1
0
.1

5
0
.4

9
0
.0

1
0
.7

0
0
.9

5
40

3
14

.6
0

0
.0

1
4
.1

2
2
3
.3

4
1
2
.4

0
1
4
.2

1
2
8
.5

3
2
1
.2

9
1
9
.0

9

50
1

0.
01

0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
0
.0

1
50

2
3.

47
1
.3

1
1
.0

4
4
.5

7
2
.4

1
2
.7

3
6
.2

1
4
.5

3
4
.8

9
50

3
23

.2
0

11
.0

8
1
3
.4

8
3
2
.1

0
1
7
.4

6
1
7
.6

0
4
1
.3

3
2
1
.7

0
2
1
.1

0

T
ab

le
3
.9

:
T

h
e

p
er

fo
rm

a
n
ce

o
f

C
P

L
E

X
a
n
d

o
u

r
b

es
t

ve
rs

io
n

(1
).

55

Data
#Opt (45) Total time (s)

Default AutoBD Papa Default AutoBD Papa

30 1 5 5 5 15 9 7.6
30 2 5 4 5 120 290.4 261
30 3 0 3 1 900 624 777.8

40 1 5 5 5 30.8 48.6 102
40 2 5 4 2 291.2 677.4 727.2
40 3 0 1 0 900 819 904

50 1 5 5 5 50.8 57.8 66.4
50 2 0 0 0 900 900 901.8
50 3 0 0 0 900 900 902.6

Total 25 27 23

Table 3.10: The performance of CPLEX and our best version (2).

This information is presented in Table 3.11. Columns %DiffLB show the information about
the relative percentage gaps of the lower bounds of Papa compared to those of AutoBD in each
combination. We present the worst, the average, and the best of those relative percentage gaps
from five data instances of each combination in Columns Worst, Average, and Best, respectively.
Similarly, Columns %DiffUB represent the information about the upper bounds. Here, a pos-
itive value in %DiffUB and %DiffLB indicates that our algorithm has a better performance,
i.e., it has a lower upper bound and a higher lower bound, respectively. Moreover, we count the
total number of data instances that Papa performs at least as well as AutoBD to find the best
integer solution, i.e., the data instances whose %DiffUB is greater than -0.01%. This informa-
tion is shown in Columns #Good (45), where the number in brackets shows the maximum total
of #Good. In this case, the maximum total number is the total number of instances, as it is
possible to perform as well as AutoBD in every data instance. Moreover, for each combination,
Columns #Better present the number of data instances whose upper bound of Papa is strictly
better or %DiffUB is greater than 0.01%. For each combination, the number of #Better in
Column Papa cannot exceed the corresponding number in Column Max which relates to the
number of instances for which AutoBD can find the optimal solution (shown in Columns #Opt
(45) of Table 3.10). For example, for 30 1, AutoBD can find the optimal solution in every
instance so the maximum number of better cases is zero, as we cannot find any better solution
in that case. Finally, we sum the number of #Good and #Better from every combination to
show the overall corresponding results in the last row.

Regarding the lower bound, it is obvious from Columns %DiffLB that AutoBD tends to
have a higher lower bound on average, especially in the complicated combinations including
30 3, 40 3, and 50 3. For these combinations, the worst cases of our algorithm are at least 4%
worse than those of AutoBD, while the best cases are better by less than 1%: see Columns
Worst and Best. Therefore, AutoBD manages to reach much better lower bounds than Papa
during the tree search, resulting in overall smaller relative percentage gaps.

The most interesting observation here is the information related to the upper bound as
it shows the real comparison of the best integer solution in each data instance. In Columns
%DiffUB, we focus on the more challenging combinations. Papa performs marginally worse on
average in 30 3 and 50 2. However, it can find better integer solutions in the most challenging
combinations such as 30 3, 40 3, 50 2, and 50 3: see positive values in Column Best. This
implies that for these combinations our method can find better integer solutions than CPLEX.

The results from Columns #Good (45) and #Better prove that our algorithm is at least
comparable with CPLEX in finding the best integer solutions and tends to have better perfor-
mance in more complicated data instances. Column #Good (45) shows that Papa finds the
best integer solutions that are at least comparable to those of AutoBD in every data instance
of the less difficult combinations (for example, in 30 1, 30 2, 50 1) and at least three out of five
instances in the more complicated combinations. In particular, 38 out of 45 instances have at

56

least comparable best integer solutions to those of AutoBD. When data instances become more
complicated, our method manages to find better integer solutions: see Columns #Better. More
specifically, we find better integer solutions than those of AutoBD in 50% of the total number
of possible cases.

3.6.6 Conclusion

In conclusion, we developed the branch-and-Benders’ cut algorithm using various sophisticated
techniques. We analysed and discussed their effectiveness. We showed how each technique
improves the performance of the algorithm. Finally, we compared our best version with the
Benders’ decomposition algorithm implemented by CPLEX. In general, our algorithm worked
well before branching the root node but struggled to reach a higher lower bound at the end of
the tree search, resulting in worse average percentage gaps. However, it performed at least as
well as CPLEX to find the best integer solutions and even better in the most challenging data
instances. Therefore, our Benders’ algorithm is highly competitive with the built-in Benders’
algorithm in CPLEX.

57

D
a
ta

T
im

e
R

N
(s)

%
D

iff
L

B
%

D
iff

U
B

#
G

o
o
d

(4
5
)

#
B

e
tte

r

P
a
p

a
A

u
to

B
D

W
o
rst

A
v
e
ra

g
e

B
e
st

W
o
rst

A
v
e
ra

g
e

B
e
st

P
a
p

a
M

a
x

30
1

0.3
0

1.2
2

-0.01
0.00

0.01
0.00

0.0
0

0.00
5

0
0

3
0

2
0.9

5
2.6

7
0.00

0.46
2
.29

0.00
0.00

0.00
5

0
1

3
0

3
2.2

9
5.9

0
-4.24

-2.03
0
.00

-3.84
-0

.74
0
.20

3
1

2

40
1

0.6
9

2.6
3

0.00
0.00

0
.00

0.00
0.00

0.00
5

0
0

4
0

2
1.6

0
5.2

0
-0.94

-0.35
0
.11

0
.00

0.00
0
.00

5
0

1
4
0

3
3.8

2
1
1.5

7
-5.10

-2.40
1
.00

-3.17
0.5

5
3.54

3
3

4

50
1

1.1
0

3.7
3

0.00
0.00

0
.00

0.00
0.00

0.00
5

0
0

5
0

2
2.5

5
8.5

9
-0.84

-0.27
0
.33

-0.26
-0

.05
0
.09

3
1

5
5
0

3
7.6

9
1
8.4

2
-5.04

-1.44
0
.99

-0.56
1.3

5
2.49

4
4

5

T
o
ta

l
38

9
18

T
a
b

le
3
.1

1:
F

u
rth

er
in

fo
rm

a
tio

n
o
n

th
e

co
m

p
a
riso

n
b

etw
een

C
P

L
E

X
a
n

d
ou

r
b

est
version

.

58

Chapter 4

Tabu Search for the Scheduling
Part

This chapter introduces the basic concepts of a popular meta-heuristic method called tabu
search, followed by all details of its implementation in our model. For more comprehensive
information about the method, interested readers are referred to Gendreau & Potvin (2019).

Heuristics are methods used for generating good feasible solutions quickly or, at least, within
a reasonable amount of time. Therefore, they are attractive to apply to large-scale or hard-to-
solve optimisation problems. However, there is no guarantee of obtaining the optimal solution.
Moreover, each heuristic method is usually specific to each problem’s context. Metaheuristics
are slightly different, as they provide a general framework to implement the procedures including
a list of all necessary parameters.

Numerous metaheuristic procedures have been proposed and implemented to solve district-
ing problems: for example, simulated annealing (Browdy 1990, D’Amico et al. 2002); genetic
algorithms (Forman & Yue 2003, Bação et al. 2005, Tavares-Pereira et al. 2007, Steiner et al.
2015); and the Greedy Randomized Adaptive Search Procedure (Ŕıos-Mercado & Fernández
2009, Fernández et al. 2010, de Assis et al. 2014, Ŕıos-Mercado 2016). Tabu search is one of
these approaches and shows successes in many combinatorial optimisations: see Gendreau &
Potvin (2019). The method has several advantages. According to Gendreau & Potvin (2019), it
has a simple concept and can deal with complicating constraints easily, so it is highly practical.
Also, its main features exploit the search history to guide the search to promising areas and to
avoid it being trapped in local optima. Due to these attractive characteristics of tabu search,
we decide to implement it in our model.

According to Gendreau & Potvin (2019), a tabu search algorithm is based on a local search
technique which can be described as the following. A current solution is slightly changed by
some modifications or moves. A set of the modified solutions is called a neighbourhood. Note
that a neighbourhood is a subset of search space which contains all possible solutions that can
visit during the search. The local search investigates the best solution in the neighbourhood.
If it finds an improving solution, it will accept the solution as a new current solution and then
repeat the process. Otherwise, it stops. Therefore, it is usually stuck in a local optimum. Tabu
search is slightly different as it accepts a non-improving solution in the search. Moreover, the
main feature of tabu search is to keep track of recent solutions by creating a list of forbidden
moves for the next iterations. The main reason is to forbid the algorithm to return to these
recent solutions for several iterations, thereby allowing it to escape from a local optimum. The
list is called tabu list and elements in the list are called tabus. Tabus are stored in the list for
several iterations. Their duration to stay in the list can be random or can depend on the length
of a tabu list. The length of a tabu list is usually fixed but also can vary during the search.
The information to be collected as a tabu and the length of a tabu list considerably affects
the efficiency of tabu search, so they should be chosen carefully. Although a tabu solution
(a solution that contains tabu(s)) is generally not allowed in the neighbourhood, there is an
exception; it is allowed if it can improve upon the incumbent (the currently best overall solution
of the algorithm), i.e., become a new incumbent. The reason is that this tabu solution provides

59

a new overall best solution that has not been visited before. This step is known as the aspiration
criterion.

Although the basic concept of tabu search seems effective, the method can still struggle to
deal with challenging problems with realistic-sized instances. Therefore, additional features are
required to improve the quality of the search. When the size of the neighbourhood is large,
it usually affects the computational time to explore the whole neighbourhood. In this case,
restricting the search to only its promising areas saves time and improves the effectiveness of
the algorithm. Another common feature is using multiple neighbourhoods in the same search.
Each neighbourhood usually focuses on a specific area of the search space in which to improve
the current solution and might perform differently in terms of effectiveness for a specific data
instance (Jin et al. 2012). In particular, some neighbourhoods might perform better than oth-
ers in certain circumstances due to their specific search trajectories. Therefore, using multiple
neighbourhoods can exploit the strength of each neighbourhood to guide the search more effec-
tively. A way to manage multiple neighbourhoods during the search is, therefore, important.
The multiple neighbourhoods are usually run sequentially, i.e., searching a neighbourhood one
by one (Ceschia et al. 2011, Wu et al. 2016, Soto et al. 2017). Some studies randomly se-
lect a neighbourhood to be explored in each iteration where each neighbourhood has a fixed
probability for being chosen (Jin et al. 2012, Xia et al. 2018). Some combine several specific
neighbourhoods to enhance solutions in certain stages of the algorithm: see Nanry & Barnes
(2000), Jin et al. (2012), and Alrajhi et al. (2016).

For some problems, computing the objective function(s) is very time-consuming and results
in a significant computational burden when having to evaluate each candidate in a large-sized
neighbourhood. In this case, a surrogate objective function, which closely relates to the real
objective function but requires less computational time, can help to evaluate candidates in
the neighbourhood and select the most promising ones. Then, these promising candidates
are assessed by the real objective function to find the best one. These processes speed up
the algorithm considerably since now the real objective function is only calculated for a small
number of candidates.

More advanced features of tabu search are intensification and diversification. Intensification
focuses more on promising parts of the search space. A typical way to identify the promising
areas is to observe which components of the current solution have appeared in most iterations.
These components can be seen as attractive to explore more thoroughly. The intensification
process usually starts with fixing these attractive components in the currently best-known
solution and then restores the remaining parts of the solution. This way guides the search to
stay around the promising areas. However, intensification is not necessary if the algorithm with
the normal process searches thoroughly enough and does not miss good solutions (Gendreau
& Potvin 2019). The opposite of intensification is diversification; it prevents the search from
focusing only on some specific parts of the search space and guides the algorithm to seek better
solutions in other areas. Therefore, it forces the search to explore yet unvisited areas. A typical
example of this is to allow the algorithm to accept infeasible solutions during the search. Most
studies often deal with infeasible solutions by introducing self-adjusting penalties that rely on
search history. Kulturel-Konak et al. (2004) confirmed that adaptive penalties from the search
history are more robust than constant ones. Another typical method is destroying some parts
of the current solution and then restoring it from scratch. This feature is often applied after
the search cannot improve the current solution for a certain amount of time or the number of
iterations. Gendreau & Potvin (2019) suggested that diversification is crucial to a successful
algorithm, as if it is not appropriately implemented, it can easily fail to diversify solutions
adequately.

For districting problems, Bozkaya et al. (2003) proposed tabu search to solve a political
districting problem with a multi-criteria objective function. Here, a basic unit and a district
represent a census tract and an electoral constituency, respectively. The move operations in this
work move one basic unit to its adjacent district and swap two basic units between adjacent
districts. The algorithm allows accepting infeasible solutions that violate population equality,
which is one of the criteria, and penalises them with a self-adjusting penalty multiplier based
on the search history. They diversified solutions by keeping track of frequent non-improving
moves and penalising them. This is to discourage deteriorating moves in the search. They also
applied an additional advanced feature called adaptive memory. It was originally proposed by

60

Rochat & Taillard (1995) to create a good solution by exploiting components of the best-known
solutions. Bozkaya et al. (2003) applied the developed method to real-life data of Edmonton,
Canada and proved that it could find a better districting plan than existing ones.

The algorithm by Bozkaya et al. (2003) was also applied successfully in the following papers.
Blais et al. (2003) adapted the algorithm to implement a real design for health clinic districts in
Montreal, Canada, where the ease of travel by public transportation is one of their criteria. It
showed highly satisfactory results after two years of the plan’s management. Wei & Chai (2004)
combined the tabu search algorithm with a scatter search and showed success in improving
the quality of solutions for a multi-objective spatial zoning problem. Haugland et al. (2007)
created districts for a vehicle routing problem, where customers’ demands are uncertain during
the design of the districts. The authors showed that tabu search outperforms a multi-start
heuristic. Bozkaya et al. (2011) integrated the algorithm with the Geographic Information
System to revise a political districting plan in Edmonton, Canada. The proposed plan was
officially approved for a real election in 2010.

Ŕıos-Mercado et al. (2017) proposed a tabu search algorithm to design districts of rec-
ollecting waste of electrical and electronic equipment for companies who are responsible for
recycling. The authors formulated the problem as a maximum dispersion territory design prob-
lem to prevent regional monopolies. Infeasible solutions are allowed in the search and controlled
by self-adjusting penalties. The empirical results confirmed that the tabu search algorithm is
superior to the Greedy Randomised Adaptive Search Procedure from Fernández et al. (2013),
which is a recent state-of-the-art algorithm for the problem. Another recent work is by Gli-
esch et al. (2018). They extended a study from Rios-Mercado & Escalante (2016) that creates
districts for commercial products distribution. Note that the compactness in this work is not
measured from district centres, but instead from the maximum Euclidean distance between two
nodes in a district. They implemented tabu search to improve each criterion separately. In
particular, they run tabu search for maximising compactness first and then reducing imbalance
in the districts. The results show the advantages of implementing tabu search for improving a
specific criterion instead of using a single search with a multi-criteria objective function.

The most interesting work for us in this area is Butsch et al. (2014). The authors proposed a
tabu search algorithm to design districts for arc routing with a multi-criteria objective function.
Here, a basic unit is represented by an edge of the graph. This problem can be seen in the
application of mail or leaflet delivery. They used the same move operations as in Bozkaya et al.
(2003), i.e., shifting a basic unit between its adjacent districts. The algorithm applies multiple
neighbourhoods where each neighbourhood is based on a strategy to improve a specific criterion.
In each iteration, a neighbourhood is selected randomly corresponding to its self-adjusting
probability. The probabilities of neighbourhoods depend on the performance of solutions from
these neighbourhoods in recent iterations. If any criterion needs improvement, the probability
of selecting the neighbourhood for the corresponding criterion will be increased. This is to
raise the chance of searching the neighbourhood on solutions in the next iterations, thereby
improving the corresponding criterion. We believe that this is the first work that adjusts a
probability to select each neighbourhood based on the search history, while most studies with
a random selection on multiple neighbourhoods in the literature choose a neighbourhood with
a fixed probability. They also presented an effective way to improve compactness, which is one
of their criteria. They selected districts with the highest compactness. Then, in each of these
districts, they removed basic units with the largest distances from the district centre. In the
case of swapping basic units, the authors avoided deteriorating solutions by removing a basic
unit and then inserting a basic unit with a smaller distance from the district centre. They
tested on real street data and showed the effectiveness of the algorithm.

Tabu search has also been successful in tackling closely related applications to district prob-
lems, like facility location, network design, and especially vehicle routing problems. Michel &
Van Hentenryck (2004) proposed tabu search to solve an uncapacitated facility location prob-
lem. They presented a simple move to create a neighbourhood: changing a status (closed or
open) of a warehouse in each iteration. The tabu list in their work recorded a list of warehouses
that have changed their status. The idea for diversification is also simple, with randomly closing
open warehouses. Despite its simplicity, the algorithm showed competitive results compared
to those for state-of-the-art algorithms. With a similar kind of moves and tabu list, Gendron
et al. (2003) solved a multicommodity capacitated location problem. The problem requires the

61

simultaneous decision on opening depots and the corresponding network flow for a fleet of con-
tainers. There are two neighbourhoods in this case; one for changing the status of a depot (close
or open) and another one for swapping different states of two depots. The authors searched
the former neighbourhood and then the latter alternatingly. For each move, the corresponding
minimum cost network flow problem is then solved. Since the computational time for exploring
the whole neighbourhoods is excessive, the authors approximated the change in the cost of each
move and then solved the minimum cost network flow problem only for promising cases. Cort-
inhal & Captivo (2003), who combined tabu search with a Lagrangian heuristic to improve the
upper bound of a capacitated facility location problem, presented different move operators. The
moves focus on the allocation of customers to open plants, i.e., shifting a customer to another
open plant, or swapping the allocation of two customers who have been allocated to different
plants. The tabu list, in this case, records the customer and their previously allocated plant.
The authors also compared the performance when the tabu search is substituted with a local
search and showed that the tabu search is better. More recent work in this area is by Yaghini
et al. (2013) who proposed tabu search combined with the cutting plane method to solve a ca-
pacitated p-median problem. The move operator here is closing a currently open facility. Then,
the corresponding LP relaxation of the capacitated p-median is solved and strengthened by
the cutting plane method. The results showed that this method outperformed the best-known
algorithm in the literature of the problem.

According to Gendreau & Potvin (2019), tabu search is one of the most effective meta-
heuristics to solve capacitated vehicle routing problems. Typical move operators are moving
a node (which is usually represented by a city or a customer to visit) within the same route
and between routes. Gendreau et al. (1994) allowed infeasible solutions during the search and
managed them by self-adjusting penalties. The authors proposed a robust way to insert a node
into a new route: moving a node to a route that contains one of its closest neighbouring nodes.
They tested the algorithm on instances consisting of between 50 and 200 nodes and showed
that this way produces high-quality neighbouring solutions. Paquette et al. (2013) focused on
a multi-criteria dial-a-ride problem which aims for a high-quality design of vehicle routes for
picking up and delivering passengers. It is considered as an extension of capacitated vehicle
routing problems. The objective function for this problem is a linear combination of several
weighted functions where each of them is represented for each criterion. The weights for the
criteria in the objective function are updated dynamically during the search based on the search
history. Any criterion on the current solution that needs to be improved gets a higher weight,
and this enforces the search to emphasise this specific criterion. The authors presented the
results on real-life data of Montreal to show the effectiveness of the algorithm. Jin et al. (2012)
showed the advantages of using multiple neighbourhoods with multiple threads. Each thread
can be either a single neighbourhood or a certain combination of multiple neighbourhoods to
improve a solution in a specific way. In a thread that has multiple neighbourhoods, the authors
assigned a certain probability of choosing each neighbourhood. Xia et al. (2018) also used tabu
search with multiple neighbourhoods to solve a capacitated vehicle routing problem that allows
splitting customers’ orders to different vehicles. They selected a neighbourhood randomly in
each iteration where each neighbourhood has the same probability of being chosen.

Next, we propose a general framework of the tabu search algorithm for our model with
additional features to improve the quality of the search in Section 4.1. In particular, we allow
infeasible solutions during the search to explore more areas in the search space. We propose
three neighbourhoods for our problem as presented in Section 4.2−4.3. Since the size of neigh-
bourhoods is usually large, we explore only specific promising areas of the neighbourhoods and
use a surrogate objective function when the computational cost of evaluating the actual ob-
jective function is too expensive. Also, we use a simple but effective diversification scheme.
After introducing all neighbourhoods, Section 4.4 presents a way to use multiple neighbour-
hoods in the same search. In particular, we randomly select a neighbourhood in each iteration
corresponding to self-adaptive probabilities. The details of setting up the experiment are pre-
sented in Section 4.5. The effectiveness of the proposed algorithm is discussed through extensive
computational results in Section 4.6.

62

4.1 General Framework of Tabu Search for our Model

To formulate the algorithm, we represent a solution by the information based on customers
who are week centres and a week pattern of each customer, since these are enough to define a
district each week. We create a vector of customers who are week centres each week, called ω,
and a vector of week patterns of customers, called ρ, in the following ways:

• ω ≡ (ω1, ω2, . . . , ω|W |), where ωw is the customer who is the week centre in week w for
w = 1, 2, . . . , |W |.

• ρ ≡ (ρ1, ρ2, . . . , ρ|B|), where ρb is the week pattern of customer b ∈ B.

We define S ≡ (ω, ρ) as a solution formed by a vector of week centres and week patterns.
We also increase the search space by allowing infeasible solutions in the search, i.e., we accept
a solution that violates the workload balance. A degree of the violation for a vector of week
patterns ρ, δ(ρ), is measured by the total excess of the workload from the acceptable ranges
during the planning horizon.

It is straightforward to derive the vector ω and ρ from the week centre and week pattern
variable values, respectively:

• ωw = b, where xwb = 1, b ∈ B, w ∈W .
• ρb = p such that gbp = 1 , b ∈ B, p ∈ Pb.

δ(ρ) is also derived easily. Let δw(ρ) represent the excess of the workload in week w ∈ W ,
i.e.,

δw(ρ) = max

{
0, (1− τweek)µweek −

∑
b∈B

tbψ
w
ρb
,
∑
b∈B

tbψ
w
ρb
− (1 + τweek)µweek

}
.

Then, δ(ρ) =
∑
w∈W δw(ρ) and if it is positive, it indicates that the solution is infeasible due

to a violation of the acceptable workload ranges.

We focus on applying tabu search to the model by creating neighbourhoods based on either
the week centre or the week pattern vector. In the week centre neighbourhood, we modify the
week centre vector and then derive the corresponding week pattern vector to form a neighbour-
ing solution. Similarly, a neighbouring solution in the week pattern neighbourhood is created
from a modified week pattern vector and the corresponding week centres. In other words, while
exploring the neighbourhoods, we either have to find the optimal vector of week patterns for a
given week centre vector or vice versa. The model formulation of each problem is almost the
same as the allocation problem and the location problem to find an initial integer solution for
Benders’ decomposition in the previous chapter. Note that the location problem is to find the
best week centres of the planning horizon for given week patterns of customers, while the alloca-
tion problem is the other way round. The only differences are that each problem is represented
by either the predefined week centre or the week pattern vector, and has the penalisation of
the workload violation in the objective function.

Regarding the former problem for a given week centre vector ω, we solve the following
problem (Allocation(ω)) to get the optimal week patterns ρ. To penalise an infeasible solution,
we introduce new continuous variables for the allocation problem δwU and δwL as the excess
workload from the upper bound and the lower bound of the acceptable range in a week w ∈
W , respectively. Then, the penalty of the solution is the total excess of workload weighted
by a penalty factor φ. In this case, δ(ρ) can be simply derived from the optimal value of

63

∑
w∈W (δwU + δwL).

min zAL(ω) :=
∑
b∈B

∑
w∈W

∑
p∈Pb

cb,ωw
ψwp gbp + φ

∑
w∈W

(δwU + δwL) (Allocation(ω))

s.t.
∑
p∈Pb

gbp = 1 b ∈ B

∑
b∈B,p∈Pb

tbψ
w
p gbp ≥ (1− τweek)µweek − δwL w ∈W

∑
b∈B,p∈Pb

tbψ
w
p gbp ≤ (1 + τweek)µweek + δwU w ∈W

gbp ∈ {0, 1} b ∈ B, p ∈ Pb
δwU , δ

w
L ≥ 0 w ∈W.

The other problem of a fixed vector of week patterns follows the same idea. Given a vector of
week patterns ρ, we solve the following problem (Location(ρ)) to derive the second component,
the vector of week centres, for a solution. Also, the penalty value is added to the objective
value in case of infeasible week patterns.

min zL(ρ) :=
∑
b∈B

∑
i∈B

∑
w∈W

cbiu
w
bi + φδ(ρ) (Location(ρ))

s.t.
∑
i∈B

uwbi = ψwρb b ∈ B, w ∈W∑
b∈B

xwb = 1 w ∈W

uwbi ≤ xwi b, i ∈ B, w ∈W
uwbi ≥ 0 b, i ∈ B, w ∈W
xwb ∈ {0, 1} b ∈ B, w ∈W.

This problem is solved to a similar way of the location phase for an initial integer solution in
Benders’ decomposition. Let Bw = {b ∈ B | ψwρb = 1} be the set of customers in week w ∈ W
corresponding to ρ. The week centre ω can be derived by solving the following:

ωw = arg min
i∈B

∑
b∈Bw

cbi w ∈W (4.1)

and the objective value of the location problem is

zL(ρ) =
∑
w∈W

∑
b∈Bw

cb,ωw
+ φδ(ρ). (4.2)

A general framework for a tabu search technique for week centre and week pattern neighbour-
hoods is described as follows. Given a current solution, the algorithm creates a neighbourhood
without tabu solutions from the current solution, explores the neighbourhood to find the best
neighbouring solution, and records the information of the best neighbouring solution in a tabu
list. Since the tabu list is fixed for this algorithm, if the list is full we will add a new tabu
and remove the oldest tabu from the list. As we described above, we have a penalty factor to
penalise an infeasible solution. Whenever we get consecutive infeasible solutions for the prede-
fined number of iterations, the value of the penalty factor increases. The factor is multiplied
by a positive constant value to discourage this situation to happen again.

Moreover, a diversification scheme is applied if one of the following situations happen: the
current neighbourhood is empty, the penalty factor reaches the maximum fixed value, or there
is no improvement of the value of an incumbent for a fixed number of consecutive iterations.
In the first case, it is clear that we do not have any solution to move to in the next iteration, so
we diversify the current solution and update it as the current solution in the next iteration. In
the second case, the increasing value of the penalty factor indicates that the solution remains

64

infeasible, while the last case shows that the solution might be struggling to escape a local
optimum. For such cases, the best neighbouring solution is diversified and the tabu list is
cleared. We hope that diversification helps the algorithm to overcome all these situations. At
the end of each iteration, the best neighbouring solution is the new current solution for the next
iteration and the algorithm repeats, until it reaches a stopping criterion. The stopping criteria
are the maximum total time and the maximum number of consecutive diversifications without
a new incumbent.

The core algorithm is shown in Algorithm 9. An initial solution S0 is required to start the
procedures as it will be the first current solution. All parameters to control the algorithm are
as follows. Regarding infeasible cases, k > 1 is a constant value to strengthen the penalty factor
whenever the total number of consecutive infeasible solutions reaches NV . The maximum value
of the penalty factor, φ∗, and the maximum iterations for obtaining consecutive non-improving
solutions, NNI , are the parameters for the criteria of the diversification. ND and maxTime
represent the maximum number of consecutive diversifications and maximum total time for the
stopping criteria, respectively.

As the algorithm progresses, we create a neighbourhood from a current solution S and
search for its best neighbouring solution S′. i, v, and j are used to count the total number of
successive iterations to get a non-improving solution, an infeasible solution, and a diversification,
respectively. φ is the current penalty factor, whose initial value is 1. Time represents the current
time of the algorithm and is updated at the end of each iteration. When the algorithm reaches
any stopping criteria, it returns the incumbent solution S∗.

To obtain an initial solution for the tabu search algorithm, we apply the location-allocation
heuristic similar to that for the Benders’ decomposition: select a week centre in each week
randomly among customers whose week rhythm is the smallest in the planning horizon, and
then solve the allocation and the location problem iteratively. Here, we allow an infeasible
solution in the location and the allocation problems, and if the tabu search algorithm starts
from an infeasible solution, it usually struggles to find a feasible solution. Therefore, we increase
the value of the penalty factor to be significantly larger in the location-allocation heuristic to
discourage the initial solution from becoming infeasible. On rare occasions, the initial solution
might still be infeasible after solving the location-allocation heuristic. For that case, we repeat
all of the processes with a new initial week centre vector which is not entirely identical to the
previous one. We allow the repetition for at most a fixed number of times. After we derive an
initial solution (which should be feasible), we change the penalty factor to its initial value and
begin the tabu search.

For the diversification, we randomly change some parts of a solution and then apply the
location-allocation heuristic to improve its quality. Again, we repeat the process of the diver-
sification at most a fixed number of times until we get a feasible solution.

To evaluate the performance of the tabu search algorithm, for each data instance, we com-
pare the relative percentage gap to the best-found solution from the previous chapter, i.e., the
best solution from either the modern brand-and-cut in CPLEX, the Benders’ decomposition
algorithm in CPLEX, or our developed Benders’ decomposition algorithm. Let zBF and zH be
the objective function values from the best-found solution and the heuristic, respectively. The
relative percentage gap %Gap is shown below:

%Gap =
(zBF − zH)× 100

zBF
. (4.3)

Basically, a nonnegative value of the measurement suggests that the heuristic performs at least
as good as the benchmark, or even better, while a negative value identifies the worse performance
of the heuristic.

In the case when CPLEX can find an optimal solution, we aim to get the gap nearly to
zero since this indicates that a solution of the heuristic is as good as the optimal one. For data
instances in that CPLEX cannot find an optimal solution, we ideally want to obtain a positive
gap which means that the heuristic has found a better solution with a smaller objective value.

In the following sections, we provide details of the neighbourhoods on week centres and
week patterns. Moreover, for each neighbourhood, we propose a method to diversify a current
solution when the algorithm struggles to find a new incumbent or escape infeasibility.

65

Algorithm 9 The tabu search algorithm

Input: S0

Parameter: k, NV , φ∗, NNI , ND, maxTime
Initial:

S:= S0, S∗:= S0, i, j, v := 0, φ = 1, Time := 0
1: while Time < maxTime do
2: Find the best non-tabu solution S′ in the neighbourhood of S
3: if S′ is not empty then
4: Update the tabu list with the information of S′

5: if S′ is infeasible then
6: v := v + 1 . Increase the counter of consecutive infeasible cases
7: i := i+ 1 . Increase the counter of consecutive non-improving cases
8: if v ≥ NV then
9: φ := k · φ . Strengthen the value of the penalty factor

10: v := 0 . Clear the counter for infeasible cases
11: end if
12: else
13: v := 0, φ = 1 . Clear all parameters related to the infeasible cases
14: if S′ is better than S∗ then
15: S∗ := S′

16: i := 0, j := 0 . Clear the counters for non-improving cases
17: else
18: i := i+ 1 . Increase the number of consecutive non-improving cases
19: end if
20: end if
21: end if
22: if S′ is empty or i ≥ NNI or φ ≥ φ∗ then
23: j := j + 1 . Increase the number of consecutive diversifications
24: if j > ND then . Check the stopping criterion
25: Stop the algorithm
26: else
27: Clear the tabu list
28: Apply the diversification and derive a new solution for S′

29: v := 0 . Reset the total number of the infeasible cases
30: i := 0 . Clear the counter of the non-improving cases
31: if S′ is better than S∗ then
32: S∗ := S′ . Update the incumbent if the diversification can find a better one
33: end if
34: end if
35: end if
36: S := S′

37: Update the current time in Time
38: end while

Output: S∗

66

4.2 Week Centre Neighbourhood

Given a current solution S ≡ (ω, ρ), we create a neighbourhood on the week centre vector ω as
follows. Starting from the first week centre ω1, we change it to another customer b ∈ B \ {ω1},
while keeping all other week centres fixed, resulting in a modified week centre vector ω. Then, we
solve (Allocation(ω)) to determine the optimal week patterns, the corresponding total excess of
workload, and the total centre-based distances. We repeat the procedures with every customer
in b ∈ B \ {ωw} and every week w = 1, . . . , |W |. In the end, the best neighbouring solution is
stored. We call this local search the exhaustive search on week centres (EWC).

For the best solution in the neighbourhood, the tabu list records the week that has a new
week centre. In the next iteration, we do not change the week centres of any week in the tabu
list, to avoid cycling back to recent solutions from previous iterations. We define the length of

the tabu list as l =
⌊
|W |
2

⌋
, i.e., equal to half of the length of the planning horizon. Therefore,

we freeze each week in the tabu list for at most l iterations, before removing it from the list.
However, the algorithm might still struggle to escape from a local optimum. For such a

case, we apply a diversification step in the algorithm: l week centres are randomly changed to
other customers. Then, we run the location-allocation algorithm to derive a final diversified
solution. Note that we repeat the whole process at most a fixed number of times until we get
a feasible solution.

Algorithm 10 shows the steps for the EWC algorithm with the corresponding tabu list TWC .
For each week, every customer except the current week centre can be a candidate for a new
week centre, as shown in Line 2.

Algorithm 10 Exhaustive Search in the Week Centre Neighbourhood (EWC)

Input: S ≡ (ω, ρ), TWC

Initial:
z∗ := 1e10
S′ ≡ (ω′, ρ′) := S

1: for all w ∈W such that w /∈ TWC do
2: for all b ∈ B \ {ωw} do
3: ω′ := ω
4: ω′w := b . Set the alternative week centre
5: Solve (Allocation(ω′)) and derive zAL(ω′) and ρ′

6: if zAL(ω′) < z∗ then
7: L∗ := w . Update the tabu
8: z∗ := zAL(ω′)
9: S∗ := S′ . Update the best solution that has been found so far

10: end if
11: end for
12: end for
13: Add element L∗ to TWC (if the neighbourhood is not empty) . Update the tabu list

Output: S∗

4.2.1 Improving the Search in the Week Centre Neighbourhood

Reduced-size Neighbourhood

Since the size of the neighbourhood is usually large for even small data instances, we aim to
reduce its size with a guarantee of good solutions. Our preliminary results show that the new
week centre for the best neighbouring solution is often either one of the other week centres, or
at least geographically close to them. The way to find close customers will be provided later in
the section. We can restrict our search to any customers who fall into one of the two categories.

To create the reduced-size neighbourhood, we limit the number of customers to investigate
each week and guarantee that they belong to one of the above two categories. Assume that the
current solution is S ≡ (ω, ρ). For week w ∈ W and customer i ∈ B \ {ωw}, we calculate the

67

minimum distance dwi from i to all of the other week centres, i.e.,

dwi = min
j∈W\{w}

ci,ωj . (4.4)

Then, we create the list Lw for week w ∈ W by sorting all customers in non-decreasing order
of dwi . As a result, other week centres and any customers close to them make up the first
elements. To reduce the size of the neighbourhood, let α ∈ R, 0 < α < 1, be the parameter
for the reduction, and Nα = bα · |B|c be the reduced number of customers to investigate each
week. Different values of α will be tested in the numerical experiments. We store the first
Nα customers of Lw in the set Bwα . We call this the α-reduced-size search on the week centre
neighbourhood (α-WC). In this case, everything in Algorithm 10 remains unchanged except for
Line 2, where we restrict the search for a new week centre in week w to the set of customers in
Bwα .

Quick Allocation Problem (QAP)

However, in the preliminary results, even with the reduced-size week centre neighbourhood,
it can take a reasonably long time in each iteration. The reason for this is that we still have
to solve the allocation problem for every week centre candidate, which is a costly operation.
Therefore, we propose another idea to determine a surrogate objective value for the allocation
problem instead. Namely, we omit solving the allocation problem for the new week pattern
vector, and just compute the total centre-base distances with the week pattern vector from the
current solution. More precisely, given a modified week centre vector ω and the current week
pattern vector ρ, the approximate objective value of the allocation problem z+AL(ω, ρ) is given
as

z+AL(ω, ρ) :=
∑
b∈B

∑
w∈W

ψwρbcb,ωw
+ φδ(ρ). (Allocation+(ω, ρ))

We select the best modified week centre vector based on the approximate values and then
solve the allocation problem for this vector to get the corresponding optimal week patterns.
This reduces the computational time significantly and becomes quick already even for the
exhaustive search, because the integer programme has to be solved only once during the search
of the neighbourhood. We call this technique the Quick Allocation Problem (QAP).

The exhaustive search with QAP is presented in Algorithm 11. There are a few differences
from the previous algorithm. Line 5 shows that the approximate objective value of the allocation
problem is used for finding the best modified week centre vector in the search. Then, the
allocation problem is solved just once for the best week centre vector: see Line 13.

4.3 Week Pattern Neighbourhoods

To create a neighbourhood by changing the week patterns of customers, it is not necessary to
consider customers who require weekly services. So, we construct a neighbourhood only among
customers whose week rhythm is at least two. There are two neighbourhoods on a vector of
week patterns; either by switching week patterns or swapping week patterns. The former idea
chooses one customer at a time and changes their pattern to another one. The latter considers
two customers who have the same week rhythm, but different week patterns, and then swaps
their week patterns. We follow the same idea as in the week centre neighbourhood: after getting
a modified week pattern vector ρ, we solve the location problem to get the optimal week centres
and the optimal objective function value. As we mentioned before, we can derive the optimal
week centre of each week manually from (4.1), without having to solve (Location(ρ)).

After finding the best neighbouring solution, we store the customer whose week pattern
changes and their original week pattern in a tabu. This is to guarantee that in the following
iterations the algorithm does not consider the customer with their previous week pattern. For
the neighbourhood of switching week patterns, a tabu is given by (b, p), where b is the customer
whose current week pattern p is changed. In the case of swapping week patterns, tabus are
the original week patterns of the two customers before swapping their patterns. That is, for

68

Algorithm 11 Exhaustive Search with QAP in the Week Centre Neighbourhood (EWC-QAP)

Input: S ≡ (ω, ρ), TWC

Initial:
z∗ := 1e10
S′ ≡ (ω′, ρ′) := S

1: for all w ∈W such that w /∈ TWC do
2: for all b ∈ B \ {ωw} do
3: ω′ := ω
4: ω′w := b . Update a new week centre
5: Calculate z+AL(ω′, ρ) . Calculate the approximate objective value of the allocation

problem
6: if z+AL(ω′, ρ) < z∗ then
7: L∗ := w . Update the tabu
8: z∗ := z+AL(ω′, ρ)
9: ω∗ := ω′ . Update the best new week centre vector by this criterion

10: end if
11: end for
12: end for
13: Solve (Allocation(ω∗)) and derive zAL(ω∗) and ρ∗ for S∗ . Update the corresponding week

patterns
14: Add element L∗ to TWC (if the neighbourhood is not empty) . Update the tabu list

Output: S∗

two customers b and b′ who swap their week patterns p and p′, respectively, we add (b, p) and
(b′, p′) to the tabu list.

Regarding the length of the tabu list for each neighbourhood, let BNW = {b ∈ B | rb > 1}
denote the set of customers who do not require weekly service. We initially defined the length
of the tabu list for both week pattern neighbourhoods to be

⌊
1
2

∑
b∈BNW rb

⌋
. However, from

the preliminary experiments, we found that this is too long for the tabu list of the swapping
week patterns neighbourhood, as it often results in an empty neighbourhood, once the tabu list
has reached its maximum size. Therefore, we decide to reduce the length of the tabu list of the
swapping policy to

⌊
1
4

∑
b∈BNW rb

⌋
.

We propose a diversification scheme for these neighbourhoods in case that the search cannot
find a better incumbent for a fixed number of consecutive iterations. We apply the same idea as

for the week centre neighbourhood:
⌊
|BNW |

2

⌋
customers in the set BNW are randomly chosen

to change their week pattern to another, again randomly chosen one. Then, the location-
allocation algorithm is run to improve the quality of the solution before we continue the tabu
search algorithm. The whole process is repeated at most a fixed number of times unless we
achieve a feasible solution.

The search in the switching week pattern neighbourhood is outlined in Algorithm 12, with
its tabu list, TSwitch. The conditions for choosing candidates for a new week pattern are shown
in Line 2: a new week pattern p of a customer b cannot be the same as the original week pattern
ρb, and (b, p) does not belong to the tabu list. A new week pattern vector is given by switching
the customer’s week pattern to another one; see Line 4. Then, the rest of the algorithm follows
the steps that we described at the beginning.

Algorithm 13 shows the search in the swapping week pattern neighbourhood, with the
corresponding tabu list TSwap. According to our previous discussion, the tabu list has a different
length to that of the switching week pattern.

To facilitate the processes in the algorithm, we define additional notations in the following.
We denote RNW = {rb | b ∈ BNW } as the set of all possible customer week rhythms, except
the weekly ones. Also, let Br = {b ∈ B | rb = r} be the set of customers who have week rhythm
r ∈ RNW . For each customer b ∈ BNW , we are interested to swap their pattern with a different
one. Therefore, we create a specific set for each customer b: Brb = {b ∈ Br \ {b} | ρb 6= ρb}
which contains all customers who have the same frequency as b but a different week pattern.
If the set is not empty, there is a possible swap for the week pattern of customer b. Moreover,

69

after swapping their week patterns, neither can belong to the tabu list. These restrictions are
in Line 2. The rest of the algorithm is analogous to Algorithm 12.

Algorithm 12 Exhaustive Search in the Switching Week Pattern Neighbourhood (Switch)

Input: S ≡ (ω, ρ), TSwitch
Initial:

z∗:= 1e10
S′ ≡ (ω′, ρ′):= S

1: for all b ∈ BNW do
2: for all p ∈ Pb \ {ρb} & (b, p) /∈ TSwitch do
3: ρ′ := ρ
4: ρ′b := p . Update the week pattern of customer b
5: Solve (Location(ρ′)) and derive ω′ and zL(ρ′) from (4.1) and (4.2)
6: if zL(ρ′) < z∗ then
7: L∗ := (b, ρb) . Update a tabu
8: z∗ := zL(ρ′), S∗ := S′

9: end if
10: end for
11: end for
12: Add element L∗ to TSwitch (if the neighbourhood is not empty) . Update the tabu list

Output: S∗

Algorithm 13 Exhaustive Search in the Swapping Week Pattern Neighbourhood (Swap)

Input: S ≡ (ω, ρ), TSwap
Initial:

z∗:= 1e10
S′ ≡ (ω′, ρ′):= S

1: for all b1 ∈ BNW do
2: for all b2 ∈ B

rb1
b1

& ((b1, ρb2) & (b2, ρb1) /∈ TSwap) do
3: ρ′ := ρ
4: ρ′b1 := ρb2 and ρ′b2 := ρb1 . Swap week patterns of these two customers
5: Solve (Location(ρ′)) and derive ω′ and zL(ρ′) from (4.1) and (4.2)
6: if zL(ρ′) < z∗ then
7: L∗1 := (b1, ρb1) and L∗2 := (b2, ρb2) . Update tabus
8: z∗ := z′, S∗ := S′ . Update the best solution that has been found so far
9: end if

10: end for
11: end for
12: Add elements L∗1 and L∗2 to TSwap (if the neighbourhood is not empty) . Update the tabu

list
Output: S∗∗

4.3.1 Restricted Search in the Week Pattern Neighbourhoods

Restricting the search of the neighbourhoods to promising areas that contain good solutions is
beneficial to save computational time and enhance the efficiency of the algorithm. Therefore, we
propose a simple criterion to limit the search in each week pattern neighbourhood: customers
who are among the furthest from the week centres in their respective week clusters should
preferably change their week pattern.

Assume now that the current solution is S ≡ (ω, ρ). To create the list of customers who
should change their week pattern, we calculate for each customer b ∈ BNW the maximum
distance d̂b to the week centres of their current week clusters as follows:

d̂b = max
w∈W

ψwρbcb,ωw .

70

Feature WC Switching WP Swapping WP

Tabu Week that has a new week centre. (customer, his original week pattern)

Tabu length
⌊
|W |
2

⌋
.

⌊
1
2

∑
b∈BNW rb

⌋
.

⌊
1
4

∑
b∈BNW rb

⌋
.

Diversification Change
⌊
|W |
2

⌋
week centres randomly. Change week patterns of

⌊
|BNW |

2

⌋
customers randomly.

Improvement

1. Reduced search: focus only on
other week centres or customers
close to them.
2. QAP (Quick Allocation Problem).

Reduced search: focus only on customers
who are furthest from their week centres.

Stopping criterion
1. Maximum time.
2. Maximum number of consecutive diversifications without a new incumbent.

Table 4.1: Summation of features of every single neighbourhood.

The list LC contains the customers b ∈ BNW in non-increasing order with respect to d̂b. We
focus on the first customers of the list since they are the furthest from their week centres, and
are most likely to yield an improvement of the total centre-based distance. This reduced-size
idea is similar to that for the week centre neighbourhood. Let β ∈ R, 0 < β < 1, be the
parameter that defines the reduced proportion of all customers to change their week patterns,
and Nβ =

⌊
β · |BNW |

⌋
be the maximum number of those customers. We define the list LCβ

to store the first Nβ customers of the list LC , who have a non-empty set of week patterns to
change.

We call the reduced-size switching or swapping week pattern neighbourhood with the pos-
itive parameter β as the β-reduced-size search on the week pattern neighbourhood (β-j) where
j is either Algorithm 12 or Algorithm 13 (Switch or Swap, respectively). This idea can save
a lot of computational time, especially for the swapping week pattern neighbourhood whose
size increases exponentially with the total number of customers. To adapt these accelerations
to the original search of the week pattern neighbourhoods, we update the set of customers to
change their week patterns to LCβ in Line 1 of Algorithm 12 and Line 1 of Algorithm 13 for the
switching and swapping week pattern neighbourhood, respectively. The rest of the algorithm
is analogous to the exhaustive versions.

To sum up, Table 4.1 presents important features of every single neighbourhood, where WC,
Switching WP, and Swapping WP stand for the week centre neighbourhood, the switching week
pattern neighbourhood, and the swapping week pattern neighbourhood, respectively.

4.4 Mixed Neighbourhood

In this section, we propose an idea that unifies all of the above neighbourhoods. The method is
inspired by the adaptive large neighbourhood search introduced by Ropke & Pisinger (2006a).
Ropke & Pisinger (2006a) created neighbouring solutions by randomly choosing a heuristic
among several ones in each iteration. Initially, each heuristic is assigned an equal weight. The
weight of a heuristic is adjusted by its performance during the algorithm. For example, if the
heuristic can improve the quality of a current solution, its weight will be increased as a reward.
These weights are used for the probability of selecting a heuristic for the next iterations. Due to
this mechanism, a heuristic that could previously find a good solution has a higher probability of
being chosen again. The authors also avoid being stuck in a local optimum by using a simulated
annealing acceptance criterion to accept a deteriorating solution with a dynamic probability.
They emphasise the robustness of the approach to choose the most suitable heuristics for any
specific instances. This method is quite popular in solving combinatorial optimisation problems,
especially for vehicle routing problems (e.g., Ropke & Pisinger (2006b), Lei et al. (2011), Ribeiro
& Laporte (2012), Stenger et al. (2013), Dayarian et al. (2016)).

As we discussed at the beginning of the chapter, multiple neighbourhoods in tabu search
are usually searched sequentially in most algorithms in the literature. Some studies selected a
neighbourhood in each iteration randomly with a certain probability. The adaptive mechanism
to choose a neighbourhood in each iteration has appeared only in a few papers so far. Žulj et al.
(2018) combine the adaptive large neighbourhood search with tabu search to solve an order-

71

batching problem. However, the authors implemented them separately for different purposes;
the adaptive large neighbourhood search diversifies a current solution similar to the original
idea, and then tabu search is used for intensification. Therefore, the authors did not exploit
the adaptive selection of neighbourhoods in tabu search directly. To the best of our knowledge,
Butsch et al. (2014) are the only ones who adopted the adaptive selection on tabu search to
select a proper neighbourhood from several available choices in each iteration. Although Butsch
et al. (2014) increase the weight of a neighbourhood for the next selection that can improve a
specific criterion that the current solution lacks, which is different from the original idea, the
authors showed that the adaptive selection on multiple neighbourhoods of tabu search works
well. Therefore, it is attractive to try this on our model.

To create an adaptive mechanism to select a neighbourhood in our problem, we follow the
procedure of Ropke & Pisinger (2006a), which weights each neighbourhood on merit-based
criteria.

Let n represent a neighbourhood of the tabu search algorithm, where n = WC, Switch,
Swap is the neighbourhood of week centre, switching week pattern, and swapping week pattern,
respectively. At the beginning of the algorithm, each neighbourhood n is assigned an equal
weight of wn. The probability of selecting the neighbourhood n, ϕn, is derived by the roulette
wheel selection procedure as follows:

ϕn =
wn∑
n wn

. (4.5)

Each neighbourhood n has πn to collect the score for its recent performances. Whenever
the neighbourhood n is selected to use in the iteration, πn is increased by the score parameter
σ1, σ2, or σ3 . If it can find a new incumbent (a new best solution) of the algorithm, the score
will be increased by σ1. σ2 is the increase for the case of finding a better solution than the
current one, while σ3 is a score for the case of an empty neighbourhood, a non-improving, or an
infeasible solution. Typically, σ1 has the highest value, while σ2 is lower, and σ3 is the lowest
in the scoring system.

Every consecutive χ iterations, the weight of each neighbourhood is updated in the following
way,

wn :=

{
wn, if τn = 0,

wn(1− r) + r πn

τn
, otherwise,

(4.6)

where τn is the total number of times to use the neighbourhood n during these iterations, and
r ∈ [0, 1], called the reaction factor, controls how much emphasis we put on the most recent
performances.

Then, the score and the total number of times for each neighbourhood are reset to zero.
These new weights are now used to update the probability to select a neighbourhood for the
next iterations. Therefore, the probability of each neighbourhood is adjusted dynamically
corresponding to its effectiveness during the search.

Regarding a tabu list for the mixed neighbourhood, the week centre neighbourhood still has
its week centre tabu list TWC , while both week pattern neighbourhoods share the information
of forbidden pairs of a customer and a week pattern in a week pattern tabu list TWP . The
length of TWC is similar to that for the single neighbourhood. TWP has the same length as that
of the single swapping week pattern neighbourhood. Since these two tabu lists are completely
independent and we can select any neighbourhood during the search, we have to respect both
tabu lists at the same time to avoid a cycle of solutions. The aspiration criterion also applies
here. When we select the week centre neighbourhood, the allocation problem is solved to get
an updated vector of week patterns. Unless we get a new best solution, i.e., the aspiration
criterion applies, we have to add additional constraints to the allocation problem to prohibit
any tabu in TWP to be part of the optimal solution as follows.

gbp = 0 where (b, p) ∈ TWP . (4.7)

In other words, if a neighbouring solution in the week centre neighbourhood fails to be a new
incumbent, we solve the allocation problem again with the above constraints for the corre-
sponding vector of week patterns to respect the week pattern tabu list. Line 5 in Algorithm

72

10 and Line 13 in Algorithm 11 have to be slightly modified by adding Constraints (4.7) in the
allocation problem.

Similarly to the search in the week pattern neighbourhoods, we respect the week centre tabu
list whenever we solve the location problem. If a neighbouring solution is not a new incumbent,
we update the solution, but do not change any current week centre if the week belongs to TWC ,
i.e., we update the new week centre by Equations (4.1) only for w /∈ TWC . This change has to
be made in Line 5 of Algorithm 12 and Line 5 of Algorithm 13.

Regarding the diversification scheme in the algorithm, we select either the diversification
on week centres or week patterns with equal probability. Its details are similar to the single
neighbourhood cases: we change some part of either the week centres or the week patterns vector
of the best neighbouring solution randomly, and then use the location-allocation heuristic to
improve the quality of the solution. We also use the same criteria when applying this scheme.
The diversification is carried out when a neighbourhood is empty, a neighbouring solution keeps
infeasible, or the algorithm is not able to improve the incumbent.

We set up the maximum number of total iterations as the stopping criterion, which is
different from the single neighbourhood cases. This criterion is typical in most of the literature
on the adaptive large neighbourhood search.

A modified tabu search algorithm for the mixed neighbourhood is presented in Algorithm
14. We assume that we have an initial solution S0. Additional parameters specifically for the
mixed neighbourhood to define the adaptive selection of the neighbourhoods are presented:
an initial weight value for each neighbourhood w0, the reaction factor r, and the merit-based
scores for the performance of a neighbourhood σ1, σ2, and σ3. The maximum total number of
sub-iterations for updating the weights and the probabilities for the neighbourhoods is χ, and
the maximum number of total iterations for the algorithm is MaxIt. The rest of the parameters
for controlling the tabu search are similar to the original tabu search algorithm.

We initialise the weight for each neighbourhood with a predetermined initial value w0.
Since the neighbourhoods have identical weight, their initial probabilities to be selected are
equal. We also introduce a new counter for the total number of sub-iterations it for updating
the probabilities in the adaptive mechanism, and totalIt is a counter of the total number of
iterations for the stopping criterion.

The algorithm selects a neighbourhood for each iteration depending on the selection prob-
abilities. During the search in a specific neighbourhood, we have to respect both of the tabu
lists, as described above. After finishing the search in the neighbourhood and updating the
corresponding tabu list, the score of this neighbourhood depends on its performance, as shown
in Lines 5−17. In the case of an empty neighbourhood, an infeasible solution, or a deteriorating
solution, the neighbourhood gets the score of σ3, as shown in Lines 6, 8, and 15, respectively. If
the neighbourhood can derive a new incumbent, it will get a reward of σ1 in Line 11. Otherwise,
the score of the neighbourhood increases by σ2 for at least finding a better feasible solution
than the current one: see Line 13. Line 18 updates the total number of sub-iterations and total
number of iterations. Whenever the number of sub-iterations reaches the limit χ, the weights
and probabilities are updated in Lines 20 and 21. Then, the information of the scores, the total
number of times to use each neighbourhood, and the number of sub-iterations are reinitialised.
The subsequent steps are similar to the original tabu search algorithm in Algorithm 9, except
in Lines 24−26 since the maximum number of consecutive iterations to run diversification is
not a stopping criterion here. The neighbouring solution is assessed for updating the penalty
factor and the new incumbent. Note that the diversification is slightly modified for the mixed
neighbourhood. The algorithm returns the incumbent when the algorithm reaches the stopping
criterion.

4.5 Data Generation and Programme Set-Up

Similarly to the experiment in the previous chapters, we test the algorithm on the same data
instances in the same computer. Namely, there are 9 combinations and five data instances for
each combination, so there are 45 instances in total in the experiment. As we discussed in the
previous chapter, we can face computational difficulties for more complicated instances, i.e.,
the ones with more customers in the longer planning horizon. Since we start the tabu search

73

Algorithm 14 The Tabu Search Algorithm for the Mixed Neighbourhood (Mix)

Input: S0

Parameter:
For mixed neighbourhood control : w0, r, σ1, σ2, σ3, χ, MaxIt
For general control : k, NV , NNI , φ

∗

Initial:
S:= S0, S∗:= S0, i, j, v := 0, φ = 1,
πn := 0, τn := 0, wn := w0,
Calculate ϕn from (4.5) where n ∈ N
it := 0, totalIt := 0

1: while totalIt < MaxIt do
2: Randomly select a neighbourhood n by using ϕn, n ∈ {WC, Switch, Swap}
3: τn := τn + 1 . Update the total number to select a neighbourhood n
4: Find the best non-tabu solution S′ in the neighbourhood n of S
5: if the neighbourhood is empty then
6: πn := πn + σ3
7: else if S′ is infeasible then
8: πn := πn + σ3
9: else

10: if S′ is better than S∗ then
11: πn := πn + σ1
12: else if S′ is better than S then
13: πn := πn + σ2
14: else
15: πn := πn + σ3 . S′ is a non-improving solution
16: end if
17: end if
18: it := it+ 1, totalIt := totalIt+ 1 . Increment total number of sub-iterations and all

iterations
19: if it = χ then
20: Update wn by using (4.6) . Update all information of the adaptive mechanism
21: Calculate ϕn from (4.5)
22: Reinitialise πn:= 0, τn := 0, it := 0
23: end if
24: Follow Lines 3−23, and 27−37 of Algorithm 9
25: end while

Output: S∗

74

algorithm with a random week centre vector, we collect five repetitions of the experiment
per data instance to get more reliable statistical results. Therefore, there are 25 results per
combination and 225 results in total. The value of τweek is the same as in Chapter 3, which is
0.05.

Under the same programme set-up as in Chapter 3, the experiment is run on a single
thread without pre-processing. Regarding the allocation problem and the location problem,
we use CPLEX to solve only the allocation problem for at most 10 seconds. Since we prefer a
feasible solution for an initial solution and a diversified solution in the diversification, we set
the temporary high penalty factor to 100 and the maximum number of repetitions to run the
location-allocation heuristic to 15.

According to the notations of the main algorithm (Algorithm 9) for a single neighbourhood,
the stopping criteria, maxTime and ND, are 900 seconds (15 minutes) and 5, respectively.
We let k and φ∗ be 2 and 32 for penalising infeasible solutions. We set NV and NNI to be
proportional to the length of the tabu list of a neighbourhood, namely,

NNI = 2 · |T |,

NV =
1

6
·NNI

where |T | is the length of the tabu list of a single neighbourhood. Note that the length of the
tabu list of the week centre neighbourhood, the switching week pattern neighbourhood, and

the swapping week pattern neighbourhood are
⌊
|W |
2

⌋
,
⌊
1
2

∑
b∈BNW rb

⌋
, and

⌊
1
4

∑
b∈BNW rb

⌋
,

respectively. Therefore, each neighbourhood has different values of NV and NNI corresponding
to the different length of their tabu list.

For the mixed neighbourhood (Algorithm 14), NNI and NV are derived in the same way as
above. In this case, |T | is the average length of the tabu lists for the week centre neighbourhood
and the week pattern neighbourhoods, i.e.,

|T | = |TWC |+ |TWP |
2

where |TWC | =
⌊
|W |
2

⌋
and |TWP | =

⌊
1
4

∑
b∈BNW rb

⌋
, are the lengths of the tabu lists for the

week centre neighbourhood and the week pattern neighbourhoods, respectively.
Regarding the other parameters for the mixed neighbourhood, we set the initial weight w0

at 1 for every neighbourhood. The scores σ1, σ2, and σ3 are 50, 20, and 5, respectively. We
update the adaptive probabilities every 50 iterations (i.e., χ is 50) and r is 0.2. Finally, the
stopping criterion, MaxIt, is 1000 iterations.

4.6 Computational Results

In this section, we show the best results from the previous chapter and set them as the bench-
mark for the tabu search algorithm. Next, we compare the initial solutions from the location-
allocation heuristic to the benchmark to see the quality of the solutions at the beginning of
the tabu search. Then, the performance of tabu search on a single neighbourhood, i.e., the
week centre and the week pattern neighbourhoods, is discussed. For each neighbourhood, we
investigate the effectiveness of the aspiration criterion first, as it increases the search space by
including also tabu solutions. If it cannot improve the algorithm, we might save more time by
skipping all tabu solutions. Then, we study the effect of reducing the size of the neighbour-
hoods. In the case of the week centre neighbourhood, we further investigate the benefits of
using QAP, i.e., using the surrogate objective function from Section 4.2.1 to determine the best
move in each iteration.

After deciding on the best configuration for every single neighbourhood, we compare them
to the mixed neighbourhood. Note that in the experiment of each data instance every algorithm
is started with the same initial week centres for a fair comparison. Moreover, we investigate
the improvement in the initial solution and the quality of our simple diversification. These
are to provide more insights into the effectiveness of the tabu search. Then, we compare the

75

best results from the tabu search algorithm to the benchmark. To confirm the robustness of
the tabu search, we compare the initial solutions and the best solutions found by the tabu
search to heuristics in CPLEX. Finally, we combine the tabu search with our previously de-
veloped Benders’ decomposition algorithm from Chapter 3 and observe the efficiency of this
combination.

As we mentioned at the beginning of the chapter, we focus on the relative percentage gap
from Equation (4.3) to evaluate the performance of the tabu search algorithm in each data
instance, where the non-negative value indicates that the heuristic performs as well as or even
better than the benchmark. Moreover, among 25 results in each combination, we count the
number of results that are at least as good as those of the benchmark, i.e., their relative
percentage gaps are greater than -0.01%. We define them as comparable results. Also, we count
the number of results that are strictly better than those of the benchmark, specifically where
the relative percentage gaps are higher than 0.01%. Additional information of interest is the
average computational time in each combination. In some part of the analysis, we provide
additional information to give more insight, for example, the number of results that can find
the same optimal solutions as the benchmark.

4.6.1 Benchmark for Tabu Search

We present the information about the best-found solutions from the previous chapter in Table
4.2. For each combination, we present the best, average, and the worst relative percentage gaps
between lower and upper bounds among 5 data instances in Columns Best %Gap, %Gap, and
Worst %Gap, respectively. We found the optimal solution in some data instances and show the
number of them in Column #Opt (45), where the number in brackets is the total number of
data instances which equals the maximum possible total of #Opt. In this case, there are 29
out of 45 data instances that can find the optimal solutions: see the total of #Opt in the last
row. This information in Column #Opt (45) limits the maximum number of results that can
be better than the benchmark, as shown in Column Max #Better, since we cannot get better
objective values than the optimal solutions.

In some less challenging combinations such as 30 1 and 30 2 that can find the optimal
solution in every data instance, it is not possible to find better results, resulting in a value of
zero in Column Max #Better. In more complicated combinations, the exact solution approaches
from Chapter 3 cannot always find the optimal solutions, so in these cases, the heuristic may
find better solutions. In these combinations, Column Max #Better shows the highest possible
total number of better results that we can achieve. For example, in 30 3, the optimal solutions
for two data instances still cannot be found. Since, due to repetitions, we obtain 5 results
for each data instance, there will be at most 10 results that may yield a better solution. The
maximum possible total number of results that perform better than the benchmark in the
experiment is presented below the column. Total time (s) in the last column shows the average
computational time in seconds.

4.6.2 Comparison between the Initial Solutions and the Benchmark

We compare the performance of the initial solution of each result to the benchmark to see
its quality. Table 4.3 focuses on the relative percentage gaps compared to the benchmark
from Section 4.6.1, i.e., by using Equation (4.3). Columns Worst %Gap*, %Gap*, and Best
%Gap* present the worst, the average, and the best relative percentage gap among 25 results
of each combination, respectively. For each combination, the number of results that are at
least comparable to the benchmark is presented in Columns #Good (225). Since every result
can be as good as those of the benchmark, the maximum possible total of #Good is the total
number of results, as shown in the brackets. Sub-column Initial of Columns #Opt presents
the number of results whose initial solutions are the same as the optimal solutions found by
the benchmark. Since the benchmark cannot always find the optimal solution, for example,
in the most complicated combinations like 40 3 and 50 3, we show the maximum number of
possible cases in Sub-column Max. Note that the number in Sub-column Max here is five times
the corresponding number of data instances in Column #Opt (45) of Table 4.2 due to the
repetitions. Finally, the number of results that are strictly better than the benchmark for each

76

Data
Best

% Gap
% Gap

Worst
%Gap

#Opt
(45)

Max
#Better

Total
time (s)

30 1 0.00 0.00 0.01 5 0 6.4
30 2 0.00 0.01 0.01 5 0 120
30 3 0.01 2.79 8.29 3 10 586.2

40 1 0.00 0.01 0.01 5 0 29.6
40 2 0.01 0.01 0.01 5 0 291.2
40 3 0.01 13.20 21.14 1 20 820.6

50 1 0.01 0.01 0.01 5 0 44.2
50 2 1.04 2.42 4.89 0 25 900.8
50 3 14.09 19.55 23.20 0 25 902.4

Total 29 80

Table 4.2: The information about the best-found solutions from the exact solution approaches
in Chapter 3.

combination is presented in Sub-column Initial of Columns #Better, where each combination
has the specific number of maximum possible cases as shown in Sub-column Max. The values in
Sub-column Max here are obtained from Column Max #Better in Table 4.2. The total of #Opt,
#Good and #Better from every combination are shown in the last row for the overall results.
Note that the last row of Max in Columns #Opt and #Better present the maximum total of
possible cases in the corresponding aspects. We do not focus on the average computational time
in this section because the location-allocation heuristic spends less than one second to generate
an initial solution.

In terms of relative percentage gaps, the negative values in Worst %Gap* and %Gap*
imply that the quality of the initial solutions is overall worse than the benchmark. However,
the location-allocation heuristic manages to find the same optimal solution as the benchmark,
especially in some less challenging data instances, e.g., in 30 1 and 30 2. In particular, the total
of #Opt supports that the algorithm finds the optimal solutions in 24% of the total number
of possible cases. Moreover, the algorithm manages to derive comparable solutions in 20% of
the total results as shown in the total of #Good. In more complicated instances like 40 3 and
50 3 where the benchmark struggles to find the optimal solution, the algorithm can find better
solutions: see the corresponding positive values in Best %Gap* and #Better.

From the above discussion, the location-allocation heuristic can derive comparable solutions
and better solutions in some cases even though it spends less than one second. However, the
majority of results cannot find those solutions and the overall quality of the solutions is not
high. Therefore, these initial solutions still require improvement in terms of solution quality.

Next, we will discuss the effectiveness of every single neighbourhood and the mixed neigh-
bourhood. Note that for the single neighbourhoods, we will investigate the effectiveness of the
aspiration criterion and the effect of the reduced search. We still focus on the performance in
terms of the solution quality and the average computational time as in this section. However,
we do not focus on the number of optimal solutions since we aim for finding better solutions if
possible and for such cases the information of #Better is already enough.

4.6.3 Experiments on the Week Centre Neighbourhood

Effectiveness of the Aspiration Criterion

Tables 4.4 and 4.5 present the effectiveness of the aspiration criterion in the tabu search algo-
rithm with EWC (Algorithm 10), where EWC and EWC+ represent the algorithm without and
with the aspiration criterion, respectively. Similarly in Section 4.6.2, we show the information
of the relative percentage gaps compared to benchmark in Worst %Gap*, %Gap*, and Best
%Gap*. Also, we count the number of comparable results and better results, and present them
in Columns #Good (225) and #Better, respectively. Again, the maximum total of possible

77

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Good
(225)

#Opt #Better

Initial Max Initial Max

30 1 -5.56 -1.08 0.00 11 11 25 0 0
30 2 -5.47 -1.06 0.00 12 12 25 0 0
30 3 -16.40 -4.91 -0.50 0 0 15 0 10

40 1 -7.35 -1.24 0.00 1 1 25 0 0
40 2 -2.69 -0.83 0.00 6 6 25 0 0
40 3 -14.69 -3.01 2.64 4 1 5 2 20

50 1 -10.72 -2.12 0.00 4 4 25 0 0
50 2 -2.57 -1.07 0.29 2 0 0 1 25
50 3 -6.82 -2.09 2.85 5 0 0 5 25

Total 45 35 145 8 80

Table 4.3: The performance of the initial solution from the location-allocation heuristic com-
pared to the benchmark.

cases for #Good is shown in the brackets, i.e., the total number of results. Similarly to the
previous section, for #Better, each combination has a specific number of possible cases shown in
Sub-column Max. The last row of #Good and #Better present the total corresponding results.

Table 4.4 shows that both algorithms are not significantly different in terms of the relative
percentage gaps. However, the algorithm without the aspiration criterion tends to have a larger
number of #Good and #Better in more complicated combinations, especially for 50 customers,
resulting in the higher total of #Good and #Better.

Moreover, EWC spends less average time: see Columns Total time (s) in Table 4.5. These
results indicate that the aspiration criterion does not help to improve the algorithm, so the
algorithm without the aspiration criterion is preferable.

Nevertheless, Columns Time/Iteration (s) of Table 4.5 show that the exhaustive search
in the week centre neighbourhood, even in the case without the aspiration criterion, spends
a significant amount of computational time per iteration on average, especially in the most
difficult combinations like 30 3, 40 3, and 50 3. Therefore, the algorithm still requires more
techniques to speed up the search.

Comparison between Different Size Reductions on the Neighbourhood

To speed up the tabu algorithm on the week centre neighbourhood without the aspiration
criterion, we reduce the size of the neighbourhood with different values of the parameter α.
Here, α is 0.5, 0.3, and 0.1, i.e., we investigate only the best 50%, 30%, and 10% of total
customers qualifying from the measurement (4.4) in Section 4.2.1. Tables 4.6, 4.7, and 4.8
show the performance on the same criteria, i.e., the relative percentage gaps and the average
computational time, where EWC and α-WC represent the exhaustive search and the reduced
search corresponding to α, respectively.

0.1-WC tends to have better %Gap* and Best %Gap* than the other algorithms when the
data instances become more challenging, as shown in Table 4.6. Although Table 4.7 shows that
0.1-WC has the worst total of #Good, this is a result of the poor performances in the less
challenging combinations (30 1, 40 1, 40 2, 50 1, and 50 2). When we restrict our attention
to the more challenging combinations such as 40 3 and 50 3, 0.1-WC has better #Good and
#Better than the other algorithms. More importantly, it has the highest total of #Better.

Furthermore, it is clear that a smaller value of α results in a better average computational
time, since there are fewer customers to investigate per iteration, as shown in Column Total
time (s) in Table 4.8. 0.1-WC can improve the computational time of the exhaustive search
by at least 75% in the less difficult combinations, e.g., 30 1, 40 1, and 50 1. For the most
challenging combinations, i.e., 30 3, 40 3, and 50 3, 0.1-WC spends 30%−50% less time, which
is still a noticeable amount.

Due to the significant reduction of time and the superior performance for the most difficult

78

D
a
ta

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tt

e
r

E
W

C
E

W
C

+
E

W
C

E
W

C
+

E
W

C
E

W
C

+
E

W
C

E
W

C
+

E
W

C
E

W
C

+
M

a
x

30
1

-0
.1

0
0.

00
0.

0
0

0
.0

0
0
.0

0
0
.0

0
2
4

2
5

0
0

0
30

2
0.

00
0.

00
0.

0
0

0
.0

0
0
.0

0
0
.0

0
2
5

2
5

0
0

0
30

3
-6

.3
7

-6
.3

7
-2

.0
8

-1
.8

6
0
.0

0
0
.0

0
6

6
0

0
1
0

40
1

0.
00

-0
.0

5
0.

0
0

0
.0

0
0
.0

0
0
.0

0
2
5

2
4

0
0

0
40

2
-0

.0
1

0.
00

0.
0
0

0
.0

0
0
.0

0
0
.0

0
2
4

2
5

0
0

0
40

3
-6

.5
5

-7
.4

3
-1

.0
1

-1
.3

2
4
.1

6
4
.1

6
7

8
5

6
2
0

50
1

-0
.1

2
-0

.1
2

0.
0
0

-0
.0

1
0
.0

0
0
.0

0
2
4

2
2

0
0

0
50

2
0.

00
0.

00
0.

0
6

0
.0

6
0
.2

9
0
.2

9
2
5

2
5

1
5

1
5

2
5

50
3

-6
.0

1
-6

.0
1

-0
.0

4
-0

.3
6

2
.8

5
2
.8

5
1
3

8
1
3

8
2
5

T
o
ta

l
1
7
3

1
6
8

3
3

2
9

8
0

T
ab

le
4.

4:
T

h
e

eff
ec

ti
ve

n
es

s
o
f

th
e

a
sp

ir
a
ti

o
n

cr
it

er
io

n
o
n

ta
b

u
se

a
rc

h
w

it
h

E
W

C
(1

).

79

Data
Total time (s) Time/Iteration (s)

EWC EWC+ EWC EWC+

30 1 68.32 81.68 1.26 1.60
30 2 388.64 463.72 4.52 5.76
30 3 993.64 970.36 158.43 156.87

40 1 165.08 202.84 2.75 3.43
40 2 486.72 617.52 5.98 7.88
40 3 973.60 974.64 143.11 151.00

50 1 185.20 226.72 3.21 4.17
50 2 700.76 814.80 7.74 10.48
50 3 921.40 936.28 52.27 66.29

Table 4.5: The effectiveness of the aspiration criterion on tabu search with EWC (2).

data instances, the best version of the week centre neighbourhood now is the 0.1-reduce-size
neighbourhood without the aspiration criterion.

However, when we observe the average time per iteration in the reduced-size neighbour-
hoods in Columns Time/Iteration (s) of Table 4.8, 0.1-WC still spends quite a long time per
iteration in more complicated combinations. This situation stems from solving the allocation
problem, which is a mixed-integer programme for every move operation. Therefore, we will save
the computational time by using QAP (Quick Allocation Problem), which uses the surrogate
objective value for the allocation problem during the search.

Outstanding Performances of the QAP

Tables 4.9 and 4.10 show the comparison of the performance between 0.1-WC which is the best
one so far and Algorithm 11 (EWC-QAP). The latter algorithm is represented by EWC* in
the tables.

In Table 4.9, both algorithms are competitive in terms of the relative percentage gaps.
Columns #Good (225) and #Better provide more insights; EWC* has the better total of
#Good and that of #Better. Therefore, EWC* has the better solution quality.

Regarding the average computational time in Columns Total time (s) in Table 4.10, EWC*
significantly outperforms the other algorithm; it spends at least 90% less time than 0.1-WC in
every combination. This is because EWC* finishes the search really quickly, i.e., less than 1
second, in every iteration, as shown in Column Time/Iteration (s) of Table 4.10.

The above results support that EWC-QAP is more effective while requiring much less com-
putational time.

Next, we investigate further if the reduced-size neighbourhood can enhance QAP. Tables
4.11-4.13 show the comparison between QAP with the exhaustive search and with the reduced-
size neighbourhood by the parameter α, represented by EWC* and α-WC*, respectively. We
use the same values of α as before which are 0.5, 0.3, and 0.1.

The results in Table 4.12 show that the reduced-size algorithms have worse performance in
terms of the total of #Good and #Better. This implies that the size reduction does not enhance
the effectiveness of QAP. Furthermore, the reduced-size neighbourhood does not help to reduce
the computational time, as every algorithm spends a similar amount of time on average in every
combination: see Table 4.13. Therefore, QAP is effective and efficient without having to reduce
the size of the neighbourhood.

4.6.4 Experiments on the Switching Week Pattern Neighbourhood

Effectiveness of the Aspiration Criterion

Regarding the switching week pattern neighbourhood, we investigate the effectiveness of the
aspiration criterion first. Table 4.14 and 4.15 show the comparison of the results without and
with the aspiration criterion, represented by Switch and Switch+, respectively.

80

D
a
ta

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*

E
W

C
0
.5

-W
C

0
.3

-W
C

0
.1

-W
C

E
W

C
0
.5

-W
C

0
.3

-W
C

0
.1

-W
C

E
W

C
0
.5

-W
C

0
.3

-W
C

0
.1

-W
C

30
1

-0
.1

0
0.

00
0.

00
-0

.2
7

0
.0

0
0
.0

0
0
.0

0
-0

.0
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
30

2
0.

00
0.

00
0.

00
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
30

3
-6

.3
7

-6
.3

7
-6

.3
7

-5
.8

1
-2

.0
8

-1
.5

7
-1

.7
5

-1
.0

9
0
.0

0
0
.0

0
0
.4

7
2
.4

2

40
1

0.
00

0.
00

0.
00

-0
.2

8
0
.0

0
0
.0

0
0
.0

0
-0

.0
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
40

2
-0

.0
1

-0
.0

1
0.

00
-0

.3
5

0
.0

0
0
.0

0
0
.0

0
-0

.0
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
40

3
-6

.5
5

-3
.2

1
-3

.2
1

-5
.1

8
-1

.0
1

-0
.2

0
-0

.0
8

0
.3

5
4
.1

6
4.

1
6

4
.0

1
4.

9
5

50
1

-0
.1

2
-0

.1
2

-0
.1

2
-0

.1
2

0
.0

0
-0

.0
1

0
.0

0
-0

.0
1

0
.0

0
0
.0

0
0
.0

0
0.

0
0

50
2

0.
00

0.
00

0.
00

-0
.5

9
0
.0

6
0
.0

6
0
.0

6
0
.0

0
0.

2
9

0
.2

9
0
.2

9
0
.2

9
50

3
-6

.0
1

-1
.9

1
-1

.8
3

-1
.1

4
-0

.0
4

0
.5

8
0
.7

6
1
.0

1
2
.8

5
2
.8

5
2
.8

5
2
.8

5

T
ab

le
4.

6:
T

h
e

p
er

fo
rm

a
n

ce
o
f

th
e

d
iff

er
en

t
si

ze
re

d
u

ct
io

n
s

in
th

e
w

ee
k

ce
n
tr

e
n

ei
g
h
b

o
u
rh

o
o
d

(1
).

81

Data
#Good (225) #Better

EWC 0.5-WC 0.3-WC 0.1-WC EWC 0.5-WC 0.3-WC 0.1-WC Max

30 1 24 25 25 20 0 0 0 0 0
30 2 25 25 25 25 0 0 0 0 0
30 3 6 8 9 8 0 0 1 1 10

40 1 25 25 25 22 0 0 0 0 0
40 2 24 23 25 22 0 0 0 0 0
40 3 7 11 11 14 5 8 10 11 20

50 1 24 23 24 22 0 0 0 0 0
50 2 25 25 25 20 15 15 15 11 25
50 3 13 16 15 19 13 16 15 19 25

Total 173 181 184 172 33 39 41 42 80

Table 4.7: The performance of the different size reductions in the week centre neighbourhood
(2).

Data
Total time (s) Time/Iteration (s)

EWC 0.5-WC 0.3-WC 0.1-WC EWC 0.5-WC 0.3-WC 0.1-WC

30 1 68.32 37.16 31.44 15.96 1.26 0.72 0.54 0.30
30 2 388.64 177.92 113.00 53.32 4.52 2.10 1.35 0.65
30 3 993.64 898.68 804.80 511.16 158.43 65.61 43.39 10.22

40 1 165.08 82.56 58.48 29.16 2.75 1.43 1.04 0.50
40 2 486.72 211.80 143.28 60.32 5.98 2.65 1.71 0.74
40 3 973.60 927.56 905.84 681.00 143.11 54.96 39.75 11.10

50 1 185.20 99.16 60.48 32.64 3.21 1.72 1.15 0.57
50 2 700.76 332.00 186.60 86.28 7.74 3.72 2.14 1.01
50 3 921.40 910.40 835.96 466.96 52.27 23.15 13.19 4.01

Table 4.8: The performance of the different size reductions in the week centre neighbourhood
(3).

82

D
a
ta

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tt

e
r

0
.1

-W
C

E
W

C
*

0
.1

-W
C

E
W

C
*

0
.1

-W
C

E
W

C
*

0
.1

-W
C

E
W

C
*

0
.1

-W
C

E
W

C
*

M
a
x

30
1

-0
.2

7
0.

00
-0

.0
3

0
.0

0
0
.0

0
0
.0

0
2
0

2
5

0
0

0
30

2
0.

00
-2

.0
9

0.
0
0

-0
.0

8
0
.0

0
0
.0

0
2
5

2
4

0
0

0
30

3
-5

.8
1

-4
.1

6
-1

.0
9

-1
.4

4
2
.4

2
2
.0

8
8

4
1

1
1
0

40
1

-0
.2

8
-0

.2
0

-0
.0

2
-0

.0
1

0
.0

0
0
.0

0
2
2

2
2

0
0

0
40

2
-0

.3
5

-0
.0

8
-0

.0
1

0
.0

0
0
.0

0
0
.0

0
2
2

2
3

0
0

0
40

3
-5

.1
8

-5
.1

8
0.

3
5

0
.5

2
4
.9

5
4
.1

6
1
4

1
7

1
1

1
4

2
0

50
1

-0
.1

2
-0

.1
3

-0
.0

1
-0

.0
2

0
.0

0
0
.0

0
2
2

2
0

0
0

0
50

2
-0

.5
9

0.
00

0.
0
0

0
.0

6
0
.2

9
0
.2

9
2
0

2
5

1
1

1
0

2
5

50
3

-1
.1

4
-0

.8
7

1.
0
1

1
.1

1
2
.8

5
2
.8

5
1
9

1
9

1
9

1
9

2
5

T
o
ta

l
1
7
2

1
7
9

4
2

4
4

8
0

T
ab

le
4.

9:
T

h
e

p
er

fo
rm

a
n

ce
o
f

ta
b

u
se

a
rc

h
w

it
h

0
.1

-W
C

a
n

d
E

W
C

-Q
A

P
(1

).

83

Data
Total time (s) Time/iteration (s)

0.1-WC EWC* 0.1-WC EWC*

30 1 15.96 0.88 0.30 0.02
30 2 53.32 1.04 0.65 0.01
30 3 511.16 14.56 10.22 0.19

40 1 29.16 2.72 0.50 0.04
40 2 60.32 2.4 0.74 0.03
40 3 681.00 12.8 11.10 0.15

50 1 32.64 1.44 0.57 0.03
50 2 86.28 2.56 1.01 0.03
50 3 466.96 12.36 4.01 0.09

Table 4.10: The performance of tabu search with 0.1-WC and EWC-QAP (2).

Table 4.14 shows that there is no significant difference in terms of the relative percentage
gaps between both algorithms. However, the aspiration criterion helps the algorithm to obtain
a larger number of results that are as good as or better than the benchmark, especially when
the data instances become more complicated: see Columns #Good (225) and #Better in Table
4.15. As a result, Switch+ has the higher total of #Good and that of #Better.

Regarding the average computational time in Columns Total time (s) of Table 4.15, the
algorithm with the aspiration criterion slightly increases the computational time on average.
However, the overall computational time of the algorithm is still quick.

Although the aspiration criterion marginally increases time in the algorithm, this is accept-
able compensation for achieving better results. Therefore, the aspiration criterion is beneficial
for the switching neighbourhood.

Comparison between Different Size Reductions on the Neighbourhood

Next, we study the benefits of reducing the neighbourhood size, where the results of both
algorithms are shown in Tables 4.16−4.18.

In terms of the relative percentage gaps in Table 4.16, each algorithm has similar results in
%Gap* and Best %Gap*. Table 4.17 provides more explicit insightful information: the reduced
size of the neighbourhood can worsen the overall quality of the search: note the smaller total of
#Good and that of #Better in every reduced-size algorithm. In particular, the total of #Good
in those algorithms drops by at least 5%, compared to the exhaustive search.

Regarding the average computational time in Table 4.18, the reduced-size neighbourhoods
decrease the computational time on average. Therefore, Switch+ spends the longest computa-
tional time. However, overall it is still quick enough.

Since we focus more on the quality of the search here, we conclude that the size reduction
is not helpful enough for the switching neighbourhood.

4.6.5 Experiments on the Swapping Week Pattern Neighbourhood

Effectiveness of the Aspiration Criterion

In the case of the swapping week pattern neighbourhood, we investigate it in the same way.
First, the performance of the aspiration criterion in the neighbourhood is presented in Ta-
bles 4.19 and 4.20, where Swap and Swap+ denote the neighbourhood without and with the
aspiration criterion, respectively.

In Table 4.19, both algorithms do not exhibit considerable differences in terms of the relative
percentage gaps. Table 4.20 provides more insights showing that the algorithm with the aspi-
ration criterion has the higher total of #Good and #Better. The aspiration criterion, however,
slightly increases the computational time on average: see Columns Total time (s) in Table 4.20.

Although the aspiration criterion tends to require a marginally larger amount of computa-
tional time, this is acceptable because overall it increases the solution quality. Therefore, we

84

D
a
ta

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*

E
W

C
*

0
.5

-W
C

*
0
.3

-W
C

*
0
.1

-W
C

*
E

W
C

*
0
.5

-W
C

*
0
.3

-W
C

*
0
.1

-W
C

*
E

W
C

*
0
.5

-W
C

*
0
.3

-W
C

*
0
.1

-W
C

*

30
1

0.
00

-0
.1

0
0.

00
-2

.1
5

0.
00

0
.0

0
0.

00
-0

.1
0

0.
00

0.
0
0

0.
00

0
.0

0
30

2
-2

.0
9

0.
00

0.
00

0
.0

0
-0

.0
8

0
.0

0
0.

00
0
.0

0
0
.0

0
0.

00
0
.0

0
0
.0

0
30

3
-4

.1
6

-5
.9

6
-5

.1
7

-4
.8

7
-1

.4
4

-1
.5

5
-1

.1
3

-1
.3

5
2.

08
2.

42
2.

42
2
.4

2

40
1

-0
.2

0
-0

.1
9

-0
.1

0
-0

.2
0

-0
.0

1
-0

.0
2

-0
.0

1
-0

.0
4

0.
00

0.
00

0.
00

0
.0

0
40

2
-0

.0
8

-0
.0

8
-0

.0
8

-0
.2

5
0.

00
-0

.0
1

-0
.0

1
-0

.0
2

0.
00

0.
00

0.
00

0
.0

0
40

3
-5

.1
8

-5
.1

8
-1

.6
5

-1
.8

9
0.

52
0
.2

3
0.

52
0
.4

4
4
.1

6
4.

16
4
.9

5
4
.9

5

50
1

-0
.1

3
-0

.1
3

-0
.1

3
-1

.9
2

-0
.0

2
-0

.0
2

-0
.0

1
-0

.1
0

0.
00

0.
00

0.
00

0
.0

0
50

2
0.

00
-0

.1
1

0.
00

-0
.5

5
0.

06
0
.0

5
0.

06
0
.0

1
0
.2

9
0.

29
0
.2

9
0
.2

9
50

3
-0

.8
7

-2
.9

3
-1

.0
2

-1
.0

2
1.

11
0
.7

9
1.

02
0
.9

2
2
.8

5
2.

85
2
.8

5
2
.8

5

T
ab

le
4.

11
:

T
h

e
co

m
p

a
ri

so
n

o
f

d
iff

er
en

t
si

ze
re

d
u

ct
io

n
s

o
n

ta
b

u
se

a
rc

h
w

it
h

Q
A

P
(1

).

85

Data
#Good (225) #Better

EWC* 0.5-WC* 0.3-WC* 0.1-WC* EWC* 0.5-WC* 0.3-WC* 0.1-WC* Max

30 1 25 24 25 20 0 0 0 0 0
30 2 24 25 25 25 0 0 0 0 0
30 3 4 6 8 4 1 3 2 1 10

40 1 22 21 20 15 0 0 0 0 0
40 2 23 21 22 21 0 0 0 0 0
40 3 17 13 10 12 14 10 8 10 20

50 1 20 20 22 18 0 0 0 0 0
50 2 25 22 25 20 10 9 9 10 25
50 3 19 16 18 20 19 16 18 20 25

Total 179 168 175 155 44 38 37 41 80

Table 4.12: The comparison of different size reductions on tabu search with QAP (2).

Data
Total time (s)

EWC* 0.5-WC* 0.3-WC* 0.1-WC*

30 1 0.88 0.88 0.84 0.8
30 2 1.04 1.28 1.24 1.28
30 3 14.56 15.96 15.2 16.24

40 1 2.72 2.8 2.6 2.6
40 2 2.4 2.32 2.4 2.56
40 3 12.8 11.08 12 10.92

50 1 1.44 1.4 1.4 1.6
50 2 2.56 2.72 2.08 2.52
50 3 12.36 11.12 12.68 12.16

Table 4.13: The comparison of different size reductions on tabu search with QAP (3).

Data
Worst %Gap* %Gap* Best %Gap*

Switch Switch+ Switch Switch+ Switch Switch+

30 1 -2.77 -2.74 -0.47 -0.14 0.00 0.00
30 2 -1.70 -1.18 -0.07 -0.11 0.00 0.00
30 3 -3.03 -4.96 -0.89 -1.45 2.42 2.08

40 1 -0.28 -0.30 -0.06 -0.06 0.00 0.00
40 2 -1.04 -1.09 -0.10 -0.06 0.00 0.00
40 3 -2.32 -1.76 0.64 0.91 4.14 4.95

50 1 -1.21 -0.32 -0.14 -0.06 0.00 0.00
50 2 -1.75 -0.55 -0.11 -0.02 0.29 0.29
50 3 -4.61 -1.03 0.66 0.88 2.85 2.85

Table 4.14: The effectiveness of the aspiration criterion on tabu search with Switch (1).

86

Data
#Good (225) #Better Total time (s)

Switch Switch+ Switch Switch+ Max Switch Switch+

30 1 14 19 0 0 0 0.88 1.20
30 2 24 22 0 0 0 1.00 1.28
30 3 3 2 1 1 10 8.60 7.92

40 1 12 12 0 0 0 2.92 3.40
40 2 15 18 0 0 0 2.64 3.16
40 3 13 14 11 13 20 8.52 9.12

50 1 16 16 0 0 0 4.56 6.52
50 2 14 15 5 7 25 4.16 5.76
50 3 18 18 18 18 25 10.12 11.00

Total 129 136 35 39 80

Table 4.15: The effectiveness of the aspiration criterion on tabu search with Switch (2).

prefer the swapping week pattern neighbourhood with the aspiration criterion.

Comparison between Different Size Reductions on the Neighbourhood

Now we further investigate the benefits of limiting the search in the swapping week pattern
neighbourhood, as shown in Tables 4.21− 4.23. We reduce the size of the neighbourhood with
the corresponding parameter α ∈ {0.5, 0.3, 0.1} and call it α-Swap+.

The performance in terms of the relative percentage gaps of each algorithm is compared in
Table 4.21. Table 4.22 shows the comparison in terms of the number of results that perform well
or even better than the benchmark. In terms of #Good, Switch+ performs best: see the highest
total of #Good. 0.5-Swap+ and 0.3-Swap+ come the second-best with around the 3% smaller
total of #Good than the exhaustive search. 0.1-Swap+ is the worst in this aspect; it tends to
miss several good solutions in the less complicated combinations, for example, 30 1, 30 2, and
40 2, resulting in the 14% smaller total of #Good. In terms of #Better, every algorithm has
the same total of #Better.

Regarding the average computational time in Table 4.23, the smaller size of the neighbour-
hood clearly results in less computational time on average. However, as discussed above, the
reducing size of the neighbourhood worsens the search quality to get comparable solutions.
Therefore, we have to find a balance between these two aspects.

0.1-Swap+ is the quickest algorithm but it has the worst total number of #Good. 0.3-Swap+
comes second in terms of the computational time; it improves the average computational time
of the exhaustive search by 34% and 46% in 40 3 and 50 3, which are the most complicated
combinations in the experiments. Although its total of #Good is four cases fewer than that of
the exhaustive search, it is quite competitive and tends to perform well in the most complicated
combinations. Therefore, we conclude that 0.3-Swap+ has the best balance, i.e., it is the best
configuration for the swapping neighbourhood.

4.6.6 Experiments on the Mixed Neighbourhood

Now, we have found the best configuration for every single neighbourhood under the same stan-
dard as summarised in Table 4.24. Namely, they are the week centre neighbourhood with QAP,
the switching neighbourhood with the aspiration criterion, and the swapping neighbourhood
with the aspiration criterion and 30% reduced-size neighbourhood.

If we focus on the performance of the single neighbourhoods, overall EWC* has the best
solution quality, while Switch+ and 0.3-Swap+ has poorer performance in this aspect. These
observations are implied from the corresponding total of #Good and that of #Better in Tables
4.12, 4.17, and 4.22. Figure 4.1 shows the performance of every single neighbourhood in data
instances of the most challenging combinations like 30 3, 40 3, and 50 3 to confirm the obser-
vations. Note that every line graph represents the trend of the relative percentage gap between

87

D
a
ta

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*

S
w

itch
+

0
.5

-
S

w
itch

+
0
.3

-
S

w
itch

+
0
.1

-
S

w
itch

+
S

w
itch

+
0
.5

-
S

w
itch

+
0
.3

-
S

w
itch

+
0
.1

-
S

w
itch

+
S

w
itch

+
0
.5

-
S

w
itch

+
0
.3

-
S

w
itch

+
0
.1

-
S

w
itch

+

30
1

-2.74
-2.89

-5
.56

-2.1
5

-0
.1

4
-0

.21
-0.80

-0.17
0.0

0
0.00

0
.00

0
.00

3
0

2
-1.18

-0.42
-1

.98
-0.4

2
-0

.1
1

-0
.07

-0.10
-0.02

0.0
0

0.00
0
.00

0
.00

3
0

3
-4.96

-2.77
-5

.17
-5.9

6
-1

.4
5

-1
.11

-1.12
-1.10

2.0
8

2.08
2
.42

2
.08

40
1

-0.30
-1.51

-2
.82

-1.3
5

-0
.0

6
-0

.24
-0.30

-0.17
0.0

0
0.00

0
.00

0
.00

4
0

2
-1.09

-1.08
-1

.09
-0.1

4
-0

.0
6

-0
.08

-0.07
-0.02

0.0
0

0.00
0
.00

0
.00

4
0

3
-1.76

-2.01
-3

.29
-1.0

7
0
.9

1
0.6

9
0.5

0
0.8

3
4.95

4.9
5

4.95
4
.95

50
1

-0.32
-4.29

-1
.91

-2.8
2

-0
.0

6
-0

.35
-0.19

-0.21
0.0

0
0.00

0
.00

0
.00

5
0

2
-0.55

-1.37
-0

.55
-0.5

5
-0

.0
2

-0
.05

-0.05
-0.06

0.2
9

0.29
0
.29

0
.29

5
0

3
-1.03

-4.42
-2

.70
-1.5

7
0
.8

8
0.6

1
0.5

6
0.7

9
2.85

2.8
5

2.85
2
.85

T
ab

le
4
.1

6
:

T
h

e
p

erform
an

ce
o
f

th
e

d
iff

eren
t

size
red

u
ctio

n
s

o
n

ta
b

u
sea

rch
w

ith
S

w
itch

an
d

th
e

asp
iration

criterion
(1).

88

Data
#Good (225) #Better

Switch+
0.5-

Switch+
0.3-

Switch+
0.1-

Switch+
Switch+

0.5-
Switch+

0.3-
Switch+

0.1-
Switch+

Max

30 1 19 16 13 19 0 0 0 0 0
30 2 22 21 20 24 0 0 0 0 0
30 3 2 3 3 6 1 1 2 2 10

40 1 12 10 8 6 0 0 0 0 0
40 2 18 15 18 19 0 0 0 0 0
40 3 14 16 12 14 13 12 10 12 20

50 1 16 13 13 11 0 0 0 0 0
50 2 15 17 15 13 7 6 6 6 25
50 3 18 17 18 17 18 17 17 17 25

Total 136 128 120 129 39 36 35 37 80

Table 4.17: The performance of the different size reductions on tabu search with Switch and
the aspiration criterion (2).

Data
Total time (s)

Switch+
0.5-

Switch+
0.3-

Switch+
0.1-

Switch+

30 1 1.20 0.84 0.64 0.52
30 2 1.28 1 1 0.92
30 3 7.92 8.52 7.16 7.28

40 1 3.40 2.44 2 1.8
40 2 3.16 2.24 2.28 1.84
40 3 9.12 7.72 7.36 7.28

50 1 6.52 3.8 3.28 2.68
50 2 5.76 4.08 3.4 2.92
50 3 11.00 10.08 8.32 6.52

Table 4.18: The performance of the different size reductions on tabu search with Switch and
the aspiration criterion (3).

Data
Worst %Gap* %Gap* Best %Gap*

Swap Swap+ Swap Swap+ Swap Swap+

30 1 -2.31 -2.90 -0.23 -0.46 0.00 0.00
30 2 -0.42 -0.63 -0.03 -0.03 0.00 0.00
30 3 -3.97 -3.87 -0.36 -0.64 2.42 2.42

40 1 -3.04 -0.88 -0.31 -0.14 0.00 0.00
40 2 -0.51 -0.08 -0.02 0.00 0.00 0.00
40 3 -1.45 -1.46 0.81 0.90 4.95 4.95

50 1 -1.92 -1.92 -0.15 -0.20 0.00 0.00
50 2 -0.23 -0.39 0.03 -0.01 0.29 0.29
50 3 -0.83 -0.93 1.01 0.92 2.85 2.85

Table 4.19: The effectiveness of the aspiration criterion on tabu search with Swap (1).

89

Data
#Good (225) #Better Total time (s)

Swap Swap+ Swap Swap+ Max Swap Swap+

30 1 18 16 0 0 0 0.04 0.16
30 2 23 24 0 0 0 0.72 1.04
30 3 10 8 3 3 10 9.00 9.96

40 1 3 8 0 0 0 1.88 2.72
40 2 21 22 0 0 0 2.68 3.76
40 3 14 15 13 14 20 10.36 11.92

50 1 14 15 0 0 0 3.88 5.96
50 2 20 18 5 6 25 4.76 8.16
50 3 19 18 19 18 25 14.88 19.84

Total 142 144 40 41 80

Table 4.20: The effectiveness of the aspiration criterion on tabu search with Swap (2).

the objective value of the algorithm and the benchmark.

(a) Data instance for 30 3. (b) Data instance for 40 3.

(c) Data instance for 50 3.

Figure 4.1: The performance of the single neighbourhoods in some complicated data instances.

However, the average computational time of the week pattern neighbourhoods for the most
complicated combinations, such as 30 3, 40 3, and 50 3, is better. In particular, in such com-
binations, the week pattern neighbourhoods spend less than 12 seconds, while the week centre
neighbourhood requires more than that: see the corresponding information in Columns Total
time (s) of Table 4.13, 4.18, and 4.23.

We can see that each neighbourhood has its strength, so it must be beneficial to combine
them into one algorithm. We then use these best configurations in the mixed neighbourhood.
Tables 4.25−4.27 present the comparison of the performance between the single neighbourhoods
and the mixed neighbourhood, where Mix is the mixed neighbourhood.

When we combine every single neighbourhood to exploit their specific search trajectories, we

90

D
a
ta

W
o
rs

t
%

G
a
p
*

%
G

a
p

*
B

e
st

%
G

a
p

*

S
w

a
p

+
0
.5

-
S

w
a
p

+
0
.3

-
S

w
a
p

+
0
.1

-
S

w
a
p

+
S

w
a
p

+
0
.5

-
S

w
a
p

+
0
.3

-
S

w
a
p

+
0
.1

-
S

w
a
p

+
S

w
a
p

+
0
.5

-
S

w
a
p

+
0
.3

-
S

w
a
p

+
0
.1

-
S

w
a
p

+

30
1

-2
.9

0
-3

.6
4

-3
.6

4
-3

.8
7

-0
.4

6
-0

.3
6

-0
.3

5
-0

.7
2

0.
00

0
.0

0
0
.0

0
0.

00
30

2
-0

.6
3

-1
.7

0
-0

.6
3

-1
.1

8
-0

.0
3

-0
.1

3
-0

.0
6

-0
.1

0
0.

00
0
.0

0
0
.0

0
0.

00
30

3
-3

.8
7

-2
.6

6
-3

.3
9

-5
.1

7
-0

.6
4

-0
.8

7
-1

.0
6

-1
.1

2
2.

42
2
.4

2
2
.0

8
2.

08

40
1

-0
.8

8
-0

.3
0

-1
.5

4
-0

.3
1

-0
.1

4
-0

.0
9

-0
.1

5
-0

.0
9

0.
00

0
.0

0
0
.0

0
0.

00
40

2
-0

.0
8

-0
.2

5
-0

.4
4

-0
.2

5
0.

00
-0

.0
3

-0
.0

3
-0

.0
3

0.
0
0

0
.0

0
0.

00
0
.0

0
40

3
-1

.4
6

-1
.3

9
-0

.4
9

-1
.2

2
0.

90
0.

76
0.

93
1.

0
1

4
.9

5
4
.9

5
4.

16
4
.9

5

50
1

-1
.9

2
-0

.9
6

-0
.8

8
-1

.9
2

-0
.2

0
-0

.1
2

-0
.1

3
-0

.2
0

0.
00

0
.0

0
0
.0

0
0.

00
50

2
-0

.3
9

-0
.2

3
-0

.4
2

-0
.3

8
-0

.0
1

0.
05

0.
00

-0
.0

2
0
.2

9
0.

2
9

0
.2

9
0
.2

9
50

3
-0

.9
3

-0
.7

2
-0

.5
2

-2
.7

3
0.

92
1.

10
1.

05
0.

7
9

2
.8

5
2
.8

5
2.

85
2
.8

5

T
ab

le
4.

21
:

T
h

e
p

er
fo

rm
an

ce
of

th
e

d
iff

er
en

t
si

ze
re

d
u

ct
io

n
s

o
n

ta
b

u
se

a
rc

h
w

it
h

S
w

a
p

a
n

d
th

e
a
sp

ir
a
ti

o
n

cr
it

er
io

n
(1

).

91

Data
#Good (225) #Better

Swap+
0.5-

Swap+
0.3-

Swap+
0.1-

Swap+
Swap+

0.5-
Swap+

0.3-
Swap+

0.1-
Swap+

Max

30 1 16 16 17 13 0 0 0 0 0
30 2 24 19 22 20 0 0 0 0 0
30 3 8 6 5 4 3 1 1 1 10

40 1 8 5 7 5 0 0 0 0 0
40 2 22 17 20 16 0 0 0 0 0
40 3 15 16 18 18 14 11 13 14 20

50 1 15 17 13 13 0 0 0 0 0
50 2 18 22 17 12 6 6 6 5 25
50 3 18 22 21 22 18 22 21 21 25

Total 144 140 140 123 41 40 41 41 80

Table 4.22: The performance of the different size reductions on tabu search with Swap and the
aspiration criterion (2).

Data
Total time (s)

Swap+
0.5-

Swap+
0.3-

Swap+
0.1-

Swap+

30 1 0.16 0.08 0 0
30 2 1.04 0.76 0.44 0.28
30 3 9.96 9.32 7.44 7.88

40 1 2.72 1.8 1.28 0.92
40 2 3.76 2.32 1.96 1.2
40 3 11.92 8.2 7.92 7.16

50 1 5.96 3.56 2.56 1.8
50 2 8.16 4.44 3.28 2.04
50 3 19.84 12.6 10.68 6.24

Table 4.23: The performance of the different size reductions on tabu search with Swap and the
aspiration criterion (3).

Neighbourhood The best configuration

Week centre QAP.
Switching week pattern Aspiration criterion.

Swapping week pattern
Aspiration criterion with 30% reduced-size
neighbourhood.

Table 4.24: Summation of the best configuration for each single neighbourhood.

92

can see a noticeable improvement in terms of the relative percentage gaps in every combination.
Table 4.25 shows that Mix has the best Worst %Gap* and Best %Gap*. The non-negative
values of %Gap* in every combination indicate that the method tends to find solutions that
are at least as good as the benchmark. Table 4.26 confirms the high quality of search in the
mixed neighbourhood; Mix has the highest number of #Good in every combination, especially
in 30 3 where every single neighbourhood struggles to find good solutions. In particular, in
most combinations, almost every result of Mix has a comparable solution. Similarly, in terms
of #Better, Mix is superior to the other algorithms, resulting in the highest total of #Better.

In terms of the average computational time, Table 4.27 shows that Mix spends a much
longer time in the algorithm. However, the mixed neighbourhood applies a different stopping
criterion which is the maximum number of iterations, not the maximum computational time
or the maximum number of consecutive diversifications without improving an incumbent as in
the single neighbourhoods. To get a fair comparison, we check the amount of time per iteration
in Columns Time/Iteration (s). The results show that Mix spends less time in each iteration
than EWC* in general.

Due to the overall performance that we have discussed so far, the mixed neighbourhood per-
forms a high-quality search within a reasonable amount of time and becomes the best algorithm
so far.

4.6.7 Effectiveness of the Diversification in the Tabu Search

In our algorithm, the week centre neighbourhood and the week pattern neighbourhoods have
different diversification schemes, while the mixed neighbourhood applies the mixture of both
schemes. According to Gendreau & Potvin (2019), diversification is crucial to the effectiveness
of tabu search because if it does not diversify solutions properly, it is usually the main reason
for the algorithm failures. The diversification is effective if it manages to force the search to
check regions of the solution space that have not been explored yet. Therefore, in this section,
we use the number of results that can find a new incumbent after the first diversification as an
indicator of the effectiveness. Note that each combination has a limited number of those results
since the initial solutions are the optimal solutions in some cases as shown in Sub-column Initial
of Columns #Opt in Table 4.3. In particular, the limit in each combination is derived from the
number of results out of 25 whose initial solution is not the optimal solution and still allows to
be further improved.

Table 4.28 presents the effectiveness of the diversification in every single neighbourhood
and the mixed neighbourhood. Columns EWC*, Switch+, 0.3-Swap+, and Mix represent, re-
spectively, the corresponding information of the week centre neighbourhood with QAP, the
switching neighbourhood with the aspiration criterion, the swapping neighbourhood with the
aspiration criterion and 30% reduced-size neighbourhood, and the mixed neighbourhood. Col-
umn Max represents the maximum possible cases in each combination that the initial solutions
can get improved. The last row shows the corresponding total number of the results.

Overall, the diversification scheme for the centre neighbourhood works well; 84% of the total
number of possible cases find a new incumbent after applying the diversification. For the week
pattern neighbourhoods, the diversification also works effectively in around 80% of the total
number of possible cases. Mix yields the least number of total results that get the benefit from
the diversification, i.e., 77% of the total number of possible cases which, however, is still a very
good amount. Therefore, we conclude that the diversification schemes that we proposed work
effectively to find better solutions.

4.6.8 Improvement on the Initial Solutions by the Tabu Search

We have concluded that the mixed neighbourhood performs best in the tabu search algorithm.
Here, we will show how much the algorithm can improve the initial solutions from the location-
allocation heuristic. This is to prove the effectiveness of the tabu search for being capable of
improving a solution.

Table 4.29 presents the information on the improvements in terms of the relative percentage
gaps compared to the initial solutions. In particular, we are interested in the average and the
best relative percentage gap as shown in Columns %Gap* and Best %Gap*. Also, we show the

93

D
a
ta

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*

E
W

C
*

S
w

itch
+

0
.3

-S
w

a
p

+
M

ix
E

W
C

*
S

w
itch

+
0
.3

-S
w

a
p

+
M

ix
E

W
C

*
S

w
itch

+
0
.3

-S
w

a
p

+
M

ix

30
1

0.0
0

-2
.74

-3.6
4

0
.0

0
0
.0

0
-0

.1
4

-0
.3

5
0
.0

0
0.00

0.00
0.00

0.00
30

2
-2

.09
-1.18

-0
.6

3
0
.0

0
-0

.0
8

-0
.1

1
-0

.0
6

0
.0

0
0.00

0.00
0.00

0.00
30

3
-4

.16
-4.96

-3
.3

9
-1

.5
4

-1
.4

4
-1

.4
5

-1
.0

6
0
.1

5
2.08

2.08
2
.08

2.42

40
1

-0
.20

-0.30
-1

.5
4

0
.0

0
-0

.0
1

-0
.0

6
-0

.1
5

0
.0

0
0.00

0.00
0.00

0.00
40

2
-0

.08
-1.09

-0
.4

4
0
.0

0
0
.0

0
-0

.0
6

-0
.0

3
0
.0

0
0.00

0.00
0.00

0.00
40

3
-5

.18
-1.76

-0
.4

9
0
.0

0
0
.5

2
0
.9

1
0
.9

3
1
.5

8
4.16

4.95
4.16

4.95

50
1

-0
.13

-0.32
-0

.8
8

-0
.1

2
-0

.0
2

-0
.0

6
-0

.1
3

0
.0

0
0.00

0.00
0
.00

0.00
50

2
0.0

0
-0

.55
-0.4

2
0
.0

0
0
.0

6
-0

.0
2

0
.0

0
0
.0

6
0.29

0.29
0.29

0.29
50

3
-0

.87
-1.03

-0
.5

2
-0

.3
0

1
.1

1
0
.8

8
1
.0

5
1
.5

2
2.85

2.85
2.85

2.85

T
a
b

le
4
.2

5:
T

h
e

p
erform

a
n

ce
of

th
e

b
est

co
n

fi
g
u

ra
tio

n
in

every
sin

g
le

n
eig

h
b

o
u

rh
o
o
d

a
n

d
th

e
m

ix
ed

n
eigh

b
ou

rh
o
o
d

(1).

94

Data
#Good (225) #Better

EWC* Switch+
0.3-

Swap+
Mix EWC* Switch+

0.3-
Swap+

Mix Max

30 1 25 19 17 25 0 0 0 0 0
30 2 24 22 22 25 0 0 0 0 0
30 3 4 2 5 17 1 1 1 5 10

40 1 22 12 7 25 0 0 0 0 0
40 2 23 18 20 25 0 0 0 0 0
40 3 17 14 18 25 14 13 13 20 20

50 1 20 16 13 24 0 0 0 0 0
50 2 25 15 17 25 10 7 6 15 25
50 3 19 18 21 23 19 18 21 23 25

Total 179 136 140 214 44 39 41 63 80

Table 4.26: The performance of the best configuration in every single neighbourhood and the
mixed neighbourhood (2).

Data
Total time (s) Time/Iteration (s)

EWC* Switch+ 0.3-Swap+ Mix EWC* Switch+ 0.3-Swap+ Mix

30 1 0.88 1.2 0 13.16 0.02 0.00 0.00 0.01
30 2 1.04 1.28 0.44 16.88 0.01 0.00 0.00 0.02
30 3 14.56 7.92 7.44 118.16 0.19 0.02 0.03 0.12

40 1 2.72 3.4 1.28 24.72 0.04 0.00 0.00 0.02
40 2 2.4 3.16 1.96 20.92 0.03 0.01 0.01 0.02
40 3 12.8 9.12 7.92 76.12 0.15 0.01 0.02 0.08

50 1 1.44 6.52 2.56 18.56 0.03 0.01 0.01 0.02
50 2 2.56 5.76 3.28 22.64 0.03 0.01 0.01 0.02
50 3 12.36 11 10.68 60.4 0.09 0.01 0.02 0.06

Table 4.27: The performance of the best configuration in every single neighbourhood and the
mixed neighbourhood (3).

Data EWC* Switch+
0.3-

Swap+
Mix Max

30 1 11 9 8 11 14
30 2 10 12 11 10 13
30 3 21 17 16 24 25

40 1 18 20 19 18 24
40 2 19 14 16 14 19
40 3 23 22 22 22 24

50 1 13 17 17 7 21
50 2 22 19 20 19 25
50 3 23 21 23 22 25

Total 160 151 152 147 190

Table 4.28: The effectiveness of diversification in each neighbourhood.

95

Data %Gap*
Best

%Gap*
#Better

Mix Max

30 1 1.04 5.27 14 14
30 2 1.03 5.19 13 13
30 3 4.71 14.09 24 25

40 1 1.20 6.84 24 24
40 2 0.81 2.62 19 19
40 3 4.36 13.04 24 24

50 1 2.00 9.68 21 21
50 2 1.11 2.69 24 25
50 3 3.48 8.89 24 25

Total 187 190

Table 4.29: The performance of the tabu search with the mixed neighbourhood to improve the
initial solution.

number of better solutions in Columns #Better where Mix and Max show, respectively, the
number of better solutions from the mixed neighbourhood and the maximum possible cases.
Note that the information in Max is from the number of results out of 25 whose initial solution
is not the optimal solution, which is the same as in Column Max of Table 4.28. We do not
focus on Worst %Gap* and #Good here because we accept only a better solution than an
initial solution in the tabu search.

Clearly, the tabu search significantly improves the quality of the initial solutions: see positive
values in % Gap* and Best %Gap*. More importantly, the total of #Better supports that it
finds a better solution in almost every possible case.

4.6.9 Comparison between the Tabu Search and Benchmark

We compare the performance of our best tabu search algorithm, i.e, the mixed neighbourhood or
Mix, to the benchmark in Table 4.30. We present Columns Worst %Gap*, %Gap*, Best %Gap*,
#Good (225), and #Better as usual. Also, we show the additional information of the number
of results that find the optimal solutions in Columns #Opt where Sub-column Max suggests
the maximum possible cases (which is the same as in Sub-column Max of Columns #Opt in
Table 4.3). In terms of average time, Columns Total time (s) show the average computational
time of the results in the mixed neighbourhood and the benchmark in Sub-columns Mix and
BM, respectively.

In the combinations that find the optimal solution in every data instance, i.e., 30 1, 30 2,
40 1, 40 2, and 50 1, we aim to find at least as good solutions as these optimal solutions in
every result. A number of #Good and #Opt by the mixed neighbourhood in these combinations
show that Mix is effective in finding those optimal solutions in every result, except only for one
result in 50 1.

When the data instances become more challenging to solve, such as in 30 3, 40 3, 50 2, and
50 3, the exact solution approaches struggle to find the optimal solutions as shown in Sub-
column Max of Columns #Opt. In these combinations, except for 30 3, we can find comparable
solutions to the benchmark for almost every result. In 30 3, Mix finds comparable solutions
and can find the optimal solutions in 68% and only 47% of the possible cases, respectively: see
the corresponding number of #Good and #Opt. However, overall Mix still has a high total of
#Good and #Opt, which reach, respectively, at least 95% and 93% of the possible total number
of cases.

In terms of #Better, for the more challenging combinations, Mix is capable of finding
better solutions than the benchmark: note the positive values in %Gap* and Best %Gap*
for the corresponding cases. In particular, Mix finds better solutions in 50% and 60% of the
possible better cases in the combinations 30 3 and 50 2, respectively. For the most complicated
combinations, such as 40 3 and 50 3, it finds better solutions in more than 95% of the possible

96

better cases. As a result, the total of #Better is 79% of the total number of possible cases,
which is considerably high.

Regarding the average computational time, Mix shows outstanding performances especially
when the data instances become more challenging. In fact, Mix spends at least 80% less time
than the benchmark in those instances, which confirms the robustness of the algorithm.

In conclusion, Mix is capable of finding good-quality solutions and even better solutions
within significantly less amount of average time, especially in the more challenging combinations.
Therefore, Mix outperforms the benchmark.

4.6.10 Comparison between the CPLEX’s Heuristics and the Tabu
Search

According to IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual (2017), CPLEX
has additional built-in heuristics to enhance the efficiency of solving difficult mixed-integer
problems. Namely, it provides heuristics to find integer solutions at nodes (including the root
node) during the branch-and-cut process. In the default setting, CPLEX usually decides auto-
matically if it will use the heuristics during the solving process. Users then can control how to
use the heuristics by modifying the values of a set of corresponding parameters.

Here, we focus on feasibility pump, Relaxation Induced Neighbourhood Search (RINS), and
solution polishing. The feasibility pump aims for finding an initial feasible solution at the
beginning so it is often activated before the branch-and-cut procedure. RINS and the solution
polishing are used to find more good feasible solutions. RINS exploits the information of a
fractional solution at a current node and a current incumbent to create a neighbourhood of the
current incumbent. In particular, the neighbourhood is formulated as another mixed-integer
problem and searched for an improving incumbent. Therefore, in the default setting, CPLEX
activates RINS less frequently than any of its regular heuristics at a node since it requires more
computational time. The solution polishing is different from RINS as it is a branch-and-cut
procedure itself. It is suitable where good solutions are hard to find. However, it is much
more expensive in terms of computational time than other heuristics in CPLEX. Therefore, it
is not called at all during the branch-and-cut process. Instead, it is usually used in a second
phase to further improve the current best-known solution. More specifically, it requires an
initial solution, e.g., from the original branch-and-cut procedure or a user-defined solution, for
polishing. Moreover, it solely aims for improving the given solution so it does not guarantee
the optimality condition.

In this section, we compare solutions from the feasibility pump to our initial solutions from
the location-allocation heuristic. Then, we compare the performance of RINS and the solution
polishing to the tabu search algorithm, where they all have the same initial solution from the
location-allocation heuristic to begin the procedures. This is to get a fair comparison of the
efficiency of improving the initial solutions.

Comparison between the Feasibility Pump and the Location-Allocation Heuristic

There are two options to control the quality of solutions from the feasibility pump. The first
option is only to get a feasible solution but does not seek for solution quality, while the second
option takes the objective value into account. This means that the second option seeks solutions
with better objective values. However, it tends to fail in finding those solutions.

We set the maximum time for the feasibility pump at one minute. Our preliminary results
support the above discussion that the second option cannot find any feasible solution in some
data instances, while the first option can find a solution in every case. Therefore, we choose
the first option of the feasibility pump and compare its performance to the location-allocation
heuristic.

Table 4.31 shows the comparison of the feasibility pump to the location-allocation heuristic
in terms of the solution quality and average time in seconds. Namely, it shows the usual
information, e.g., Worst %Gap*, %Gap*, Best %Gap*, #Good (225), and #Better. Note that
in Columns #Better, the results from the feasibility pump and the maximum possible cases in
each combination are presented in Sub-columns FP and Max, respectively. Max here is the

97

D
a
ta

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
O

p
t

#
B

e
tte

r
T

o
ta

l
tim

e
(s)

M
ix

M
a
x

M
ix

M
a
x

M
ix

B
M

3
0

1
0.00

0.0
0

0
.0

0
2
5

2
5

2
5

0
0

13.16
6.4

30
2

0.00
0.0

0
0
.0

0
2
5

2
5

2
5

0
0

16.88
120

30
3

-1.54
0.15

2
.4

2
1
7

7
1
5

5
10

118.16
586.2

4
0

1
0.00

0.0
0

0
.0

0
2
5

2
5

2
5

0
0

24.72
29.6

40
2

0.00
0.0

0
0
.0

0
2
5

2
5

2
5

0
0

20.92
291.2

40
3

0.00
1.5

8
4
.9

5
2
5

5
5

2
0

20
76.12

820.6

5
0

1
-0.12

0.00
0
.0

0
2
4

2
4

2
5

0
0

18.56
44.2

50
2

0.00
0.0

6
0
.2

9
2
5

0
0

1
5

25
22.64

900.8
50

3
-0.30

1.52
2
.8

5
2
3

0
0

2
3

25
60.4

902.4

T
o
ta

l
2
1
4

1
3
6

1
4
5

6
3

80

T
ab

le
4
.3

0
:

T
h

e
co

m
p

a
rison

o
f

th
e

p
erfo

rm
a
n

ce
b

etw
een

th
e

b
est-fo

u
n

d
so

lu
tio

n
s

in
C

h
a
p

ter
3

an
d

th
e

m
ix

ed
n

eigh
b

ou
rh

o
o
d

.

98

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Good
(225)

#Better Total
time (s)FP Max

30 1 -57.14 -26.35 -8.04 0 0 14 0.54
30 2 -199.95 -57.45 -4.24 0 0 13 1.57
30 3 -248.49 -146.68 -103.07 0 0 25 3.94

40 1 -55.64 -25.02 -6.73 0 0 24 1.44
40 2 -216.04 -61.73 -17.80 0 0 19 6.04
40 3 -171.79 -107.87 -25.37 0 0 24 13.34

50 1 -81.12 -39.54 3.91 1 1 21 3.46
50 2 -71.00 -40.34 -20.12 0 0 25 13.14
50 3 -376.77 -226.85 -151.31 0 0 25 45.49

Total 1 1 190

Table 4.31: The performance of the feasibility pump compared to the location-allocation heuris-
tic.

same as in Sub-column Max of Columns #Better in Table 4.29, where the initial solutions are
not the same optimal solutions found by the benchmark from Section 4.6.1.

Clearly, the overall solution quality from the feasibility pump is considerably worse than
that from the location-allocation heuristic: see the high negative relative percentage gaps even
in Best %Gap*. In fact, for the most complicated combinations, such as 30 3, 40 3, and 50 3,
the average relative percentage gaps are between 100% and 230% worse. Also, the feasibility
pump can find only one better result out of 190 possible cases in total.

In terms of average computational time, the feasibility pump tends to spend much more
computational time when the data instances become more complicated, while the location-
allocation heuristic requires less than one second to derive an initial solution.

Due to higher solution quality and a significantly less amount of computational time, the
location-allocation heuristic is incredibly more effective and efficient than the feasibility pump
to derive good initial solutions.

Comparison between RINS, the Solution Polishing, and the Tabu Search

To have a fair comparison, we provide the same initial solutions from the tabu search to RINS
and the solution polishing at the beginning. The maximum time to run the experiments is
900 seconds, similarly to the tabu search with the single neighbourhoods. Also, we control the
maximum number of times to improve a solution in CPLEX’s heuristics. Namely, we limit the
number of times to at most 1,000 which is the same stopping criterion of the tabu search with
the mixed neighbourhood. For RINS, we can update the frequency in terms of node interval to
apply the heuristic. Since it may be expensive to apply it in every node, we choose to activate
it in every 20 nodes. We set up the maximum number of nodes to 20,000 nodes so that it has
a chance to improve a solution for at most 1,000 times. For the solution polishing, it is applied
in every node and we cannot change this setting. Therefore, we restrict the number of nodes
to at most 1,000 instead.

The performances of RINS and the solution polishing compared to the tabu search with the
mixed neighbourhood are, respectively, represented by RINS and solPol in Tables 4.32 and 4.33.
We present the same information as before, i.e, Worst %Gap*, %Gap*, Best %Gap*, #Good
(225), #Better, and Total time (s). In Columns #Better, the information in Sub-column Max
for each combination is from the number of results out of 25 where the best solutions from the
tabu search are not the same optimal solutions found by the benchmark from Section 4.6.1; it is
implied from the information in Sub-column Mix of Columns #Opt in Table 4.30. Namely, these
cases still have the opportunity to get better solutions. In Columns Total time (s), we present
the information of the average computational time of the CPLEX heuristics. Also, we show
the average time in the tabu search with the mixed neighbourhood as additional information
in Sub-column Mix.

99

Data
Worst %Gap* %Gap* Best %Gap*

RINS solPol RINS solPol RINS solPol

30 1 0.00 0.00 0.00 0.00 0.00 0.00
30 2 0.00 -0.42 0.00 -0.02 0.00 0.00
30 3 -7.78 -7.78 -0.93 -2.52 1.35 0.29

40 1 0.00 0.00 0.00 0.00 0.00 0.00
40 2 0.00 -0.51 0.00 -0.07 0.00 0.00
40 3 -8.29 -10.03 -2.96 -2.95 0.00 0.00

50 1 0.00 0.00 0.00 0.00 0.12 0.12
50 2 -0.81 -0.11 -0.09 -0.03 0.00 0.00
50 3 -9.21 -6.27 -2.63 -2.14 0.00 0.00

Table 4.32: The performance of RINS and the solution polishing compared to the tabu search
(1).

Data
#Good (225) #Better Total time (s)

RINS solPol RINS solPol Max RINS solPol Mix

30 1 25 25 0 0 0 48.99 686.16 13.16
30 2 25 24 0 0 0 131.74 900.02 16.88
30 3 18 7 8 1 18 900.02 900.02 118.16

40 1 25 25 0 0 0 85.29 900.02 24.72
40 2 25 20 0 0 0 447.50 900.04 20.92
40 3 2 3 0 0 20 900.02 900.05 76.12

50 1 25 25 1 1 1 148.44 900.05 18.56
50 2 15 15 0 0 25 900.02 900.06 22.64
50 3 2 2 0 0 25 900.02 900.04 60.4

Total 162 146 9 2 89

Table 4.33: The performance of RINS and the solution polishing compared to the tabu search
(2).

First, we compare the performance between RINS and the solution polishing. Table 4.32
shows that there is no significant difference in terms of the relative percentage gaps. Table 4.33
provides more insights about the quality of solutions. RINS is overall superior to solPol in
terms of finding comparable and better solutions: see the higher total of #Good and that of
#Better. When both heuristics do not reach the maximum time, RINS spends a significantly
less amount of time on average to derive those solutions. Therefore, in this case, we conclude
that RINS has better performance than the solution polishing.

Now, we investigate the performance of RINS compared to the tabu search. The number
of #Good in Table 4.33 supports that it is comparable in less complicated combinations, such
as 30 1, 30 2, 40 1, 40 2, and 50 1. However, in more challenging combinations the relative
percentage gaps in Table 4.32 tend to be negative which show that RINS struggles to find even
comparable solutions. As a result, it fails to derive better solutions in many data instances. In
particular, it finds better solutions only in 10% of the total number of possible cases: see the
total number of #Better. More importantly, RINS spends incredibly more time on average as
shown in Columns Total time (s), especially when the data instances become more complicated.

Therefore, from the performance in terms of the solution quality and average time, the
CPLEX’s heuristics have significantly worse performances than the tabu search.

100

4.6.11 Improvement on the Benders’ Decomposition by the Tabu
Search

In the previous sections, we showed the robustness of the tabu search with the mixed neigh-
bourhood. Now, we use the tabu search to improve the efficiency of the Benders’ decomposition
algorithm from the previous chapter.

In the beginning, the tabu search is used to improve the quality of an initial solution for
the Benders’ decomposition method. After that, it is activated again whenever the Benders’
decomposition algorithm finds a new incumbent. If the tabu search is successful in the solution
improvement, we will provide the improved solution to the Benders’ decomposition algorithm
via the heuristic callback. Note that this callback is for injecting any feasible solution during
the branch-and-cut process (IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual
2017). According to IBM (2021) the built-in Benders’ algorithm in CPLEX, however, does not
support additional features from callbacks written by a user. Therefore, we combine the tabu
search in our own Benders’ decomposition instead and investigate its improvement.

We set up for our Benders’ algorithm with the same setting in Chapter 3. Also, we apply the
same tabu search with the mixed neighbourhood in the solution improvement process. Namely,
the stopping criterion every time that we activate the tabu search is 1000 iterations. Also, we
keep the information of the probabilities to select a neighbourhood and reinitialise the tabu lists
for the next time that we apply the tabu search. Finally, the maximum time of the Benders’
decomposition algorithm including the computational time to run the tabu search is still 900
seconds.

Comparison with our Previously Developed Benders’ Decomposition Algorithm

In this section, we investigate if the tabu search can enhance the efficiency of the previously
developed Benders’ decomposition algorithm. We call the algorithm that combines Benders’
decomposition and the tabu search combined algorithm. The benchmark here is our Benders’
decomposition from the previous chapter.

Table 4.34 shows the information on the efficiency of the tabu search in the algorithm. First,
Columns %DiffLB present the relative percentage gap between the lower bound of the objective
function value from the combined algorithm and the benchmark. Sub-columns Worst, Average,
Best are, respectively, the worst, the average, and the best relative percentage gap in the
aspect. A similar comparison between the best integer value in both algorithms is in Columns
%DiffUB. Note that the positive sign of the relative percentage gap implies better performance,
while the negative sign is the opposite. In particular, better performance means a smaller best
integer value or a higher lower bound. Also, we present the regular information of the number
of results that are comparable and better than the benchmark in Columns #Good (45) and
#Better, respectively. The maximum total number of possible cases for #Good is the total
number of data instances which is shown in the brackets. In Columns #Better, Sub-column
PapaTS presents the number of results from the combined algorithm that have better solutions
than the benchmark, while Sub-column Max shows the corresponding limit. In particular, the
information of Max is the number of data instances that the benchmark have not found the
optimal solutions yet, which is implied from Sub-column Papa of Columns #Opt (45) in Table
3.10.

Columns %DiffLB and %DiffUB show that there is no significant difference in terms of the
lower bound and the best integer solution in the less complicated instances, e.g., 30 1, 40 1,
and 50 1. When the data instances become more complicated like in the combinations 30 3,
40 3, and 50 3, the best integer solution from the combined algorithm is better in almost every
case: see the corresponding non-negative values of Worst %Gap* and the values of #Better.
Moreover, the total of #Good and that of #Better support the high-quality of the best integer
solutions from the combined algorithm. In fact, the combined algorithm finds comparable
solutions and better solutions in 98% and 73% of total number of possible cases. However,
most values in Columns %DiffLB for the more complicated instances are negative, implying
that the lower bound in these cases tends to be slightly worse than the benchmark.

From the above discussion, the combined algorithm gains the benefit of finding better integer
solutions from the tabu search. However, it tends to have a worse lower bound of the objective

101

function than our previously developed Benders’ decomposition algorithm.

Overall Comparison to the Benders’ Decomposition Algorithms

Now, we compare the performance of the combined algorithm to the Benders’ decomposition
algorithms in the previous chapter in Tables 4.35 and 4.36, where AutoBD, Papa, and PapaTS
represent the built-in Benders’ decomposition algorithm in CPLEX, our Benders’ decomposition
without and with the tabu search, respectively. Here, we focus on the relative percentage gap of
the objective value, the number of results that can find the optimal solutions, and the average
computational time.

Table 4.35 shows the information of the relative percentage gap between the upper bound
and the lower bound of the objective value by the algorithms. Namely, in each combination, the
best, the average and the worst relative percentage gap among 5 data instances are presented in
Columns Best %Gap, %Gap, and Worst %Gap, respectively. As discussed before, although the
combined algorithm is capable of finding better integer solutions than the Benders’ algorithms
from the previous chapter, its overall percentage gaps here are not outstanding due to lower
values in the lower bounds. Also, the combined algorithm has the least total number of results
that find the optimal solutions: see the corresponding total number of #Opt in Table 4.36.

Columns Total time (s) of Table 4.36 present the information of each algorithm in terms
of the average computational time. We focus on the less complicated data instances in which
all algorithms complete their process before the maximum time, e.g., in the combinations 30 1,
30 2, 40 1, and 50 1. In particular, it is possible to find optimal solutions in these data instances.
Clearly, the combined algorithm spends significantly more time to complete the process due to
the additional time to run the tabu search.

As shown before in Section 4.6.6, the tabu search requires some amount of times to reach
its stopping criterion, especially in more complicated data instances. As a result, the combined
algorithm may have less time to improve the lower bound during the branch-and-cut process,
thereby achieving a worse value of the lower bound. In such cases, the improvement in the best
integer solution may not compensate for those deteriorating performances.

Summing up, the tabu search is capable of finding better integer solutions. However, the
combined algorithm tends to result in a worse lower bound of the objective value. Therefore, a
more elaborate design to combine the tabu search with Benders’ decomposition is still required
such that the algorithm can exploit the advantages of the tabu search and control the quality
of the lower bound at the same time.

4.6.12 Conclusion

In conclusion, we introduced three neighbourhoods in the tabu search algorithm: the week cen-
tre neighbourhood, the switching week pattern neighbourhood, and the swapping week pattern
neighbourhood. We proposed simple but effective techniques to speed up the search in each
neighbourhood. Then, we unified the best configuration of each neighbourhood into the mixed
neighbourhood and compared its performances to the exact solution approaches from Chap-
ter 3. The results showed that it is effective in finding high-quality solutions while spending
much less time, especially when data instances become more challenging to solve. Moreover,
we investigated the improvement of the initial solutions and the quality of the diversification
to prove the effectiveness of the algorithm. Furthermore, we showed that the initial solutions
and the best solutions from the tabu search algorithm compared favourably with the heuris-
tics in CPLEX. Finally, we combined the tabu search with our previously developed Benders’
decomposition. The advantages of the tabu search, however, cannot significantly improve the
efficiency of the combined method so more proper development is still required in such case.

Due to the robustness of the tabu search, we will extend the method to solve the districting
and the scheduling part of MPSDP simultaneously, which will be presented in the next chapter.

102

D
a
ta

%
D

iff
L

B
%

D
iff

U
B

#
G

o
o
d

(4
5
)

#
B

e
tt

e
r

W
o
rs

t
A

v
e
ra

g
e

B
e
st

W
o
rs

t
A

v
e
ra

g
e

B
e
st

P
a
p

a
T

S
M

a
x

30
1

-0
.0

1
0.

0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

0
0

30
2

-0
.8

6
-0

.1
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

0
0

30
3

-6
.9

6
-1

.6
3

0
.0

3
-0

.7
1

1
.1

1
6
.0

3
4

3
4

40
1

0.
00

0.
0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

0
0

40
2

-0
.3

3
-0

.1
4

0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

0
3

40
3

-6
.4

7
-1

.2
2

3
.4

6
0
.1

4
2
.2

9
4
.9

5
5

5
5

50
1

0.
00

0.
0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

0
0

50
2

-0
.4

3
-0

.2
5

0
.0

2
0
.0

0
0
.1

3
0
.5

5
5

3
5

50
3

-2
.8

8
-0

.4
0

3
.9

3
0
.2

9
1
.8

6
2
.8

5
5

5
5

T
o
ta

l
4
4

1
6

2
2

T
ab

le
4.

34
:

T
h

e
p

er
fo

rm
an

ce
s

of
th

e
B

en
d

er
s’

d
ec

om
p

o
si

ti
o
n

a
lg

o
ri

th
m

w
it

h
th

e
ta

b
u

se
a
rc

h
co

m
p

a
re

d
to

o
u

r
p

re
v
io

u
sl

y
d

ev
el

o
p

ed
B

en
d

er
s’

d
ec

o
m

p
o
si

ti
o
n

.

103

D
a
ta

B
e
st

%
G

a
p

%
G

a
p

W
o
rse

%
G

a
p

A
u

to
B

D
P

a
p

a
P

a
p

a
T

S
A

u
to

B
D

P
a
p

a
P

a
p

a
T

S
A

u
to

B
D

P
a
p

a
P

a
p

a
T

S

3
0

1
0
.0

0
0.00

0
.0

0
0
.0

1
0
.0

1
0
.0

1
0.01

0.01
0.01

3
0

2
0
.0

1
0.01

0
.0

1
0
.4

6
0
.0

1
0
.1

8
2.25

0.01
0.87

3
0

3
0
.0

1
0.01

0
.0

1
2
.3

4
4
.9

2
5
.4

1
8.29

15.43
16.27

4
0

1
0
.0

1
0.01

0
.0

1
0
.0

1
0
.0

1
0
.0

1
0.01

0.01
0.01

4
0

2
0
.0

1
0.01

0
.0

1
0
.1

5
0
.4

9
0
.6

3
0.70

0.95
1.28

4
0

3
0
.0

1
4.12

5
.5

3
1
2
.4

0
1
4
.2

1
1
3
.2

6
21.29

19.09
22.39

5
0

1
0
.0

1
0.01

0
.0

1
0
.0

1
0
.0

1
0
.0

1
0.01

0.01
0.01

5
0

2
1
.3

1
1.04

1
.0

3
2
.4

1
2
.7

3
2
.8

4
4.53

4.89
5.13

5
0

3
1
1
.0

8
13.48

1
1
.3

9
1
7
.4

6
1
7
.6

0
1
6
.3

9
21.70

21.10
21.09

T
ab

le
4.35

:
T

h
e

overa
ll

p
erfo

rm
a
n

ce
o
f

d
iff

eren
t

B
en

d
ers’

d
eco

m
p

o
sitio

n
algorith

m
s

(1).

104

Data
#Opt (45) Total time (s)

AutoBD Papa PapaTS AutoBD Papa PapaTS

30 1 5 5 5 9 7.6 38.2
30 2 4 5 4 290.4 261 353.8
30 3 3 1 1 624 777.8 813.4

40 1 5 5 5 48.6 102 266.8
40 2 4 2 2 677.4 727.2 734.4
40 3 1 0 0 819 904 900

50 1 5 5 5 57.8 66.4 143.8
50 2 0 0 0 900 901.8 901
50 3 0 0 0 900 902.6 900.2

Total 27 23 22

Table 4.36: The overall performance of different Benders’ decomposition algorithms (2).

105

106

Chapter 5

Extended Tabu Search for the
MPSDP

According to Bender et al. (2016), the MPSDP contains two parts of decision planning: the
districting part and the scheduling part. The districting part is a strategic plan to assign
customers to each salesman which is usually run long-term, e.g., at least for several years. In
contrast, the scheduling part, which aims to create effective weekly schedules for salesmen to
visit customers, is a tactical plan and requires revision more frequently, e.g., every few months.
The study of districting problems has been extensive already, but the study of scheduling
usually did not take into account geographical compactness prior to Bender et al. (2016).
Therefore, Bender et al. (2016) focused on implementing an effective solution method only for
the scheduling part. Whenever the districting part needs to be revised, they suggested solving
the parts sequentially: first solving the districting part as in the classical sales districting
problem and then solving the scheduling part. However, following their suggestion, we might
end up with a suboptimal solution for the MPSDP. Therefore, it is preferable to develop a
solution approach that solves the districting part and the scheduling part at the same time.

As the tabu search algorithm is successful in solving the scheduling part, it is desirable to
extend the method to include the districting part, i.e., to solve the whole MPSDP. The extension
of the tabu search algorithm is described in Section 5.1. Section 5.2 presents the information
on setting up the experiment, followed by the computational results to show the robustness of
the algorithm in Section 5.3.

5.1 Extension of the Tabu Search Algorithm

In Chapter 4, we presented the tabu search algorithm for solving the scheduling part of the
MPSDP, and the computational results showed the effectiveness of the algorithm. Here, we
extend the method to solve the districting and the scheduling part simultaneously.

We assume that we start with a set of salesmen’s offices and a set of customers, including
information on the customers’ requirements regarding visiting frequency and amount of service
time. The tasks for the MPSDP include partitioning the customers into districts for the sales-
men (the districting part) and, at the same time, allocating the customers to weekly schedules
(the scheduling part). Both parts aim for the same favourable attributes: geographical com-
pactness and workload balance. For the districting part, the measurement of the compactness is
the centre-based distance between a salesman’s office and customers allocated to the office. At
the same time, the workload in a district, which is calculated from the total workload to serve
the assigned customers in the whole planning horizon, has to be within an acceptable range.
The main reason for this is that the workload balance on the district level indicates fairness
among salesmen, so it is a top priority. In the case of the scheduling part, the compactness and
the workload in each weekly schedule are measured in a similar way as in Chapters 3 and 4.
Also, we allow the weekly schedules to be infeasible in terms of weekly workload balance during
the search to increase the search space. To prevent the search from focusing on those infeasible
solutions too much, we penalise them by a self-adjusting penalty factor.

107

We formulate a solution for the MPSDP that contains the necessary information for every
district. For each district, we record the set of allocated customers and the information on
weekly schedules, i.e., a vector of customers who are week centres and a vector of week patterns
of every customer.

Let D = {1, . . . , |D|} be the set of districts. A solution of the MPSDP is represented by
D ≡ (D1,D2, . . . ,D|D|), where Di is a solution for district i ∈ D which is defined in the
following way:

Di ≡ (Bi, ωi, ρi), where Bi ⊆ B is the set of allocated customers in district i. Similarly to
a solution for the scheduling part in the previous chapters, ωi and ρi are a vector of customers
who are week centres and a vector of week patterns of customers, respectively, i.e.,

• ωi ≡ (ωi1, ω
i
2, . . . , ω

i
|W |), where ωiw is the customer who is the week centre of district i in

week w, for w = 1, 2, . . . , |W |. Note that any week centre is not required to be in the
district because it is only for measuring the compactness of the weekly schedules.

• ρi ≡ (ρi1, ρ
i
2, . . . , ρ

i
|Bi|), where ρib is the week pattern of customer b ∈ Bi in district i. The

corresponding information of ρi is δ(ρi) to evaluate the total excess of weekly workloads
from an acceptable range during the planning horizon.

The objective value of Di contains two parts of the compactness measurement: the total
centre-based distance of the district and the total centre-based distance arising from the weekly
schedules. Let cbi be the distance between customer b ∈ Bi and the centre of district i, and cbn
be the distance between customer b and n, for b, n ∈ B. For the scheduling part, we define Bi

w

as the set of customers of district i to be served in week w. It is straightforward to derive this
set from the information of ρi, as shown in Chapter 4. Also, we have φ as the penalty factor to
penalise infeasible weekly schedules.

Let ComDis(Di) and ComSch(Di) be the compactness on the district level and on the
week level, which are calculated as follows:

ComDis(Di) =
∑
b∈Bi

cbi (5.1)

ComSch(Di) =
∑
w∈W

∑
b∈Bi

w

cb,ωw + φ · δ(ρi). (5.2)

The objective value of Di represented by z(Di) is calculated as

z(Di) = λ · ComDis(Di) + (1− λ) · ComSch(Di) (5.3)

where λ is a weight of how much emphasis we put on the compactness on the district level.
Then, the objective value of D, z(D), is the sum of the objective values of every district,

i.e.,

z(D) =
∑
i∈D

z(Di). (5.4)

A feasible solution D that we accept during the search has to pass two requirements. First,
the assignment of customers to districts must be complete and exclusive, i.e., ∪i∈DBi = B and
Bi∩Bj = ∅, for i, j ∈ D, i 6= j. This is to guarantee that a customer will be served by a unique
salesman during the planning horizon. Moreover, we do not accept any solution that violates
the workload balance of districts in the algorithm. In particular, every solution Di, i ∈ D has
to satisfy Constraints (2.16) and (2.17), as follows:

(1− τdis)µdis ≤ size(Di) ≤ (1 + τdis)µdis

where size(Di) =
∑
b∈Bi

tb·|W |
rb

is the size of district i ∈ D which is the total workload during

the planning horizon in the district. µdis =
∑
b∈B

tb|W |
rb|D| is the average workload of districts,

and τdis is a predefined maximum deviation from the average workload.
To derive an initial solution to start the algorithm, we first solve the classical sales districting

problem to partition customers into districts. We adapt the part of the model formulation of
the MPSDP in Section 2.4.2 of Chapter 2 that relates to partitioning customers. The adapted
formulation is presented in the following (AllocationDis), where vbd are the binary variables to

108

decide if customer b ∈ B is allocated to district d ∈ D.

min
∑
d∈D

∑
b∈B

cbdvbd (AllocationDis)

s.t.
∑
d∈D

vbd = 1 b ∈ B (5.5)

∑
b∈B

tb · |W | · vbd
rb

≥ (1− τdis)µdis d ∈ D (5.6)

∑
b∈B

tb · |W | · vbd
rb

≤ (1 + τdis)µdis d ∈ D (5.7)

vbd ∈ {0, 1} b ∈ B, d ∈ D.

The objective function is to maximise the compactness on the district level. Constraints
(5.5) guarantee the exclusive and complete assignment of customers. The workload balance
of districts is ensured by Constraints (5.6)−(5.7), where tb and rb are the amount of required
service time and the week rhythms of customer b ∈ B, respectively. Overall, this problem
guarantees every customer is assigned to a unique salesman, while the workload in each district
is within an acceptable range.

We derive the set Bi for each district i ∈ D from the values of variable vbd, for b ∈ B, d ∈ D,
as follows: b ∈ Bi, if vbi = 1, for b ∈ B, i ∈ D.

Next, in district i with set Bi, we derive the information of weekly schedules, ωi and ρi, in
the same way as an initial solution for the scheduling part in Chapter 4. We select an initial
week centre each week randomly among specific customers in the district. Those customers
are the ones who have the smallest week rhythm in the planning horizon. Then, we run the
allocation-location heuristic to improve the quality of weekly schedules. Note that now any
customer in B can be a week centre without having to be in the district. We prefer feasible
weekly schedules to start the algorithm. In the case where we get infeasible weekly schedules
from the location-allocation heuristic, we start with a new vector of random initial week centres
and repeat the process. We allow the repetitions for at most a fixed number of times.

In the algorithm, we run a separate tabu search to improve the districting part and the
scheduling part of a solution iteratively. In particular, we run the tabu search algorithm for the
districting part to exchange customers between their adjacent districts. Then, in each district,
we run the tabu search for the scheduling part to improve the quality of weekly schedules
corresponding to a new set of allocated customers. Chapter 4 has already presented the tabu
search algorithm to improve the scheduling part: the tabu search algorithm with the mixed
neighbourhood. Here, we will describe the tabu search for the districting part and how to
integrate these two parts in the main algorithm.

5.1.1 Tabu Search for the Districting Part

Regarding the tabu search algorithm for the districting part, we have two simple operations:
moving a customer to an adjacent district and swapping two customers whose districts are
adjacent. To search for an adjacent district(s) for each customer b ∈ B, we investigate the
customers who are closest to customer b and check their districts. If those customers belong to
different districts from that of b, those districts are deemed neighbouring and become options
for a new district for b.

Namely, for customer b, we create a list Lb to sort all customers b′ ∈ B\{b} in non-decreasing
order of cb,b′ (the distance between b and b′) so that customers who are closest to b are the
first elements. To focus only on customers who surround b, we limit the number of customers
to investigate in Lb corresponding to a parameter γ, 0 < γ < 1. Let Nγ = γ · |B| be the
reduced number of customers to investigate in list Lb. In particular, the value of γ should be
small enough to investigate just the customers who are closest to b. We consider the first Nγ
customers in Lb and check their current districts. If any of them is in a different district from
the current district of b, we record those customers in a set B̂bγ . If the set is not empty, there
is a candidate(s) for a new district of customer b in the search.

109

Assume that we have a current solution D. We define Move(b, i, k) as a move operation for
moving any customer b from the current district i to a new adjacent district k. After we apply
the move operation, we update the information of district i and k that gets changed: their size
and their new objective values from the districting part and the scheduling part.

The size of districts that are affected by the move operation are updated in the following
way,

size(Di) = size(Di)− tb · |W |
rb

(5.8)

size(Dk) = size(Dk) +
tb · |W |
rb

. (5.9)

Then, we update the objective values of the changed districts. A way to update the objective
value of the districting part and the scheduling part for those districts is simple: we delete any
related information of customer b in the old district and add it to the new district. The updated
objective value of the districting part of each district is represented below.

ComDis(Di) = ComDis(Di)− cbi (5.10)

ComDis(Dk) = ComDis(Dk) + cbi. (5.11)

Regarding the updated objective value of the scheduling part, in tabu search for the dis-
tricting part, we do not focus on improving any weekly schedule. Therefore, we approximate
the objective value of the scheduling part. We keep the week centres of the old district and
the new district and update only the week pattern of customer b in the new district. The new
week pattern for customer b in district k, ρk∗b , is the one that has the least total centre-based
distance between b and the corresponding week centre vector ωk, i.e.,

ρk∗b = arg min
p∈Pb

∑
w∈W

ψwp cb,ωk
w
. (5.12)

Then, the updated (approximate) compactness of the scheduling part of the old district and

the new district, represented by ComSch(Di) and ComSch(Dk), are calculated as

ComSch(Di) = ComSch(Di)−
∑
w∈W

ψwρib
cb,ωi

w
(5.13)

ComSch(Dk) = ComSch(Dk) +
∑
w∈W

ψwρk∗b
cb,ωk

w
(5.14)

where ρib and ρk∗b are the week patterns of b in the old district and the one from Equation (5.12)
in the new district, respectively.

Now, we have the updated objective value in both districting and scheduling part for the old
district and the new district, resulting in the new objective value for a neighbouring solution
after one move operation. Note that we only accept a solution if every district does not violate
the workload balance of the districts, i.e., every district of the solution satisfies Constraints
(2.16) and (2.17).

The above steps related to the move operation Move(b, i, k) on a solution D are presented
in Algorithm 15 (Move(D, b, i, k)).

For the case of swapping customers between two adjacent districts, we apply the move oper-
ation twice. For example, to swap b1 and b2 whose current districts are disb1 and disb2 , respec-
tively, in solution D, we apply Move(D, b1, disb1 , disb2) and then apply Move(D, b2, disb2 , disb1).
The updated solution D after applying these algorithms is a neighbouring solution after swap-
ping two customers between their districts.

To create the districting neighbourhood, we use the move operation to move one customer
to an adjacent district or swap two customers whose districts are adjacent. After finishing the
search in the neighbourhood, we store the best neighbouring solution and record the tabu(s) on
the tabu list. The tabu here is a customer who has changed their district and their old district.
For example, if we move customer b from the current district disb to a new one, the tabu is

110

Algorithm 15 The Operation to Move Customer b From District i to District j on a solution
D (Move(D, b, i, k))

Input: D, b, i, k
1: Bi = Bi \ {b} . Delete the customer from the old district
2: Bk = Bk ∪ {b} . Add the customer to the new district
3: Update size(Di) and size(Dk) by Equation (5.8) and (5.9), respectively
4: Update the objective value of Di in the districting part and the (approximate) scheduling

part by Equation (5.10) and (5.13)
5: Update the objective value of Dk in the districting part and the (approximate) scheduling

part by Equation (5.11) and (5.14)
Output: D

(b, disb). For the case of swapping two customers, we change the allocation of those customers
to their new districts, so we record two tabus in the list. The tabu list has a fixed length, so
each tabu stays in the list for a fixed number of iterations.

Algorithm 16 shows the search in the districting neighbourhood. Assume that we have the
current solution D and the tabu list TD. Let z∗ be the best neighbouring solution value in the
neighbourhood and D′ be a neighbouring solution. In the algorithm, we focus only on customers
who have a new district(s) to move to, i.e., by investigating which districts their surrounding
customers belong to. In the exhaustive search, we explore every customer who has options of a
new district to move in set B where B = {b | b ∈ B and B̂bγ 6= ∅}. Line 5 shows that we apply
the move operation for moving one customer to their adjacent district if it does not cause a tabu
violation. Then, we check if a neighbouring solution is feasible in terms of the workload balance
of districts and better than the currently best neighbouring solution, as shown in Line 6. If it
passes these conditions, we update z∗, and D∗ as the new best neighbouring solution. Also,
we update a tabu from the currently best neighbouring solution in set L∗ in Line 10. For the
case of swapping customers, we repeat the process of moving another customer in Lines 12−19.
Finally, an element(s) in set L∗, which is recorded as a tabu(s) from the best neighbouring
solution, is used to update the tabu list; see Line 23.

Reduced-size Districting Neighbourhood

To improve the effectiveness of the search, we focus on customers who are furthest from their
current district centres. We investigate the distance between customer b ∈ B and the centre of
their current district disb or cb,disb . We create a list LFC that contains the customers b ∈ B in
non-increasing order with respect to cb,disb . Therefore, the first customers on the list are the
furthest ones from their district centres who can move to other districts. Let Nε = ε · |B| be
the reduced number of customers corresponding to a parameter ε ∈ R, 0 < ε < 1. We record
the first Nε customers of list LFC in a set Bε. In Line 1 of Algorithm 16, we replace set B with
set Bε. This limits the search in the districting neighbourhood to the customers who should
move to other districts. We call the reduced-size districting neighbourhood with the positive
parameter ε the ε-reduced-size search on the districting neighbourhood (ε-D).

Framework of Tabu Search for Districting Part

In the tabu search for the districting neighbourhood, we perform at least one iteration of the
search to guarantee a change in districts, and then repeat it for at most a fixed number of
iterations or until there is no improvement in the current solution. As we move only a few
customers per iteration, the set Bε is unlikely to change for the reduced search. Therefore,
in that case, we update the set Bε only once before every time we start the tabu search for
the districting part. When any of the stopping criteria is reached, the next step of the main
algorithm is to run the tabu search for the scheduling part in each district. Note that during
the tabu search algorithm for the districting part, the objective values of the scheduling part of
changed districts are calculated approximately by Equations (5.13) and (5.14). Therefore, at
the end of the tabu search for the districting part, we improve the quality of weekly schedules

111

Algorithm 16 Exhaustive Search in Districting Neighbourhood of solution D (ED(D))

Input: D, TD
Initial:

z∗ := 1e10
1: for all b1 ∈ B do
2: for all b2 ∈ B̂b1γ do . Observe the set of surrounding customers
3: D′ := D
4: if (b1, disb2) /∈ TD then
5: Apply Algorithm Move(D′, b1, disb1 , disb2)

. Shift a customer to an adjacent district
6: if D′ does not violate the workload balance of districts and z(D′) < z∗ then
7: z∗ := z(D′)
8: D∗ := D′

9: L∗ := ∅
10: L∗ ∪ {(b1, disb1)} . Update the set of tabu
11: end if
12: if (b2, disb1) /∈ TD then
13: Apply Algorithm Move(D′, b2, disb2 , disb1)

. Repeat the move operation for swapping the customers
14: if D′ does not violate the workload balance of districts and z(D′) < z∗ then
15: z∗ := z(D′)
16: D∗ := D′

17: L∗ ∪ {(b2, disb2)}
18: end if
19: end if
20: end if
21: end for
22: end for
23: Add every element in L∗ to TD . Update the tabu list

Output: D∗

112

in each district by applying the location-allocation heuristic, before starting the tabu search to
improve the weekly schedules in each district further.

The tabu search algorithm for the districting part is presented in Algorithm 17. The pa-
rameter NDis is the maximum number of iterations which is one of the stopping criteria. i is a
counter of the total number of iterations. To ensure that we change customers in some districts,
we perform at least one iteration of the search and update the best neighbouring solution in D;
see Line 2. Note that for the reduced search, we update set Bε only once at the beginning of the
tabu search. The stopping criteria of the algorithm are either non-improvement on the current
solution D′ or the maximum number of iterations. Line 13 shows how to update the weekly
schedules of each district at the end of the algorithm. It is similar to the location-allocation
heuristic in the previous chapter. Here, we start the heuristic by solving the allocation problem
with the current week centres of a district.

Algorithm 17 Tabu Search for the Districting Part

Input: D, TD
Parameter: NDis
Initial:

i := 1
1: Update set Bε in case of the reduced search
2: D = ED(D) . Perform at least one iteration of Algorithm 16
3: while i < NDis do
4: i := i+ 1
5: D′ = ED(D)
6: if z(D′) < z(D) then
7: D = D′ . Update the current solution for the next iteration
8: else
9: Break . Stop the algorithm due to non-improvement on the current solution

10: end if
11: end while
12: for all j ∈ D do

13: Update ωj and ρj of D
j

by the location-allocation heuristic . Update the weekly

schedules of D
j

14: end for
Output: D

5.1.2 Integrated Tabu Search for the MPSDP

Now, we have the tabu search algorithm for the districting part. In the main tabu search
algorithm that integrates the districting part and the scheduling part, we run the tabu search
to improve each part separately. For the districting part, we stop the corresponding tabu search
algorithm when we reach the maximum number of iterations, or there is no improvement in
the current solution. For the scheduling part, the stopping criterion is the maximum number
of iterations. Note that the number of iterations in tabu search for both parts are independent.

When we start the tabu search for the scheduling part after updating customers in districts,
we reinitialise the tabu lists of the mixed neighbourhood since we will search for weekly schedules
for a new set of customers. Also, we update the length of the tabu list of the week patterns
as it is related to the number of customers who do not require weekly services, which might
be changed in the new set of customers. However, we still keep the probabilities of selecting
a neighbourhood in the mixed neighbourhood, as the majority of customers in a district are
almost the same and we believe that favourable neighbourhoods to find good weekly schedules
for them are unlikely to change.

We iteratively improve each part until we reach the stopping criterion for the main algorithm,
which is also the maximum number of iterations. Later, to avoid confusion, we define a sub-
iteration as an iteration in the tabu search for improving either the districting part or the
scheduling part, while a main iteration is an iteration in the main algorithm.

113

The tabu search algorithm to solve the MPSDP is presented in Algorithm 18, where NDis
and NSch are the maximum number of sub-iterations to run tabu search for the districting part
and the scheduling part, respectively, while NMain is the maximum number of main iterations
in the main algorithm. The counter of the main iterations is represented by it. Assume that
we have an initial solution D0 that is derived by solving (AllocationDis). Since the weekly
schedules in each district of the initial solution are simply derived by the location-allocation
heuristic, we improve them further by tabu search for the scheduling part; see Line 2. Then,
we update the initial solution as the best neighbouring solution D∗. This process is counted
as one main iteration as the solution has been updated by the tabu search for the scheduling
part. In each main iteration, we apply tabu search for the districting part and then scheduling
part, and update the better neighbouring solution, if we find one, as shown in Lines 6−13.
Note that before we run the tabu search for the scheduling part, we reinitialise the tabu lists
for every neighbourhood in the mixed neighbourhood. However, we still keep the information
on the probabilities of selecting a neighbourhood in each iteration. The algorithm stops after
the main iteration reaches Nmain.

Algorithm 18 Tabu Search for solving the MPSDP

Input: D0

Parameter: NDis, NSch, NMain

Initial:
it := 1

1: for all i ∈ D do
2: Run Algorithm 14 on solution D0,i for NSch sub-iterations

. Improve the scheduling part of the initial solution
3: end for
4: D∗ := D0 . Update the best neighbouring solution
5: while it < Nmain do
6: Find the best non-tabu solution D′ in Algorithm 17 for at most NDis sub-iterations

. Run tabu search for the districting part
7: for all i ∈ D do
8: Run Algorithm 14 on solution D′,i for NSch sub-iterations

. Run tabu search for the scheduling part
9: end for

10: if z(D′) < z(D∗) then
11: D∗ := D′ . Update the best neighbouring solution
12: end if
13: it := it+ 1 . Increment the number of the main iterations
14: end while

Output: D∗

5.2 Data Generation and Programme Set-Up

All of the results presented in this section are derived from the same machine that performed
the experiments in Chapters 3 and 4.

We generate random large data instances that contain a group of 100, 200 and 300 customers.
For each group of customers, there are three sets of possible week rhythms with a different
planning horizon, which are the same as in Section 2.5. As a result, we have nine combinations
of the number of customers and the set of possible week rhythms. We use the same notation
to call each combination. For every combination, we generate 5 data instances randomly so
there are 45 instances in total in the experiment. Similarly in Chapter 4, for the tabu search
algorithm, we collect five repetitions of the experiment per data instance to obtain more reliable
statistical results. Therefore, there are 25 results per combination and 225 results in total. Note
that a large number of customers makes the problem significantly more difficult to solve.

For each instance, we derive the information on every customer, i.e., the week rhythm, the
constant service time, and the location, in the same way as in the previous experiments: see

114

Section 2.5 for more details. The additional information for this experiment is the locations of
salesmen. We assume that one salesman is responsible for around 50 customers. Therefore, there
are two, four, and six offices for salesmen for the data sets with 100, 200, and 300 customers,
respectively. The two coordinates that represent the locations of the salesmen’s offices follow
an independent continuous uniform distribution between 2 and 8. This is to prevent any of
the offices from being located too close to the boundary of the area. Regarding the maximum
deviation from the workload on the district level and the on week level, the values of τdis and
τweek are 0.02 and 0.1, respectively. The weight of the compactness on the district level (λ) is
0.5, which means we equally emphasise the compactness on both levels.

In this experiment, we set the results from the Benders’ decomposition of CPLEX as our
benchmark, since it is the exact solution approach that performed best overall for the more
complicated data instances (see Chapter 3). We set up CPLEX to run on a single thread with
no pre-processing. The satisfactory tolerance level between the bounds of the objective value
is 0.01%, which is the default value for CPLEX. The maximum computational time for each
data instance is 3600 seconds (1 hour).

Regarding the extended tabu search, the stopping criterion for the main algorithm is 20 main
iterations (i.e., NMain is 20). For the tabu search of the districting part, the maximum number
of sub-iterations, NDis, is 10. The length of the tabu list TD is NDis

2 . For every customer, the
positive parameter γ to limit the number of surrounding customers is 0.2. In the case of the
reduced search in the districting neighbourhood, the parameter ε ∈ {0.1, 0.3, 0.5}.

For the tabu search of the scheduling part in district i ∈ D, NSch is set to 100 for the
stopping criterion. We use the mixed neighbourhood from Chapter 4 which consists of three
neighbourhoods: the week centre neighbourhood with QAP, the switching neighbourhood with
the aspiration criterion, and the swapping neighbourhood with the aspiration criterion and the
30% size-reduced neighbourhood. The two tabu lists in the mixed neighbourhood still have the
same length as in Chapter 4. Finally, let |TWC | and |TWP | be the length of the tabu list for
the week centre neighbourhood and the week pattern neighbourhoods respectively, i.e.,

|TWC | =
⌊
|W |

2

⌋
,

|TWP | =

1

4

∑
b∈Bi

NW

rb

where Bi

NW is the set of customer in district i who do not require weekly service. The rest of
the parameters in Algorithm 14 are also the same as in the experiment in Chapter 4.

5.3 Computational Results

In this section, we select the Benders’ decomposition algorithm in CPLEX as a benchmark for
the extended tabu search and show that it struggles to solve data instances with more than 100
customers. Also, we investigate the quality of the initial solutions of the tabu search compared
to the benchmark. Then, we show the results of the extended tabu search with different
configurations. We present the results of the reduced search in the districting neighbourhood
and discuss their performance. We emphasise the advantage of the districting neighbourhood
by comparing the results of our algorithm to those of the tabu search without the districting
neighbourhood. We then compare our method to the Benders’ decomposition algorithm from
CPLEX. Finally, we prove the effectiveness and the efficiency of the tabu search algorithm by
comparing it to built-in heuristics in CPLEX.

As in Chapter 4, we compare the results in terms of the relative percentage deviation,
where positive values imply better performance. We count the number of comparable and
better results. Additional information of interest is the average computational time in each
combination.

115

Data
Best

%Gap
%Gap

Worst
%Gap

Max
#Better

Total
time (s)

100 1 0.01 1.18 3.39 20 3316.2
100 2 10.41 17.93 22.69 25 3615.8
100 3 48.23 51.44 54.51 25 3629.2

200 1 x x x 25 3610.1
200 2 x x x 25 3602.8
200 3 x x x 25 3600.2

300 1 x x x 25 3610.5
300 2 x x x 25 3615.3
300 3 x x x 25 3630.1

Total 220

Table 5.1: The information about the best-found solutions by the Benders’ decomposition
algorithm in CPLEX.

5.3.1 Benchmark for Tabu Search

Table 5.1 presents the results from the Benders’ decomposition algorithm in CPLEX, which will
be a benchmark for the extended tabu search. For each combination, we present information
for the relative percentage gap between the lower bound and the upper bound on the objective
value, where Columns Best %Gap, %Gap, and Worst %Gap show, respectively, the best, the
average, and the worst relative percentage gap among the 5 data instances. As the method
cannot find any feasible solution within the given time for any instance with more than 100
customers, we do not have any information for those cases. Therefore. we print an ‘x’ in these
columns. Column Max #Better shows the number of results that find a better solution. This is
limited by the number of instances that can find the optimal solution. The last column, Total
time (s), presents the average computational time in seconds for each combination.

The table shows that under the limitation of time the method can find feasible solutions only
for instances with 100 customers. Also, it can find the optimal solution only in one instance
of 100 1. As every instance has 5 results from repetitions, we cannot find better solutions in 5
results out of 25 so Max #Better in this case is 20. For the rest of the combinations with 100
customers, the relative percentage gaps are high, especially for 100 3. For every instance with
200 and 300 customers, the exact solution approach cannot find any feasible solution within 1
hour. Therefore, if our method can find any feasible solution under the same limitation of time,
it means that our method outperforms the exact solution approach. The number in the last
row of Max #Better is the maximum possible total number of results that can be better than
the benchmark.

5.3.2 Comparison between the Initial Solutions and the Benchmark

Before we investigate the effectiveness of the tabu search algorithm, we check the quality of
the initial solutions first. In this section, we check the solution quality in terms of the relative
percentage gaps compared to the benchmark from CPLEX. Here, we focus on the compactness
on the district level and on the week level to see the solution quality more closely. Then, we
check the objective function value for the overall performance.

We can derive an initial solution for every data instance within a second, even for data
instances that contain 200 and 300 customers. In those cases, we conclude immediately that
our initial solution is better, as the benchmark is not able to derive any solution. Therefore,
here we will focus on only the performance of the algorithm for the data instances with 100
customers.

Tables 5.2 and 5.3 show the comparison in terms of the compactness on the district level and
on the week level, respectively. For each combination, we focus on the worst, the average, and
the best percentage gap among 25 results, as shown in Columns Worst %Gap*, %Gap*, and Best

116

Data
District Level

Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 0.12 6.11 16.60 25 25
100 2 3.47 6.76 16.85 25 25
100 3 3.97 9.82 18.88 25 25

Total 75 75

Table 5.2: The performance of the initial solutions in terms of the compactness on the district
level for the data instances with 100 customers.

%Gap*, respectively. The number of comparable results and that of better results compared
to the benchmark are presented in Columns #Good (75) and #Better (75), respectively. The
number in brackets shows the maximum possible total number of results in each aspect. Note
that it is possible to get better compactness on the district level or on the week level in every
case so the maximum total number of cases for the better results is the total number of results
for the data instances with 100 customers.

In terms of the compactness on the district level, our initial solution is better in every
case: see the positive values of Worst %Gap* and the total of #Better. However, the quality
on the week level is the opposite for less complicated combinations; for 100 1 and 100 2, the
corresponding negative values in %Gap* shows that the initial solution tends to be worse than
the benchmark. Moreover, the number of #Good and #Better in these two combinations are
less than a fifth of the corresponding possible cases. For 100 3 which is the most complicated
combination in the consideration here, the compactness on the week level from the initial
solutions outperforms the benchmark in every possible case.

To see the overall performance, Table 5.4 compares the initial solutions to the benchmark
in terms of the objective value. In this table, the number of results where the initial solutions
are better than the benchmark is shown in Sub-column Initial of Columns #Better. Here, the
possible cases for better results depend on the number of data instances where we find the
optimal solutions. Therefore, a limit of each combination is presented in Sub-column Max of
Columns #Better, which is the same as in Column Max #Better of Table 5.1. Moreover, we
investigate if the initial solutions are the same as the optimal solutions found by the benchmark,
as shown in Sub-column Initial of Columns #Opt. Note that the benchmark can find the optimal
solution in only one data instance of the combination 100 1. A s we do not have information
about the optimal solutions, except for the combination 100 1, we present ‘x’ in Columns #Opt
for such cases.

For 100 1 and 100 2, the negative value of %Gap* and a small number of #Good and
#Better indicate that the initial solutions of most results are worse than the benchmark. This
implies that in those results better performance on the district level cannot compensate for the
deteriorating quality on the week level. Moreover, the initial solutions are not optimal in the
possible cases of 100 1: see the corresponding number of #Opt. However, the initial solutions
in 100 3 are better in every case. As a result, we gain comparable and better results for the
data instances with 100 customers in, respectively, 45% and 48% of the total number of possible
cases. The results show that CPLEX is capable of finding good-quality solutions only for the
less complicated instances in the experiment such as 100 1 and 100 2. Nevertheless, in such
cases, the initial solutions are comparable or better than the benchmark in less than half of the
possible cases.

In conclusion, the initial solutions are quick to derive, even for complicated data instances
with 200 and 300 customers where CPLEX cannot find any solution within an hour. However,
when we compare the solution quality for the less complicated data instances where CPLEX
manages to find good solutions, the initial solutions struggle to outperform the benchmark.
Therefore, we will improve the quality of the initial solutions by tabu search, as shown in the
next sections.

117

Data
Week Level

Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 -37.86 -11.05 0.49 4 4
100 2 -13.87 -4.20 8.67 5 5
100 3 2.52 22.59 31.95 25 25

Total 34 34

Table 5.3: The performance of the initial solutions in terms of the compactness on the week
level for the data instances with 100 customers.

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better #Opt

Initial Max Initial Max

100 1 -19.00 -5.51 0.39 4 4 20 0 5
100 2 -6.55 -1.77 7.97 5 5 25 x x
100 3 6.42 20.52 28.40 25 25 25 x x

Total 34 34 70 0 5

Table 5.4: The performance of the initial solutions in terms of the objective value for the data
instances with 100 customers.

5.3.3 Effectiveness of Different Size Reductions on the Districting
Neighbourhood

Now we investigate the effectiveness of the reduced search in the districting neighbourhood.
As we do not have a benchmark from CPLEX for instances with 200 and 300 customers, we
compare the results of the reduced search to those of the exhaustive search. In other words, the
exhaustive search is a benchmark in this case for calculating the relative percentage gaps. We
evaluate the solutions in the same way as in Section 5.3.2, i.e., the compactness on the district
level, on the week level, and the objective value.

Table 5.5 shows the relative percentage gaps in terms of the compactness on the district
level. ε-D represents the reduced search in the districting neighbourhood with respect to a
value of parameter ε. As we compare the results to the tabu search with the exhaustive search,
which is a heuristic and does not guarantee the optimality condition, it is possible to find a
better solution than the benchmark in every result. Therefore, the maximum total number of
#Better is also 225, as shown in the brackets of the column header.

Overall, 0.1-D is superior in every aspect. It has the highest total of #Good and #Better,
which are 90% and 88% of the possible total number of cases, respectively. In particular, when
the number of customers increases, 0.1-D manages to improve the quality of the compactness
of districts in almost every result: see Column #Better of 0.1-D. Therefore, the reduced search
in the districting neighbourhood improves the compactness on the district level in terms of the
relative percentage gaps.

Although the reduced search improves the compactness on the district level, it affects differ-
ently the compactness of weekly schedules, as we have seen in Section 5.3.2. In Table 5.6, the
relative percentage gaps tend to be worse when we reduce the search space in the districting
neighbourhood: note the decreasing number of #Good and #Better. There is a conflict be-
tween the compactness on the district level and on the week level, i.e., a highly compact district
does not necessarily result in highly compact weekly schedules. This is not surprising as the
compactness of weekly schedules does not only rely on the locations of customers but also their
week rhythms.

As we equally emphasise the districting part and the scheduling part, the deteriorating
weekly schedules in the reduced search affect the quality of the objective values, as shown in
Table 5.7. Although the districting part is improved in the reduced search, it is, again, not

118

D
a
ta

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tt

e
r

(2
2
5
)

0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D

10
0

1
-6

.9
8

-1
.3

3
-1

.3
2

-0
.2

1
0.

39
1.

82
4
.7

6
7.

2
3

13
.2

7
21

9
14

2
8

1
4

10
0

2
-4

.1
0

-3
.5

9
-0

.4
6

-0
.5

6
-0

.3
9

3
.9

2
1.

09
1.

65
15

.7
9

1
2

1
5

2
3

5
11

2
2

10
0

3
-4

.5
9

-7
.6

4
-1

.2
2

-0
.2

3
0.

30
1.

25
4
.9

0
5.

6
4

6.
44

1
0

1
5

1
7

7
1
1

1
6

20
0

1
-2

.7
2

0.
0
6

0.
43

0
.1

8
1.

54
2.

82
3
.9

4
4
.5

1
7
.6

1
1
6

2
5

2
5

1
6

2
5

2
5

20
0

2
-2

.2
1

-0
.3

0
-0

.1
6

0.
4
0

1.
25

1.
95

1.
68

2
.7

4
3.

33
1
9

2
4

24
19

24
2
4

20
0

3
-0

.8
2

-1
.2

0
-0

.5
1

0.
4
2

1.
31

2.
14

1.
45

3
.2

3
4.

54
1
9

2
2

24
18

22
2
4

30
0

1
-4

.4
0

-1
.4

7
0.

45
0.

18
1
.3

1
2
.1

1
2.

91
3.

89
4.

89
1
8

2
0

2
5

1
8

2
0

2
5

30
0

2
-0

.2
9

-0
.5

1
0.

62
1.

02
1
.1

5
2
.2

8
2.

79
4.

00
5.

23
2
2

2
1

2
5

2
1

2
1

2
5

30
0

3
-0

.2
0

0.
0
4

-1
.0

9
1.

19
2
.5

6
2
.6

9
5.

24
5.

31
5.

65
2
3

2
5

2
4

2
3

2
5

2
4

T
o
ta

l
16

0
1
7
6

20
1

12
9

16
7

1
99

T
ab

le
5.

5:
T

h
e

p
er

fo
rm

a
n
ce

of
th

e
re

d
u

ce
d

se
a
rc

h
in

th
e

d
is

tr
ic

ti
n

g
n

ei
g
h
b

o
u

rh
o
o
d

in
te

rm
s

o
f

th
e

co
m

p
a
ct

n
es

s
o
n

th
e

d
is

tr
ic

t
le

ve
l.

119

D
a
ta

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tte

r
(2

2
5
)

0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D

100
1

-3.93
-4.86

-12.42
0
.09

-0
.30

-1.70
3.95

1.31
2.62

2
1

17
1
3

7
16

13
100

2
-4.95

-5.42
-13.31

-0.08
-0.4

8
-1.97

1
.4

6
1
.4

6
8
.9

5
19

14
9

1
0

11
9

100
3

-6.93
-11.65

-10
.1

1
0.2

8
-1

.16
-1.39

7.45
1.70

4.69
1
3

12
1
4

12
8

14

200
1

-6.02
-6.27

-20.88
-1.04

-3.4
6

-7.67
1
.7

3
-2.04

-0.69
7

0
0

7
0

0
200

2
-16.72

-17.81
-22

.7
3

-3
.04

-4.3
1

-6.25
2
.7

1
-0.24

1.08
5

0
5

5
0

5
200

3
-7.75

-17.91
-24

.6
5

-2
.16

-7.1
0

-11.11
1.06

1.91
-0.57

4
3

0
3

3
0

300
1

-9.95
-14.30

-16
.3

5
-1

.97
-4.9

6
-8.94

6
.5

7
0
.6

2
-1.54

5
1

0
5

1
0

300
2

-15.08
-17.90

-27
.7

4
-3

.87
-5.6

4
-9.24

0
.8

3
-1.11

-3.09
4

0
0

4
0

0
300

3
-7.72

-9.96
-11.78

-3.24
-6.9

9
-8.47

-0.05
-3.57

-4.47
0

0
0

0
0

0

T
o
ta

l
7
8

47
41

53
3
9

4
1

T
ab

le
5
.6

:
T

h
e

p
erfo

rm
an

ce
o
f

th
e

red
u
ced

sea
rch

in
th

e
d

istrictin
g

n
eig

h
b

o
u

rh
o
o
d

in
term

s
of

th
e

com
p

actn
ess

on
th

e
w

eek
level.

120

enough to compensate for the deterioration of the schedules. Therefore, the overall quality
of the results is not high, especially when instances become more challenging. 0.5-D has the
highest total of #Good and #Better which are, however, only 33% and 20% of the possible
total number of cases, respectively.

Table 5.8 shows information for the average computational time, where we highlight the
best average time in bold for each combination. Note that ED is the extended tabu search
with the exhaustive search in the districting neighbourhood. The reduced search tends to
spend less amount of time on average for the more complicated combinations, such as 100 3,
200 3, 300 1, and 300 3. For 100 3, the reduced search can improve the average time by 32 -
43%. For the rest of those complicated combinations, the reduced search spend between 2%
and 21% less computational time on average. However, it is not clear if the smaller search
space in the districting neighbourhood can save more computational time. The tabu search
for the districting part is usually finished within a second, so the main computational time of
the extended tabu search comes from running the tabu search for the scheduling part in every
district sequentially. Therefore, a more effective way to reduce the computational time is to
solve the tabu search for the scheduling part of every district in parallel.

Although the reduced search spends less computational time, it is not enough to compensate
for the low quality of the objective values. Therefore, we conclude that ED has a better
performance than the method with the reduced search.

5.3.4 Advantages of the Districting Neighbourhood

Next, we show the benefit of the districting neighbourhood in the extended tabu search. We
collect the results of the extended tabu search without the districting neighbourhood. In such an
algorithm, we solve the classical sales districting problem to partition customers into districts
and then run only the tabu search for the scheduling part. The maximum total number of
iterations for the scheduling part is 2000 in every district, which is the same total number of
sub-iterations for the scheduling part in every district for the extended tabu search algorithm.
We call this algorithm NoDis. This algorithm was suggested in Bender et al. (2016) to solve
the MPSDP, i.e., solving the districting part and the scheduling part sequentially. We set up
NoDis as a benchmark for ED, which is our best algorithm now, where a positive value for
the relative percentage gap indicates that ED has superior performance. Again, the maximum
total number of #Better here is 225 as we compare the results with a heuristic.

The comparison in terms of the compactness on the district level and on the week level is
shown in Table 5.9. The districting part of ED is worse than the benchmark, i.e., the best
solutions of ED tend to have less compact districts: note the negative values of the relative
percentage gaps in Columns District Level. In particular, the total of #Better indicates that
every result of ED does not have a better compactness on the district level. However, ED
improves the scheduling part significantly: see the positive values of the relative percentage
gaps in Columns Week Level. Moreover, the total of #Good and #Better show that more than
98% of the possible cases are improved in the aspect. As a result, ED is superior in terms of
the objective value, as shown in Table 5.10. At least 98% of the total results achieve better
objective values.

In terms of the average computational time which is shown in Table 5.10, both algorithms
are quite competitive in the less complicated combinations, e.g., in 100 1, 100 2, and 300 1.
However, ED spends considerably more time on average in some complicated combinations.
For 100 3 and 300 3, ED spends 87% and 40% more time, respectively. Nevertheless, the
increasing time is still acceptable for deriving high-quality solutions. Therefore, we conclude
that ED is superior, which proves the advantage of the districting neighbourhood.

The above results show that we might not get high-quality weekly schedules by solving the
districting part and the scheduling part sequentially, as the most compact districts from the
classical districting problem do not give guarantees on the quality of compactness for the weekly
schedules. Figures 5.1 and 5.2 present districts and one-week schedules from the best solution
by both algorithms in an instance of 100 1, respectively. Both algorithms derived districts with
different shapes. NoDis has slightly better districts as they do not overlap: see Figure 5.1a.
However, Figure 5.2b shows that the schedules of ED are more compact. For figures of every
weekly schedule from this solution, we refer interested readers to Appendix A.

121

D
a
ta

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tte

r
(2

2
5
)

0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D
0
.5

-D
0
.3

-D
0
.1

-D

100
1

-0.92
-0

.6
8

-3.51
0
.00

0
.00

-0.46
0.42

0.67
1.68

21
10

13
6

9
1
3

100
2

-3.80
-4

.0
8

-6.18
-0

.21
-0.4

8
-0.46

0.33
0.51

7.41
15

14
9

7
10

9
100

3
-4.00

-7
.4

5
-6.74

0
.18

-0.80
-0.73

5
.18

0
.8

9
3
.9

4
13

12
14

9
7

1
4

200
1

-3.55
-3

.7
5

-1
1.45

-0
.61

-1.7
5

-4.17
0.96

-0.55
-0

.1
6

5
0

0
5

0
0

200
2

-11.61
-12

.1
1

-1
5.78

-2
.10

-2.9
2

-4.25
2.09

-0.03
0.77

4
0

5
3

0
5

200
3

-4.62
-10

.7
3

-1
4.80

-1
.30

-4.3
0

-6.72
0.59

1.10
-0.40

5
3

0
5

3
0

300
1

-4.93
-7

.2
0

-9.17
-1

.15
-2.7

5
-5.18

3.21
-0.02

-0
.7

7
5

0
0

5
0

0
300

2
-10.05

-12
.0

5
-1

8.59
-2

.56
-3.8

6
-6.24

1.02
-0.75

-2
.1

9
4

0
0

4
0

0
300

3
-4.26

-6
.0

1
-7.29

-1
.84

-3.9
8

-4.96
0.09

-2.03
-3

.1
3

1
0

0
1

0
0

T
o
ta

l
7
3

3
9

4
1

45
29

4
1

T
ab

le
5
.7

:
T

h
e

p
erform

a
n

ce
o
f

th
e

red
u

ced
sea

rch
in

th
e

d
istrictin

g
n

eig
h
b

o
u

rh
o
o
d

in
term

s
of

th
e

ob
jective

valu
e.

122

Data
Total time (s)

ED 0.5-D 0.3-D 0.1-D

100 1 60.16 65.84 74.92 65.04
100 2 83.84 81.08 101.76 83.68
100 3 299.04 168.68 200.4 175.48

200 1 158.32 160.48 199.04 190.24
200 2 224.8 222.8 263.2 221.2
200 3 492.2 461.8 390.4 437.64

300 1 371.04 364.48 305.8 300.84
300 2 342.48 397.8 358.04 349.68
300 3 994.2 873.76 844.44 784.52

Table 5.8: The average computational time of the different size reductions in the districting
neighbourhood.

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure 5.1: The districts from the best solution in an instance of 100 1.

123

D
a
ta

D
istric

t
L

e
v
e
l

W
e
e
k

L
e
v
e
l

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tte

r
(2

2
5
)

W
o
rst

%
G

a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tte

r
(2

2
5
)

1
0
0

1
-20.11

-4.28
-0

.2
5

0
0

0
.2

8
6
.6

1
24.39

25
25

1
0
0

2
-21.89

-6.19
0
.0

0
1

0
0
.0

0
7
.9

3
17.59

25
24

1
0
0

3
-8.23

-2.26
0
.0

0
2

0
-0

.0
9

4
.1

7
11.72

24
22

2
0
0

1
-11.91

-4.21
-1

.3
0

0
0

3
.8

4
9
.5

8
24.28

25
25

2
0
0

2
-7.01

-2.92
-0

.4
4

0
0

0
.2

4
7
.6

5
19.35

25
25

2
0
0

3
-5.64

-3.43
-0

.2
9

0
0

1
.4

0
1
2
.8

0
27.50

25
25

3
0
0

1
-5.49

-2.58
-0

.6
9

0
0

1
.9

2
8
.7

3
14.51

25
25

3
0
0

2
-7.19

-3.20
-1

.0
1

0
0

3
.1

7
9
.9

0
25.41

25
25

3
0
0

3
-7.64

-4.67
-1

.5
8

0
0

7
.3

2
1
0
.9

6
15.31

25
25

T
o
ta

l
3

0
224

221

T
ab

le
5
.9

:
T

h
e

p
erform

a
n

ce
o
f

th
e

ex
ten

d
ed

ta
b

u
sea

rch
co

m
p

a
re

to
th

e
o
n

e
w

ith
o
u

t
th

e
d

istrictin
g

n
eigh

b
ou

rh
o
o
d

in
term

s
of

th
e

com
p

actn
ess

on
th

e
d

istrict
lev

el
a
n

d
o
n

th
e

w
eek

lev
el.

124

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Good
(225)

#Better
(225)

Total time (s)

NoDis ED

100 1 0.14 3.85 13.24 25 25 63.56 60.16
100 2 0.00 5.35 10.42 25 24 84.16 83.84
100 3 -0.15 2.78 8.21 24 22 159.72 299.04

200 1 1.90 5.65 15.21 25 25 197.04 158.32
200 2 0.03 5.49 14.14 25 25 217.24 224.8
200 3 0.85 8.33 18.57 25 25 420.68 492.2

300 1 1.01 5.24 8.67 25 25 369.2 371.04
300 2 2.22 7.03 18.50 25 25 353.28 342.48
300 3 4.66 6.57 9.42 25 25 703.96 994.2

Total 224 221

Table 5.10: The performance of the extended tabu search compared to the one without the
districting neighbourhood in terms of the objective value.

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure 5.2: The weekly schedules for week 2 from the best solution in an instance of 100 1.

5.3.5 Improvement on the Initial Solutions by the Tabu Search

We have selected the best configuration of the tabu search algorithm to solve the MPSDP: the
exhaustive search in the districting neighbourhood (ED). Here, we investigate the improvement

125

over the initial solutions by the tabu search algorithm. Note that in terms of the objective value,
the maximum total number of possible cases for better results is the total number of results
since every initial solution has not been proved to be optimal yet.

Table 5.11 shows the comparison in terms of the compactness on the district level and on
the week level. It shows the conflict between the districting part and the scheduling part again.
The best solutions from the tabu search algorithm have worse compactness on the district level
but achieve significantly better quality for the scheduling part. The tabu search algorithm
improves the compactness on the week level in every case: see the total of #Good and that of
#Better.

We have shown in Section 5.3.2 and 5.3.4 that the quality of the compactness in the schedul-
ing part mainly influences the objective value. Table 5.12 supports the observation that the
objective value of the best solutions by the tabu search algorithm outperforms those of the
initial solutions in every case. Note that we are not interested in a number of comparable
solutions as the algorithm accepts only an improved solution from the initial solutions.

In conclusion, the results illustrate that the tabu search algorithm is an effective solution
improvement technique.

5.3.6 Comparison between the Tabu Search and the Benchmark

Now, we compare solutions from ED to those of the Benders’ decomposition in CPLEX for
instances with 100 customers. For the rest of the combinations, we immediately conclude that
the tabu search algorithm is more effective as we can derive a solution in every case.

Tables 5.13 and 5.14 show the comparison in terms of the compactness on the district level
and on week level, respectively. Note that it is still possible to have better compactness in the
districting part or in the scheduling part, so the maximum total number of cases for better
results is 75 (the total number of results of the data instances with 100 customers). In terms
of the districting part, for the combinations 100 1 and 100 2, ED finds comparable and better
results at least in half of the possible cases. For 100 3, the algorithm works well as a solution
from the tabu search is better in every possible case. In terms of the scheduling part, ED does
not perform considerably well in 100 1: see a small number of #Good and #Better. However,
ED performs well in the rest of 100 instances. Overall, the total of #Good and #Better reach
at least 76% of the possible total number of cases.

Table 5.15 shows information related to the relative percentage gaps of the objective value.
Again, we shows the information on the number of results that are comparable or better than
the benchmark. In Columns #Better, the number of better results by the tabu search algorithm
is presented in Sub-column ED. Since the benchmark can find the optimal solution in one data
instance (shown in Section 5.3.1), Sub-column Max shows a limit of the number of better results
in each case, which is the same as Column Max #Better in Table 5.1. Moreover, we check if
any best solution by our algorithm is optimal in Columns #Opt, where the information of the
maximum possible cases in Sub-column Max is the same as of Sub-column Max in Columns
#Opt of Table 5.4.

In terms of the objective value, ED struggles to find good and better results in 100 1: note
a small number of #Good and #Better. Furthermore, the number of #Opt confirms that we
still cannot find the optimal solution in the possible cases. For the rest of the combinations,
ED outperforms the benchmark. The positive values in Worst %Gap* in those cases indicate
that ED improves the objective values in every result.

Importantly, the extended tabu search finds solutions for every instance in a reasonable
amount of time, which is less than 17 minutes: see Table 5.16. Apart from 300 3, the heuristic
spends at least 86% less time than CPLEX. For 300 3 which is the most challenging instance,
the extended tabu search can still reduce the time by 70% which is a considerable amount.

The above results in terms of the solution quality and the computational times prove the
robustness of the heuristic to solve the MPSDP, especially where the benchmark cannot find
any solution within an hour.

126

D
a
ta

D
is

tr
ic

t
L

e
v
e
l

W
e
e
k

L
e
v
e
l

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tt

e
r

(2
2
5
)

W
o
rs

t
%

G
a
p

*
%

G
a
p

*
B

e
st

%
G

a
p

*
#

G
o
o
d

(2
2
5
)

#
B

e
tt

e
r

(2
2
5
)

10
0

1
-2

0.
11

-4
.2

8
-0

.2
5

0
0

0
.3

1
7
.3

9
2
7
.5

3
2
5

2
5

10
0

2
-2

1.
89

-6
.1

9
0
.0

0
1

0
0
.1

2
8
.2

2
1
7
.6

2
2
5

2
5

10
0

3
-8

.2
3

-2
.2

6
0
.0

0
2

0
1
.3

3
8
.2

3
1
4
.3

2
2
5

2
5

20
0

1
-1

1.
91

-4
.2

1
-1

.3
0

0
0

4
.3

6
1
0
.7

1
2
6
.5

7
2
5

2
5

20
0

2
-7

.0
1

-2
.9

2
-0

.4
4

0
0

0
.4

9
8
.1

2
2
1
.1

4
2
5

2
5

20
0

3
-5

.6
4

-3
.4

3
-0

.2
9

0
0

3
.6

6
1
6
.7

7
3
1
.9

8
2
5

2
5

30
0

1
-5

.4
9

-2
.5

8
-0

.6
9

0
0

3
.2

9
9
.4

8
1
5
.9

5
2
5

2
5

30
0

2
-7

.1
9

-3
.2

0
-1

.0
1

0
0

3
.7

0
1
0
.2

9
2
5
.9

8
2
5

2
5

30
0

3
-7

.6
4

-4
.6

7
-1

.5
8

0
0

8
.3

3
1
4
.4

4
2
1
.7

8
2
5

2
5

T
o
ta

l
3

0
2
2
5

2
2
5

T
ab

le
5.

11
:

T
h

e
im

p
ro

ve
m

en
t

on
th

e
in

it
ia

l
so

lu
ti

on
s

b
y

th
e

ta
b

u
se

a
rc

h
a
lg

o
ri

th
m

in
te

rm
s

o
f

th
e

co
m

p
a
ct

n
es

s
o
n

th
e

d
is

tr
ic

t
le

ve
l

a
n

d
o
n

th
e

w
ee

k
le

ve
l.

127

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Better

(225)

100 1 0.17 4.45 15.97 25
100 2 0.10 5.58 10.53 25
100 3 1.00 6.02 10.16 25

200 1 2.35 6.45 17.19 25
200 2 0.21 5.86 15.68 25
200 3 2.61 11.39 22.34 25

300 1 1.94 5.79 9.76 25
300 2 2.64 7.35 18.99 25
300 3 5.42 9.23 14.21 25

Total 225

Table 5.12: The overall improvement on the initial solutions by the tabu search algorithm.

Data
District Level

Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 -0.17 2.46 8.78 18 17
100 2 -1.36 1.37 4.25 19 16
100 3 1.62 7.86 16.07 25 25

Total 62 58

Table 5.13: The performance of the extended tabu search compared to the Benders’ decomposi-
tion method in CPLEX in terms of the compactness on the district level for the data instances
with 100 customers.

Data
Week Level

Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 -6.92 -1.77 0.81 8 7
100 2 1.25 4.74 8.93 25 25
100 3 15.55 29.11 41.50 25 25

Total 58 57

Table 5.14: The performance of the extended tabu search compared to the Benders’ decompo-
sition method in CPLEX in terms of the compactness on the week level for the data instances
with 100 customers.

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better #Opt

ED Max ED Max

100 1 -2.33 -0.52 0.57 8 5 20 0 5
100 2 1.49 4.06 8.10 25 25 25 x x
100 3 15.68 25.37 35.37 25 25 25 x x

Total 58 55 70 0 5

Table 5.15: The performance of the extended tabu search compared to the Benders’ decom-
position method in CPLEX in terms of the objective value for the data instances with 100
customers.

128

Data
Total time (s)

ED AutoBD

100 1 60.16 3316.2
100 2 83.84 3615.8
100 3 299.04 3629.2

200 1 158.32 3610.1
200 2 224.8 3602.8
200 3 492.2 3600.2

300 1 371.04 3610.5
300 2 342.48 3615.3
300 3 994.2 3630.1

Table 5.16: The average computational time of the tabu search compared to those of the
Benders’ decomposition method in CPLEX.

5.3.7 Comparison between the CPLEX’s Heuristics and the Tabu
Search

Finally, we compare the efficiency of the tabu search algorithm to the built-in heuristics in
CPLEX. Similarly to Section 4.6.10 of Chapter 4, we compare solutions generated by the fea-
sibility pump to the initial solutions. Then, we focus on the performance of RINS (Relaxation
Induced Neighbourhood Search) and the solution polishing compared to the tabu search algo-
rithm. Note that our solutions are the benchmark in this section.

Comparison between Solutions from the Feasibility Pump and the Initial Solutions

As discussed before in Section 4.6.10, we choose the feasibility pump to get a feasible solution
without taking the objective value into account. The maximum time for running the CPLEX
heuristic is 900 seconds (15 minutes). As every initial solution is not optimal, there is still a
chance that the feasibility pump can derive a better solution. Therefore, the maximum total
number of possible cases for better results is the total number of results.

Unfortunately, the feasibility pump can derive solutions within the limitation of time for
only 100 1. Therefore, we will show only the performance of the data instances with 100
customers, where ‘x’ stands for unavailable information. Again, for every data instance in
every combination except 100 1, we conclude immediately that the method to derive the initial
solutions outperforms the feasibility pump as it can generate a solution in every case within
only a second.

Tables 5.17 and 5.18 show the comparison in terms of the compactness on the district level
and on the week level, respectively. In 100 1, the solution quality on the district level is worse
in every result: see the negative value of Best %Gap*. On the week level, the feasibility pump
has only 5 better results out of 25 in such combination. As a result, most cases have a worse
objective value, as shown in Table 5.19. Moreover, the feasibility pump spends full time on
average in every data instance: see Column FP Time (s) of Table 5.20.

The feasibility pump struggles to derive any feasible solution for the large data instances,
while our method to derive an initial solution requires less than one second and, at the same
time, provides better overall solution quality. Therefore, we conclude that our method to derive
an initial solution is significantly more effective and efficient.

Comparison between RINS, the Solution Polishing, and the Tabu Search

Similarly to Section 4.6.10, RINS and the solution polishing get the same initial solution as the
tabu search at the beginning. The maximum time here is one hour. To get a fair comparison,
we limit the maximum number of times to apply the CPLEX heuristics. In the extended tabu
search, there are 20 main iterations where each main iteration contains at most 10 sub-iterations
for the districting part and 100 sub-iterations for the scheduling part in each district. We set

129

Data
District Level

Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 -16.86 -9.34 -0.90 0 0
100 2 x x x x x
100 3 x x x x x

Total 0 0

Table 5.17: The performance of the feasibility pump compared to the tabu search method in
terms of the compactness on the district level for the data instances with 100 customers.

Data
Week Level

Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 -256.46 -85.18 14.78 5 5
100 2 x x x x x
100 3 x x x x x

Total 5 5

Table 5.18: The performance of the feasibility pump compared to the tabu search method in
terms of the compactness on the week level for the data instances with 100 customers.

Data
Worst
%Gap*

%Gap*
Best

%Gap*
#Good

(75)
#Better

(75)

100 1 -179.92 -63.71 9.54 5 5
100 2 x x x x x
100 3 x x x x x

Total 5 5

Table 5.19: The performance of the feasibility pump compared to the tabu search method in
terms of the objective value for the data instances with 100 customers.

Data
FP

Time (s)

100 1 915.20
100 2 908.20
100 3 913.40

200 1 907.45
200 2 901.35
200 3 903.26

300 1 912.32
300 2 905.45
300 3 908.21

Table 5.20: The average computational time of the feasibility pump.

130

Data
Worst %Gap* %Gap* Best %Gap* #Good (75) #Better (75)

RINS solPol RINS solPol RINS solPol RINS solPol RINS solPol

100 1 34.86 30.66 44.34 42.48 51.76 51.60 25 25 25 25
100 2 x x x x x x x x x x
100 3 x x x x x x x x x x

Total 25 25 25 25

Table 5.21: The performance of RINS and the solution polishing compared to the tabu search
algorithm in terms of the compactness on the district level for the data instances with 100
customers.

Data
Worst %Gap* %Gap* Best %Gap* #Good (75) #Better (75)

RINS solPol RINS solPol RINS solPol RINS solPol RINS solPol

100 1 -16.08 -5.49 -3.99 0.69 0.18 6.61 3 19 2 17
100 2 x x x x x x x x x x
100 3 x x x x x x x x x x

Total 3 19 2 17

Table 5.22: The performance of RINS and the solution polishing compared to the tabu search
algorithm in terms of the compactness on the week level for the data instances with 100 cus-
tomers.

up the maximum number of nodes for the solution polishing to the maximum total number
of sub-iterations in the tabu search. For RINS, we activate the heuristic every 20 nodes, so
the maximum number of nodes, in this case, is the maximum total number of sub-iterations
multiplied by 20.

RINS and the solution polishing can provide solutions only in the combination 100 1. This
implies that these heuristics cannot finish the process to improve a solution within an hour
even if they have the same initial solution as the tabu search. In this section, we will show the
performance of the algorithms for only the data instances with 100 customers.

Table 5.21, 5.22, and 5.23 present, respectively, the comparison in terms of the compactness
on the district level and on the week level, and the objective value. RINS and SolPol stand for
the related performance by RINS and the solution polishing, respectively. Finally, Table 5.24
presents the average time, where ED stands for information on the tabu search.

If we focus only the performance of the CPLEX’s heuristics in 100 1, it is clear that solPol
is better than RINS : see the corresponding numbers of #Good and #Better in every Table.
Therefore, in this case, the solution polishing is better than RINS. This reinforces the fact that
the solution polishing is suitable to find a good solution for a difficult problem (IBM ILOG
CPLEX Optimization Studio CPLEX User’s Manual 2017).

Now, we focus on the performance of the solution polishing compared to the tabu search in
100 1. solPol achieves better compactness on the district level and on the week level in every
case and 68% of the possible cases, respectively. Overall, it derives a better solution than our
algorithm in 60% of the possible cases. However, it requires a full hour, while our algorithm
can finish its process within a minute: see Table 5.24.

The above results show that CPLEX’s heuristics struggle to provide a high-quality solution
for large data instances within an hour. Although the solution polishing can derive a better
solution than the tabu search, its capability is limited, i.e., it can solve only the least complicated
combination in the experiment and requires much more time. As the tabu search can derive
a solution in every case within a reasonable amount of time, i.e., less than 17 minutes, it is
incredibly more effective and efficient.

5.3.8 Conclusion

In conclusion, the extended tabu search was successful in solving the MPSDP for instances
with 100−300 customers in a reasonable amount of time. Moreover, it is more effective and
efficient than the built-in heuristics in CPLEX. The results also support the conclusion that

131

Data
Worst %Gap* %Gap* Best %Gap* #Good (75) #Better (75)

RINS solPol RINS solPol RINS solPol RINS solPol RINS solPol

100 1 -7.41 -3.60 -2.22 0.10 0.00 2.37 1 19 0 15
100 2 x x x x x x x x x x
100 3 x x x x x x x x x x

Total 1 19 0 15

Table 5.23: The performance of RINS and the solution polishing compared to the tabu search
algorithm in terms of the objective value for the data instances with 100 customers.

Data
Total time (s)

ED RINS SolPolish

100 1 60.16 3600.12 3600.28
100 2 83.84 3600.81 3600.27
100 3 299.04 3600.89 3601.17

200 1 158.32 3600.63 3600.66
200 2 224.8 3600.41 3600.83
200 3 492.2 3600.14 3600.99

300 1 371.04 3600.73 3601.45
300 2 342.48 3601.80 3602.55
300 3 994.2 3600.31 3602.31

Table 5.24: The average computational time of the tabu search, RINS and the solution polishing.

it is beneficial to include the districting neighbourhood in the method, as there is a conflict
between the compactness of the districting part and that of the scheduling part. In particular,
the most compact districts from the classical sales districting problem do not guarantee the
quality of the compactness of weekly schedules. The main reason is that the compactness of
weekly schedules also depends on customers’ week rhythm, not only their locations. Therefore,
it would be useful to consider both parts at the early stage of planning to ensure high-quality
weekly schedules. Since we have just developed this heuristic, there is potential for further
improvement; we will discuss this in the next chapter.

132

Chapter 6

Conclusion and Further Study

6.1 Conclusion

In this work, we studied a recent extension of the classical sales districting problem called the
multi-period sales districting problem. For this problem, customers require recurring service
with specific frequency in a fixed planning horizon. In addition to partitioning the customers
into compact and balanced districts for the salesmen, it is also required to determine weekly
schedules for the salesmen to visit customers in a way that satisfies the customers’ visiting
frequency. The schedules should result in compact and balanced week clusters as these at-
tributes, especially compactness, provide benefits for salesmen: they provide more flexibility
for them to make small changes to their schedule during the week without deteriorating their
overall performance. In particular, a salesman can fail to serve some customers on a specific
day of the original plan due to some unexpected situations, for example, traffic jam or road
maintenance. In that case, the compactness of the week cluster ensures that when they post-
pone the appointments of customers to another day in the week, the overall travel time does
not significantly increase compared to the original plan. Although this problem is encountered
regularly in sales promotion at customers’ sites or engineering field maintenance, it has only
been addressed recently and more studies are still required.

The MPSDP can be separated into two parts: the districting part which aims to assign
customers to salesmen, as in the classical sales districting problem, and the scheduling part
that creates compact and balanced weekly schedules to serve customers in a district. Although
an integrated solution approach is desirable, it is challenging to design for solving a large
number of customers in realistic instances. Moreover, both parts are required to be updated on
different time scales: the districting part is usually updated after several years, while schedules
are updated after several months. Since schedules are required to be updated frequently and
most previous studies did not consider geographical compactness when creating schedules, the
scheduling part of the MPSDP has become a more active area of research in recent years.
Moreover, this new line of research suggests solving the MPSDP by solving the districting part
(which is the classical sales districting problem) and the scheduling part sequentially.

We first focused on only solving the scheduling part of the problem. Here, we proposed a
Benders’ decomposition as an exact solution approach and a tabu search algorithm as a meta-
heuristic. Then, we tested their effectiveness on generated small data instances that contain
30−50 customers.

For the exact solution approach, we developed the branch-and-Benders’ cut algorithm in-
cluding various sophisticated techniques. At the root node, we added Benders’ cuts generated
from fractional solutions to strengthen the LP relaxation of the problem. Also, we derived a
high-quality integer feasible solution from the location-allocation heuristic to further generate
more Benders’ cuts and improve the upper bound of the tree. We implemented optimal Pareto
cuts to get the strongest Benders’ cuts. Moreover, we exploited the decomposable structure of
the problem to generate multiple Benders’ cuts each time and considerably improve the lower
bound of the tree. However, when we compared it to the Benders’ decomposition algorithm in
CPLEX, it reached the worse relative percentage gaps between the upper bound and the lower

133

bound. We then investigated more thoroughly the superior performance of CPLEX and found
that our developed algorithm struggled to reach a higher lower bound at the end of the tree
search. Nevertheless, it could find a better integer solution when data instances became more
challenging, so our algorithm is highly competitive to the Benders’ decomposition in CPLEX.

Regarding the tabu search algorithm, we introduced three different neighbourhoods based
on the information of week centres or customers’ week patterns. In each neighbourhood, we
proposed techniques to speed up the search. These included allowing infeasible solutions in the
search, limiting the search space to promising areas, and using a surrogate objective function
when the real objective value is too time-consuming to compute. A high-quality initial solution
from the location-allocation heuristic was used to start the search. Also, whenever the search
seemed to be trapped around a local optimum, the diversification was run to help in such
cases. We integrated these three neighbourhoods in one algorithm to exploit their specific
search trajectory. In each iteration, we selected the appropriate neighbourhood by the adaptive
probabilities. The algorithm was successful in finding high-quality solutions, while spending
much less time compared to the Benders’ decomposition algorithm and the built-in heuristics
in CPLEX, especially in more challenging data instances. The tabu search algorithm was also
employed to enhance the upper bound of our developed Benders’ decomposition algorithm.
However, the combining of these two methods still requires a more elaborate design to improve
efficiency.

Due to the huge success of the tabu search for the scheduling part in small data instances,
we extended the method to solve the MPSDP, i.e., to solve the districting and the scheduling
part simultaneously. For the tabu search of the districting part, we developed a districting
neighbourhood to exchange customers between districts. We tested the extended tabu search on
generated large data instances that contain 100−300 customers and compared the performance
to the Benders’ decomposition and the built-in heuristics in CPLEX. The results showed that
the exact solution approach and the CPLEX heuristics could not even find any feasible integer
solution within an hour for any data instances with more than 100 customers. At the same time,
the extended tabu search was capable of deriving a high-quality solution within a reasonable
amount of time, i.e., less than 17 minutes for every data instance. Moreover, the results showed
that the suggestion from previous studies to solve the MPSDP by sequentially solving the
districting part and the scheduling part might not be effective since highly compact districts
do not ensure highly compact schedules. The main reason is that the compactness of weekly
schedules also depends on customers’ week rhythm, not only their locations. Therefore, we
would suggest considering both parts at the early stage of the planning to ensure high-quality
weekly schedules.

Studies of the multi-period sales districting problem are still scarce in the literature, so there
is scope for further research. We discuss this in the next section.

6.2 Further Study

In this work, we assumed that every customer requests only one visit per visiting week and daily
schedules might not be essential. Also, as it is usual to reschedule visits of customers to another
day due to their short-term requests (Bender et al. 2016), we focused only on weekly schedules
in the scheduling part. However, it is worth studying under the same planning requirements as
in Bender et al. (2016), i.e., customers can request more than one visit per visiting week and
might have a preference on a visiting day(s). In that case, daily schedules should be included
in the plan. Moreover, it is interesting to add more realistic planning requirements into the
problem, for example, uncertainty on customers’ requests.

Regarding the proposed methods for solving the scheduling part, it would be useful to test
them on real-world data instances to see their actual performance. Moreover, there is potential
to further develop the Benders’ decomposition and the tabu search algorithms as follows.

For Benders’ decomposition, we should adopt the techniques from Bender et al. (2018) to
reduce the symmetry of solutions during the branching process. This significantly reduces the
size of the branch-and-bound tree and, as a result, accelerates the efficiency of the algorithm.
Moreover, we can consider a new decomposition of the problem: keeping only the week pattern
variables in the master problem. The main reason is that when we know the week pattern of

134

every customer, we can manually derive the values of the centre variables and the allocation
variables, as in the location problem in the location-allocation heuristic. However, the subprob-
lem which has binary centre variables, in this case, is not a linear programme anymore and we
cannot generate the optimality cuts from the dual variables as usual. Therefore, more sophis-
ticated methods to generate cuts from a mixed-integer programming subproblem are required.
A potential way is combinatorial cuts (Codato & Fischetti 2006, Gendron et al. 2016). An-
other interesting method is the nested Benders’ decomposition algorithm where the Benders’
decomposition algorithm is applied more than once (Naoum-Sawaya & Elhedhli 2010). The
last promising technique for us so far is an integer L-shaped method. Note that this technique
is also the Benders’ decomposition algorithm but the only difference is that it is in the con-
text of stochastic programming. An optimality cut derived from this method, however, has a
weakness: it relies on only a master solution that is currently cut off, resulting in a potentially
weak approximation of the projected cost. Therefore, Angulo et al. (2016) propose a modified
optimality cut that includes information on previously found master solutions to improve the
quality of the projected cost.

Regarding the tabu search, it is possible to add more advanced features, for example, adap-
tive memory (Rochat & Taillard 1995). Although we have proposed some solution approaches
for the scheduling part, more sophisticated techniques, especially to tackle large data instances,
are still required.

Although the extended tabu search showed an impressive performance in the large data
instances, it still requires further development. In particular, it lacks the diversification scheme,
which is an essential part of the tabu search. An effective way to implement this can be adopted
from Bozkaya et al. (2003) which has proved successful in several papers. Moreover, we can
speed up the algorithm easily by running the tabu search for the scheduling part for every
district in parallel.

Finally, it is desirable to design more solution approaches for solving the MPSDP, as it is
beneficial to solve the districting part and the scheduling part simultaneously. An interesting
method for us now is Greedy Randomised Adaptive Search Procedure, since it is one of the
most popular meta-heuristic in the districting problem (Kalcsics & Ŕıos-Mercado 2019).

135

136

Appendix A

Figures from the Best Solution

A.1 The Best Solution in Figures 5.1 and 5.2

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.1: The weekly schedules for week 1 from the best solution in an instance of 100 1.

137

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.2: The weekly schedules for week 2 from the best solution in an instance of 100 1.

138

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.3: The weekly schedules for week 3 from the best solution in an instance of 100 1.

139

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.4: The weekly schedules for week 4 from the best solution in an instance of 100 1.

140

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.5: The weekly schedules for week 5 from the best solution in an instance of 100 1.

141

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.6: The weekly schedules for week 6 from the best solution in an instance of 100 1.

142

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.7: The weekly schedules for week 7 from the best solution in an instance of 100 1.

143

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(a) NoDis

0 2 4 6 8 10
0

2

4

6

8

10
District 1
District 2

(b) ED

Figure A.8: The weekly schedules for week 8 from the best solution in an instance of 100 1.

144

Bibliography

Adulyasak, Y., Cordeau, J.-F. & Jans, R. (2015), ‘Benders decomposition for production routing
under demand uncertainty’, Operations Research 63(4), 851–867.

Alrajhi, K., Thompson, J. & Padungwech, W. (2016), Tabu search hybridized with multiple
neighborhood structures for the frequency assignment problem, in ‘International Workshop
on Hybrid Metaheuristics’, Springer, pp. 157–170.

Angulo, G., Ahmed, S. & Dey, S. S. (2016), ‘Improving the integer l-shaped method’, INFORMS
Journal on Computing 28(3), 483–499.

Arthur, D. & Vassilvitskii, S. (2007), ‘k-means++: The advantages of careful seeding, 1027–
1035’, Society for Industrial and Applied Mathematics .

Bação, F., Lobo, V. & Painho, M. (2005), ‘Applying genetic algorithms to zone design’, Soft
Computing 9(5), 341–348.

Bard, J. F. & Jarrah, A. I. (2009), ‘Large-scale constrained clustering for rationalizing pickup
and delivery operations’, Transportation Research Part B: Methodological 43(5), 542–561.

Bender, M., Kalcsics, J., Nickel, S. & Pouls, M. (2018), ‘A branch-and-price algorithm for the
scheduling of customer visits in the context of multi-period service territory design’, European
Journal of Operational Research 269(1), 382–396.

Bender, M., Meyer, A., Kalcsics, J. & Nickel, S. (2016), ‘The multi-period service territory
design problem – an introduction, a model and a heuristic approach’, Transportation Research
Part E: Logistics and Transportation Review 96, 135 – 157.

Benders, J. F. (1962), ‘Partitioning procedures for solving mixed-variables programming prob-
lems’, Numerische Mathematik 4(1), 238–252.

Birge, J. & Louveaux, F. (1997), Introduction to stochastic programming, Springer, New York.

Blais, M., Lapierre, S. D. & Laporte, G. (2003), ‘Solving a home-care districting problem in an
urban setting’, Journal of the operational research society 54(11), 1141–1147.

Boland, N., Fischetti, M., Monaci, M. & Savelsbergh, M. (2016), ‘Proximity Benders: a decom-
position heuristic for stochastic programs’, Journal of Heuristics 22(2), 181–198.

Botton, Q., Fortz, B., Gouveia, L. & Poss, M. (2013), ‘Benders decomposition for the hop-
constrained survivable network design problem’, INFORMS Journal on Computing 25(1), 13–
26.

Bozkaya, B., Erkut, E., Haight, D. & Laporte, G. (2011), ‘Designing new electoral districts for
the city of edmonton’, Interfaces 41(6), 534–547.

Bozkaya, B., Erkut, E. & Laporte, G. (2003), ‘A tabu search heuristic and adaptive memory
procedure for political districting’, European journal of operational research 144(1), 12–26.

Browdy, M. H. (1990), ‘Simulated annealing: an improved computer model for political redis-
tricting’, Yale Law & Policy Review 8(1), 163–179.

145

Butsch, A., Kalcsics, J. & Laporte, G. (2014), ‘Districting for arc routing’, INFORMS Journal
on Computing 26(4), 809–824.

Campbell, A. M. & Hardin, J. R. (2005), ‘Vehicle minimization for periodic deliveries’, European
Journal of Operational Research 165(3), 668–684.

Ceschia, S., Di Gaspero, L. & Schaerf, A. (2011), ‘Tabu search techniques for the heteroge-
neous vehicle routing problem with time windows and carrier-dependent costs’, Journal of
Scheduling 14(6), 601–615.

Codato, G. & Fischetti, M. (2006), ‘Combinatorial Benders’ cuts for mixed-integer linear pro-
gramming’, Operations Research 54(4), 756–766.

Contreras, I., Cordeau, J.-F. & Laporte, G. (2011a), ‘Benders decomposition for large-scale
uncapacitated hub location’, Operations Research 59(6), 1477–1490.

Contreras, I., Cordeau, J.-F. & Laporte, G. (2011b), ‘Stochastic uncapacitated hub location’,
European Journal of Operational Research 212(3), 518 –528.

Contreras, I., Cordeau, J.-F. & Laporte, G. (2012), ‘Exact solution of large-scale hub location
problems with multiple capacity levels’, Transportation Science 46(4), 439–459.

Cooper, L. (1964), ‘Heuristic methods for location-allocation problems’, SIAM Review 6(1), 37–
53.

Cordeau, J.-F., Pasin, F. & Solomon, M. (2006), ‘An integrated model for logistics network
design’, Annals of Operations Research 144(1), 59–82.

Cortinhal, M. J. & Captivo, M. E. (2003), ‘Upper and lower bounds for the single source
capacitated location problem’, European journal of operational research 151(2), 333–351.

D’Amico, S. J., Wang, S.-J., Batta, R. & Rump, C. M. (2002), ‘A simulated annealing approach
to police district design’, Computers & Operations Research 29(6), 667–684.

Dayarian, I., Crainic, T. G., Gendreau, M. & Rei, W. (2016), ‘An adaptive large-neighborhood
search heuristic for a multi-period vehicle routing problem’, Transportation Research Part E:
Logistics and Transportation Review 95, 95–123.

de Assis, L. S., Franca, P. M. & Usberti, F. L. (2014), ‘A redistricting problem applied to meter
reading in power distribution networks’, Computers & Operations Research 41, 65–75.

de Camargo, R., Miranda Jr, G., Ferreira, R. & Luna, H. (2009), ‘Multiple allocation
hub-and-spoke network design under hub congestion’, Computers and Operations Research
36(12), 3097–3106.

de Camargo, R. S., de Miranda, G. & Ferreira, R. P. (2011), ‘A hybrid outer-
approximation/Benders decomposition algorithm for the single allocation hub location prob-
lem under congestion’, Operations Research Letters 39(5), 329–337.

de Sá, E. M., de Camargo, R. S. & de Miranda, G. (2013), ‘An improved Benders decomposition
algorithm for the tree of hubs location problem’, European Journal of Operational Research
226(2), 185–202.

de Sá, E. M., Morabito, R. & de Camargo, R. S. (2018), ‘Benders decomposition applied to
a robust multiple allocation incomplete hub location problem’, Computers and Operations
Research 89, 31–50.

Drexl, A. & Haase, K. (1999), ‘Fast approximation methods for sales force deployment’, Man-
agement Science 45(10), 1307–1323.

Elizondo-Amaya, M. G., Ŕıos-Mercado, R. Z. & Dı́az, J. A. (2014), ‘A dual bounding scheme
for a territory design problem’, Computers & operations research 44, 193–205.

146

Fernández, E., Kalcsics, J. & Nickel, S. (2013), ‘The maximum dispersion problem’, Omega
41(4), 721–730.

Fernández, E., Kalcsics, J., Nickel, S. & Ŕıos-Mercado, R. Z. (2010), ‘A novel maximum disper-
sion territory design model arising in the implementation of the WEEE-directive’, Journal
of the Operational Research Society 61(3), 503–514.

Fischetti, M., Ljubić, I. & Sinnl, M. (2017), ‘Redesigning Benders decomposition for large-scale
facility location’, Management Science 63(7), 2146–2162.

Fischetti, M., Salvagnin, D. & Zanette, A. (2010), ‘A note on the selection of Benders’ cuts’,
Mathematical Programming 124(1-2), 175–182.

Fleischmann, B. & Paraschis, J. N. (1988), ‘Solving a large scale districting problem: a case
report’, Computers & Operations Research 15(6), 521–533.

Fontaine, P. & Minner, S. (2018), ‘Benders decomposition for the hazmat transport network
design problem’, European Journal of Operational Research 267(3), 996–1002.

Forman, S. L. & Yue, Y. (2003), Congressional districting using a TSP-based genetic algorithm,
in ‘Genetic and Evolutionary Computation Conference’, Springer, pp. 2072–2083.

Fortz, B. & Poss, M. (2009), ‘An improved Benders decomposition applied to a multi-layer
network design problem’, Operations Research Letters 37(5), 359–364.

Francis, P. M., Smilowitz, K. R. & Tzur, M. (2008), The period vehicle routing problem and its
extensions, in ‘The vehicle routing problem: latest advances and new challenges’, Springer,
pp. 73–102.

Gelareh, S., Neamatian Monemi, R. & Nickel, S. (2015), ‘Multi-period hub location problems
in transportation’, Transportation Research Part E 75, 67–94.

Gendreau, M., Hertz, A. & Laporte, G. (1994), ‘A tabu search heuristic for the vehicle routing
problem’, Management science 40(10), 1276–1290.

Gendreau, M. & Potvin, J.-Y. (2019), Tabu search, in M. Gendreau & J.-Y. Potvin, eds,
‘Handbook of Metaheuristics’, Springer International Publishing, Cham, pp. 37–55.

Gendron, B., Garroppo, R. G., Nencioni, G., Scutellà, M. G. & Tavanti, L. (2013), ‘Benders
decomposition for a location-design problem in green wireless local area networks’, Electronic
Notes in Discrete Mathematics 41, 367 – 374.

Gendron, B., Potvin, J.-Y. & Soriano, P. (2003), ‘A tabu search with slope scaling for the multi-
commodity capacitated location problem with balancing requirements’, Annals of Operations
Research 122(1-4), 193–217.

Gendron, B., Scutellà, M. G., Garroppo, R. G., Nencioni, G. & Tavanti, L. (2016), ‘A branch-
and-Benders-cut method for nonlinear power design in green wireless local area networks’,
European Journal of Operational Research 255(1), 151 – 162.

Geoffrion, A. M. (1970a), ‘Elements of large-scale mathematical programming: Part I: Con-
cepts’, Management Science 16(11), 652–675.

Geoffrion, A. M. (1970b), ‘Elements of large scale mathematical programming: Part II: Syn-
thesis of algorithms and bibliography’, Management Science 16(11), 676–691.

Geoffrion, A. M. (1972), ‘Generalized Benders decomposition’, Journal of Optimization Theory
and Applications 10(4), 237–260.

Geoffrion, A. M. & Graves, G. W. (1974), ‘Multicommodity distribution system design by
Benders decomposition’, Management Science 20(5), 822–844.

147

Gliesch, A., Ritt, M. & Moreira, M. C. (2018), A multistart alternating tabu search for com-
mercial districting, in ‘European Conference on Evolutionary Computation in Combinatorial
Optimization’, Springer, pp. 158–173.

Gross, J. L. & Yellen, J. (2003), Handbook of graph theory, CRC press.

Haugland, D., Ho, S. C. & Laporte, G. (2007), ‘Designing delivery districts for the vehi-
cle routing problem with stochastic demands’, European Journal of Operational Research
180(3), 997–1010.

Hess, S. W. & Samuels, S. A. (1971), ‘Experiences with a sales districting model: criteria and
implementation.’, Management Science 18(4), 41–54.

Hess, S. W., Weaver, J. B., Siegfeldt, H. J., Whelan, J. N. & Zitlau, P. A. (1965), ‘Nonpartisan
political redistricting by computer’, Operations Research 13(6), 998–1006.

IBM (2021), ‘CPXERR NOT FOR BENDERS: 2004 problem not compatible with Benders’.
URL: https://www.ibm.com/support/knowledgecenter/SSSA5P 12.9.0/ilog.odms.cplex.help
/refcallablelibrary/macros/CPXERR NOT FOR BENDERS.html

IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual (2017), 12.7 edn.

Irnich, S., Schneider, M. & Vigo, D. (2014), Chapter 9: Four variants of the vehicle routing
problem, in ‘Vehicle Routing: Problems, Methods, and Applications, Second Edition’, SIAM,
pp. 241–271.

Jin, J., Crainic, T. G. & Løkketangen, A. (2012), ‘A parallel multi-neighborhood coopera-
tive tabu search for capacitated vehicle routing problems’, European Journal of Operational
Research 222(3), 441–451.

Kalcsics, J. & Ŕıos-Mercado, R. Z. (2019), Districting problems, in G. Laporte, S. Nickel &
F. Saldanha da Gama, eds, ‘Location Science’, Springer International Publishing, pp. 705–
743.

Kazan, O., Dawande, M., Sriskandarajah, C. & Stecke, K. E. (2012), ‘Balancing perfectly
periodic service schedules: An application from recycling and waste management’, Naval
Research Logistics (NRL) 59(2), 160–171.

Kergosien, Y., Gendreau, M. & Billaut, J.-C. (2017), ‘A Benders decomposition-based heuristic
for a production and outbound distribution scheduling problem with strict delivery con-
straints’, European Journal of Operational Research 262(1), 287–298.

Kulturel-Konak, S., Norman, B. A., Coit, D. W. & Smith, A. E. (2004), ‘Exploiting tabu search
memory in constrained problems’, INFORMS Journal on Computing 16(3), 241–254.

Lei, H., Laporte, G. & Guo, B. (2011), ‘The capacitated vehicle routing problem with stochastic
demands and time windows’, Computers & Operations Research 38(12), 1775–1783.

Lei, H., Laporte, G. & Guo, B. (2012), ‘Districting for routing with stochastic customers’,
EURO Journal on Transportation and Logistics 1(1-2), 67–85.

Lei, H., Laporte, G., Liu, Y. & Zhang, T. (2015), ‘Dynamic design of sales territories’, Com-
puters & Operations Research 56, 84–92.

Lodish, L. M. (1975), ‘Sales territory alignment to maximize profit’, JMR, Journal of Marketing
Research (pre-1986) 12(000001), 30.

Magnanti, T. L. & Wong, R. T. (1981), ‘Accelerating Benders decomposition: Algorithmic
enhancement and model selection criteria’, Operations Research 29(3), 464–484.

Mariel, K. & Minner, S. (2017), ‘Benders decomposition for a strategic network design problem
under nafta local content requirements’, Omega 68, 62–75.

148

McDaniel, D. & Devine, M. (1977), ‘A modified Benders’ partitioning algorithm for mixed
integer programming’, Management Science 24(3), 312–319.

Mehrotra, A., Johnson, E. & Nemhauser, G. (1998), ‘An optimization bases heuristic for polit-
ical districting’, Management Science 44(8), 1100–1114.

Mercier, A., Cordeau, J.-F. & Soumis, F. (2005), ‘A computational study of Benders decom-
position for the integrated aircraft routing and crew scheduling problem’, Computers and
Operations Research 32(6), 1451–1476.

Mercier, A. & Soumis, F. (2007), ‘An integrated aircraft routing, crew scheduling and flight
retiming model’, Computers & Operations Research 34(8), 2251–2265.

Michel, L. & Van Hentenryck, P. (2004), ‘A simple tabu search for warehouse location’, European
Journal of Operational Research 157(3), 576–591.

Mourgaya, M. & Vanderbeck, F. (2007), ‘Column generation based heuristic for tactical plan-
ning in multi-period vehicle routing’, European Journal of Operational Research 183(3), 1028–
1041.

Nanry, W. P. & Barnes, J. W. (2000), ‘Solving the pickup and delivery problem with time win-
dows using reactive tabu search’, Transportation Research Part B: Methodological 34(2), 107–
121.

Naoum-Sawaya, J. & Elhedhli, S. (2010), ‘A nested Benders decomposition approach for
telecommunication network planning’, Naval Research Logistics (NRL) 57(6), 519–539.

Naoum-Sawaya, J. & Elhedhli, S. (2013), ‘An interior-point Benders based branch-and-cut
algorithm for mixed integer programs’, Annals of Operations Research 210(1), 33–55.

Nemhauser, G. L. & Wolsey, L. A. (1988), Integer and Combinatorial Optimization, John Wiley
& Sons, New York.

Núñez-del-Toro, C., Fernández, E., Kalcsics, J. & Nickel, S. (2016), ‘Scheduling policies for
multi-period services’, European Journal of Operational Research 251(3), 751 – 770.

Oliveira, F., Grossmann, I. E. & Hamacher, S. (2014), ‘Accelerating Benders stochastic de-
composition for the optimization under uncertainty of the petroleum product supply chain’,
Computers & Operations Research 49, 47–58.

Papadakos, N. (2008), ‘Practical enhancements to the Magnanti–Wong method’, Operations
Research Letters 36(4), 444–449.

Papadakos, N. (2009), ‘Integrated airline scheduling’, Computers and Operations Research
36(1), 176–195.

Paquette, J., Cordeau, J.-F., Laporte, G. & Pascoal, M. M. (2013), ‘Combining multicriteria
analysis and tabu search for dial-a-ride problems’, Transportation Research Part B: Method-
ological 52, 1–16.

Pearce, R. H. & Forbes, M. (2018), ‘Disaggregated Benders decomposition and branch-and-
cut for solving the budget-constrained dynamic uncapacitated facility location and network
design problem’, European Journal of Operational Research 270(1), 78–88.

Pishvaee, M., Razmi, J. & Torabi, S. (2014), ‘An accelerated Benders decomposition algorithm
for sustainable supply chain network design under uncertainty: A case study of medical needle
and syringe supply chain’, Transportation Research Part E 67, 14–38.

Rahmaniani, R., Crainic, T. G., Gendreau, M. & Rei, W. (2018), ‘Accelerating the Benders
decomposition method: Application to stochastic network design problems’, SIAM Journal
on Optimization 28(1), 875–903.

149

Rahmaniani, R., Crainic, T., Gendreau, M. & W., R. (2017), ‘The Benders decomposition
algorithm: A literature review’, European Journal of Operational Research 259(3), 801 –
817.

Ribeiro, G. M. & Laporte, G. (2012), ‘An adaptive large neighborhood search heuristic
for the cumulative capacitated vehicle routing problem’, Computers & operations research
39(3), 728–735.

Ŕıos-Mercado, R. Z. (2016), ‘Assessing a metaheuristic for large-scale commercial districting’,
Cybernetics and Systems 47(4), 321–338.

Rios-Mercado, R. Z. & Escalante, H. J. (2016), ‘GRASP with path relinking for commercial
districting’, Expert Systems with Applications 44, 102–113.

Ŕıos-Mercado, R. Z. & Fernández, E. (2009), ‘A reactive GRASP for a commercial territory
design problem with multiple balancing requirements’, Computers & Operations Research
36(3), 755–776.

Ŕıos-Mercado, R. Z., Maldonado-Flores, J. & González-Velarde, J. (2017), Tabu search with
strategic oscillation for improving recollection assignment plans of waste electric and elec-
tronic equipment, in ‘Technical Report’, PISIS-2017-01, Universidad Autónoma de Nuevo
León San Nicolás de los Garza.

Ŕıos-Mercado, R. Z. & Salazar-Acosta, J. C. (2011), A GRASP with strategic oscillation for a
commercial territory design problem with a routing budget constraint, in ‘Mexican Interna-
tional Conference on Artificial Intelligence’, Springer, pp. 307–318.

Rochat, Y. & Taillard, É. D. (1995), ‘Probabilistic diversification and intensification in local
search for vehicle routing’, Journal of heuristics 1(1), 147–167.

Ropke, S. & Pisinger, D. (2006a), ‘An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows’, Transportation Science 40(4), 455–472.

Ropke, S. & Pisinger, D. (2006b), ‘A unified heuristic for a large class of vehicle routing problems
with backhauls’, European Journal of Operational Research 171(3), 750–775.

Salazar-Aguilar, M. A., Ŕıos-Mercado, R. Z. & González-Velarde, J. L. (2013), ‘GRASP strate-
gies for a bi-objective commercial territory design problem’, Journal of Heuristics 19(2), 179–
200.

Salazar-Aguilar, M., Ŕıos-mercado, Roger, Z. & Cabrera-ŕıos, M. (2011), ‘New models for
commercial territory design’, Networks and Spatial Economics 11(3), 487–507.

Santibanez-Gonzalez, E. D. & Diabat, A. (2013), ‘Solving a reverse supply chain design prob-
lem by improved Benders decomposition schemes’, Computers & Industrial Engineering
66(4), 889–898.

Santoso, T., Ahmed, S., Goetschalckx, M. & Shapiro, A. (2005), ‘A stochastic programming ap-
proach for supply chain network design under uncertainty’, European Journal of Operational
Research 167(1), 96–115.

Sherali, H. D. & Lunday, B. J. (2013), ‘On generating maximal nondominated Benders cuts’,
Annals of Operations Research 210(1), 57–72.

Sherali, H. D. & Soyster, A. L. (1983), ‘Preemptive and nonpreemptive multi-objective program-
ming: Relationship and counterexamples’, Journal of Optimization Theory and Applications
39(2), 173–186.

Shirabe, T. (2009), ‘Districting modeling with exact contiguity constraints’, Environment and
Planning B: Planning and Design 36(6), 1053–1066.

150

Soto, M., Sevaux, M., Rossi, A. & Reinholz, A. (2017), ‘Multiple neighborhood search, tabu
search and ejection chains for the multi-depot open vehicle routing problem’, Computers &
Industrial Engineering 107, 211–222.

Steiner, M. T. A., Datta, D., Neto, P. J. S., Scarpin, C. T. & Figueira, J. R. (2015), ‘Multi-
objective optimization in partitioning the healthcare system of Parana state in Brazil’, Omega
52, 53–64.

Stenger, A., Vigo, D., Enz, S. & Schwind, M. (2013), ‘An adaptive variable neighborhood search
algorithm for a vehicle routing problem arising in small package shipping’, Transportation
Science 47(1), 64–80.

Taşkın, Z. C. & Cevik, M. (2013), ‘Combinatorial Benders cuts for decomposing IMRT fluence
maps using rectangular apertures’, Computers and Operations Research 40(9), 2178–2186.

Tang, L., Jiang, W. & Saharidis, G. K. D. (2013), ‘An improved Benders decomposition algo-
rithm for the logistics facility location problem with capacity expansions’, Annals of Opera-
tions Research 210(1), 165–190.

Tapia-Ubeda, F. J., Miranda, P. A. & Macchi, M. (2018), ‘A generalized Benders decompo-
sition based algorithm for an inventory location problem with stochastic inventory capacity
constraints’, European Journal of Operational Research 267(3), 806–817.

Tavares-Pereira, F., Figueira, J. R., Mousseau, V. & Roy, B. (2007), ‘Multiple criteria districting
problems’, Annals of Operations Research 154(1), 69–92.

Üster, H. & Agrahari, H. (2011), ‘A Benders decomposition approach for a distribution network
design problem with consolidation and capacity considerations’, Operations Research Letters
39(2), 138–143.

Vatsa, A. K. & Jayaswal, S. (2016), ‘A new formulation and Benders decomposition for the
multi-period maximal covering facility location problem with server uncertainty’, European
Journal of Operational Research 251(2), 404–418.

Wei, B. C. & Chai, W. Y. (2004), ‘A multiobjective hybrid metaheuristic approach for GIS-based
spatial zoning model’, Journal of Mathematical Modelling and Algorithms 3(3), 245–261.

Wei, W. & Liu, C. (1983), ‘On a periodic maintenance problem’, Operations Research Letters
2(2), 90–93.

Wu, X., Yan, S., Wan, X. & Lü, Z. (2016), ‘Multi-neighborhood based iterated tabu search
for routing and wavelength assignment problem’, Journal of Combinatorial Optimization
32(2), 445–468.

Xia, Y., Fu, Z., Pan, L. & Duan, F. (2018), ‘Tabu search algorithm for the distance-constrained
vehicle routing problem with split deliveries by order’, PloS one 13(5), e0195457.

Yaghini, M., Karimi, M. & Rahbar, M. (2013), ‘A hybrid metaheuristic approach for the ca-
pacitated p-median problem’, Applied soft computing 13(9), 3922–3930.

Zoltners, A. A. & Sinha, P. (2005), ‘The 2004 ISMS practice prize winner - sales territory
design: Thirty years of modeling and implementation’, Marketing Science 24(3), 313–331.

Žulj, I., Kramer, S. & Schneider, M. (2018), ‘A hybrid of adaptive large neighborhood search
and tabu search for the order-batching problem’, European Journal of Operational Research
264(2), 653–664.

151

	cover sheet.pdf
	S1539557_Saranthorn_Thesis_final
	Lay Summary
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Districting Problems
	Application: Classical Sales Districting Problem
	Solution Approaches

	Outline of Thesis

	Multi-Period Sales Districting Problem (MPSDP)
	Problem Statement
	Literature Review
	Mathematical Formulations
	Solution Approaches

	Contributions of the Research
	Mathematical Formulations
	Scheduling Part of the Problem
	The MPSDP

	Experiment on Small Data Instances

	Benders' Decomposition for the Scheduling Part
	Benders' Reformulation
	Classical Benders' Decomposition
	Benders' Decomposition for our Model
	Accelerating Benders' Decomposition
	Two-Phase Benders' Decomposition
	Initial Integer Solution
	Manual Derivation of an Optimality Cut from an Integer Master Solution
	Nondominated Optimality Cut
	Multiple Optimality Cuts
	Branch-and-Benders' Cut

	Data Generation and Programme Set-Up
	Computational Results
	Comparison between Different Nondominated Optimality Cuts
	Advantages of Multiple Optimality Cuts
	Benefit of the Initial Integer Solution
	Further Investigation on Cut Strategies
	Comparison between Developed Benders' Algorithm and CPLEX
	Conclusion

	Tabu Search for the Scheduling Part
	General Framework of Tabu Search for our Model
	Week Centre Neighbourhood
	Improving the Search in the Week Centre Neighbourhood

	Week Pattern Neighbourhoods
	Restricted Search in the Week Pattern Neighbourhoods

	Mixed Neighbourhood
	Data Generation and Programme Set-Up
	Computational Results
	Benchmark for Tabu Search
	Comparison between the Initial Solutions and the Benchmark
	Experiments on the Week Centre Neighbourhood
	Experiments on the Switching Week Pattern Neighbourhood
	Experiments on the Swapping Week Pattern Neighbourhood
	Experiments on the Mixed Neighbourhood
	Effectiveness of the Diversification in the Tabu Search
	Improvement on the Initial Solutions by the Tabu Search
	Comparison between the Tabu Search and Benchmark
	Comparison between the CPLEX's Heuristics and the Tabu Search
	Improvement on the Benders' Decomposition by the Tabu Search
	Conclusion

	Extended Tabu Search for the MPSDP
	Extension of the Tabu Search Algorithm
	Tabu Search for the Districting Part
	Integrated Tabu Search for the MPSDP

	Data Generation and Programme Set-Up
	Computational Results
	Benchmark for Tabu Search
	Comparison between the Initial Solutions and the Benchmark
	Effectiveness of Different Size Reductions on the Districting Neighbourhood
	Advantages of the Districting Neighbourhood
	Improvement on the Initial Solutions by the Tabu Search
	Comparison between the Tabu Search and the Benchmark
	Comparison between the CPLEX's Heuristics and the Tabu Search
	Conclusion

	Conclusion and Further Study
	Conclusion
	Further Study

	Figures from the Best Solution
	The Best Solution in Figures 5.1 and 5.2

	Bibliography

