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Abstract 
 

In embedded system-on-a-chip (SoC) applications, the need for integrating 
heterogeneous processors in a single chip is increasing. An important issue in integrating 
heterogeneous processors is how to maintain the coherence of data caches. In this paper, 
we propose a hardware/software methodology to make caches coherent in heterogeneous 
multiprocessor platforms with shared memory. Our approach works with any combination 
of processors that support any invalidation-based protocol. As shown in our simulations, 
up to 38% speedup can be achieved with a 13-cycle miss penalty at the expense of simple 
hardware, compared to a pure software solution. Speedup can be improved even further as 
the miss penalty increases. In addition, our approach provides embedded system 
programmers a transparent view of shared data, removing the burden of software 
synchronization. 
 
 
1. Introduction 
 

Shared memory multiprocessor architectures employ cache coherence protocols such as 
MSI [1], MESI [2], and Dragon protocol [3], to guarantee data integrity and correctness 
when data are shared and cached within each processor. For example, IBM’s PowerPC755 
[4] supports the MEI protocol (Modified, Exclusive, and Invalid), Intel’s IA32 Pentium 
class [5] processor supports the MESI protocol, to name a few. Several variants of the 
MESI protocol are used in modern microprocessors, e.g.  the MOESI protocol (Exclusive 
Modified, Shared MOdified, Exclusive Clean, Shared Clean, and Invalid) from SUN’s 
UltraSPARC [6] and a slightly different MOESI protocol (Modified, Owned, Exclusive, 
Shared, and Invalid) from the most recent AMD64 architecture [7].  

Conventionally, commercial servers and high-performance workstations enable 
multiprocessing capability by integrating homogeneous processors on the platforms. For 
these systems, it is straightforward to integrate several processors together using a shared 
bus since the bus interface and the cache coherence protocol are completely compatible. 
Once homogeneous processors are integrated with a shared bus, the cache coherence is 
automatically guaranteed through the hardware so long as the cache controller in each 
processor includes cache coherence functions. However, as system-on-a-chip (SoC) 
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technology becomes prevalent and more computing power is demanded in embedded 
applications, highly integrated embedded systems would integrate a few heterogeneous 
processors, with different instruction set architectures, on a single chip to expedite the 
processing speed and maximize the throughput. For instance, in real-time embedded 
systems the MPEG and audio decoding efficiency are essential while the TCP/IP stack 
processing speed is also critical. Obviously, one general-purpose processor or a single 
digital signal processor (DSP) alone will be ineffective in managing the entire system and 
providing the computational power required. Under such circumstances, one can employ a 
media processor or a DSP for the MPEG/audio applications while a different one for the 
TCP/IP stack processing. To perform these heterogeneous operations seamlessly, the cache 
coherence issues among these heterogeneous processors should be studied, evaluated, and 
analyzed.  

The design complexity of integrating heterogeneous processors on SoCs is non-trivial 
since it introduces several problems in both design and validation due to different bus 
interface specifications and incompatible cache coherence protocols. Sometimes it is even 
worse as some embedded processors do not support cache coherence inherently. In this 
paper, we overcome these issues by proposing a hardware/software methodology and 
demonstrate physical design examples using three commercially available heterogeneous 
embedded processors  Write-back Enhanced intel486 [8], PowerPC755, and ARM920T 
[9]. Our hardware design was based on Verilog Hardware Description Language. Seamless 
CVE [10] from Mentor Graphics® and VCS [11] from Synopsys® were used as the 
simulation tools. 

This paper is organized as follows. Section 2 discusses our proposed methodology for 
maintaining cache coherence in heterogeneous multiprocessor systems. Section 3 presents 
two viable implementations. Section 4 shows the performance evaluation, and finally we 
conclude our work in Section 5 
 
 
2. Proposed approach 
 

There are two main categories of cache coherence protocols: update-based protocols and 
invalidation-based protocols. In general, invalidation-based strategies have been found to 
be more robust and are therefore provided as the default protocol by most vendors [12]. In 
this paper, we focus our discussion on those processors that support invalidation-based 
protocols and study the implication of integrating them with processors without any 
inherent cache coherence support. Heterogeneous processor platforms can be classified into 
three platforms in terms of the processors’ cache coherence support as shown in Table 1, in 
which we simplify the scenario to a dual-processor platform. Our proposed approach can be 
easily extended to platforms with more than two processors. In PF1 and PF2, special 
hardware is needed and there are limitations in the resulting coherence mechanism. These 
cases are discussed with an example in Section 3. In PF3, the cache coherence can be 
maintained with simple hardware. We discuss PF3 in this section and Section 3. Integrating 
processors with different coherence protocols restricts the usage of the entire protocol states. 
Only the states that are common from distinct protocols can be preserved. For example, 
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when integrating two processors with MEI and MESI, the coherence protocol in a system 
must be MEI. We present methods of integration according to the combination of 
invalidation-based protocols. We assume that the cache-to-cache sharing is implemented 
only in processors supporting the MOESI protocol, as most commercial processors do.  

 

Table 1:  Heterogeneous platform classes 
Cache coherence 

hardware inside each 
processor 

Platform
(PF) 

Processor 1 Processor 2
PF1 No No 
PF2 Yes (No) No (Yes) 
PF3 Yes Yes 

 
In the subsequent sections, we will discuss protocol integration methods for four major 

protocols  MEI, MSI, MESI, and MOESI. The variations include (1) MEI with 
MSI/MESI/MOESI, (2) MSI with MESI/MOESI, and (3) MESI with MOESI.   

 
2.1 MEI with MSI, MESI, or MOESI 

 
Integrating the MEI protocol with others requires the removal of the shared state. To 

illustrate the problem with the shared state, we use the example in Table 2 assuming that 
Processor 1 supports the MESI protocol and Processor 2 supports the MEI protocol, with 
the operation sequence ⓐ ⓑ ⓒ ⓓ executed for the same cache line. 

 

Table 2: Problem with MEI and MESI 
seq Operation 

on cache line C 
C state in 

Processor 1
(MESI) 

C state in 
Processor 2 

(MEI) 
ⓐ Processor 1 reads I→E I 
ⓑ Processor 2 reads E→S I→E 
ⓒ Processor 2 writes S (stale) E→M 
ⓓ Processor 1 reads S (stale) M 

 
ⓐ changes the state from I to E in Processor 1. ⓑ changes the state from I to E in 

Processor 2 and from E to S in Processor 1. Since the cache line is in the E state in 
Processor 2, transaction ⓒ does not appear on the bus even though Processor 1 has the 
same line in the S state. It invokes the state transition from E to M in Processor 2. However, 
the state of the cache line in Processor 1 remains the same. Therefore, transaction ⓓ 
accesses the stale data, which should have been invalidated.  

Figure 1 illustrates our proposed method to remove the shared state. Since the transition 
to the shared state occurs when  the snoop hardware in the cache controller observes a read 
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transaction on the bus, the way to remove the shared state is simply to convert a “read” 
operation to a “write” operation within wrappers of snooping processors. The memory 
controller should see the actual operation in order to access the memory correctly when it 
needs to do. 

Using the MESI protocol as an example, the state change from E to S occurs only when 
the snoop hardware in the cache controller sees a read transaction on the bus for the cached 
line of the E state. Therefore, in order to remove the shared state, it is sufficient for the 
wrapper to convert a read transaction on the bus to a write during snooping. When the 
snoop hardware in the cache controller sees a write transaction on a cache line in a 
modified or an exclusive state, it drains out or invalidates the cache line (“drain” means 
writing back the modified cache line to memory and invalidating the cache line). In this 
way, the shared state is excluded in the controllers’ state machines. The following 
subsections describe how the state machines are changed for different invalidation-based 
protocols with the proposed approach. 
 

Proc 1

Bus

Wrapper

Proc 2

Wrapper

  (MEI)  (MESI)

Read/Write

Write

 Memory
Controller  

Figure 1: The method to remove the shared state 

 
2.1.1 MSI protocol. In the MSI protocol, two transitions exist to reach the S state: (1) I → 
S when the cache controller sees a read miss to a cache line and (2) M → S when the snoop 
hardware in the cache controller sees a read operation on the bus. In case (1), the S state 
cannot be removed since this transition is invoked by its own processor. However, even 
though it is in the S state, only one processor owns a specific cache line at any point in time 
because the S state changes to the I state whenever other processors read or write the same 
cache line. (Note that the wrapper converts a read into a write.) Therefore, despite the name, 
the S state is equivalent to the E state. The state transition from M to S cannot occur since 
the wrapper always converts a read operation to a write operation. Only the M to I 
transition is allowed with the operation conversion. 

 
2.1.2 MESI protocol. In the MESI protocol, there are three possible transitions that reach 
the S state: (1) I → S when a read miss occurs and the shared signal [12] is asserted, (2) E 
→ S when the snoop hardware in the cache controller sees a read operation for a clean 
cache line on the bus, and (3) M → S when the snoop hardware in the cache controller sees 
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a read operation for a modified (or dirty) cache line on the bus. To remove the S state, the 
wrapper always de-asserts the shared signal. This means transition (1) cannot occur. 
Transitions (2) and (3) also cannot occur because the wrapper informs snooping caches of 
writes for read operations. Therefore, the S state is completely removed. 

 
2.1.3 MOESI protocol. The same techniques used for the MESI protocol can be applied to 
the MOESI protocol except the O state needs to be handled. The O state can only be 
reached when the snoop hardware in the cache controller observes a read operation on the 
bus for a modified cache line. Nevertheless, the O state is never entered since the cache 
controller never sees a read operation on the bus when snooping. 

 
With the techniques described above, the MSI, MESI, and MOESI protocols are reduced 

to MEI. 
 
2.2 MSI with MESI, or MOESI 
 

In integrating MSI and MESI protocols, the E state is not allowed. Suppose that 
Processor 1 supports the MSI protocol and Processor 2 supports the MESI protocol and the 
operations in Table 3 are executed for the same cache line. 

 

Table 3: Problem with MSI and MESI 
seq Operation 

On cache line C 
C state in 

Processor 1
(MSI) 

C state in 
Processor 2 

(MESI) 
ⓐ Processor 1 reads I→S I 
ⓑ Processor 2 reads S I→E 
ⓒ Processor 2 writes S (stale) E→M 
ⓓ Processor 1 reads S (stale) M 

 
ⓐ changes the state from I to S in the Processor 1. ⓑ makes the state transition from I to 

E in the Processor 2 while the cache line status of Processor 1 remains unchanged because 
Processor 1 cannot assert the shared signal. ⓒ invokes only the E to M transition in 
Processor 2. As a result, Processor 1 reads the stale data in ⓓ due to a cache hit indicated 
by the S state. Therefore, the E state should not be allowed in the protocol. Our technique to 
remove the E state from the MESI protocol is to assert the shared signal whenever a read 
miss occurs. 

The same method can be applied to the integration of MSI and MOESI protocols with 
one additional constraint imposed. In MOESI, the M to O transition occurs when the 
processor observes a read transaction on the cache line of the M state. Then, a cache-to-
cache transition occurs. Since the cache-to-cache sharing is not allowed in the MSI protocol, 
the M to O transition should not occur. To preclude this transition, the same technique used 
for eliminating the shared state can be used, i.e. “read”-to-“write” conversion within 
wrappers. Since the shared signal is always asserted and the read to write conversion should 
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be employed, the E and O state transition never occurs. Therefore, the MOESI protocol is 
reduced to the MSI protocol.  

With these techniques described above, the MESI and MOESI protocols are reduced to 
MSI. 
 
2.3 MESI with MOESI 
 

To prohibit cache-to-cache sharing while integrating MESI and MOESI protocols, read-
to-write conversion can again be employed. This precludes the transitions from E to S and 
from M to O in MOESI protocol. However, the I to S transition is allowed. Therefore, the 
MOESI protocol is reduced to MESI even though not all of the transitions in MESI are 
allowed. 
 
 
3. Case study 
 

In this section, we present two implementations using commercially available embedded 
processors: PowerPC755, Write-back Enhanced intel486 (hereafter, Intel486 is used for 
Write-back Enhanced intel486), and ARM920T. PowerPC755 uses the MEI protocol, 
Intel486 supports a modified MESI protocol, and no cache coherence is supported in 
ARM920T. A multiprocessor platform employs a shared bus for data transactions between 
main memory and processors. Several bus architectures for SoC were proposed by industry, 
for example, IBM’s CoreConnect bus architecture [13], Palmchip’s CoreFrame [14], and 
ARM’s Advanced Microcontroller Bus Architecture (AMBA) [15]. A common 
characteristic among these architectures is that they use two separate pipelined buses: one 
for high speed devices and one for low speed devices. In this paper, we study the Advanced 
System Bus (ASB), an AMBA bus, as the shared bus protocol. The AMBA is one of the 
most popular bus protocols in embedded system design [16]. 

 Figure 2 shows the schematic diagram for the integration of PowerPC755 and Intel486, 
which represents a case of the PF3. 

 

PowerPC
    755

ASB

Intel486

Arbiter

Wrapper Wrapper

BR_BAR

BG_BAR

ARTRY

BREQ

BOFF

HITM

INV

 
Figure 2: PowerPC755, Intel486 coherence 



 7

 
Wrappers are needed for the protocol conversions between the processors’ buses and 

ASB, in addition to read operation conversion. On the PowerPC755 side, the conversion 
from a read operation to a write operation is not needed since the S state is not present in 
the state machine, whereas the S state should be removed on the Intel486 side by asserting 
the INV input signal, a cache coherency protocol pin. It is sampled on snoop cycles by the 
Intel486 cache controller. If it is asserted, the cache controller invalidates an addressed 
cache line if the cache line is in the E or S state. If it is in the M state, the line is drained out 
to memory. Normally, INV is de-asserted on read snoop cycles and asserted on write snoop 
cycles. To remove the S state, it should be asserted on both read and write snoop cycles. In 
the Intel486’s cache, cache lines are defined as write-back or write-through at allocation 
time. Only write-through lines can have the S state, and only write-back lines can have the 
E state. Therefore, the protocol for write-through lines is the SI protocol while the protocol 
for write-back lines is the MEI protocol. When a snoop hit occurs on the M state line of the 
Intel486 cache, the HITM output signal is asserted and the wrapper around the 
PowerPC755 informs the core of a snoop hit by asserting the ARTRY input signal. Then, 
the PowerPC755 immediately yields the bus mastership to the Intel486 so the cache 
controller in the Intel486 drains out the modified line to memory. When a snoop hit occurs 
on the M state line of the PowerPC755 data cache, the PowerPC755 asserts the ARTRY 
output signal and the arbiter immediately asserts BOFF so the Intel486 yields the bus 
mastership to the PowerPC755. Then, the cache controller in the PowerPC755 drains out 
the modified line to memory.  

Figure 3 shows another example of a heterogeneous platform using PowerPC755 and 
ARM920T representing a case of PF2. The same methodology used in ARM920T can be 
employed in PF1. 

 

PowerPC
    755

ASB

Arbiter

Wrapper
ARM920T

BREQ

BGNT

ARTRY

Snoop 
logic

nFIQ

BR_BAR

BG_BAR

 
Figure 3: PowerPC755, ARM920T coherence 

 
The wrapper converts the PowerPC bus protocol to the ASB protocol, and vice versa. It 

also allows the PowerPC755 to monitor the bus transactions generated by the ARM920T. 
The snoop logic provides snooping capability for the ARM920T, which does not have any 
native cache coherence support. It keeps all the address tags of the ARM920T’s data cache 
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inside a content addressable memory (or TAG CAM) watching bus transactions initiated by 
the ARM920T. When the tag of a requested address generated by the PowerPC755 matches 
an entry of the TAG CAM, it triggers a snoop hit to the ARM920T by asserting a fast 
interrupt (nFIQ). An interrupt service routine is responsible for draining the snoop-hit cache 
line if the line is modified or invalidating it if the line is clean. 

Even though this architecture can make caches coherent, there is one limitation when at 
least one of the processors in a heterogeneous processor platform does not have cache 
coherence hardware such as in the case of ARM920T. Therefore, PF1 and PF2 have this 
limitation. Figure 4 illustrates the problem. Suppose that lock variables and the shared data 
are allowed to be cached, and the shared data 1 is currently in the data cache of the 
ARM920T. After acquiring the lock, PowerPC tries to access the shared data as shown in 
(1). Therefore, a snoop hit occurs in the snoop logic, and the nFIQ is asserted as illustrated 
in (2). Then, ARM is supposed to drain out/invalidate the cache line in the interrupt service 
routine. However, ARM may or may not respond to the interrupt immediately, depending 
on the status of the CPU pipeline. During the interrupt response time as shown in (3), ARM 
may try to check the lock to see if it is released. Lock variables are currently in the data 
cache of PowerPC, since PowerPC has the lock. Therefore, PowerPC should drain out the 
cache line, where lock variables are stored. However, if PowerPC gets the bus mastership, 
it is supposed to retry the transaction, which it did in (1), instead of draining out the lock 
variables. We call this situation “the hardware deadlock”. 

 

Time

PowerPCBus master ARM PowerPC

nFIQ

interrupt
response
time

snoop hit in the 
snoop logic

ARM drains out 
the shared data 1

ARM tries to check the lock, which is 
in the Dcache of PowerPC

(1)

(2) (3)

PowerPC accesses the 
shared data 1

 
Figure 4: Hardware deadlock problem 

 
There are two solutions to avoid the hardware deadlock problem.  

 
   Do not cache the lock variables 
   Hardware lock register in a system [17] 

 
In the first solution, a software lock using, for example, the Bakery algorithm [18] can be 

implemented. In this case, the programmer is restricted to perform all shared variable 
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operations within critical sections, or a similar deadlock can occur on non-lock variables. In 
the second solution, a simple but special hardware needs to be designed. This hardware has 
only 1-bit lock register, and sits on a shared bus. Since the lock variables are not cached, 
the hardware deadlock does not occur in either case. For the same reason, the system can 
have only one lock. 

 
 

4. Performance evaluation 
 
Simulations were performed with the worst-case scenario (WCS), the typical-case 

scenario (TCS), and the best-case scenario (BCS) microbench programs. In the microbench 
programs, one task runs on each processor. Each task tries to access a critical section 
(shared memory), which is protected by a lock mechanism. Once a task acquires the lock, it 
accesses a number of cache lines and modifies them for exec_time iterations before exiting 
the critical section. The microbench program was implemented with each task acquiring the 
lock alternatively, which means the simulation assumes the worst-case situation for lock 
acquisition/releasing.  

Table 4: Simulation environments 

Simulators • Seamless CVE 
• VCS 

Operating frequencies 
• PowerPC755: 100MHz1 
• ARM920T: 50MHz1 
• ASB: 50MHz 

Instruction caches Enabled 

Data caches 
• Private data: Enabled 
• Shared data: Selectively 

enabled2 
Single word 6 cycles Memory 

access 
time 

Burst  
(8 words) 

• 6 cycles for the 1st word 
• 1 cycle  for each 

subsequent word 
1 These low operating frequencies are due to the limitation of simulation models. 
Similar results are expected for simulations with higher operating frequencies. 
2 Enabled in the proposed solution and software solution 

 
If the hardware does not support cache coherence, two alternate solutions can be used to 

make data caches coherent:  
 

  Data caches can be disabled for shared data 
  Software synchronization can be used with data caches enabled for shared data 
(software solution) 
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In the software solution, the programmer should make sure to drain/invalidate all the 
used cache lines in the critical section before exiting the critical section. The simulation 
environment and the hardware configurations are summarized in Table 4. The platform 
with the PowerPC755 and ARM920T is used to quantify the performance. The Intel486 
and PowerPC755 platform should outperform the PowerPC755 and ARM920T platform 
due to the absence of an interrupt service routine. 

Simulations of each alternate solution were performed for each scenario as a baseline to 
evaluate the performance of our approach. Lock variables are not cached in all simulations. 
Figure 5~7 show the execution time with respect to the one with the data cache disabled. 
Figure 5 shows the WCS results. In the WCS, two tasks keep accessing the same blocks of 
memory. The proposed solution shows 57.66% performance improvement against the case 
with data cache disabled when exec_time=4. It also shows better performance than the 
software solution by at least 2.51% for all WCS simulations.  
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Figure 5: Worst case results 
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Figure 6: Best case results 
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In the BCS, the ARM920T accesses the critical section, but PowerPC755 does not access 
it. The ARM920T drains out the used blocks before exiting the critical section in the 
software solution, but it does not need to drain out the used blocks in the proposed solution. 
The results in Figure 6 show that speedup increases as the number of accessed cache line 
increases. Simulation with 32 cache lines shows 38.22% speedup compared to the software 
solution with exec_time = 1. 

In the TCS, each task randomly picks up shared blocks of memory among 10 blocks 
before getting into the critical section. Figure 7 shows the simulation results. Simulation 
with 32 cache lines shows 22.88 % speedup compared to the software solution with 
exec_time = 1 
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Figure 7: Typical case results 

 

So far, we have assumed that memory access time is fixed to 6 cycles for a single word 
access, and 13 cycles for burst access as shown in Table 4. Figure 8 shows the simulation 
results as the miss penalty (memory access time) increases.  
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Figure 8: Results according to miss penalty 



 12

It shows the relative execution time with respect to the software solution. As the miss 
penalty increases, the performance difference also increases in favor of  our approach with 
a few exceptions in the WCS and TCS. These exceptions come from cache line 
replacements and/or interrupt processing overheads that vary as the miss penalty changes. 
These exceptions are expected to be removed in PF3 since the interrupt service routine is 
not needed. The BCS Simulation with 32 cache lines shows 76.56 % speedup compared to 
the software solution when the miss penalty is increased to 96 cycles. 

 
 

5. Conclusion 
 

In this paper, we presented a methodology to maintain the coherence of data caches in 
heterogeneous processor platforms. Cache coherence can be guaranteed simply by 
implementing wrappers in platforms where processors support any invalidation protocol. 
Read to write operation conversion and/or shared signal are used within wrappers to 
maintain coherence depending on combination of coherence protocols. The integrated 
coherence protocol will at most consist of all the common states from various protocols in a 
system. Using commercial embedded processors as the experimental platforms, our 
simulation results showed 38% speedup for low miss penalties and 76% speedup for higher 
penalties at the expense of simple hardware, compared to a pure software solution. 
Platforms without need for a special interrupt service routine would perform even better. As 
the miss penalty increases, the speedup also increases in favor of our approach. As 
heterogeneous processor SoCs become more prevalent in future system design, our 
methodology will be very useful and effective for integrating heterogeneous coherence 
protocols in the same system. In the future, we plan to apply our approach to emerging 
technologies that tightly integrate between a main processor and specialized I/O processors 
such as network processors [19]. 
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