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SUMMARY

The aggressive evolution of the semiconductor industry – smaller process

geometries, higher densities, and greater chip complexity – has provided design en-

gineers the means to create complex, high-performance System-on-a-Chip (SoC) de-

signs. Such SoC designs typically have more than one processor and huge (tens of

Mega Bytes) amount of memory, all on the same chip. However portions of the on-

chip memory can be dynamically allocated to the on-chip processors during runtime

using software memory allocation techniques, real-time SoC designers prefer to par-

tition the on-chip memory statically during the design phase to achieve maximum

predictability sacrificing flexibility and efficient memory utilization. Dealing with the

global on-chip memory allocation/deallocation in a dynamic yet deterministic way is

an important issue for upcoming billion transistor multiprocessor SoC designs. To

achieve this, we propose a memory management hierarchy we call Two-Level Mem-

ory Management. To implement this memory management scheme – which presents a

shift in the way designers look at on-chip dynamic memory allocation – we present the

System-on-a-Chip Dynamic Memory Management Unit (SoCDMMU) for allocation

xiii



of the global on-chip memory, which we refer to as Level Two memory management

(Level One is the management of memory allocated to a particular on-chip Processing

Element, e.g., an operating system’s management of memory allocated to a particu-

lar processor). In this way, processing elements (heterogeneous or non-heterogeneous

hardware or software) in an SoC can request and be granted portions of the global

memory in a fast and deterministic time. A new tool is introduced to generate a

custom optimized version of the SoCDMMU. Also, a real-time operating system is

modified support the new proposed SoCDMMU. We show an example where shared

memory multiprocessor SoC that employs the Two-Level Memory Management and

utilizes the SoCDMMU has an overall average speedup in application transition time

as well as normal execution time.

xiv



CHAPTER I

INTRODUCTION

In a year or so an integrated circuit will appear with over one billion transistors

on a single chip [2, 34]. Such a chip is no longer an individual component to a

system but instead is a “silicon board.” Given that current computers spend much

time transferring data between compute and storage units, it is appealing to combine

significant processing power and a large amount of memory in the same chip. A

typical billion transistor System-on-a-Chip (SoC), as shown in Figure 1, will consist

of multiple Processing Elements (PEs) of various types (i.e., general purpose pro-

cessors, domain-specific CPUs such as DSPs, and custom hardware), reconfigurable

logic, large memory, analog components and digital interfaces [2, 19, 22, 52]. An

architecture such as this will be suitable for embedded real-time applications. Such

applications – especially multimedia – require great processing power and large vol-

ume data management [23].

Designers of a multiprocessor SoC with heterogeneous processing elements and
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Figure 1: Example of a billion-transistor SoC.

significant on-chip memory must pay careful attention to the management of the

on-chip memory. They have to decide whether the allocation will be static (i.e.,

determined at compile time) or dynamic (decided at run-time and capable of being

changed from one moment to another during operation). Most previous research in

memory management for embedded systems has focused on static allocation and how

to synthesize memory hierarchies for an SoC [23, 31, 51]. The static allocation of

memory makes the on-chip memory utilization inefficient, especially for applications

whose memory requirements change significantly during run-time. Moreover, such

static memory allocation makes system modification after implementation very diffi-

cult if not impossible. On the other hand, dealing with memory allocation between

the PEs in a dynamic way can result in more efficient utilization of memory. Also,

the memory allocation will be programmable and can be changed at any moment de-

pending on the system load. From the general-purpose end of the spectrum, there has

2



been significant research in shared memory multiprocessing [1]. However, in shared

memory multiprocessing, dynamic memory allocation is almost never deterministic;

moreover, it typically requires hundreds or thousands of clock cycles in the worst

case [1, 49], which makes satisfaction of real-time constraints on such shared memory

architectures difficult if not impossible.

In this thesis, we present a memory management hierarchy, Two-Level Memory

Management, for a multiprocessor SoC that combines the best of dynamic memory

management techniques (flexibility and efficiency) with the best of static memory

allocation techniques (determinism). The result is suitable for real-time systems

as well as non real-time systems. In Two-Level Memory Management, large on-chip

memory (not the L1 caches) is managed between the on-chip processors (“Level Two”

management of memory); while the memory assigned to any processor is managed by

the operating system running on that particular processor (“Level One” management

of memory). To implement this memory management scheme we present the System-

on-a-Chip Dynamic Memory Management Unit (SoCDMMU) for allocation of the

global on-chip memory among the on-chip processors.

The thesis is organized as follows. First, Chapter 2 will give an overview of mem-

ory management techniques and problems focusing only on memory allocation and

deallocation. Chapter 3 will describe our proposed Two-Level memory management

hierarchy for multiprocessor SoCs. Chapter 4 discusses the SoCDMMU and shows

3



the implementation of the SoCDMMU as a custom hardware and as software run-

ning on a general purpose microcontroller. Chapter 5 describes a CAD tool that can

generate an optimized SoCDMMU hardware according to the user’s inputs. Chap-

ter 6 discusses the implementation of Two Level memory management in a real-time

operating system. Finally in Chapter 7, we present some experimental results.

4



CHAPTER II

PREVIOUS WORK

2.1 Introduction

Memory management can be defined as the process of coordinating and controlling the

use of memory in a computer system. Memory management has been an important

topic in computer systems for a long time, and there have been many techniques

developed to make it more efficient. Memory management can be static (determined

at compile time) or dynamic (determined at run-time).

2.2 Static Memory Management

In static memory management, the memory is allocated (or assigned) at compile (or

design) time. Static memory management can be as simple as allocating static arrays

or as complex as synthesizing memory structures and/or software memory allocators

suitable for certain type of applications [23, 51, 47].

Wolf et al. present an algorithm for hardware software co-synthesis of multi-rate

5



real-time systems on heterogeneous multiprocessors that considers the impact of mem-

ory hierarchy on the system performance and cost [23]. The algorithm not only syn-

thesizes the hardware and software parts of the applications, but also the memory

hierarchy: it takes into account the impact of memory hierarchies on system perfor-

mance and cost in the co-synthesis process.

MATISSE [47] is a design environment that takes care of the background memory

management problem for dynamic data structure intensive applications by bridging

the gap from a system specification, using a concurrent object-oriented language, to an

optimized embedded single-chip hardware/software implementation. The MATISSE

environment addresses all the aforementioned tasks to synthesize a custom distributed

memory architecture. It permits the exploration of different architectures so that an

optimal choice can be made, which is crucial as memory bandwidth often is the main

performance bottleneck in this type of application.

Static memory management techniques are suitable for real-time systems as the

memory allocation is deterministic (determined at design time). However, static

memory management techniques do not always use memory efficiently. Moreover,

static memory management techniques are tuned for a certain application (or set of

applications); hence, they typically do not work efficiently with applications that are

different than the applications used during the design phase.

6



2.3 Dynamic Memory Management

In dynamic memory management, memory is allocated at run-time. Dynamic memory

management uses memory efficiently when compared to static memory management

techniques. However, dynamic memory management can consume a great amount

of a program’s execution time [41] – especially in object-oriented applications [53].

Dynamic memory management can be classified into two categories:

• Manual memory management

In manual memory management, the programmer has direct control over when

memory is allocated and when it might be recycled. Usually this is either by

explicit calls to heap management functions (e.g., malloc()/free() in the C lan-

guage) or by language constructs that affect the stack (such as local variables).

Although manual memory management is easier for programmers to under-

stand and use, memory management bugs are common when manual memory

management is used.

• Automatic memory management

Automatic memory management is a service, either as a part of the language

(e.g., Java and Lisp) or as an extension, that automatically deallocates memory

that a program will not use again. Automatic memory managers (often known

as garbage collectors) usually do their job by recycling blocks that are unreach-

able from program variables. Automatic memory management eliminates most

7



memory management bugs. However, sometimes automatic memory managers

fail to deallocate unused memory locations causing memory leaks.

Although automatic memory management seems attractive, automatic memory

mangers usually consume a great amount of the CPU time and usually have non-

deterministic behavior. In this thesis, we focus only on supporting manual memory

management techniques suitable for real-time systems.

Many mechanisms have been proposed to manage memory manually. These mech-

anisms can be categorized into two groups: (1) software-based solutions and (2)

hardware-based solutions. Sections 2.2, 2.3 and 2.4 explain these state-of-the-art

mechanisms and discuss their drawbacks. Before going further, we introduce defini-

tions of some memory management terms that will be used in the following sections.

• Heap. The heap is the memory area managed by dynamic allocation.

• Coalescing . Coalescing is the act of merging two adjacent free memory blocks.

Coalescing can be done as soon as blocks are freed, can be deferred until some

time later (known as deferred coalescing) or can be not done at all, ever.

• External fragmentation . External fragmentation is the division of free mem-

ory into many scattered small blocks. The free blocks cannot be coalesced;

hence, no large contiguous blocks can be allocated.

• Internal fragmentation . Internal fragmentation occurs when the memory

manager allocates more for an allocation than is actually requested.

8



• Memory Leak . A memory leak is a condition caused by tasks/programs that

allocate memory blocks without ever deallocating them. As a consequence,

the dynamic memory manager usually runs out of memory, thus rendering the

system unusable.

2.4 Conventional Software Memory Allocation

Memory allocation is the process of assigning blocks of memory on request. An al-

locator must keep track of which parts of memory are in use and which parts are

free. The optimal memory allocator would spend minimal time managing memory

and waste minimal (preferably zero) memory space. There are many common ways to

perform memory allocation, with different strengths and weaknesses. Common mem-

ory allocation techniques can be divided into the following mechanisms: sequential

fits, segregated free lists, the buddy system, indexed fits and bitmapped fits.

2.4.1 Sequential Fits

Sequential fit algorithms use a single linear list of all free memory blocks called a

free list. Initially, the free list contains only one block that represents all the memory

available for allocation. Typically, the free list is usually encoded inside the free

memory blocks, eliminating the need for dedicated memory. The search for a free

memory block in the list can be done in several ways which include the following:

• First Fit. The First Fit algorithm searches the free list from the beginning

for the first free memory block large enough to satisfy the allocation request.

9



If the block found is too large, the allocator splits the block and the remaining

part is put back into the free list.

• Next Fit. The Next Fit algorithm is similar to First Fit algorithm, except the

free list is searched from the location where the last allocated block was found.

• Best Fit. The Best Fit algorithm searches the free list for the best (smallest

free memory block that satisfies the allocation size) matched memory block.

While the Best Fit algorithm has good memory utilization in the general case,

it suffers from long execution times.

• Worst Fit. The Worst Fit algorithm always searches for the largest free

memory block to satisfy the requested allocation. In practice, this tends to

work quite poorly because it quickly eliminates large blocks, so that eventually

large requests cannot be met. The Worst Fit algorithm works well only when

the largest possible allocation is much smaller than heap size.

Since the sequential fit algorithms make use of a sequentially searched list (free list),

they suffer from serious scalability problems [49]. As memory available for allocation

becomes large, the search time becomes large and in the worst case can be propor-

tional to the memory size. Also, as the free list becomes large, the memory used to

store the free list becomes large, hence the memory overhead becomes large.
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2.4.2 Segregated Free Lists

Segregated free lists are a class of allocation mechanisms which divide the free list

into several subsets, according to the size of the free blocks. A freed or coalesced block

is placed on the appropriate subset list. An allocation request is serviced from the

appropriate subset list. Segregated free list algorithms can be categorized as follows:

• Simple Segregated Storage Simple segregated storage is a segregated free list

allocation mechanism that divides storage into areas and only allocates objects

of a single size, or small range of sizes, within each area. No memory splitting or

coalescing is allowed. This makes allocation fast, but may lead to high external

fragmentation. If the requested allocation size is not available, a larger memory

block is allocated and the unused part of allocated memory block cannot be

used for other allocations.

• Segregated Fit Similar to the simple segregated storage mechanism, segre-

gated fit mechanisms make use of an array of free lists, each holding free blocks

of a particular range of sizes. To satisfy an allocation request, the allocator

identifies the appropriate free list and allocates from it (often using a sequen-

tial fit mechanism such as first fit). If this fails, a larger block is taken from

another list and split. The remainder is put into an appropriate free list. When

a memory block is freed, it might be coalesced with a block in the same free list

and put into an appropriate free list. Although segregated fit algorithms do not

suffer from severe fragmentation, they have large search times.
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2.4.3 Buddy System

A buddy allocator uses an array of free lists, one for each allowable block size (e.g.,

allowable block size is a power of 2 in the case of binary buddy system). The buddy

allocator rounds up the requested size to an allowable size and allocates from the

corresponding free list. If the free list is empty, a larger block from another free list

is selected and split. A block may only be split into a pair of buddies (of the same

size in case of binary buddy system). A block may be coalesced only with its buddy,

and this is possible only if the buddy has not been split into smaller blocks.

The advantage of a buddy system is that the buddy of a block being freed can be

quickly found by a simple address computation. The disadvantage of a buddy system

is that the restricted set of block sizes leads to high internal fragmentation, as does

the limited ability to coalesce.

Different sorts of buddy system are distinguished by the allowable block sizes and

the method of splitting. They include binary buddies (the most common), Fibonacci

buddies (block sizes are Fibonacci numbers), and weighted buddies (block sizes are

2k or 3 ∗ 2k).

2.4.4 Indexed Fits

Indexed fits are a class of allocation mechanisms that use an indexing data structure,

such as a tree or hash table, to identify suitable free blocks, according to the allocation

policy. For instance, a tree ordered by block size may be used to implement the best

fit policy. Although indexed fits allocators seem to have smaller search times than
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other memory allocators for the average case, in practice, they tend to have search

times linearly proportional to heap size [49].

2.4.5 Bitmapped Fits

Bitmapped fits are a class of allocation mechanisms that use a bitmap to represent

the usage of the heap. Each bit in the map corresponds to a part of the heap,

typically a word, and is set if that part is in use. Allocation is done by searching the

bitmap for a run of clear bits. Bitmapped fit mechanisms have never found their way

into software allocators [49]; however, they have been used with hardware memory

allocators [8, 10, 11, 15, 29, 40, 41]. Although bitmapped fits have the advantage of

having a small memory overhead, the search time is proportional to the bitmap size.

2.5 Real-Time Software Memory Allocation Tech-

niques

The fastest and most deterministic approach to memory management is to disallow

dynamic memory allocation and to make the programmer allocate all memory stat-

ically. However, such an approach has obvious problems dealing with dynamically

changing workloads, e.g., as would be introduced by downloading new code onto a

Personal Digital Assistant (PDA). Another approach is to allow dynamic memory

allocation but to not support dynamic memory allocation in the kernel [7]. In this

case, the kernel is fast and deterministic, but any dynamic memory allocation falls

outside the scope of the kernel and thus is the responsibility of the user!
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Figure 2: Memory pools of fixed-sized allocation units.

Yet another approach to “dynamic” memory allocation is to statically assign par-

titions (at compile time) with fixed block sizes (e.g., partitions of size 1KB with

blocks of 32B) used to satisfy “dynamic” memory allocations [14, 20, 26, 30]. In this

case, each request can only be for a single block, which has the advantage of short

and predictable execution time because only one pointer needs to be changed [20].

However, the disadvantage occurs in allocating multiple blocks: the allocation time is

linear in the number of blocks allocated! Furthermore, since the partitions are stati-

cally created, the partition should be large enough to satisfy the worst-case memory

requirements during the runtime.

An RTOS usually divides the memory into pools each of fixed-sized allocation

units, as shown in Figure 2, and any task can allocate only one unit at a time [14, 20,

26, 30]. In this way the RTOS memory manager does not need to use complex data

structures to store the status of the allocated memory chunks and hence eliminates

the non-deterministic or long search time associated with complex data structures.

Thus, an RTOS can guarantee constant execution time for the memory management
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functions. Table 1 classifies few real-time operating systems according to which use

the fixed-sized block allocation and which support heap allocation.

Table 1: Dynamic Memory Management in Some Real-Time Operating Systems.
RTOS Fixed-Sized Blocks Allocation Heap Allocation

uCOS-II Y N
VRTXsa Y Y (mixture of sequential first fit

and simple segregated storage)*
eCos Y N (but supports variable size

block allocation with optional
coalescing)*

VxWorks N Y (sequential first fit)
Atalanta Y N

* Not recommended for critical tasks

2.6 Hardware Memory Allocators

To reduce the execution time of dynamic memory management routines (allocation,

deallocation and garbage collection) and/or make their execution times deterministic,

many researchers have proposed hardware accelerators for dynamic memory manage-

ment.

The literature shows several hardware implementation of memory allocators [8, 10,

11, 15, 29, 40, 41]. Those hardware memory allocators implement modified versions

of the buddy allocation algorithm. To store the heap allocation status, they use a

bitmap vector. Each bit in that bitmap vector presents a part of the heap. Thus,

the heap is divided into fixed number of allocation units called memory blocks. The

hardware allocator searches this bitmap vector to find free memory blocks to satisfy

the requested allocation.
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2.6.1 Early Hardware Allocators

The hardware implementation of a simple buddy allocator was first proposed by

Knowlton [8, 17]. It is a simple and fast buddy allocator that can allocate memory

blocks each of whose size is a power of two; hence, the allocator suffers from internal

and external fragmentation [8, 29].

Puttkamer introduced a hardware buddy allocator that does not suffer from inter-

nal fragmentation [10, 29]; however, the allocator does not have a constant execution

time. The allocator utilizes a shift register to store information regarding the allo-

cation status (one bit per memory block). To find free memory blocks to satisfy the

requested allocation the allocator shifts the memory bitmap vector one bit at a time

until it finds free memory blocks that satisfies the allocation request.

2.6.2 Chang’s Hardware Buddy Allocator

Chang and Gehringer propose a modified hardware-based buddy system that elimi-

nates internal fragmentation and has a constant execution time [10].

Chang et al. have implemented the malloc(), realloc() and free() C-Language func-

tions in hardware [40]. Also, they propose a hardware extension to be a part of future

microprocessors to accelerate dynamic memory management [11]. The hardware mal-

loc() implements a modified binary buddy allocator algorithm. To allocate memory,

the hardware allocator first finds a memory space large enough for the allocation re-

quest using an or-gate tree (example shown in Figure 3). Then the hardware allocator

marks this memory space to indicate that it is allocated.
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Figure 3: Chang’s allocator or-gate tree.

Although Chang’s modified binary buddy allocator eliminates internal fragmenta-

tion, the allocator can detect only a free memory block chunk if it starts at an address

that is power of two. This problem is called the blind spot problem and may prevent

the allocator from satisfying allocation requests even though there are free memory

blocks (these free memory blocks start at an address which is not a power of two)

that can satisfy the request.

Example 1 Figure 3 shows a part of Chang’s allocator; specifically, the bitmap vector used to

store the heap allocation status and the or-gate tree used to determine the size of the available

free space. Each bit of the bitmap vector determines the allocation status of each allocation unit

in the heap (usually a word). The bitmap vector in Figure 3 has a size of 8 (which is unrealistic

but used in this example for simplicity). Assume that initially allocation units 1, 2, 3 and 4 are
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free indicated by zeros at bits 1,2,3 and 4 (the bits are numbered from right to left starting with

0). The and gates at the right side of the or-gate tree are used to indicate the existence of free

memory blocks of certain sizes. Those sizes are marked using the numbers at the left hand side

of the or-gate tree. When the output from the and gate is zero that means the corresponding

size is available. For instance, the and gates outputs indicate that free memory areas of 1 block

and 2 blocks exist. The or-gate tree cannot recognize the four free memory blocks 1, 2, 3 and 4

because the four free blocks start at bit position 1 which is not a power of 2. Hence, a memory

allocation request of allocation size 3 or 4 cannot be satisfied by this approach; however, there

are free 4 memory blocks available for allocation. 2

2.6.3 Cam’s Hardware Buddy Allocator

To overcome the blind spot problem, Cam et al. proposed a hardware buddy allo-

cator that detects any available free block of requested size and eliminates internal

fragmentation [8].

In order to be able to find free memory blocks that start at locations not a power

of two, Cam modified Chang’s allocator or-gate tree to the one in Figure 4. Cam’s

or-gate can detect free memory even if it does not start at memory block number

that is a power of two.

Although Cam’s allocator does not have the blind spot problem, it rejects some

memory allocation requests for which there exists enough free memory to satisfy the

request. Specifically, to search for available memory to satisfy a request, Cam’s allo-

cator has to round-up the requested size into a number which is a power of two; thus,
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Figure 4: Cam’s or-gate tree.

it is possible that some requests might not be satisfied even though enough memory

blocks exist to satisfy the request. Also, Cam’s allocator has much larger area than

Chang’s allocator. For example, for 8-bit bitmap vector, Chang’s or-gate tree has 7

or gates, while Cam’s or-gate tree has 28 or gates.

2.6.4 Summary

As explained in the previous subsections, all earlier research known to the author

focuses only on the hardware implementation of a buddy allocator for uniprocessor

systems. None discuss in detail how these functionalities could be integrated into a

system (except Chang’s work) or present any system examples. Moreover, the use of

these hardware allocators for multiprocessor systems has not been addressed.
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Although some of the introduced hardware implementations of memory allocators

show good performance in terms of execution time (Chang’s and Cam’s allocators),

all of them suffer from one serious problem: the allocators utilize a bitmap vector to

store the memory allocation status which means that the memory should be divided

into fixed-size blocks. If most of the dynamic memory allocations done by applica-

tions are for small objects, then, for the previous approaches, the granularity of the

memory blocks needs to be increased (i.e., memory block size needs to be decreased)

by increasing the size of the bitmap vector; however, this increases the hardware

complexity and execution time of the allocator.

Example 2 A typical 32-bit RISC processor has an address space of 232 bytes (4GB). If

dynamic memory allocation is handled by a hardware buddy allocator that has a 1024-bit bitmap

vector (which can be considered large), the size a memory block assuming equally sized blocks

would by 232/210 = 222 (4MB!). Recalling that most memory allocations are for small objects

(< 1KBytes) for object oriented applications, then significant amounts of memory would be

wasted (e.g., the request of an allocation of a 32 byte object allocates 4MBytes). Increasing

the granularity of the memory blocks by decreasing the block size to 1KByte (hence reducing

the memory wasted) would require a bitmap vector of size 232/210= 222 bits! 2

It is obvious, from Example 2, that hardware implementations of dynamic mem-

ory allocators that are based on the bitmap vector approach described above are not

suitable for use with a uni-processor system with a large (typically 4GB) address

space and applications requiring mostly small (e.g., 1KB or less) dynamic memory
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allocations. Clearly, then, the previous work is even less applicable to typical mul-

tiprocessor SoC systems with similar characteristics (a large amount of addressable

memory and many small dynamic allocations).

2.7 Summary

In this chapter we gave an overview of static and dynamic memory management. We

discussed in detail different methods of dynamic memory allocation. One way to man-

age memory and dynamically allocate it is by using hardware allocators. Although

prior hardware allocators are fast, they do not scale well.

In the following chapters we will introduce a completely new approach for hard-

ware dynamic memory management. Chapter 3 will introduce a new hierarchy for

dynamic memory management for heterogeneous multiprocessor SoC. Then, the fol-

lowing chapter, Chapter 4, will discuss the implementation of that new memory

management hierarchy.
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CHAPTER III

TWO-LEVEL MEMORY MANAGEMENT FOR

MULTIPROCESSOR SOC

Multiprocessor SoCs with multiple PEs and large global on-chip memory are suitable

for mobile multimedia applications and hardware (e.g., a multimedia Personal Digital

Assistant). Such applications require great processing power and large data. Also,

these applications can demand a lot of memory. For a mobile device that is built

around a multiprocessor SoC running memory demanding applications able to be

downloaded wirelessly, dynamic memory management is very desirable. For example,

if quick download, installation and memory allocation primitives are available on a

handheld PDA, then thousands of applications available at a wireless server could

service the PDA, resulting in an appearance of thousands of available applications

with only, say, ten of the applications actually downloaded and installed at any point

in time. Thus, dealing with the large global on-chip memory in multiprocessor SoC

in a dynamic yet deterministic way is an important issue.
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In this chapter we introduce a new memory management scheme suitable for

multiprocessor SoC. Although the new memory management scheme provides a way

to dynamically allocate on-chip memory among the on-chip PEs, our new memory

management scheme keeps dynamic memory management fast and deterministic.

3.1 Problem Statement

Although dynamic memory management of the on-chip memory in multiprocessor

SoC is a desirable option, current embedded designers often avoid dynamic memory

management in favor of determinism. In this thesis we try to answer the question:

“How can global on-chip memory in the multiprocessor SoC be allocated among the

on-chip processing elements in a dynamic yet deterministic way?” If our answer is

successful, our approach could signal a significant shift in the way embedded software

designers code up their real-time applications.

3.2 Two-Level Memory Management

We propose a programming model and memory management scheme that we call Two-

Level Memory Management for multiprocessor SoC on-chip memory management.

Two-Level Memory Management assumes that the allocation of the global on-chip

memory (Level Two) is handled separately (e.g., by the SoCDMMU), while each PE

handles local dynamic memory allocation among the threads/processes running on

the PE (Level One). Typically, if a process requests a memory allocation the process

will request the memory from the RTOS. In our system, if the current PE has enough
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extra global memory to satisfy the request, the RTOS will simply allocate the memory

right away. This allocation by the RTOS of memory already allocated to the PE is

what we refer to as Level One memory management. Otherwise, if the PE does not

have enough global memory already allocated to satisfy the request, the RTOS will

request more memory from the SoCDMMU. This is referred to as Level Two memory

management. So there are two levels of memory allocation and management: the

process/thread level managed by the RTOS (local allocation, Level One) and the PE

level (global allocation, Level Two) managed by the SoCDMMU.

3.3 Assumptions

Before going further through the rest of the thesis we will first state some assumptions

on which we base our approach:

• The application running on the SoC fits (instruction and data) in the global

on-chip memory. Note that data may be streaming through the global memory,

e.g., as would occur in a video application.

• The global memory is divided into a fixed number of equally sized blocks (for

example, 16KB or 64KB), each of which is called a global memory block or a

G block.

• Global memory allocation done by the SoCDMMU is referred to as G allocation;

global memory deallocation done by the SoCDMMU is referred to as G deallocation.

• A page consists of one or more G blocks.
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• Each page has a unique identifier we call a Page ID. The Page ID is assigned by

the PE that allocates the page. The Page ID is used to reference a particular

page to perform a certain operation (e.g., move or deallocation).

• Each G block has one physical address and one or more virtual addresses. The

base virtual address (i.e., the virtual address of the very first word in the

G block) a particular PE assigns to a G block may differ from one PE to another.

• A G block can be moved (by changing its virtual address) from one place to

another in the PE address space at runtime.

• A G block ’s base virtual address will be referred to as a PE-address.

• Each PE may request dynamic G allocation or G deallocation of a page.

• Multiple PEs may issue G allocation and/or G deallocation commands simul-

taneously.

• The PEs can G allocate three types of memory pages:

– Exclusive Memory : Only the owner (the PE that G allocates the mem-

ory) can access the G allocated memory. No other PE can access the

page. We will refer to the command that G allocates this type of page as

G alloc ex.

– Read/Write: The PE that G allocates the page can read from or write

to the global memory. Another PE can read from the page if that PE
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G allocates the page as read only. No other PE may G allocate the same

memory as Read/Write or as Exclusive Memory. This limitation signifi-

cantly reduces cache coherency problems. We will refer to the command

that G allocates this type of page as G alloc rw.

– Read Only : The PE can read from (but not write to) the page. The

user may choose to require that the page be previously G allocated as

read/write by a different PE. This choice is set by a control register in the

SoCDMMU. We will refer to the command that G allocates this type of

page as G alloc ro.

We deal with the cache coherency problem that may exist in the pages that are

G allocated as read/write using a simple cache invalidation scheme. Note that since

only one processor may allocate any page as read/write (with other processors only

allowed to allocate the page as read only), the only time a cache line needs to be

invalidated is when a PE writes read/write memory that other PEs – which have

allocated the memory as read only – have cached. In this case, the write through

from the PE with read/write will cause the cache lines in the read only PEs to be

invalidated.

However the proposed programming model restricts the shared memory to the

case where the shared memory page has only one writer and multiple readers, the

SoCDMMU does not prevent writes to the same memory page by multiple processing

elements. Hence, the SoCDMMU can work with systems that use snoopy caches and
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Figure 5: Example of two-PE SoC with coherent caches and the SoCDMMU.

standard cache coherency protocols (e.g., MSI and MESI).

Example 3 Figure 5 shows in detail how the SoCDMMU can be connected to a system that

uses snoopy caches and a cache coherency protocol. The system shown in Figure 5 consists of

two PEs, memory, caches and coherent cache controllers. The SoCDMMU is a connected in

such a way that its address converters perform the virtual to physical address conversion of the

address lines going to the caches. Since the address conversion takes place before the caches,

the caches are considered as physical caches. Each cache controller snoops into the bus to

monitor the other cache bus transactions to keep its contents coherent. 2
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Figure 6: Example of four-PE SoC with the SoCDMMU.

3.4 The Virtual Memory Model

The memory buses of the PEs are connected to the SoCDMMU to allow the SoCD-

MMU to control all of the global memory accesses as shown in Figure 6. This enables

the SoCDMMU to convert the PE-address (virtual address) to a physical address.

The PE can map any allocated G block to any memory location inside the PE’s ad-

dress space. This feature allows the allocation of non-contiguous physical memory

G blocks and the mapping of them into contiguous memory locations in the PE’s ad-

dress space; thus, there is no need for memory compaction of the G blocks (memory

compaction may be an issue within a particular G block).

Example 4 Consider the SoC in Figure 6 that has four ARM processors, global on-chip

memory of 16MBytes and an SoCDMMU. The global on-chip memory is divided into 256 blocks

each of which is 64KB. Figure 7 shows the mapping of six memory blocks in PE address space
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Figure 7: Mapping of physical memory G blocks to PE address spaces.
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into five physical memory G blocks. PE1 allocated one page of two G blocks starting at address

0x00000000 in its address space. However, this page is mapped into two non-contiguous physical

memory G blocks starting at 0x000000 and 0x020000 respectively. Also, the page that consists

of one physical memory G block that starts at physical address 0x050000 is shared between PE1

and PE2; PE1 maps the G block to the location 0x00030000 in PE1’s address space while PE2

maps the G block into a different address (0x00040000) in PE2’s address space. 2

Please note that the Two-Level memory management hierarchy is a way to handle

the large on-chip memory. Two-Level memory management hierarchy identifies two

levels on which on-chip memory can be allocated. Level Two is the global on-chip

level where portions of the large on-chip memory are assigned to PEs (typically,

portions of cache memory cannot be assigned to any PE). Level One is the OS level

where memory assigned to any PE is assigned to the tasks that run on that PE. Our

Two-Level memory management hierarchy is a completely different concept than two

level caching or the three level caching hierarchies. These caches hierarchies are used

mainly to speed up memory access by caching frequently accessed main memory

portions at different levels. Hence, Two-Level memory management hierarchy and

the SoCDMMU can work with SoCs that have any number of caching levels as it does

not deal or interfere with the cache operation (other than virtual to physical address

conversion).
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3.5 Intuitive Advance: Centralize Multiprocessor

Memory Management Decisions

Intuitively, a shared memory heterogeneous multiprocessor typically implements a

distributed memory allocation paradigm. This paradigm involves software on each

processor, cache coherent hardware controllers, and shared data structures. What

we propose here is to have a centralized unit, the SoCDMMU, handle all requests

and grants of blocks of the large on-chip memory. Thus, we have covered so far in

this thesis an overview of previous work and an explanation of our proposed two-

level memory management model. The way a PE handles memory allocated to it is

well known; thus, how will the allocation of the large on-chip memory be handled?

In the next chapter (Chapter 4), we will explain in more detail how the proposed

SoCDMMU operates.
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CHAPTER IV

THE SOCDMMU

In this chapter, we will first give a detailed overview of the hardware implementation

of the SoCDMMU. The SoCDMMU can be implemented as hardwired logic or as soft-

ware that runs on a general purpose processor. The SoCDMMU implementation that

involves a general purpose processor and software implementation of the allocation

algorithm is flexible; however, it is over 10X slower when compared to the SoCDMMU

implementated as hardwired logic. In Chapter 7, we show a speed comparison of both

implementations. Although this chapter focuses on a hardwired implementation of

the SoCDMMU, we will show how parts of the SoCDMMU can be implemented as

software that runs on general purpose processors.

4.1 SoCDMMU Interface

The SoCDMMU command interface is mapped into one location in the I/O space of

the PE (typically, a single address accessing 32 bits of data when an SoCDMMU com-

mand fits into 32 bits – see Section 4.1.1 for details about the SoCDMMU commands).
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This memory mapped address or I/O port to which the SoCDMMU command reg-

ister and status register are mapped is used to send commands to the SoCDMMU

(write data to the port or memory-mapped location) and to receive the status of the

command execution (reading from the port memory-mapped location).

4.1.1 The SoCDMMU Commands

There are three types of commands that the SoCDMMU can execute:

• G Allocate Commands

Figure 8 shows the command word format for the G allocate commands. There

are three types of G allocate commands: G alloc ex, G alloc rw and G alloc ro.

The right-most field of the command word specifies the command type. The

next field specifies the PE address to which the PE wants to map the requested

G blocks. The third field specifies the allocation size in G blocks. Finally, the

fourth field specifies the software assigned ID of that page (Page ID – see

Section 3.2).

The memory page’s G blocks are contiguous in the PE address space; hence, only

the address of the first G block is required to be specified to identify a memory page

that consists of multiple G blocks. Note that, if the user desires the allocation of two

non-contiguous memory G blocks, two G allocation commands must be issued, one

for each G block.

• G deallocate Command
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000
Virtual Block No.
Size
Page ID
G_alloc_ex


001
Virtual Block No.
Size
Page ID
G_alloc_rw


010
Virtual Block No.
n/a
Page ID
G_alloc_ro


011
n/a
n/a
Page ID
G_dealloc


100
Virtual Block No.
n/a
Page ID
G_Move


Figure 8: The SoCDMMU commands.

Figure 8 shows the format of the G deallocate command word. The G deallocate

command needs to know the Page ID to be deallocated.

• G move Command

Figure 8 shows the format of the G move command. The G move command

is used to re-map an allocated memory page to another location in the PE-

address space (virtual address). The command needs two parameters: the first

parameter specifies the new PE address to be assigned to the page (virtual

block number); the second parameter specifies the Page ID of the page to be

moved. Thus, the G move command allows PE address space compaction (see

Example 5).

Compaction of the PE’s address space is required when the PE address space

is highly fragmented and there is no available contiguous set of virtual memory
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Figure 9: An example use of the G move command.

blocks to which requested – and allocated – physical memory G blocks can be

mapped.

Example 5 To explain the idea of PE-address space compaction, consider the first three

allocated pages as shown in Figure 9 (a). Figure 9 (a) shows the locations of three physical

memory pages in the PE-Address space. For example the first page consists of one memory block

and is mapped to block number 0 in the PE-Address space. If the second page is deallocated

as in Figure 9 (b), we end up with a hole in the PE-Address space that may not be suitable for

future allocations. We can use the move command to move the third page so that it starts at

block number 1, as shown in Figure 9 (c), instead of block number 3 which is where the start of

the third page was located in Figure 9 (a) and Figure 9 (b). Please note that the actual physical

memory has not been moved or changed in any way; only the PE address (which is virtual and

thus which the SoCDMMU translates into a physical address upon access) has been moved in
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Bit 0: 1-Not enough memory. 0-No error.

Bit 1: 1-Page was not allocated. 0-No error.

Bit 2: 1-Not an owner. 0-No error.

Bit 3: 1-Page not found (move). 0-No error.

Bit 4: 1-Page not found (deallocation). 0-No error.

Bit 31: 1-Invalid Status Word.


Figure 10: The SoCDMMU status register error codes.

the virtual address space. 2

The SoCDMMU Control Unit has a configuration register that affects the SoC-

DMMU operation. One of the configuration register bits affects the execution of

the G alloc ro coomand. When this bit is cleared to 0, a PE can allocate read only

memory without being previously allocated as read/write by another PE. If this

particular bit is set to 1, a PE cannot allocate memory as read only unless it is

allocated as read/write by another PE and an error will be generated. This bit is set

to 1 on reset.

4.1.2 The SoCDMMU Error Codes

The PE has to read the status word to determine the status of the last command sent

to the SoCDMMU. Figure 10 shows the status register format and the possible error

codes. Please note that a status register of a value ‘0’ indicates a successful execution

of the previously issued command. Bit 31 in the status register indicates whether the

status register was prematurely read. The possible errors that can be detected at the

SoCDMMU level in a command received are as follows:

• Not enough memory to G allocate (G allocation error).
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• Trying to G allocate ro a memory page that was not allocated previously as

read only (if the user decides to enable this error) (G allocation error).

• Trying to G deallocate a non-owned memory page (G deallocation error).

• Trying to move a non-existing memory G block (G move error).

• Trying to G deallocate a non-existing memory page (G deallocation error).

4.2 The SoCDMMU Hardware

In this section, we will describe the implementation of the SoCDMMU as a hardwired

unit. In Section 4.4, we will show a different way to implement the SoCDMMU to

provide programmability and flexibility.

Figure 11 shows the structure of the SoCDMMU. The block labeled “BASIC

SoCDMMU” can handle only one request (allocation/deallocation) at a time. Multi-

ple requests are handled by having multiple command and status registers. Each PE

has its own command register and status register.

Each PE writes its command into its associated command register. When multiple

commands are received simultaneously, the Request Scheduler determines which com-

mand will be executed on the BASIC SoCDMMU according to a priority-scheduling

algorithm implemented in the Request Scheduler, where priorities are dynamically

assigned to ensure that, among commands received in the same clock cycle, the

G deallocate commands are always executed first (note that commands received in
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Figure 11: The SoCDMMU architecture.
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earlier clock cycles are always executed before commands received in subsequent clock

cycles).

4.2.1 The Address Converter

The Address Converter is used to convert a PE address (virtual address) into a

physical memory address. Each PE has its own Address Converter. The Address

Converter is an associative memory array (similar to the memory used to store the

tags in set-associative cache) where every entry corresponds to a particular G block.

For each memory G block, the Address Converter stores the G block base address in

the PE address space. Specifically, the first entry stores the G block base address in

PE address space of the first physical G block, the second entry stores the G block

base address in PE address space of the second physical G block and so on. Also,

there is a valid bit associated with every Address Converter entry to indicate whether

the entry contains a valid G block base address in PE address space or not.

Example 6 Consider the SoC of Example 4 that utilizes the SoCDMMU with n=256 G blocks

each of which is 64KB. In this example, “Offset” is 16 bits long, “Virtual Block no.” is 16 bits

long and “Physical G block no.” is 8 bits long. As we can see in Figure 12, the PE base address

of the first G block (G block zero) is 0x00FA and that of the third G block (G block two) is

0x0A3F. Thus, for example, virtual address 0x00FA9864 would be translated to physical address

0x00009864, and virtual address 0x0A3FFE68 would be translated to 0x0002FE68. 2

The information stored in the Address Converter is updated by the Basic SoC-

DMMU during the execution of the G allocate and G move commands. A new record
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Figure 12: PE address to physical address conversion.

(the PE base address of a G block plus a valid bit indicating if the entry is valid or

not) is inserted into the address converter when a G allocate command is success-

fully executed. One or more records might be updated when a G move command is

successfully executed.

PE address to physical address conversion is required and can make allocated

non-contiguous (in physical address space) memory G blocks appear as contiguous

memory blocks to the PE address space. This avoids, at the G block level, memory

fragmentation in the physical address space; hence, no G block level physical memory

compaction is needed. Virtual to physical address conversion is done as shown in

Figure 12. The virtual block number part of the PE address is compared to all of the

valid (with valid bit set to one) Address Converter entries in parallel. The output
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Figure 13: The Address Converter for Example 7.

of the comparator that corresponds to the matched Address Converter entry is set

to one while the outputs of the other comparators are cleared to zero. The outputs

from all of the comparators go to the binary encoder. The binary encoder converts

the outputs of the comparators into a binary number that equals to the index of the

matched entry (the physical G block number). The physical G block number is used

along with the block-offset part of the PE address to construct the physical address.

Example 7 Consider the SoC of Example 4. Since each G block is 64KB, each “Offset” field

shown in Figure 12 is sixteen bits long; thus, since a 32-bit address (the ARM9TDMI has a 4GB

address space) is used, the “Virtual Block no.” at the top of Figure 13 is (32-16)=(log 2(4GB)-

log2(64KB))=16 bits long. Furthermore, since there are 256 (=28) G blocks, the “Physical

G block no.” field in the bottom left of Figure 13 is eight bits long. Now, the SoCDMMU

of Examples 2 and 4 uses four Address Converters each of which is an associative memory of
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256 (=28) words. The first entry in the associative memory – entry zero – holds the 16-bit

Virtual Block number in PE address space which is mapped to G block zero, i.e., the G block

with Physical G block number zero. The second entry in the Address Converter – entry ‘1’ in

Figure 13 as indicated on the left-hand side of the Address Converter block in the center of

Figure 11 – holds the 16-bit Virtual Block number in PE address space which is mapped to

G block 1, i.e., the G block with Physical G block number ‘1’. This continues up to the last

entry – entry ‘255’ in Figure 13 – which holds the 16-bit Virtual Block number in PE address

space which is mapped to G block 255. As shown in Figure 13, the virtual block number (the

G block base address in PE address space) is used to lookup the G block physical base address

(which is of size log 2(number of G blocks)=8 bits). Finally, the physical address is formed by

concatenating the offset part of the PE address with the G block physical base address obtained

from the Address Converter.

It may seem to the reader that using associative memory for the Address Converter is ex-

pensive in terms of the area of the Address Converter (the Address Converter has the same area

as 1.22KB 6T-SRAM – see Chapter 5, Section 5.3); however, the alternative implementations

are more expensive either in area or speed. The Address Converter could be implemented as a

lookup table using SRAM where the virtual block number part of the address is used as an index;

such implementation would require 64KB SRAM which is more than 50 times larger in area than

our implementation. Also, the Address Converter could be implemented as a sequential search

lookup table which has less area but needs many more cycles to find a match. 2

Although the Address Converter (in our current implementation) performs a vir-

tual to physical address translation, it does not currently replace all the functionality
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of a Memory Management Unit (MMU) that can be found in modern processors.

While the SoCDMMU’s Address Converter does provide an address translation mech-

anism, an SoCDMMU does not provide memory protection or page-level access con-

trol provided by an MMU (however, those functionalities can be implemented into the

SoCDMMU). Also, note that if the SoCDMMU is used with a microprocessor that

utilizes an MMU, the Translation Look-aside Buffer (TLB) found in the processor

MMU cannot replace the Address Converter (the SoCDMMU needs full control over

the TLB – if we want to use the TLB instead of the Address Converter – but such

full control is not usually provided by microprocessor core vendors). Please note that

the SoC systems we simulated that utilize the SoCDMMU have microprocessors that

either do not have MMUs at all (e.g., ARM9TDMI) or provide the ability to disable

the MMU (which we have done for the MPC750 and MPC755).

4.2.2 The Basic SoCDMMU Architecture

Figure 13 shows the structure of the BASIC SoCDMMU. This unit performs G allocation

and G deallocation commands. The Allocation Vector is a bit vector where the num-

ber of bits equals the total number of G blocks in the global memory. Each bit of

the Allocation Vector shows if the corresponding G block in the global memory is

G allocated or not. Thus, the SoCDMMU uses the Allocation Vector to keep track of

the allocation status of the physical memory G blocks.

The BASIC SoCDMMU also stores information about the G allocated G blocks
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Figure 14: The Basic SoCDMMU architecture.
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using the Allocation Table. The Allocation Table has a register file with number of

entries equal to the total number of G blocks. Each entry corresponds to a particular

G block and contains the following information about that particular G block (as

shown in Figure 14): the allocation mode (exclusive, read only or read/write), the

PE that allocated the block and the Page ID given to the G block. Please note

that the Page ID field width depends on the number of Global on-chip G blocks:

specifically, Page ID field width is equal to log 2(number of G blocks).

If a wider range of IDs is required at the programming language level, the compiler

can automatically generate an ID that fits into the Page ID field from the programmer

specified Page ID.

 

Figure 15: The Allocation Table bit vector output.

The Allocation Table has a bit vector output to identify the G blocks of any
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Page ID
PE
MODE


Figure 16: The Allocation Table entry format.

memory page given the Page ID of that page as shown in Figure 15. This output

has 0s in the bit positions that correspond to the page G blocks and 1s in other bits.

This bit vector output is used during the G deallocation process as explained later.

Example 8 Consider the SoC of Figure 1 that utilizes the SoCDMMU. The system consists

of four PEs and a global on-chip memory of 1MB. The global memory is divided into 8 G blocks

(this is an unrealistic number but we use it to simplify the example; a typical number is 256) each

of which has a size of 128KB. Assume that initially no memory G block was allocated to any PE.

Figure 15 shows the Allocation Table after allocating the first three memory G blocks to PE1

for exclusive use (three records are inserted into the Allocation Table; each record corresponds

to one of the three G blocks that form the page). This three G block page is given the Page

ID 5 by the PE that allocated it (PE1). Please note that the G blocks that form a page are

given the same Page ID. Also note that the PE field width is 2 bits (the SoC has only four

PEs); while the Page ID field width is 3 bits (the physical memory is divided into eight memory

G blocks). 2

The G allocation (G alloc ex, G alloc ro and G alloc rw) process is performed

using the Allocation Unit. The Allocation Unit inputs are the page size (number of

G blocks) and the information stored in the Allocation Vector. Using this information,

the Allocation Unit allocates the requested page using a first fit algorithm. The output
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Figure 17: Allocation Table example.

from the Allocation Unit is used to update the Allocation Vector and insert records

in the Allocation Table. Also, output from the Allocation Unit is used to update the

information stored in the Address Converter look up table. If there are any errors,

then the appropriate error code will be written to the status register and no update

will be performed to the Allocation Table, Allocation Vector or the Address Converter.

Please note that if the user selects the option that a PE needs to allocate a page

as read/write before other PE can allocate it as read only, the Allocation Unit is not

used during the execution of G alloc ro. In this case, the execution of the G alloc ro

command involves only the retrieval of the information of a previously G alloc rw ’ed

page; thus, the execution of the G alloc ro command requires one cycle less than that

required for G alloc rw or G alloc ex.

To G deallocate a page, first the Page ID is used to read the page G blocks from

the Allocation Table using the Allocation Table bit vector (shown in Figure 15). The

bit vector has 0s in the bit positions that correspond to the page to be deallocated.
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Figure 18: The deallocation process.

The page information along with the information stored in the Allocation Vector are

fed to the Deallocation Unit. The Deallocation Unit, as shown in Figure 18, performs

a logical and operation between the Allocation Vector contents and the inversion of

the output from the Allocation Table. The output from the Deallocation Unit is writ-

ten to the Allocation Vector. Also, the appropriate page entries are deleted from the

Allocation Table.

4.2.3 The Allocation Unit

As shown in Figure 14, the Allocation Unit accepts the Allocation Vector ’s output

and the allocation size as inputs and generates a bit-pattern that corresponds to the

allocated G blocks (has 1s at the locations of the allocated G blocks). The output is

used to update the contents of the Allocation Vector (using a logical OR operation).

Thus, the Allocation Unit is a combinational circuit that allocates any given number
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1 allocate(size,in[0:n-1]) {

2 for (i:=0 to n-1) {

3 if (in[i]==0 and size>0) {

4 out[i]:=1;

5 size:=size-1;

6 } else out[i]:=0;

7 }

8 if (size>0) return NOT_ENOUGH_MEMORY;

9 else return out[n-1,0];

10 }

Figure 19: The allocation algorithm.

of G blocks.

The operation of the Allocation Unit can be described by the algorithm shown

in Figure 19. Please note that n is the size of the Allocation Vector in bits, size is

the requested allocation size, in[n-1:0] is the output of the Allocation Vector and

out[n-1:0] is the output from the Allocation Unit.

Example 9 To explain the allocation algorithm, consider an example where n=8 (this number

is unrealistic but is used for simplicity; a typical value of n would be 256). Also, assume that

initially the Allocation Vector has the value 11001011 and the requested size is 2 G blocks.

The allocation algorithm iterates through the input bit vector (output of the Allocation Vector)

searching for free G blocks (indicated by a ‘0’ in the corresponding bit position) to allocate

(lines 2 and 3 of Figure 19) until the requested allocation is satisfied or the last bit of the input

vector is reached. When a free G block is found the corresponding bit at the output is set to ‘1’

and the size is reduced by 1 (lines 4 and 5 of Figure 19); otherwise, the corresponding bit at the

output is cleared. The execution of the algorithm on our input generates the output 00010100.
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Figure 20: Unoptimized Allocation Unit hardware.

This output is used to update the Allocation Vector contents through a bitwise OR operation.

The updated Allocation Vector would be 11011111. 2

An unoptimized fully-parallel hardware implementation of the allocation algo-

rithm is shown in Figure 20 and requires a Full Subtractor (FS) for each bit in the

Allocation Vector. The FS block in Figure 20 performs O=x-y operation. The Al-

location Unit shown in Figure 20 has two inputs: the output from the Allocation

Vector (in[n-1,0]) and the allocation size (Size). Each bit of the bit vector in[n-1,0]

is inverted then subtracted from the Size input serially (there is a FS per each bit of

in[n-1,0]) as shown in Figure 20.

If the output from a Full Subtractor is greater than or equal to zero (indicated by

cleared borrow out: bout=0) and the corresponding bit of in is zero (which indicates

an available G block) then the corresponding output bit from the Allocation Unit is
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Figure 21: Unoptimized Allocation Unit for Example 10.

set to one. Once the output of one of the subtractors is less than zero (which means

that the allocation is satisfied) then all output bits from that bit position onward are

set to zero.

If the output from the last Full Subtractor (leftmost) is greater than zero then

the allocation request cannot be satisfied and an error flag is set. Note that the

hardware implementation of Figure 20 is expensive in terms of silicon area (gate

count) and propagation delay (the longest path goes through n stages); hence, the

allocator described in Figure 20 does not scale up well as n increases.

Example 10 To explain the operation of the unoptimized Allocation Unit, consider an ex-

ample where n=8 (this number is unrealistic but is used for simplicity; a typical value of n
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would be 256). Also, assume that initially the Allocation Vector has the value 00000000 and

the requested size is 2 G blocks as shown in Figure 21. First, the input in is inverted then

subtracted from the input size one bit at a time. After subtraction, the result from the first

subtractor will be 1 and the result from the second subtractor will be 0. The borrow outs (bout)

from the first and the second subtractors will be 0 which cause the first and the second bits of

the output out to be the inversion of the corresponding input in bits, The borrow out (bout)

from the third subtractor is 1 which will cause all the bits of out starting from the third bit to

be 0. Finally, the output will be 00000011. 2

Figure 22 shows a more efficient hardware implementation where the n-bit input

in[n-1,0] is segmented into k segments each of which is m bits (e.g., a 256 bit input

can be divided into 16 segments each of 16 bits). The operation of the optimized

Allocation Unit hardware can be described by the algorithm shown in Figure 23.

The 0s in each m-bit segment are counted using a 0s counter (lines 5 and 6

of Figure 23) and the output of the 0s counter is subtracted from the remaining

allocation size (the allocation size request remaining unfilled at time that the segment

is considered – segments are considered sequentially from right to left in Figure 22)

using n-bit unsigned full subtractor as shown in Figure 22.

The unsigned subtractor has two inputs, the output from the 0s counter and the

remaining allocation size (the top arrow and the left arrow entering the full subtractor

from the right respectively as shown in Figure 22). Also, it has two outputs, the

subtraction result (remaining allocation size = requested size – the output of the 0s
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Figure 22: Efficient Allocation Unit hardware.
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counter) represented by the left arrow leaving the full subtractor from the left and

the borrow out (bottom arrow) which indicates if the result is less than zero (borrow

out = 1) or the result is greater than or equal to zero (borrow out = 0). If the output

from a subtractor is greater than or equal to zero (indicated by a “0” on the sj signal,

0 ≤ j ≤ k-1, which is connected to the “borrow out” output of the jth subtractor) then

the input bits segment (e.g., in[2m-1:m] as shown in Figure 22) is inverted (please

note that the free G blocks are indicated by 0s at the input, while the allocated

G blocks are indicated by 1s at the output) and routed to the output through the

corresponding multiplexer shown at the bottom of Figure 22 (lines 8-11 of Figure 23).

Thus, in effect, all unallocated G blocks available, as indicated by the input bits

segment (e.g., in[2m-1:m]), are selected for allocation. Otherwise, the borrow out

output of the subtractor is one, indicating that not all available G blocks are needed:

in this case, the inverted input bits segment (e.g., in[2m-1:m]) and the remaining

allocation size (e.g., in Figure 22, sz1 which is the number of G blocks requested from

in[2m-1:m]) are routed to the 1s selector block through the multiplexers I MUX and

SZ MUX respectively as shown in Figure 22 (lines 13-18 of Figure 23).

The 1s selector selects the number of ones equivalent to the remaining allocation

size (sz selected in Figure 22). The output from the 1s Selector is routed to the output

bits that correspond to the input bits segment (lines 13-18 of Figure 23). Once the

allocation size is satisfied all the segment output bits that follow the segment that

goes through the 1s Selector are cleared to zero. Please note that in Figure 22 the
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1 allocate(size,in[0:n-1]) {

2 done:=0;

3 for (i:=0 to k-1) {

4 zc:=0;

5 for(e:=i*m to (((i+1)*m)-1))

6 if (in[e]==0) zc:=zc+1;

7 if(done==0) {

8 if(size-zc>0) {

9 for (e:=i*m to (((i+1)*m)-1))

10 out[e]:=!in[e];

11 size:=size-zc;

12 }else {

13 for(e:=i*m to (((i+1)*m)-1)) {

14 if(in[e]==0 and size>0) {

15 size:=size-1;

16 out[e]:=1;

17 }

18 }

19 if (size==0) done:=1;

20 }

21 }else

22 for (e:=i*m to (((i+1)*m)-1))

23 out[e]:=0;

24 }

25 if (done==0) return NOT_ENOUGH_MEMORY;

26 else return out[n-1,0];

27 }

Figure 23: The optimized allocation algorithm.
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and gate with an “M” in the middle represents m 2-input AND gates. Also, note that

we assume that the maximum allocation size requested by any PE is n − 1 G blocks

(which is a reasonable assumption for an SoC with multiple PEs and a global memory

of n G blocks). If this restriction is not desirable, the size of the Request Size input

must be log2(n)+1 ; also, the size of the full subtractors should be increased to n + 1.

This implementation uses typical parallel logic techniques to reduce the propaga-

tion delay dramatically (the longest path goes through k stages instead of n). Unlike

typical parallel logic design in this specific case the area was reduced too (when com-

pared to the area of the hardware in Figure 20).

Example 11 To explain how the optimized Allocation Unit works, consider an Allocation

Unit in Figure 24 that has n=16 (this number is unrealistic but is used for simplicity; a typ-

ical value of n would be 256) and k=4 (the input vector is divided into four groups each of

which has log 2(16)=4 bits). Also, assume that initially the Allocation Vector has the value

0000000011001011 and the requested size is 2 G blocks. These inputs cause the outputs

from the four 0s counters to be 4, 4, 2 and 1 (please note that we use hexadecimal digits to

denote the outputs from the 0s counters for the ease of reading). Also, the internal signal sz 1

(sz0 is connected to the Request Size which is an input) will be 1 (the signals sz 1, sz2, . . . ,

szk represents the propagated sizes; each of which is 4 bits). Please note that in this example

we are concerned only with the sz1 signal since the remaining size is satisfied by the second

segment. In the same way, the signals s0 and s1(which are connected to the borrow out outputs

of the first and the second subtractors, from the left in Figure 24, respectively) will be 0 and
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Figure 24: Efficient Allocation Unit hardware for Example 11.
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1 respectively and I3, I2, I1, I0 will be 0000, 0000, 0011 and 0100 respectively. The signals

s0, s1, s2 and s3 are encoded using a priority encoder whose output goes to the multiplexers

I MUX and SZ MUX as shown in Figure 22. This will cause the inputs to the 1s Selector to

be sz selected= sz1=0001 and I selected=I1=0011. The output from the 1s Selector will be

0001. Finally, the output from the Allocation Unit will be 0000000000010100. Please note

that the Allocation Unit is a pure combinational circuit thus it takes less than one clock cycle

to find the free G blocks satisfying the requested allocation size. 2

Table 2: Optimized Allocator and Unoptimized Allocator Comparisons

Area Worst Delay Max Clk Speed
(NAND gates) (ns) (MHz)

Optimized Allocator 5364 6.6 ns 150 MHz
Unoptimized Allocator 17930 56.3 ns 17.5 MHz
Comparison 3.3X 8.5X

Table 2 compares the area and the speed of the optimized and unoptimized allo-

cators. For the comparison, we developed Verilog RTL models for the optimized and

unoptimized allocators each of which can perform allocation of an on-chip memory of

256 G blocks. We synthesized both allocators using the Synopsys Design CompilerTM

and a TSMC 0.25u library from LEDA [21]. The optimized allocator reported a bet-

ter performance in terms of speed and area. As shown in Table 2, the area of the

optimized allocator is less than one third the unoptimized allocator. Moreover, the

optimized allocator is much faster (8.5X) than the unoptimized allocator. Obviously,

the SoCDMMU uses the optimized Allocation Unit.
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4.3 Implementing the SoCDMMU using General

Purpose Processors

Although the hardwire implementation of the SoCDMMU shows good results in terms

of area and clock speed, it does not allow any modifications of the functionalities of

the SoCDMMU after implementation in custom silicon. One solution is replacing

parts of the SoCDMMU with programmable elements that can be re-programmed to

provide enhancements to existing functions and/or to add new features to the SoC-

DMMU after implementation. These programmable elements can be in the form of

general purpose microprocessors/microcontrollers that run programs that implement

the same functions as the replaced hardware components.

The BASIC SoCDMMU is the most important part of the SoCDMMU as it exe-

cutes the allocation algorithm by use of the Allocation Unit and stores the allocation

information in the Allocation Table and the Allocation Vector. Once the SoCDMMU

is implemented as hardwired logic, the allocation algorithm cannot be changed. If

the allocation algorithm were to require upgrading or modification, then the BASIC

SoCDMMU needs to be replaced by a programmable element.

We built a version of the BASIC SoCDMMU using a general purpose microcon-

troller – Microchip’s PIC. The microcontroller runs software that implements the

allocation algorithm (described earlier in Figure 16) and stores the memory alloca-

tion status. The software is stored in a flash memory and can be modified after

implementation if required.
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Although the SoCDMMU that uses the BASIC SoCDMMU that is implemented

in software that runs on the general purpose microcontroller is flexible and extensible,

the performance, in terms of clock cycles, is more than 10X slower than the hardwired

implementation of the SoCDMMU as will be described in Chapter 7.

We believe that the hardwired logic implementation is the optimal implementation

for the SoCDMMU. If upgradability is an issue then the hardwired logic can be

implemented using an FPGA instead of an ASIC.

4.4 Summary

In this chapter we showed a hardware implementation of the SoCDMMU as hardwired

logic and discussed implementing part of the SoCDMMU using software that runs a on

general purpose processor to add flexibility and upgradability to the SoCDMMU. In

Chapter 5, we will discuss how a custom hardwired implementation of the SoCDMMU

can be automatically generated. A CAD tool for this purpose will be presented in

the next chapter.
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CHAPTER V

AUTOMATIC CUSTOMIZATION OF THE

SOCDMMU

5.1 Introduction

The ability to design complex integrated circuits is found to be lagging the tech-

nologys capability. According to the 2001 International Technology Roadmap for

Semiconductor (ITRS), while the number of available raw transistors in a single chip

increases by 58% every year, designers’ capability to design them grows by only 21%

every year as shown in Figure 25 [34]. As the number of transistors on a single chip in-

creases rapidly, the productivity gap (indicated by the arrows in Figure 25) between

the increasing number of available logic transistors on single and the productivity

(number of transistors designed/staff-month) and this gap increases year after year.

One solution to reduce this productivity gap is to increase the use and reusability of

Intellectual Property (IP) cores. However, an IP core should be customized/configured

before being used in a system different than the one for which it was designed. Thus,
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Figure 25: The Productivity Gap (source: ITRS).

to reconfigure the IP core, either an engineer must spend significant effort altering

the core by hand or else an enhanced CAD tool (IP generator) can automatically con-

figure and customize the core according to the customer specifications. For example,

memory and I/O generators by Artisan [6] and processor generators by Tensilica [45]

and ARC [3] supply application specific IP cores that can be highly tuned for specific

applications.

The SoCDMMU, as an IP core, needs to be configured before being used in a

particular SoC. As Chapter 4 showed, the SoCDMMU has many parameters that

can be changed from one design to another (e.g., the number of memory blocks, the

memory block size and the number of PEs). A tool that captures the user’s input

and generates an optimized version of the SoCDMMU IP is a must to bridge the time
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to market gap.

5.2 The SoCDMMU Hardware Configuration

We have developed an IP generation tool that enables an SoC designer to gener-

ate a custom version of the SoCDMMU according to the user’s input; we call this

tool SoCDMMU XBar Generator (DX-Gt). DX-Gt is a CAD tool that allows the

designers to generate a custom SoCDMMU and configure an Xbar switch [36] for a

multiprocessor SoC. In this thesis we focus only on the SoCDMMU generation part

of the Dx-Gt tool.
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Figure 26: The SoC configuration tool flow.

As shown in Figure 26, a Graphical User Interface (GUI), which consists of a set of

HTML forms, captures the user’s inputs and passes them to a Common Gate Interface

(CGI) application (developed in C-Language). The CGI application processes the user

inputs and generates the configured RTOS files (C and assembly source files) and the
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SoCDMMU and XBar hardware files (Verilog format). Moreover, DX-Gt generates

Synopsys DCTM [44] synthesis scripts and a Mentor Graphics Seamless CVETM [24]

configuration file for simulating of the resulting SoC design.

Figure 27 shows the flow of DX-Gt. Once the user configurations and settings are

captured using a set of HTML forms, the CGI application first checks the parameters

input by the user to make sure that they are valid (the number of G blocks, the size of

the G block and the data bus width each should be a power of 2) and then selects from

the database the hardware components that satisfy the user specified configurations.

Next, the CGI application sets the parameters of each hardware component to reflect

the user input. Then, the hardware components (Verilog files) are passed to the

Verilog PreProcessor (VPP) [48] which processes them and generates new customized

Verilog files for the SoCDMMU.

If the user elected to use an XBar in the SoC design and entered the required pa-

rameters for the the XBar, DX-Gt calls the application gen xbar [36] to generate the

necessary hardware files for XBar. Details about the Xbar generation are contained

in a separate thesis [38]. Finally, DX-Gt generates the hardware top Verilog files

and the scripts that are necessary to synthesize the SoCDMMU and the Xbar switch

logic using the Synopsys Design Compiler. Also, DX-Gt generates configuration files

required to co-simulate the SoC using Mentor Graphics Seamless CVE.
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Figure 27: Flowchart of the CGI application.
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5.2.1 The GUI

The Dx-Gt GUI is made of set of HTML forms (as shown in Figure 20) that can be

easily published on the web. This makes the GUI universal and platform independent.

The HTML forms captures the user’s inputs required to customize the SoCDMMU.

The following is a list of the user specified parameters:

• System wide parameters

– Number of PEs

– Number of the global on-chip memory G blocks which determines the size

of the SoCDMMU.

– Sizes of the global on-chip memory G blocks which determines the address

bus widths between the switches and memory blocks

– Number of memory ports

– Memory type which determines the memory controller chosen from a hard-

ware database

– PE types which determines processor interfaces to SoCDMMU chosen from

a hardware database

– Choice of use of SoCDMMU, Xbar, both or none

• SoCDMMU related parameters
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– The scheduling scheme to resolve concurrent memory requests from differ-

ent PEs (first come first served scheme or priority scheme)

– Memory G blocks initially assigned to the PEs (initial memory assignment

for the PEs)

• Xbar related parameters

– The data bus width of each PE (determined by the PE type)

– The address bus width connected to each PE (determined by the global

memory size)

5.2.2 Hardware Database

In order to generate the hardware files, a “hardware database (HW DB)” of parame-

terized Verilog files of each system component – SoCDMMU sub-modules, processor

bus wrappers, and memory controller – is being used. The Verilog files in the database

are written in such a way that a custom version of the file can be generated using a

Verilog preprocessor (VPP).

Example 12 Figure 28 shows the generation of one of the Verilog files of the customized

SoCDMMU. The file “socdmmu.vpp” was fetched from the HW DB and modified by the CGI

application (as described earlier) to set some parameters (the first three lines) to reflect the

user’s input. Specifically, the first three lines set the number of processing elements (p=4),

the number of memory blocks (n=128) and the type of the request selector (sch=1). The

“socdmmu.vpp” file is then processed by the VPP to generate the custom file “socdmmu.v”. 2
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Figure 28: An example of custom Verilog generation using VPP.

5.2.3 Allocation Unit Optimization

The Allocation Unit is the most important part of the SoCDMMU as the critical path

of the SoCDMMU goes through it. To generate a fast Allocation Unit, the Allocation

Unit must be tweaked. The Allocation Unit, as described in Section 4.2.3, has two

parameters: m and k which determine how the input data to the Allocation Unit is

processed. The values of these two parameters need to be chosen for a given number

of memory blocks (n) to generate a fast Allocation Unit.

A closer look at the Allocation Unit critical path (the dashed line in the Figure 29)

shows that the Allocation Unit critical path goes through:

• One 0s counter (which has almost constant delay time)

• k subtractors each of a constant delay Ds.
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Figure 29: The Allocation Unit critical path.
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• One multiplexer (SZ MUX) which has almost constant delay time.

• One 1s selector of delay = m x d1, d1 is the delay per stage

The 1s selector has an architecture similar to the unoptimized Allocation Unit

described in Chapter 4. The 1s selector delay depends on the number of stages,

which depends on the number of input bits (m).

• One output multiplexer which has constant delay time.

The total delay time over the Allocation Unit critical path can be found be adding

all the delay times of the components that on the critical path. The total delay over

the critical path can be calculated using the following equation:

Dcriticalpath = C + k x Ds + m x d1

C is a constant that represents the sum of the delays of the constant delay elements

(the multiplexers and the 0’s counters).

Recalling that:

n = m x k

Then:

Dcriticalpath = C + k x Ds + (n/k) x d1

Since Dcriticalpath is a convex function of k and it has a maximum value of infinity

in the period k > 0, Dcriticalpath has a global minimum in the period k > 0. To find

the value of k that minimizes Dcriticalpath, we differentiate the above equation with

respect to k and assigns the results to zero. This gives
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Ds − (n/k2) x d1 = 0

k2 = n x d1 / Ds

k = SQR(n x d1 / Ds) : k > 0, k is power of 2

The CGI application uses the above equation to find the optimal value of k given

the value of n. The constants C, d1 and Ds are library dependent and can be found

for every used library.

5.3 Advantages of using DX-Gt

DX-Gt allows ASIC designers to generate a custom optimized version of the SoC-

DMMU without prior knowledge of the SoCDMMU architecture or the details of its

hardware implementation. DX-Gt eliminate the learning period required by design-

ers to understand the internals of the SoCDMMU; hence, it eliminates the need for

an SoCDMMU expert designer in the design team. DX-Gt enables experienced and

unexperienced ASIC designers to generate a custome optimized version of the SoCD-

MMU in just few minutes using easy to use and understand interface. Also, DX-Gt

makes it easy for the designer to use the SoCDMMU in different SoC designs with

different configurations. The ability of DX-Gt to generate custom optimized version

of the SoCDMMU shorten the design time and make it faster to bring the SoC design

to the market. Moreover, using DX-Gt reduces the bugs and the errors that may

result from configuring the SoCDMMU IP by hand.

71



5.4 The SoCDMMU Hardware Synthesis Results

This section presents the synthesis results of custom SoCDMMU generated by our tool

(DX-Gt). We use the Synopsys Design Compiler [44] with a .25µm TSMC technology

library from LEDA Systems [21].

Table 3: The SoCDMMU Synthesis Results (w/o the Memory Elements)
Lines (RTL Verilog) Area in TSMC 0.25u

2100 lines 7550 Gates

In Table 3, we show the results for the synthesis of the SoCDMMU that works

with an SoC with 256 memory G blocks and four PEs. The second column in Table 3

shows the number of NAND gate equivalents of the hardware required (not including

the Address Converters and the Allocation Table) when synthesized for a clock speed

of 300MHz (the maximum achievable clock speed for this configuration; the critical

path goes through the Allocation Unit as described in Section 5.2.3).

Table 4: The Address Converter and Allocation Unit Synthesis Results
Module Size of 6T SRAM with the same area

Address Converter 1.22 KB
Allocation Table 0.66 KB

Table 4 shows the area of the Address Converter and the Allocation Table, which

are mainly memory elements. The area is represented in equivalent 6T-Static Random

Access Memory (SRAM) area. Please note that the Address Converter used in this

system has 256 entries each of which is 16 bits wide.
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Figure 30: The maximum clock frequency of the SoCDMMU different numbers of
G blocks.

Direct calculations of these numbers would make the reader conclude that the

area Address Converter should be equivalent to the area of an SRAM of 512 bytes.

However, Table 3 shows an Address Converter has the same area as 1.22KB SRAM.

The extra area (the difference between 0.5KB and 1.22 KB) comes from the fact that

the Address Converter uses associative memory which requires the use of comparators

and other control logic in addition to the 512 SRAM bytes.

Figure 30 shows the maximum clock frequency (measured in MHz) of the SoCD-

MMU for different numbers of G blocks (128, 256, 512 and 1024). As the number of

G blocks increases the clock frequency decreases for TSMC 0.25u technology.

Figure 31 shows how the SoCDMMU area scales with the number of PEs (2, 4, 8

and 12) and G blocks (128, 256, 512 and 1024). The area (represented by number of
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Figure 31: The Area of the SoCDMMU (w/o the Allocation Table and the Address
Converter) for different numbers of PEs and G blocks.

equivalent NAND gates) scales linearly with the number of processors. Please note

that the results were obtained using a clock frequency of 100MHz. We choose the

100MHz clock frequency to obtain the results as it is the maximum clock frequency

we can achieve for an SoCDMMU that can handle 1024 G blocks.

Figure 32 shows the area of the Address Converter and the Allocation Table,

which are mainly memory elements and are both part of the SoCDMMU, for different

numbers of processors (2, 4, 8 and 12) and G blocks (128, 256, 512 and 1024). The

area is represented in equivalent 6T-Static Random Access Memory (SRAM) area.
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Figure 32: The Area of the Address Converter and the Allocation Table for different
numbers of PEs and G blocks.

5.5 Summary

In this chapter, we presented a tool to automatically generate custom SoCDMMU

hardware. The tool allows designers to customize and configure the SoCDMMU;

hence, our tool reduces the time to market and helps to close the productivity gap.

In the next chapter, Chapter 6, we will show how to add the SoCDMMU to

existing operating systems to enable designers to integrate the SoCDMMU with their

system software.
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CHAPTER VI

RTOS SUPPORT FOR THE SOCDMMU

In this chapter, we show how a real-time operating system (Atalanta) is modified

to support the proposed SoCDMMU. First we will show how the memory alloca-

tion/deallocation is handled in the Atlanta RTOS; then we show how we modified

the RTOS to support our hardware. Finally, we will outline set of guidelines for

modifying any operating system to support the SoCDMMU.

6.1 Introduction

Dynamic memory management can consume a great amount of program’s execution

time. Moreover, memory management routines (e.g., malloc() and free()) do not

have deterministic behavior. The most often used software allocator for dynamic

memory allocation is sequential fit or segregated fit (refer to Chapter 2 for more

information). A malloc() function that utilizes one of those allocators maintains

the allocation status in a linked-list. Searching a linked-list sequentially to find free

memory chunks takes time dependent on the length of the list; as the length of

76



Partition

Size


Block

Size


Partition
Starting


Address


Figure 33: Memory partition in Atalanta.

the linked-list increases the time consumed to search the linked-list increases as well.

Moreover, the searching time is not constant and changes dynamically. Small RTOSes

typically do not support full dynamic memory allocation using malloc() and free();

instead, an RTOS usually divides the memory into fixed-sized allocation units from

which any task can allocate only one unit at a time. Examples of such RTOSes are:

eCos [30], pSOS [14], VRTXoc [26] and uCOS-II [20]. In this way the RTOS memory

manager does not need to use complex data structures to store the status of allocated

memory chunks. With this approach, an RTOS guarantees constant execution time

for each memory management function.

6.2 Atalanta RTOS Memory Management

Atalanta is an open source RTOS developed at the Georgia Institute of Technology to

be used for SoC [43]. We adapted Atalanta to support the SoCDMMU. As an RTOS,

Atalanta manages memory in a deterministic way; tasks can dynamically allocate

fixed-size blocks by using memory partitions, as shown in Figure 26 (please note that
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Table 5: Atalanta Memory Management System Calls.
Function Declaration Description

SYS MEM asc partition gain( Get free memory block
SYS PARTITION,SYS ERROR*); from a partition (non-blocking)
SYS MEM asc partition seek( Get free memory block
SYS PARTITION,SYS TIME,
SYS ERROR*);

from a partition (blocking)

VOID asc partition free(
SYS PARTITION,SYS MEM,
SYS ERROR*);

Free a memory block.

VOID asc partition reference(
SYS PARTITION, SYS INFO*,
SYS ERROR*);

Get partition information.

a partition block is completely different than the G block described in Chapter 3 –

specifically, while a G block size is usually quite large, e.g., 64KB in Example 4, par-

tition block size is usually measured in bytes). The partitions are statically allocated

(as static arrays) and cannot be created or deleted at run time. Multiple partitions

of different block sizes may be created. A task can allocate or deallocate only one

block at a time from a partition. Thus, external fragmentation (that sometimes

results from dynamic memory allocation) does not occur. Consequently, memory

compaction is not required. However, internal fragmentation may occur if the allo-

cated memory block is not fully utilized because there is no partition with smaller

block size. Atalanta provides only four Application Programming Interface (API)

functions to manage the memory. These functions are summarized in Table 6.2. For

further information please refer to [43].
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6.3 Atalanta Support for SoCDMMU

We modified the Atalanta RTOS memory management to support the SoCDMMU.

While modifying the Atalanta memory management system, we kept in mind the

following issues. First, we add dynamic memory management for the global on-chip

memory. Second, we do not alter the existing memory management API functions of

Atalanta. Third, we keep the memory management deterministic. Also, the following

facts governed our modifications:

• The SoCDMMU needs to know where the allocated physical memory will be

placed in the PE address space. This is required by the SoCDMMU allocation

commands.

• The PE address space is much larger than the available on chip memory (a

typical figure would be 64 MB of global on chip memory for a billion-transistor

SoC vs. 4GB address space for a typical 32-bit processor). This fact can be

used to develop an alternative solution for the PE address space fragmentation

explained earlier in Chapter 3.

6.3.1 New API Functions

Since they did not already exist, we added new API functions to Atalanta, both to

create partitions at run-time when required and to delete the partitions later when

no longer required (as opposed to creating the partitions as static arrays of sizes not

modifiable at run-time).
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Table 6: New API memory management functions introduced to the Atalanta RTOS
Function Name Description

asc partition create(Size,Partition blocks, Create a partition by requesting
Mode, Page ID, Error ) memory allocation from the

SoCDMMU if necessary.
asc partition delete(SYS PARTITION, Delete a partition and deallocate
Error) memory block if required.

Table 7: The asc memory find function
Function Name Description

asc memory find(Size, Error) Find a place in the PE address space
to map the allocated memory.

Table 6 explains these two new functions. A task calls the asc partition create

function to create a partition in the memory G allocated to the PE (on which the

task runs). If there is not enough memory or the PE’s available memory has a

different mode (e.g., read only or exclusive) than that of the requested partition,

asc partition create requests a memory page (one or multiple G blocks) from the

SoCDMMU.

The asc partition create has five arguments: the allocation size in G blocks, num-

ber of blocks per partition, the allocation mode (exclusive, read only and read/write),

the Page ID and pointer to the error structure. The asc partition delete function

deletes a partition when it is not required anymore; asc partition delete will request

memory deallocation from the SoCDMMU if the entire physical G block that con-

tained the partition is not in use anymore. The asc partition delete function has two

arguments: the memory partition structure (SYS PARTITION) and pointer to the
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error structure.

Recalling that the SoCDMMU G allocate commands require a place in the PE

address space into which the physical memory blocks can be mapped, we need a

function that finds an empty space in the PE address space into which to map the

physical blocks. This function is called asc memory find. Table 6 gives a description

of this function.

 

Figure 34: The PE’s address space divided into pools.

The asc memory find function works in a way that minimizes the PE address

space fragmentation; to achieve this, the PE address space is divided into pools (a

pool is an address range in the PE’s address space) as shown in Figure 34. Each
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pool has the same size of the total on-chip memory. Each pool can be used to map

pages of the same size (1 G block, 2 G blocks, etc.,). The page size of each pool is

selected to be one of the commonly used page sizes. If the commonly used page sizes

are large in number, a pool can be used to allocate pages of any arbitrary size; and

the SoCDMMU move command is utilized to perform address space compaction. For

example, if the total on-chip memory is 64MB and the PE address space is 4GB then

we have 64 pools each of 64MB. The first pool may be used to place 1-G block pages,

the second pool for 2-G block pages, etc., as illustrated in Figure 34.

 

Figure 35: OFDM sub-system used in Example 13.

Example 13 Consider a multiprocessor SoC whose functionality is dynamically changed to

include OFDM communication. The SoC has two DSP processors and a global on-chip memory.

The two DSP processors utilize Atalanta as the RTOS. The first DSP reads the incoming data

from the FIFO buffer and performs a 1024-point FFT for each received symbol to find the original

transmitted spectrum and then stores the results into a memory buffer that is shared with the
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DSP1

#define BUF1 0x10

.

.

SYS_ERROR e;

SYS_PARTITION p1;

SYS_MEM m1;

.

.

p1=asc_partition_create(2,1,DMMU_RW,BUF1,&e);

m1= asc_partition_gain(p1,&e);

.

.

asc_partition_free(p1,m1,&e);

.

.

DSP2

#define BUF1 0x10

#define BUF2 0x20

.

.

SYS_ERROR e;

SYS_PARTITION p1;

SYS_MEM m1;

SYS_PARTITION p2;

SYS_MEM m2;

.

.

p1=asc_partition_create(2,1,DMMU_RO,BUF1,&e);

m1= asc_partition_gain(p1,&e);

p2=asc_partition_create(3,1,DMMU_EX,BUF2,&e);

m1= asc_partition_gain(p2,&e);

.

.

asc_partition_free(p2,m2,&e);

.

.

Figure 36: Code snippets for the OFDM system in Example 13.
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second DSP. The phase angle of each transmission carrier is then evaluated and converted back

to data words by demodulating the received phase. The demodulation is performed by DSP2.

This sequence of operations is outlined in Figure 35. DSP1 allocates shared memory buffer

(BUF1) as read/write while DSP2 allocates BUF1 as read only. DSP2 allocates a memory

buffer (BUF2) for its exclusive use. Figure 36 shows for DSP1 and DSP2 the code snippets

that perform the dynamic memory allocations. Please note that the values assigned to BUF1

and BUF2 are arbitrary values. Also, note that the value assigned to BUF1 (0x10) is the same

for both DSP1 and DSP2 because it represents a shared memory page. For more information

regarding the data types SYS PARTITION, SYS MEM and SYS ERROR please refer to [43]. 2

Table 8: Modifications done to Atalanta.
Item Orginal Atalanta New Atalanta

Memory Mgmt. Memory Mgmt.

Number of Mem. Mgmt. Fn. 4 7
Number of C lines 330 450
SoCDMMU Device Driver N Y
Inlined Assembly Lines 0 10

Table 8 shows the modifications done to the Atalanta (in terms of the number of

source lines and the number of functions) to add SoCDMMU support to Atalanta.

The ten inlined assembly lines are used to access the SoCDMMU to send commands

or read the status.
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6.4 Operating Systems SoCDMMU Support Guide-

lines

In the previous sections, we discussed the modifications done to the Atalanta RTOS

to support the SoCDMMU. In this section, we will give some guidelines to follow in

order to add SoCDMMU support to any operating system.

6.4.1 Adding Low Level Functions to Access the SoCDMMU (Device
Driver)

In order to be able to communicate with the SoCDMMU to send commands and

receive resposes from the SoCDMMU, a set of new functions (usually not programmer

accessible) need to be introduced. These new functions act as a device driver for the

SoCDMMU. The new functions should allow the operating system to perform the

following:

• Request global memory allocation from the SoCDMMU by sending G alloc com-

mands to the SoCDMMU.

• Deallocate global memory by sending G dealloc command to the SoCDMMU.

• Re-map memory blocks in the virtual address space by sending G move to the

SoCDMMU.

Figure 37 shows a code snippet from the device driver showing how to send a

command to the SoCDMMU that is mapped at the address 0x10000000 (code shown

is in ARM assembly).
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#define SOCDMMU_PORT #0x10000000 /* The SoCDMMU i/o Address */

.

.

__asm {MOV r2,cmd1}

__asm {MOV r1,SOCDMMU_PORT}

__asm {STR r2,[r1,#0]}

__asm {MOV r2,cmd2}

__asm {STR r2,[r1,#0]}

.

.

Figure 37: Code snippet showing how to send a command to the SoCDMMU using
a memory mapped i/o port.

6.4.2 Adding Heap Resizing Functions

The SoCDMMU only handles Level Two (as described in Chapter 3) memory alloca-

tion/deallocation. Level Two allocation/deallocation can be seen in most operating

systems as heap resizing (size increasing or decreasing). Most operating systems that

support Level One memory allocations in the heap have functions that can increase

the size of the heap. Usually Level One memory allocators call these heap resizing

functions if there is not enough space in the heap. For example, in a UNIX-like oper-

ating system, memory is managed using the malloc() and free() functions. If the heap

is highly occupied, malloc() calls sbrk() function to increase the size of the heap [13].

To support the SoCDMMU, the operating system has to be modified so that

the heap resizing function (e.g., sbrk() in UNIX-like operating systems) calls the

SoCDMMU to allocate global memory blocks and remap them in the virtual address

space to increase the size of the heap. In order to use the global memory in an efficient
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way, a new function should be added to decrease the size of the heap by calling the

SoCDMMU to deallocate global memory blocks.

6.4.3 Adding Shared Memory Allocation/Deallocation Support

The SoCDMMU supports the allocation of different types of memory (exclusive, read

only, read/write) as described in Chapter 3. Level One memory allocation functions

(e.g., malloc()) need to be modified in a way to support the allocation mode. This

can be done by either of the following:

• Add a new argument to Level One functions to indicate the allocation mode

(exclusive, read only or read/write); or

• Have multiple versions of the same Level One functions each for a particular

allocation mode.

6.5 Summary

In this chapter, we showed how to modify an RTOS to add support to the Two-Level

memory management hierarchy and the SoCDMMU. Also, we gave general guidelines

to help adding the SoCDMMU support to any operating system. In the next chapter,

we will show some experimental results we conducted to show the benefits of using

the SoCDMMU in multiprocessor SoCs.
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CHAPTER VII

EXPERIMENTS AND RESULTS

In this chapter, we show the results obtained from a set of experiments. The first

experiment is used to measure the execution time (in cycles) of different SoCDMMU

commands using a co-simulation environment that is totally done in Verilog. In

the second experiment, we compare the hardware SoCDMMU with the SoCDMMU

implemented using a general purpose microcontroller. Finally, we show set of exper-

iments we performed to compare a shared memory multiprocessor SoC that utilizes

the SoCDMMU to the same multiprocessor SoC without the SoCDMMU.

7.1 SoCDMMU Command Execution Times

To test the effectiveness of our approach, we first simulated a model for an SoC that

utilizes an SoCDMMU using Synopsys VCSTM Verilog simulator. The simulated

system looks like the system illustrated in Figure 38. The system has four PEs

(two in-house developed MIPS like RISC processors and two CMU DSPs [9]), 16MB

SRAM and the SoCDMMU. The memory is divided into 256 blocks; each block is
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Figure 38: SoC with 2 RISC CPUs, 2 DSPs, SoCDMMU and memory.

64KB. The SoCDMMU utilizes a 256-bit Allocation Vector and an Allocation Table

with 256 entries.

In this experiment we measured the worst-case execution time of the SoCDMMU

commands. Table 9 summarizes the results. Please note that G alloc ro command

executes in 3 cycles if the requested page was allocated as read/write by other PE

and 4 cycles if not. We found that the worst-case execution time occurs when all PEs

issue commands at the same time. The worst case execution time is 16 clock cycles.

Table 9: Execution Times in Cycles.
Command Number of Cycles

G alloc ex 4
G alloc rw 4
G alloc ro 3 or 4
G dealloc 4
Worst-Case Execution Time 16
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7.2 Comparison with a Microcontroller Implemen-

tation

To demonstrate the importance of building the SoCDMMU in custom hardwired unit,

we compared the hardwired SoCDMMU performance with the performance of SoCD-

MMU that uses software running on RISC microcontroller (Microchip PICTM micro-

controller) to implement the functionalities of the BASIC SoCDMMU (as described

in Chapter 4). Table 10 compares the worst-case execution time of the hardware

SoCDMMU with the best-case execution time for the microcontroller implementa-

tion of the SoCDMMU in software. The comparison is shown in clock cycles. We

assume that the hardware SoCDMMU and the microcontroller both have the same

clock rate. As Table 10, the hardwired SoCDMMU is more than 10X faster than the

SoCDMMU that uses software running on a general purpose microcontroller.

Table 10: A comparison between the SoCDMMU and Microcontroller E.T.
SoCDMMU Worst-Case Execution Time 16 Cycles
Microcontroller Best-Case Execution Time 221 Cycles

7.3 Comparison to a Fully Shared Memory Mul-

tiprocessor System

In this experiment, we compare (i) a system that utilizes the SoCDMMU and uses

the memory-sharing scheme implied by using the SoCDMMU to (ii) a fully shared-

memory multiprocessor system. For the comparison with the SoCDMMU, we used

two memory managers: the ARM Software Development Toolkit (SDT) [4] embedded
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memory heap manager [5] and the uClibc embedded C library memory manager [46].

7.3.1 Simulation Setup

The simulation is carried out using the Mentor Graphics Seamless CVETM Co-

simulation environment [24]. For hardware simulation, we used Synopsys VCSTM

Verilog simulator. For software emulation, we used the XRAY debugger [25]. We

used ARM SDT v2.5 [4] and the GNU C Compiler (GCC ) [12] for software develop-

ment.

 

Figure 39: Four-PE SoC with an SoCDMMU.

The simulated system shown in Figure 39 consists of four ARM9TDMI cores each

of which has Level one (L1) data and instruction caches each of 64KBytes. All four

PEs share a global bus. A shared memory of 16 MBytes of SRAM is connected to

the same bus. We assume it takes five cycles to get the first word from the global

memory in Figure 39. The bus arbiter shown in Figure 39 controls the access of the

cache controllers to the memory. The system (including the SoCDMMU) is clocked
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at 150MHz.

7.3.2 Speedup of a single malloc() or free()

Table 11: E.T. of malloc() and the SoCDMMU Allocation (Atalanta API)
Execution Time Execution Time
(Average Case) (Worst Case)

SDT2.5 embedded malloc() 106 cycles 559 cycles
uClib malloc() 222 cycles 1646 cycles
SoCDMMU allocation 28 cycles 199 cycles
Speed up over SDT malloc() 3.78X 2.8X
Speed up over uClib malloc() 7.92X 8.21X

Table 11 compares the execution time of the malloc() function in cycles to that

of the asc partition create() and the asc partition gain() functions that utilize the

SoCDMMU (note that, if desired, the Atalanta RTOS could be rewritten to have

malloc() and free() functions instead of asc partition create(), asc partition gain()

and asc partition free() functions). As Table 11 shows, memory allocation done by

the SoCDMMU is faster than memory allocation using the malloc() function.

Table 12: E.T. of free() and the SoCDMMU Deallocation (Atalanta API)
Execution Time Execution Time
(Average Case) (Worst Case)

SDT2.5 embedded free() 83 cycles 186 cycles
uClib free() 208 cycles 796 cycles
SoCDMMU deallocation 14 cycles 28 cycles
Speed up over SDT free() 5.9X 6.64X
Speed up over uClib free() 14.8X 28.42X

Table 12 compares the execution time of the free() function in cycles to that of the

asc partition free() that utilizes the SoCDMMU and shows that memory deallocation
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Table 13: Required Memory Allocations
MPEG-2 Player OFDM Receiver

2 KBytes 34 KBytes
500 KBytes 32 KBytes
5 KBytes 1 KBytes
1500 KBytes 1.5 KBytes
1.5 KBytes 32 KBytes
0.5 KBytes 8 KBytes

32 KBytes

using the SoCDMMU is up to 28X faster than using the standard free() function.

7.3.3 Speedup during transition from the MPEG-2 player to the OFDM
receiver

In this experiment we assume that the SoC in Figure 39 is used for a handheld device

like the that used in the fictitious story described in [27]. That device was able to

download a medical record, make a phone call and play a video clip. The handheld

device can be used for OFDM communication as well as other personal applications

(e.g., a video player). Table 13 shows the memory requirements for the MPEG-2

video player [39] and the OFDM receiver [32]. We assume that other applications

take up 13.9 MBytes leaving 2.1 MBytes available for the OFDM receiver or the

MPEG-2 player (depending on which is running). During the transition from the

MPEG-2 player to the OFDM receiver, six memory deallocations and seven memory

allocations are executed.

From the results, shown in Table 14, we can see that using the SoCDMMU yields

a 4.4X improvement over the SDT2.5 embedded memory manager and, as shown in
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Table 14: Memory Management E.T. Comparison (SoCDMMU vs ARM SDT2.5)
Using the Using uClib Speedup
SOCDMMU malloc()and free()

Average Case 280 cycles 1240 cycles 4.4X
Worst Case 1244 cycles 4851 cycles 3.9X

Table 15, 9.26X over uClibc memory management functions in average case execution

time. In worst-case execution time, on the other hand, Table 14 shows that using the

SoCDMMU yields a 3.9X improvement over the SDT2.5 embedded memory manager

while Table 15 shows a 12.46X improvement over the uClibc memory management

functions.

Table 15: Memory Management E.T. Comparison (SoCDMMU vs uClibc)
Using the Using uClib Speedup
SOCDMMU malloc()and free()

Average Case 280 cycles 2593 cycles 9.26X
Worst Case 1244 cycles 15502 cycles 12.46X

For worst-case execution calculation times we assumed 100% misses in L1 caches.

The Atalanta RTOS memory manager uses unoptimized data structures which are ac-

cessed excessively during the execution of asc partition create() and asc partition free()

functions; the ARM SDT2.5 memory manager, on the other hand, uses a more effi-

cient data structure which is not accessed as often. Since Atalanta RTOS memory

management functions perform more memory accesses than the equivalent functions

of the ARM SDT2.5 memory manager, the speedup improvement in the worst-case

is less than that of the average-case (when comparing Atalanta memory management
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functions that use the SoCDMMU to equivalent functions of the ARM SDT2.5).

7.3.4 Speedup during application run-time

In this experiment, we used the same system described in Section 7.3.1 except we

used GCC [12] and glibc [13] instead of ARM SDT v2.5 and uclibc. We simulated

several benchmarks taken from the SPLASH-2 [42] application suite: Blocked LU

Decomposition (LU), Complex 1D FFT (FFT) and Integer Radix Sort (RADIX)

[50]. We measured the execution time of each benchmark. The selected benchmarks

initially used static memory allocation which is unsuitable for mobile applications

with limited memory resources and tens of applications that reside in main memory.

The selected benchmarks source files were modified to replace all the static memory

arrays by arrays that are dynamically allocated at run time and deallocated upon

completion. In this way, the benchmarks could be dynamically downloaded and run

on a handheld device, which is the kind of ability we want this research to enable and

make more practical.

Table 16: E.T. of some SPLASH-2 Benchmarks using glibc malloc() and free()
Benchmark E.T. Memory Management % of E. T. used for

(Cycles) E. T. (Cycles) Memory Management

LU 318307 31512 9.90%
FFT 375988 101998 27.13%
RADIX 694333 141491 20.38%

Table 16 shows the execution time of the benchmarks in cycles and the total

number of cycles consumed in memory management when the benchmarks use a
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Table 17: E.T. of some SPLASH-2 Benchmarks using the SoCDMMU
Bench- E.T. Memory % of E. T. % Reduction % Reduction
mark (Cycles) Mgmt. used for in time used in

E. T. Memory to Manage Benchmark
(Cycles) Mgmt. Memory E. T.

LU 288271 1476 0.51% 95.31% 9.44%
FFT 276941 2951 1.07% 97.10% 26.34%
RADIX 558347 5505 0.99% 96.10% 19.59%

conventional memory allocation/deallocation techniques (glibc malloc() and free()).

Table 17 shows the same information introduced in Table 16 but with the bench-

marks using the SoCDMMU for memory allocation/deallocation. Also, Table 17

shows the reduction in the memory management execution time because of using the

SoCDMMU instead of using glibc malloc() and free() functions. This reduction in the

memory management execution time yields speed ups in the benchmarks execution

times. As we can see in Table 17, using the SoCDMMU tends to speed up the ap-

plication execution time and this speed up is almost equal to the percentage of time

consumed by conventional software memory management techniques.

7.4 Area Estimation of the SoC

In this section, we try to estimate the total size of the SoC we simulated for our

experimental results of Section 7.3. Our goal is to find an estimate of the extra area

required to incorporate the SoCDMMU into our candidate SoC. The SoC consists

of four ARM9TDMI cores. Each ARM9TDMI has Level 1 (L1) data and instruc-

tion caches, each of which is 64KBytes. The SoC has a global on-chip memory of
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16MBytes. The global on-chip memory is divided into 256 G blocks each of 64KBytes.

Table 18: SoC Area

Element Number of Transistors %

4 ARM9TDMI Cores 4 x 112K = 448K Transistors
4 L1 Caches (64KB+64KB) 4 x 6.5M = 26M Transistors
Global On-Chip Memory (16MB) 134.217M Transistors
SoCDMMU (w/o memory elements) 30K Transistors
SoCDMMU Allocation Table 30K Transistors
SoCDMMU Address Converters (4) 4 x 60K = 240K Transistors
SoCDMMU (total) 300K Transistors
SoC (total) 160.965M Transistors
SoCDMMU to 4 ARM9 & 4 L1 $ 1.134%
SoCDMMU w/o mem. elements to SoC 0.0186%
SoCDMMU to SoC 0.186%

Table 18 shows the sizes of the different SoC components expressed in number

of transistors. The four ARM9TDMI cores consume 448K transistors [33]. Assum-

ing 6-Transistor (6T) SRAM cells [16], the eight Level 1 caches consume 26 Million

transistors. The global on-chip 16MB DRAM consumes approximately 134 Million

transistors assuming 1-transistor DRAM cells [16]. From Table 3, the SoCDMMU

non-memory elements consume approximately 7500 2-input NAND gates, each of

which consists of four transistors; this totals 30K transistors. From Table 4, the

SoCDMMU memory elements (one Allocation Table and four Address Converters)

area is approximately equivalent to the area of 5.5KB 6T SRAM, which consumes

approximately 270K (5.5K x 8 x 6) transistors. The SoCDMMU, in total, consumes

300K transistors while the SoC consumes almost 161 million transistors, which means

that the SoCDMMU consumes only 0.186% of the total number of transistors of the
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SoC. Thus, for a tiny increase in area, the SoCDMMU improves memory management

performance by 4-12X, a significant improvement for general purpose applications and

a potentially critical improvement for real-time applications as well.

Please note that we did not do a full chip layout for this chip area estimate. For

example, we do not have the layout of the ARM9TDMI available, nor do we have a

memory compiler available to generate more exact memory layouts.

7.5 Summary

In this chapter we showed experimental results from a multiprocessor SoC that uti-

lizes the SoCDMMU. We showed an example where our approach gives up to 9.2X

overall speedup in the average case execution time of memory management during

application transition time when compared to a fully shared memory system with the

same memory organization and number of processors. Also, we showed speedups of

10%-26% in application execution time. Thus, for a tiny increase in area (0.186% of

161M transistor SoC), the SoCDMMU improves memory management performance.
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CHAPTER VIII

CONCLUSION

In this thesis, we presented an approach to handle on-chip memory allocation between

PEs in a heterogeneous multiprocessor SoC. Our approach is based on an SoCDMMU

that provides a dynamic, fast way to allocate/deallocate global on-chip memory (L2).

Moreover, when implemented in hardware, the SoCDMMU allocation/deallocation of

the memory blocks is completely deterministic, which makes it suitable for real-time

SoC applications. The introduction of the SoCDMMU introduces a new memory

management hierarchy we call Two-Level Memory Management. Level Two, in Two

Level Memory Management, is the management of the global on-chip memory among

the on-chip processing elements. Level One, on the other hand, is the management

of memory allocated to a particular on-chip Processing Element, e.g., an operating

system’s management of memory allocated to a particular processor. We gave the

details of a possible hardware implementation of the SoCDMMU which implements

management of Level Two memory. We showed how an RTOS might be adapted to
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support the SoCDMMU. Also, we introduced a tool to automatically customize the

hardware SoCDMMU according to the user’s input. We showed experimental results

where our approach gives overall speedup of 4.4X to 9.2X in the average case execution

time of memory management during application transition when compared to a fully

shared memory system with the same memory organization and number of processors.

Also, our approach tends to speed up the application execution time and this speed up

almost equals to the percentage of time consumed by conventional software memory

management techniques. For three benchmarks we showed improvements from 10%

to 26%.
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