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Abstract 

Delay and wirelength minimization continue to be 
important objectives in the design of high-performance 
computing systems. For large-scale circuits, the clustering 
process becomes essential for reducing the problem size. 
However, to the best of our knowledge, there is no study 
about the impact of multi-level clustering on performance-
driven global placement. In this paper, five clustering 
algorithms including the quasi-optimal retiming delay 
driven PRIME and the cutsize-driven ESC have been 
considered for their impact on state-of-the-art mincut 
based global placement. Results show that minimizing 
cutsize or wirelength during clustering typically results in 
significant performance improvements. 
 
1. Introduction 

 
The placement problem for a given sequential netlist 

involves global placement and detailed placement. Global 
placement identifies the partition block-level location for 
cells, whereas detailed placement provides complete 
location information for each cell while preserving the 
global placement. Recently, global placement has attracted 
significant attention due to tighter circuit constraints and 
increasing complexities. There are three major approaches 
to global placement: min-cut based algorithms 
[4,13,27,2,5], analytical approaches [10,15], and simulated 
annealing techniques [24,25]. The min-cut based approach 
uses top-down methods to recursively partition a circuit 
into smaller sub-netlists. Due to the high flexibility and 
small runtime of this approach, it has been adopted in 
many modern state-of-the-art placement algorithms, 
including the timing-driven placement technique [8]. 

During physical planning, the location of each gate can 
be identified and used to accurately calculate wire delay. 
Since both gate and wire delays are known, the total delay 
for the entire circuit can be calculated. Using this 
information, circuit optimization at the physical design 
level may be made to provide superior results. This 
advantage is particularly useful during retiming [17]. 

Retiming is a logic optimization technique for 
sequential circuits which shifts the position of flip-flops 

(FFs) for delay minimization [17]. Recently, retiming has 
become more attractive in physical design, where wire 
delay minimization is critical in the context of deeper 
submicron technologies. Exploiting geometric information 
enables further enhancement of retiming techniques with 
floorplanning, which results in more accurate wire delay 
calculation. There are two approaches to retiming in the 
physical design context: the iterative approach and the 
simultaneous approach. The iterative approach [18,19] 
applies retiming after placement and floorplanning. The 
simultaneous approach [8,6,9] incorporates retiming with 
placement and floorplanning. In [9], the authors suggest 
that the latter approach is better with respect to delay 
minimization. 

In [8], the authors proposed GEO, the state-of-the-art 
approach for mincut-based placement with retiming. This 
algorithm utilizes the concept of slack values to identify 
the ε-network containing the set of delay-critical cells. An 
additional delay weight is assigned to the cells of the ε-
network, and these critical cells are grouped closer 
together during circuit partitioning. Cong et al., [9], 
extended this work to mPG-rt by generalizing the 
clustering model to handle gates/clusters with multiple 
outputs.  

Traditionally, different clustering techniques have been 
used in conjunction with different global placement 
algorithms. For example, the ESC clustering algorithm is 
used with GEO, whereas mPG-rt utilizes FC clusters. In 
this paper, we study the importance of multi-level 
clustering on GEO-based high-performance global 
placement. The organization of this paper is as follows: 
Section 2 describes the problem formulation, Section 3 is 
devoted to the clustering algorithms, Section 4 presents 
some of our experimental results and the final section 
presents our conclusions and suggestions for future work. 

 
2. Problem Formulation 

 
Given a sequential gate-level netlist NL(C, N), where C 

is the set of cells representing gates and flip-flops, and N is 
the set of nets connecting the cells, the purpose of the 
Performance driven Global Placement with Retiming 
(PGPR) problem is to assign cells in NL to m×n (= K) 



blocks while area constraint for each block is satisfied. In 
other words, the placement region is divided into m×n 
tiles, and we perform cell placement at the center of these 
tiles. Given a PGPR solution B, let ω(B) and φ(B) 
respectively denote the wirelength and retiming delay. The 
formal definition of PGPR is as follows: 
 
PGPR Problem: the Performance driven Global 
Placement with Retiming (PGPR) problem under the given 
area constraints A = (Li,Ui) has a solution P: C→B, 
wherein each cell in C is assigned to a unique block, 
where B = {B1(x1,y1), B2(x2,y2),..., BK(xK,yK)} denotes the 
set of blocks and (xi,yi) represents the geometric location 
of Bi. B is feasible if it satisfies the following conditions: i) 
Bi ⊂ C, 1 ≤ i ≤ K, ii) Li ≤ |Bi| ≤ Ui, 1 ≤ i ≤ K, iii) B1 ∪ B2 ∪ 
... ∪ BK = C, iv) Bi ∩ Bj = ∅ for all i ≠ j. The objective is 
to minimize φ(B) while maintaining an acceptable ω(B). 

 
2.1. Delay Objective 

 
By employing the concept of retiming graph [17], we 

model NL using a directed graph R = (V, E). Each vertex v 
has delay d(v) and each edge e=(u,v) has delay d(e). We 
assume d(e) is proportional to the Manhattan distance 
between u and v. The edge weight w(e) of e=(u,v) denotes 
the number of flip-flops between gate u and v. The path 
weight can be calculated by w(p)=∑e∈p w(e). Let wr(e) 
denote edge weight after retiming r, i.e. number of flip-
flops on the edge after retiming. Then, wr(p)=∑e∈p wr(e). A 
circuit is retimed to a delay φ by a retiming r if the 
following conditions are satisfies; (i) wr(e) ≥ 0 for each e, 
(ii) wr(p) ≥ 1 for each path p such that d(p) > φ. We define 
the edge length of e=(u,v) as l(e)=−φ·w(e)+d(v)+d(e), and 
the path length of p as l(p)= ∑e∈p l(e). The sequential 
arrival time of vertex v, denote l(v), is maximum path 
length from PIs or FFs to v. If the sequential arrival time 
of all POs or FFs are less than or equal to φ, the target 
delay φ is called feasible. Let q(e)=φ·w(e)−d(u)−d(e) be 
the required edge length of e. The required path length 
q(p)= ∑e∈p q(e). The sequential required time of vertex v, 
denote q(v) is the minimum required path length from v to 
POs or FFs, when q(PO) or q(FF) = φ. Then slack of v is 
given by q(v)−l(v). Let Dg be the maximum d(v) among all 
v in V. Then, the retiming delay φ(B) of a PGPR solution B 
is the minimum feasible φ + Dg. 

 
2.2. Wirelength Objective 

 
We model netlist NL using a hypergraph H=(V, EH), 

where the vertex set V represents cells, and the hyperedge 
set EH represents nets in NL. Each hyperedge is a non-
empty subset of V. The x-span of hyperedge h, denoted hx, 
is defined as hx = maxc∈h{xi|c∈Bi} − minc∈h{xi|c∈Bi}. The 
y-span, denoted hy, is calculated using the y-coordinates. 

The sum of x-span and y-span of each hyperedge h is the 
half-parameter of the bounding block (HPBB) of h and 
denoted HPBB(h). The wirelength ω(B) of global 
placement solution B is the sum of HPBB of all 
hyperedges in H. 

 
3. Methodology 

 
3.1. Overview 

In this paper, min-cut based global placement GEO [8] 
is used after each clustering algorithm to derive global 
placement. The following five clustering algorithms have 
been analyzed at both two and multiple levels for their 
impact on performance driven mincut-based global 
placement. 

 
Random clustering: In random clustering, each cell v in 
the graph is visited in random order. One of its unmatched 
neighbors, u, is randomly selected for matching with cell 
v. Then u is marked as visited and clustered with v. The 
algorithm continues until there are no unvisited cells. 

 
First Choice (FC) [31]: Edge Coarsening, proposed by 
[30], is somewhat similar to random clustering. EC 
clustering visits each cell v randomly. However, while 
searching for cells to pair with v, EC selects the 
unmatched cell u with the largest weight t, where t is the 
sum of the edge-weights w of all the hyperedges 
connecting u and v. For each hyperedge e that connects u 
and v, w = 1/(|e|-1). Later, Karypis and Kumar [31] 
proposed First Choice, a better version of the EC 
algorithm in terms of cutsize reduction. FC is based on 
EC, but it removes the restriction of searching for u only 
among unmatched neighbors of v. Instead, all neighbors of 
v are considered. This results in significant cutsize 
enhancement. 

 
Edge Separability based Clustering (ESC) [7]: ESC 
exploits global connectivity information (rather than local 
connectivity) by computing edge separability. This process 
is equivalent to the computationally intensive calculation 
of maximum flow between two cells. A fast and simple 
approximation called CAPFOREST is used for this 
purpose. 

 
Prime [32]: This quasi-optimal delay-driven clustering 
approach involves iterative label-computation based on 
retimed edge weights for an appropriate target clock 
period Φ for a given area constraint. Clusters are then 
selected based on the individual gate labels. Our 
implementation of this algorithm is a slight variation of the 
original work [32] in that it employs sophisticated cluster 
merging techniques to eliminate node duplication. 

 
3.2. Multi-level PRIME 
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------------------------------------------------------------------------------------- 
MultiPRIME[G(V,E), D] 
------------------------------------------------------------------------------------- 
Input: Edge-weighted directed graph G, Global edge delay D, we use (D=3) 
Output: Multi-level clustered netlist C 
------------------------------------------------------------------------------------- 

1. max_lev = lookup ( |V| ); C1 = G; 
2. A1 = skew/100 x |V|/(2max_lev-1); 
3. A2

 ← A3 ← ... Amax_lev ← 2; 
4. for level i from 1 to max_lev-1: 

Ci+1 ← PRIME’ (Ci, Ai, D); 
5. return Cmax_lev; 

------------------------------------------------------------------------------------- 
 
------------------------------------------------------------------------------------- 
PRIME’ [G(V,E), A, D] 
------------------------------------------------------------------------------------------ 
Input: Edge-weighted directed graph G, area constraint A, Global edge delay D. 
Output: One-level clustered netlist G’. 
------------------------------------------------------------------------------------------ 

1. Remove all combinational back-edges in E. 
2. Call Label (G(V,E), φ, A) from [33] to compute labeling for vertices in v.
3. for every cluster Ci: 

Ci.size ← 0; 
4. Queue Q ← {v ε V: fanout(v) = NULL}; 
5. for every cell u ε V: 

u.size ← 1; u.clustID ← -1; 
6. while Q is non-empty: 

a) dequeue cell v; 
b) Cv ← cluster rooted at v; 
c) if  v.clustID ≠ -1, continue; 
d) generate new_id; 
e) for all cells u ε Cv 

if u.clustID ≠ v.clustID 
Cv.has_Dup ← true; dup_id ← u.clustID;  

f) for all cells u ε Cv 
if Cv.has_dup u.clustID ← dup_id; 
else u.clustID ← new_id; 

g) if not Cv.has_dup 
while Cv.size ≤ A 

choose cluster J э J ⊂ Cv.fanout 
if Cv.size + J.size ≤ A 

merge ← true; clustID(u) ← clustID(J), u ε Cv 

          update Cv.size and J.size 
7. generate clustered netlist G’ using clustIDs 
8. return G’ 

------------------------------------------------------------------------------------- 
 

Figure 3.1: Multilevel PRIME 
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Flip-flops were excluded from higher-level clusters and 
sub-netlists in order to maintain the integrity of PRIME. 
Doing this allowed PRIME’ to compute labels more 
accurately because more flip-flops remained global. 

The cluster merging process, which serves to balance 
the sizes of clusters, is divided into two distinct phases. 
The first phase eliminates node duplication by trying to 
merge clusters with common nodes. If there are size 
constraint violations, the common node is simply removed 
from all but one of these clusters. The second phase 
merges adjacent clusters (based on the fanouts of existing 
cluster members) while satisfying the area constraints. 



During this process, combinational cycles are created 
throughout the netlist.  

 Because of the nature of label computation in the 
PRIME algorithm, combinational cycles cannot be 
handled during the labeling phase and therefore must be 
eliminated in order to continue clustering beyond the first 
level. We found that the best way to solve this problem 
was to eliminate all edges which would result in 
combinational cycles before performing the label 
computation. These edges are then added back before the 
cluster merging phase. Another problem we encountered 
was the lack of primary inputs in some higher levels of 
clustering. We resolved this issue by beginning the label 
computation from an arbitrary non-primary output cell 
after assigning it a label of zero. 

 
3.3 Retiming First Choice (RFC) 

 
  Our performance driven clustering algorithm, RFC, 

employs the simplicity of the First Choice algorithm and 
the knowledge of retiming delay as shown in Figure 3.2. 
We first perform retiming-based timing analysis (RTA) 
using gate delay information with edge delays of zero 
(since there is no edge delay information during the 
clustering process). After RTA, we compute slack values 
as in [8]. Then we visit each cell v in the circuit. We visit 
cells in ascending order of slack values. We also perform 
the experiment by visiting cells in random order, however 
visiting cells in ascending provide us the better result, as 
can be seen in our technical report [33] Then we select all 
neighbor cells that have closest weight, given by 
(slack(u)/area(u)). Experiments show that allowing 
clusters to be balanced by adding area components to the 
cell weights provide better results. Then we mark u as 
visited. The algorithm stops when all cells are visited. 

 
4. Experimental Results 

 
Our algorithms are implemented in C++/STL, 

compiled with gcc v2.96 with –O3, and run on Pentium III 
746 MHz machine. The benchmark set consists of seven 

circuits from ISCAS89 [29] and five circuits from ITC99 
[28] suites. The statistical information of benchmark 
circuits is as shown in Table 4.1. We provide the number 
of gates, PIs, POs and FFs for each circuit. Dr represents 
retiming delay. Here it is the lower bound of retiming 
delay, which is calculated by assigning zero delay to all 
edges and then performing RTA We assume unit delay for 
all gates in the circuits. All experiments are run on 8x8 
tiles. All the clustering algorithms stop when the number 
of partitioned cells is less than 100. We also report average 
improvement ratio and average running time in seconds. 

 
4.1 Two level comparison 

 
  The results of the two-level clustering algorithms are 

shown below in table 4.2. The importance of performing 
structured clustering becomes obvious: random clustering 
has the worst results for both delay and wirelength. ESC 
was clearly the best clustering technique in terms of both 
wirelength and delay. This indicates that cutsize-
minimizing clustering methods provide better results when 
used with mincut-based global placement.  

 

Table 4.1. Benchmark circuit characteristics. 
 

ckt gate PI PO FF Dr 
s5378 2828 36 49 163 32 
s9234 5597 36 39 211 39 

s13207 8027 31 121 669 50 
s15850 9786 14 87 597 62 
s35932 16353 35 2048 1728 27 

22397 28 106 1636 32 
s38584 19407 12 278 1452 47 
b14o 5401 32 299 245 27 
b15o 7092 37 519 449 38 
b20o 11979 32 22 490 44 
b21o 12156 32 22 490 43 
b22o 17351 32 22 703 46 

s38417 

------------------------------------------------------------ 
RFC(NL’) 
perform RTA(R) (= timing analysis) 
compute sequential slack for nodes in R 
for each cell v in NL’  

close_val = inf. 
  select_node = NULL  
  for each u=neighbor(v) in ascending order of slack 
     weight(u) = slack(u)/area(u) 

if (|weight(u)-weight(v)|< close_val) 
select_node = u 
close_val = |weight(u)-weight(v)| 

 cluster(v,select_node) 
------------------------------------------------------------ 
 

Figure 3.2: RFC algorithm 

 
4.2 Multi-level comparison 

 
   From table 4.3, we see that even clustering 

techniques which use retiming information extensively 
(such as RFC and PRIME) impact retiming delay 
minimally. Wirelength plays a very significant role in 
delay computations made under the geometric delay 
model. PRIME clustering essentially ignores wirelength, 
and this impacts its performance adversely. Results from 
ESC confirm the importance of wirelenghth optimization: 
ESC enhances wire-length by 45% and consequently has 
the best retiming delay. There are no significant 
differences in runtime for different clustering algorithms 
except ESC, which takes slightly longer since it involves 
several maximum flow computations. Based on this study, 
mincut-based performance driven global placement should 



employ clustering algorithms targeting cutsize in order to 
enhance their performance.  
 
4.3 Observations 

 
 There is drastic and definite improvement for all 

clustering algorithms as we move from two-level 
clustering to multi-level clustering for both wirelength and 
retiming delay. Herein lies the power of the multi-level 
clustering paradigm. Overall, ESC has the best results for 
both retiming delay and wirelength. This can be attributed 
to the good balance among ESC clusters as compared to 
that of other methods. Better balance allows for more 
levels of clustering, which improves wirelength results. 
Furthermore, ESC targets cutsize minimization, which 
reduces the wirelength and therefore slightly improves the 
geometric delay. The delay measurements for various 
multi-level clustering techniques are more or less uniform. 

 

 
5. Conclusion and Future Work 

 
   From two-level clustering to multilevel clustering, 

there is clear improvement in terms of both wire length 
and performance. For performance driven mincut-based 
placement, the properties of good clustering that result in 
better retiming delay and lower wirelength are as follows:  

• Can archive multi-level clustering. This comes from 
the fact that the partitioning algorithm is based on LR-FM 
which can easily handle graphs with a small number of 
gates. The application of multi-level clustering reduces the 
problem space to a level where LR-FM can perform 
efficiently. 

• Incorporates wirelength considerations. Our results 
indicate the existence of some correlation between good 
wirelength and low retiming delay. Therefore, wirelength 
reduction heuristics cannot be completely ignored. 
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Table 4.2 Comparison of different two-level clustering algorithms 

Rand FC ESC PRIME RFC 
 wl dr wl dr wl Dr wl dr wl dr 

2290 63 2143 59 1587 56 2007 54 2238 57 
3302 72 2621 61 1765 48 2791 58 2852 74 

 3758 94 3341 102 1789 86 2978 108 3341 102 
 4683 128 3633 96 2158 103 3663 114 3640 107 
 14364 79 10321 57 2349 45 6203 61 10867 55 
 13380 87 7586 63 2724 39 8253 65 8281 65 
 13015 88 9633 98 3206 64 9138 118 9351 72 
t 5297 70 5220 64 4094 65 4725 76 4870 70 
t 9366 106 8240 91 5902 82 6313 72 7258 79 
t 10448 81 9089 78 6839 76 10655 100 9386 78 
t 11188 75 9107 73 6722 78 9778 84 10433 89 
t 14837 82 12731 74 9122 87 11490 77 11283 67 

1 1 0.82 0.90 0.50 0.81 0.77 0.97 0.82 0.90 
795 709 695 562 1029 
 



 

 
 

Bench
s5378
s9234
s1320
s1585
s3593
s3841
s3858
b14_o
b15_o
b20_o
b21_o
b22_o

Avg
Time
Table 4.3 Comparison on different multi-level clustering algorithms 

Rand FC ESC PRIME RFC 
. wl dr wl dr wl Dr wl dr wl dr 
 2,126 70 2,151 52 1,453 57 1,821 60 2,084 49 
 2,303 56 2,325 55 1,459 50 2,228 58 2,484 50 
7 2,671 87 2,536 79 1,689 86 2,526 84 2,745 82 
0 2,526 99 2,784 102 1,824 90 3,206 92 2,955 105 
2 5,368 49 5,535 45 2,113 45 6,086 55 4,847 49 
7 3,734 55 4,377 51 2,394 37 4,478 45 4,269 45 
4 4,831 86 5,440 84 3,184 81 5,786 68 5,404 65 
pt 4,323 66 4,156 68 3,658 67 4,132 70 4,796 81 
pt 7,488 75 6,761 85 5,786 79 6,459 97 7,558 89 
pt 8,022 68 7,600 67 6,087 67 7,717 67 7,712 75 
pt 7,894 70 8,085 70 6,149 79 9,556 67 7,719 75 
pt 10,097 65 10,557 74 7,620 80 11,897 72 9,024 62 
. 1 1 1.02 0.98 0.69 0.96 1.06 0.99 1.03 0.98 
 1128 777 2253 1720 1109 


