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Abstract

The main contribution of this thesis is MIST, the Molecular Integration Simula-

tion Toolkit, a lightweight and efficient software library written in C++ which

provides an abstract interface to common Molecular Dynamics codes, enabling

rapid and portable development of new integration schemes for Molecular

Dynamics. The initial release provides plug-in interfaces to NAMD-Lite,

GROMACS, Amber and LAMMPS and includes several standard integration

schemes, a constraint solver, temperature control using Langevin Dynamics,

temperature and pressure control using Nosé-Hoover chains, and five advanced

sampling schemes.

I describe the architecture, functionality and internal details of the library and

the C and Fortran APIs which can be used to interface additional MD codes

to MIST. As an example to future developers, each of the existing plug-ins and

the integrators that are included with MIST are described. Brief instructions for

compilation and use of the library are also given as a reference to users.

The library is designed to be expressive, portable and performant, and I show

via a range of test systems that MIST introduces negligible overheads for

serial, parallel, and GPU-accelerated cases, except for Amber where the native

integrators run directly on the GPU itself, but only run on the CPU in MIST.

The capabilities of MIST for production-quality simulations are demonstrated

through the use of a simulated tempering simulation to study the free energy

landscape of Alanine-12 in both vacuum and detailed solvent conditions.

I also present the evaluation and application of force-field and ab initio Molecular

Dynamics to study the structural properties and behaviour of olivine melts.

Three existing classical potentials for fayalite are tested and found to give

lattice parameters and Radial Distribution Functions in good agreement with

experimental data. For forsterite, lattice parameters at ambient pressure and
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temperature are slightly over-predicted by simulation (similar to other reported

results in the literature). Likewise, higher-than expected thermal expansion

coefficients and heat capacities are obtained from both ab initio and classical

methods. The structure of both the crystal and melt are found to be in good

agreement with experimental data. Several methodological improvements which

could improve the accuracy of melting point determination and the thermal

expansion coefficients are discussed.
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Lay Summary

Molecular Dynamics (MD) is a highly popular and versatile technique for

modelling the behaviour of materials at the nano-scale. In classical MD, atoms are

represented individually as point particles and interact with each other through

simple spring forces - a crude model of a chemical bond between a pair of atoms

- and the electrostatic force which exists between charged particles. For such a

relatively simple model, MD is remarkable successful and has been used to model

materials as diverse as biomolecules, semiconductors, crystalline minerals and

exotic high-pressure phases of hydrogen.

The behaviour of the atoms over a period of time is simulated by taking small

time steps (typically a millionth of a billionth of a second) where the atoms move

before forces are recalculated. Using modern High Performance Computers, it

is possible to simulate systems with up to millions of atoms for long enough

to observe dynamical processes such as phase changes, protein folding and the

deposition of molecules on surfaces. The output of an MD simulation is a series of

snaphots like the frames of a movie, and can be analysed to compute measurable

properties like densities, compressability, and molecular structures which can be

compared with experimental data.

As MD has grown in popularity, a number of ‘production quality’ software

programs have been developed - such as GROMACS, LAMMPS, Amber and

CP2K - which represent many hundreds of person-years of effort adding new

features, testing and improving reliability, and optimising performance. As a

result these programs have become very complex and it is hard for researchers

outside of the core development teams to understand and modify the source code

to experiment with new features. This complexity barrier creates a catch-22

situation where potentially significant new developments are forced to be tested

and demonstrated in simplified, lower-performance and sometimes private ‘home-

grown’ MD programs. As a result, they do not receive wide adoption or attention
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from the MD user community and so there is little demand for them to ever be

implemented in the mainstream ‘production’ codes!

This thesis describes a software library called the Molecular Integration Simula-

tion Toolkit (MIST) which lowers the complexity barrier for the development of

new MD algorithms by providing an abstract interface which can be plugged-in to

a range of the mainstream MD codes. This enables both the ease of development

of ‘home-grown’ codes and the high performance, reliability and support for all

of the surrounding software tools ecosystem of the ‘production’ codes in a single

package.

I demonstrate that MIST achieves both these aims by implementing a range of

recently developed methods for Molecular Dynamics, and providing performance

benchmark data that shows a low performance overhead compared to using an

MD code directly without MIST.
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Chapter 1

Introduction

Molecular Dynamics has proved to be an extraordinarily successful method for

studying dynamical processes as well as computing observables via sampling the

conformational space of complex systems such as macromolecules (see [66] for

a recent review). This success is largely due to advances in four directions;

improving accuracy of force-fields, developing faster and more scalable force

calculations, increasing computational power of high performance computing

systems, and advanced sampling algorithms such as metadynamics [128], replica-

exchange MD [199] and parallel tempering [92]. A number of highly-optimised

MD packages such as NAMD [171], GROMACS [4] and CP2K [127] have been

developed through many hundreds of person-years of effort which implement a

range of different force calculation methods and time stepping schemes, and are

able to run on a range of commodity (CPU clusters and GPUs) and special-

purpose [188] hardware and represent. All of this functionality and performance

comes at a cost in terms of code complexity, and even if an MD code is open

source, in practice it is difficult for researchers to add significant new features

without close collaboration with the main developers of the code.

The result is that the core algorithms used for MD time stepping evolve very

slowly. Typical integration schemes are based on velocity Verlet or leapfrog

integration, combined with one of several common thermo- or baro-stats [20, 102,

147, 164]. Recent innovation has centred on higher level methods for promoting

space exploration [222] or modifying the potential energy surface to lower barriers

between metastable states [91]. I argue that there is “room at the bottom”1 for

1With apologies to Richard P. Feynman.
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innovative methods which modify the core integration step to access larger time

steps and/or improved sampling accuracy (e.g. [49, 63, 81, 132, 133, 154]) which

have not yet been implemented in any widely used ‘production’ MD codes.

The status quo is a catch-22 for applied mathematicians: if new algorithms cannot

be easily incorporated into widely used MD packages, then it is impossible to

demonstrate their benefits on complex systems of practical interest. If such

demonstrations are not achievable, there will be little interest from the MD user

community, and there is no incentive for MD package developers to implement

the new methods; in many cases algorithms are left ‘on the shelf’ for long periods.

This conundrum is what I set out to address by the development of MIST–

the Molecular Integration Simulation Toolkit. MIST is a software library

(available from https://bitbucket.org/extasy-project/mist) which can be

easily interfaced to a variety of MD codes (currently GROMACS [4], Amber [48],

NAMD-Lite [93], LAMMPS [174] and Forcite [30]) and which provides an abstract

interface to the state of the system being modeled. This enables integration

algorithms to be programmed without concern for the complexities of a typical

MD code while only incurring low performance overhead.

Although the term “integrator” is used herein to describe timestepping procedures

for MD, MIST is deliberately not restrictive regarding the types of equations of

motion that can be simulated; many of the algorithms implemented introduce

extended systems to modify dynamics and/or vary the temperature to promote

improved sampling. While MIST currently supports a range of classical MD

codes, the design of MIST is flexible enough that it could also be used for ab

initio MD based on the Born-Oppenheimer approximation.

1.1 Structure of the Thesis

With the entire PhD programme taking eight years in total, it’s not surprising

that there were to be changes of direction along the way. Initially the aim of

the project was the implementation and application of some ab-initio Molecular

Dynamics methods under the guidance of Prof. Graeme Ackland to provide

an atomistic level of explanation for experimental mineral physics results from

group of Dr. Chrystele Sanloup. After a the first year and a half of study, the

experimental co-supervisor moved away and I began collaborating with a group

2
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of biomolecular scientists / biophysicists, applied mathematicians and computer

scientists through the ExTASY (Extensible Toolkit for Advanced Sampling and

analYsis) project. Among the many goals of that collaboration, one was making it

easier to implement new algorithms at scale in existing classical MD codes. Thus

the seed of the idea that eventually grew into MIST was born. With Prof. Ben

Leimkuhler joining as a co-supervisor, the PhD project was refocussed away from

applications of ab-initio MD towards development of a platform for algorithm

developers to rapidly prototype new integration schemes.

The structure of this thesis mirrors the development of the project. Chapter 2

reviews a number of key concepts in Molecular Dynamics (both classical and ab-

initio), techniques for achieving high performance in modern MD codes and a

range of existing software packages that have similar goals to MIST. Chapter 3

describes the underpinning design principles of MIST, the architecture, library

Application Programmer’s Interface (API) and the implementation details, with

aim of providing enough information to allow others to understand and extend

the library in future. It also describes the range of functionality currently

implemented in MIST as a reference to users. Chapter 4 covers the testing,

validation and benchmarking done to ensure the correctness and performance

of MIST. Based on these results, I review the extent to which MIST meets the

design goals set out earlier. An extended description of the application of one

of the algorithms implemented in MIST to an exemplar problem in biophysics

(previously published in [24]) is included in Chapter 5. Chapter 6 covers the

evaluation and application of classical and ab-initio MD to the computation of

bulk properties and structure of olivine melts. While the key questions tackled in

this phase of the project remain unresolved, the early results may prove instructive

for others working in the area. As with any project, there are a number of areas

in which MIST can be further developed, and even used to address some of the

challenges raised in the previous chapter. These are laid out and the whole project

summarised in Chapter 7.
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Chapter 2

Background

This chapter serves to introduce the key concepts which underpin the rest of

the thesis. I review the basic methodology of Molecular Dynamics and its

implementation in both classical force-field and ab-initio varieties and discuss

relevant properties of MD integrators. Techniques for achieving high performance

using modern High Performance Computing hardware are described as they

impact on some of the design choices taken with MIST. Lastly, I review existing

software packages that attempt to address the same, or similar, challenges to

MIST.

2.1 Molecular Dynamics

In addition to measuring the physical properties and structure of materials

through experiments, the use of atomistic simulation as a complementary

approach has grown dramatically in popularity over recent decades. Indeed, over

50% of compute time on ARCHER, the UK National Supercomputer (2013-2020),

was spent on atomistic simulations. Around 30-40% was typically consumed by

ab initio / electronic structure codes such as VASP, CP2K and CASTEP with

the remainder consisting of a range of classical MD codes including GROMACS,

LAMMPS, NAMD and DL POLY. Similar statistics have been reported on other

systems worldwide [113, 192]. Atomistic simulations have been successfully used

to model materials as diverse as high-pressure hydrogen [208], solid-state catalysts

[50], proteins [195] and even whole virii [74].
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As the name suggests, an atomistic simulation models the individual atoms within

a material. Given a method for computing the potential energy (and thus forces)

corresponding to a particular configuration of atoms it can be used to calculate

static and dynamical properties of a system in thermodynamic equilibrium. The

state of the system is represented by a set of variables including particle positions

and velocities which vary over time and mass, charge, species which are typically

fixed for the duration of the simulation. For condensed phase systems, Periodic

Boundary Conditions (PBC) are typically employed, where an individual unit

cell with a relatively small number of atoms are modeled explicitly and stored

and the cell is assumed to be replicated in each dimension to construct an infinite

bulk system. The lattice parameters which describe the unit cell may be fixed or

allowed to vary.

One of the most popular approaches used to compute energies is the classical

atomistic force-field. Here interaction potentials are defined between individual

atoms. In the simplest case these are a function only of the atomic species and

interparticle separation. A simple example is the Lennard-Jones [112] potential,

VL−J = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

where the repulsion which stops atoms overlapping (from Pauli exclusion) is

modeled by the 1/r12 term and the longer-range attractive force (van der Waals

/ dispersion) by the 1/r6 term. In common with all potentials, Lennard-

Jones has some free parameters (ε, σ) which must be fitted to data obtained

from experiment or other more accurate form of calculation. Lennard-Jones is

too simple to model the behaviour of complex materials, and many different

potential models have been developed that combine various pair potentials (e.g.

Buckingham’s V = A exp(−Br) − C
r6

[43], Morse’s V = De(1 − e−a(r−re))2 [155])

with terms depending on interatomic bond angles, and explicit contributions

from electrostatic interaction of charged ions. The electrostatic interaction is

particularly problematic for computer simulations because while the electrostatic

potential drops off as 1/r, its integral over an infinite periodic system diverges. As

a result, various techniques have been developed for splitting the computation of

the electrostatic potential into a short-range part which can be computed directly

and long-range part which is computed in reciprocal space following a Fourier

transform. The strategy was first developed by Ewald [68], and subsequently

improvements (e.g. [67]) are now typically implemented in modern atomistic
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simulation codes. In general, force-fields may contain additional multi-body

terms, and especially in the field of biomolecular simulation a large number of

complex force-fields have been developed (e.g. GROMOS [196], CHARMM [143],

AMBER [55]) and are widely used.

Letting ri represent the position of the ith atom and given a potential energy

U(r0, r1, ..., rn), it is possible to compute an ‘equilibrium’ structure by minimising

energy with respect to the coordinates. This is usually referred to as a relaxation

or geometry optimisation, and makes use of algorithms such as Conjugate

Gradients or Broyden-Fletcher-Goldfarb-Shanno (BFGS) [42, 71, 83, 187] that

find the lowest (local) energy configuration, provided that the initial coordinates

are reasonably close to the minimum and the potential energy surface is smooth.

As a minimum of the potential energy, the resulting structure is the T = 0

limit of the equilibrium solid, since no kinetic energy component is included.

The equivalent problem of identifying minimum free energy structures at a

finite temperature is much more challenging and requires advanced sampling

approaches such as those as described in Section 2.1.3. It is also possible to

include the cell dimensions (or lattice vectors) as variables and minimise the

energy with respect to both the atomic positions and the cell size/shape at a

fixed external pressure.

In addition to static structures, dynamical properties can be evaluated using

Molecular Dynamics. More detail of the theoretical and implementation aspects

of MD can be found in [8, 75], but the essential ideas are presented here. Given

an initial state (particle positions and momenta) of the system at time t0 we can

integrate Newton’s second law r̈i = Fi/mi to obtain the state at time t0+δt. The

subscript i indicates the particle index and so within a timestep each particle’s

position and velocity can be integrated independently, subject to the forces which

have been obtained by differentiating the potential energy with respect to the

particle positions, or in practice evaluated analytically from the force-field. The

time evolution of the particles’ positions and velocities are of course coupled

through the force-field. If this procedure is repeated for many time steps, a

trajectory (or history) of states is obtained. Different algorithms may be used for

the integration, each with different properties and computational cost.

The simplest approach is Euler’s method:

xn+1 = xn + ẋnδt
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However the error in the trajectory is proportional to the step size, and so a

very small timestep is needed to achieve good enough accuracy for practical

calculations. This would be prohibitively expensive computationally, and so

alternatives such as Verlet integration [213] are used in practice. Higher-order

methods following the Runge-Kutta scheme [125] have also been used for MD. The

Runge-Kutta 4th order scheme extends Euler’s method by evaluating forces at

four points per timestep, and achieves a global error (that is the error accumulated

over all the time steps) which is only O(δt4). However, the Verlet scheme is most

commonly preferred since it requires only a single force evaluation per time-step,

but still achieves an error of O(δt2). In addition it is also a symplectic method,

meaning that while the trajectory may deviate from the ‘exact’ trajectory, there is

a well-defined (perturbed) Hamiltonian (see [134], Chapter 5) which is conserved.

Linear and angular momentum are also conserved and it has the desirable

property that the integrator is time-reversible, since the equations of motion

are themselves time-reversible, leading to long-term stability. Although many

integrators are both, it is possible to be symplectic but not time-reversible, for

example the semi-implicit Euler scheme:

vn+1 = vn + v̇nδt

xn+1 = xn + vn+1δt

To calculate observables from a MD trajectory, one must ensure that the system

is in a relevant thermodynamic ensemble. Common ensembles are outlined in

Table 2.1. For simulations which produce results for comparison with experiment,

the NPT ensemble is often used since it corresponds to the experimental

conditions of fixed temperature and pressure. However, the canonical (NVT)

and microcanonical (NVE) ensembles are much simpler to implement and are

still widely used. Various schemes may be used to maintain the temperature

including crude velocity rescaling and Berendsen’s thermostat [20], which do not

generate a true thermodynamic ensemble since kinetic energy fluctuations are

unphysically damped; the methods of Andersen [9] and Nosé-Hoover [160, 161],

where particles are able to exchange kinetic energy with an external heat bath

of a fixed temperature; and Nosé-Hoover chains [147], where a chain of coupled

thermostats is used to preserve ergodicity - the ability of the integrator (given

enough time) to sample the entire phase space of the system.
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Ensemble Abbr. Constants Notes
microcanonical NVE No. Particles, Volume, Total Energy
canonical NVT No. Particles, Volume, Temperature Thermostat required.
isobaric-isothermal NPT No. Particles, Pressure, Temperature Thermo- and baro-stats,

cell volume may change.
grand canonical µVT Chemical Potential, Volume, Temperature Particle exchange with

external reservoir.

Table 2.1 Common thermodynamic ensembles used in MD.

All of the above integrators are deterministic - given a starting state and fixed time

step, they will always product the same trajectory. It is also possible to construct

schemes based on stochastic differential equations (see [135], Section 6.2) such

as Langevin Dynamics. In addition to the force derived from the interatomic

potential, Langevin Dynamics introduces a dissipative drag force and a random

pertubative force acting on each particle independently. Conceptually, this is

related to Brownian Dynamics, where macroscopic particles move within a liquid

medium, experiencing friction and random ‘kicks’ from interactions with the

molecules in the liquid. Clearly this makes no physical sense for a fully atomistic

simulation without implicit solvent as there is no medium! However, if the

intent is not to simulate the detailed Hamiltonian dynamics of the system but

only to calculate observables Langevin Dynamics offers several key advantages.

Technically, none but the simplest systems with a deterministic integrator are

rigorously ergodic and ergodicity can be proven for Langevin Dynamics (see [135],

Section 6.4.4). With careful construction of the perturbative force, the system

will relax to equilibrium at a certain temperature and the NVT ensemble will

be sampled [110], so Langevin Dynamics can be an effective alternative to the

deterministic thermostats described earlier. Finally, the dissipative force damps

out vibrations in the system, potentially allowing larger time steps to be accessed

without suffering from resonances [132].

After the simulation has run for some time and reached an equilibrium state

i.e. observable quantities fluctuate around a mean without long-term drift, then

properties can be calculated. For some observable A in a system of N particles,

the ensemble average is given formally by a probabilistically weighed integral over

the entire phase space of the system:

〈A〉ensemble =
1

N !h3N

∫ ∫
A(pN , rN)ρ(pN , rN)dpNdrN

ρ(pN , rN)) is the probability density function defined over the phase space
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(typically a Boltzmann weighting, where lower energy microstates are more

probable, and hence have a larger weight). If the integration scheme used to

propagate the system in time is ergodic i.e. all regions of the phase space are

accessible, then the Ergodic Hypothesis holds, which states that:

〈A〉time = 〈A〉ensemble

where

〈A〉time = lim
T→∞

1

T

∫ T

0

A(pN(t), rN(t))dt

As a result, the expectation value or ensemble average of any observable (e.g.

energies, structural parameters, lattice constants) can be calculated by averaging

over a sufficiently long trajectory.

Classical MD has been applied successfully to a range of systems including

examples of geophysical interest, relevant to the systems studied in Chapter 6.

Pedone et al [168] constructed a force-field fitted to structural data of binary

oxides and applied it successfully to a wide range of silicate crystals and glasses

at ambient temperature and pressure. Similarly, Guillot and Sator [87] developed

another force-field, fitted directly to structural and density data for silicate melts.

This accurately reproduces the density, heat capacity and expansivity of a range

of such melts at mantle temperatures and zero pressure. The same interatomic

potentials were also used [88] at moderate pressures up to 20 GPa and found to

be in good agreement with relevant experimental data. From the trajectory data

the coordination numbers of various species were computed and it was shown

that aluminium tends to increase in coordination with increasing pressure more

rapidly than silicon.

Despite these successes, there are a number of drawbacks of force-fields. The

first of these is that since the functional form of the potential is fixed and free

parameters in the model are fitted to a particular set of data, all potentials have

a limited transferability, that is if they are applied in conditions vastly different

to those under which the fitting was performed, then unphysical results may

be obtained. For example, Guillot and Sator [88] reported that their potential

performed less well on iron-rich silicates (e.g. fayalite) or high silica content melts

(e.g. Rhyolite). The second drawback is that some force-fields depend explicitly
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on a defined bonding structure between the particles. For example the force-field

described by Walker et al [215] contains an explicit 3-body harmonic potential

constraining the angle between the predefined O-Si-O triplets to the tetrahedral

angle of 109.47°. By construction this prohibits modeling any scenario where

bonds may be broken or formed, for example if polymerisation of the silicate

tetrahedra occurs in the melt via a bridging oxygen. Finally, since particles have

a defined charge and electrons are not included in the model, scenarios involving

charge transfer such as oxidation and bonding may not be simulated. To overcome

these limitations it is necessary to use more accurate a range of more accurate and

(usually) more computationally intensive models are needed where can capture

electronic interactions such as bonding and polarisation and material properties

are emergent, rather than being parameterised.

One such approach are reactive force-fields [138] such as ReaxFF [186] where

the energy is still calculated as the sum of bonded and non-bonded interaction

potentials. However, the bonding structure is computed on-the-fly as a function of

the particle positions, enabling more complex chemistry such as forming of bonds

during chemisorption of molecules on surfaces and catalysis. There also exist

various polarisable force-fields [109, 201] which extend the Core-Shell approach

used in Walker’s potential by attaching dipoles to particles and solving not only

for the energies and forces for a given configuration, but also the self-consistent

set of dipole moments.

Machine Learning (ML) potentials [157] such as [181] and [84] have also recently

gained popularity. These replace the specific functional form of the potential

in classical MD with a neural network which given a set of particle positions

can output energies and forces. The network is typically trained on forces

obtained from ab-initio calculations, analagous to the parameterisation process

of a classical potential. At runtime, calculation of forces is of comparable

cost to a classical force-field. By removing the limition of functional form

ML potentials offer greater transferability, and hybrid methods have also been

developed [137] where an ML potential is complemented by ab-initio forces on-

the-fly for configurations where the ‘confidence’ of the predicted forces is low!

2.1.1 ab initio MD

To accurately model the behaviour of materials down to the level of electrons

requires the use of Quantum Mechanics, where the system is in general described
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by some time-dependent wavefunction:

Ψ(R1,R2, ...,RN , r1, r2, ..., rn, t)

and the dynamics of the system is governed by the Time-Dependent Schrödinger

Equation:

ĤΨ(r, t) = ih̄
∂

∂t
Ψ(r, t)

where Ĥ is the Hamiltonian or total energy operator. Ψ is a function of all

the atomic and electronic coordinates, and no general construction is known, so

approximations must be made. Since nuclei are much more massive than electrons

(typically 3-5 orders of magnitude), and consequently move more slowly, the Born-

Oppenheimer approximation [36] states that we can consider the nuclei as fixed at

some particular instant, and solve the Time-Independent Schrödinger Equation

(TISE) for the electronic system within an external potential created by the

nuclei. Thus we now only need to consider the simplified electronic wavefunction:

Ψ(r1, r2, ..., rn)

then solve the eigenvalue problem:

ĤΨ({r}) = EΨ({r})

and the nuclei can be treated as classical particles. Thus the basic steps in Born-

Oppenheimer Molecular Dynamics (BO-MD) are as follows:

1. Solve the TISE for the electronic system to get a total energy as a function

of the nuclear coordinates.

2. Update the positions of the nuclei by numerical integration, where the

energy of the electronic system acts as a potential and the nuclear forces

are given by:

FI = −∇RI
E({RI})
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3. Go to 1

Within this scheme all of the same integration algorithms, ensembles, ther-

mostats, and analysis methods as for classical molecular dynamics can be applied.

In this work, all ab initio calculations are carried out within the BO-MD

framework. However, an alternative method based on the work of Car and

Parrinello [47] also exists, although it has fallen out of recent use. In this case the

equations of motion directly couple the electronic and ionic systems via fictitious

dynamical variables which by construction propagate the electrons correctly into

the ground state corresponding to the ionic coordinates at the next time-step.

To maintain accuracy a much shorter timestep is typically used compared with

BO-MD, although each step is cheaper since it does not require a full calculation

of the ground state energy at each configuration.

Within the Born-Oppenheimer Approximation we must solve the TISE where the

Hamiltonian consists of the electronic kinetic energy, the electrostatic potential

energy of the electron-nuclei interaction, and the electron-electron interaction:

Ĥ =
[
− 1

2
∇2 + V̂ext({RI}, {ri}) + V̂e−e({ri})

]
Nevertheless, we still need to construct the many-body all-electron wavefunction.

The method of Hartree and Fock [94] used a linear combination of products of

single-particle wavefunctions known as a Slater Determinant. The first practical

implementation of this wavefunction theory was made in the Gaussian code [99],

and scales as O(n4), limiting its use to relatively small systems. Thus further

approximations are still desirable.

In 1964 Hohenberg and Kohn [101] showed that the external potential Vext in the

Hamiltonian is a unique functional of the electron density n(r). This remarkable

fact says that given the density (a 3-dimensional function), we can calculate all

the properties of the system as if we knew the full (3n-dimensional) wavefunction.

Additionally, they also proved that a variational principle applies for the total

energy. If we define the Hamiltonian as a functional of the electronic density

(split into the kinetic, electron-electron and external potential parts), then this

functional is minimised by the electronic density which corresponds to the true

ground-state wavefunction of the system. viz.
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[
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]
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[
n(r)

]
+ U

[
n(r)

]
+ V

[
n(r)

]
, E

[
n′(r)

]
> E0

In the following year Kohn and Sham [117] published a practical scheme

for determining the ground state density. Instead of treating the many-

body wavefunction directly, they considered a set of Kohn-Sham orbitals (or

wavefunctions) corresponding to fictitious, non-interacting electrons moving in

an effective potential given by:

VKS(r) = Vext(r) + VH(n(r)) + VXC(n(r))

Where the External potential is as before, the electron-electron (Hartree)

potential is integrated over the electron density:

VH(r) =

∫
n(r′)

|r− r′|
dr′

and VXC , the exchange-correlation potential is a small, unknown functional which

contains all the electronic interactions which are ignored in the non-interacting

Kohn-Sham scheme. Thus instead of having to solve a Schrödinger equation for

a many-body system, the problem is simplified to solving several single-particle

equations. In metals particularly, the number of single-particle equations needed

is prohibitively large, so a single unit cell with k-point sampling (see e.g. [14])

is typically used in practice. Since the KS potential depends on the electron

density, which itself depends on the potential, a procedure called Self-Consistent

Field (SCF) iteration is performed, where given an initial guess at the density, we

compute the resulting KS potential. The single-particle KS equations are solved:

[
− 1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r)

to obtain the KS orbitals ψi(r) and the resulting electronic density given by:

n(r) =
∑
i

|ψi(r)|2

Due to the variational principle of Hohenberg and Kohn, the SCF procedure will
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eventually converge such that the density is unchanged (within some tolerance, or

machine precision), at which point we can terminate and compute energies, forces

and properties of the system. The SCF procedure and the Kohn-Sham equations

form the cornerstones of Density Functional Theory (DFT) and the method has

seen rapid growth in usage across fields as diverse as solid-state and condensed

matter physics, biosciences, materials chemistry, and chemical engineering.

2.1.2 Implementation: Basis Sets and Psuedopotentials

Within the framework of KS-DFT, a large number of computer programs (nearly

100 in mainstream use according to [2]) have been developed. One of the key

features which differentiates these programs is the implementation choice of Basis

Set used for representing the wavefunctions (or KS-orbitals). The orbitals are

formally defined over all space, but in practice are localised around atoms, and

so the question arises naturally of how they can be stored and operated on in

a computer. Ideally, this representation should be compact in memory, efficient

for computing derivatives and other quantities like the KS Hamiltonian, and

accurate. Note that in addition to being wasteful of memory simply discretising

the orbitals on a global grid does not give accurate enough derivatives for the

kinetic energy term without an extremely fine grid. Typically the wavefunctions

are expanded in a series of some analytic functions, and only the coefficients are

stored i.e. just the set of ci from:

ψ(r) =
∑
i

ciφ(r)

One of the most popular choices of basis set is to use plane-waves which are

particularly convenient for the simulation of periodic solids and are amenable

to parallisisation (see [167] for full discussion). In a plane-wave basis the

wavefunctions are expanded as a Fourier Series and the coefficients of the series

are stored in a regular grid, up to a maximum wave-vector called the plane-

wave cutoff. The Kinetic Energy, Hartree Energy and external Potential Energy

are typically computed in Fourier space, and a Fourier transform is used prior

to computing the Exchange-Correlation Energy, and to evaluate the real-space

density if required. During the SCF procedure the KS equations may be solved

by matrix diagonalisation, at a cost of O(n3), where n is the number of electrons,

and so it is still desirable to reduce n further.
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Other notable alternative basis sets are atom-centred Gaussians. Typically,

fewer basis functions are required than for plane-waves for a given accuracy,

and derivatives, products etc. can be computed analytically. However, because

the basis set depends on the ionic coordinates, ∂ψ
∂ri
6= 0, the Hellman-Feynman

theorem [70] which is normally used to compute ionic forces does not hold:

∂

∂ri
< ψ|H|ψ >6=< ψ|∂H

∂ri
|ψ >

The additional terms in the derivative are termed Pulay forces [177] and must be

accounted for to generate correct dynamics with a Gaussian basis set approach.

It is also possible to represent the orbitals with a direct numerical approximation,

for example on a regular grid with a small enough grid spacing to capture rapid

variations accurately e.g. [156]. These approaches are usually combined with

the Projector Augmented Wave (PAW) [33] or Linearized Augmented Planewave

(LAPW) [193] method which allows the orbitals to be partitioned into an ‘atomic’

part localised to a sphere around each atom, where a fine grid (or other accurate

representation) is used for the orbital, and everywhere else a ‘smooth’ part,

represented by a small number of plane waves, for example. There are many

additional basis sets which are less widely used including wavelets [78], Linear

Muffin-Tin Orbitals (LMTO) [166], and various numerical approaches [34, 103].

The final approximation described here is the ‘frozen core’, that is to say that

since only the valence (outer) electrons contribute to the chemistry of an atom,

we can consider the inner electrons to be fixed and avoid modelling them directly.

Instead we replace the coulombic potential of the nucleus with a pseudopotential,

which represents the screened interaction of the valence electrons with the

nucleus and all the core electrons together. Various approaches to constructing

pseudopotentials are used including Ultra-soft [209], and others which introduce

relativistic effects [15] and non-linear corrections for overlap of core and valence

electron orbitals [142]. As well as reducing the total number of electrons (and

hence the number of KS equations to solve), this has an additional benefit of

removing the sharp peaks in the wavefunctions associated with the core electrons,

and so less basis functions are needed to accurately represent the KS orbitals. The

use of pseudopotentials as well as a plane-wave basis set is implemented in codes

such as CASTEP [52], VASP [122], Quantum Espresso [79], CPMD [1], and many

others.
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2.1.3 Integrators

Whatever appropriate method is chosen to calculate forces, for practical calcu-

lations the choice of integration schemes. As discussed, deterministic integrators

should be symplectic and time reversible - leading to long-term stability of

the calculation - and ideally ergodic (or as close as possible for in practice),

in order to allow accurate observables to the computed. While achieving a

full sampling of a 6N -dimension (N the number of particles) phase space is

impractical given finite compute time, even achieving a good approximation to

it is problematic. Many systems of interest - even simple molecules such as

alanine dipeptide (see e.g. [96]) - are characterised by several local potential

energy minima, separated by large energy barriers. Given that the probability

of a system in the canonical ensemble occupying a microstate with energy E is

proportional to e−E/kBT , at a finite temperature T the expected kinetic energy

fluctuations are of order kBT and so the system is highly unlikely to spontaneously

transition from one minima to another. Intuitively, where many physical or

chemical processes occur on timescales of microseconds or longer and molecular

dynamics operates with timesteps of femtoseconds (to reduce discretisation error),

extremely long calculations [189] are expected to be needed to observe even one

barrier crossing - never mind enough to obtain a well-converged sampling for

calculation observables.

To overcome this limitation, a wide range of so-called enhanced sampling [21]

methods have been developed that enable simulations to cross potential energy

barriers more frequently and unlock the energy landscape of complex systems to

practical calculations. One approach is to modify the potential energy surface

to reduce the effective height of the barrier. Umbrella Sampling [126] constrains

the system via the introduction of a localising potential (the umbrella) to keep

the system from dropping into the nearest minima - after sampling in several

umbrellas along the expected reaction pathway, the free energy profile can be

reconstructed by methods like WHAM [123]. Metadynamics [128] dynamically

updates the potential energy surface by ‘depositing’ additional contributions

to the potential energy that incrementally ‘fill in’ minima as the simulation

progresses until the system spontaneously leaves the minima by crossing the

lowest available barrier. Accelerated MD [91] directly modifies terms in the force-

field (e.g. dihedral angle terms in biomolecular force-fields) to reduce the height

of the barriers.
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Another set of approaches are based on tempering - injecting kinetic energy into

the system by raising the temperature to increase the rate of barrier crossing.

Common schemes include Replica-Exchange MD [199] and Parallel Tempering

[92] where a set of multiple simulations are run at different temperatures and

configurations are periodically swapped. Simulated Tempering [145] extends this

by allowing the temperature of a single simulation to evolve as a dynamical

variable. Similarly to Umbrella sampling, a reweighting scheme is required to

compute observables at a fixed temperature from the set of samples taken from

a range of different temperatures. Recent developments in this area include

Continuous Tempering [81] and Infinite Switch Simulated Tempering [146] both

of which are discussed now implemented in MIST and described in Section 3.3.

A more recent innovation has been the development of adaptive sampling

methods, whereby a number of short simulations are run from a given starting

point e.g. a local minima. After a while, the set of states visited is analysed by

a method such as Markov State Models [173], Principal Component Analysis

[191] or Diffusion Maps [222], and based on the knowledge obtained of the

shape of the free energy landscape a new set of starting points for additional

simulations is selected to promote undersampled regions. These methods are

becoming increasingly popular since running a set of many loosely coupled smaller

simulations makes more efficient use of a parallel computer than running a single

larger simulation [104].

There is also innovation at the level of timestepping algorithms - particularly

in the construction of sympletic schemes for sampling from the canonical and

isobaric-isothermal ensembles which allow for longer timesteps without adversely

affecting configurational averages e.g. [49, 63, 132, 133, 154]. While these

algorithms are all several years old, they have not yet been implemented in

mainstream MD codes. I contend that for the purposes of rapidly developing

and testing new algorithms, the authors typically implement these in home-

grown codes which lack features and performance compared to ‘production’

codes - source code may not even be made available. The algorithms are then

demonstrated on ‘toy’ problems such as small molecules, simple crystalline solids,

perhaps with unrealistic (but easy to implement and fast to compute) force-fields.

As a result of these factors, algorithms languish ‘on the shelf’ without being

applied to real-world, complex systems that would demonstrate their practical

benefits and lead to implementation in mainstream codes.
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2.1.4 Parallelisation

Alongside the growth in usage of MD, all popular MD codes have implemented

some form of parallelisation to harness modern computer hardware to perform

multiple operations simultaneously, enabling simulations to be completed more

rapidly, or larger simulations to be performed with fixed computational resources.

The two key computational tasks which take time in an MD calculation

(neglecting issues such as I/O, although this is also an active area of research

[46, 162, 204]) are the calculation of the forces Fi on each particle, and the time

integration of the particle positions and velocities. For all but the simplest force-

fields the force calculation dominates the runtime, particularly for ab-initio MD

where the cost of the force calculation for n particles could be O(n3) or greater.

Even for classical calculations using short-range cutoffs or summation methods

like Particle-Mesh-Ewald [67] where the cost is O(nlogn) calculating the forces is

usually the performance bottleneck.

Given the forces, time integration is trivially parallelisable over space since there

is no dependency between updates to each particle i - so each processor can

simply compute the position and velocity updates of a sub-set of particles.

However, calculation of the force acting on a particle typically introduces some

data dependency. For example, a simple pair-potential acting within a cutoff-

range rcut calculating the force on particle i:

Fi = − 1

mi

∑
j,rij≤rcut

∂Uij
∂rij

requires knowledge of the positions of all the particles j within the cut-off radius.

In DFT, the per-particle forces are a functional of the electron density, which

depends on the positions of all the particles in the system!

Typically, a choice is made between having the particle data (positions, velocities

etc.) either replicated or decomposed. Replicated data has the advantage that

every processor has access to all the data required to calculate forces but has the

downside that expensive all-to-all communication is required after every time-

step. It also creates a memory bottleneck as the number of particles which can

be stored is limited to the memory of a single processor. Replicated data is most

widely used in ab initio codes where the number of particles is typically less than

1000 and more complex parallelisation schemes are used to decompose the electron
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density, KS orbitals and operator matrices. Most classical MD codes make use of a

data decomposition scheme - either dividing the list of n particles evenly between

processors, or more commonly employing a domain decomposition scheme where

each processor ’owns’ a region of the overall simulation space and stores and

updates the particles that are located in that region. As the simulation progresses,

particles may well move from one region to another, and so the decomposition may

be adjusted periodically via a load-balancing algorithm with the aim of achieving

roughly the same number of particles per processor (a common proxy for the

amount of computational work to be done). Every MD code has subtly different

decomposition and load-balancing schemes, for example LAMMPS supports both

regular 3D ‘brick’ decompositions and irregular decomposition based on Recursive

Coordinate Bisection - and can even load balance systems with different force-

fields per particle [29]! NAMD takes a different approach and divides space

into many small cubic patches (npatches >> nprocessors) and dynamically assigns

patches to processors based on measured load imbalance as the simulation

progresses [170].

OpenMP

Modern HPC systems are typically composed of many 1000s of compute nodes,

connected via a high-speed interconnect. Within a node, memory is shared

between a handful of multi-core processors - 12-64 cores per node is typical.

OpenMP [163] is a standardised language extension for C and Fortran to enable

shared-memory programming that is supported by all major compilers (GCC,

Intel, Cray etc.). OpenMP directives are added to serial code to introduce regions

of thread parallelism, where multiple independent threads operate simultaneously.

Individual pieces of data (variables, arrays etc.) can be marked as shared, in which

case all threads may read or write the data, or private, in which case each thread

has its own copy of the data. OpenMP is most commonly used to implement

loop-level parallelism, where there is no dependency between different iterations

of a loop and so they may be executed concurrently by multiple threads. For

example, a loop performing a simple element-by-element averaging of two arrays

could be parallelised with OpenMP as:
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Listing 2.1: Example of an OpenMP-parallelised loop.

#pragma omp parallel for shared(a,b,c)

for (int i = 0; i < n; i++){

a[i] = 0.5 * (b[i] + c[i]);

}

As a shared-memory programming model, no data decomposition is required, and

so OpenMP has the advantage that it can be added incrementally to accelerate

performance-critical regions of code. On entry to an OpenMP region, threads

are spawned, carry out work in parallel to obtain a speedup and outside of these

regions only a single thread continues execution. The main limitation of OpenMP

is that it can only operate within a single compute node, so can only speed up

performance by (at best) the number of available processing cores on a node.

Further scaling up requires a programming model that can handle distributed

memory.

Recent versions of OpenMP also allow for thread-parallelism on co-processor

devices such as GPUs (see Section 2.1.4).

MPI

To enable a program to scale beyond a single node of an HPC system, a method

of exchanging data across the network is required. MPI [150] is a standardised

Application Programmer’s Interface (API) that is implemented by a number of

open-source and proprietary libraries e.g. OpenMPI, MPICH, Intel MPI, Cray

MPT. In the distributed-memory programming model, each process (running

on a single processor core or set of cores) has its own discrete memory space

and may only exchange data with other processes by explicit calls to the MPI

library. MPI provides functions for point-to-point communication between pairs

of processes and collective communications between many or all processes such

as global reductions or data broadcasts.

In Molecular Dynamics, MPI is most commonly used as part of a domain

decomposition approach. For short-ranged forces it is necessary to access the

positions of nearby particles, some of which may reside in another processor’s

memory. Nearest-neighbour point-to-point communication is typically used every

timestep to update the positions of particles in a ‘halo’ region surrounding the core

domain owned by each processor. The size of the halo is set large enough so that

the positions of all particles which are needed for the force calculation (typically
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those within a cut-off distance) are communicated. Global communication is

minimised and used only for operations such as computing the total energy or

other global quantities like pressure.

MPI may be combined with OpenMP in what is referred to as mixed-mode

parallelisation, where multiple OpenMP threads are used within a node and MPI

is used to communicate between nodes. This can provide better overall scalability

in some cases, at a cost of increased code complexity [23].

GPUs

Since the late 2000s, Graphical Processing Units (GPUs) have become a viable

option to accelerate the performance of HPC applications. A comprehensive

overview of the GPU architecture can be found in [178], but there are two key

features that are relevant for MD codes. Since GPUs were originally designed

for carrying out the simple vector operations necessary to render 3D graphics,

they are highly efficient for cases when there are many 1000s of identical and

independent floating-point operations to be carried out over an array of data.

In contrast they are not well suited where this level of data parallelism is

not available, or where the algorithm requires complex branching and logic.

Secondly, the GPU operates as a co-processor with its own independent memory,

connected to the main CPU via a communication bus. With GPU memory

achieving bandwidth in the 100s of GB/s, communication between the CPU

and GPU is much slower, typically 10s of GB/s. As a result code developers

have a choice of either moving the entire calculation (including parts which are

not well suited to the GPU architecture) to the GPU in order to avoid the

communication bottleneck between the CPU and GPU, or make use of the CPU

and the GPU in concert, each running separate parts of the calculation, but

having to construct complex buffering schemes to minimise the effect of CPU-

GPU communication. Codes like AMBER [90, 183] choose the former approach

and reach very high efficiency within a single compute node. However, because

inter-node communication using MPI requires data to first be moved across the

bus from the GPU memory to the CPU memory, across the network to another

CPU’s memory and finally back over the bus to the GPU this would destroy

performance and so is not even implemented. Other codes such as GROMACS

[4] and LAMMPS [40, 41] choose the latter approach which typically results in

lower performance on an single node but greater maximum performance on large
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HPC systems with many GPU-accelerated nodes.

2.2 Related Software Packages

Several software packages exist that either have a similar architecture to MIST,

or attempt to address a similar challenge.

PLUMED [205], is similar in design to MIST in that it is a software library that

interfaces to a range of MD codes via API calls (which may be inserted using

source-code patches). While PLUMED is widely used and at present supports

many more MD codes than MIST, it only provides functionality to modify or bias

the calculated MD forces and so does not provide read/write access to the atomic

positions and velocities. Thus, it is less flexible than MIST and facilitates a much

smaller set of MD algorithms. However, because PLUMED restricts itself to a

smaller class of algorithms it provides a very straightforward scripting interface,

which makes it easy to modify existing algorithms and develop new ones.

A simplified MD program such as NAMD-Lite [93] or MINDY [89] removes

much of the complexity of a production MD code, making it easy to modify.

However, this results in a loss of functionality (e.g. forcefield support, analysis

tools, properties calculations) and performance–restricting the scale and relevance

of problems which can be tackled. Many similar simple MD codes exist (e.g.

[6, 111, 130, 198]), few having a user-based beyond the immediate research group

of the developer. So while it is straightforward to implement new algorithms in

these codes, they do little to address the adoption of new methods by the wider

MD user community

OpenMM [65] is a toolbox for building MD applications which is designed to

be extensible at the source-code level, while being portable to a range of CPU

and GPU hardware. The CustomIntegrator interface is flexible and provides

a Python API to allow declaration of (for example) variables which should be

computed for each degree of freedom. However, I argue that this API approach

results in code which is less clear and intuitive than the way an integrator is

specified in MIST. Similarly, LAMMPS [174] provides an easily extensible object-

oriented interface for implementing new integration algorithms. In particular,

the concept of a fix as a composable object which is applied according to

user-specified rules e.g. frequency, group of atoms is very useful for making
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modification to existing algorithms. However, one aim of MIST is that the

mathematical integration algorithm framework is independent of the MD engine

(which takes care of force-field evaluation with periodic boundary conditions,

etc.); this portability between codes without having to rewrite any code, enables

comparison and cross-validation of results using alternative molecular dynamics

codes. Ultimately MIST offers improved interoperability with a broad range of

existing codes and force-fields.

The Atomic Simulation Environment (ASE) [129] provides a high-level Python

framework for setting up atomistic simulations, running and analysing calcula-

tions. It couples to a range of software packages for evaluating forces - both

classical and ab-initio - so can be used for development of new integrators. While

the performance impact of calling between Python and native code at each time

step is expected to be slightly (but perhaps not noticably) higher than using

MIST, I argue that ASE is aimed primarily at developers or at least code-savvy

users who are comfortable with scripting their calculations. Similar behaviour

is also expected from packages like i-Pi [114] which communicate between the

calculation driver and the force evaluation engine over TCP sockets. MIST also

provides a high-level interface for integrator developers (in C++ rather than

Python), but still retains the familiar input-file driven monolothic execution

model that the majority of MD users are more familiar with.
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Chapter 3

MIST Library Design and

Implementation

In order to address the unmet need for a software package that allows new

integrators to be rapidly implemented and tested at scale (see Section 2.1.3) I

have developed MIST, the Molecular Integration Simulation Toolkit. As the name

suggests, MIST is a software library that provides a set of tools to enable new

integration algorithms to be developed for molecular simulations. This chapter

describes the key principles that underpin the design of the software, outlines

the main architectural elements of the library, and covers in detail relevant

implementation details. Of course, software development is an iterative process

but this thesis presents the library in its final form. A chronological view of

development can be observed in [24–27].

3.1 Design Principles

The MIST library is designed with three key principles in mind:

• Expressiveness: MIST must provide a level of abstraction that is

sufficiently simple to make writing new algorithms quick and easy, hiding

as much as possible the complexity associated with modern MD codes.

Developers should be able to write in a syntax that is a close as possible

to the mathematics, with as few restrictions as possible on what can be

implemented.
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• Performance: in order to allow algorithms to be tested on relevant-

sized problems with realistic force-fields in a reasonable amount of time,

MIST must leverage the highly optimised force evaluation routines and

parallelisation schemes implemented in mainstream MD packages. This

implies that the abstraction that is presented to integrator developers must

be general enough to be implemented on top of any arbitrary existing MD

code with a low performance overhead.

• Portability: to allow for wide uptake of new algorithms, the library must

be compatible with a range of established MD software packages. The

abstraction presented to the developer should be completely independent

of any particular MD code, enabling a write once, run anywhere approach

for new integrators. Running a MIST integrator with any ‘host’ MD code

should make use of the same input and output formats, with minimal

changes required to select and configure the algorithm.

The extent to which MIST successfully addresses these principles is revisited in

section 4.4.

To provide a framework within which these principles can be balanced, I chose to

develop MIST as a C++ library. As a compiled language, while the performance

benefits over scripting languages such as Python are expected to be relatively

small, it makes coupling with existing MD codes (typically written in C, C++ or

Fortran) simpler - for example interoperating on shared data structures with low

overhead. Some modern codes such as LAMMPS have full Python APIs, but this

is by no means the norm. Object orientation makes it straightforward to develop

abstract representations of the state of the system, with concrete implementations

for specific MD codes.

The key components of the MIST library are shown in Figure 3.1 and described

in detail in the following sections:

• A library API (Application Programmer’s Interface) that facilitates data

and control flow transfer between the host code and the MIST library. This

API would be used by any developer adding support for MIST into their

own MD code.

• A C++ System class providing an abstract representation of the state of the

system being simulated. This is the interface which integrator developers
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Figure 3.1 Schematic representation of the main components of the MIST
library.

use to access and modify system state. Adaptor subclasses provide an

implementation for each supported MD code, using data pointers registered

via the library API to access and modify the system state.

• A set of sample Integrators, which can be selected by the user to perform

time integration, independent of the choice of MD code.

• A set of source-code patches or extensions which add MIST library API calls

into a set of supported host codes. At time of writing these are LAMMPS,

GROMACS, Amber, NAMD-Lite, and Forcite.

3.2 MIST System

The conceptual model of the state of the system is deliberately very simple. A set

of n point particles is defined and labeled 0..n− 1, where n is assumed to remain

fixed for the duration of the simulation. Each particle has a set of properties:

position, velocity, mass, kind (atomic species, typically) and force (the force

acting on the particle). In addition, there are several global properties, such as
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the cell lattice vectors (if periodic boundary conditions are employed), the total

potential energy, and the pressure. These properties fall into three categories:

dynamical variables, which may be updated at each timestep by the integrator;

read-only data, which are unchanged throughout the simulation; and derived

values, which are functions of the other two sets of properties. For example, the

particle positions are dynamical variables, the kind of the particle is read-only

data, and the force on each particle is a function of the set of particle positions and

kinds. All of this state is encapsulated as a C++ System class. For the dynamical

variables, accessor (e.g. GetPosition()) and mutator (e.g. SetPosition()

methods are provided. For read-only data and derived values only accessors

are provided (e.g. GetForce() and GetPressure()). All real-number variables

are represented in double precision through the System accessors, irrespective of

the precision of the underlying data from the host MD code.

Evaluation of forces is treated as a black-box, and a method UpdateForces() is

provided to request the forces on each particle to be updated (usually the most

expensive operation in an MD simulation). Access to a simple representation of

the molecular topology is also provided: a set of b bonds labelled 0..b− 1, where

each bond consists of a pair of particle indices and a fixed length, encapsulated

as a lightweight Bond object.

Most MD codes include some form of parallelisation to improve performance. For

shared-memory or GPU parallelisation, all of the particles exist within a single

address space. In this case a single instance of the MIST System is sufficient

to represent the entire state of the system. For distributed memory parallelism,

given a set of p processes, it is assumed that the n particles are divided into

p subsets of size n0..np−1, where
p−1∑
i=0

ni = n. MIST provides two functions to

obtain the number of particles: GetNumParticles() which returns the number

ni of particles local to the calling process i and can be used e.g. for looping

over all local particles, and GetTotalNumParticles() which returns the global

number of particles n and get be used e.g. for normalisation or degrees-of-

freedom calculations. As the simulation progresses and particles move around

the simulation space, it is common for MD codes to change the decomposition

in order to maintain a good load-balance of work across processes. The only

restriction MIST imposes is that the decomposition does not change within the

scope of a single call to MIST Step, but may change from one step to the next -

in particular when control is passed back to the host code to compute updated

forces, the code is guaranteed not to change the decomposition. Thus integrator
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developers may assume that the number or ordering of particles does not change

within the scope of a single Step(), but should not cache any data related to the

particles between subsequent calls.

As an abstraction, the System provides everything that is needed to implement

an integrator (see Section 3.3). However, since the actual data represented by the

System resides in the host MD code’s data structures, a code-specific adaptor is

required to implement the MD-code-independent System methods using the data

structures present in a particular MD code. The choice of MD code is made at

compile-time via arguments to the configure script used to drive MIST’s build

process. For simplicity and performance, MIST is provided with access to the

raw data structures in an MD code through pointers registered with MIST by the

host MD code. This allows the library API (see Section 3.4) to remain completely

code-agnostic, and the details of how those pointers are interpreted to yield useful

data is encapsulated with the code-specific System adaptor classes. For example,

GROMACS (by default) stores data as arrays of single-precision floating point

whereas Amber and NAMD-Lite use double-precision, and GROMACS stores the

inverse masses of particles, rather than the masses themselves. These differences

are hidden from the integrator by the System abstraction. Differences in units

systems are also abstracted, as discussed in Section 3.4.2.

3.3 Integrators

In MIST, an Integrator is an abstract class which has a single method which

must be implemented by any sub-class: void Step(double dt), as the name

suggests, is a function which implements the time integration of the system

state from t to t + dt according to some algorithm. To add a new integration

algorithms to the library, a developer needs only to create a new class which

inherits from Integrator and implements the Step() method. A number of

convenience functions are also included in the base class which simplify coding,

for example a velocity Verlet integrator for the NVE ensemble (see Section 3.3.1)

is as simple as:
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Listing 3.1: Implementation of a velocity Verlet integrator.

void VerletIntegrator ::Step(double dt)

{

// Velocity half -step

VelocityStep (0.5 * dt);

// Position full step

PositionStep(dt);

system ->UpdateForces ();

// Velocity half -step

VelocityStep (0.5 * dt);

}

More complex algorithms can be implemented by directly updating individual

particle properties using accessor methods of the System class. For example,

the stochastic part of the Langevin dynamics integrator (Section 3.3.2) is

implemented as (c1 and c3 are double precision floating-point constants, v is

a variable of the lightweight Vector3 type, and rnd[tid] is a (thread-local)

instance of MIST’s random number generator):

Listing 3.2: Example of a more complex velocity update - Langevin Dynamics.

for (int i = 0; i < system ->GetNumParticles (); i++)

{

v = system ->GetVelocity(i);

sqrtinvm = system ->GetInverseSqrtMass(i); // 1/sqrt(m)

v.x = c1 * v.x + sqrtinvm * c3 * rnd[tid]->random_gaussian ();

v.y = c1 * v.y + sqrtinvm * c3 * rnd[tid]->random_gaussian ();

v.z = c1 * v.z + sqrtinvm * c3 * rnd[tid]->random_gaussian ();

system ->SetVelocity(i, v);

}

Some integrators make specific requirements of the host code, which for the sake

of efficiency can be turned off if not needed. For example, most MD codes do not

compute the potential energy at every step, since only the forces are required for

most integration schemes and computing the total energy in a parallel calculation

requires an expensive global communication. However, some integrators such as

the tempering schemes (see Section 3.3.6) need the potential energy updated at

every time step. MIST defines a set of ‘feature flags’ that are used to signal any

special requirements that the integrator might place on the host code, such as

MIST FEATURE REQUIRES ENERGY WITH FORCES for the aforementioned example,

or MIST FEATURE FORCE COMPONENTS if access to individual components of the

force-field is required. This allows integrators to be coded quite generally and

functionality be added incrementally to the MD code adaptors, with a check
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Table 3.1 MIST integrator feature flags.

Flag
(MIST FEATURE *)

Description

NONE Default: no special features required.
FORCE COMPONENTS The Integrator requires access to individual

components of the per-particle forces. MIST
defines the total force F acting on a particle as the
sum of Fbond (2-body bonded term), Fbend (3-body
angular term), Fdihedral (torsional forces), Fimproper
(forces typically used to keep planar molecules
flat), and Fnonbonded (all other contributions).

POS VEL NO OFFSET At the start if the timestep all state variables are
assumed to be set to their value at time t.

POS VEL OFFSET PLUS

HALF DT

At the start of the timestep the velocities are
assumed to be set to their value at time t + dt/2
i.e. half a step ahead of the positions.

REQUIRES ENERGY

WITH FORCES

The integrator requires that during a call to
UpdateForces(), the potential energy is also
updated as it will be read by MIST.

MODIFIES CELL The integrator may modify the lattice vectors.
REQUIRES PRESSURE

WITH FORCES

The integrator requires that during a call to
UpdateForces(), the (scalar) pressure is also
updated as it will be read by MIST.

performed at startup to see if the features of the selected integrator are supported

by the code. The full list of feature flags are shown in table 3.1.

Integrators may be configured by parameters read from an input file. When

an Integrator is constructed in MIST, it is passed a Param data structure

which can be interrogated to obtain any parameters set by the user. If these

are not available, the integrator should provide some reasonable defaults. For

example, an NPT integrator might default to a temperature of 300K and

pressure of 1 Atmosphere. The full list of integrators and possible parameters

(including default values and units) is available online at https://bitbucket.

org/extasy-project/mist/wiki/MIST%20Integrators. Each integrator is de-

scribed in detail in the following subsections, highlighting both the functionality

available to users, but also illustrating implementation details for the benefit of

future integrator developers.
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3.3.1 Verlet

Verlet’s method is probably the most common integration algorithm for Molecular

Dynamics and is implemented in almost all major MD codes in some form. It

requires only a single force evaluation per timestep, needs no additional storage

beyond the state variables being integrated, and has the desirable properties of

being both symplectic and time-reversible. With a discretisation error of O(δt2)

stable integration can be achieved with moderate timesteps (typically 1fs for most

atomistic systems) and so is well suited for long MD runs where precise dynamics

are desired. As a symplectic integrator of a Hamiltonian system, without any

modification to the integrator the total energy is conserved and so Verlet’s method

samples the microcanonical (NVE) ensemble.

Velocity Verlet

MIST’s Velocity Verlet integrator is implemented in the VerletIntegrator class

and is selected by the integrator verlet input keyword. As an NVE integrator,

there are no additional parameters that can be set by the user, except for

configuration of the constraint solver, if required (see Section 3.3.8).

Verlet Leapfrog

Most integrators advance the entire state of the system from time t to t+dt. How-

ever, a class of algorithms such as Verlet integration in the ‘leapfrog’ formulation

operate assuming the velocities to be offset by dt/2 from the positions at the start

of each step. This offers a very small computational saving over the ‘velocity’

formulation since only a single (full-step) velocity update is required at each

timestep rather than two (half-step) updated. In MIST, such an integrator must

be labeled with the ‘feature flag’ MIST FEATURE POS VEL OFFSET PLUS HALF DT,

to ensure that account of this is taken by the host MD code (for example,

computing the kinetic energy at time t based on averages over the two nearest

known velocities at t − dt/2 and t + dt/2). In practice, since the computational

cost of the updates is usually vanishingly small compared to the force evaluation,

these complexities are avoided by using the ‘velocity’ formulation. However, this

integrator is included in MIST for validation against codes (including Amber)

which use Verlet Leapfrog.
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The Verlet Leapfrog integrator is implemented in the LeapfrogIntegrator class

and is selected by the integrator leapfrog input keyword. There are no

additional parameters.

3.3.2 Langevin Dynamics

In contrast to Verlet integration which solves the Hamiltonian equations of motion

to obtain a dynamical trajectory, if following an exact trajectory is not required

because the goal of a calculation is to compute observables via ensemble averages

then the problem can be re-cast into a Langevin formulation [136], where the

equations of motion for each particle become stochastic, including a dissipative

(drag) force, and random perturbative force η constructed as shown in Section

3.4.2 to effectively thermostat the system at a particular temperature:

m
d2ri
dt2

= F ({r})− γ dri
dt

+ η(t)

As shown in [132], this formulation has two key advantages - the random

perturbation ensures it is ergodic, guaranteeing a complete sampling of the phase

space and the drag force damps resonances that could destroy the stability of

deterministic methods due to damping of resonances which. With a careful

construction, this can allow for longer timesteps than the stability limit of Verlet

integration δt < ω/2 (where ω is the natural frequency of the fastest oscillator in

the system) without affecting ensemble averages.

The LangevinIntegrator in MIST uses the BAOAB and ABOBA splitting meth-

ods which are derived in [131] and shown to give much better performance than

a range of other constructions, sometimes referred to as ‘Langevin Thermostats’.

The integrator is selected by the integrator langevin input keyword, and the

temperature and langfriction are exposed to the user as parameters. By

default, a seed for the random number generator is chosen based on the current

timestamp, however for reproducibility this can also be set by a parameter seed

if desired.
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3.3.3 Nose-Hoover NPT

Among a wide variety of schemes for temperature control, the Nosé-Hoover

method [102, 160, 161] is popular for a wide range of systems as it is a

deterministic method so preserves ‘exact’ dynamics without the unphysical

behaviour associated with methods which directly rescale velocities such as the

Andersen[9] and Berendsen[20]. Nosé-Hoover is an example of an ‘extended-

system’ approach where additional dynamical variables are added to the system.

In this case a ‘heat bath’ at fixed temperature which is coupled to the particles

in the system and exchanges energy until the system reaches equilibrium at the

desired temperature. While the original method was shown not to be ergodic

[175], ergodicity may be recovered by the addition of a chain (typically 3) of

interlinked thermostats [147].

The NoseHooverIntegrator in MIST provides an example of how to implement

an extended system scheme. In addition to temperature control using Nosé-

Hoover chains, pressure control is achieved using a ‘barostat’ along the lines

of the Parrinello-Rahman [164, 165] approach. As there are a wide variety of

possible implementation choices, for the sake of simplicity while demonstrating

the capability of MIST, I implemented a barostat which allows for isotropic

expansion or contraction of the simulation cell following the equations of motion

described in [190, 207]. In particular, this requires only a scalar pressure rather

than a 3-dimensional tensor quantity needed for a fully flexible cell.

Implementation in MIST is straightforward - the integrator declares the MIST -

FEATURE MODIFIES CELL and MIST FEATURE REQUIRES PRESSURE WITH FORCES flags,

to indicate that it will call SetCell() and GetPressure() respectively. The

extended state variables - the thermostat chain, and the barostat and its

associated chain - are stored as member variables so they are preserved between

timesteps, and the ordering of update steps is as follows. Also shown is the detail

of the isotropic rescaling update:
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Listing 3.3: Implementation of a Nose-Hoover NPT integrator.

void NoseHooverIntegrator ::Step(double dt)

{

// Barostat NH chain half -step & scale barostat velocity

BarostatNHC (0.5 * dt);

// Thermostat half -step & scale particle velocity

Thermostat (0.5 * dt);

// Barostat half -step

BarostatVelocityStep (0.5 * dt);

BarostatRescaleVelocities (0.5 * dt);

// Velocity half -step

VelocityStep (0.5 * dt);

// Box rescale half -step

RescaleCell(exp(eps_v * 0.5 * dt));

// Position full step

PositionStep(dt);

// Box rescale half -step

RescaleCell(exp(eps_v * 0.5 * dt));

system ->UpdateForces ();

// Velocity half -step

VelocityStep (0.5 * dt);

// Barostat half -step

BarostatRescaleVelocities (0.5 * dt);

BarostatVelocityStep (0.5 * dt);

// Thermostat half -step & scale particle velocity

Thermostat (0.5 * dt);

// Barostat NH chain half -step & scale barostat velocity

BarostatNHC (0.5 * dt);

}

void NoseHooverIntegrator :: RescaleCell(double scale)

{

Vector3 a, b, c;

system ->GetCell (&a, &b, &c);

system ->SetCell(a*scale , b*scale , c*scale );

}

To simplify the implementation of integrators which modify the cell, the

SetCell() method used to update the lattice vectors performs a rescaling of

the particle positions so they retain the same fractional coordinates the new cell.

Without loss of generality, the first lattice vector is enforced to lie along the x
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axis and the second lattice vector to lie in the xy plane i.e. the box matrix is

upper-triangular, in order to simplify integration with MD codes, many of which

do not support fully general cells. With the box matrix h defined as the 3x3

matrix formed of the lattice column vectors a, b and c:

h ≡

a1 b1 c1

0 b2 c2

0 0 c3


Then the cell update simply becomes:

1. Transform particle coordinates to fractional coordinates by r′i = h−1ri

2. Update lattice vectors and rebuild box matrix

3. Transform particle coordinates into new box by ri = hr′i

MIST’s implementation also includes as an option the modification proposed in

[5] to quench cell vibrations during equilibriation of crystalline systems. This

modification simply removes kinetic energy from the box vibration by applying

the following test at each step (where ε̇ is the velocity of the box degree of freedom

and ε̈ the corresponding acceleration):

If ε̇.ε̈ < 0 Then ε̇ = 0

The effect of this modification on the dynamics of the system is discussed in

Section 4.2.

The Nosé-Hoover NPT integrator is selected by the integrator npt input

keyword. The behaviour of the thermostat can be controlled by the parameters

temperature, temp chain length and temp nsteps relax (which controls the

equilibriation timescale of the thermostat by setting the thermostat mass). Sim-

ilarly, the parameters pressure, press chain length and press nsteps relax

control the barostat. The Ackland box-quench modification is disabled by default

and can be enabled by setting box quench true.

35



3.3.4 Runge-Kutta 4th Order

As discussed in Section 2.1, Runge-Kutta integration schemes are not usually

preferred for MD. However, to illustrate that it is possible to implement

integrators with MIST which require multiple force-evaluations per timestep

I included the RK4Integrator following the ‘classic’ 4th-order algorithm from

[125] to sample the NVE ensemble with discretisation error O(δt4). The

implementation is only notable in that the mid-step positions and velocities

must be stored as temporary variables, thus the total storage requirements of the

integrator are quite large - with 10× nparticles additional double-precision values

allocated by MIST. Thus this integrator serves as an additional example of how to

manage temporary storage in MIST. Any array temporaries are allocated on the

first entry to the Step() method and must be deallocated in the class destructor.

Nevertheless, the core of the update step is rather simple:
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Listing 3.4: Implementation of a Runge-Kutta 4th order integrator.

// Store original Positions and Velocities

for (i = 0; i < system ->GetNumParticles (); i++)

{

oldPos[i] = system ->GetPosition(i);

oldVel[i] = system ->GetVelocity(i);

}

// Compute k1 and l1 based on initial forces

for (i = 0; i < system ->GetNumParticles (); i++)

{

m_inv = system ->GetInverseMass(i);

k1[i] = system ->GetForce(i) * dt * m_inv;

l1[i] = oldVel[i] * dt;

system ->SetPosition(i, oldPos[i] + l1[i] * 0.5);

}

// Compute k2 and l2 based on first estimate to the forces at t+dt/2

system ->UpdateForces ();

for (i = 0; i < system ->GetNumParticles (); i++)

{

m_inv = system ->GetInverseMass(i);

k2[i] = system ->GetForce(i) * dt * m_inv;

l2[i] = (oldVel[i] + k1[i] * 0.5) * dt;

system ->SetPosition(i, oldPos[i] + l2[i] * 0.5);

}

// Compute k3 and l3 based on second estimate to the forces at t+dt/2

system ->UpdateForces ();

for (i = 0; i < system ->GetNumParticles (); i++)

{

m_inv = system ->GetInverseMass(i);

k3[i] = system ->GetForce(i) * dt * m_inv;

l3[i] = (oldVel[i] + k2[i] * 0.5) * dt;

system ->SetPosition(i, oldPos[i] + l3[i]);

}

// Compute k4 and l4 based on estimate to the forces at t+dt

// and set final positions and velocities

system ->UpdateForces ();

for (i = 0; i < system ->GetNumParticles (); i++)

{

m_inv = system ->GetInverseMass(i);

k4[i] = system ->GetForce(i) * dt * m_inv;

l4[i] = (oldVel[i] + k3[i]) * dt;

system ->SetPosition(

i, oldPos[i] + (l1[i] + l2[i] * 2 + l3[i] * 2 + l4[i]) * one_sixth );

system ->SetVelocity(

i, oldVel[i] + (k1[i] + k2[i] * 2 + k3[i] * 2 + k4[i]) * one_sixth );

}

system ->UpdateForces ();
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Making the assumption that the force depends only on the particle positions and

is not a function of the velocities, there is no need to call setVelocity() until

the end of the step. Compared to previous integrators, the loop over particles is

made explicit rather than using the convenience functions PositionStep() and

VelocityStep() to make it clear when positions are updated in the host code,

and which values are temporaries that are only required in the integrator.

The integrator is selected by the integrator rk4 input keyword and takes no

additional parameters.

3.3.5 Yoshida Symplectic Integrators

An alternative approach to constructing integrators for Hamiltonian systems with

small errors was derived in [219]. While these schemes require multiple force

evaluations per timestep, they have the advantage of being symplectic, leading to

long-time stability, and require no additional temporary variables. The fourth-

order scheme (discretisation error O(δt4)), is easily implemented as a series of

three Verlet-like steps with scaled δt:

Listing 3.5: Implementation of a Yoshida 4th order integrator.

double d[3] = {1.351207192 , -1.702414384 , 1.351207192};

for (int j = 0; j < 3; j++)

{

// Velocity half -step

VelocityStep (0.5 * dt * d[j]);

// Position full step

PositionStep(dt * d[j]);

system ->UpdateForces ();

// Velocity half -step

VelocityStep (0.5 * dt * d[j]);

}

The integrator is selected by the integrator yoshida4 input keyword and takes

no additional parameters as it samples the NVE ensemble.

As with the 4th-order scheme (Listing 3.5), an integrator with discretisation error

O(δt8) can be constructed from fifteen sub-steps, using the parameters given in

[219]. This integrator is selected by the integrator yoshida8 input keyword

and likewise, takes no additional parameters.
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3.3.6 Advanced Sampling Algorithms

As discussed in Section 2.1.3, in order to rapidly sample the phase-space of

complex systems a range of schemes have been developed to enable simulations

to more rapidly escape from one local minima of the potential energy surface,

while still retaining the ability to calculate ensemble averages. These typically

either modify the force-field (e.g. Metadynamics [128] or Accelerated Molecular

Dynamics [91]) to reduce barrier heights or ‘push’ the system away from already

explored regions of space, or increase the rate of exploration by increasing the

temperature of (parts of) the system, giving enough energy to cross barriers. A

range of such algorithms in MIST are implemented in MIST, some of which have

been developed by collaborators, and others which are adaptions of previously

published algorithms.

Continuous Tempering

Continuous Tempering is an extended-variable scheme developed and imple-

mented independently in MIST by Gobbo and Leimkuhler [81] and which I

subsequently refactored and improved, including adding parallelisation. Briefly,

the algorithm introduces an additional degree of freedom ξ coupled to the

potential energy by a coupling function f(ξ):

f(ξ) = 0, |ξ| < ∆,

f(ξ) = Sf

[
3

(
|ξ| −∆

∆′ −∆

)2

− 2

(
|ξ| −∆

∆′ −∆

)3
]
,∆ < |ξ| < ∆,

f(ξ) = Sf , |ξ| > ∆′

where Sf is chosen so as to set a maximum effective temperature.

Metadynamics is used to achieve a uniformly distributed sampling of ξ. De-

pending on the choice of ∆ and ∆′, the system spends approximately 1/3 of the

time in the unperturbed region |ξ| < ∆ where f(ξ) = 0 and the unperturbed

system behaviour is recovered. Configurations selected from this sub-set are

representative of the canonical ensemble and can be used without having to post-

process the simulation results with any complex reweighting schemes to obtain
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free energies and other observables at the physical temperature.

The ContinuousTempering implementation in MIST is closely based on the

Langevin BAOAB integrator (Section 3.3.2), and indeed is a sub-class of the

LangevinIntegrator class to avoid code duplication. In addition to the

parameters inherited from the parent class, there are parameters controlling

both the coupling function (temp fact, delta and delta2) and the dynam-

ics of the extended variables (hills-height, hills-width, metadyn pace,

langfriction xi and mass xi). The integrator is selected using the input

keyword integrator tempering.

TAMD

This integrator, developed by Ralf Banisch is closely based on the extended-

variable formulation of Temperature-Accelerated MD [144] described in [51]. The

implementation is designed for sampling the free energy surface of a biomolecular

system such as alanine dipeptide, where the free energy surface known to be well

described by two collective variables associated with the ‘Ramachandran angles’

Φ and Ψ - the two backbone dihedral angles either side of the central carbon atom.

Two additional degrees of freedom are defined with large associated masses and

a high (TAMD) temperature which are coupled to the dihedral angles themselves

by stiff harmonic springs. Unlike the original versions of the algorithm which

used deterministic integrators, here the dynamics of both the molecular system

and the extended system are propagated using the Langevin BAOAB scheme

(Section 3.3.2) at their respective temperatures. So the order of updates is as

follows:

1. Half step particle velocities (B)

2. Correction to particle velocities due to additional DOFs

3. Half step extended system velocities (B)

4. Half step particle positions (A)

5. Half step extended system positions (A)

6. Apply drag and perturbation to particle velocities at system temperature

(O)
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7. Apply drag and perturbation to extended system velocities at TAMD

temperature (O)

8. Half step particle positions (A)

9. Half step extended system positions (A)

10. Update forces on particles

11. Calculate forces on extended system

12. Half step particle velocities (B)

13. Correction to particle velocities due to additional DOFs

14. Half step extended system velocities (B)

The TAMD integrator is selected using the input keyword integrator tamd. In

addition to parameters inherited from the LangevinIntegrator, the integrator

requires a corresponding pair of tamd temp and tamd friction parameters to

control the integration of the extended system, tamd mass and tamd kappa define

the mass of the extended system variables and the strength of the coupling

respectively and a list of indices phi1...phi4 and psi1...psi4 define the sets

of particles which are used to compute the dihedral angles. The forces on the

extended variables are written to file every tamd save freq for post-processing.

Continuous Tempering + TAMD

One of the goals of MIST was to make it easy to rapidly develop and test new

algorithms. This scheme, developed by Ralf Banisch, is a novel combination of the

previous two methods. There are a total of three addition variables introduced

- the two coupled to Φ and Ψ (following the TAMD implementation) and the ξ

from Continuous Tempering. Continuous Tempering is applied to the dihedral

degrees of freedom only, with the coupling function f(ξ) acting as a scaling factor.

The sequence of updates at each timestep is formed by the interleaving of the

Continuous Tempering updates with those from TAMD as shown (modifications

to TAMD shown in italic):

1. Half step particle velocities (B)
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2. Correction to particle velocities due to additional DOFs

3. Half step Φ and Ψ velocities (scaled by f(ξ) (B)

4. Half step ξ velocity (B)

5. Half step particle positions (A)

6. Half step Φ and Ψ positions (A)

7. Half step ξ position (A)

8. Apply drag and perturbation to particle velocities at system temperature

(O)

9. Apply drag and perturbation to Φ and Ψ velocities at TAMD temperature

(O)

10. Apply drag and perturbation to ξ velocity at system temperature (O)

11. Half step particle positions (A)

12. Half step Φ and Ψ positions (A)

13. Half step ξ position (A)

14. Update Forces on particles

15. Calculate forces on Φ and Ψ

16. Calculate force on ξ

17. Half step particle velocities (B)

18. Correction to particle velocities due to additional DOFs

19. Half step Φ and Ψ velocities (scaled by f(ξ) (B)

20. Half step ξ velocity (B)

The ContinuousTempering TAMD integrator is selected by the integrator tempering tamd

input keyword. The integrator accepts the combined set of parameters from both

ContinuousTempering and TAMD.
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Simulated Tempering

A more classic approach to sampling the free energy landscape of complex system

is the Simulated Tempering algorithm of Nguyen et al [159, 221]. Previously this

has only been made available as a set of shell scripts [220] for use with GROMACS.

Simulated Tempering consists of selecting a set of states with discrete temper-

atures T1 < T2 < ... < Tn ranging from the target temperature of interest up

to a maximum chosen to permit the system enough kinetic energy to cross any

relevant energetic barriers, with associated weights f1...fn. Starting in one of the

states, say Ti, the system is simulated for a set period (1000 timesteps, by default)

under the control of thermostat, and the average potential energy observed in the

state is recorded. To avoid accumulating rounding errors we adjust the average

potential energy Ūi in state i at each step by:

Ūi := (U − Ūi)/ni

where U is the instantaneous potential energy and ni is the number of samples

(timesteps) accumulated in that state.

Every period steps, the weights are updated using the following recurrence:

fi = fi−1 + (βi − βi−1)× (Ūi + Ūi−1)/2

where βi is the Boltzmann factor 1/kBTi. The system then attempts a transition

from the current state to a neighbouring state with probability:

pa→b = exp[(βa − βb)× U − (fa − fb)]

As the simulation progresses, the weights are iteratively adjusted until they

reach an equilibrium where the transition probabilities to neighbouring states are

equal (pi→i−1 = pi→i+1). The system will then make a random walk among the

temperature states, and the free energy or other observable at any temperature of

interest can be extracted either by picking out only the configurations generated

at that temperature, or by rescaling using a method like WHAM [123] or similar

reviewed in [218]. The only technicality is to set the temperature states close
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enough together relative to the potential energy fluctuations of the system that

p is not vanishingly small and the system remains stuck in a single state.

To set up a simulation using the previously published scripts required creating

separate GROMACS input files for each temperature state, then running multiple

short simulations, where the potential energy is parsed from the output file and

a probabilistic change to another temperature state is made according to the

algorithm. As a result, the scripts generate a set of trajectory data files, which

must be concatenated for analysis, and running many short individual simulations

makes it inefficient to operate through an HPC batch system.

An additional novel element of the implementation is that the temperature

of each state is controlled using Langevin Dynamics implemented using a

BAOAB splitting scheme [132] to give more accurate configurational averages.

The simulations discussed in see Section 3.3.6 are not designed to test this

assertion, but a thorough analysis by Fass et al [69] showed dramatic reduction

in configuration space discretisation error compared with other schemes.

Running Simulated Tempering through MIST needs only a single long MD run.

The Simulated Tempering algorithm is selected and configured by a mist.params

file as follows:

integrator simulated_tempering # Select Simulated Tempering

temperatures[0] 300 # Define a series of temperature states

temperatures[1] 310

temperatures[2] 320

...

temperatures[14] 440

temperatures[15] 450

period 2500 # Attempt to switch states every 2500 steps

constraints all-bonds # Apply bond constraints

langtemp 300 # Start system at 300K

langfriction 1.0 # 1/ps friction constant
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Infinite Switch Simulated Tempering

This integrator was developed and implemented by Martinsson et al and its

derivation and properties are described in [146], where my assistance with the

implementation is acknowledged. Briefly, Infinite Switch Simulated Tempering

(ISST) is the extension of the Simulated Tempering method where the set of

discrete temperature states are replaced by a continuously varying temperature,

in the limit where the period between temperature state switches τ → 0 -

the infinite switch limit. Rather than computing discrete weights for each

temperature state as in standard Simulated Tempering, the weight is treated as a

continuous function and approximated by a Legendre polynomial. The ordering

of updates is based on the Langevin BAOAB scheme, adapted as follows:

1. Half step particle velocities (B) with rescaled forces

2. Half step particle positions (A)

3. Apply drag and perturbation to particle velocities at system temperature

(O)

4. Half step particle positions (A)

5. Update Forces on particles

6. Update approximation to the weight function

7. Recompute the force rescaling factor per equation 58 in [146]

8. Half step particle velocities (B) with rescaled forces

One of the key advantages of ISST is that it has many fewer parameters than stan-

dard Simulated Tempering. Besides the temperature limits temperature min and

temperature max the only choice required is the number of points npts interpolation

used in the approximation to the weight function and a scaling factor learn scaling

which controls the rate at which the weight function is adjusted. The implemen-

tation inherits from LangevinIntegrator, so any parameters understood by that

integrator are also accepted. The ISST integrator is selected by the integrator

ISST input keyword.
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3.3.7 Parallelisation

In order to achieve performance on a par with production MD codes, MIST

supports both shared-memory (OpenMP) and distributed-memory (MPI) paral-

lelisation, and may make use of either (or both) to match the configuration of

the host code.

Since OpenMP support is included in all major compilers, and the OpenMP

directives in the source code are ignored otherwise, OpenMP support is enabled

by default in MIST. If a MIST-enabled MD program is run with multiple OpenMP

threads (typically by specifying the OMP NUM THREADS environment variable,

MIST may spawn threads to speed up any key computational bottlenecks in

the integrator. Loop-level parallelism can be added explicitly, for example:

Listing 3.6: Explicit OpenMP loop-level parallelism for a velocity rescaling step

#pragma omp parallel for default(none) private(v) shared(n, scale)

for (int i = 0; i < n; i++)

{

v = system ->GetVelocity(i);

system ->SetVelocity(i, Vector3 ::Scale(scale , v));

}

A number of common operations such as velocity and position time steps that are

implemented in the base Integrator class contain OpenMP statements embed-

ded in them so subclasses can take advantage of improved performance without

the need to add OpenMP directly. The same is true of the ConstraintSolver

functionality described in Section 3.3.8. As usual in an OpenMP program, it is up

to programmer to ensure that any access to shared state such as class variables is

done in such a way to avoid race conditions. An example of this can be found in

the LangevinIntegrator class, where each thread has its own random number

generator used in the stochastic ‘O’ step:
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Listing 3.7: Example of thread-safe random number generation from

LangevinIntegrator

// Array of MIST_Random objects

MIST_Random **r;

...

// Each RNG is initialised and seeded

int nthreads = 1;

#ifdef _OPENMP

nthreads = omp_get_max_threads ();

#endif

r = new MIST_Random *[ nthreads ];

for (int i = 0; i < nthreads; i++)

{

r[i] = new MIST_Random(seed + i);

}

...

// Each thread accesses its own RNG r[t]

int t = 0;

#pragma omp parallel default(none) private(v, t, sqrtinvm) shared(c1 , c3)

{

#ifdef _OPENMP

t = omp_get_thread_num ();

#endif

#pragma omp for

for (int i = 0; i < system ->GetNumParticles (); i++)

{

v = system ->GetVelocity(i);

sqrtinvm = system ->GetInverseSqrtMass(i);

v.x = c1 * v.x + sqrtinvm * c3 * r[t]->random_gaussian ();

v.y = c1 * v.y + sqrtinvm * c3 * r[t]->random_gaussian ();

v.z = c1 * v.z + sqrtinvm * c3 * r[t]->random_gaussian ();

system ->SetVelocity(i, v);

}

}

}

The random gaussian() function uses the standard Box-Muller [38] approach

to generate normally-distributed random numbers from uniformly-distributed

real numbers in [0, 1). While this is slightly more computationally costly than

using the unformly-distributed random numbers directly, it makes little practical

difference as the central limit theorem applies if the number of samples is large,

which is the case for any practical calculation.

MPI support in MIST is enabled at compilation time by the --enable-mpi argu-

ment to the configure script (see Section 3.5). In this case the MIST Init MPI()
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API function is compiled in to the library and once it is called by the host code an

MPI communicator handle is passed from the host into MIST which can be used

to manage communication between processes. Any code which is required only in

the MPI-parallel case can be conditionally compiled using the MIST WITH MPI

macro as shown in the example below. As described in Section 3.2, each process

has its own discrete set of particles which it is responsible for integrating so there

only a few cases that an integrator developer has to take particular care over:

1. Any calls to GetNumParticles() returns the number of particles local to

that process, so any calculations which require the global total number of

particles such as calculating the number of degrees of freedom should use

GetTotalNumParticles() instead.

2. Any calculations of global quantities such as the total kinetic energy should

be done by having each process calculating its local contribution and

summing these using MPI AllReduce() as shown:

Listing 3.8: MPI global reduction to calculate the total kinetic energy, taken

from the NoseHooverIntegrator.

// Compute current kinetic energy

double ke = 0.0;

Vector3 v;

// Local sum first

for (i = 0; i < system ->GetNumParticles (); i++)

{

v = system ->GetVelocity(i);

ke += Vector3 ::Mult(v, v) * system ->GetMass(i);

}

// Optional global sum if MPI is enabled

#ifdef __MIST_WITH_MPI

// Sum up to get global KE

double local_ke = ke;

MPI_Allreduce (&local_ke , &ke , 1, MPI_DOUBLE , MPI_SUM ,

system ->GetCommunicator ());

#endif

// Resulting total KE is in the variable ke

3. Probabilistic choices such as the transition between temperature states in

Simulated Tempering need to be agreed between all processes to ensure

all parts of the system are maintained in an NVT ensemble at the same

temperature. The easiest way to achieve this is by simply broadcasting the

result from the master process (MPI rank 0) to all the other processes as
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shown:

Listing 3.9: MPI broadcast of the temperature shift, taken from

SimulatedTempering.

// Decide which direction to attempt a shift

double x = r[0]-> random_uniform ();

int shift = 0;

if (x >= 0.5 && state + 1 < n_temperatures)

{

// Shift up a temp , if possible

shift = 1;

}

if (x < 0.5 && state > 0)

{

// Shift down a temp , if possible

shift = -1;

}

#ifdef __MIST_WITH_MPI

// Master decides which direction to shift

MPI_Bcast (&shift , 1, MPI_INT , 0, system ->GetCommunicator ());

#endif

4. To support load balancing by the host code, MIST allows the number of

particles np assigned to each process to be changed between calls to the

integrator’s Step() function, although it is guaranteed not to change during

any calls to UpdateForces(). If the integrator allocates temporary arrays

or other variables which depend on the number of particles it must be sure

to check that enough space is allocated if the number of particles assigned

to that process increases. For example, the RK4 integrator (Section 3.3.4)

has to allocate temporary arrays to store the mid-step positions and

velocities. To avoid reallocating these at each timestep, with an associated

performance cost they are simply kept from one iterator to another, with

a check at the start of the step to ensure the arrays have enough space,

resizing them if not:

49



Listing 3.10: Resizing temporary arrays after the number of local particles

increases, adapted from RK4.

void RK4Integrator ::Step(double dt)

{

// Get the current number of particles on this process.

int n = system ->GetNumParticles ();

// Resize storage arrays if needed

if (n > arrLen) // arrLen is a class variable persisted from one step to the next.

{

if (oldPos != NULL)

{

delete [] oldPos;

}

...

oldPos = new Vector3[n];

...

arrLen = n;

}

...

3.3.8 Constraint Solver

In addition to the force-field i.e. the potential function of the atomic positions

U({r}), from which the forces and therefore dynamics are derived, it is common

in molecular simulations to apply constraints to the system. Bonds between light

atoms such as hydrogen have a high natural vibrational frequency and when using

common integration algorithms these vibrations severely limit the time step which

may be used for stable MD (see [135, Chapter 4.2] for a more detailed discussion).

For example, the Velocity Verlet method for a harmonic oscillator with frequency

Ω has a stability threshold of δt < 2/Ω. For applications such as conformational

sampling, constraints are typically used to remove such vibrational degrees of

freedom from the simulation entirely, for example replacing flexible covalent bonds

which are modelled as harmonic springs with rigid (fixed-length) ‘rods’, thus

allowing a larger time step and longer overall simulated time scales to be accessed

for the same computational cost. More complex constraints are also possible,

including angular (fixing the internal angle between three atoms) and dihedral

(fixing the torsional angle defined by four atoms), but these are not currently

implemented in MIST.
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For integrators to be practically useful, they must be able to generate a

series of positions which satisfy the constraints, and so to avoid complicated

coordinate transformations, additional steps are needed after the standard time-

propagation of the positions and velocities to correct these back onto the

constraint manifold (the multidimensional surface made up of those points

which satisfy the constraints). These functions are provided by the MIST

ConstraintSolver class and may be called by Integrators.

As described in Section 3.2, MIST has a representation of the molecular topology

consisting of a set of bonds which link pairs of atoms (a, b), with an equilibrium

bond length l (usually at the minimum of the bond-potential between the

two atoms). MIST supports applying constraints to three different groupings

of bonds: none (constraints off), only bonds involving hydrogen atoms

(constraints h-bonds-only), and all bonds (constraints all-bonds). For

the selected set of bonds, the ConstraintSolver sets up a list of k holonomic

constraints (i.e. constraints depending only on the particle positions, and time),

between atoms ka, kb of the form:

σk := ||rka − rkb||2 − l2k = 0

Following the standard approach [182] of considering the force Gi due to each

constraint involving a particle i, which is defined by method of Lagrange

multipliers as:

Gi = −
∑
k

λk∇iσk

Then the constraints can be resolved (up to a defined tolerance) by solving for the

Lagrange multipliers λk and applying a correction to the unconstrained updated

positions r̂:

ri(t+ δt) = r̂i(t+ δt) +
∑
k

λk
∂σk
∂ri

By solving a second time for the set of Lagrange multipliers µk which satisfy the

time derivative of the constraints:
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dσk(t)

dt
= (vka − vkb)(rka − rkb) = 0,

where v = ṙ.

The unconstrained velocities v̂ may then be corrected by:

vi(t+ δt) = v̂i(t+ δt) +
∑
k

µk
∂σk
∂ri

Iterating through the constraints and adjusting the Lagrange multipliers, results

in the RATTLE algorithm [10], and is selected with the keyword constraints method

rattle.

MIST also implements the adaptive Symmetric Newton Iteration (SNIP) scheme [19],

where a symmetric gradient matrix based on the configurations at the start of

the timestep is constructed:

R̂ ≡ σ′({r})M−1σ′({r})t

Where σ′({r}) is the matrix of partial derivatives of the constraints with respect

to the atomic coordinates and M is the diagonal matrix of particle masses. Since

the definition of a bond constraint involves only a pair of atomic positions, the

gradient matrix is sparse, with entries on the diagonal:

R̂i,i = ||ria − rib||2
(

1

mia

+
1

mib

)
= l2i

(
1

mia

+
1

mib

)

And off-diagonal for a pair of bonds i, j where ia = ja (and equivalent expressions

for other combinations):

R̂i,j =
(ria − rib)(ria − rjb)

mia

MIST can then solve for the set of Lagrange multipliers:

λk(t) = R̂−1σk(t)

Update the positions:
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ri(t+ δt) = r̂i(t+ δt) +
∑
k

λk
∂σk
∂ri

And iterate these two steps until convergence.

The velocity update is even simpler. As in RATTLE the set of Lagrange

multipliers which satisfy the time derivatives of the constraints are solved for

directly:

µk(t) = R̂−1σ′k(t)

And finally, velocities are set as for RATTLE.

Importantly, for this method, the sparsity structure and the diagonal entries of

the matrix R̂ are fixed for the duration of the simulation (since they depend

only on the molecular topology), and the off-diagonal entries are fixed while the

constraints are iterated. In MIST, the Eigen library [85] is used to store the sparse

matrix, perform a Cholesky factorisation, and solve for the Lagrange multipliers.

Eigen is particularly useful since it can perform a symbolic decomposition of

the matrix once at the start of the simulation which makes the subsequent

factorisation faster. SNIP is the default constraint solution method in MIST.

The original solver class was written by Ralf Banisch, and I refactored it

for performance and the addition of OpenMP, almost entirely re-writing it in

the process. At time of writing, the constraint solver is only available for

single-process (shared memory parallelisation only) runs. Experimental MPI-

parallel implementations have been investigated, based on Eigen with explicit

MPI communication, and the MPI-parallel PETSc [16–18] library - however

some issues remain so these are not yet merged into the release version of

the library. They are available on branches Eigen MPI and KSP at https:

//bitbucket.org/extasy-project/mist/branches/. Attempting to run MIST

with constraints enabled in an MPI-parallel calculation will log a warning, and

turn the constraints off.

Constraints have been added to a selection of integrators in MIST, as shown in Ta-

ble 3.2. Using the ConstraintSolver class methods ResolvePositionConstraints()

and ResolveVelocityConstraints(), it is straightforward to add support to any

integrator, based on the implemented examples.
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Table 3.2 Constraint support in MIST integrators.

Keyword Supports Constraints

verlet Yes
leapfrog Yes
nose-hoover Yes
langevin Yes
RK4 No
yoshida4 No
yoshida8 No
tempering Yes
tamd No
tempering tamd No
simulated tempering Yes
ISST Yes

3.4 MIST Library API

To enable the linkage between a ‘host’ MD code and the integrators implemented

in MIST in a portable fashion, MIST provides simple C and Fortran 90 APIs.

These are designed to be general enough to interface to a wide range of possible

MD codes, while allowing just enough data and control to be passed to MIST

to implement the abstract System interface described in Section 3.2. The C

interface is declared in a header mist.h and the Fortran interface in a module

mist f90 which can be included by the host code. The Fortran interface provides

the same functionality as its C counterpart, with the only difference being that

the functions are name MIST F * rather than MIST *. For the sake of clarity all

the API calls shown below are included in their C variant, although exactly the

same principles apply to the use of the Fortran interface. As well as function

declarations, a range of predefined constants (the aforementioned feature flags,

and error codes) are also part of the interface.

The Fortran 90 API is implemented using the ISO C BINDING feature of the

Fortran standard to provide a thin wrapper over the C API. For example,

MIST Set NumParticles() C API is wrapped as shown:

54



Listing 3.11: Example of Fortran 90 API wrapper.

module mist_f90

use iso_c_binding

...

!! Declaration of an ISO_C_BINDING interface to the C API function which takes

!! an integer argument and returns an integer error code

interface

integer(C_INT) function MIST_SetNumParticles(n) bind(c,name=’MIST_SetNumParticles ’)

use iso_c_binding

integer(C_INT), VALUE :: n

end function MIST_SetNumParticles

end interface

...

contains

...

!! Fortran module function which calls the C API

integer function MIST_F_SetNumParticles(n) result (ierr)

integer , intent(in) :: n

ierr = MIST_SetNumParticles(n)

end function

...

end module mist_f90

To add support for a new MD code to MIST, API calls must be inserted in to the

host MD code as described below. For the specific set of code versions that are

supported, MIST provides source-code patches which are automatically applied

to insert the API calls during the build process as explained in Section 3.5 or

forked versions of the source code that contain MIST API calls directly.

To simplify the API, MIST is designed as a stateful library and is responsible

for its own memory management. The client calling the API always interacts

with the same instance of the library, rather than for example having to pass an

opaque handle back and forwards with each call. Full documentation of the APIs

are provided in Doxygen format with the source code, but the key concepts and

ordering of API calls are shown in Figure 3.2, which outlines the typical control

flow between a host MD code and MIST. Detailed descriptions of how the API

calls are integrated into each supported MD code are given in Section 3.4.3.
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It is important to note that by design, MIST extends the existing functionality of

an MD code, and so if MIST is turned off - either as an option in the code’s input

configuration, at compile-time or by any other method - the MD code should

behave exactly as normal.

3.4.1 Control Flow

Assuming that MIST has been enabled, the first step is to initialise the library by

calling MIST Init() (or MIST Init MPI() for MPI parallel runs). This triggers

MIST to read its own mist.params input file and initialise the System and

Integrator objects accordingly.

Once the host code has completed initialisation to the point where the molecular

topology is built and initial coordinates and velocities for the particles are

assigned, this data must be passed to MIST. A series of calls to (for example)

MIST SetNumParticles(), MIST SetNumBonds() and MIST SetPositions() are

used to inform MIST of the number of atoms and bonds, and to pass a pointer to

the location of the particle position data. In order to be completely flexible, data

is passed through the API using void pointers, which are interpreted by MIST

in the code-specific adaptor classes to yield data in the standard internal format

provided by the System class for use by integrators. Detail of how this is used

by each supported code is given in Section 3.4.3. The design decision to store

pointers to the host data, enabling the library to directly modify the simulation

state, is chosen because it is more efficient (reduced memory footprint, memory

bandwidth and operations) than the alternative of making an MIST-internal copy

of the data, modifying that and explicitly copying it back when required e.g.

before force updates, or the end of the MD step.

In addition to passing data pointers into MIST, the host MD code must also

register a force callback function pointer and associated parameters by calling

MIST SetForceCallback(). This callback function may be called by MIST

during an MD step as a black-box to compute updated forces given the current

atomic positions (and in general velocities, although none of the supported codes

have velocity-dependent forces). Once again, MIST uses a fully generic callback

prototype, which accepts a single void pointer for any input data which may be

required. Since the actual force computation routine typically does not conform

to this interface, it is convenient to define a lightweight parameter data type to

store all the arguments which should be passed to the force computation routine
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Figure 3.2 Control flow in an MD code using the MIST library.
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and a wrapper function which unpacks the type and calls the appropriate function

to compute updated forces. For example, in GROMACS:

Listing 3.12: Example of a force callback wrapper.

// Declaration of a data type which contains all of the context

// used by the GROMACS force routines

typedef struct {

FILE *log;

t_commrec *cr;

...

int flags;

force_arrays_t *forces;

} force_params_t;

// The wrapper function which takes the context as a void pointer ,

// unpacks all of the parameters , and calls the force routine.

void do_force_wrapper(void *params ){

force_params_t *p = (force_params_t *) params;

do_force(p->log ,p->cr,p->inputrec ,*(p->step),p->nrnb , \\

*(p->wcycle),p->top ,p->groups ,*(p->box),p->x, \\

p->hist ,p->forces ,*(p->vir_force),p->mdatoms , \\

p->enerd ,p->fcd ,p->lambda ,p->graph ,p->fr \\

p->vsite ,*(p->mu_tot),p->t,p->field , \\

p->ed ,p->bBornRadii ,p->flags);

}

...

// Declare a parameter type and store relevant local data in it

force_params_t p;

...

p.log = fplog;

p.cr = cr;

...

// Pass the function pointer and pointer to the parameter data to MIST

// to be called back when an integrator calls UpdateForces ()

MIST_SetForceCallback(do_force_wrapper , &p)

By this point MIST has all the data required to carry out a single MD step. We

note that, if for any reason the data pointers passed to MIST become out-of-date

for any reason such as reallocation, or because the force parameters have changed,

the respective MIST Set * functions must be called again as required.

If an error occurs at any stage (for example if the input file contained unrecognised

keywords), the API returns an error code which the caller can check and print an

error message, or exit. If the API call was successful, MIST will return MIST OK

(0).

In order to make using a MIST integrator as intuitive as possible for the user, as

much as possible of the unmodified code in the core MD time stepping loop is

employed. In particular, if trajectory output and computation of thermodynamic
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variables such as temperature are done at the start of the step before a ‘native’

integrator updates the system state, MIST does the same. If they are done at

the end, MIST does likewise. However, in place of the native update code a call

is inserted to MIST Step(). This hands over control to MIST to make whatever

sequence of updates are implemented in the selected Integrator, including calls

to the force callback routine as required during the step. When MIST Step()

returns, the system state has been advanced by a single time step dt and

any normal end-of-step actions which are required such as trajectory output

and incrementing step counters finally takes place. In the MIST framework,

the library is responsible only for the integration step itself. This allows for a

separation of concerns between configuring the integrator (via mist.params) and

run control parameters e.g. number of steps, time step, output frequency and

format, which are configured as usual for the host MD code.

Once the simulation has finished, the MIST library can be finalised by a call to

MIST Cleanup(), which simply deallocates any memory which has been allocated

to allow a clean shutdown of the MD code.

3.4.2 Units

One of the objectives of MIST was to make development of new integrators

easy, and to enable a single implementation to be reused with multiple MD

codes. In addition to the abstractions discussed already, care is needed to take

account of the different units systems in use across different MD codes. To

avoid having to include code-specific scaling factors in the Step() function of

individual integrators, integration takes place using the same units system as

the host code, and where parameters are read from the mist.params file, the

parameter is defined to be in a particular unit and is rescaled into the internal

units system using a series of convenience functions. For example, in NAMD-Lite,

energies are in kcal/mol, time is in femtoseconds, distances are in Angstroms. To

obtain a consistent units system, the internal mass unit is 0.0004184 amu i.e.

a hydrogen atom has a ‘mass’ of 2390.057... internal units. Conversely, Amber

uses a units system where masses are in amu, distance is in Angstroms, energies

are in kcal/mol, and time is in units of 1/20.455 ps! The relevant conversion

factors are defined in the code-specific adaptor classes. LAMMPS is sufficiently

general that the user can choose from a range of 8 different unit systems - to

support this I added an API function MIST SetUnitSystem() to allow the unit
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conversion factors to be provided at runtime, depending on the choice of the user

in the LAMMPS input file.

The System class defines functions which return standardised lengths (1 Angstrom),

masses (1 amu), times (1 picosecond), pressures (1 Atmosphere) and Boltzmann’s

constant in the internal units system of the host code - with the values provided

by the code adaptor classes. These can then by used by Integrators to rescale

input parameters into the correct units system. For example, in the Langevin

dynamics integrator (Section 3.3.2) the constants e−γδt and
√
kBT (1− e−2γδt)

are required. The friction parameter γ is converted from the specified units of

ps−1 into internal time units by:

double gdt = friction / system->Picosecond() * dt;

Similarly, the Boltzmann factor kBT is converted into internal energy units (T in

Kelvin) and the two required constants are computed by:

double kbt = temp * system->Boltzmann();

...

double c1 = exp(-gdt);

double c3 = sqrt(kbt * (1 - c1 * c1));

3.4.3 MD code support

MIST currently contains support for five different MD codes. As mentioned in

Section 3.2, to add support for each MD code requires inserting MIST API calls

into the host code, and implementing an adaptor System subclass. The only other

code-specific section within the MIST library is the initialisation of the relevant

System subclass within MIST Init(). Within the general framework laid out in

Section 3.4.1, the exact details vary depending on the design and implementation

details of the host code. As a result, it is most instructive to learn by example,

so the key features of each MD code’s MIST integration are described in the

following section as a reference to future developers.
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NAMD-Lite

NAMD-Lite [93] is the simplest MD code, with no parallelisation and thus

provides a straightforward exemplar of how to link MIST with an MD code.

It is a modular C code which already provides support for a number of different

timestepping methods which can be selected by the user in the NAMD-Lite input

file. An input keyword mist on is added and if it is present in the input file,

a set of initialisation (step init mist()), compute (step compute mist()) and

cleanup (step done mist()) functions are chosen in place of the existing NAMD-

Lite in-built functions.

These are implemented in a separate file src/step/mist.c, which contains the

majority of MIST-specific code. The initialisation and cleanup routines are

called once at the beginning and end of the MD run, and call MIST Init()

and MIST Cleanup() respectively. The compute function is called once and

runs a specified number of time steps. Within it, NAMD-Lite first calls the

MIST Set *() API functions to pass in the number of atoms, pointers to the

position, velocity and force arrays, a pointer to the variable where the potential

energy is stored. NAMD-Lite has a single function which calculates the forces

on particles step force(Step *s), which takes a Step struct containing all the

parameters required. A simple wrapper function is created which takes an opaque

void * as required by the MIST API, casts it to a Step * and calls step force().

This wrapper function and a pointer to the Step object are passed in to the

MIST SetForceCallback() API function. The NAMD-Lite topology data is

obtained and iterated through, calling MIST SetNumBonds() and MIST SetBond()

once for each bond in the topology. Once the topology data has been passed in to

MIST, MIST GetNDoF() is called since if the MIST input file specified the use of

bond constraints, this reduces the number of degrees of freedom, and the starting

velocities must be rescaled accordingly.

Once all of this initialisation is complete the main computation is simply a

loop of calls to MIST Step() with a call to the NAMD-Lite output function

step results() every resultsFreq steps, exactly the same as for any other

step implementation.

All of the MIST API calls are wrapped in with an error-checking function

MIST chkerr() which checks the return code from the API call, and if it is not

MIST OK, prints an error message and exits.
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There are various other small modifications required throughout the rest of the

NAMD-Lite source code. These can easily be found as they are all marked by a //

MIST patch ... // End of MIST patch pair of comments. These are mainly

concerned with adding additional ‘plumbing’ to allow access to the various pieces

of data such as the individual components of the force-field that MIST needs

access to. The build configuration files are also modified to ensure the MIST

header file is included during the compilation phase, and the MIST library is

linked into the final product executable.

One somewhat complex aspect of the implementation is support for the MIST -

FEATURE POS VEL OFFSET PLUS HALF DT feature flag. At the start of the run, if

this feature flag is returned by MIST GetFeatures() an additional velocity half-

step is made, and the ave ekin variable is set to TRUE. If this is the case, the

velocities are stored at the end of each step, and in the routine which calculates

the kinetic energy the average of the preceding (t− dt/2) and current (t+ dt/2)

kinetic energies is used to approximate the kinetic energy at the end of the step.

NAMD-Lite also makes an inconsistent choice of units system - with masses

in AMU, time in fs and energies in kcal/mol/K. In the native integrators in

NAMD-Lite this is requires the computed forces to multiplied by a constant

MD FORCE CONST ≈ 2390.06. Since MIST integrators are designed to be agnostic

of the host units system, the stored masses are divided by MD FORCE CONST before

passing them to MIST SetMasses(), achieving the same net effect.

The NAMDLiteSystem subclass within the MIST library is quite straightforward.

Units conversion factors are set in the constructor. The positions, velocities

and forces and masses are stored in double-precision arrays, and the other data

structures such as the lattice vectors and the force components are simply cast

to their respective data types and unpacked. NAMD-Lite has no support for

changing the cell dimensions at runtime, so SetCell() simply prints a warning

message and does nothing.

GROMACS

MIST currently includes a set of source code patches which implement support

for MIST in GROMACS [4] version 5.0.2. While this version dates from 2014,

it contains many of the major features of recent versions of GROMACS such

as parallelisation with MPI, OpenMP and GPU acceleration. The GROMACS
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code-base was largely refactored and converted to C++ in the 2016 release and

while maintaining MIST support would certainly be possible, development of the

library and adding support for different MD codes was prioritised over keeping

up with the latest versions as they were released.

GROMACS presents quite a different set of challenges to NAMD-Lite. With

over 2,200,000 lines of code, compared to 86,000 it is clearly much more

complex and feature-rich. Rather than NAMD-Lite which had a fairly modular

structure, GROMACS is monolithic with a main MD loop comprising over 1200

lines with complex logic covering Velocity Verlet, Velocity Verlet with Kinetic

Energy averaging, stochastic (Langevin) Dynamics, plus myriad temperature and

pressure control schemes, parallelisation concerns such as domain decomposition

and load balancing, as well as diagnostic and statistical output! Since MIST is

designed to tke control of the time stepping process, the simplest solution for

integration with GROMACS is to simply create a top-level branch within the

timestepping loop to cover the case where MIST is selected containing only the

functionality required by (and compatible with) MIST, and the standard MD

loop remains unmodified. Thus the overall structure is as shown:
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Listing 3.13: MIST integration in GROMACS main MD loop in md.c

double do_md (...)

{

// Standard GROMACS initialisation code

...

// MIST Initialisation

#ifdef __MIST_WITH_MPI

MIST_chkerr(MIST_Init_MPI(cr ->mpi_comm_mygroup),__FILE__ ,__LINE__ );

#else

MIST_chkerr(MIST_Init(),__FILE__ ,__LINE__ );

#endif

...

// Check for GROMACS input parameters known to be incompatible with MIST

...

// Standard GROMACS MD loop setup

...

// Main MD loop

while (! bLastStep || (bRerunMD && bNotLastFrame ))

{

// Do a minimalist MD step with MIST

if (ir ->eI == eiMIST)

{

...

// Call into MIST to execute the step

MIST_chkerr(MIST_Step(ir->delta_t),__FILE__ ,__LINE__ );

...

}

else

// Do the normal (non -MIST) MD step

{

// Unmodified GROMACS MD step code

...

}

}

/* End of main MD loop */

// Clean up MIST

if (ir->eI == eiMIST)

{

MIST_chkerr(MIST_Cleanup (),__FILE__ ,__LINE__ );

}

}

The overall ordering of MIST operations is very similar to NAMD-Lite, but

the key differences are described below. Firstly, the pre-compiler macro

MIST WITH MPI which is set during the build process is used to allow the

inclusion of both MPI-parallel and serial code within the same code base.

The input parameter check ir->eI == eiMIST (corresponding to integrator
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= mist in the GROMACS .mdp input file) is used to branch between MIST and

non-MIST code paths. A number of input parameters which are not allowed, or

don’t make sense to be used if MIST is selected are checked up-front, including

solid ‘walls’ at the faces of the simulation box, temperature and pressure control

within GROMACS (since this is done by MIST), core-shell ion models (since

MIST assumes only point particles), and water-ion swapping amongst others.

The associated code for these is removed from the MIST-branch of the main

loop, simplifying the implementation significantly.

One other major difference to NAMD-Lite is related to MPI parallelisation. Every

nstlist time steps (or when particles are found to have moved outwith the

neighbour list buffer region), GROMACS rebuilds the neighbour list which is

used by the force routines to determine which particles are within range and

should be considered when calculating the non-bonded interactions. At the same

time, GROMACS also performs a repartitioning in order to maintain good load

balance. After the repartitioning, the number of particles assigned to each process

may have changed, and so MIST SetNumParticles() must be called again. In

addition MIST SetPositions() and the other setters must also be called because

the arrays storing the particle data may be reallocated, invalidating the pointers

that were passed to MIST during initialisation.

The only other major change in the GROMACS code is that the GROMACS

force routines do not contain separate arrays for storing the forces due to different

terms in the force-field. While the energies are accumulated separately, if MIST is

using an integrator which requires access to each component of the force-field (i.e.

the flag MIST FEATURE FORCE COMPONENTS is returned by MIST GetFeatures(),

arrays are allocated to store each of different force-field components required

(bond, angle, proper and improper dihedrals, and non-bonded), store pointers

to them in a struct, and that struct is passed into the normal GROMACS force

computation routines, which are modified to write each part of the force into the

relevant array.

While the structure of the MD loop is very complex, GROMACS does successfully

abstract the use of GPUs to accelerate the force calculation - and thus MIST is

completely agnostic to this. If GROMACS is compiled with CUDA support for

Nvidia GPUs then they will be used by the force routines without any code

changes required in the MIST MD loop.

In the GromacsSystem adaptor class within MIST, there are few surprises.
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GROMACS stores all of its state variables in single precision, only making use of

double precision for intermediate quantities during the force calculations. Each of

the MIST System accessors must cast to or from double precision as needed. Since

only the inverse mass 1/mi appears in the update step r̈i = Fi/mi, GROMACS

does not store the particle masses directly but rather the inverse mass. So the

array passed in to MIST by the MIST SetMasses() API call must be inverted and

stored if the mass is required by the MIST integrator. Finally, since GROMACS

supports a variable simulation cell the GetCell() and SetCell() functions are

implemented, following the simple 3-step process described in Section 3.3.3.

Amber

MIST support for Amber [48] is based on Amber 14 and is included in the

optimised, parallel MD program pmemd. Similarly to GROMACS, while this

version is now several years out of date, it serves to illustrate the use of the MIST

Fortran 90 API and also some different approaches to parallelisation and GPU

acceleration compared with GROMACS.

A broadly similar approach to GROMACS is taken, with an additional input

parameter imist .eq. 1 being used to select MIST as opposed to the native

Leapfrog integrator. Again, a number of features of Amber are explicitly

disallowed from being used in combination with MIST, including test-particle

insertion, frozen ‘belly’ restraints, centre-of-mass motion removal and various

temperature and pressure control algorithms. Like GROMACS, this reduces the

amount of code required to be included in a MIST version of the main MD loop

by more than half.

There are two main complexities that needed to be overcome to have MIST

working correctly with Amber. Firstly, the load balancing algorithm is done

within the routine pme force() which is also used to compute the forces on each

atom. Since MIST requires that particles are not migrated during the scope

of a single MD step, the force routines were modified to take an additional,

optional parameter which turns off the load balancing functionality when called

from within the MIST force callback. However, load balancing should still be

performed in order to maintain good parallel performance, so the ordering of

operations is modified to:
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Listing 3.14: MIST integration in Amber main MD loop in runmd.F90

double do_md (...)

{

! Main MD loop

if (imist .eq. 1) then

do

#ifdef MPI

! If a redistribution is needed , then do it here , also getting updated

! forces for the newly localised atoms:

if (using_pme_potential .and. new_list .and. &

(atm_redist_needed .or. fft_redist_needed) ) then

...

! We don ’t actually want new forces or energies

! Just want to do the redistribution , and associated book -keeping

call pme_force(atm_cnt , crd , frc , gbl_img_atm_map , gbl_atm_img_map , &

my_atm_lst , new_list , .false., .false., &

pme_pot_ene , virial , ekcmt , pme_err_est)

...

! Update MIST with the new number of local atoms

call MIST_chkerr(MIST_F_SetNumParticles(my_atm_cnt), __LINE__ , __FILE__)

endif

#endif

...

! Do the step within mist. Force callback calls pme_force with

! allow_load_balancing = .false.

call MIST_chkerr(MIST_F_Step(dtx), __LINE__ , __FILE__)

...

! Book -keeping and output code

...

end do ! Major cycle back to new step unless we have reached our limit

call MIST_chkerr(MIST_F_Cleanup (), __LINE__ , __FILE__)

else ! No MIST

do

! Unmodified Amber MD loop

...

end do

}

Secondly, Amber’s approach to GPU implementation (described in Section 2.1.4)

achieves high performance by doing not only the force calculation but also the

particle position and velocity updates all on the GPU. This presents a problem

for MIST, where everything except the force calculation is done inside the MIST

library (and hence on the CPU). Whereas Amber only downloads data from

the GPU when required for output, MIST requires data transfer at every step -

comparable to other codes like GROMACS. As a result, in the force callback

routine the latest particle positions from the arrays accessed by MIST must

be uploaded to the GPU, pme force() called to calculate the forces, then the
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computed forces from the GPU must be downloaded so they can be read by

MIST when the callback returns. As shown in Section 4.3.3, while this ensures

the calculation is correct it does result in a significant performance impact.

Forcite

Forcite [30] is a proprietary MD code developed by Dassault Systems BIOVIA

(formerly Accelerys) and sold as the classical MD engine within their Materials

Studio product. Funded by an EPSRC Impact Acceleration Account project “A

Flexible Software Interface for Molecular Modelling”, I developed an interface

between Forcite and MIST during a week-long visit to BIOVIA’s development

team in Cambridge in January 2017. The project successfully demonstrated that

Forcite could make use of MIST integrators - in particular the Langevin Dynamics

integrator with Symmetric Newton constraints solvers. Unfortunately, due to the

confidentiality agreement in place for the project the resulting source code and

test results are retained by BIOVIA. Nevertheless, this shows that (a) some of

the algorithms implemented in MIST are of practical interest to the industrial as

well as academic molecular simulation community and (b) that the MIST API is

flexible enough that it can be used to add support into a previously unseen code

within a very short space of time.

LAMMPS

LAMMPS [174] has a very different structure to either GROMACS or Amber

as it takes a modular approach which makes it easy to extend by introducing

new code via optional user packages. Unlike the other codes, instead of source-

code patches which modify the core MD loop, I implemented MIST support

in a separate package USER-MIST, which introduces a MIST run style and a

fix. As LAMMPS development is done openly on github.com I made a fork of

the LAMMPS code-base and distribute the modified version at https://www.

github.com/ibethune/lammps/tree/mist. Eventually, this is expected to be

merged into the main LAMMPS distribution via a Pull Request.

Compared with the default LAMMPS run, which allows the user to select

an arbitrary set of fixes which can be mixed and matched to perform the

required sequence of updates (e.g. velocity verlet plus a nose-hoover thermostat),

the MIST run class initialises the MIST fix (and no others), initialises the
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MIST library and simply carries out the specified number of timesteps, calling

MIST Step(). Similarly to Amber, load balancing (if required) is done at the

start of the step. Unlike most LAMMPS fixes, the MIST fix does not do any

updates to the state of the system, but is simply used to ensure that the particle

forces are packed into the arrays LAMMPS use for communication during load

balancing. LAMMPS also provides several compute classes which can be used (if

needed by the MIST integrator) to calculate quantities such as the total potential

energy or the pressure. By taking advantage of as much as possible of the normal

LAMMPS infrastructure, it is possible to provide a fully-functional, MPI-parallel

MIST implementation in less than 1000 lines of code.

One other unique feature of the implementation is because LAMMPS can

run using one of 8 different units systems, MIST SetUnitSystem() is called

immediately after initialising MIST, as opposed to setting the units scaling factors

in the System adaptor class as is done for other codes.

3.5 Building and running MIST

In order to use MIST with a particular MD code requires compiling the code

with MIST API calls inserted into the source code and linking the MIST library

containing the corresponding System adaptor class. For codes which MIST

provides adaptors for, source code patches are included with MIST which can

be applied during the build process (with the exception of LAMMPS where I

distribute a version containing MIST calls). To a user, the process is very simple:

• Configure MIST for use with a particular MD code, providing the location

of the source code as an argument to the MIST configure script e.g.

--with-amber=/path/to/amber/src. The only other configure option is

whether to enable MPI support (--enable-mpi). If configuration was

successful, the script provides step-by-step instructions to complete the

build for that specific MD code. In general, the steps proceed as follows:

• Generate and apply the source code patch. For the versions that MIST

supports (NAMD-Lite 2.0.3, GROMACS 5.0.2, Amber 14), the code patches

will apply seamlessly. It may be possible to apply the patches to other

similar versions.
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• Build the MIST library. Using a Makefile, MIST is built with support for

the selected MD code and either serial or MPI support compiled in.

• Build the host code. The host code is built (including the inserted MIST

API calls) and linked with the MIST library. Appropriate modifications to

the build options are automatically made by the patching process, so no

manual configuration such as library search paths or other linker flags is

required from the user.

Once the MD code is built, it can be used entirely as normal if desired. To use

a MIST integrator instead of the native ones provided by the host code requires

adding a single parameter in the input file:

• NAMD-Lite: add mist on to the .config file.

• GROMACS: set integrator = mist in the .mdp file. Note that this change

should be run through the GROMACS preprocessor grompp as usual, in

order to have any effect.

• Amber: set imist = 1 in the &cntrl namelist in the input file read by

pmemd.

• LAMMPS: set run style mist in the LAMMPS main input file.

If MIST is enabled, execution will continue as described in Figure 3.2 and

timestepping will be carried out according to the integrator and options specified

in the mist.params file which is read by MIST. A separate file is used so that

integrator settings are code-independent, whereas run control settings such as the

number of time steps, when to write trajectory output etc. are managed by the

usual input file(s) of the host code. Any trajectory or diagnostic output options

specified in the host code’s input file will still produce output in the usual format

since MIST only modifies the dynamics.

See Section 3.3 for details of each integrator and the parameters that it takes, but

a minimal MIST input file to use velocity Verlet integration in the NVE ensemble

would be:

integrator verlet
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A slightly more complex example, to run Langevin NVT dynamics at 300K would

be:

integrator langevin

langtemp 300 # Target temperature, in K

langfriction 1.0 # Friction parameter gamma, in ps^(-1)
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Chapter 4

Evaluation

This chapter provides evidence that MIST works correctly, assesses the perfor-

mance of the library, and illustrates its use by exploring the free energy landscape

of Alanine-12 using the Simulated Tempering algorithm. Using these results

and my experience working with collaborators using and developing algorithm in

MIST, I review the library against the design goals set out in Section 3.1.

4.1 Automated Tests

The importance of testing software as it is developed, rather than after the fact is

well-known best practice in software engineering. By catching bugs early it makes

identifying the cause and fixing it easier and faster. The practice of Continuous

Integration involves defining a pipeline of automated actions (including tests)

which are run after every change to the code committed to a version control

repository. MIST makes use of Bitbucket Pipelines, the native CI solution

provided by the source code hosting service. A pipeline of build and test actions

is defined and is run in a controlled environment (using Docker containers) after

every commit. Any failures are reported immediately to the developer and the

commit is marked as failed.

The pipeline consists of three stages, run sequentially. The sub-steps at each

stage are run in parallel:

1. Build a MIST distribution package, and check that the entire code base
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is fully documented with Doxygen. This ensures that the code is always

kept in a state that it can be distributed. The automated documentation

check is particularly useful in maintaining code quality as documentation

is easy to omit, but this ensures that it is kept up-to-date as the library is

developed. If these checks pass, then...

2. Build MIST and link it to each of the supported codes, including serial

and parallel compilation. This proved invaluable during the development

of MIST support for each code, as it ensures that any changes made to the

library do not break compilation of any of the other codes. Similarly, as

MPI parallelisation was added it ensures that serial compilation was not

affected. Once all the builds are successful...

3. Run a series of short MD runs and check the results. A simple check of the

total energy at the end of the run is used. This test gives some confidence

that any changes made to the library do not affect the numerical results

i.e. that the behaviour of the integrators remains correct. At present, two

different inputs - a system of 32,000 Lennard-Jones particles and one of a

small peptide solvated in water (2004 atoms) - are used, and both run with

and without MIST, in serial and parallel, using LAMMPS.

A more extensive set of test runs and sample outputs are included in the

mist/tests directory. A set of shell scripts are provided which build the library

and MD codes, run the tests and report any results which deviate from the

expected reference results. These were developed early on in the project before a

controlled CI environment using Docker was available and so are hard-coded to

work on a specific development machine.

During the 3 years of development where CI has been in place, 25.6% of commits

have resulted in a test failure, which was immediately caught and fixed - clearly

automated testing does help to improve code quality!

The current CI pipeline could be extended to include numerical validation of

results for all the supported codes, to give greater confidence that library changes

in support of one code do not affect the others. However, this has not yet been

implemented.
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4.2 Validation

Two main approaches have been taken to show that MIST behaves correctly -

firstly like-for-like comparison can be made between native integrators in each

MD code and their counterparts implemented within MIST. For these tests the

behaviour of the system being modelled is not particularly important so it is not

necessary that ‘good’ quality parameters are chosen. The output of host MD code

is taken as a baseline, and the results achieved using MIST are compared against

it. Even where the algorithm implemented in MIST is analytically identical

to the native integrator small numerical differences such as the use of double

or single-precision, or even the ordering of arithmetic operations within the

individual particle updates will cause the results of the calculation to differ. As a

result the correctness of the MIST implementation can be assessed by comparing

the long-term trends in computed quantities such as the temperature, and by

checking that expected quantities such as the total energy (for a simulation in

the microcanonical ensemble) are conserved. This approach can also be used

to check that parallelisation is implemented correctly. Secondly, for integrators

where there are no exact counterparts implemented in any of the supported codes,

expected properties of the algorithms can be checked, for example how well

they conserved energy, or (for a simulation in the canonical ensemble)whether

temperature converges to the expected value. An illustrative selection of both

of these types of test result are shown in the following section, some for each of

the supported MD codes. The input files used are distributed with MIST, in the

examples subdirectory.

To validate the NAMD-Lite implementation, a small molecule - adenosine

diphosphate - isolated in vacuum with no periodic boundary conditions and the

CHARMM22 All-Hydrogen forcefield parameters [3] are used, with no constraints

of any kind. The atoms are initialised with velocities at 300K and then run

for one million 1 fs time steps in the NVE ensemble for a total of 1 ns of

dynamics. The input files can be found in examples/namd-lite/adp in the MIST

distribution. The default verlet integrator from NAMD-Lite is compared against

the VerletIntegrator in MIST in Figure 4.1. For such a small system (only 22

atoms) large fluctuations are expected in all computed quantities. However, it’s

clear that the total energy for both integrators is around 11.3 kcal/mol. Both the

kinetic energy / temperature and the potential energy are also in good agreement,

indicating that MIST is integrating the equations of motion correctly.
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Figure 4.1 Comparison of NAMD-Lite and MIST Verlet integrators for ADP
in vacuo.

As a production-quality MD package, GROMACS achieves higher performance

and is able to model significantly larger systems where energy fluctuations are

expected to be much smaller and therefore it is easier to compare MIST with

the native integrator. The examples/gromacs/water directory contains input

files for a 12207-atom system of water molecules in a 5nm cubic periodic box.

The GROMACS implementation of the CHARMM27 forcefield [31] is used with

fully flexible TIP3P water and a cutoff of 1.2nm for non-bonded electrostatic

and van der Waals interactions. Production calculations would typically use a

more reliable method such as Ewald summation or similar for the long-range

non-bonded forces rather than a bare cutoff [172] as these are known to produce

better simulation results, and may contribute to the drift in total energy observed

in Figure 4.2b. In any case, excellent agreement between GROMACS’ native

Verlet scheme and MIST’s Verlet can clearly be seen for both the kinetic and

potential energy, and thus the total energy. In particular, they are virtually

indistinguishable for the first 1000 steps or more (Figure 4.2a) before numerical

differences cause a small divergence over the remainder of the 50ps of calculation.

A similar system is set up in Amber, using the same initial coordinates but

a different force-field. In this case the Amber ff03 [60] forcefield was used,

with a relatively high cut-off of 24Å(full parameters used can be found in
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Figure 4.2 Comparison of GROMACS and MIST Verlet integrators for liquid
water test case.
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Figure 4.3 Comparison of Amber and MIST Leapfrog integrators for liquid
water test case, running on 2 MPI processes.

examples/amber/water). The native integrator in Amber is a Verlet leapfrog

scheme, so the LeapfrogIntegrator in MIST is used for comparison, and in

addition both native and MIST calculations were run using 2 MPI processes to

validate the parallel implementation of MIST. The data shown in Figure 4.3 shows

excellent agreement between Amber and MIST integrators for both kinetic and

potential energy, and much better total energy conservation than the parameters

selected for the test in GROMACS (although in both cases MIST shows the same

behaviour as the native integrator).

For validation of LAMMPS, one of the standard LAMMPS benchmark cases

is adapted (see input files in examples/lammps/lj), which consists of 32,000

Lennard-Jones particles arranged in a periodic FCC lattice. 5000 steps of NVE

dynamics were run using the LAMMPS fix nve and MIST’s VerletIntegrator.

LAMMPS and MIST were compiled both with and without MPI support and

MPI runs were done on both 1 and 2 processes to examine the numerical

effects of parallelisation. Figure 4.4a shows that all six runs are in very close

agreement on the total energy and are all considered to be correct. Interestingly,

closer examination of the data at the near the end of the run (Figure 4.4b)

shows that while there are small numerical differences between the LAMMPS

serial and parallel runs, LAMMPS in parallel gives identical results to within

machine precision irrespective of the number of processes. In contrast, MIST

gives identical results when run in serial, or with MPI on a single process, but

slightly different results when run on 2 processes.
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Figure 4.4 Comparison of LAMMPS and MIST Verlet integrators for the
Lennard-Jones fluid test case.
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Figure 4.5 Total Energy conservation of different NVE integrators for the
alanine dipeptide test case.

As discussed in Section 2.1, Verlet integration is the preferred scheme for MD due

to the favourable trade-off between discretisation error and cost. To demonstrate

the behaviours of the RK4 and Yoshida4 integrators, a GROMACS simulation

of a small (22 atom) molecule of alanine dipeptide in a large periodic vacuum

box was set up using the Amber03 force-field with a cut-off of 1.2nm (input

files in examples/gromacs/aladip). 1ns of dynamics with a time step of 1fs

is shown in Figure 4.5 where it is clear that both the Verlet and Yoshida

integrators have good long-term energy conservation because of their symplectic

structure. Although the Verlet integrator has a larger discretisation error, this

is not practically relevant since integrator becomes unstable at any larger step

sizes where the Yoshida integrator might otherwise prove advantageous because

the system contains fully flexible N-H bonds with an oscillation period of around

10fs. With similar practical energy conservation, Verlet is approximately 3 times

faster - 7456 ns/day compared to 2497 ns/day for Yoshida - due to the 3 force

evaluations required per time step. While the Runge-Kutta scheme has the same

discretisation error as the Yoshida scheme, it is not symplectic and so it expected

to have poor energy conservation. However, the extreme loss of energy suggests

this is due to an implementation error!

Similarly, the behaviour of the LangevinIntegrator is validated using the same

liquid water system in GROMACS as described above. A total of 10ps of

dynamics were run, varying the target temperature and the friction parameter
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Figure 4.6 Temperature of the water test case in GROMACS, with various
Langevin thermostat parameters.

γ. The Langevin scheme is expected to relax smoothly to the target temperature

as opposed to oscillating around it like the Nosé-Hoover scheme shown in Figure

4.7. Figure 4.6 shows that MIST correctly converges the temperature as reported

by GROMACS to the respective targets of 300K or 350K. With the friction

set to its default of 1/ps the target temperature is reached after 5-6ps. As

expected, increasing or decreasing γ decreases or increases the relaxation time

proportionally.

LAMMPS was used to test the MIST NoseHooverIntegrator with only the

thermostat enabled. An input file which sets up a 5-mer peptide (84 atoms)

in a periodic 27.37Å cubic box of 640 water molecules, for a total of 2004

atoms was modified to run for 2,000 2fs steps. The CHARMM22 force-field

is used with LAMMPS’ Particle-Particle-Particle-Mesh algorithm for long-range

electrostatics and all bonds fully flexible. The modified input files can be found

in examples/lammps/npt. The LAMMPS fix nve is used as a baseline, and

then fix nvt with the target temperature set to 300K and a damping time

constant of 200fs. The same temperature was used to configure the MIST

integrator and the default temp nsteps relax of 100 steps. Figure 4.7 shows

the temperature computed during each run. The NVE run shows that in absence

of any thermostatting, the temperature oscillates around 215K (in the original

input file, initial velocities were assigned at 275K, but in this case the same set

of velocities in the absence of any bond constraints equates to around 215K due
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Figure 4.7 Comparison of LAMMPS and MIST Nose-Hoover NVT integrators
for solvated 5-mer peptide test case.

to the higher number of degrees-of-freedom). LAMMPS and MIST NVE runs

have been compared in Figure 4.4 so the MIST run is omitted here for clarity.

Both the LAMMPS and MIST thermostats exhibit similar behaviour, reaching

the target temperature of 300K after around 1.2ps. In particular, it can be seen

that the initial temperature fluctuations match exactly, before subtle differences

in the algorithms causes the results to vary, although still correctly maintaining

the temperature at 300K.

The same system is also used to validate the behaviour of the barostat.

In this case the LAMMPS integrator parameters fix 1 all npt temp 300.0

300.0 $(100.0*dt) iso 1.0 1.0 $(100.0*dt) are used, and the same target

temperature (300K), pressure (1 Atm) and relaxation time constant (100 steps,

or 200 fs) are used for both thermostat and barostat in MIST. Figure 4.8 shows

that initially, there are quite large oscillations in the pressure for the first 1 ps

or so before these are damped by the barostat and small oscillations around the

target remain for the duration of the run. The MIST implementation recreates

the same oscillatory frequency as LAMMPS’ fix npt and both damp magnitude

of the pressure oscillations at the same rate.

To test the behaviour of Ackland’s box quenching scheme [5], the LAMMPS

examples/meam/in.eam input file which sets up a system of 32,000 copper atoms

in a perfect fcc lattice was used, with Embedded Atom Method interaction

parameters taken from [72]. Starting with the lattice parameter expanded by 10%
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Figure 4.8 Comparison of LAMMPS and MIST Nose-Hoover NPT integrators
for solvated 5-mer peptide test case.

NPT dynamics are run using a traditional Parrinello-Rahman style barostat (i.e.

no thermostat chain attached to the barostat), which sets up a elastic ‘ringing’

vibration of the cell as shown in Figure 4.9. By comparison, when the same

system is run using the MIST NPT integrator with the parameter box quench

true, it is clear that as soon as the cell reaches the equilibrium volume during

the first contraction it stops contracting and relaxes rapidly. Small fluctuations

are due to the fact that during a single time step the cell volume change may

overshoot the equilibrium volume slightly.

For the other MIST integrators, Continuous Tempering [81] and ISST [146],

validation results can be found in their respective publications. Simulated

Tempering is applied to a real system in Chapter 5.

4.3 Performance Testing

Having demonstrated that MIST integrators give correct results, the performance

overhead of using MIST compared with the native integrators in each of the

supported host codes can be investigated. As MIST introduces additional layers

of abstraction, these are expected to come at a computational cost, but the design

choices laid out in Section 3.1 are intended to keep this to a minimum.
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Figure 4.9 Comparison of LAMMPS NPT and MIST NPT with Ackland’s box
quenching scheme for copper crystal test case.

Unless otherwise noted, CPU tests have been performed on ARCHER, a Cray

XC30 with two Intel Xeon 12-core E5-2697v2 ‘Ivy Bridge’ processors per node.

Some of the MPI-parallel tests were carried out on Cirrus, a SGI/HPE 8600

cluster with two Intel Xeon 18-core E5-2695 ‘Broadwell’ processors per node.

GPU tests have been performed on a Linux system with two Intel Xeon 8-

core E5-2650v2 ‘Ivy Bridge’ processors and eight NVIDIA Tesla K40m GPUs.

GROMACS uses one GPU per MPI rank even if that process makes use of

multiple CPU threads.

All bar graphs show the average over 3 runs - error bars are not shown as the

standard deviations were typically less than < 1%, with the largest being 2.5%.

Different test systems are used for each supported MD code in order to avoid

making direct comparisons between the performance of the MD codes themselves,

and also to illustrate the versatility of MIST to be able to cope with differing force

fields, periodic boundary conditions and constraints schemes.

4.3.1 NAMD-Lite

To measure the performance overhead of using MIST with NAMD-Lite, an iso-

lated deca-alanine molecule was simulated using the input settings supplied in the

demo directory of the NAMD-Lite distribution (also in the examples/namd-lite/alanin
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Figure 4.10 Performance of NAMD-Lite with and without MIST, for a deca-
alanine molecule in vacuo.

directory of MIST). A 12Å cut-off is applied for electrostatic forces, the system

is initialised with random velocities at 300K and run for 1 ns of NVE dynamics

using a 1 fs time step. A small system is a worst-case test for MIST, since the

relatively cheap force evaluation and small number of atoms (66) means that the

function call overheads of calling out to MIST to perform the integration are

likely to be exposed.

As can be seen in Figure 4.10, only a 2% slowdown is measured when using the

velocity Verlet integrator in MIST compared with the native integrator in NAMD-

Lite (effectively running with MIST disabled). The figure shows the average over 3

runs for each setting - variability between runs was negligible (standard deviation

< 0.1% in all cases). The performance when constraints are enabled in MIST,

using both the RATTLE [10] and Symmetric Newton (SNIP) [19] methods, using

the default constraint tolerance of 10−8 is shown. Resolving the constraints takes

a significant amount of time, with RATTLE reducing the overall performance

by 34%. SNIP is significantly faster, with only a 17% performance drop. Direct

comparison with NAMD-Lite’s constraints implementation is not possible since

it only supports the limited capability of SETTLE [153] for rigid water models.
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Figure 4.11 Performance of GROMACS on ARCHER with and without MIST,
for the 12,207 atom water system.
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Figure 4.12 Performance of GROMACS on an NVIDIA K40m GPU with and
without MIST, for the 12,207 atom water system.
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4.3.2 GROMACS

The performance of MIST with GROMACS on a single compute node is

illustrated using a more realistic-sized system - a 50Å cubic periodic box

containing 4069 water molecules. The input geometry and settings are supplied

in the examples/gromacs/water directory of the MIST distribution. The TIP3P

water model from the CHARMM27 force-field is used with a 12Å cut-off for the

electrostatic and van der Waals forces. The system was initialized with random

velocities at 300K and run for 25 ps of NVE dynamics using a 1 fs time step.

For this system (using a single CPU core) 96% of the run time is spent in force

calculation and neighbour list search and less than 3% in the integration itself

(the Update time reported by GROMACS). Both a fully flexible water model and

one with bond constraints applied were tested. GROMACS supports the SHAKE

and LINCS[100] schemes for resolving constraints and default settings were used

for both. In MIST, a relatively loose constraint tolerance of 10−4 is set, matching

the SHAKE tolerance used by GROMACS.

Figure 4.11 shows the performance achieved for each case using up to 24 OpenMP

threads. For the unconstrained case, MIST is within 1% of native GROMACS

performance and on 24 threads outperforms GROMACS by 3%. Comparing the

constraint implementations, the LINCS[100] algorithm in GROMACS performs

best although it is not possible to directly compare it with the SHAKE, RATTLE

or SNIP solvers as it does not use a relative constraint tolerance, but rather a fixed

(4th) order expansion and a fixed number of iterations (1). Interestingly, for the

same tolerance, the RATTLE algorithm implemented in MIST is 12% slower than

GROMACS’ SHAKE implementation when running on a single thread, but when

using 24 threads is 36% faster. Unlike for the small deca-alanine system, SNIP

is the slowest algorithm due to the expensive inversion of the gradient matrix.

It is important to recognize that SNIP is most advantageous when treating large

macromolecules with high bond connectivity, whereas waters are actually better

handled by RSHAKE [120] or SETTLE [153].

On the GPU (Figure 4.12), we see a slightly higher overhead between MIST

and the native GROMACS Verlet integrator, of around 5.5% using a single

core, becoming negligible on 16 cores. This reflects the fact that as the force

evaluation using the GPU is much faster, with overall performance of 45 ns/day

compared with 6 ns/day on the CPU only, the additional cost associate with

calling out to MIST to do the integration is proportionally higher. However, the
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use of OpenMP within the MIST integrator offsets this at higher thread counts.

Similarly to the CPU, the GROMACS LINCS implementation is fastest, but the

difference in performance between the GROMACS SHAKE and MIST RATTLE

implementations is much higher, with MIST being 39% slower on a single thread,

but 57% faster using 16 threads.

To demonstrate the performance of MIST when run in an MPI parallel

environment, a system consisting of the well-known [140, 214] NTL9(1-39) protein

is used, which consists of 636 atoms and is solvated in 4488 water molecules, for

a total of 14100 atoms in a 50Å cubic periodic unit cell. Electrostatic forces were

computed using the PME method, with a short-range and van der Waals cutoff

of 1nm. 10,000 time steps of 0.5 fs were run, and the reported performance in

ns/day up to 144 MPI processes (6 ARCHER nodes) is shown in Figure 4.13.

The performance on a single node using OpenMP parallelisation is also shown

for reference. Up to 24 cores (within a single node), the performance impact of

using MIST compared with native GROMACS performance is up to 1.5% for

OpenMP and up to 6% for MPI. This is attributable to the fact that there are

additional MIST calls required whenever GROMACS makes a load balancing

step. Beyond a single node, the performance of both GROMACS and MIST

starts to become more variable as the inter-node communication cost becomes

important, and varies from run to run. Nevertheless, MIST and GROMACS give

similar performance up to 96 cores, when the system size is too small to support

further strong scaling.

4.3.3 Amber

To test the performance of MIST with Amber the same NTL9 system is used

as for GROMACS, but using the CHARMM22 force field with a TIP3P water

model and a cut-off of 9Å for real-space part of the electrostatic forces and

the long-ranged electrostatics computed on a 543 PME grid. The system was

initialised with random velocities at 300K, and run for 25ps of NVE dynamics

using a 1 fs time step with the pmemd or pmemd.cuda program. Input files are

available in examples/amber/ntl9 in the MIST distribution. Amber supports

bond constraints for hydrogen atoms only on the GPU, so the corresponding

h-bonds-only setting in MIST is used with a relative tolerance of 1E − 5,

matching the default Amber SHAKE tolerance.

Figure 4.14 shows the performance achieved running on a single CPU core on
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Figure 4.14 Performance of Amber on ARCHER with and without MIST, for
the solvated NTL9 system.
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Figure 4.15 Performance of Amber on an NVIDIA K40m GPU with and
without MIST, for the solvated NTL9 system.

ARCHER (Amber 14 does not have thread parallelisation). It is clear that using

MIST has negligible impact on the performance. For the constrained runs, Amber

is slightly faster (by 1%) as it is possible to skip the computation of the forces

caused by the constrained bonds (ntf=2 in Amber), offsetting the additional cost

of the SHAKE algorithm. Similarly to NAMD-Lite and GROMACS, both the

MIST constraint solver algorithms have an additional performance overhead. For

this system, SNIP is faster with an 11% drop, compared to 24% for RATTLE.

For Amber, the overhead of using MIST with pmemd.cuda is much higher (see

Figure 4.15). Whereas GROMACS achieves around 10× speedup with a K40m

GPU compared to a single CPU core, Amber achieves a speedup of over 50× by

doing the entire calculation (both the force evaluation and integration) on the

GPU, thus avoiding relatively high-latency transfers between the GPU and CPU

memory. In order to use MIST the updated coordinates must be transferred to the

GPU and the resulting forces transferred back again at each time step, effectively

throttling the GPU by memory transfers. As a result, running with MIST

achieves only 844 ns/day, compared with 3282 ns/day using the native integrator

running on the GPU. This is still over 10× higher than the 66 ns/day achieved by

Amber and/or MIST running on the CPU. As expected, the constrained runs are

slower still with a 62% overhead for SNIP and 78% overhead for RATTLE. These

overheads are higher than observed in the CPU runs as the force evaluation is

much faster so the time spent in the constraint solver is proportionally larger.
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Figure 4.16 Performance of LAMMPS on Cirrus with and without MIST, for
the rhodopsin system.

4.3.4 LAMMPS

Performance of MIST with LAMMPS is tested with a system consisting of

the rhodopsin protein in a lipid bilayer, for a total of 32,000 atoms. Forces

are calculated using the CHARMM force-field with a 10 Åcut-off and fully

flexible bonds. NVE dynamics are run for a total of 200 2fs time steps, using

either the LAMMPS fix nve or MIST VerletIntegrator. This is an adapted

version of the standard LAMMPS rhodo benchmark and input files are available

in examples/lammps/rhodo. Figure 4.16 shows the performance achieved by

LAMMPS with and without MIST up to 576 cores, where performance starts to

drop off. The overhead of using MIST varies from 5% on 8 cores, up to a maximum

of 13% on 144 cores. As well as the serial overhead of calling in to MIST, the

majority of the difference is due to increased force evaluation cost. Since MIST

only does load balancing at the start of the step rather than at the point where

forces are calculate, it is necessary to slightly increase the size of the halo (or

‘skin’ in LAMMPS terminology - see Section 2.1.4) between processes, resulting

in increased communication cost. For example on 144 cores, the average number

of atoms in the halo region on each process is 5137 without MIST rising to 7082

with MIST (a 37.9% increase) with a commensurate increase in communication

time by 47.2%.

92



4.4 Discussion

In this chapter, I have shown that MIST gives correct results with respect to

equivalent integrators implemented in each of the supported MD codes. Where no

direct comparison can be made I show that the integrators perform as expected

and so MIST is reliable enough to be useful as a platform for novel algorithm

development, without requiring care to be paid to the implementation details

below MIST’s abstraction layer. No attempt has yet been made to cross-validate

the same integrator running in MIST across two or more MD codes. In practice,

even for a well-defined choice of molecular system and force-field, it is difficult

to assess whether differences in results are due to unavoidable numeric effects or

actual errors! It is likely that the best approach would be to carry out production

quality calculations, aiming to demonstrate agreement between some converged

ensemble average property rather than direct agreement between energies, for

example.

In Section 3.1 three design principles were laid out which all of the subsequent

design and implementation choices were intended to support. The validation

tests, performance results, and range of integrators implemented using MIST can

be used to assess the extent to which these principles have been upheld.

• Expressiveness: I described in Section 3.3 eleven different integrator

schemes ranging from simple, classical examples such as Verlet and Runge-

Kutta to much more complex extended variable and tempering schemes.

Some of these were implemented by students and postdoc collaborators with

little need for support. In cases where I collaborated with other developers,

this was mainly to improve the performance of their implementation.

This demonstrates the fact that MIST is easy to develop on top of, is

expressive enough to permit a wide range of different algorithms, and

that developers do not need to concern themselves with details such as

performance optimisation - although this can still be added later, if desired.

However, the fact that MIST is implemented in the context of the standard

MD loop of the host code makes it impractical to implement static methods

such as geometry optimisation in MIST - any calculation run with MIST

necessarily produces a time-series trajectory. In addition, MIST does not

have access to second derivatives of the energy, which are usually needed

for such algorithms.
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• Performance: The performance tests above show that, except in the case

of Amber on GPU, using an integrator from MIST has only a small overhead

compared to a native integrator - typically a few percent when running on a

single core, rising to around 10% for parallel runs. Performing constrained

integration comes at an additional overhead with the cost depending on the

system size, topology and the constraint solver method and accuracy chosen,

but is comparable to common methods such as SHAKE implemented in

Amber and GROMACS. I have shown that MIST can take advantage of all

three of the most common types of parallelism - OpenMP threading, MPI

distributed memory parallelism and GPU acceleration - without exposing

the complex parallel code to the algorithm developer. I argue that the

small performance overhead of using MIST is a reasonable price to pay

for the increased expressiveness and reduced complexity of using MIST’s

abstraction compared to implementing directly in existing codes and so does

allow new algorithms to be demonstrated at scale on real-world problems

with production quality force-fields.

• Portability: I have demonstrated MIST working correctly with four

different MD codes, covering Fortran, C and C++. Each of the integrators

in MIST may be used with any of the supported codes - with no changes to

the integrator source code required. A range of example inputs, particularly

for the Langevin Dynamics integrator, are included with MIST - thus

broadening the availability of the scheme well beyond its only existing

implementations in NAMD (where it is not even documented),and recently,

in OpenMM. As shown, the MIST input file is also very simple and code-

independent and only a single new parameter is introduced to the host

code’s input file to simply turn on MIST usage and so a complete division

of responsibility is achieved between MIST’s input file which configures

the integrator and the host code’s input which covers the forcefield, I/O,

observables, and run control. In addition, while it was not an explicit aim

originally, the ability to rapidly add support for additional codes is also a

significant benefit and is shown by the fact that I was able to add support

for Forcite - an a priori unseen code-base - within a few days work at

BIOVIA.

94



Chapter 5

Application: Simulated Tempering

of Alanine-121

Alanine-12 is a classic example of an α-helical biomolecule. It is particularly

interesting to disentangle the effects of solvation and temperature on the unfolding

process. At room temperature, the unfolding process cannot be simulated

directly with standard Molecular Dynamics because of slow kinetics. The MIST

implementation of Simulated Tempering (see Section 3.3.6) is used to sample the

free energy landscape of the alanine-12 molecule, previously studied using the

Diffusion-Map-directed-MD method [176]. Starting from the helical configuration

in vacuo, a total of 1 µs of MD was run using a 2 fs time step. The Amber96

forcefield was used with a 20Å cut-off for electrostatics, constraining all bonds

using the SNIP method (see Section 3.3.8). Temperature was controlled using

Langevin dynamics (γ = 1.0ps−1), either set to 300K to sample an NVT ensemble

or varied using Simulated Tempering with temperature states ranging from 300K

to 450K at 10K intervals.

Figure 5.1a shows that the Simulated Tempering algorithm visits all temperature

states within the first 200ps, and the weights f0..f15 remain largely unchanged

throughout the rest of the rest of the run (Figures 5.1c and 5.1d). Figure

5.1b shows that the temperature varies randomly between states during the

remainder of the run and so the configurations generated can be used to compute

free energies. Free energies at a specific temperature T can be obtained by

selecting from the trajectory the configurations obtained at the corresponding

1This chapter is a more detailed description of the application first published in [24].
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Figure 5.1 Simulated Tempering temperature states and weighting over time.
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temperature state. By definition the probability of the system occupying a given

microstate is ∝ e−F and so the free energy is can be computed by binning

configurations according to some variables and taking the negative log of the

number of configurations in each bin. Here, the free energy surfaces are plotted

as a function of RMSD from the initial state and the radius of gyration Rg in

Figure 5.2. The RMSD gives an indication of the global dissimilarity to the

reference (helical) conformation and Rg a measure of the compactness of the

structure around its principal axis. Both can be computed by the GROMACS

g energy utility.

As expected, Figure 5.2a shows that at 300K, the system is trapped in a local

minimum around the helical state (labelled A). Using Simulated Tempering, the

elevated temperature is enough to allow the system to explore into a wider range

of (partially uncoiled) configurations - comparable to those accessed by plain MD

at 400K in Figure 7 of [176].

Figure 5.2b shows the complete set of configurations sampled, including those at

temperatures greater than 300K. Restarting simulations from the configurations

labelled B (a compact structure consisting of three hairpin turns) and C (where

the two termini are aligned and a complex twisted structure forms in the

backbone) and running a subsequent 1 µs of NVT dynamics at 300K shows that

configuration B exists in a stable minima (Figure 5.2c), whereas the system is

free to migrate between configurations C and D via a transition state F (Figure

5.2d), where the termini of the molecule have turned back on themselves.

In contrast, even at 300K (Figure 5.3a) the solvated system is able to access a

much wider range of states including the fully unfolded state (H) and a large

basin (G) containing various extended structures. This is qualitatively similar to

the behaviour of deca-alanine observed in [97], which has extended conformations

of comparable free energy to the helical state. Physically, the addition of water

molecules provides an alternative hydrogen bonding route than can effectively

‘bridge’ between -CO and -NH groups in the backbone, stabilising extended

structures that are not observed in the in vacuo ensemble. Compared with the in

vacuo simulations, the molecule does not sample the compact (Rg ' 0.5) states

B and D, but instead states like I and J where both ends of the molecule are

unbound and a hairpin turn or complete helix is present in the middle. Since

the energy barriers between states are relatively low (< 2.8kcal/mol) compared

with barriers of up to 4 kcal/mol in the vacuum case, MD at 300K is able to

access all states and so Simulated Tempering does not provide any access to any
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(a) NVT at 300K, starting from helical configuration.

(b) Simulated Tempering 300-450K.
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(c) NVT at 300K, starting from configuration B.

(d) NVT at 300K, starting from configuration C.

Figure 5.2 Free energy surfaces of Alanine-12 in vacuo.
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(a) NVT at 300K, starting from helical configuration.

(b) Simulated Tempering 300-450K.

Figure 5.3 Free energy surfaces of Alanine-12 solvated in TIP3P water.
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qualitatively new states (Figure 5.3b) in this case.

For this application, using MIST to run Simulated Tempering is much more

convenient than the pre-existing scripts for GROMACS [220]. Running the entire

calculation as a single job avoids the need to repeatedly start and stop (very short)

GROMACS calculations which could have a significant effect on the overall run

time, especially if each step has to be launched on a parallel machine. Analysis

of a single, long trajectory is also simpler as there is no need to concatenate

multiple short trajectory files. Finally, as mentioned in Section 3.3.6, the use

of the Langevin BAOAB thermostat is expected to produce a more accurate

sampling of the NVT ensemble than standard thermostats.
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Chapter 6

Application: Properties and

Structure of Olivine Melts

Geophysics, the study of the Earth system, has developed a complex set of models

to describe the layered structure of Crust, Upper and Lower Mantle, and Inner

and Outer Core [11] in the Earth’s interior. The mean physical conditions of

temperature and pressure at various depths are described by models such as the

Preliminary Reference Earth Model (PREM) [64]. However, these models ignore

a number of dynamical processes such as turbulent convection in the Mantle

and Core, heat transfer across boundary layers, and subduction and extrusion of

the crust. Any such global model is underpinned by knowledge of the chemical

composition of the various regions and the resulting material properties which

are used to parameterise to model.

Knowledge of material properties can be derived from experiment, and there

is a large body of data developed over the last 30 or more years (for example

[37, 56, 98, 149]) using mechanical measurements and spectroscopic techniques.

In addition, computer simulation has an important role to play, firstly for extreme

conditions of temperature and pressures which cannot currently be accessed

by experiment [197], secondly to made predictions which may be later tested

experimentally [7], and thirdly to provide an atomistic rationale for observations

[118].

The principal computational technique used is Molecular Dynamics, with forces

derived either from an empirically-fitted classical force-field or from Density

Functional Theory (DFT). MD calculations are computationally expensive,
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especially when system sizes containing 100s or 1000s of atoms are modeled using

DFT. To compute long enough trajectories to get a good sampling of the material

at equilibrium requires the use of efficient software such as CP2K [105, 127]

running on modern High Performance Computing systems.

This chapter documents the development and testing of accurate and efficient

models of minerals such as olivine which make up the majority of the Upper

Mantle, and the use these models to provide atomistic-scale insights into their

observed structure and physical properties.

6.1 Earth Structure

The modern concept of the Earth as an approximate sphere has been held

since Pythagoras in the 6th Century BC. While astronomical observations by

the Greeks some 300 years later lent physical evidence to this, the current

understanding of the Earth as a complex and dynamic system is a relatively

recent innovation. In the 18th Century, James Hutton proposed [106] that the

observed rock formations on the Earth’s surface are a result of processes long ago

and at great depth and moreover that these processes are still ongoing, albeit at

a slow pace spanning millions of years. This idea was further developed into the

theory of continental drift (e.g. by Wegener [216]), which explained not only the

obvious interlocking shapes of South America and Africa, but also the discoveries

of similar fossils and mineral deposits on both Atlantic shores. Continental drift

lacked a sound underlying physical mechanism, and it was not until the middle of

the 20th Century that this was resolved by the theory of Plate Tectonics [32, 217] -

that Earth’s Lithosphere (the outermost mechanical layer, consisting of the crust

and upper mantle) is formed from multiple plates which move atop the lower

mantle.

The established models of the Earth are thus relatively recent, and still under

constant revision. Fowler [73] presents a simplified model, with an outer Crustal

layer of silica-rich rock, only 10s of kilometres thick. Beneath this lies the Mantle,

a 2900km depth of primarily magnesium silicate melts, and in the centre, an

iron core, of which the outer 2200km are liquid and the inner 1200km are solid.

Anderson [11] presents the more nuanced view of Bullen [44] with no less that 8

discrete regions (see Table 6.1). It is clear from this classification that not only

are there transition regions rather than clear boundaries, but that discontinuities
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Region Depth (km)
A 0 - 33 continental crust
B 33 - 410 upper mantle

220 Lehmann discontinuity
C 410 - 1000 transition region

650 discontinuity
D’ 1000 - 2700 lower mantle

1000 Repetti discontinuity
D” 2700 - 2900 transition region
E 2900 - 4980 outer core
F 4980 - 5120 transition region
G 5120 - 6370 inner core

Table 6.1 Bullen’s regions of the Earth’s interior, adapted from [11].

in physical properties (e.g. density, seismic wave velocity) exist within the regions

themselves!

6.1.1 Physical Properties and Composition

The upper mantle in particular does not lend itself to a simple characterisation.

This complexity is shown in the Preliminary Reference Earth Model (PREM)

of Dziewonski and Anderson [64], a 1-dimensional (radial) model of density and

seismic wave velocity, where the entirety of the earth is considered isotropically

except for the uppermost 200km. The physical quantities in the model are

represented by polynomials which are fitted to available seismological data. A

number of later models have superseded the PREM, based on more recent data

and improved mathematical models of seismic wave propagation, notably IASP91

(1991, includes wave velocities) [115], AK135 (1995) [116] and STW105 (2008)

[124]. Unlike the other parameterised models, AK135 uses a discretisation scheme

and interpolation must be used to derive values at intermediate points. However,

as is clear from Figure 6.1 all of the models are closely matched, varying only in

particular areas of detail around region boundaries.

Given the density data from any given model, one can compute the hydrostatic

pressure by integration of:

dP

dr
= −ρg
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Figure 6.1 Comparison of densities predicted by PREM, AK135 and STW105.

where r is the radial distance from the centre of the earth rather than the

depth, ρ is the local density and g the gravitational constant. Figure 6.2 shows

representative pressure data calculated from the PREM density tables, as well

as indicative temperatures. Definitive temperature data at various depths is

harder to obtain, since it is typically inferred from melting temperatures of

the constituent materials at the relevant pressures, often combining data from

experiment and computer simulation. However, the temperature does increase

monotonically with depth, and a review by Boehler [35] gave temperatures

ranging up to 1830K in the Lithosphere, from 1830K to 2600K in the Mantle

followed by a discontinuity up to 4000K at the Core-Mantle Boundary (CMB)

and 5000K at the Inner Core Boundary (ICB). Subsequent studies [7, 13] have

revised the ICB temperature to around 6320K, and suggest the lower value of

Boehler was due to recrystallisation of the melt affecting accurate determination

of the phase change. Figure 6.2 includes the updated data.

As well as bulk properties determined by seismic wave propagation, it is possible

to estimate the composition of the various layers. In the case of the crust this can

be done directly via borehole sampling, whereas the composition of the mantle

must be inferred from the content of magmas which have emerged and cooled such

as Mid-Ocean Ridge Basalts (MORBs) or volcanic magma flows. The composition

of meteorites (cosmochemistry) also places some constraints on what material may

have formed the earth in the early solar system.

Starting with the crust, the primary constituents are plagioclase, a calcium/-

106



0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

0	
   1000	
   2000	
   3000	
   4000	
   5000	
   6000	
   7000	
  

Te
m
pe

ra
tu
re
	
  (K

)	
  

Pr
es
su
re
	
  (G

Pa
)	
  

Depth	
  (km)	
  

Pressure	
  

Temperature	
  

Figure 6.2 Pressure (from PREM data) and Temperature (from [35] and [13])
against depth.

sodium tectosilicate solid solution {NaAl,CaAl2}Si3O8, potassium K-feldspar

KAlSi3O8 and Quartz SiO2 [11]. The upper Mantle consists of various silicate

materials, principally olivine (magnesium and iron silicate) {Mg,Fe}2SiO4,

pyroxene {Mg,Fe}2Si2O6 and garnet Mg3Al2(SiO4)3 [45]. In the Transition

Zone, higher-pressure phases of similar minerals occur such as ringwoodite and

wadsleyite olivine, and deeper still magnesium and iron perovskites {Mg,Fe}SiO3,

and Mg/Fe oxide (ferropericlase) {Mg,Fe}O. The Core is known to have a

somewhat simpler composition, being primarily iron, with around 6% by mass

of nickel [197] plus trace contributions of both heavier (gold and other transition

metals) and lighter (e.g. oxygen) elements.

The properties and composition discussed so far are all averages. In fact the

Mantle (and the Core) are dynamic, complex systems containing higher (sinking)

and lower (rising) density regions resulting in plumes and convective flows. At

plate boundaries, sections of the Lithosphere may be subducted (that is pushed

below an opposing plate), and sink into the Mantle.

Nevertheless, one thing that all the models agree upon is that the upper and lower

mantle make up the largest proportion of the Earth’s interior by mass (around

two thirds, depending on exactly how the extent of the mantle is defined) and

understanding its behaviour requires input from several disciplines - Seismology,

Fluid Dynamics, Materials Science, Minerology, and more - clearly a complex

multi-physics problem.
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Fe coordination number has been reported ranging all the
way from 4- to 6-fold (Jackson et al., 2005; Rossano
et al., 2008; Weigel et al., 2008). Extended X-ray absorption
fine structure (EXAFS) studies on glasses suggest that Fe2+

is mostly 4- or 5-fold, depending on composition (Jackson
et al., 2005; Wilke et al., 2007). Wilke et al. (2007) points
out that there are discrepancies between the glass and the
melt under reduced conditions, the latter being dominated
by 4-fold Fe2+. Earlier in situ EXAFS studies (Waychunas
et al., 1988; Jackson et al., 1993) at high T on the melt,
though scarce, agreed on 4-fold Fe2+. Waychunas et al.
(1988) highlighted that pressure-induced coordination in-
crease at upper mantle conditions would result from the
presence of 4-fold rather than 6-fold Fe in the melt at ambi-
ent P. In the approach presented here, we extract the local
structure of the melts, including the Fe–O bond distance
and coordination number, from the total radial distribution
function obtained in situ at both ambient and high P by X-
ray diffraction. Previous data at ambient P (Waseda et al.,
1978) were controversial particularly as they reported an
Fe–Si distance of 1.8 Åi.e. about two times shorter than ex-
pected. Unlike EXAFS, X-ray diffraction is not a chemi-
cally selective probe. It does, however, have the
advantage of providing absolute distance and coordination
numbers, without being reliant on standards or structural
models. It is also not possible to study the Fe-edge in situ
in a high P–T environment with EXAFS.

2. EXPERIMENTAL METHODS

2.1. In situ X-ray diffraction at ambient pressure

An X-ray diffraction measurement of the ambient pres-
sure structure of liquid fayalite was made using the ID15
beamline at the European Synchrotron Radiation Facility
(ESRF) with high energy incident X-rays of 99.554 keV.
A 3.0 ± 0.2 mm diameter sphere of naturally occurring
fayalite (Alfa Aesar, 0.06–0.19 in. grains) was aerodynami-
cally levitated in air by an argon gas flow through an alumi-
num nozzle and melted using two 125 W CO2 laser beams.
A total of 60 2-dimensional diffraction images, with acqui-
sition times of 500 ms, were measured using a Perkin Elmer
detector giving a high maximum scattering vector
qmax ¼ 26:45 Å"1. The individual diffraction patterns were
averaged and reduced to the total structure factor S(Q)
using the method described in Drewitt et al. (2011).

2.2. High-pressure techniques

Experiments on molten fayalite under high P–T condi-
tions of up to 7.5 GPa and 2000 K were preformed using
a Paris–Edinburgh press. The starting material was the
same natural fayalite as for the ambient pressure measure-
ment, reduced to powder and packed inside a graphite cap-
sule. The cell-assembly (Sakamaki et al., 2012) is optimized
to limit the extrusion of cell materials and to maintain a
large vertical access to the sample, even at high P–T condi-
tions. The only modification to the cell assembly involved
the use of various caps inserted on either side of the graph-
ite capsule, whereby different configurations were used to

influence the fO2: (1) BN caps, (2) MgO caps, and (3)
MgO caps + packed pyrex powder (Fig. 1). This was
motivated by the observed decomposition of fayalite at
high T conditions using BN caps (see Section 3.1). Table 1
gives a summary of run conditions. The molten state of the
sample was assessed by the disappearance of crystalline
Bragg peaks and concomitant appearance of diffused scat-
tered signal by the melt. The pressure was determined from
the cell-volume of the MgO P-transmitting medium (Kono
et al., 2010), accounting for the P difference between sample
and MgO ring. The temperature was determined from pre-
vious calibration measurements of the cell-assembly and
was consistently within 100 K above the melting curve of
fayalite (Akimoto et al., 1967). X-ray radiographic images
of the sample were systematically recorded before and after
collection of X-ray diffraction to check for homogeneity/
heterogeneity of the sample.

2.3. X-ray diffraction data processing

In situ high pressure and high temperature energy dis-
persive X-ray diffraction experiments were conducted at
the sector 16BM-B beamline, High Pressure Collaborative
Access Team (HPCAT) at the Advanced Photon Source,
Argonne National Laboratory. The incident beam was col-
limated by tungsten slits (0.3 mm vertical # 0.1 mm hori-
zontal) and the diffracted signal was collected by an
energy-dispersive germanium solid-state detector. In the
molten state, X-ray diffraction data were collected at differ-
ent 2h angles (2!, 2.7!, 3.5!, 5!, 7!, 10!, 15! and 20!, Fig. 2
thus covering up to 15 Å"1 in q-space

Fig. 1. Cross section of the cell assembly; adapted from Sakamaki
et al. (2012).

C. Sanloup et al. / Geochimica et Cosmochimica Acta 118 (2013) 118–128 119

Figure 6.3 Schematic of the construction of a DAC, from [185].

6.1.2 Experimental Approaches in Mineral Physics

Experimental data on deep-earth minerals can be broadly understood in two

categories: bulk physical properties such as compressibility, density, heat capacity

and associated phase diagrams, and structural properties including crystal lattice

dimensions, the arrangement of atoms, coordination numbers and the distribution

of interatomic distances.

Physical properties may be measured using mineral samples (for example [180])

or synthetic preparations (as in [56]). To explore the phase diagrams of a

material the temperature could be controlled using a hot-gas furnace [98, 194] and

measured via thermocouples. More recently studies have used current-induced

heating in a wire containing a small hole in which the sample is placed [37, 179],

and the temperature is calculated based on the measured current flow. An

alternative, more modern technique is the use of laser-based heating [185]. High

pressures are typically achieved via the use of a Diamond Anvil Cell (DAC), which

concentrates the force on the sample contained in a cell (see Figure 6.3) between

the tips of two small, incompressable diamonds.

Once the desired experimental conditions are achieved, various apparatus for
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measuring properties such as commercial calorimeters may be used. The internal

structure of the sample may be probed via a range of different interferometry or

spectroscopy techniques, each of which has particular advantages:

• Fizeau interferometry is the technique used in [149] where the sample

is located between two reflecting plates and illuminated by visible light at

a particular wavelength (there 546nm), to generate interference fringes at

a detector. Since the fringe spacing depends on the spacing between the

reflecting plates, expansion of the sample with heating can be computing

from the corresponding shift in the fringe spacing.

• X-ray diffraction (e.g. in [37]) involves placing the sample in a collimated

(but not necessarily monochromatic) X-ray beam, and measuring the

pattern of the elastically scattered photons on a detector. The intensities

of the scattered photons gives the Structure Factor, a representation of the

reciprocal crystal lattice. Using Fourier transforms and a priori knowledge

of the chemical composition of the crystal it is possible to reconstruct the

real-space structure.

• XANES (X-ray Absorption Near Edge Structure) and EXAFS (Edge X-

ray Absorption Fine Structure) are absorption spectroscopies where the

frequency of the incident X-rays are tuned to excite electrons in the material

and the absorption at each frequency is measured. Compared to diffraction,

X-ray absorption gives more detail on the local structure which can be used

compute radial distribution functions, for example [108].

6.2 CP2K and the GPW method

For this work I chose to use CP2K [105, 127], a powerful and scalable program

for atomistic simulations of a wide range of systems including condensed

phase, molecular systems and complex interfaces. Developed since 2001 by

an international collaborative team (including myself), CP2K is freely available

under the GNU General Public License from the CP2K web site [202]. Although

written in Fortran 95, CP2K is designed from the outset in an object oriented

manner to allow easy extensibility and composability of different methods and

algorithms. As a result CP2K features a wide range of force evaluation models

including classical potentials, Semi-empirical schemes, Kohn-Sham DFT, and
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more accurate hybrid DFT-Hartree-Fock [86] and post-HF correlation methods

MP2 [57] and RPA [58], as well as allowing arbitrary combinations of these.

Built on top of these are many tools including Molecular Dynamics in various

ensembles, Monte Carlo, geometry and cell optimisation and Nudged Elastic

Band. CP2K consists of around a million lines of code, and with an average of

two commits per day to the github repository, development is rapid. To support

this a set of over 3300 test input files is used as an automated regression test suite

to ensure continued code correctness (see [152] for details), and also to provide

examples for users.

There were two principle reasons for choosing CP2K. Firstly, the ability to model

a system using both classical and DFT approaches within the same framework

makes comparison of the two approaches very straightforward. Secondly, since

ab-initio MD calculations are relatively expensive, to allow modeling of larger

systems requires a very efficient and scalable implementation of DFT. One of the

most widely known features of CP2K is QuickStep [211] - also known as the

Gaussian and Plane Waves (GPW) method - a dual basis approach to solving the

Kohn-Sham equations, where atom-centred Gaussian basis functions are used to

represent the wavefunctions, and an auxiliary basis of Plane Waves is used to

expand the electronic density and efficiently compute the Hartree energy. The

algorithm for transforming between the Gaussian basis stored as coefficients in a

sparse matrix and Plane Waves stored on a regular 3D grid makes use of auxiliary

3D real space grids as a means to store the density before the Plane Wave

coefficients are calculated using a Fast Fourier Transform. The mapping from

matrix elements to the real space grids is referred to a collocation and the reverse

as integration. As a result, the Kohn-Sham matrix (and total energy) can be

computed in quasi-linear time - the FFT is O(n log n) - and so can easily scale to

thousands of atoms/electrons. In addition to QuickStep, CP2K also implements

the Orbital Transformation [210] method as an alternative to the traditional

diagonalisation approach to wavefunction orthogonalisation during SCF. While

still cubically-scaling in the number of atoms, OT has been demonstrated to

outperform diagonalisation by a factor of 10 or more for typical systems [210].

The combination of these two approaches gives CP2K excellent efficiency and

the ability to simulate large systems within the local DFT approximation.

CP2K has been parallelised using MPI and OpenMP [22, 23] and optimised

particularly for the Cray XT/XE/XC architectures, and good performance has

been demonstrated for relevant system sizes [28].
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6.2.1 Simulation Setup Tools

A set of C and Fortran programs has been developed to assist with setting up

initial structures, analysis and visualisation of MD trajectory data. Specifically:

• Lattice transformations: scaling, shearing, translating and duplicating

particle coordinates in an XYZ file format.

• Trajectory post-processing: applying minimum image convention to

transform all particles into the unit cell for visualisation, preserving

connectivity of SiO4 tetrahedra across periodic boundaries.

• Analysis: computing (partial) radial distribution function histograms;

calculating mean-square displacements; counting number of neighbour

particles within given radius; calculating centre-of-mass motion in a

trajectory; computing the velocity auto-correlation function; computing the

Lindemann index for specific neighbour cutoff; calculating the bond angle

between coordinated atoms and computing a histogram.

6.3 Modeling Fayalite

As reported in Section 6.1.1 the major constituent of the Upper Mantle is olivine,

a solid solution of {Mg,Fe}2SiO4. In [184] experimental data on the structure of

fayalite (Fe2SiO4) is presented, in particular the coordination of iron and oxygen

with varying pressure and temperature in fayalite melts. Simulation data for

forsterite (Mg2SiO4) from ab-initio molecular dynamics [118] and for a Mid-Ocean

Ridge Basalt (MORB) composition from classical MD [88] is shown to be in good

agreement but no MD data for fayalite is available. Also, at ambient pressure a

dual-peak in the radial distribution function at 1.93Å and 2.18Å is observed [184],

and attributed to 4-fold and 6-fold coordinated Fe respectively. To understand

these features, computational modeling of liquid fayalite was carried out using

CP2K.
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6.3.1 Classical Force Fields

Three classical potential models were tested: from Pedone [168], a Morse-

type potential with an explicit short-range repulsive term for improved high-

temperature behaviour:

Uij(r) =
ZiZje

2

r
+Dij[{1− exp(−aij(r − r0)}2 − 1] +

Cij
r12

From Guillot [87], a Buckingham-type potential:

Uij(r) =
ZiZje

2

r
+Bij exp(−rij/ρij)− Cij/r6

And from Walker [215], another Buckingham potential with an additional

harmonic bond-angle potential constraining the O-Si-O tetrahedral bonds to an

angle of 109.47°. The Walker model also employs a ‘shell-model’ [59] for oxygen,

where instead of a single particle with charge 2−, the ions are modeled as a heavy

core with charge 0.848+ connected to a light electron ‘shell’ with charge 2.848−
via a harmonic spring, attempting to capture the effect of electronic polarisation.

While the additional detail in the model might seem promising, the use of the

bond-angle term limits the transferability of this force-field to situations where

the structure of the SiO4 tetrahedra are strictly maintained, and so it not useful

for modeling melts where Si-O-Si bridging may occur, for example.

Guillot’s and Pedone’s models were found to give equilibrium lattice constants

in reasonable agreement with experimental data (see Table 6.2), although both

somewhat underestimate the length b.

a (Å) b (Å) c (Å) Volume (Å
3
)

Experiment[76] 4.82 10.48 6.09 305.59
Pedone (this work) 4.89 +1.5% 10.27 -2.0% 6.08 +0.1% 301.41 +0.1%
Guillot (this work) 4.86 +0.9% 10.20 -2.6% 6.03 -1.0% 298.97 -2.2 %

Table 6.2 Comparison of computed and experimental lattice parameters of
fayalite.

From the output of molecular dynamics calculations, radial (pair) distribution

functions can be computed directly to give insight into the equilibrium structure.

The all-atom RDF is defined as:

g(r) = 4πr2ρdr
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Where ρ is the number density i.e. the number of atoms per unit volume, so g(r) is

essentially the probability of finding an atom at spacing r from a reference atom,

relative to an ideal gas. Corresponding pair (or partial) distribution functions

between atoms of particular species can also be defined. In practice, the RDF

was computed by calculating the distance between each atom pair, using the

minimum-image convention, and creating a histogram of distances with bin size

δr = 0.005Å. To avoid complications in the analysis relating to periodic boundary

conditions, only distances up to 5Å (less than half the shortest cell dimension)

are considered. The histogram is then normalised by

1/(4πnpairsr
2δr)

to obtain the RDF. The first coordination number (the number of atoms to be

found within a given distance r of a chosen atom) can be computed by integrating

g(r) from r = 0 to the first minimum.

n = 4π

∫ rmin

0

r2g(r)ρdr

The radial distribution functions of fayalite at ambient and high temperature

are shown in Figures 6.4 and 6.5 respectively. The first peak in the crystalline

structure corresponds to the SiO4 complex which is correctly identified in 4-fold

coordination with a bond length of 1.53 - 1.61Å, depending on the model. The

second peak at 2.04 - 2.11Å is the 6-fold coordinated Fe-O octahedron.

In the melt (2250K), both Guillot’s and Pedone’s models show very little change

in the mean Si-O distance, although the peaks are somewhat more widely spread

indicating larger vibrations with the increased temperatures. The second peak is

similarly smeared out, but remains 6-fold coordinated, and there is no indication

of the ‘shoulder’ observed in [184].

6.3.2 DFT calculations

The same system was simulated using ab-initio MD calculations in the hope that

this might better model the unknown physical behaviour responsible for the iron

coordination splitting. However, due to the presence of iron, two extensions to

standard Kohn-Sham DFT described in Section 2.1.1 are required.
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Figure 6.4 Computed radial distribution functions of crystalline fayalite at
300K, 1 atm.
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Figure 6.5 Computed radial distribution functions of liquid fayalite at 2250K,
1 atm.
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It is a well-known failure of DFT (see e.g. [12]) that use of standard Local Density

or Generalised Gradient Approximations for the Exchange-Correlation functional

leads to prediction of a metallic ground state for transition metal oxides, due to

spurious delocalisation of d electrons. The DFT+U scheme corrects for this by

applying an empirical energy penalty (U) to these delocalised states, driving

the electronic minimisation into the correctly localised insulating ground state.

DFT+U has been applied with success to fayalite by Cococcioni et al [53, 54].

The implementation of this method in CP2K is based on the work of Dudarev

[61, 62].

In addition, since iron is magnetic (the total spin is non-zero) it is no longer valid

to ignore electron spin, allowing two ‘identical’ electrons to occupy each orbital.

Instead of a single electronic density n(r), two spin densities corresponding to

spin up (α) and spin down (β) are computed and the total electron density is

given by a sum:

n(r) = nα(r) + nβ(r)

The separation of spin into two classes (up and down), is itself an approximation

since it neglects the fact that spin is a vector quantity. In particular for fayalite,

the spins on some iron atoms are known to be non-collinear. The exact effect of

this approximation is not known, but is assumed to be valid based on the results

of [53], for example.

Attempting to run MD or geometry optimisation proved to be problematic. In

particular, at some time steps the SCF procedure would fail to converge, at

which point the calculation should be terminated to avoid jumps in the conserved

quantity and resulting unphysical dynamics. The root cause appears to be in the

calculation of the +U correction, given by:

EU =
1

2
Ueff

∑
µ

(qµ − q2µ)

where qµ is the occupancy of a given state µ computing using Mulliken population

analysis [158]. Since qµ ≤ 1, the correction should always be positive. However, in

some cases the population analysis returns states with occupancy > 1, resulting in

a negative contribution to the total energy, causing problems for SCF convergence.

Use of the Löwdin occupancy analysis model is recommended to overcome this,
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but calculation of forces with this method is currently unimplemented in CP2K.

In addition, a number of parameters such as the plane-wave cutoff, choice of basis

set, SCF convergence criteria and compensation for centre-of-mass drift had not

yet been systematically studied, so further DFT computations for fayalite were

abandoned at this stage.

6.4 Modeling Forsterite

To overcome some of these issues, a more comprehensive modeling study of

forsterite (ceMg2SiO4) was carried out as a simpler analogue to fayalite in the

sense that it is non-magnetic (so DFT calculations may ignore electron spin), and

the lack of d-electrons means the DFT+U correction is likewise not required. The

aims of this approach were to ensure that the basic computational methodology,

tools and analysis scripts could be used to reliably simulation nesosilicates in both

solid and melt using long-timescale MD, and also to compare and contrast the

physical and structural properties obtained via classical and ab initio methods

with available experimental reference data.

6.4.1 Simulation setup

All calculations are carried out using the CP2K program [105, 127]. An initial

structure was set up using lattice parameters and ionic coordinates from [76],

and then Molecular Dynamics was carried out in the isobaric isothermal (NPT)

ensemble with a set temperature and external pressure of 1 atm. Thermostatting

was achieved using a length-3 Nosé-Hoover chain [160, 161], with a time constant

of 1ps. A timestep of 1.0fs and 0.5fs was used for the classical and ab initio

calculations respectively. In each simulation an equilibriation phase at the start

of the run of up to 15ps (depending on the temperature) was discarded and

structures and averages were calculated from at least 10ps of ab initio or 120ps

of classical MD.

The classical simulations use the force-field of Pedone et al [168], with a cut-off of

5.5Å. Long-range forces are computed using the Smoothed Particle-Mesh Ewald

(SPME) summation [67]. A 3x3x3 supercell gives a total of 756 atoms.

Density Functional Theory (DFT) calculations are carried out within the Gaus-
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sian and Plane Waves (GPW) dual-basis scheme [141, 210, 211], using Goedecker-

Teter-Hutter (GTH) pseudopotentials [82, 95, 121] and the Perdew-Burke-

Ernzerhof (PBE) [169] exchange-correlation functional within the Generalised

Gradient Approximation. A double-zeta valence + polarization (DZVP) Gaussian

basis set was used along with a 600 Ry cut-off for the planewave expansion of the

electronic density. Due to the increased computational cost, a 2x1x2 supercell

was used giving a total of 112 atoms.

6.4.2 Cell Parameters

Table 6.3 compares the lattice parameters in ambient conditions of temperature

and pressure for forsterite from experimental studies and computer simulation.

The two experimental results from Fujino et al [76], and Gillet et al [80], both

using X-ray diffraction, are in good agreement. Data from classical molecular

dynamics [168] is in reasonable agreement with CP2K simulation data, using the

same potential model. The DFT calculations from [39] underestimate the cell

volume, whereas the CP2K calculations overestimate the cell parameters.

a (Å) b (Å) c (Å) Volume (Å
3
)

Exp. 1[76] 4.75 10.19 5.98 289.58
Exp. 2[80] 4.76 +0.2% 10.20 +0.1% 5.99 +0.2% 290.61 +0.3%
DFT (this work) 4.84 +1.9% 10.39 +2.0% 6.10 +2.0% 307.23 +6.1%
DFT (LDA, zero P) [39] 4.64 -2.3% 9.99 -2.0% 6.07 +1.5% 281.67 -2.7%
Classical (this work) 4.82 +1.4% 10.33 +1.4% 6.06 +1.3% 301.41 +4.1%
Classical [168] 4.84 +1.9% 10.19 -0.0% 6.00 +0.4% 296.24 +2.3%

Table 6.3 Comparison of lattice parameters of forsterite at 300K, 1atm.

6.4.3 Thermal Expansion

Using Molecular Dynamics at temperatures of 300K-3600K in steps of 300K, we

compute the linear expansion coefficients a/a300K , b/b300K , c/c300K and volume

expansion coefficient v/v300K both below and above the melting point. The

results from classical and ab-initio MD are compared with experimental data from

Bouhifd et al [37] (see Figure 6.6). Following Bouhifd’s notation, the expansion

data (up to the melting point) is fitted to expressions of the form:

ln(pi(T )/pi(T0)) = αi0T + αi1/2T
2
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where pi are the lattice parameters, giving a thermal expansion coefficient:

αi ≡
1

pi

(
∂pi
∂T

)
P

= αi0 + αi1T

Both the DFT and classical MD-derived data show significantly larger expansion

than the experimental results. The DFT appears somewhat better in this

regard. Also, both classical and DFT simulations show isotropic expansion,

i.e., αa = αb = αc, compared with the expected larger expansions along the

b and c axes. This is due to the isotropic barostatting scheme employed, and

methods to overcome this are proposed in Section 6.5.2. The discontinuities in

the expansion observed between 2100-2400K (classical) and 2400-2700K (DFT)

indicate a sudden change in density and are correlated with the expected melting

point of 2163K (further discussion in Section 6.4.4). The DFT expansion

coefficient at 3600K is much higher than expected, both compared to the classical

run and forward projection of the DFT data. This simulation was extended to 50

ps of dynamics, but the cell still showed large fluctuations, rather than relaxing

to a clear equilibrium. This is mainly due to further expansion of the distance

between Mg and O species. The SiO4 tetrahedra still appear tightly bound at

this temperature.

The calculated volume thermal expansion coefficient α is compared to Bouhifd’s

data as well as that of Gillet [80], Matsui [149] and Suzuki [200] in Figure 6.7. The

trend of increasing expansion with temperature is consistent with experimental

data but both the initial rate of expansion α0 and the increase in expansion with

the temperature α1 are overestimated by both classical and DFT models.

6.4.4 Melting point

To try to accurately quantify whether a particular simulation has melted or not,

two methods have been employed. Firstly, the mean-squared displacement of

atoms can be calculated:

msd(t) = 1/N
N∑
i=1

(xi(t)− xi(0))2

In a solid, atoms vibrate around their equilibrium site, and so the MSD should

tend to a (small) constant in the limit of large t. In a liquid, atoms diffuse in a
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Figure 6.6 Relative volume expansion of forsterite at ambient pressure
comparing experimental data with DFT and classical simulations.
The experimental melting point of 2163K is shown.

Figure 6.7 Volume thermal expansion coefficient α of forsterite comparing
experimental data with DFT and classical simulations up to the
melting point.
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Figure 6.8 Computed mean-squared displacements for classical MD simulation
of forsterite above and below the melting point.

random walk, and so the MSD is expected to grow linearly with time.

Figures 6.8 and 6.9 show the calculated MSDs for simulations above and below the

known melting point of 2163K. In the classical case the simulations at 1800K and

2100K are clearly still solid, while the 2400K run exhibits typical melt behaviour

after 5ps i.e. the melting point seems to be estimated correctly. In the DFT data,

melting is not achieved until a temperature of 2700K. It is possible that the 2400K

DFT simulation is in a meta-stable superheated state, and a simulation starting

with a typical high-T configuration and cooling to 2400K might well result in a

liquid state. A better approach to determining the melting point is discussed in

Section 6.5.1.

Capturing the atomistic-scale detail of the melting process may also be investi-

gated by defining a local Lindemann index [139]:

qi = 1/nneigh
∑

j∈neigh

√
〈r2ij〉 − 〈rij〉2

〈rij〉

which gives a measure of the fluctuations over time in the separation between

an atom and its nearest neighbours. In the case of the solid we expect this to

by <1 and increasing with temperature, but not with time. In the melt, the

Lindemann index should increase with time as atoms diffuse away from their

initial neighbours. It should be possible to distinguish between Mg atoms, which
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Figure 6.9 Computed mean-squared displacements for ab-initio MD simulation
of forsterite above and below the melting point.

are expected to diffuse relative to the neighbouring O atoms, and the central Si

atoms in the SiO4 tetrahedra, which should have solid-like Lindemann indices.

At the time of writing, this analysis has not been completed.

6.4.5 Heat capacity

From the MD calculations the Enthalpy can be computed since the Potential

Energy U , applied pressure P and volume V are all known and thus the constant-

pressure heat capacity:

H = U + PV

Cp =

(
∂H

∂T

)
P

In Figure 6.10 the calculated values from classical and ab-initio MD are compared

to experimental data (<300K [56], 300K-2100K [80]). At moderate temperatures

these are in reasonable agreement with the experimental values. We did not

simulate below 300K as neither model includes the nuclear quantum effects

which are well-known (e.g. [212], Figure 1) to be be required to produce heat

capacities which tend to zero at low temperature. Experimental heat capacities

of forsterite melt are difficult to obtain, but are expected to be in the region

of 225 − 295JK−1mol−1, according to [119], which is again consistent with the

computed data.
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Figure 6.10 Constant-pressure molar heat capacity of forsterite computed from
classical and DFT MD, compared with experimental data.

6.4.6 Structure

The radial distributions of crystalline (300K) and liquid (3000K) forsterite from

both DFT and classical MD (discarding data from the equilibriation phase)

were computed using the same technique as for fayalite and are compared in

Figures 6.11 and 6.12. Representative structures from the solid and melt are

shown in Figures 6.13 and 6.14. The first peak in the crystalline structure

corresponds to the SiO4 tetrahedron with an average bond length of 1.66Å (DFT)

and 1.59Å (Classical) in 4-fold coordination. The second peak is the Mg−O

complex, which is 6-fold coordinated and has interatomic distance 2.15Å (DFT)

and 2.11Å (Classical). The classical RDF has two small peaks at 2.52Å and

2.67Å corresponding to the nearest neighbour O−O distances, and the next peak

at 3.0Å is the average distance to the nearest Oxygen atom in the neighbouring

tetrahedra. The DFT data gives slightly different peaks - the first O−O pairing

has distance 2.60Å but this overlaps another broad peak with two tips at 2.84Å

and 3.02Å so it is unclear whether these distances refer to neighbours within

an SiO4 tetrahedron or between neighbouring tetrahedra. The peak at 3.23Å

(classical) and 3.26Å (DFT) is the nearest neighbour Mg−Mg pairing.

Comparing computed data with the measurements of Hazen [98] at 300K and 1

atm, an Si−O distance of 1.63Å is reported, intermediate between the computed

values. The Mg−O distance is given as 2.11Å, and the O−O distances within

an SiO4 group are 2.5Å and 2.7Å i.e. the tetrahedron is distorted and some O
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Figure 6.11 Computed radial distribution functions of crystalline forsterite at
300K, 1 atm.

pairs are slightly closer than others. The mean distance to the nearest neighbour

outwith a tetrahedron is 2.98Å - these distances are in close agreement with the

results from classical MD.

In the liquid forsterite, there are only three clearly identifiable peaks. The first is

the Si−O tetrahedron, which has a maximum at around 1.63Å (DFT) and 1.58Å

(Classical). While the peak is wider than that computed in the crystal - the bonds

are vibrating at larger amplitude due to the increased kinetic energy in the system

- the mean bond length is unchanged, which suggests the tetrahedra remain

intact even at high temperature, and the expansion and liquid state are due to

breakdown of the Mg−O octohedra. The intact (although distorted) tetrahedra

are clearly visible in Figures 6.13b and 6.14b. The second peak, representing the

nearest Mg−O neighbour, is very broad and peaks at 1.97Å (Classical) and 2.00Å

(DFT). These are in fact smaller than the corresponding distances in the crystal,

but the coordination number computed by integrating to the next minima in the

Mg−O partial distribution function suggests a coordination of <6, and while this

is somewhat unclear due to overlap with the next peak, may represent a loose

tetrahedral arrangement with closer Mg−O spacing. The final (and very broad)

peak is the O−O neighbours, which have mean separation of 2.7Å (DFT) and
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Figure 6.12 Computed radial distribution functions of liquid forsterite at
3000K, 1 atm.

2.67Å (Classical).

For comparison with radial distribution functions produced from scattering

experiments, the partial distribution functions should be reweighted by a factor:

Wαβ =
cαcβfαfβ

(
∑

α cαfα)2

where cα is the relative proportion of atoms of species α (i.e. 2/7 for Mg etc.) and

fα is the atomic number. This takes account of the relative strength of scattering

from each species, although not the dependence of the scattering on frequency.

To do so it would be better to calculate the partial structure factors directly from

the MD trajectory data, reweight these at each frequency, and Fourier transform

to obtain a radial distribution function which could be directly compared with

experimental data.
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(a) 300K (b) 3000K

Figure 6.13 Representative structures of forsterite from classical simulations
(3× 3× 3 supercell). Yellow tetrahedra represent SiO4 groups and
the pink spheres the Mg cations.

(a) 300K (b) 3000K

Figure 6.14 Representative structures of forsterite from DFT simulations (2×
1 × 2 supercell). Yellow tetrahedra represent SiO4 groups and the
pink spheres the Mg cations.
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6.5 Summary

A small number of open questions (below) remain that would need to be resolved

to complete testing of the forsterite models, but reasonably reliable models

have been demonstrated and compare well to experiment. For fayalite, more

fundamental issues remain - and significant effort would be required to implement

both DFT+U forces with an accurate population analysis method and possible

non-collinear spins in CP2K, or to use an alternative code such as Quantum

Espresso [79].

It is interesting to note that at the time this work was carried out, developing be-

spoke codes for simulation setup and analysis was necessary (see Section 6.2.1). At

time of submission a number of powerful packages such as the Atomic Simulation

Environment [129] and MDAnalysis [107] are now available which provide much

of the low-level functionality such as file handing, period boundaries, translations,

rotations etc. and scripting on top of these would now be a much better choice.

6.5.1 Protocol for phase-coexistence MD

To determine the melting point of material in a particular model (either classical

or DFT), instead of heating a solid or cooling a liquid, a better approach is to

equilibriate a system at a fixed pressure which contains both solid and liquid phase

components. The resulting measured temperature where the two phases are in

equilibrium is by definition the modeled melting point of the material. To set up

the system two separate simulations of solid and liquid phases are equilibriated in

the NVT ensemble close to the expected experimental melting point. Constant

volume is required so that the two (periodic) cells can be subsequently joined.

Joining the two systems together to continue MD requires care. There are no

‘standard’ methods available and uses of the approach in the literature tend to

be short on details [151]. The best way to achieve this is unclear at this stage,

but some initial attempts have been made. Firstly, the solid phase is sheared to

present a high Miller-index face at the periodic boundary. In tests with a 10 by 10

by 10 supercell, the crystal has been sheared by 1 unit cell’s distance to present

the (10 0 0) face. The intention is that the interface with the liquid should have

a relatively low adsorption energy, to avoid the situation where adding/removing

particles to/from the surface has a high energy penalty, forcing the system into

126



an unphysical local energy minimum. In addition, in the process of shearing care

must be taken to maintain the connectivity of SiO4 tetrahedra, since these are

not expected to disassociate until well beyond the melting point.

Secondly, the (sheared) solid and liquid systems can be brought together. This

is done by placing the two simulation cells adjacent then translating the liquid

particles until they are as close as physically reasonable (a minimum interatomic

distance of 1.5Å was used). Finally, the particles at the interface must be allowed

to relax to fill the void which still separates the two phases. Experimentation with

geometry optimisation and MD to achieve this was not completed. The difficulty

lies in the fact that while geometry optimisation fails to find the coordinated

motion of particles to close the ‘interface gap’, when using MD the particles

rapidly accelerate into the gap causing a sudden increase in temperature. It

is hoped this can be overcome by running successive very short MD stages,

resetting the temperature after each stage to quench the excess kinetic energy out

of the system, or by applying an unphysical ‘drag’ force to damp out excessive

acceleration. These schemes could easily be implemented in MIST, as well as

other approaches such as capping unphysically large forces.

Once the system has been set up, a longer NPE (constant pressure and total

energy) MD run will be carried out to equilibriate the temperature across both

phases and thus identify the melting point.

6.5.2 Constant-pressure ensemble with anisotropic scaling

Running Molecular Dynamics in a constant-pressure ensemble implies that the

simulation cell can change volume, and in general all nine components of the three

lattice vectors may change in response to non-uniform external stress. CP2K

uses the Martyna-Tuckerman-Klein (MTK) [148] equations of motion, which are

based on the earlier (and more commonly implemented) scheme of Parrinello and

Rahman [164]. In both cases the dynamics of the cell as modeled using a set

of extended system variables, namely a set of positions and momenta relating to

‘barostats’ of some mass which couple changes in the cell to the difference between

the externally applied pressure and the internal pressure estimator computed by

a Virial expansion.

Both the Parrinello-Rahman and MTK schemes allow for two variants: isotropic

cell scaling, where only uniform expansions or contractions of the cell are allowed,
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a single barostat is employed, and the internal pressure is a scalar; and fully

flexible cell, where there are nine barostats, each coupled to a different degree

of freedom of the cell, and the internal pressure is evaluated as a 3x3 tensor

quantity. In CP2K these are referred to as NPT I and NPT F respectively. The

isotropic scheme is clearly inadequate to describe olivines, which are known to

show anisotropic expansion (see Section 6.4.3). However, the fully flexible cell

approach is problematic for liquid simulations since the lack of elastic restoring

forces of a crystal allows the cell angles to oscillate wildly, complicating the

analysis and potentially increasing finite size effects since atoms will be more

likely to ‘see’ neighbouring images when the cell becomes very long and thin.

A new scheme is proposed which allows anisotropic cell expansion via scaling

of each lattice vector independently, each of which is coupled to one of three

barostats. This will maintain the orthorhombic cell shape, simplifying post-

processing, and also be applicable directly in liquid and phase-coexistence

calculations. Implementation of this scheme natively within CP2K has was not

completed at time of writing. An interface between CP2K and MIST would make

introducing the scheme much simpler, but is left for future work.

128



Chapter 7

Conclusion

In this thesis, I have described the architecture and implementation of MIST,

the Molecular Integration Simulation Toolkit, a C++ library which provides an

abstraction layer over common MD codes to enable rapid development of new

MD integration algorithms. MIST is freely available under a BSD license from

https://bitbucket.org/extasy-project/mist.

The current release of the library contains implementations of eleven different

integrators, and is interfaced via a C or Fortran API to five MD codes: NAMD-

Lite, GROMACS, Amber, LAMMPS and Forcite. MIST provides a portable

platform for the development of novel integrators, which can be implemented

once in MIST and used with any of the MD codes interfaced to MIST. Although

the original motivation for MIST was to enable development of new integrators for

biomolecular simulation (e.g. in Amber and GROMACS), MIST is also suitable

for simulation of crystalline solids using LAMMPS.

I have demonstrated how MIST can be used in practice by implementing the

Simulated Tempering scheme of Nguyen et al [159, 221] in combination with

Langevin Dynamics using a ‘BAOAB’ splitting [132] and applying it to study the

free energy landscape of Alanine-12 using GPU-accelerated GROMACS. MIST

has also been used by collaborators to develop new tempering schemes such

as Continuous Tempering [81] and Infinite Switch Simulated Tempering [146],

proving that it is possible for other researchers to extend the library and achieve

production-quality results.

In serial, parallel and GPU-accelerated configurations I have shown that in-
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tegration using MIST introduces only a small overhead (typically 5-10%)

compared to equivalent native calculations, with the exception of Amber’s GPU

implementation. In that case, the additional data transfer of the system state

off the GPU introduces latency and synchronisation which slows the calculation

down to performance comparable to GROMACS, where the native integration

step is computed on the CPU and only forces are evaluated on the GPU. This

performance overhead is argued to be an acceptable trade off for an expressive and

easy-to-use interface for development of new algorithms and thus MIST provides

an effective compromise between the two previous options: implementation in

home-grown codes - rapid development, but low adoption, performance and tool

support - and mainstream MD packages - slow development, but larger user base

and higher performance.

I have also reported steps towards the development of reliable computational

models of olivine melts based on both classical and ab-initio Molecular Dynamics.

Comparisons between computed and experimental data for forsterite show that

the simulation overpredicts by a few percent for lattice constants, thermal

expansion coefficients and heat capacities, and melting points are estimated to

within a few hundred degrees. Notwithstanding scaling, structural properties

match well between experiment, classical and DFT data. The main reason for

discrepancies in the thermal expansion coefficients is that the constant pressure

integrator in CP2K allows for only isotropic expansion (or fully flexible cells -

which are inappropriate for liquid calculations). Introducing an NPT scheme

with only 3 cell degrees of freedom could be done rapidly via MIST, once an

interface to CP2K is available. More accurate determination of the model melting

points through phase-coexistence MD would also be made easier using the new

integrators such as Langevin Dynamics in MIST.

7.1 Next Steps

As the initial phase of development of MIST described in this thesis concludes,

there are several areas in which the library could be extended in future.

Firstly, from a software engineering point of view there are several areas for

improvement. At present, error handling is done by return codes from the

MIST API functions. These numeric codes are declared in the library interface

but converting them to human-readable messages is done in the host code and
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results in a lot of boilerplate code being added (which is duplicated across each

supported code). A better approach would be to add an API call which allows the

host code to obtain an error message for a given return code (similar to POSIX

strerror()). This would reduce the amount of code which has to be added in to

the host, and also make it possible to add further error codes without requiring

all the host code patches to be updated. The internal error handling could also

be improved by the use of C++ exceptions, which could be caught at the API

layer and converted to error codes.

The lifecycle of the Integrator class could be improved by adding an Init()

method where any one-off initialisation tasks have can be done, which would

be called by MIST in between the integrator being constructed and the start

of the first time-step. Currently, when the Integrator is constructed only the

integrator parameters are available but not yet any of the system state variables

so the complete initialisation has to be deferred to the first call to Step(), when

all of the system state has been initialised. This could also be used to trigger

any required reallocation when the number of particles per process changes after

load balancing in a parallel run. This would result in reduced complexity in the

Step() method, with the implementation looking even closer to the mathematical

formulation of the algorithm than at present.

While integrator developers can benefit from OpenMP and GPU acceleration

without code changes, they must still take care to include explicit MPI calls for

cases like global reductions. Since one of the goals is to have an abstraction where

developers don’t need to be familiar with parallel programming, any required

MPI should be wrapped in some convenience functions that are provided by

MIST. Other similar improvements would be support for creating and managing

extended state variables. The MPI parallelisation of the constraint solver is also

necessary to offer the same level of MIST functionality for shared and distributed

memory cases.

To support ongoing use of MIST, it is necessary to update the supported versions

of GROMACS and Amber to the most recent published versions, as well as

including support for additional popular codes such as CP2K, NAMD, DL POLY

[203], or GULP [77]. Eventually, as MIST gains wider usage, it is expected

that MIST support may eventually be merged into these packages directly rather

than having to rely on the patching process. This would significantly lift the

sustainability burden of keeping patches up-to-date with changes in the supported

codes by pushing responsibility onto the code maintainers as well as exposing
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MIST to a wider user community.

Secondly, the core System abstraction in MIST could be extended. The first

possibility would be to extend the representation of a particle from a point

to spherical or ellipsoidal particles, essentially adding orientation and angular

velocity state variable arrays as analogues to position, velocity and having

accessors for moments of inertia and torques similarly to masses and forces. This

would enable the implementation of algorithms such as [63].

Another useful extension would be to support multiple time-stepping schemes

such as RESPA [206] and modern extensions [133]. The key change would be to

allow extend both the time stepping and force updates with an integer parameter

indicating which ‘level’ of the nested time steps to update. This would require

support from the host code, of course, so might not be possible in all cases

and would certainly be a radical change to the assumption that we can simply

update forces with a single ‘black-box’ callback from MIST! To overcome the

performance overhead of using MIST with Amber on GPU it is possible to

envisage a hybrid/multiple time stepping scheme where MIST is used to integrate

the outer timestep for slow degrees of freedom such as a thermostat, and the inner

timestep for faster motions such as bond vibrations is integrated directly on the

GPU using Amber’s native integrator.
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wave velocity structure of the Earth’s mantle: A global model.” Journal of
Geophysical Research: Solid Earth 113, B6. https://doi.org/10.1029/

2007JB005169.

144

https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1016/j.epsl.2012.11.026
https://doi.org/10.1016/j.epsl.2012.11.026
https://doi.org/10.1016/j.gca.2007.12.019
https://doi.org/10.1016/j.gca.2007.12.019
https://doi.org/10.1063/1.474596
https://doi.org/10.1007/s00214-005-0655-y
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1002/jcc.540130812
https://doi.org/10.1002/jcc.540130812
https://doi.org/10.1029/2007JB005169
https://doi.org/10.1029/2007JB005169


[125] Kutta, M. W. “Beitrag zur näherungsweisen Integration totaler
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[126] Kästner, J. “Umbrella sampling.” WIREs Computational Molecular Science
1, 6: (2011) 932–942. https://doi.org/10.1002/wcms.66.

[127] Kühne, T. D., M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald,
F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze,
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