The Institute of Paper Chemistry

Appleton, Wisconsin

Doctor's Dissertation

The Investigation of Peracetic Acid-Oxidized Loblolly Pine by Pyrolysis-Gas Chromatography-Mass Spectrometry

John A. Fleck

January, 1975

THE INVESTIGATION OF PERACETIC ACID-OXIDIZED LOBLOLLY PINE BY PYROLYSIS-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

A thesis submitted by

John A. Fleck

A.B. 1969, Ripon College

M.S. 1971, Lawrence University

in partial fulfillment of the requirements of The Institute of Paper Chemistry for the degree of Doctor of Philosophy from Lawrence, University, Appleton, Wisconsin

> Publication Rights Reserved by The Institute of Paper Chemistry

> > January, 1975

TABLE OF CONTENTS

	-
SUMMARY	l
INTRODUCTION	14
Peracetic Acid	4
Peracetic Acid Wood Studies	4
Wood and Lignin Analysis by Pyrolysis-Gas Chromatography	6
Pyrolysis of Modified Lignin	9
Thesis Objective	10
RESULTS AND DISCUSSION	11
Pyrolysis Unit	11
Pyrolysis Conditions	11
Structural Analysis by Pyrolysis-Gas Chromatography	13
Lignin-Model Compounds	13
Pinoresinol	24
Conidendrin	24
Diisoeugenol	27
1,2-Dihydroxy-1-(3,4-dimethoxyphenyl)propane and Two β -Aryl Ethers	28
Coniferin	30
Dehydrodivanillin	30
Oxidized-Lignin-Model Compounds	30
cis,trans-B-Methylmuconic Acid and its Lactone	30
5-Methyl-2(5H)-furanone	·31
Vanillic Acid	31
Dioxane Lignin and Wood	31
Soluble Peracetic Acid Lignin	40
Carbohydrates	47
Muconic Acids	48

Page

Page Artifacts 49 Peracetic Acid Wood 50 Thermal Degradation in Toluene 50 Determination of Peracetic Acid Reactivity with Lignin by 54 Pyrolysis-Gas Chromatography Establishing the Identity of Wood Pyrogram Peaks 54 Trends in Peracetic Acid-Treated Wood Pyrograms 56 69 Initial Peracetic Acid Reaction with Wood 69 Reactive Structures Peracetic Acid Catalysis 71 Carbohydrate Pyrolysis Products 75 EXPERIMENTAL 76 76 Preparation of Materials Chemicals 76 5-Methyl-2(5H)-furanone 77 Preparation of 4-Vinylguaiacol 79 Homovanillin 79 Dioxane Lignin 79 80 Peracetic Acid Lignin Peracetic Acid Wood Wafers 82 83 Procedures for Product Analysis Pyrolysis 83 86 Gas Chromatography Chromatogram Peak Area Determination from Pyrolysis Products 87 Mass Spectrometry 88 Infrared and NMR Spectra 89 Phloroglucinol Staining 89

iii

	Page
CONCLUSIONS	91
GLOSSARY	92
ACKNOWLEDGMENTS	93
LITERATURE CITED	94
APPENDIX I. INVESTIGATION OF CARBOHYDRATE PYROLYSIS PRODUCTS FROM PERACETIC ACID LIGNIN	101
APPENDIX II. DETERMINATION OF ACETALDEHYDE-QUENCHED PERACETIC ACID BY-PRODUCT, 3-HYDROXYBUTYRIC ACID	102
APPENDIX III. THE REMOVAL OF INORGANIC MATERIAL FROM WOOD BY PERACETIC ACID AND ITS EFFECT ON PYROLYSIS PRODUCTS	110
APPENDIX IV. DATA HANDLING FOR QUANTITATIVE ANALYSIS OF WOOD PYROGRAM PEAK AREAS	115
APPENDIX V. TRENDS FROM PERACETIC ACID WOOD PYROGRAMS FOR SEVERAL YIELD RANGES	148
APPENDIX VI. WOOD YIELD AS A FUNCTION OF REACTION TIME	152
APPENDIX VII. THERMAL DEGRADATION IN TOLUENE	156
APPENDIX VIII. MASS SPECTRA	158
Mass Spectra Interpretation of Proposed Pyrolysis Products	204
2-(2-Methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)- propan-1-ol	204
1-(3,4-Dimethoxyphenyl)propan-1,2-diol	204
2-(2-Methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)- propan-1-one	207
Diisoeugenol	208
<u>cis,trans</u> -B-Methylmuconic Acid	210
APPENDIX IX. GAS-LIQUID CHROMATOGRAPHY RETENTION TIMES OF MODEL COMPOUND PYROLYSIS PRODUCTS	211

SUMMARY

Peracetic acid (PAA) oxidized loblolly pine was investigated by pyrolysisgas chromatography-mass spectrometry (PGCMS) using mainly a pyrolysis temperature of 400°C. Pyrolysis at 400°C was shown not to rearrange or degrade major lignin pyrolysis products among which are guaiacol, creosol, 4-ethylguaiacol, 4-propylguaiacol, 4-vinylguaiacol, eugenol, <u>trans</u>-isoeugenol, and vanillin.

Pyrolysis products were identified by mass spectrometry whenever possible and relative amounts of products were estimated by chromatogram peak areas. The pyrolysis products from lignin-model and oxidized-lignin-model compounds were used to interpret the pyrolysis products from dioxane lignin, loblolly pine, soluble PAA lignin and PAA oxidized loblolly pine.

The pyrolysis of pinoresinol gave a product distribution very similar to that found for lignin. The major pyrolysis product was creosol accompanied by substantial amounts of guaiacol and vanillin.

The pyrolyses of diisoeugenol and conidendrin both produced guaiacol as the main product without any detectable yield of creosol.

The pyrolyses of two β -aryl ethers, 2-(2-methoxy-4-methylphenoxy)-1-(3,4dimethoxyphenyl)propan-1-ol and 2-(2-methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-one, both yielded creosol and propioveratrone as main products. The pyrolysis of the β -aryl ethers and 1-(3,4-dimethoxyphenyl)propan-1,2-diol produced tentatively identified unsaturated products such as the methyl ethers of <u>cis</u>- and <u>trans</u>-isoeugenol. No evidence was found for any aliphatic (phenylpropane side chain) hydroxyl products.

Coniferin yielded <u>trans</u>-isoeugenol as the major phenolic pyrolysis product along with substantial amounts of creosol and guaiacol.

Dehydrodivanillin pyrolyzed to give vanillin as the major product and guaiacol as a minor product.

Lignin-model compounds representing possible PAA oxidized lignin fragments were also pyrolyzed. Vanillic acid was relatively stable to pyrolysis yielding mainly the starting material, vanillic acid, with small amounts of guaiacol. 5-Methyl-2(5H)-furanone was also found to be relatively stable to pyrolysis yielding mainly the starting material with small amounts of an isomer. The pyrolysis of β -methylmuconic acid and 5-carboxymethyl-4-methyl-2(5H)furanone both produced the same four major pyrolysis products which were tentatively identified as two pairs of lactone isomers. β -Methylmuconic acid apparently lactonizes on pyrolysis to form 5-carboxymethyl-4-methyl-2(5H)furanone.

The pyrolysis of dioxane lignin and loblolly pine both produced guaiacol, creosol, 4-ethylguaiacol, 4-propylguaiacol, eugenol, 4-vinylguaiacol, <u>cis</u>isoeugenol, <u>trans</u>-isoeugenol, vanillin, homovanillin and vanillyl methyl ketone. The major phenolic product from both was creosol along with substantial amounts of <u>trans</u>-isoeugenol.

Soluble PAA lignin produced a larger ratio of gaseous pyrolysis products to phenolic pyrolysis products than dioxane lignin. The main phenolic pyrolysis product of PAA lignin was guaiaced along with substantial amounts of vanillin, homovanillin, and vanillyl methyl ketone. Only very small amounts of other phenolic pyrolysis products were detected. The guaiaced was attributed to a lignin structure similar to conidendrin and diisoeugenol containing a benzyl carbon_to-carbon linkage with another phenylpropane structure. The vanillin, homovanillin, and vanillyl methyl ketone were attributed to a lignin structure containing a benzyl carbohydrate ether. The carbohydrate material associated with PAA lignin pyrolyzed to yield 2-furaldehyde.

-2-

Loblolly pinewood wafers delignified with PAA to various yield levels down to about 77% were analyzed by PGCMS. Carbonyl pyrolysis products, vanillin and homovanillin, increased during the first 1% loss in yield. The amounts of other phenolic pyrolysis products from loblolly pine decreased with yield at a rate proportional to the number of carbons on their side chains. Three carbon side-chain pyrolysis products (trans-isoeugenol, eugenol, and 4-propylguaiacol) decreased faster than 2-carbon side-chain pyrolysis products (4-vinyl guaiacol, 4-ethylguaiacol) which decreased faster than the one carbon side-chain compound (creosol). This was interpreted as a significant amount of the reaction occurring at the phenylpropane side chain of lignin rather than at the aromatic nucleus during the first 1% loss of the wood. One of the early reactions at the side chain was shown to involve coniferaldehyde-type groups. The stain intensity of phloroglucinol (a specific stain for coniferaldehyde-type groups in lignin) substantially decreased from 100 to 99% yield and disappeared by 97% yield. The initial increase in carbonyl pyrolysis products was attributed to PAA attack on α -aryl ethers and propenyl-type (such as coniferaldehyde types) side chains and subsequent formation of α -hydroxyls and carbonyls.

The rate of decrease for the 1,22, and 3-carbon side-chain pyrolysis products became more nearly the same from 99 to 77% yield. This was interpreted as a loss in prominence of PAA attack on the side chain with the bulk of reaction involving the destruction of the aromatic ring.

-3-

INTRODUCTION

Peracetic acid (PAA) has been shown to be a selective delignifying agent in experimental pulping studies (1-7). Poljak (3) delignified spruce to 0.1%lignin content at 56-60% yield with PAA. Albrecht (6) found an apparent carbohydrate loss of only 1.4% at a 74% yield using loblolly pine. A detailed review of PAA reaction may be found in other sources (6,8-10).

PERACETIC ACID

PAA is an oxidant which in aqueous media can donate the electrophilic hydroxylium ion, OH^+ , to electron-rich centers (<u>11-13</u>). Lignin has unsaturated structures which are electron-rich sites that PAA may selectively attack. Some of these structures and their reactions with PAA are represented in Fig. 1.

After the substrate is oxidized by PAA, the initial product may be subject to further PAA oxidation possibly at an increased rate $(\underline{8,9})$ as shown in Fig. 1 for ring oxidation. The PAA oxidation of an aromatic ring can produce a dicarboxylic acid (a muconic acid) or its lactone $(\underline{8,9})$. Farrand $(\underline{8})$ has identified approximately 40% of the PAA reaction products from creosol and from 4-methylveratrole. Most of the products were muconic acids and their corresponding lactones.

PERACETIC ACID WOOD STUDIES

Albrecht $(\underline{6})$ has investigated the solubilized PAA oxidized products from softwood. Specific details concerning the reactivity and transformation of the various phenylpropane units were not obtained due to the complexity of the polymeric product. However, these products were characterized by carboxylic acid, phenolic hydroxyl, and methoxyl contents, by molecular weight, and

-4-

OCH3

SIDE-CHAIN OXIDATION:

R, R' = Aliphatic or aromatic

Figure 1. Peracetic Acid Reactions (8)

by their UV and IR spectra $(\underline{6})$. In general, these characterizations agree with anticipated results based on the model compound studies. The chemical changes in the PAA-oxidized wood itself have not been investigated and the solubilized products have not been as well defined as the model compound reaction products.

WOOD AND LIGNIN ANALYSIS BY PYROLYSIS-GAS CHROMATOGRAPHY

A gas chromatograph can be interfaced with a pyrolysis unit (PGC) to help separate and identify the pyrolysis products. The chromatogram obtained from pyrolysis (a pyrogram) may be used to "fingerprint" a polymer ($\underline{14}-\underline{25}$). Identification of the major products in a pyrogram can lead to determining functional groups ($\underline{15}$) and monomer units of a polymer ($\underline{14},\underline{16}-\underline{25}$).

Wood is a complex structure consisting of, among other things, a variety of different polymers; cellulose, hemicelluloses, and lignin. The pyrolysis of wood may be described approximately as a pyrolysis of a simple mixture of cellulose, hemicelluloses, and lignin (26,27). The presence of any two components apparently has little if any effect on the other component. The pyrolysis or thermal degradation of wood and isolated lignin have been investigated (28-68). However, investigation of pyrolysis of PAA lignin has not previously been reported.

The pyrolysis products of lignin may be separated into fractions. Their approximate yields and descriptions are listed in Table I.

The methanol content in the aqueous distillate fraction does give an indication of the methoxyl content $(\frac{58}{58})$. The tar fraction, however, is the most descriptive in defining the original lignin structure. The coke fraction has been analyzed, but its molecular weight is too high and it is

-6-

too complex to be easily defined. The tar fraction contains many low molecular weight compounds such as guaiacol, 4-propylguaiacol, and eugenol (<u>58</u>), which are characteristic of structural moieties presumed present in lignin. Figure 2 is the tentative softwood lignin structure based on the formula by Freudenberg, <u>et al.</u> (<u>71,72</u>) and modified by Sarkanen (<u>73</u>). The pinoresinol structure (units 9-10) and biphenyl structures (units 16 and 26 and 8 and 9) in Fig. 2 may contribute only to a very limited extent to the structure of lignin (<u>59-64</u>). There is evidence that carbon-to-carbon bonds between side chains (such as α,β linkages) may be more prevalent than what is shown in Fig. 2 (<u>59,64</u>).

TABLE I

LIGNIN PYROLYSIS PRODUCTS (58)

Product	Approximate Yield, 🕅
Coke (char)-condensed structure Aqueous distillate- H_2O , MeOH, (Me) ₂ CO, AcOH	55 20
Tar-phenolics Baseous products — CO, CH4, CO2, C2H6	15

The pyrolysis conditions have varied greatly from one researcher to another so that it is difficult to compare results. Lignin pyrolysis products may vary from coniferyl alcohol (50) under mild conditions to vanillic acid (58,70) under harsh conditions. Some of the main variables involved in pyrolysis are the type of pyrolysis atmosphere (reactive, inert, vacuum, or pressurized), pyrolysis temperature, and time. The time at temperature is at least somewhat dependent on the particular design of the pyrolysis equipment (20). Many of the different pyrolysis product results are due to the different conditions or equipment used. Typically, lignin pyrolysis products

-8-

have been identified as guaiacol, creosol, 4-ethylguaiacol, 4-propylguaiacol, eugenol, 4-vinylguaiacol, <u>cis</u>-isoeugenol, <u>trans</u>-isoeugenol, vanillin, and acetovanillone (32,33,42,46,50,51,57,58). The method of identification in these studies has been comparison of GLC retention times to authentic samples. Very little NMR, IR, or MS has been carried out on lignin pyrolysis products to positively identify them. IR and GLC retention times have been used to identify hickory smoke components (47,48). Destructive distillation products of lignin have been identified by derivative melting points (65,68). A limited amount of mass spectrometry work has been done on wood pyrolysis products (69).

PYROLYSIS OF MODIFIED LIGNIN

Lignin pyrolysis products from wood or isolated lignin may be used to classify the sample as hardwood or softwood (50,51). Isolated lignins such as dioxane lignin, thiolignin, ethanol lignin, and hydrochloric acid lignin from the same wood give different pyrograms (32) indicating pyrolysis-gas chromatography (PGC) is sensitive to the method of isolation. Differential thermal analysis has already been used to characterize several different isolated lignins from the same wood (49).

PAA lignin should contain aromatic units and/or ring cleavage products (muconic acids) which probably can be identified by PGC. Aromatic units from the pyrolysis of lignin have been identified (mainly by GLC retention times). Conjugated carboxylic acids, lactones and their derivatives (which are similar to anticipated muconic acids) have been identified as pyrolysis products from man-made polymers and other materials (18,25,47,74-81). This indicates that PGC should be an excellent tool to characterize PAA lignin.

-9-

The objective of this thesis was to gain a better understanding of the peracetic acid delignification process by studying the pyrolysis products of soluble peracetic acid lignin and peracetic acid-oxidized loblolly pine. Lignin-model compounds, oxidized-lignin-model compounds, dioxane lignin and loblolly pine pyrolysis products were used for a basis of comparison. Gas liquid chromatography was employed to separate pyrolysis products and mass spectrometry to identify them whenever possible.

-10-

RESULTS AND DISCUSSION

PYROLYSIS UNIT

The pyrolysis unit chosen for this work was a furnace-type unit, the Hamilton Multi-Purpose sampling system. The system is shown in the Experimental section (Fig. 45 and 46). A furnace-type pyrolysis unit is the most likely type of unit to give secondary reactions as compared to a Curie point or heated wire pyrolysis unit (<u>20</u>). The larger heated area and the larger sample size in the furnace unit increase the possibility of secondary reactions occurring during the pyrolysis. This possible disadvantage was not considered critical as it was felt that conditions could be optimized to minimize secondary reactions. The advantages of being able to handle almost any type of material (solids, liquids, tars, powders), and the ability to weigh samples before and after pyrolysis out weighed any apparent disadvantages in the furnace unit. The need to obtain pyrolysis products in large enough quantities to identify them by MS, NMR, or IR was the determining factor in choosing the furnace pyrolysis unit.

PYROLYSIS CONDITIONS

Due to the possibility of secondary reactions, mentioned above, it was necessary to check the thermal stability of anticipated pyrolysis products to determine acceptable working conditions. Creosol is reported as the major product from pyrolysis of softwood lignin (32,33,42,46,50,51,57,58). Model compound work has shown that creosol and guaiacol were both converted to cresols and xylenols at high (600° C) temperatures (82,83). Pyrolysis work done for this thesis, Table II, showed that creosol was not stable in the pyrolysis system at 600° C but was stable at 400° C. At 600° C dioxane lignin

-11-

produced only two main products, cresol(s) and xylenol(s), but at 400°C produced a variety of products described later. The maximum temperature at which secondary reactions were not significant (400°C), was used for the entire study to ensure a rapid pyrolysis. Guaiacol, creosol, 4-ethylguaiacol, 4-vinylguaiacol, vanillin, acetovanillone, and propiovanillone were shown to be stable to the 400°C pyrolysis conditions. Other lignin pyrolysis products such as 4-propylguaiacol, eugenol, <u>cis</u>-isoeugenol and <u>trans</u>-isoeugenol were pyrolyzed in mixtures at 400°C. Their appearance in pyrograms and their pyrolysis with other known compounds demonstrate that they are also stable at 400°C. Besides temperature, time at temperature may affect the stability of organic compounds. The time at temperature for pyrolysis products in the furnace pyrolysis unit (Fig. 46) is dependent on the carrier gas flow rate through the pyrolysis unit. Seventy-five milliliters of helium per minute was used throughout this study and was near the maximum flow possible for the system.

TABLE II

TEMPERATURE DEPENDENCE OF CREOSOL TO XYLENOL(S) CONVERSION IN FURNACE PYROLYSIS UNIT USED IN THIS THESIS WORK

Pyrolysis	Creosol/Xylenol(s)
Temp., ^o C	Ratio
600	no creosol
530	0.17
495	2.6
445	26
400	greater than 130

Most of the actual pyrolysis appears to occur in the first 2-5 sec after introduction of the sample into the 400°C zone. With most samples no further melting, boiling off and/or charring could be visibly detected after 5 sec.

-12-

There was essentially no difference between pyrograms for samples pyrolyzed at 400°C for 10 sec, 15 sec, and 3 hr. The peak resolution for all pyrograms run at 400°C was quite good (there was no peak spreading). This indicated that there was not a slow and/or continuous bleed of phenolic material which contributed to the pyrogram. This type of thermal degradation which releases all the pyrolysis products in the pyrogram essentially at the same time is termed flash pyrolysis. Undoubtedly, there are further reactions occurring to the char after 10 sec in the 400°C zone, but this degradation of the char material contributes little, if any, significance to the pyrogram.

Wood samples were left in the pyrolysis zone during the entire time (2-1/2 hr) for the GLC separation of all the pyrolysis products. This was to insure complete flushing of the less volatile carbohydrate pyrolysis products, especially levoglucosan, from the pyrolysis unit. After 10 sec at 400° C there was a 45-50% weight loss in the wood samples. After 2-1/2 hours there was a total weight loss of approximately 90%. This additional weight loss is considered to be in part a slow bleed of carbon dioxide and water from the further dehydration and degradation of the carbohydrate char (<u>84</u>) as shown in Fig. 3 and further condensation of the lignin char.

STRUCTURAL ANALYSIS BY PYROLYSIS-GAS CHROMATOGRAPHY

LIGNIN-MODEL COMPOUNDS

As mentioned previously the expected lignin pyrolysis products are stable to the pyrolysis conditions used for this work. Figures 4-14 represent the pyrograms of the model compounds studied. Each figure lists the pyrolysis products in order of increasing GLC retention time (see Appendix IX) with relative peak areas. The method of identification for each pyrolysis product

-13-

-14-

8

4

CH3 CH2 C=0 СН₃ с = 0 CH3 ^Hc=ć_H H_{C=0} осн_з OCH3 осн₃ OCH3 ОН ÓН бн о́н <u>18</u> 18 24 <u>40</u>

Figure 4. Pinoresinol Pyrogram Representation with Relative Peak Areas

Figure 5. Conidendrin Pyrogram Representation with Relative Peak Areas

-17-

Figure 7. 1-(3,4 Dimethoxyphenyl)propan-1,2-diol Pyrogram Representation with Relative Peak Areas

-18-

Figure 8. 2-(2-Methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-ol Pyrogram Representation with Relative Peak Areas

-19-

Figure 9. 2-(2-Methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-one Pyrogram Representation with Relative Peak Areas

Figure 10. Coniferin Pyrogram Representation of Phenolic Products with Relative Peak Areas

Figure 11. Dehydrodivanillin Pyrogram Representation with Relative Peak Areas

-21-

Figure 12. <u>cis,trans</u>-β-Methylmuconic Acid and its Lactone Pyrogram Representation with Relative Peak Areas

Figure 13. 5-Methyl-2(5H)-furanone Pyrogram Representation with Relative Peak Areas

Figure 14. Vanillic Acid Pyrogram Representation with Relative Peak Areas

-23-

is listed in Table III. Many of the model compound pyrolysis products are the same as those cited in the previous section as lignin pyrolysis products. No single model compound completely represents lignin, but a suitable group of models can include almost all of the structures proposed to be present in lignin.

Pinoresinol

The pinoresinol structural unit appears in the proposed lignin structure between units 9 and 10 in Fig. 2. The pyrolysis of pinoresinol, represented in Fig. 4, yields many of the products in the same relative proportion as those found for the pyrolysis of lignin (32,33,42,46,50,51,57,58). All of the products in Fig. 4 except 4-propylguaiacol have been positively identified by GC and MS. The 4-propylguaiacol peak was identified by GC only (see Table III).

From the product distribution in Fig. 4, the relative thermal stability of certain bonds in the phenylpropane side chain may be proposed. The one carbon side-chain compounds (creosol and vanillin) predominate, indicating that the carbon-to-aromatic-ring bond is relatively stable. The large amount of guaiacol indicates that the aliphatic ring system competes with the aromatic ring for the α -carbon to a significant extent. The ether bonds appear to be the least stable and readily form α -carbonyls on pyrolysis.

Conidendrin

The pyrolysis of conidendrin is represented in Fig. 5. Conidendrin was used to partially represent carbon-to-carbon bonds between phenylpropane units which may be present in lignin (59, 64, 71-73). Conidendrin contains an α -aryl linkage (units 14 and 15, Fig. 2) and a β - β linkage (units 9 and 10, Fig. 2). These types of structures or linkages were considered as likely

-24-

TABLE III

PYROLYSIS PRODUCT IDENTIFICATION

	Molecular			
Compound	Pyrolysis	Relative	Weight by	Method of
Pyrolyzed	Product	Peak Area	MS	Identification ^a
Pinoresinol				
	guaiacol	41	124	GC,MS(A)
	creosol	100	138	GC,MS(A)
	4-ethylguaiacol	9	152	GC,MS(A)
	4-propylguaiacol	4		GC
	eugenol	7	164	GC,MS(A)
	4-vinylguaiacol	9	150	GC,MS(A)
	<u>cis</u> -isoeugenol	4	164	GC,MS(A)
	trans-isoeugenol	18	164	GC,MS(A)
	vanillin	40	152	GC,MS(A)
	acetovanillone	18	166	GC,MS(A)
	propiovanillone	24	180	GC,MS(A)
Conidendrin				
	guaiacol	100	124	GC,MS(A)
	unknown	3		-
	unknown	14		
	unknown	10		
Diisoeugenol				
0	guaiacol	62	124	GC.MS(A)
	4-propylguaiacol	24	166	
	trans-isoeugenol	12		GC
•	4th peak	30	206	MS
	5th peak	68	206	MS
	6th peak	26	204	MS
	7th peak	100	204	MS
	unknown	22		
1-(3,4-Dimetho	xyphenyl)propan-1,2-dic	L		
	lst peak	3	178	MS
2	methylisoeugenol	6	178	MS(A)
÷	3rd peak	45	192	MS,VIV
	veratryl methyl keton	e 100	194	MS,VIV
	5th peak	10	208	MS,VIV
2-(2-Methoxy-4	-methylphenoxy)-1-(3,4-	dimethoxyphe	enyl)propan-l-c	ol
	creosol	100	138	GC.MS(A)
	methylisoeugenol	18	178	MS(A)
	3rd peak	23	192	MS.VIV
	propioveratrone	22	194	GC.MS.VIV

See end of table for footnote.

.

TABLE III (Continued)

PYROLYSIS PRODUCT IDENTIFICATION

			Molecular	
Compound	Pyrolysis	Relative	Weight by	Method of
Pyrolyzed	Product	Peak Area	MS	Identification
2-(2-Methoxy-4-	methylphenoxy)-1-(3,4	-dimethoxyphe	enyl)propan-l-o	ne
	veratrole	5	138	MS
	creosol	100	138	GC,MS(A)
	3rd peak	12	164	MS
	4th peak	24	166	MS
	propioveratrone	34	194	GC,MS(A)
Coniferin				
	guaiacol	30	124	GC,MS(A)
	creosol	58	138	GC,MS(A)
	eugenol	38	164	GC,MS(A)
	4-vinylguaiacol	27	150	GC,MS(A)
	cis-isoeugenol	19	164	GC,MS(A)
	trans-isoeugenol	100	164	GC,MS(A),VIV
Dehydrodivanill	in			
	guaiacol	15		GC
	vanillin	100	152	GC,MS(A)
5-Carboxymethyl	_4_methyl_2(5H)_furan	one		
	lst peak	63	112	MS
	2nd peak	41	110	MS
	3rd peak	27	110	MS
	4th peak	100	112	MS
cis,trans-β-Met	hylmuconic acid			
	lat peak	61	products	assumed to be the
	Ist peak	31	same as f	or 5-carboxymethyl-
	2nd peak	36)methyl_	2(5H) - furance The
	Jiu peak	100		rame are nearly
	4th peak	, TOO	identical	and the starting
E Mother O(EII)	Aumon on o		materials	are very similar
)-metny1-2()H/-	Turanone			
	5-methyl-2(3H)-furan	one 17		GC
	5-methyl-2(5H)-furan	one 100	96	GC,MS(A)
Vanillic acid				
	guaiacol	30		GC
	vanillic acid	100		GC

^aPyrolysis products were identified by their mass spectra (MS), comparison of their mass spectra to that of an authentic sample [MS(A)], decreasing the ionizing voltage for the mass spectra in order to identify the parent ion (VIV) and/or comparison of their GC retention time to that of an authentic sample (GC).

-26-

candidates responsible for the formation of guaiacol with negligible amounts of creosol during pyrolysis. This is discussed later in regard to interpretation of PAA lignin pyrolysis products. Only guaiacol was identified (see Table III) as a pyrolysis product from conidendrin. Creosol, the major lignin pyrolysis product (32,33,42,46,50,51,57,58) was absent from the conidendrin pyrogram. This is probably due to the stability of the tetrahydronapthalenetype structure which could cleave off aromatic ring 2 to produce guaiacol. Creosol could only be produced if the tetrahydronapthalene-type structure were destroyed.

Diisoeugenol

The pyrolysis of diisoeugenol in Fig. 6 is very similar to that of conidendrin in Fig. 5. Diisoeugenol contains an α -aryl linkage and an α , β side-chain linkage. It is proposed that all the guaiacol is formed from aromatic ring 2. The indane ring retains the α -carbon and thus prevents creosol formation from unit 2.

The finding of 4-propylguaiacol and <u>trans</u>-isoeugenol was not anticipated due to the α,β and α -aryl linkages (carbon-to-carbon bonds) in diisoeugenol similar to those in conidendrin and pinoresinol. In all cases, however, 4propylguaiacol and <u>trans</u>-isoeugenol accounted for a relatively minor portion of the pyrogram.

These two products probably originate from both aromatic units in diisoeugenol. The indane-type structure is apparently not as stable as the tetrahydronapthalene-type structure in conidendrin.

The apparent molecular weights of the other products in Fig. 6 are too low to contain two aromatic units (123/guaiacyl unit). The proposed

-27-

products are based on their mass spectra, consideration of their relative retention times, and possible side-chain configurations based on the original structure (see Appendices VIII and IX).

<u>1,2-Dihydroxy-1-(3,4-dimethoxyphenyl)propane</u> and Two β-Aryl Ethers

Three compounds with a combination of α -hydroxy, α -carbonyl, β -hydroxy, and β -aryl ether were pyrolyzed, Fig. 7-9. The results were in part similar to the α -ether model compound, pinoresinol, Fig. 4. A limited amount of the oxygen on the side chain remains as a carbonyl. There was no evidence for an ether or a hydroxyl side-chain pyrolysis product from 1-(3,4-dimethoxyphenyl)propan-1,2-diol or the two β -aryl ethers (Fig. 7-9). Except for the creosol, all the pyrolysis products from the two β -aryl ethers are considered to come from aromatic unit 1 (Fig. 8 and 9).

Creosol and propioveratrone were both positively identified as pyrolysis products of the two β -aryl ethers (Fig. 8 and 9). The other pyrolysis products were tentatively identified by their mass spectra. The mass spectra are interpreted in Appendix VIII.

The β -carbonyl isomer of propioveratrone, veratryl methyl ketone, was reported as a pyrolysis product from 2-(2-methoxy-4-methylphenoxy)-1-(3,4dimethoxyphenyl)propan-1-ol by Russian researchers (<u>85</u>). Only the α -carbonyl isomer (propioveratrone) was found in this work (Fig. 8). The procedure used by the Russians (<u>85</u>) of pyrolyzing samples for 30 minutes in a sealed ampule may have permitted the benzyl alcohol to be dehydrated to the propenyl ether followed by hydrolysis to the β -carbonyl as shown in Fig. 15. This type of reaction is proposed to occur during the formation of Hibbert ketones under harsh or prolonged acidolysis conditions (86-98).

-28-

Figure 15. Possible Reactions with a β -Aryl Ether

Veratryl methyl ketone was identified (Appendix VIII) as a pyrolysis product of 1-(3,4-dimethoxyphenyl)propan-1,2-diol, Fig. 7. Dehydration of the benzyl alcohol to the enol and formation of the β -carbonyl is thought to occur during pyrolysis similar to the mechanism proposed during acidolysis as shown in Fig. 15. During the pyrolysis of wood, a considerable amount of water would be released which could promote conversion of β -aryl ether systems to β -carbonyl products.

The α -carbonyl, α -hydroxyl, and the α and β -ether structures are relatively common in the proposed lignin structure, Fig. 2. The β -hydroxyl structure represented by 1-(3,4-dimethoxyphenyl)propan-1,2-diol may be formed by PAA attack on a β -aryl ether (99-100) as shown in Fig. 15.

Coniferin

Coniferin generated a number of unsaturated side-chain compounds on pyrolysis, Fig. 10, as might be expected. Guaiacol and creosol were also positively identified as pyrolysis products (see Table III). Other pyrolysis products were also found for coniferin which were attributed to the carbohydrate portion. Products classified in a later section as carbohydrate 1, carbohydrate 4, and carbohydrate 5 are present based on their GLC retention times and mass spectrum for carbohydrate 1.

Dehydrodivanillin

Qualitatively, dehydrodivanillin gave more char and less products than any other model compound. Vanillin was the major pyrolysis product along with some guaiacol as shown in Fig. 11.

OXIDIZED-LIGNIN-MODEL COMPOUNDS

cis, trans- β -Methylmuconic Acid and its Lactone

The pyrolysis of compounds represented in Fig. 12-14 were used as models for PAA-oxidized lignin. The apparent molecular weight and GLC retention times (Appendix IX) of the four products from 5-carboxymethyl-4-methyl-2(5H)furanone in Fig. 12 (β -methyl-lactone) are too low for the products to be the original acid. The lactone ring is considered to be relatively stable to pyrolysis. The four compounds are proposed to be two sets of lactone isomers. A pyrogram essentially identical to β -methyl-lactone was obtained from <u>cis</u>, <u>trans</u>- β -methylmuconic acid. It is proposed that the muconic acid lactonizes on heating to give the β -methyl-lactone which is then pyrolyzed.

-30-

5-Methyl-2(5H)-furanone

The angelicalactone 5-methyl-2(5H)-furanone was shown to be relatively stable to pyrolysis, Fig. 13. Some of the lactone probably isomerizes to the more volatile (shorter GC retention time) β , γ -unsaturated lactone. No identification work was done to substantiate this.

Vanillic Acid

Vanillic acid was also shown to be relatively stable to pyrolysis, Fig. 14. The carboxylic acids usually cleave on pyrolysis to give carbon dioxide. The conjugation of the acid with an aromatic ring greatly stabilizes it and minimizes decarboxylation.

DIOXANE LIGNIN AND WOOD

A dioxane lignin was obtained from acetone-extracted loblolly pine. The pyrogram obtained from the 400°C pyrolysis of the dioxane lignin is represented in Fig. 16. The products (peaks) are identified in Table IV. Separation of the lignin pyrolysis products was easily accomplished by running the GC column oven isothermally. All compounds represented in Fig. 16 have been identified by comparison of GLC retention times with known compounds. In addition, each compound except vanillyl methyl ketone has been identified by its mass spectrum and comparison of it to the mass spectrum of an authentic sample (see Table IV).

The relative areas and the diversity of pyrolysis products for dioxane lignin are very similar to that found for the model compounds pinoresinol and coniferin (Fig. 4, 10, 16, and Table V). Coniferin was chosen to represent an olefinic system which would result from dehydration (during pyrolysis) of the phenylpropane side chain. Suitable model compounds show this type of

-31-

dehydration during pyrolysis (Fig. 7 and 8). The pinoresinol structure itself is present in the proposed lignin structure (units 9 and 10, Fig. 2).

TABLE IV

NUMBER CODE AND IDENTIFICATION FOR PYROGRAM PEAKS FROM PYROLYSIS OF WOOD AND LIGNIN

.Code Number	Compound	Dioxane Lignin	Loblolly Pine	PAA Lignin
Al 1 2	2-furaldehyde guaiacol carbohydrate l	GC ^a ,MS(A) ^b	GC GC,MS(A) UN ^C	GC,MS(A) GC,MS(A)
3	gualacol and carbohydrate l			
4	creosol	GC,MS(A)	GC,MS(A)	GC
5 6	4-ethylguaiacol 4-propylguaiacol	GC,MS(A) GC,MS(A)	GC,MS(A) GC,MS(A)	
7	eugenol	GC,MS(A)	GC, MS(A)	GC
8	4-vinylguaiacol	GC,MS(A)	GC,MS(A)	GC
9	carbohydrate 2		UN	
9A	<u>cis-</u> isoeugenol	GC,MS(A)	GC,MS(A)	GC
10	<u>trans</u> -isoeugenol	GC,MS(A)	GC,MS(A)	GC
11.	carbohydrate 3-HMF		GC, MS(A)	
12	vanillin	GC,MS(A)	GC,MS(A)	GC
13	homovanillin	GC,MS(A)	GC,MS(A)	GC
13A	vanillyl methyl		đ	
	ketone	GC	GC,MS(A) ^d	GC,MS(A)
13B	unknown		UN	
14	carbohydrate 4		UN	
15	carbohydrate 5-levo-			
	glucosan		GC	

^aCompound identified by GLC retention time comparison to authentic sample. ^bCompound identified by comparison of its mass spectrum to that of an authentic sample.

^CCompound unknown, no authentic sample matched its GLC retention time. ^dThis peak may also contain acetovanillone.

-34-	
------	--

TABLE V

RELATIVE PYROGRAM PEAK AREAS

Peak	Coniferin	Pinoresinol	Loblolly Pine Dioxane Lignin	Loblolly Pinewood
Guaiacol	30	41	42	54
Creosol	58	100	100	100
4-Ethylguaiacol	ABa	8	22	25
4-Propylguaiacol	AB	4	8	1, 1,
Eugenol	38	8	8د	31
4-Vinylguaiacol	27	10	34	61,
<u>cis-</u> Isoeugenol	19	ļ 4	14	NDD
trans-Isoeugenol	100	18	61	72
Vanillin	AB	40	27	23
Homovanillin	AB	AB	26	27
Acetovanillone Vanillvl methvl	AB	18	ND	ND
ketone	AB	AB	21	1 4
Propiovanillone	AB	24	ND	ND

^aAbsent from pyrogram.

^bNot determined but may be present.

The pyrolysis products from wood (loblolly pine) did not separate as well as the dioxane lignin pyrolysis products when the GC column oven was run isothermally. The satisfactory separation of these pyrolysis products was accomplished by temperature programming. The pyrolysis products from dioxane lignin were also separated by temperature programming the GC column oven for comparison to the wood pyrogram. All the identified peaks in the dioxane lignin pyrogram matched the retention times of prominent peaks in the wood pyrogram. The relative peak areas in the wood pyrogram were very similar to those found in the dioxane lignin pyrogram as shown in Table V. The peaks in the wood pyrogram which do not correspond to peaks in the dioxane lignin pyrogram were thought to be carbohydrate pyrolysis products. A suitable carbohydrate material was pyrolyzed to compare the retention times of the pyrolysis products with those in the wood pyrogram. It is known that levoglucosan is the primary pyrolysis product of cellulose ($\underline{84}, \underline{99-106}$). The appearance of most of the other pyrolysis products from cellulose is due to the degradation of levoglucosan as shown in Fig. 3. Levoglucosan was pyrolyzed and its pyrogram compared to that of wood. Most of the peaks in the levoglucosan pyrogram match up with the peaks in the wood pyrogram thought to be carbohydrate pyrolysis products. However, the pyrogram for levoglucosan is not considered completely representative for cellulose and especially hemicelluloses. The three pyrograms of dioxane lignin, wood, and levoglucosan are represented together for comparison in Fig. 17-20. The wood sample used was PAA-treated loblolly pine, 99.51% yield. All of the compounds identified by MS in the pyrogram of dioxane lignin and also vanillyl methyl ketone have been identified in the wood pyrogram by MS (see Table IV).

Hydroxymethylfurfural (HMF) in the wood pyrogram was identified by MS (Table IV). The carbohydrate peak in close association with guaiacol in the wood pyrogram was investigated by MS, but its identity was not established. Based on the MS work it appears to have a molecular weight of 128. Levoglucosan and 2-furaldehyde were identified in the wood pyrogram by GLC retention times (Table IV). These three compounds identified in the wood pyrogram were also identified in the levoglucosan pyrogram by retention times.

Possible contamination of lignin peaks in the wood pyrogram was checked by comparing the mass spectrum for each peak with the spectrum of an authentic sample. Significant contamination would show up in the spectrum as additional ions. There was no indication of contamination in any of the spectra taken from the wood pyrolysis products except for the lignin peaks

-35-

٣.

Figure 17. Comparison of Three Pyrograms from Wood, Dioxane Lignin and Levoglucosan from 4 to 20 Min

Figure 18. Comparison of Three Pyrograms from Wood, Dioxane Lignin and Levoglucosan from 20 to 36 Min 0

Figure 19. Comparison of Three Pyrograms from Wood, Dioxane Lignin and Levoglucosan from 36 to 52 Min

-39-

that came off the column at maximum temperature and guaiacol as mentioned above. Vanillin, homovanillin, and vanillyl methyl ketone have retention times which closely coincide with the end (maximum temperature) of the GC column oven temperature pyrogram. At this point the carbohydrate background bleed was at its highest. The contamination of these three peaks did not appear to be significant. There is evidence, however, that acetovanillone may partially comprise the vanillyl methyl ketone peak. The mass spectrum of vanillyl methyl ketone (Appendix VIII, Table XXXIII, 99.98% wood) contains certain ions (m/e 166, 151) characteristic of acetovanillone. The two compounds have similar GLC retention times.

SOLUBLE PERACETIC ACID LIGNIN

Lignin solubilized by the reaction of PAA (PAA lignin) with loblolly pine was obtained from Albrecht's work $(\underline{6})$. Albrecht separated the PAA lignin on a GPC column and the various fractions were freeze-dried. The fractions used for this work were characterized by Albrecht ($\underline{6}$) and are described in the Experimental section. Associated with the fractions (PAA lignin) was about 7% carbohydrate material, mainly arabinose and mannose. Figures 21 and 22 are pyrograms of PAA lignin recorded under different conditions and sensitivities. One of the major differences between the PAA lignin pyrogram (Fig. 22) and the dioxane lignin pyrogram (Fig. 23) is the greater ratio of gaseous products (short retention time products which are probably gases at 90° C) to other products in the PAA lignin pyrogram. This is shown in Table VI which contains the relative areas for both pyrograms. There appeared to be less char than for dioxane lignin indicating a less condensed structure. The guaiacol, vanillyl methyl ketone, and 2-furaldehyde peaks in the PAA lignin pyrogram were identified by MS (Table IV).

-40-

Figure 21. PAA Lignin Pyrogram, High Sensitivity

-43-

-44-

TABLE VI

RELATIVE PYROGRAM AREA COMPARISON

Gaseous Products	All Other Peaks	Guaiacol	Creosol	Vanillin	Homo- vanillin	Vanillyl Methyl Ketone
		Dioxa	ne lignin			
33	67	5(100) ^a	(238)	(64)	(62)	(50)
PAA lignin						
90	10	4(100)	(9)	(45)	(57)	(64)
	Gaseous Products 33 90	All Other Products 33 67 90 10	All Gaseous Other Products Peaks Guaiacol 33 67 5(100) ^a <u>PAA</u> 90 10 4(100)	All Gaseous Other Products Peaks Guaiacol Creosol <u>Dioxane lignin</u> 33 67 5(100) ^a (238) <u>PAA lignin</u> 90 10 4(100) (9)	All Gaseous Other Products Peaks Guaiacol Creosol Vanillin <u>Dioxane lignin</u> 33 67 5(100) ^a (238) (64) <u>PAA lignin</u> 90 10 4(100) (9) (45)	All Gaseous ProductsOther PeaksHomo- vanillin $\begin{array}{c} Gaseous \\ Peaks \\ Guaiacol \\ \hline \\ Creosol \\ Vanillin \\ \hline \\ Vanillin \\ Vanillin \\ \hline \\ Vanillin \\ Vanillin \\ \hline \hline \\ Vanillin \\ \hline \\ Vanillin \\ \hline \hline \hline \hline \\ Vanillin \\ \hline \hline \hline \hline \hline \\ Vanillin \\ \hline \hline \hline \hline \hline \hline \hline \\ Vanillin \\ \hline $

^aRelative area calculated with guaiacol as base.

Vanillin and homovanillin, along with the other three compounds labelled in the PAA lignin pyrogram, were identified by GLC retention time.

The guaiacol peak makes up approximately the same relative portion of both the dioxane lignin and the PAA lignin pyrogram. The guaiacol, vanillin, homovanillin, and vanillyl methyl ketone peaks persist through PAA treatment and are the four main lignin peaks in the PAA lignin pyrogram. The structures which lead to these compounds on pyrolysis must be relatively stable to PAA. The other guaiacyl systems are almost completely absent from the PAA lignin pyrogram indicating a selective reaction(s) has occurred within the lignin structure.

Based on the model compound pyrolysis work presented earlier along with known PAA reactions, certain structural moieties for PAA solubilized lignin may be proposed and ethers eliminated. The carbonyl pyrolysis products (vanillin, homovanillin, and vanillyl methyl ketone) which persist through PAA treatment may come from structures having combinations of α and/or β carbonyls, hydroxyls and ethers. Vanillin would not be produced from an α -aryl ether system as proposed in Fig. 24.

Figure 24. Interpretation of Carbonyl Pyrolysis Products from Lignin and PAA Lignin

However, β -aryl ethers as well as β -hydroxyls could be present prior to β -carbonyl formation (during pyrolysis) as shown in Fig. 15 and 24. The α -aryl ether structure was not considered a source of α -carbonyl products since the pyrolysis work on the aryl ether model compounds (Fig. 8 and 9) indicated aryl ether pyrolysis generates a phenolic compound but not a carbonyl on the side chain unless the propenyl ether is formed and hydrolyzed (Fig. 15). The α -hydroxyl and α -carbonyl structures were shown to give carbonyl compounds on pyrolysis (Fig. 7-9). These structures would, however, be expected to be diminished in PAA lignin due to their reactivity with PAA (<u>99</u>, <u>100,107-114</u>).

 α -Aryl ether cleavage (<u>99,100,109</u>) and attack on propenyl-type side chains (<u>110</u>) as shown in Fig. 24 would result in α -hydroxyl formation followed by α -carbonyl formation. The α -hydroxyls and α -carbonyls are apparently removed by further reaction. Albrecht (<u>6</u>) found that most of the α -carbonyls had been removed in soluble PAA lignin. Ishikawa, <u>et al.</u> (<u>111</u>) demonstrated that apocynol (l-guaiacyl ethanol) and acetovanillone have comparable halflives of approximately 0.8 and 2.5 hr, respectively, in 3% PAA at 35°C. Acetovanillone is generated from PAA oxidation of apocynol and reaches a maximum concentration after 1-1/2 hr. This model compound work indicates that if Albrecht (<u>6</u>) found most of the α -carbonyls removed from PAA lignin it is very likely that most of the α -hydroxyls were also removed.

The only other possible structure that would yield α and β -carbonyls on pyrolysis is the α -aliphatic ether. The proposed aliphatic ether linkage may be either a lignin-to-lignin bond such as in pinoresinol or a lignin-tocarbohydrate bond such as proposed in the lignin structure in Fig. 2, unit 13. The pinoresinol structure would not be expected to be present to any

-46-

great extent in the PAA lignin since the compound yields relatively high proportions of creosol on pyrolysis and the PAA lignin does not. Based on the lignin structure put forth by Freudenberg, <u>et al.</u> (<u>71-73</u>) in Fig. 2, a significant amount of the PAA lignin structure which yields carbonyls on pyrolysis is proposed to contain a benzyl carbohydrate ether bond. This is the only structure which would be relatively stable to PAA but yield mostly carbonyl structures on pyrolysis. Albrecht (<u>6</u>) has shown by direct sugar analysis that the carbohydrate content in the PAA lignin is significant (7%).

The presence of gualacol with little or no creosol in the PAA lignin pyrogram excluded most of the model compound structures. Only conidendrin and diisoeugenol produced large amounts of gualacol on pyrolysis without yielding any creosol. The main contributing factor in yielding gualacol without creosol is considered to be the phenyl α -carbon bond. A number of phenyl α -carbon linkages are proposed in Freudenberg's lignin structure, and these bonds would be expected to be relatively stable to PAA. There does not appear to be any other structure present in the proposed lignin structure that would yield gualacol and not creosol. Oxidation of the "propane" side chain at the α -carbon by PAA would be detected in the pyrogram as a product other than gualacol, such as vanillin or vanillic acid. Both vanillin and vanillic acid are relatively stable to pyrolysis. These structures would not account for the gualacol found in the PAA lignin pyrogram. The PAA stable portion of a proposed PAA-oxidized lignin structure is represented in Fig. 25.

Carbohydrates

Arabinose and mannose both yield 2-furaldehyde when pyrolyzed. All of the 2-furaldehyde in the PAA lignin pyrogram can be accounted for as a

-47-

pyrolysis product of the carbohydrate present. Weighed samples of arabinose and PAA lignin were pyrolyzed individually, and both yielded amounts of 2furaldehyde in equal proportion to the carbohydrate present. Formation of 2-furaldehyde from the pyrolysis of pentoses and hexoses has been established by other researchers ($\underline{115}$ - $\underline{120}$) and is not considered to be a rearranged lactone from a muconic acid.

R = Carbohydrate

R'= Phenylpropane unit (carbon-to-carbon linkage)

Figure 25. Proposed PAA Stable Structural Moieties in Lignin

Muconic Acids

Besides the gaseous products in the PAA lignin pyrogram only 2-furaldehyde, guaiacol, and vanillyl methyl ketone were in large enough amounts to obtain mass spectra. The compounds in the gaseous products probably consist of less than 5-carbon atoms, such as carbon dioxide, methane, carbon monoxide, ethane, acetone and methanol (<u>57</u>). They were not investigated because their structures would not greatly aid in establishing structural units within PAA lignin. No muconic acid pyrolysis products could be detected by MS or by comparison of retention times to probable muconic acid pyrolysis products. It is possible that either there are no muconic acid structures present or they are present

-48-

in too low a concentration. If muconic acids are present, their structures may be greatly varied (lactones, isomeric acids) and pyrolysis of these structures would undoubtedly create several compounds from each structure as was seen with <u>cis,trans</u>- β -methylmuconic acid (Fig. 11). Generation of new compounds on pyrolysis may effectively reduce the concentration of any muconic acid pyrolysis product in the PAA lignin pyrogram to below detect-able limits.

Artifacts

The later PAA lignin fractions from gel permeation chromatography (GPC. see Experimental section and Appendix II), which could not be freeze-dried (6), were investigated to determine if muconic acids were present. There was no difference in the chromatograms whether the sample was pyrolyzed or injected into the GC as shown in Appendix II. This indicated that nearly all of the material was relatively volatile. Acetic acid, crotonic acid, and 3-hydroxybutyric acid were positively identified from the PAA lignin fractions that could not be freeze-dried. Crotonic acid and 3-hydroxybutyric acid were identified by their mass spectra, NMR, and IR. Acrylic acid was also suspected to be present based on its mass spectrum. 3-Hydroxybutyric acid was shown to be an artifact presumably arising from aldol condensation of the acetaldehyde which is used to quench the PAA. Addition of acetaldehyde to a solution of PAA was shown to produce a significant amount of 3-hydroxybutyric acid. Crotonic acid could be a fragment from muconic acid but is considered to be a dehydration product of 3-hydroxybutyric acid. A muconic acid fragment of such a low molecular weight would not be expected to be detected without detection of other muconic acid structures, such as maleic or oxalic acid as found in other studies (121).

-49-

PERACETIC ACID WOOD

PAA-treated wood was investigated by PGC to determine the effect of PAA. Acetone-extracted loblolly pine was designated as 100% yield wood. Yield levels were corrected based on reaction time (Appendix VI). The pyrograms represented in Fig. 26-28 are of various yield levels of PAA-treated loblolly pine. The pyrograms show a decreasing trend in the lignin peaks (identified in Table IV) with decreasing yield. There also appears to be a dramatic change in the carbohydrate peaks. The more pronounced changes for both appear to occur at the high yield level. The wood pyrograms show no new peaks as a result of PAA oxidation. It is not surprising that new peaks are absent in the pyrogram. Persistence of guaiacol, vanillin, homovanillin, and vanillyl methyl ketone peaks would be expected on the basis of the PAA treatment relative to the other lignin peaks even to the 77% yield level.

THERMAL DEGRADATION IN TOLUENE

Since the flash pyrolysis technique used in this study did not produce the anticipated muconic acids, another technique was investigated following recent Russian work ($\underline{85,122}$). PAA-treated wood and model compounds were heated in toluene for 25 minutes at $\underline{315^{\circ}C}$ in sealed glass tubes. No new products were found by GC as compared to the flash pyrolysis pyrograms of the same materials. Some shift in product distribution was noted. This was attributed to the long time at temperature which probably promoted degradation of the less stable compounds. A further discussion is presented in Appendix VII.

-50-

Figure 26. 100% Yield and PAA-Treated Loblolly Pine Pyrograms

-51-

Figure 27. PAA-Treated Loblolly Pine Pyrograms

Figure 28. PAA-Treated Loblolly Pine Pyrogram

-53-

DETERMINATION OF PERACETIC ACID REACTIVITY WITH LIGNIN BY PYROLYSIS-GAS CHROMATOGRAPHY

ESTABLISHING THE IDENTITY OF WOOD PYROGRAM PEAKS

As shown previously in Fig. 17-20 the lignin peaks in the wood pyrogram had retention times very similar to the peaks in the dioxane lignin pyrogram. In addition, all the peaks were identified by MS. Table VII lists all the loblolly pine and PAA loblolly pine pyrogram peaks analyzed by MS. To be certain each peak contained mainly the compound indicated, each mass spectrum was compared to the spectrum of an authentic sample for extraneous ions.

TÅBLE VII

PGCMS OF LOBLOLLY PINE AND PAA LOBLOLLY PINE

GC Peak	Loblolly Pine ^a	77.2% Yield Loblolly Pine
Guaiacol	124 ^b	124
Carbohydrate l	128	ND ^C
Creosol	138	138
4-Ethylguaiacol	152	NH
4-Propylguaiacol	166	NH
Eugenol	164	NH
4-Vinylguaiacol	150	NH
Carbohydrate 2	116	NH
<u>cis</u> -Isoeugenol	164	NH
<u>trans</u> -Isoeugenol	164	NH
Carbohydrate 3 (HMF)	126	126
Vanillin	152	152
Homovanillin	166	166
Vanillyl methyl ketone	180 ^e	180

^aPGCMS analysis run on 100 and 99.98% yield wood.

^bApparent molecular weight based on the mass spectrum for that peak.

^cPresent in the pyrogram but not analyzed by MS (ND).

^dNot present in high enough concentration for MS analysis (NH).

^eThis peak may also contain acetovanillone.

-54-

The carbohydrate 1 mass spectrum indicates some contamination of guaiacol which is closely associated with it in the pyrogram (Fig. 26). Since the carbohydrate 1 peak is at a longer retention time than guaiacol, guaiacol probably tails into the carbohydrate 1 peak. The peak labeled as carbohydrate 2 appears to contain a great deal of <u>cis</u>-isoeugenol. The vanillin and homovanillin mass spectra show a few extraneous ions which probably arise from carbohydrate bleed. Vanillin and homovanillin come off the column near the end of the column oven temperature program, and the background bleed is greatest at this point. The peak area measurements for vanillin and homovanillin are not considered to be in error since the base line is adjusted for background bleed. As shown in Table VII only a few of the lignin peaks at the 77% yield level were present in high enough concentration to be identified.

The lignin peaks in the wood pyrograms are dependent on the relative thermal stability of the various types of structures present in lignin. Certain bonds are more easily broken than others. Pyrolysis may free or volatilize a relatively stable fragment such as an aromatic ring moiety. As was pointed out previously, only guaiacyl derivatives have been identified from lignin and from PAA-oxidized lignin. Aromatic ring cleavage products if present in PAA-oxidized lignin apparently can only be indirectly determined by the disappearance of aromatic compounds from the pyrogram and perhaps by the appearance of more gaseous products.

The proposed muconic acid products in PAA-oxidized lignin may be distributed among many isomers and derivatives due to pyrolysis as was found for the model compounds in Fig. 12. Although the PGC analysis cannot adequately detect all of the PAA lignin present in wood, it can detect the guaiacyl

-55-

moieties which have not been oxidized by ring cleavage. The relatively large amounts of guaiacol, vanillin, homovanillin, and vanillyl methyl ketone in PAA lignin pyrograms represent structures, such as those proposed in Fig. 25, which are relatively less reactive to PAA. Figures 29-31 are plots of the combined nine lignin peak areas <u>versus</u> yield over different yield ranges investigated in this work from PAA reacted loblolly pine (see Fig. 26). These plots describe the loss of guaiacyl moieties from the wood by both oxidation and solubilization.

TRENDS IN PERACETIC ACID-TREATED WOOD PYROGRAMS

PAA-treated loblolly pinewood wafers from yield levels ranging from 100.0 to 77.2% were pyrolyzed. Some of the representative pyrograms are included in Fig. 26-28. A regression analysis of individual and summed peaks (area/mg of wood) <u>versus</u> percentage yield of wood was run. The data analysis is explained in Appendix IV. Figures 29-31 are a result of such an analysis of all 9 lignin peaks summed together.

The least-squares line for the lignin peaks was calculated on the logarithm transform of the area, ln(area) = C + B(yield). The logarithm transform was found to best describe the lignin peaks. Linear scale plots were obtained by taking the inverse-transform of the least-squares line. Figure 32 contains the regression lines for such a linear plot of all the individual lignin peaks. The first 1.4% loss of the wood by PAA action was analyzed separately from the next 22% loss of the wood, for better definition of the initial delignification process. Figures 33 and 34 represent the two separate regions.

-56-

Figure 29. Lignin Peak Areas from Pyrograms of PAA Wood, 100-77.2% Yield

-57-

-59-

Figure 32. Inverse-Transform of the Least-Squares Line, ln(area) = <u>C</u> + <u>B</u>(yield), for Lignin Peak Areas, 100.0-77.2% Yield

-60-

-61-

-62-

It is evident from these plots that certain lignin peaks disappear at a greater rate than other lignin peaks and during the first 1.4% loss of the wood most of the rates are highest. During the first 1% loss of the wood the lignin compounds with a 3-carbon side chain (4-propylguaiacol, eugenol, and <u>trans</u>-isoeugenol) disappear at the greatest rate. The compounds with a 2-carbon side chain (4-ethylguaiacol and 4-vinylguaiacol) disappear at a slower rate than the 3-carbon side-chain compounds but at a faster rate than for the 1-carbon side-chain compound (creosol). The vanillin and homovanillin peaks (carbonyl compounds) appear to be in a group by themselves and actually show a slight increase during the first 1.4% loss of the wood. This was interpreted as PAA cleavage of α -aryl ethers and attack on propenyl-type side chains (Fig. 24) as discussed earlier.

A summary of these plots is presented in Fig. 35-38 and in Table VIII. The group analyses were handled as for all nine lignin peaks in Fig. 29, summing the peak areas in each pyrogram and handling the sum as a single peak. The total area for all 9 lignin peaks at 100% yield (approximately 5.5 in.²) corresponds to approximately 3% of the wood pyrolyzed.

Figure 38 shows that initially (100-98.6% yield) the longer the side chain the faster the disappearance. Throughout most of the reaction (96.5-77.2% yield) with PAA there is little difference in the rate of disappearance. This difference is interpreted as a major reaction occurring on the phenylpropane side chain during the first 1.4% loss of the wood. If most of the PAA oxidation were ring cleavage of the guaiacyl nucleus, the rate of disappearance for all compounds would be expected to be nearly the same during the majority of the reaction period (96.5-77.2% yield).

-63-

-64-

Lignin Peak Areas, 100.0-98.7% Yield

-65-

-66-

-67-
TABLE VIII

SLOPES OF THE LEAST-SQUARES LINE

$$\ln(area) = \underline{C} + \underline{B}(yield)$$

PAA Wood	Side Chair	100-98.0%	96.5-77.2%
Pyrogram Peak		h Yield (×10 ⁻²)	Yield (×10 ⁻²)
Guaiacol Creosol 4-Ethylguaiacol 4-Vinylguaiacol 4-Propylguaiacol	0 1 2 3	10.5 4.6 8.9 16.7 37.6	1.0 5.1 1.8 4.7 3.0
Eugenol	3	43.1	5.1
<u>trans</u> -Isoeugenol	3	31.5	5.7
Vanillin	Carbonyl	-27.0	0.6
Homovanillin	Carbonyl	-17.6	2.3
Guaiacol	0	10.5	1.0
Creosol	1	4.6	5.1
2-Carbon	2	14.0	3.7
3-Carbon	3	35.6	4.8
Carbonyl	Carbonyl	-22.0	1.5
1+2+3 Carbon	1,2+3	18.7	4.5
All 9	all	11.4	3.2

The slow disappearance of guaiacol, vanillin, and homovanillin indicate that their pyrolysis precursors are relatively unreactive to PAA. Some hydroxyl groups may be generated initially by aryl ether cleavage and attack on propenyl-type (such as coniferaldehyde types) side chains to increase the amounts of carbonyl pyrolysis products. At the 77% yield level after 10.5 hr of PAA (initially 3.0%) at 60°C it is likely that the carbonyl pyrolysis products represent only unreactive α -aliphatic ethers. This is in agreement with conclusions reached earlier on PAA solubilized lignin (Fig. 25). The slow disappearance compared to the other compounds can be readily seen in Fig. 32-37.

-68-

INITIAL PERACETIC ACID REACTION WITH WOOD

The selective reactivity of lignin moieties investigated by PGC is probably due to highly reactive structures or catalysis of PAA reactions. The faster initial PAA reaction as shown in Fig. 38 coincides with several other observations.

Reactive Structures

Baird (<u>126</u>) found that the warts (ligninlike material protruding on the lumen surface) are removed with PAA during the first 1% loss of loblolly pine. An attempt was made to document this further in this work. Warts were found only on a single fiber from the interior of the wood wafer at the 97% yield level while no warts were found in 99% yield level fiber. Only a half dozen photomicrographs were taken to investigate the warts, and it is not known whether the single appearance of warts is representative or not. It is assumed that the finding of warts at the 97% yield level is an isolated case due perhaps to aspirated pits and is not representative.

The phloroglucinol staining (selective lignin stain which reacts with coniferaldehyde-type side chains) of PAA-treated wood wafers is shown in Fig. 39. The phloroglucinol-stained specimens showed a marked decrease in stain intensity for the first 1% loss of the wood and a complete disappearance by the time the 96% yield level was reached.

Since the warts are the most accessible ligninlike material $(\underline{126})$, it is likely that they are the first to react with PAA. The warts themselves may account for up to 1% of the cell-wall material $(\underline{127},\underline{128})$ and therefore could account for a substantial part of the first 1% loss of the wood.

-69-

-70-

The early disappearance of the phloroglucinol stain indicates that a specific reaction has occurred with PAA and lignin. The structure in lignin which produces the staining reaction has been modified or removed. Phloroglucinol is proposed to be specific for cinnamaldehyde structures in lignin. Table X in the Experimental section contains a number of materials which were tested for color reactions with phloroglucinol. All the aldehydes tested reacted with phloroglucinol, but only the aldehydes conjugated to a gualacyl nucleus gave the characteristic red color. If the PAA reaction were mainly ring cleavage of the gualacyl nucleus, the stain intensity would be expected to slowly dissipate until most of the lignin was removed or reacted. The rapid disappearance of the staining agrees with the previous conclusion that a major PAA reaction initially occurs with the phenylpropane side chain of lignin.

Peracetic Acid Catalysis

The presence of metal ions is known to decompose peroxides and catalyze reactions with them $(\underline{129}-\underline{136})$. Hydrogen peroxide is present in PAA in small amounts $(\underline{6},\underline{8})$ and it is known to decompose in the presence of metals through a free radical mechanism $(\underline{129},\underline{130})$. The decomposition of peracids including PAA has not been studied in as much detail as hydrogen peroxide. Whether PAA itself decomposes to form a free radical or perhaps a more reactive metal peroxide in the presence of the inorganic material in loblolly pine is not known for sure. There is some evidence that PAA may form a free radical due to metal ion catalysis (136).

The ash content of the loblolly pine studied was 0.22 to 0.23% ovendry basis, Appendix III. This level of ash was reduced to 0.02-0.06% after a short treatment with PAA. Acetic acid of the strength present in the PAA

-71-

solution only reduced the ash level to 0.10%. Apparently, PAA is essential in removal of part of the inorganic material. It is possible to speculate that initially there is a fast free radical reaction mechanism that is catalyzed by the inorganic material present in the wood. This could account for the more rapid reaction or disappearance of some lignin peaks during the initial stage of the PAA reaction.

The larger increase in area (area/mg more than doubles) for the levoglucosan peak (Fig. 40 and 41) is apparently due to the loss of inorganic materials. It is possible that the inorganic material acts like a flame retardant and promotes the destruction of the levoglucosan ring structure $(\underline{42,84,102,103,106,137-139})$. When the inorganic material is removed by the PAA solution, less levoglucosan is destroyed during pyrolysis and an increase in area is recorded for the levoglucosan peak.

To investigate if the removal of inorganic material had an effect on the lignin pyrolysis products, pyrograms were compared from 100% yield, 100% yield acetic acid extracted (to remove the inorganic material), 99.98% yield, and 99.98% yield with 0.22% ash added to loblolly pinewood. The results are presented in Table XVIII in Appendix III. The removal of the inorganic materials from the unreacted wood (100% yield) with acetic acid had no effect on the lignin peak areas. The addition of ash back into the wood also did not affect the lignin peak areas. These findings are in agreement with those of Ripley and Fung ($\frac{42}{2}$) and Tang ($\underline{139}$). Lignin pyrolysis is affected little and pyrolysis products are not increased by the addition of cellulose flame retardants.

-72-

Figure 40. Levoglucosan (Carbohydrate 5) Peak Areas from Pyrograms of PAA Wood, 100-77.2% Yield

-73-

-74-

CARBOHYDRATE PYROLYSIS PRODUCTS

The carbohydrate portion of the wood pyrogram (see Fig. 17-20, 25-28) was investigated only to a limited extent. Carbohydrate 1 has an apparent molecular weight of 128 but no VIV MS work was conducted to confirm it. Its retention time between 2-furaldehyde and hydroxymethylfurfural (HMF, molecular weight 126) suggests a partially reduced form of HMF. Carbohydrate 2 was in close association with <u>cis</u>-isoeugenol and only <u>cis</u>-isoeugenol was positively identified by MS. Carbohydrate 3 was identified as HMF. It was the only carbohydrate in the wood pyrogram positively identified by MS. Carbohydrate ⁴ was not identified but carbohydrate 5 was identified as levoglucosan by its GLC retention time (as was peak Al,2-furaldehyde).

The carbohydrate peak areas showed a great deal more scatter than any of the lignin peak areas as can be seen in Fig. 40 and 41. The leastsquares line was calculated with a power, (Area)², transformation of the area/mg. All the carbohydrate peaks showed the best correlation with yield using this power transformation (Appendix IV). The nonreproducibility or scatter found for the carbohydrates was undoubtedly due, in part, to their relative thermal instability. Cellulose, starch, or glucose thermally degrade mainly through a levoglucosan pathway (37,84,102,103,106,137-139). Levoglucosan, the first pyrolysis product formed, in turn can thermally degrade to form other products. HMF is not formed directly from cellulose but by way of levoglucosan. The pyrogram for levoglucosan is very similar to the carbohydrate portion of a wood pyrogram as was seen in Fig. 17-20. This indicates that most of the carbohydrate peaks in the wood pyrogram are at least secondary wood pyrolysis products coming from levoglucosan. This unstable nature, apparently exhibited by most of the carbohydrate pyrolysis products, undoubtedly contributes to different product distributions for each pyrolysis.

-75-

EXPERIMENTAL

PREPARATION OF MATERIALS

CHEMICALS

Levulinic acid, methacrylic acid, and acrolein were obtained from Matheson Scientific, Incorporated. Crotonic, veratric, trans, transmuconic, and 3-hydroxybutyric acid and benzaldehyde were obtained from Aldrich Chemical Company. Hydroquinone, veratrole, guaiacol, eugenol, isoeugenol, vanillin, D-xylose and D-mannose were obtained from Eastman Organic Chemicals. Phenol, creosol, <u>o</u>, <u>m</u>, and <u>p</u>-cresol, <u>p</u>-benzoquinone and 3,4-dihydroxytoluene were obtained from K & K Laboratories, Incorporated, and 2-furaldehyde was obtained from J. T. Baker Chemical Company. Samples of cis, trans- β -methylmuconic acid and 5-carboxymethyl-4-methyl-2-(5H)-furanone were obtained from J. C. Farrand's work (8) through Dr. D. C. Johnson along with propiovanillone. Samples of guaiacol, creosol, 4-ethylguaiacol, 4-propylguaiacol, ferulic acid, acetovanillone, vanillic acid, diisoeugenol, pinoresinol, conidendrin, dehydrodivanillin and vanillyl methyl ketone were obtained from the personal collection of Dr. I. A. Pearl. Coniferin was obtained from Mr. E. E. Dickey. Propioveratrone, 1-(3,4-dimethoxyphenyl)propan-1,2-diol, 2-(2-methoxy-4-methylphenoxy)-1-(3,4dimethoxyphenyl)propan-l-ol, 2-(2-methoxy-4-methylphenoxy)-l-(3,4-dimethoxyphenyl)propan-l-one were obtained from W. Lawrence. Hydroxyacetylfuran and hydroxymethylfurfural were obtained from Dr. J. F. Harris, U.S.D.A. Forest Service. No further purification was carried out on any of these compounds. Metanephrine was obtained from Sigma Chemical Co.

-76-

5-METHYL-2(5H)-FURANONE

5-Methyl-2(5H)-furanone (angelicalactone) was prepared by a slow distillation of 125 g from levulinic acid ($\underline{140}$ - $\underline{142}$) in a 250-ml round bottom flask for 2.5 hr. Three fractions were collected over the 2.5 hr: 1 - 25 ml, 90-145°C, 2 - 55 ml, 145-190°C, and 3 - 20 ml, 185-220°C. Fraction 2 was vacuum distilled and the fraction collected between 30 and 70°C (0.5-mm Hg) was redistilled. Two fractions were collected on redistilling, Fraction 2-1 -2.0 ml, 25-30°C (1.75-mm Hg) and 2-2 - 2.0 ml, 54°C (160-mm Hg). The IR and NMR of Fraction 2-2 confirmed it as the α,β -unsaturated isomer [Lit. b.p.₃ 73° ($\underline{142}$)]. The NMR and IR spectra are represented in Table IX and Fig. 42 along with the IR of γ -butyrolactone and Fraction 2-1 suspected to be the lower boiling β,γ -unsaturated isomer [Lit. b.p.₁₂ 53° ($\underline{142}$)].

TABLE IX

SPECTRAL DATA FOR 5-METHYL-2(5H)-FURANONE (FRACTION 2-2)

 $MR (CDCl_3)$

Multiplicity <u>J</u>^a, Hz δ, ppm Protons Assignment 6.2 1.47 2 3 а 4 7.0 1 5.23 ъ 16 1.5 6.0 6.23 2 l C 4 1.8 6.0 7.68 2 đ l 4 1.5

^aObserved spacings.

-77-

Figure 42. Infrared Spectra of Lactones

-78.

PREPARATION OF 4-VINYLGUAIACOL

Ferulic acid was pyrolyzed in order to obtain an authentic sample of 4vinylguaiacol for GC and MS work. This method was considered to be a modification of a catalytic thermal decomposition of ferulic acid used to obtain 4-vinylguaiacol (<u>143</u>). The only pyrolysis product from ferulic acid had a GC retention time and mass spectrum expected for 4-vinylguaiacol. The product corresponded to the dioxane lignin pyrolysis product suspected to be 4-vinylguaiacol (GLC retention time) based on the literature (<u>143</u>) and its mass spectrum (Appendix VIII).

HOMOVANILLIN

Homovanillin was prepared from metanephrine as described by Robbins $(\underline{144})$. Approximately 0.1 g of homovanillin was obtained from 0.3 g of metanephrine.

DIOXANE LIGNIN

Loblolly pine disks 6-9 inches in diameter with approximately 20 growth rings were ground on a macro-Wiley mill to pass through a 20-mesh screen. The bark and last growth ring and the center 2 inches of each disk were excluded from grinding and discarded. A total of 210 g of air-dried loblolly pinewood meal was extracted in two separate batches. Each batch was extracted with 1.0 liter of acetone in a 500-ml Soxhlet extractor for 6 hr. The wood meal was then vacuum dried.

The dioxane lignin was prepared similarly to that described in the literature $(\underline{145}-\underline{147})$. The vacuum-dried extracted wood meal (57 g) was refluxed with 1.0 liter of a 0.2N HCl solution of dioxane-water (9:1) for one hr.

-79-

After cooling, the wood meal was filtered and washed with neutral dioxanewater (9:1). The combined filtrate was neutralized with sodium bicarbonate and filtered again. The brown filtrate was concentrated to 100 ml on a rotary vacuum evaporator. One liter of 1% sodium sulfate was added to the concentrated filtrate and a brown precipitate formed. The precipitate was centrifuged, washed with 200 ml of distilled water, and centrifuged a total of 8 times. The precipitate was vacuum dried and weighed; 2.6 g was obtained. An IR spectrum taken from 2 mg of dioxane lignin in a 0.1 g KBr pellet is represented in Fig. 43.

The dioxane lignin was analyzed by Geller Laboratories and was found to contain: 63.38% carbon; 5.96% hydrogen; 0.26% ash; and 15.03% methoxyl.

The dioxane lignin was totally excluded on Sephadex G-25 coarse (exclusion limit molecular weight 5000) in DMSO. The exclusion chromatography was carried out by W. Baird on a 1-cm diameter × 75-cm column with a flow rate of 0.8 ml/min and continuous monitoring at 280 nm. A typical softwood dioxane lignin was reported to have a molecular weight of 15,000 and a methoxyl content of 15.4% (148,149).

PERACETIC ACID LIGNIN

PAA-oxidized loblolly pine lignin which had been solubilized from the wood by PAA and later fractionated on a GPC column (Porasil B) by J. Albrecht ($\underline{6}$) was obtained from Dr. G. A. Nicholls. Fractions 1-65 (PAA lignin 1-65) from the GPC column were freeze-dried by Albrecht into a fluffy cream-colored material. Fractions above 65 (PAA lignin 66 and above) could not be freeze-dried satisfactorily and remained liquids or thick sirups. Freeze-dried Fractions 46 and 48 were analyzed by PGCMS. The IR of Fraction 46 is

-80-

compared to that of dioxane lignin in Fig. 43. Fraction 48 was characterized by Albrecht as having 0.06 meq/100-mg phenolic hydroxyl, 0.28 meq/100mg carboxyl content and ll,000-l2,000 number average/molecular weight. Fractions 46 and 48 were considered essentially identical to each other and produced identical pyrograms. Fractions 72-109 were liquid samples and a limited number of their PGCMS, GCMS analyses appear in Appendix II.

PERACETIC ACID WOOD WAFERS

Loblolly pinewood wafers that had been treated with 3.0% PAA at 60° C for up to 11 hr were obtained from W. Baird (<u>126</u>). Yield levels down to 77.15% were obtained as shown in Appendix VI.

Two reaction groups were prepared from acetone-extracted wood wafers from Albrecht's work ($\underline{6}$). For each group, twelve individual batches of approximately 1.160 g (o.d.) each were run in separate 250-ml Erlenmeyer flasks with 200 ml of PAA solution. Passivation of glassware and PAA preparation were carried out as described by Albrecht ($\underline{6}$). All wood wafers were degassed in distilled water under vacuum. One reaction group was subjected to 2.8% PAA at 60.0 ± 0.1°C and the other group was subjected to 2.1% PAA at 50.0 ± 0.1°C. The PAA solution was heated in a controlled temperature bath to reaction temperature just prior to addition to the wood wafers. PAA addition and placement of all the flasks into the controlled temperature bath took approximately 4 min. The flasks were removed from the bath at 10 and 15-min intervals. The wood wafers were then filtered on a Buchner funnel, washed with 5.7% acetic acid, distilled water, and then stored in distilled water for 2 hr before drying to 6.9% moisture under a vacuum at room temperature. Yield levels were corrected based on time, Appendix VI. Yields down to 94.95%

-82-

were obtained with the 2.8% PAA-60.0°C group after 169 minutes and yields to 98.93% were obtained with the 2.1% PAA-50.0°C group after 114 minutes. The various yield levels are shown in Appendix VI.

The last two 100% yield samples (4th and 5th line) for each peak in Table XIX, Appendix IV, were hot (50°C) water extracted for 10 minutes. There appeared to be no effect on lignin pyrolysis products as a result of the hot water extraction.

PROCEDURES FOR PRODUCT ANALYSIS

PYROLYSIS

A Hamilton multipurpose sampling system pictured in Fig. 44 and 45 was used for this work. A furnace temperature of 400°C was found to be the maximum temperature at which secondary reactions of lignin pyrolysis products were not significant. A flow rate of 75 ml/min of helium carrier gas and 400°C furnace temperature was used throughout this study. Initially, higher furnace temperatures were used to explore the temperature dependence of secondary reactions in this system. The oven temperature was maintained at 260°C and the heated line at 280°C.

For each sample pyrolyzed, the needle assembly was removed from the heated line for cleaning. Both the needle and the heated line were mechanically cleaned with a wire and drill bit to remove any possible buildup of tar. The oven teflon ferule seal and the rubber "0" ring seal at the access port were opened each time to introduce a new sample.

-83-

Figure 44. Pyrolysis Gas Chromatography Mass Spectrometry System

I

ტ

- A Sample port access
- B Processing tube, room temperature zone
- C Furnace zone
- D Oven zone
- E Heated line
- F Needle assembly

Figure 45. Furnace and Heated Line Assembly

Each wood wafer sample was cut with a razor blade to a weight range of 1.90 to 2.00 mg and weighed on a semimicro balance in a conditioned room. All wood wafers were conditioned (50% RH, 72°F) in the weighing room at least 48 hr prior to weighing. The wood wafers weighed contained 8.18% moisture after conditioning. The ends of each wood wafer sliver were snugly fitted with short quartz capillary tubes about 3-mm × 2-mm diameter. The wood slivers were just over 10-mm long. The capillary tubes ensured sliding of the sample all the way down the quartz pyrolysis tube. All other samples, liquids or powders, were placed in a single quartz capillary tube about 10-mm long. After the sample was placed in the room temperature zone through the sample port access, the system was sealed and the needle assembly (heated line) interfaced with the GC. The system was allowed to flush for at least 5 minutes (75 ml/min He) before pyrolysis. The sample was introduced into the furnace zone by pivoting the sample port access end up so that the sample would slide down into the heated zone. This was done with one quick movement. Afterwards the sample was removed by pivoting the sample port access end down and allowing the sample to slide out. Pyrolyzed samples were recovered in this manner to determine weight loss. All samples and capillary tubes were handled with tweezers to prevent contamination. All quartz items were cleaned prior to use in a gas-oxygen flame to remove organic material.

GAS CHROMATOGRAPHY

All GC work presented here was run using a 6 ft \times 1/8 inch stainless steel column packed with 10% Carbowax 20 M on DMCS, A/W, 60/80 mesh Chromosorb W. The columns used were fitted for on column injection in the Varian 1400 GC used in this work. A Varian 200 GC with a thermal conductivity detector and a 5 ft \times 0.25 inch 15% Carbowax column was used for preparative work (3-hydroxybutyric and crotonic acid from liquid PAA lignin). The Varian 1400 GC was equipped with a flame ionization detector.

A 10% SE-30 column and a 10% EGSS-X column were found not to be any better than the 10% Carbowax 20 M column in separating wood and dioxane lignin pyrolysis products. A 2°/min column oven program from 90 to 205°C was found to give the best separation for the most complex pyrogram, wood, and was used for the quantitative wood pyrograms. The quantitative pyrograms were recorded at an attenuation of 128×10^{-11} and 0.5 inch/min chart speed. The injector port and detector were run at 215 and 290°C, respectively.

-86-

Authentic samples listed in the chemicals section were used for GC retention times and/or MS spectra comparison for pyrolysis product identification. The isothermal mode and different programming conditions were used in certain instances to achieve a desirable pyrogram. For each particular pyrogram that utilized a different column condition, retention times of authentic samples were rechecked. The retention times for model compound pyrolysis products are listed in Appendix IX.

CHROMTOGRAM PEAK AREA DETERMINATION FROM PYROLYSIS PRODUCTS

All peak areas for the quantitative wood pyrograms were integrated on a Technicon Integrator/Calculator Model AAG. A base line was drawn for the wood pyrograms between guaiacol (23 minutes) and homovanillin (52 minutes). The area below this line to horizontal with guaiacol (the lowest point) was taken as the base-line area (see Fig. 46). The total area is all the pyrogram peak area between guaiacol and homovanillin minus the base-line area. Area measurements were taken which corresponded to 181 units per square inch. Peak height measurements were taken in centimeters from the drawn base line (P1) and from a second base line connecting the adjacent valley on either side for the next resolved peak (P2). The peak measurements were analyzed as described in Appendix IV.

There was no base-line drift for the column alone, 2°/min, 90 to 205°C and very little for the dioxane lignin pyrogram. All the base-line drift in ' the wood pyrogram is considered to be carbohydrate bleed.

The peak area determinations for the investigation of creosol pyrolysis over the range $400-600^{\circ}$ C were done with a planimeter. Peak area determinations for the dioxane lignin and model compound pyrograms were done by cutting the peak out and weighing it.

-87-

Figure 46. Representation of Quantitative Wood Pyrogram

Guaiacol, creosol, 4-ethylguaiacol, 4-propylguaiacol, and eugenol were injected onto the GC in weighed amounts of approximately 10^{-3} g. All compounds gave nearly the same response (relative peak area) with guaiacol giving the largest. Guaiacol samples in the range of 10^{-6} g (µg), 5×10^{-4} and 10^{-3} g were injected onto the GC. Peak area responses corresponding to an attenuation setting of 128×10^{-11} were calculated. The average value was approximately 10^{5} in.² g or 10^{-5} g/in.²

MASS SPECTROMETRY

A Dupont 21-491 mass spectrometer interfaced with the previously described Varian 1400 GC was used in this work and is partially shown in Fig. 45. The splitter block and interfacing tube were run at 300 to 310°C for all PGCMS and GCMS experiments. Normal operating temperatures for the oven and source were 105-115°C and 215-225°C, respectively. Operating pressures were $1.0-4.0 \times 10^{-7}$ torr. Ultra high purity helium was used for all PGCMS and GCMS experiments. Perfluorotributylamine was used as a standard to confirm ion mass/charge ratios. Under optimum conditions a meaningful spectrum could be obtained via GC from 40-50-µg samples. All MS experiments via the GC were run with the filament in the GC mode. Variable ionizing voltage (VIV) experiments were run for some compounds to help to determine molecular weights using approximately 10-12 ev instead of 75 ev. All the mass spectra are tabulated in Appendix VIII.

INFRARED AND NMR SPECTRA

The IR spectra of the lignin samples (Fig. 43) were run in KBr pellets, 2.0 mg in 100 mg of KBr. The pellets were evacuated in the press for 5 minutes and then pressed to 22,000 psi for 3 minutes. All other samples were run neat between NaCl plates. All NMR spectra were run in the solvents listed with tetramethylsilane as internal standard on a Varian A-60A spectrometer. All <u>J</u> values are observed spacings.

PHLOROGLUCINOL STAINING

Microtome cross sections approximately 15 nm in thickness were prepared from the unreacted and the PAA-treated wood wafers. Two different yield levels were mounted on each slide and stained together with phloroglucinol (1-g phloroglucinol in 50-ml methyl alcohol, 50-ml concentrated HCl and 50-ml water -TAPPI Standard T 401 m-60). The purple, violet or red-purple reaction color $(\underline{150})$ is attributed to coniferaldehyde-type carbonyl groups which are present in 3% or less of the phenylpropane units of lignin ($\underline{151}, \underline{152}$). The color reactions observed for phloroglucinol with various materials are recorded in Table X.

-89-

	-90-
T	ABLE X
PHLOROGLUCIN	OL STAIN REACTIONS
Material	Reaction
Cinnamaldehyde	Deep golden (brown) red
Dioxane lignin	Dark red, magenta
Vanillin	Bright red
Benzaldehyde	Yellow-white cream
3-Hydroxybenzaldehyde	Yellow cream
2-Furaldehyde	Yellow dark brown, dark green
Hydroxymethylfurfural	Yellow, red-orange
Acrolein	White cream
Eugenol	Light (thin color) violet (impurity?)
Coniferin	Light (thin color) raspberry (impurity?)
Isoeugenol	None
Propiovanillone	None
Hydroquinone	None
D-Xylose	None
D-Arabinose	None
Crotonic acid	None
Methacrylic acid	None
trans,trans-Muconic acid	None
Styrene	None
ł	

.

CONCLUSIONS

Pyrolysis-gas chromatography is capable of detecting peracetic acid modifications in lignin. Aromatic ring cleavage products may be detected only indirectly by the disappearance of phenolic pyrolysis products. Muconic acid structures, if present, are dissipated on pyrolysis by formation of numerous compounds and isomers.

During the first 1% loss of wood, due to peracetic acid, oxidation at the phenylpropane side chain of lignin is more important than aromatic ring cleavage. Reactions at the side chain involve α -aryl ethers and coniferaldehyde-type structures. The subsequent peracetic acid delignification reaction from 99 to 77% yield is considered to be a combination of reaction at the side chain and aromatic ring cleavage with the latter predominating.

Two structures can be proposed to account for the aromatic systems which persist through peracetic acid treatment. The structures include a benzyl carbohydrate ether and a benzyl carbon-to-carbon linkage with another phenylpropane structure.

-91-

	-92
	GLOSSARY
АсОН	acetic acid
angelicalactone	5-methyl-2(5H)-furanone
μg	micrograms
GC	gas chromatograph(y)
GLC	gas-liquid chromatography
GPC	gel-permeation chromatography
HMF	hydroxymethylfurfural
levo	levoglucosan, 1,6-anhydro-D-glucopyranose
MS	mass spectrometry
(MS)HIGH	the current to the source in the mass spectrometer has been increased above the GC or VIV modes
(MS)VIV	varied ionizing voltage, the ionizing voltage has been reduced in the source of the mass spectrometer
nm	nanometers
NMR	nuclear magnetic resonance
PAA	peracetic acid
PAA lignin	lignin solubilized by peracetic acid
PGC	pyrolysis gas chromatography
PCCMS	nurolysis as chromerography mass spectrometry

ACKNOWLEDGMENTS

The author sincerely appreciates the assistance he has received from all the faculty, staff, and student personnel. The author wishes to express his appreciation for the encouragement and guidance given by the members of his thesis advisory committee: Dr. D. C. Johnson (Chairman), Dr. G. A. Nicholls and Mr. E. E. Dickey. Special thanks go to Dr. Johnson for his continuous help throughout this study and his help in writing the manuscript.

The author would also like to thank Mr. F. R. Sweeney and Mr. D. E. Beyer for the equipment photographs in this manuscript and other special photographs and reproductions; Mr. J. D. Hankey for the color photographs of stained cross sections; Mr. L. G. Borchardt for wood and ash analyses; Mr. L. O. Sell and several students for running NMR spectra; Messrs. M. C. Filz, Jr., P. F. Van Rossum, R. N. Larsen, and F. C. Haigh for their assistance in maintaining the pyrolysis and gas chromatography equipment; Dr. R. A. Parham and Mr. W. M. Baird for examining the wood samples with the electron microscope; Mr. A. J. Glinski for his assistance in preparing peracetic acid; Dr. I. A. Pearl, Dr. G. A. Nicholls, Mr. E. E. Dickey, Dr. D. C. Johnson, and Mr. W. J. Lawrence for their generosity in supplying chemicals and materials; Dr. D. C. Johnson and Mr. F. C. Haigh for assistance in operating the mass spectrometer; J. O. Church and J. J. Bachhuber for their assistance in the computer analysis and Ms. Doreen Dimick for her typing of this manuscript.

The financial support from The Institute of Paper Chemistry is gratefully acknowledged.

Finally, I thank my wife Judy for the assistance she provided and the sacrifices she made.

-93-

LITERATURE CITED

- 1. Thompson, N. S., and Kaustinen, O. A., Tappi 47:157-62(1964).
- Neimo, L., Baczynska, K., and Sihto, A. H., Paper and Timber 47:43-50, 54-8(1965).
- 3. Poljak, A., Ang. Chem., 60 A(2):45-6(1948); ABIPC 21:839.
- 4. Haas, V. H., Schoch, W., and Strole, U., Papier 9:469-75(1955); ABIPC 26:181.
- 5. Taniguchi, E., J. Japan. Tappi 19:283-7(1965); ABIPC 36:A4858.
- Albrecht, J. An investigation of the physical-chemical mechanism of selective delignification of wood with peracetic acid. Appleton, Wis., The Institute of Paper Chemistry, 1971. 190 p.
- 7. Kono, M., Sakai, K., and Kondo, T., J. Japan. Tappi 19:27(1965); ABIPC 35:A8076.
- 8. Farrand, J. C. The peracetic acid oxidation of 4-methylphenols and their methyl ethers. Appleton, Wis., The Institute of Paper Chemistry, 1969. 206 p.
- 9. Johnson, D. C., and Farrand, J. C., J. Org. Chem. 36:3606(1971).
- Chang, H. M., and Allan, G. G. Oxidation. <u>In</u> Sarkanen and Ludwig's Lignins. p. 433-85. New York, John Wiley and Sons, Inc., 1971.
- 11. Waters, W. A. Oxidation processes. In Gilman's Organic chemistry. Vol. 4. p. 1154-73. New York, John Wiley and Sons, Inc., 1953.
- 12. Benton, C. A., Lewis, T. A., and Llewellyn, D. R., J. Chem. Soc. 1956:1226.
- Waters, W. A. Mechanisms of oxidation of organic compounds. New York, John Wiley and Sons, Inc., 1964. 149 p.
- 14. Willmott, F., J. Chromat. Sci. 7:101(1969).
- 15. Groenendyk, H., Levy, E., and Sarner, S., J. Chromat. Sci. 8:599(1970).
- 16. Armitage, F., J. Chromat. Sci. 9:245(1971).
- 17. Butler, J., and Small, G., Can. J. Chem. 41:2492-9(1963).
- 18. Brauer, G., and Lehmann, F., Anal. Chem. 33:673-6(1961).
- 19. Brauer, G., J. Polymer Sci., Part C, 108:3-26(1965).
- 20. Alexeeva, K., and Khramova, L., J. Chromat. 69:65-70(1972).
- 21. O'mara, M., J. Polymer Sci., Part A-1, 8:1887-99(1970).
- 22. DelBrio Leon, J., and Vicente, M., Rev. Plast. Mod. 21(170):1020-8(1970); CA 75:A36712.

-94-

- 23. Levy, E. J., U.S. pat. 3,425,807(Feb. 4, 1969).
- 24. Derge, K., Chem.-Ztg./Chem. Apparatur 91(20):729-38(1967).
- 25. Radell, E. A., and Strutz, H. C., Anal. Chem. 31:1890-1(1959).
- 26. Stamm, A. J., Ind. Eng. Chem. 48:413(1956).
- 27. Eickner, H. W., Forest Prod. J. 2:194(1962).
- 28. Fletcher, T. L., and Harris, E. E., J. Am. Chem. Soc. 69:3144-5(1947).
- 29. Fletcher, T. L., and Harris, E. E., Tappi 35:536-9(1952).
- 30. Domburg, G., Sergeeva, V., and Zheibe, G., Khim. Drev. 7:59-65(1971); ABIPC 43:A8285T, IPC translation.
- 31. Lyness, W., Buckeye Cellulose Corp., U.S. pat. 3,186,923(June 1, 1965).
- 32. Watanabe, Y., and Kitao, K., Wood Res. (Kyoto) 38(7):40-6(1966).
- 33. Watanabe, Y., and Kitao, K., J. Soc. Materials Sci. Japan (Zairyo) 16 (169):844-7(1967).
- 34. Sandermann, W., and Augustin, H., Holz Roh-Werkstoff 22:377(1964).
- 35. Korchunov, Y. N., Gidroliz. Lesokhim. Prom. 22(7):10-12(1969); CA 72:A80524.
- 36. Beall, F. C., Wood Fiber 1(3):215-26(1969).
- 37. Fung, D. P., and Ripley, R. A., Can. Dept. Forestry Bimo. Res. Note 26 (2):12(1970); ABIPC 41:A2135.
- 38. Panasyuk, L. V., Travleeva, L. V., and Panasyuk, V. G., Khim. Drev. 1: 301-4(1968); ABIPC 41:A10357T, IPC translation.
- 39. Domburg, G. E., Kirshbaum, I. Z., and Sergeeva, V. N., Khim. Drev. 7: 43-50(1971); CA 75:A50612V.
- 40. Piyalkin, V., Gurilev, S., Tsysanov, E., and Slavyanskii, A., Nauch. Tr. Leningrada Lesotekh. Akad. 1969(132):74(1969); CA 74:A43673.
- 41. Domburg, G. E., Sergeeva, V. N., and Kirshbaum, I. Z., Ser. Khim. 6: 680-4(1969); ABIPC 41:A7435.
- 42. Ripley, R. A., and Fung, D. P., Wood Sci. 4:25-31(1971).
- 43. Malakhov, G., Ponomareva, V., and Kereeva, R., Gidroliz. Lesokhim. Prom. 23(2):25-6(1970); ABIPC 41:All56.
- 44. Kholkin, Y., Gridyushko, G., and Poletaeva, A., Sovrem. Metody Issled. Khim. Lignina 1970:2833; ABIPC 42:A7890.

-96-45. Bollon, A. Ph.D. Thesis. University of Grenoble, 1969; ABIPC 41:A7014. 46. Gzepel, H. Gaschromatographische studien uber die athanolyse und pyrolyse des lignins. Ph.D. Thesis. University of Vienna, 1965. 47. Doerr, R. C., Wasserman, A. E., and Fiddler, W., J. Agr. Food Chem. 14 (6):662-5(1966).48. Doerr, R. C., Wasserman, A. E., Fiddler, W., and Salay, J. M., J. Agr. Food Chem. 14(6):659-61(1966). 49. Domburg, G. E., and Sergeeva, V. N., Khim. Drev. 1:78-85(1968); IPC translation. Nimz, H., Becker, H., Brogmann, U., Karig, F., and Stahl, E., Holz-50. forschung 27(3):89-92(1973). 51. Kratzl, K., Czepel, H., and Gratzl, J., Holz Roh-Werkstoff 23:237-40 (1965).52. Goos, A. W. The thermal decomposition of wood. In Wise and Jahn's Wood chemistry. Vol. 2. p. 826-51. New York, Reinhold Publ. Corp., 1952. 53. Domburg, G. E., and Sergeeva, V! N., Izv. An. Latv. SSR Ser. Khim. 5: 620-3(1967); IPC translation. 54. Domburg, G. E., and Sergeeva, V! N., Izv. An. Latv. SSR Ser. Khim. 6: 744-8(1967); IPC translation. Domburg, G. E., and Sergeeva, V. N., Izv. An. Latv. SSR Ser. Khim. 5: 55. 624-9(1967); IPC translation. 56. Domburg, G. E., Sergeeva, V. N., and Salna, L., Izv. An. Latv. SSR Ser. Khim. 4:509-10(1967); IPC translation. Zarvarin, E., and Snajberk, K., Tappi 46:320-3(1963). 57. 58. Allan, G. G., and Mattila, T. High energy degradation. In Sarkanen

1

- and Ludwig's Lignins. p. 575-96. New York, John Wiley and Sons, Inc., 1971.
- 59. Pearl, I. A. Private communication.
- 60. Erdtman, H., and Gripenberg, J., Acta Chem. Scand. 1:171(1947).
- 61. Ogiyama, K., and Kondo, T., J. Jap. Wood Res. Soc. 11:206(1965).
- 62. Ogiyama, K., and Kondo, T., J. Jap. Wood Res. Soc. 14:31(1968).
- 63. Ogiyama, K., and Kondo T., Tetrahedron Letters 19:2083(1966).
- 64. Nimz, H., and Ludemann, H. D., Biochem. Biophys. Res. Comm. 52(4):1162-9 (1973).

- 65. Phillips, M., and Goss, M. J., Ind. Eng. Chem. 24:1436-41(1932).
- 66. Phillips, M., J. Amer. Chem. Soc. 51:2420-6(1929).
- 67. See Ref. (<u>28</u>).
- 68. See Ref. (29).
- 69. Hiramatsu, K., Mass Spectroscopy [Shitsuryo Bunseki] 14(4):215-24(1966); CA 69:A44647; ABIPC 39:A3984.
- 70. Sandermann, W., and Augustin, H., Holz Roh-Werkstoff 21:256-65(1963).
- 71. Freudenberg, K., Science 148:595(1965).
- 72. Freudenberg, K., and Harkin, J. M., Holzforschung 18:166(1964).
- Sarkanen, K. V., and Ludwig, C. H. Definition and nomenclature. In Sarkanen and Ludwig's Lignins. p. 5. New York, John Wiley and Sons, Inc., 1971.
- 74. Bridger, G. L., Ind. Eng. Chem. 30:1174(1938).
- 75. See Ref. (<u>17</u>).
- 76. Brauer, G., and Lehmann, F., Anal. Chem. 33:673-6(1961).
- 77. Levy, E., and Paul, D., J. Chromat. Sci. 5:136(1967).
- 78. Hurd, C. D. The pyrolysis of carbon compounds. New York, The Chemical Catalog Co., Inc., 1929. 754 p.
- 79. Bird, C. N. Ph.D. Thesis. University of Maryland, 1957; Diss. Abstr. 17:1461(1957).
- 80. Arnold, R. T., Elmer, O. C., and Dodson, R. M., J. Amer. Chem. Soc. 72:4359-61(1950).
- 81. Johnson, R. R., Alford, E. D., and Kinzer, G. W., J. Agr. Food Chem. 17:22-4(1969).
- Kravchenko, M., Kiprianov, A., and Korotov, S., Nauch. Tr. Leningrad. Lesotekh. Akad. 135:60-4(1970); CA 77:A143525.
- Shaposhnikov, Y., and Kosyukova, L., Khim. Drev. 3:6-9(1965); CA 66: A37557a.
- 84. Tang, W. K., and Eickner, H. W., U.S.D.A. For. Serv. Res. Paper FPL 82, 1968. 30 p.
- Kislitsyn, A. N., Rodionova, Z. M., and Savinykh, V. I., Zh. Prikl. Khim. 46(1):147-51(1973).
- 86. Lundquist, K., and Ericsson, L., Acta Chem. Scand. 24:3681(1970).

-98-

- 87. Adler, E., and Eriksoo, E., Acta Chem. Scand. 9:341(1955).
- 88. Lundgren, R., Paperi Puu 43:670(1961).
- 89. Kratzl, K., and Paszner, L., Cellulose Chem. Technol. 4:293-303(1970).
- 90. Hibbert, H., Hunter, M. J., and Brickman, L., J. Amer. Chem. Soc. 61:509 (1939).
- 91. Hibbert, H., Hawkins, W. L., and Brickman, L., J. Amer. Chem. Soc. 62: 2149(1940).
- 92. Lundquist, K., and Lundgren, R., Acta Chem. Scand. 26:2005(1972).
- 93. Nimz, H., Tappi 56(5):124(1973).
- 94. Nimz, H., Chem. Ber. 102:3803(1969).
- 95. Nimz, H., Chem. Ber. 102:799(1969).
- 96. Nimz, H., Chem. Ber. 99:469(1966).
- 97. Nimz, H., Chem. Ber. 98:3153(1965).
- 98. Nimz, H., Chem. Ber. 98:533(1965).
- 99. Lawrence, W. Private communication.
- 100. Saikai, K., Kuroda, K., Kishimoto, S., Tappi 55:1702-6(1972).
- 101. Schwenker, R. F., and Pacsu, E., Ind. Eng. Chem. 50:91-6(1958).
- 102. Browne, F. L., U.S.D.A. For. Ser. Res. Paper FPL 2136, 1958. 59 p.
- 103. Mackay, G. D., Can. Dept. For. Rural Dev. For. Branch Publ. 1201, 1967. 20 p.
- 104. Eickner, H. W., and Beall, F. C., U.S.D.A. For. Serv. Res. Paper FPL 130, 1970. 26 p.
- 105. See Ref. (<u>34</u>).
- 106. Shafizadeh, F., Adv. Carbohyd. Chem. 23:419-74(1968).
- 107. Hatakeyama, H., Nakano, J., and Migita, N., J. Chem. Soc. Japan. Ind. Chem. 70:957-64(1967); IPC translation.
- 108. Sakai, K., and Kishimoto, S., J. Japan Wood Res. 14:411-15(1968); IPC translation.
- 109. Oki, T., Okubo, K., and Ishikawa, H., J. Japan. Wood Res. Soc. 20(2): 89-97(1974).
- 110. Swern, D. J., J. Am. Chem. Soc. 69:1692-8(1947).

- 111. Ishikawa, H., Oki, T., and Okubo, K., J. Japan. Tappi 20:435-40(1966).
- 112. Kinoshita, Y., Oki, T., and Ishikawa, H., J. Japan. Wood Res. Soc. 13:319-21(1967).
- 113. Hatakeyama, H., Nakano, J., and Migita, N., J. Chem. Soc. Japan, Ind. Chem. Sect. 68:972(1965).
- 114. Oki, T., Okubo, K., and Ishikawa, H., J. Japan. Wood Res. Soc. 18:601-10(1972).
- 115. See Ref. (<u>81</u>).
- 116. Beelik, A., Pulp Paper Mag. Can. 68:T135-42(1967).
- 117. Meritt, R., and White, A., Ind. Eng. Chem. 35:297-301(1943).
- 118. Shafizadeh, F., McGinnis, G., Philpot, C., Carbohyd. Res. 25:23-33(1972).
- 119. Glassner, S., and Pierce, A., Anal. Chem. 37:525-7(1965).
- 120. Anet, E., Adv. Carbohyd. Chem. 19:181(1964).
- 121. Bailey, C. W., and Dense, C. W., Tappi 52(3):490-6(1969).
- 122. Kislitsyn, A. N., Rodionova, Z. M., Savinykh, V. I., and Ilina, E. I., Khim. Drev. 9:125-35(1971).
- 123. Stevens, W., and Marton, R., Tappi 49:454(1966).
- 124. Haas, H., Schoch, W., and Strole, U., Papier 9:469(1955).
- 125. Leopold, B., Tappi 44:230(1961).
- 126. Baird, W. J. Development and composition of the warty layer in balsam fir. Doctor's Dissertation. Appleton, Wis., The Institute of Paper Chemistry, 1974. 163 p.
- 127. Baird, W. J. Private communication.
- 128. Parham, R. A. Private communication.
- 129. Nicholl, W. D., and Smith, A. F., Ind. Eng. Chem. 47:2548(1955).
- 130. Uri, N., Chem. Revs. 50:375(1952).
- 131. Koubek, E., Haggett, M. L., Battaglia, C. J., Ibne-Rasa, K. M., Pyun, H. Y., and Edwards, J. O., J. Amer. Chem. Soc. 85:2263-8(1963).
- 132. Wacek, A., U.S. pat. 2,534,212(Dec. 19, 1950).
- 133. Swern, D. Organic peroxides. Vol. I. p. 59-64, 249-53, 335-43, 360-9. Vol. II. p. 12, 83-7, 102-6, 154-7, 172-4. New York, Wiley-Interscience, 1970.

-100-

- 134. Davies, A. Organic peroxides. Washington, D.C., 1961. 200 p.
- 135. Hawkins, E. Organic peroxides. Princeton, New Jersey, 1961. 409 p.
- 136. Bawn, C. E., and Williamson, J. B., Trans. Faraday Soc. 47:721-34, 735,43(1951).
- 137. Madorsky, S. L., Hart, C. J., and Straus, S., J. Res. Natl. Bur. Std. 56:343(1956).
- 138. Golova, O. P., Epshtein, Y. V., and Durynina, L. I., Vysokomol. Soed. 3:536(1961); CA 56:4999.
- 139. Tang, W. K., U.S.D.A. For. Serv. Res. Paper FPL 71, 1967. 16 p.
- 140. Wolf, L., Ann. Chem. 229:249(1885).
- 141. Windaus, A., and Bohne, A., Ann. Chem. 442:7(1925).
- 142. Kuehl, F., Linstead, R., and Orkin, B., J. Chem. Soc. 1950:2213.
- 143. Reichstein, T., Helv. Chim. Acta 15:1450-3(1932).
- 144. Robbins, J. H., Arch. Biochem. Biophys. 114:576-84(1966).
- 145. Pepper, J., Baylis, P., and Adler, E., Can. J. Chem. 37:1241-8(1959).
- 146. Pepper, J., and Siddiqueullah, M., Can. J. Chem. 39:1454-61(1961).
- 147. Kudo, M., and Kondo, T., Tappi 54:2046-50(1971).
- 148. Pepper, J., and Arseneau, D. G., Pulp Paper Mag. Can. 66:T415-21(1965).
- 149. Pepper, J., Can. J. Chem. 40:1026(1962).
- 150. Brauns, F. M., and Brauns, D. A. The chemistry of lignin. Supplemental volume. p. 37. New York, 1960.
- 151. Adler, E., and Ellmer, L. R., Acta Chem. Scand. 2:839(1948).
- 152. Adler, E., Bjorkquist, K. J., and Haggroth, S., Acta Chem. Scand. 2:93 (1948).
- 153. Bonelli, E. J., Knight, J. S., Skinner, R. F., and Taylor, D. M. Finnigan spectra. Vol. 3. No. 2. Arlington Heights, Ill., Finnigan Corp., July, 1973.

APPENDIX I

INVESTIGATION OF CARBOHYDRATE PYROLYSIS PRODUCTS FROM PERACETIC ACID LIGNIN

The thermal degradation of cellulose and of levoglucosan both yield 2-furaldehyde as one of the major products (<u>119</u>). Shafizadeh, <u>et al.</u> (<u>118</u>) have shown that xylose yields 5.8% 2-furaldehyde at 500° C. In general, both hexose and pentose sugars apparently yield 2-furaldehyde as one of the major pyrolysis products (<u>52,117-119</u>). Weighed amounts of arabinose and PAA lignin no. 48 were pyrolyzed at 400°C and the 2-furaldehyde peak area in each pyrogram was measured. Based on the generation of 2-furaldehyde from the arabinose sample, the carbohydrate content of the PAA lignin no. 48 sample was calculated at 7%. The PAA lignin no. 48 sample was previously determined by Albrecht (<u>6</u>) to contain 7.8% carbohydrate material most of which is mannose (3.2%) and arabinose (2.6%). A sample of mannose was pyrolyzed, and a 2-furaldehyde peak comparable to that for arabinose was observed. It was concluded that most of the 2-furaldehyde peak in the PAA lignin pyrogram is generated from the carbohydrate material present. Little if any 2-furaldehyde is considered to come from the rearrangement of muconic acids.

-102-

APPËNDIX II

DETERMINATION OF ACETALDEHYDE-QUENCHED PERACETIC ACID BY-PRODUCT, 3-HYDROXYBUTYRIC ACID

PAA lignin Fractions 68-69, 70, 74-76, 78-80, and 92-95 are all liquid samples that could not be freeze-dried to solids by Albrecht (<u>6</u>). Acetic, acrylic, crotonic and 3-hydroxybutyric acid appear to be the only major components in these samples as determined by PGCMS and GCMS as shown in Fig. 47 and 48. Crotonic acid was also identified by NMR and 3-hydroxybutyric acid by NMR and IR. These spectra are represented in Tables XI-XIV and Fig. 49. The mass spectra for the 4 compounds are presented in Appendix VIII.

PAA, 3.0%, was quenched with acetaldehyde as described by Albrecht (<u>6</u>). The concentrated residue was analyzed by GCMS. The major component was 3hydroxybutyric acid. All the 3-hydroxybutyric acid in the liquid PAA lignin samples is considered to be an oxidized aldol condensation product from the acetaldehyde used to quench PAA and/or from a crossed aldol condensation of acetaldehyde and acetic acid. No crotonic acid was found in the quenched PAA. Its appearance in the liquid PAA lignin sample is considered to come from the dehydration of 3-hydroxybutyric acid on standing. Acrylic acid was only tentatively identified based on its mass spectrum; its origin is unknown.

The authentic sample and the compound identified as 3-hydroxybutyric acid both showed a prominent ion at m/e 116 in their mass spectra. This ion, 12 mass units above the molecular weight of 3-hydroxybutyric acid, was considered to come from the fragmentation of a dehydrodimer or other products from 3-hydroxybutyric acid molecules.

Figure 47. PGC of PAA Lignin No. 72

Figure 48. PAA Lignin No. 92-95 Injected Onto GC

TABLE XI

SPECTRAL DATA FOR CROTONIC ACID OBTAINED FROM PAA LIGNIN

NMR (CDCl₃)

δ, ppm	Multiplicity	<u>J</u> , Hz	Protons	Assignment
1.94	4 2 2	1.5-2.0 7	3	a,
5.88	8 2 4	15 1 .5-2.0	l	Ъ
7.15	հ 2 2	7 15	1	с
9.25	l		l	d

 $\begin{array}{c}
H_{1}(c) \\
CH_{3} - C = C - CO_{2}H_{(d)} \\
(a) & H_{(b)}
\end{array}$

TABLE X.

SPECTRAL DATA OF CROTONIC ACID, AUTHENTIC SAMPLE

NMR (CDCl₃)

δ, ppm Multiplicity <u>J</u>, Hz Protons Assignment 1.90 4 (2 doublets) 3 a 1-1.5 2 2 7 5.85 8 (2 quartets) l Ъ 1.5 4 2 15 8 (2 quartets) $\frac{4}{4}$ 7.11 l с 7 2 15 12.00 ı. 1 d

 $CH_{3} - CH_{1}(c) = C - CO_{2}H(d)$

TABLE XIII

SPECTRAL DATA OF 3-HYDROXYBUTYRIC ACID OBTAINED FROM PAA LIGNIN

NMR (CDCl₃)

δ, ppm	Multiplicity	J, Hz	Protons	Assignment
1.25	2	6	3	a
2.51	2	6	2	Ъ
4.28	6	6	1 .	с
7.ll (disappears with D ₂ O)	l		2	đ
	NM	R (DMSO)		
1.11	2	6	3	a
2.29	2	6	2	Ъ
4.01	6	6	l	с

 $-C - CH_2 - CO_2H_{(d)}$ OH_(d) (b) CH3 -(a)

ri	
יסדסאות	VTV
TADLL	ΛLV

SPECTRAL DATA OF 3-HYDROXYBUTYRIC ACID, AUTHENTIC SAMPLE

	NN	R (CDCl ₃)		
δ, ppm	Multiplicity	J, Hz	Protons	Assignment
1.25	2	6	3	a
2.51	2	6	2	Ъ
4.28	6	6	1	с
7.48	l		2	d
	N	IMR (DMSO)		۰.
1.12	2	6	3	a
2.32	2	6	2	Ъ
4.07	6	6	l	с

 $\begin{array}{c|c} (c) \\ CH_3 - CH - CH_2 - CO_2H_{(d)} \\ (a) & OH_{(d)} \end{array} \end{array}$

-108-

1

APPENDIX III

THE REMOVAL OF INORGANIC MATERIAL FROM WOOD BY PERACETIC ACID AND ITS EFFECT ON PYROLYSIS PRODUCTS

The ash analyses were performed by the analytical department using emission spectroscopy. The ash content is based on ovendry sample weight. Ash was found by igniting for 2 hours at 600°C. Moisture content is based on sample weight in a conditioned atmosphere (50% RH, 72°F). Moisture is the weight loss after overnight drying at 105°C. The ash results are listed in Tables XV-XVII.

Samples 99.80 + 99.70% and 96.95 + 96.45 are combined yield levels of PAA-reacted wood wafers. The 100% samples had only been acetone extracted ($\underline{6}$), and acetone and hot (50°C) water extracted and are used as a base reference. Samples 1, 2, and 12 were obtained in a similar manner as the PAA- (2.1% PAA, 50°C) treated wood wafers. The difference was that instead of 2.1% PAA, 0.24% acetic acid was used. The 2.1% PAA solution was calculated to contain approximately 0.24% acetic acid based on Albrecht's results ($\underline{6}$). Sample 1 was only soaked in 0.24% acetic acid while Sample 12 was soaked and then washed with 5.7% acetic acid. The ash results show that washing removes some of the inorganic material but soaking is more efficient. It appears necessary to have PAA present to obtain the lowest ash level of 0.02-0.06%.

Acetone-extracted untreated wood wafers (0.22% ash) were cut into thin strips weighing 2.00 mg and ashed at 600° C for 2 hours. Wood wafers from the 99.98% yield group were cut and weighed to a range of 1.90 to 2.00 mg

-110-

TABLE XV

ANALYSIS OF WOOD SAMPLES

	100% Yield			100% Yield					
	Ace	etone E	<u>xt</u>	Acetone	e and H	20 Ext.	98.93% Yield		
	Test l	Test 2	Av.	Test l	Test 2	Av.	Test l	Test 2	Av.
Moisture, %	7.99	8.08	8.04	8.19	8.12	8.16	8.10	8.19	8.14
Ash (600°C), %	0.21	0.22	0.22	0.23	0.23	0.23	0.03	0.02	0.02
Barium, ppm	1.3	1.4	1.4	1.3	1.4	1.4	0.38	0.38	0.38
Boron, ppm	16	14	15	9.0	9.8	9.4	6.1	7.1	6.6
Silicon, ppm	- 3.4	2.3	2.8	2.2	3.2	2.7	2.0	2.6	2.3
Phosphorus, ppm	25	. 23	24	14	16	15	4.9	5 .9	5.4
Manganese, ppm	29	25	27	26	20	23	9.4	10.7	10
Aluminum, ppm	7.2	7.1	7.2	4.4	4.7	4.6	1.0	1.1	1.0
Iron, ppm	7.6	7.0	7.3	2 .9	4.1	3.5	3.2	3.5	3.4
Magnesium, ppm	25 9	278	268	198	18 9	194	5.0	5.5	5.2
Lead, ppm	1.1	0.9	1.0	0.49	0.53	0.51	0.34	0.37	0.36
Calcium, ppm	664	79 9	732	534	460	497	34	34	34
Copper, ppm	0.61	0.46	0.54	0.50	0.54	0.52	0.68	0.64	0.66
Zinc, ppm	5.7	4.4	5.0	4.6	5.4	5.0	0.80	1.0	0.90
Sodium, ppm	94	81	88	110	129	120	1.0	1.2	1.1
Potassium, ppm	275	243	259	Nic	ckel pro	esent	37	50	44
Nickel, ppm				1.4	1.5	1.4			
Titanium, ppm							0.10	0.10	0.10

TABLE XVI

ANALYSIS OF WOOD SAMPLES

	99.80 + 99.70% Yield			96.	96.95 + 96.45% Yield			94.95% Yield		
	Test l	Test 2	Av.	Test l	Test 2	Av.	Test 1	Test 2	Av.	
Moisture, %	8.36	8.26	8.31	8.64	8.63	8.64	8.53	8.48	8.50	
Ash (600°C), %	0.06	0.06	0.06	0.10	0.08	0.09	0.04	0.05	0.04	
Barium, ppm	1.7	1.7	1.7	1.5	1.7	1.6	0.35	0.35	0.35	
Boron, ppm	63	67	65	74	72	73	13	10	12	
Silicon, ppm	22	21	22	21	20	20	8.7	8.7	8.7	
Phosphorus, ppm	17	16	ıć	14	16	15	6.7	6.3	6.5	
Manganese, ppm	3.0	3.6	3.3	4.4	4.5	4.4	3.5	3.0	3.2	
Aluminum, ppm	4.2	4.2	4.2	3.4	3.4	3.4	1.2	1.0	1.1	
Iron, ppm	7.7	7.9	7.8	9.6	9.0	9.3	4.0	3.3	3.6	
Magnesium, ppm	28	30	29	18	18	18	21	17	19	
Lead, ppm	1.4	1.8	1.6	3.0	3.1	3.0	0.54	0.52	0.53	
Calcium, ppm	151	176	164	285	262	274	126	136	131	
Copper, ppm	2.2	2.4	2.3	1.3	1.2	1.2	0.88	0.92	0.90	
Zinc, ppm	6.4	7.0	6.7	4.5	4.8	4.6	2.5	2.8	2.6	
Sodium, ppm	19	19	19	112	127	120	18	19	18	
Potassium, ppm	Nicl	cel pres	sent	Nic	kel pre	sent	Nicł	cel pres	sent	
Nickel, ppm	2.1	2.2	2.2	1.7	1.8	1.8	0.43	0.43	0.43	
Titanium, ppm	0.69	0.62	0.66	0.75	0.70	0.72	0.30	0.30	0.30	
Basis of report: Methods: Moistur	Moistu atmo Ash co Metals re is th	ure cont osphere ontent i s are ba ne weigh	cent is (50% R is base ised on it loss	based of H, 72°F d on ove ovendry upon over	on sampi). endry we y sample vernight	le wèig) eight. e weight t drying	nt in a t. g at 105	condit: 5°C.	ioned	
Ash was Metals	found by emis	by igni ssion sp	ting f	or two l copy - p	hours at	5 600°C	l not be	e deterr	nined	

Metals by emission spectroscopy when nickel was present.

-112-

1

TABLE XVII

ANALYSIS OF WOOD SAMPLES

	Sample 1			Sample 2			Sample 12		
	Test	Test		Test	Test		Test	Test	
	ı '	2	Av.	l	2	Av.	l	2	Av.
Ash, %			0.098			0.17			0.091
Aluminum, ppm	4.6	5.0	4.8	6.2	6.6	6.4	5.4	6.2	5.8
Barium, ppm	1.4	1.5	1.4	1.9	2.1	2.0	1.4	1.5	1.4
Boron, ppm	2.4	2.5	2.4	3.0	2.9	3.0	2.1	2.4	2.2
Calcium, ppm	274	301	288	466	520	493	267	267	267
Copper, ppm	1.0	1.1	1.0	1.7	1.8	1.8	1.2	1.2	1.2
Iron, ppm	3.1	3.8	3.4	4.8	5.1	5.0	3.7	4.0	3.8
Lead, ppm	0.62	0.69	0.66	0.86	0.90	0.88	0.81	0.86	0.84
Magnesium, ppm	69	70	70	154	149	152	63	68	66
Manganese, ppm	9.6	10.1	9.8	16	18	17	9. 5	9. 0	9.2
Phosphorus, ppm	14.1	16.1	15	21	19	20	15	16	16
Potassium, ppm	165	1180	172	249	244	246	160	164	162
Silicon, ppm	5.8	6.7	6.2	11	10	10	7.4	6.7	7.0
Sodium, ppm	10.0	12.0	11	34	39	36	15	18	16

as was done with previous quantitative samples. The 99.98% weighed wood samples were moistened with distilled water and the ash from a 2.00-mg 100% yield wood sample was placed on the moist wood. The ash appeared to move into the wood structure with the water. No ash could be seen on the surface of the wood. The 99.98% yield wood with the ash added was dried in a vacuum, conditioned, and then pyrolyzed. The pyrogram areas are compared with other samples including Sample 12 (acetic-acid-extracted 100% yield wood) in Table XVIII.

TABLE XVIII

PYROGRAM AREAS FROM TREATED WOOD

No.	Peak	100% ^a AcOH Extracted	100% ^b	99.98% ^b	99.98% +0.22% Ash ^c
l	Guaiacol	112	116	89	91
4	Creosol	198	213	217	217
, 5	4-Ethylguaiacol	57	54	45	44
6	4-Propylguaiacol	85	93	46	43
7	Eugenol	64	66	44	47
8	4-Vinylguaiacol	ב 47	130	105	109
10	trans-Isoeugenol	158	153	114	116
12	Vanillin	67	49	48	56
13	Homovanillin	48	57	60	64

- ^aSample 12, single determination.
- b Average from five pyrograms.
- ^CAverage from three pyrograms.

APPENDIX IV

DATA HANDLING FOR QUANTITATIVE ANALYSIS OF 9 WOOD PYROGRAM PEAK AREAS

Table XIX contains the area measurements from the 46 PAA wood pyrograms used in this study. The first column is the peak identification number corresponding to the list below:

Peak Identification No.	Description
l	Guaiacol
2	Carbohydrate 1
3	Guaiacol + Carbohydrate l
4 -	Creosol
5	4-Ethylguaiacol
6	4-Propylguaiacol
7	Eugenol
8	4-Vinylguaiacol
9	Carbohydrate 2
lO	<u>trans</u> -Isoeugenol
11	Carbohydrate 3 - HMF
12	Vanillin
13	Homovanillin
1 ⁴	Carbohydrate 4
15	Carbohydrate 5 — levo
16	Base area
17	Total area

The second column is the measured peak area per milligram of sample (10th column) pyrolyzed. Column 3 is the peak area divided by the total area (Column 9) and multiplied by 1000. Columns, 4, 5, 6, and 7 are the two peak height measurements Pl (Columns 4 and 6) and P2 (Columns 5 and 7) divided by the weight of the sample (Columns 4 and 5) and divided by the total area (Columns 6 and 7) and multiplied by 10,000. Column 8 is the precentage

1

1

2

127.24 119.80 119.34 107.31 107.07 85.37 82.64 81.17 88.66 107.71 79.06 87.93 94.10 81.46 93.47 86.46 94.47 99.15 84.79 96.24 84.97 82.30 90.28 80.48 76.88 88.61 103.59 85.02 **93.**00 93.43 99.65 68.07 89.00 85.81 86.29 97.75 74.78 81.00 83.00 83.00 76.00 77.00 71.88 74.00

71.45 67.32 68.19 59.58 57.34 47.73 47.33 50.68 56.59 62.82 50.18 52.08 50.95 49.23 56.94 50.02 53.10 63.59 51.40 61.21 49.31 45.38 58.19 4<u>7</u>。99 47.66 53.98 61.09 52.00 61.36 66.62 42.88 50.00 56.73 55.42 62.43 56.24 56.00 54.00 51.00 46.00 49.00 48.00

3

7676776667766666666666666655556667 365532488444913908750889988 99672666776666666666666666656667 30899687508313872	6565666231897793139016332057 6566666565555555555555556666 65666656555555
6.16	5.45
6.81	6.07
6.05	5.32
6.36	5.59
6.35	5.58
6.63	5.91
6.17	5.34
5.52	4.64

4

5

TABLE XIX AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

6

41.04 37.37 40.85 36.82

37.60 39.94 39.98 41.73 39.81

41.03

40.46 45.50 38.12

42.04 40.75 42.36 46.37

38.69

7

36.77

33.66 37.00 33.14

34.08

36.23

36.40

35.86

36.93

36.22 37.78 32.43

36.08

33.91 32.89 32.76

34.03 32.33 34.90

33.67

29.84 33.24 31.20 32.39

36.67

35-69 37-86

35.82 40.60 33.48

36.96

35.86

40.13

32.48

8

1780.96 1.97 1779.44 1.97 100.00 1750.28 1750.28 1801.28 1867.1750.28 1867.57 1750.45 1551.579 1606.575 1715.88.89 1656.57 1558.89 1657.23.60 1557.20 155 100.00 1.93 100.00 100.00 100.00 100.00 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.80 99.80 99.80 99.80 1.98 1.96 1.92 1.93 1.94 1.99 1.99 1.91 1.96 1.92 1.96 1.94 1.97 1.99 99.70 99.61 99.51 99.52 99.52 99.13 99.13 99.13 99.13 99.13 1.96 1.95 1.93 1.94 $1677 \cdot 20$ $1613 \cdot 32$ $16415 \cdot 64$ $1760 \cdot 86$ $1779 \cdot 73$ $1495 \cdot 64$ $1779 \cdot 73$ $1497 \cdot 60$ $1597 \cdot 60$ $1512 \cdot 56$ $1557 \cdot 11$ $1565 \cdot 89$ $1492 \cdot 800$ $1557 \cdot 11$ $1562 \cdot 800$ $1522 \cdot 800$ $1522 \cdot 800$ $1557 \cdot 11$ $1562 \cdot 800$ $1528 \cdot 00$ $1528 \cdot 00$ $1568 \cdot 00$ 1.93 99.13 99.03 98.93 98.92 98.92 98.92 98.92 99.05 99.05 99.05 99.05 99.05 99.05 99.05 99.05 99.05 99.05 99.05 99.05 99.03 90.03 1.99 1.96 1.95 1.98 1.99 1.98 1.91 1.90 1.91 1.95 89.40 87.09 87.09 87.09 1.93 1.97 2.00 1.96 87.09 82.84 82.84 82.84 77.15 2.00 1557.00 1568.00 1568.00 1427.08 1535.00 1470.00 .94 1 1.92 1.97 1.93 77.15 77.15

9

10

11

12

7

14

256.35 210.36 259.18 231.31 204.08 255.73 251.30 239.18 245.23 245.23 143.46 168.37 188.54 178.57 173.20 203.05 217.09 166.84 160.0C 237.31 237.31 213.92 97.40 237.31 174.37 178.57 182.56 448.00 232.83 175.92 170.53 297.00 287.69 185.28 186.01 219.17 254.00 168.00 647.00 281.00 **30**8.00 155.21 126.00 280.00

i

8

11

AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

1	2	3	4	5	6	7	8	9	10	11	12
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} 81 & \cdot & 736 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & $	$\begin{array}{c} 45 & \circ & 89 \\ 571 & \circ & 68 \\ 699 & \circ & 23 \\ 1205 & \circ & 1257 \\ 1804 & \circ & 0715 \\ 110424 & \circ & 0715 \\ 11052 & \circ & 0856 \\ 11055 & \circ & 0856 \\ 1$	$\begin{array}{c} 4 \cdot \cdot \cdot \cdot \\ 5 \cdot \cdot \cdot \cdot \\ 6 \cdot \cdot \cdot \\ 7 \cdot \cdot \cdot \\ 8 \cdot \\ 8 \cdot \cdot \\ 8 \cdot$	453568898777898790785692484337779301548 16788898777898790678529338881748597339 16788887988891748597339 1151	2323454228919921293198668687550247748 	231000000000000000000000000000000000000	100.00 100.00 1000.098 999.9999.00 1000.098 999.999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.00 999.000 999.000 999.00000000	1780.96 1779.268 1807.17 1750.28 1867.17 1750.28 1745.53 1564.557 1575.27 16564.577 1688.689 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 16745.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1675.289 1775.289 1675.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.289 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299 1775.299	11111111111111111111111111111111111111	$\begin{array}{c} 256.35\\ 1950.36\\ 22591.38\\ 22591.30\\ 22551.39\\ 22551.39\\ 22551.39\\ 2448.57\\ 120226\\ 1468.520\\ 2176.09\\ 2176.09\\ 2176.09\\ 2177.37\\ 1876.29\\ 2748.556\\ 2177.32\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ 2177.35\\ $	979714422986690558954515832770707718
ຓຑຑຓຑຓຑຓຑຓຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຑຨຨຨຨ	$\begin{array}{c} 314\\ 99 & 645\\ 2212\\ 2237 & 772\\ 2222\\ 22693 & 648\\ 2275 & 772\\ 22222\\ 2222222222222222222222222$	$\begin{array}{c} 113.87\\ 123.00\\ 123.03\\ 1223.03\\ 1223.03\\ 1251.09\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\ 1257.03\\$	44.5678.8508413338405551866825554428711177776 19779998003534084999436304111539776 107898979999281.901.16.0	345568898778987906785692484337779301548 167888798898778987906788887988917685973339 1151548	78873124228919921293168686875502479	2233334455544545454544445555564475666748 ••••••••••••••••••••••••••••••••••••	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	1750.266 17809.2867 1809.287 17771.27779 1807.27779 1807.27779 1807.27779 16564.57779 16564.57779 1684.541.57779 1684.541.599.23 1671.32.57579 15672.3.6600 1577.599.2384 1577.599.2384 1577.599.2384 1577.599.2384 1577.599.2384 1572.3.6600 1664.55.6871 1555.659.72.164 1555.659.72.164 1552.75.878 1552.75.878 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.75.978 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 1552.7578 15	11111111111111111111111111111111111111	$\begin{array}{c} 2166\\ & 353\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 365\\ & 3$	997714422986690558954515832770707718 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

$\begin{array}{c} 4 & 222 \cdot 50 & 124 \cdot 93 & 11 \cdot 62 & 11 \cdot 37 & 65 \cdot 27 & 63 \cdot 84 & 100 \cdot 00 & 1780 \cdot 96 & 1 \cdot 4 \\ 204 \cdot 23 & 114 \cdot 77 & 11 \cdot 32 & 10 \cdot 96 & 63 \cdot 61 & 61 \cdot 62 & 100 \cdot 00 & 1779 \cdot 44 & 1 \cdot 4 \\ 210 \cdot 37 & 116 \cdot 79 & 11 \cdot 53 & 11 \cdot 22 & 64 \cdot 01 & 62 \cdot 31 & 100 \cdot 00 & 1801 \cdot 28 & 1 \cdot 4 \\ 230 \cdot 78 & 129 \cdot 04 & 12 \cdot 40 & 12 \cdot 04 & 69 \cdot 32 & 67 \cdot 32 & 99 \cdot 98 & 1788 \cdot 52 & 1 \cdot 4 \\ 230 \cdot 78 & 129 \cdot 04 & 12 \cdot 40 & 12 \cdot 04 & 69 \cdot 32 & 67 \cdot 32 & 99 \cdot 98 & 1745 \cdot 83 & 1 \cdot 4 \\ 230 \cdot 21 & 131 \cdot 86 & 12 \cdot 29 & 11 \cdot 93 & 70 \cdot 41 & 68 \cdot 32 & 99 \cdot 98 & 1745 \cdot 83 & 1 \cdot 4 \\ 226 \cdot 31 & 129 \cdot 96 & 10 \cdot 26 & 9 \cdot 95 & 65 \cdot 47 & 63 \cdot 50 & 99 \cdot 98 & 1566 \cdot 75 & 1 \cdot 4 \\ 228 \cdot 31 & 133 \cdot 16 & 11 \cdot 96 & 11 \cdot 56 & 69 \cdot 75 & 67 \cdot 41 & 99 \cdot 98 & 1566 \cdot 75 & 1 \cdot 4 \\ 226 \cdot 30 \cdot 61 & 130 \cdot 16 & 11 \cdot 47 & 11 \cdot 15 & 72 \cdot 78 & 70 \cdot 79 & 99 \cdot 90 & 1577 \cdot 39 & 1 \cdot 4 \\ 227 \cdot 55 & 134 \cdot 78 & 12 \cdot 55 & 12 \cdot 14 & 74 \cdot 34 & 71 \cdot 92 & 99 \cdot 80 & 1688 \cdot 27 & 1 \cdot 4 \\ 228 \cdot 74 & 138 \cdot 25 & 12 \cdot 35 & 12 \cdot 04 & 74 \cdot 62 & 72 \cdot 77 & 99 \cdot 70 & 1654 \cdot 59 & 1 \cdot 4 \\ 227 \cdot 15 & 138 \cdot 38 & 11 \cdot 91 & 11 \cdot 55 & 72 \cdot 54 & 70 \cdot 34 & 99 \cdot 61 & 1641 \cdot 50 & 1 \cdot 4 \\ 227 \cdot 15 & 138 \cdot 38 & 11 \cdot 91 & 11 \cdot 55 & 66 \cdot 94 & 66 \cdot 96 & 99 \cdot 51 & 1779 \cdot 15 & 1 \cdot 4 \\ 221 \cdot 44 & 124 \cdot 46 & 11 \cdot 91 & 11 \cdot 55 & 66 \cdot 94 & 66 \cdot 96 & 99 \cdot 51 & 1779 \cdot 15 & 1 \cdot 4 \\ 221 \cdot 44 & 124 \cdot 46 & 11 \cdot 91 & 11 \cdot 56 & 66 \cdot 94 & 66 \cdot 96 & 99 \cdot 51 & 1779 \cdot 15 & 1 \cdot 4 \\ 221 \cdot 44 & 124 \cdot 46 & 11 \cdot 91 & 11 \cdot 56 & 66 \cdot 94 & 66 \cdot 92 & 99 \cdot 51 & 1779 \cdot 15 & 1 \cdot 4 \\ 221 \cdot 44 & 124 \cdot 46 & 11 \cdot 91 & 11 \cdot 56 & 66 \cdot 94 & 66 \cdot 92 & 99 \cdot 51 & 1779 \cdot 15 & 1 \cdot 4 \\ 211 \cdot 79 & 128 \cdot 40 & 11 \cdot 74 & 11 \cdot 38 & 71 \cdot 20 & 69 \cdot 02 & 99 \cdot 22 & 1649 \cdot 49 & 1 \cdot 4 \\ 212 \cdot 20 & 117 \cdot 00 & 11 \cdot 24 & 10 \cdot 93 & 61 \cdot 96 & 60 \cdot 25 & 99 \cdot 13 & 1579 \cdot 18 & 1 \cdot 4 \\ 214 \cdot 19 & 128 \cdot 40 & 11 \cdot 74 & 11 \cdot 38 & 71 \cdot 20 & 66 \cdot 03 & 99 \cdot 03 & 1613 \cdot 32 & 1 \cdot 4 \\ 219 \cdot 39 & 133 \cdot 64 & 11 \cdot 89 & 10 \cdot 28 & 72 \cdot 42 & 68 \cdot 69 & 98 \cdot 93 & 1695 \cdot 64 & 1 \cdot 58 & 1 \cdot 4 \\ 219 \cdot 39 & 133 \cdot 64 & 11 \cdot 87 & 10 \cdot 65 & 57 \cdot 90 & 66 \cdot 54 & 98 \cdot 93 & 1695 \cdot 64 & 1 \cdot$	-	2 3	4	5	6	7	8	9	10	11	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	444444444444444444444444444444444444444	22.50       124.93         04.23       114.77         00.86       114.76         10.37       116.79         26.43       121.27         30.78       129.04         30.21       131.864         03.61       129.96         03.61       129.96         28.31       133.16         05.06       130.16         27.55       134.78         28.74       138.28         27.15       138.34         28.74       138.38         21.44       124.82         21.44       124.84         91.50       122.84         08.29       120.87         12.50       124.82         11.79       128.54         91.50       122.80         12.20.87       124.11         04.15       121.72         01.68       125.01         12.50       12.40         13.30       121.13         05.640       102.71         43.28       95.79         43.00       80.00         33.68       88.38         001.73       64.97         95.000       52.000 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c} 11.37\\ 10.98\\ 11.22\\ 12.09\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.$</td> <td>653.21 653.21 653.21 653.21 653.21 659.24.3321 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.</td> <td>63.84 61.62 62.76 62.731 62.732 63.321 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.37 77.6 64.39 66.55 67.52 61.6 63.6 65.52 61.6 66.55 67.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 65.55 61.6 62.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 65.6 65.55 61.6 77.6 65.6 65.55 61.6 77.6 65.6 65.55 61.6 77.6 65.6 65.55 77.6 65.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 77.6</td> <td>100.000 1000.00888888000011112223333333333255327200999444455 1000.0088888888888888888888888888888888</td> <td>$1780.964\\177501.287\\17501.287\\17501.285\\17501.285\\17501.277\\188685.285\\17606.4.59\\156644.8.59\\1666429.23.660\\15717588.6.55\\117599.23.660\\15725.686\\16629.23.660\\15725.69\\16672.3.660\\155555.597\\18557.3.85\\15555.598\\1667.3.660\\155555.598\\155555.598\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\155555\\155555\\155555\\155555\\1527\\155555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\1555\\15555\\15555\\1555\\15555\\15555\\1555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\1555\\15555\\15555\\1555\\15555\\15555\\15555\\1555\\15555\\1555\\15555\\1555\\15555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\155\\1555\\1555\\1555\\155\\1555\\155\\1555\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\15$</td> <td>11111111111111111111111111111111111111</td> <td>$\begin{array}{c} \textbf{256} \textbf{.336} \\ \textbf{256} \textbf{.366} \\ \textbf{256} \textbf{.366} \\ 22222222222222222222222222222222222$</td> <td>7144229866905589545158327 707 07711 8</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 11.37\\ 10.98\\ 11.22\\ 12.09\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.096\\ 11.$	653.21 653.21 653.21 653.21 653.21 659.24.3321 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.24.96 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.26.97 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.27 659.	63.84 61.62 62.76 62.731 62.732 63.321 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.37 77.6 64.39 66.55 67.52 61.6 63.6 65.52 61.6 66.55 67.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 63.6 65.52 61.6 65.55 61.6 62.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 64.99 65.6 66.6 65.55 61.6 77.6 65.6 65.55 61.6 77.6 65.6 65.55 61.6 77.6 65.6 65.55 61.6 77.6 65.6 65.55 77.6 65.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 65.55 77.6 77.6	100.000 1000.00888888000011112223333333333255327200999444455 1000.0088888888888888888888888888888888	$1780.964\\177501.287\\17501.287\\17501.285\\17501.285\\17501.277\\188685.285\\17606.4.59\\156644.8.59\\1666429.23.660\\15717588.6.55\\117599.23.660\\15725.686\\16629.23.660\\15725.69\\16672.3.660\\155555.597\\18557.3.85\\15555.598\\1667.3.660\\155555.598\\155555.598\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\1555559\\155555\\155555\\155555\\155555\\1527\\155555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\1555\\15555\\15555\\1555\\15555\\15555\\1555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\15555\\1555\\15555\\15555\\1555\\15555\\15555\\15555\\1555\\15555\\1555\\15555\\1555\\15555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\1555\\155\\1555\\1555\\1555\\155\\1555\\155\\1555\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\155\\15$	11111111111111111111111111111111111111	$\begin{array}{c} \textbf{256} \textbf{.336} \\ \textbf{256} \textbf{.366} \\ \textbf{256} \textbf{.366} \\ 22222222222222222222222222222222222$	7144229866905589545158327 707 07711 8

-118-

ł

1

18.13

18.00

1.04

0.57

7.30

4.01

AREA MEASUREMENTS OF PAA WOOD PYROGRAMS 3 4 5 6 7 8 9 2 10 11 12 1.97 1.97 1.93 1.96 1.98 1.96 100.00  $\begin{array}{c} 11789 \\ \circ \cdot \cdot 2877 \\ \circ \cdot \cdot 12867 \\ \circ \cdot \cdot 12885 \\ \circ \cdot 1285 \\ \circ 1285 \\ \circ \cdot 1285 \\ \circ \cdot 1285 \\ \circ 1285 \\ \circ \cdot 1285 \\ \circ 1285$ **256.35 195.43 210.36 259.18 231.31 205.30 235.30 235.30 235.30 239.18 255.30 239.18 245.23 148.57 188.57 173.09 217.09 166.89**  $10.83 \\ 10.55 \\ 12.14 \\ 10.20 \\ 9.70 \\ 10.084 \\ 10.9.84 \\ 10.9.84 \\ 10.9.84 \\ 10.9.84 \\ 10.9.74 \\ 10.84 \\ 10.9.74 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\ 10.84 \\$ 7144229866905589545158327 1 160.00 176.92 237.31 213.92 97.40 237.31 174.37 182.56 176.77 448.00 232.83 175.53 297.00 287.69 185.28 7 10 7 8°29 7°00 6°96 1.82 1.52 2.05 1.26 1.05 1.11 11.94 10.15 12.93 1.49 1.32 1.30 1.19 10 1.03 9.83 6.78 0.76 0.78 0.62 8.48 8.27 8.96 4.89 185.28 186.01 219.17 168.00 647.00 254.00 281.00 308.00 4.68 11 20.00 **139.0**0 18.00

-119-

8

155.21 280.00 126.00

2 3

7

1.9 1.9

1535.00

7 7

### AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

1	2	3	ц	5	6	7	8	9	10	11	12
<b>ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼</b>	1927886694000175522733262949500010097228 0866770884273313448046831394371563814482 0875444827331348046831394371563814482 0875444827331348046831394371563814482 08775886940001755227332856600320097328	64644222222222222222222222222222222222	4	332321111111111111111111011110 · · · · · · · · · · · · · · · · · · ·	2255633453727370776627699608 753 4923	217	1000008888880001112 100000888880001112 1000000888880001112 10000008888800011111 1000000888880001112 10000008888880001112 10000008888880001112 100000008888880001112 100000008888880000 10000000000	1780, $2817750$ , $2817750$ , $2817750$ , $281760$ , $1664$ , $5351760$ , $1664$ , $53716664$ , $537$ , $16664$ , $1672$ , $16664$ , $1672$ , $16614$ , $16664$ , $177554$ , $28$ , $16614$ , $16664$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$ , $1666$	11111111111111111111111111111111111111	$\begin{array}{c} 256 & \bullet & 368 \\ \bullet & \bullet & 368 \\ \bullet & \bullet & 2551 \\ \bullet & & 0551 \\ \bullet & 0551 \\ \bullet$	7144229866905589545158327 707 0771
6666666666	27.00 23.00 22.00 25.00 25.00 19.97 21.00 19.00	17.00 $14.00$ $15.00$ $14.00$ $16.00$ $14.00$ $13.99$ $14.00$ $13.00$	0.68	0.47	4.74	3.28	87.09 87.09 82.84 82.84 82.84 82.84 77.15 77.15 77.15	1528.00 1628.00 1537.00 1568.00 1568.00 1427.08 1470.00 1535.00	2.00 1.96 1.97 2.00 1.93 1.94 1.92 1.93 1.97	168.00 647.00 254.00 308.00 139.00 155.21 280.00 126.00	8

- 1

# AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	3	<u>4</u>	5	. 6	7	8	<b>9</b> .	10	11	12
	777777777777777777777777777777777777777	6935822065993423421950916186022503077000000040 	38.00 38.050 37.5.553 37.5.553 37.5.553 37.5.553 37.5.553 37.5.553 38.0.0 38.0.50 38.0.50 38.0.50 38.0.50 38.0.50 38.0.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.0.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00	3.25 3.221 3.221 3.2221 2.350 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121 2.121	264 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 288 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 285 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 225 2	18.24 18.26 18.35 17.86 14.22 12.30 12.39 11.10 10.28 9.86 10.28 9.86 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 10.28 9.88 9.00 9.28 6.48 9.07 3.65	14.82         15.12         10.530         10.5550         10.5550         10.5550         10.5550         10.5550         10.5550         10.5550         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5500         10.5	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	1780.96 1779.46 1801.28 1750.28 1750.28 1750.28 1761.801.28 1761.853 1761.636.55 1771.5.39 1684.555 1771.5.39 1684.555 1771.5.39 1684.555 1772.3.360 1672.3.360 1677.9.383 1664.577.3.565 1772.3.660 1557.383 1664.577.3.565 1772.5.55.65 1772.5.55.65 1772.5.661.555 1772.5.65.830 1661.555.65 1772.5.65.830 1557.832 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55.65 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55 1552.55	11111111111111111111111111111111111111	$\begin{array}{c} 256.35\\ 2190.35\\ 209.18\\ 2591.08\\ 255.31\\ 2051.318\\ 2551.318\\ 2551.318\\ 2551.318\\ 2551.318\\ 2551.318\\ 2551.318\\ 2551.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.318\\ 2351.31$	7144229866905589545158327 707 0771

· _121_

3

AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

l	2	3	) ₁	5		6	7	8	9	10	11	12
88888888888888888888888888888888888888	$\begin{array}{c} 1300 \circ 582\\ 1200 \circ 222\\ 13176 \circ 600\\ 12306 \circ 6448\\ 1119930 \circ 0116 \circ 000\\ 1119930 \circ 0116 \circ 000\\ 1119930 \circ 0116 \circ 000\\ 1119930 \circ 000\\ 1119730 \circ 000\\ 119730 \circ $	7676768032723689711026336233410005207403000000300	7676666555455445544555455687581 462 1586 6558720903769588341807687581 462 1586 1.	66666555545455544555444555344446 344 4332 1. 94821293531174238886742072526 951 05490 . 1.51	47433333333333223322333223333232333232333232	••••••••••••••••••••••••••••••••••••••	3477 33799 33799 33299 33299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32299 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32397 32307 32307 32307 32307 32307 32307 32307 32307 32307 32307 32307 32307 32307 323.	100.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1	$\begin{array}{c} 1780.96\\ 1770.28\\ 1770.28\\ 17501.23\\ 1666.4\\ 5.53\\ 1656.4\\ 5.65\\ 1758.5\\ 1656.4\\ 5.65\\ 1558.5\\ 1656.4\\ 5.65\\ 1558.5\\ 1556.4\\ 1558.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 1555.5\\ 15$	11111111111111111111111111111111111111	$\begin{array}{c} \textbf{5} \textbf{5} \textbf{6} \textbf{6} \textbf{7} \textbf{4} \textbf{7} \textbf{6} \textbf{6} \textbf{7} \textbf{6} \textbf{6} \textbf{7} \textbf{6} \textbf{6} \textbf{6} \textbf{6} \textbf{6} \textbf{7} \textbf{6} \textbf{6} \textbf{6} \textbf{6} \textbf{6} \textbf{6} \textbf{6} 6$	7144229866905589545158327 707 0771 8

;

### AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

1	2	3	Ц	5	6	7	8	9	10	11	12
999999999999999999999999999999999999999	$\begin{array}{c} 116.07\\ 137.73\\ 120.29\\ 142.99.99\\ 145.74\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047\\ 122.047$	676787877776666655555556091 • 4883 • 789. • 878. • 887. • 887. • 887. • 887. • 887. • 987. • 987. • 987. • • • • • • • • • • • • • • • • • • •	46456665565544553443433444637368788 402777347528467543830692197814967580953 80149675846754383069219781790377853	454566655655544453443433444637368788 。•••••••• •••••••••• •••••••••• •••••••	23233333333332222222222222222222222222	23894077733398841622242222222222222222222222222222222	100.008888890000 1000.0088888800 1000.009.999.999999999999999999999999	1789.26 1779.26 1801.2712 1801.23355 1750.2712 1868.855571 16664.599 16664.599 1664.577597 16664.577597 16664.5723.600 167759.233.600 1661.5557.600 1661.5512.5569.600 15512.5.600 1661.5557.600 15512.5.600 15512.5.600 15512.5.600 15512.5.600 15557.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 15525.600 1	11111111111111111111111111111111111111	$2590 \cdot 348$ $2590 \cdot 348$ $2590 \cdot 348$ $2590 \cdot 314 \cdot 388$ $25314 \cdot 351$ 25322222222222222222222222222222222222	979714422986690558954515832770707718

1

AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

l	2	3	<u>1</u>	5	6	7	8	9	10	11	12
	164994750440657633028640704475062950000000800 114977389681894750440657633028646654679000000000000000000000000000000000000	989877776666666555555556466555555555443322222211111111	8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.016 8.	777786655544444444455344444 879907666049689457137181917960 8005 70006 99078605871958773718144517960 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9907880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 9007880 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 900780 90000000000	455	44359 443599 4436599 443649 437649 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3315247 3325247 3325247 3325247 3325247 332527 332527 335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 3335937 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 33337 3	1000000 000000 000000 000000 000000 000000	$1 \begin{array}{c} 180 \\ 177 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	11111111111111111111111111111111111111	$\begin{array}{c} 253\\ 6& & 346\\ 2551& & 325\\ 2222222222222222222222222222222222$	7144229866905589545158327 707 0771

-124-

AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

6 7 8 9 10 11 12	24.23 22.52 100.00 1780.96 1.97 256.35 9 33.09 31.38 100.00 1779.44 1.97 195.43 7 26.35 24.57 100.00 1851.28 1.96 259.18 7 30.84 29.48 100.00 1867.17 1.98 231.31 1 42.50 40.79 99.98 1788.52 1.96 204.08 4 40.27 38.48 99.98 1745.83 1.92 255.73 4 39.15 37.53 99.98 1601.55 1.93 251.30 2 40.14 38.49 99.98 1714.57 1.99 245.23 9 41.54 39.55 99.90 1575.39 1.91 143.46 8 40.50 38.38 99.98 1864.88 1.92 188.54 6 41.01 38.24 99.70 1654.59 1.96 168.37 6 41.01 38.24 99.71 1728.43 1.97 203.05 5 44.63 42.37 99.51 1779.15 1.99 217.09 5 44.63 42.37 99.51 1772.31 1.95 176.92 5 52.01 49.31 99.61 1641.50 1.94 173.20 10 44.35 41.70 99.13 1572.31 1.95 176.92 5 54.66 42.37 99.90 13 1572.31 1.99 217.09 5 49.74 47.12 99.32 1559.18 1.99 174.37 8 44.59 43.71 99.13 1572.31 1.99 174.37 8 44.59 43.71 99.13 1677.20 1.93 237.31 4 45.99 43.71 99.13 1677.20 1.93 237.31 5 43.98 41.30 99.13 1677.20 1.93 237.31 5 43.60 41.59 98.72 1760.86 1.98 176.77 7 61.03 58.37 96.45 1522.773 1.998 232.83 7 42.35 40.25 95.73 1495.81 1.91 175.92 10 61.33 58.68 94.82 1587.63 1.90 170.53 7
9	1780.96 1779.44 1750.28 1801.28 1745.85 1745.85 1566.757 1575.85 1575.85 1688.88 1654.50 1779.18 1659.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1579.18 1572.32 1641.55 1677.23 1641.58 1675.64
8	100.00 $100.00$ $100.00$ $100.00$ $100.00$ $99.98$ $99.98$ $99.98$ $99.98$ $99.98$ $99.98$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.51$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$ $99.53$
7	2314.5489 .5876898334398.723243908.5483334998.7233244398.723324398.72373281.73281.73281.73548398.72373281.136548333881.7372.73105548333881.7372.73105548333881.737281.13655743333881.737281.13655743333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.13705548333881.737281.1370554833548333881.737281.13705548335483354833548358585858585858585858
6	2395640754444444444444444444444444444444444
5	4545576667667777668886776767
4	4545577667667667777778968767 3869760379944190646836329944 82594
3	54.82 58.95 67.60 66.27 84.88 80.59 90.28 93.32 89.32 89.32 89.32 89.32 93.334 99.10 99.10 99.531 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13 90.13
2	97.63 121.97 123.74 1508.53 1258.53 1258.53 1258.53 1258.55 1257.65 1257.09 1253.69 1253.69 1253.69 1253.69 1253.69 1455.00 1554.55 1853.52 1853.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.69 1733.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 1533.78 15
l	

-125-

### AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

l	2	3	4	5	6	7	8	9	10	11	12
111111111111111111111111111111111111111	444455544445555666566665678646475665665555555 666974305646294331156588307277144580995444232527010 0000000000000000000000000000000000	2222232222222223333333333343333343243333444444	2188 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 22222 2	188 1979211.1.111111111111111111111111111	122	$10.55 \\ 10.27 \\ 10.25 \\ 10.25 \\ 10.55 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.05 \\ 10.0$	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	$1780.964\\17750.28\\17750.28\\17750.28\\1867.17845.28\\1606.57\\1586.55\\1606.57\\1586.55\\1606.57\\1586.55\\1606.57\\1586.55\\1606.57\\1586.55\\1606.57\\1586.55\\1606.57\\1568.55\\1606.57\\1568.55\\1606.57\\1606.57\\1606.57\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\1606.55\\16$	11111111111111111111111111111111111111	$\begin{array}{c} 256 & \cdot \cdot \cdot \cdot \\ 195 & \cdot \cdot \cdot \cdot \\ 257 & \cdot \cdot \\ 257 & \cdot \cdot \\ 257 & \cdot \cdot \cdot \\ 257 &$	7144229866905589545158327 707 0771 8

·~ .

. .

### AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

l	2	3	<u>4</u>	5	6	7	8	9	10	11	12
	<b>5556667667767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767671671111111111111</b>	2323333333444444343439109550327600000000000000000000000000000000000	22222222222222222222222222222222222222	22222222222222222222222222222222222222	$\begin{array}{c} 13.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14.52\\ 14$	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	100.000 100.000 100.000 100.000 100.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.00000 1000.00000 1000.00000 1000.00000 1000.00000000	1780.96 17790.28 17501.287 17501.287 1760.6.287 1760.6.575 1566.5757 1566.6.5757 1568.6.599.2889 1774.5.886.555 17759.886.599 17759.886.590 17759.8877.533.600 17759.328.600 15575.885.600 15575.897.555.899 15575.899.233.600 15575.899.233.600 15575.899.233.600 15575.899.233.600 15575.899.233.600 15575.899.233.600 15557.897.600 15575.899.600 15575.899.000 15569.000 15628.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.000 1568.0000 1568.0000 1568.0000 1568.0000 1568.0000	11111111111111111111111111111111111111	$\begin{array}{c} \textbf{251} \textbf{251} \textbf{-251} \textbf$	7144229866905589545518327 707 0771
13	42.83 48.00 45.00	32.12 32.00 29.00	1.98	1.50	13.87	10.95	//.15 77.15 77.15	1427.08 1470.00 1535.00	1.92 1.93 1.97	155.21 280.00 126.00	8

# AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

l	2	3	4	5	6	7	8	9	10	11	12
111111111111111111111111111111111111111	$\begin{array}{c} 082979555479130532390595431233965281\\ 0.82728826872868728687288396728839676619112111111111111111111111111111111$	$\begin{array}{c} \$5 \circ 09\\ \$3 \circ 092\\ \$5 \circ 010\\ \$093 \circ 010\\ \$000 \circ 010$ \\ 000 \circ 0$	000000000000000000000000000000000000000	000000000000000000000000000000000000000			100.00 1000.008 1000.008 1000.099.999.999.00 1000.099.999.00 1000.099.999.00 1000.099.099.00 1000.008 999.099.00 1000.008 999.099.00 1000.008 999.099.00 1000.008 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.0000 999.00000 999.00000 999.00000000	1780.964 17790.268 1801.2817 1750.2817 1801.2817 1750.1717 1601.564.5777 1664.51777 1686.51777 1686.51777 1686.51777 1684.51.567 17759.5492.3.6 15723.5677.579 16773.569 15723.5677.579 166773.569 155492.5.831 15557.579 166713.5684 15557.579 166713.569 15557.579 166713.569 15557.579 166713.569 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.599 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15557.579 15577.579 15557.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579 15577.579	11111111111111111111111111111111111111	$\begin{array}{c} 255\\ \circ & 353\\ \circ & 355\\ $	97971442298669055895451583277077718
11111111111111111111111111111111111111	$\begin{array}{c} 4 5 \circ 8 \\ 5 5 7 \circ 0 \\ 5 6 3 \\ 5 7 \circ 0 \\ 5 6 3 \\ 6 3 \\ 7 \circ 0 \\ 6 3 \\ 7 \circ 0 \\ 6 3 \\ 7 \circ 0 \\ 1 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 1 \\ 6 \\ 1 \\ 1$	$\begin{array}{c} 2516\\ \circ & 546\\ 11\\ \circ & 546\\ \circ & 556\\ \circ & 546\\ \circ & 546\\ \circ & 556\\ \circ & 546\\ \circ & $					100.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.0000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.00000000	1780.96 1779.28 1801.28 1750.287 1750.287 1750.287 1745.287 15745.289 15644.597 16641.599.491 1644.599.189 16472.3.600 16472.3.600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16472.3.3600 16495.6873 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 166950.25.8031 16750.25.8031 16750.25.8031 16750.25.8031 16750.25.8031 16750.25.8031 16750.25.8031 16750.25.8031 16750.25.8031 16750.25	11111111111111111111111111111111111111	$\begin{array}{c} 253\\ 6\\ 6\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	97971442298669055895451583277077718

1

# AREA MEASUREMENTS OF PAA WOOD PYROGRAMS

l	2	3	4	5	6	7	8	9	10	11	12
	780.961 779.261 801.281 801.281 867.171 785.831 601.571 575.391 684.571 575.391 6846.591 6846.591 6846.591 6723.321 6723.321 673.321 641.577.311 641.577.311 641.577.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557.811 557	000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.00 000.					$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 999.999\\ 999.999\\ 999.999\\ 999.999\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999.00\\ 999$	1780.964 17750.28 1801.28 1801.28 1750.28 1750.28 1750.28 1750.28 1750.28 1750.28 1775.28 1664.53 1664.577 1664.59 1664.59 1664.59 1664.59 1664.59 1664.59 1664.59 1664.59 1667.23.66 1667.23.60 1667.23.60 1667.23.60 1667.3.557 1667.23.60 1667.3.557 1667.2.5.883 1667.2.5.864.58 1667.2.5.864.58 1667.2.5.864.58 1667.2.5.864.58 1667.2.5.864.58 1667.2.5.87 1552.5.69.656 1552.5.7.889 1652.5.7.889 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 167.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 1667.2.5.89 167.2.5.89 167.2.5.89 167.2.5.89 167.2.5.89 167.2.5.97 167.2.5.89 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97 167.2.5.97	11111111111111111111111111111111111111	$\begin{array}{c} 255 & \cdot \cdot \cdot \cdot \cdot \\ 195 & \cdot \cdot \cdot \cdot \\ 259 & \cdot \cdot \cdot \cdot \\ 2251 & \cdot \cdot \cdot \\ 2251 &$	979714422986690558954515832770707718
11111111111111111111111111111111111111	256.35 195.36 259.36 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2251.31 2252.31 2252.31 2252.31 2252.31 2273.32 2274.317 1782.559 2285.593 1285.593 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1285.217 1	143.94109.83120.19143.89123.88114.11146.48156.91152.0299.73107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.92107.93107.93100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.39100.30100.39100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.30100.0000000000					100.00 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 1000.008 10000	$1780.96 \\ 1779.26 \\ 1779.26 \\ 1807.1751.53 \\ 1601.5757 \\ 1564.555 \\ 1714.585 \\ 1564.5577 \\ 1684.55777 \\ 1684.55777 \\ 1684.55777 \\ 1684.55777 \\ 1684.55777 \\ 1684.5777 \\ 1684.5777 \\ 1684.5777 \\ 1684.5777 \\ 1684.5777 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 1684.577 \\ 16$	11111111111111111111111111111111111111	$\begin{array}{c} 256.35\\ 1950.36\\ 2259.30\\ 2259.30\\ 2259.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 2251.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\ 221.30\\$	979714422986690558954515832770707718 1 1 1 18

ł

yield of the wood wafer pyrolyzed. The 4th and 5th entry for each peak (last two 100% yield samples) were hot- (50°C) water extracted for 10 minutes. Column 9 is the total area (all the area from guaiacol to homovanillin) per milligram of sample and Column 10 is the weight in milligrams of the sample pyrolyzed. The base-line area/mg of sample as in Column 11 and Column 12 contains the data identification numbers taken in sequential order of the day pyrolyzed.

The date, sample weight, base-line area, total area, and percentage yield were analyzed as independent variables by the multiple regression program listed in Table XX. The six area measurements (Columns 2-7) were each taken as the dependent variable. Column 7 showed the least correlation and Column 2 showed slightly better correlation with the independent variables than any of the other dependent variables. Column 2 was used as the dependent variable for all the following analyses.

Percentage yield (Column 8) showed the highest average correlation ( $\underline{T}$  = 3.26) with Column 2 (area/mg of sample). Weight and date showed very little correlation with average  $\underline{T}$  = 0.96 and 1.09, respectively. The basic working equation was then defined as shown below:

peak area/mg of sample = constant +  $\underline{B}$ (percentage yield of wood) simplified: area =  $\underline{C}$  +  $\underline{B}$ (yield).

Several transforms of the data were used in an attempt to increase the correlation between area and yield. Logarithm, exponential, power, trigonometric functions and various combinations were used. The best correlation came from using a logarithm transform for the lignin peaks and a power (square) of the carbohydrate peaks.

-130-

Lignin: LN (area) =  $\underline{C} + \underline{B}(\text{yield})$ Carbohydrate: (area)² =  $\underline{C} + \underline{B}(\text{yield})$ 

The plots drawn for the data were done on the computer using the Calcomp Plotter. The plotting program for the data, least-squares line, and 95% confidence limits is also listed in Table XX. All the graphs were plotted on a linear scale. Those analyses which utilized transforms were plotted using the inverse-transform.

The lignin peak areas were summed into various groups for analysis. These included groups of all 9 lignin peaks, 2 carbon side-chain peaks (4-ethylguaiacol and 4-vinylguaiacol), 3 carbon side-chain peaks (4-propylguaiacol, eugenol, <u>trans</u>-isoeugenol) and carbonyl systems (vanillin and homovanillin) are listed in Table XXI with the same coding as in Table XIX. These sums of peak areas were analyzed as one peak.

The least-squares line was used to determine the trend for the peak(s) analyzed. The carbohydrate peak areas generally increased with lower percentage yield, the lignin peaks generally decreased with vanillin, homovanillin, and guaiacol showing the slowest decrease. The total area decreased with yield and extrapolating to 2.0% yield at zero area. The analysis for all 9 lignin peaks showed lignin decreasing with yield and extrapolating to 70.9% yield at zero area.

-131-

# -132-

### TABLE XX

```
MULTIPLE REGRESSION AND PLOTTING PROGRAMS
MULTIPLE REGRESSION ANALYSIS PROGRAM
С
С
                    FOR UP TO 20 VARIABLES
С
                    AND 300 OBSERVATIONS
DIMENSION D(300,20),X(40),R(400),ID(20),SSX(40),CNST(20),Z(40)
     DIMENSION IA(20)
     INTEGER OUT
     DOUBLE PRECISION R
     EQUIVALENCE (SSX(1),Z(1))
     1N = 5
     OUT = 6
        ISN NO. OF CARDS AT BEGINNING TO BE IGNORED
( * * * * * *
        LLN NO. OF CARDS AT END TO BE IGNORED
C*****
     ISN = 5
     LLN = 1
     LAN = ISN + LLN
    1 READ(5,9001) NR, NV, IPR
 9001 FORMAT(2013)
     CALL INPUT (ID, CNST, NX, 20)
     DD 9991 I = 1, ISN
 9991 READ(5,9002)
     NR = NR - LAN
      ITT = 1
     DO 3 I = ITT, NR
     READ(IN, 9002)
                   (Z(J),J=1,NV)
 9002 FORMAT(F3.0,7F7.2,F9.2,F5.2,F7.2
                                          )
     CALL DATA (Z,X,ID,CNST,NX)
     D(I_{2}I) = I_{2}
     DO 2 J = 1_{y}NX
    2 D(I_{g}J + 1) = X(J)
    3 CONTINUE
     DO 9993 I = 1,LLN
 9993 READ(5,9002)
    9 READ(5,9001) IA
     IF(IA(1)) 90,1,90
   90 N = 0
     DO 10 I = 1,20
      IF(IA(I)) 10,11,10
   10 N = I
   11 DO 12 I = 1, N
     L = N - I + 1
   12 IA(L + 1) = IA(L) + 1
     IA(1) = 1
     L = N + 1
     CALL MATRIX (D,R, 300, 20, NR, N+1, X, IA)
     DO \ 4 \ I = 2, N
     K = [ - 1 ]
     AV = R(I)/R(1)
     J = L * (I - 1) + I
    4 SSX(I) = R(J) - R(I) * 2/R(I)
     CALL INVERT (R.N+1)
     CALL SOLN (R, X, N+1)
     CALL ANDVA (R,N+1,NR,SSY,SSB,SSW,F)
     RSQ = SSB/SSY
     NDF1 = N - 1
     NDF2 = NR - N
```

```
VAR = SSW/NDF2
      IANLYZ = IA(L) - 1
      DO 5 I = 2_{9}N
      M = L \neq (I - 1) \leftrightarrow L
      J = L * (I - 1) + I
      SE = SQRT(DABS(VAR * R(J)))
      T = SQRT(R(M) * 2)/SE
      CX = (SSX(I) - 1_{\circ}/R(J))/SSX(I)
      SSX(I) = R(M)
      J = IA(I) - 1
    5 CONTINUE
      SSX(1) = R(L)
      IND = 0
      CALL TEST (SSY, IND)
      CALL TEST (SSW, IND)
      IF (IND)
                  52,51,52
   51 GO TO 53
   52 CONTINUE
   53 IF(IPR) 6,9,6
    6 CONTINUE
      IY = IA(L)
      WRITE(10,655) NR,K
  655 FORMAT( ° 00B S= ° , 12, ° VAR= ° , 11)
      XINT = -R(L)/R(M)
     WRITE(10,955) RSQ,XINT
  955 FORMAT( "OR SQ = ", F4, 2, " XINT= ", F4, 1)
      WRITE(10,444)
  444 FORMAT( PERCENT YIELD OF WOOD )
      WR I TE (10,449)
  449 FORMAT( GC PEAK AREA/MG WOOD )
      WRITE(10,8080)NR
 8080 FORMAT(12)
      DO \ 8 \ I = 1, NR
      DO 7 J = 1_{9}N
      L = IA(J)
    7 \times (J) = D(I_{9}L)
      CALL PRED (SSX, X, P, N, R, VP)
С
      VP = SQRT(VP*VAR)
      VP = SQRT(ABS(VP*VAR))
      CON=1.96*VP
      UCON = P + CON
      DCON = P - CON
      DIF = P - D(I_{2}IY)
    8 WRITE(10,9994)D(I,2),D(I,IY),P,UCON,DCON,U(I,9),I
 9994 FORMAT(F3.0,5F8.2,14)
      GO TO 9
      END
      SUBRDUTINE TEST (SSQ, IND)
      IF(SSQ - 1.E+7) 2,2,1
    1 \text{ IND} = 1
      RETURN
    2 IF(SSQ - 1_{\circ}E-6) 3_{9}3_{9}4
    3 \text{ IND} = 1
    4 RETURN
      END
```

```
SUBROUTINE PRED (C,D,P,K,R,VP)
  DIMENSION C(1), D(1), R(1), TVP(20)
  DOUBLE PRECISION R
  P = 0_{\circ}
  VP = 0
  KP1 = K + 1
  DO 1 I = 1_{9}K
1 P = P + C(I) + U(I)
  DO 2 I = 1, K
  TVP(I) = 0_{\circ}
  DO 2 J = 1_{v}K
  IJ = KP1 \neq (J-1) \neq I
2 \text{ TVP}(I) = \text{TVP}(I) + D(J) * R(IJ)
  DO 3 I = 1_{P}K
3 VP = VP + TVP(I) * D(I)
  RETURN
  END
  SUBROUTINE ANDVA (R,K,N,SSY SSB,SSW,F)
  DIMENSION R(1)
  DOUBLE PRECISION R
  I = K * (K - 1) + 1
  M = K \neq K
  SSY = R(M) - R(I) * 2/N
  SSB = 0_{\circ}
  M = K - 1
  DO 1 I = 2, M
  IN = K*(I - 1) + K
  NI = K*(K - 1) + I
1 SSB = SSB + R(IN) * R(NI)
  SSW = SSY - SSB
  F = (SSB*(N - K + 1))/(SSW*(K - 2))
  RETURN
  END
  SUBROUTINE SOLN (X,Z,N)
  DIMENSION X(1), Z(1), B(50)
  DOUBLE PRECISION X
  LIM = N - 1
  DO 2 I = l_{2}LIM
  B(I) = 0.
  DO 1 J = 2, LIM
  IJ = N \neq (I - 1) + J
  NJ = N \times (N - 1) + J
1 B(I) = B(I) + X(IJ) * X(NJ)
2 CONTINUE
  C = Z(N)
  DO 3 I = 2, LIM
  C = C - B(I) * Z(I)
  NJ = N*(I - 1) + N
3 X(NJ) = B(I)
  X(N) = C/Z(1)
  RETURN
  END
```

```
SUBROUTINE INVERT (A,N)
     DIMENSION A(1)
     DOUBLE PRECISION A
     LIM = N - 1
     DO \ 6 \ I = 1_{9} LIM
     II = N*(I - 1) + I
     X = A(II)
     IF (ABS(X) - 1 - 1 - 9) 1,1,2
   1 WRITE(6,9001) I
9001 FORMAT( MATRIX NON-INVERTABLE ON THE ", 12, "TH ROW")
     CALL EXIT
   2 A(II) = 1.
     DO 3 J = 1, LIM
     IJ = N*(I - 1) + J
   3 A(IJ) = A(IJ)/X
     DO 6 K = 1, LIM
     IF(K - I) 4,6,4
   4 \text{ KI} = \text{N} \neq (\text{K} - 1) + 1
     X = A(KI)
     A(KI) = 0_{\circ}
     DO 5 J = 1, LIM
     KJ = N \neq (K - 1) \neq J
     [J = N \neq (I - 1) \Leftrightarrow J
   5 A(KJ) = A(KJ) - X*A(IJ)
   6 CONTINUE
     RETURN
     END
     SUBROUTINE MATRIX (X,R,NRX,NCX,N,K,Z,IA)
     DIMENSION X(1), R(1), Z(1), IA(1)
     DOUBLE PRECISION R
     L = K*K
     11 = 1,L
   1 R(I) = 0.
     DO 2 I = 1_{9}N
     DO 2 J = 1.K
     DO 2 L = 1, K
     IR = K*(J - 1) + L
     JX = NRX*(IA(J) - 1) + I
     LX = NRX * (IA(L) - 1) + I
   2 R(IR) = R(IR) + X(JX) + X(LX)
     M' = K - 1
     DO 3 I = 2, M
     IR = K \times (K - 1) + I
     Z(I) = R(I)
   3 R(IR) = R(IR) - R(K) * R(I) / N
     Z(1) = R(1)
     Z(K) = R(K)
     RETURN
     END
```

MULTIPLE REGRESSION AND PLOTTING PROGRAMS

```
SUBROUTINE DATA (Z,X,ID,CNST,NX)
     DIMENSION X(1), ID(1), CNST(1), Z(1)
     DO \ IO \ I = 1, NX
     CALL DECODE (ID(I), J,K,U)
     IF(K - 3) 1,7,8
   1 \text{ IF}(L - 50) 2.3.4
   2 WRITE(6,9001) ID(I)
9001 FORMAT( INCORRECT SPECIFICATION CARU- , 110)
     CALL EXIT
   3 \times (I) = Z(J) + CNST(I)
     GO TO 10
   4 \text{ IF(L} - 51) 2,5,6
   5 \times (I) = ALOG(Z(J) + CNST(I))
     GO TO 10
   6 X(I) = EXP(Z(J) + CNST(I))
     GO TO 10
   7 \times (I) = \times (J) \times \times (L) + CNST(I)
     GO TO 10
   8 IF(K - 4) 2_{9}9_{9}2
   9 X(I) = X(J) / X(L) + CNST(I)
  10 CONTINUE
     RETURN
     END
     SUBROUTINE DECODE (ID, J, K, L)
     J = ID/1000
     K = ID/100 - 10*J
     L = ID - 1000 * J - 100 * K
     RETURN
     END
     SUBROUTINE INPUT (ID, CNST, NX, LIM)
   THE GENERAL FORMAT OF THE DEFINITION CARDS IS
                 XX T VV CC.CC
                 12 3 45 6-15
   IF VV IS A NUMBER GREATER THAN 50 THE FOLLOWING MEANING HOLDS.
        XX = THE POSITION NUMBER OF THE VARIABLE ON THE CARD
        T = 1 FOR ***, 2 FOR "-*, 3 FOR ***, 4 FOR */*
        VV = 50 FOR NO TRANSFORMATION OF THE VARIABLE ON THE CARD
              51 FOR A LOG TRANSFORMATION OF THE VARIABLE ON THE CARD
              52 FOR AN EXP TRANSFORMATION OF THE VARIABLE ON THE CARD
   IF VV IS LESS THAN 50 (FORM A VARIABLE FROM PREVIOUSLY DEFINED
   VAR IABLES.)
        XX = THE REGRESSION VARIABLE IDENT. NUMBER I
        T = THE SAME AS ABOVE
        VV = THE REGRESSION VARIABLE IDENT. NUMBER J
   A BLANK CARD ENDS INPUT OF DEFINITION CARDS
```

С

С

С

С

C

С

```
MULTIPLE REGRESSION AND PLOTTING PROGRAMS
```

```
L .
      DIMENSION ID(1), CNST(1)
      NX = 0
      DO 13 I = 1,9999
      READ(5,9001) ID(I), CNST(I)
 9001 FORMAT(15,F10.0)
      IF(ID(I)) 1,14,1
    1 NX = I
  100 CALL DECODE (ID(I), J, K, L)
      IF(K - 3) 2,8,9
    2 IF(L - 50) 3,4,5
    3 WRITE(6,9002) ID(I)
 9002 FORMAT( INCORRECT SPECIFICATION CARD- , 110)
      CALL EXIT
    4 WRITE(6,9003) I, J, CNST(I)
      GO TO 13
    5 IF(L - 51) 3,6,7
    6 WRITE(6,9004) [, J, CNST(1)
      GO TO 13
    7 WRITE(6,9005) I, J, CNST(I)
      GO TO 13
    8 WRITE(6,9006) I, J, L, CNST(I)
      GO TO 13
    9 IF(K - 4) 3,10,3
   10 WRITE(6,9007) I, J, L, CNST(I)
   13 CONTINUE
   14 \text{ IF}(NX - LIM)
                    15,15,16
   15 RETURN
  16 WRITE(6,9008) NX, LIM
 9008 FORMAT("OTHE ",13," TERMS IN THE EQUATION EXCEED THE LIMIT OF",13)
      CALL EXIT
 9003 FORMAT( * X(*, 12, *) = INPUT(*, 12, *) PLUS*, F10.4)
 9004 FORMAT( * X(*,12,*) = LOG(INPUT*,12,*) PLUS*,F10.4,*)*)
 9005 FORMAT( * X(*, I2, *) = EXP(INPUT*, I2, *) PLUS*, F10.4, *)*)
 9006 FORMAT( * X(*, 12, *) = X(*, 12, *) * X(*, 12, *) PLUS*, F10.4)
 9007 FORMAT( % X( *, I2, *) = X( *, I2, *) / X( *, I2, *) PLUS*, F10.4)
      END
/DATA
 36 11 1
01150
02150
03150
04150
05150
06150
07150
08150
09150
10150
11150
```

```
/JDB GO, TIME=10
С
             DATA PLOT, LEAST SQRS.LINE AND DASHED
С
                  LINE CONFIDENCE LIMITS.
                                        J.A.FLECK
DIMENSION PKN(50), YOB (50), YPR (50), YUCL(50), YLCL(50), XYD(50)
     DIMENSION PYRN(50)
     DIMENSION XDOT(50), YDOT(50), XDAT(50), YDAT(50), XLIN(50), YL IN(50)
     DIMENSION XCONU(50), YCONU(50), XCONL(50), YCONL(50)
     DIMENSION XMDT(50), YMD(T(50), LX(20), LY(20)
     DIMENSION XDAS(10), YDAS(10)
            XDEL, XF STV, YDEL, YF STV, DLEH, DLIH
     COMMON
     INTEGER TITL (20) . PYRN, TINF (20) . TLINF (20)
     CALL ITLZ
     CALL DPT(1,4)
     CALL PLOT(0_{\circ 9} - 11_{\circ 9}2)
     CALL PLOT(1.0,-10.5,-3)
IET = 5
     READ(IET, 100) TITL
     READ(IET, 100) TINF
    READ(IET, 100) TLINF
     READ(IET, 100) LX
     READ(IET, 100) LY
 100 FORMAT(2044)
C***
C**** READ IN TITLE OF GRAPH AND AXES ANNOTATIONS *******
    READ(IET, 105) N
 105 FORMAT(12)
```

```
(***
     N = NUMBER OF DATA CARDS PER GRAPH (36)
                                                     *****
    5 READ(IET, 110)(PKN(I), YOB(I), YPR(I), YUCL(I), YLCL(I), XYD(I), PYRN([),
     11 = 1.N
  110 FORMAT(F3.0,5F8.2,14)
      READ IN THE FIRST N (36) DATA CARDS AND STORE
                                                         * * * * * *
C***
      DLEH = 0.11
      DLIH = 0.15
      XFSTV = 100.
      XDEL = -4°
      YFSTV = 0.
      YDEL = 40.
      SDLEH = DLEH
      XYD(N+1) = XFSTV
      XYD(N+2) = XDEL
      YOB(N \neq 1) = YFSTV
      YOB(N+2) = YDEL
CALL AXIS(0.25,0., LX, -40,6.,0., XYD(N+1), XYD(N+2))
      CALL AXIS(0., 0., LY, 40.9., 90., YOB(N+1), YOB(N+2))
      CALL PLOT(0.25,0.,-3)
      M1 = 1
      M2 = 3
      M3 = M2 - M1 + 1
      DD 200 M = M1_{9}M2
      MS = M
      XDOT(MS) = XYD(M)
      XDDT(MS) = 100.0
      YDOT(MS) = YOB(M)
  200 CONTINUE
      XDOT(M3+1) = XFSTV
      XDUT(M3+2) = XDEL
      Y \cup OT(M3 + 1) = YFSTV
      YDOT(M3+2) = YDEL
      CALL LINE (XDOT, YDOT, M3, 1, -1,7)
      MM1 = 4
      MM2 = 5
      MM3 = MM2 - MM1 + 1
      DO 280 MM = MM1_{9}MM2
      MMS = MM - MM1 + 1
      XMDT(MMS) = XYD(MM)
      YMDT(MMS) = YOB(MM)
  280 CONTINUE
      NS = 1
      MM4 = MM3+NS
      NM = N
      XMDT(MM4) = XYD(NM)
      YMDT(MM4) = YOB(NM)
      XMDT(MM4+1) = XFSTV
      XMDT(MM4+2) = XDEL
      YMDT(MM4+1) = YFSTV
      YMDT(MM4+2) = YDEL
      XO = (XMDT(1) - XFSTV) / XDEL
      YO = (YMDT(1) - YFSTV) / YDEL
      CALL PLOT(XO,YO,3)
      CALL LINE (XMDT, YMDT, MM4, 1, -1,4)
```
MULTIPLE REGRESSION AND PLOTTING PROGRAMS

```
L1 = 6
      L2 = N - NS
      L3 = L2 - L1 + 1
      DO 300 L = L1, L2
      LS = L-L1+1
      XDAT(LS) = XYD(L)
      YDAT(LS) = YOB(L)
  300 CONTINUE
      XDAT(L3+1) = XFSTV
      XDAT(L3+2) = XDEL
      YDAT(L3 + 1) = YFSTV
      YDAT(L3+2) = YDEL
      CALL LINE (XDAT, YDAT, L3, 1, -1, 3)
C******
C * * * * * * *
С
      DD
         977 NKL = 1,3
      XYD(N + 1) = XFSTV
      XYD(N+2) = XDEL
      YPR(N \neq 1) = YFSTV
      VPR(N \neq 2) = YDEL
      CALL LINE (XYD, YPR, N, 1, 0, 2)
      DO 490 I = 1,2
      IF (I-1) 410,410,450
  410 DO 415 J = 1_{0}N
      YLIN(J) = YUCL(J)
  415 CONTINUE
      GO TO 470
  450 \text{ DD} 455 \text{ J} = 1, \text{N}
      YLIN(J) = YLCL(J)
  455 CONTINUE
      GO TO 470
  470 CALL FLEKDS (XYD, YLIN, N,2)
  490 CONTINUE
С
      READ (IET, 105) N
С
      READ(IET,110)(PKN(I),YOB(I),YPR(I),YUCL(I),YLCL(I),XYD(I),PYRN(I),
С
     1[=1,N)
С
      DLEH = SDLEH + ((SDLEH/2)*NKL)
C 977 CONTINUE
      CALL SYMBOL(0.5,9.3,28,TITL,0.,25)
      CALL SYMBOL(0.5,8.95,.14, TINF,0.,25)
      CALL SYMBOL (0.5,8.7,.14, TLINF,0.,25)
      CALL PLOT (0.5,0.,-3)
      CALL FINAL
      CALL EXIT
      END
```

MULTIPLE REGRESSION AND PLOTTING PROGRAMS

```
SUBROUTINE FLEKDS (XQ, YQ, KZ, LC)
     COMMON
              XDEL, XFSTV, YDEL, YFSTV, DLEH, DLIH
     DIMENSION XP(50), YP(50), XX(50), YY(50), XQ(50), YQ(50)
C******
С
       DLEH = DASH LENGTH, DLIH = SPACE LENGTH
С
               J.A. FLECK
C**********
     KK = KZ + 1
     M = -1
     \mathsf{K}\mathsf{M} = -1
     L = 1
     KL = 1
     D = 0.0
     DO 3 I = 1_{0}KK
     XP(I) = XQ(I)
     YP(I) = YQ(I)
    3 CONTINUE
    4 LL = L + 1
     IF (LC-1) 1,1,8
    1 AL =(3*DLEH)/4
     KM = KM \neq M
     AL = AL * KM
     DLEH = DLEH + AL
    8 CONTINUE
     IF (YP(LL)-0.0) 2,5,5
    2 IF (XP(LL)-XP(L)) 22,21,22
   21 \text{ SLP} = 9999.
     GO TO 23
```

2

```
TABLE XX (Continued)
```

MULTIPLE REGRESSION AND PLOTTING PROGRAMS 22 SLP = (YP(LL) - YP(L)) / (XP(LL) - XP(L))23 CN = YP(L) - (XP(L) * SLP)XP(LL) = -CN/SLPYP(LL) = 0.05 XDIS = (XP(LL) - XP(L))/XDELYDIS = (YP(LL) - YP(L))/YDEL XYLEN = ABS(SQRT(XDIS**2 + YDIS**2)) DK = XYLEND = DK + DXYLEN = DIF (XYLEN - DLEH) 999,30,30 30 KL = KL + 1DO 35 IT =  $1_{9}KL$ IL = (LL-KL) + ITXX(IT) = XP(IL)YY(IT) = YP(IL)**35 CONTINUE** XX(KL) = XP(LL) - ((XDIS) + ((XYLEN-DLEH)/DK)) + XDELXX(KL + 1) = XFSTV $XX(KL \diamond 2) = XDEL$ YY(KL) = YP(LL)-((YDIS)*((XYLEN-DLEH)/DK))*YDEL YY(KL + 1) = YFSTVYY(KL+2) = YDELCALL LINE (XX, YY, KL, 1,0,2) XP(L) = XX(KL)YP(L) = YY(KL)D = 0.0KL = 1IF(LL-KK) 500,1010,1010 (**** 500 XDIS = (XP(LL) - XP(L))/XDELYDIS = (YP(LL) - YP(L))/YDEL XYLEN = ABS(SQRT(XDIS#*2 + YDIS**2)) DK = XYLEND = DK + D XYLEN = DIF (XYLEN - DLIH) 600,800,800 800 XP(L) = XP(LL)-((XDIS)*((XYLEN-DLIH)/DK))*XDEL YP(L) = YP(LL) - ((YDIS) * ((XYLEN-DLIH)/UK)) * YDELD = 0.0GO TO 4 C**** 600 L = LLLL = LL + 1IF(LL-KK) 500,1010,1010 999 L = L + 1KL = KL + 1IF (LL-KK) 4,1010,1010 1010 RETURN END

```
/DATA
```

## TABLE XXI

## LIGNIN PEAK AREA SUMMATIONS FROM PAA WOOD PYROGRAMS

l	2	3	4	5	6	7	8	9
ALL	9 LIGNI	IN PEAKS						
	$\begin{array}{c} 9907 \cdot 5930 \cdot 59$	55554444444444444444444444444444444444	444444444343444333344731684452 304 08800 97.000000000000000000000000000000000000	24529620257478004883862557458 290 1802 4444444444333333333333333333333333333	$\begin{array}{c} \textbf{751}\\ \textbf{765}\\ \textbf{766}\\ \textbf{767}\\ \textbf{767}\\ \textbf{766}\\ \textbf{767}\\ \textbf{767}\\$	$\begin{array}{c} \textbf{48.25}\\ \textbf{46.011}\\ \textbf{446.011}\\ \textbf{446.011}\\ \textbf{446.011}\\ \textbf{446.011}\\ \textbf{446.011}\\ \textbf{446.011}\\ \textbf{446.011}\\ \textbf{46.011}\\ \textbf{46.011}$	100000088888000011122233333333325532720009994444555 	$\begin{array}{c} 1 & 60 & 28 & 62 \\ 1 & 57 & 52 & 32 \\ 1 & 62 & 14 & 94 \\ 1 & 57 & 52 & 32 \\ 1 & 62 & 14 & 52 \\ 1 & 62 & 14 & 52 \\ 1 & 60 & 96 & 68 \\ 1 & 57 & 12 & 43 \\ 1 & 41 & 73 & 43 \\ 1 & 51 & 91 & 141 \\ 1 & 41 & 73 & 43 \\ 1 & 51 & 91 & 141 \\ 1 & 47 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 48 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 48 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 48 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 48 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 48 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 48 & 73 & 55 \\ 1 & 66 & 21 & 31 \\ 1 & 47 & 73 & 64 \\ 1 & 48 & 55 & 78 \\ 1 & 40 & 32 & 64 \\ 1 & 45 & 55 & 84 \\ 1 & 45 & 55 & 84 \\ 1 & 45 & 55 & 84 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 55 & 84 \\ 1 & 45 & 55 & 84 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 68 \\ 1 & 45 & 78 & 78 \\ 1 & 45 & 78 & 78 \\ 1 & 45 & 78 & 78 \\ 1 & 45 & 78 & 78 \\ 1 & 45 & 78 & 78 \\ 1 & $

LIGNIN PEAK AREA SUMMATIONS FROM PAA WOOD PYROGRAMS

2 Carbon S	3 IDE CHAI	4 N	5	б	7	8	9
170         171         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         174         174         174         174         1	107	109998877777887777767776777806687 0785 0.1958429614263516983323053093 687 0785 0.00000000000000000000000000000000000	8787877667677766677566666566667055505443000000000000000000000000000000	23524433016464061128003399666 0008 3505 61600787567745234234430225460920071110000008 00000000000000000000000000	449444444443881609969751973311413         944944444444439079969751973311413         9432220000000000000000000000000000000000	100.000 1000.0098888800 1000.00099999999999999999999999999999	$\begin{array}{c} 3556\\ \cdot & \cdot $

1

-144-

1

### LIGNIN PEAK AREA SUMMATIONS FROM PAA WOOD PYROGRAMS

l	2	3	4	5	6	7	8	9
3 C4	ARBON SI	IDE CHAI	N					
000000000000000000000000000000000000000	<b>3367</b> <b>3367</b> <b>3367</b> <b>3367</b> <b>3367</b> <b>3367</b> <b>3378</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>3379</b> <b>33777</b> <b>336</b> <b>330</b> <b>4</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b> <b>3</b>	188.004598541105580000000000000000000000000000000	43615886925047348556039965470314090011 19888863714855603965470314090130000000000 188887879968788707570444430000000000000 1888878799687887075704444300000000000000000000000000000	71         133.00995         224         00995         133.008         133.008         133.008         133.008         133.008         133.008         133.008         143.008         143.008         143.008         150.000         143.008         143.008         150.000         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001         148.001<	9857110944464311231442822100067100795488444 985360044416431123144282210006710994084602664000000000000000000000000000000	87748.38       8477788.4455         555555555555555555555555555555555555	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000 100.00000000	5348.882 5338.784 5338.784 55203.55401.559 5636374.6251 55264.640.025.495 5636374.6251 55264.640.025.495 55264.640.025.495 55264.640.025.495 55264.640.025.495 55264.640.025.495 55264.647.025 55264.647.025 55264.647.025 55264.647.025 55264.647.025 55268.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.0000 5528.21.00000 5528.21.00000 5528.21.0000 5528.21.000000

LIGNIN PEAK AREA SUMMATIONS FROM PAA WOOD PYROGRAMS

l	2	3	4	5	6	7	8	9
l, 2	* 3 CAR	BON SID	E CHAIN					
	767676755555555555554545455555434370848932222221187 76766766555555655554545455555543437084893772715445928275493221721925609927960000000 0.0000000000000000000000000000	421531 1	33333333322223332222222222222222222222	69879450958297099998365447285 931 0778 333333322222222222222222222222222222	$\begin{array}{c} 12 \circ \circ 052\\ 2 \circ 05 \circ \circ 052\\ 2 \circ 05 \circ \circ 052\\ 2 \circ 05 \circ \circ 052\\ 1812 \circ 05 \circ \circ 052\\ 1812 \circ 05 \circ \circ 052\\ 1812 \circ 05 \circ 052\\ 1812 \circ 052\\ 1812$	1836.68895577748111 1886.68897.948111 1886.68897.948111 1886.68897.948111 1886.6897.9748111 1886.7491.5203697.948111 1566.401.1111 1566.401.11111 1566.401.11111 111111 107777000000900 4000 4000	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00000000	$\begin{array}{c} 1 \ 06 \ 85 \ \cdot \ 75 \\ 1 \ 06 \ 75 \ \cdot \ 75 \\ 1 \ 05 \ 01 \ \cdot \ 55 \\ 1 \ 08 \ 07 \ \cdot \ 67 \\ 1 \ 120 \ 31 \ \cdot \ 97 \\ 1 \ 07 \ 71 \ \cdot \ 97 \\ 9 \ 425 \ 2 \ \cdot \ 67 \\ 1 \ 07 \ 74 \ \cdot \ 97 \\ 9 \ 425 \ 2 \ \cdot \ 67 \\ 1 \ 07 \ 75 \ \cdot \ 67 \\ 9 \ 87 \ 75 \ \cdot \ 67 \\ 1 \ 07 \ 75 \ \cdot \ 67 \\ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 1 \ 07 \ 77 \\ 1 \ 07 \ 77 \ 77 \ 1 \ 07 \ 77 \ 77 \\ 1 \ 07 \ 77 \ 77 \ 77 \ 77 \ 77 \ 77 \ $

-146-

# LIGNIN PEAK AREA SUMMATIONS FROM PAA WOOD PYROGRAMS

1	2	3	4	5	6	7	8	9
VANI	ILLIN AN	D ACETOV	ANILLO	١E				
	$\begin{array}{c} 97. & 800\\ 109. & 618\\ 117. & 618\\ 1104. & 652\\ 109. & 6528\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 65283\\ 11045. & 6$	555666666667777877877878888878797797788888888	4444555544444555556644555565556570465055540000000000	1698442417849432282620287026 897 2320 2 90993328799466278888480455966082408892000000000 34334443333444444344454444460824088920000000000000000000000000000000	62519844131371558979777793776 6867999998021322441008562416840809404000007 00000000000000000000000000000	952       952         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       964         980       977         950       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94         900       94 </td <td>100 100 100 100 100 100 100 100</td> <td>3561.92 35500.526 377.660 377.660 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 32558.500 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.50000 32131.5566.0000 31131.5566.0000 312856.0000 312856.0000 312856.0000 312856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.00000 32856.00000 32856.00000 32856.000000000000000000000000000000000000</td>	100 100 100 100 100 100 100 100	3561.92 35500.526 377.660 377.660 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 3129.100 32558.500 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.5046 32228.50000 32131.5566.0000 31131.5566.0000 312856.0000 312856.0000 312856.0000 312856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.0000 32856.00000 32856.00000 32856.00000 32856.000000000000000000000000000000000000

APPENDIX V

-148-

## TRENDS FROM PERACETIC ACID WOOD PYROGRAMS FOR SEVERAL YIELD RANGES

Tables XXII-XXVII contain the slope of the least-squares line for the equation  $LN(area) = \underline{C} + \underline{B}(yield)$  and the  $\underline{T}$  values. When  $\underline{T}$  is greater than 2.0 the area can be predicted at a given yield level (95% confidence limits). Below 2.0 the area cannot be predicted because the slope of the least-squares line is no different from zero. In Table XXII peak 12 (vanillin) has a low  $\underline{T}$  value and the slope is essentially zero. This is interpreted to mean there is no change in peak area for no. 12 even though there is loss in yield.

The yield range from 100.0 to 77.15% was analyzed. In addition, this yield range was subdivided into several smaller ranges which were analyzed separately to investigate the trends peculiar to that range. Yield ranges of 100.0-98.65%, 96.45-77.15%, 99.98-98.72%, 96.45-87.09%, and 82.82-77.15% were examined.

### TABLE XXII

PYROGRAM TRENDS 100.00-77.15% YIELD

 $LN(area) = \underline{C} + \underline{B}(yield)$ 

Peak No.	Slope $(\times 10^{-2})$	<u>T</u>
l	1.06	4.35
4	6.16	35.00
5	3.16	15.70
6	4.88	8.68
7	7.13	15.58
8	4.55	17.14
10	7.21	21.07
12	0.04	0.14
13	1.20	5.09
5+8	4.05	21.72
6+7+10	6.50	15.92
12+13	0.65	2.58
all 9	3.90	23.40

TABLE XXIII

PYROGRAM TRENDS 100.00-98.65% YIELD

LN(area) = C + B(yield)

1

Peak No.	Slope (×10 ⁻² )	Ţ
l	10.5	1.97
4	4.64	1.84
5	8.87	2.68
6	37.6	3.50
7	43.1	6.61
8	16.7	2.80
10	31.5	5.23
12	-27.0	6.78
13	-17.6	4.69
5+8	14.0	3.43
6+7+10	35.6	4.97
12+13	-22.0	6.09
all 9	11.39	3.31

Ł

ļ

TABLE XXIV

PYROGRAM TRENDS 96.45 77.15% YIELD

$$LN(area) = C + B(yield)$$

Peak No.	· Slope (×1	0 ⁻² ) <u>T</u>
l	1.04	2.91
4	5.07	15.32
5	1.78	7.39
6	3.00	4.08
7	5.08	9.32
8	4.24	16.85
10	5.69	17.65
12	0.62	1.23
13	2.25	8.90
5+8	3.68	22.03
6+7+10	4.76	11.41
12+13	1.49	4.81
all 9	3.20	19.84
	1	

TABLE XXV

PYROGRAM TRENDS 99.98-98.72% YIELD

LN(area) = C + B(yield)Slope  $(\times 10^{-2})$ Peak No. T -0.10 0.03 l 1.76 4 5.80 4.20 1.04 5 6 11.7 1.92 7 28.9 7.11 8 7.00 1.07 20.3 3.81 10 -30.0 5.91 12 -16.6 4.18 13

## TABLE XXVI

PYROGRAM TRENDS 96.45-87.09% YIELD

 $LN(area) = \underline{C} + \underline{B}(yield)$ 

Peak No.	Slope (×10 ⁻² )	<u>T</u>
l	0.83	0.86
4	6.69	11.91
5	2.65	5.22
6	4.94	2.62
7	6.89	5.92
8	3.87	7.17
10	7.01	16.21
12	-0.99	
13	2.13	3.22

### TABLE XXVII

# PYROGRAM TRENDS 82.84-77.15% YIELD

# LN(area) = C + B(yield)

Peak No.	Slope $(\times 10^{-2})$	$\underline{\mathbf{T}}$
l	0.25	0.55
4	3.51	4.23
5	1.09	1.59
6	2.45	2.70
7	2.23	1.76
8	5.61	4.96
10	2.54	4.98
12	1.44	2.97
13	3.14	7.85

-152-

### APPENDIX VI

## WOOD YIELD AS A FUNCTION OF REACTION TIME

Reaction time was plotted against the observed percentage yield from the weighed samples. Due to the uncertainties of correctly measuring high yields, percentage yield was determined as a linear function of time for the two high-yield groups generated for this work. The corrected yield levels used in this study are listed in Table XXVIII. Baird's (<u>126</u>) samples are graphed for comparison along with both high-yield groups in Fig. 50-52.

### TABLE XXVIII

WOOD YIELD LEVELS OF THREE PAA REACTION GROUPS

2.1% PAA 50°C				2.8% PAA 60°C		3.0% PAA 60°C (126)	
Corrected Yield, %	Time of Reaction, min	Observed Yield, %	Corrected Yield, %	Time of Reaction, min	Observed Yield, %	Time of Reaction, min	Observed Yield, %
99.98	24	99 <b>.</b> 98	99.73	14	99.60	80	98.72
<b>99.9</b> 0	14	99.91	9 <b>9.</b> 42	24		160	95.73
99.80	24	101.38	99.19	34	9 <b>9.</b> 48	240	92.72
<b>9</b> 9.70	34	98.05	98.65	49	98.45	320	89.40
99.61	44	99.84	98.25	64	98.38	400	87.09
99.51	54	9 <b>9.</b> 53	97.75	79	97.68	480	86.18
99.41	64	99.38	97.29	94		560	82.84
99.32	74	99.27	96.95	109	97.32	640	77.15
<b>99.</b> 22	84	9 <b>9.</b> 24	<b>96.</b> 45	. 124	96.45		
<b>9</b> 9.13	94	99.32	95.92	139	95.92		
99.03	104	<b>9</b> 9.19	95.38	154	94.82		
<b>9</b> 8.93	114	98.54	94.95	169	94.71		



-153-







÷ч,

### APPENDIX VII

### THERMAL DEGRADATION IN TOLUENE

The Autoclave designed and manufactured by Autoclave Engineers, Inc. (Erie, PA, 1958), Serial Number AC-4376, was used for this work. A 1000psi safety rupture disk was used as operating pressures below 900 psi were anticipated. Six glass tubes containing samples were run simultaneously in the Autoclave. Each sample tube was 14-cm long, 9-mm OD, 3-mm ID. Each tube contained 0.23-ml AR-grade toluene and 0.01 g of sample. The samples were 5-carboxymethyl-4-methyl-2(5H)-furanone, dioxane lignin, 100% yield loblolly pinewood, 98.93% yield loblolly pinewood, 2-(2-methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-ol and a blank with only 0.23 ml of toluene. After one end of the glass tube was melted shut, the samples and toluene were placed in the cooled tubes. A vacuum (15-mm Hg) was placed on the open end of the tube to remove the air and facilitate sealing the tube. While under vacuum the tube was heated near the open end until the tube collapsed and sealed. Approximate sealed volume was 1.0 cc.

The sealed tubes were then placed in the Autoclave and sealed. The chamber was more than half filled with 300 ml of water. The temperature rise was about 5°C/minute. At 300°C the pressure reached 800 psi and steam was bled off to maintain 750 psi. The temperature was held at 315°C for 25 minutes and then the Autoclave was rapidly cooled down.

The samples were analyzed by draining aliquots (toluene solution) out of the opened tubes with a syringe and injecting them on the GC. The chromatograms showed no degradation of the toluene.

-156-

All 5 materials used in this study were insoluble in toluene before heating. After heating, the toluene solutions (except the toluene only tube) were colored indicating some material was in solution. The chromatograms from the toluene solutions were similar to the pyrograms of the original material. Some product distributions were different but no new products were detected. The carbohydrate peaks for the wood chromatograms were eliminated probably due to their thermal instability and/or insolubility in toluene. The long time at temperature increases the possibility of secondary reactions. For this reason and possible product insolubility, this method was not pursued further.

### APPENDIX VIII

### MASS | SPECTRA

Table XXIX contains an index to the mass spectra in this appendix. Table XXX contains the mass spectra of authentic samples, Table XXXI contains the mass spectra of lignin-model compound pyrolysis products, Table XXXII contains the mass spectra of dioxane lignin pyrolysis products, Table XXXIII contains the mass spectra of wood and PAA wood pyrolysis products and Table XXXIV contains the mass spectra of PAA lignin pyrolysis products. The last section in this appendix contains the mass spectra interpretations of some of the tentatively identified lignin-model compound pyrolysis products. The base ion was taken as the most abundant ion above 44 m/e due to air contamination contributing to 28 (N₂), 32(O₂), 40 (Ar), and 44(CO₂). In a limited number of spectra, higher base ions were taken as base to compensate for the inbalance of intensities at low m/e compared to high m/e due to nonuniformities in GCMS operations (153).

The data listed in the following tables describe the method of analysis (which includes the method used to introduce the sample into the mass spectrometer, either PGC, GC, or direct injection) and the compound which was analyzed by MS. PGCMS pinoresinol, guaiacol means that pinoresinol was pyrolyzed and separated by GLC, the mass spectrum is of the guaiacol peak.

### -158-

# TABLE XXIX

Analysis	Compound	Table	Page
GCMS GCMS MS High GCMS	Guaiacol Creosol 4-Ethylĝuaiacol 4-Ethylguaiacol	XXX	164
GCMS PGCMS Ferulic Acid MS High GCMS	4-Propylguaiacol 4-Vinylguaiacol Eugenol <u>cis</u> -Isoeugenol	XXX	165
GCMS PGCMS PGCMS PGCMS	<u>trans</u> -Isoeugenol Vanillin Acetovanillone Propiovanillone	XXX	166
GCMS GCMS MS	Homovanillin Vanillyl Methyl Ketone Methylisoeugenol	xxx	167
GCMS GCMS 600°C PGCMS Creosol VIV	Propioveratrone Veratrole Xylenol Xylenol	xxx	168
MS GCMS PGCMS MS	Methylacrylic Acid 3-Hydroxybutyric Acid 5-Methyl-2(5H)-furanone 5-Methyl-2(5H)-furanone	XXX	169
GCMS	2-Furaldehyde Hydroxymethylfurfural	xxx	170
PGMS Pinoresinol	Guaiacol Creosol 4-Ethylguaiacol Eugenol	XXXI	171
	⁴ -Vinylguaiacol <u>trans</u> -Isoeugenol Vanillin Acetovanillone	IXXX	172
	Propiovanillone	XXXI	173

•
١.
L

INDEX TO MASS SPECTRA

ł

Analysis	Co	mpound	Table	Page
PGCMS Diisoeugenol	Guaiacol 4-Propylgus 4th Peak 5th Peak	aiacol	XXXI	174
	6th Peak 7th Peak		XXXI	175
PGCMS Coniferin	Guaiacol + Guaiacol Creosol Eugenol	Carbohydrate l	XXXI	176
VIV	4-Vinylgua: <u>cis</u> -Isoeuge <u>trans</u> -Isoeu <u>trans</u> -Isoeu	iacol enol genol genol	XXXI	177
PGCMS 2-(2-Methoxy-4-meth (3,4-dimethoxyphenyl)pr	ylphenoxy)-l- opan-l-one			
j	Veratrole Creosol 3rd Peak Veratrolalo	dehyde	XXXI	178
	Propioverat	rone	XXXI	179
PGCMS $\beta$ -Methyl Lactone	lst Peak 2nd Peak 3rd Peak 4th Peak		XXXI	180
PGCMS 2-(2-Methoxy-4-meth) (3,4-dimethoxyphenyl)pro	/lphenoxy)-l opan-l-ol			
VIV	Creosol Methylisoe 3rd Peak 3rd Peak	lgenol	XXXI	181
VIV	Propioverat Propioverat	trone trone	XXXI	182
PGCMS 1-(3,4-Dimethoxypher	nol)propan-l	,2-diol		
. VIV	lst Peak Methylisoeu 3rd Peak 3rd Peak	lgenol	XXXI	183

I.

1

Analysis	Compound	Table	Page
PGCMS 1-(3,4-Dimethoxypheny	rl)propan-1,2-diol (cont'd)	· · ·	
VIV	Veratryl Methyl Ketone Veratryl Methyl Ketone 5th Peak	XXXI	184
VIV	5th Peak	,	, • • •
PGCMS Conidendrin	Guaiacol	XXXI	1.85
PGCMS Dehydrodivanillin	Vanillin	XXXI	185
PGCMS Dioxane Lignin	Guaiacol Creosol 4-Ethylguaiacol	XXXII	186
•	Eugenol 4-Vinylguaiacol 4-Vinylguaiacol cis-Isoeugenol	XXXII	781
	<u>trans</u> -Isoeugenol <u>trans</u> -Isoeugenol Vanillin Homovanillin	XXXII	188
600°C	Cresol Xylenol	XXXII	189
PGCMS Wood, 100 and 99.98%	Yield	XXXIII	190
99.98 99.98 99.98 100.00	Carbohydrate 1 Creosol 4-Ethylguaiacol		
100.00 99.98 100.00 99.98	4-Propylguaiacol 4-Propylguaiacol Eugenol Eugenol	XXXIII	191
100.00 99.98 100.00 99.98	4-Vinylguaiacol 4-Vinylguaiacol <u>cis</u> -Isoeugenol — Carbohydrate 2 <u>cis</u> -Isoeugenol, & Carbohydrate	XXXIII	192

# -162-

Ţ

# TABLE XIX (Continued)

Analysis		Cc	ompound	Table	Page
PGCMS Wood, 100	and <b>9</b> 9.98%	Yield (con	'd)		
	100.00	trans-Isoe	agenol	XXXIII	193
	99.98	trans-Isoei	agenol		
	100.00	Carbohydrat	te 3, HMF		
	100.00	Vanillin		XXXIII	194
	99.98	Vanillin			
	100.00	Homovanilli	in		
•	99.98	Homovanilli	in		
	100.00	Vanillyl Me	thyl Ketone	XXXIII	195
	99.98	Vanillyl Me	thyl Ketone and		
		Acetovani	llone		
	· · ·				
PGCMS Wood, 77%	Yield	Guaiacol +	Carbohydrate 1	XXXIII	196
		Gualaco1	1		
1		Creosor			
		car bolly drad	, 11MI		
		Vanillin		XXXIII	197
		Homovanilli	n		
		Vanillyl Me	thyl Ketone		
PGCMS PAA Lignin	No. 46 and	4 48			
	46	Guaiacol		XXXIV	198
	46	Guaiacol			
	48	Guaiacol	· -		
	46	Vanillyl Me	thyl Ketone		
	46	2-Furaldehu	de	YYYTV	100
	48	2-Furaldehy	de	AAAIV	199
GCMS and PGCMS P.	AA Lignin N	Io. 72 <b>-</b> 95	· ·		
	72	3-Hydroxybu	tyric Acid	XXXIV	200
GCMS	74-76	3-Hydroxybu	tyric Acid		
	74-76	3-Hydroxybu	tyric Acid		
VIV	74-76	3-Hydroxybu	tyric Acid		
GCMS VIV	92-95	3-Hydroxybu	tyric Acid	XXXIV	201
COLTO ATA	92-95	3-Hydroxybu	tvric Acid	WWYT A	2 <b>7</b> 7
				· •	
GCMS PAA + AcOH	;	3-Hydroxybu	tyric Acid	XXXIV	201
	<i>i</i> .		B. A. Martin and M. Martin and M Martin and M. Martin and Martin and M. Martin and		

Analysis		Compound	· ·	Table	Page
PGCMS PAA Lignin	No. 72-95	· · · ·	: •	• •	· ·
	74-76 92 <b>-9</b> 5 72	Crotonic Acid Crotonic Acid Crotonic Acid	 	XXXIV	202
PGCMS PAA Lignin	No. 72	Acrylic Acid Acetic Acid		XXXIV	203

TABLE XXX





-164-

## MASS SPECTRA OF AUTHENTIC SAMPLES

	GCF	¶S 4→P	ropyiguaia	COT				PGCMS Ferulic Ac	id 4-Vin	ylguaiaco	L
m/e	Base, 🖇	m/e	Base, %			m,	/e	Base, % m/e	Base, %		
$\begin{array}{c} 167\\ 1665\\ 164\\ 151\\ 150\\ 147\\ 136\\ 133\\ 123\\ 122\\ 120\\ 108\\ 107\\ 994\\ 992\\ 91\\ 861\\ 776\\ 955\\ 657\\ 57\end{array}$	6 41 3 5 3 6 14 3 4 100(Base) 8 8 8 3 5 9 22 3 3 7 10 23 29 28 5 12 3 10 23 29 28 5 12 3 10 23 29 28 5 12 3 10 23 29 28 5 12 3 10 23 29 28 5 12 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 3 10 23 29 28 5 12 3 10 20 10 20 11 3 10 20 11 3 10 20 10 20 11 3 10 20 11 3 10 20 11 3 10 20 11 3 10 20 10 20 11 3 10 20 11 3 10 20 11 3 10 20 10 20 11 3 10 20 11 3 10 20 11 3 10 20 10 10 10 10 10 10 10 10 10 1	55521 54454 4433 38	3 12 7 8 12 22 87 16 4 37 24 4		CH3 CH2 CH2 CH2 OH	H ₃ 11 12 13 14 14 14 14 14 14 14 14 14 14	555544473653333243221098787653243221098751	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47554962238882227433298486867407749922	H	C=CH2 OCH3
	I	MS Hig	h Eugenol					GCMS cis-J	soeugenc	pl'	
m/e	Base, 🖇	m/e	Base, %	m/e	Base, 🖇			m/e Base, 🖇	m/e	Base, 🖇	
1665 1643 1621 1521 1509 1487 1488 1335 1332 1331 1321 1308	17 52(Base) 42 7 4 3 6 38 64 12 42 4 23 55 7 30 35 52 48 65 7 4	110 109 108 107 106 105 104 102 98 96 95 94 93 92 30 88 88 88 88 88 88 88 88 88 88 88 88 88	5 15 66 15 19 19 19 19 19 12 12 13 15 12 13 15 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	654321098765432109654321 444444	45 15 32 15 8 4 4 7 11 15 61 98 4 56 6 10 98 10 6 12 90 10 64 10 64 10 10 10 10 10 10 10 10 10 10 10 10 10			165 $40$ $164$ $100$ (Base $163$ $15$ $150$ $7$ $149$ $62$ $147$ $5$ $138$ $3$ $137$ $27$ $133$ $44$ $132$ $18$ $131$ $44$ $122$ $100$ $121$ $29$ $120$ $7$ $119$ $9$ $116$ $4$ $115$ $9$ $107$ $16$ $105$ $18$ $104$ $27$ $103$ $47$ $102$ $7$	71 70 69 86 66 65 64 66 55 43 66 55 43 52 51 43 42 41 40 9 38 38	5 4 6 4 7 13 27 11 11 4 60 3 13 60 3 16 9 13 3 22 4 3 22 4 3 50 7	H _C = C OH

166 165 164 163 162 151 150 149 148 137 146 138 135 134 135 134 135 134 132 128 121 120 119 116 115 121 120 119 116	17 52 100(Base) 42 7 4 3 6 38 64 12 42 4 23 55 7 30 35 52 48 65 7 4 3 11 59 48 65 7 4 3 11 59 48 65 7 4 3 11 59 4 26 8 12 26 8 12 29 4 3	110 109 108 107 105 104 103 99 99 99 99 99 99 99 99 99 99 99 99 99	55 66 53 61 7 4 6 4 9 5 3 0 2 7 3 8 5 5 0 2 8 8 5 5 4 4 5 4 7 6 3 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 6 3 1 4 7 1 4 7 6 3 1 4 7 6 3 1 4 7 1 4 7 1 4 7 6 3 1 4 7 1 4 7 6 3 1 4 7 1 4 7 6 3 1 4 7 1 4 7 1 4 7 6 3 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1 1 4 7 1 1 1 1	654 632 610 558 555 555 555 555 555 555 555 555 55	45 15 15 15 15 15 15 15 15 16 19 16 19 16 18 19 16 18 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19	$\begin{array}{c} 165\\ 164\\ 163\\ 150\\ 149\\ 147\\ 138\\ 137\\ 134\\ 133\\ 132\\ 131\\ 122\\ 121\\ 120\\ 119\\ 116\\ 105\\ 104\\ 103\\ 102\\ 95\\ 94\\ 93\\ 92\\ 91\\ 88\\ 81\\ 79\\ 78\\ 77\\ 75\end{array}$	40 100(Wase) 15 7 62 5 3 27 9 44 18 44 10 29 7 9 44 18 44 10 29 7 9 44 18 44 10 29 7 9 44 18 44 10 29 16 18 27 7 9 44 18 44 10 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 29 16 27 27 9 16 28 27 29 16 28 27 27 9 16 28 27 27 9 16 28 27 27 9 16 28 27 27 9 16 28 27 27 29 16 27 27 27 29 16 27 27 27 27 27 29 16 28 27 27 27 27 29 16 27 27 27 27 27 27 27 27 27 27
112 111	3 3	67 66	7 48			75 74	8 4

℃Н₃ `осн₃ óн

31 29

27

5 8

20

ς.



#### MASS SPECTRA OF AUTHENTIC SAMPLES



-166-

оснз

### MASS SPECTRA OF AUTHENTIC SAMPLES



-168-

1

TABLE XXX (Continued)

MASS SPECTRA OF AUTHENTIC SAMPLES

1

	GCM	15 Proj	pioveratrone	2	1		,	GCMS V	eratrole
m/e	Base, 🛪	m/e	Base, %			m/e	Base, 🖇	m/e	Base, %
196 195 194 1967 166 1133 1134 1122 1129 108 7 105 104 103 94 93 92 91 80 77 77 71	3 25 65 7 3 42 100(Base) 5 12 46 5 32 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 5 28 15 3 6 8 6 8 6 8 6 8 6 8 6 8 6 8 17 5 3 3 28 5 28 15 3 6 8 6 8 6 8 6 8 6 8 7 5 3 8 5 28 15 3 6 8 6 8 6 8 7 5 3 8 5 3 8 5 28 15 3 3 3 3 8 5 28 5 3 3 5 3 8 5 3 8 5 3 8 5 3 3 5 3 8 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	6986765643275543210954321098 119 7	4 3 6 22 14 12 18 8 26 23 4 20 10 48 26 23 4 20 10 48 26 3 9 7 7 3 23 7 20 17 3 51 37	CH3 CH2 C=0 OCH3	H ₃ 00°C PGCMS Creot	$\begin{array}{c} 139\\ 138\\ 137\\ 132\\ 121\\ 124\\ 123\\ 122\\ 121\\ 112\\ 112\\ 111\\ 110\\ 96\\ 95\\ 93\\ 10\\ 86\\ 81\\ 0\\ 77\\ 73\\ 66\\ 65\\ 56\\ 64\\ 57\\ 56\\ 55\\ 54\\ 53\\ 50\\ 1\end{array}$	15 100(Base) 4 3 6 5 7 4 4 3 3 5 10 4 8 11 3 25 6 3 5 4 4 7 59 7 22 5 61 10 8 3 5 4 9 13	52 50 48 41 40 38	44 49 3 4 93 27 18 27 3
		VIV	Xylenol	-				XyJ	lenol
$\begin{array}{c} 124\\ 123\\ 122\\ 121\\ 119\\ 112\\ 109\\ 108\\ 107\\ 104\\ 103\\ 105\\ 104\\ 103\\ 97\\ 95\\ 94\\ 83\\ 81\\ 80\\ 79\\ 78\\ 77\\ 71\\ 70\\ 66\\ 65\\ 63\end{array}$	3 51 100(Base) 69 19 8 3 3 45 96 92 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 22 24 20 25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	57 553 521 43 40 39	6 20 35 11 31 29 22 35 25	сн _з он сн _з		$\begin{array}{c} 124\\ 123\\ 122\\ 121\\ 120\\ 109\\ 109\\ 106\\ 105\\ 104\\ 105\\ 102\\ 954\\ 92\\ 91\\ 108\\ 87\\ 86\\ 82\\ 80\\ 79\\ 78\\ 86\\ 80\\ 79\\ 78\\ 86\\ 80\\ 79\\ 78\\ 86\\ 80\\ 79\\ 78\\ 86\\ 80\\ 79\\ 76\\ 55\\ 74\\ 10\\ 96\\ 86\\ 67\\ 65\\ 64\\ 10\\ 86\\ 86\\ 76\\ 65\\ 64\\ 10\\ 86\\ 86\\ 86\\ 76\\ 65\\ 64\\ 10\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86\\ 86$	2 47 100(Base) 84 24 8 31 80 100 5 33 27 36 7 8 12 29 55 33 13 5 6 7 11 33 63 45 69 7 12 9 7 4 9 37 15	63 62 61 69 55 55 52 51 59 48 54 45 43 10 98 33 37	18 13 15 31 43 15 47 37 5 50 31 45 67 5

4

OCH3

снз он снз

	MASS	SPECTRA	OF	AUTHENTIC	SAMPLES
--	------	---------	----	-----------	---------



MASS SPECTRA OF AUTHENTIC SAMPLES

1

GCMS 2-Furaldehyde

MS Hydroxymethylfurfural

m/e	Base,	%
-----	-------	---

999997666675510942109874	6 29 100(Base) 100 4 4 3 21 5 4 4 9 9 9 4 4 8 4 7 4 8 4 7 6 6 6 2 4 1 4 3	∠ H _C =0	
29	24		

m/e	Base, %	m/e	Base,	%
$\begin{array}{c} 155\\ 154\\ 138\\ 127\\ 126\\ 125\\ 124\\ 125\\ 124\\ 109\\ 99\\ 97\\ 99\\ 95\\ 32\\ 80\\ 95\\ 77\\ 71\\ 70\\ 68\\ 66\\ 66\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61$	5 16 6 4 40 100(Base) 67 51 35 8 49 4 11 42 100 18 28 7 6 26 18 33 5 3 6 19 81 23 19 14 3 5	5975543210986543210987654 3333333	4 8 23 14 72 36 47 4 35 6 8 39 6 6 39 12 6 6 12 94 14 14 14	

$$H_{2C} = 0$$

-170-

# PGCMS Pinoresinol Guaiacol Creosol m/e Base, 🖇 m/e Base, % m/e Base, % 125 124 123 109 95 82 81 80 97776 16563 62 1555 52 52 50 40 398 337 $\begin{array}{c} 140\\ 1398\\ 1376\\ 125\\ 122\\ 122\\ 1109\\ 108\\ 79\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 108\\ 78\\ 7\\ 7\\ 69\\ 68\\ 76\\ 66\\ 65\\ 64\\ 3\\ 62\\ 61\\ 55\\ 3\end{array}$ 8 25 14 25 3 17 6 30 5 52 51 50 42 41 39 38 СНз OCH3 оснз 4-Ethylguaiacol Eugenol Base, % m/e Base, % m/e m/e Base, 💈 m/e Base, % 16 5 498 15 13 51 50 44 43 43 38 93468393 $\begin{array}{c} 165\\ 164\\ 163\\ 162\\ 153\\ 152\\ 1249\\ 138\\ 137\\ 125\\ 124\\ 122\\ 121\\ 109\\ 108\\ 106\\ 103\\ 97\\ 95\\ 9^4\\ 95\\ 9^4\\ 103\\ 79\\ 78\\ 77\\ 69 \end{array}$ 57 55 44 40 38 HC = CH₂ CH3 OCH₃ OCH3

# TABLE XXXI

### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

-171-

### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS



## MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

## PGCMS Pinoresinol

## Propiovanillone

m/e	Base, %	m/e	Base, %	
$181 \\ 180 \\ 178 \\ 173 \\ 164 \\ 160 \\ 153 \\ 152 \\ 150 \\ 149 \\ 138 \\ 122 \\ 113 \\ 122 \\ 113 \\ 128 \\ 94 \\ 91 \\ 86 \\ 83 \\ 80 \\ 77 \\ 70 \\ 69 \\ 86 \\ 63 \\ 61 \\ 57 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 $	4 21 4 3 6 4 3 24 100(Base) 6 7 4 6 4 3 4 3 4 5 6 2 5 2 3 4 3 4 4 3 4 5 6 2 5 2 3 4 3 4 4 3 4 5 6 2 5 2 3 4 3 4 4 3 4 5 6 2 5 2 3 4 3 4 3 4 5 6 6 4 3 2 4 100(Base) 6 2 5 2 5 2 3 4 3 4 3 4 5 6 2 5 6 2 5 2 5 2 5 2 5 2 5 6 2 5 7 7 4 5 6 2 5 7 7 7 4 5 6 7 7 4 5 6 7 7 4 6 7 7 4 5 6 7 7 4 6 7 7 7 4 6 7 7 7 7 7 7 7 7 7 7	55 51 45 44 41 40	7 7 96 4 40	CH ₃ CH ₂ C=O OH OCH ₃

#### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS



CH₂ CH₂ CH₂ CH₂ OCH₃

-174-

### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

### PGCMS Diisoeugenol

`0СН₃

Base, %

5th Peak						6th Peak	:	
m/e	Base, %		m/e	Base, %	m/e	Base, %		
204 203 202 190 189 187 185 175 174 173	51 13 82 18 28 100(Base) 4 6 20 12	CH ₃ HC=CH HC=C CH ₃ OCH ₃	206 205 204 203 202 201 192 191 190 189	3 32 100(Base) 16 48 11 4 3 23 86	141 133 132 131 130 129 128 124 123 117	5 5 6 14 3 20 13 11 3 5	CH3	
163 162 161 160 159 152	5 11 20 15 28 10	-	188 187 186 185 180 176	5 39 5 5 3	116 115 114 109 107 106	11 34 3 5 4	m/e 58 55	Base, 3 13
150 147 146 145 145 144 142	5 45 8 20 13 10		175 174 173 172 171 169	48 10 23 10 4	105 104 103 102 101 94	13 4 7 12 5 4	53 52 51 50 44 - 43	3 9 9 5 45 4
139 134 133 131 128 104	9 12 11 7 5 15		165 164 161 160 159 158	3 5 25 41 6 16	91 89 87 79 78 77	7 3 1 3 10 20	41 39	7 17
64 56 55 44 41 40	20 6 19 18 7 11		157 148 147 146 145 144 143 142	20 3 5 4 8 17 17 3	76 71 70 69 65 63 62	3 3 3 4 5 10 5		
#### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS





## MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

# PGCMS Coniferin

		4-Vinylguaiacol			:	<u>cis</u> -Is	oeugenol	
m/e	Base, %	m/e Base, <b>%</b>		m/e	Base, 💈	m/e	Base, %	
150 149 148 135 134 135 134 132 131 122 131 122 131 122 131 122 131 122 104 105 104 99 99 99 99 99 99 99 99 99 88 88 88 87 9	35 100(Base) 11 25 200 3 4 9 6 5 7 4 3 8 4 3 8 4 3 8 4 3 8 4 3 8 4 3 8 4 3 8 4 3 4 4 3 8 4 3 4 5 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 9 6 5 7 7 4 4 9 6 5 7 7 4 9 6 5 7 7 4 4 9 6 5 7 7 4 4 9 6 5 7 7 4 4 9 6 5 7 7 4 4 9 6 5 7 7 4 4 3 8 8 4 3 8 4 3 8 4 3 8 4 3 8 4 3 8 4 3 8 5 3 5 7 7 4 4 3 8 8 3 4 5 7 7 4 4 3 8 8 3 4 4 3 8 5 5 7 7 4 4 3 8 8 4 3 8 8 3 5 5 7 8 8 8 8 8 3 8 9 5 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	78       14         77       73         75       6         70       5         68       3         67       6         66       6         65       16         64       10         63       23         62       4         55       13         54       5         53       25         52       14         51       20         50       10         49       3         44       40         43       12         42       4         41       3         39       25         38       3         37       4	HC=CH2 HCOCH3	$\begin{array}{c} 165\\ 164\\ 163\\ 162\\ 151\\ 150\\ 147\\ 139\\ 135\\ 134\\ 132\\ 131\\ 124\\ 120\\ 109\\ 106\\ 105\\ 104\\ 102\\ 95\\ 94\\ 92\\ 91 \end{array}$	26 100(Base) 7 6 5 6 5 4 16 61 8 3 5 19 10 4 20 13 36 3 7 6 4 4 6 4 5 9 16 21 4 5 6 8 9 29	85420987109876654320987653109544321098	8 8 3 11 43 3 6 17 4 3 5 5 3 4 4 10 15 8 12 4 3 5 5 5 3 4 4 12 4 3 5 5 5 3 4 4 12 4 3 5 5 5 3 4 4 12 5 5 5 3 4 4 12 5 5 5 5 3 4 4 12 5 5 5 5 5 5 5 5 5 5 5 5 5	
,		trans-Isoeugenol			<u>trans</u> -Iso	eugenc	l Filament	VIV
m/e 166 165 164 163 161 150 148 147 146 149 137 136 139 139 129 122 121 120 118 117 116 109 107 106	Lase, 11 71 100(Base) 29 5 23 83 11 38 4 38 3 4 56 25 67 3 5 16 54 11 10 4 3 6 10 14 5 16 10 14 5 16 10 10 10 10 10 10 10 10 10 10	- m/e Base, 7 105 35 104 56 103 54 102 10 101 3 99 3 94 8 93 21 92 14 91 67 90 5 89 13 83 7 82 21 91 67 90 5 89 13 83 7 82 21 91 67 53 74 13 69 75 13 74 13 69 7 76 8 75 13 74 13 69 7 66 6 65 44 63 23 66 5 56 8 55 77 54 5 17	CH ₃ HC=CH $\downarrow$ OH $\downarrow$ OCH ₃ m/e Base, $%52 2151 4250 2345 844 5243 2541 1940 539 4438 5$	m/e 166 165 164 163 150 149 147 138 137 136 131 132 121 106 103 93 93 93 93 91 81 75 44 43	Base, ≸ 11 52 100(Base) 22 12 3 17 58 8 14 5 20 3 14 5 20 3 5 6 38 18 4 3 7 9 3 7 34 4 26 3 8 4 10 3 5 17 35 3 6	Ĭ	сн _з с сн осн _з	· · · · · · · · · · · · · · · · · · ·

-178-

ł

## TABLE XXXI (Continued)

#### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

PGCMS 2-(2-Methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propen-1-one



MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

PGCMS 2-(2-Methoxy-	4-methylphenoxy)-1-
(3,4-dimethoxyphe	nyl)propan-l-one

# Propioveratrone

m/e	Base, %	
195 194 166 1438 1322 1209 105 103 932 99 78 77 76 66 57 31 04 39	7 63 31 100(Base) 4 3 26 22 4 8 4 7 7 4 10 3 9 8 22 10 23 4 3 4 4 9 14 6 12 6 6 5	CH ₃ CH ₂ C=0 OCH ₃ OCH ₃ .
29		
27	12	

t a station and a station and







# MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

		Creosol			2	iethyl	isoeugenol	L
m/e	Base, %	m/e Base, %		m/e	Base, %	m/e	Base, 🖇	
$\begin{array}{c} 139\\ 138\\ 137\\ 136\\ 135\\ 124\\ 123\\ 128\\ 118\\ 109\\ 106\\ 85\\ 83\\ 109\\ 95\\ 94\\ 95\\ 94\\ 996\\ 85\\ 83\\ 199\\ 78\\ 83\\ 77\\ 74\\ 71\\ 69\\ 66\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 63\\ 65\\ 64\\ 65\\ 65\\ 64\\ 63\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 64\\ 65\\ 65\\ 65\\ 64\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65$	15 100(Base) 10 14 16 9 88 6 3 4 5 3 14 6 3 10 35 5 8 6 13 30 4 4 4 4 6 35 5 8 8 8 8 8 8 8 8 8 8 8 8 8	62       6         57       6         55       45         53       21         52       15         50       16         44       35         43       15         44       35         43       15         34       18         39       55         38       6         30       4         29       13	CH3 OHOCH3	$\begin{array}{c} 179\\ 178\\ 177\\ 163\\ 149\\ 146\\ 135\\ 133\\ 131\\ 116\\ 105\\ 100\\ 105\\ 104\\ 951\\ 951\\ 77\\ 70\\ 66\\ 65\\ 66\\ 55\\ 55\end{array}$	26 100(Base) 3 57 4 17 4 15 4 6 4 8 7 12 3 22 6 8 54 13 24 3 11 4 15 15 5 8 5 19 7 13 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 5 4 5 4	53 52 50 48 41 41 39	5 5 9 3 28 4 4	
		VIV 3rd Peak				3r	d Peak	
197 194 193 192 183 178 167 166 165 164 151 149 137 134 133 132 125 106 95 79 77 67 65 44	4 23 100(Base) 4 7 7 15 84 58 19 58 12 14 4 7 10 8 3 8 3 11 4 7 10 8 3 12 14 4 7 15 8 19 58 12 14 4 7 15 15 12 14 4 7 15 15 12 14 4 7 15 15 12 14 15 15 15 12 14 15 15 12 14 15 15 15 12 14 15 15 15 12 14 15 15 15 12 14 15 15 15 15 12 14 15 15 15 12 14 15 15 15 15 12 14 15 15 15 15 15 15 15 15 12 14 14 15 15 15 15 15 12 14 15 15 15 12 14 15 15 15 15 15 12 14 15 15 15 15 15 15 15 15 15 15	H ₂ C = CH C= 0 OCH ₃	юсн _а	193 192 1777 166 166 166 166 166 166 166 166 16	5 50 3 4 3 4 25 35 100(Base) 3 4 22 14 10 5 5 6 6 7 4 13 4 16 9 3 5 5 6 6 7 4 13 4 22 14 10 5 5 6 6 7 4 3 4 22 14 10 5 5 5 6 6 7 4 3 4 22 14 10 5 5 5 6 6 7 4 3 4 22 14 10 5 5 5 6 6 7 4 3 4 22 14 10 5 5 5 6 6 7 4 3 4 22 14 10 5 5 5 6 6 7 4 3 3 4 22 14 10 5 5 5 6 6 7 4 3 3 4 22 14 10 5 5 5 6 6 7 4 3 3 4 22 14 10 5 5 5 6 6 7 4 3 3 4 22 14 10 5 5 5 6 6 7 4 3 3 5 5 6 6 7 4 3 3 4 22 3 4 5 5 5 6 6 7 4 3 4 5 5 5 6 6 7 4 3 4 5 5 5 6 6 7 4 3 4 5 5 5 6 6 7 4 3 5 5 6 6 7 4 3 3 4 2 2 3 3 4 5 5 5 6 6 7 5 5 5 6 6 7 5 5 5 6 7 5 5 6 7 5 5 6 7 5 5 6 7 5 5 5 6 6 7 7 4 3 3 3 2 3 3 3 3 5 5 6 7 7 4 3 3 5 5 5 6 7 5 5 6 7 5 5 5 6 7 7 5 5 6 7 7 5 7 5 6 7 7 5 7 5 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	6653276555555 <u>5</u> 4 <u>4</u> 3 <u>1</u> 0 29	6 6 4 7 3 9 6 8 22 11 77 4 11 18 28	H ₂ C = CH C = 0 OCH ₃

# PGCMS 2-(2-Methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-ol

.

MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

	PGCMS	2-(2-	Metho	xy-4-methy	vlpher	noxy)_l_(3	,4-dimethor	yphenyl)pro	pan-l-ol
		Prop	iovera	atrone				VIV Propio	veratrone
m/e	Base,	%	m/e	Base, %			m/e	Base, %	
1954 192766521973221075420 166521973221075420 121111111111111111111111111111111111	16 65 436 450 65 55556 16 55556 16 10 10 10 10 10 10 10 10 10 10	ase)	41 40 39 29	3 4 3 6		H ₃ H ₂ = O OCH ₃ CH ₃	195 194 192 170 167 166 165 164 163 161 151 139 137 125 123 122 121 119 110 109 92 83 77 55 44 30	10 76 27 4 7 24 100(Base) 4 4 3 3 3 14 5 5 4 3 3 3 3 4 6 3 7 6 4	CH ₃ CH ₂ C=0 OCH ₃ OCH ₃

-182-

# MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

# PGCMS 1-(3,4-Dimethoxyphenyl)propan-1,2-diol

	lst Peak			М	ethyl:	isoeugeno	ı
m/e Base, %	m/e Base, %		m/e B	ase, %	m/e	Base, 🖇	
179       15         178       100(Base)         177       5         176       4         175       3         164       10         163       57         164       10         163       57         164       10         163       57         164       10         165       3         150       3         150       3         148       4         147       24         146       12         145       3         135       35         134       3         133       7         132       7         131       13         121       6         120       14         119       6         118       11         117       18         116       8         115       35         108       12         107       90         106       6         105       22         104       13         103 <td>95       16         94       4         93       3         92       16         91       67         90       10         89       13         88       4         80       3         79       22         78       10         77       18         75       3         74       5         65       9         64       3         63       6         60       3         57       11         55       16         53       9         52       10         51       24         50       11         44       41         41       7         39       8</td> <td>HC= CH CH₃ OCH₃</td> <td>$\begin{array}{c} 179 \\ 178 \\ 177 \\ 165 \\ 164 \\ 163 \\ 161 \\ 151 \\ 148 \\ 145 \\ 134 \\ 133 \\ 132 \\ 121 \\ 120 \\ 118 \\ 117 \\ 116 \\ 108 \\ 107 \\ 106 \\ 101 \\ 102 \\ 95 \end{array}$</td> <td>54 00(Base) 9 8 4 11 84 7 8 5 37 13 4 32 3 8 6 14 3 5 10 6 4 19 10 22 14 65 4 11 22 14 5 27 13 13 14 13 22 14 15 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 22 22 22 22 22 22 22 22 2</td> <td>9999999885987777764097665643209976553251066543210</td> <td>$\begin{array}{c} 6\\ 4\\ 13\\ 5\\ 21\\ 3\\ 7\\ 11\\ 4\\ 5\\ 4\\ 6\\ 5\\ 5\\ 8\\ 5\\ 10\\ 9\\ 7\\ 6\\ 7\\ 1\\ 4\\ 18\\ 16\\ 7\\ 13\\ 22\\ 4\\ 5\\ 8\\ 10\\ 7\\ 12\\ 24\\ 13\\ 16\\ 7\\ 13\\ 22\\ 4\\ 5\\ 8\\ 10\\ 9\\ 7\\ 12\\ 24\\ 13\\ 16\\ 7\\ 13\\ 22\\ 4\\ 5\\ 8\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$</td> <td>CH3 HC=CH UCOCH3 m/e Base, <b>%</b> 39 ^h1 38 8 37 5</td>	95       16         94       4         93       3         92       16         91       67         90       10         89       13         88       4         80       3         79       22         78       10         77       18         75       3         74       5         65       9         64       3         63       6         60       3         57       11         55       16         53       9         52       10         51       24         50       11         44       41         41       7         39       8	HC= CH CH ₃ OCH ₃	$\begin{array}{c} 179 \\ 178 \\ 177 \\ 165 \\ 164 \\ 163 \\ 161 \\ 151 \\ 148 \\ 145 \\ 134 \\ 133 \\ 132 \\ 121 \\ 120 \\ 118 \\ 117 \\ 116 \\ 108 \\ 107 \\ 106 \\ 101 \\ 102 \\ 95 \end{array}$	54 00(Base) 9 8 4 11 84 7 8 5 37 13 4 32 3 8 6 14 3 5 10 6 4 19 10 22 14 65 4 11 22 14 5 27 13 13 14 13 22 14 15 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 13 22 22 22 22 22 22 22 22 22 2	9999999885987777764097665643209976553251066543210	$\begin{array}{c} 6\\ 4\\ 13\\ 5\\ 21\\ 3\\ 7\\ 11\\ 4\\ 5\\ 4\\ 6\\ 5\\ 5\\ 8\\ 5\\ 10\\ 9\\ 7\\ 6\\ 7\\ 1\\ 4\\ 18\\ 16\\ 7\\ 13\\ 22\\ 4\\ 5\\ 8\\ 10\\ 7\\ 12\\ 24\\ 13\\ 16\\ 7\\ 13\\ 22\\ 4\\ 5\\ 8\\ 10\\ 9\\ 7\\ 12\\ 24\\ 13\\ 16\\ 7\\ 13\\ 22\\ 4\\ 5\\ 8\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	CH3 HC=CH UCOCH3 m/e Base, <b>%</b> 39 ^h 1 38 8 37 5
193       2         192       24         178       2         168       7         167       33         166       100(Base)         165       81         164       11         163       30         152       9         151       56         150       4         149       4         137       31         133       9         132       4         123       5         122       15         121       10         120       4         119       17         109       8         106       4         107       9         106       4         105       28         104       3         96       8         95       65         94       7         92       20         91       15         80       15         79       54         78       14         77       65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 194\\ 193\\ 192\\ 178\\ 177\\ 168\\ 167\\ 165\\ 164\\ 165\\ 152\\ 151\\ 149\\ 135\\ 123\\ 122\\ 119\\ 109\\ 108\\ 107\\ 106\\ 105\\ 95\\ 93\\ 91\\ 80\\ 79\\ 78\\ 77\\ 65\\ 5\end{array}$	2 9 62 2 5 3 51 00(Base) 81 17 39 5 43 3 14 3 9 3 4 5 5 4 3 3 11 4 36 5 5 6 8 8 9 9 9	текк 44 41	5 7	H ₂ C = CH C = O OCH ₃

#### MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

# PGCMS 1-(3,4-Dimethoxyphenyl)propan-1,2-diol



MASS SPECTRA OF LIGNIN-MODEL PYROLYSIS PRODUCTS

	PGCMS C	Conide	ndrin		PGC	PGCMS Dehydrodivanillin				
	Gu	aiaco	1			Vanill:	in			
m/e	Base, %	m/e	Base, %		m/e	Base, %				
125 124 122 121 114 110 108 95 94 92 83 92	33 90 4 17 11 3 5 23 100(Base) 5 5 10 4 7 5 3	50 49 44 43 41 40 39 38 37 36	33 9 29 3 14 17 67 27 12 6	OH OCH3	153 152 151 150 149 137 123 81	12 100(Base) 81 18 6 8 10 44	HC=0 OHOCH ₃			
81 80 79 78 77 66 65 65	11 83 11 8 4 14 4 7 9 31 8			·						
63 62 61 56 55 54 53 52 51	23 15 6 3 29 13 73 44 52									

TABLE XXXII

MASS SPECTRA OF DIOXANE LIGNIN PYROLYSIS PRODUCTS

PCCMS	Diovane	Limin
PUUMS	DIOXBRE	rituru



## MASS SPECTRA OF DIOXANE LIGNIN PYROLYSIS PRODUCTS

#### PGCMS Dioxane Lignin



83 78

## MASS SPECTRA OF DIOXANE LIGNIN PYROLYSIS PRODUCTS

#### PGCMS Dioxane Lignin





# MASS SPECTRA OF DIOXANE LIGNIN PYROLYSIS PRODUCTS

600°C PGCMS Dioxane Lignin

	Creso	1		Xylenol	
m/e	Base, %		m/e	Base, 💋	
109 108 107 106 105 94 92 91 90 89 80 79 78 77 66 5 63 50 49 39	9 96 81 3 4 100(Base) 4 10 44 25 9 70 15 52 44 70 19 21 9 44	СH3 ОН	123 122 120 108 1075479999988776754286432019849276 33849726	10 88 19 8 3 42 100(Base) 3 4 5 7 3 20 3 8 7 29 5 31 4 8 7 29 5 31 4 6 5 5 31 4 6 5 5 3 30 8 4 7 30 7 30 7 31 4 7 30 7 31 4 7 31 4 7 32 31 4 7 31 4 7 32 31 4 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 8 7 31 4 7 30 30 8 16 4 7 30 30 8 16 4 7 30 30 8 16 4 7 30 30 8 30 8 30 8 30 8 30 8 30 8 4 7 30 8 30 8 4 7 30 7 31 4 7 30 7 13 30 7 13 12 12 12 12 12 12 12 12 12 12	CH3 CH3 OH

# -189-

-	19	0	_
		_	

TABLE MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS PGCMS 99.98% Loblerly Fine PGCMS 99.98% Loblolly Pine Carbohydrate No. Guaiacol Base, 🖇 Base, 🖇 m/e m/e m/e Base, % m/e 29 100(Base) 4 7 125 124 112 144 4 27 73 51 22 46 139 138 137 129 128 127 126 125 124 123 116 115 114 113 112 77109875439876554321096544444 50 43 42 42 40 27 10 13 111 110 109 97 96 5 94 93 84 28 175 77 4 30 68 56 66 63 22 61 85 65 55 53 52 5 2 2 8 4 5 5 5 3 4 4 7 2 8 7 6 7 4 3 3 3 8 9 2 4 7 5 3 3 4 0 6 3 4 2 1 6 3 4 OCH₃ 10 54 10 39 38 37 11 31 30 29 6 .~5 18 110 109 106 102 100 97 96 95 94 93 87 86 85 84 83 82 81 80 77 74 43 42 41 40 39 38 37 31 30 29 PGCMS 99.98% Loblolly Pine Creosol 6 52 100(Base) 48 5 20 5 13 25 5 24 46 123 96 122 14 115 4 114 4 115 4 114 4 112 4 20  $\begin{array}{c} 1_{40} \\ 1_{39} \\ 1_{38} \\ 1_{37} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22} \\ 1_{22$  $\begin{array}{c} 154\\ 153\\ 152\\ 152\\ 151\\ 147\\ 138\\ 137\\ 136\\ 124\\ 120\\ 119\\ 117\\ 106\\ 55\\ 44\\ 43\\ 40\end{array}$ 664 32 108 765 54 32 104 32 1098 733 32 36 4 5 4 37 60 130 60 222 6 4 3150 11 6 3 оснз 31 30 29 9 6 34 39

13 16 33 79 55 PGCMS 100% Loblolly Pine 4-Ethylguaiacol сн₃

Base, 3

7

3368329167767642512976754



# MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS

	PGCMS	100%	Loblolly P	ine			PGCMS	99.98% Lob	lolly Pine
	. հ	-Prop	ylguaiacol				հ	-Propylgua	iacol
m/e	Base, 🐔	m/e	Base, %		m/e	Base, 🖇	m/e	Base, %	
167 166 165 151 150 140 139 137 136 132 129 128 129 128 122 121 131 130 129 128 122 121 110 109 108 107 106 102 109 98 99 95	5 39 3 7 10 6 9 7 30 5 8 4 3 8 4 14 21 51 26 5 17 6 8 6 8 6 23 100 (Base) 90 8 12 7 17 16 21 5 22 23	99999888888888771097408875555544444433888888888888888888888888	6 9 16 12 9 7 24 11 15 7 5 10 7 8 4 0 17 23 5 4 40 10 7 3 5 125 9 125 8 9 3 13		166 165 162 151 147 138 128 128 122 121 118 117 116 110 109 108 107 106 104 103 97 96 95 94 93 92 91 90 88 87 85 81 80	31 3 3 5 7 7 3 3 4 3 3 17 4 3 3 17 4 3 3 5 4 9 74 100(Base) 5 3 6 11 5 9 13 5 4 16 11 3 3 10 12 9	77777666754320987654321054321098 1098732987554320987654321054321098 109	13 9 29 3 5 8 3 6 8 7 3 6 4 8 7 23 10 19 22 23 15 5 5 8 15 5 5 10 7 9 24	CH3 CH2 CH2 OHOCH3
	PGCMS	5 100 <b>%</b>	Loblolly F	ine			PGCMS	99.98% Lob	lolly Pine
,		Eu	genol		,	- <b>-</b>	,	Eugenol	
m/e 165 164 152 150 149 147 138 137 133 132 131 123 131 123 132 121 109 108 107 105 109 94 93 99 90 86	Base, % 6 100(Base) 7 8 14 29 10 6 11 14 7 11 8 25 4 40 14 13 7 8 11 20 14 13 7 8 11 20 14 13 9 21 11 13 9 12	m/ 831977096654387565321054432138	Base, * 6 7 11 30 11 14 9 7 11 9 22 33 10 32 7 7 63 22 25 113 113 26 29 39 9	HC=CH2 CH2 OCH3	m/e 166 165 164 163 162 161 160 149 147 138 137 136 135 133 132 131 124 123 122 121 120 119 114 112 121 120 109 108 107 105 104 103 98	Base, * 3 8 100(Base) 6 15 6 19 11 6 18 6 6 17 12 20 8 7 9 35 4 8 5 3 4 3 3 4 11 20 13 13 18 5	<b>2</b> <b>5</b> <b>4</b> <b>5</b> <b>4</b> <b>3</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b> <b>9</b>	Base, % 39 4 5 3 39 4 5 4 8 27 7 15 9 4 3 8 6 7 10 7 9 15 3 5 4 6 9 9 22 3 39 4 11 14 14 11 14 14 11 14 11 14 14	HC = CH ₂ CH ₂ OCH ₃ m/e Base, $74945444543574294118406393138113162917$

÷.•

%

MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS

-192-

i.

PGCMS	99.98% Lobicly I	Pine	PGCMS	: 100% Loblolly Pine
1	-Vinylguaiacol		4	-Vinylguaiacol
m/e Base, 🖇	m/e Base, %		m/e Base, 🖇	m/e Base, %
152       11         151       49         150       100(Base)         149       12         148       8         147       5         137       8         136       33         135       85         133       3         124       5         125       18         126       18         121       5         120       5         117       3         115       3         109       6         101       5         90       6         103       8         101       5         90       3         89       19         87       3         85       5         84       5         82       3         81       12         80       4	79       49         78       49         77       13         71       5         71       5         71       5         71       5         66       6         67       7         66       7         76       7         76       7         76       7         76       7         76       7         76       7         76       7         76       7         76       7         76       7         76       7         76       7         76       13         9       5         9       5         9       10         9       5         9       10         8       8         41       40         39       59	HC=CH ₂ OH m/e Base, # 38 18 37 9 31 8 30 7 29 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PGCMS	99.98% Lobiolly	Pine	PGCMS	5 100% Loblolly Pine
<u>cis</u> -Iso	eugenol & Carbohy	drate	Carbohydra	ate No. 2 — <u>cis</u> -Isoeugenol
m/e Base, 🖇	m/e Base, 🖇		m/e Base, %	m/e Base, %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104 4 103 12 99 7 96 17 95 3 94 7 95 7 95 7 95 7 93 7 92 5 91 9 90 5 89 5 89 5 89 5 80 12 83 3 82 42 83 3 82 42 83 3 82 42 83 7 77 15 76 2 70 8 74 4 73 2 72 9 71 29 70 65 69 100(Base) 68 12 67 7 66 1 65 6	HC = CH HC = CHC HC = C	165       6         164       100(Base).         163       4         150       10         149       27         147       3         140       5         137       6         138       3         139       25         131       3         128       4         126       3         128       4         126       3         121       31         119       3         118       4         117       6         116       7         114       13         109       9         107       25         105       7         104       19         103       18         102       8         100       6         99       4         93       12	91       14 $HC = CH$ 87       11         86       22         85       53         84       5         82       42         79       12         78       7         73       6         41       165         72       6         40       46         71       30         65       38         73       6         41       165         72       6         40       46         71       40         39       65         70       106         38       19         69       94         37       8         68       16         67       6         68       16         67       6         68       16         67       6         68       16         67       6         59       13         58       53         54       3         55       34         54

# MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS

PGCMS 100% Loblolly Pine						PGCMS	<b>99.</b> 98	% Loble	olly Pine		
	trans-Isoeugenol							trans-	Isoeuge	enol	
m/e	Base, 🐐	m/e	Base, 🖇			m/e	Base, %	m/e	Base,	%	
166	4	92	7			166	4	106	5		CH.
165	38	91	53		СНЗ	165	51	105	17		,0113
164	100(Base)	90	5	HC =	ću -	164	100(Base)	104	41	н	C≖ĆH
163	8	89	3	10-		163	26	103	59		۲.
162	5	88	3		<b>N</b>	162	16	102	7	ſ.	
161	á	87	4			161	14	101	ė		
150	8	85	3	<u>ر</u>	X	151	6	100	3		
149	75	81	Ğ	Ϋ́.	OCH ₃₈	150	17	- 00	3		
148	6	79	11	ОН		149	72	68	õ		
147	7	78	12			147	23	07	ś		
1 37	16	77	59	m/e	Base %	144	23	95	10	m /.	e Base Ø
135	3	76	Ĩ	<b></b> , •		138	ลี	Ó.	<u>т</u>	ш,	c Dabe, /
134	5	71	3	43	50	137	28	62	20	62	5
122	ม้า	70	ũ	42	Ĩ.	135	5	02	7	61	6
132	11	69	9	41	50	134	ź	01	Ъq	60	3
1 31	<u>L</u> 1	68	á	<u>10</u>	10	133	цо	00	15	50	3
122	1	67	5	30	88	132	33	80	2	57	ă
121	50	66	25	38	21	131	62	86	2	56	10
120	<u>ь</u>	65	69	37	10	130	3	81	2	55	ho
110	h L	64	16	51	20	128	2	82	6	5h	7
118	3	63	50			126	5	81	Ř	52	26
117	5	62	8			120	5	70	28	50	20
++1 115	6	61	7			103	2	78	18	51	26
112	3	60	i.			100	د د ا	77	6)	50	7
100	3	58	5			121	70	76	7	50	46
108	5	57	18			120	11	75	ģ	17	28
107	15	56	6			110	17	71	6	40	20
106	2	55	<b>0</b> 7			118	. 1	72	2	42	1
105	ມ 1 ມ	5)	0			117	6 h	70	5	41	24 2
101	10	53	56			116	4	71	õ	40	28
103	7 38	52	10			115	2	70	アル	· 59	20
100	50	51				111	2	60	4 8	30	2
102	2	71 50	2)			110	2	67	U F	31	7
TOT	2	50				112	4	64	2	21	<b>)</b> .
90	5	49 hs	25			109	2	00 6 F	27 TC	31	02
94	υ Ω	49	1.7			100	2	60	77	29	23
9.3	0	44				T01	0	01	11		

## PGCMS 100% Loblolly Pine

Са	rbohydrate	No.	З,	Hydroxymet	hylfurfural
128	5		54	3	
127	7		53	25	
126	53		52	13	
125	1		51	50	
124	52		50	22	H ₂ C
123	26		49	37	0 U
118	4		48	3	н
112	3		45	-18	
111	3		44	100	
110	4		43	107	
109	10		42	54	
100 100	4		41 1.0	233	
T00	4		40	30	
99	4		29	200	
07	100(Bece)		37	87	
06	2		51	01	
95	10				
93	5				
91	5				
85	3				
83	8				
81	13				
80	4				
77	11				
71	7				
69	46				
68	9				
67	10				
61	4				
60	4				
59	4				
58	3				
57	20				· .
50	2				
לל	21				

-194-

1!

ļ.

TABLE XXXIII (Continued)

MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS



MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS

PGCMS 100% Loblolly Pine				PGCMS 99.98% Loblolly Pine						
	Van	illyl	Methyl	Ketone	v	anillyl Met	hyl Ke	tone &	Acetovanil	lone
m/e	Base, %	m/e	Base,	×	m/e	Base, 🖇	m/e	Base,	7	
181	9	69	9		181	4	89	. 5	CH	1
180	47	68	4	CH ₃	180	33	87	6	Ŭ,	'3
179	3	67	8	6-0	179	9	85	6	Ć=	0
164	3	66	4	Ç-0	168	5	82	9	2	
151	6	63	9	ĊHa	167	5	80	7	ېت	'2
148	3	62	5	·	166	46	79	14		
140	3	61	5		165	29	78	14	li I	7
130	5	58	5	0 1	163	_ <u>í</u>	77	17	لا	Lan
138	16	57	23	OCH-	162	9	74	3	Ý	TOCH3
137	100(Base)	56	- ŭ	1 00113	160	ú	72	ų	OF	ł
135	17	55	7	UH	159	5	71	8		
133	 L	54	' '		153	7	69	7	m/e	Base, %
128	3	53	6		152	13	68	5	2.47 G	
124	19	52	Ğ		151	100(Base)	67	ní	31	74
123	7	51	10		149	14	66	3	30	-8
122	า่าว่	45	3		130	6	65	16	29	15
120	1	հն	47		137	38	63	-8	• • •	-/
112	5	43	37		136	6	62	3		
109	ś	42	7		131	7	61	5		
108	ŝ	41	14		126	7	59	7		
105	7	40	_ <u>1</u>		125	i,	58	3		
97	i.	30	22		124	19	57	18		
96	5	38	4		123	38	śś	3		
95	6				122	Ğ	55	13		
94	10				121	10	54	6		
93	3				120	3	53	7		
91	11				112	3	52	19		
87	3				110	ī,	51	18		
85	ě				108	11	50	11		
84	5				107	10	45	3		
81	í.				105	8	44	46		
78	4				97	5	43	50		
77	12				95	7	41	14		
76	8				94	15	40	8		
74	Ğ				63	7	39	22		
73	ũ,				92	4	38	6		

%

-196-

÷...

H

# TABLE XXXIII (Continued)

MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS

# PGCMS 77% Loblolly Pine

Guaiacol + Carbohydrate No. 1	Guaiacol
m/e Base, % m/e Base, %	m/e Base, %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Creosol	Carbohydrate No. 3 - HMF
m/e Base, % m/e Base, %	m/e Base, % m/e Base, %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$129 3 40 15$ $128 5 39 57$ $127 7 38 48$ $126 81 37 27 H_2 C + C = 0$ $125 19$ $124 86$ $123 43$ $122 4$ $111 3$ $110 20$ $109 37$ $106 4$ $99 6$ $98 15$ $97 100(Base)$ $96 14$ $95 25$ $85 10$ $84 4$ $83 6$ $82 5$ $81 13$ $71 11$ $69 8$ $67 10$ $66 6$ $57 13$ $53 11$ $51 10$ $50 6$ $66 4$ $4 4$ $45 8$ $44 105$ $43 3$ $42 15$ $41 81$

3

-197-

## MASS SPECTRA OF WOOD AND PERACETIC ACID WOOD PYROLYSIS PRODUCTS

			PGCMS 77%	Loblolly	Pine				
-	Va	nillin				Homo	vanillin		
Base, 🖇	m/e	Base, %		m/e	Base, 🖇	m/e	Base, 🖇		
3 22 100(Base) 69 6 50 6 4 11 9 10 6 6 11 5 10 23 5 4 8 4 12 4 8 24 5 5 5 10 13 6 11 8 8 9 12 4 8 9 12 4 8 9 12 4 8 9 12 4 8 9 12 14 8 9 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	62 60 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 5 34 12 24 13 11 5 8 211 144 37 68 21 111 38	HC=0 OH OH	$\begin{array}{c} 167\\ 166\\ 161\\ 160\\ 152\\ 150\\ 149\\ 148\\ 137\\ 146\\ 138\\ 137\\ 136\\ 124\\ 122\\ 121\\ 120\\ 115\\ 114\\ 122\\ 121\\ 100\\ 108\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 104\\ 107\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 105\\ 106\\ 106\\ 105\\ 106\\ 106\\ 105\\ 106\\ 106\\ 106\\ 105\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106$	12 41 7 3 4 9 20 4 7 6 4 7 6 4 3 100(Base) 6 9 8 4 11 9 13 28 5 4 7 4 3 11 9 13 28 5 4 7 4 3 11 9 13 28 5 4 7 4 3 11 9 13 28 5 4 7 4 3 11 9 13 28 5 4 7 4 7 4 7 6 5 4 7 4 7 6 5 7 4 7 6 5 7 4 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	998654391887665321987765432219887665329887655	$\begin{array}{c} 4\\ 5\\ 6\\ 23\\ 14\\ 11\\ 10\\ 4\\ 3\\ 6\\ 16\\ 14\\ 16\\ 18\\ 9\\ 7\\ 31\\ 6\\ 5\\ 11\\ 8\\ 15\\ 19\\ 4\\ 5\\ 4\\ 14\\ 7\\ 6\\ 10\\ 4\\ 23\\ 17\\ 23\\ 6\end{array}$	H-C- 53 51 50 47 44 43 40	= 0 H ₂ OCH ₃ Base, <b>%</b> 6 14 7 6 155 9 8
Van 12	illyl 71	Methyl Ke 5	tone	205	_ ·		Ť		

<b>,</b>	
_	CH-
5	0113
3	Ç≠O
7	L L
5	<b>U</b> ¹ 2
3	$\sim$
3	
3	لر الم
5	Y OCH3
<b>5</b> .	ОН
5	
ŧ.	
3	

106       4       68         163       3       67         152       3       66         151       8       65         150       4       64         149       3       63         148       3       58         147       4       57         148       3       56         142       3       55         138       30       54         137       100(Base)       53         133       3       52         133       3       52         133       3       52         133       3       52         134       5       51         125       3       50         124       5       47         123       8       45         122       30       44         100       4       38         91       4       43         107       3       40         105       4       38         91       4       38         91       4       38         91       4       39	5 3 7 6 3 8 3 15 6 3 8 3 5 18 4 3 8 38 0 9 16 3 6 5
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------

.

m/e

 $\begin{array}{c} 15^4 \\ 153 \\ 152 \\ 151 \\ 149 \\ 148 \\ 147 \\ 140 \\ 139 \\ 138 \\ 131 \\ 128 \\ 123 \\ 121 \\ 112 \\ 122 \\ 121 \\ 112 \\ 109 \\ 108 \\ 87 \\ 82 \\ 81 \\ 77 \\ 70 \\ 69 \\ 67 \end{array}$ 

T L



1

 $\cdot$ 

# TABLE XXXIV

•

3

MASS SPECTRA OF PERACETIC ACID LIGNIN PYROLYSIS PRODUCTS AND BY-PRODUCTS

	PGCMS	PAA	Lignin No.	. 46				PGCMS	PAA	Lignin	No. 46	
		Gu	aiacol						Gu	aiacol		
m/e	Base, 🖇	m/e	Base, %			m/e	Base,	%	m/e	Base,	X	
$\begin{array}{c} 127\\ 126\\ 125\\ 124\\ 122\\ 121\\ 111\\ 112\\ 111\\ 110\\ 108\\ 106\\ 101\\ 100\\ 95\\ 994\\ 83\\ 82\\ 81\\ 80\\ 97\\ 78\\ 77\\ 71\\ 70\\ 69\\ 68\\ 67\\ 66\end{array}$	2 2 17 88 13 7 9 3 3 3 18 100(Base) 7 3 3 4 4 6 11 3 3 4 6 11 3 3 6 3 13 9 76 7 12 3 10 20 5 8 6 12 8	6666675555555594444444338333 3322 2	9 4 16 7 17 3 8 17 53 23 13 8 5 4 7 82 19 13 30 65 65 46 16 4 4 4 4 4 4 5 3 4 44	U OCH3	n na	124 123 1221 120 119 110 109 107 106 109 99 99 99 99 99 88 876 854 832 81 80 775 73 72 7109	80 13 4 11 5 12 100 10 10 10 10 10 10 10 10 1	ase)	6877665643260877655432210995443210988776553292262	15 13 226 18 7 9 9 8 6 5 8 6 5 8 6 5 8 6 12 9 8 8 6 5 8 6 5 8 6 12 9 9 8 6 5 8 6 5 8 6 5 8 6 12 9 9 8 6 5 8 6 5 8 6 5 8 6 12 9 5 8 6 12 9 9 8 6 5 8 6 5 8 6 12 9 9 8 6 5 8 6 5 8 6 12 9 9 8 8 6 5 8 6 5 8 6 5 8 6 5 8 6 12 9 9 8 8 6 5 8 6 5 8 6 5 8 6 5 8 6 12 9 9 8 8 6 5 8 6 5 8 6 5 8 6 5 8 6 12 9 9 8 8 6 5 8 6 5 8 6 5 8 6 5 8 6 5 8 6 12 9 9 8 8 6 5 8 6 5 8 6 5 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		н
	PGCMS	5 PAA	Lignin No	. 48	1			PGCMS	PAA	Lignin	No. 46	
		Gu	aiacol		1			Vani	llyl	Methyl	Ketone	
$\begin{array}{c} 125\\ 124\\ 123\\ 122\\ 121\\ 110\\ 109\\ 95\\ 94\\ 392\\ 83\\ 82\\ 88\\ 80\\ 77\\ 71\\ 66\\ 66\\ 65\\ 64\\ 65\\ 65\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55$	12 94 4 8 12 31 100(Base) 5 7 18 6 5 5 19 78 12 8 11 6 6 7 7 8 11 28 5 18 11 28 5 18 11 28 5 18 11 28 5 18 11 28 5 18 11 28 5 19 7 7 8 11 28 5 19 7 7 8 11 28 5 5 19 7 7 8 11 28 5 5 5 5 5 5 5 5 5 5 5 7 7 7 8 12 8 12 10 10 5 7 7 7 8 12 8 12 10 10 5 7 7 7 18 6 6 5 5 5 7 7 7 8 12 8 8 12 8 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10	49 45 44 42 40 39 38 31 29 27	4 3 94 19 26 25 78 34 15 28 63	OH OCH3	терных степно сталов и ликово « тили » терники терники телники министрании « манистрании» « «министрании» « «м	$\begin{array}{c} 180\\ 179\\ 176\\ 166\\ 165\\ 164\\ 160\\ 150\\ 147\\ 146\\ 137\\ 136\\ 130\\ 122\\ 129\\ 107\\ 1038\\ 976\\ 94\\ 921\\ 994\\ 921\\ 994\\ 931\\ 83\end{array}$	40676143559549443003265407383062353646 1143559549443003265407383062353646	lase)	81 87 77 77 77 77 70 98 87 66 21 64 55 55 54 44 32 10 98 87 4 33 37 4 33 2 2 6	17 57643145479359735365830654 13165830654 578 16		CH ₃ = 0 CH ₂ OCH ₃

MASS SPECTRA OF PERACETIC ACID LIGNIN PYROLYSIS PRODUCTS AND BY-PRODUCTS

-200-
-------

MASS SPECTRA OF PERACETIC ACID LIGNIN PYROLYSIS PRODUCTS AND BY-FRODUCTS

÷.,

PGCMS PAA Lignin No. 72	GCMS PAA Lignin No. 74-76
3-Hydroxybutyric Acid	3-Hydroxybutyric Acid
m/e Base, % m/e Base, %	m/e Base, % m/e Base, %
$185$ 10 $61$ 7 $160$ 10 $60$ $38$ $OH$ $147$ $2$ $59$ $23$ $14$ $145$ $30$ $58$ $129$ $H_3C - C - C - C - C - C - C - C - C - C -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PGCMS PAA Lignin No. 74-76	PGCMS VIV PAA Lignin No. 74-76
3-Hydroxybutyric Acid	3-Hydroxybutyric Acid
117 4 116 100(Base) 115 4 OH 109 11 $H_3C-C-C-CO_2H$ 101 32 $H_3C-C-C-CO_2H$ 101 32 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-C-C-C-C-CO_2H$ 101 $H_2C-$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

## MASS SPECTRA OF PERACETIC ACID LIGNIN PYROLYSIS PRODUCTS AND BY-PRODUCTS

## GCMS VIV PAA Lignin No. 92-95

## PGCMS PAA Lignin No. 92-95

	3-H	iydrox	ybutyric	Acid		3-н	ydrox	ybutyri	e Acid
m/e	Base, %	m/e	Base, %		m/e	Base, 🛪	m/c	Base, S	ź
$\begin{array}{c} 118\\ 117\\ 116\\ 115\\ 113\\ 99\\ 88\\ 87\\ 68\\ 88\\ 77\\ 76\\ 69\\ 68\\ 61\\ 60\\ 95\\ 58\\ 57\\ 55\\ 54\\ 47\\ 44\\ 42\\ 41 \end{array}$	3 4 8 7 3 15 3 20 76 12 5 7 4 15 56 42 15 56 42 15 100(Base) 15 91 4 3 4 14 15 56 42 15 10 15 11 15 56 42 15 11 15 56 42 15 10 10 15 11 15 56 42 15 10 15 10 15 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10	40 39 38 36 31 30 29	16 22 3 4 6 11	он H ₃ C - С - С - СО ₂ H H H ₂	$\begin{array}{c} 118\\ 117\\ 116\\ 115\\ 114\\ 103\\ 102\\ 101\\ 100\\ 97\\ 995\\ 991\\ 898\\ 84\\ 81\\ 778\\ 77\\ 775\\ 74\\ 73\\ 721\\ 70\\ 698\\ 62\\ 61\\ 60\\ 558\\ 57\end{array}$	5 100(Base) 6 7 15 86 3 5 12 6 8 3 12 6 8 3 12 6 8 3 4 2 8 12 6 8 3 4 2 8 12 6 8 3 4 2 7 15 86 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 8 3 4 12 6 16 16 16 15 15 12 16 16 15 15 12 12 12 12 12 12 12 12 12 12	553 557 557 557 557 557 557 557 557 557	6 4 13 6 43 94 87 40 260 19 11 5 7 46	он н ₃ С-С-С-С0 ₂ н н н₂
						GCMS	PAA	+ Ac H	Quenched
						3-1	lydro:	Kybutyri	e Asid
					117 116 103 102 101 99 97 91 909 88 87 865 843 827 754 712 699 665 61 600 598 575 553 746	2. 11 2 5 1 8 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 4 2 1 1 4 2 1 1 4 2 3 2 3 5 9 3 2 1 1 4 2 3 5 9 3 2 1 1 4 2 3 5 9 3 2 1 1 4 2 3 5 9 3 2 1 1 4 2 3 5 9 3 2 1 1 4 2 3 5 9 3 2 1 1 4 4 2 1 1 4 4 2 3 5 9 3 2 1 1 4 4 2 1 1 4 4 2 1 1 4 4 2 1 1 4 4 2 1 1 4 4 2 1 1 4 4 2 1 1 4 4 2 1 1 5 9 3 2 1 1 4 4 2 1 1 5 9 3 2 1 1 6 (Base) 7 7 7 8 1 2 8 1 7 7 7 7 7 7 7 7 7 7 7 7 7	45 44 42 41 338 37 36 31 29 26	125 150 119 97 94 36 69 17 16 7 19 11 ¹ 19	он H ₃ C-Ċ-С-СО ₂ H

MASS SPECTRA OF PERACETIC ACID LIGNIN PYROLYSIS PRODUCTS AND BY-PRODUCTS PGCMS PAA Lignin No. 74-76 PGCMS PAA Lignin No. 92-95 Crotonic Acid Crotonic Acid e, % 9 100(Base) 13 5 4 3 m/e m/e Base, % m/c Base, % 8 3 23 124 31 88888777766670875431065432109876 2 3 7 н₃с нс = сн CH3 227654173198750875543076543210987654333364 30 нс = сн со₂н 29 100(Base) `со₂н 49 36 27 26 34 25 341 77 6 7 11 14 5 3 6 4 9 10 41 155 64 33 95 50 123 32 9 10 31 30 29 7 6 55 PGCMS PAA Lignin No. 72 Crotonic Acid  $\begin{array}{c} 122\\ 86\\ 85\\ 84\\ 72\\ 1\\ 7\\ 7\\ 69\\ 68\\ 67\\ 6\\ 5\\ 5\\ 5\\ 5\\ 5\\ 3\\ 9\\ 5\\ 4\\ 4\\ 3\\ 2\\ 4\\ 1\\ 0\\ 9\\ 8\\ 37\\ \end{array}$ 6 100(Base) ÇH₃ HC=CH CO₂H 10 2 3 14 1054 21 12734 38 7312346 7118 31 29 3 33 27 26 25 12 15 2

MASS SPECTRA OF PERACETIC ACID LIGNIN PYROLYSIS PRODUCTS AND BY-PRODUCTS

	PGCMS PAA Li	gnin No. 72		PGCMS PAA L:	ignin No. 72
	Acryli	c Acid		Aceti	c Acid
m/e	Base, %		m/e	Base, %	
72 76 55 55 54 43 21 40 39	20 3 15 9 5 3 4 3 77 100(Base) 29 8 15 66	, CO ₂ H H ₂ C = CH	61 60 50 46 45 44 43 42 41 40 39	42 88 3 17 92 63 100(Base) 62 42 17 3	H ₃ C – CO ₂ H

.

MASS SPECTRA INTERPRETATION OF PROPOSED PYROLYSIS PRODUCTS

-204-

2-(2-METHOXY-4-METHYLPHENOXY)-1-(3,4-DIMETHOXYPHENYL)PROPAN-1-OL

The mass spectra for the second and third peaks in the 2-(2-methoxy-4methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-1-ol pyrogram (Fig. 8) are represented in Table XXVI. The prominent ions and their proposed interpretation are listed in Table XXXV along with those for the authentic sample of propioveratrone. The parent ion (P) was assigned to the highest even-numbered ion of significant relative abundance.

The proposed structure (Fig. 8) for the second peak (Table XXXV) and isoeugenol, the guaiacyl analog, have very similar mass spectra. Both have major ions at P-15 (parent minus 15 mass units), P-27, P-31, P-33, P-43, P-61, P-71, P-73, and P-75. The apparent molecular weight of 14 more than isoeugenol suggests they differ only by a methyl group. The spectrum for the third peak (Table XXXV) is one of the few in this series that contain a P-27 ion. This P-27 peak is interpreted as a loss of the vinyl group on the proposed structure (Fig. 8).

# 1-(3,4-DIMETHOXYPHENYL)PROPAN-1,2-DIOL

The prominent ions and their proposed interpretation from the mass spectra of 1-(3,4-dimethoxyphenyl)propan-1,2-diol pyrolysis products are listed in Table XXXVI. The first and second peaks have nearly identical spectra and are considered to be isomers. The spectra for Peaks 1 and 2 are essentially the same as the spectrum of the second peak for the propanl-ol compound in Table XXXV. The first two peaks for the 1,2-diol compound were assigned structures as <u>cis</u>- and <u>trans</u>-isomers (see Fig. 7). The third peak for the 1,2-diol compound had the same mass spectrum and GC retention

# TABLE XXXV

# MASS SPECTRA INTERPRETATION

m/e	2-(2-Methoxy-4-methyl- phenoxy)-1-(3,4-dimethoxy- phenyl)propan-1-ol	Pyrolysis Products	Propioveratrone Authentic Sample
	2nd Peak (Methyl Isoeugenol)	3rd Peak	
194 192 178	σ	Р	P P-2(H ₂ )
167 166 165	1	P-25(CECH) P-26(CH≡CH) P-27(CH2=CH)	$P=28(CO \text{ or } CH_2CH_2)$ $P=29(CH_3CH_2)$
163 151 149	P-15(CH₃)	$P-29(CH_3,CH_2)$ $P-41(CH_2=CH_1CH_2)$ $P-43(CO,CH_3)$	
147 137	P-31(OCH ₃ )	$P-55(CH_2=CHCO)$	$P=57(CH_3CH_2CO)$
136 135 133	P-43(CO,CH3)	$P-59(CH_3OH,CH_2=CH$ or (CO,OCH ₃ )	;)
131 122	P-47		P-72(CH3CH2CO,CH3)
119 117	$P-61(OCH_3, OCH_2)$		$P-75(CH_{3}CH_{2}, OCH_{3}, CH_{3})$
115 107 105	$P-63(OCH_3,HOCH_3)$ P-71(CH=CHCH ₃ ,CH ₃ ,CH ₃ ) P-73		P-87(CH ₃ CH ₂ CO,CH ₃ ,CH ₃ ) P-89(CH ₃ CH ₂ ,OCH ₂ ,OCH ₂ )
103 95	P-75	P-97	
94 92 91 77	$P-87(CH=CHCH_3,OCH_3,CH_3)$ $P-101(CH=CHCH_3,OCH_2,OCH_2)$		P-100 P-102 P-103 P-117

÷

								÷.															
-DIOL	5th Peak	ሲ					P-43(C0,CH3)	and the second	P-57(CH ₃ CO,CH ₂ )		P-71(CH3COCO)			Р-86( СН₃СОСО , СН₃					P-114	P-116		P-131	
THOXYPHENYL)PROPAN-1,2 TS	3rd Peak		۲ ۹		P-25(c≡ch)	P-26( CH≡CH)	P-27 (CH ₂ =CH)	P-29(CH ₃ , CH ₂ )	P-41 (CH2=CH,CH2)		P−55( CH2=CHCO )							P-97					•.
FERPRETATION OF 1-(3,4-DIME) PYROLYSIS PRODUCY	2nd Peak			Ч				P-15(CH ₃ )	and a second	P-31 ( OCH 3 )		P-43(c0,CH3)	∕ Б-47		P-61(0CH ₃ ,0CH ₂ )	P-63(OCH ₃ ,HOCH ₃ )	P-71(CH=CHCH ₃ ,CH ₃ ,				P-87		
MASS SPECTRA INT	lst Peak			д				P-15(CH ₃ )	, a the first of the second	P-31 ( OCH ³ )		P-43(C0,CH3)	P-47		P-61(0CH30CH2)	P-63(0CH ₃ ,HOCH ₃ )	P-71(CH=CHCH ₃ ,CH ₃ ,				Р-87		
	m/e	208	192	178	167	166	165	163	<u>151</u>	LμL	137	135	131	122	717	115	Tot	95	76	92	16	79	77

TABLE XXXVI

-206-

į,

ļi . . time as the third peak for the propan-1-ol compound. The fifth peak was assigned a molecular weight of 208 based on the VIV MS experiment. The greater retention time and the higher molecular weight of the fifth peak as compared to propioveratrone suggests one more oxygen than propioveratrone. The ions at 165 and 137 for the fifth peak are also characteristic of propioveratrone and suggest that both have a similar structure (dicarbonyls).

# 2-(2-METHOXY-4-METHYLPHENOXY)-1-(3,4-DIMETHOXYPHENYL)PROPAN-1-ONE

The third peak in the 2-(2-methoxy-4-methylphenoxy)-1-(3,4-dimethoxyphenyl)propan-l-one pyrogram is considered to be a veratryl derivative (see Fig. 9). The mass spectrum, interpretation Table XXXVII, shows loss of 2 methyl groups (P-15 and P-30) which is consistent with the proposed dimethoxy compound. The fourth peak (Fig. 9) is proposed to be veratryl aldehyde. The loss of 73 (P-73) is also found in the other proposed unsaturated side-chain veratryl compounds [second peak for 2-(2-methoxy-4-methylphenoxy)-1-(3,4dimethoxyphenyl)propan-l-ol and the first and second peaks of the l-(3,4-dimethoxyphenyl)propan-1,2-diol as well as for isoeugenol, Table XXX]. The ion at 91 is also found to result from other unsaturated side-chain aromatics such as the proposed pyrolysis products of the propan-1-ol compound, the 1,2-diol compound, isoeugenol, and 4-vinylguaiacol. The ion at 91 is considered to be the tropylium ion. Propioveratrone, an *a*-carbonyl compound, apparently does not form this ion, based on the proposed parent ion (164) the 4-vinyl veratrole compound (Fig. 9) is the best fit for the data.

-207--

# TABLE XXXVII

MASS SPECTRA INTERPRETATION OF PYROLYSIS PRODUCTS FROM 2-(2-METHOXY-4-METHYLPHENOXY)-1-(3,4-DIMETHOXYPHENYL)PROPAN-1-ONE

m/e	lst Peak Veratrole	3rd Peak	4th Peak
166			Р
164		Р	
151		1 1 1	P-15(CH ₃ )
149		P-15(CH3)	
138	P		
134		Р-30(Сн₃,Сн₃)	
123	P-15(CH3)		
105			₽-61(осн ₃ ,осн ₂ )
95			P-71(C0,C0,CH3)
91	P-43(CO,CH3)	P <b>-</b> 73	
77	$P-61(OCH_3,OCH_2)$	-	
		5	

# DIISOEUGENOL

The structures proposed for the fourth, fifth, sixth, and seventh peaks from the PGC of diisoeugenol (Fig. 6) are based on the apparent molecular weights from the mass spectra. Molecular weights of 204 and 206 are greater than 4-propylguaiacol (166) but too small for two guaiacol units (246 or 248). The products must have a complex side chain left from the diisoeugenol structure. The mass spectra interpretation in Table XXXVIII show loss of  $CH_3CH_2$  (P-29) and  $CH_3, CH_3$  (P-30) which is consistent with the proposed side chains. The sixth peak structure has two methyl groups, and its mass spectrum is the only one to show a P-30 ion and not a P-29 ion. The other three spectra show a P-29 ion which corresponds to the ethyl groups found in each proposed structure.

# TABLE XXXVIII

# MASS SPECTRA INTERPRETATION FOR DIISOEUGENOL PYROLYSIS PRODUCTS

m/e	3rd Peak (20 min) Diisoeugenol	5th Peak (22 min)	6th Peak	7th Peak
206	P	Р		
204			P	Р
202			P-2(H,H)	P-2(H,H)
189				P-15(CH3)
187			Р-17(Нз,Н,Н)	Р-17(СНз,Н,Н)
177	$P=29(CH_3CH_2)$	$P=29(CH_3CH_2)$		
175		P-31(OCH3)		P-29(CH ₃ CH ₂ )
174			P-30(CH ₃ ,CH ₃ )	
172				P-32(CH₃OH)
161			P-43(CO,CH3)	P-43(CO,CH3)
160			P-44	P-44
159			P-45	
157				P-47
147			P-57	
145	Р-63(ОН,ОСН ₃ ,СН ₃ )	P-63	P-61	
144				P <b>-</b> 62
143				P <b>-</b> 63
12 <b>9</b>				P-75
117	P-89	P-89		
115				P-89
91	P <b>-11</b> 5	P-115		
77	P-129	P-129		P-127

# CIS, TRANS-B-METHYL MUCONIC ACID AND ITS LACTONE

The four pyrolysis products from 5-carboxymethyl-4-methyl-2(5H)-furanone and the muconic acid are apparently two sets of two isomers each. The mass spectra interpretations in Table XXXIX agree with the proposed structures in Fig. 11. The two isomers with apparent molecular weights of 112 are the only mass spectra to show P-15 ions, loss of methyl. The fourth peak even shows loss of two methyl groups, P-30. The two isomer structures with apparent molecular weights of 110 have one or both their methyl groups unsaturated (methylene) and, therefore, less likely to lose CH₃. The low molecular weight and GC retention times (Table XL, Appendix IX) agree with a lactone structure as opposed to a free acid. The lactone ring apparently remains intact on pyrolysis and forms four major products.

## TABLE XXXIX

# MASS SPECTRA INTERPRETATIONS FOR <u>CIS,TRANS</u>-β-METHYL MUCONIC ACID AND ITS LACTONE

m/e	lst Peak	2nd Peak	3rd Peak	4th Peak
112	P			Р
110	Р-2(Н,Н)	Р	P	
97	P-15(CH3)			P-15(CH₃)
84	P-28(CO)			
82		P-28(CO)	P-28(CO)	P-30(CH3,CH3)
70				$P-42(C_{3}H_{6})$
69	P-43(CO,CH3)	P-41(C3H5)		P-43(CO,CH3)
68	$P=44(CO_2)$	$P = 42(C_2H_20)$	P-42(C2H2O)	P-44(CO2)

-210-

## APPENDIX IX

# GAS LIQUID CHROMATOGRAPHY RETENTION TIMES OF MODEL COMPOUND PYROLYSIS PRODUCTS

Table XL contains the retention times of pyrolysis products from lignin model compounds in Fig. 4-14. As listed in Table XL, many of the products were identified by GLC and MS comparison to an authentic sample. For each column condition, an authentic sample was run the same day the pyrogram was recorded. This was to ensure against misleading results due to possible column deterioration over several months.
Ħ	
PABLE	

MAJOR PYROLYSIS PRODUCTS FROM MODEL COMPOUNDS

	Pyrolysis	Relative		Retent	ion Time ^a , min	
Pyrolyzed Compound	Product	Peak Area	170°	170-1°/min	170-2°/min	90-2°/min
Pinoresinol	Guaiacol ^b Creosol	00T 14	6.8 6.8			22.9 27.2
	4-Ethylguaiacol	6	5.9			30.6
	4-Propylguaiacol	4	7.8			32.8
	Eugenol	7	9.1			36.2
	4-Vinylguaiacol	6	9.8			37.3
	cis-Isoeugenol	4	11.9			39.9
	trans-Isoeugenol	18	16.2			43.8
	Vanillin	40	31.4			52.0
	Acetovanillone	18	35.7			53.6
	Propiovanillone	24	43.3			55.9
Conidendrin	Guaiacol	100		3.8	and a state of the	
	Unknown	m		28.0		
	Unknown	14		29.6		
	Unknown	0T		52.4		
2-(2-Methoxy-4-methylph	<pre>lenoxy)-l-(3,4-dimetho</pre>	xyphenyl ) prop	an-1-ol			
	Creosol A	100	4.7		4.2	28.1
	2nd Peak ^L	18	10.3		7.7	40.0
	3rd Peak	23	21.2		12.1	45.2
Q	Propioveratrone	22	35.3		16.3	52.5
^a There are four column	conditions for which	retention tim	es are l:	isted: 170° i:	sothermal (170	°). 170°
initially with l°/min (170-2°/min), and 90°	program to 205°C (170 initially with 2°/min	-l°/min), 170 program to 2	° initia. 05°C (90	lly with 2°/min -2°/min).	1 program to 2	05°c
b Authentic samples were	: run for all products	listed by na	me.			
- - - - - - - - - - 		- - - - - -	- - -		•	r
Compound Was not inves	TIERTED DV MD AND ILS	retention th	me ala no	ot correspond 1	to an authenti	c sample.

• > • > • > • ^dCompound was investigated by MS and a structure proposed but no authentic sample was available for comparison. 4 > ΰ. 4

-212-

	MAJOR PYROLYSIS	PRODUCTS FROM	I MODEL C	OMPOUNDS		
Fyrclyzed Compound	Pyrolysis Product	Relative Peak Area	170°	Retent 170-1°/min	ion Time, min 170-2°/min	90-2°/min
1-(3,4-Dimethoxyphenyl)	propan-1,2-diol					
	lst Peak 2nd Peak	ωœ	14.01	6.6 0.1		
	3rd Peak Vevetwrl Methul	45	27.9	20.3		
	Ketone Ketone	100	32.4	24.4		
	JUN FEAK	OT	44.8	32.7		
2-(2-Methoxy-4-methylphe	snoxy)-l-(3,4-dimetho	xyphenyl ) prop	an-1-one			
	Veratrole	Ś			2.4	
	Creosol	100			4.3	
	3rd Peak	12			8.0	
	4th Peak	4			12.2	
	Propioveratrone	. 34			16.1	U
Dehydrodivanillin	Guaiacol			3.9		[.92
	Vanillin			27.1		51.6
Diisoeugenol	Guaiacol	62		3.8		
	4-Propylguaiacol	24		7.7		
	trans-Isoeugenol	12		16.4		
	4th Peak	30		19.3		
	5th Peak	68		21.9		
	oth Peak	26		26.6		
	th reak	100		90°3		
		, <b>ZZ</b>		<b>5</b> ,55		

TABLE XL (Continued)

-213-

	I CTCITIONIJ VOPHA	MONI CIODUDI		CULNUCATIN		
Pyrolyzed Compound	Pyrolysis Product	Relative Peak Area	170°	Retenti 170-1°/min	on Time, min 170-2 ⁰ /min	90-2°/min
Coniferin	Guaiacol Creosol Eugenol 4-Vinylguaiacol <u>cis</u> -Isoeugenol <u>trans</u> -Isoeugenol	30 38 1 <b>9</b> 100		111984 8.9 15.6 8.9 8.6 8.6		
5-Carboxymethyl-4-methyl-	-2(5H)-furanone					
	lst Peak 2nd Peak 3rd Peak 4th-Peak	63 41 27 100	4.2.1.9 6.1.4			13.3 14.6 21.1 27.8
cis, trans-8-Methylmuconic	: Acid					
	Unknown Unknown Unknown Unknown	61 31 36 100	0 H 4 0			
Vanillic Acið	Guaiacol Vanillic Acid	30 100			4.0 76.0	
5-Methyl-2(5H)-furanone	Unknown E Mathaul	ТŢ	2.0			
	furanone	100	2.6			

MAJOR PYROLYSTS PRODICES FROM MODEL COMPOUNDS

TABLE XL (Continued)

ļ

ł

## -214-