

Supporting Cache Coherence

in Heterogeneous Multiprocessor Systems

Taeweon Suh, Douglas M. Blough, and Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0250

{suhtw, doug.blough, leehs}@ece.gatech.edu

Abstract

In embedded system-on-a-chip (SoC) applications, the need for integrating
heterogeneous processors in a single chip is increasing. An important issue in integrating
heterogeneous processors is how to maintain the coherence of data caches. In this paper,
we propose a hardware/software methodology to make caches coherent in heterogeneous
multiprocessor platforms with shared memory. Our approach works with any combination
of processors that support any invalidation-based protocol. As shown in our simulations,
up to 38% speedup can be achieved with a 13-cycle miss penalty at the expense of simple
hardware, compared to a pure software solution. Speedup can be improved even further as
the miss penalty increases. In addition, our approach provides embedded system
programmers a transparent view of shared data, removing the burden of software
synchronization.

1. Introduction

Shared memory multiprocessor architectures employ cache coherence protocols such as
MSI [1], MESI [2], and Dragon protocol [3], to guarantee data integrity and correctness
when data are shared and cached within each processor. For example, IBM’s PowerPC755
[4] supports the MEI protocol (Modified, Exclusive, and Invalid), Intel’s IA32 Pentium
class [5] processor supports the MESI protocol, to name a few. Several variants of the
MESI protocol are used in modern microprocessors, e.g. the MOESI protocol (Exclusive
Modified, Shared MOdified, Exclusive Clean, Shared Clean, and Invalid) from SUN’s
UltraSPARC [6] and a slightly different MOESI protocol (Modified, Owned, Exclusive,
Shared, and Invalid) from the most recent AMD64 architecture [7].

Conventionally, commercial servers and high-performance workstations enable
multiprocessing capability by integrating homogeneous processors on the platforms. For
these systems, it is straightforward to integrate several processors together using a shared
bus since the bus interface and the cache coherence protocol are completely compatible.
Once homogeneous processors are integrated with a shared bus, the cache coherence is
automatically guaranteed through the hardware so long as the cache controller in each
processor includes cache coherence functions. However, as system-on-a-chip (SoC)

 2

technology becomes prevalent and more computing power is demanded in embedded
applications, highly integrated embedded systems would integrate a few heterogeneous
processors, with different instruction set architectures, on a single chip to expedite the
processing speed and maximize the throughput. For instance, in real-time embedded
systems the MPEG and audio decoding efficiency are essential while the TCP/IP stack
processing speed is also critical. Obviously, one general-purpose processor or a single
digital signal processor (DSP) alone will be ineffective in managing the entire system and
providing the computational power required. Under such circumstances, one can employ a
media processor or a DSP for the MPEG/audio applications while a different one for the
TCP/IP stack processing. To perform these heterogeneous operations seamlessly, the cache
coherence issues among these heterogeneous processors should be studied, evaluated, and
analyzed.

The design complexity of integrating heterogeneous processors on SoCs is non-trivial
since it introduces several problems in both design and validation due to different bus
interface specifications and incompatible cache coherence protocols. Sometimes it is even
worse as some embedded processors do not support cache coherence inherently. In this
paper, we overcome these issues by proposing a hardware/software methodology and
demonstrate physical design examples using three commercially available heterogeneous
embedded processors Write-back Enhanced intel486 [8], PowerPC755, and ARM920T
[9]. Our hardware design was based on Verilog Hardware Description Language. Seamless
CVE [10] from Mentor Graphics® and VCS [11] from Synopsys® were used as the
simulation tools.

This paper is organized as follows. Section 2 discusses our proposed methodology for
maintaining cache coherence in heterogeneous multiprocessor systems. Section 3 presents
two viable implementations. Section 4 shows the performance evaluation, and finally we
conclude our work in Section 5

2. Proposed approach

There are two main categories of cache coherence protocols: update-based protocols and
invalidation-based protocols. In general, invalidation-based strategies have been found to
be more robust and are therefore provided as the default protocol by most vendors [12]. In
this paper, we focus our discussion on those processors that support invalidation-based
protocols and study the implication of integrating them with processors without any
inherent cache coherence support. Heterogeneous processor platforms can be classified into
three platforms in terms of the processors’ cache coherence support as shown in Table 1, in
which we simplify the scenario to a dual-processor platform. Our proposed approach can be
easily extended to platforms with more than two processors. In PF1 and PF2, special
hardware is needed and there are limitations in the resulting coherence mechanism. These
cases are discussed with an example in Section 3. In PF3, the cache coherence can be
maintained with simple hardware. We discuss PF3 in this section and Section 3. Integrating
processors with different coherence protocols restricts the usage of the entire protocol states.
Only the states that are common from distinct protocols can be preserved. For example,

 3

when integrating two processors with MEI and MESI, the coherence protocol in a system
must be MEI. We present methods of integration according to the combination of
invalidation-based protocols. We assume that the cache-to-cache sharing is implemented
only in processors supporting the MOESI protocol, as most commercial processors do.

Table 1: Heterogeneous platform classes
Cache coherence

hardware inside each
processor

Platform
(PF)

Processor 1 Processor 2
PF1 No No
PF2 Yes (No) No (Yes)
PF3 Yes Yes

In the subsequent sections, we will discuss protocol integration methods for four major

protocols MEI, MSI, MESI, and MOESI. The variations include (1) MEI with
MSI/MESI/MOESI, (2) MSI with MESI/MOESI, and (3) MESI with MOESI.

2.1 MEI with MSI, MESI, or MOESI

Integrating the MEI protocol with others requires the removal of the shared state. To

illustrate the problem with the shared state, we use the example in Table 2 assuming that
Processor 1 supports the MESI protocol and Processor 2 supports the MEI protocol, with
the operation sequence ⓐ ⓑ ⓒ ⓓ executed for the same cache line.

Table 2: Problem with MEI and MESI
seq Operation

on cache line C
C state in

Processor 1
(MESI)

C state in
Processor 2

(MEI)
ⓐ Processor 1 reads I→E I
ⓑ Processor 2 reads E→S I→E
ⓒ Processor 2 writes S (stale) E→M
ⓓ Processor 1 reads S (stale) M

ⓐ changes the state from I to E in Processor 1. ⓑ changes the state from I to E in

Processor 2 and from E to S in Processor 1. Since the cache line is in the E state in
Processor 2, transaction ⓒ does not appear on the bus even though Processor 1 has the
same line in the S state. It invokes the state transition from E to M in Processor 2. However,
the state of the cache line in Processor 1 remains the same. Therefore, transaction ⓓ
accesses the stale data, which should have been invalidated.

Figure 1 illustrates our proposed method to remove the shared state. Since the transition
to the shared state occurs when the snoop hardware in the cache controller observes a read

 4

transaction on the bus, the way to remove the shared state is simply to convert a “read”
operation to a “write” operation within wrappers of snooping processors. The memory
controller should see the actual operation in order to access the memory correctly when it
needs to do.

Using the MESI protocol as an example, the state change from E to S occurs only when
the snoop hardware in the cache controller sees a read transaction on the bus for the cached
line of the E state. Therefore, in order to remove the shared state, it is sufficient for the
wrapper to convert a read transaction on the bus to a write during snooping. When the
snoop hardware in the cache controller sees a write transaction on a cache line in a
modified or an exclusive state, it drains out or invalidates the cache line (“drain” means
writing back the modified cache line to memory and invalidating the cache line). In this
way, the shared state is excluded in the controllers’ state machines. The following
subsections describe how the state machines are changed for different invalidation-based
protocols with the proposed approach.

Proc 1

Bus

Wrapper

Proc 2

Wrapper

 (MEI) (MESI)

Read/Write

Write

 Memory
Controller

Figure 1: The method to remove the shared state

2.1.1 MSI protocol. In the MSI protocol, two transitions exist to reach the S state: (1) I →
S when the cache controller sees a read miss to a cache line and (2) M → S when the snoop
hardware in the cache controller sees a read operation on the bus. In case (1), the S state
cannot be removed since this transition is invoked by its own processor. However, even
though it is in the S state, only one processor owns a specific cache line at any point in time
because the S state changes to the I state whenever other processors read or write the same
cache line. (Note that the wrapper converts a read into a write.) Therefore, despite the name,
the S state is equivalent to the E state. The state transition from M to S cannot occur since
the wrapper always converts a read operation to a write operation. Only the M to I
transition is allowed with the operation conversion.

2.1.2 MESI protocol. In the MESI protocol, there are three possible transitions that reach
the S state: (1) I → S when a read miss occurs and the shared signal [12] is asserted, (2) E
→ S when the snoop hardware in the cache controller sees a read operation for a clean
cache line on the bus, and (3) M → S when the snoop hardware in the cache controller sees

 5

a read operation for a modified (or dirty) cache line on the bus. To remove the S state, the
wrapper always de-asserts the shared signal. This means transition (1) cannot occur.
Transitions (2) and (3) also cannot occur because the wrapper informs snooping caches of
writes for read operations. Therefore, the S state is completely removed.

2.1.3 MOESI protocol. The same techniques used for the MESI protocol can be applied to
the MOESI protocol except the O state needs to be handled. The O state can only be
reached when the snoop hardware in the cache controller observes a read operation on the
bus for a modified cache line. Nevertheless, the O state is never entered since the cache
controller never sees a read operation on the bus when snooping.

With the techniques described above, the MSI, MESI, and MOESI protocols are reduced

to MEI.

2.2 MSI with MESI, or MOESI

In integrating MSI and MESI protocols, the E state is not allowed. Suppose that
Processor 1 supports the MSI protocol and Processor 2 supports the MESI protocol and the
operations in Table 3 are executed for the same cache line.

Table 3: Problem with MSI and MESI
seq Operation

On cache line C
C state in

Processor 1
(MSI)

C state in
Processor 2

(MESI)
ⓐ Processor 1 reads I→S I
ⓑ Processor 2 reads S I→E
ⓒ Processor 2 writes S (stale) E→M
ⓓ Processor 1 reads S (stale) M

ⓐ changes the state from I to S in the Processor 1. ⓑ makes the state transition from I to

E in the Processor 2 while the cache line status of Processor 1 remains unchanged because
Processor 1 cannot assert the shared signal. ⓒ invokes only the E to M transition in
Processor 2. As a result, Processor 1 reads the stale data in ⓓ due to a cache hit indicated
by the S state. Therefore, the E state should not be allowed in the protocol. Our technique to
remove the E state from the MESI protocol is to assert the shared signal whenever a read
miss occurs.

The same method can be applied to the integration of MSI and MOESI protocols with
one additional constraint imposed. In MOESI, the M to O transition occurs when the
processor observes a read transaction on the cache line of the M state. Then, a cache-to-
cache transition occurs. Since the cache-to-cache sharing is not allowed in the MSI protocol,
the M to O transition should not occur. To preclude this transition, the same technique used
for eliminating the shared state can be used, i.e. “read”-to-“write” conversion within
wrappers. Since the shared signal is always asserted and the read to write conversion should

 6

be employed, the E and O state transition never occurs. Therefore, the MOESI protocol is
reduced to the MSI protocol.

With these techniques described above, the MESI and MOESI protocols are reduced to
MSI.

2.3 MESI with MOESI

To prohibit cache-to-cache sharing while integrating MESI and MOESI protocols, read-
to-write conversion can again be employed. This precludes the transitions from E to S and
from M to O in MOESI protocol. However, the I to S transition is allowed. Therefore, the
MOESI protocol is reduced to MESI even though not all of the transitions in MESI are
allowed.

3. Case study

In this section, we present two implementations using commercially available embedded
processors: PowerPC755, Write-back Enhanced intel486 (hereafter, Intel486 is used for
Write-back Enhanced intel486), and ARM920T. PowerPC755 uses the MEI protocol,
Intel486 supports a modified MESI protocol, and no cache coherence is supported in
ARM920T. A multiprocessor platform employs a shared bus for data transactions between
main memory and processors. Several bus architectures for SoC were proposed by industry,
for example, IBM’s CoreConnect bus architecture [13], Palmchip’s CoreFrame [14], and
ARM’s Advanced Microcontroller Bus Architecture (AMBA) [15]. A common
characteristic among these architectures is that they use two separate pipelined buses: one
for high speed devices and one for low speed devices. In this paper, we study the Advanced
System Bus (ASB), an AMBA bus, as the shared bus protocol. The AMBA is one of the
most popular bus protocols in embedded system design [16].

 Figure 2 shows the schematic diagram for the integration of PowerPC755 and Intel486,
which represents a case of the PF3.

PowerPC
 755

ASB

Intel486

Arbiter

Wrapper Wrapper

BR_BAR

BG_BAR

ARTRY

BREQ

BOFF

HITM

INV

Figure 2: PowerPC755, Intel486 coherence

 7

Wrappers are needed for the protocol conversions between the processors’ buses and

ASB, in addition to read operation conversion. On the PowerPC755 side, the conversion
from a read operation to a write operation is not needed since the S state is not present in
the state machine, whereas the S state should be removed on the Intel486 side by asserting
the INV input signal, a cache coherency protocol pin. It is sampled on snoop cycles by the
Intel486 cache controller. If it is asserted, the cache controller invalidates an addressed
cache line if the cache line is in the E or S state. If it is in the M state, the line is drained out
to memory. Normally, INV is de-asserted on read snoop cycles and asserted on write snoop
cycles. To remove the S state, it should be asserted on both read and write snoop cycles. In
the Intel486’s cache, cache lines are defined as write-back or write-through at allocation
time. Only write-through lines can have the S state, and only write-back lines can have the
E state. Therefore, the protocol for write-through lines is the SI protocol while the protocol
for write-back lines is the MEI protocol. When a snoop hit occurs on the M state line of the
Intel486 cache, the HITM output signal is asserted and the wrapper around the
PowerPC755 informs the core of a snoop hit by asserting the ARTRY input signal. Then,
the PowerPC755 immediately yields the bus mastership to the Intel486 so the cache
controller in the Intel486 drains out the modified line to memory. When a snoop hit occurs
on the M state line of the PowerPC755 data cache, the PowerPC755 asserts the ARTRY
output signal and the arbiter immediately asserts BOFF so the Intel486 yields the bus
mastership to the PowerPC755. Then, the cache controller in the PowerPC755 drains out
the modified line to memory.

Figure 3 shows another example of a heterogeneous platform using PowerPC755 and
ARM920T representing a case of PF2. The same methodology used in ARM920T can be
employed in PF1.

PowerPC
 755

ASB

Arbiter

Wrapper
ARM920T

BREQ

BGNT

ARTRY

Snoop
logic

nFIQ

BR_BAR

BG_BAR

Figure 3: PowerPC755, ARM920T coherence

The wrapper converts the PowerPC bus protocol to the ASB protocol, and vice versa. It

also allows the PowerPC755 to monitor the bus transactions generated by the ARM920T.
The snoop logic provides snooping capability for the ARM920T, which does not have any
native cache coherence support. It keeps all the address tags of the ARM920T’s data cache

 8

inside a content addressable memory (or TAG CAM) watching bus transactions initiated by
the ARM920T. When the tag of a requested address generated by the PowerPC755 matches
an entry of the TAG CAM, it triggers a snoop hit to the ARM920T by asserting a fast
interrupt (nFIQ). An interrupt service routine is responsible for draining the snoop-hit cache
line if the line is modified or invalidating it if the line is clean.

Even though this architecture can make caches coherent, there is one limitation when at
least one of the processors in a heterogeneous processor platform does not have cache
coherence hardware such as in the case of ARM920T. Therefore, PF1 and PF2 have this
limitation. Figure 4 illustrates the problem. Suppose that lock variables and the shared data
are allowed to be cached, and the shared data 1 is currently in the data cache of the
ARM920T. After acquiring the lock, PowerPC tries to access the shared data as shown in
(1). Therefore, a snoop hit occurs in the snoop logic, and the nFIQ is asserted as illustrated
in (2). Then, ARM is supposed to drain out/invalidate the cache line in the interrupt service
routine. However, ARM may or may not respond to the interrupt immediately, depending
on the status of the CPU pipeline. During the interrupt response time as shown in (3), ARM
may try to check the lock to see if it is released. Lock variables are currently in the data
cache of PowerPC, since PowerPC has the lock. Therefore, PowerPC should drain out the
cache line, where lock variables are stored. However, if PowerPC gets the bus mastership,
it is supposed to retry the transaction, which it did in (1), instead of draining out the lock
variables. We call this situation “the hardware deadlock”.

Time

PowerPCBus master ARM PowerPC

nFIQ

interrupt
response
time

snoop hit in the
snoop logic

ARM drains out
the shared data 1

ARM tries to check the lock, which is
in the Dcache of PowerPC

(1)

(2) (3)

PowerPC accesses the
shared data 1

Figure 4: Hardware deadlock problem

There are two solutions to avoid the hardware deadlock problem.

 Do not cache the lock variables
 Hardware lock register in a system [17]

In the first solution, a software lock using, for example, the Bakery algorithm [18] can be

implemented. In this case, the programmer is restricted to perform all shared variable

 9

operations within critical sections, or a similar deadlock can occur on non-lock variables. In
the second solution, a simple but special hardware needs to be designed. This hardware has
only 1-bit lock register, and sits on a shared bus. Since the lock variables are not cached,
the hardware deadlock does not occur in either case. For the same reason, the system can
have only one lock.

4. Performance evaluation

Simulations were performed with the worst-case scenario (WCS), the typical-case

scenario (TCS), and the best-case scenario (BCS) microbench programs. In the microbench
programs, one task runs on each processor. Each task tries to access a critical section
(shared memory), which is protected by a lock mechanism. Once a task acquires the lock, it
accesses a number of cache lines and modifies them for exec_time iterations before exiting
the critical section. The microbench program was implemented with each task acquiring the
lock alternatively, which means the simulation assumes the worst-case situation for lock
acquisition/releasing.

Table 4: Simulation environments

Simulators • Seamless CVE
• VCS

Operating frequencies
• PowerPC755: 100MHz1
• ARM920T: 50MHz1
• ASB: 50MHz

Instruction caches Enabled

Data caches
• Private data: Enabled
• Shared data: Selectively

enabled2
Single word 6 cycles Memory

access
time

Burst
(8 words)

• 6 cycles for the 1st word
• 1 cycle for each

subsequent word
1 These low operating frequencies are due to the limitation of simulation models.
Similar results are expected for simulations with higher operating frequencies.
2 Enabled in the proposed solution and software solution

If the hardware does not support cache coherence, two alternate solutions can be used to

make data caches coherent:

 Data caches can be disabled for shared data
 Software synchronization can be used with data caches enabled for shared data
(software solution)

 10

In the software solution, the programmer should make sure to drain/invalidate all the
used cache lines in the critical section before exiting the critical section. The simulation
environment and the hardware configurations are summarized in Table 4. The platform
with the PowerPC755 and ARM920T is used to quantify the performance. The Intel486
and PowerPC755 platform should outperform the PowerPC755 and ARM920T platform
due to the absence of an interrupt service routine.

Simulations of each alternate solution were performed for each scenario as a baseline to
evaluate the performance of our approach. Lock variables are not cached in all simulations.
Figure 5~7 show the execution time with respect to the one with the data cache disabled.
Figure 5 shows the WCS results. In the WCS, two tasks keep accessing the same blocks of
memory. The proposed solution shows 57.66% performance improvement against the case
with data cache disabled when exec_time=4. It also shows better performance than the
software solution by at least 2.51% for all WCS simulations.

0 5 10 15 20 25 30 35
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

exec_time=4

exec_time=2

exec_time=1

R
at

io
 o

f e
xe

cu
tio

n
tim

e

of accessed cache lines per iteration

 software solution
 proposed approach

Figure 5: Worst case results

0 5 10 15 20 25 30 35
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

exec_time=4

exec_time=2

exec_time=1

R
at

io
 o

f e
xe

cu
tio

n
tim

e

of accessed cache lines per iteration

 software solution
 proposed approach

Figure 6: Best case results

 11

In the BCS, the ARM920T accesses the critical section, but PowerPC755 does not access
it. The ARM920T drains out the used blocks before exiting the critical section in the
software solution, but it does not need to drain out the used blocks in the proposed solution.
The results in Figure 6 show that speedup increases as the number of accessed cache line
increases. Simulation with 32 cache lines shows 38.22% speedup compared to the software
solution with exec_time = 1.

In the TCS, each task randomly picks up shared blocks of memory among 10 blocks
before getting into the critical section. Figure 7 shows the simulation results. Simulation
with 32 cache lines shows 22.88 % speedup compared to the software solution with
exec_time = 1

0 5 10 15 20 25 30 35
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

exec_time=4

exec_time=2

exec_time=1

R
at

io
 o

f e
xe

cu
tio

n
tim

e

of accessed cache lines per iteration

 software solution
 proposed approach

Figure 7: Typical case results

So far, we have assumed that memory access time is fixed to 6 cycles for a single word
access, and 13 cycles for burst access as shown in Table 4. Figure 8 shows the simulation
results as the miss penalty (memory access time) increases.

0 20 40 60 80 100
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05 # of accessed cache line = 32

of accessed cache line = 1

Ra
tio

 o
f e

xe
cu

tio
n

tim
e

Miss penalty (cycle)

 WCS
 TCS
 BCS

Figure 8: Results according to miss penalty

 12

It shows the relative execution time with respect to the software solution. As the miss
penalty increases, the performance difference also increases in favor of our approach with
a few exceptions in the WCS and TCS. These exceptions come from cache line
replacements and/or interrupt processing overheads that vary as the miss penalty changes.
These exceptions are expected to be removed in PF3 since the interrupt service routine is
not needed. The BCS Simulation with 32 cache lines shows 76.56 % speedup compared to
the software solution when the miss penalty is increased to 96 cycles.

5. Conclusion

In this paper, we presented a methodology to maintain the coherence of data caches in
heterogeneous processor platforms. Cache coherence can be guaranteed simply by
implementing wrappers in platforms where processors support any invalidation protocol.
Read to write operation conversion and/or shared signal are used within wrappers to
maintain coherence depending on combination of coherence protocols. The integrated
coherence protocol will at most consist of all the common states from various protocols in a
system. Using commercial embedded processors as the experimental platforms, our
simulation results showed 38% speedup for low miss penalties and 76% speedup for higher
penalties at the expense of simple hardware, compared to a pure software solution.
Platforms without need for a special interrupt service routine would perform even better. As
the miss penalty increases, the speedup also increases in favor of our approach. As
heterogeneous processor SoCs become more prevalent in future system design, our
methodology will be very useful and effective for integrating heterogeneous coherence
protocols in the same system. In the future, we plan to apply our approach to emerging
technologies that tightly integrate between a main processor and specialized I/O processors
such as network processors [19].

6. References

[1] F. Baslett, T. Jermoluk, and D. Solomon, “The 4D-MP Graphics Superworkstataion:

Computing+Graphics= 40MIPS+40MFLOPS and 100,000 Lighted Polygons per Second,” Proc.
33rd IEEE Computer Society Int’l Conference – COMPCON`88, pp 468-471, February 1988.

[2] M. Papamarcos and J. Patel, “A Low Overhead Coherence Solution for Multiprocessors with
Private Cache Memories,” Proc. 11th Annual Int’l Symposium on Computer Architecture, pp
348-354, June 1984.

[3] E. McCreight, “The Dragon Computer System: An Early Overview,” Tech. report, Xerox Corp,
September 1984.

[4] Motorola Inc., MPC 750A RISC Microprocessor Hardware Specification, [Online document],
Available HTTP: http://www.mot.com/SPS/PowerPC/library/ 750_hs.pdf

[5] Intel Corp., The IA32 Intel® Architecture Software Developer's Manual
http://developer.intel.com/design/ pentium4/manuals/245472.htm

[6] Sun Microsystems, “UltraSPARCTM User’s manual,” [Online document], Available HTTP:
http://www.sun.com/ processors/manuals/802-7220-02.pdf

 13

[7] AMD, “AMD64 Technology,” [Online document], Available HTTP:
http://www.amd.com/usen/assets/content _type/white_papers_and_tech_docs/24593.pdf

[8] Intel Corp., Embedded Intel486TM Hardware Reference Manual, [Online document], Available
HTTP: http://www.intel.com/design/intarch/manuals/273025.htm

[9] ARM Ltd., AM920T Technical Reference Manual, [Online document], Available HTTP:
http://www.arm.com/arm/ documentation?OpenDocument

[10] Mentor Graphics, Hardware/Software Co-Verification: Seamless, [Online document],
Available HTTP: http://www.mentor.com/seamless

[11] Synopsys, “VCS data sheet,” [Online document], Available
HTTP:http://www.synopsys.com/products/simulation/vcs_ds.html

[12] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel Computer Architecture: A
hardware/software approach, Morgan Kaufmann Publishers, Inc., 1999, ch 5.

[13] IBM Corporation. CoreConnect Bus Architecture, [Online document], Available HTTP:
http://www.chips.ibm.com/ products/coreconnect

[14] B. Gordan, “An Efficient Bus Architecture for System-on-a-Chip Design,” Proceedings of
IEEE Custom Integrated Circuits Conference, pp.623-626, May 1999.

[15] ARM Ltd., “AMBA Specification Overview,” [Online document], Available HTTP:
http://www.arm.com/ Pro+Peripherals/AMBA

[16] Embedded.com, [Online article], Available HTTP: http://www.embedded.com/story/
OEG20021204S0005

[17] B. E. S. Akgul and V. J. Mooney, "The System-on-a-Chip Lock Cache," International Journal
of Design Automation for Embedded Systems, 7(1-2), September 2002, pp. 139-174

[18] A. Silberschatz, P. Galvin, and G Gagne, Operating System Concepts, 2002, pp 196
[19] Di-shi Sun and Douglas M. Blough, CERCS Technical Report, “I/O Threads: A Novel I/O

Approach for System-on-a-Chip Networking,” Georgia Tech, Sep. 2003.

