The Institute of Paper Science
and Technology

Atlanta, Georgia

Doctor’s Dissertation

Inorganic Aerosol Formation
During Black Liquor Drop Combustion

Christopher Lee Verrill

September, 1992




INORGANIC AEROSOL FORMATION
DURING BLACK LIQUOR DROP COMBUSTION

A thesis submitted by
Christopher Lee Verrill
- B.S. 1985, University of Maine

M.S. 1987, Lawrence University

in partial fulfillment of the requirements
of the Institute of Paper Science and Technology
for the degree of Doctor of Philosophy,
Atlanta, Georgia

Publication Rights Reserved by
the Institute of Paper Science and Technology

September, 1992




TABLE OF CONTENTS

ABSTRACT ..o e e e e i
LIST OF FIGURES . . .. . e e et et e il
LIST OF TABLES . . .. .o ettt ettt ettt vi
INTRODUCTION . ..t it ettt e et ettt ettt et e et e e 1
PERSPECTIVE . .. .. et e et e e 1
BACKGROUND . ... it st e e e et 4

Black Liquor Drop Combustion Studies . . ....................... 4

Observation of Drop Combustion . ....................... 5

IPST Single Particle Reactor Studies . ..................... 7

Characterization of Black Liquor Combustion . .................... 7

Drying . ... e e 8

Devolatilization . . ......... ...ttt 8

Swelling During Devolatilization ............... [ 9

Char Buming .................... e e e e e 9

Smelt Oxidation .............. ... ... ..., e 10

Overview of Coal Combustion ...............ccoieuuernnenn.. 10

Coal Origin, Combustion, and Conversion .......... e 11

Coal Devolatilization Behavior . ........................ 12

Coal Mineral Matter and Fly Ash ... ....... [ 13

Aerosol Formation During Coal CombuStion e 14

Aerosol Formation During Black Liquor Combustion . ............. 16

Analysis of Recovery Furnace Aerosols . .................. 17

Fume Formation During Black Liquor Combustion . .......... 20

Potassium and Fume Formation ................... e 22

Sodium Loss During Devolatilization .................... 23

Expected Types of Aerosol From Black Liguor Combustion . . ... .... . 28

THESIS OBJECTIVES . ... i e et e et e aan 31
EXPERIMENTAL . . ... e e e e et e e 33
APPARATUS ANDPROCEDURE . ............ ... 0 iiiiiueeenn.. 33

Drop Furnace . ........... ... .. i i 34

Drop Furnace Construction . . ... .........ovvnvunn.... 34

Drop Furnace Evaluation . ................ .. .. ... ..... 36

Drop Observation ................. SRS J 38

Sodium Mass L.oss Determination . . ... ..........oneuuennen... 39

Drop Furnace Experiments . . ... ......... ... ... 39

Muffle Furnace Experiment . ........ [ 40

ACroSOL COLECHON . . v vt vttt it it e ettt e e 42




Dynamic Aerosol Collection . .. .......... ... .. ... ... .... 44

BLACK LIQUOR SAMPLES AND ANALYSIS ...................... 47
Liquor AnalySis- . ... .. ...t e 49

Acid Digestion Procedure . . ... .......... ... it 49

RESULTS AND DISCUSSION . ............. e e e 51
SODIUM MASS LOSS DETERMINATION ........... ... ... ...... 51

Drop Pyrolysis Behavior . ............ .. ... ... .. . . ... 52

Observation of Drop Pyrolysis . ........................ 52

Stage Times During Pyrolysis . . . ....................... 54

Average Drop Size . ........ ... . 56

Total Mass-Loss During Pyrolysis . ... ........ .. ... .. ...... 57

First Set of Drop Experiments . ........................ 59

Second Set of Drop Experiments . ...................... 60

Comparison of Char Removal Procedures . ................ 61

Adventitious Moisture in Char . ........................ 62

Sodium Mass Loss During Pyrolysis . ......................... 63

Sodium Loss in Single Drop Experiments . ................ 65

Drop Thermal History Model . ................ ... .. .... 70

Sodium Loss in Muffle Furnace Experiment . . ... ........... 72

Mechanisms of Sodium Loss During Pyrolysis . .................. 75

Evaporation of Sodium . ..................... ... ..... 76

Physical Ejection of Liquorand Char .................... 77

AEROSOL COLLECTION . . ... .. it it e et e e e 80
Aerosol Collection on Stationary Filters . ....................... 80

Drop Combustion Behavior ............... ... .............. 88

Dynamic Aerosol Collection . . ...........ci i, 91

SEM Analysis of Aerosol Collected on Silver Membranes . . . . .. 92

Dynamic Aerosol Collection on Silver Membranes . .......... 94

Fume Formation Rate During Drop Combustion . ............ 96

Collection Efficiency and Material Losses in System . ......... 97

Significance of Initial Sodium Loss on Fume Formation ............ 99

A Third Category of Particulate . ........................... 101
CONCLUSIONS ...... ... .. ., e 103
RECOMMENDATIONS FOR FUTUREWORK . ............. ... .. ....... 105
MODELING SODIUM LOSS . . .. ... e 105
IDENTIFICATION OF FUGITIVE SODIUM . .. .. ... ... ... ... ..... 106
RECOVERY FURNACE PARTICULATE ANALYSIS ................. 107
LITERATURE CITATIONS . . ... et i 108

ACKNOWLEDGEMENTS . . ... ... . i 113

APPENDIX I. GLOSSARY . ... 117




APPENDIX II. LIST OF EXPERIMENTAL EQUIPMENT e
APPENDIX III. DROP PYROLYSIS DATA .. ..... ... ... ..

APPENDIX IV. SODIUM MASS LOSS DETERMINATION .. ................
SODIUM ASSAYS AND MASS LOSS CALCULATIONS ..............
EVALUATION OF ACID DIGESTION PROCEDURE .................

APPENDIX V. STATIC AEROSOL COLLECTION EXPERIMENTS . ...........
AEROSOL COLLECTION WITH LIMITED VACUUM FLOW ..........
AEROSOL COLLECTION WITH HIGH CAPACITY VACUUM FLOW . ...
AEROSOL COLLECTION DURING PYROLYSIS . .. .................
AEROSOL COLLECTION BY IMPACTION . ................. . .....

-APPENDIX VI. ANALYSIS OF DYNAMIC AEROSOL COLLECTION DATA . ...
DYNAMIC AEROSOL COLLECTION ONBGFFILTERS . ... ..........
Analysis Of Filters . . . ... ... ittt i e e e

Time Resolution of Dynamic Filtration Data ....................

DYNAMIC AEROSOL COLLECTION ON SILVER MEMBRANES .......

Time Resolution of Dynamic Impaction Data . ..................

APPENDIX VII. COLLECTION EFFICIENCY AND CLOSURE ...............
AEROSOL ENTRAINMENT ... ... ... .. ... i,

Collection Efficiency by Filtration . ... .......................
Collection Efficiency by Impaction . .........................
INORGANIC MATERIAL BALANCES .............. ... i,
Minimum Collection Efficiency ................. ... ... ....

Maximum Collection Efficiency ............................

ADDITIONAL CITATIONS .. ... . et e i e e e



ABSTRACT

The submicron-sized inorganic aerosol generated during kraft black liquor
combustion is known as fume. Sodium carbonate fume removes sulfur compounds from the
flue gas, but it also contributes to plugging of recovefy furnace gas passages. Research has
focused on fume formation during the char bﬁming and smelt oxidation stages of black liquor
combustion; however, experimental data indicate that sodium loss is continuous throughout
combustion. It has recently been proposed that sodium releésé pﬁor to char burning may be a

major contribution to overall fume formation.

The main objective of this thesis was to propose a.valid méchanism of sodium
release prior to char burning and to predict its impact on overall fume formation. Individual
2 mm drops of black liquor were exposed to non-combustive atmospheres over a range of
temperature, gas composition, and flow rate. This expeﬁmental_technique allowed sodium
loss during the drying and devolatilization stages to be isolated from that occurring during
char burning and smelt oxidation. During these pyrolysis experiments, change in char sodium
content was measured as a function of exposure time. Additional experiments were

conducted in which films of black liquor were pyrolyzed at 750°C. .

| It was found that approximately 5-30% of the sodium present in black liquor
was released during drying and devolatilization of the individual drops. The extent of this
initial loss increased with increasing furnace temperature (600-900°C). Iﬁcreasing relative gas
velocity (0.61-1.83 m/s) resulted in a significant réduction in sédium release. After liquor
swelling was complete, additional sodium release during pyrolysis was only ‘measured at

900°C; this resulted from Na,CO, decomposition and produced a substantial amount of fume.
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There was no sodium loss during pyrolysis of the liquor films, yet there was a 30% volatile
yield during this experiment. This result and the fact that increasing gas velocity did not
increase sodium loss during the single drop experiments suggest that initial sodium loss was

not due to evaporation.

Sodium loss during drop pyrolysis may have resulted from physical ejection of
alkali-containing material. Gas eruptions were observed during all stages of black liquor
pyrolysis and combustion. While the lost material was nbt conclusively identified, some
1-100 um diameter inorganic aerosol was collected during the single drop experiments. The
significance of ejected material on the physical and chemical processes occurring within the
kraft recovery furnace remains to be evaluated by furnace aerosol sampling and computational

modeling.

Aerosol generation during drop combustion was coordinated with combustion
stages. A moving collection system was used to continuously capture the aerosol while a
video camera recorded drop combustion events. These experiments demonstrated that a
maximum. in fume formation occurred during the char burning and smelt oxidation stages of
combustion. SEM photomicrographs showed that more fume was produced during the
combustion of a single drop of black liquor than during the pyrolysis of five drops at similar
furnace cbnditions. While the.sodium loss prior to char burning may contribute to fume
formation, analysis of collected aerosol samples indicated that it is not the most important

source of submicron-sized fume in the recovery furnace.
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INTRODUCTION

PERSPECTIVE

Cost effective operation of the kraft pulping process requires recovery of the
chemicals used to liberzite cellulosic fibers from wood. A solution of sodium hydroxide
(NaOH) and sodium sulfide (Na,S), applied to wood chips at elevated temperature and

“pressure, degrades the lignin that binds the fibers together. After digestion the mixture of
dissolved organic compounds and inorganic salts, know as black liquor, is washed from the
wood pulp fibers. Black liquor is commonly concentrated to 65-75% solids content by a -
series -of evaporators, then it is burned in a Tomlinson recovery furnace. The energy released
during combustion of the organic compounds is us'éd to generate ﬁrocess steam and electricity
for the mill; the inorganic residue is removed from the furnace as molten smelt. Pulping
chemicals are reformed by dissolving the smelt in process water and causticizing the resulting

green liquor.

Black liquor undergoes three distinct stages of combustion when it is sprayed
into the recovery furnace: drying, devolatilization, and char burning.! A significant portion
of drying and devolatilization occurs as the 0.5-5 mm drops fall to the char bed at the bottom
of the furnace; much of the char burning takes place on the char bed. Under certain
conditions drops can be entrained in the gas flow and burn in flight. Airborne drops exhibit a
fourth combusti'on stage: oxidation of the residual smelt.! The extent to which the
combustion processes occur on the char bed and in flight depends on furnace design, liquor

properties, and operating strategy.’




Combustion air is introduced at three levels in the kraft recovery furnace. By |
only introducing a fraction of the stoichiometric requirement for complete combustion in the
lower furnace, reducing conditions can be maintained in the char bed. A reducing
environment is necessary to recover the sulfur as Na,S in the smelt. The remainder of the
combustion air enters the furnace above the liquor spray level. In this région the combustible
gases, produced by liquor pyrolysis and gasification in the lower furnace, are completely

burned.

The submicron-sized inorganic aerosol generatéd during kraft black liquor
combustion is known as dust or fume. Fume particles are composed primarily of sodium -
carbonate (Na,CQ,), sodium sulfate (Na,SO,), sodium chloride (NaCl), and the analogous
potassium salts. Fume composition varies with location in the r;ecovery furnace and is
dependent on the conditions of combustion.>* Furnace material balances indicate that
approximately 10% of the sodium entering with the black liquor“becomes fume.’ The
principal benefit of fume formation is that the alkali aerosol reacts with enviro'nmentally
undesirable sulfur compounds in the flue gas; the resulting Na,SO, dust is removed by the
electrostatic precipitator and returned to the system by mixing with the black liquor. Fumg
has detrimental effects on recovery furnace operation because it deposits on the heat transfer
surfaces which reduces thermal efficiency, requires process steam to remove the deposfts, and
contributes to blockage of gas passages. Control of fume formation has recently becbme an
issue of concern. Higher combustion temperatures, resulting from burning higher solids
content liquor, have increased fume formation by 15-100%.%"® If electrostatic precipitators
are not designed to handle the increased dust loading, then particulate emissions may

exceeded regulated limits.




Fume generation has historically been attributed to sodium vaporization from
the high temperature and strongly reducing environment of the char bed.’ Laboratory data
from molten salt studies showed that the rate of fume formation is an order of magnitude
higher during sodium sulfide oxidation than the rate under reducing conditions.'® Entrained
char particles and smelt droplets are exposed to an oxidizing atmosphere; therefore, they may
be a significant source of fume. Most researchers have studied fume formation only during
char burning and smelt reactions. Experimental data indicate that sodium loss occurs during
all stages of black liquor combustion.'"'>!* Furthermore, recent work has suggested that |
sodium release during devolatilization may be a major contributiqn to overall fume

formation.'>*

The general goal of this thesis was to contﬁbufe to the understanding of fume
formation during black liquor combustion by determining the vtype and arﬁount of aerosols
generated during each combustion stage. An experimental system was develéped &1at
coordinated timed observation of drop combustioﬁ with a continuous record of collected
~ aerosol. Equipment difficulties limited the extent of this work. However, limited results
indicate that the majority of submicron-sized fume is formed during the char burning and

smelt oxidation stages of drop combustion.

A study of sodium release prior to char burning and its impact on overall fume
formation was conducted, as this was the least understood potential source of inorganic
aerosol. Results of this study demonstrate that sodium release during black liquor drying and
devolatilization does not significantly contribute to fume formation. A previously ignored

class of aerosol, resulting from physical ejection of sodium containing material during black



liquor combustion, contributes to the observed sodium loss. This 1-100 pum diameter fraction
of inorganic particulate may play an important role in the physical and chemical processes

occurring within the kraft recovery furnace.
BACKGROUND

The following literature review is intended to provide general information
regarding blacic liquor and coal combustion that pertains to sodium release and aerosol
formation. Observations from laboratory drop combustion studies are presented and
characteristics of black liquor combustion stages are discussed in the first two sections. After
a brief overview of coal combusti_on and fly ash formation, the results of particulate sampling
studies from kraft recévery furnaces are summarized. Theories of aerosol formation during
combustion Qf black liquor are then presented. Following a discussion of sodium loss during
black liquor devolatilization, the review concludes with a summary of the types of aerosol

expected to be produced during black liquor combustion.

Appendix I contains a glossary of terms associated with the procésses of
combustion and aerosol formation. As there are several clear distinctions made from popular
usage, familiarization with this vocabulary is suggested to prepare the reader for the following

discussion.

Black Liquor Drop Combustion Studies

The understanding of combustion obtained from single drop studies can be
utilized to predict the performance of industrial combustion systems.”® A single drop

experimental system has the advantage of allowing combustion events to be monitored -




without interference caused by simultaneous processes occurring within a furnace
environment. A major advance in the understanding of spent liquor combustion was made

when cinematographic imaging was first utilized in 1962.'

Observation of Drop Combustion

| Monaghan and Siddall' recorded on film the comf;usﬁon of calciu1ﬁ sulfite
_ liquor drops at a rate of 8 frames per second. Drops ofl A53% solids content liquor, 2 mm in
diameter, were formed on silica fibers and inserted into a furnace where they were burned in
air at 550-810°C. The authors noteq four distinct stages of combustion. An initial "boiling
period” exhibited rapid, violent expansions and partial contractions of thé drop. During thé
"carbonization" or devolatilization stage no significant change in drop size or shape was
noted. After a brief delay, there w.as a sudden ignition of volatiles surrounding the blackened
particle. The final stage was characterized by glo§ving combustion; a hollow white ash
remained at the end of this stage. Huldén'’ pfesentcd an important observation from this
study not reported by Monaghan and Siddall: the drying and devolatilization behavior of the

sulfite liquor drops was no different in an inert nitrogen atmosphere than it was in air.

Bjorkman'® reported the results from a sodium-based sulfite liquor pyrolysis
study. Single drops, 0.25 mm in diameter, were formed on tungsten wires and placed in the
fuel rich region of a diffusion flame. A cinematographic framing rate of 1500-2500 frames/s
allowed excellent time resolution of drob pyrolysis "history." During heating at 1000°C, the
drops expanded slowly for about one third of a second. Thére followed a brief (0.03 s)

- period of bursting; bubble sizes nearly three times the diameter of the initial liquor drop were

observed. After a period of "surface boiling,"” the drop appeared to "solidify" into a porous




mass. The diameter decreased for about 0.3 seconds during gasification of the liquor char.
Occasional bubbling and the ejection of tiny particles were hoted during this gasification
stage. The reported trajectory of the ejected matter indicates that it was released with
substantial initial velocity. There was a sudden "melting" or coalescence of the inorganic
residue at the end of the gasification stage. At lOOb°C the liquid residue completely
evaporated within 0.15 seconds. Liquor drops were completely consumed at temperatures
above 900°C. Below 800°C no physical chaﬂges were observed after solidification of the
char. Bjorkman'® noted that the bursting seemed to be less violent and the surface boiling

more pronounced at 800°C than at 1000°C.

Volkov et al." reporte_d incidental observations of drop behavior from their
investigation of sodium loss during kraft black liquor combustion. They formed 2-5 mm
drops of 75% solids content liquor on platinum wires and inserted them into a reactor for a
specific amount of time. Reactor temperaturé was varied from 900 to 1100°C. Gas
composition was controlled by mixing air with unspecified combustion products; the
stoichiometric ratio ranged from 0.88 to 1.4. At stoichiometric ratios greater than one, high-
speed films of drop combustion revealed "fine glowing particles" or sparks escaping from the
main particle "surrounded by a visible corona of flames.""" Neither the corona nor the sparks |

were observed if the stoichiometric ratio was at or below unity.

At Abo Akademi University Hupa et al.' studied the combustion of single
drops of sodium-based liquors in a muffle furnace with no forced convection. Drops of liquor
(0.5-2.5 ram) were formed on platinum wires or thermocouples; combustion was conducted in

air over a temperature range of 600-900°C. Cinematographic films, taken at a rate of 36




frames/s, revealed four distinct and sequential stages of drop combustion: drying, combustion
of volatiles, char burning, and inorganic reactions (smelt oxidation). Large drops had a
tendency to exhibit partial overlap of the second and third stages under some conditions.
Sodium-based sulfite liquors did not swell during the devolatilization stage; however, the kraft
liquors swelled 20-30 times their initial volume. During the smelt oxidation stage, Iarge
incandescent sparks were ejected from the molten residue. There followed a momentarily

visible cloud of fine particulate that originated close to the smelt bead surface.

IPST Single Particle Reactor Studies

At the Institute of Paper Science and Technology (IPST), a convective single
particle reactor was utilized to study aspects of black liquor combustion.*?**! Black
liquor drops or pellets of dried liquor solids were formed on nichrome wires and hung from a
microbalance. The lower portion of the fumaée was raised to surround the drop, then
preheated gases were directed to the reaction chamber. Drop behavior was observed through
a view port and either recorded on videotape'®*' or photographed with a 35 mm camera.”’
" The hot gas stream was the only source of heat in most of these experiments; Kulas® created
a more realistic recovery furnace environment by installing a radiant heating elerﬁent that
surrounded the drop combustion zone. A greater overlap of combusﬁon stages ‘was seen in
the video images from the IPST single particle reactor than those from the Abo Akademi

muffle furnace due to unsymmetrical heating.”

Characterization of Black Liquor Combustion

The high inorganic content of black liquor and thé extensive swelling

associated with devolatilization make its combustion behavior unique among fuels. Aspects




of each stage of Black liquor combustion, important to the discussion of inorganic aerosol
formation, are considered in this section. The following discussion treats drying,
devolatilization, char burning; and smelt oxidation as distinct and sequential stages of
combustion; note, however, that there is always some overlapping of the phy§ical processes

23

occurring during drop combustion.” The extent of stage overlap depends on liquor

properties and combustion conditions.

Drying

The drying stage of black liquor drop combustion is characterized by violent
bursting as the water is vapor_iied. Drops increase in size approximately 1-2 times their
initial di@eter during drying.*** The end of the drying stage is identified by the first
sign of a \}isible‘ﬂame.l Depending on liquor properties and heating rate, drops may ignite
before they ate completely dry. For a large fixed drop in a hot flowing gas, the average

solids content at ignition may be as low as 75%.”

Devolatilization

Black liquor devolatilization is characterized by rapid particle volume
expansion and continuously increasing particle tefnperature. Organic components of the black
liquor solids begin to decompose as particle temperatures reach 200°C.?* Volatile gases are
released as particle temperaturé increases from 250°C to 500°C; the period of rapid swelling
occurs between 400 and 500°C.2° If the temperature of the gaseous environment is above
550°C and the oxygen content is greater than 10%, the escaping volatiles ignite and form a

visible flame around the swelling particle.”

Extinction of the visible flame is commonly used to mark the end of the




devolatilization stage.?? Normally this event corresponds with the point of maximum particle
size, but the flame may persist a few tenths of a second after maximum swollen volume is
reached. Devolatilization is a complex process; however, the duration of the stage has been

shown to depend primarily on heating rate and the volatiles yield of the black liquor.?®

Swelling During Devolatilization

The extent of swelling during devolatilization is primarily a function of
temperature, liquor properties, and gas composition. Over a studied range of 300-900°C,
maximum swelling occurred at 500°C.*° Miller®® found that a number of black liquor
components affected swelling behavior, e.g., increasing extractives content greatly reduced the
extent of swelling. Frederick et al.” investigated the swelling of single drops of softwood

kraft liquor at 800°C. They reported the specific swollen volume -- volume of swollen char

divided by initial mass of liquor solids -- for various gas compositions. In atmospheres of
nitrogen contaiﬁing 21% O, (air), 20% CQ,, or 20% H,0, the specific swollen volume was
43-66 cm%g. They reported an ayerage swollen volume of 133 * 33 cm%g for exposure to

pure N, and 234 * 121 cm%g for exposure to N, with 4-12% O,

Char Burning

Char burning is the longest stage of black liquor combustion; it extends from
extinction of the volatiles flame. to the sudden collapse of the residue into a molten smelt
bead.! The process has been treated as oxygen mass transfer-limited heterogeneous
combustion. It has been proposed that molten inorganic salts enhance the rate of char carbon
consumption by a regenerative sulfate-sulfide cycle.”” Gasification of the char carbon by CO,

and H,O contributes to char burning in regions of the recovery furnace having high
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concentrations of these reactants.> The high gasification rate of kraft black liquor has been

attributed to the catalytic effect of finely dispersed sodium salts in the char.*’?

Char burning rate depends strongly on particle surface area, which is a function
of initial drop size and the extent of swelling. The duration of char burning depends on the
gasification and/or combustion reaction rates and the amount of carbon remaining in the char
at the end of devolatilization.”® Residual carbon content is determined by the volatiles yield

of the liquor.

Smelt Oxidation

Approximately 35% of the initial black liquor solids remain at the end of char -
burning as inorganic smelt. The elapsed time from collapse of the char particl¢ to visible
cooling of the smelt bead has been terméd tﬁe inorganic reactions or smelt oxidation stage.'
Sodium sulfide in the smelt is oxidized to Na,SO, after all the char carbon has all been
consumed. This exothermic process increases smelt temperature about 100°C above furnace
temperature.! The incandescent sparks ejected during this stage are presumably a result of
rapid gas evolution caused by gasification of carbon particles trapped during smelt

coalescence.

Overview of Coal Combustion

This section serves as a general introduction to coal combustion and identifies
important analogies to black liquor combustion. Several mechanisms that have been proposed
to explain aerosol formation during coal combustion are also outlined. Review articles and -
textbooks have been referenced which encompass portions of the vast coal literature.

Individual articles are cited when they contain data or discussions which are of particular
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relevance to this thesis. Some citations have been included because they were not considered

in the reviews of associated topics.

Coal Origin, Combustion, and Conversion

Coal originated from the accumulation of dead vegetation in primordial bogs.
A combination of biochemical action, temperature, pressure, and time changed this material,
known as peat, into a combustible rock.”” There are four general classifications of coal;
listed in order of increasing rank, they are lignite, subbituminous, bituminous, and anthracite.
Increasing rank implies a greater extent of metamorphosis.’® In general, a coal of higher

rank has a lower moisture and volatiles content and a higher amount of fixed carbon.

The combustion of coal to produce steam for electrical power generation is
generally conducted in large pulverized fuel furnaces. These are similar in design to kraft‘
recovery units, but they are operated very differently.®® Finely ground coal is entrained in a
stream of combustion air entering the furnace. The suspended coal particles follow a
_ sequence of combustion stages that are similar to those of airbpfne black liquor drops: drying,
ignition, devolatilization, and heterogeneous char burning.*>* While coal combustion does
produce a silica aerosol (fly ash) that must be removed from the flue gas, the behavior of
most of the inorganic compounds in coal is not of particular interest to a study of black liquor
combustion. However, physical and chemical transformations of the alkali compounds in coal
parallel some of those occurring during black liquor devolatilization and char buﬁing. These

processes are discussed in following sections.

Coal is not only used as a fuel in its native state, but it is also converted into

cleaner-burning fuels and valuable chemical feedstocks. Destructive distillation or pyrolysis
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is used to produce coke, a solid metallurgical fuel, and liquid and gaseous by-products.”
Coal gasification involves reaction with substoichiometric air, CO,, and/or water vapor to
produce a gas containing Cd -and H, which can be ﬁsed as a fuel or chemical feedstock.”
For environmental and economic reasons, coal conversion processes have begn extensively
studied. Results of this research is of interest because the devolatilization and char burning

processes for certain types of coal are similar to those for black liquor.

Coal Devolatilization Behavior

| Coals that soften and become deformable upon heating are known as plastic
coéls; they are typically of bituminous rank and exhibit swelling during devolatilization.*
Several investigators have observed the formation of bubbles and eruption of gas jets through
the surface of plastic coals during devolatilization.* Ragland and Weiss® studied single
particle combustion of various coals suspended in a gas stream (10.5 and 21% O, in N,) at
705 to 816°C. Biturﬂinous cdal exhibited swelling and pronounced bubble bursting during its
devolatilization stage. For the range of conditions studied, swelling of this coal was greater at
the lower temperature and oxygen content. It is interesting to compare devolatilization
behévior between plastic coals and black liquor; evidence of bubble bursting'®? and the

effects of furnace conditions on swelling?®?® are similar for both materials.

Ragland and W(Aaiss35 did not observe swelling during the devolatilization of
lignite and subbituminous coals; however, they noted that small pieces of burning material
were occasionally ejected during devolatilization. Pyrolysis of these nonplastic coals leaves a
residue of friable char instead of a hard coke.?? In this regard, low grade coals are similar to

black liquor.
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Coal Mineral Matter and Fly Ash

" Coalisa heterogenous substance containing discrete regions of organic plant
remains, known as macerals, and mineral matter. The mineral content of coal ranges from 5
t0 20%, on a dry mass basis.>* More than 75% of coal inorganic matter is present as
inclusions of quartz, clays, limestone, and other minerals (sulfides, sulfates, phosphates,
chlorides).*® Irrespective of rank, the mean size of this adventitious mineral matter is 1-
2 pmY AThe remainder of the coal inorganic content is organically bound within the
macerals; this is known as inherent mineral matter.?* By coméarison, all the inorganic
material in black liquor could be considered to be inherent because it is either dispersed
throughout the medium in the form of dissociated salts, or is ionically associated with certain

functional groups of the organic compounds.®

The amount, composition, and distribution of mineral matter varies greatly with
both coal rank and geographic location. Huffman and Huggins® illustrate how this variation
pertains to alkali cbmpounds. qut of the potassium in bituminous coals is found in the clay
mineral illite. Only small amounts of adventitious illite are present in low rank éoals;
however, significant amounts of potassium are organically bound to the humic and carboxylic
acid groups of lignite.* Sodium follows a similar mode of occurrence with coal rank.*
Although alkali species are not major coal components, the combined alkali content (Na and
K) may account for more than 5% of the total mineral matter present in coal.***® For

comparison, the alkali content of black liquor solids ranges from 17 to 22%.*

The majority of the mineral matter in coal produces fly ash during combustion.

During exposure to the high temperature furnace environment (1400 to 1700°C) some of the
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minerals in coal ash melt, chemical reactions take place (such as calcining), and some species

volatilize.*!

The resulting fly ash is a complex heterogenous mixture of particulates. Size
distribution, morphology, and chemical composition of coal combustion aerosols have been
reported from both field studies of utility boilers>*** and laboratory studies of specially-
designed combustors.*****” Mass size distributions of coal combustion aerosols were

found to be distinctly bimodal in both types of experiments. The particle size of the larger
fraction ranges from 0.5 to 20 um. Reported mass mean (or mgdian) diameters of this coarse
fraction range from 1.6 um* t0 10 um.* It is generally agreéd fhat the submicron-sized
fraction is narrowly distributed around 0.05 um.*** While the coarse fraction gbmprises
more than 90% of the total aerosol mass, the number of submicrqn—sized particles far exceeds

that of the larger aerosol.”

Particles greater than 0.3 pm are similar in composition to the
mineral matter in the parent coal.* However, the composition of the submicron-sized fraction

depends strongly on coal rank and combustion conditions.**#®

Aerosol Formation During Coal Combustion

There are two general categories of aerosol, dispersion and condensation.*
Dispersion aerosols are formed by grinding or spraying, e.g., dust and atomized mists.
Condensation aerosols result when supersaturated vapors condense or when gaseous reactions
produce non-volatile products; this category includes mists, smokes, and fumes. A
combination of these mechanisms of aerosol formation explaiﬂ the bimodal size distribution

*7 During pulverized coal combustion the mineral

of fly ash produced from coal combustion.
inclusions adhere to the receding char surface, where they fuse and coalesce to form large ash
particles. Fragmentation of the char during combustion results in 3-5 ash particles being

produced per original coal particle. The resulting 1-20 um ash pdrticles account for the
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majority of the fly ash produced during combustion.*’ Certain organically-bound salts, as
well as a small portion of the adventitious mineral compounds vaporize during combustion

and subsequently condense in the gas phase to form submicron-sized fume.*

Organically-bound alkaline earth metals are pﬁmaﬁly responsible for the
submicron-sized aerosols produced during co;ﬁbustion of Western lignites.** Enhanced
vaporization of alkaline earth metals has been explained by a two-step process. First the
stable refractoryiloxide (e.g., MgO) is reduced to the more vblétile metal (Mg) species within
localized environments of the burning coal particle. Oxidation of the vaporized metal in the
gas phase results in supersaturation and homogenous condensation of the refractory oxide in

the atmosphere surrounding the coal particle.*®

Neville and Sarofim* found that sodium fume fqrrnation during lignite
combustion depends on both the rate of sodium vaporization and the extent of its capture by
molten silica ash. For combustion temperatures below 1600°C, all the inherent sodium was
expected to be released. As combustion temperature was increased -- by increasing oxygen
partial pressure in their laminar entrained flow particle reactor -- the extent of sodium loss
unexpectedly decreased from 100% in 5% O, to 22% in 50% O,. Neville and Sarofim®
proposed that the solubility of sodium in molten silica increased as the combustion
temperature increased above the silica melting point. That which was n'ot captured by the
silica slag as it was diffusing out through the pores would condense homogeneously in the

cooler zone of the furnace.

Volatile alkali species may also condense heterogeneously on the surface of

refractory oxide particulate.”** Raask®® proposed a mechanism of "captive" sodium and
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potassium sulfate fume formation to explain the nodules observed in scanning electron
microscope (SEM) photomicrographs of silica ash particles.’™* It was suggested that alkali
vaporizes from the chloride .rhinerals in bituminous coal. The sodium vapor is subsequently
captured on the surface of vitrified silicate ash particles. When the silica aerosol cools to

approximately 1000°C, sulfation of the alkali creates Na,SO, fume nodules.*®

‘The submicron-sized silica aefosol fraction has been attributed to a
vaporization-condensation process, similar to that which was proposed for alkaline earth fume
formation.®* Smith et al.® proposed an entirely different mechanism of silica fume
generation. They suggested that bursting ash particles are responsible for a large fraction of
the submicron-sized aerosol formed during pulverized coal combustion. During rapid heating,
gas jets were observed erupting through the slag film surrounding fly ash particles. It was
proposed that these eruptions liberate volatile substances that subsequently condense as
fume.® Raask™ obsefved that some larger particles were ejected during slag film rupture but
contended that very few submicron-sized particles were forrped as a result of the gas
explosions. Faist et al.>! suggested that an intermediate size of aerosol could be formed by

slag film rupture.

Aerosol Formation During Black Liquor Combusﬁon

There are surpriﬁngly few published studies of recovery furnace particulate
analysis. The limited information available is reviewed in this section; clearly there is a need
for a comprehensive analysis of recovery furnace aerosol. This section discusses major
theories of fume formation in the kraft recovery furnace, considers the role of potassium, and

presents recent results which suggest that a significant amount of sodium is released during
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black liquor devolatilization.

Analysis of Recovery Furnace Aerosols

Bosch et al.*2 measured the particle size,,:distribution of aerosol collected from
a kraft recovery furnace. They inserted a cascade impactor into the flue gas stream at both
the inlet and outlet of the electrostatic precipitator. Two distinct types of particles were
collected: black carbonaceous ash and white sodium salt fume. Ash particles were between 7
and 20 um in diameter. The size of the white fume fraction ranged from less than 0.6 to

about 2 pm. Half of the material by weight entering the precipitator was under 1.0 um.

Nguyen and Rowbottom® investigated the morphology of the particulate in
two recovery furnaces using a cascade impactor. 'fhe mass mean diameter of particles
entering the precipitator was 0.5-1.9 um. Below 0.3 pm the fraction of dust decreased
sharply with decreasing diameter. About 20% of the particulate was larger than 10 pm. The
predominant fraction of their samples was submicron-sized, smooth, spherical fume. They
described three other distinct fractions: 2-4 pm spherical particles with regular pebbled
surfaces; 11-83 pm hollow spheres with a somewhat porous crystallized surface partially
covered with fine fume; and carryover char, consisting of 10 um fragments and 2-3 mm

spherical shells.

During their experiments, Nguyen and Rowbottom™ recorded an unexpected
drop in combustion air temperature from 138 to 25°C which resulted in a 20% lower dust
loading in the flue gas. As they did nof report the corresponding furnace temperatures, it is
»not certain if the rec_lliction in fume formation was due to decreased bed temperature or a

change in air flow rate. A regression analysis of various firing conditions versus particulate
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loading indicated fume generation increased with increased firing rate and salt cake (makeup
Na,SO,) addition. These regression equations only accounted for 40% of the variability,

indicating a high degree of experimental uncertainty.

Reeve et al.* conducted superheater deposit studies using an insulated air-
cooled probe to collect entrained particulate. Analysis of the upstream deposits on the probe,
inserted near the bottom of the superheater, revealed predominantly partially-burned black
liquor residue. These deposits were rich in carbonate and hydroxide ions, and lean in
chloride and potassium. The material that deposited on the downstream side was almost
entirely a fine white powder of submicron-sized particles. This fume fraction was composed
primarily of Na,SO, with only small amounts of carbonate. and h&drdxide; the downstream
deposits were significantly enriched in chlorjde and potassium. Higher in the s'upérheater'
(5.2 m below the roof), both sides of the probe were covered with the fine white powder.
SEM photomicrographs showed a number of 30-100 um spheres' among the upstream
deposits.® These spheres were‘thought to be the inorganic residue from complete
combustion of entrained liquor drops. The authors noted that the ratio of N‘aQSO4 to Na,CO,
increased with furnace sampling elevation. Sodium chloride content increased while NaOH

disappeared entirely at the higher elevation in the superheater. Analysis of precipitator dust

revealed it to be mostly Na,SO, with less than 10% Na,CO,.>

Rizhinshvili and Kaplun* used a two stage impactor to extract dust samples
from various locations in a recovery furnace. The coarse fraction of their samples contained
2-20 mm black carbonaceous particles. These were numerous at the liquor spray level, but

amounted to only 3-5% of the material leaving the furnace cavity. The fine fraction,
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collected on glass fiber filters, was sﬁbmicron-sized fume. As long as auxiliary fuel was
being burned, the fume was observed to persist in the furnace after liquor ﬁﬁng stopped. At
the tertiary air level the fine fraction was 64% Na,SO,, 6% Na,CO,, 11% Na,S, and

18% Na,SO, + Na,S,0;; at the furnace outlet the Na,SO, composition had increased to 96%.
1In a similar study, Zhuchkov et al® reported the composition of the fine fraction to be

66-72% Na,SO,, 23-26% Na,CO,, 0-7% Na,S, and 0-4% carbon.

The effect of process conditions on the partic'ul‘ate' sampled at the exit of the
economizer was investigated by Rizhinshvili and K‘aplun.4 Total particulate loading was
found to be directly proportional to char bed temperature at the primary air level; they
reported a doubling of dust concentration for a temperature increase of 1090 to 1260"C. The
temperature of other zones of the furnace had no apparent effect on the dust loﬁ-d. It was also
noted that increasing bed temperature and decreasing excess air decreased the Na,SO, content

of the fume fraction.

The effects of liquor solids content on furnace dust loading and fume
composition have been reported by Hyoty et al.”*’ One advantage of burhing higher solids
content liquor is reduced heat loss to water evaporation. Thé mill test results showed that
increasing liquor solids from 65 to 80% increased lower furnace temperatures by 100°C>” and
approximately doubled dust loading.” At higher temperature, the increased generation rate of
sodium fume relative to sulfur release also results in more effective removal of SO, in the
flue gas. This explains the decreased Na,SO, content of the fume, observed by Rizhinshvili

and Kaplun.*

- In summary, discounting char carryover, recovery furnace aerosol sampling
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indicates there is a single submicron-sized mode of particulate produced during black liquor
combustion. Unfortunately, the impactor samples were all taken at the entrance to the
electrostatic precipitator. Deposition on heat transfer surfaces within the recovery furnace
could have significantly biased the size distribution. It is therefore not certain that there is

only one size of inorganic aerosol formed during black liquor combustion.

Fume Formation During Black Liquor Combustion

Although the final composition of fume isAprimarily Na,SO, with
apbroximately 10% Na,CO,, it is unlikely that fume originates from direct vaporization of
these species. The vapor pressure of pure Na,SO, is 2.7 x 102 Pa at 980°C.® At the same
temperature the vapor pressure of Na,CO, is approximately 11 Pa.® Advanced equilibrium
calculations indicate that elemental sodium vapor, NaOH, and NaCl are the primary sodium
species in the gas phase above the char bed.* The vapor pressures of these compounds at
980°C are at least four orders of magnitude higher than Na,S0,.** Fume must therefore
originate from gas phase reactions of volatile alkali species, e.g., Na and NaOH, to form
condensed products. An excellent review of all the reactions proposed to explain fume
formation and subsequent capture of oxidized sulfur gases in the kraft recovery furnace has

been provided by Blackwell and King.*!

Fume formation' in the kraft recovery furnace was first attributed to sodium
vaporization from the reducing environment of the char bed.® A condensed fume spécies
(Na,O) was thought to form just above the bed, where the reactive metal vapor first
encountered oxygen. Lang et al.’ suggested the actual fume formation rate would be higher

than that indicated by their equilibrium calculations because the gaseous products would be
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swept out of the reaction zone by convection. Equilibrium models of complex combustion

systems are often utilized because they do not require a detailed understanding of reaction

62

mechanisms and they provide a valid first approximation of furnace ehemistry. In general,
equiIibrium model predictions agree with limited fumaée gas composition data’ A Gibbs free
energy‘minimization model predicted an eight to ten-fold increase in Na and NaOH
vaporization for each 100°C increase in char bed temperature (over the range of 900 to
"1200°C).® This calculation does not agree with mill data that suggests fume formation
appreximately doubles for a 100°C increase in bed temperature.*’ Another shortcoming of

equilibrium calculations is overestimation of potassium and chloride enrichment in the

fume.®

Researchers at IPST found that when oxygen-containing gas was contacted with
molten Na,S-Na,CO, systems an order of magnitude more fume was produced than what had
been measured _under reducing conditions.'® The measured rate of "oxidative" fume formation
was much greater than that estimeted by assuming that equilibrium sodium vapor pressure had
been established. Extensive molten salt reactor studies were conducted to evaluate the effects
of temperature, gas and melt composition, gas flow rate, and gas-melt contact geometry on
fume formation rate.* Cameron® proposed a reaction-enhanced mechanism: of fume
formation, wherein rapid oxidation Qf sedium‘ vapor. near the smelt surface reduces the: partial
pressure of sodium in the boun_dary layer. The res_ulting‘ihc‘rea_se in driving force enhances
the rate of sodipm~ vaporization. Similar mechanisms have been:used to explain enhanced
vaporization and metal oxide. fume formation during high temperature ‘nietallurgical

processing® and formation of refractory oxide fume during coal combustion.*
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Cameron’s model predicted that, at a smelt temperature of 927°C, fume
formation rate would doublg for a 108°C increase in temperature.* This dependance agrees
well with available mill data*™ The model more accuratel); predicted the potassium and
chloride composition of fume than had the equihbﬁum_médels.63 Reaction-enhanced sodium
vaporization has been generally accepted as the main source of fume in the recovery furnace.

As described below, this model can explain fume formation during both the char burning and

inorganic reaction stages of black liquor combustion.?®

Grace et al."”” proposed a sulfate-sulfide cycle fo explain the high degreé of
sulfate reduction achiéved during char burning. Theorétically, this sulfate-sulfide cycle
establishes an equilibrium concentration of elemental sodium in the char.”® Sodium has a
high vapor pressure at char bumning tempera;ures; thus, it is preéént in the boundary layer
above the char bed or surrounding entrained char particles. Condensed fume species will be
produced by reactions among sodium vapor, oxygen, water vapor, and carbon dioxide.*® Once
the char carbon has been consumed, the reduction of Na,CO, by Na,S maintains a sodium
vapor pressure above the molten smelt. Thus, the residual inorganics, in the form of
entrained droplets or flowing smelt, will produce fume in the presence of oxygen. Fume

formation continues until all the molten Na,$S is oxidized to Na,SO,.%

Potassium and Fume Formation

The potassium equivalents of sodium compounds form a small, but significant,
portion of recovery furnace fume. Wood generally contains more potassium ions than sodium
ions, which readily accumulate in a mill liquor cycie with low effluent diséharge.67 Because

KOH, K,S, K,SO,, and K,CO, are more soluble than their sodium counterpafts, potassium is
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difficult to purge from the kraft liqubr system.® Reeve et al.* predicted that increasing
mill closure and hardwood usage will cause potassium concentrations to reach levels of

10-20% K/(K+Na) in the 1iq'uor cycle.

Although the presence of potassium species is nof necessarily detrimental to the
.pulping and recovery process,” the effect of potassium on fume formation is not clearly
understood. However, the mechanisms responsible for sodium fume generation should also
be applicable to potassium species. The vapor pressure of KCl and KOH are higher than

NaCl and NaOH, which results in an enrichment of potassium in the aerosol deposits.”

Potassium was not considered during this investigation of aerosol formation
during drop combustion largely because the potassium content of a single liquor drop or

collected aerosol sample were very close to the analytical detection limit for this compound.

Sodium Loss During Devolatilization

Sodium release prior to char burhirig has only recently been considered as a
~ possible source of fume in the recovery fufnace. Frederick and Hupa® proposed that sodium
loss during devolatilization could be the most significant source of fume becausé it can
account. for the total amount of sodium collected in the electrostatic brecipitator. The focus
of this thesis was .to evaluate the significance of this sodium loss on overall fume formation.
~ This section reviews the literature most clbsély related to the thesis topic; specifically, the
measurement of sodium loss during black liquor drop studies and therrnogfavimetric analysis

(TGA) of black liquor solids.

Volkov et al."! exposed drdps of kraft black liquor to oxidizing conditions over
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Figure 1. Sodium loss vs. exposure time for combustion in air at temperatures: a) 900°C,
b) 1000°C, ¢) 1100°C. Drop diameter: 1) 2 mm, 2) 3 mm, 3) 4 mm, 4) 5 mm.
Reprinted from Volkov et al."

a temperature range of 900-1100°C. Char residue was extracted through a nitrogen quench
stream after ﬁxéd exposure times. The total sodium released during combustion ranged from
20-50% of the sodium present in the liquor. Figure 1 shows that sodium loss (i.e., relative
decrease from initial sodium content) increased sharply with exposure time for higher
temperatures and smaller drop sizes. At the minimum exposure time of three seconds,
Volkov et al.!'! reported a 20% sodium loss for 2 mm diameter drops burned in air at 900°C.
Model predictions indicate that drying and devolétilization of similar sized drops in air at
800°C would be complete in about three seconds; therefore, it is likely that part or all of the -

initial sodium loss reported by Volkov occurred during devolatilization.

Frederick et al.* measured the change in sodium content during pyrolysis of 8-
20 mg drops of black liquor. The drops were exposed for 5-60 seconds to an environment of
95% N, with 5% CO within a muffle furnace. A nitrogen stream was used to quench- the

residue as it was extracted from the furnace. Sodium content was measured by atomic
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absorption spectroscopy for each acid-digested char particle.”” The effect of furnace
temperature on sodium loss is shown in Figure 2. Each of the data points is an average of
several sodium loss determihations for individual char particles._ The lines are shown in

Fig. 2 to group the data; these lines are not based on stafistical regression. These results
indicate there was a fapid sodium mass loss of 14-18% prior to the end of the devolatilization
stage." For temperatures above 800°C, sodium loss did not subside, eut continued to increase
with exposure time. The continued sodium loss was at a much lower rate than the initial

release.

Char sodium content data for five kraft liquors, reported by Frederick and
Hupa," are replofted as sodium loss in Fig. 3. Average svodium‘ mass losses of 23 to 33%
occurred during pyrolysis for 10 seconds at 800°C. Frederick ane Hupa®® conchided that
sodium loss was not dependent on liquor type because the average results were not
statistically different. The average sodium loss value for 10 seconds exposure at 800°C from .
Fig. 2 is included for comparison in Fig. 3. Presumably one of the three softwood kraft
liquors shown in Fig. 3 was also used for the experiment reporte(; in Fig. 2. Therefore, the

smaller sodium loss observed at otherwise identical conditions was likely the result of

different average drop sizes between the two experiments.

In a thermogravimetric study of organic alkali compounds, Stewart et al.”
found that sodium and potassium benzoate samples exhibited two distinct weight loss regions
at 450-550°C and 750-900°C (heating rate 25°C/min in argon). Considerable evidence was
presented to suggest that no alkali losses occurred over the lower temperature range, and that

substantlal amounts of alkali were vaporlzed as a result of Na,CO, reduction by carbon at the
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higher temperatures. This result is supported by the findings of Srinivasachar et al.,”” who
studied sodium release from coal char with atomic absorption spectroscopy. During pyrolysis
in argon at high heating rates (250°C/s), sodium release began at 800°C and reached a

maximum at 1000°C. Two possible reaction for Na,CO, reduction are given in Eqgs. 1 and 2:

Na,CO, + 2C = 2Nag + 3CO (N

Na,CO, + C = 2Na_ + CO + CO, )

Li and van Heiningen' reported the TGA results of black liquor exposed to
various atmospheres. In their experiments, 10 mg samples of dried liquor solids were heated
at a rate of 20°C/min under flowing helium; the final temperature of each run was maintained
for a fixed amount of time. Table 1 summarizes the conditions and relative chahges in
sodium content during selected experiments. The values of sodium loss'iﬁ Table 1 were

- calculated from their reported liquor and char analyses.

The vélues in Table 1 indicate that a substa‘mtiallamount of sodium was
released in py;olysis experiment A. Total sodium loss was reported to increase from 64 to
75% as final temperature was increased from 750 to 800°C."” In inert environments, the '
sodium carbonate remaining in the char is expecfed to decompose by reaction with carbon to
form atomic alkali and CO (Eq. 1).”" For temperatures up to 750°C, Li and van Heiningen'?
reported that sodium release was suppressed after CO was added to the He gas stream in
experiment B. It can therefore be inferred that the 9.7% sodium loss given in Table 1

occurred before the sample reached 550°C.
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Table 1. Sodium loss during slow pyrolysis of black liquor solids. Calculated from data
of Li and van Heiningen."
Experiment Temperature Elapsed Gas comp., Na mass
(see text) program,” °C time,* min %° loss, %
A 25-750 - 35 100% He -
750 60 100% He 63.6
B ~ 25-550 25 100% He -€
550-750 10 12% CO -€
750 30 12% CO 9.7
C 25-750 35 | 100% He 17.9
750 30 20% CO/10% CO 0.3

Temperature ranges and clapsed times are approximate values, taken from reported
thermogravimetric analyses.

Gas composition; volume percent of given components, He balance.

Char analyses not available for these calculations.

" The addition of CO is expected to suppress sodium vaporization by shifting the
equilibrium of the Na,CO, reduction reactions (Egs. 1-2). Sodium loss was however
measured in an atmosphere of 88% He with 12% CO when the final temperature was 800°C;
the rate of this loss was less than 5% than that observed in a pure He atmosphere.'? In
experiment C of Table 1, the sample was gasified with CO, after the final temperature was
reached. Although there was a significant sodium loss during the heating period (in pure He), -
the amount of sodium in the char remained relatively constant after the CO and CO, were

added. The stoichiometry of Eq. 2 explains the stability of Na,CO, in the gasification

mixture.?

Expected Types of Aerosol From Black Liguor Combustion

Approximately two-thirds of the total sodium initially present in black liquor is
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associated with ionized organic liquor components.® This "organically-bound" sodium
typically accounts for 12% of the mass of dry liquor solids.*®” Material balances on
samples taken from TGA studies indicate that these organic alkali compounds largely
decompose to form Na,CO,, organics, and CO, during pyrolysis.'>”" As long as the local
environrﬁent of a char particle contains CO or CQO, and is kept below 800°C, then N§2C03
reduction by char carbon will be minimal.">**"" Initial sodium loss .measured in CO-
‘containing atmospheres-'must thérefore occur before all the organically-bound sodium is
stabilized as Na,CO; in the char. One goal of this thesis was to determine the form (;f the
fugiﬁve sodium and assess its significance to overall acrosol formation in the kraft recovery

furnace.

Review of literature information suggests that, after the completion of
devolatilization, reaction-enhanced vaporization of sodium is expected to produce submicron-
sized fume from burning drops of black liquor until the Na,S in the smelt is fully oxidized to
Na,SO,. The high temperature and reducing conditions which are maintained in the lower
region of a recover& furnace will establish a vapor pressure of sédium above the char bed and
flowing smelt. As the sodium vapor diffuses away from the char and smelt it will react with

oxygen and condense as submicron-sized fume particles.

Another source of particulate matter in the recovery furace may result from
tﬁe physical ejection of material during the violent drying and devolatilization periods of
black liquor combustion. Fragmentation of char particles and sparking during smelt
coalescence may also produce aerosols. The size range of this ejected material would

presumably be 1-100 pm and its chemical composition would depend on the combustion stage
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of its origin and the extent of carbon depletion from the black liquor particle.

. _ According to the definitions in Appendix I, the particulate expéc.:t-ed' to be
produced during kraft black liquor combustion is a mixture of _fumé, dust, and mist. The term
fume speciﬁcally applies to submicron-sized material originéting frém condensation of o
vaporized species. The dust would arise from the ejection of bits of char during
devolatilization and char burning. A mist fraction would resuit frorﬁ the:ejecﬁdn of tiny
droplets during both drying and smelt coalescence. The popular usage of the terms dust and
mist may confuse their interpretation in tﬁe context of this dissertation; therefore, use of the
term ejecta is suggested. In the following discussion the term fume refers only to matefiél
that results from condensation of me;tallic vapors or evaporated alkali-containing compounds.

The term inorganic aerosol implies the fume fraction as well as inorganic ejectﬁ.
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THESIS OBJECTIVES

There is experimental evidence of sodium release during all stages of black
liquor drop combustion. Variations in measured sodium loss rates and observed combustion
behavior at differe‘nt conditions suggest that several aerosol formation mechanisms are
'associated with the various combustion stages:. With the exception of fume formation during
smelt oxidation, the relations between sodium loss and inorganic aerosol formation have not

been adequately“ explained.

The goal of this study was to contribute to the understanding of aerosol
formation during each stage of black liquor combustion by determining thé history of aerosol
formation throughout the stages of drop combustion. Aerosol formation was to.be quantified
by measuring the amount of material collected as a function of combustion progress.
Identification of changes in aerosol morphology with combustion conditions would

qualitatively indicate the different types of aerosol formed.

Sodium release measured during the pyrolysis of individual liquor drops can
account for all the fume collected in a recovery furnace precipitator. It has beeﬁ suggested
that sodium loss during devolatilization is therefore the most signiﬁcént source ;)f fume;
however, importaﬁt information to support such a hypothesis is lacking. A possible
mechanism to explain this sodium release has not been proposed. The form of the lost
sodium has not been identified, nor has its impact on overall fume formation in the recovery

furnace been verified.

The main objectives of this thesis were to propose a tenable mechanism of
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sodium release prior to the char burning stage of drop combustion and to predict the
importance of ﬂﬁs sodium release on overall fume formation. Conducting single drop
expen'ments in non-combustive atmospheres would allow sodium loss during drying and
devolatilization to be isolated from other combustion stages. Evaluating the effects of
changing process vaﬂableg (temperature, exposure time, gas composition, gas flow rate, and
drop size) and liquor properties on sodium release from black liquor drops would indicate
which factors ;avere controlling the process. The results of this evaluation would suggest the
mechanism responsible for sodium loss, e.g., evaporation or physical ejection. Microscopic
investigation of aerosol samples, collected during pyrolysis experiments, would identify the
form of the released sodium. Comparison of these aerosol samples with those obtained under
combustive con@itions would indicate the relative amount of fume formed. prior to char

burning.

Results of these experiments and consideration of literature information should
suggest the fate of alkali released prior to char burning in a recovery furnace. Due to the
simultaneous processes occurring during black liquor combustion, the impact of sodium loss
measured during laboratory experiments on overall fume formation in an operating recovery
furnace would best be evaluated by a complex recovery furnace model. Such a computational
study and requisite validation by industrial particulate sampling was beyond the scope of this

work.
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EXPERIMENTAL

A unique experimental apparatus was developed to achieve the thesis goals. It
was necessary to simulate recovery furnace combustion conditions, and to minimize material
losses within the system. Coordination of measured sodium loss or collected aerosol mass

with observed combustion progress was essential for producing meaningful results.

This chapter contains descriptions of the apparatus, procedures, and materials
used in the experimental work;. Specific equipment configurations are presented on a case-by-
case basis as they apply to analysis of the results. A detailed list of major equipment

components is included in Appendix II.
APPARATUS AND PROCEDURE

Two principal kinds of experiments were conducted during this thesis: sodium
mass loss determinations and dynamic aerosol collections. The sodium mass loss
determinations wére part of a focﬁsed investigation to assess the extent of sodium release
prior to char burning. A drop furnace and a muffle furnace apparatus were employed to study
sodium loss. In the drop furnace experiments, the relative change in sodium content during
pyrolysis was determined as a function of temperature, gas composition, and exposure time.
The muffle fumace' experiment-was é(jnducted to differentiate the sodium loss during drying

from that occurring during devolatilization.

During the dynamic aerosol collection experiments, drop combustion events
were recorded on videotape while a moving collection. medium simultaneously captured the

generated particulate. Knowing the speed of the moving medium and the reactor residence
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time, it was possible to coordinate the timed-observation of drop combustion with the analysis
of collected material, thereby creating a history of aerosol formation throughout the respective
stagés of drop combustion. Details of the experimental procedures are presented following a

description of the drop furnace.

Drop Furnace

The IPST drop furnace was designed to study the combustion and pyrolysis of
individual black liquor drops in a simulated recovery furnace environment. The following

sections describe the components of the drop furnace system and evaluate its performance.

Drop Furnace Construction

The major components of the drop furnace are shown in Fig. 4 The gas heater
was constructed from a 64-mm (2.5-in.) ID mullite tube packed with ceramic; Berl sz;ddlés al;d
surrounded by ceramic fiber heating elements. A 152-mm (6-in.) preheater section, controlled
by a variable autotransformer, reduced the heating load on the main elements. A time-
proportioning PID electronic controller maintained the gas temperature at the exit of the
packed tube. Gas temperature was measured by a bare-junction thermocouple that was

oriented away from the open end of the reactor tube.’

The drop reactor was custom-fabricatéd from a 65-mm ID quartz tube,
surrounded by custom-fabricated ceramic fiber heating elements. A second PID controller
maintained the wall temperature of the drop reactor. The wall temperature control
thermocouple was situated in the annulus between the quartz tube and the heating elements.
In this configuration accurate wall temperature control was possible, as described in the next

section. The drop insertion rod placed liquor drops rapidly and precisely into the center of
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Figure 4. Schematic of drop furnace showing main components and temperature control
) system. -

the reaction chamber. _

Gas purification chambers, packed with Ascarite II'™M (NaOH on granular

silica) and‘indi'cating Drierite® (anhydrous CaSO,), removed CO, and water vapor from the
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house air supply. The chambers were bypassed during heat up, cool down, and furnace
condition changes to in&ease the life of the absorbents. Air and nitrogen flows were
regulated by globe valves and monitored by a Hastings digital mass flowmeter. This device
measured mass flow independently of gas temperature and pressure. The instrument was
calibrated for air; thus, the reading for mixtures of gases had to be corrected by appropriate
heat capacity factors. An additidnal Hastings mass flowmeter was used to monitor the

addition of auxiliary gases (CO and CO,) to the carrier gas flow.

Drop Furnace Evaluation

For evaluation of drop furnace performance, the following values were taken
from an analysis of typical recovery furnace operation.”® Gas temperature increases from 900-
1100°C in the lower furnace to about 1200°C at the tertiary air level, then decreases to 900-
1000°C at the bullnose (water wall arch), and further to 650°C at the steam generating bank
inlet. Radiation accounts for a significant fraction of the heat transfer between any given
droplet and its surroundings. The primary radiating regions are the furnace walls at about
500°C, the fireball at 1500-1750°C (for 73% solids content liquor), and the char bed surface

at 900-1100°C.

The mean gas velocity in a furnace ranges from 3to 6 m/s (10-20 ft/s); the
setling velocity .of -a liquor drop, 2 mm in initial diameter, would be 1-11 m/s (3-35 fv/s)
depending on the extent of combustion. Relative velocity between the drop and furnace gases
could therefore vary from O m/s for an entrained particle to 8 m/s (25 fts) for a falling smelt
bead. Gas composition vari_es extensively within the furnace. Oxygen content ranges from

21% by volume at the air ports to 2% (wet basis) in the exhaust stack. Partial pressures of
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both water vapor and CO, can reach 10% by volume in certain regions of the furnace.

A stable temperature of 500-900°C could be maintained in the IPST drop
furnace ovér a gaé flow rate range producing an average gas velocity of 0.15-1.83 m/s (0.5-
6 ft/s) in thé reaction zone of the furnace. The gas environment was controlled by mixing.
compressed gases; thus, virtually any gas composition was poésible. Based on the above
analysis, the IPST drop furnace could produce an environment similar to the upper region of a
recovery furnace. While limited in maximum achievable temperature, this system offered the
advantage of combined radiative and convective heating. .Previous studies of black liquor

192021 ¢ radiant

drop combustion processes relied primarily on forced convection of hot gases
hgaating. in a stagnant controlled atmosphere;""* some of the data obtained in these studies may
. therefore be limﬁed in application to recovery furnace environments. It has been argued that
the convective environment best simulates that of the recovery furnace, and that the uniform
heat transfer within a muffle furnace with no forced convection is best for comparaﬁve
analysis of liquor burning behayio;.” The actual environment of a liquor drop in a recovery
furnace lies somewhere between these two cases. Although the "real” drop moves through a

flow field with some relative velocity, it may also freely rotate which would tend to reduce

heating non-uniformities.

Independent control of wall and gas temperatures was possible with the IPST
drop furnace; however, all of the experiments were conducted with these temperatures being
equal. Figure 5 presents a comparison of drop reactor wall temperéture measurements by the
control thermocouple and a two color pyrometer. Over the range of operating conditions,

temperatures determiped by the pyrometer are within 20°C of the thermocouple
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Figure 5. Comparison of thermocouple and pyrometer measurements of drop reactor wall

temperature. Av. gas velocity: 0.91 m/s.

measurements. This result demonstrates that radiation errors were not significantly affecting
the measurement of wall temperature by the control thermocouple. Details of the design and

operation of the two color pyrometer are given by Kulas.?!

Drop Observation

Observations of drop combustion and pyrolysis in the furnace were made by a
color video camera and recorded on VHS videotape. The video system produced 30 images
per second. Times for each stage of drop combustion were calculated from the elapsed time
indicated on the video images. The first appearance of the drop in the field of view was used
to denote the start of drying. The first sign of swelling or ignition indicated the onset of
deifolatilization. The maximum swollen volume of the char parﬁcle was taken as the start of
char burning. Coélescence of a smelt bead denoted‘the start of smelt oxidation. Visible

cooling of the smelt ‘was taken as the end of drop combustion. These definitions imply that
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drying, devolatilization, char. burning, and smelt oxidation are distinct and sequential stages of
combustion; note, however, that there is always some overlapping of the processes occurring

during drop combustion.?

Sodium Mass L.oss Determination

Drop Furnace Experiments

For the investigation of sodium loss during drop pyrolysis, the insertion port to
the quartz reaction chamber was modified to prevent air infiltration and to allow char residue
from individual drops to be extracted though a quench stream of nitrogen. A wide range of
pyrolytic conditions were chosen to extend the temperature range that had been investigated
in previous sodium loss studies: 500-900°C in atmospheres of 95% N, with 5% CO, 95% N,
with 5% O,, and 75% N, with 20% CO, and 5% CO. For the non-oxygen-containing
atmospheres, 5% CO was added to scavenge O, from the carrier gas and to suppress Na,CO,
decomposition during liquor pyrolysis.”> During these experimehts the nitrogen stream was
diverted through the gas purification chambers. House air was metered into the nitrogen
* carrier gas to create the environment containing 5% O,. A constant average gas velocity of
0.61 m/s (2 ft/s) was maintained in the quartz reaction chamber in all but one experiment,

where the total gas flow was increased to produce 1.83 m/s (6 ft/s) average velocity.

Individual drops of an industrial kraft black liquor, weighing 2 to 10 mg, were
formed on nichrome wires and inserted into the reaction ch@ber of the furnace. After 3 to
30 seconds exposure to the pyrolytic environment, the char was withdrawn into the quench
stream and allowed to cool. A constz;nt quench flow of 2-5 std. L/min N, was maintained in

the 14-mm diameter insertion port. Exposure time was controlled manually with reference to
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a hand held stopwatch. As discussed in the Results chapter, control of exposure time was-

very precise. -

Each experiment consisted of 4-9 determinations of sodium mass loss; a typical
experiment included 2-3 replicates of three exposure times at a given set of furnace
conditions. Composite samples of 4-20 fully-intact char particles were accumulated for each
determination.  Inductively coupled plasma emission spectrometry (ICP) was used to measure
the amount of sodium in acid-dif;ested composite char sa;nples. The initial mass of sodium
was calculated from the sum of the drop solids and the sodium content of the liquor, which
was determined during each gxpériment from acid-digested liquor samples. The acid

digestion procedure and calculations of sodium mass loss are described in following sections.

Muffle Furnage Experiment

The muffle fﬁmace apparatus, shown in Fig. 6, was used to investigate the
sodium loss occufring during the drying stage independently of that occurriné during the
devolatilization stage of black liqqor pyrolysis. The 18-mm ID quartz U-tube was partially

packed with ceramic Berl saddles to increase heat transfer to the gas. The pyrolysis

_environment was 750°C in 95% N, with 5% CO fl()wing at an average open-tube gas velocity

of 0.61 m/s. These conditions were chosen for comparison to the drop furnace experiment

with the most reproducible sodium mass loss results.

Approximately 100 mg of liquor was applied with a spatula to form a 2 mm by
50-mm line along the bottom of six alumina combustion boats. The 71% solids content
liquor was vwarmed to about 50°C to facilitate application. The six liquor samples were dried

overnight at 105°C; liquor was applied to six additional boats at the time of the experiment.
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Figure 6. Schematic of muffle furnace apparatus used for sodium loss experiments.

Three boats each of dried solids and wet liquor were pyrolyzed for 60 seconds in the quartz
tube. The boats were first placed in the cool end of the quartz tube and then moved into
position with a nichrome guide strap. After exposure to the pyrolytic environment, the

samples were withdrawn to the end of the tube and allowed to cool for one minute under the

nitrogen purge.

After acid digestion each sample and boat was transferred to a 50-ml centrifuge
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tube and covered with Type I water.” The mass of the dilution water was determined by
diffefence between the tare weight (centrifuge tube and ceramic boat) and the total sample
weight. The char residue was broken up by éhaking and ultré.sgnic agitation. Sodium
concentration in all samples was measured by ICP. -Thre;e clean alumina boats were also
refluxed in the acid solution to determine the background sodium level. The average of these
blanks was subtracted from the sample sodium concentration measurements. Three replicate

calculations of the relative change in sodium content (sodium loss) during drying and

devolatilization were made.

Aerosol Collection

Two equipment conﬁguraﬁons were utilized for capturing aerosols generated
during drop combustion: static and dynamic 'collection. Static céllection accumulated the
aerosol on a small area of a stationary collection medium. Dynamic collection distributed the
material over a relatively large area of moving collection mediurﬁ. Equi'pment.conﬁg'urétions «

used during the preliminary static aerosol collection trials are described in Appendix V.

Aerosol Collection Media

The aerosol collection system design was based on the use of Whatman
EPM-2000 borosilicate glass fiber (BGF) filters as the collection medium. This material was
chosen for its high operating temperaturé limit, high filtration flow capacity, and relatively
low cost. Silver membrane filters, manufactured by Poreﬁc§ Corp., were found to be a more

suitable aerosol collection medium. This material combines the desirable characteristics --

Produced by reverse osmosis filtration of distilled, deionized feed water (specific
resistance = 18.3 MQ<m).
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Schematic of experimental system used for dynamic aerosol collection.

high purity and surface capture -- of polymeric screen membranes with the superior strength

and thermal stability of BGF filters. High cost and low flow capacity are substantial

disadvantages of silver membranes.




Dynamic Aerosol Collection

A-schematic of the dynamic aerosol collection system is shown in Fig. 7. For
each dynamic aerosol coliectién, an individual drop of industrial kraft black liquor was
formed on a nichrome wire and inserted into the reaction charﬂber of the furnace. At the
moment the drop entered the réaction chamber, a remote switch activated the fume capturing
-apparatus. The.aerosol collection medium was mounted on a carriage that moved over the
furnace exit. A constant .carri'agg linear speed of 254.0 £.0.2 mm/min (10.00 £ 0.01 in./min)
was maintained by a dc adjustable—speed reversing drive with a tachometer feedback loop and

PID speed control.

The nominal co.mbustion environment in the quartz reaction chamber was
750°C in 92.5% N, with 7;5% O, flowing at an average gas velocity of 0.61 m/s. This
condition was the midpoint of the desired range of gas temperature and composition; the flow
rate had to be reduced from tﬁe targeted level of 0.91 m/s (3 fu/s) to prevent damage to the
aerosol collection medium. House air was mixed with compressed tec_hnical grade nitrogen to

produce the desired gas composition.

Figure 8 is an overall view of the dynamic aerosol collection system; details of
the collection zone are shown in Fig. 9. An "exhaust flow director" was mounted above the
quartz reactor tube to cool the .exhaust gases and direct their flow to a 25 by 152-mm (1 by
6-in.) rectangular cross section of the 203 by 254-mm (8 by 10-in.) BGF filter. The narrow
opening in the direction of filter motion reduced overlap of aerosols formed at different times
during drop combustion. The "vacuum flow director" induced flow of the exhaust gases

through a continuously moving 25 by 152-mm area of the filter. A backup 50-mm square
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a - quartz reactor tube exit

b - exhaust flow director

¢ - collection medium carriage

d - Whatman EPM-2000 BGF filter

e - vacuum flow director
f - Piab pneumatic vacuum pump

Figure 8. Front view of the dynamic aerosol collection system.

filter was clamped inside the vacuum flow director chamber to capture material passing
through the moving filter. Vacuum induced flow was controlled to maintain air infiltration
between the exhaust flow director exit and the BGF filter in order to cool exhaust gases and

prevent fume escape.
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a - rectangular opening of exhaust flow director
b - collection medium carriage

¢ - carriage drive lead screw

d - vacuum flow director

Figure 9. Top view of dynamic aerosol collection system.

In a typical determination, 150-250 mm (5-10 in.) of the aerosol collection
medium was exposed to combustion products. Fume component assays and scanning electron
microscopy (SEM) were utilized for locating aerosol deposits on the collection media. Small
samples were cut from precise locations on some media and investigated by SEM. This

visual observation provided qualitative information about the morphology, size distribution,
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and density of collected aerosols. Two microscopes were used at IPST to investigate
collected aerosol samples. The newer JEOL JSM-6400 instrument was able to resolve images
at much higher magnification than the JEOL JSM-35C microscope. Both microscopes were
equipped with a Link Analytical LZ-4 EDS unit. Enefgy dispersive X-ray spectrometry
(EDS) was usgd for qualitative determination of aerosol composition. Details of SEM

analyses are described as they apply to results.

For fume component measurement on BGF filters, the media were carefully
divided into nine 25.4-mm (1-in.) sections. All filter sections, the entire backup filters, and
drop residues were placed in individual 50-ml centrifuge tubes and agitéted in Type I water to
lixiviate the captured inorganic compounds. The dispersed filter fibers were settled by
centrifugation. A 25-ml aliquot was taken from each sample and ion chromatography (IC)
was used to measure the concentrations of CO,” and SO,”. Analysis was conducted at IPST
on a Dionex ion chromatograph, following TAPPI recommended procedure.” The
rémaining sample was diluted to 40 ml and acidified with HNO, to a 2% acid strength; ICP
~was used to measure sodium concentration. The silver membranes were treated in a similar
fashion, except that the section size was 12.7 mm (0.5 in.), and the samples were not

acidified for ICP analysis.
BLACK LIQUOR SAMPLES -AND ANALYSIS

Three industrial black liquors were obtained specifically for this thesis, they
were designated liquor numbers 1, 2B, and 3. Liquor no. 1 was not used after the
preliminary experiments because of its tendency to fall off the nichrome wire during char

burning. An old sample from the same mill site as liquor no. 2B was used before the fresh
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samples arrived; it is referred to herein as liquor no. 2A.

Liquor Analysis

Characteristics of the 1iquors used for the aerosol collection and sodium mass
loss experiments are given in Table 2. The samples were obtainéd “as fired," i.e., taken after
‘the addition points for precipitator dust, ash h'(.)pper catch, and make-up chemicals. Initial
liquor solids content was determined at the time of transferring each heated one liter liquor
sample into several 50 ml bottles. The use of small samplelbottles facilitated the process of
forming individual drops. Head space in all bottles was purged with nitrogen before returning

the samples to cold storage.

The black liquor samples were heated to 50-70°C to reach an optimum
viscosity for forming individual drops on nichrome wires; liquqr solids content of each small
sample was periodically determined to account for water evaporation. The method used was
based on TAPPI recommended procedures”™ with the exception that the black quupr was not
diluted prior to recording initial mass. After the mass of each sample (concentrated liquor,
sand, and weighing dish) was recorded, a sufficient quantity of distilled water was added to

dissolve and uniformly distribute the liquor before placing the samples in a drying oven.

Acid Digestion Procedure

It was necessary to determine the sodium content of numerous black liquor and
char samples. All samples were identically prepared for analysié ﬁsing an EPA standard
procedure for determining total recoverable sodium.”® The samples were refluxed for three
to four hours in a mixture of 1 ml concd. HNO;, 6 m! concd. HCI, and 9-10 ml Type I water.

Digested samples were transferred to 50 ml centrifuge tubes and diluted to 50 ml with Type I
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water. Any insoluble residue was dispersed by ultrasonic agitation and allowed to settle.

ICP was used to measure Na concentration in all samples. A majority of the
analyses were co'nducted by Huffman Laboratories; several samples were analyzed using the
IPST Thermo Jarrell Ash F’LASMA-300TM ICP Emission Spectrometer. Once the sodium
concentration was known, the mass of sodium in eabh sample could be determined from the
total liquid sample volume or the liquid mass-and density. Calculations of the amount of

sodium in each sample from the ICP analyses are pfesenfed in Appendix IV.

Digestion blanks and quality control samples were run periodically during the
ICP measurements to insure that the instrument calibration was being maintained. The
accuracy of detemiination was 25 mg/L for sodium concentrations of approximately
500 mg/L. Pgtassiﬁm content was not determined for most samples because the expected

level of concentration was too near the ICP detection limit.
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RESULTS AND DISCUSSION

This éhapter presents the resuits of sodium mass loss determinations and
aerosol collection experiments. The first set of results contains characterization of Qrop
pyrolysis behaviof, determination of volatiles yield and éodium mass loss, and a discussion of
possible mechanisms responsible for sodium release prior to char burning. A description of
aerosbl morphology, characterization of drop combustion behavior, and estimation of the rate
of fumeA formation during drop combustion are included in4the second part. The discussion
followihg these results considers the significance of sodium loss during the various stages of

combustion on overall fume formation within a recovery furnace.
SODIUM MASS LOSS DETERMINATION

Relative change in sodium content was measured in a series of experiments in
which individual drops were exposed to pyrolytic or reducing environments over a wide range
of temperatures. In order to isplat_e the processes occurring during the drying and
devolatilization stages from those of char burning, experiments were conducted in non-
combustive atmospheres. Some experiments were carried out under gasification conditions
with either oxygen or carbon dioxide as the oxidant. After a brief description of drop
pyrolysis behavior, the measurement of volatiles yield is presented. sodium mass loss results
from each group of experiments- are then considered and compared with results from related
stpdies. The complete set of individual drop data from the pyrolysis experiments is included
in Appendix III. Appendix IV contains liquor aﬁd char sodium analysis data as well as

calculations of volatiles yield and sodium mass loss for each determination.




52

Drop Pyrolysis Behavior

A summary of the fumaceAconditions, average drop size, and pyrolysis stage
times of the 409 shar paiticlés selected fdr sodium' mass loss _de;tenninations .is presented in
Table 3. There were two phases of experimentation in dle sodium mass loss determidaﬁons.
The initial group of expenments included the first three trials at 600°C as well those at 900
and 500°C. Reduced drop mass variability (standard deviation of drop 0.d. mass in Table 3)
indicates progressive techmque improvement within the first group of expenments the control
of drop exposure time was also greatly 1mproved with expenence Of the 66 drop data sets

presented in Appendlx I, the variation (£ 95% confidence hmlt) in exposure t1me was less

than 5% of the mean for all but 13 of the early determinations.

Several minor changes were rdade during the ﬂrst.. group of experiments to
establish a reliable experimental procedure. These changes are described below as they affect
interpretation of the results. The second experimental group contained gasification in CO,
(600°C [5]), two trials at 750°C, and a final replication of the base case (600°C [4]) for
comparison to previous experiments. No procedural changes were made during this group of

experiments.

Observation of Drop Pyrolysis

Video images revealed that all drops exhibited some bubble bursting during
drying. There were substantial differences in devolatilization observed at the different
conditions. Particles produced in 95% N, with 5% CO were pdrous and brittle. Swelling of
these particles was uniform and spherical. Char formed during all experiments at 600°C

shrank substantially after reaching maximum swollen volume; much less collapse was noted
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at 750 and 900°C. The average specific volume (reciprocal density) of char particles exposed
for 30 seconds to oxygen-free atmospheres was found to increase over the range of
temperature studied.” There was no visible or quantifiable effect of gas velocity on the

chars produced at 750°C.

The swelling behavior of drops exposed to the oxygen-containing atmosphere
at 500°C:.wazts iike that observed during combustion at higher temperatures and oxygen
concemra'tion's.j"["hese drops underwent random serpentirie expansion and formed hollow char
particles with a delicate but resilient surface. - Enhanced swelling in atmospheres containing
low (2-5%) onygen has been repon;ed by others.”*** The other gas atmosphere investigated in
the sodiur_n mass loss éxperiments, 75% N, with 20% CO, and 5% CO at 600°C, produced

chars that were identical in appearance to the samples obtained from pyrolysis at 600°C.

Stage Times During Pyrolysis

The effect of furnace conditions on drying time is shown in Fig. 10. Each
plotted point represents the average drying time measured from all videos of drop pyrolysis at
each condition, e.g., the point at 600°C for 95% N, with 5% CO is an average of
approximately 200 individual time measurements.: Error bars indicate + one standard
deviation of the mean for each set of furnace conditions. The values in Fig. 10 demonstrate a
decrease in average drying timé with increasing temperature; this was a result of the
corresponding change in heat transfer mechanisms from primarily convection to radiation. It
is apparent that gas composition and velocity had no effect on drying time for the conditions

studied.

Figure 11 presents the mean swelling or devolatilization time as a function of
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Figure 10.  Drop drying time as a function of furnace conditions for all experiments given
in Table 3. Plotted points are mean time for each condition * one standard

deviation.
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_ Figure 11.  Drop devolatilization time as a function of furnace conditions for all
experiments given in Table 3.
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furnace conditions. Because there was no luminous flame surrounding the particles, the effect
of furnace temperature on swelling time in the pyrolytic environments of this study was
greater than that reported for devolatilization in a combustive e‘nvironment.l These data agree
with other indications that devolatilization time is a weak function of temperature over a wide
rénge_of conditions.” The temperature of the char particles in the oxygen-containing
aﬁnosphére at 500°C may have been higher than that of the surroundings due to exothermic
oxidation of the char. This explains the somewhat lower than expected devolatilization time

at 500°C.

Average Drop Size

Liquor mass was used as the measure of drop size throughout the thesis
experiments. In order to extract char from the drop reactor its s§vollen size had'to be less
than the insertion port diameter (14 mm). An average drop mass of 5 ﬁg was~targeted
because drops larger than 6 mg tended to fall off the nichrome wire while being extracted.
Known variations in liquor sqlids content were compensated for by forming correspondingly
larger or smaller drops. Much of the literature reports drop size as effective diameter;
therefore, the average diameter of a representative sample of drops was measured to facilitate

comparison of results.

Image analysis was utilized to determine the diameter for a group of 28 liquor
drops with an average drop mass of 5.0 £ 0.5 mg. The mean size for all 409 drops reported
in Appendix III was 5.2 + 1.3 mg as liquor. Video images corresponding to the first clear
frame of the inserted drop were acquired, digitized, and filtered by a Tracor-Northern

TN-8502 image analyzer. Images of a spherical ball of known diameter were also acquired to
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calibrate the instrument. The area of the two dimensional binary image (silhouette) of each
selected frame was then calculated. Average projected area diameter (D;,) of the particle was
defined as diameter of a circle with area equal to the binary image. For the 28 chosen drops,

Dy, was 2.1 £0.3 mm.

Particle volume (V,) can be estimated from its projected area diameter as
V,=a,xDp, ‘ ) B

where o, is a volume shape factor to account for irregular particle shapes.” For a sphere
o, is 7/6. Knowing the average drop mass (m,), black liquor density (p) can be estimated

from Eq. 3:

p=——— . @
o, X Dpy -

A volume shape factor of 0.43 (averaged value for sphere and prolate ellipsoid of axial ratio
" equal to 5) reasonably describes the somewhat flattened shape of liqilor drops. Using this
shape factor, the mean density calculated by Eq. 4 for the 28 drops was 1.34 + 0.51 g/cm’;

this agrees very well with the accepted value of 1.38 g/cm®®

Total Mass Loss During Pyrolysis

Calculated black liquor mass losses for all conditions are plotted against
exposure time in Figs. 12 and 13. Significant volatiles yield was not expected to occur until
the particles began to swell; accordingly, average drying times from Table 3 were used as

origins of the curves in Figs. 12 and 13. Lines are shown in the figures to group the data; -
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Figure 12.  Total mass loss as a function of exposure time and furnace conditions for the
first group of experiments. Quench flow: 2 L/min N, for 500°C, 5 L/min N,

for 600 and 900°C.
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Figure 13.  Total mass loss as a function of exposure time and furnace conditions for the
second group of experiments. Quench flow: 5 L/min N,.
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these lines are not based on statistical regression.. In this section results from each set of

experiments are considered separately.

3o

Volatiles yield or total mass loss (ML) was defined as the percent difference

between the initial liquor solids mass and the char sample mass for each determination:

ML =100 1 - |
- Eoenny R ®)

Y(xxm,)

i=1
In Eq. 5 m, is the mass of accumulated chér, X, is solids content of the liquor, m, is mass of
the individual drops, and n is thé number of accumulated char particles (typically S or 20).
As the liquor samples were heated to facilitate drop formation, solids content was periodically

determined during each experiment to account for water evaporation.

First Set of Drop Experiments

| During three of 'the. first minimum 'exposure time determinations at 600°C, char
was withdravs;h frdn the furnace before drying was complete. The resulting negative values
of calculated mass loss are not shown in Fig. 12, but are reported in Table 9 of Abpendix IV.
This error was prevented in subsequent experiments by choosing a minimum exposure of 1.25
times the average drying timé, which was determined from several video sequences of drdp

pyrolysis. Improvement in experimental technique is evident in the reduced scatter of

volatiles yield from the third experiment at 600°C (as compared to 600°C [1] and 6(')0°C‘[2]).

The measurement of liquor solids content for the first two experiments,

600°C [1] and 900°C [1~], was in error because the samples were not dried to constant weight,




60

as specified in TAPPI procedures.” ' After the solids’ content of several liquor samples had .
been carefully measured, it was concluded that the first solids measurement was
approximately 5% high. The values of total mass loss corresponding to these experiments in

Fig. 12 are therefore expected to be 10-30% high.

The results of the experiment at S00°C indicate that, after the rapid initial
volatiles loss, char mass continued to decrease slowly with time. This was due to slow
combustion or gasification of the‘ char in 95% N, with 5% O, at 500°C. Given sufficient
exposure time, the char carbon would have been completgly consumed. As a result of
particle heating at t\l.u_ase condiﬁon§, the averagé initial mass loss m‘ay;h;ave been‘s.omewhat “

higher than would have occurred in an oxygen-free atmosphere.

During the first pyrolysis experiment at 900°C, there was a'smaller- volatiles.
yield after 30 seconds exposure time than after 10 seconds. This may be a result of partial
oxidation of highly reduced char immediately upon removal from the quench stream.
Spontaneous combustion was observed when many of these char particles were removed from
the nitrogen quench and exposed to ambient laboratory air. Photomicrographs of several
intact particles, pyrolyzed at 900°C for 30 seconds, revealed holes in the sﬁrfaéé surroundéd
by regions of feathery gray ash. Evidently, the mass gained by oxidation of the highly |
reduced char exceeded the ﬁ%s lost during extended thermal decomposition. The anomalous

points at 30 s were disregarded when drawing the line through the 900°C data in Fig. 12.

Second Set of Drop Experiments
Figure 13 shows the results from the second set of pyrolysis experiments.

Considering the scatter in the data, there is no significant difference between the volatiles
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yield at 10 and 30 seconds. This result suggésts that the total mass loss during pyrolysis was
not affected by temperature or gas velocity over the range of conditions used in the second
set of exberiments. The 20-25% ultimate volatiies yield at '750°C'is somewhat lower than
what.has been reported in other studies of black liquor pyrolysis-and cor'nbustion. During the
TGA study of black liquor solids, 34-41% of the original material was lost during heating to
a final temperature of 750-800°C."> The volatiles yield of seven samples of char produced in
a large drop tube furnace was 34.3 3.1%.;9 Direét combarison of these results with the
single drop eﬁperiments is difficult because volatiles yield is as much a function of ;hermal

history as it is of the parent material composition.*

Conditions that support thermal decomposition of inorganics or gaSiﬁcation of
carbon would be expected to result in additional mass loss, as discussed for F1g 12, Total
mass loss during gasification in 75% N, with 20% CO, and 5% CO at 660°C was not
statistically different than that from the fourth experiment in 95% N, with 5% CO at 600°C.
The gasification rate was very slow at these condi'tions;27 therefore, no measurable amount of

" carbon would have been consumed in the short duration of the drop exposure.

Comparison of Char Removal Procedures

Total mass loss at 600°C is somewhat higher in Fig. 12 than in Fig. 13. The -
following analysis indicates that, on average, a small amount of material was lost during
handling in the first set of experiments. In the early experiments friable vchar‘ particles wére
accumulated for each determination by scraping the residue from the nichrome wires into a
clean dry beak;er. The weighf change of the individual wires is repo;ted in Appe;ldix III as

"loss on wires." The average loss on wires from 22 determinations in which the char was
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removed by scraping was 0.4 + 3.0 mg.

Particles quench(ad at the minimum exposure time were tar-like. Aftcr the
accumulated mass of these particles and wires was recorded, a small amount of water was
added to the beaker to dissolve the residue. The group of wires was thep ;emoved from the
beaker, finscd with a few drops of water, and dried before weighing. A similar procedure
was utilized in f)rde'r t'o.minimize material loss in the seconq group of experiments. In this
case, char re,sidugi from all equs'ur.e‘times waé removed »if'r'om the wires bi/ adding 8-9 ml of
Type I water Ato the beakers and agitating the samples in an ultrasonic bath for several

minutes.

Tptal material "loss" for each determination was estimated from the mass of
the rinsed group of wires minus the sum of the initial wire masses. These values are reported
as the sum of "loss on wires" in Appendix IIl. The average value from 32 determinations in
which the char was removed by washing was 0.0 * 0.5 mg. This variation is identical with
the expected accuracy of the Sanpn'us analytical microbalance in the IPST laboratory
environment. Cofnparison of the averaged loss on wires values from the two procedures
suggests a systematic loss of 0.4 mg in the first sé:t of experiments. This explains the

somewhat higher volatile yields measured during the first experiments at 600°C.

Adventitious Moisture in Char

Another prqcedural difference between the experimental groups was the
method of char mass measurement. During the early experiments the char mass was recorded
after accumulating a sample. The time required to pqmplete a determination (accumulate the

char from 5-20 drop exposures) varied from 20 minutes to over one hour. Char extracted at
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the minimum exposure time should have contained 1-5% residual moisture.* After 10-20 s
exposure time the char should have reached absolute dryness, but would have quickly
absorbed moisture from the air. The scatter in the results in Fig. 12 can be attributed to

variation in adventitious moisture gained by the char. \

In the second set of experiments, accumulated char. was weighed, dried at
| 105°C for 60-90 minutes, cooled in a desiccator for one hour, ana reweighed. This process
was repeated until constant weight was achieved. It was necessary to shield the char from the
air currents in the drying oven by inverting a large beaker over the 150 ml beaker containing
the char sample. Mass losses of greater than 10% were measured during drying of some char
samples. However, when volatiles yield was recalculated using the dried char mass, there
| ‘was no signiﬁcént change in the trends of the results preéented in Fig. 13. No systematic
effect of drop furnace temperature or exposure time on char moisture content could be
determined. This discussion suggests that the char drying procedure was unnecessary.
Additional handling increased the probability of unwanted material loss; moreover, char
drying did not reduce the variability of the total mass loss results. The char drying procedure

is not recommended for future sodium mass loss determinations.

Sodium Mass Loss During Pyrolysis

The primary objective of the experimental work was measurement of sodium
mass loss prior to the char burning stage of black liquor combustion: The single drop
pyrolysis technique was utilized for most of the experiments because it allowed the drying
and devolatilization processes to be isolated from those of char burning and smelt oxidation.

This section contains the results of the single drop experiments, followed by -consideration of
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the thermal history of liquor drops. Results of the muffle furnace experiment are also
pfesented and compared with those of the single drop experiments. Two mechanisms which
have been proposed to explain the initial sodium release during the pyrolysis experiments are

discussed in light of the results.

Sodium Loss in Single Drop Experiments

The amounts of sodium lost from the char as functions of exposure time and
furnace conditions are plotted in Figs. 14 and 15. There weré significant sodium losses at the
shortest exposure times in all experiments; thus, the curves in Figs. 14 and.15 were drawn .
assuming zero sodium loss occurred at zero exposure time. The single lines drawn through
the 600 and 900°C data represent the average behavior exhibited by both data_seté at each
temperature. These lines were not determined by statistical régression. For reziéons discussed
in the previous section, the 30 second data were disregarded When drawing the line for the

experiment at 900°C in Fig. 14.

Sodium mass loss was defined as the percent difference between the amount of

sodium in the liquor solids and the mass of sodium in the acid-digested char samples:

NaL = 100 | 1 e
a - - . . (6)

n
xNa. 1 _2:(sz md) i

i=1

The mass of sodium in the char (my, /) was calculated from the sodium concentration in
digested char samples and the sample volume. Sodium content of the liquor (xy, ) was

determined during each experiment from acid-digested liquor samples:
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mNa‘l
Xy, = : - m
XSX ml

where my, , is the mass of liquor sodium and m, is the mass of digested liquor.

Unlike the total mass loss results, char moisture content would not affect the
accuracy of the sodium mass loss values because the amount of sodium was determined from
the ‘concentration of a dissolved sample. A liquor doping experiment was conducted to
determine if there was a systematic error in the acid digéstion procedure caused by changes in
the form:of the sodium during devolatilization. The results of this experiment (presented in
Appendix I'V) indicate that the form of the sodium -- organically bound or inorganic salt --

does not affect its‘determination.

Figures 14 and' 15 indicat.e there was a sudden sodium mass loss that occurred
prior to the end of the devolatilization or swélling period; this is referred to as the initial
sodium loss. Comparison of the results from pyrolysis (in 95% N, with 5% CO at 0.61 m/s)
at 600, 750, and 900°C in Figs. 14 and 15 shows that this initial loss increased with
increasing furnace temperature. The results from pyrolysis at 600 to 750°C exhibit the same
trends as the 700 and 800°C data presented by Frederick and Hupa.”” In all cases, except for
pyrolysis at 900°C, there was no further sodium release after the initial loss of 5-20% of the

sodium contained in the black liquor.

The fourth replication of the pyrolysis experiment at 6()°C, shown in Fig. 15,
was not statistically different than the second, given in Fig. 14. Results from these two
experiments indicate that only.5% of the sodium was lost after 10 seconds pyrolysis. The

higher loss values from the first experiment (600°C [1]) may be due to incomplete removal of
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the char residue by scraping from the nichrome wires. As described in the previous section,
material loss was minimized during the second set of experiments by rémoving the char from

the wires with a small amount of water.

Sodium loss during pyrolysis at 900°C, shown in Fig. 14, did not subside after
swelling was complete but continued to increase with exposure time. Frederick et al."
reported similar.behavior for liquor drops pyrolyzed at 900 and IOOO°C._ In gas atmospheres
containing CO at temperatures above 800°C, Na,CO, decomposes by reaction with char
carbon (see Egs. 1-2)."2 Clearly this is the cause of the second phase of sodium loss

occurring during pyrolysis at temperatures of 900°C and greater, shown in Figs. 2 and 14.

Although more scaﬁered, the sodium loss during gasification in 75% N, with
20% CO, and 5% CO at 600°C was not statistically different than that from the second and
fourth experiments in 95% N, with 5% CO at 600°C. A single line was drawn through all
the 600°C data in Fig. 15 to indicate similar behavior. Other work has shown that, during
CO, gasification, Na,CO, remains fixed in the char.”” One proposed char gasification
mechanism suggests that the alkali carbonate is cyclically reduced by reaction with carbon
and subsequently oxidized by CO,.?” According to this type of mechanism, elemental sodium
should not be released during CO, gasification unless the temperature is high enough for

Na,CO, decomposition to occur.?

In the other experiment investigating the effect of gas composition, greater
sodium loss was measured at 500°C in an oxygen-containing atmosphere than at 600°C in an
oxygen-free atmosphere. Twenty percent of the sodium was released from the partially-

swollen char during 7 seconds exposure to 95% N, with 5% O, at 500°C. Char particles
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withdrawn from 95% N, with 5% CO at 600°C after 3 seconds pad swollen to approximately
the same extent, but the sodium mass had decreased by only 5%. Although no glo;ving .- ' |
éémbustion was observed during this experiment, it is likely th_at oxidation of the char
increased the particle temperature above that of the furnace environment. The higher particlé
temperature would result in a higher heating rate and correspondingly greater sodium loss
than would be é)'(pected in a non-oxidizing environment at 500°C. Interestingly enough
Volkov et al.il reported a 20% sodium loss for 2 mm drops exposed to air at 900°C for "

3 seconds. This agreement with the initial sodium loss in 95% N, with 5% O, at 500°C
suggests that there is little t‘emperatufé effect on sodium release during drying 'ahd

devolatilization in oxygen-containing environments.

Average gas velocity was trip}ed in the second éxﬁerirrlent at 750°C to isolate
the effect of flow rate from that of heating rate. As seen in Fig. 15, this resulted in a large
decrease in initial sodium loss. A t-test of the mean mass losses for each experiment
indicated that the decrease in sodium release (i.e., greater sodium retention) causeéd by
increased gas velocity was significant at the 99.9% confidence limit. The following

paragraphs consider possible explanations for the effect of gas velocity.

At 750°C the convective contribution to total heat transfer is much smaller than
the radiative component. The coefficient for convective heat transfer (h.) to a 2-mm spherical

liquor drop is given by:*
k 1 1
h, = ) [2.0 + 0.60 (Re)? (Pr)3] . (8)

In Eq. 8 k is the thermal conductivity of the gas, D is the drop diameter, Re is the particle
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reynolds number (D{v)p/p), and Pr is the Prandtl number of the gas (Cwk). Gas properties -
were evaluated at the bulk gas temperature of 750°C. An increase in gas velocity from 0.61 -
to 1.83 m/s (2 to 6 fts) would result in a 32% increase in convective heat tra.nsfe; coe_fﬁcient
as calculated by Eq. 8. For this system a radiant heat transfer coefficient (h) canbe

defined:®
h = 4ecT,’ , B ©)

where the liquor emissivity () was assumed to be 0.95, ¢ is the Stefan-Boltzman constant,

and T, is the drop temperature.

Drop temperature (T) was calculated by an iterative solution of a heat balance
accounting for combined radiative and convective heat transfer. Average wall temperaturé
was estimated to be 720°C. This calculation showed that tripling gas velocity would result in
less than a 1% increase in actual drop temperature. This result implies that there was no
cooling of the drop due to increased flow. The overall heat transfer coefficient (h, + h,)
would increase only 12%' for the increase in gas velocity from 0.31 to 1.83 m/s. Identical
drying and .devolatilization stage times, given in Table 3, verify the assumption that the

increase in velocity did not substantially affect drop heating rate.

Assuming the sodium loss resulted from physical ejection of liquor and char,
caused by escaping gases, then higher flow rate may have reduced ejection by suppressing
bubble formation. Howe\;er, any effect caused ])y increased pressure on the leading of the
drops should have been balanced by a corrésponding pressure decrease on Lhe! ;railing edge.

A review of the video images revealed no visible differences in surface activity or swelling
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behavior between chars produced at 750°C with {(v) = 0.31 m/s or 1.83 m/s. Furthermore,
the 'specific volume of chars produced at both conditions could not be statistically
differentiated.”. A study of the physics-of bubble formation and bursting is necessary to

understand the effect of gas velocity on the extent of material loss during these experiments.

Drop Thermal History Model

-Significant sodium losses were measured at minimum exposure times; thus, it
was suspected that particle températures were substantialiy below the furnace temperature
during the period of initial sodium loss. Since direct measurement of drop temperature was
not made during the sodium loss experiments, a thermocouple was used to approximate the
heating and cooling history of a liquor drop in the laboratory furnace. The 0.81 mm diameter
thénim‘oéoupie, connected to a digital data acquisition system, was inserted into the reaction
chamber for a givén expoéure time and then withdrawn to cool in the quench stream. Figure

16 is a typical plot of theﬁnocouple response as a function of exposure time.

600

500

400
i Labels indicate
Exposure Time

300

200

Temperature, °C

' 100

0 20 40 60 80
Elapsed time, s

Figure 16.  Thermocouple response as a function of exposure time. Furnace conditions: air
at 600°C and 0.61 m/s; quench flow: 5 L/min N,.
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Drop heating rates were estimated from the elapsed time required for the
thermocouple temperat{lre to increase from 100°C to 80% of the maximum (ultimate)
temperature; this corresponds to the nearly linear region of the curves in Fig. 16. This
"average linear heating rate” ranged from 36°C/s at 500°C to 106°C/s at 900°C. In a similar
experimental system, Frederick et al.** measured the surface temperature of liquor drops
with a two-colpr pyrometer. For a 17 mg drop, pyroiyzed at 800°C in 95% N, with 5% CO,
‘the surface ;emperafﬁre in~creased at a rate of épproximately 100°C/s during devolatilization.*
Heat transfer to a swelling black liquor drop may be substantially greater than to a
_thermocouple juﬁction; thus, this technique only provides an approximate thermal history for
a drop. Ihe average time to reach maximum swollen volume at 600°C was 5.7 £ 0.7 s (see
Table 3). The dgta in Fig. 16 suggest that particle -temperature would have reached 320-
390°C after this elapsed time. Miller”® measured somewhat higher liquor temperatures (400-
500°C) during the period of rapid swelling. It can be concluded that the actual drop heating

rate was probably greater than that predicted by the thermocouple model.

The time required to fully withdraw a drop from the center of the reaction
chamber to the quench zone was approximately 0.2 seconds. Assuming that pyrolysis
reactions are quenched at temperatures below 200°C, a cooling time can be defined as the
elapsed time between the maximum temperature measured by the thermocouple and 200°C.
The average of 24 determinatior;s of cooling rate (taken from eight measurements at furnace

temperatures of 500, 600 and 900°C) was 11.2 + 2.0 seconds.

The understanding gained from this experiment is that there was a finite

heating and cooling period during the drop exposures, and that the char reached the furnace
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temperature only after 15 to 25 seconds exposure time. Additional mass loss may have
occurred during the quench period of the drop experiments; therefore, the actual pyrolysis
time was greater than the reported drop exposure time. This error is not expected to effect

interpretation of the results because it was manifest in all determinations. .

Sodium Loss in Muffle Furnace Experiment

It was suspected that the violent boiling action observed durmg drying was
responsible for part of the initial sodium loss measured durihg single drop ékperirhents. A
procedure was therefore devised to isolate the sodium release. during drying from that |
occurring during devolatilization. The outcome of this muffle fumac;e experiment -- no’
sodium loss from either liquor or dried solids samples pyrolyzed at identical conditions -- was
not expected. Comparisbn of the results frqm this experiment with thé individual drop
experiments is convoluted by differences in liquor sample geometry; however, this result

provides evidence that sodium release during pyrolysis is not an evaporative process.

Approximately 100 mg of liquor was applied in a 5 cm line along the bottom
of twelve ceramic combustion boats. Half of these samples were dried overnight at 105°C.
Three boats each of dried solids and wet liquor were pyrolyzed for 60 seconds in the quartz
tube apparatus, as described in the Experimental chapter. Behavior of the liquor was similar
to that observed for pyrolyzing single drops. There was a period of boiling and bursting 4
immediately after insertion of the wet liquof samples; bursting was not observed for the oven
dried samples. After exposure for a few seconds, swelling liquor was visible above the top of
the boat. Because the char surface was exposed to flowing gas, devolatilization products

would have been carried away by the flow as in the drop furnace. No accidental material
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losses were noted during these experiments and the swollen liquor never touched the inside

surface of the quartz tube.

Resulis of the muffle furnace experiment are summarized in Table 4.
Calculated solids contents agree well with the standard determinotion” of 72.3% solids for
this liquor sample; thus, samples dried in the oeramic boats reached total dryneso. :‘Ther'e was
a substantial amount of volatiles released during these experiments. In fact, the volatiles yield
in Table 4 is sofhewhat higher than the values of 15-25% determined for pyrolysis of '
individual drops at 750°C. The results in Table 4 show that there was no statistically-
significant difference in the sodium contents of the black liquor, dried solids, or the pyrolyzed
char samples. Constant sodium content, on an initial solids basis, implies that there was no
sodium loss during devolatilization in these e'xperiments. Fof comparison, the -r‘esults in Fig.
15 indicate there was a 20% ultimate sodium loss for single drops pyfol'yzed in 95% N, with
5% CO at 750°C.
~ Table 4. Results of muffle furnace liquor pyrolysis experiment. 100 mg sample size;

pyrolysis conditions: 95% N, with 5% CO at 750°C and 0.61 m/s. All values
reported as average + 95% confidence limit.

Nacont,, Liquor . * Char mass
Sample %* solids, % loss, %
Liquor 16.2 + 0.4 i i
Solids 16.2 £ 0.2 72025 | -
Pyrolyzed liquor 16.5+ 0.6 - 29.6 £ 1.0°
Pyrolyzed solids | 16.4 £ 0.6 ‘ 722+ 1.2 ©321%20
? Reported as % of initial black liquor solids.

b Estimated from liquor sample solids content.
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‘There were several significant differences between the two experiments which
may account for the disagreement of the results: sample geometry, initial specific surface
area, and geometric surface area. Effects of these variables on sodium release are considered
below. An‘iridi\'/i'dual 5-mg liquor drop, 2-mm in diameter, had a geometric surface area of
12.6 mm2 and an ini£ial speciﬁé surface area 6f approximately 2.5 mmzlfng. A 100-mg stripe
of liqﬁor at the bottom of a cerafﬁic boat had é geometric surface area of 100 mm?; thus, the

initial s}ﬁeciﬁc surface area of the stripe was 2.5 times less than the drop.

. The geometry of the liquor samples in the muffle furnace could have
signiﬁca_r_ltly affected the sodium release during pyrolysis. A flowing gas stream caused the
heating rate to be high,érz along the upstream surface of individual liquor drops in the tubular
furnace. Gas bubbles generated within the heating drops were observed to burst preferentially
on the downstream free surface. Liquor samples contained in the alumina boats were heated
entirely from above. The lower surface of the sample was thermally insulated and physically
restrained by the boat. There was no free surface opposing the heated surface which may

have suppressed bubble bursting and consequently reduced material loss by physical ejection.

In Fig. 3 the average sodium loss for pyrolysis from one experiment reported
by Frederick and Hupa'® was compared with results of another set of experiments conducted
at identical conditions. The dfop size in the first experimént was 10-20 mg, while 5-12 mg
drops were formed in the second set;” the larger drops would have had approximately 15-
20% lower initial specific surface area. It is expected that the statistically lower sodium loss
in thé first experiment was caused by the lower initial specific surface area. During black

liquor combustion, sodium mass loss was found to decrease with increasing drop size'' (see
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Fig. 1). Itis possible that the lower initial specific surface area of the liquor samples in the
muffle furnace experimént reduced sodium mass loss to below measurable limits. Sodium
mass loss duﬁng pyrolysis must be evaluated over a range of controlled drop sizes in order to

verify the effects of surface area.

Evaporative sodium loss should be governed by ‘heat and mass transfer
processes; such a mechanism would be proportional to geometric surface area. The liquor
samﬁles in the alumina combustion boats had approximately eight times greater geometric
surface area than individual drops, but there was dramatically less sodium released during
pyrolysis in the muffle furnace experimeni. It can therefore be inferred that the initial sodium

loss from single drops was not a result of evaporation.

Mechanisms of Sodium Loss During Pyrolysis

In a thermogravimetric study of model organic alkali compounds, Stewart et
al.”! demonstrated that no alkali loss occurred over the temperature range 450-550°C.
However, substantial amounts of alkali were vaporized as a result of Na,CO, reduction at
750-900°C. These findings support the result of the muffle furnace experiment, which leads
one to question if the sodium mass loss measured during the single drop experiments was not
merely an artifact of the technique. Nevertheless, the single drop results reported in this
thesis, and those of other researchers,'>'® suggest that 5-30% of the sodium is lost during the
initial stages of black liquor combustion. Two mechanisms were proposed to explain this
sodium loss: evaporation and cor_wection.83 Evaporation implies there is a partial pressure of
a sodium species above a condensed sodium-containing phase. Convection is defined as

physical transport of sodium-containing material by gases escaping from a reacting particle.
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Evaporation of Sodiurp

Based on TGA results, sodium release must occur either before all the
organically-bound sodium i§ converted to Na,CO, or after sufficiently high particle
temperatures have been reached for Na,CO, to decomp(-)se.‘z-71 It is unlikely that sodium
vapor is produced during devolatilization because particle temperature is expected to reach
only 400-500°C, and thermodynamic data indicate that the vapor pressures of all inorganic
sodium species (including elemental sodium) are very low at these temperatures.2***% Tt may
be argued that the f\igitive sodium is associated with volatile:orgéni:c compounds. A low
molecular weight organo-sodium compound that has substantial vapor pressure and thermal -
stability at devolatilization temperatures could be swept from the "bourvl'dary‘la‘yer' surrounding
the black liquor particle into the bulk phase. The compound would there decorppose to low
molecular weight gases and elemental sodium. Subsequent reactions with 0,, H,0, and CO,
would produce submicron-sized fume.*** While this may seem plausible, any mechanism
depending on a volatile intermediate is subject to criticism; thermally stable organo-sodium

compounds must be identified before such a mechanism can be considered tenable.

Figure 17 confirms a result noted in the last section, that increasing average gas
velocity greatly reduced sodium mass loss. The results of the drop experiments at 750°C,
given in Fig. 15, are compared with similar values reported by Frederick and Hupa® in
Fig. 17. The Abo Akademi experiments were conducted at 800°C with no forced convection;
the 50°C temperature difference is not expected to significantly affect the sodium loss values.
All points are from 10 seconds pyrolysis of 5-12 mg drops in N, with 5% CO. Figure 17
clearly indicates there was greater sodium retention at higher flow rates. While the reason for

the velocity effect is unknown, the argumént remains that if the sodium mass loss was due to
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Figure 17.  Effect-of average gas velocity on sodium loss after 10 s pyrolysis. Data at
0 m/s were from 800°C," filled circles are from this work at 750°C.

-

direct vaporization, then the increased removal rate (mass transfer) of the alkali species by the

higher gas velocity should have resulted in greater sodium release.

There was no sodium loss during pyrolysis of liquor samples in the muffle

" furnace apparatus, yet there were substantial total mass losses resulting from devolatilization
in the same experiments. Comparison of these results with the single drop experiments
requires a better understanding of the differences in the physical proc'esses occurring in the
two systems. Nevertheless, the gas velocity effect (described above) and results of the muffle
furnace experiment clearly support the hypothesis that sodium loss during devolatilization is

not an evaporative process.

Physical Ejection. of Liquor and Char

The above results suggest that evaporation is not the mechanism of sodium loss
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during black liquor pyrolysis. During the first observations of spent liquor drop combustion,
researchers noted that the drops bubbled violently during drying."'*'*. Bubble formation and
erupting jets of gases were also observed in photographic images of devolatilizing black
liquor solids and coal particles.”®* These eruptions of water vapbr and pyrolysis gases from
the surface film of a ﬁquo; drop could result in ejec-t.ion of tiny particles of liquor and char.
Convection of sodium-containing material has been overlooked as ja possible mechanism of
sodium loss dﬁn‘ng thé gas évolution stages of drop combustion. Under reducing conditions,
organic alkali compounds in ejected liquor and char would rapidly decompose to low
molecular weight gases and sodium carbonate aerosol. If the gaseous environment supported
combustion, then the mechanisms of char burning and sulfide oxidation, discussed in the
Introduction, would produce sodium vapor from the burning bits of ejecta. Sodium vapor

would further react with O,, H,0, and CO, in the gas phase and condense as fume.

The average sodium mass loss from all the single drop experiments are plotted
versus furnace temperature in Fig. 18. Each point represents the average sodium mass loss
measured for all exposure times at each condition. Clearly, there was a significant effect of
temperature on sodium loss during pyrolysis in 95% N, with 5% CO. Higher particle heating
rates caused by higher furnace temperature would produce more rapid drying and
devolatilization.®® Bjérkman'® noted the violence of liquor bursting during heating increased
with furnace temperature. The rate of gas release may explain the effect of heating rate on

initial sodium loss apparent in Fig. 18.

At 500°C in an oxygen-containing atmosphere, sodium loss was greater than at

600°C in an oxygen-free atmosphere. This is likely a thermal effect caused by particle
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heating from slow char oxidation. Oxygen should enhance the rate of sodium loss if an

evaporative mechanism was responsible for sodium loss prior to char burning.***® From the

limited number of experiments conducting in oxidizing atmospheres, it was not possible to

determine if this effect, apparent in Fig. 18, was due to particle heating or chemical reaction

enhanced vaporization.

If the initial sodium loss during the individual drop experiments is due to

physical ejection, then liquor properties affecting swelling behavior would be expected to

affect sodium loss. Results presented in Fig. 3 do not clearly indicate a substantial effect of

black liquor type on sodium mass loss. Analyses of the Finnish liquors were not reported;

thus, it is not certain if the chosen samples represent a wide enough range of properties to

cause significant differences in devolatilization behavior. van Heiningen et al.”® made a series
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of black liquor chars for gasification experiments; a significant effect of liquor type on
sodium loss can be calculated from their reported data. While white pine liquors experienced
a 15 £ 10% sodium loss du'ring pyrolysis, birch 1icjuors apparentl_y did not release sodium at
all.l Viscosity, surface tension, extractive content, extent of oxidation, and inorganic content
would be exﬁected to affect the physical processes occurring during drying and'.-‘.'
devolatilization.”® The effect of these variables on sodium mass loss remains t6 be

systematically investigated.
AEROSOL COLLECTION

Regardless of the mechanism of sodium release during dqvolatilization_, the
impact of this sodium loss on fume formation can be evaluatgd by'cpllcction ofn generated
aerosol as a function of exposure time. The first part of this section compares aerosols
collected during the pyrolysis experiments described above with those from liquor combustion
in air. The second part contains pertinent drop combustion observations and important results
from the dynamic aerosol collection .experiments. This section concludes with a discussion of
the significance of initial sodium loss on fume formation in industrial recovery furnaces.
Appendix V contains additional results from static aerosol collection experiments. The
technique of time resolution of dynamic aerosol collection data is described in Appendix VL
Consideration of losses due to collection efficiency limitations and deposition within the

equipment are contained in Appendix VII.

Aerosol Collection on Stationary Filters

The design of the aerosol collection systexﬁ was based on the use of

borosilicate glass fiber (BGF) filters as the collection medium. For reasons detailed in the
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Appendices, these filters were found to be unsuitable for quantitative analysis of inorganic
aerosol. However, BGF filters worked well for investigating the morphology of captured
particulate matter. The following SEM photomicrographs are indicative of the material found
during extensive searches of random samples cut from exposed BGF filters. No evidence of

the fine particles, shown in Figs. 19-26, was seen on unexposed filters.

Appendix V indicates that the aerosol collection configuration, particularly the
distance of the filters above the drop location, greatly affected the amount of material
collected. While more material was collected closer to the combustion source, the higher gas
temperature and volumetric flow rate damaged the filters during dynamic collection
experiments. To facilitate comparison, all of the photomicrographs presented in this section
are of aerosols collected with the dynamic aerosol collection equipment in a fixed mode.
Additional SEM images obtained during preliminary collection experiments are presented in

Appendix V.

In several of the sodium mass loss determinations, aerosols generated during
liquor pyrolysis were collected on BGF filters. The dynamic aerosol collection system was
used to place a BGF filter over the dfdp furnace exit. The filter remained i;l place during the
first five individual drop exposures of each determination. Before additional drops were
pyrolyzed, the collection medium carriage was activated to carry the filter past the exhaust
flow. The total mass of black liquor solids pyrolyzed for a given filter exposure is given in
parenthesis in the captions of Figs. 19-24. A nominal vacuum flow of 14 L/min was
maintained for all static aerosol collections during pyrolysis experiments except for the trial at

750°C; in that instance there was no induced flow.




Figure 19. SEM photomicrograph showing aerosol on BGF filter. 10 s pyrolysis of 5
drops (18.9 mg) in 95% N,/5% CO at 900°C and 0.61 m/s. Magnification
2,000 x.

Figure 20.  SEM photomicrograph showing fume on surface fibers of BGF filter.
' Conditions given in Fig. 19. Magnification 5,000 x.




83

Figure 21.  SEM photomicrograph showing no apparent fume on BGF filter. 10 s
pyrolysis of 5 drops (24.4 mg) in 95% N,/5% CO at 750°C and 0.61 m/s.

Magnification 5,000 x.
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Figure 22. SEM photomicrograph showing very fine acrosol on BGF filter. 28 s pyrolysis
of 5 drops (24.0 mg) in 95% N,/5% CO at 750°C and 0.61 m/s. Magnification

10,000 x.
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Figure 19 is an example SEM photomicrograph of the material collected during
liquor pyrolysié at 900°C. in 95% N, with 5% CO. 'Numerous 1-2 um scale-like debosits and
submicron-sized globular deposits are visible on the filter fibers. A few 10-20 um
smooth-surfaced spheres were observed on other filter samples; the appearance of these large
aerosol particles was similar to those shown in Fig. 32 of Appendix V. This material may
have resulted from ejection of liquor or char during drop drying and devolatilization.
Deposits of the fume-like aerosol were concentrated on surface fibers, as shown in Fig. 20;
this material did not appear to deeply penetrate the fiber mat. TGA results'>” suggest that
the fume collected on the filters during pyrolysis at 900°C resulted frém sodium released

during Na,CO, decomposition by reaction with char carbon, as shown in Egs. 1 and 2.

Despite similar total sodium mass loss values, there were fewer submicron-
sized deposits on the filters from pyrolysis at 600°C and 750°C in N, with 5% CO than what
was observed at 900°C. Figure 21 is a typicai representation of what was found at these
conditions; little or no fume-like material was evident at 5,000 x magnification. At 10,000 x
magnification (Fig. 22), particles smaller than 0.1 um can clearly be seen on the surface of a
glass fiber. While not shown in these figures, a few large (25 um) smooth spheres and
irregular agglomerated deposits were observed on some regions of the filters produced during

these experiments.

Figure 23 indicates that gasification of liquor drops at 500°C in 95% N, with
5% O, produced somewhat more 0.2-1.0 um fume than did pyrolysis at 750°C. However, the
majority of the material collected during the gasification experiment was very similar to the

fine aerosol (< 0.1 pm) obtained during pyrolysis at 600 and 750°C (compare Figs. 22 and
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Figure 23.  SEM photomicrograph showing sparse aerosol on BGF filter. 15 s gasification
of 5 drops (19.2 mg) in 95% N,/5% O, at 500°C and 0.61 m/s. Magnification
5,000 x.
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Figure 24.  SEM photomicrograph showing very fine aerosol on BGF filter. 30 s
gasification of 5 drops (28.1 mg) in 95% N,/5% O, at 500°C and 0.61 m/s.
Magnification 10,000 x.




Figure 25. SEM photomicrograph showing aerosol on BGF filter. Combustion of a single
6.2 mg drop in air at 750°C and 0.31 m/s. Magnification 2,000 x.

Figure 26.  SEM photomicrograph showing fume on BGF filter fibers. Conditions given in
Fig. 25. Magnification 7,000 x.
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24). It may be argued that the sodium released during pyrolysis experiments would not have
been collected as fume if it had escaped as sodium vapor. Clearly, the presence of oxygen
during liquor gasification at 500°C should have created condensed fume from sodium vapor,
as described by Cameron.”® While there was some fume-like material collected during this
experiment; there was more material collected on the filters from pyrolysis at 900°C in a
reducing atmosphere (compare Figs. 20 and '2'3). It is therefore unlikely that material escaped

the collection system as alkali vapor.

For comparison to the above photomicrographs, Figs. 25 and 26 show the
aerosol collected during combustion of single drops of the same liquor in air at 750°C. There
was a sparse but uniform coverage of 0.1-1.0 um irregular fume and a few >10 pm spherical
particles on all of the filters exposed in this experiment. Furhace gas velocity Was 0.15 m/s
(1 ft/s) for the collections shown in Figs. 25 and 26. Analysis of material captured at
0.61 m/s (2 f/s) in the same experiment revealed s_imilar occuﬁence and morphology to that
shown in Fig. 25. Comparing these last two photbmicrographs with Figs. 21 and 22 indicates
* that less fume was collected during the pyrolysis of 5 drops as during the combustion of a

single drop of the same liquor at 750°C.

" These SEM photomicrographs provide qualitative evidence that less submicron-
sized aerosol was formed during pyrolysis at temperatures below 900°C than during
combustion in air at 750°C. Sodium mass loss during the determinations represented in Figs.
19 to 24 ranged from 20.0 to 23.0%. Interestingly enough, the minimum sodium mass loss
measured from single drops of liquor burned in 92.5% N, with 7.5% O, at 750°C was 7-9%.

This agrees remarkably well with field data of Borg et al.’ that indicate total sodium loss
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from the lower furnace (as fume) is 9% of the sodium entering with the black liquor. These -
results suggest that sodium release prior-to char burning is not a significant source of

submicron-size fume in the recovery furnace.

Drop Coﬁbuéﬁbn Behavior

Liquor. drops were fixed in place in a flowing gas stream in the IPST drop
furnace. Coﬁvecﬁon wa; necess'ary to rapidly carry any generated aerosol to the collection
surface, the resulting combustion stage overlap was accounted folr by careful analysis of the
video images. This section contains a description of the combustion behavior of black liquor

drops and observations of the material ejected during combustion.

In the dynamic collgction experiments, described in the next section, drops of
liquor no. 2B were burned in 92.5% N, with 7.5% O, at 750°C. This liquor exhibited
significant overlap of combustion stages, e.g., bursting during drying was observed on the
downstream side of the drop simultaneous with ignition on upstréam edge, and char burning
started before maximum swollen volume was reached. Incidentally, there was less overlap
observed during the combustion of liquor no. 3 at the same conditions. An interesting
characteristic of liquor no. 2B was that it maintaiﬁed a roughly spherical shape throughout the
stages of combustion. The burning volatiles flame only appeared at the end of swelling and
persisted a few seconds after rﬁaximum volume was reached. The swelling of liquor no. 3
was rapid and serpentine; burning volatiles persisted for about one second after maximum

swollen volume was reached.

Events observed during combustion of both liquors, at 750°C in 7.5% O,, were

similar to what has been described in the literature."'''*'® These events are presented
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diagrammatically in Fig. 27; expected products of each combustion stage® are shown
evolving from corresponding regions of the particle. In all cases there was a brief period of
drying which exhibited pronounced bubble bursting (Fig. 27a). While the trailing edge of the
drop was still bubbling, the leadihg edge began to swell and ignition flashes were seen along
the surface (Fig. 27b). Swelling proceeded rapidly to the downstream side of the particle as
the volatiles flame appeared and the glow of char burning was seen on the leading edge

(Fig. 27c). Bright sparks occasionally erupted from regions of the particle undergoing char
burning. This material was ejected radially and at high initiali velocity. Occasionally the
sparks were seen to turn and follow the gas flow. In most instances it appeared that they

collided with the quartz reactor tube walls.

After extinction of the volatile.s flame, there were ;\ few seconds of
heterogeneous char burning, characterized by a shrinking dimeter and a gaseous combustion
"halo" (Fig. 27d). As carbon burnout progressed tiny droplets of ‘molten smelt formed on the
upstream side of the char particles. This process occurred at all combustion conditions with
more than 5% O,. Most of the droplets of smelt disappeared into the char residue or
collapsed into what appeared to be a molten smelt layer on the char surface. Some of the
depending droplets detached from the char and dropped out of the field of view. This process
is referred to herein as smelt shedding. When very little of the char remained, surface tension

forces drew the smelt together into a single bead (Fig. 27e).

Under certain conditions material was ejected from the molten smelt bead after
coalescence had occurred. This "sparking" phenomenon was suppressed if the furnace

environment contained less than 10% oxygen. Two distinct periods of sparking were noted
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during drop combustion in air (21% O,). In all cases there was a period of intense sparking
immediately following smelt coalescence; for some drops a stream or cloud of haze persisted

until the residue began to visibly cool.

In previous experiments, smelt bead oxidation hasA been dismissed as an
unimportant artifact of the single drop combuétion technique."” Most of the smelt is indeed
removed from the char bed of the recovery furnace with little sulfide oxidation. However,
airborne smelt droplets would undergo complete sulfide oxidation in the oxidizing conditions
of the upper furnace. The degree of smelt entrainment depends on combﬁstion conditions, but
could be substantial in overloaded or suspension fired furnaces. It is therefore necessary to
consider spark ejection and fume formation occurring during this stage as potentizii sources of

aerosol in the recovery furnace.

Dvnamic Aerosol Collection

In the static collection experiments, all of the particulate matter generated
during the course of combustion was qollected on a small area of filter. The technique of
determining the time during combustion when inorganic aerosols were generated required
coordinating drop combustion progress with continuous collection of .the aerosols as they were
produced. Details of this procedure are included in Appendix VI. BGF filters were found to
be an unsuitable material for analytical determination of fume species. The amount of soluble
Na,O in the filter fibers was greater than the expected amount of sodium to be collected as
aerosol. Furthermore, reaction between acidic combustion gases and alkaline earth
contaminants in the filters confounded interpretation of sulfate ion analysis. Silver

membranes were chosen as a more suitable aerosol collection medium for the dynamic
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aerosbl’ collection experiments. Accurate determination of microgram quantities of sodium
waS possible with silver membranes becéﬁse the levels of soluble contaminants in the
membranes were extremely low. The quantity of extractable sbdium was approximately
5.3 x 10”° mg per gram of silver membrane material, as compared to a value of 16.5 mg Na

per gram of the BGF filter material.

SEM Analysis: of Aerosol Collected on Silver Membranes

' The performance of the silver membranes was evaluated in one exploratory
trial hsing the dynamic aerosol collection system. A sihgle 7.6-mg drép of liquor no. 3 was
burned ih-'92.5% N, with 7.5% O, at 750°C and 0.61 m/s. A carriage speed of 305 mm/min
(12 in./fnin) was""choseh to expose as much of the 89 by 229-mm (3.5 by 9-in.) membrane as
possible to combustion products during the short combustion time. Eight consecutive 13-mm
(0.5-in.) square samples were cut from the centerline of the exposed membrane. A traverse
along each section in the direction of motion represented approximately 2.5 seconds of

elapsed combustion time.

SEM analysis revealed 0.10-0.25 pm' fume on all samples. Figure 28 shows
that this material is similar to that observed duﬂng the static aerosol collection experiments
described in the previous section. These fine white specks were not observed on unexposed
sections of silver membrane. 'fhere were no large spheres (1-30 wm) on the silver membrane
samples. Deposit density was observed to increase over the first six samples and then remain
constant. 'Iﬁe overwhelming presence of silver precluded elemental analysis of the collected

material by EDS.




Figure 28. SEM photomicrograph showing submicron-sized aerosol on silver membrane.
Combustion of 7.6 mg drop in 92.5% N,/7.5% O, at 750°C and 0.61 m/s.
Maghification 3,000 x.
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Figure 29.  Schematic of silver membrane showing locations of analyzed sections and
reference points for discussion of time resolution.
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Dynamic Aerosol Collection on Silver Membranes

As described in Appendix VI, the exhaust flow director was replaced with a
76.2-mm (3-in.) diameter metal flue prior to the dynamic aerosol collection experiment.
Exhaust gases from drop combustion were impinged on two 89 by 229-mm (3.5 by 9-in.)
moving silver membranes. After exposure each membrane was divided into eight 12.7-mm
(0.5-in.) sections, as indicated in Fig. 29. All sections were agitated in 45 ml of Type I
water; sodium concentration was determined by ICP. The measured sbecies concentrations

are reported in Appendix VI.

The following discussion summarizes the analysis of dynamic aerosol
collection data. The collection time (t,) of an inorganic aerosol deposit, located a given
displacement (x’) from the leading edge of the silver membrane depicted in Fig. 29, can be-

calculated by
t =X, (10)
sl

where x is displacement along the membrane and s, is the linear speed of carriage. When
analyzing an area corresponding to time t,, material collected at t, was measured but also a
fraction of the material collected at all other times the cylindrical flue opening was under the
point on the membrane corresponding to t,. This region of potentiél overlap is X’ £ W in Fig.

29. The time resolution (8) is set by the width and shape of the flow director opening:

5. =

v (11)
Sl

where 3 is the time resolution for a circular opening and W is the half-width or radius of the
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flue. For this experiment the time resolution was 9 seconds. The width of each membrane
section (Ax) was 13 mm; therefore, the time interval represented by a filter segment (t,,) was

3 seconds.

Time during combustion when the sodium-containing species were formed (tc)
was estimated from the locations of the membrane sections, the speed of the carriage drive

mechanism, and a calculated average residence time (©) between drop and collection surface:

e =t - O . (12)

X

Residence time was calculated from the steady state heat transfer model described in
Appendix VI. For these experiments, reactor dynafnics was not the factor limiting the time
resolution of the results. The estimated residence time was 1.0 s for an average gas velocity
of 0.61 m/s at 750°C in the drop reactor. This time lag was less than 5% of the mean
duration of drop combustion; a small error compared to the uncertainty arising from spatial

overlap of the collected aerosol on the filter.

If a spark, ejected during char burning, followed the center streamline of the
exhaust gases, it would strike the membrane at x = §(tpc + Q). Due to mixing in the exhaust
flue, the éjected p‘article could strike the filter anywhe{re within the spatial range of the flue
opening (x + W). The temp'orali uncertainty of determining the origin of instantaneous
combustion events from filter analysis is therefore £ W/s,; exactly the same as the time

resolution for this geometry.
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Fume Formation Rate During Drop Combustion

The rate of sodium deposition is plotted against elapsed drop combustion time
in Fig. 30. Rate of deposition was calculated from the mass of sodium collected during each
3 second time interval (corresponding to the 12.7 mm sections of the membrane). Equation
12 was used to calculate the drop combustion time associated with each membrane section.
The horizontai bars in Fig. 30 indicate elapsed combustion stage times with the 9 second

temporal uncertainty added and subtracted from either end of each stage time ranges.

The entrainment and collection efficiency calcﬁlations in Appendix VII indicate
that submicron-sized fume should have been collected preferentially to larger aerosol on the
silver membranes. Therefore, the sodium deposition raté history shown in Fig. 30
approximately represents the rate of fume formation. This impoartant result denioﬁstrates that
maximum sodium release, leading to fume formation; occurred during the char burning and
sulfide oxidation stages of combustion. The primary inorganic pioduct during these stages
would have been Na,CO, (see Fig. 27 d) as there were no oxidized sulfur gases evolved after

the completion of devolatilization.

Observations of combustion and the results of the dynamic aerosol collection
experiments suggest that there were two potential phases of aerosol formation during
combustion at 7.5% O, at 750°C. The first phase occurred during the overlapped
devolatilization and char burning stages, possibly producing Na,CO,/Na,SO, fume and
inorganic ejecta. The second phase extended from char burning through smelt oxidation and
produced primarily sodium carbonate fume and ejecta. At high enough oxygen partial

pressure there would have been a third phase of aerosol generation resulting from sparking
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Figure 30.  Sodium deposition rate from dynamic aerosol collection; combustion in
7.5% O, at 750°C. Bars show stage times: a) drylng, b) devolatilization,
¢) char burning, d) smelt oxidation.

during smelt coalescence. This phase would have produced 10-100 pum sized particles

characterized by typical smelt composition.

Collection Efﬁcie-ncy and Material Losses in System

During the drop combustion experiments, the mass flow of gas was adjusted to
produce a desired average gas velocity at the set temperature of the quartz reaction chamber.
Gas velociiy decreaséd asa reéult of progressive cooling with displacement past the top of the
drop reactor heating elements. | As diécussed in Appendix VII, entrained material would have
fallen out of the gas stream when its settling velocity exceeded the upward gas veloc1ty It
was concluded from this analysis that particles larger than 0.1-0.2 mm in size (smelt eJecta

shedded smelt droplets) fell to the bottom of the furnace.

Particles smaller than 57-80 um could have reached the silver membrane in the
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dynamic aerosol collection experiment. The minimum particle size with sufficient inertia to
be collected by impaction on the silver membrane was estimated to be greater than 150 um.
Clearly there: would have beeﬁ no aerosol collection by impaction because the minimum
particle size necc;ssary for. inertial impaction was substantially larger than the maximum size
expected to be carried to t}le collection ﬁlane. As the exhaust flow contacted the surface of
the silver membrane, some of the submicron-sized aerosol would have been collected by
electrostatic attraction and diffils,ion.84 This conclusion is substantiated by the absence of
large particulate (d, > 1 pum) in SEM images of silver membrane samples, as shown in Fig.
28. Loss of aerosol by reentrainment after contact is unlikely for particles smaller than 10

pum because the adhesive forces that act on the particle are two orders of magnitude greater

than the removal force of a 10 m/s air current.”

~ During the aerosol collection experiments, the relative change in sodium
content from the original liquor to the smelt residue was 25-48%. It is not certain how much
of the sodium loss was in the form of fume and how much was as shed smelt droplets;
however, it is expected that only a fraction of the airborne material was collected on the
silver membrane. Material balance calculations in Appendix VII show that between 5 and 7%
of the total sodium "lost" during drop combustion could be accounted for on the silver
membranes; this can be considered an indication of the minimum collection efficiency.
Assuming 8% of the sodium present in the liquor became fume, total sodium loss for these
drops was partitioned into vaporized and shed fractions. The total amount of sodium
collected on all sections of each silver membranes accounted for 22-29% of the estimated
vaporized fraction; this value can be taken as an estimate of the maximum collection

efficiency.
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The rénge of 6-25% collection efficiency for the silver membranes does not
seem unreasohable for this experiment. There was no collection of large particles because the
minimum particle size necessary for inertial impaction was substantially larger than the
maximum expected to be carried to the collection plane. Only submicron-sized aerosol would
have been light enough to be collected by electrostatic forces or diffusion as the exhaust flow

~ contacted the silver membrane surface.

This thesis proposes that physical ejection of sodium containing material was
responsible for the sodium loss observed during drop pyrolysis. However, there was little
physical evidence of this material collected on BGF filters and silver membranes. The
experimental system was designed to collect submicron-sized material; therefore, it is
expected that most of the larger aerosol was lost within the drop furnace. Figure 31 suggests
the fate of the.ejected material; it was spattered on the walls of the quartz reactor tube. The
tube shown in Fig. 31 was replaced after approximately 360 individual drops had been
pyrolyzed or burned at various conditions. The most dense deposits, slightly above the port
elevation, were probably a result of ejecta impaction. Thermophoretic fume deposition and
sodium vapor crystallization on the unheated portion of the tube are likely causes of the light

fog near the quartz reactor exit.®

Significance of Initial Sodium Loss on Fume Formation

It is not certain if the initial sodium loss, measured during drop pyrolysis
experiments, produces submicron-sized fume in recovery furnaces. Frederick and Hupa®
suggested that sodium release during devolatilization may be the most significant source of

fume. Their justification was that the amount of sodium evolved during single drop pyrolysis
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Figure 31.  Photograph of quartz reactor tube after combustion of approximately 110
individual drops and pyrolysis of an additional 250 drops.

was an order of magnitude higher than that released during char burning and smelt oxidation
_experiments. Operational experience indicates that 10% of the sodium in the fired liquor is
captured as fume in the electrostatic precipitator; sodium losses measured during the pyrolysis
experiments were commonly greater than 10%. While this is a striking comparison, Frederick
and Hupa® did not consider the fate of the lost sodium in a global furnace envirdnment. If
the material was lost by ejection, it could be entrained and produce fume; however, it could

also deposit on other liquor drops or fall to the char bed.

SEM analysis of aerosol samples collected during this thesis indicate that little.
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submicron-sized fume was formed during the pyrolysis experiments. Only at temperature
high enough for Na,CO;, decomposition to occur were substantial quantities of fume collected.
Some 1-100 pum particles were collected on filters left in place during drop pyrolysis and
comb;lstion experiments. The appearance of the comb;.lstion chamber after numerous drop
exposures and results of entrainment calculations indicate that a significant amount of material
was lost within the drop furnace. However, calculations showed that collection efficiency for
submicron-sized aerosol was reasonably high. Results of dynamic aerosol collection on silver
membranes indicated that the majority of the sodium collected as fume was released during

the char burning and smelt oxidation stages of black liquor drop combustion.

A Third Category of Particulate

Ii has been established that fume and carryover are two distinct types of solid
material that reach the heat transfer surfaces in the recovery furnace.? Results of this thesis
suggest that a third category, ejecta, should also be considered. Furnace particulate samples
contained a significant fraction of 1-100 pum inorganic aerosol.”** This was postulated to
result from entrainment of smelt beads remaining at the end of airborne drop combustion.”
Smelt beads should be about half the initial diameter of liquor drops (0.25-2.5 mm);*

therefore, the collected particles were too small to support the stated hypothesis.

It is more likely-that the large aerosol originated as ejécta. During the early
stages of drop combustion bits of liquor and char are ejected by erumpent gases. If smelt
coalescence occurs in regions of high oxygen concentration, then numerous smelt droplets are
ejected by escaping CO,. This material has been overlooked as an important aspect of

furnace chemistry and fouling. Mill experience has shown that electrostatic precipitator catch
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from overloaded suspension-fired boilers contains a substantial amount of inorganic material

86

larger than 10 um.™ At the high gas velocities encountered within the steam generating
section of the furnace, these larger particles may deposit on boiler tubes by inertial
impaction.® Analysis of furnace dust samples from this region should verify the presence of

this intermediate-sized inorganic aerosol.
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CONCLUSIONS

Approximately 5-30% of fhe sodium present in black liquor was released
during the drying and devolatilization stages of single drop pyrolysis and gasification
experiments. The extent of this initial loss increased with increasing furnace temperature.
Exposure to an oxygen-containing atmospheré at 500°C resulted in significant particle heating
and higher sodium loss than would be expected in a reducing environment. Higher relative

~ gas velocity resulted in a substantial decrease in sodium release.

After the initial loss, continued sodium release was only measured during
pyrolysis at 900°C. A substantial amount of submicron-sized furﬁe was collected on
stationary filters during this experiment. The additional sodium loss and fume formation at
900°C resulted from Na,CO, reduction by char carbon. This continued loss was .not observed
at lower temperatures because carbon monoxide in the gas stream suppresses Na,CO,

decomposition up to 800°C."2

There was no sodium loss during pyrolysis of Ii&luor films at 750°C, yet there
was a 30% volatile yield during this experiment. The liquor film samples had approximately
eight times the surface area of the individual drops. This result and 'the effect of gas velocity |
suggest that sodium loss prior to the char burning stage of black liquor combustion is not a
evaporative process, i.e., it does not result from vaporization of a sodium species. There were
fewer results to support the hypothesis that physical transport of alkali-conta.ining material is
responsible for sodium loss during black liquor drying and devolatilization. However,
eruptions of water vapor and pyrolysis gases through the surface film of rapidly heated drops

were observed; this process would be expected to eject small black liquor and char particles.
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There was evidence of physically ejected material during all stages of drop
combustion in N, with 7.5% O, at 750°C. Much of this material deposited on the reactor
tube walls during the experiments. Within the kraft recovery furnace, the ejecta may react to
produce fume, collide with other airborne particles, fall to the char bed, or deposit on furnace

heat transfer surfaces.

Inorganic aerosols were collected during the respective stages of black liquor
drop combustion. Time resolution of the results was limited by spatial overlap of the aerosol
on the collection media. However, the measured sodium deposition history was representative
of submicron-sized fume formation from a burning drop. Results of these experiments
demonstrate that a maximum in fume formation occurred during the char burning and smelt

oxidation stages of combustion.

SEM photomicrographs showed that more submicron-sized fume was produced
during the combustion of a single drop of black liquor than during the pyrolysis of five drops
at similar furnace conditions. While initial sodium loss during devolatilization may contribute
to fume formation, these aerosol collection results suggest that it is not necessarily the most

significant source of submicron-sized fume in the recovery furnace.
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RECOMMENDATIONS FOR FUTURE WORK
MODELING SODIUM LOSS

Additional experiments are required before the process of sodium loss during
pyrolysis can be modeled. A factorial experimental design would allow quantification of the
effects of process variables. The influence of gas velocity should be evaluated at a different
“temperature to conclusively isolate the effects of heating rate from relative velocity. As
heating rate is a function of both furnace temperature and drop size, a range of controlled
drop sizes should be exposed to constant furnace conditions. A larger insertion port may be
required to' withdraw large swollen char particles from the furnace. It is well known that
solids content greatly affects liquor viscosity,” this should be the first liquor composition
variable studied. Wood species and extractives content have‘been shown to have dramatic
effects on liquor properties and swelling behavior.® It is recommended that sodium loss be
measured from two or more additional liquors, having a wide range of physical properties, for

at least one set of furnace conditions.

‘Determination of the significance of sodium release during each stage of
combustion on overall fume formation will require a global consideration of the complex
physical and chemical processes occurring within the kraft recovery furnace. This may best
be investigated by incorporating experimental results in a complex recovery fumﬁce model

and evaluating the response to specified changes in process conditions.

The relative contributions of drying and devolatilization to total sodium loss

during ,pyr(_)lAysis. remains to be determined. This could be accomplished by measuring the
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sodium loss at different solids contents for identical furnace conditions and initial drop size.
The liquor used in this thesis had a solids content of 71-73%. Forming drops from a diluted
sample (60% solids) and pelletizing 100% solids should provide a sufficient range~for

comparison to the thesis results.
IDENTIFICATION OF FUGITIVE SODIUM

Single drop pyrolysis experiments provide fundamental infoqnation about the
processes occurring during black liquor combustion. Howevér, it is possible that the large
sodium losses measured in the single drop studies may be an artifact of the experimental
technique. While the aerosol collection experiments suggest that ejection of black liquor and
char from the reacting particles contributed to the measured sodium loss, it was not possible
to close the material balance. The form(s) of the lost sodium must be conclusively identified.
The dynamic aerosol collection system can be modified to better collect submicron-sized
fume on silver membranes. Another technique must be developed to independently capture

the larger ejected material.

Collection efficiency for submicron-sized aerosol on silver membranes could be
improved by inducing flow through the membrane with a vacuum source; however, furnace
flow would have to be drastically reduced. Another option would be to establish a potential
difference between the quartz reactor tube and the collection surface, thereby charging the
aerosol and enhancing electrosta;ic aerosol collection forces. The analysis in Appendix VI
suggests that a narrow rectangular opening is necessary for accurate time resolution; the
original flow director should therefore be used in subsequent experiments. Increasing the

platform drive speed would also improve'resolution as long as it does not reduce deposit
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density to below analysis detection limits. Obtimiiatiori of these equipment parameters is

expected to improve the accuracy of the results.

One possibility for collecting the ejected material close to its point of origin
would be to encircle the liquor drop with a cyiinder of metallic foil, oriented paraliel to the

furnace gas flow. Inserting this assembly int§ thé drop furnace would allow the fume to

escape while collecting spattered material on the inside surface. SEM analysis of the foil

surface should reveal the nature of the deposits.
RECOVERY FURNACE PARTICULATE ANALYSIS

An industrial fumacé study should be directed towards sizé classifiéation of
inorganic aerosol, and determination of the role of ejecta in fouling. A multistage low
pressure cascade impactor would best be utilized to isolate the various aerosol size fractions.
Samples should be taken as close to the combustiqn zone as pbésible to minimize loss of
certain classes of aerosol. Such a study would alsb provide data for validating a
" computational model of the aerosol mechanics and chemistry within the kraft recovery

furnace.
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APPENDIX I. GLOSSARY

A general term describing a dispersion of solid or liquid particles in a gas.

Most correctly, this definition implies that particle size is small enough to form

a stable colloidal suspension.®

Black Liquor The by-product of the kraft, or sulfate, pulping process. In this

Char

Combustion

Drop

Droplet

Dust

Ejecta

Exposure

dissertation other spent pulping liquors will be specifically referred to as soda

or sulfite liquor to avoid confusion.

The porous, friable material remaining at the end of devolatilization. Black

liquor char contains carbon and finely dispersed inorganic compounds.

The process of burning fuel. When sufficient oxygen is present for complete

combustion the reaction products are H,0, CO,, and inorganic residue or ash.
A liquid entity that is on the order of 1 mm in size, e.g., a black liquor drop.

A liquid entity that is on the order of 0.1 mm in size, e.g., an ejected smelt

droplet.

“Solid particles of wid_ely variable size formed by disintegration processes.

The fine solid or liquid material pliysically ejected by erupting gases from a

burning drop of liquid fuel or a solid fuel particle.

Generic term used herein to refer to combustion or pyrolysis of a single drop

of black liquor.




Fume

Mist

Gasification

Pyrolysis

Shedding

Smelt

Smoke

Solids

Sparking

Stage

118

Submicron-sized solid particles produced by physicochemical reactions such as

combustion, sublimation, or distillation.

Droplets produced by liquid atomization or vapor condensation; the size of mist

droplets is generally considered to be less than 100 pm.

The thermal conversion of a solid or liquid fuel to a gaseous fuel of relatively
high heating value. Gasification is commonly thought of as incomplete

combustion with O,, H,0, or CO,, as the oxidizer.*

The thermal decomposition of organic material conducted in an oxidizer-free

environment that yields volatile substances and a carbonaceous solid residue.*

The loss of molten smelt droplets during char burning and smelt coalescence;

differentiated from sparking by lower velocity and downward trajectory.
The molten mixture of Na,S and Na,CO, remaining at the end of char burning.

A cloud of particles, from 5 to less than 0.1 pm in size, usually considered to

originate from combustion of carbonaceous material.
Oven dry black liquor solids or the material left at the end of drop drying.

Violent ejection of molten smelt droplets during the char burning and smelt

coalescence stages of drop combustion. Spark trajectory is random.

A characteristic event during black liquor drop combustion, namely: drying,

devolatilization, char burning, and inorganic reactions (smelt oxidation).!
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APPENDIX II. LIST OF EXPERIMENTAL EQUIPMENT

Table 5.

COMPONENT

Gas heater tube

Ceramic joining
section

Quartz drop
reactor tube

Heating elements:
gas preheater
section

Heating elemenis:
main gas heater
section

Heating elements:
drop reactor
section

Temperature
controllers (2)

Temperature control
thermocouples

External insulation

DESCRIPTION

Cast mullite tube: smgle reduced end, 2.75 in.
OD, 2.5 in. ID, 29-in. total length, cat. no.
66329.

902 Machinable ceramic rod: 4 by 12 in., cat.
no. 902-24. Section machined by GTRI
machine shop.

Custom assembly of Vitreosil® tubing: 69 mm
OD DA4XMO2 reactor tube, 7-in. long; 31.4
mm OD NCO2800 view port, 4.5-in. long; 15.6
mm OD NCO1300 insertion port, 6-in. long.

Watlow ceramic fiber heaters: semicylindrical,
3.5 in. ID, 7.5 in. OD, 6-in. heated length, high
emissivity surface coating, model no.
VS403J06S.

Watlow ceramic fiber heaters: semicylindrical,
3.5in. ID, 7.5 in. OD, 18-in. heated length,
high emissivity surface coatlng, model no.
VS403J18S.

Watlow ceramic fiber heaters: semicylindrical,
3.5 in. ID, 7.5 in. OD, 6-in. heated length, high
emissivity surface coating, custom fabrxcated to
accommodate reactor ports.

Watlow series 910 microprocessor-based PID.
auto-tuning control: 6 A @ 115 V mech. relay
output, model no. 910C-KDAO-0000

Type K, exposed junction, 1/16-in. sheath
diam., cat. no. TJ36-CAIN-116E-12.

T-12 calcium silicate pipe covering: 7.5 in. ID
by 10.5 in. OD.

- List of major components of drop furnace and aerosol collection system.

VENDOR

Coors Ceramics Co.,

* Golden, CO-

Cotronics Corp.,

" Brooklyn, NY

Thermal American Fused
Quartz Co., Montville, NJ

Ash Equipment Co.,
Bensenville, IL

- Ash Equipment Co.,

Bensenville, IL

Ash Equipment Co.,
Bensenville, IL

Ash Equipment Co.,
Bensenville, IL

Omega Engineering, Inc.,

Stamford, CT

Industrial Insulation Corp.,

Appleton, WI




Table 5 (cont.).

COMPONENT

Mass flowmeter:
Air/N, flow

Mass flowmeter:

vacuum flow

Mass flowmeter:
COICO, flow

" Aerosol ‘collection
system

Carriage drive
system

Carriage hardware

Vacuum source

BGF filters

Silver membranes

Video system
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DESCRIPTION

Hastings Mass Flowmeter: model HS-10S flow
transducer, model NALL flow monitor, 0-9.99
std. ft*/min air capacity.

Hastings Mass Flowmeter:' model STH-200K
flow transducer, model PR-4 four channel flow
monitor, 0-200 std. L/min air capacity. ‘

Hasﬁﬁgé Mass Flowmeter: modei ST-10K flow

" transducer, model PR-4 four channel flow -

monitor, 0-10 std. L/min air capacity.

Custom fabricated components: collection
medium platform; exhaust flow director;

" vacuum flow director.

_ Pacific Science 1/4 hp 90 V dc motor; Fenner

M-Trim PID digital speed control; Danfoss
VariSpeed A2000 motor controller w/ reversing
option: Red Lion proximity feedback sensor,
model ARCJ; Grove Flexaline® gearbox, 7.5:1
ratio. :

2 linear motion rail assemblies; 4 bearing
blocks; Acme lead screw, 1/4-20-1st thread;
Acme lead screw nut.

PIAB™ M125D multi-ejector pneumatically-
driven vacuum pump, ‘cat. no. PFC-M125D-1.

Whatman EPM-2000 Air Sampling Medium:
borosilicate glass fiber filters, 8 by 10-in.
sheets, Whatman cat. no. 1882 866.

Silver membrane filters: 1.2 pm pore size, 293
mm circles, cat. no. 59258.

Panasonic WV-3260 color video camera;
Panasonic AG-2400 portable VHS video
cassette recorder. : .

List of major components of drop-furnace and aerosol.collection system.

' VENDOR

Teledyne—HasEings-Raydist,
Hampton, VA

Teledyne-Hastings—Raydist,
Hampton, VA

Teledyne-Hasti’r:lgs-Ra)}dist,
Hampton, VA - -

Georgia Tech Research
Institute,,A(lanta, GA

IW. Vaugﬁn Co., Inc.,
Columbia, SC

Techno, A DSG Co.,
New Hyde Park, NY

Davis Airtech, Inc.,
Atlanta, GA

Baxter Scientific Products
Div., Stone Mountain, GA

Poretics Corp.,
Livermore, CA

Available at IPST
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" APPENDIX IIL. DROP PYROLYSIS DATA

There were over 700 individual drop pyrolysis videos recorded during the
sodium mass loss determinations. Many of the char particles produced during the
experiments were lost or damaged during extraction from the furnace. Approximately 100 of
the videos were from exploratory experiments or used to determine minimum exposure time
‘necessary to prevent drops from being extracted prior to the end of drying. A total of 409
char particles were collected for the masé loss determinations reported in the text (see

Table 3).

Table 6 contains the complete list of drop data and calculations of total liquor
solids mass and average stage times for each of thé 66 mass loss determinations. The data
are presented in chronological order. Each grouping of 4,5, or 20 drop exposures represents a
single determination. Letters in the drop identification code (a, b, c, etc.) indicate the
individual drop exposures which yielded intact char particles for a given determination.
Variation of the mean is expressed as 95% confidence limits for each grouping with three or
more observations. Drop dry solids mass ("Drop o.d. mass" in Table 6) was determined by
the amount of liquor applied to an insertion wire (weighed by difference) and the appropriate
liquor solids content. As explained in the Experimental chapter, liquor solids content was
measured periodically during the experiments. "Loss on wire" was the final mass of an
insertion wire (after char removal) minus its initial mass (before liquor application). The
Total Mass Loss section of the Results and Discussion explains why this quantity was

determined for the entire group of wires in later experiments (DPT5.5-DPT5.41 in Table 6).

Stage times and total exposure times, given in Table 6, were determined from
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the elapsed time indicated on the video record of each individual drop exposure. The first
appearance of the drop in the field of view was used to denote the start of drying. The first
sign of swelling indicated the onset of devolatilization. The maximum swollen volume of the
char particle was taken as the end‘of devolatilization. Complete disappearance of the particle

from the field of view denoted the end of exposure. Note that for many of the drops

extracted at minimum exposure time the drying or devolatilization stages were not complete.




Table 6. Drop mass and stage time data for individual mass loss determinations.

Furnace
conditions

600 C
0.61 m/s
5% CO

600 C
-0.61 m/s
5% CO

600 C
0.61 m/s
5% CO

900 C
0.61 m/s
5% CO

Drop
no.

DPT2.6
DPT2.6
DPT2.6
DPT2.6
DPT2.6

sum:
av.:
95% c.l..

DPT2.7
DPT2.7
DPT2.7
DPT2.7
DPT2.7

sum:
av.
95% c.l..

DPT2.8
DPT2.8
DPT2.8
DPT2.8
DPT2.8

sum:
av..
95% c.l..

DPT2.10
DPT2.10

-DPT2.10

DPT2.10
DPT2.10

sum:
av.:
95% c.l..

o Qo o (4 20K = N o BN = i -} - oo o e

o OO D

Mass
drop,
mg

4.4
8.9
35
4.0
8.4

29.2
5.8
3.2

6.5
6.7
74
13.4
10.9

44.9
9.0
3.8

58
3.1
58
5.0
4.4

24.1
4.8
1.4

44
22
4.6
4.1
24

17.7
35
1.4
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Drop o.d.
mass,
mg

3.2
6.4
25
29
6.0

21.0
4.2
23

4.7
4.8
53
9.6
7.8

323
6.5
2.7

42
2.2
4.2
3.6
3.2

17.4
3.5
1.0

3.2
1.6
33
3.0
1.7

12.9
2.6
1.0

Loss
on wire,
mg

1.9
-1.5
0.8
1.8
0.6

3.6
0.7
1.7

14
0.3
1.2
1.8

-1.6

3.1
- 0.6
1.7

0.8
1.1

1.5
1.1

3.5
0.7
1.2

Drying

time,
S

3.1
2.6
2.8

28
0.6

3.0
3.1
34
4.4
3.8

35
0.7

2.1

3.0
27

2.6
1.1

0.6
0.4
0.9
0.9
0.6

0.7
0.3

Devol.

time,
S

2.0
4.5
23
2.8
4.8

33
1.6

3.9
3.2
3.0
3.7
3.2

34
0.5

13
1.1
1.5
1.2
1.2

1.3
0.2

Exposure
time,
s

114
104
122
124

11.6
14

29.7
29.7
30.1
29.9
30.0

29.9
0.2

35
33
3.2
4.1
3.7

3.6
0.4

9.6
9.3
9.7
9.9
10.6

9.8
0.6
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.-

11
13

1.5

0.9

13

1.2
0.3

-1.3°
1.3

1.2

1.0
1.0

12

02

33
24
1.5
2.1
2.1

23
0.8

3.1
1.7
22
24
1.6

_ Mass Drop o.d. 'Loss Drying Devol.
Fumace Drop- drop; mass, on wire, time, time,
conditions no. mg mg mg s - S -
900C DPT2.11 f 2.1 1.5 -12 0.6
0.61m/s DPT2.11 h ° 21 . LS = 1.5 04
5%CO DPT2.11 i - 22 : 1.6 -1.0 0.6
DPT2.11 1 2.6 1.9 0.0 1.1
DPT2.11 q 7.0 5.1 B 0.6
sum: 16.0 - 11.8 -1.8
av.: 32 24 -04 0.7
95%c.1.: 2.7 1.9 14 -~ 03
900C DPT2.12 a 49 36  -09 12
0.6l m/s DPT2.12 b 45 33 -0.5 1.2
5% CO DPT2.12 ¢ 3.9 2.9 03 0.5
DPT2.12 d 2.9 2.1 -1.2 0.7
DPT2.12 f 2.6 1.9 0.1 0.6
sum: 18.8 13.8 2.2
av.: 38 2.8 04 0.8
95% c.l.: 1.2 0.9 08 - 04
600C DPT2.13 a 53 3.9 0.9 .32
0.61m/s DPT2.13 b 4.2 3.1 2.5 35
5% CO DPT2.13 ¢ 33 2.5 0.7 33
DPT2.13 d 3.6 27 1.9 3.6
DPT2.13 e 25 19 03 3.0
sum: 18.9 14.0 6.3
av.: 3.8 28 1.3 33
95% c.l.: 1.3 1.0 1.1 03
600C DPT2.14 a 4.5 33 -1.9 34
0.61m/s DPT2.14 b 1.9 14 -1.1 1.8
5% CO DPT2.14 ¢ 44 33 -0.1 3.0
DPT2.14 d 3.1 23 -1.6 2.7
DPT2.14 e 2.9 2.2 0.7 3.0
sum: 16.8 12.5 -4.0
av.: 34 25 -0.8 28

95%c.l.: 1.4 1.0 1.3 0.7

22
0.8

Exposure
time, -

S‘

30.0

30.3

29.8
30.1
30.5

30.1
0.3

3.0
34
3.5
33
29

32 .
0.3

9.7
9.4
9.6
10.0
9.9

9.7
03

30.0
29.6

300

30.0 .
29.9

29.9
0.2
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

0.8
1.3
1.7
1.1
0.8

1.8
1.4
14
0.9
1.2

1.3
0.4

12
0.7
0.9
0.8
1.0

o Mass Drop o.d. Loss Drying Devol.
Furnace Drop drop, mass, on wire, time, time,
conditions no. mg mg mg S S
600C DPT2.15 a 3.6 - 2.7 29
0.61m/s DPT2.15 b 3.6 2.7 2.8
5% CO DPT2.15 c 2.7 20 2.7
DPT2.15 d 7.0 52
DPT2.15 e . 3.2 24
sum: 20.1 14.9 -
av.: 4.0 , 3.0 - 2.8
95% c.l.: 2.1 1.6 - 0.2
900C DPT2.19 a 2.6 20 -0.9 0.6
0.61m/s DPT2.19 b 5.4 4.1 1.6 0.8
- 5% CO DPT2.19 ¢ 8.9 6.7 -0.1 0.9
DPT2.19 d 2.8 21 0.4 0.6
DPT2.19 e 5.6 4.2 -0.1 0.9
sum: 253 19.0 0.9
av.: 5.1 3.8 0.2 0.8
95% c.1.: 3.2 24 1.1 0.2
900C DPT2.20 a 6.1 4.6 1.3 0.8
0.61m/s DPT2.20 b 6.7 5.0 -1.8 0.8
5% CO DPT2.20 ¢ 49 . 3.7 1.8 0.9
DPT2.20 d 20 1.5 -1.5 0.5
DPT2.20 e 3.1 23 2.2 0.7
sum: 22.8 171 2.0
- av. 4.6 34 0.4 0.7
95% c.1.: 25 1.8 24 0.2
900C DPT223 a - 3.8 . 29 -0.5 1.0
0.61m/s DPT2.23 h 1.6 1.2 -0.8 0.6
5% CO DPT2.23 j 2.7 2.0 -0.7 0.9
DPT2.23 k 1.9 14 -0.5 09,
DPT2.23 1 32 24 -0.4
sum: 13.2 99 . 2.9
av.: 2.6 2.0 -0.6 0.9

95% c.L.: 1.1 0.8 0.2 0.3

0.9
0.2

Exposure
time,

S

33
3.0
3.2
2.9
34

32
03

10.2
10.2
10.3
10.1
10.5

10.3
0.2

3.1
34
35
3.0
3.1

32
0.3

- 30.2

29.8
30.4
30.4

30.2
0.5



Table 6 (cont.).
Furnace Drop
conditions no.

500C DPT3.3
0.61 m/s DPT3.3
5% O2 DPT3.3
DPT3.3
DPT3.3

sum:

av.:

95% c.l.:
500C DPT34
0.61 m/s DPT3.4
5% 02 DPT34
DPT3.4
DPT3.4

sum:

av.:

95%c.l.:
500C DPT3.5
0.61 m/s DPT3.5
5% O2 DPT3.5
DPT3.5
DPT3.5

sum:

av.:

95% c.l..
500C DPT3.6
0.61 m/s DPT3.6
5% O2 DPT3.6
DPT3.6
DPT3.6

sum:

av.:

95% c.1.:

—_—p . QW o Q0o e =@ @ O

-gQ O QP

Mass
drop,
mg

43
38
5.0
3.9
1.6

18.6
3.7
1.6

8.0
8.8
6.4
10.0
4.2

374
7.5
2.8

2.8
4.5
3.8
35
7.2

21.8
4.4
2.1

4.7
4.2
4.7
7.5
44

25.5
5.1
1.7
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Drop o.d.
mass,
mg

3.1
2.7
3.6
2.8
1.2

134
2.7
1.1

57
6.3
4.6
7.1
3.0

26.7
5.3
2.0

2.0
32
2.7
25
5.1

15.5
3.1
1.5

3.4

3.0

34
53
3.1

18.2-

3.6
1.2

Loss
on wire,
mg

0.2
-0.2
1.1
-0.8
-1.8

-1.5.
-0.3 -

1.3

14
0.9
0.8
-1.3
-0.1

1.7
03
1.3

-1.1
-0.3
-1.0
-1.1

03

3.2
0.6
0.8

Drying

_ time,
S

5.8
5.8
5.1
5.0
45

5.2
0.7

52
6.2
5.8
6.0
73

6.1
1.0

6.2
5.7
6.3
7.0
5.7

6.2
0.7

Drop mass and stage time data for individual mass loss determinations.

Devol.
time,

S

3.2
21
2.3
2.8
1.6

24
0.8

2.7

26.

3.2
2.6
4.0

3.0
0.7

2.1
2.6
24
4.1
29

2.8
1.0

Exposure
time,
S

15.5
15.0
"~ 15.7
15.5
14.9

15.3
0.4

" 72
6.9
6.9
6.9
6.9

7.0
02

30.0
29.7
29.9
304
30.1

30.0
0.3

14.7
15.2
14.9
14.7
15.8

15.1
0.6
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Table 6 (cont.). Drop mass and stage time déta for individual mass loss determinations.

Mass Drop o.d. Loss
Furnace Drop drop, mass, on wire,
conditions no. mg mg mg
500C DPT3.7 a 3.9 2.8
0.61m/s DPT3.7 b 3.8 2.7
5% O2 DPT3.7 ¢ 4.1 2.9
DPT3.7 d 6.7 4.8
DPT3.7 e 4.4 3.1
sum: 22.9 16.3 -
av.: 4.6 33 -
95% c.l.. 1.5 1.1 -
500C DPT39 b 3.5 2.5 -1.0
0.61m/s DPT3.9 d 4.8 3.4 0.1
5% O2 DPT39 f 4.7 34 -0.4
DPT39 g 5.2 3.7 -0.6
DPT3.9 j 2.4 1.7 04
sum: 20.6 14.8 -1.5
av.: 4.1 3.0 03 .
95% c.l.: 1.4 1.0 0.7
900C DPT3.11 a . 4.6 33. - 0.1
0.61m/s DPT3.11 b 6.9 5.0 0.7
5% CO DPT3.11 ¢ 49 3.5 -0.8
DPT3.11 d 5.1 3.7 0.5
DPT3.11 e 3.9 2.8 -0.6
sum: 254 18.2 -0.1
av.: 5.1 3.6 -0.0
95% c.l. 1.4 1.0 0.8
900C DPT3.12 d 4.6 33 -0.2
0.61m/s DPT3.12 e 5.8 4.2 -1.2
5% CO DPT3.12 f 5.0 3.6 22
DPT3.12 g 4.1 3.0 -1.4
DPT3.12 h 5.9 43 14 .
sum: 254 18.3 -3.6
av.: 5.1 - 3.7 -0.7

95%cl: . 1.0 0.7 . 1.7

Drying

time,
S

6.0
59

6.0
0.6

5.7
5.7
6.4
4.4
5.7

56

0.9

1.0
1.0
12
1.1

1.1

0.2

1.4
1.3
1.0
1.2
0.7

Devol.

time,
S

2.7
33
2.6
4.5

21

0.7
1.5
0.8
0.7
1.4

1.0
0.5

1.6
13
14

0.8
1.8

14
0.5

Exposure

S

~ time,

72
7.2
6.7
7.0
6.9

7.0
0.3

- 30.1

30.3
30.1
30.3
299

30.1
0.2

20.2
20.1
20.2
20.4
20.2

20.2

0.1

20.1
20.6
204
204
19.8

203
04



Table 6 (cont.).

Fumace
conditions

900 C
0.61 m/s
5% CO

900 C
0.61 m/s
5% CO

600 C
0.61 m/s
5% CO

Drop
no.

DPT3.13
DPT3.13
DPT3.13
DPT3.13
DPT3.13

sum:
av.:
95%c.1..

DPT3.14
DPT3.14
DPT3.14
DPT3.14
DPT3.14

sum:
av.:
95% c.l.:

DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14
DPT4.14

sum:
av.:
95% c.l.:

[¢ 2N =N o I = i -}

| o oo o

N ¥ £ < m 08383 —~XN—wr=T0@ A0 oM

Mass
drop,
mg

6.2
59
9.1
5.1
4.7

31.0
6.2
21

4.2
52
8:1
4.7
32

254
5.1
23

6.0
7.0
7.0
53
5.6
5.6
7.0
6.3
6.9
- 55
52
6.9
53
5.6
54
6.6
6.2
6.4

6.3

6.6

122.7
6.1
0.3
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Drop o.d.
mass,

mg

4.5
43
6.6
3.7
34

224
4.5
1.6

3.0
3.8
5.8
3.4
23

18.3
37
1.7
43
5.0
5.0
3.8
4.0
40 .
5.0
45
4.9
3.9
3.7
4.9
3.8
4.0
3.9
4.7
4.4
4.6
4.5
4.7

87.9-
44
0.2

Loss
on wire,

mg

0.2
-1.2
1.7
-1.1
14

1.0
0.2
1.7

1.6

2.0
-0.2
-1.5
-1.7

-3.8
-0.8
1.8

Drying

time,
S

1.2
1.1
1.5
13
1.2

13
0.2

1.1
1.5
1.3
1.1
1.1

1.2
0.2

42
4.6
4.5
4.8
4.3
4.5
4.5
5.0
4.2

3.1
5.1
4.1
4.1
4.4
43
4.1
4.7
4.9
4.9

4.4
0.2

Drop mass and stage time.data for individual mass loss determinations.

Devol.

time,
S

1.2
13
0.9
13
14

1.2
0.2

0.8
1.2
14
0.9
1.1

3.1
2.8
34
22
2.7
2.1
3.7
2.7
3.1
2.8
3.5
3.5
33
2.6
3.1
33
31
29
2.6
3.0

3.0
0.2

Exposure
time,

S

15.2
14.9
14.7
15.3
154

15.1
0.4

152
15.1
153
15.0
15.3

15.2
0.2

30.1
30.2
303
303
303
30.2.
30.1
29.8
30.3

30.3
30.0
30.3
30.5
30.1
30.1
29.9
30.0
30.1
30.1

30.2
0.1
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

Furnace Drop
conditions ~ no.

600C DPT4.15
0.61m/s DPT4.15
5% CO DPT4.15
DPT4.15

DPT4.15

DPT4.15
DPT4.15
DPT4.15
DPT4.15
DPT4.15
DPT4.15
DPT4.15

DPT4.15 .

DPT4.15
DPT4.15
DPT4.15
DPT4.15
DPT4.15
DPT4.15
DPT4.15

sum:
av.:
95% c.l.:

600C DPT4.16
0.61m/s DPT4.16
5% CO DPT4.16
DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

DPT4.16

sum:
av..
— DKo A

“EfE<<cH,003EH Fe—ZTo Ao

<€E ~ 0TV OF —~KR— =0 -0 QA0 o

Mass
drop,
mg

6.0
5.5
50
6.0
55
5.5
59

5.1

59
59
6.8
5.6
7.0
59
6.8
5.7
5.0
6.3
5.2
6.1

116.7
58
03

5.2
57
6.0
5.8
6.2
55
52
5.8
6.4
6.5
59
6.4
4.1
5.5
5.1
54
5.6
6.8
4.8
54

1133
- 5.7

n2

Drop o.d.
mass,

mg

43
39
3.6
43
3.9
3.9
4.2
3.7
42
4.2
49
40
5.0
4.2
49
4.1
3.6
4.5
3.7
44

83.6
4.2
0.2

3.7
4.1
43
4.2
44
39
3.7
42
4.6
4.7
4.2
4.6
29
3.9
3.7
39
40
49
3.4
3.9

81.1

4.1
n-?

. Loss
on wire,
mg

Drying

time,
S

4.5
44
44
4.6
44
3.7
4.7
4.6
4.5

40

5.2
4.5
4.8
44

42
44
4.7

4.5
0.2

Devol.

time,
)

31
2.6
2.6
3.0
3.0
3.6
28
2.6
3.0

3.7
3.2
34
3.0
27
33
2.0
35
2.8
2.1

29
0.2

Exposure
time,

S

10.3
104
104
10.1
10.2
100
10.1
10.2
10.2
10.7

9.9
104
10.5
11.1
10.1

10.0
10.5
104

10.3
0.1

33
3.2
3.2

33
3.6
32

3.2
36
3.1

35
33
3.5
35
3.2
3.2
3.7
34

34
0.1
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

Furnace
conditions

600 C
0.61 m/s
5% CO

600 C
0.61 m/s
5% CO

Drop
no.

DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17
DPT4.17

sum:
av.:
95% c.l.:

DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18
DPT4.18

sum:

av.:
okoL ~1 -

fE e~ 0TWOoO3E —~K—T0@—~A0TN

¥ E < E ~nu 0088 =K —~T-0Qaococ

Mass
drop,
mg

52
54
5.0
5.0
6.3
5.0
5.0
59
6.6
53
6.6
6.0
53
6.0
53
5.1
6.6
59
59
5.8

113.2
57
0.3

5.3
5.1
6.0
6.9
5.7
6.6
5.0
54
6.3
5.7
6.0
5.3
53
54
5.0
6.0
5.6
6.5
6.1
54

114.6

57
na

Drop o.d.
mass,

mg

3.7
39
3.6
3.6
4.5
3.6
3.6
4.2
4.7
3.8
47
43
38
43
38
37
4.7

42

4.2
4.2

814
4.1
0.2

3.8
3.7
43
5.0
4.1
47
3.6
39
4.5
4.1
43
38
38
39

-3.6

43
4.0
4.7
44
39

824

4.1
no

Loss
on wire,
mg

Drying

time,
s

39
39
33

40
3.6

- 3.8

3.7
44
3.7
3.1
40
34
38
32

34

34
35
38
3.7

3.7
0.2

34
33
3.6
34
32
31
33
30
3.6
34
3.9
37
3.5
34
3.0
4.0

3.7

34

3.8

3.5
n

Devol.

time,
s

26 .

2.2
2.1

21
20

1.8
23
1.9
2.6
3.0
3.2
27
2.0
1.7
20

3.2

23
24
23

23
0.2

22
32
1.6
34
24
24
29
2.8
1.8
2.1
22
2.5
1.7
2.9
3.0
1.8
1.6
34
32
24

25
n3

Exposure
time,

]

29.9
30.1

: 303

30.0
30.1
30.0
30.1
30.1
30.2
30.0
299
30.0
30.1
29.9
30.1
30.1
30.0
30.0
29.8
30.0

30.0
0.1

10.1
10.0

9.8
10.2
10.1
10.0
10.2
10.3
10.2
10.3
10.0
10.0
10.3
10.1

9.9
10.2

10.4
100
10.1

10.1
0.1




Table 6 (cont.).

Furnace
conditions

600 C
0.61 m/s
5% CO

600 C
0.61 m/s
5% CO

600 C
0.61 m/s
5% CO

Drop
no.

DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19
DPT4.19

sum:
av.:
95% c.l..

DPT4.21
DPT4.21
DPT4.21
DPT4.21
DPT4.21

sum:
av.:
95% c.1..

DPT4.22
DPT4.22
DPT4.22
DPT4.22
DPT4.22

sum:
av.:
95% c.l..

"~ HO0T O3 H RS TR0 80 O

Qo oo

o Qa0 o

Mass
drop,
mg

7.0
5.0
5.8
59
5.0
6.5
54
6.8
6.2
5.1
6.8
6.2
5.7
5.8
6.7
6.8
6.0
7.0
6.8
5.8

122.3
6.1
0.3

6.3
6.0
6.9
5.5
6.6

313
6.3
0.7

4.3
6.7
6.6
6.0
6.4

30.0
6.0
1.2

131

Drop o.d.
mass,

mg

5.0
3.6
4.2
4.2
3.6
4.7
3.9
4.9
4.5
3.7
49
45
4.1
42
4.8
4.9
43
50
4.9
4.2

87.9
44
0.2

4.6
4.4
5.0
4.0
4.8

22.7
4.5
0.5

3.1
49
4.8
44 .
4.6

21.8
4.4
0.9

Loss
on wire,

mg

1.4
-0.1
1.6
0.6
14

4.9
1.0
0.9

0.7
1.2

1.6 .

1.0

3.4
0.7
13

Drying

time,
S

33

33

3.1

32
4.0

34
04

31
3.9
3.9
3.1
3.4

35
0.5

Drop mass and stage time data for individual mass loss determinations.

Devol.

time,
S

22

2.7
32

23

22

2.5

0.5

1.6
2.5
24

23

2.8

23
0.6

Exposure
. time,

S

3.0
3.1
3.0
3.0
33
3.0
29
3.2
32
2.8
3.1
3.1
29
3.0
29
29
33
32
29
3.0

3.0
0.1

104
10.0
10.1
10.1
10.1

10.1
0.2

303
30.0
299
29.9
299

30.0
0.2
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

2.0

25

23
32

2.7
2.1
2.0
24

2.1

23
0.4

2.1
2.5
24
23
14

2.1
0.5

: Mass Drop o.d. Loss Drying Devol.
Furnace Drop drop, mass, on wire, time, time,
conditions no. mg mg mg °s S

600C DPT4.23 a 54 4.0 3.1
0.61m/s DPT4.23 b 6.8 50 - 3.6
5% CO DPT4.23 f 5.3 39 3.1
DPT423 g 39 2.9 2.9
DPT4.23 h 6.9 5.1 3.4

sum: 28.3 20.7 -
av.: 5.7 4.1 - 3.2
95% c.l.: 1.5 1.1 - 0.3
“600C DPT424 b 59 43 04 33
‘0.61m/s DPT4.24 d 6.0 44 2.5 3.7
5% CO DPT4.24 e 6.5 4.8 1.1 4.0
DPT4.24 f 6.2 45 - 0.3 3.7
DPT4.24 g 6.5 4.8 -1.0 3.0

sum: 31.1 22.8 33
av.: 6.2 4.6 0.7 35
95% c.l.: 0.3 0.3 1.6 0.5
600C DPT4.25 a 5.7 42 -0.9 32
0.61m/s DPT4.25 b 5.4 4.0 0.7 2.8
5% CO DPT425 ¢ 5.8 4.3 -1.6 3.6
DPT4.25 d 53 3.9 0.7 3.0
DPT4.25 e 6.4 4.7 : 13 4.1

sum: 28.6 21.0 0.2
av.: 5.7 42 0.0 3.3
95%c.l.: 0.5 0.4 1.5 0.6
600C DPT4.26 d 5.9 4.3 3.7
0.61m/s DPT4.26 e 5.6 4.1 34
5% CO DPT4.26 f 5.1 3.7 3.5
DPT4.26 g 6.7 49 32
DPT4.26 i 7.0 5.1 3.5

sum: 303 22.2 -
av.: 6.1 44 - 35
95% c.l.. ‘ 1.0 0.7 - 0.2

Exposure
time,

5.5
54
5.3
5.0
6.2

55
0.6

103
10.1
103
103
10.4

10.3
0.1

30.1
29.9
30.1
29.9
30.2

30.0
0.2

53
52
5.1
5.0
52

52
0.1




Table 6 (cont.).
Furnace Drop
conditions no.

750C  DPTS.7
0.61 m/s DPT5.7
5% CO DPTS.7
‘ -DPTS5.7
“DPTS.7

sum:

av.:

95% c.1.:
750 C DPTS.8
0.61 m/s -DPTS.8
5% CO DPTS.8
DPT5.8

sum:

av.:

95% c.l.:
750C DPT5.9
0.61 m/s DPTS5.9
5% CO DPTS5.9
DPT5.9
DPTS.9

sum;

av.:

95% c.l.:

750 C  DPTS5.10

0.61 m/s DPTS.10

5% CO DPTS5.10

DPT5.10

DPTS5.10

sum:

av.:
95%c.l.

o QA0 oW o a0 W o Qo o

o Qa0 oW

Mass
drop,
mg

4.0
52
5.0
5.0
4.7

239
4.8
0.6

52
43
4.3
4.9

18.7
4.7
0.7

4.7
4.9
4.2
4.5
4.8

23.1
4.6
0.3

5.1
5.0
4.7
54
4.3

245
4.9
0.5

133

"Drop o.d.

mass,

mg

2.8
3.7
35
3.5
33

16.8
34
0.4

3.7
3.0
3.0
34

13.1
33
0.5

33
34
29
32
34

16.2

32

0.2

3.6
3.5
33
3.8
3.0

17.2
3.4
04

Loss

on wire,

mg

04

03

0.1

0.3

time,

- S

Drying

1.6
1.8
1.9
1.7
1.9

1.8
0.2

2.2
1.6
1.9
1.9

1.9
04

1.7
2.0
1.9
1.7
20

1.9
0.2

22
20
1.9
2.0
L5

1.9
03

Drop mass and stage time data for individual mass loss determinations.

time,
S

Devol.

1.7
1.8
1.3
1.1
1.5

1.5
0.4
0.8
1.6

1.1
1.0

1.1

0.5

0.9

1.0

1.0
0.6

1.7

1.1

1.4
14
13

1.4
0.3

Exposure

time,

S

10.0
10.1

9.9
10.2
10.3

10.1
0.2

29.9
30.0
299
30.1

30.0
0.2

31
3.0
3.1
3.0
3.0

3.0
0.1

9.8
10.1
9.9
9.9
9.8

9.9
0.2



Table 6 (cont.).
Furnace Drop
conditions no.

750C  DPTS.11
0.61 m/s DPT5.11
5% CO DPTS.11
DPTS5.11
DPTS.11
sum:
av.:
95% c.l.:
750C  DPTS.12
0.61 m/s DPTS5.12
5% CO DPTS.12
DPT5.12
DPTS5.12
sum;
av.:
95% c.l.:
750 C  DPTS.13
0.61 m/s DPT5.13
5% CO DPTS.13
DPT5.13
DPTS.13
sum:
av.:
95%c.l.:
750C DPTS.14
0.61 m/s DPT5.14
5% CO DPTS5.14
DPTS5.14
DPTS5.14
sum:
av.:
95% c.l.:

[ 20 = W e R« i -] o Qa0 o e o Qa0 o

O Q0 o

Mass Drop o.d. Loss
drop, mass, on wire,
mg mg mg

54 3.8
5.5 39
5.2 3.7
44 3.1
5.1 3.6

25.6 18.1 0.1
5.1 3.6 -
0.5 0.4 -
53 3.8
4.7 33
4.3 3.0
53 3.8
5.1 3.6

247 17.5 0.4
4.9 35 -
0.5 0.4 -
53 38
4.8 34
4.7 33
4.8 34
4.8 34

244 17.4 0.2
4.9 3.5 -
03 0.2 -
4.5 32
4.6 33
5.1 3.6
4.6 33
52 3.7

24.0 17.1 0.5
4.8 34 -
04 03 -

134

Drop mass and stage time data for individual mass loss determinations.

Drying Devol.

_time, time,
8 S.

2.1
1.9.
20
1.7
2.2

20
0.2

22
2.1
1.8
2.1
22

2.1
0.2

1.7
2.0
19
2.0
2.0

1.9
0.2

1.9
2.0
2.0
2.0
2.1

2.0
0.1

1.0

1.0

1.2

1.7
1.0

1.2

. 04

08 .

1.2

1.0
2.5

1.5
L5
1.0
13
1.3

1.3
03

1.5
12
14
1.0
14

13
0.2

Exposure
time,

30.1
30.0
.30.0
299
30.1

30.0
0.1

31
3.4
3.1

3.0

3.0

3.1
0.2

10.0
10.0
10.2
10.2
10.2

10.1
0.1

300
299
20.0
29.8
30.0

279
5.5




Table 6 (cont.).
Furnace Drop
conditions no.

750C DPTS.15
0.61 m/s DPTS5.15
5% CO DPTS.15
DPT5.15
DPT5.15
sum:
av.:
95%c.l.:
750 C  DPTS5.16
1.83 m/s DPTS.16
5% CO DPTS.16
DPT5.16
sum:
av.:
95% c.l.
750C DPTS.17
1.83 m/s DPTS.17
5% CO DPTS5.17
DPTS5.17
DPTS5.17
sum:
av.:
95% c.l.:
750 C  DPTS5.19
1.83 m/s DPTS.19
. 5% CO DPTS.19
DPTS5.19
sum:
av.:

95% c.1..

o a0 o

[¢ 2 =T o o 2 -}

o Qo

o ao o

Mas

S

drop,

mg

5.4
4.8
53
4.6
5.2

253
5.1
04

4.7
5.0
52
4.9

19.8
5.0
0.3

54
4.8
4.9
4.7
52

25.0
5.0
04

52
5.1
5.1
5.0

20.4
5.1
0.1

135

Drop o.d.
mass,

mg

3.8
3.4
3.8
33
3.7

18.0
3.6
0.3

33
3.6
3.7
35

14.1
35
0.2

38
34
35
33
3.7

17.8
3.6
0.3

3.7
3.6
3.6
3.6

14.5
3.6
0.1

Loss
on wire,

mg

-0.5

0.0

0.0

Drying

time,
s

1.9
2.1
2.1
20
22

2.1
0.1

1.7
20
1.9
1.9

1.9

0.2

1.9
1.9
1.8
1.8
1.9

1.9

0.1

2.0
20
1.9
2.1

20

0.1

Drop mass and stage time data for individual mass loss determinations.

Devol.

time,
S

1.1

- 1.0

1.1
0.6

1.3
1.3
1.2
13

1.3
0.1

1.1
0.9
1.0
1.2
1.2

1.1
0.2

Exposure
time,

S-

33
3.5
29
3.2
3.0

3.2
0.3

9.9
10.0
10.1
10.1

10.0
0.2

30.1
30.0
30.2
29.8
30.0

30.0
0.2

32
3.1
3.1
3.1

31
0.1



Table 6 (cont.).
Furnace Drop
conditions no.

750C DPT5.20
1.83m/s DPT5.20
5% CO DPT5.20
DPT5.20
DPTS5.20
sum:
av.:
95%c.l.:
750C  DPT5.21
1.83m/s DPT5.21
5% CO DPT5.21
‘DPT5.21
DPTS.21
sum:
av.:
95%c.l.
750C DPT5.22
1.83 m/s DPT5.22
5% CO DPT5.22
" DPT5.22
DPT5.22
sum:
av.:
95% c.1..
750 C DPTS5.23
1.83m/s DPT5.23
5% CO DPT5.23
DPT5.23
DPT5.23
sum:
av.:
95%c.l..

o Qo g e o Qa0 o e o Q0 o

o Qa6 o e

Mass
drop,
mg

5.1
52
4.5
5.5
4.8

25.1
50
0.5

54
4.6
4.9
52

4.8

249
5.0
04

4.7
4.8
50
5.6
5.1

25.2
5.0
04

4.6
53
53
5.1
5.0

253
5.1
04
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Drop o.d.
mass,

3.6
3.6
3.2
3.9
34

17.6

35
0.3

3.8
32
3.4
3.6
34

17.5
3.5
0.3

33
3.4
3.5
3.9
3.6

17.7
3.5
0.3

32
3.7
3.7
3.6
3.5

17.7
35
03

Loss
on wire,

038

0.1

Drop mass and stage time data for individual mass loss determinations.

Drying

1.9
2.0
1.8
24
2.1

2.0
0.3

23
1.8
1.4
20
1.7

1.8
04

1.9
2.0
1.7
1.9
1.8

1.9
0.1

1.9

2.0

1.9
2.0
2.1

2.0
0.1

1.7

1.2
1.8

1.3
12

14
04

1.7
1.5
20
1.6
1.7

1.7
0.2

1.5
0.9
1.5
1.5
12

13
03

Exposure
time,

10.2

9.9
10.0
10.2
10.2

10.1
0.2

30.2
300
29.6
30.4
30.0

30.0
0.4

29
32
3.1
29
32

3.1
0.2

10.2
10.1
10.0
9.9
9.9

-10.0

0.2




Table 6 (cont.).

Furnace
conditions

750 C
1.83 m/s
5% CO

750 C
1.83 m/s
‘5% CO

600 C
0.61 m/s
20% CO2

5% CO

600 C
0.61 m/s
20% COa2

5% CO

Drop
no.

DPT5.24
DPT5.24
DPT5.24
DPT5.24

sum:
av.:

95%c.l.

DPTS5.25

DPT5.25
DPT5.25
DPT5.25
DPTS5.25

sum:
av.:

95% c.l.

DPT5.26
DPT5.26
DPT5.26
DPT5.26

sum:
av.:

95% c.1.:

DPT5.28
DPT5.28
DPT5.28
DPT5.28

sum:
av.:
95%c.l.:

® Ao o a0 o o oo

o Qoo

Mas

S

drop,

mg

44
4.9
4.7
5.6

19.6
4.9
0.8

5.3
4.5
44
4.8
5.1

24.1
4.8
0.5

53
4.9
5.1
4.6

19.9
5.0
0.5

3.1
4.4
4.6
4.6

18.7
4.7
0.5
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Drop o.d.
mass,

mg

3.1
34
33
3.9

13.7
34
0.6

3.7
3.2
3.1
34
3.6

17.0
3.4
0.3

3.7
3.5
3.6
32

14.0
3.5
0.3

3.6
3.1
33
33

133
33
03

Loss
on wire,

mg

0.8

Drying

time,
S

1.5
1.7
1.7
2.1

1.8
04

2.0
1.7
1.7
1.8
1.8

1.8
0.2

29
2.9
29
2.6

2.8
0.2

32
2.6
3.1
2.5

29
0.6

Drop mass and stage time data for individual mass loss determinations.

Devol.

time,
S

1.0
14
1.1
1.0

1.0

29
22
1.9
2.6

1.9
1.4

2.5
22
2.6
24

24
0.3

Exposure
time,

S

30.2
29.8
304
30.3

30.2
0.4

29
33
2.7
3.1
29

3.0
0.3

10.7

9.7
10.0
10.0

10.1
0.7

19.8
20.0
20.3
19.9

20.0
03
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

Furnace
conditions

600 C
0.61 m/s
20% CO2

5% CO

600 C
0.61 m/s
20% CO2

5% CO

600 C
0.61 m/s
20% CO2

5% CO

600 C
0.61 m/s
20% CO2

5% CO

Drop
no.

DPTS.29
DPT5.29
DPTS5.29
DPTS.29
DPTS.29

sum:
av.:
95% c.l.:

DPT5.30
DPT5.30
DPTS5.30
DPTS5.30
DPTS.30

sum:
av.:
95% c.l.:

DPT5.31
DPTS5.31
DPTS5.31
DPT5.31
DPT5.31

sum:
av.:
95% c.L..

DPTS.32
DPTS5.32
DPT5.32
DPT5.32

sum:
av.:
95% c.l..

o a0 o e o Qo6 o o QA6 o e

o oo e

Mass
drop,
mg

48
52
4.5
49
4.6

24.0
4.8
0.3

4.5
5.1
49
42
4.5

23.2
4.6
0.4

4.6
52
5.0
4.7
5.1

24.6
4.9
0.3

4.7
5.1
5.1
49

19.8
5.0
03

Drop o.d.
mass,

mg

3.4
3.7
3.2
3.5
33

17.0
34
0.2

3.2
3.6
3.5
3.0
32

16.4
33
0.3

3.3
3.7
35
3.3
3.6

17.4
35
0.2

33
3.6
3.6
3.5

14.0
3.5
0.2

Loss
on wire,

mg

0.7

-1.0

Drying
_ time, time,
S S

2.8
3.5
2.8
28
29

3.0
0.4

29
3.0
3.0
2.6

29
0.3

29
2.8
29
29
33

3.0
0.2

2.6
3.1
3.1
3.7

3.1
0.7

Devol.

1.9

1.9

1.9
23
2.8
2.0

23
0.6

2.1

1.7

1.9
2.5

2.0

1.6

1.8
25

Exposure
time,

5.0
53
4.9
5.0
5.1

5.1
0.2

399
404
40.3
39.9
40.0

40.1
03

99
10.0
10.0
10.1
10.2

10.0
0.1

20.0
20.0
203
20.0

20.1
0.2
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

1.8
1.9
2.0
1.2

1.7
0.6

2.2
1.9
2.9
1.4
1.7

Mass Drop o.d. Loss Drying Devol.
Furnace Drop drop, mass, on wire, time, time,
conditions no. mg mg mg S S
600C DPT5.33 a 5.0 3.6 3.5
0.61m/s DPT5.33 b 5.1 3.6 2.9
20% CO2 DPT5.33 ¢ 4.9 3.5 2.5
5% CO DPTS5.33 d 5.0 3.6 3.8
DPT5.33 e 4.9 3.5 3.2
sum: 24.9 17.8 0.0
av.: 5.0 3.6 - 32
95% c.l.: 0.1 0.1 - 0.6
600C DPT5.34 a 4.9 3.5 3.3
0.61m/s DPT5.34 ¢ 5.1 3.6 3.4
20% CO2 DPT5.34 d 5.2 3.7 3.2
5% CO DPT5.34 e 5.1 3.6 3.5
sum: 20.3 14.5 0.1
av.: 5.1 3.6 - 3.4
95% c.l.. 0.2 0.1 - 0.2
600C DPT535 a 45 32 Y
0.61m/s DPT535 b 4.6 33 3.7
5% CO DPT5.35 ¢ 4.5 3.2 : 3.5
DPTS5.35 e 5.1 ‘ 3.7 _ 3.9
sum: 18.7 134 -0.1
av.: 4.7 33 - 3.5
95% c.l.. 0.5 0.3 - 0.6
600C DPT5.36 a 4.4 32 3.5
0.61m/s DPT5.36 b 5.0 3.6 3.3
5% CO DPT5.36 ¢ 4.8 34 3.1
DPT5.36 d 4.7 34 3.7
DPT5.36 ¢ 49 3.5 3.5
sum: 23.8 17.0 0.5
av.: 4.8 3.4 - 34

95% c.1.: 0.3 0.2 - 0.3

2.0
0.7

Exposure
time,

S

5.1
4.8
49
5.1
5.1

5.0
0.2

- 40.1

39.8
40.2
40.2

40.1
0.3

10.0
10.2
10.2
10.2

10.2
0.2

29.7

31.1

- 30.0

30.2
30.2

30.2
0.6
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Table 6 (cont.). Drop mass and stage time data for individual mass loss determinations.

1.6

1.6

1.2
14
1.6
1.6

1.5
03

14
1.9
1.9
22
2.1

1.9
0.4

Mass Drop o.d. Loss Drying Devol.
Furnace Drop drop, mass, on wire, time, time,
conditions no. mg mg mg S s

600C DPTS.38 b 4.6 33 33
© 0.61m/s DPTS.38 c 5.1 37 4.1
5% CO DPTS5.38 d 49 35 34
DPT5.38 ¢ 4.6 33 33

sum: 19.2 13.7 0.3
av.: 438 34 - 3.5
95% c.l.: 0.4 0.3 - 0.6
600C DPTS5.39 a 5.2 3.7 3.4
0.61m/s DPT5.39 b 45 32 34
5% CO DPT5.39 d . 45 32 3.1
DPT5.39 e 52 3.7 38 .

sum: 194 13.9 -0.5
av.: 4.9 35 - 34
95% c.l.: 0.6 0.5 - 0.5
600C DPT5.40 a 5.1 3.7 35
0.61m/s DPTS540 b 49 35 33
5% CO DPTS5.40 c 4.8 34 33
DPT5.40 d 4.6 33 3.1
DPT5.40 e 5.2 3.7 33

sum: 24.6 17.6 -0.6
av.: 49 3.5 - 33
95% c.l.: 0.3 0.2 - 0.2
600C DPTS41 b 4.8 34 4.0
0.61 m/s DPT5.41 d 44 32 3.0
5% CO DPT541 e 52 3.7 32
- DPT5.41 f 5.1 3.7 3.2
DPTS5.41 ¢ 4.8 34 34

sum: 243 174 0.4
av.: 49 35 - 34
95% c.l.: 0.4 03 - 0.5

Exposure
time,

6.1
5.8
52
54

5.6
0.6

104
10.0
10.4
10.5

10.3
0.4

30.1
30.1
30.2
30.6
30.2

30.2
0.3

5.5
5.1
54
5.6
52

5.4
0.3
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-APPENDIX IV. SODIUM MASS LOSS DETERMINATION

This appendix contains the ICP sodium concentration measurements and the
calculatioﬁ of vol;tiles yield (total -ﬁlass loss) and sodium mass loss for 66 determinatibns
during drop pyrqusis experiments and 20 measurements of sodium content for the muffle
furnace experiment and the liquor spiking experiment (d;:scribed below). The appendix en-ds

with a consideration of the accuracy of the acid digestion procedure.
SODIUM ASSAYS AND MASS LOSS CALCULATIONS

Table 7 contains- the sodium concentration measurements for each char sample.
Thé'mass of sqdium for the drop pyrolysis experiments was determined by subtracting the
baci(ground levél of an appropriate blank from the measured concentration of each digested
sample. The difference was then multiplied by the sample volume. These calculatidns are
preéented chronologically in Table 7. Sodium mass for-the remaining 20 éamples was
determined by multiplying the sodium concentration by the sample mass and density, then

subtracting an average sodium mass from the associated blanks.

Calculations of liquor sodium content are contained in Table 8. A fresh sample
of liquor was used after completing several experiments; the number in parenthesis indicates
the chronological sequence of 50 ml sample bottles. Two liquor samples and one blank were

digested for each determination of liquor sodium concentration.

Table 9 contains results of char solids and sodium mass loss calculations for
the individual 'drop and muffle fumace experiments. See Eqgs. 5-7 in the text for a discussion

of the calculational procedure. The calculations are grouped by furnace condition and



Table 7.

Mass loss
determ.
no.

DPT2.6
DPT2.7
DPT2.8
DPT2.10-
DPT2.11
DPT2.12
DPT2.13
DPT2.14
DPT2.15
DPT2.19
DPT2.20
DPT2.23
DPT3.3
DPT3.4
DPT3.5
DPT3.6
DPT3.7
DPT3.9
DPT3.11
DPT3.12
DPT3.13
DPT3.14
DPT4.2
DPT4.3
DPT4.4
DPT4.5
DPT4.6

- DPT4.7

DPT4.8
DPT4.9
~ DPT4.10
DPT4.11
DPT4.12
DPT4.13
DPT4.14
DPTA4.15
DPT4.16
DPT4.17
DPT4.18
DPT4.19

Type

of
exp.

drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop

drop

drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop

Char

Na conc.,

mg/L

65
100
59
37
30
44
42
43
47
52
45
28
39
82
- 48
60
50
47
43
50
62
51
35
62
51
61
64
59
52
66
50
66
66
60
340
350
310
330
330
370
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Blank -
Na conc.,

mg/L

1.4
1.4
1.4
03
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3

0.2

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.22
0.22
0.22
0.22
0.22
0.22
0.2
0.2
0.2
02
0.2
0.2
02
0.2
0.2
0.2
0.2
0.2

Neét—

Na conc.,

mg/L

63.6
98.6
57.6
36.7
29.7
43.7
41.7
42.7
46.7
51.7

44.7

2717
388
81.8
47.8
59.8
49.8
46.8
42.8
49.8
61.8
50.8
54.8
61.8
50.8
60.8
63.8

-58:8 .

51.8
65.8
49.8
65.8
65.8
59.8
339.8
349.8
309.8
329.8
329.8
369.8

mL

- 50

Sample
volume,

50-

50

50

- 50 .

50
50
50
50
50
50
50
50

50
-50

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

50

Calculation of char sodium from ICP sodium concentration measurements.

mg

Mass Na
in char.,

32.
4.9
29
1.8
1S
2.2
2.1

- 2.1

2.3
2.6
2.2
14
1.9
4.1
24
3.0

2.5

2.3
2.1
2.5
3.1
2.5
2.7
3.1
2.5
3.0
3.2
2.9
2.6
33
2.5
33
33
3.0
17.0
17.5
15.5
16.5
16.5
18.5




Table 7 (cont.).

Mass loss
determ.’
no:

DPT5.7
DPT5.8

DPT5.9

DPTS5.10
DPTS5.11
DPTS5.12
DPTS5.13
DPT5.14
DPT5.15
DPT5.16
DPTS5.17
DPT5.19
DPTS5.20
DPTS5.21
DPTS5.22
DPT5.23
DPTS5.24
DPTS5.25
DPT5.26
DPT5.28
DPT5.29
DPTS5.30
DPT5.31
DPTS5.32
DPT5.33
DPTS5.34
DPT5.35
DPT5.36
DPTS5.39
DPTS5.40
DPT5.41
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Calculation of char sodium from ICP sodium concentration measurements.

Type

of
exp.

drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop
drop

"drop

drop
drop
drop

Char

Na conc.,

mg/L.

53
43
56
53
55
61
54
52
60
49
57
49
61
67
65
68
51
64
55
46
60
64
64
54
67
51
49
61
50
64
66

Blank
Na conc.,

mg/L

0.16
0.16
0.16
0.16
0.16
0.16
0.77
0.77
0.77
0.77
0.77
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
.0.07
0.07
0.07
0.07
0.07
0:07
0.07
0.20
0.20
0.20
0.20
0.20

Net
Na conc.,

mg/L

52.8
42.8
55.8
52.8
54.8
60.8
53.2
512
59.2
48.2
56.2
48.9
60.9
66.9
64.9
67.9
50.9
63.9
54.9
45.9
59.9
63.9
63.9
53.9
66.9
50.9
48.8
60.8
49.8
63.8
65.8

Sample
volume,

mL

50
50

- 50

50
50
50
50
50
50
50
50!
50
50

50

50
50
50

50

50
50
50
50
50
50
50
50.

- 50

50
50
50
50

Mass Na
in char.,

mg

2.6

2.1
2.8
2.6

27

- 3.0

2.7
2.6

- 3.0

2.4

- 2.8

2.4
3.0
33
3.2

- 34

23

2.5

3.2

2.7

3.0

3.2
32
2.7
3.3
2.5
2.4
3.0
2.5
3.2
33




144

Table 7 (cont.). Calculation of char sodium from ICP sodium concentration measurements.

: . Net
Mass loss Type Na Sample Sample Mass Na Mass Na
determ. of conc., mass, volume, in sample, in sample,
no. exp. mg/L mg ml mg mg
Liquor 1 boat 2978 . 51.05 49.47 14.7 14.3
Liquor 2 boat  264.7 49.75 48.21 12.8 12.3
Liquor 3 boat 397.3 48.77 47.26 18.8 18.3
Solids 1 boat 332.4 47.86 46.37 15.4 15.0
Solids 2 boat 436.3 47.42 45.95 200 19.6
Solids 3 boat . 399.5 49.19 - 47.67 19.0 18.6
Pyr. lig. 1 boat 416.3 48.00 46.51 . 194 18.9
Pyr. liq. 2 boat 303.9 49.68 48.14 14.6 14.2
Pyr. liq. 3 boat 255.1 - 47.62 46.15 11.8 11.3
Pyr. sol. 1 - boat 385.8 49.03 47.51 18.3 179
Pyr. sol. 2 boat 351.8 49.80 48.25 17.0 - 16.5
Pyr. sol. 3 boat 374.6 51.87 50.26 - 18.8 18.4
Blank 1 ~ boat 1.0 49.50 47.96 0.05
Blank 2 ~ boat 12.5° 48.37 46.87 0.59
Blank 3 boat 13.4 50.51 48.94 0.66 0.43
Liquor 1 spike 479.4 49.49 47.96 23.0 229
Liquor 2 * spike 450.8 51.15 49.57 223 222
Naz2COs 1 spike 682.6 50.94 49.36 33.7 33.6
Na2COs 2 “spike 555.6 50.67 49.10 27.3 27.1
Na2CO33 = spike 596.3 50.85 49.27 294 29.2
Acetate 1 spike 591.4 49.93 48.38 28.6 28.5
Acetate 2 spike 691.2 51.13 49.55 342 34.1
Acetate 3 spike 606.7 48.99 47.47 28.8 28.7
spike '

Blank 1 spike 24 51.67 50.06 0.12

Blank 2 spike 29 51.35 49.76 0.14 0.13
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exposure time. Analysis of the total mass loss results indicated that any material loss
incurred during char drying did not cause a systematic error in the calculations of sodium
mass loss. In calculating sodium mass loss, liquor sodium concentration values were taken

from Table 8 that corresponded to each group of preceding char-digestions from Table 7.
EVALUATION OF ACID DIGESTION PROCEDURE

An experiment was conducted to determine if the form of sodium (inorganic or
organic salt) affected the measurement of sodium concentration in the acid-digestéd samples.
Such an effect would produce a systematic error in sodium mass loss determination, because

the organically bound sodium is converted to Na,CO, during devolatilization.'*”*

Sodium carbonate was added to three 100 mg black liquor samplés as an
inorganic spike, sodium acetate was used as the model organically-bound compound.
Approximately 30% of the sodium mass was added as the spikes to the liquor samples. The
six spiked samples (three of each salt), two of the original black liquor, and't‘wo blanks were

- prepared under identical conditions.

The results in Table 10 show no statistical difference between the sodium
contents of the acid-digested spiked samples. Subtracting the known m“ass of sodium in the
spike from the total determined allows an estimation of the sodium in the liquor solids. The
4% lower value than the original liquor was probably a result of moisture in the added
chemicals. The results of this experiment indicate that the calculated values of sodium mass

loss were not subject to a systematic error in sodium content determination.
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APPENDIX V. STATIC AEROSOL COLLECTION EXPERIMENTS

A series of preliminary trials were conducted to evaluate and refine the
techniques of aerosol collection. The photomicrographs presented in this appendix are
indicative of the material found during extensive searches of random samples cut from the
BGF filters. Less than 0.1 cm? of an exposed filter area of 30-40 cm? was investigated by
SEM. Therefore, any conclusion drawn from these images is somewhat speculative due to
the chance nature of obtaining a representative sample of the total aerosol generated during

combustion.
AERQOSOL COLLECTION WITH LIMITED VACUUM FLOW

During the first static collection experiment, 76 by 102-mm (3 by 4-in.) BGF
filters were located 63.5 mm (2.5 in.) above the quartz reactor tube exit. Filters were held in
place by suction on a Teflon® (PTFE) vacuum flow distributor; the vacuum source was a
small reciprocating pump. Individual drops of liquor no. 2A (63% dry solids content) were
burned in air at 600-750°C with an average gas velocity in the reaction chamber of 0.61-
1.22 m/S (2-4 ft/s). Three 5 mm square samples were arbitrarily cut from one filter at each

condition for SEM analysis.

A comparison of the aerosol collected from combustion of single liquor drops
at two temperatures can be made by inspecting the SEM photomicrographs Figs. 32 to 35.
Several large 5-20 um spheres are visible in both Fig. 32 and 33; small 0.1-0.5 um irregular
deposits on the filter fibers are only apparent in Fig. 32. The higher magnification of Fig. 35

reveals there was sparse but uniform deposition of fine aerosol from the lower temperature



Figure 32.

Figure 33.

- “#J' ‘

b 4; "’ﬁ

SEM photomicrograph showing particulate on BGF filter. Combustion of
27.1 mg drop of liquor no. 2A in air at 750°C and 0.61 m/s; 14 L/min vacuum
flow.

SEM photomicrograph showing particulate on BGF filter. Combustion of 51.6
mg drop of liquor no. 2A in air at 600°C and 0.61 m/s; 14 L/min vacuum flow.
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Figure 34.  SEM photomicrograph showing submicron-sized aerosol on BGF filter.
Conditions given in Fig. 32.

Figure 35.  SEM photomicrograph showing submicron-sized aerosol on BGF filter.
Conditions given in Fig. 33.
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burn. These images suggest that there was more fume-like aerosol produced at 750°C. The
large spheres undoubtedly resulted from the ejection of bits of burning char and molten smelt

which were observed during the char burning and smelt oxidation stages of combustion.

There was less fine aerosol found on the filters exposed to the higher flow rate
at both temperatures; Fig. 36 is an example of this observation. The reciprocating vacuum
pump was only capable of drawing 19-45% of the éxhaust flow through the filter. The lower
percentage of combustion gas drawn through the filter at the higher furnace velocity resulted
in fewer submicron-sized particles being collected relative to the larger particles. Submicron-
sized particles tend to follow streamlines of a flowing gas. Thus, at the higher flow rate more

of the 0.1-0.5 um aerosol would have been lost because a larger amount of the exhaust gas

Figure 36.  SEM photomicrograph showing submicron-sized aerosol on BGF filter.
Combustion of 41.7 mg drop of liquor no. 2A in air at 750°C and 1.22 m/s;
14 L/min vacuum flow.
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was diverted at the filter plane. The increased momentum of the 5-20 um spheres at the
higher gas velocity may have increased their chance of collection by impaction on the glass

filter fibers.
AEROSOL COLLECTION WITH HIGH CAPACITY VACUUM FLOW

As it was expected that the flow restriction of the reciprocation vacuum pump
limited collection efficiency, the experiment was repeated after a high capacity Piab
pneumatic vacuum source had been installed. Nine static aerosol collection trials were
~ conducted with drops of liquor no. 3 burned in air at 750°C with an average gas velocity of
0.61 m/s (2 ft/s); the initial filter vacuum flow was varied from 100% of the gas mass flow
(33 std. L/min) to the low level used in the previous experiment (14 std L/min). The volume
flow rate of gas increased with decreasing gas density after the filters were placed over the
hot exhaust gases. Correspondingly, vacuum flow decreased as a result of the increased
pressure drop of higher gas velocity through the 0.40-mm (1/64-in.) holes in the PTFE
vacuum flow distributor. In all trials the vacuum flow dropped to about 14 L/min after one

minute.

Deposits were observed on all the filters with an optical microscope at a 3 X
magnification. Samples were taken for SEM analysis -- from regions with and without the
visible deposits -- from two filters produced at each level of vacuum flow. All of the
samples scanned showed the presence of aerosol despite the poor image quality from the
JEOL JSM-35C instrument. Energy dispersive X-ray spectrometry (EDS) indicated that the

composition of the particulate was primarily sodium and sulfur.
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Figure 37.  SEM photomicrograph showing dense aerosol deposit on BGF filter.
Combustion of 8.9 mg drop of liquor no. 3 in air at 750°C and 0.61 m/s;
31.1 L/min initial vacuum flow.

Figure 38.  SEM photomicrograph of a large spherical particle with dendritic features.
Conditions given in Fig. 37.
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Figure 37 shows a region thickly covered with sintered submicron-sized
particulate. This material obscured the filter fibers in some areas. Numerous 5 - 20 pm
rough-surfaced spheres were distributed on and among the sintered deposits on all of the filter
samples. The extent of sintering suggests that the temperature at the filter was higher than in
the previous frial. No effect of the initial level of vacuum flow could be determined by
comparing the SEM images. There was evidence of dendrite formation on the surface of
some spheres, as shown in Fig. 38. Dendrite growth may have resulted from condensation of

alkali vapor on the deposited aerosol.
AEROSOL COLLECTION DURING PYROLYSIS

During several of the sodium mass loss determinations, aerosols generated
during pyrolysis were collected on BGF filters. The dynamic aerosol collection system,
described in the Experimental chapter, was used to place a 102 by 203-mm (4 by 8-in.) BGF
filter over the exhaust flow director exit. The filter remained in place during the first five
individual drop exposures of each determination. Before additional drops were pyrolyzed, the
collection medium carriage was activated to carry the filter past the exhaust flow. The large
opening of the vacuum flow director did not restrict the vacuum flow during sampling, as had
the PTFE vacuum flow distributor. A nominal vacuum flow of 14 L/min was maintained for
all static aerosol collections during pyrolysis except for the trial at 750°C; in that instance
there was no induced flow because the vacuum flow director had been removed. Figure 39 is
an example of the material collected during pyrolysis at 750°C. Further analysis of the

aerosols produced during pyrolysis is contained in the text.
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Figure 39. SEM photomicrograph showing fine fume on BGF filter. Pyrolysis of 5 drops
(24.0 mg) of liquor no. 3 in 95% N,/5% CO at 750°C and 0.61 m/s; 14 L/min
vacuum flow.

Figure 40. SEM photomicrograph showing collected aerosol on BGF filter. Combustion
of 6.2 mg drop of liquor no. 3 in air at 750°C and 0.15 m/s; 0 L/min vacuum
flow.
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AEROSOL COLLECTION BY IMPACTION

The absence of -visible submicron-sized aerosol in the first dynamic aerosol
collecfion experiment (described in Appendix VI) and the unexpectedly small quantities of
aerosols capturéd during pyrolysis were mistakenly blamed'on penetration of material through
the ﬁlters; Fume was not detected on the BGF ﬁltér samples from the first dynamic aerosol
collection e;periment due to limited resolution of the JEOL JSM-35C microscope. It was
assumed that collection by impaction on the filters would retain more submicron-sized aerosol

than by filtration.

An experiment“ with 102 by 203-mm filters was conducted using the dynamic
aerosol collection system in a fixed mode to evaluate the nev? collection strategy. Drops of
liquor no. 3,-8-12 mg in size, were burned in dry-éir at 750°C; gas flow raté was adjusted to
produce average gas velécities of 0.61, 0.30, and 0.15 m/s in the quartz reactor tube.

- Vacuum flow was correspondingly set at 14, 6, and 0 L/min. Four 5 by 5-mm samples were
cut from the center region of each of five filters for SEM investigation. An example of the
material collected from this final group of trials is given in Fig. 40; additional
photomicrographs are discussed in the text. Comparing Figs. 39 and 40 indicates that
approximately the éame amount of fume was collected during the pyrolysis of 5 drops as

during the combustion of a single drop of the same liquor.
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APPENDIX VI. ANALYSIS OF DYNAMIC AEROSOL COLLECI'ION DATA

The technique of determining the time during combustion when inorganic
aerosols were generated required monitoring drop comfniétion progress, conﬁnuous collection
of the aerosols as they were produced, and understanding the material losses andtdelay time
between the source of the aerosol and the collection plane. This appendix contains an .
analysis of the dynamic aerosol collection ‘data. Evaluation of sources 6f error in material .-
measurements, and consideration of losses due to collection efﬁciency limitationS and

deposition within the equipment are considered in Appendix VII.

Aerosols were separated from the éombustion gases by BGF ﬁlteré in the first
dynamic collection experiment; the second utilized silver membranes as an impaction surface
for aerosol collection. Differences in equipment configuration, experimental coqditions,
analysis of captured aerosol, and interpretations of time-resolved results are explained for

each experiment.
DYNAMIC AEROSOL COLLECTION ON BGF FILTERS

Experimental conditions used during the dynamic filtration experiment are
given in Table 11. Three pairs of BGF filters (203 by 254-mm moving filter and 102 by
102-mm backup) were chosen for inorganic species assays, two that had been exposed to
single drop combustion products (DCT3.22, DCT3.23) and one "blank" that had been exposed
to combustion gases without burning liquor (DCT3.20). The fourth pair of ﬁlte?s was
investigated by SEM (DCT3.24). After exposure each large filter was carefully divided into

nine 25-mm (1-in.) sections, as indicated in Fig. 41. Sample preparation for analysis is
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déscribed in the Experimental chapter.

Analysis of Filters

The measured species concentrations are given in Table 12. All values are
significantly higher than detection limits; however, the average level of Na and CO;” in the
blank sample is higher than in either of the exéosed filters. The assay values in Table 12
represent total material collected over discrete time intervals equal to the width of the section

(Ax) divided by the linear speed'of the collection mediurh carriage (s,).

Although BGF filters are an attractive medium for aerosol collection, sodium

Direction of motion
>

@
-

Location of
— deposit, x'

™S~ Initial exhaust flow
director position

9"

Figure 41. Schematic of BGF filter (F1) showing locations of analyzed sections.
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oxide is a significant component of borosilicate glass. Technical information from the
Whatman company®*® indicates that, depending on extraction procedure, between 22 and
51 mg Na/g filter can be dissolved from the EPM-2000 BGF filters. An average value of
16.5 mg of extractable sodium per gram of filter was calculated from the data in Table 12
and the recorded mass of each filter. The soluble quantity of sodium in the glass fibers is
both non-uniformly distributed and approximately 27 times higher in each section than the
total amount expected to be captured from combustion of a 23 mg drop.” The average
background level of carbonate in each filter section was appréxima_tely 7 uimes greater than
the total amount expected to be collected during combustion.” The data in Table 12 clearly
show that analytical determinatioﬁ of the amounts of captured sodium carbonate was

impossible.

The amounts of background SO,~ in.the blank filter sections Wefe consistently
lower than those of the exposed filters. There are significant qué.ntities of barium, calcium,
potassium, magnesium, and sodium in Whatman EPM-2000 filters;¥ these elements may
readily react with‘acidic gases to form artifact products which could be mistaken for collected .
material. Reduced sulfur gases (TRS) released during black liquor devolatilization are readily
oxidized to SO, and SO,. In the presence of water vapor, SO, can form gaseous H,SO,. This
conversion is greatly favored at low temperature.“1 Sulfuric acid dewpoint decreases with
decreasing SO, and water vapor concentration in flue gasés; for 1 ppm SO, and 5 %'olume

percent H,0 the H,SO, dewpoint would be about 110°C.*® Mitchell and Bruffey”

Calculated from liciuor properties in Table 3 and assumption that 10% of the sodium
in the drop will be collected as fume on the filter.

Assuming that 50% of the captured sodium is Na,CO,.
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evaluated emissions samplers that simultaneously measure particulate, H,SO,, and SO,. They
reported significant collection of H,SO, by borosilicate glass fiber filters when sampling at
30-60°C above the acid dewpoint. This information suggests that some of the SO,~ measured

on the BGF filters from this experiment was undoubtedly a result of artifact formation.

Time Resolution of Dynamic Filtration Data

Dynamic aerosol filtration data was transformed into a quasi-continuous record
of sulfate collection in order to determine the time during combustion when sulfur containing
species were formed. The technique was based on the approach used by Nelson et al.” to

"time resolve" atmospheric aerosol concentrations from "filter streaker” samples.

As discussed in the Results section of the text, the time resolution” (3) is set

by the width and shape of the flow director opening:

2W | a3)

where & is the time resolution for a rectangular slot opening and W ig the half-width of the
flow director opening. For this experiment the time resolution was 6 seconds. Note that the
width of each filter section (Ax) equalled the width of the flow director opening (2W);
therefore, the time interval represented by a filter segment (t,,) also equalled 6 seconds. The
temporal uncertainty of determining the origin of an instantaneous combustion event from

filter analysis was + W/s; or exactly half of the time resolution.

* Not to be confused with the process of time resolution.
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The data were time resolved by applying a weight function, fi(t), that described

the fraction of the flow director which was inside an area corresponding to t, at any time t:

,

t-t
R
=" ©°r

l ; I[—t’xl pS 8R

(14)
0 ; |t-t | >0,

This function is shown graphically in Fig. 42a. The average mass of sulfate collected at any

time, for a specified time step (dt), was given by

t+8

[ m@toa
1'le = 2 t+8 ’ (15)

£(t) dt
1,5

where m, is the average time-resolved mass and m(t) is the mass distribution function. The
mass of sulfate collected on each section of the filters was calculated from the measured

concentrations given in Table 12 minus the average background level from the DCT3.20

11 1-
= =
0 +rr = 0 H—r—rrr—rrrrr—rr=t
-10 10 -10 -5 0 5 10
tx (s) a. tx (s) b.

Figure 42.  Weight functions for time resolution of dynamic aerosol collection experiments:
a) 25-mm rectangular opening, b) 76-mm circular opening. ‘
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blank. In order to evaluate the integral in Eq. 15, the data must be treated as a discrete

function: p
0 ;t=0
) m, ; O0<t<t,,
m(t) = < . .
|m, ; (n-1t, <t<nt,

Residence time was calculated from the steady state heat transfer model
described below. Three heat transfer resistances were considered in the exhaust flow direcfor
model: 1) The Graetz correlation for simultaneously developing laminar flow was used to
estimate the contributibn of forced convection.inside the director.® 2) Laminar natural
convection along a vertical flat plat was applied to the outside wall. 3) The gray outside
walls were assufned to radiate to the surroundings through a transparent gas.®' In order to
approach the isothermal wall constraint of the heat transfer relations, the exhaust flow director
was treated as a series of short stacked cylinders of negligible wall thickness. The diameter
of each cylinder was taken as the 'cffectiVé diameter of the flow director at the same
elevation. Once the temperature drop across each cylindrical ségment j was known, an
average gas velocity at the bulk temperature ({v);) could be calculated by

) h
W, o an

where m is mass flow rate of the exhaust gas, p(T) is ideal gas density, T, ; is the bulk
temperature in segment j, and A, ; is effective cross-sectional area of segment j. Total .
residence time between the drop and the filter (®) was taken as the sum of the height of each

segment divided by the average gas velocity given in Eq. 17:
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AV | ”
0=y o™i (18)

where Aygp ; is the height of segment j.

The time-resolved sulfate mass from Eq. 16 was plotted against elapsed drop
combustion time from Eq. 12 (see text) in Figs. 43 and 44; these continuous lines may
approximate the actual sulfate-containing aerosol generation that occurred during drop
combustion. Equation 16 was used to calculate total SO,~ coilected over the 6-seco'nd’ tirﬁe
intervals corresponding to each section of the filter; these data are 'plotted as vertical bars in
Figs. 43 and 44. Note that the temporal uncertainty of 3 seconds was accounted for .when

overlaying the combustion stage times from Table 11 on Figs. 43 and 44.

Results from the first dynamic experiment exhibited a peak in the amount of
SO, collected, corresponding to the overlapped region of the derlatilization and char
burning stages. Although the form of sulfur was not directly determined, it was presumably
as Na,SO,. Sodium sulfate fume could have been produced from the reaction of sodium '
metal and the gas species indicated in Fig. 27c (see text). However, the substantial amount of
sulfate measured on the first filter section, shown as the discrete functions in Figs. 43 and 44,
could also have resulted from artifact formation. During the first few seconds of combustion
the simultaneous presence of reduced sulfur gases, oxygen, and watér vapor could have
resulted in H,SO, formation.” As all of the sulfur gases should have evolved by the end of
the devolatilization stage, the "shoulder" during the overlapped char burning and smelt
oxidation stages in Figs. 43 and 44 may have resulted from entrainment of ejected matter.

This ejecta which would have been similar in composition to oxidized smelt (65% Na,SO,).
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Figure 43.  Time-resolved sulfate deposition history from dynamic aerosol collection
experiment. Combustion of 19.0 mg drop (DCT3.22 in Table 11). a) drying,
b) devolatilization, c¢) char burning, d) inorganic reactions.
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Figure 44.  Time-resolved sulfate deposition history from dynamic aerosol collection
- experiment. Combustion of 27.6 mg drop (DCT3.23 in Table 11).
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DYNAMIC AEROSOL COLLECTION ON SILVER MEMBRANES

Due to uncertainties regarding artifact formation, the time-resolved SO, data
from the BGF filters provided more of an indication of sulfur release history than of aerosol
formation. The use of silver membranes as t};e aerosol collection medium prevented artifact
formation because acidic combustion products did not react with the inert material at the
conditions of these experiments. Accurate determination 6f microgram quantities of sodium
was possible with silver membranes because the levels of soluble contaminants in the
membranes were extremely low. The measurable quantity of extractable sodium was
approximately 5.3 x 10° mg per gram of membrane material, as compared to a value of

16.5 mg Na per gram for the EPM-2000 BGF filters.

An insert was placed in the collection medium carriage to reduce the size of
the opening from 152 by 229-mm (6 by 9-in.) to 76 by 203-mm (3 by 8-in.) so that a smaller
amount of the costly membranes could be used for each dynamic aerosol collection. In an
attempt to lower the exit gas temperature during the evaluation of various aerosol collection
media, a 76 mm (3-in.) diameter metal flue was installed in place of the exhaust flow
director. The original equipment should have beén replaced before conducting the experiment

because the wider flue opening significantly increased the temporal uncertainty of the results.

Time Resolution of Dynamic Impaction Data

Drop combustion exhaust gas was impacted on two 89 by 229-mm (3.5 by
9-in.) moving silver membranes (AFT 3.8 and AFT3.9 in Table 13); a smaller piece of
membrane was exposed to only the hot gases to prdvide a "blank" sample. After exposure

each membrane was divided into eight 13-mm (0.5-in.) sections as indicated in Fig. 29.
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The measured species concentrations are given in Table 14. Amounts of
sulfate and chloride ion were at or below the IC detection limits. The carbonate in the two
blank 13-mm sections was higher than in any of the exposed sections. If all of the collected
material were Na,SO, or NaCl, then the mean SO,” concentration would have been 0.23 mg/L
and ClI' would have been 0.17 mg/L, about twice the detection limits for these anions. If
100% of the sodium was in the form of Na,CQO,, the expected concentration of CO,~ would
have been only 15% of the detection limit. Since the actual material collected was probably a

mixture of these salts, sodium was the only measurable compound for this experiment.

The previously described technique of time resolution was applied to the results
of the dynamic impaction experiment. A weight function was assigned that equalled 1 at the

point of evaluation (x’) and O at a distance equal to the radius:

FVE - ] €8

; Jt-t | > &

fo( = (19)

o

The weight function is shown graphically in Fig. 42b; clearly there was more spatial
convolution of these results. For this experiment 8. = 9.s and t,, = 3 s. The time-resolved

sodium mass was obtained by integrating Eq. 15 with the weight function given in Eq. 19.

Figures 45 and 46 show the time-resolved results. A residence time of 1.0
second was estimated for the aerosol to reach the collection plane from the burning drop.
Note that the quasi-continuous sodium release history does not follow the discrete vertical
bars as closely as in Figs. 43 and 44. Combustion stages were indicated as before, using a

temporal uncertainty of 9 seconds. It can be concluded from this experiment that most of the
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Figure 46.
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Time-resolved sodium deposition history from dynamié aerosol collection
experiment. Combustion of 14.1 mg drop (AFT3.8 in Table 13).
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sodium originated during the char burning and smelt oxidation stages of black liquor
combustion. It is not expected that a significant amount of sodium deposition would have
been caused by sparking during smelt coalescence since this phenomenon was not observed

for black liquor combustion in 7.5% O,.
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APPENDIX VII. COLLECTION EFFICIENCY AND CLOSURE - -

Cdmbustion videos revealed three types of inorganic materials that were
produced during combustion: fume, ejecta, and shedded smelf. In order understand the fﬁté of
these materials in the experimental system, it was necessary to evaluate‘ losses b)l/ limited
collection efficiencies and deposition within the furnace. This appendix contains calculations
of the maximum size aerosol particles reaching the collection surface. Theoretical collection
efficiencies of the BGF filters and silver membranes are then evaluated. Inorganic material
balances, based on measured quantities and assumed compositions, indicate the range of

actual collection efficiencies for comparison with the predicted values.
AEROSOL ENTRAINMENT

Submicron-sized fume behaves as a colloidal suspension; it is easily entrained
in a moving air stream and remains dispersed in still air for a very long time.® For particle
sizes greater than 1 um, gravitational settling cannot be neglected.” The largest particle that
can be entrained by a gas stream is one with a settling velocity equal to the maximum upward
gas velocity (u, = v,,).** During the drop combustion experiments, the mass flow of gas was
adjusted to produce a desired average gas velocity at the set temperature of the quartz
reaction chamber. Gas velocity decreased as a result of progressive cooling with
displacement past the top of the drop reactor heating elements. The expanding cross-sectional
area of the exhaust flow director also decreased gas velocity. Entrained material would have
fallen out of the gas stream when its settling velocity exceeded the upward gas velocity. The
critical velocity necessary to determine the maximum size of the material reaching the aerosol

collection plane is therefore the gas velocity at the exit of the exhaust flow director.
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Fot low particle Reynolds number, Re, < 1, and small size, d, = 10 um,
inertial forces acting on a body are negligible compared to viscous forces. For this so called
Stokes’ law range, the terminal or settling velocity of spherical particles in still air (u) is

given by

. 2 '
d P, .0

u = s
n

£
‘18

where g is the gravitational acceleration constant, p, is particle density, and | is gas viscosity.
Gas density is very much larger than p, and was therefore assumed to be negligible in this
formulation. Although not theoretically correct, equations of motipn based on Stokes’ law
can be utilized with reasonable accuracy up to Re, = 2.8 Appropriate correction factors

extend the valid range of particle sizes for Stoke’s law-calculations to 0.2 < d,, < 100 pm.*

During all aerosol collection experiments there was laminar flow in the drop
reactor; assuming that a fully developed laminar profile was maintained within the exhaust
" flow director, then v, = 2(v) at any given location (y).** Exit velocity was predicted by the
flow director heat transfer model described in Appendix VI. The majority of geﬁerated
aerosol was assumed to follow the central "core" of gas flowing at bétwgen maximum and
average velocity. Equation 20 was rearranged to calculate maximum entrainable particle

size (de). For the region of interest, (v) < u, < v,

do = 18u 1 ’ . e

gp, C,

where C,, the Cunningham correction factor, accounts for the reduced resistance of viscosity
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as particle size approaches the mean free path of the gas. Assuming that the maximum

entrainable particle size is greater than 10 pm, C, = 1.0 may be used with little error.”

Table 15 contains the values of de calculated for both aerosol collection
experiments. p, = 2.5 g/cm® was chosen as the density of inorganic aerosol. For all cases,
Stokes’ law assumption and C, = 1.0 were valid because Re, < 2 and 10 pm < d, < 100 pm.
SEM analysis of collected aerosol indicated that most particles were spherical in shape; slight
irregularities m shape \would not be expected to cause sighificant error in the Stokes’ law
calcula.tions.“’_ r o _

Table 15.  Calculation of maximum entrainable particle size at given locations for
- dynamic aerosol collection experiments.

Location de @ (v), de @ v,
[Th} Re, @ (v) um Re, @ v,
Exp. 1: Drop plane : 136 0.68 193 1.9
Exp. 1. Exit plane 67 0.62 95 1.7
Exp. 2: Drop plane 136 0.67 193 1.9
Exp. 2: Exit plane 57 0.36 80 1.0

It can be concluded from this analysis that particles larger than 0.1-0.2 mm
(smelt ejecta, shedded smelt droplets) fell to the bottom of the furnace. Particles smaller than
67-95 pm reached the filter plane in the first experiment, and particles smaller than 57-80 pm
reached the silver membrane in the second experiment. The largest aerosol observed from the
dynamic filtration. trials was 25 um (DCT3.24); this may imply that larger particles were not
retained by the collection medium. Losses due to vibration and handling of the filters could

have occurred during the dynamic collection experiments.
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AEROSOL COLLECTION EFFICIENCY

Collection Efficiency by Filtration

Aerosol collection by fibrous ﬁlters is by a combination of diffusion, inertial
impaction, interception, and gravitational settling. The relative importance of each of these
mechanisms depends on particle size and velocity. Overall collection efficiency () of a
fibrous filter can be correlated with mean fiber diameter (d,), thiqkness (t) and porosity (o) of
the fiber mat, particle size (d,), and the velocity of the gas at the surface of the filter.”® The

latter quantity, referred to as face velocity (vy), is calculated as

(22)

where Q is volumetric flow rate, and A is filtration area.

For a given type of filter there is a particle size that has a minirﬁum collection
efficiency, known as the size of rﬁaximum penetration. Furthermore, there is a velocity that
- will result in minimum collection of a given particle size. Collection efficiency generally
approaches 100% for very large and very small particles, as well as for very high and very
low v.* Figure 47 shows the dependence of overall collection efficiency on particl_e size and
face velocity for a fibrous filter.”® The data in Fig. 47 suggest that, at a face velocity of
30 c/s, = 50-90% for d, = 0.1-0.3 pm, 1 = 90-99% for d, = 0.3-0.5 pm, and n > 99% for
d, > 0.5 um. The filter described by Fig. 47 has a somewhat lower collection efficiency than
the Whatman EPM-2000 BGF filter. A reasonable assumption of collection efficiency would

be n = 70% for d, = 0.1-0.5 pm, 1 = 100% for d, > 0.5 um for the EPM-2000.%°
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Figure 47.  Overall filter efficiency isopleths for a fibrous filter; t = 1 mm, o = 0.95, and
d; = 2 um. Reprinted from Hinds.”

Ramskill and Anderson®” studied penetration (1-1) versus face velocity for a
monodisperse aerosol mist having d, = 0.3 um. One of their curves closely approximates the
characteristics of Whatman EPM-2000 BGF filters. Maximum penetration occurred at v, =
25 cm/s (n = 65%), and maximum efficiency was achieved for v, > 110 cm/s. Face velocity
during the first dynamic aerosol collection trail was 31 cm/s at the moving filter and 12 cm/s
at the backup filter. According to Ramskill and Anderson’s data, the best possible collecﬁbn

efficiency for 0.3 um fume by EPM-2000 filters would have been 77%.

Efficiency for large aerosol may be somewhat lower due to particle bounce;
there is a 50% probability of bounce for a 10 pum solid particle striking a collection surface at
9-60 cm/s.” Electrostatic attraction is an important mechanism of aerosol deposition;

however, in most filtration analyses electrostatic collection is neglected because it is difficult
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to quantify unless the charge on the particles and fibers are known.” Filtration efficiency can

be greatly enhanced by charging the particles and/or filter ®

Collection Efficiency by Impaction

When a particle-laden gas stream encounters a ﬁxéd object, submicron-sized
particles will tend to follow the streamlines of the gas flowing around the object.. The
Brownian motion of small particles causes deviations from the streamlines and may result in
some of the fine aerosol particles striking the immersed object.”® Particles greater than 1 um
in size have sufficient inertia to prevent them from following streamlines when a flow
suddénly changes direction. Depending on their size and velocity, they may collect on the
immersed object by either interception or impaction. Interception occurs when thé particle

comes within one particle radius of the collecting surface.

Inertial impactors are devices used to measure the size distributions of

atmospheric and industrial aerosols by impinging a high velocity stream of air against a flat

collection surface. A commonly used dimensionless group to characterize impactor

performance is Stokes number:

_ :
Stk = ~ : (23)

where (v) is average nozzle exit velocity, T is relaxation time, and W is the half-width of
opening. Relaxation time characterizes the time required for a particle to adjust its velocity to .

a new condition of external forces.” For particle motion in the Stokes’ law range

d; p,C.

1
T = e
18 " n

¥ (24)
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where the quantities 'and assumptions are given in Egs. 20 and 21. -

For a given geometry, there is a theoreﬁcal Stokes number below which inertial
impaction will not occur. The critical Stokes number, Stk_,, equals 2/x for potential flow of a
flat jet impinging on a perpendicular plate with S/2W = «.* In the second dynamic aerosol
collection experiment, described in Appendix VI, a cylindrical flue directed the exhaust flow
to the silver membrane surface. This geometry (S/2W = 0.08) does not satisfy the
dimensional restraint of the model; nevertheless, the model was used as an approximation of
the dynamic éerosol collection system. Substitution of Eq. 24 into Eq. 23 and rearranging
yields a formula for determining the minimum particle size with sufficient inertia to be

collected by impaction' (d):

18 Stk W
d = |20 VH (25)

N wp,C,

As it is expected that the collection efficiency is less for viscous flow than for potential
flow,* Stk., > 0.637 was used for evaluating Eq. 25. An average gas velocity at the exit
plane of 0.19 m/s was calculated by the flow expander heat transfer model. Eq. 23 indicates

that d, > 150 um for the second dynamic aerosol collection experiment.

In Table 15, de was calculated to be less than 80 pum at the exit plane for the
second experiment; clearly there would have been no aerosol collection by impaction on thé
silver membranes. Theoretical collection efficiency, however, does not necessarily accurately
represent the true efficiency of aerosol capture.”® In the above analysis only the mechanism

of impaction was considered. As the impinging jet spread out across the surface of the silver
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membrane there may have been submicron-sized aerosol collection by electrostatic attraction
and diffusion. Loss of aerosol after contact by reentrainment is unlikely for particles smaller
than 10 urh because the adhesive forces that act on the particle are two orders of magnitude

greater than the removal force of a 10 m/s air current.”
INORGANIC MATERIAL BALANCES

Accurate gravimetric determination of total accumulation on BGF filters was
impossible because the fiber loss that occurred during handling was greater than the émall
mass of captured particulate. Conditioning in a constant humidity environment minimized the
variation in BGF filter moisture content; however, the 203 by 254-mm filters typically lost
8-11 mg during a dynamic aerosol collection trial and the backup filters gained 1-4 mg. SEM
analysis substa.ntiatéd the assurﬁption that the mass gain on the backup filters was caused by

accumulation of filter fragments scraped off the large filters by the vacuum flow director.

Due to high background levels of sodium and carbonate ions in the BGF filters,
sulfate ion was the only component available to evaluate material balance closure in the first
experiment. The following estimations of drop residue and captured material composition
allowed a sulfur material balance to be made. Accurate measurement of very small quantities
of collected sodium were possible with the silver membranes. Amounts of the expected
anions were below instrument detection limits; therefore, sodium was the only component

with which to check closure in the second experiment.

Table 16 contains literature values of the composition of highly oxidized smelt

and inorganic aerosols captured close to their points of origin. A smelt composition of




Table 16. Typical composition of oxidized smelt and inorganic aerosols (values reported.-
_as % of o.d. solids).
Species Drop Collected Probe Impactor
residue''* aerosol''”® deposit™® sample**
Na,CO, 53.0 12.7 16.7 6
NaOH 2.0° 25.0° 0.0 -
Na,SO, 43.0 61.6 68.5 64
Na,S,0, - - - 18°
Na,SO,
Na,S 2.0 0.7 - 11f
NaCl - - 15.48 -
Total 100.0 100.0 100.6
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99

Residue from combustion of single 3 mm drops in air at 900°C unspec1ﬁed exposure
time and sample size.

Aerosol collected from combustion of smgle 3 mm drops in air at 900°C, unspecified
exposure time and sample size.

Fine particulate from downstream side of cooled probe located 3.2 m above bottom of
superheater; exposure time 4 hours.

Material from tertiary air level of furnace; collected on BGF filter, unspecified
analysis.

Values may be high due to moisture in combustion air.

Total amount of sodium-sulfur compounds may be high due to artifact formation.
Mill had unusually high chlorine content in liquor.

80% Na,COs, 15% Na,S0,, 3% Na,S, and 2% NaOH was estimated from the following

analysis. The average sodium content of the five measured drop residues was 45.7%; this

value was calculated from data in Tables 12 and 14. The ratio of Na,CO, to Na,SO, in the

residue from the first experiment was 5.4 to 1. Three assayed species (Na, CO;”, SO,7)

accounted for 95% of the residue mass. The remainder was assumed to be split between

hydroxide and sulfide, as suggested by the data of Volkov et al.'' in Table 16. A slightly
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higher Na,S content was chosen because the lower temperature and oxygen content used

during the aerosol collection experiments should have resulted in less sulfide oxidation.

There was not enough aerosol captured during the experiments to dgtermine
composition; however, its analysis should have been similar to the literature Values- given in
Table 16. An assumed composition of 65% Na,SO,, 15% Na,CO,, 5% Na,S, 5% NaOH,

5% NaCl, and 5% other Qas used in the sodium and sulfur balances for the aeros01 collection
experiments; these results are presented in Table 17. Amounts of sodium and sulfﬁr in each
drop were calculated from the elemental analysis of liquor no. 2B (19.2% Na, 4.1% S). The
mass of material collected by the filter or membrane was the sum of all sections plus backup
filter (for the first experiment) minus the background from appropriate blanks. The value of
"capture” is the percentage of the lost maferial that was colleéted; this can be thought of as a

minimum collection efficiency. f

Minimum Collection Efficiencl

Sodium loss for the first two drops given in Table 17 was much less than for
the other three. Stage times were somewhat shorter due to smaller initial drop sizes in the
second experiment, otherwise drop combustion was nearly identical. - A review of the video
images revealed that there were significant differences in the extent of smelt shedding during
the final seconds of char burning. Drops DCT3.22 and DCT3.23 shed only a feW droplets of
smelt, amounting to less than 10% of the molten material. For DCT3..24 almost all of the
char fell off the nichrome wire before the end of char burning. During the second experirhent
one drop (AFT3.8) shed approximately 10% of its smelt while the other (AFT?3.9) lost about

40% of its smelt at the moment of coalescence.
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The following prediction, based on literature information, indicates that the
calculated 39-56% sulfur loss presented in Table 17 was reasonable for the combustion
conditions of the first experiment. The density of liquor no. 2B was 1.79 g/cm?; this value
was calculated from the initial drop diameter and mass. Using this density the size of the
first two drops in Table 17 were estimated to be 2.7 and 3.1 mm. Cantrell et al.”’ reported a
total éulfur loss of 27.1% during combustion of 2.8-3.0 mm dropé of 71.9% solids liquor in
“air at 1090°C. For 2 mm diameter drops of 63.3% solids liquor, sulfur loss increased
approximately 34% for a corresponding decrease in oxygen content from 21% to about
7.5%.” Clay et al.* plotted sulfur .release as a function of furnace temperature for pyrolysis
of 15 mg (2.7 mm) drops of 67.4% solids liquor in nitrogen. These data indicated that sulfur
release was 88% higher at 750°C than at 1100°C. 'Applying these adjustments to Cantrell’s
data predicts the sulfur loss for 3.0 mm drop of liquor burned at 750°C in,7.5l% O, to be

68%.

This approach may have overpredicted sulfur loss by underestimating the extent
of cdmpeting sﬁlfur recapture mechanisms. The assumed smelt composition could also
account for the difference. If | the residue were fully oxidized (i.e., no Na,S remaining) then
the calculated sulfur loss would have been 55-67% and the minimum capture efficiency

would have been 13.5-28.3%.

Maximum Collection Efficiency

The first two drops identified in Table 17 lost between 7 and 9% of their
sodium. This agrees remarkably well with field data of Borg et al.’ that indicate total sodium

loss from the lower furnace is 9% of that fired with the liquor. Assuming the measured 7-9%
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sodium loss resulted entirely from vaporization, the amount of sulfur or sodium collected as
aerosol was predicted for each experiment. The results of this analysis, presented in Table

18, indicate maximum efficiency of the aerosol collection systems.

In the first experiment the lossés of sulfur and sodium wefé measured, and the
amount of sulfur collected was determined. Because sulfur was in excess, that whiéh dild.not
react with fume species would have been present as SO, gas.’> Assuming thaf all of the
sodium lost from the first two drops became aerosol witﬁ a cpmposiﬁ(;n based on the data in

Table 16, then the amount of lost sulfur as fume could be determined. The collection

efficiency, from this material balance, was 45-99%.

The average maximum collection efficiency of DCT3.22 and DCT3.23 in Table
18 (72%) agrees very well with the predicted value of n = 70% for 0.1-0.5 um"diameter '
particles. If sulfur gas reactions with the filter material was resppnsible for a large amount of
“artifact" production this value would have been much greater. Considering the uncertainties
of the technique, this result indicates that a substantial part of the SO, containing material

was aerosol; however, it does not rule out the possibility of artifact production.

Assuming sodium vaporization occurred independently of drop size, the total
sodium loss for AFT3.8 and AFT3.9 was partitioned into vaporized and shed fractions. Table
18 indicates that between 5 and 7% of the sodium "lost" during drop combustion could be
accounted for on the silver membranes. If 8% of the sodium present in the liquor became
fume, then the collection efficiency would have been 22-29%. It is not certain how much of
the sodium loss was in the form of fume and how much was shed smelt droplets; however, it

is expected that only a fraction of the airborne material was collected on the silver membrane.
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