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Summary

In light of the complex and highly uncertain nature of dynamical systems requiring

controls, it is not surprising that reliable system models for many high performance

engineering applications are unavailable. In the face of such high levels of system un-

certainty, robust controllers may unnecessarily sacrifice system performance whereas

adaptive controllers are clearly appropriate since they can tolerate far greater system

uncertainty levels to improve system performance. In contrast to fixed-gain robust

controllers, which maintain specified constants within the feedback control law to sus-

tain robust performance, adaptive controllers directly or indirectly adjust feedback

gains to maintain closed-loop stability and improve performance in the face of sys-

tem uncertainties. Specifically, indirect adaptive controllers utilize parameter update

laws to identify unknown system parameters and adjust feedback gains to account for

system variation, while direct adaptive controllers directly adjust the controller gains

in response to plant variations.

To develop a highly robust, adaptive control framework we first develop a gen-

eral adaptive control framework to address linearly parameterized uncertainties for

adaptive stabilization, disturbance rejection, and command following of nonlinear

uncertain dynamical systems with exogenous disturbances. In particular, the adap-

tive control framework is Lyapunov-based and guarantees partial asymptotic stability

of the closed-loop system; that is, asymptotic stability with respect to part of the

closed-loop system states associated with the system state variables. Building on

xviii



this result, we then characterize robust adaptive controllers to account for nonlinear

state-dependent uncertainty that is not captured by a finite linear combination of

basis functions.

An implicit assumption inherent in most adaptive control frameworks is that the

adaptive control law is implemented without any regard to actuator amplitude and

rate saturation constraints. As a consequence, actuator nonlinearities arise frequently

in practice and can severely degrade closed-loop system performance, and in some

cases drive the system to instability. In light of this, we develop an adaptive con-

trol framework that guarantees asymptotic stability of the closed-loop tracking error

dynamics in the face of amplitude and rate saturation constraints. Specifically, the

adaptive control signal to a given reference (governor or supervisor) system is modified

to effectively robustify the error dynamics to the saturation constraints.

A novel parametrization-free adaptive control framework is also developed for

a class of nonlinear uncertain systems. Specifically, we consider matrix second-order

systems that possess sign-varying damping and stiffness operators. All that is required

to implement the adaptive controller is that the damping and stiffness operators

are continuous and (lower) bounded; otherwise they are unknown. The approach is

applied to combustion processes to suppress the effects of thermoacoustic instabilities.

Nonnegative and compartmental dynamical system models are derived from mass

and energy balance considerations that involve dynamic states whose values are non-

negative. These models are widespread in engineering and life sciences and typically

involve the exchange of nonnegative quantities between subsystems or compartments

wherein each compartment is assumed to be kinetically homogeneous. For this class of

dynamical systems, we develop adaptive and neural adaptive control frameworks for

adaptive set-point regulation of nonlinear uncertain nonnegative and compartmental

systems. Based on this result, we apply the adaptive control framework to regulate

xix



(maintain) a desired constant level of consciousness for noncardiac surgery.

Even though adaptive control algorithms have been developed in the literature

for both continuous-time and discrete-time systems, the majority of the discrete-

time results are based on recursive least-squares and least mean squares algorithms

with primary focus on state convergence. Alternatively, Lyapunov-based adaptive

controllers have been developed for continuous-time systems guaranteeing asymp-

totic stability of the system states. However, the literature on discrete-time adap-

tive disturbance rejection control using Lyapunov methods is virtually nonexistent.

In light of this, we develop a direct adaptive control framework for adaptive sta-

bilization, disturbance rejection, and command following of multivariable discrete-

time nonlinear uncertain systems with exogenous bounded amplitude disturbances

and bounded energy (square-summable) `2 disturbances. These results are analo-

gous to the continuous-time adaptive disturbance rejection results discussed above

for continuous-time nonlinear uncertain systems.

The complexity of modern controlled uncertain nonlinear dynamical systems is

often exacerbated by the use of hierarchical abstract decision-making units perform-

ing logical checks that identify system mode operation and specify a subcontroller

within the feedback control architecture to be activated. These multiechelon systems

are classified as hybrid systems and involve an interacting countable collection of dy-

namical systems possessing a hierarchical structure characterized by continuous-time

dynamics at the lower-level units and logical decision-making units at the higher-

level of the hierarchy. In the last part of this dissertation, we develop a hybrid

adaptive control framework for hybrid dynamical systems to guarantee asymptotic

stability/attraction of the closed-loop system states associated with the hybrid plant

dynamics using the hybrid invariance principle.
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Chapter 1

Introduction

1.1. Closed-Loop Adaptive Control

One of the fundamental problems in feedback control design is the ability of the

control system to guarantee robust stability and robust performance with respect to

system uncertainties in the design model. To this end, adaptive control along with ro-

bust control theory have been developed to address the problem of system uncertainty

in control-system design. The fundamental differences between adaptive control de-

sign and robust control theory can be traced to the modeling and treatment of system

uncertainties as well as the controller architecture structures. In particular, adaptive

control [12, 121, 176] is based on constant linearly parameterized system uncertainty

models of a known structure but unknown variation, while robust control [237, 245]

is predicated on structured and/or unstructured linear or nonlinear (possibly time-

varying) operator uncertainty models consisting of bounded variation. Hence, for

systems with constant real parametric uncertainties with large unknown variations,

adaptive control is clearly appropriate, while for systems with time-varying para-

metric uncertainties and nonparametric uncertainties with norm bounded variations,

robust control may be more suitable. Furthermore, in contrast to fixed-gain robust

controllers, which maintain specified constants within the feedback control law to sus-
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tain robust performance, adaptive controllers directly or indirectly adjust feedback

gains to maintain closed-loop stability and improve performance in the face of sys-

tem uncertainties. Specifically, indirect adaptive controllers utilize parameter update

laws to identify unknown system parameters and adjust feedback gains to account for

system variation while direct adaptive controllers directly adjust the controller gains

in response to plant variation. In either case, the overall process of parameter iden-

tification and controller adjustment constitutes a nonlinear control law architecture.

Even though the design of adaptive control for linear plants has evolved tremen-

dously over the past two decades it is only recently with work involving differential

geometric methods [120,122,183,232] that has made the design of adaptive controllers

for certain classes of nonlinear systems possible using concepts of zero dynamics and

feedback linearization [48,175,188,204,219,220,228]. These techniques, however, are

limited to low relative degree systems with restrictive matching conditions imposed

on the structure of the uncertainty and usually rely on cancelling out system nonlin-

earities using feedback which may lead to inefficient designs since feedback linearizing

controllers may generate unnecessarily large control effort to cancel beneficial system

nonlinearities. A major breakthrough in the design of adaptive controllers for a large

class of nonlinear cascade systems was introduced with the development of recursive

backstepping methods [133,146,147]. The popularity of this adaptive control method-

ology can be explained in a large part due to the fact that it provides a systematic

procedure for finding an adaptive Lyapunov function for the closed-loop system and

choosing the adaptive control such that the time derivative of the adaptive Lyapunov

function along the trajectories of the closed-loop system is negative. To compensate

for estimating the same uncertain system parameters within the recursive backstep-

ping procedure tuning functions were introduced by Krstić et al. [145–147] to remove

this overparameterization by modifying the recursive update laws. Furthermore, the
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adaptive controller is obtained in such a way that the nonlinearities of the dynamic

system which may be useful in reaching performance objectives need not be cancelled

as in state or output feedback linearization.

1.2. Closed-Loop Control in Clinical Pharmacology

Control technology is the underpinning for technological advances in fields as

diverse as aerospace, chemical, power, manufacturing, electronic, communication,

transportation, and network engineering. However, control technology has had less

impact on modern medicine. There have been exciting breakthroughs in such areas as

robotic surgery, electrophysiological systems (pacemakers and automatic implantable

defibrillators), life support (ventilators, artificial hearts), and image-guided therapy

and surgery. However, in general, there are steep barriers to the application of modern

control theory and technology to medicine. The steepest barriers are the system un-

certainties, inherent to biology, that preclude mathematical modeling and application

of many of the tools of modern control technology.

One of the exceptions to this generalization is in the area of clinical pharmacology,

a discipline in which mathematical modeling has had a prominent role. Some of the

most important advances in modern medicine have been in the area of pharmacology.

The physician in the 21st century has a broad armamentarium of drugs available for

the treatment of disease. This is in contrast to previous generations of physicians,

who were largely limited to diagnosis, possible surgery, and often only consolation.

But while we have an abundance of therapeutic agents, proper dosing of drugs is

often imprecise and may be a significant cause of increased costs and morbidity and

mortality. In this dissertation, we develop adaptive control methods for nonlinear

uncertain dynamical systems and discuss potential applications of adaptive control

to clinical pharmacology, specifically the control of drug dosing.
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It is instructive to consider how dose guidelines are derived. Drug development

begins with animal experimentation. Promising agents are then taken to human trials,

beginning with healthy volunteers and progressing to patients with the disease for

which the drug is being developed. Early stages of these trials focus on safety while the

final trials usually entail randomized, blinded administration of placebo and different

drug doses for the evaluation of efficacy. Efficacy is statistically defined and even when

there is a therapeutic effect in the statistical aggregate, there still may be individual

patients for whom the drug is either not efficacious or who experience side-effects. If

a therapeutic effect is observed, then the drug may be approved by the Federal Drug

Administration and, in general, the recommended dose is that found to be efficacious

in the “average” patient. And this is the problem. No patient is an “average” patient.

There is very substantial variability among patients in the drug concentration at the

locus of the effect (the effect site concentration) that results from a given dose and

there is a very substantial variability among patients in the therapeutic efficacy of any

given effect site concentration. Thus, there is large variability among patients in the

therapeutic effect of any given dose. In the vast majority of cases, the appropriate dose

for a specific patient is found by trial and error. For example, the internist treating a

patient with essential hypertension will begin by prescribing the recommended dose

and then, in follow-up, will observe the effect of the drug on blood pressure and

adjust the dose empirically. This process can be cumbersome, time consuming, and

imprecise.

1.3. A Primer on Clinical Pharmacology

It has been apparent for some time that dosing of drugs could be put on a more

rational basis by using pharmacokinetic and pharmacodynamic modeling. Pharma-

cokinetics is the study of the concentration of drugs in various tissues as a function of
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time and dose schedule. Pharmacodynamics is the study of the relationship between

drug concentration and effect. By developing techniques relating dose to resultant

drug concentration (pharmacokinetics) and concentration to effect (pharmacodynam-

ics) one can generate a model for drug dosing.

Pharmacokinetic models will be familiar to most control engineers and theorists

since they are based on dynamical system theory. The disposition of drugs in the

body is a complex interplay of numerous transport and metabolic processes, many

of which are still poorly understood [66, 238]. However, compartmental models may

effectively encapsulate these processes [123]. Common pharmacokinetic models as-

sume that, for the purpose of describing drug disposition, the body is comprised

of a few homogenous, well-mixed compartments (so that the drug concentration is

constant within the compartment), with linear (proportional to drug concentration)

transport to other compartments or elimination from the compartment and the body

by metabolic processes. The simplest model, the one-compartment model, assumes

that the body is just a single compartment and also typically assumes instantaneous

mixing when drug is introduced intravenously, with subsequent linear elimination.

The model is characterized by two parameters, the volume of distribution (Vd) and

the elimination rate constant (ae). With this simple model the concentration (C)

immediately after a dose of amount of D is equal to D/Vd and drug is subsequently

eliminated at a rate equal to aeC (exponential decay). While the behavior of a few

drugs may actually be described by this model, it is too simplistic for most. The

assumption of instantaneous mixing, which is clearly unrealistic in the case of drugs

that are taken orally, can be remedied by using a two (or more) compartment model

in which there is a compartment representing the gastro-intestinal tract that receives

the dose and from which drug is transferred irreversibly to a second compartment

that represents intravascular blood (blood within arteries or veins) and organ sys-
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tems which receive a large amount of blood flow and hence which equilibrate with

intravascular blood rapidly.

For drugs that are administered intravenously, a common model is the two com-

partment mammillary model [123]. This model assumes that there is a central com-

partment which receives the intravenous dose with instantaneous mixing. Drug is

then either transferred to a peripheral compartment or metabolized and eliminated

from the body. Drug elimination from the peripheral compartment is ignored since

this compartment is identified with tissues such as muscle or fat which are metaboli-

cally inert as far as the drug is concerned. (Most drugs are metabolized in the liver

or kidney, organs that, along with the heart and brain, equilibrate rapidly with the

intravascular blood and are identified with a central compartment that receives the

intravenous dose.) Drug in the peripheral compartment transfers back to the central

compartment with linear kinetics. The system is then described by the familiar state

space model

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (1.1)

where

A =

[

−(a21 + a01) a12
a21 −a12

]

,

x = [x1, x2]
T is the state vector representing the masses in the two compartments,

a12 and a21 are the compartment 2 to compartment 1 and the compartment 1 to

compartment 2 transfer coefficients, respectively, and a01 is the rate at which drug is

eliminated out of the system from (the central) compartment 1. The other system

parameter is V1, the volume of the central compartment (for a total of four phar-

macokinetic parameters). Note that with the assumption of instantaneous mixing,

the concentration at t = 0 after dose D is D/V1. The assumption of instantaneous

mixing is unrealistic but has little effect on the predictive accuracy of the model as

long as we do not try to model drug concentrations immediately (within 5 minutes)
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Figure 1.1: n-compartment mammillary model. The central compartment is the site
for drug administration and is generally thought to be comprised of the intravascular
blood volume as well as highly perfused organs such as the heart, brain, kidney,
and liver. The central compartment exchanges with the peripheral compartments
comprised of muscle and fat and which are metabolically inert as far as drug is
concerned.

of the initial drug dose. This model, the two-compartment mammillary model, is

generally useful for drugs that are administered intravenously although some require

an extension of the model to include two distinct peripheral compartments along with

the central compartment (the three compartment mammillary model). Other exten-

sions or revisions of the basic model are possible. For example, Figure 1.1 shows an

n-compartment mammillary model. In most cases the assumption of linear transfer

is maintained so that the system equation remains the familiar

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (1.2)

where x ∈ R
n represents the system compartmental masses or system compartmental

concentrations and A ∈ R
n×n is a compartmental matrix [123] in the case where x

represents compartmental masses and a nonnegative matrix [123] in the case where

x represents compartmental concentrations. Hence, (1.2) describes a nonnegative,

compartmental dynamical system and there is a substantial body of theoretical work

which is relevant for analyzing these systems (see [6, 29, 46, 70, 123, 124, 203] and the

numerous references therein).
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Parenthetically, it is important for the control engineer or theorist who wants to

approach the pharmacokinetic literature to realize that the conventions of nomen-

clature are somewhat different than those used in this dissertation. For example,

pharmacokineticists denote the transfer coefficient from compartment i to compart-

ment j as kij rather than aji. Pharmacokineticists also often parameterize models

differently. For example, most pharmacokinetic papers will report the terminal elim-

ination half-life, the time required for drug concentration to decrease by 50% if all

tissues are equilibrated with the blood concentration. Another commonly reported

parameter is the clearance, which is the volume of tissue or blood “cleared” of drug

per unit time. Many pharmacokinetic investigations will be parameterized in terms

of compartment volumes and intercompartmental clearances. These parameters are

simply transformations of the basic elements of the system matrix A, along with a

scale parameter, which in the case of the two-compartment mammillary model is the

volume of the central compartment.

The experimental data used for pharmacokinetic modeling is typically collected

by administering drug to patients and then drawing blood samples at various times

after the initiation of dosing and determining the concentration of drug as a function

of time. Consequently most pharmacokinetic investigations focus on blood concen-

trations and one of the goals of the analysis for drugs administered intravenously is

to derive an expression for the unit disposition function, the blood concentration that

results from a single unit bolus dose (impulse function) of drug. In the case of linear

kinetics, if the unit disposition function (fud) is known then the blood concentra-

tion that results from any arbitrary dose schedule is easily calculated by convolution

integral

C(t) =

∫ t

0

fud(τ)D(t− τ)dτ, (1.3)

where D(t) is the dose as a function of time [206]. Note that it is seldom technically
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feasible to actually measure drug concentrations in the tissue thought to be the site

of the therapeutic effect and it is often assumed that effect site concentration and

blood concentration are linearly related, if not equal. The vast majority of drugs are

distributed to the site of action by blood flow and in general the effect site rapidly

equilibrates with blood. If the finite equilibration time between the central intravas-

cular blood volume and the effect site is clinically relevant, then the pharmacokinetic

model should be revised to include a distinct effect site compartment.

Pharmacokinetic parameters (the entries of the system matrix A) are estimated

by fitting models to the data. The models, of course, are approximations and there

are numerous sources of noise in the data, from assay error to human recording error.

Thus there is always an offset between the concentration predicted by the model

and the observed data, the prediction error. One common method for estimating

pharmacokinetic parameters is to use the method of maximum likelihood [51]. In

this type of analysis one assumes a specific statistical distribution for the prediction

error and then determines the parameter values that would maximize the likelihood

of the observed results. For example, suppose we have conducted a study in a single

patient in which we have collected blood samples at 10 different points in time after a

single bolus intravenous dose of the drug. If we assume that the prediction error has

a simple normal or Gaussian distribution, then the likelihood of the observed results

will be proportional to
r
∏

i=1

1√
2πσ2

e−PE2
i /2σ

2

, (1.4)

where PEi is the prediction error of the ith observation and is given by PEi =

Cpi−Cmi, where Cpi is the predicted ith drug concentration and Cmi is the measured

ith drug concentration, σ2 is the variance of the assumed Gaussian distribution of

prediction errors, and r is the number of observations (measured concentrations). We

refer to this as the intrapatient error model. Note that the above expression is a
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function of σ and the pharmacokinetic parameters (the entries of the system matrix

A). By maximizing the above expression (or more commonly its logarithm) with

respect to the pharmacokinetic parameters and σ one may estimate the structural

model parameters (the entries of the system matrix A) and the error model parameters

(in this simple case, σ) that maximize the likelihood of the observed results. The

reader familiar with statistical estimation theory will realize that the above example

reduces to simple least squares estimation. However, using a more sophisticated error

model (for example, by assuming that prediction error has a normal distribution with

variance proportional to the predicted concentration raised to an unknown power)

leads to more complex methods of parameter estimation [51].

There are two distinct approaches to estimating mean pharmacokinetic param-

eters for a population of patients [212, 213]. In the first, models are fitted to data

from individual patients and the pharmacokinetic parameters for individual patients

are then averaged (two-stage analysis) to provide a measure of the pharmacokinetic

parameters for the population. The other approach to data analysis involves pooling

of the data from individual patients. It is called mixed-effects modeling because in

this situation the prediction error is determined not only by the stochastic noise of the

experiment but also by the fact that different patients have different pharmacokinetic

parameters. The error model, the analogue of the simple Gaussian distribution used

in the example above, must account not only for variability between the observed

and predicted concentrations within the same patient but also for variability between

patients. The analyst must assume a statistical distribution for both intrapatient

variability and interpatient variability. Most commonly it is assumed that pharma-

cokinetic parameters have a log-normal distribution. This sophisticated method of

analysis not only estimates the mean structural pharmacokinetic parameters (the el-

ements of the system matrix A) but also the statistical variability of these elements
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in the population, the interpatient variability. Since the total variance is the sum of

interpatient and intrapatient variability, the latter is also estimated. This is a very

powerful method of analysis for two reasons. First, it gives the clinician not only an

estimate of the pharmacokinetic parameters but also an estimate of their variance.

This is extremely important for the clinician since no matter how desirable the prop-

erties of a drug are, on average, if there is extreme variability in these properties it

may not be safe for clinical use. And second, mixed-effects modeling may allow a

reduction in the amount of data that is gathered from each individual patient. In a

two-stage analysis, one must have enough data points from each patient to estimate

their pharmacokinetic parameters. For example, if one adopts a two compartment

mammillary model there are 4 pharmacokinetic parameters. It is impossible to es-

timate these parameters for any one patient with 4 or less data points from that

patient. However, with mixed-effects modeling it is possible to use sparse data. This

also is an important advantage since pharmacokinetic studies may be expensive and

time consuming.

In contrast to pharmacokinetic modeling, pharmacodynamic modeling is more

empirical. The molecular mechanism of action of many drugs is reasonably well-

understood and most drugs act by binding to some “receptor” on or within target

cells [66]. There is a well-developed theory of multiple equilibrium binding of ligands,

such as drug molecules, to receptors on larger macromolecules, such as proteins. So

in theory pharmacodynamics, the relationship between drug concentration and effect

should follow from these models of molecular binding. However, the physiological

effect is a complex interplay of numerous factors and it is generally not possible to

quantitatively relate the effect at the level of the intact organism to the number of

receptors bound by the drug at the molecular level. Empirical models are needed.

It could be assumed that drug effect is proportional to the drug concentration at
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the effect site but this is clearly unrealistic since it admits the possibility of limitless

drug effect. For example, consider a drug which lowers heart rate. It is unrealistic

to assume that the drug effect is proportional to drug concentration since there is

no limit on the drug concentration but there is a limit on the effect (the heart rate

cannot be slower than zero). The empirical model should incorporate a ceiling effect.

One model that has been quite effective for a variety of drugs is the Hill equation

E = EmaxC
γ/(Cγ + Cγ

50), (1.5)

where E is the drug effect, Emax is the maximum drug effect, C is the drug concentra-

tion, C50 is the drug concentration associated with 50% of the maximum effect, and

γ is a dimensionless parameter that determines the steepness of the concentration-

effect relationship [110]. Note that this model reduces the concentration-effect rela-

tionship to three parameters, the maximum effect, a measure of the midpoint of the

relationship, and a measure of the steepness. It is interesting that this model was

first developed in 1906 to describe a molecular interaction, the binding of oxygen to

hemoglobin. Since that time it has been applied to a wide variety of phenomenon

which are far removed from explanations at the molecular level. There are a number

of modification of this basic model that have been employed. One important one is

when the drug effect is a binary, yes-or-no, variable. An example would be anesthesia,

for which the patient is either responsive or not. In this case, the pharmacodynamic

model based on the Hill equation becomes

P = Cγ/(Cγ + Cγ
50), (1.6)

where the effect is now the probability P that the patient will not respond to some

noxious stimuli (and Emax equals unity) [162,163].

In typical pharmacodynamic studies, drug is administered and the effect is mea-

sured at various points in time. At each point of observation, a blood sample is taken
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for the determination of the drug concentration at the time of observation of effect.

The parameters of the pharmacodynamic model (Emax, C50, γ) may then be estimated

by the same methods (maximum likelihood, generalized least squares, etc.) described

above. Obviously, if blood drug concentrations and effect site concentrations have

not equilibrated, then this analysis is invalidated.

It should be noted that pharmacodynamic models are inherently nonlinear, in

contrast to pharmacokinetic models, which are usually linear. However, the interplay

with pharmacodynamics may lead to nonlinear pharmacokinetics also. For example,

some intravenous anesthetics depress cardiac output, the volume of blood pumped by

the heart per unit of time. Since the basic transport processes that determine pharma-

cokinetic behavior are fundamentally functions of blood flow, administration of the

drug alters its kinetics and since the pharmacodynamic relationship between drug

concentration and depression of cardiac output is nonlinear, the pharmacokinetics of

the drug are, in reality, also nonlinear.

1.4. Clinical Pharmacology and Drug Dosing

In addition to safety and efficacy, the Food and Drug Administration requires

pharmacokinetic evaluation before approval of any new drug. The pharmacokinetic

profile may be useful in developing dose guidelines. However, this application of ba-

sic principles is usually quite simplified. The disposition of most drugs is determined

by both metabolic processes that eliminate the drug and distribution processes, i.e.,

transfer between various tissue groups. The route of distribution is via the intravascu-

lar blood volume whether the drug is administered by mouth, intramuscular injection

or intravenously. The complexity of these processes implies that the governing dy-

namical system equation is almost always a vector differential equation. However,

the vast majority of drugs are given for chronic conditions and when the time scale
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of treatment greatly exceeds the time scale of the distributive processes, one can ig-

nore them. Furthermore, very few patients would comply with the complex dosing

schemes (“take 3 pills in the morning and then 2 1/2 at 3:00 p.m. and then 2 at 8:00

and 10:00 p.m. and then one the next morning...”) needed to account for distributive

processes at the onset of therapy. Thus the application of pharmacokinetic principles

must be simplified. In terms of the system equation (1.2), we assume that A is a

scalar. For example, if we know that a dose of 50 mg of an antihypertensive drug is

efficacious in the “average” patient and we also know that the half life in the “aver-

age” patient is 12 hours then we may propose a dosing schedule that begins with an

initial dose of 50 mg with subsequent dosing of 25 mg every 12 hours. Or, as another

example, suppose we know that a blood concentration of an intravenous anesthetic of

100 µg/ml reliably produces unconsciousness and that we also know that the clear-

ance (the amount of blood cleared of drug per unit time) is 150 ml/minute. Then an

infusion of 100 µg/ml × 150 ml/min = 15000 µg/min will maintain this blood concen-

tration, although this concentration will not be achieved until distributive processes

have equilibrated. In point of fact, many of the dosing guideline recommended by the

manufacturers of drugs are based on simple calculations like these. And although it is

often not perceived as such by the clinician, initial drug dosing is a form of open-loop

control, that is, control without feedback.

There have been attempts to develop more precise open-loop control in the acute

care environment, especially in the area of anesthetic pharmacology. With the in-

creased availability in the 1980s of small computers that could be taken into the

operating room, several groups of investigators developed computer-controlled pump

systems that continually adjusted the drug infusion rate to achieve and maintain the

drug concentration desired by the clinician [5,14,210,211]. These algorithms use the
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appropriate pharmacokinetic model

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (1.7)

with average pharmacokinetic parameters taken from previous investigations to cal-

culate the needed dose u(t), t ≥ 0, usually via the unit disposition function and the

assumption of linearity. The output, which is continually updated, drives the infusion

pump.

This is clearly open-loop control since, as previously emphasized, no one patient

is an “average” patient and there is no mechanism for measuring the concentrations

in the individual patient for feedback control. It is technically not feasible to actually

measure blood concentrations of intravenous anesthetics in real time. But even with

the lack of feedback, numerous studies have demonstrated better control of drug con-

centrations than the standard empirical dosing used by most clinicians. The clinical

relevance of this is unclear. While open-loop control systems have not yet been ap-

proved by the Food and Drug Administration for routine clinical use in the United

States, several European countries have approved a device for the infusion of the in-

travenous anesthetic, propofol, and this device is currently in use for clinical delivery

of anesthesia.

While initial dosing guidelines may be based on the “average” patient, the very

significant interpatient pharmacokinetic and pharmacodynamic variability observed

for most drugs leads to the inevitable conclusion that precise drug dosing will require

closed-loop control. As noted in Section 1.2, in one sense most drug dosing is a form

of closed-loop control. Patients are quite familiar with this. The physician prescribes

a drug, usually given orally, and an initial dose, observes the response, and adjusts

the dose. An experienced physician can be quite adept at this process, but, in general,

it is certainly not systematic and is usually time consuming. Most individuals who
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have been treated for a chronic disease know this well.

The process of dose titration can be made somewhat more precise by the use of

mixed-effects pharmacokinetic modeling and post-hoc Bayesian estimation of individ-

ual patient pharmacokinetic parameters [51,212,213]. It will be recalled that mixed-

effects modeling provides not only estimates of pharmacokinetic parameters but also

their variance within the population. Suppose one has measured one or more drug

concentrations in an individual patient. Using Bayesian probability principles, the

likelihood of a given value of some pharmacokinetic parameter, Θ, is proportional

to P (C|Θ)P (Θ). P (C|Θ) is the probability of the observed concentration(s) as a

function of Θ and is simply the intrapatient error model cited earlier (an example

is equation (1.4)). P (Θ) is the a priori probability of a given value of Θ and is

given by the assumed distribution for Θ (as noted above, usually log-normal) and the

variance of Θ estimated from the mixed-effects analysis. By determining the mode

of P (C|Θ)P (Θ) with respect to Θ one can derive a maximum likelihood estimate of

Θ for the specific patient. By estimating patient-specific parameters one can more

accurately calculate the necessary dose to achieve a given drug concentration. This

process has been demonstrated to improve the precision of drug dosing [168]. But

note that it only improves the precision of achieving a given drug concentration which

may or may not lead to better control of drug effect, given pharmacodynamic vari-

ability. Also this process requires measurement of drug concentration, something that

cannot usually be done quickly (a typical drug assay takes hours, if not more than a

day, to complete).

While the process of titrating drug dose to the desired effect may be acceptable (if

often frustrating) for chronic outpatient therapy, in the acute care environment, such

as the operating room or the intensive care unit, this process may be dangerously

slow or imprecise. It is in this environment that control technology has much to offer
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modern medicine and for the remainder of this article we will restrict ourselves to

drugs used in the acute care setting.

In order to implement closed-loop control in an acute care environment one must

have a real-time nearly instantaneously measurable performance or control variable.

Early attempts at closed-loop control have of necessity focused on control of variables

that are conveniently measured. By their very nature, cardiovascular and central

nervous system function are critical in the acute care environment, and so mature

technologies have evolved for their measurement. Thus, the primary applications of

closed-loop control of drug administration have been to hemodynamic management

and control of levels of consciousness. Before discussing our investigations of closed-

loop control of anesthesia, we will briefly review closed-loop control of cardiovascular

function, as it illustrates many of the general problems inherent in the application of

control technology to physiological function.

1.5. Closed-Loop Control of Cardiovascular Function

After major surgery, especially cardiac surgery, many patients become profoundly

hypertensive [158]. While this syndrome is distinct from the essential hypertension

well known to both patients and medical professionals, it does require treatment since

elevated blood pressure may cause cardiac dysfunction, leading to pulmonary edema

or myocardial ischemia, may be a risk factor for stroke, and may exacerbate bleeding

from fragile surgical suture lines. There are a number of potent drugs available for

the treatment of post-operative hypertension but titrating these drugs to achieve the

desired blood pressure may be difficult. Underdosing leaves the patient hypertensive

and overdosing can reduce the blood pressure to levels associated with shock. There

has been interest since the late 1970s in developing controllers for the administration

of sodium nitroprusside (SNP), a commonly used and potent anti-hypertensive. The
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problems encountered in this endeavor are enlightening. The initial attempts used

simple nonadaptive methods such as proportional-derivative or proportional-integral-

derivative controllers that assumed a linear relationship between infusion rate and

effect [214, 218]. This was a tenuous assumption. While the drug concentration

may be the simple convolution of the infusion rate and a transfer function (equation

(1.3)), the relationship between effect and infusion rate is not likely to be so simple

(see equation (1.5)). Also, one of the significant challenges to the design of a blood

pressure controller is the fact that there is a time delay between administration of

the drug and the clinical effect. Failure to account for this time delay can lead to

significant system oscillations. These early blood pressure controllers included time

delays in the system model, however, the delays were assumed to be the same for each

patient. While these early controllers were successful in some patients, in general they

have not had wide clinical implementation. The barriers to clinical implementation

were the nonlinear patient response and significant interpatient differences in drug

sensitivity. It was very evident that interpatient variability and also the fact that an

individual patient’s sensitivity to the drug varies in time made adaptive controllers

essential. Subsequently, single model and multiple model adaptive controllers were

developed [11,107]. Single model adaptive controllers are based on on-line estimation

of system parameters using minimum variance or least squares methodology. These

controllers were also not acceptable due to large amplitude transients. Multiple model

adaptive controllers represent the system by one of a finite number of models. For each

model there is a separate controller. The probabilities that the system is represented

by each of the different models are calculated from the relative offsets of the system

response and the response predicted by each model. The output of the controller is the

probability-weighted sum of the outputs from each model. Multiple model adaptive

controllers have proven to be somewhat more satisfactory. Subsequent refinements
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to blood pressure control have included single model reference adaptive control [189],

which appeared promising in simulations, and neural network-based methods [45].

There has also been substantial interest in optimal control since sodium nitroprusside

has toxic side effects when the dose is too high [16].

These investigations into control of blood pressure reveal the challenges inherent

to biological systems, specifically nonlinearity, interpatient variability (system un-

certainty), and time delays. Despite the refinements of closed-loop blood pressure

controllers, they are seldom used clinically. While this is due, in part, to the cost of

technology acquisition, this is probably not the most important impediment to their

clinical use. Blood pressure control is important but cardiovascular function involves

several other important variables and all these variables are interrelated [158]. The

intensive care unit clinician (nurse or physician) must not only insure that blood

pressure is within appropriate limits but that also cardiac output (the amount of

blood pumped by the heart per minute) is acceptable and heart rate is within rea-

sonable limits. Mean arterial blood pressure is proportional to cardiac output, with

the proportionality constant denoted the systemic vascular resistance, in analogy to

Ohm’s law. Cardiac output is equal to the product of heart rate and stroke volume,

the volume of blood pumped with each beat of the heart. Stroke volume, in turn, is

a function of contractility (the intrinsic strength of the cardiac contraction), preload

(the volume of blood in the heart at the beginning of the contraction), and after-

load (the impedance to ejection by the heart). The intensive care unit clinician must

balance all these variables. There are drugs (inotropic agents) that increase contrac-

tility but they will also have variable effects on heart rate and afterload. There are

also drugs which increase (vasopressors) or decrease (vasodilators) afterload. Finally,

stroke volume may be increased by increasing preload and this can be accomplished

by giving the patients fluid. However, giving too much fluid may be deleterious since
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it can lead to impaired pulmonary function as fluid builds up in the lungs. The fact

that closed-loop control of blood pressure has not widely adopted by clinicians is not

too surprising when one considers the complex interrelationships of hemodynamic

variables. However, this also indicates an area where future applications of control

theory could be invaluable. The technology is currently available to measure heart

rate, blood pressure, cardiac output, and measures of preload continuously and in

real time. Adaptive and robust optimal controllers which control the administration

of multiple drugs (inotropes, vasopressors, vasodilators) and fluids would be a major

advance in critical care medicine. There have been some preliminary investigation of

the control of multiple hemodynamic drugs [108,243] but this must still be considered

unexplored territory.

1.6. Closed-Loop Control of Anesthesia

There has been long-standing interest in closed-loop control of anesthesia. Ade-

quate anesthesia is comprised of several components; analgesia, lack of reflex response,

such as increased blood pressure or heart rate, to surgical stimulus, lack of movement

(which complicates the task of the surgeon), and hypnosis or lack of consciousness.

In order to implement closed-loop control it is necessary to measure the state and

the assessment of consciousness has been challenging. However, two technical innova-

tions have facilitated the development of feedback controllers. The first (historically)

is the routine clinical implementation of real-time spectroscopic methods for mea-

suring the concentration of inhaled anesthetic agent in exhaled gases from the lung,

in particular end-expiratory (routinely called end-tidal) gases. End-tidal anesthetic

gas concentration is a reasonable surrogate for arterial blood anesthetic concentra-

tion [57]. Since end-tidal anesthetic agent concentrations can be measured in real-

time with this technology, this has allowed closed-loop control of end-tidal anesthetic
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concentration. However, anesthetic concentration cannot be equated with anesthetic

effect. More recently, real-time processed electroencephalograph (EEG) measurement

has held open the possibility of closed-loop control of anesthetic effect. It has been

known for decades that the EEG changes with induction of anesthesia [194]. However,

quantitatively relating the EEG to anesthetic effect has been challenging. In the last

decade, there has been substantial progress in developing processed EEG monitors

that provide a measure of the depth of anesthesia and are candidates for performance

variables for closed-loop controllers.

Inhaled anesthetic agents have been the mainstay of clinical practice since the first

delivery of anesthesia. A fundamental characteristic of every inhaled anesthetic agent

is its “MAC” value, for minimum alveolar (alveoli are the fundamental units of the

lung) concentration that is associated with a 50% probability of patient movement

or no movement in response to surgical stimulus [243]. By maintaining end-tidal con-

centrations well above MAC, the practitioner is relatively assured of hypnosis. The

ready availability of spectroscopic systems for measuring end-tidal anesthetic concen-

tration in real time has led several investigators to develop closed-loop controllers.

The earliest of these used proportional-integral-derivative algorithms [195, 197]. As

noted above, these share the weaknesses of assuming that all patients are the same.

More recently, adaptive model-based controllers have been developed [125,234]. These

typically rely on least-squares methods to estimate the specific system parameter for

the individual patient. In animal studies, the adaptive controllers have performed,

not surprisingly, more robustly than the fixed gain controllers. However, they have

not been widely adopted clinically. The primary reason is that because of inter-

patient pharmacodynamic variability, control of anesthetic concentration does not

translate into control of anesthetic effect, and most clinicians would value control

technology only if it prevented the possible overdoses inherent in maintaining end-
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tidal concentration in each individual patient well above the MAC value, an average

from a population of patients. Closed-loop control of anesthesia requires a monitor

of anesthetic effect, specifically consciousness.

The development of a monitor of consciousness has been an elusive challenge for

anesthesiologists. The EEG, a global measure of electrical activity in the brain, has

been an obvious candidate. However, the EEG is a complex of multiple time series

and multiple spectra and while there are characteristic changes in the EEG with

the induction of anesthesia, it has not been clear which, if any, characteristic of the

EEG best reflects the anesthetic state. Building on pioneering work by Bickford [26],

Schwilden and his colleagues developed and clinically tested a closed-loop model-

based adaptive controller for the delivery of intravenous anesthesia using the median

frequency of the EEG power spectrum as the control variable [207]. Their model

assumed a two compartment pharmacokinetic model for which the concentration of

drug C(t) as a function of time (t) after a single bolus dose was given by

C(t) = Ae−αt +Be−βt, (1.8)

where A, B, α, β are patient-specific pharmacokinetic parameters. It was also as-

sumed that the control variable, median EEG frequency (denoted by E), was related

to the drug concentration by the modified Hill equation

E = E0 − EmaxC
γ/(Cγ + Cγ

50), (1.9)

where E0 is the baseline signal, Emax is the maximum decrease in signal with in-

creasing drug concentration, C50 is the drug concentration associated with 50% of the

maximum effect, and γ is a parameter describing the steepness of the concentration-

effect curve. From the above equation it can be seen that the drug effect is a function

of the pharmacokinetic parameters (A, B, α, β) as well as the pharmacodynamic

parameters (E0, Emax, C50, and γ). If these parameters are known, calculation of the
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dose regimen needed to achieve the target EEG signal is straightforward. However,

these parameters are not known for individual patients. The algorithm developed by

Schwilden and his colleagues assumed that each of the pharmacodynamic parameters

(E0, Emax, C50, and γ) and the pharmacokinetic parameters α and β were equal to

the mean values reported in prior studies. Then using the mean population values

of the pharmacokinetic parameters A and B as starting values, estimates of these

parameters were refined by analysis of the difference between the target and observed

EEG signal (∆E). Linearizing ∆E with respect to A and B we find

∆E = (∂E/∂A)δA+ (∂E/∂B)δB, (1.10)

where δA, δB represent the updates to the values of A and B in the adaptive control

algorithm. In conjunction with minimization of δA2 + δB2 this equation was used to

solve for δA and δB. It is important to note that this algorithm was only partially

adaptive in that the only parameters of the model that were updated were A and B.

This algorithm was implemented for the intravenous anesthetic agents methohexital

and propofol but did not appear to offer great advantage over standard manual control

[207,208]. This may have been due to the approximations of the algorithm or due to

the deficiencies of the median EEG frequency as a measure of the depth of anesthesia.

Since the early work by Schwilden et al., other EEG measures of depth of anes-

thesia have been developed. Possibly the most notable of these is the bispectral index

or BIS [67, 209]. The BIS is a single composite EEG measure that appears to be

closely related to the level of consciousness (see Figure 1.2). Recently, Struys and

colleagues have described a closed-loop controller of the delivery of the intravenous

anesthetic propofol using a model-based adaptive algorithm with the BIS as the con-

trol variable [227]. The algorithm is similar to that of Schwilden and his colleagues in

that it is based on a pharmacokinetic model predicting the drug concentration as a

function of infusion rate and time and a pharmacodynamic model analogous to that
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Figure 1.2: Bispectral index (BIS) monitor

used by Schwilden et al. [207, 208] relating the BIS signal to concentration. How-

ever, in contrast to Schwilden and his colleagues, Struys et al. [227] assume that the

pharmacokinetic parameters are always correct and that any variability in individual

patient response is due to pharmacodynamic variability. More specifically, with in-

duction they calculated a predicted concentration using the pharmacokinetic model

and then constructed a BIS-concentration relationship using the observed BIS during

induction and the predicted propofol concentration. With each time epoch, the dif-

ference between the target BIS signal and the observed BIS signal is used to update

the pharmacodynamic parameters relating concentration and BIS signal for the indi-

vidual patient. Note that this algorithm is only partially adaptive in the sense that

there is no adaptive updating of pharmacokinetic parameters. Using this algorithm,

Struys et al. [227] demonstrated excellent performance as measured by the difference

between the target and observed BIS signals. However, as pointed out by Glass and

Rampil, the excellent performance of the system may have been because the system

was not fully stressed [69]. In their study, Struys et al. [227] administered a relatively

high fixed dose of the opioid remifentanil, in conjunction with propofol. This blunted

the patient response to surgical stimuli and meant that the propofol was needed only
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to produce unconsciousness in patients who were profoundly analgesic. The result

was that only small adjustments in propofol concentrations were necessary. Whether

the system would have been robust in the absence of deep narcotization is an open

question.

In contrast to these model-based adaptive controllers, Absalom et al. have devel-

oped a proportional-integral-derivative controller using the BIS signal as the variable

to control the infusion of propofol [2]. The median absolute performance error (the

median value of the absolute value of ∆E/Etarget) of this system was good (8.0%) but

in 3 of 10 patients oscillations of the BIS signal around the set-point were observed and

anesthesia was deemed clinically inadequate in 1 of the 10 patients. This same system

has also been used with an auditory evoked potential as the control variable [138].

Intravenous propofol anesthesia has also been delivered by a closed-loop controller

that uses both auditory evoked responses and cardiovascular responses as the control

variables with a fuzzy-logic algorithm. This system has had only very minimal clinical

testing [161]. More recently, Gentilini and his colleagues have described model-based

controllers for inhalation anesthetic agents that attempt to control the BIS signal

or mean arterial blood pressure, while keeping end-tidal anesthetic concentrations

within pre-specified limits [65].

Given the uncertainties of both pharmacokinetic and pharmacodynamic mod-

els, and the magnitude of interpatient variability, in this dissertation we investigate

parameter-independent adaptive controllers that can be implemented using the pro-

cessed EEG as a performance variable (see Figure 1.3). Specifically, we develop

direct adaptive and neural network adaptive control algorithms for nonnegative and

compartmental systems. As mentioned above, nonnegative and compartmental mod-

els provide a broad framework for biological and physiological systems, including

clinical pharmacology, and are well suited for the problem of closed-loop control of
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Figure 1.3: Adaptive closed-loop control for drug administration

drug administration. Specifically, nonnegative and compartmental dynamical sys-

tems [6, 70, 75, 123, 124, 203] are composed of homogeneous interconnected subsys-

tems (or compartments) which exchange variable nonnegative quantities of material

with conservation laws describing transfer, accumulation, and elimination between

the compartments and the environment. It thus follows from physical considerations

that the state trajectory of such systems remains in the nonnegative orthant of the

state space for nonnegative initial conditions. Using nonnegative and compartmen-

tal model structures, in this dissertation a Lyapunov-based direct adaptive control

framework is developed that guarantees partial asymptotic set-point stability of the

closed-loop system; that is, asymptotic set-point stability with respect to part of the

closed-loop system states associated with the physiological state variables. Further-

more, the remainder of the state associated with the adaptive controller gains is shown

to be Lyapunov stable. In addition, the adaptive controllers are constructed without

requiring knowledge of the system pharmacokinetic and pharmacodynamic parame-

ters while providing a nonnegative control (source) input for robust stabilization with

respect to a given set-point in the nonnegative orthant.

Neural network adaptive control algorithms are also developed in this dissertation

for addressing closed-loop control of drug administration. Neural networks consist of a

weighted interconnection of fundamental elements called neurons, which are functions

consisting of a summing junction and a nonlinear operation involving an activation

function. One of the primary reasons for the large interest in neural networks is their
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capability to approximate a large class of continuous nonlinear maps from the col-

lective action of very simple, autonomous processing units interconnected in simple

ways. In addition, neural networks have attracted attention due to their inherently

parallel and highly redundant processing architecture that makes it possible to de-

velop parallel weight update laws. This parallelism makes it possible to effectively

update a neural network on line. These properties make neural networks a viable

paradigm for adaptive system identification and control in clinical pharmacology. In

this dissertation we also present a neural network adaptive control framework that ac-

counts for combined interpatient pharmacokinetic and pharmacodynamic variability.

In particular, we develop a neural adaptive output feedback control framework for

adaptive set-point regulation of nonlinear uncertain nonnegative and compartmental

systems. We emphasize that the formulation addresses adaptive output feedback con-

trollers for nonlinear compartmental systems with unmodeled dynamics of unknown

dimension while guaranteing ultimate boundedness of the error signals corresponding

to the physical system states as well as the neural network weighting gains. Output

feedback controllers are crucial in clinical pharmacology since key physiological (state)

variables cannot be measured in practice.

1.7. Brief Outline of the Dissertation

In the first part of this dissertation we develop a direct adaptive control framework

for adaptive stabilization, adaptive tracking, and disturbance rejection of multivari-

able nonlinear uncertain dynamical systems with exogenous disturbances. Specifi-

cally, in Chapter 2 we develop a Lyapunov-based adaptive control framework that

guarantees partial asymptotic stability of the closed-loop system with exogenous

bounded disturbances. In the case of bounded energy L2 disturbances the proposed

approach guarantees a nonexpansivity constraint on the closed-loop input-output
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map. Furthermore, if the nonlinear system is represented in normal form with input-

to-state stable internal dynamics, then it is shown that nonlinear adaptive controllers

can be constructed without requiring knowledge of the system dynamics or the system

disturbance. This framework provides the basis for the nonlinear adaptive control

framework given in the subsequent chapters of this dissertation. In particular, in

Chapter 3 we extend the proposed framework to structured (norm-bounded) uncer-

tainties. In addition, we consider an output feedback adaptive control problem for a

class of nonlinear uncertain dynamical systems. Specifically, we address an adaptive

absolute stabilization problem that is reminiscent to the classical absolute stability

problem with the key difference being that the plant dynamics are not assumed to be

known nor is the sector assumed to be known.

In Chapter 4, we address the problem of input amplitude and rate saturation con-

straints. In this research we construct a reference (governor or supervisor) model to

derive adaptive update laws that guarantee that the error system dynamics are asymp-

totically stable in the face of actuator amplitude and rate saturation constraints. In

addition, in Chapter 5, we consider an adaptive reduced-order dynamic compensation

problem for nonlinear uncertain dynamical systems.

In Chapter 6, we address stabilization problem for a class of time-invariant and

time-varying matrix second-order dynamical systems. In this framework no parametriza-

tion is required to construct adaptive feedback control laws as long as the generalized

damping and stiffness operators are continuous and (lower) bounded. We also extend

the result to the case where the system involves unbounded nonlinearities.

In the second part of this dissertation, namely, Chapters 7–12, we characterize

adaptive feedback control laws for nonnegative and compartmental dynamical systems

with applications to clinical pharmacology. Specifically, in Chapter 7 we develop

an adaptive control framework for linear uncertain nonnegative and compartmental
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systems with specific applications to drug infusion control for general anesthesia.

In this framework we present the case where the control input is constrained to be

nonnegative as well as the case where such a restriction is not imposed. Based on

these results, in Chapter 8 we extend the framework to nonnegative systems involving

unknown time delays using a Lyapunov-Krasovskii framework. Our adaptive control

laws are designed to guarantee asymptotic set-point regulation in the nonnegative

orthant.

In Chapter 9, we further extend the results developed in Chapter 7 to nonlinear

nonnegative systems. Analogous results to the results developed in Chapter 7 are

obtained for nonlinear nonnegative systems with component decoupled Lyapunov

functions.

In Chapters 10–12, we consider neural network adaptive controllers for nonlinear

nonnegative dynamical systems to guarantee ultimate boundedness of the physical

system states as well as the neural network weighting gains. Specifically, in Chapter 10

we develop neuro adaptive control laws based on the assumption that we have full

measurement of the state. On the other hand, in Chapters 11 and 12 we develop neuro

adaptive output feedback controllers that require information of part of the system

states. In particular, under the assumption of input-to-state stable internal dynamics,

the methodology developed in Chapter 11 is based on nonlinear passivity theory,

while in Chapter 12 we make use of tapped delay lines to estimate the full states and

construct adaptive feedback laws via the estimated controller states. Furthermore, in

Chapters 11 and 12 we discuss the notion of partial ultimate boundedness to derive

less conservative ultimate bounds for the case where system dynamics possess internal

dynamics.

In Chapters 13 and 14 we address adaptive control problems for discrete-time

nonlinear dynamical systems. In particular, Lyapunov-based adaptive feedback con-
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trollers are developed to achieve adaptive stabilization and tracking as well as adaptive

disturbance rejection in Chapter 13. Assuming much weaker conditions on the sys-

tem, in Chapter 14 we develop adaptive control framework to guarantee state and

parameter error convergence when a generic geometric constraint on the adaptive gain

matrix function holds. It is shown that this condition is consistent with the notion

of persistent excitation in the adaptive control literature.

In Chapter 15, combining the results in the preceding chapters and using the

recently developed hybrid invariance principle [35, 80], we construct novel hybrid

adaptive control algorithms for impulsive dynamical systems to achieve asymptotic

stability. In addition, a less restrictive hybrid adaptive control framework is developed

to guarantee attraction of the plant states.

Finally, in Chapter 16 we give concluding remarks and discuss future extensions

of the research. Throughout the dissertation numerous illustrative numerical exam-

ples as well as specific applications to the problems of thermoacoustic combustion

processes and drug delivery systems are provided to demonstrate the efficacy of the

proposed approaches.

The notation used in this dissertation is fairly standard. Specifically, R denotes

the set of real numbers, R
n denotes the set of n×1 real column vectors, R

m×n denotes

the set of m × n real matrices, N
n (resp., P

n) denotes the set of n × n nonnegative

(resp., positive) definite matrices, N denotes the set of nonnegative integers, ( )T

denotes transpose, ( )† denotes the Moore-Penrose generalized inverse, and In or I

denotes the n×n identity matrix. Furthermore, we write tr(·) for the trace operator,

spec(·) for the spectrum of a square matrix, ‖ · ‖ for the Euclidean vector norm, ‖ · ‖F
for the Frobenius matrix norm, ln(·) for the natural log operator, λmin(M) (resp.,

λmax(M)) for the minimum (resp., maximum) eigenvalue of the Hermitian matrix M ,

σmax(M) for the maximum singular value of the matrix M , V ′(x) for the Fréchet
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derivative of V at x, and dist(p,M) for the smallest distance from a point p to any

point in the set M. Finally, M ⊗ N denotes the Kronecker product of matrices M

and N , and M ≥ 0 (resp., M > 0) denotes the fact that the Hermitian matrix M is

nonnegative (resp., positive) definite.

31



Chapter 2

Direct Adaptive Control for

Nonlinear Uncertain Systems with

Exogenous Disturbances

2.1. Introduction

In this chapter we develop a direct adaptive control framework for adaptive sta-

bilization, disturbance rejection, and command following of multivariable nonlinear

uncertain dynamical systems with exogenous disturbances. In particular, in the first

part of the chapter, a Lyapunov-based direct adaptive control framework is devel-

oped that requires a matching condition on the system disturbance and guarantees

partial asymptotic stability of the closed-loop system; that is, asymptotic stability

with respect to part of the closed-loop system states associated with the plant. Fur-

thermore, the remainder of the state associated with the adaptive controller gains

is shown to be Lyapunov stable. In the case where the nonlinear system is repre-

sented in normal form [122] with input-to-state stable internal dynamics [122, 222],

we construct nonlinear adaptive controllers without requiring knowledge of the system

dynamics or the system disturbance. In addition, the proposed nonlinear adaptive

controllers also guarantee asymptotic stability of the system state if the system dy-

namics are unknown and the input matrix function is parameterized by an unknown
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constant sign-definite matrix. Finally, in the second part of the chapter, we gener-

alize the aforementioned results to uncertain nonlinear systems with exogenous L2

disturbances. In this case, we remove the matching condition on the system distur-

bance. In addition, the proposed framework guarantees that the closed-loop nonlinear

input-output map from uncertain exogenous L2 disturbances to system performance

variables is nonexpansive (gain bounded) and the solution of the closed-loop system

is partially asymptotically stable. The proposed adaptive controller thus addresses

the problem of disturbance rejection for nonlinear uncertain dynamical systems with

bounded energy (square-integrable) L2 signal norms on the disturbances and per-

formance variables. This is clearly relevant for uncertain dynamical systems with

poorly modeled disturbances which possess significant power within arbitrarily small

bandwidths.

We emphasize that the direct adaptive stabilization framework developed in this

chapter is distinct from the methods given in [12, 121, 136, 139] predicated on model

reference adaptive control. The work of [115,176] on linear direct adaptive control is

most closely related to the results presented herein. Specifically, specializing our result

to single-input linear systems with no internal dynamics and constant disturbances,

we recover the result given in [115].

The contents of the chapter are as follows. In Section 2.2 we present our main

direct adaptive control framework for adaptive stabilization, disturbance rejection,

and command following of multivariable nonlinear uncertain dynamical systems with

matched exogenous bounded disturbances. To further elucidate the proposed ap-

proach, in Section 2.3 we specialize the framework developed in Section 2.2 to single-

input uncertain dynamical systems in normal form. In Section 2.4 we extend the

results of Section 2.2 to nonlinear uncertain dynamical systems with exogenous L2

disturbances without a matching condition requirement. Several illustrative numeri-
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cal examples are presented in Section 2.5. In Section 2.6 we apply our framework to

the control of thermoacoustic combustion instabilities to demonstrate the efficacy of

the proposed direct adaptive stabilization and tracking framework. Finally, in Section

2.7 we draw some conclusions.

2.2. Adaptive Control for Nonlinear Systems with Exoge-

nous Disturbances

In this section we begin by considering the problem of characterizing adaptive

feedback control laws for nonlinear uncertain dynamical systems with exogenous dis-

turbances. Specifically, consider the following controlled nonlinear uncertain system

G given by

ẋ(t) = f(x(t)) +G(x(t))u(t) + J(x(t))w(t), x(0) = x0, t ≥ 0, (2.1)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

w(t) ∈ R
d, t ≥ 0, is a known bounded disturbance vector, f : R

n → R
n and satisfies

f(0) = 0, G : R
n → R

n×m, and J : R
n → R

n×d is a disturbance weighting matrix

function with unknown entries. Note that even though w(t), t ≥ 0, is assumed

to be known, the disturbance signal J(x(t))w(t), t ≥ 0, is an unknown bounded

disturbance. The control input u(·) in (2.1) is restricted to the class of admissible

controls consisting of measurable functions such that u(t) ∈ R
m, t ≥ 0. Furthermore,

for the nonlinear system G we assume that the required properties for the existence

and uniqueness of solutions are satisfied; that is, f(·), G(·), J(·), u(·), and w(·) satisfy

sufficient regularity conditions such that (2.1) has a unique solution forward in time.

Theorem 2.1. Consider the nonlinear system G given by (2.1). Assume there

exist a matrix Kg ∈ R
m×s and functions Vs : R

n → R, Ĝ : R
n → R

m×m, F : R
n → R

s,

with F (0) = 0, and ` : R
n → R

t such that Vs(·) is continuously differentiable, positive
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definite, radially unbounded, Vs(0) = 0, `(0) = 0, and, for all x ∈ R
n,

0 = V ′s (x)fs(x) + `T(x)`(x), (2.2)

where

fs(x) , f(x) +G(x)Ĝ(x)KgF (x). (2.3)

Furthermore, assume there exist a matrix Ψ ∈ R
m×d and a function Ĵ : R

n → R
m×m

such that G(x)Ĵ(x)Ψ = J(x). Finally, let Q1 ∈ R
m×m, Q2 ∈ R

m×m, Y ∈ R
s×s, and

Z ∈ R
d×d be positive definite. Then the adaptive feedback control law

u(t) = Ĝ(x(t))K(t)F (x(t)) + Ĵ(x(t))Φ(t)w(t), (2.4)

where K(t) ∈ R
m×s, t ≥ 0, and Φ(t) ∈ R

m×d, t ≥ 0, with update laws

K̇(t) = −1
2
Q1Ĝ

T(x(t))GT(x(t))V ′s
T(x(t))FT(x(t))Y, K(0) = K0, (2.5)

Φ̇(t) = −1
2
Q2Ĵ

T(x(t))GT(x(t))V ′s
T(x(t))wT(t)Z, Φ(0) = Φ0, (2.6)

guarantees that the solution (x(t), K(t),Φ(t)) ≡ (0, Kg,−Ψ) of the closed-loop system

given by (2.1), (2.4)–(2.6) is Lyapunov stable and `(x(t)) → 0 as t → ∞. If, in

addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞ for all x0 ∈ R

n.

Proof. Note that with u(t), t ≥ 0, given by (2.4) it follows from (2.1) that

ẋ(t) = f(x(t)) +G(x(t))Ĝ(x(t))K(t)F (x(t)) +G(x(t))Ĵ(x(t))Φ(t)w(t)

+J(x(t))w(t), x(0) = x0, t ≥ 0, (2.7)

or, equivalently, using the fact that G(x)Ĵ(x)Ψ = J(x),

ẋ(t) = fs(x(t)) +G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t))

+G(x(t))Ĵ(x(t))(Φ(t) + Ψ)w(t), x(0) = x0, t ≥ 0. (2.8)
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To show Lyapunov stability of the closed-loop system (2.5), (2.6), and (2.8) consider

the Lyapunov function candidate

V (x,K,Φ) = Vs(x)+trQ−11 (K−Kg)Y
−1(K−Kg)

T+trQ−12 (Φ+Ψ)Z−1(Φ+Ψ)T. (2.9)

Note that V (0, Kg,−Ψ) = 0 and, since Vs(·), Q1, Q2, Y , and Z are positive definite,

V (x,K,Φ) > 0 for all (x,K,Φ) 6= (0, Kg,−Ψ). In addition, V (x,K,Φ) is radially

unbounded. Now, letting x(t), t ≥ 0, denote the solution to (2.8) and using (2.2),

(2.5), and (2.6), it follows that the Lyapunov derivative along the closed-loop system

trajectories is given by

V̇ (x(t), K(t),Φ(t)) = V ′s (x(t))
[

fs(x(t)) +G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t))

+G(x(t))Ĵ(x(t))(Φ(t) + Ψ)w(t)
]

+2trQ−11 (K(t)−Kg)Y
−1K̇T(t) + 2trQ−12 (Φ(t) + Ψ)Z−1Φ̇T(t)

= −`T(x(t))`(x(t))

+tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

+tr
[

(Φ(t) + Ψ)w(t)V ′s (x(t))G(x(t))Ĵ(x(t))
]

−tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

−tr
[

(Φ(t) + Ψ)w(t)V ′s (x(t))G(x(t))Ĵ(x(t))
]

= −`T(x(t))`(x(t))

≤ 0, t ≥ 0, (2.10)

which proves that the solution (x(t), K(t),Φ(t)) ≡ (0, Kg,−Ψ) to (2.5), (2.6), and

(2.8) is Lyapunov stable. Furthermore, it follows from Theorem 2 of [42] that

`(x(t)) → 0 as t → ∞. Finally, if `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(t) → 0

as t→∞ for all x0 ∈ R
n. ¤

Remark 2.1. Note that in the case where `T(x)`(x) > 0, x ∈ R
n, x 6= 0, the

conditions in Theorem 2.1 imply that x(t) → 0 as t → ∞ and hence it follows from
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(2.5) and (2.6) that (x(t), K(t),Φ(t))→M , {(x,K,Φ) ∈ R
n × R

m×s × R
m×d : x =

0, K̇ = 0, Φ̇ = 0} as t→∞.

Remark 2.2. Theorem 2.1 is also valid for nonlinear time-varying uncertain dy-

namical systems Gt of the form

ẋ(t) = f(t, x(t)) +G(t, x(t))u(t) + J(t, x(t))w(t), x(0) = x0, t ≥ 0, (2.11)

where f : R × R
n → R

n and satisfies f(t, 0) = 0, t ≥ 0, G : R × R
n → R

n×m,

and J : R × R
n → R

n×d. In particular, replacing F : R
n → R

s by F : R × R
n →

R
s, where F (t, 0) = 0, t ≥ 0, Ĝ : R

n → R
m×m by Ĝ : R × R

n → R
m×m, and

requiring G(t, x)Ĵ(t, x)Ψ = J(t, x), where Ĵ : R×R
n → R

m×m and t ≥ 0, in place of

G(x)Ĵ(x)Ψ = J(x), it follows by using identical arguments as in the proof of Theorem

2.1 that the adaptive feedback control law

u(t) = Ĝ(t, x(t))K(t)F (t, x(t)) + Ĵ(t, x(t))Φ(t)w(t), (2.12)

with the update laws

K̇(t) = −1
2
Q1Ĝ

T(t, x(t))GT(t, x(t))V ′s
T(x(t))FT(t, x(t))Y, K(0) = K0, (2.13)

Φ̇(t) = −1
2
Q2Ĵ

T(t, x(t))GT(t, x(t))V ′s
T(x(t))wT(t)Z, Φ(0) = Φ0, (2.14)

where V ′s (x) satisfies (2.2) with fs(x) = f(t, x) +G(t, x)Ĝ(t, x)KgF (t, x), guarantees

that the solution (x(t), K(t),Φ(t)) ≡ (0, Kg,−Ψ) of the closed-loop system (2.11)–

(2.14) is Lyapunov stable and x(t)→ 0 as t→∞ for all x0 ∈ R
n.

Remark 2.3. It follows from Remark 2.2 that Theorem 2.1 can also be used to

construct adaptive tracking controllers for nonlinear uncertain dynamical systems.

Specifically, let rd(t) ∈ R
n, t ≥ 0, denote a command input and define the error state

e(t) , x(t)− rd(t). In this case, the error dynamics are given by

ė(t) = ft(t, e(t)) +Gt(t, e(t))u(t) + Jt(t, e(t))wt(t), e(0) = e0, t ≥ 0, (2.15)
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where ft(t, e(t)) = f(e(t) + rd(t))− n(t), with f(rd(t)) = n(t), Gt(t, e(t)) = G(e(t) +

rd(t)), and Jt(t, e(t))wt(t) = n(t) − ṙd(t) + J(e(t) + rd(t))w(t). Now, the adaptive

tracking control law (2.12)–(2.14), with x(t) replaced by e(t), guarantees that e(t)→ 0

as t→∞ for all e0 ∈ R
n.

It is important to note that the adaptive control law (2.4)–(2.6) does not require

explicit knowledge of the gain matrix Kg, the disturbance matching matrix Ψ, and

the disturbance weighting matrix function J(x); even though Theorem 2.1 requires

the existence of Kg and Ψ along with the construction of F (x), Ĝ(x), Ĵ(x), and Vs(x)

such that G(x)Ĵ(x)Ψ = J(x) and (2.2) holds. Furthermore, no specific structure on

the nonlinear dynamics f(x) is required to apply Theorem 2.1. However, if (2.1) is in

normal form [122] with asymptotically stable internal dynamics, then we can always

construct functions Vs : R
n → R, F : R

n → R
s, with F (0) = 0, and Ĝ : R

n → R
n×m

such that (2.2) holds without requiring knowledge of the system dynamics. These facts

are exploited below to construct nonlinear adaptive feedback controllers for nonlinear

uncertain dynamical systems. For simplicity of exposition in the ensuing discussion

we assume that J(x) = D, where D ∈ R
n×d is a disturbance weighting matrix with

unknown entries.

To elucidate the above discussion assume that the nonlinear uncertain system G

is generated by

q
(ri)
i (t) = fui(q(t)) +

m
∑

j=1

Gs(i,j)(q(t))uj(t) +
d
∑

k=1

D̂(i,k)wk(t), t ≥ 0, i = 1, · · · ,m,

(2.16)

where q = [q1, · · · , q(r1−1)1 , · · · , qm, · · · , q(rm−1)m ]T, q(0) = q0, q
(ri)
i denotes the rthi deriva-

tive of qi, ri denotes the relative degree with respect to the output qi, D̂(i,k) ∈ R,

i = 1, · · · ,m, k = 1, · · · , d, and wk(t) ∈ R, t ≥ 0, k = 1, · · · , d. Here, we assume that

the square matrix function Gs(q) composed of the entries Gs(i,j)(q), i, j = 1, · · · ,m, is
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such that detGs(q) 6= 0, q ∈ R
r̂, where r̂ = r1+ · · ·+rm is the (vector) relative degree

of (2.16). Furthermore, since (2.16) is in a form where it does not possess internal

dynamics, it follows that r̂ = n. The case where (2.16) possesses internal dynamics

is discussed below.

Next, define xi ,

[

qi, · · · , q(ri−2)i

]T

, i = 1, · · · ,m, xm+1 ,

[

q
(r1−1)
1 , · · · , q(rm−1)m

]T

,

and x ,
[

xT1 , · · · , xTm+1

]T
, so that (2.16) can be described by (2.1) with

f(x) = Ãx+ f̃u(x), G(x) =

[

0(n−m)×m

Gs(x)

]

, J(x) = D =

[

0(n−m)×d

D̂

]

, (2.17)

where

Ã =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1
fu(x)

]

,

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones capturing the multivariable

controllable canonical form representation [43], fu : R
n → R

m is an unknown function

and satisfies fu(0) = 0, Gs : R
n → R

m×m, and D̂ ∈ R
m×d. Here, we assume that

fu(x) is unknown and is parameterized as fu(x) = Θfn(x), where fn : R
n → R

q and

satisfies fn(0) = 0, Θ ∈ R
m×q is a matrix of uncertain constant parameters. Note

that Ĵ(x) and Ψ in Theorem 2.1 can be taken as Ĵ(x) = G−1s (x) and Ψ = D̂ so that

G(x)Ĵ(x)Ψ = J(x) = D is satisfied.

Next, to apply Theorem 2.1 to the uncertain system (2.1) with f(x), G(x), and

J(x) given by (2.17), let Kg ∈ R
m×s, where s = q + r, be given by

Kg = [Θn −Θ, Φn ], (2.18)

where Θn ∈ R
m×q and Φn ∈ R

m×r are known matrices, and let

F (x) =

[

fn(x)

f̂n(x)

]

, (2.19)

where f̂n : R
n → R

r, with f̂n(0) = 0, is an arbitrary function. In this case, it follows

that, with Ĝ(x) = G−1s (x),

fs(x) = f(x) +G(x)Ĝ(x)KgF (x)
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= Ãx+ f̃u(x) +

[

0(n−m)×m

Gs(x)

]

G−1s (x)
[

Θnfn(x)−Θfn(x) + Φnf̂n(x)
]

= Ãx+

[

0(n−m)×1
Θnfn(x) + Φnf̂n(x)

]

. (2.20)

Now, since Θn ∈ R
m×q and Φn ∈ R

m×r are arbitrary constant matrices and f̂n :

R
n → R

r is an arbitrary function we can always constructKg, Vs(x), and F (x) without

knowledge of f(x) such that (2.2) holds. In particular, choosing Θnfn(x)+Φnf̂n(x) =

Âx, where Â ∈ R
m×n, it follows that (2.20) has the form fs(x) = Asx, where As =

[

AT
0 , Â

T
]T

is in multivariable controllable canonical form. Hence, choosing Â such

that As is asymptotically stable, it follows from converse Lyapunov theory that there

exists a positive-definite matrix P satisfying the Lyapunov equation

0 = AT
s P + PAs +R, (2.21)

where R is positive definite. In this case, with Vs(x) = xTPx, the adaptive feedback

controller (2.4) with update laws (2.5), (2.6), or, equivalently,

K̇(t) = −Q1Ĝ
T(x(t))GT(x(t))Px(t)FT(x(t))Y, K(0) = K0, (2.22)

Φ̇(t) = −Q2Ĵ
T(x(t))GT(x(t))Px(t)wT(t)Z, Φ(0) = Φ0, (2.23)

guarantees global asymptotic stability of the nonlinear uncertain dynamical system

(2.1) where f(x), G(x), and J(x) are given by (2.17). As mentioned above, it is

important to note that it is not necessary to utilize a feedback linearizing function

F (x) to produce a linear fs(x). However, when the system is in normal form, a

feedback linearizing function F (x) provides considerable simplification in constructing

V ′s (x) necessary in computing the update laws (2.5) and (2.6).

A similar construction as discussed above can be used in the case where (2.1) is

in normal form with input-to-state stable internal dynamics [222] and w(t) ≡ 0. In
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this case, (2.16) is given by

ż(t) = fz(q(t), z(t)), z(0) = z0, t ≥ 0, (2.24)

q
(ri)
i (t) = fui(q(t), z(t)) +

m
∑

j=1

Gs(i,j)(q(t), z(t))uj(t), i = 1, · · · ,m, (2.25)

where fz : R
r̂×R

n−r̂ → R
n−r̂, r̂ < n, and where we have assumed for simplicity of ex-

position that the distribution spanned by the vector fields col1(G(x)), · · · , colm(G(x)),

where coli(G(x)) denotes the ith column of G(x), is involutive [122]. Here, we assume

that the zero solution z(t) ≡ 0 to (2.24) is input-to-state stable with q viewed as the

input. Next, define x , [zT, x̂T]T, where x̂ , [xT1 , · · · , xTm+1]
T ∈ R

r̂. Now, since the

internal dynamics given by (2.24) are input-to-state stable, it follows from Theorem 2

of [42] and Lemma 5.6 of [139] that the zero solution x(t) ≡ 0 to (2.1) with w(t) ≡ 0

is globally asymptotically stable.

Next, we consider the case where f(x) and G(x) are both uncertain and r̂ = n.

Specifically, we assume that G(x) is such that Gs(x) is unknown and is parameterized

as Gs(x) = BuGn(x), where Gn : R
n → R

m×m is known and satisfies detGn(x) 6= 0,

x ∈ R
n, and Bu ∈ R

m×m, with detBu 6= 0, is an unknown symmetric sign-definite

matrix but the sign definiteness of Bu is known; that is, Bu > 0 or Bu < 0. For

the statement of the next result define B0 ,
[

0m×(n−m), Im
]T

for Bu > 0, and B0 ,

[

0m×(n−m),−Im
]T

for Bu < 0.

Corollary 2.1. Consider the nonlinear system G given by (2.1) with f(x), G(x),

and J(x) given by (2.17) and Gs(x) = BuGn(x), where Bu is an unknown symmetric

matrix and the sign definiteness of Bu is known. Assume there exist a matrix Kg ∈

R
m×s and functions Vs : R

n → R, F : R
n → R

s, with F (0) = 0, and ` : R
n → R

t

such that Vs(·) is continuously differentiable, positive definite, radially unbounded,

Vs(0) = 0, `(0) = 0, and (2.2) holds. Finally, let Y ∈ R
s×s and Z ∈ R

d×d be positive
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definite. Then the adaptive feedback control law

u(t) = G−1n (x(t))K(t)F (x(t)) +G−1n (x(t))Φ(t)w(t), (2.26)

where K(t) ∈ R
m×s, t ≥ 0, and Φ(t) ∈ R

m×d, t ≥ 0, with update laws

K̇(t) = −1
2
BT

0 V
′
s
T(x(t))FT(x(t))Y, K(0) = K0, (2.27)

Φ̇(t) = −1
2
BT

0 V
′
s
T(x(t))wT(t)Z, Φ(0) = Φ0, (2.28)

guarantees that the solution (x(t), K(t),Φ(t)) ≡ (0, Kg,−Ψ), where Ψ ∈ R
m×d, of the

closed-loop system given by (2.1), (2.26)–(2.28) is Lyapunov stable and `(x(t)) → 0

as t→∞. If, in addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞ for

all x0 ∈ R
n.

Proof. The result is a direct consequence of Theorem 2.1. First, let Ĝ(x) =

Ĵ(x) = G−1n (x) and Ψ = B−1u D̂ so thatG(x)Ĝ(x) = [0m×(n−m), Bu]
T andG(x)Ĵ(x)Ψ=

D, and let Kg = B−1u [Θn − Θ,Φn]. Next, since Q1 and Q2 are arbitrary positive-

definite matrices, Q1 in (2.5) and Q2 in (2.6) can be replaced by q1|Bu|−1 and q2|Bu|−1,

respectively, where q1, q2 are positive constants and |Bu| = (B2
u)

1
2 , where (·) 12 denotes

the (unique) positive-definite square root. Now, since Bu is symmetric and sign

definite it follows from the Schur decomposition that Bu = UDBuU
T, where U is

orthogonal and DBu is real diagonal. Hence, |Bu|−1ĜT(x)GT(x) = [0m×(n−m), Im] =

BT
0 , where Im = Im for Bu > 0 and Im = −Im for Bu < 0. Now, (2.5) and (2.6),

with q1Y and q2Z replaced by Y and Z, imply (2.27) and (2.28), respectively. ¤

It is important to note that if, as discussed above, Kg and F (x) are constructed to

give fs(x) = Asx in (2.3), where As is an asymptotically stable matrix in multivariable

controllable canonical form, then considerable simplification occurs in Corollary 2.1.

Specifically, in this case Vs(x) = xTPx, where P > 0 satisfies (2.21), and hence (2.27),
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(2.28) become

K̇(t) = −BT
0 Px(t)F

T(x(t))Y, K(0) = K0, (2.29)

Φ̇(t) = −BT
0 Px(t)w

T(t)Z, Φ(0) = Φ0. (2.30)

2.3. Specialization to Single-Input Systems with Uncertain

Dynamics

In this section we apply the framework developed in Section 2.2 to single-input

uncertain dynamical systems in normal form to further elucidate the proposed adap-

tive stabilization approach. For simplicity of exposition we assume that the system

G has no internal dynamics. The case where G possesses input-to-state stable inter-

nal dynamics can be handled as discussed in Section 2.2. Here, we assume that the

nonlinear uncertain system G is given by (2.1) with

f(x) =











x2
...
xn

fu(x)











, G(x) =

[

0(n−1)×1
gs(x)

]

, J(x) = D =

[

0(n−1)×d

d̂

]

, (2.31)

where fu : R
n → R is an unknown function and satisfies fu(0) = 0, g : R

n → R

and satisfies g(x) 6= 0, x ∈ R
n, and d̂ ∈ R

1×d. In addition, we assume that fu(x) is

unknown and is parameterized as fu(x) = θfn(x), where fn : R
n → R

q and satisfies

fn(0) = 0, and θ ∈ R
1×q is a vector of uncertain constant parameters. Note that in

the single-input case m = 1 and hence Ĵ(x) and Ψ in Theorem 2.1 can be taken as

Ĵ(x) = g−1s (x) and Ψ = d̂, respectively, so that G(x)Ĵ(x)Ψ = J(x) = D is satisfied.

Next, to apply Theorem 2.1 to the single-input case with unknown dynamics let

Kg ∈ R
1×s be given by

Kg = [ θn − θ, φn ], (2.32)

where θn ∈ R
1×q and φn ∈ R

1×r are known vectors with s = r + q, and let F (x) be
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given by (2.19). In this case, it follows that, with Ĝ(x) = g−1s (x),

fs(x) = f(x) +G(x)Ĝ(x)KgF (x)

=











x2
...
xn

fu(x)











+

[

0(n−1)×1
gs(x)

]

1

gs(x)

[

θnfn(x)− θfn(x) + φnf̂n(x)
]

=











x2
...
xn

θnfn(x) + φnf̂n(x)











. (2.33)

Now, since θn ∈ R
1×q and φn ∈ R

1×r are arbitrary constant vectors and f̂n : R
n →

R
r is an arbitrary function we can always construct Kg, Vs(x), and F (x) without

knowledge of f(x) such that (2.2) holds. In particular, choosing θnfn(x) + φnf̂n(x) =

a1x1 + a2x2 + · · · + anxn, it follows that (2.33) has the form fs(x) = Asx, where

As is in controllable canonical form. Hence, choosing ai, i = 1, · · · , n, such that

As is asymptotically stable, it follows that there exists a positive-definite matrix P

satisfying (2.21). In this case, with Lyapunov function Vs(x) = xTPx, the adaptive

feedback controller (2.4) with update laws (2.5), (2.6), or, equivalently,

K̇(t) = −ĜT(x(t))GT(x(t))Px(t)FT(x(t))Y, K(0) = K0, (2.34)

Φ̇(t) = −ĴT(x(t))GT(x(t))Px(t)wT(t)Z, Φ(0) = Φ0, (2.35)

guarantees global asymptotic stability of the nonlinear dynamical system (2.1) where

f(x), G(x), and J(x) are given by (2.31).

Next, we consider the case where f(x) and G(x) are both uncertain. Specifically,

we assume that G(x) = [01×(n−1), bugn(x)]
T, where gn : R

n → R is known and satisfies

gn(x) 6= 0, x ∈ R
n, and bu 6= 0 is unknown but sgn bu , bu/|bu| is known. For the

statement of the next result define B0 = [01×(n−1), sgn bu]
T.
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Corollary 2.2. Consider the nonlinear system G given by (2.1) with f(x), G(x),

and J(x) given by (2.31) and gs(x) = bugn(x), where bu is unknown but sgn bu is

known. Assume there exists a vector Kg ∈ R
1×s and functions Vs : R

n → R, F : R
n →

R
s, with F (0) = 0, and ` : R

n → R
t such that Vs(·) is continuously differentiable,

positive definite, radially unbounded, Vs(0) = 0, `(0) = 0, and (2.2) holds. Finally,

let Y ∈ R
s×s and Z ∈ R

d×d be positive definite. Then the adaptive feedback control

law

u(t) = g−1n (x(t))K(t)F (x(t)) + g−1n (x(t))Φ(t)w(t), (2.36)

where K(t) ∈ R
1×s, t ≥ 0, and Φ(t) ∈ R

1×d, t ≥ 0, with update laws

K̇(t) = −1
2
BT

0 V
′
s
T(x(t))FT(x(t))Y, K(0) = K0, (2.37)

Φ̇(t) = −1
2
BT

0 V
′
s
T(x(t))wT(t)Z, Φ(0) = Φ0, (2.38)

guarantees that the solution (x(t), K(t),Φ(t)) ≡ (0, Kg,−Ψ), where Ψ ∈ R
1×d, of the

closed-loop system given by (2.1), (2.36)–(2.38) is Lyapunov stable and `(x(t)) → 0

as t→∞. If, in addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞ for

all x0 ∈ R
n.

Proof. The result is a direct consequence of Theorem 2.1. First, let Ĝ(x) =

Ĵ(x) = g−1n (x) and note that taking Ψ = b−1u d̂ it follows that G(x)Ĵ(x)Ψ = D. Next,

since Q1 and Q2 are arbitrary positive-definite matrices, Q1 in (2.5) and Q2 in (2.6)

can be replaced by |bu|−1Q1 and |bu|−1Q2, respectively, where in this case Q1 and Q2

are scalars. Hence, (2.5) and (2.6), with Q1Y and Q2Z replaced by Y and Z, imply

(2.37) and (2.38), respectively. ¤

If Kg and F (x) are constructed to give fs(x) = Asx in (2.3), where As is an asymp-

totically stable matrix in controllable canonical form, then considerable simplification

occurs in Corollary 2.2. Specifically, in this case Vs(x) = xTPx, where P > 0 satisfies
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(2.21), and hence (2.37), (2.38) become

K̇(t) = −BT
0 Px(t)F

T(x(t))Y, K(0) = K0, (2.39)

Φ̇(t) = −BT
0 Px(t)w

T(t)Z, Φ(0) = Φ0. (2.40)

Finally, we specialize Corollary 2.2 to the case where d = 1, w(t) ≡ 1, d̂ ∈ R, and

f(x) = Ax, where

A =

[

A0

θ

]

, (2.41)

A0 ∈ R
(n−1)×n is a known matrix and θ ∈ R

1×n is an unknown vector. In this case,

our results specialize to results given in [114,115].

Corollary 2.3. Consider the system G given by (2.1) with f(x) = Ax, G(x) = B,

d = 1, J(x) = [01×(n−1), d̂]
T, and w(t) ≡ 1. Assume there exists a vector Kg ∈ R

1×n

such that (2.21) holds with As , A + BKg, P > 0, and R ≥ 0. Furthermore, let

Y ∈ R
n×n be a positive-definite matrix and Z ∈ R be a positive constant. Then the

adaptive feedback control law

u(t) = K(t)x(t) + φ(t), (2.42)

where K(t) ∈ R
1×n, t ≥ 0, and φ(t) ∈ R, t ≥ 0, with update laws

K̇(t) = −BT
0 Px(t)x

T(t)Y, K(0) = K0, (2.43)

φ̇(t) = −BT
0 Px(t)Z, φ(0) = φ0, (2.44)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (0, Kg,−ψ), where ψ ∈ R, of the

closed-loop system given by (2.1), (2.42)–(2.44) is Lyapunov stable and Rx(t) → 0

as t→∞. If, in addition, R > 0, then x(t)→ 0 as t→∞ for all x0 ∈ R
n.

Proof. The result is a direct consequence of Corollary 2.2 with s = n, d = 1,

f(x) = Ax, w(t) ≡ 1, F (x) = x, and Vs(x) = xTPx. ¤
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Once again, even though Corollary 2.3 requires the existence of Kg such that

(2.21) holds, the adaptive feedback controller (2.42)–(2.44) can be constructed with-

out knowledge of θ in A or b in B. However, sgn b must be known. To see this note

that by choosing Kg =
1
b
[θn − θ] it follows that

A+BKg =

[

A0

θ

]

+

[

0
b

]

1

b
[θn − θ] =

[

A0

θn

]

.

Since θn is arbitrary, it follows that P can be determined without knowledge of θ or b.

2.4. Adaptive Control for Nonlinear Systems with L2 Distur-

bances

In this section we consider the problem of characterizing adaptive feedback con-

trol laws for nonlinear uncertain dynamical systems with exogenous L2 disturbances.

Specifically, we consider the following controlled nonlinear uncertain system G given

by

ẋ(t) = f(x(t))+G(x(t))u(t)+J(x(t))w(t), x(0) = x0, w(·) ∈ L2, t ≥ 0, (2.45)

with performance variables

z(t) = h(x(t)), (2.46)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

w(t) ∈ R
d, t ≥ 0, is an unknown bounded energy L2 disturbance, z(t) ∈ R

p, t ≥ 0,

is a performance variable, f : R
n → R

n and satisfies f(0) = 0, G : R
n → R

n×m,

J : R
n → R

n×d, and h : R
n → R

p is continuous and satisfies h(0) = 0. The

following theorem generalizes Theorem 2.1 to nonlinear uncertain dynamical systems

with exogenous L2 disturbances.

Theorem 2.2. Consider the nonlinear system G given by (2.45) and (2.46). As-

sume there exist a matrix Kg ∈ R
m×s and functions Vs : R

n → R, Ĝ : R
n → R

m×m,
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F : R
n → R

s, with F (0) = 0, and ` : R
n → R

t such that Vs(·) is continuously

differentiable, positive definite, radially unbounded, Vs(0) = 0, `(0) = 0, and, for all

x ∈ R
n,

0 = V ′s (x)fs(x) + Γ(x), (2.47)

where

Γ(x) , 1
4γ2
V ′s (x)J(x)J

T(x)V ′Ts (x) + hT(x)h(x) (2.48)

and fs(x) is given by (2.3). Finally, let Q ∈ R
m×m and Y ∈ R

s×s be positive definite.

Then the adaptive feedback control law

u(t) = Ĝ(x(t))K(t)F (x(t)), (2.49)

where K(t) ∈ R
m×s, t ≥ 0, with update law

K̇(t) = −1
2
QĜT(x(t))GT(x(t))V ′s

T(x(t))FT(x(t))Y, K(0) = K0, (2.50)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg) of the undisturbed (w(t) ≡ 0)

closed-loop system given by (2.45), (2.49), and (2.50) is Lyapunov stable and h(x(t))→

0 as t→∞. If, in addition, hT(x)h(x) > 0, x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞

for all x0 ∈ R
n. Furthermore, the solution x(t), t ≥ 0, to the closed-loop system given

by (2.45), (2.49), and (2.50) satisfies the nonexpansivity constraint

∫ T

0

zT(t)z(t) dt ≤ γ2
∫ T

0

wT(t)w(t) dt+ V (x(0), K(0)),

T ≥ 0, γ > 0, w(·) ∈ L2, (2.51)

where

V (x,K) , Vs(x) + trQ−1(K −Kg)Y
−1(K −Kg)

T. (2.52)

Proof. Note that with u(t), t ≥ 0, given by (2.49) it follows from (2.45) that

ẋ(t) = f(x(t)) +G(x(t))Ĝ(x(t))K(t)F (x(t)) + J(x(t))w(t), x(0) = x0,

w(·) ∈ L2, t ≥ 0, (2.53)
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or, equivalently, using the definition for fs(x) given in (2.3),

ẋ(t) = fs(x(t)) +G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t)) + J(x(t))w(t), x(0) = x0,

w(·) ∈ L2, t ≥ 0. (2.54)

To show Lyapunov stability of the closed-loop system (2.50) and (2.54) consider the

Lyapunov function candidate given by (2.52). Note that V (0, Kg) = 0 and, since Vs(·),

Q, and Y are positive definite, V (x,K) > 0 for all (x,K) 6= (0, Kg). Furthermore,

V (x,K) is radially unbounded. Now, letting x(t), t ≥ 0, denote the solution to

(2.54) and using (2.47) and (2.50), it follows that the Lyapunov derivative along the

undisturbed (w(t) ≡ 0) closed-loop system trajectories is given by

V̇ (x(t), K(t)) = V ′s (x(t))
[

fs(x(t)) +G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t))
]

+2trQ−1(K(t)−Kg)Y
−1K̇T(t)

= −Γ(x(t)) + tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

−tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

= −Γ(x(t))

≤ 0, t ≥ 0, (2.55)

which proves that the solution (x(t), K(t)) ≡ (0, Kg) to (2.50) and (2.54) with w(t) ≡

0 is Lyapunov stable. Furthermore, it follows from Theorem 2 of [42] that h(x(t))→ 0

as t→∞ for all x0 ∈ R
n. If, in addition, hT(x)h(x) > 0, x ∈ R

n, x 6= 0, then x(t)→ 0

as t→∞ for all x0 ∈ R
n.

Finally, to show that the nonexpansivity constraint (2.51) holds, note that, for all

(x,w) ∈ R
n × R

d,

0 ≤
[

1
2γ
JT(x)V ′Ts (x)− γw

]T [
1
2γ
JT(x)V ′Ts (x)− γw

]

= Γ(x) + γ2wTw − zTz − V ′Ts (x)J(x)w. (2.56)
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Now, let w(·) ∈ L2 and let x(t), t ≥ 0, denote the solution of the closed-loop system

(2.54). Then, using (2.50), the Lyapunov derivative along the closed-loop system

trajectories is given by

V̇ (x(t), K(t)) = V ′s (x(t))
[

fs(x(t)) +G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t))

+J(x(t))w(t)
]

+ 2trQ−1(K(t)−Kg)Y
−1K̇T(t)

= −Γ(x(t)) + tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

+V ′s (x(t))J(x(t))w(t)

−tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

= −Γ(x(t)) + V ′s (x(t))J(x(t))w(t)

≤ γ2wT(t)w(t)− zT(t)z(t), t ≥ 0. (2.57)

Now, integrating (2.57) over [0, T ] yields

V (x(T ), K(T )) ≤
∫ T

0

[

γ2wT(t)w(t)− zT(t)z(t)
]

dt+ V (x(0), K(0)),

T ≥ 0, γ > 0, w(·) ∈ L2, (2.58)

which, by noting that V (x(T ), K(T )) ≥ 0, T ≥ 0, yields (2.51). ¤

It is important to note that unlike Theorem 2.1 requiring a matching condition on

the disturbance, Theorem 2.2 does not require any such matching condition. Further-

more, as shown in Section 2.2, if (2.45) is in normal form with asymptotically stable

internal dynamics, then we can construct functions Vs : R
n → R, Ĝ : R

n → R
n×m,

and F : R
n → R

s, with F (0) = 0, such that (2.47) holds without requiring knowledge

of the system dynamics. In addition, in the case where J(x) = D and h(x) = Ex, the

adaptive controller (2.50) can be constructed to guarantee the nonexpansivity con-

straint (2.51) using standard linear H∞ methods. Specifically, choosing fs(x) = Asx,

where As is asymptotically stable and in multivariable controllable canonical form,

it follows from standard H∞ theory [240] that if (As, E) is observable, ‖G(s)‖∞ < γ,
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where G(s) = E(sIn − As)
−1D, if and only if there exists a positive-definite matrix

P satisfying the bounded real Riccati equation

0 = AT
s P + PAs + γ−2PDDTP + ETE. (2.59)

It is well known that (2.59) has a nonnegative-definite solution if and only if the

Hamiltonian matrix

H =

[

As γ−2DDT

−ETE −AT
s

]

, (2.60)

has no purely imaginary eigenvalues. In this case, with Vs(x) = xTPx, the adaptive

feedback controller (2.49) with update law (2.50), or, equivalently,

K̇(t) = −QĜT(x(t))GT(x(t))Px(t)FT(x(t))Y, K(0) = K0, (2.61)

guarantees global asymptotic stability of the nonlinear undisturbed (w(t) ≡ 0) dy-

namical system (2.45), where f(x) and G(x) are given by (2.17). Furthermore, the

solution x(t), t ≥ 0, of the closed-loop nonlinear dynamical system (2.45) and (2.49)

is guaranteed to satisfy the nonexpansivity constraint (2.51).

Finally, if f(x) and G(x) given by (2.17) are uncertain and Gs(x) = BuGn(x),

where the sign definiteness of Bu is known, then using an identical approach as in

Section 2.2, it can be shown that the adaptive feedback control law

u(t) = G−1n (x(t))K(t)F (x(t)), (2.62)

with update law

K̇(t) = −1
2
BT

0 V
′T
s (x(t))FT(x(t))Y, K(0) = K0, (2.63)

where B0 is defined as in Section 2.2, guarantees asymptotic stability and nonexpan-

sivity of (2.45) and (2.46).
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2.5. Illustrative Numerical Examples

In this section we present several numerical examples to demonstrate the utility of

the proposed direct adaptive control framework for adaptive stabilization, disturbance

rejection, and command following.

Example 2.1. Consider the uncertain controlled Liénard system given by

z̈(t)+µ(z4(t)−α)ż(t)+βz(t)+γ tanh(z(t)) = bu(t), z(0) = z0, ż(0) = ż0, t ≥ 0,

(2.64)

where µ, α, β, γ, b ∈ R are unknown. Note that with x1 = z and x2 = ż, (2.64) can be

written in state space form (2.1) with x = [x1, x2]
T, f(x) = [x2,−βx1 − γ tanhx1 −

µ(x41−α)x2]T, and G(x) = [0, b]T. Here, we assume that f(x) is unknown and can be

parameterized as f(x) = [x2, θ1x1 + θ2x2 + θ3 tanhx1 + θ4x
4
1x2]

T, where θ1, θ2, θ3, and

θ4 are unknown constants. Furthermore, we assume that sgn b is known. Next, let

F (x) = [x1, x2, tanh(x1), x
4
1x2]

T
and Kg = 1

b
[θn1 − θ1, θn2 − θ2,−θ3,−θ4] , where θn1 ,

θn2 are arbitrary scalars, so that

fs(x) = f(x) +

[

0
b

]

1

b

[

θn1 − θ1, θn2 − θ2,−θ3,−θ4
]

F (x)

=

[

0 1
θn1 θn2

]

x. (2.65)

Now, with the proper choice of θn1 and θn2 , it follows from Corollary 2.1 that the

adaptive feedback controller (2.26) with w(t) ≡ 0 guarantees that x(t)→ 0 as t→∞.

Specifically, here we choose θn1 = −1, θn2 = −2, and R = 2I2, so that P satisfying

(2.21) is given by

P =

[

3 1
1 1

]

. (2.66)

With µ = 2, α = 1, β = 1, γ = 1, b = 3, Y = I4, and initial conditions x(0) = [1, 1]T

and K(0) = [0, 0, 0, 0], Figure 2.1 shows the phase portrait of the controlled and
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Figure 2.1: Phase portrait of controlled and uncontrolled Liénard system

uncontrolled system. Note that the adaptive controller is switched on at t = 15 sec.

Figure 2.2 shows the state trajectories versus time and the control signal versus time.

Finally, Figure 2.3 shows the adaptive gain history versus time.

Example 2.2. Consider the uncertain controlled Van der Pol oscillator given by

z̈(t)− ε(1− z2(t))ż(t) + z(t) = bu(t), z(0) = z0, ż(0) = ż0, t ≥ 0, (2.67)

where ε, b ∈ R are unknown. Note that with x1 = z and x2 = ż, (2.67) can be

written in state space form (2.1) with x = [x1, x2]
T, f(x) = [x2,−x1 + ε(1− x21)x2]T,

and G(x) = [0, b]T. Here, we assume that f(x) is unknown and can be parame-

terized as f(x) = [x2,−x1 + θ1x2 + θ2x
2
1x2]

T, where θ1 and θ2 are unknown con-

stants. Furthermore, we assume that sgn b is known. Next, let F (x) = [x2, x
2
1x2]

T

and Kg =
1
b
[θn1 − θ1,−θ2] , where θn1 is an arbitrary scalar, so that

fs(x) = f(x) +

[

0
b

]

1

b

[

θn1 − θ1,−θ2
]

F (x)

=

[

0 1
−1 θn1

]

x.
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Figure 2.2: State trajectories and control signal versus time
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Figure 2.3: Adaptive gain history versus time
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Figure 2.4: Phase portrait of controlled and uncontrolled Van der Pol oscillator

Now, with the proper choice of θn1 , it follows from Corollary 2.1 that the adaptive

feedback controller (2.26) with w(t) ≡ 0 guarantees that x(t)→ 0 as t→∞. Specif-

ically, here we choose θn1 = −2 and R = 2I2, so that P satisfying (2.21) is given

by (2.66). With ε = 2, b = 3, Y = I2, and initial conditions x(0) = [1, 1]T and

K(0) = [0, 0], Figure 2.4 shows that the phase portrait of the controlled and un-

controlled system. Note that the adaptive controller is switched on at t = 15 sec.

Figure 2.5 shows the state trajectories versus time and the control signal versus time.

Finally, Figure 2.6 shows the adaptive gain history versus time.

Example 2.3. Consider the uncertain controlled Rayleigh system given by

z̈(t)− ε(ż(t)− αż3(t)) + βz(t) = bu(t) + d̂, z(0) = z0, ż(0) = ż0, t ≥ 0, (2.68)

where ε, α, b ∈ R are unknown and d̂ ∈ R is an unknown constant disturbance.

Note that with x1 = z and x2 = ż, (2.68) can be expressed in state space form
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(2.1) with x = [x1, x2]
T, f(x) = [x2,−βx1 + ε(x2 − αx32)]

T, G(x) = [0, b]T, J(x) =

[0, d̂]T, and w(t) ≡ 1. Here, we assume f(x) is unknown and can be parameterized

as f(x) = [x2, θ1x1 + θ2x2 + θ3x
3
2]
T, where θ1, θ2, and θ3 are unknown constants.

Furthermore, we assume that sgn b is known. Next, let F (x) = [x1, x2, x
3
2]
T
and Kg =

1
b
[θn1 − θ1, θn2 − θ2,−θ3] , where θn1 , θn2 are arbitrary scalars, so that fs(x) is given

by (2.65). Now, with the proper choice of θn1 and θn2 , it follows from Corollary 2.1

that the adaptive feedback controller (2.26) guarantees that x(t) → 0 as t → ∞.

Specifically, here we choose θn1 = −1, θn2 = −2, and R = 2I2, so that P satisfying

(2.21) is given by (2.66). With ε = 1, α = 1
3
, β = 1, b = 3, d̂ = 3, Y = I3, Z = 1,

and initial conditions x(0) = [1, 1]T, K(0) = [0, 0, 0], and Φ(0) = 0, Figure 2.7 shows

the phase portrait of the controlled and uncontrolled system. Note that the adaptive

controller is switched on at t = 15 sec. Figure 2.8 shows the state trajectories versus

time and the control signal versus time. Finally, Figure 2.9 shows the adaptive gain

history versus time.

Example 2.4. The following example considers the utility of the proposed adap-

tive stabilization framework for systems with time-varying disturbances. Specifically,

consider the uncertain controlled Duffing system given by

mz̈(t) + cż(t) + kz(t) + ka2z3(t) = bu(t) + A cosωt, z(0) = z0, ż(0) = ż0, t ≥ 0,

(2.69)

where m, c, k, a, b, and A are unknown. Note that with x1 = z and x2 = ż, (2.69) can

be written in state space form (2.1) with x = [x1, x2]
T, f(x) = [x2,− k

m
x1 − c

m
x2 −

ka2

m
x31]

T, G(x) = [0, b
m
]T, J(x) = [0, 1

m
A]T, and w(t) = cosωt. Here, we assume that

ω and sgn b are known and f(x) can be parameterized as f(x) = [x2, θ1x1 + θ2x2 +

θ3x
3
1]
T, where θ1, θ2, and θ3 are unknown constants. Next, let F (x) = [x1, x2, x

3
1]
T

and Kg = m
b
[θn1 − θ1, θn2 − θ2,−θ3] , where θn1 and θn2 are arbitrary scalars, so that

fs(x) is given by (2.65). Now, with the proper choice of θn1 and θn2 , it follows from
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Figure 2.7: Phase portrait of controlled and uncontrolled Rayleigh system

Corollary 2.1 that the adaptive feedback controller (2.26) guarantees that x(t) → 0

as t → ∞. Specifically, here we choose θn1 = −1, θn2 = −2, and R = 2I2, so that

P satisfying (2.21) is given by (2.66). With m = 1, c = 0.1, k = 2, a = 1, A = 4,

ω = 1, b = 3, Y = I3, Z = 1, and initial conditions x(0) = [1, 1]T, K(0) = [0, 0, 0],

and Φ(0) = 0, Figure 2.10 shows the phase portrait of the controlled and uncontrolled

system. Once again, the adaptive controller is switched on at t = 15 sec. Figure 2.11

shows the state trajectories versus time and the control signal versus time. Finally,

Figure 2.12 shows the adaptive gain history versus time.

Example 2.5. The following example considers the utility of the proposed adap-

tive stabilization framework for systems with time-varying dynamics. Specifically,

consider the uncertain controlled Mathieu system given by

z̈(t) + µ(1 + 2ε cos 2t)z(t) = bu(t), z(0) = z0, ż(0) = ż0, t ≥ 0, (2.70)
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Figure 2.9: Adaptive gain history versus time
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Figure 2.10: Phase portrait of controlled and uncontrolled Duffing system

where µ, ε, b ∈ R are unknown. Note that with x1 = z and x2 = ż, (2.70) can be writ-

ten in state space form (2.11) with x = [x1, x2]
T, f(t, x) = [x2,−µ(1 + 2ε cos 2t)x1]

T,

and G(t, x) = [0, b]T. Here, we assume that sgn b is known and f(t, x) can be parame-

terized as f(t, x) = [x2, θ1x1+ θ2 cos(2t)x1]
T, where θ1 and θ2 are unknown constants.

Next, let F (t, x) = [x1, cos(2t)x1, x2, ]
T and Kg =

1
b
[θn1 − θ1,−θ2, φn] , where θn1 and

φn are arbitrary scalars, so that

fs(x) =

[

0 1
θn1 φn

]

x.

Now, with the proper choice of θn1 and φn, it follows from Corollary 2.1 and Remark

2.2 that the adaptive feedback controller (2.26) with w(t) ≡ 0 guarantees that x(t)→

0 as t→∞. Specifically, here we choose θn1 = −1, φn = −2, and R = 2I2, so that P

satisfying (2.21) is given by (2.66). With µ = 1, ε = 0.4, b = 3, Y = I3, and initial

conditions x(0) = [1, 1]T and K(0) = [0, 0, 0], Figure 2.13 shows the phase portrait of

the controlled and uncontrolled system. Note that the adaptive controller is switched
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Figure 2.11: State trajectories and control signal versus time
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on at t = 15 sec. Figure 2.14 shows the state trajectories versus time and the control

signal versus time. Finally, Figure 2.15 shows the adaptive gain history versus time.

Example 2.6. The following example considers the utility of the proposed adap-

tive control framework for command following. Specifically, consider the spring-mass-

damper uncertain system with nonlinear stiffness given by

mẍ(t) + cẋ(t) + k1x(t) + k2x
3(t) = bu(t) + d̂w(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0,

(2.71)

where m, c, k1, k2 ∈ R are positive unknown constants, and b is unknown but sgn b

is known. Let rd(t), t ≥ 0, be a desired command signal and define the error state

ẽ(t) , x(t)− rd(t) so that the error dynamics are given by

m¨̃e(t) + c ˙̃e(t) + (k1 + k2(ẽ
2(t) + 3rd(t)ẽ(t) + 3r2d(t)))ẽ(t) = bu(t) + d̂w(t)

−(mr̈d(t) + cṙd(t) + k1rd(t) + k2r
3
d(t)), ẽ(0) = ẽ0, ˙̃e(0) = ˙̃e0, t ≥ 0. (2.72)
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Figure 2.15: Adaptive gain history versus time

63



Here, we assume that the disturbance signal w(t) is a sinusoidal signal with unknown

amplitude and phase; that is, d̂w(t) =
√

A2
1 + A2

2 sin(ωt+ φ) = A1 sinωt+A2 cosωt,

where φ = tan−1(A2/A1) and A1 and A2 are unknown constants. Furthermore, the

desired trajectory is given by

rd(t) = tanh

(

t− 20

5

)

,

so that the position of the mass is moved from −1 to 1 at t = 20 sec. Note that

with e1 = ẽ and e2 = ˙̃e, (2.71) can be written in state space form (2.15) with

e = [e1, e2]
T, ft(rd, e) = [e2,− 1

m
(k1+ k2(e

2
1 + 3rde1 + 3r2d))e1 − c

m
e2]

T, G(t, e) =

[0, b
m
]T, Jt(t, e) =

1
m

[

06×1, d̂
T
t

]T

, where d̂t = [A1, A2,−k1,−k2,−c,−m], and wt(t) =

[sinωt, cosωt, rd(t), r
3
d(t), ṙd(t), r̈d(t)]

T. Here, we parameterize ft(rd, e) = [e2, θ1e1 +

θ2e2 + θ3e
3
1 + θ4rde

2
1 + θ5r

2
de1]

T, where θi, i = 1, · · · , 5, are unknown constants. Next,

let F (rd, e) = [e1, e2, e
3
1, rde

2
1, r

2
de1]

T and Kg = m
b
[θn1 − θ1, θn2 − θ2,−θ3,−θ4,−θ5] ,

where θn1 , θn2 are arbitrary scalars, so that fs(e) is given by (2.65). Now, with the

proper choice of θn1 and θn2 , it follows from Corollary 2.1 and Remark 2.3 that the

adaptive feedback controller (2.26) guarantees that e(t)→ 0 as t→∞. Specifically,

here we choose θn1 = −1, θn2 = −2, and R = 2I2, so that P satisfying (2.21) is given

by (2.66). With m = 1, c = 1, k1 = 2, k2 = 0.5, d̂w(t) = 2 sin(ωt + 1), ω = 2, b = 3,

Y = I5, Z = I6, and initial conditions e(0) = [0, 0]T, K(0) = 01×5, and Φ(0) = 01×6,

Figure 2.16 shows the actual position and the reference signal versus time and the

control signal versus time. Finally, Figure 2.17 shows the adaptive gain history versus

time.

Example 2.7. Consider the nonlinear dynamic equations for a single-link ma-

nipulator with flexible joints and negligible damping coupled through a gear train to
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a DC-motor given by ([225])

I1q̈1(t) +MgL sin q1(t) + k(q1(t)− q2(t)) = 0, q1(0) = q10, q̇1(0) = q̇10, t ≥ 0,

(2.73)

I2q̈2(t)− k(q1(t)− q2(t)) = u(t), q2(0) = q20, q̇2(0) = q̇20, (2.74)

where q1 and q2 are angular positions, I1 and I2 are mass moments of inertia of the

link and the motor, respectively, k is a spring constant,M is the total mass of the link,

L is the distance from the joint axis to the link center of mass, g is the gravitational

constant, and u is a control torque input. Defining the state variables

x1(t) , q1(t), x2(t) , q̇1(t), x3(t) , −
MgL

I1
sin q1(t)−

k

I1
(q1(t)− q2(t)),

x4(t) , −
MgL

I1
q̇1(t) cos q1(t)−

k

I1
(q̇1(t)− q̇2(t)),

(2.73), (2.74) can be written in the form of (2.1) with x = [x1, x2, x3, x4]
T, G(x) =

[01×3, βδ]
T, w(t) ≡ 0, and

f(x) =









x2
x3
x4

−(α cos x1 + β + γ)x3 + α(x22 − γ) sin x1









,

where α , MgL
I1
, β , k

I1
, γ , k

I2
, δ , 1

I2
. Here, we assume that α, β, γ, and δ are

unknown positive constants. Furthermore, assume that the angular position q1(t)

is required to track the angle rd(t) = sin t. Next, define the error states ei(t) ,

di−1

dti−1
(x1(t)−rd(t)), i = 1, · · · , 4, so that the error dynamics can be written in the form

(2.15) with e , [e1, e2, e3, e4]
T, ft(rd, e) = [e2, e3, e4, ftu(rd, ṙd, r̈d, e)]

T, where

ftu(rd, ṙd, r̈d, e) = −(α cos(e1 + rd) + β + γ)e3 − αr̈d(cos(e1 + rd)− cos rd)

+α[((e2 + ṙd)
2 − γ) sin(e1 + rd)− (ṙ2d − γ) sin rd],

G(t, e) = [01×3, βδ], Jt(t, e) = [05×3, d̂
T
t ]

T, where d̂t = [−1,−(β+ γ), α,−αγ,−α], and

wt(t) = [r
(4)
d (t), r̈d(t), ṙ

2
d(t) sin rd(t), sin rd(t), r̈d(t) cos rd(t)]

T. Here, we parameterize
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ftu(rd, ṙd, r̈d, e) as

ftu(rd, ṙd, r̈d, e) =
[

θ1e3 + θ2e3 cos(e1 + rd) + θ3(cos(e1 + rd)r̈d − cos rdr̈d)

+θ4((e2 + ṙd)
2 sin(e1 + rd)− ṙ2d sin rd) + θ5(sin(e1 + rd)− sin rd)

]T
,

where, θi, i = 1, · · · , 5, are unknown constants. Next, let

F (rd, ṙd, r̈d, e) =
[

e3, e3 cos(e1 + rd), cos(e1 + rd)r̈d − cos rdr̈d,

(e2 + ṙd)
2 sin(e1 + rd)− ṙ2d sin rd, sin(e1 + rd)− sin rd, e1, e2, e4

]T

and Kg = [θn1 − θ1,−θ2,−θ3,−θ4,−θ5, φn1 , φn2 , φn3 ], where θn1 , φn1 , φn2 , and φn3 are

arbitrary scalars, so that fs(e) is given by

fs(e) =









0 1 0 0
0 0 1 0
0 0 0 1
φn1 φn2 θn1 φn3









e.

Now, with the proper choice of θn1 , φn1 , φn2 , and φn3 , it follows from Corollary 2.1 and

Remark 2.3 that the adaptive feedback controller (2.26) guarantees that e(t)→ 0 as

t → ∞. Specifically, here we choose θn1 = −24, φn1 = −16, φn2 = −32, φn3 = −8,

and R = I4, so that P satisfying (2.21) is given by

P =









3.0156 3.5312 1.5977 0.0312
3.5312 6.9883 3.6719 0.1260
1.5977 3.6719 3.2861 0.1738
0.0312 0.1260 0.1738 0.0842









.

With α = 10, β = 2, γ = 4, δ = 1, Y = 20I8, Z = 20I5, and initial conditions

e(0) = 04×1, K(0) = 01×8, and Φ(0) = 01×5, Figure 2.18 shows the actual position

q1(t) and the reference signal versus time. Figure 2.19 shows the error signals and

the control signal versus time. Finally, Figure 2.20 shows the adaptive gain history

versus time.

Example 2.8. Consider the two-degree-of-freedom uncertain structural system

given by

Msẍ(t) + Csẋ(t) +Ksx(t) = u(t), x(0) = x0, ẋ(0) = ẋ0, t ≥ 0, (2.75)
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Figure 2.18: State trajectories versus time

where x(t) ∈ R
2, u(t) ∈ R

2, t ≥ 0,

Ms ,

[

m1 0
0 m2

]

, Cs ,

[

c1 + c2 −c2
−c2 c2

]

, Ks ,

[

k1 + k2 −k2
−k2 k2

]

,

and m1,m2, c1, c2, k1, k2 ∈ R are unknown constants such that m1,m2 > 0. Let rd(t)

be a desired command signal and define the error state ẽ(t) , x(t)− rd(t) so that the

error dynamics are given by

Ms
¨̃e(t) + Cs

˙̃e(t) +Ksẽ(t) = u(t)−Msr̈d(t)− Csṙd(t)−Ksrd(t),

ẽ(0) = ẽ0, ˙̃e(0) = ˙̃e0, t ≥ 0. (2.76)

Note that with e1 = ẽ and e2 = ˙̃e, (2.76) can be written in state space form (2.15)

with e = [eT1 , e
T
2 ]

T, ft(t, e) = [eT2 ,−(M−1
s Kse1 +M−1

s Cse2)
T]T, G(t, e) = [02×2,M

−1
s ]T,

Jt(t, e) = [06×2, D̂
T
t ]

T, where D̂t = [−I2,−M−1
s Cs,−M−1

s Ks], and wt(t) = [r̈Td (t),

ṙTd (t), r
T
d (t)]

T. Note that M−1
s is symmetric and positive definite but otherwise un-

known. Here, we parameterize ft(t, e) as ft(t, e) = [eT2 , (Θ1e1 + Θ2e2)
T]T, where
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Figure 2.19: Error states and control signal versus time
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Figure 2.20: Adaptive gain history versus time
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Θ1 ∈ R
2×2 and Θ2 ∈ R

2×2 are unknown constant matrices. Next, let F (t, e) = e and

Kg =Ms [Θn1 +M−1
s Ks,Θn2 +M−1

s Cs] , where Θn1 ∈ R
2×2, Θn2 ∈ R

2×2 are arbitrary

matrices, so that

fs(e) =

[

02 I2
Θn1 Θn2

]

e.

Now, with the proper choice of Θn1 and Θn2 , it follows from Corollary 2.1 and Remark

2.3 that the adaptive feedback controller (2.26) guarantees that e(t) → 0 as t → ∞.

Specifically, here we choose Θn1 = −I2, Θn2 = −I2, and R = 2I4, so that P satisfying

(2.21) is given by

P =









3 0 1 0
0 3 0 1
1 0 2 0
0 1 0 2









.

With m1 = 3, m2 = 2, c1 = c2 = 1, k1 = 2, k2 = 1, rd(t) = [5 cos(t), 3 cos( t
π
)]T,

Y = I4, Z = I6, and initial conditions x(0) = 04×1, K(0) = 02×4, and Φ(0) = 02×6,

Figure 2.21 shows the actual positions and the reference signals versus time and the

control signals versus time. Finally, Figures 2.22 and 2.23 show the adaptive gain

history versus time.

Example 2.9. The following example considers the utility of the proposed adap-

tive control framework for L2 disturbance rejection. Specifically, consider the nonlin-

ear dynamical system representing a controlled rigid spacecraft given by

ẋ(t) = −I−1b XIbx(t) + I−1b u(t) +Dw(t), x(0) = x0, w(·) ∈ L2, t ≥ 0, (2.77)

where x = [x1, x2, x3]
T represents the angular velocities of the spacecraft with respect

to the body-fixed frame, Ib ∈ R
3×3 is an unknown positive-definite inertia matrix

of the spacecraft, u = [u1, u2, u3]
T is a control vector with control inputs providing

body-fixed torques about three mutually perpendicular axes defining the body-fixed
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Figure 2.21: Positions and control signals versus time

frame of the spacecraft, D ∈ R
3×1, and X denotes the skew-symmetric matrix

X ,





0 −x3 x2
x3 0 −x1
−x2 x1 0



 .

Note that (2.77) can be written in state space form (2.45) with f(x) = −I−1b XIbx,

G(x) = I−1b , and J(x) = D. Here, we assume that the inertia matrix Ib of the

spacecraft is symmetric and positive definite but unknown. Since f(x) is a quadratic

function, we parameterize f(x) as f(x) = Θfn(x), where Θ ∈ R
3×6 is an unknown

matrix and fn(x) = [x21, x
2
2, x

2
3, x1x2, x2x3, x3x1]

T. Next, let F (x) =
[

fTn (x), x
T
]T

and

Kg = Ib [−Θ,Φn] , where Φn ∈ R
3×3, is an arbitrary matrix, so that

fs(x) = Φnx = Asx.

Now, with the proper choice of Φn, it follows from Theorem 2.2 that the adaptive

feedback controller (2.62) with update law (2.63) guarantees that x(t)→ 0 as t→∞

with w(t) ≡ 0. Furthermore, the closed-loop nonlinear input-output map from L2
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Figure 2.22: Adaptive gain history versus time

disturbances Dw(t) to performance variable z(t) = Ex(t) satisfies the nonexpansivity

constraint (2.51). Here, we choose As = −10I3, ETE = 2I3, and γ = 1.4, so that P

satisfying (2.59) is given by

P =





0.1653 0.0408 0.0245
0.0408 0.1255 0.0153
0.0245 0.0153 0.1092



 .

With

Ib =





20 0 0.9
0 17 0
0.9 0 15



 , Y = 10I9, D =





8
5
3



 , w(t) = e−0.2t sin 1.8t,

and initial conditions x(0) = [0.4, 0.2,−0.2], and K(0) = 03×9, Figure 2.24 shows the

angular velocities versus time. Figure 2.25 shows the control signals versus time. An

alternative adaptive feedback controller that also does not require knowledge of the

inertia of the spacecraft is presented in [3]. However, unlike the proposed controller,

the adaptive controller presented in [3] is tailored to the spacecraft attitude control

problem.
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Figure 2.23: Adaptive gain history versus time

2.6. Adaptive Control for Thermoacoustic Combustion In-

stabilities

High performance aeroengine afterburners and ramjets often experience combus-

tion instabilities at some operating condition. Combustion in these high energy den-

sity engines is highly susceptible to flow disturbances, resulting in fluctuations to the

instantaneous rate of heat release in the combustor. This unsteady combustion pro-

vides an acoustic source resulting in self-excited oscillations. In particular, unsteady

combustion generates acoustic pressure and velocity oscillations which in turn perturb

the combustion even further [34, 49]. These pressure oscillations, known as thermoa-

coustic instabilities, often lead to high vibration levels causing mechanical failures,

high levels of acoustic noise, high burn rates, and even component melting. Hence,

the need for active control to mitigate combustion induced pressure instabilities is

severe.
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Figure 2.25: Control signals versus time

Due to the intricate complex physical phenomena in combustion processes in-

volving acoustics, thermodynamics, fluid mechanics, and chemical kinetics, finite di-

mensional linear or nonlinear models are unavoidably inaccurate. Basic system data

such as damping, frequency, and mode shapes are often poorly known. Furthermore,

approximations of pressure and velocity fluctuations involving time averaging in the

governing system equations result in further system uncertainty that manifests itself
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as highly structured constant real parametric uncertainty in modal frequencies and

damping [49, 50]. Thus for pressure oscillation suppression in combustion processes,

system modeling uncertainty necessitates the need for nonlinear adaptive control.

In this section we apply the Lyapunov-based direct adaptive control framework

developed in Section 2.2 to suppress the effects of thermoacoustic instabilities in com-

bustion processes. The overall framework demonstrates that the proposed adaptive

controllers provide considerable robustness in suppressing thermoacoustic combustion

instabilities in the presence of parametric uncertainties in the model.

In order to develop a state space model for combustion processes that capture

the coupling between unsteady combustion and acoustics, we consider the mass, mo-

mentum, and energy conservation equations for a two phase mixture in a combustor.

Specifically, the conservation equations are given by [50]

∂ρ

∂t
+ vg · ∇p = W , (2.78)

ρ
∂vg
∂t

+ ρvg · ∇vg +∇p = F , (2.79)

∂p

∂t
+ γp∇ · vg + vg · ∇p = P , (2.80)

where ρ is the local density of the mixture, vg is the local velocity of the gas phase, p

is the local pressure, γ is the mixture ratio of specific heats, W represents the mass

conversion rate of condensed phases to gases per unit volume, F is the force interaction

between the gas and condensed phases, P is the sum of heat release associated with

chemical reactions and energy transfer between the gas-liquid phase, ∇ denotes the

nabla operator, and “·” denotes the dot product in R
n. In this formulation we assume

that droplets are dispersed in the gas, which implies that, if pl and pg are the local

pressures of the liquid and gas phase, respectively, pl ¿ pg, p ∼= pg and hence [50]

p = ρR̄Tg, (2.81)

where R̄ is the gas constant for the mixture and Tg is the temperature of the gas.
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The framework for analyzing combustion instabilities is based on the conserva-

tion equations (2.78)–(2.80) for total mass, momentum, and energy, with the energy

equation written with the pressure as the dependent variable. Writing all dependent

variables as sums of mean (̄·) and fluctuating (·)′ parts given by

p(r1, r2, r3, t) = p̄+ p′(r1, r2, r3, t), (2.82)

ρ(r1, r2, r3, t) = ρ̄(r1, r2, r3) + ρ′(r1, r2, r3, t), (2.83)

vg(r1, r2, r3, t) = v̄g(r1, r2, r3) + v′g(r1, r2, r3, t), (2.84)

Tg(r1, r2, r3, t) = T̄g(r1, r2, r3) + T ′g(r1, r2, r3, t), (2.85)

where (r1, r2, r3) represent generalized coordinates, and assuming that the average

values p̄, ρ̄, v̄g, T̄g do not vary with time and the average pressure p̄ is uniform inside

the combustion chamber, a second-order approximation of (2.78)–(2.81) yields

∇2p′ − 1

ā2
∂2p′

∂t2
= ϕ, n̂ · ∇p′ = −ϑ, (2.86)

where ā ,
√

γ p̄
ρ̄
is the local average sound velocity inside the combustor, n̂ is the

outward normal vector of the combustor chamber surface, and ϕ and ϑ are nonlinear

terms containing all physical processes of acoustic motions, mean flow, and combus-

tion under conditions with no external forcing [50].

To control combustion instabilities appropriate external forces are needed to influ-

ence the unsteady mass, momentum, and energy in the combustion chamber. Hence,

control forces are included in the conservation equations by modifying the nonhomo-

geneous terms of (2.78)–(2.80) to include control input terms of the formWc, Fc, and

Pc, respectively. The specific forms of Wc, Fc, and Pc depend on the type of control

actuation used. In this case, (2.86) becomes

∇2p′(r1, r2, r3, t)−
1

ā2
∂2p′(r1, r2, r3, t)

∂t2
= ϕ(r1, r2, r3, t) + ϕc(r1, r2, r3, t), (2.87)

n̂ · ∇p′(r1, r2, r3, t) = −ϑ(r1, r2, r3, t)− ϑc(r1, r2, r3, t), (2.88)
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where

ϕc , ∇ · F ′c −
1

ā2
∂P ′c
∂t

, ϑc , −F ′c · n̂, (2.89)

represent external inputs due to control actuation. Since the input terms in (2.87),

(2.88) are treated as small perturbations to the acoustic field, the solution for the

unsteady pressure field p′(r1, r2, r3, t) can be approximated by

p′(r1, r2, r3, t) = p̄

∞
∑

i,j,k=0

ηijk(t)ψijk(r1, r2, r3), (2.90)

where ψijk are the normal modes of the system forming a complete set of orthogonal

basis functions satisfying

0 = ∇2ψijk(r1, r2, r3) + k2ijkψijk(r1, r2, r3), (2.91)

0 = n̂ · ∇ψijk(r1, r2, r3), i, j, k = 0, 1, 2, . . . , (2.92)

where kijk, i, j, k = 0, 1, 2, . . ., are the wave numbers defined by kijk ,
ωijk

ā
, and ωijk,

i, j, k = 0, 1, 2, . . ., are the natural frequencies. Now, using a Galerkin decomposition

it follows from (2.87), (2.90), and (2.91) that

η̈ijk + ω2
ijkηijk = Fijk + uijk, (2.93)

where

Fijk , −
ā2

p̄E2
ijk

(∫

Vm
ϕψijkdV +

∮

Sm
ϑψijkdS

)

, (2.94)

uijk , −
ā2

p̄E2
ijk

(∫

Vm
ϕcψijkdV +

∮

Sm
ϑcψijkdS

)

, (2.95)

E2
ijk ,

∫

Vm
ψ2

ijkdV , (2.96)

where Vm is any arbitrary material volume within the continuum, Sm is the surface

that encloses Vm, and dV and dS are the infinitesimal volume and surface elements,

respectively.
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Next, consideringm point acoustic drivers (actuators) providing control excitation

ûa(t) at positions (ra1, ra2, ra3), a = 1, . . . ,m, where we assume mass and momentum

are not controlled, i.e., W ′
c = 0 and F ′c = 0, we obtain

ϕc(r1, r2, r3, t) = −
m
∑

a=1

δa(r1, r2, r3)ûa(t), (2.97)

ϑc(r1, r2, r3, t) = 0, (2.98)

where δa, a = 1, . . . ,m, is the spatial delta function concentrated at (r1, r2, r3) =

(ra1, ra2, ra3), a = 1, . . . ,m, with dimensions (length)−3. Using (2.97) and (2.98),

(2.95) becomes

uijk(t) =
ā2

p̄E2
ijk

m
∑

a=1

ûa(t)ψijk(ra1, ra2, ra3). (2.99)

Finally, using a one-dimensional combustor model whose geometry is such that

the longitudinal modes are decoupled from the transverse modes, it follows that the

index i is the only index in the triple i, j, k that applies. Furthermore, we substitute

x for the generalized coordinates (r1, r2, r3) so that V =
∫ L

0
Ac(x)dx, where Ac(x)

represents the cross sectional area of the combustor and L is the combustor length.

In this case, (2.93) becomes

η̈i(t)+ω
2
i ηi(t)+

∞
∑

p=1

(dipη̇p(t)+eipηp(t))+
∞
∑

p=1

∞
∑

q=1

(aipqη̇p(t)η̇q(t)+bipqηp(t)ηq(t)) = ui(t),

(2.100)

where the constants dip, eip, aipq, and bipq depend on the unperturbed mode shapes

and natural frequencies of the combustor [50], and the control input to the ith mode

is given by

ui(t) =
ā2

p̄E2
i

m
∑

a=1

ûa(t)ψi(xsa), (2.101)

where E2
i =

∫ L

0
ψi(x)Ac(x)dx and xsa corresponds to the location of the ath actuator.

To design a direct adaptive controller for combustion systems we concentrate on

the nonlinear combustion model developed above, with nonlinearities present due to
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the second-order gas dynamics. Furthermore, we assume that actuation is provided by

loud speakers while we measure pressure fluctuations via pressure-type microphones.

Now, using (2.100) and (2.101), a two-mode, nonlinear combustion plant model is

given by

ẋ1(t) = x3(t), x1(0) = x10, t ≥ 0, (2.102)

ẋ2(t) = x4(t), x2(0) = x20, (2.103)

ẋ3(t) = 2α1x3(t)− (ω2
1 − 2θ1ω1)x1(t)− F11x3(t)x4(t)− F12x1(t)x2(t)

+ ā2

p̄E2
i

(ψ1(xs1)û1(t) + ψ1(xs2)û2(t)), x3(0) = x30, (2.104)

ẋ4(t) = 2α2x4(t)− (ω2
2 − 2θ2ω2)x2(t)− F21x

2
3(t)− F22x

2
1(t)

+ ā2

p̄E2
i

(ψ2(xs1)û1(t) + ψ2(xs2)û2(t)), x4(0) = x40, (2.105)

where x1(t) = η1(t), x2(t) = η2(t), x3(t) = η̇1(t), x4(t) = η̇2(t), ûi(t), i = 1, 2, are

control input signals, αi = −1
2
dii ∈ R represents a growth/decay constant, θi =

−1
2
eii
ωi
∈ R represents a frequency shift constant, ω1 and ω2 are the frequencies of the

first and second modes, respectively, F11 = 3−2γ
2γ

, F12 = 5(γ−1)
2γ

ω2
1, F21 = −γ+3

2γ
, and

F22 = γ−1
2γ
ω2
1. In the case where we consider a cylindrical combustor closed at both

ends with pure longitudinal modes, it follows that the first two modes are given by

ψi(x) = cos(kix), ki = i
π

L
, i = 1, 2. (2.106)

For details of this formulation see [190]. For the nondimensionalized (using the time

factor τt = πL/ā) data parameters [63] α1 = 0.0144, α2 = −0.0559, θ1 = 0.0062,

θ2 = 0.0178, γ = 1.2, ω1 = 1, ω2 = 2, and x0 = [0.01, 0.1, 0, 0]T, the open-loop

(ûi(t) ≡ 0, i = 1, 2) dynamics (2.102)–(2.105) result in a limit cycle instability.

Figure 2.26 shows the state response versus time of the open-loop system.

To design a direct adaptive controller using Corollary 2.1, note that (2.102)–

79



0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

Fi
rs

t m
od

e

x
1
(t)

x
3
(t)

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

S
ec

on
d 

m
od

e

x
2
(t)

x
4
(t)

Dimensionless Time, t/(L/πā)
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Figure 2.26: Open-loop state response versus time

(2.105) can be written in state space form (2.1) with x = [x1, x2, x3, x4]
T,

f(x) =









x3
x4

2α1x3 − (ω2
1 − 2θ1ω1)x1 − F11x3x4 − F12x1x2

2α2x4 − (ω2
2 − 2θ2ω2)x2 − F21x

2
3 − F22x

2
1









,

G(x) =
ā2

p̄E2
i









0 0
0 0

ψ1(xs1) ψ1(xs2)
ψ2(xs1) ψ2(xs2)









,

where αi, θi, ωi, Fij, i, j = 1, 2, and ā2

p̄E2
i

(> 0) are assumed to be unknown. Here, we

parameterize f(x) as f(x) = [x3, x4, (Θ̀ x+Θǹ fǹ (x))
T]T, where fǹ (x) = [x1x2, x3x4,

x21, x
2
3]
T and

Θ̀ =

[

−(ω2
1 − 2θ1ω1) 0 2α1 0

0 −(ω2
2 − 2θ2ω2) 0 2α2

]

,

Θǹ =

[

−F12 −F11 0 0
0 0 −F22 −F21

]

,

are unknown constant matrices. Furthermore, we assume that loud speakers are
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placed at xs1 =
3
4
L and xs2 =

1
2
L so that Bu and Gn(x) in G(x) = [02, G

T
n (x)Bu]

T are

given by

Bu = − ā2

p̄E2
i

[
√
2
2

0
0 1

]

, Gn(x) = I2.

Next, let F (x) = [xT, fT
ǹ
(x)]T andKg = −

(

ā2

p̄E2
i

)−1
[Θn − Θ̀ ,−Θǹ ], where Θn ∈ R

2×4

is an arbitrary matrix, so that

fs(x) =

[

A0

Θn

]

x = Asx,

where A0 , [02, I2]. Now, with the proper choice of Θn it follows from Corollary 2.1

that the adaptive feedback controller (2.26) with update law (2.27) guarantees that

x(t)→ 0 as t→∞. Specifically, here we choose

Θn =

[

−1.5 0 −2.5 0
0 −5 0 −4.5

]

,

and R = 2I4, so that P satisfying (2.21) is given by

P =









2.6667 0 0.6667 0
0 2.2333 0 0.2000

0.6667 0 0.6667 0
0 0.2000 0 0.2667









.

To illustrate the dynamic behavior of the closed-loop system, let α1 = 0.0144,

α2 = −0.0559, θ1 = 0.0062, θ2 = 0.0178, γ = 1.2, ω1 = 1, ω2 = 2, Y = 2I8, and

ā2

p̄E2
i

= 0.4. The response of the controlled system (2.1) with the adaptive feedback

control law (2.26), (2.27) and initial conditions x0 = [0.01, 0.1, 0, 0]T, K(0) = 02×8

is shown in Figure 2.27. Stability of the closed-loop system (2.1), (2.26), (2.27) is

guaranteed by Corollary 2.1. Note that the adaptive controller is switched on at

t = 300.

To illustrate the robustness of the proposed adaptive control law, we switch the

growth constant of the first mode from α1 = 0.0144 to α1 = 0.0720 at t = 600. The

closed-loop response is shown in Figure 2.28. Figure 2.29 shows the same change in
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Figure 2.27: Closed-loop state response versus time

the growth constant of the first mode with the switch occurring at t = 350 while the

control law is still in process of adapting.

Finally, we change the transient parameters θ1 = 0.0062 and θ2 = 0.0178 to

θ1 = 0.54 and θ2 = 1.006 at t = 600. The closed-loop response is shown in Figure 2.30.

Note that this change corresponds to 8709% and 5651%, respectively, of the original

values of the parameters. The same change in the transient parameters occurring at

t = 350 is shown on Figure 2.31.

2.7. Conclusion

A direct adaptive nonlinear control framework for adaptive stabilization, distur-

bance rejection, and command following of multivariable nonlinear uncertain dynam-

ical systems with exogenous bounded disturbances and bounded energy L2 distur-
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Figure 2.28: Closed-loop state response versus time

bances was developed. Using Lyapunov methods the proposed framework was shown

to guarantee partial asymptotic stability of the closed-loop system; that is, asymp-

totic stability with respect to part of the closed-loop system states associated with the

plant. Furthermore, in the case where the nonlinear system is represented in normal

form with input-to-state stable internal dynamics, the nonlinear adaptive controllers

were constructed without knowledge of the system dynamics. Finally, several illustra-

tive numerical examples were presented to show the utility of the proposed adaptive

stabilization and tracking scheme.
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Figure 2.29: Closed-loop state response versus time
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Figure 2.30: Closed-loop state response versus time

84



0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

C
on

tro
l s

ig
na

l u
1
(t)

u
2
(t)

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

Fi
rs

t m
od

e

x
1
(t)

x
3
(t)

0 100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

S
ec

on
d 

m
od

e

x
2
(t)

x
4
(t)

Dimensionless Time, t/(L/πā)
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Figure 2.31: Closed-loop state response versus time
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Chapter 3

Robust Adaptive Control for

Nonlinear Uncertain Systems

3.1. Introduction

In Chapter 2 (see also [84, 90, 91]), a direct nonlinear adaptive control frame-

work for adaptive stabilization, disturbance rejection, and command following was

developed. In particular, a Lyapunov-based direct adaptive control framework was

developed that guarantees partial asymptotic stability of the closed-loop system; that

is, asymptotic stability with respect to part of the closed-loop system states associ-

ated with the plant. Furthermore, the remainder of the state associated with the

adaptive controller gains was shown to be Lyapunov stable. In the case where the

nonlinear system was represented in normal form [122] with input-to-state stable in-

ternal dynamics [122,222], the nonlinear adaptive controller was constructed without

requiring knowledge of the system dynamics.

As is the case in the adaptive control literature [12, 121, 147, 176], the system er-

rors as characterized in Chapter 2 are captured by a constant linearly parameterized

uncertainty model of a known structure but unknown variation. This uncertainty

characterization allows the system nonlinearities to be parameterized by a finite lin-
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ear combination of basis functions within a class of function approximators such as

rational functions, spline functions, radial basis functions, sigmoidal functions, and

wavelets. However, this linear parametrization of basis functions cannot exactly cap-

ture the unknown system nonlinearity. In this Chapter, we generalize the results

given in Chapter 2 to nonlinear uncertain dynamical systems with constant linearly

parameterized uncertainty and nonlinear state-dependent uncertainty. Specifically,

we consider a robust adaptive control problem that guarantees asymptotic robust

stability of the system states in the face of structured uncertainty with unknown

variation and structured (possibly nonlinear) parametric uncertainty with bounded

variation. Hence, the overall adaptive control framework captures the residual ap-

proximation error inherent in linear parameterizations of system uncertainty via basis

functions.

3.2. Robust Adaptive Control for Nonlinear Uncertain Sys-

tems

In this section we introduce an adaptive feedback control problem for nonlinear

uncertain dynamical systems with constant linearly parameterized uncertainty struc-

ture and nonlinear state-dependent parametric uncertainty. Specifically, consider the

controlled nonlinear uncertain system G given by

ẋ(t) = f(x(t)) + ∆f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (3.1)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

f : R
n → R

n and satisfies f(0) = 0, ∆f : R
n → R

n and satisfies ∆f(0) = 0, and

G : R
n → R

n×m. Here, we assume that f(·) and ∆f(·) are uncertain. In particu-

lar, the uncertainty in f(·) is captured by a constant linearly parameterized system

uncertainty model of a known structure but unknown variation, while ∆f(·) denotes

structured (possibly nonlinear) parametric uncertainty with bounded variation. The
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structured uncertainty ∆f(·) can effectively capture the residual approximation er-

ror inherent in the linear parameterization of the system uncertainty f(·) as well as

capture structured nonlinear (possibly state-dependent) uncertainty in the system of

known bounded variation. Here, we assume that ∆f(·) belongs to the uncertainty set

F given by

F = {∆f : R
n → R

n : ∆f(x) = Gδ(x)δ(hδ(x)), x ∈ R
n, δ(·) ∈∆}, (3.2)

where ∆ satisfies

∆ = {δ : R
pδ → R

mδ : δ(0) = 0, δT(y)δ(y) ≤ mT(y)m(y), y ∈ R
pδ}, (3.3)

and where Gδ : R
n → R

n×mδ and hδ : R
n → R

pδ , satisfying hδ(0) = 0, are fixed

functions denoting the structure of the uncertainty, δ : R
pδ → R

mδ is an uncertain

function, and m : R
pδ → R

mδ is a given function such that m(0) = 0. The special case

m(y) = γ−1y, where γ > 0, is worth noting. Specifically, in this case, (3.3) specializes

to

∆ = {δ : R
pδ → R

mδ : δ(0) = 0, δT(y)δ(y) ≤ γ−2yTy, y ∈ R
pδ}, (3.4)

which corresponds to a nonlinear small gain-type norm bounded uncertainty charac-

terization.

The control u(·) in (3.1) is restricted to the class of admissible controls consisting

of measurable functions such that u(t) ∈ R
m, t ≥ 0. Furthermore, for the non-

linear uncertain system G we assume that the required properties for the existence

and uniqueness of solutions are satisfied; that is, f(·), ∆f(·), G(·), and u(·) satisfy

sufficient regularity conditions such that (3.1) has a unique solution forward in time.

Theorem 3.1. Consider the nonlinear uncertain system G given by (3.1). As-

sume there exist a matrix Kg ∈ R
m×s and functions Vs : R

n → R, Ĝ : R
n → R

m×m,

F : R
n → R

s, with F (0) = 0, and ` : R
n → R

t such that Vs(·) is continuously
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differentiable, positive definite, radially unbounded, Vs(0) = 0, `(0) = 0, and, for all

x ∈ R
n,

0 = V ′s (x)fs(x) + `T(x)`(x) + Γ(x), (3.5)

where

fs(x) , f(x) +G(x)Ĝ(x)KgF (x). (3.6)

Γ(x) , 1
4
V ′s (x)Gδ(x)G

T
δ (x)V

′T
s (x) +mT(hδ(x))m(hδ(x)), (3.7)

Furthermore, let Q ∈ R
m×m and Y ∈ R

s×s be positive definite. Then the adaptive

feedback control law

u(t) = Ĝ(x(t))K(t)F (x(t)), (3.8)

where K(t) ∈ R
m×s, t ≥ 0, with update law

K̇(t) = −1
2
QĜT(x(t))GT(x(t))V ′Ts (x(t))FT(x(t))Y, K(0) = K0, (3.9)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg) of the closed-loop system given

by (3.1), (3.8), and (3.9) is Lyapunov stable for all ∆f(·) ∈ F and `(x(t)) → 0 as

t→∞. If, in addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞ for all

x0 ∈ R
n and ∆f(·) ∈ F .

Proof. Note that with u(t), t ≥ 0, given by (3.8) and ∆f(·) ∈ F it follows from

(3.1) that

ẋ(t) = f(x(t)) +Gδ(x(t))δ(hδ(x(t))) +G(x(t))Ĝ(x(t))K(t)F (x(t)),

x(0) = x0, t ≥ 0, (3.10)

or, equivalently,

ẋ(t) = fs(x(t)) +Gδ(x(t))δ(hδ(x(t))) +G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t)),

x(0) = x0, t ≥ 0. (3.11)
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To show Lyapunov stability of the closed-loop system (3.9) and (3.11) consider the

Lyapunov function candidate

V (x,K) = Vs(x) + trQ−1(K −Kg)Y
−1(K −Kg)

T. (3.12)

Note that V (0, Kg) = 0 and, since Vs(·), Q, and Y are positive definite, V (x,K) > 0

for all (x,K) 6= (0, Kg). Furthermore, V (x,K) is radially unbounded. Now, letting

x(t), t ≥ 0, denote the solution to (3.11) and using (3.5) and (3.9), it follows that the

Lyapunov derivative along the closed-loop system trajectories is given by

V̇ (x(t), K(t)) = V ′s (x(t)) [fs(x(t)) +Gδ(x(t))δ(hδ(x(t)))

+G(x(t))Ĝ(x(t))(K(t)−Kg)F (x(t))
]

+2trQ−1(K(t)−Kg)Y
−1K̇T(t)

= −`T(x(t))`(x(t))− Γ(x(t)) + V ′s (x(t))Gδ(x(t))δ(hδ(x(t)))

+tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

−tr
[

(K(t)−Kg)F (x(t))V
′
s (x(t))G(x(t))Ĝ(x(t))

]

= −`T(x(t))`(x(t))− 1
4
V ′s (x(t))Gδ(x(t))G

T
δ (x(t))V

′T
s (x(t))

−mT(hδ(x(t)))m(hδ(x(t))) + V ′s (x(t))Gδ(x(t))δ(hδ(x(t)))

≤ −`T(x(t))`(x(t))− 1
4
V ′s (x(t))Gδ(x(t))G

T
δ (x(t))V

′T
s (x(t))

−δT(hδ(x(t)))δ(hδ(x(t))) + V ′s (x(t))Gδ(x(t))δ(hδ(x(t)))

= −`T(x(t))`(x(t))−
[

δ(hδ(x(t)))− 1
2
GT

δ (x(t))V
′T
s (x(t))

]T

·
[

δ(hδ(x(t)))− 1
2
GT

δ (x(t))V
′T
s (x(t))

]

= −`T(x(t))`(x(t))

≤ 0, t ≥ 0, (3.13)

which proves that the solution (x(t), K(t)) ≡ (0, Kg) to (3.9) and (3.11) is Lya-

punov stable for all ∆f(·) ∈ F . Furthermore, it follows from Theorem 2 of [42] that
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`(x(t))→ 0 as t→∞ for all x0 ∈ R
n and ∆f(·) ∈ F . If, in addition, `T(x)`(x) > 0,

x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞ for all x0 ∈ R

n and ∆f(·) ∈ F . ¤

Remark 3.1. Note that in the case where `T(x)`(x) > 0, x ∈ R
n, x 6= 0, the

conditions in Theorem 3.1 imply that x(t)→ 0 as t→∞ for all ∆f(·) ∈ F and hence

it follows from (3.9) that (x(t), K(t))→M , {(x,K) ∈ R
n × R

m×s : x = 0, K̇ = 0}

as t→∞.

Remark 3.2. Note that Γ(x) given by (3.7) serves as a bounding function for

the uncertain set F in the sense that Γ(·) bounds F . To see this, note that for all

x ∈ R
n and δ(·) ∈∆,

0 ≤
[

δ(hδ(x))− 1
2
GT

δ (x)V
′T
s (x)

]T [
δ(hδ(x))− 1

2
GT

δ (x)V
′T
s (x)

]

= δT(hδ(x))δ(hδ(x)) +
1
4
V ′s (x)Gδ(x)G

T
δ (x)V

′T
s (x)− V ′s (x)Gδ(x)δ(hδ(x))

≤ mT(hδ(x))m(hδ(x)) +
1
4
V ′s (x)Gδ(x)G

T
δ (x)V

′T
s (x)− V ′s (x)∆f(x)

≤ Γ(x)− V ′s (x)∆f(x),

which shows that V ′s (x)∆f(x) ≤ Γ(x) for all x ∈ R
n and ∆f(·) ∈ F . For further

details see [76].

It is important to note that the adaptive control law (3.8) and (3.9) does not

require explicit knowledge of the gain matrix Kg; even though Theorem 3.1 requires

the existence of Kg along with the construction of F (x), Ĝ(x), and Vs(x) such that

(3.5) holds. Furthermore, no specific structure on the nonlinear dynamics f(x) is

required to apply Theorem 3.1; all that is required is the existence of F (x) such that

(3.5) holds. However, if (3.1) is in normal form with asymptotically stable internal

dynamics [122], then we can construct functions Vs : R
n → R, F : R

n → R
s, with

F (0) = 0, and Ĝ : R
n → R

n×m such that (3.5) holds without requiring knowledge of
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the system dynamics f(x). To see this assume that the nonlinear uncertain system

G is generated by

q
(ri)
i (t) = fui(q(t))+∆fui(q(t))+

m
∑

j=1

Gs(i,j)(q(t))uj(t), t ≥ 0, i = 1, · · · ,m, (3.14)

where q = [q1, · · · , q(r1−1)1 , · · · , qm, · · · , q(rm−1)m ]T, q(0) = q0, q
(ri)
i denotes the rthi deriva-

tive of qi, and ri denotes the relative degree with respect to the output qi. Here

we assume that the square matrix function Gs(q) composed of the entries Gs(i,j)(q),

i, j = 1, · · · ,m, is such that detGs(q) 6= 0, q ∈ R
r̂, where r̂ = r1 + · · · + rm is the

(vector) relative degree of (3.14). Furthermore, since (3.14) is in a form where it does

not possess internal dynamics, it follows that r̂ = n. The case where (3.14) possesses

input-to-state stable internal dynamics can be handled as shown in Section 2.2.

Next, define xi ,

[

qi, · · · , q(ri−2)i

]T

, i = 1, · · · ,m, xm+1 ,

[

q
(r1−1)
1 , · · · , q(rm−1)m

]T

,

and x ,
[

xT1 , · · · , xTm+1

]T
, so that (3.14) can be described as (3.1) with

f(x) = Ãx+ f̃u(x), ∆f(x) =

[

0(n−m)×m

∆fu(x)

]

, G(x) =

[

0(n−m)×m

Gs(x)

]

, (3.15)

where

Ã =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1
fu(x)

]

,

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones capturing the multivariable con-

trollable canonical form representation [43], and fu : R
n → R

m and ∆fu : R
n → R

m

are unknown functions. Here, we assume that fu(x) is unknown and is parameterized

as fu(x) = Θfn(x), where fn : R
n → R

q and satisfies fn(0) = 0, Θ ∈ R
m×q is a matrix

of uncertain constant parameters, and ∆fu(·) ∈ Fu, where Fu is assumed to be of the

form given by (3.2) with δ(·) ∈ ∆ satisfying (3.3). More generally, ∆f(·) need not

have the form given by (3.15). In particular, any parametric nonlinear uncertainty

can be considered so long as ∆f(·) ∈ F .

Next, to apply Theorem 3.1 to the uncertain system (3.1) with f(x) and G(x)
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given by (3.15) and ∆f(·) ∈ F , let Kg ∈ R
m×s, where s = q + r, be given by

Kg = [Θn −Θ, Φn ], (3.16)

where Θn ∈ R
m×q and Φn ∈ R

m×r are known matrices, and let

F (x) =

[

fn(x)

f̂n(x)

]

, (3.17)

where f̂n : R
n → R

r and satisfying f̂n(0) = 0 is an arbitrary function. In this case, it

follows that, with Ĝ(x) = G−1s (x),

fs(x) = f(x) +G(x)Ĝ(x)KgF (x)

= Ãx+ f̃u(x) +

[

0(n−m)×m

Gs(x)

]

G−1s (x)
[

Θnfn(x)−Θfn(x) + Φnf̂n(x)
]

= Ãx+

[

0(n−m)×1
Θnfn(x) + Φnf̂n(x)

]

. (3.18)

Now, since Θn ∈ R
m×q and Φn ∈ R

m×r are arbitrary constant matrices and

f̂n : R
n → R

r is an arbitrary function we can construct Kg, Vs(x), and F (x) with-

out knowledge of f(x) such that the (3.5) holds. In particular, choosing Θnfn(x) +

Φnf̂n(x) = Âx, where Â ∈ R
m×n, it follows that (3.18) has the form fs(x) = Asx,

where As = [AT
0 , Â

T]T is in multivariable controllable canonical form. In addition,

in the case where ∆f(·) is linear; that is, ∆f(x) = Bδ∆Cδx, where σmax(∆) ≤ γ−1,

the adaptive controller (3.8) can be constructed to guarantee robustness using linear

guaranteed cost robust control theory [23]. Specifically, choosing fs(x) = Asx, where

As is asymptotically stable and in multivariable controllable canonical form, it follows

from standard robust control theory [23] that if there exists a positive-definite matrix

P satisfying the Riccati equation

0 = AT
s P + PAs + γ−2PBδB

T
δ P + CT

δ Cδ +R, (3.19)

where R is a positive-definite matrix, then the adaptive feedback controller (3.8)

guarantees that (3.11) is globally asymptotically stable for all ∆f(·) ∈ F withGδ(x) =
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Bδ, hδ(x) = Cδx, δ(y) = ∆y, and m(y) = γ−1y. In this case, with Vs(x) = xTPx, the

update law for the adaptive controller (3.8) is given by

K̇(t) = −QĜT(x(t))GT(x(t))Px(t)FT(x(t))Y, K(0) = K0. (3.20)

Next, we consider the case where f(x), ∆f(x), and G(x) are uncertain. Specif-

ically, we assume that G(x) is such that Gs(x) is unknown and is parameterized as

Gs(x) = BuGn(x), where Gn : R
n → R

m×m is known and satisfies detGn(x) 6= 0,

x ∈ R
n, and Bu ∈ R

m×m, with detBu 6= 0, is an unknown symmetric sign-definite

matrix but the sign definiteness of Bu is known; that is, Bu > 0 or Bu < 0. For

the statement of the next result define B0 ,
[

0m×(n−m), Im
]T

for Bu > 0, and

B0 ,
[

0m×(n−m),−Im
]T

for Bu < 0.

Corollary 3.1. Consider the nonlinear system G given by (3.1) with f(x) and

G(x) given by (3.15), ∆f(·) ∈ F , and Gs(x) = BuGn(x), where Bu is an unknown

symmetric matrix and the sign definiteness of Bu is known. Assume there exist a

matrix Kg ∈ R
m×s and functions Vs : R

n → R, F : R
n → R

s, with F (0) = 0, and

` : R
n → R

t such that Vs(·) is continuously differentiable, positive definite, radially

unbounded, Vs(0) = 0, `(0) = 0, and (3.5) holds. Finally, let Y ∈ R
s×s be positive

definite. Then the adaptive feedback control law

u(t) = G−1n (x(t))K(t)F (x(t)), (3.21)

where K(t) ∈ R
m×s, t ≥ 0, with update law

K̇(t) = −1
2
BT

0 V
′T
s (x(t))FT(x(t))Y, K(0) = K0, (3.22)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg) of the closed-loop system given

by (3.1), (3.21), and (3.22) is Lyapunov stable for all ∆f(·) ∈ F and `(x(t)) → 0 as

t→∞. If, in addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(t)→ 0 as t→∞ for all

x0 ∈ R
n and ∆f(·) ∈ F .
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Proof. The result is a direct consequence of Theorem 3.1. First, let Ĝ(x) =

G−1n (x) so that G(x)Ĝ(x) = [0m×(n−m), Bu]
T. Next, since Q is an arbitrary positive-

definite matrix, Q in (3.9) can be replaced by q|Bu|−1, where q is a positive constant

and |Bu| = (B2
u)

1
2 , where (·) 12 denotes the (unique) positive-definite square root.

Now, since Bu is symmetric and sign definite it follows from the Schur decomposi-

tion that Bu = UDBuU
T, where U is orthogonal and DBu is real diagonal. Hence,

|Bu|−1ĜT(x)GT(x) = [0m×(n−m), Im] = BT
0 , where Im = Im for Bu > 0 and Im = −Im

for Bu < 0. Now, (3.9), with qY replaced by Y , implies (3.22). ¤

3.3. Adaptive Absolute Stabilization for Nonlinear Uncer-

tain Systems

In this section we introduce an adaptive absolute stabilization problem. The goal

of this problem is to determine an adaptive controller that stabilizes an uncertain

system with state-dependent nonlinearities that belong to a given unknown sector Ψ.

Specifically, we consider the controlled nonlinear uncertain system G given by

ẋ(t) = Ax(t) +Bψ(y(t)) +Bu(t), x(0) = x0, t ≥ 0, (3.23)

y(t) = Cx(t), (3.24)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

y(t) ∈ R
m, t ≥ 0, is the system output, and ψ(·) ∈ Ψ, where

Ψ , {ψ : R
m → R

m : ψ(0) = 0, yT[ψ(y) +My] ≤ 0, y ∈ R
m}, (3.25)

and M ∈ R
m×m is an unknown matrix. If M = diag[M1, · · · ,Mm] is diagonal, then

the sector condition characterizing Ψ is implied by the scalar sector conditions

ψi(y)yi ≤ −Miy
2
i , yi ∈ R, i = 1, · · · ,m, (3.26)

where ψi(y) and yi are the ith components of ψ(y) and y, respectively. Hence, the

adaptive absolute stabilization problem is reminiscent to the classical absolute sta-
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ẋ(t) = Ax(t)

yu ψ(y)

K

G

+

+

Figure 3.1: Adaptive absolute stabilization problem

bility problem [179] with the key difference being that the plant dynamics are not

assumed to be known nor is the sector, characterized via M , assumed to be known

(see Figure 3.1). For the statement of the next result recall the definitions of minimum

phase and weakly minimum phase given in [33].

Theorem 3.2. Consider the controlled nonlinear uncertain system G given by

(3.23) and (3.24). Assume det(CB) 6= 0 and assume G, with ψ(y) ≡ 0, is weakly

minimum phase. Furthermore, let Q ∈ R
m×m and Y ∈ R

m×m be positive definite.

Then the adaptive feedback control law

u(t) = K(t)y(t), (3.27)

where K(t) ∈ R
m×m, t ≥ 0, with update law

K̇(t) = −Qy(t)yT(t)Y, K(0) = K0, (3.28)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg + M) of the closed-loop system

given by (3.23), (3.27), and (3.28) is Lyapunov stable for all ψ(·) ∈ Ψ. If, in addition,

G, with ψ(y) ≡ 0, is minimum phase, then x(t) → 0 as t → ∞ for all x0 ∈ R
n and

ψ(·) ∈ Ψ.
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Proof. Since det(CB) 6= 0 and G, with ψ(y) ≡ 0, is weakly minimum phase it

follows from Theorem 2 of [60] (see also [126]) that there exist matrices P ∈ R
n×n,

L ∈ R
p×n, and Kg ∈ R

m×m, with P positive definite, such that

0 = (A+BKgC)TP + P (A+BKgC) + LTL, (3.29)

0 = BTP − C. (3.30)

Next, with u(t), t ≥ 0, given by (3.27) and ψ(·) ∈ Ψ it follows from (3.23) that

ẋ(t) = Ax(t) +Bψ(y(t)) +BK(t)y(t), x(0) = x0, t ≥ 0, (3.31)

or, equivalently,

ẋ(t) = (A+BKgC)x(t)+Bψ(y(t))+B(K(t)−Kg)y(t), x(0) = x0, t ≥ 0. (3.32)

To show Lyapunov stability of the closed-loop system (3.28) and (3.32) consider the

Lyapunov function candidate

V (x,K) = xTPx+ trQ−1(K −Kg −M)Y −1(K −Kg −M)T. (3.33)

Note that V (0, Kg+M) = 0 and, since P , Q, and Y are positive definite, V (x,K) > 0

for all (x,K) 6= (0, Kg + M). Furthermore, V (x,K) is radially unbounded. Now,

letting x(t), t ≥ 0, denote the solution to (3.32) and using (3.28)–(3.30), it follows

that the Lyapunov derivative along the closed-loop system trajectories is given by

V̇ (x(t), K(t)) = 2xT(t)P [(A+BKgC)x(t) +Bψ(y(t)) +B(K(t)−Kg)y(t)]

+2trQ−1(K(t)−Kg −M)Y −1K̇T(t)

+2[yT(t)My(t)− yT(t)My(t)]

= −x(t)LTLx(t) + 2xT(t)CTψ(y(t)) + 2yT(t)My(t)

+2xT(t)CT(K(t)−Kg)y(t)− 2yT(t)My(t)

−2tr
[

(K(t)−Kg −M)y(t)yT(t)
]

97



= −x(t)LTLx(t) + 2yT(x) [ψ(y(t)) +My(t)]

+2tr
[

(K(t)−Kg −M)y(t)yT(t)
]

−2tr
[

(K(t)−Kg −M)y(t)yT(t)
]

≤ −xT(t)LTLx(t)

≤ 0, t ≥ 0, (3.34)

which proves that the solution (x(t), K(t)) ≡ (0, Kg + M) to (3.28) and (3.32) is

Lyapunov stable for all ψ(·) ∈ Ψ. Furthermore, it follows from Theorem 2 of [42]

that Lx(t)→ 0 as t→∞ for all x0 ∈ R
n and ψ(·) ∈ Ψ. If, in addition, G is minimum

phase, then it follows that LTL > 0 and hence x(t) → 0 as t → ∞ for all x0 ∈ R
n

and ψ(·) ∈ Ψ. ¤

Next, we consider a nonlinear version to Theorem 3.2. Specifically, consider the

controlled nonlinear uncertain system G given by

ẋ(t) = f(x(t)) +G(x(t))ψ(y(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (3.35)

y(t) = h(x(t)), (3.36)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

y(t) ∈ R
m, t ≥ 0, is the system output, f : R

n → R
n and satisfies f(0) = 0,

G : R
n → R

n×m, and ψ(·) ∈ Ψ. For the statement of the next result recall the

definitions of passivity [33] and exponential passivity [39].

Theorem 3.3. Consider the controlled nonlinear uncertain system G given by

(3.35) and (3.36). Assume G, with ψ(y) ≡ 0, is exponentially passive with a contin-

uously differentiable storage function Vs : R
n → R such that Vs(·) is positive definite

and radially unbounded. Furthermore, let Q ∈ R
m×m and Y ∈ R

m×m be positive

definite. Then the adaptive feedback control law

u(t) = K(t)y(t), (3.37)
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where K(t) ∈ R
m×m, t ≥ 0, with update law

K̇(t) = −Qy(t)yT(t)Y, (3.38)

guarantees that the solution (x(t), K(t)) ≡ (0,M) of the closed-loop system given by

(3.35), (3.37), and (3.38) is Lyapunov stable for all ψ(·) ∈ Ψ and x(t)→ 0 as t→∞

for all x0 ∈ R
n.

Proof. Since G, with ψ(y) ≡ 0, is exponentially passive with a continuously

differentiable storage function Vs : R
n → R such that Vs(·) is positive definite and

radially unbounded, it follows from [111] that, for all x ∈ R
n, there exist ` : R

n → R
t

and ε > 0 such that

0 = V ′s (x)f(x) + εVs(x) + `T(x)`(x), (3.39)

0 = 1
2
V ′s (x)G(x)− hT(x). (3.40)

Next, with u(t), t ≥ 0, given by (3.37) and ψ(·) ∈ Ψ it follows from (3.35) that

ẋ(t) = f(x(t)) +G(x(t))ψ(h(x(t))) +G(x(t))K(t)h(x(t)), x(0) = x0, t ≥ 0.

(3.41)

To show Lyapunov stability of the closed-loop system (3.38) and (3.41) consider the

Lyapunov function candidate

V (x,K) = Vs(x) + trQ−1(K −M)Y −1(K −M)T. (3.42)

Note that V (0,M) = 0 and, since Vs(·), Q, and Y are positive definite, V (x,K) > 0

for all (x,K) 6= (0,M). Furthermore, V (x,K) is radially unbounded. Now, Lyapunov

stability of the closed-loop system (3.38) and (3.41) as well as x(t)→ 0 as t→∞ for

all x0 ∈ R
n and ψ(·) ∈ Ψ follows as in the proof of Theorem 3.2. ¤
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3.4. Illustrative Numerical Examples

In this section we present two numerical examples to demonstrate the utility of

the proposed direct robust adaptive control framework.

Example 3.1. Consider the nonlinear uncertain system given by

[

ẋ1(t)
ẋ2(t)

]

=

[

δ1x1(t) + (1 + δ2)x2(t)
−βx1(t) + ε(α− x21(t))x2(t)

]

+

[

0
b

1+x21(t)+x22(t)

]

u(t),

[

x1(0)
x2(0)

]

=

[

x10
x20

]

, t ≥ 0, (3.43)

where α, β, ε, b, δ1, δ2 ∈ R are unknown with δ1 ∈ [−2, 2] and δ2 ∈ [−1, 1]. Note that

(3.43) can be written in the form of (3.1) with f(x) = [x2,−βx1 + ε(α − x21)x2]
T,

∆f(x) = [δ1x1(t) + δ2x2(t), 0]
T, and G(x) = [0, b

1+x21+x22
]T. Here, we assume that f(x)

and ∆f(x) are unknown and can be parameterized as f(x) = [x2, θ1x1+θ2x2+θ3x
2
1x2]

T

and ∆f(x) = Bδ∆Cδx, where θ1, θ2, and θ3 are unknown constants and Bδ = [1, 0]T,

Cδ = I2, and ∆ = [δ1, δ2]. Note that (3.2) is satisfied with m(Cδx) = γ−1Cδx =

2x. Furthermore, we assume that sgn b is known. Next, let Gn(x) = 1/(1 + x21 +

x22), F (x) = [x1, x2, x
2
1x2]

T
, and Kg = 1

b
[θn1 − θ1, θn2 − θ2,−θ3] , where θn1 , θn2 are

arbitrary scalars, so that

fs(x) = f(x) +

[

0
b

1+x21+x22

]

(1 + x21 + x22)
1

b

[

θn1 − θ1, θn2 − θ2,−θ3
]

F (x)

=

[

0 1
θn1 θn2

]

x. (3.44)

Now, with the proper choice of θn1 and θn2 , it follows from Corollary 3.1 that if there

exists P > 0 satisfying (3.19), then the adaptive feedback controller (3.21) guarantees

that x(t) → 0 as t → ∞ for all ∆f(·) ∈ F . Specifically, here we choose θn1 = −100,

θn2 = −10, and R = I2, so that P > 0 satisfying (3.19) is given by

P =

[

14.6347 0.2777
0.2777 0.1287

]

. (3.45)
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Figure 3.2: Phase portrait of controlled and uncontrolled system

With α = 1, β = 1, ε = 2, b = 3, δ1 = 0.21, δ2 = 0.8, Y = 0.5I2, and initial

conditions x(0) = [1, 1]T and K(0) = [0, 0, 0], Figure 3.2 shows the phase portrait of

the controlled and uncontrolled system. Note that the adaptive controller is switched

on at t = 15 sec. Figure 3.3 shows the state trajectories versus time and the control

signal versus time. Finally, Figure 3.4 shows the adaptive gain history versus time.

Example 3.2. Consider the nonlinear uncertain system given by








ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)









=









δ1x1(t) + x3(t)
δ2x2(t) + δ3x3(t) + x4(t)

a1x1(t) + a3x3(t) + c1x3(t)x4(t) + c3x1(t)x2(t)
a2x2(t) + a4x4(t) + c2x

2
1(t) + c4x

2
3(t)









+









0 0
0 0
0 b1

2+sinx3(t)
b2

coshx4(t)
0









u(t),









x1(0)
x2(0)
x3(0)
x4(0)









=









x10
x20
x30
x40









, t ≥ 0, (3.46)

where a1, · · · , a4, c1, · · · , c4, b1, b2, δ1, δ2, δ3 ∈ R are unknown, b1 and b2 are positive,

and δ1 ∈ [−1, 1], δ2 ∈ [−1, 1], and δ3 ∈ [−2, 2]. Note that (3.46) can be written in the
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form of (3.1) with f(x) = [x3, x4, a1x1 + a3x3 + c1x1x2 + c3x3x4, a2x2 + a4x4 + c2x
2
1 +

c4x
2
3]
T, ∆f(x) = [δ1x1, δ2x2 + δ3x3, 0, 0]

T, and

G(x) =









0 0
0 0
0 b1

2+sinx3
b2

coshx4
0









.

Here, we assume that f(x), ∆f(x), and G(x) are unknown and can be parameterized

as

f(x) = [x3, x4, θ1x1 + θ3x3 + θ5x1x2 + θ6x3x4, θ2x2 + θ4x4 + θ7x
2
1 + θ8x

2
3]
T,

∆f(x) = Bδ∆Cδx, G(x) =

[

b1 0
0 b2

] [

0 1
2+sinx3

1
coshx4

0

]

,

where θi, i = 1, · · · , 8, are unknown constants and Bδ = [I2, 02]
T, Cδ = [I3, 03×1],

and ∆ =

[

δ1 0 0
0 δ2 δ3

]

. Note that (3.2) is satisfied with m(Cδx) = γ−1Cδx = 2Cδx.

Next, let

Gn(x) =

[

0 coshx4
2 + sinx3 0

]

, F (x) =
[

xT, x1x2, x3x4, x
2
1, x

2
3,
]T
,

Kg =

[

b1 0
0 b2

]−1

·
[

θn11 − θ1 θn12 θn13 − θ3 θn14 −θ5 −θ6 0 0
θn21 θn22 − θ2 θn23 θn24 − θ4 0 0 −θ7 −θ8

]

,

where θnij , i = 1, 2, j = 1, · · · , 4, are arbitrary scalars, so that

fs(x) = f(x) +

[

b1 0
0 b2

] [

0 1
2+sinx3

1
coshx4

0

] [

0 coshx4
2 + sin x3 0

] [

b1 0
0 b2

]−1

·
[

θn11 − θ1 θn12 θn13 − θ3 θn14 −θ5 −θ6 0 0
θn21 θn22 − θ2 θn23 θn24 − θ4 0 0 −θ7 −θ8

]

F (x)

=









0 0 1 0
0 0 0 1

θn11 θn13 θn13 θn14
θn21 θn23 θn23 θn24









x. (3.47)

Now, with the proper choice of θnij , i = 1, 2, j = 1, · · · , 4, it follows from Corollary

3.1 that if there exists P > 0 satisfying (3.19), then the adaptive feedback controller
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(3.21) guarantees that x(t) → 0 as t → ∞ for all ∆f(·) ∈ F . Specifically, here we

choose As =

[

02 I2
−100I2 −10I2

]

and R = I4, so that P > 0 satisfying (3.19) is given

by

P =









14.6347 0.0000 0.2777 0.0000
0.0000 6.0290 0.0000 0.0554
0.2777 −0.0000 0.1287 0.0000
0.0000 0.0554 −0.0000 0.0556









. (3.48)

With a1 = −9, a2 = −14, a3 = 0.2, a4 = −6, b1 = 3, b2 = 5, c1 = 0.2, c2 = 0.7,

c3 = −1.5, c4 = 0.9, δ1 = 0.7, δ2 = 0.6, δ3 = 1.6, Y = I2, and initial conditions

x(0) = [1, 0, 0, 0]T and K(0) = 02×8, Figure 3.5 shows that the phase portraits of

the controlled and uncontrolled system. Note that the adaptive controller is switched

on at t = 6 sec. Figure 3.6 shows the state trajectories versus time and the control

signals versus time.

3.5. Conclusion

A direct robust adaptive control framework was developed for a class of nonlinear

uncertain dynamical systems with constant linearly parameterized uncertainty and

nonlinear state-dependent uncertainty. The proposed framework is Lyapunov-based

and captures the residual approximation error inherent in standard adaptive control

methods predicated on linear parameterizations of system modeling uncertainty.
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Chapter 4

Adaptive Control for Nonlinear

Uncertain Systems with Actuator

Amplitude and Rate Saturation

Constraints

4.1. Introduction

In light of the increasingly complex and highly uncertain nature of dynamical sys-

tems requiring controls, it is not surprising that reliable system models for many high

performance engineering applications are unavailable. In the face of such high levels

of system uncertainty, robust controllers may unnecessarily sacrifice system perfor-

mance whereas adaptive controllers are clearly appropriate since they can tolerate far

greater system uncertainty levels to improve system performance. However, an im-

plicit assumption inherent in most adaptive control frameworks is that the adaptive

control law is implemented without any regard to actuator amplitude and rate satura-

tion constraints. Of course, any electromechanical control actuation device is subject

to amplitude and/or rate constraints leading to saturation nonlinearities enforcing

limitations on control amplitudes and control rates. As a consequence, actuator non-

linearities arise frequently in practice and can severely degrade closed-loop system
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performance, and in some cases drive the system to instability. These effects are even

more pronounced for adaptive controllers which continue to adapt when the feedback

loop has been severed due to the presence of actuator saturation causing unstable

controller modes to drift, which in turn leads to severe windup effects.

The research literature on adaptive control with actuator saturation effects is

rather limited. Notable exceptions include [1, 7, 129, 134, 186, 191, 244]. However, the

results reported in [1,7,134,186,191,244] are confined to linear plants with amplitude

saturation. Many practical applications involve nonlinear dynamical systems with

simultaneous control amplitude and rate saturation. The presence of control rate

saturation may further exacerbate the problem of control amplitude saturation. For

example, in advanced tactical fighter aircraft with high maneuverability requirements,

pilot induced oscillations [109,171] can cause actuator amplitude and rate saturation

in the control surfaces, leading to catastrophic failures.

In this Chapter we develop a direct adaptive control framework for adaptive track-

ing of multivariable nonlinear uncertain systems with amplitude and rate saturation

constraints. In particular, we extend the Lyapunov-based direct adaptive control

framework developed in Chapter 2 (see also [84, 90, 91]) to guarantee partial asymp-

totic stability of the closed-loop tracking system; that is, asymptotic stability with

respect to the closed-loop system error states associated with the tracking error dy-

namics, in the face of actuator amplitude and rate saturation constraints. Specifically,

a reference (governor or supervisor) dynamical system is constructed to address track-

ing and regulation by deriving adaptive update laws that guarantee that the error

system dynamics are asymptotically stable and the adaptive controller gains are Lya-

punov stable. In the case where the actuator amplitude and rate are limited, the

adaptive control signal to the reference system is modified to effectively robustify

the error dynamics to the saturation constraints and thus guaranteeing asymptotic
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stability of the error states.

4.2. Adaptive Tracking for Nonlinear Uncertain Systems

In this section we consider the problem of characterizing adaptive feedback track-

ing control laws for nonlinear uncertain systems. Specifically, we consider the con-

trolled nonlinear uncertain system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (4.1)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

f : R
n → R

n, and G : R
n → R

n×m. The control input u(·) in (4.1) is restricted to

the class of admissible controls such that (4.1) has a unique solution forward in time.

Here, we assume that a desired trajectory (command) xd(t), t ≥ 0, is given and the

aim is to determine the control input u(t), t ≥ 0, so that limt→∞ ‖x(t)− xd(t)‖ = 0.

To achieve this, we construct a reference system Gr given by

ẋr(t) = Arxr(t) +Brr(t), xr(0) = xr0 , t ≥ 0, (4.2)

where xr(t) ∈ R
n, t ≥ 0, is the reference state vector, r(t) ∈ R

m, t ≥ 0, is the reference

input, and Ar ∈ R
n×n and Br ∈ R

n×m are such that the pair (Ar, Br) is stabilizable.

Now, we design u(t), t ≥ 0, and a bounded piecewise-continuous reference function

r(t), t ≥ 0, such that limt→∞ ‖x(t) − xr(t)‖ = 0 and limt→∞ ‖xr(t) − xd(t)‖ = 0 so

that limt→∞ ‖x(t) − xd(t)‖ = 0. The following result provides a control architecture

that achieves tracking error convergence in the case where the dynamics in (4.1) are

known. The case where G is unknown is addressed in Theorem 4.2. For the statement

of this result define the tracking error e(t) , x(t)− xr(t).

Theorem 4.1. Consider the nonlinear system G given by (4.1) and the reference

system Gr given by (4.2). Assume there exist gain matrices K̂1 ∈ R
m×m and K̂2 ∈
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R
m×s, and functions Ĝ : R

n → R
m×m and F : R

n → R
s such that

0 = G(x)Ĝ(x)K̂1 −Br, x ∈ R
n, (4.3)

0 = f(x) +BrK̂2F (x)− Arx, x ∈ R
n, (4.4)

hold. Furthermore, let K ∈ R
m×n be given by

K = −R−12 BT
r P, (4.5)

where the n× n positive-definite matrix P satisfies

0 = AT
r P + PAr − PBrR

−1
2 BT

r P +R1, (4.6)

and R1 ∈ R
n×n and R2 ∈ R

m×m are arbitrary positive-definite matrices. Then the

feedback control law

u(t) = Ĝ(x(t))K̂1(r(t) + K̂2F (x(t)) +Ke(t)), (4.7)

guarantees that the zero solution e(t) ≡ 0 of the error dynamics given by

ė(t) = (f(x(t)) +G(x(t))u(t))− (Arxr(t) +Brr(t)), e(0) = x0 − xr0 , e0, t ≥ 0,

(4.8)

is globally asymptotically stable.

Proof. Using the feedback control law given by (4.7), (4.8) becomes

ė(t) = (Ar +G(x(t))Ĝ(x(t))K̂1K)e(t)

+(G(x(t))Ĝ(x(t))K̂1K̂2F (x(t)) + f(x(t))− Arx(t))

+(G(x(t))Ĝ(x(t))K̂1 −Br)r(t), e(0) = e0, t ≥ 0. (4.9)

Now, using (4.3) and (4.4), it follows from (4.9) that

ė(t) = (Ar +BrK)e(t), e(0) = e0, t ≥ 0. (4.10)
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Finally, since (Ar, Br) is stabilizable and R1 > 0, it follows from standard linear-

quadratic regulator theory that Ar+BrK, with K given by (4.5), is Hurwitz. Hence,

the zero solution e(t) ≡ 0 to (4.8) is globally asymptotically stable. ¤

Theorem 4.1 provides sufficient conditions for characterizing tracking controllers

for a given nominal nonlinear dynamical system G. In the next result we show how

to construct adaptive gains K1(t) ∈ R
m×m, t ≥ 0, and K2(t) ∈ R

m×s, t ≥ 0, for

achieving tracking control in the face of system uncertainty. For this result we do

not require explicit knowledge of the gain matrices K̂1 and K̂2; all that is required is

the existence of K̂1 and K̂2 such that the compatibility relations (4.3) and (4.4) hold.

Furthermore, we shall require that det K̂1 6= 0.

Theorem 4.2. Consider the nonlinear system G given by (4.1) and the reference

system Gr given by (4.2). Assume there exist gain matrices K̂1 ∈ R
m×m and K̂2 ∈

R
m×s, with det K̂1 6= 0, and functions Ĝ : R

n → R
m×m and F : R

n → R
s, with

det Ĝ(x) 6= 0, x ∈ R
n, such that (4.3) and (4.4) hold. Furthermore, let K ∈ R

m×n

be given by (4.5), where P > 0 satisfies (4.6). In addition, let Q1, Q2 ∈ R
m×m be

positive definite. Then the adaptive feedback control law

u(t) = Ĝ(x(t))K1(t)(r(t) +K2(t)F (x(t)) +Ke(t)), (4.11)

where K1(t) ∈ R
m×m, t ≥ 0, and K2(t) ∈ R

m×s, t ≥ 0, with update laws

K̇1(t) = −K1(t)Q1B
T
r Pe(t)u

T(t)Ĝ−T(x(t))K1(t), (4.12)

K̇2(t) = −Q2B
T
r Pe(t)F

T(x(t)), (4.13)

guarantees that there exists a neighborhood D ⊂ R
n × R

m×m × R
m×s of (0, K̂1,

K̂2) such that if (e(0), K1(0), K2(0)) ∈ D, then the solution (e(t), K1(t), K2(t)) ≡

(0, K̂1, K̂2) of the closed-loop system given by (4.11)–(4.13) is Lyapunov stable and

e(t)→ 0 as t→∞.
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Proof. With u(t), t ≥ 0, given by (4.11) it follows from (4.3), (4.4), (4.12), and

(4.13), that the error dynamics e(t), t ≥ 0, are given by

ė(t) = (Ar +BrK)e(t) +Br(K̂
−1
1 −K−1

1 (t))Ĝ−1(x(t))u(t) +Br(K2(t)− K̂2)F (x(t)),

e(0) = e0, t ≥ 0. (4.14)

To show Lyapunov stability of the closed-loop system (4.11)–(4.14), consider the

Lyapunov function candidate

V (e,K1, K2) = eTPe+tr(K̂−1
1 −K−1

1 )TQ−11 (K̂−1
1 −K−1

1 )+tr(K2−K̂2)
TQ−12 (K2−K̂2),

(4.15)

where P > 0 satisfies (4.6). Note that V (0, K̂1, K̂2) = 0 and, since P , Q1, and Q2

are positive definite, V (e,K1, K2) > 0 for all (e,K1, K2) 6= (0, K̂1, K̂2). Now, letting

e(t), t ≥ 0, denote the solution to (4.14), using (4.6), (4.11)–(4.13), and using the

fact that d
dt
(K−1

1 (t)) = −K−1
1 (t)K̇1(t)K

−1
1 (t), it follows that the Lyapunov derivative

along the closed-loop system trajectories is given by

V̇ (e(t), K1(t), K2(t)) = eT(t)P ė(t) + ėT(t)Pe(t)

+2tr(K̂−1
1 −K−1

1 (t))TQ−11
d
dt
(−K−1

1 (t))

+2tr(K2(t)− K̂2)
TQ−12 K̇2(t)

= eT(t)P (Ar +BrK)e(t) + eT(t)(Ar +BrK)TPe(t)

+2eT(t)PBr(K̂
−1
1 −K−1

1 (t))Ĝ−1(x(t))u(t)

+2eT(t)PBr(K2(t)− K̂2)F (x(t))

−2tr(K̂−1
1 −K−1

1 (t))TBT
r Pe(t)u

T(t)Ĝ−T(x(t))

−2tr(K2(t)− K̂2)
TBT

r Pe(t)F
T(x(t))

= −eT(t)(R1 +KTR2K)e(t)

+2trĜ−1(x(t))u(t)eT(t)PBr(K̂
−1
1 −K−1

1 (t))

+2trF (x(t))eT(t)PBr(K2(t)− K̂2)
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−2trĜ−1(x(t))u(t)eT(t)PBr(K̂
−1
1 −K−1

1 (t))

−2trF (x(t))eT(t)PBr(K2(t)− K̂2)

= −eT(t)(R1 +KTR2K)e(t)

≤ 0, t ≥ 0, (4.16)

which proves that there exists a neighborhood D ⊂ R
n×R

m×m×R
m×q of (0, K̂1, K̂2)

such that if (e(0), K1(0), K2(0)) ∈ D, then the solution (e(t), K1(t), K2(t)) ≡ (0, K̂1,

K̂2) of the closed-loop system given by (4.11)–(4.14) is Lyapunov stable. Furthermore,

since R1 +KTR2K > 0, it follows from Theorem 2 of [42] that e(t) → 0 as t → ∞

for all (e(0), K1(0), K2(0)) ∈ D. ¤

Remark 4.1. Note that the conditions in Theorem 4.2 imply that e(t) → 0 as

t → ∞ and hence it follows from (4.12) and (4.13) that (e(t), K1(t), K2(t)) →M ,

{(e,K1, K2) ∈ D ⊂ R
n × R

m×m × R
m×s : e = 0, K̇1 = 0, K̇2 = 0} as t→∞.

Remark 4.2. Note the Lyapunov function candidate (4.15) is not radially un-

bounded with respect to K1, and hence Theorem 4.2 provides local stability guar-

antees. However, if G(x), x ∈ R
n, is known, then K1(t), t ≥ 0, can be taken to be

the constant gain matrix K̂1 so that (4.12) is superfluous. In this case, the adap-

tive feedback control law (4.11) with update law (4.13) guarantees that the solution

(e(t), K2(t)) ≡ (0, K̂2) of the closed-loop system given by (4.11), (4.13), and (4.14)

is Lyapunov stable and e(t) → 0 as t → ∞ for all e0 ∈ R
n. For further details see

Chapter 2 (see also [84,90,91]).

It is important to note that the adaptive law (4.11)–(4.13) does not require explicit

knowledge of the gain matrices K̂1 and K̂2. Furthermore, no specific structure on

the nonlinear dynamics f(x) and G(x) are required to apply Theorem 4.2; all that

is required is the existence of F (x) and Ĝ(x) such that the compatibility relations
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(4.3) and (4.4) hold for a given reference system Gr. The compatibility conditions

(4.3) and (4.4) provide a generalization to the stronger conditions already existing

in the literature required for tracking control using feedback linearization techniques.

However, if (4.1) is in normal form with asymptotically stable internal dynamics [122],

then we can always construct functions Ĝ : R
n → R

m×m and F : R
n → R

s, with

det Ĝ(x) 6= 0, x ∈ R
n, and a stabilizable pair (Ar, Br) such that (4.3) and (4.4) hold

without requiring knowledge of the system dynamics. To see this assume that the

nonlinear uncertain system G is generated by

q
(ri)
i (t) = fui(q(t)) +

m
∑

j=1

Gs(i,j)(q(t))uj(t), t ≥ 0, i = 1, · · · ,m, (4.17)

where q = [q1, · · · , q(r1−1)1 , · · · , qm, · · · , q(rm−1)m ]T, q(0) = q0, q
(ri)
i denotes the rthi deriva-

tive of qi, and ri denotes the relative degree with respect to the output qi. Here

we assume that the square matrix function Gs(q) composed of the entries Gs(i,j)(q),

i, j = 1, · · · ,m, is such that detGs(q) 6= 0, q ∈ R
r̂, where r̂ = r1 + · · · + rm is the

(vector) relative degree of (4.17). Furthermore, since (4.17) is in a form where it does

not possess internal dynamics, it follows that r̂ = n. The case where (4.17) possesses

input-to-state stable internal dynamics can be handled as shown in Section 2.2.

Next, define xi ,

[

qi, · · · , q(ri−2)i

]T

, i = 1, · · · ,m, xm+1 ,

[

q
(r1−1)
1 , · · · , q(rm−1)m

]T

,

and x ,
[

xT1 , · · · , xTm+1

]T
, so that (4.17) can be described as (4.1) with

f(x) = Ãx+ f̃u(x), G(x) =

[

0(n−m)×m

Gs(x)

]

, (4.18)

where

Ã =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1
fu(x)

]

,

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones capturing the multivariable

controllable canonical form representation [43], and fu : R
n → R

m and Gs : R
n →

R
m×m are unknown functions. Here, we assume that fu(x) andGs(x) are unknown and
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are parameterized as fu(x) = Θ̀ x+Θǹ fǹ (x), where fǹ : R
n → R

q, Gs(x) = ΦḠs(x),

where Ḡs : R
n → R

m×m and satisfies det Ḡs(x) 6= 0, x ∈ R
n, and Θ̀ ∈ R

m×n,

Θǹ ∈ R
m×q, and Φ ∈ R

m×m, with detΦ 6= 0, are matrices of uncertain constant

parameters.

Next, to apply Theorem 4.2 to the uncertain system (4.1) with f(x) and G(x)

given by (4.18), let Br =
[

0(n−m)×m, Br
T
s

]T
, where Brs ∈ R

m×m is invertible, let

Ar =
[

AT
0 ,Θ

T
n

]T
, where Θn ∈ R

m×n is a known matrix, let K̂2 ∈ R
m×s, where

s = n+ q, be given by

K̂2 = Brs
−1[ Θn − Θ̀ , −Θǹ ], (4.19)

and let

F (x) =

[

x
fǹ (x)

]

. (4.20)

In this case, it follows that, with Ĝ(x) = Ḡ−1s (x) and K̂1 = Φ−1Brs,

G(x)Ĝ(x)K̂1 = Br (4.21)

and

f(x) +BrK̂2F (x) = Ãx+ f̃u(x) +

[

0(n−m)×m

Brs

]

Brs
−1 [ Θnx− Θ̀ x−Θǹ fǹ (x)

]

= Ãx+

[

0(n−m)×1
Θnx

]

= Arx, (4.22)

where Ar is in multivariable controllable canonical form. Hence, choosing Ar and Br

such that (Ar, Br) is stabilizable and choosing R1 > 0 and R2 > 0, it follows that

there exists a positive-definite matrix P satisfying the Riccati equation (4.6).
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4.3. Adaptive Tracking with Actuator Amplitude and Rate

Saturation Constraints

In this section we extend the adaptive control framework presented in Section 4.2

to account for actuator amplitude and rate saturation constraints. Recall that The-

orem 4.2 guarantees that the tracking error e(t), t ≥ 0, converges to zero; that is,

the state vector x(t), t ≥ 0, converges to the reference state vector xr(t), t ≥ 0.

Furthermore, it is important to note that xr(t), t ≥ 0, does not directly appear in the

control signal u(t), t ≥ 0, given by (4.11), which depends on the reference input r(t),

t ≥ 0. However, since for a fixed set of initial conditions there exists a one-to-one

mapping between the reference input r(t), t ≥ 0, and the reference state xr(t), t ≥ 0,

it follows that the control signal (4.11) guarantees convergence of the state x(t), t ≥ 0,

to the reference state xr(t), t ≥ 0, corresponding to the specified reference input r(t),

t ≥ 0. Of course, the reference input r(t), t ≥ 0, should be chosen so as to guarantee

asymptotic convergence to a desired state vector xd(t), t ≥ 0. However, the choice

of such a reference input r(t), t ≥ 0, is not unique since the reference state vector

xr(t), t ≥ 0, can converge to the desired state vector xd(t), t ≥ 0, without matching

its transient behavior.

Now, we provide a framework wherein we construct a family of reference inputs

r(t), t ≥ 0, with associated reference state vectors xr(t), t ≥ 0, that guarantee that

a given reference state vector within this family converges to a desired state vector

xd(t), t ≥ 0, in the face of actuator amplitude and rate saturation constraints. We

begin by solving for r(t), t ≥ 0, from the control law (4.11) using the assumption that

K1(t), t ≥ 0, is nonsingular to obtain the reference input as a function of the control

input

r(t) = K−1
1 (t)Ĝ−1(x(t))u(t)−K2(t)F (x(t))−Ke(t), t ≥ 0. (4.23)
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Next, we assume that the control signal is amplitude and rate limited so that

umin,i ≤ ui(t) ≤ umax,i and u̇min,i ≤ u̇i(t) ≤ u̇max,i, t ≥ 0, i = 1, . . . ,m, where ui(t)

and u̇i(t) denote the ith component of u(t) and u̇(t), respectively, and umin,i, umax,i,

u̇min,i, and u̇max,i are given such that umin,i ≤ umax,i, u̇min,i ≤ u̇max,i. For the statement

of our main result the following definitions are needed. For i ∈ {1, · · · ,m} define

ui(t) , min{umax,i, ui(t− ε) + u̇max,iε}, t ≥ 0, (4.24)

ui(t) , max{umin,i, ui(t− ε) + u̇min,iε}, t ≥ 0, (4.25)

where ε > 0 is an arbitrary time which can be chosen as small as desired. The

introduction of the infinitesimal time ε > 0 is necessary since the time derivative of

x(t), t ≥ 0, and the time derivative of u(t), t ≥ 0, are not available. However, since

x(t) and u(t) are known at all times, estimates of these derivatives can be obtained

with any specified accuracy. Now, define

σ(ui(t)) ,







ui(t), if ui(t) ≤ ui(t) ≤ ui(t),
ui(t), if ui(t) > ui(t),
ui(t), if ui(t) < ui(t),

i = 1, · · · ,m, t ≥ 0. (4.26)

It follows from (4.24) and (4.25) that if ui(t) ≤ ui(t) ≤ ui(t) at time t ∈ [0,∞),

then ui(t) satisfies both the amplitude and rate saturation constraints. Finally, for

the statement of our main theorem we define the component decoupled diagonal

nonlinearity Σ(u) by

Σ(u(t)) , diag[σ(u1(t)), σ(u2(t)), . . . , σ(um(t))], t ≥ 0. (4.27)

Theorem 4.3. Consider the controlled nonlinear system G given by (4.1) and the

reference system Gr given by (4.2). Assume there exist gain matrices K̂1 ∈ R
m×m and

K̂2 ∈ R
m×s, with det K̂1 6= 0, and functions Ĝ : R

n → R
m×m and F : R

n → R
s, with

det Ĝ(x) 6= 0, x ∈ R
n, such that (4.3) and (4.4) hold. Furthermore, let K ∈ R

m×n be

given by (4.5), where P > 0 satisfies (4.6). In addition, for a given desired reference
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input rd(t), t ≥ 0, let the reference input r(t), t ≥ 0, be given by

r(t) = K−1
1 (t)Ĝ−1(x(t))Σ(u∗(t))−K2(t)F (x(t))−Ke(t), t ≥ 0, (4.28)

where

u∗(t) = Ĝ(x(t))K1(t)(r
∗(t) +K2(t)F (x(t)) +Ke(t)), (4.29)

ṙ∗(t) = ṙd(t) + Λ(r(t)− rd(t)), r∗(0) = r∗0, t ≥ 0, (4.30)

and where Λ ∈ R
m×m is Hurwitz. Then the adaptive feedback control law (4.11), with

update laws (4.12) and (4.13) and reference input r(t), t ≥ 0, satisfying (4.28)–(4.30)

guarantees that:

i) There exists a neighborhood D ⊂ R
n×R

m×m×R
m×s of (0, K̂1, K̂2) such that if

(e(0), K1(0), K2(0)) ∈ D, then the solution (e(t), K1(t), K2(t)) ≡ (0, K̂1, K̂2) of

the closed-loop system given by (4.11)–(4.13) is Lyapunov stable and e(t)→ 0

as t→∞.

ii) umin,i ≤ ui(t) ≤ umax,i for all t ≥ 0 and i = 1, . . . ,m.

iii) u̇min,i ≤ u̇i(t) ≤ u̇max,i for all t ≥ 0 and i = 1, . . . ,m.

iv) If there exists t∗ ≥ 0 such that u∗(t), t ≥ t∗, does not violate the amplitude and

rate saturation constraints, then limt→∞ ‖r(t)− rd(t)‖ = 0 and limt→∞ ‖xr(t)−

xd(t)‖ = 0.

Proof. i) is a direct consequence of Theorem 4.2 with r(t), t ≥ 0, satisfying

(4.28)–(4.30). To prove ii) and iii) note that it follows from (4.11) and (4.28) that

u(t) = Ĝ(x(t))K1(t)(r(t) +K2(t)F (x(t)) +Ke(t))

= Ĝ(x(t))K1(t)
[

K−1
1 (t)Ĝ−1(x(t))Σ(u∗(t))

]

= Σ(u∗(t)), t ≥ 0, (4.31)
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which implies ui(t) = σ(u∗i (t)), i = 1, · · · ,m. Hence, if the control input u∗i (t),

i ∈ {1, · · · ,m}, does not violate the amplitude and rate saturation constraints at

time t ∈ [0,∞), then it follows from (4.26) that ui(t) = u∗i (t) at time t ∈ [0,∞).

Alternatively, if u∗i (t), i ∈ {1, · · · ,m}, violates one or more of the input amplitude

and/or rate constraints at time t ∈ [0,∞), then (4.26) and (4.31) imply

1) ui(t) = umax,i if u
∗
i (t) > umax,i;

2) ui(t) = umin,i if u
∗
i (t) < umin,i;

3) u̇i(t) = u̇max,i if
u∗i (t)−u∗i (t−ε)

ε
> u̇max,i and umin,i ≤ u∗i (t) ≤ umax,i; and

4) u̇i(t) = u̇min,i if
u∗i (t)−u∗i (t−ε)

ε
< u̇min,i and umin,i ≤ u∗i (t) ≤ umax,i;

which guarantee that umin,i ≤ ui(t) ≤ umax,i and u̇min,i ≤ ui(t) ≤ u̇max,i for all t ≥ 0

and i = 1, · · · ,m. Finally, to show iv) let t∗ ≥ 0 be such that Σ(u∗(t)) = u∗(t), t ≥ t∗.

In this case, r(t) = K−1
1 (t)Ĝ−1(x(t))u∗(t) − K2(t)F (x(t)) − Ke(t) = r∗(t), t ≥ t∗.

Hence, it follows from (4.30) that ṙ(t) − ṙd(t) = Λ(r(t) − rd(t)), t ≥ t∗, which, since

by assumption Λ ∈ R
m×m is Hurwitz, guarantees that limt→∞ ‖r(t)− rd(t)‖ = 0 and

hence limt→∞ ‖xr(t)− xd(t)‖ = 0. ¤

Note that it follows from Theorem 4.3 that if the desired reference input rd(t),

t ≥ 0, is such that the actuator amplitude and/or rate saturation constraints are not

violated, then r(t) = rd(t), t ≥ 0, and hence x(t), t ≥ 0, converges to xd(t), t ≥ 0.

Alternatively, if there exists t∗ > 0 such that the desired reference input drives one

or more of the control inputs to the saturation boundary, then r(t) 6≡ rd(t), t ≥ t∗.

In this case however, (4.30) guarantees that limt→∞ ‖r(t)− rd(t)‖ = 0 so long as the

time interval over which the control input remains saturated is finite. If this is not

the case, then our approach cannot guarantee convergence of the reference input r(t),

t ≥ 0, to the desired reference rd(t), t ≥ 0. Of course, if there exists a solution to
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the tracking problem wherein the input amplitude and rate saturation constraints are

not violated with the proposed controller when the tracking error is within certain

bounds, then our approach is guaranteed to always work.

4.4. Illustrative Numerical Examples

In this section we present two numerical examples to demonstrate the utility of the

proposed direct adaptive control framework for adaptive stabilization and tracking in

the face of actuator amplitude and rate saturation constraints.

Example 4.1. Consider the uncertain controlled Liénard system given by

z̈(t)+µ(z4(t)−α)ż(t)+βz(t)+γ tanh(z(t))=bu(t), z(0) = z0, ż(0) = ż0, t ≥ 0,

(4.32)

where µ, α, β, γ, b ∈ R are unknown. Note that with x1 = z and x2 = ż, (4.32)

can be written in state space form (4.1) with x = [x1, x2]
T, f(x) = [x2,−βx1 −

γ tanhx1 − µ(x41 − α)x2]T, and G(x) = [0, b]T. Here, we assume that f(x) and G(x)

are unknown and can be parameterized as f(x) = [x2, θ̀ x+ θǹ 1 tanhx1 + θǹ 2x
4
1x2]

T

and G(x) = b[0, 1]T, where θ̀ ∈ R
2, θǹ 1 ∈ R, and θǹ 2 ∈ R are unknown. Next, let

F (x) = [xT, tanh(x1), x
4
1x2]

T, Ar = [AT
0 , θ

T
n ]

T, Br = [0, 1]T, Ĝ(x) ≡ 1, K̂1 = 1
b
, and

K̂2 = [θn − θ̀ ,−θǹ 1,−θǹ 2], where A0 = [0, 1] and θn is an arbitrary vector, so that

G(x)Ĝ(x)K̂1 =

[

0
b

]

· 1 · 1
b
=

[

0
1

]

= Br,

f(x) +BrK̂2F (x) = f(x) +

[

0
1

]

[θn − θ̀ ,−θǹ 1,−θǹ 2]F (x)

=

[

A0

θn

]

x

= Arx,

and hence (4.3) and (4.4) hold. Now, it follows from Theorem 4.3 that the adaptive

feedback controller (4.11) guarantees that e(t) → 0 as t → ∞ in the face of input
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Figure 4.1: Stabilization of the Liénard system with no saturation constraints

amplitude and rate saturation constraints. Specifically, here we choose θn = [−4,−4],

R1 = 1000I2, and R2 = 1, so that K and P satisfying (4.5) and (4.6) are given by

P =

[

1027.5 27.9
27.9 28.7

]

, K =
[

−27.9 −28.7
]

. (4.33)

To analyze this design we assume that µ = 2, α = 1, β = 1, γ = 1, b = 3, Q1 = 1,

Q2 = I4, ε = 10−6, with initial condition x(0) = [1, 1]T. First, we consider a regulation

problem; that is, stabilization to the origin. Figure 4.1 shows the case where no input

saturation constraints are considered and Figure 4.2 shows the case where umax =

−umin = 0.7 and u̇max = −u̇min = 2. Note that the adaptive controller is switched on

at t = 15 sec with xr(15) = x(15), K1(15) = 0.1, and K2(15) = [0, 0, 0, 0]T.

Next, we consider the case where we seek to track zd(t) = sin t. Figure 4.3 shows
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Figure 4.2: Stabilization of the Liénard system with amplitude and rate saturation
constraints

the case where no input saturation constraints are considered and Figure 4.4 shows

the case where umax = −umin = 0.7 and u̇max = −u̇min = 2. It is interesting to

note that at the given amplitude and rate saturation levels the control signal remains

periodically saturated and hence our formulation cannot guarantee that xr1(t) →

xd(t) as t → ∞. However, our approach provides a “close” agreement between the

desired signal to be tracked and the achieved tracked signal for the given saturation

levels. In the case where we slightly relax the saturation levels to umax = −umin = 0.75

and u̇max = −u̇min = 2, our approach guarantees perfect tracking (see Figure 4.5).

Finally, we note that in the case where umax = −umin = 0.75 and u̇max = −u̇min = 2

and the adaptive controller of Theorem 4.2 is used without the reference input as in
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Figure 4.3: Tracking of the Liénard system with no saturation constraints

Theorem 4.3, the closed-loop system is unstable and neither regulation nor tracking

can be achieved.

Example 4.2. Consider the nonlinear dynamical system representing a controlled

rigid spacecraft given by

ẋ(t) = −I−1b XIbx(t) + I−1b u(t), x(0) = x0, t ≥ 0, (4.34)

where x = [x1, x2, x3]
T represents the angular velocities of the spacecraft with respect

to the body-fixed frame, Ib ∈ R
3×3 is an unknown positive-definite inertia matrix

of the spacecraft, u = [u1, u2, u3]
T is a control vector with control inputs providing

body-fixed torques about three mutually perpendicular axes defining the body-fixed
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Figure 4.4: Tracking of the Liénard system with amplitude and rate saturation
constraints

frame of the spacecraft, and X denotes the skew-symmetric matrix

X ,





0 −x3 x2
x3 0 −x1
−x2 x1 0



 .

Note that (4.34) can be written in state space form (4.1) with f(x) = −I−1b XIbx

and G(x) = I−1b . Since f(x) is a quadratic function, we parameterize f(x) as f(x) =

Θǹ fǹ (x), where Θǹ ∈ R
3×6 is an unknown matrix and fǹ (x) = [x21, x

2
2, x

2
3, x1x2,

x2x3, x3x1]
T. Next, let F (x) = [xT, fT

ǹ
]T, Br = I3, Ĝ(x) ≡ Br = I3, Ĝ(x) ≡ I3,

K̂1 = Ib, and K̂2[Ar, −Θǹ ], so that

G(x)Ĝ(x)K̂1 = I−1b I3Ib = I3 = Br,

f(x) +BrK̂2F (x) = f(x) + I3
[

Ar, −Θǹ

]

F (x) = Arx,
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Figure 4.5: Tracking of the Liénard system with amplitude and rate saturation
constraints

and hence (4.3) and (4.4) hold. Now, it follows from Theorem 4.3 that the adaptive

feedback controller (4.11) guarantees that e(t)→ 0 as t→∞ when considering input

amplitude and rate saturation constraints. Specifically, here we choose

Ar =





0 1 0
0 0 1
−8 −12 −6



 ,

R1 = 100I3, and R2 = 0.1I3, so that K and P satisfying (4.5) are given by

P =





3.2219 0.1384 −0.3097
0.1384 3.2932 −0.4234
−0.3097 −0.4234 2.5623



 , K =





−32.2188 −1.3837 3.0974
−1.3837 −32.9325 4.2344
3.0974 4.2344 −25.6229



 .

To analyze this design we assume that

Ib =





20 0 0.9
0 17 0
0.9 0 15



 , Q1 = Q2 = I3,
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Figure 4.6: Angular velocities versus time

ε = 10−6, with initial condition x(0) = [0.4, 0.2,−0.2]T. Furthermore, we consider a

regulation problem and switch the adaptive controller on at t = 15 sec with xr(15) =

x(15), K1(15) = 0.1I3, and K2(15) = 03×9. Figure 4.6 shows the angular velocities

versus time for the case where no saturation constraints are enforced and the case

where umax = −umin = 1 and u̇max = −u̇min = 0.5. Figure 4.7 shows the corresponding

control inputs and their time rate of change.

4.5. Conclusion

A direct adaptive nonlinear tracking control framework for multivariable nonlin-

ear uncertain systems with actuator amplitude and rate saturation constraints was

developed. By appropriately modifying the adaptive control signal to the reference

system dynamics, the proposed approach guarantees asymptotic stability of the error

system dynamics in the face of actuator amplitude and rate limitation constraints.
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Finally, two numerical examples were presented to show the utility of the proposed

adaptive tracking scheme.
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Chapter 5

Adaptive Reduced-Order Dynamic

Compensation for Nonlinear

Uncertain Systems

5.1. Introduction

In this chapter a direct adaptive reduced-order dynamic compensation framework

for nonlinear uncertain dynamical systems is developed. In particular, a Lyapunov-

based direct adaptive fixed-order dynamic compensation framework is developed that

guarantees partial asymptotic stability of the closed-loop system; that is, asymptotic

stability with respect to part of the closed-loop system states associated with the plant

and compensator states. Furthermore, the remainder of the states associated with

the adaptive dynamic controller gains are shown to be Lyapunov stable. In the case

where the controlled nonlinear system is represented in normal form [122] with input-

to-state stable internal dynamics [122,222], the proposed nonlinear adaptive dynamic

controller is constructed without requiring knowledge of the system dynamics. Finally,

we emphasize that the direct adaptive stabilization framework presented herein builds

on the nonlinear adaptive control results developed in Chapter 2 and is distinct from

the methods given in [12, 121, 136, 139, 176] predicated on model reference adaptive

control.

129



5.2. Adaptive Dynamic Control for Nonlinear Uncertain Sys-

tems

In this section we begin by considering the problem of characterizing adaptive

reduced-order dynamic feedback control laws for nonlinear uncertain dynamical sys-

tems. Specifically, consider the nonlinear uncertain system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.1)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

f : R
n → R

n and satisfies f(0) = 0, and G : R
n → R

n×m. Furthermore, consider the

nthc -order adaptive dynamic compensator Gc given by

ẋc(t) = Ac(t)xc(t) +Bc(t)x(t), xc(0) = xc0, t ≥ 0, (5.2)

u(t) = Ĝ(x(t))[Cc(t)xc(t) +Dc(t)F (x(t))], (5.3)

where xc(t) ∈ R
nc , t ≥ 0, is the compensator state, Ac : R→ R

nc×nc , Bc : R→ R
nc×n,

Cc : R → R
m×nc , Dc : R → R

m×s, Ĝ : R
n → R

m×m, and F : R
n → R

s and satisfies

F (0) = 0. For the nonlinear system G and the dynamic compensator Gc we assume

that the required properties for the existence and uniqueness of solutions are satisfied;

that is, f(·), G(·), Ac(·), Bc(·), and u(·) satisfy sufficient regularity conditions such

that the closed-loop system given by (5.1)–(5.3) has a unique solution forward in

time. For the statement of the next result define ñ , n+ nc.

Theorem 5.1. Consider the nonlinear system G given by (5.1) and the adaptive

dynamic compensator Gc given by (5.2), (5.3). Assume there exist matrices Acg ∈

R
nc×nc , Bcg ∈ R

nc×n, Ccg ∈ R
m×nc , Dcg ∈ R

m×s, and functions Vs : R
ñ → R,

Ĝ : R
n → R

m×m, F : R
n → R

s, with F (0) = 0, and ` : R
ñ → R

t such that Vs(·) is

continuously differentiable, positive definite, radially unbounded, Vs(0) = 0, `(0) = 0,
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and, for all x̃ ∈ R
ñ,

0 = V ′s (x̃)f̃s(x̃) + `T(x̃)`(x̃), (5.4)

where

f̃s(x̃) ,

[

fs(x) +G(x)Ĝ(x)Ccgxc
Acgxc +Bcgx

]

, (5.5)

fs(x) , f(x) +G(x)Ĝ(x)DcgF (x). (5.6)

Furthermore, let Qi ∈ R
m×m, i = 1, · · · , 4, Y1 ∈ R

nc×nc , Y2 ∈ R
n×n, Y3 ∈ R

nc×nc , and

Y4 ∈ R
s×s be positive definite. Then the adaptive dynamic feedback controller (5.2),

(5.3), with update laws

Ȧc(t) = −1
2
Q1
∂V T

s

∂xc
(x̃(t))xTc (t)Y1, (5.7)

Ḃc(t) = −1
2
Q2
∂V T

s

∂xc
(x̃(t))xT(t)Y2, (5.8)

Ċc(t) = −1
2
Q3Ĝ

T(x(t))GT(x(t))
∂V T

s

∂x
(x̃(t))xTc (t)Y3, (5.9)

Ḋc(t) = −1
2
Q4Ĝ

T(x(t))GT(x(t))
∂V T

s

∂x
(x̃(t))FT(x(t))Y4, (5.10)

guarantees that the solution (x̃, Ac, Bc, Cc, Dc) ≡ (0, Acg, Bcg, Ccg, Dcg) of the closed-

loop system given by (5.1)–(5.3), (5.7)–(5.10) is Lyapunov stable and `(x̃(t))→ 0 as

t→∞. If, in addition, `T(x̃)`(x̃) > 0, x̃ 6= 0, then x(t)→ 0 and xc(t)→ 0 as t→∞

for all (x0, xc0) ∈ R
n × R

nc .

Proof. Note that with the dynamic controller (5.2), (5.3), it follows from (5.1)

that

[

ẋ(t)
ẋc(t)

]

=

[

f(x(t)) +G(x(t))Ĝ(x(t))Cc(t)xc(t) +G(x(t))Ĝ(x(t))Dc(t)F (x(t))
Ac(t)xc(t) +Bc(t)x(t)

]

,

x(0) = x0, xc(0) = xc0, t ≥ 0, (5.11)
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or, equivalently,

˙̃x(t) = f̃(x̃(t))

+

[

G(x(t))Ĝ(x(t))(Cc(t)− Ccg)xc(t) +G(x(t))Ĝ(x(t))(Dc(t)−Dcg)F (x(t))
(Ac(t)− Acg)xc(t) + (Bc(t)−Bcg)x(t)

]

,

x̃(0) = x̃0, t ≥ 0. (5.12)

To show Lyapunov stability of the closed-loop system (5.7)–(5.10) and (5.12) consider

the Lyapunov function candidate

V (x̃, Ac, Bc, Cc, Dc)

= Vs(x̃) + trQ−11 (Ac − Acg)Y
−1
1 (Ac − Acg)

T + trQ−12 (Bc −Bcg)Y
−1
2 (Bc −Bcg)

T

+trQ−13 (Cc − Ccg)Y
−1
3 (Dc − Ccg)

T + trQ−14 (Dc −Dcg)Y
−1
4 (Dc − Ccg)

T. (5.13)

Note that V (0, Acg, Bcg, Ccg, Dcg) = 0 and, since Vs(·), Qi, and Yi, i = 1, · · · , 4, are

positive definite, V (x̃, Ac, Bc, Cc, Dc) > 0 for all (x̃, Ac, Bc, Cc, Dc) 6= (0, Acg, Bcg, Ccg,

Dcg). Furthermore, V (x̃, Ac, Bc, Cc, Dc) is radially unbounded. Now, letting x̃(t), t ≥

0, denote the solution to (5.12) and using (5.4)–(5.10), it follows that the Lyapunov

derivative along the closed-loop system trajectories is given by

V̇ (x̃(t), Ac(t), Bc(t), Cc(t), Dc(t))

= V ′s (x̃(t))fs(x̃(t))

+V ′s (x̃(t))







(

G(x(t))Ĝ(x(t))(Cc(t)− Ccg)xc(t)

+G(x(t))Ĝ(x(t))(Dc(t)−Dcg)F (x(t))

)

(Ac(t)− Acg)xc(t) + (Bc(t)−Bcg)x(t)







+2trQ−11 (Ac(t)− Acg)Y
−1
1 ȦT

c (t) + 2trQ−12 (Bc(t)−Bcg)Y
−1
2 ḂT

c (t)

+2trQ−13 (Cc(t)− Ccg)Y
−1
3 ĊT

c (t) + 2trQ−14 (Dc(t)−Dcg)Y
−1
4 ḊT

c (t)

= −`T(x̃(t))`(x̃(t))

+
∂V T

s

∂x
(x̃(t))

[

G(x(t))Ĝ(x(t))(Cc(t)− Ccg)xc(t)

+G(x(t))Ĝ(x(t))(Dc(t)−Dcg)F (x(t))
]
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+
∂V T

s

∂xc
(x̃(t)) [(Ac(t)− Acg)xc(t) + (Bc(t)−Bcg)x(t)]

−tr
[

(Ac(t)− Acg)xc(t)
∂V T

s

∂xc
(x̃(t))

]

− tr

[

(Bc(t)−Bcg)x(t)
∂V T

s

∂xc
(x̃(t))

]

−tr
[

(Cc(t)− Ccg)xc(t)
∂V T

s

∂x
(x̃(t))G(x(t))Ĝ(x(t))

]

−tr
[

(Dc(t)−Dcg)F (x(t))
∂V T

s

∂x
(x̃(t))G(x(t))Ĝ(x(t))

]

= −`T(x̃(t))`(x̃(t))

≤ 0, t ≥ 0, (5.14)

which proves that the solution (x̃(t), Ac(t), Bc(t), Cc(t), Dc(t)) ≡ (0, Acg, Bcg, Ccg, Dcg)

to (5.7)–(5.10), and (5.12) is Lyapunov stable. Furthermore, it follows from Theo-

rem 2 of [42] that `(x̃(t)) → 0 as t → ∞. Finally, if `T(x̃)`(x̃) > 0, x̃ ∈ R
ñ, x̃ 6= 0,

then x̃(t)→ 0 as t→∞ for all x̃0 ∈ R
ñ. ¤

Remark 5.1. Note that in the case where `T(x̃)`(x̃) > 0, x̃ ∈ R
ñ, x̃ 6= 0,

the conditions in Theorem 5.1 imply x̃(t) → 0 as t → ∞ and hence it follows

from (5.7)–(5.10), using F (0) = 0, that (x̃(t), Ac(t), Bc(t), Cc(t), Dc(t)) → M ,

{(x̃, Ac, Bc, Cc, Dc) ∈ R
ñ × R

nc×nc × R
nc×n × R

m×nc × R
m×s : x̃ = 0, Ȧc = 0, Ḃc =

0, Ċc = 0, Ḋc = 0} as t→∞.

It is important to note that the adaptive dynamic controller (5.2), (5.3), (5.7)–

(5.10), does not require explicit knowledge of the gain matrices Acg, Bcg, Ccg, andDcg;

even though Theorem 5.1 requires the existence of Acg, Bcg, Ccg, and Dcg along with

the construction of F (x), Ĝ(x), and Vs(x̃) such that (5.4) holds. Furthermore, if (5.1)

is in normal form with asymptotically stable internal dynamics [122], then we can

always construct the gain matrices Acg, Bcg, Ccg, Dcg, and the functions Vs : R
ñ → R,

Ĝ : R
n → R

m×m, and F : R
n → R

s, with F (0) = 0, such that (5.4) holds without

requiring knowledge of the system dynamics. To see this assume that the nonlinear
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uncertain system G is generated by

q
(ri)
i (t) = fui(q(t)) +

m
∑

j=1

Gs(i,j)(q(t))uj(t), t ≥ 0, i = 1, · · · ,m, (5.15)

where q = [q1, · · · , q(r1−1)1 , · · · , qm, · · · , q(rm−1)m ]T, q(0) = q0, q
(ri)
i denotes the rthi deriva-

tive of qi, and ri denotes the relative degree with respect to the output qi. Here

we assume that the square matrix function Gs(q) composed of the entries Gs(i,j)(q),

i, j = 1, · · · ,m, is such that detGs(q) 6= 0, q ∈ R
r̂, where r̂ = r1 + · · · + rm is the

(vector) relative degree of (5.15). Furthermore, since (5.15) is in a form where it does

not possess internal dynamics, it follows that r̂ = n. The case where (5.15) possesses

input-to-state stable internal dynamics can be handled as shown in Section 2.2.

Next, define xi ,

[

qi, · · · , q(ri−2)i

]T

, i = 1, · · · ,m, xm+1 ,

[

q
(r1−1)
1 , · · · , q(rm−1)m

]T

,

and x ,
[

xT1 , · · · , xTm+1

]T
, so that (5.15) can be described as (5.1) with

f(x) = Ax+ f̃u(x), G(x) =

[

0(n−m)×m

Gs(x)

]

, (5.16)

where

A =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1
fu(x)

]

,

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones capturing the multivariable

controllable canonical form representation [43], fu(x) is an unknown function and

satisfies fu(0) = 0, and Gs : R
n → R

m×m. Here, we assume that fu(x) is unknown

and is parameterized as fu(x) = Θfn(x), where fn : R
n → R

q and satisfies fn(0) = 0,

and Θ ∈ R
m×q is a matrix of uncertain constant parameters.

Next, to apply Theorem 5.1 to the uncertain system (5.1) with f(x) and G(x)

given by (5.16), let Dcg ∈ R
m×s, where s = q + r, be given by

Dcg = [Θn −Θ, Φn ], (5.17)

where Θn ∈ R
m×q and Φn ∈ R

m×r are known matrices, and let Ĝ(x) = G−1s (x) and

F (x) =

[

fn(x)

f̂n(x)

]

, (5.18)
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where f̂n : R
n → R

r and satisfies f̂n(0) = 0 is an arbitrary function. In this case, it

follows that

fs(x) = f(x) +G(x)Ĝ(x)DgF (x)

= Ax+ f̃u(x)

+

[

0(n−m)×m

Gs(x)

]

G−1s (x)
[

Θnfn(x)−Θfn(x) + Φnf̂n(x)
]

= Ax+

[

0(n−m)×1
Θnfn(x) + Φnf̂n(x)

]

. (5.19)

Now, since Θn ∈ R
m×q and Φn ∈ R

m×r are arbitrary constant matrices and

f̂n : R
n → R

r is an arbitrary function we can always construct Acg, Bcg, Ccg, Dcg,

Vs(x̃), and F (x) without knowledge of f(x) such that (5.4) holds. In particular,

choosing Θnfn(x) + Φnf̂n(x) = Âx, where Â ∈ R
m×n, it follows that

f̃s(x̃) =

[

As Ĉcg

Bcg Acg

]

x̃ , Ãsx̃,

where As = [AT
0 , Â

T]T is in multivariable controllable canonical form and Ĉcg =

[0(n−m)×nc , C
T
cg]

T. Hence, choosing Â, Acg, Bcg, and Ccg such that Ãs is asymptotically

stable, it follows from converse Lyapunov theory that there exists a positive-definite

matrix P̃ satisfying the Lyapunov equation

0 = ÃT
s P̃ + P̃ Ãs + R̃, (5.20)

where R̃ is positive definite. In this case, with Vs(x̃) = x̃TP̃ x̃, where

P̃ =

[

P1 P12

PT
12 P2

]

,

P1 ∈ R
n×n, P12 ∈ R

n×nc , P2 ∈ R
nc×nc , the adaptive dynamic feedback controller (5.2),

(5.3), (5.7)–(5.10), or, equivalently,

Ȧc(t) = −Q1(P
T
12x(t) + P2xc(t))x

T
c (t)Y1, (5.21)

Ḃc(t) = −Q2(P
T
12x(t) + P2xc(t))x

T(t)Y2, (5.22)
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Ċc(t) = −Q3(P1x(t) + P12xc(t))x
T
c (t)Y3, (5.23)

Ḋc(t) = −Q4(P1x(t) + P12xc(t))F
T(x(t))Y4, (5.24)

guarantees global asymptotic stability of the nonlinear uncertain dynamical system

(5.1) where f(x) and G(x) are given by (5.16).

Next, we consider the case where f(x) and G(x) are uncertain. Specifically, we

assume that Gs(x) is unknown and is parameterized as Gs(x) = BuGn(x), where

Gn : R
n → R

m×m is known and satisfies detGn(x) 6= 0, x ∈ R
n, and Bu ∈ R

m×m,

with detBu 6= 0, is a symmetric sign definite matrix but the sign definiteness of Bu

is known; that is, Bu > 0 or Bu < 0. For the statement of the next result define

B0 ,
[

0m×(n−m), Im
]T

for Bu > 0, and B0 ,
[

0m×(n−m),−Im
]T

for Bu < 0.

Corollary 5.1. Consider the nonlinear system G given by (5.1) and the adap-

tive dynamic compensator Gc given by (5.2) with f(x) and G(x) given by (5.16) and

Gs(x) = BuGn(x), where Bu is an unknown symmetric matrix and the sign defi-

niteness of Bu is known. Assume there exist matrices Acg ∈ R
nc×nc , Bcg ∈ R

nc×n,

Ccg ∈ R
m×nc , Dcg ∈ R

m×s, and functions Vs : R
ñ → R, ` : R

ñ → R
t, and F : R

n → R
s,

with F (0) = 0, such that Vs(·) is continuously differentiable, positive definite, radially

unbounded, Vs(0) = 0, `(0) = 0, and (5.4) holds. Finally, let Qi ∈ R
m×m, i = 1, 2,

Y1 ∈ R
nc×nc , Y2 ∈ R

n×n, Y3 ∈ R
nc×nc , and Y4 ∈ R

s×s be positive definite. Then the

adaptive dynamic feedback controller

ẋc(t) = Ac(t)xc(t) +Bc(t)x(t), xc(0) = xc0, t ≥ 0, (5.25)

u(t) = G−1n (x(t))[Cc(t)xc(t) +Dc(t)F (x(t))], (5.26)

with update laws

Ȧc(t) = −1
2
Q1
∂V T

s

∂xc
(x̃(t))xTc (t)Y1, (5.27)

Ḃc(t) = −1
2
Q2
∂V T

s

∂xc
(x̃(t))xT(t)Y2, (5.28)
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Ċc(t) = −1
2
B0
∂V T

s

∂x
(x̃(t))xTc (t)Y3, (5.29)

Ḋc(t) = −1
2
B0
∂V T

s

∂x
(x̃(t))FT(x(t))Y4, (5.30)

guarantees that the solution (x̃, Ac, Bc, Cc, Dc) ≡ (0, Acg, Bcg, Ccg, Dcg) of the closed-

loop system given by (5.1), (5.25)–(5.30) is Lyapunov stable and `(x̃(t)) → 0 as

t→∞. If, in addition, `T(x̃)`(x̃) > 0, x 6= 0, then x(t)→ 0 and xc(t)→ 0 as t→∞

for all (x0, xc0) ∈ R
n × R

nc .

Proof. The result is a direct consequence of Theorem 5.1. First, let Ĝ(x) =

G−1n (x). Next, since Q3 and Q4 are arbitrary positive-definite matrices, Q3 in (5.9)

and Q4 in (5.10) can be replaced by q3|Bu|−1 and q4|Bu|−1, respectively, where q3, q4
are positive constants and |Bu| = (B2

u)
1
2 , where (·) 12 denotes the (unique) positive-

definite square root. Now, since Bu is symmetric and sign definite it follows from

the Schur decomposition that Bu = UDBuU
T, where U is orthogonal and DBu is real

diagonal. Hence, |Bu|−1BT = [0m×(n−m), Im] = BT
0 , where Im = Im for Bu > 0 and

Im = −Im for Bu < 0. Now, (5.9) and (5.10), with q3Y3 and q4Y4 replaced by Y3 and

Y4, imply (5.29) and (5.30), respectively. ¤

It is important to note that if, as discussed above, Dcg and F (x) are constructed

to give f̃s(x) = Ãsx̃ in (5.5), then considerable simplification occurs in Corollary 5.1.

Specifically, in this case Vs(x̃) = x̃TP̃ x̃, where P̃ =

[

P1 P12

PT
12 P2

]

> 0 satisfies (5.20),

and hence (5.27)–(5.30) become

Ȧc(t) = −Q1(P
T
12x(t) + P2xc(t))x

T
c (t)Y1, (5.31)

Ḃc(t) = −Q2(P
T
12x(t) + P2xc(t))x

T(t)Y2, (5.32)

Ċc(t) = −B0(P1x(t) + P12xc(t))x
T
c (t)Y3, (5.33)

Ḋc(t) = −B0(P1x(t) + P12xc(t))F
T(x(t))Y4. (5.34)
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5.3. Illustrative Numerical Examples

In this section we present two numerical examples to demonstrate the efficacy of

the proposed adaptive reduced-order dynamic compensation framework.

Example 5.1. Consider the uncertain controlled Van der Pol oscillator given by

z̈(t)− ε(1− αz2(t))ż(t) + βz(t) = bu(t), z(0) = z0, ż(0) = ż0, t ≥ 0, (5.35)

where ε, α, β, b ∈ R are unknown. Note that with x1 = z and x2 = ż, (5.35) can be

written in state space form (5.1) with x = [x1, x2]
T, f(x) = [x2,−βx1+ε(1−αx21)x2]T,

and G(x) = [0, b]T. Here, we assume that f(x) is unknown and can be parameterized

as f(x) = [x2, θ1x1+θ2x2+θ3x
2
1x2]

T, where θ1, θ2, and θ3 are unknown constants. Fur-

thermore, we assume that sgn b is known. Next, let F (x) = [x1, x2, x
2
1x2]

T
, Gn(x) ≡ 1,

and Dcg =
1
b
[θn1 − θ1, θn2 − θ2,−θ3] , where θn1 , θn2 are arbitrary scalars, so that

fs(x) =

[

0 1
θn1 θn2

]

x.

Now, with the proper choice of θn1 , θn2 , Acg, Bcg, Ccg, it follows from Corollary

5.1 that the adaptive dynamic feedback controller (5.25) and (5.26) guarantees that

x̃(t)→ 0 as t→∞. Specifically, here we choose nc = 2, θn1 = θn2 = 0,

Acg =

[

0 1
−8.75 −5

]

, Bcg =

[

0 0
−1.5 −6.25

]

, Ccg =
[

1 0
]

,

so that

Ã =









0 1 0 0
0 0 1 0
0 0 0 1
−1.5 −6.25 −8.75 −5









. (5.36)

Furthermore, we choose R̃ = I4 so that P̃ satisfying (5.20) is given by

P̃ =









3.1048 3.7560 1.9845 0.3333
3.7560 7.4708 4.3958 0.6810
1.9845 4.3958 3.9708 0.5595
0.3333 0.6810 0.5595 0.2119









. (5.37)

138



−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x
1

x 2

Uncontrolled system
Controlled system

Figure 5.1: Phase portrait of controlled and uncontrolled Van der Pol oscillator

With ε = 2, α = β = 1, b = 3, Q1 = Q2 = 1, Y1 = Y2 = Y3 = I2, Y4 = I3, and

initial conditions x(0) = [1, 1]T, xc(0) = [0, 0]T, Ac(0) = 02, Bc(0) = 02, Cc(0) = 01×2,

and Dc(0) = 01×3, Figure 5.1 shows that the phase portrait of the controlled and

uncontrolled system. Note that the adaptive full-order (nc = 2) dynamic controller is

switched on at t = 15 sec. Figure 5.2 shows the state trajectories versus time and the

control signal versus time. Finally, Figure 5.3 shows the adaptive gain history versus

time.

Example 5.2. Consider the nonlinear dynamical system representing a controlled

rigid spacecraft given by

ẋ(t) = −I−1b XIbx(t) + I−1b u(t), x(0) = x0, t ≥ 0, (5.38)

where x = [x1, x2, x3]
T represents the angular velocities of the spacecraft with respect

to the body-fixed frame, Ib ∈ R
3×3 is an unknown positive-definite inertia matrix
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Figure 5.2: State trajectories versus time and the control signal versus time

of the spacecraft, u = [u1, u2, u3]
T is a control vector with control inputs providing

body-fixed torques about three mutually perpendicular axes defining the body-fixed

frame of the spacecraft, and X denotes the skew-symmetric matrix

X ,





0 −x3 x2
x3 0 −x1
−x2 x1 0



 .

Note that (5.38) can be written in state space form (5.1) with f(x) = −I−1b XIbx

and G(x) = I−1b . Here, we assume that the inertia matrix Ib of the spacecraft is

symmetric and positive definite but unknown. Since f(x) is a quadratic function,

we parameterize f(x) as f(x) = Θfn(x), where Θ ∈ R
3×6 is an unknown matrix and

fn(x) = [x21, x
2
2, x

2
3, x1x2, x2x3, x3x1]

T. Next, let F (x) =
[

fTn (x), x
T
]T
, Gn(x) ≡ 1,

and Dcg = Ib [−Θ,Φn] , where Φn ∈ R
3×3, is an arbitrary matrix, so that

fs(x) = Φnx = Asx.

Now, with the proper choice of Φn, Acg, Bcg, and Ccg, it follows from Corollary 5.1 that
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Figure 5.3: Adaptive gain history versus time

the dynamic feedback controller (5.25), (5.26) guarantees that x̃(t) → 0 as t → ∞.

Here, we choose nc = 1,

Φn =





0 1 0
0 0 1
0 0 0



 , Acg = −5, Bcg =
[

−1.5 −6.25 −8.75
]

, Ccg =





0
0
1



 ,

so that Ã is given by (5.36). Furthermore, we choose R̃ = I4 so that P̃ satisfying

(5.20) is given by (5.37). With

Ib =





20 0 0.9
0 17 0
0.9 0 15



 , Q1 = Q2 = I3, Y1 = Y3 = 30, Y2 = 30I3, Y4 = 10I9,

and initial conditions x(0) = [0.4, 0.2,−0.2], xc(0) = 0, Ac(0) = 0, Bc(0) = 01×3,

Cc(0) = 03×1, andDc(0) = 03×27, Figure 5.4 shows the angular velocities, compensator

state, and control signal versus time.
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Figure 5.4: Angular velocities, compensator state, and control signal versus time

5.4. Conclusion

An adaptive reduced-order dynamic compensation framework for nonlinear un-

certain dynamical systems was developed. Specifically, using Lyapunov methods the

proposed framework was shown to guarantee global asymptotic stability of the closed-

loop system states associated with the plant and compensator states. The efficacy

of the proposed approach was demonstrated on two representative nonlinear control

problems.
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Chapter 6

Direct Adaptive Control for

Nonlinear Matrix Second-Order

Dynamical Systems with

State-Dependent Uncertainty

6.1. Introduction

In light of the increasingly complex and highly uncertain nature of dynamical sys-

tems requiring controls, it is not surprising that reliable system models for many high

performance engineering applications are unavailable. In the face of such high levels of

system uncertainty, adaptive controllers are clearly appropriate since they can tolerate

high levels of system errors to improve system performance. However, a fundamental

limitation of adaptive control is the fact that system errors are captured by con-

stant linearly parameterized uncertainty models of a known structure but unknown

variation [12, 121, 147, 176]. If the system uncertainty is nonlinear in the uncertain

parameters or the system uncertainty is nonlinearly dependent on the system states,

then adaptive controllers predicated on a constant linearly (over)parameterized model

will unnecessarily sacrifice system performance, and in some cases lead to instability.

In [200], the authors present a novel adaptive control framework for scalar second-
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order nonlinear systems that does not require any parametrization of the (partial)

state-dependent system uncertainty. In this chapter we generalize the result of [200] in

several directions. In particular, for a class of nonlinear multivariable matrix second-

order uncertain dynamical systems with state-dependent uncertainty we develop a

nonlinear adaptive control framework that guarantees global partial asymptotic sta-

bility of the closed-loop system; that is, global asymptotic stability with respect to

part of the closed-loop system states associated with the plant. This is achieved with-

out requiring any knowledge of the system nonlinearities other than the assumption

that they are continuous and lower bounded. The class of systems represented by our

framework includes nonlinear vibrational systems, as well as multivariable nonlinear

dynamical systems with sign varying; that is, nondissipative, generalized stiffness and

damping operators.

Next, we extend our main result to the case where the system nonlinearities are

unbounded. Using this result, we provide a universal adaptive controller that guaran-

tees asymptotic stability for the case of matrix second-order systems with polynomial

nonlinearities with unknown coefficients and unknown order. We note that for

the special case of scalar second-order systems this result does not require that the

system nonlinearities be lower bounded and hence cannot be obtained using the re-

sults of [200]. In addition, we emphasize that the universal adaptive controller for

polynomial nonlinearities developed in this section is distinct from standard adaptive

controllers involving a parameter estimate update law for the uncertain polynomial

coefficients. The proposed adaptive controller is parametrization free and does not

require knowledge of the order of the polynomial nonlinearities. Hence, our design

methodology yields adaptive controllers that minimize control system complexity by

assuring the implementation of the simplest possible controller for achieving system

stability in the face of state-dependent system uncertainty. By “simplest” we are
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referring to the elimination of system parameter estimates within the adaptive con-

troller.

6.2. Adaptive Control of Nonlinear Matrix Second-Order

Dynamical Systems

In this section we consider the problem of adaptive stabilization of nonlinear

matrix second-order dynamical systems with exogenous disturbances. Specifically,

consider the controlled nonlinear uncertain matrix second-order dynamical system G

given by

Mq̈(t) + C(q(t))q̇(t) +K(q(t))q(t) = u(t) +Dw(t), q(0) = q0, q̇(0) = q̇0, t ≥ 0,

(6.1)

where q(t), q̇(t), q̈(t) ∈ R
n, t ≥ 0, represent generalized position, velocity, and accel-

eration coordinates, respectively, u(t) ∈ R
n, t ≥ 0, is the control input, w(t) ∈ R

d,

t ≥ 0, is a known bounded signal, M ∈ R
n×n, C : R

n → R
n×n, K : R

n → R
n×n,

and D ∈ R
n×d. We assume that M > 0, C(·) and K(·) are continuous maps, and

C(·), K(·) ∈ S, where

S , {F : R
n → R

n×n : F (q) = FT(q),
n
∑

k=1

qk
∂F(k,j)

∂qi
(q) =

n
∑

k=1

qk
∂F(k,i)

∂qj
(q),

i, j = 1, . . . , n}, (6.2)

and where qi denotes the ith element of q and F(k,j)(·) denotes the (k, j)th element

of F (·). Otherwise, we assume that M , C(·), K(·), and D are unknown. Hence, even

though w(t), t ≥ 0, is assumed to be known, the disturbance signal Dw(t), t ≥ 0, is

an unknown bounded disturbance. The control input u(·) in (6.1) is restricted to the

class of admissible controls consisting of measurable functions such that u(t) ∈ R
n,

t ≥ 0. Furthermore, for the uncertain dynamical system G we assume that the

required properties for the existence and uniqueness of solutions are satisfied; that is,
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C(·), K(·), u(·), and w(·) satisfy sufficient regularity conditions such that (6.1) has a

unique solution forward in time.

Next, with x1 , q, x2 , q̇, and x , [xT1 , x
T
2 ]

T, it follows that the state space

representation of (6.1) is given by

[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)

−M−1
(

K(x1(t))x1(t) + C(x1(t))x2(t)− u(t)−Dw(t)
)

]

,

[

x1(0)
x2(0)

]

=

[

q0
q̇0

]

, t ≥ 0. (6.3)

For the statement of our main result define B0 , [0n, In]
T.

Theorem 6.1. Consider the nonlinear dynamical system (6.3), or, equivalently,

the nonlinear matrix second-order dynamical system (6.1). Assume there exists ε ∈ R

such that C(x1) ≥ εIn and K(x1) ≥ εIn, q ∈ R
n. Let Q1, Q2 ∈ R

n×n, Y ∈ R
2n×2n,

Z ∈ R
d×d, and P ∈ R

2×2 be positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0.

Then the adaptive feedback control law

u(t) = Ψ(t)x(t) + Φ(t)w(t), (6.4)

where Ψ(t) ∈ R
n×2n, t ≥ 0, and Φ(t) ∈ R

n×d, t ≥ 0, with update laws

Ψ̇(t) = −Q1B
T
0 (P ⊗ In)x(t)xT(t)Y, Ψ(0) = Ψ0, (6.5)

Φ̇(t) = −Q2B
T
0 (P ⊗ In)x(t)wT(t)Z, Φ(0) = Φ0, (6.6)

guarantees that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D), where Kg ∈ R
n×2n, of

the closed-loop system given by (6.3)–(6.6) is Lyapunov stable and x(t)→ 0 as t→∞

for all x0 ∈ R
2n.

Proof. Let α, β ∈ R be such that

αM ≤ K(q), βM ≤ C(q), q ∈ R
n, (6.7)
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and let k1g, k2g ∈ R be such that

k1g < α, (6.8)

k2g < β − 1

p2

(

p21
4p12(α− k1g)

+ p12

)

. (6.9)

Next, let Kg = [k1gM,k2gM ] and define Ψ̃(t) , Ψ(t)−Kg, Φ̃(t) , Φ(t)+D, C̃(x1) ,

C(x1)− k2gM , and K̃(x1) , K(x1)− k1gM , so that with u(t), t ≥ 0, given by (6.4),

(6.3) becomes

[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)

−M−1
(

K̃(x1(t))x1(t) + C̃(x1(t))x2(t)− Ψ̃(t)x(t)− Φ̃(t)w(t)
)

]

,

[

x1(0)
x2(0)

]

=

[

q0
q̇0

]

, t ≥ 0. (6.10)

To show Lyapunov stability of the closed-loop system (6.5), (6.6), and (6.10) consider

the Lyapunov function candidate

V (x,Ψ,Φ) = 1
2
xT(P ⊗M)x+ p2

∫ x1

0,path

σTK̃(σ)dσ + p12

∫ x1

0,path

σTC̃(σ)dσ

+1
2
trQ−11 Ψ̃Y −1Ψ̃T + 1

2
trQ−12 Φ̃Z−1Φ̃T, (6.11)

where the path integrals in (6.11) are taken over any path joining the origin to x1 ∈

R
n. Note that the path integrals in (6.11) are well defined since C(·), K(·) ∈ S and

fk(x1) , xT1 K̃(x1) and fc(x1) , xT1 C̃(x1) are such that ∂fk
∂x1

and ∂fc
∂x1

are symmetric

and hence gradients of real-valued functions [9, Theorem 10-37]. Thus, using the

transformation σ = θx1, where θ ∈ [0, 1], it follows that

∫ x1

0,path

σTK̃(σ)dσ =

∫ 1

0

θxT1 K̃(θx1)x1dθ =

∫ 1

0

[xT1 K̃(θx1)x1]θdθ ≥ 0, x1 ∈ R
n.

(6.12)

An identical analysis shows that

∫ x1

0,path

σTC̃(σ)dσ ≥ 0, x1 ∈ R
n. (6.13)

Furthermore, note that V (0, Kg,−D) = 0 and, since P ,M , Q1, Q2, Y , and Z are pos-

itive definite, V (x,Ψ,Φ) > 0 for all (x,Ψ,Φ) 6= (0, Kg,−D). In addition, V (x,Ψ,Φ)
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is radially unbounded. Now, letting x(t), t ≥ 0, denote the solution to (6.10) and

using (6.5)–(6.7) it follows that the Lyapunov derivative along the closed-loop system

trajectories is given by

V̇ (x(t),Ψ(t),Φ(t)) = xT(t)(P ⊗M)ẋ(t) + xT1 (t)[p2K̃(x1(t)) + p12C̃(x1(t))]ẋ1(t)

+tr Q−11 Ψ̃(t)Y −1 ˙̃ΨT(t) + tr Q−12 Φ̃(t)Z−1 ˙̃ΦT(t)

= [p1x
T
1 (t) + p12x

T
2 (t)]Mx2(t)

+xT1 (t)[p2K̃(x1(t)) + p12C̃(x1(t))]x2(t)

−[p12xT1 (t) + p2x
T
2 (t)][K̃(x1(t))x1(t) + C̃(x1(t))x2(t)− Ψ̃(t)x(t)

−Φ̃(t)w(t)] + tr Q−11 Ψ̃(t)Y −1Ψ̇T(t) + tr Q−12 Φ̃(t)Z−1Φ̇T(t)

= −p12xT1 (t)K̃(x1(t))x1(t) + p1x
T
1 (t)Mx2(t)− xT2 (t)(p2C̃(x1(t))

−p12M)x2(t) + tr Ψ̃(t)[x(t)xT(t)(P ⊗ In)B0 + Y −1Ψ̇T(t)Q−11 ]

+tr Φ̃(t)[w(t)xT(t)(P ⊗ In)B0 + Z−1Φ̇T(t)Q−12 ]

= −p12xT1 (t)K̃(x1(t))x1(t) + p1x
T
1 (t)Mx2(t)

−xT2 (t)(p2C̃(x1(t))− p12M)x2(t)

≤ −p12(α− k1g)xT1 (t)Mx1(t) + p1x
T
1 (t)Mx2(t)

−(p2(β − k2g)− p12)xT2 (t)Mx2(t)

= −xT(t)(R⊗M)x(t), t ≥ 0, (6.14)

where

R ,

[

p12(α− k1g) −p1/2
−p1/2 p2(β − k2g)− p12

]

.

Now, it follows from (6.8) and (6.9) that R > 0 and hence, sinceM > 0, (6.14) implies

that V̇ (x(t),Ψ(t),Φ(t)) ≤ 0, (x(t),Ψ(t),Φ(t)) ∈ R
2n × R

n×2n × R
n×d, t ≥ 0, which

proves that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D) to (6.5), (6.6), and (6.10) is

Lyapunov stable. Furthermore, since R ⊗M > 0, it follows from Theorem 2 of [42]

that x(t)→ 0 as t→∞ for all x0 ∈ R
n. ¤
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Remark 6.1. Note that the conditions in Theorem 6.1 imply that x(t) → 0 as

t → ∞ and hence it follows from (6.5) and (6.6) that (x(t),Ψ(t),Φ(t)) → M ,

{(x,Ψ,Φ) ∈ R
2n × R

n×2n × R
n×d : x = 0, Ψ̇ = 0, Φ̇ = 0} as t→∞.

Remark 6.2. It is important to note that the bounds for K(q) and C(q), q ∈ R
n,

do not need to be known in order to implement the adaptive controller (6.4)–(6.6).

All that is required is that K(·), C(·) ∈ S, and K(·), C(·) are continuous and lower

bounded but otherwise unknown. Furthermore, M ∈ R
n×n needs to be positive

definite but otherwise unknown.

Remark 6.3. It can be seen from the proof of Theorem 6.1 (see the fourth equal-

ity in (6.14)) that Theorem 6.1 also holds for the case where qTK(q)q ≥ εqTq, q ∈ R
n.

This condition is weaker than requiring K(q) ≥ εIn, q ∈ R
n. This observation is key

in developing some of the results in Section 6.3. A similar remark, however, does not

hold for C(·) since the necessary term in (6.14) to be bounded is q̇TC(q)q̇ and not

qTC(q)q.

Theorem 6.1 is applicable to the case where C(q) and K(q), q ∈ R
n, are lower

bounded. In practice however, C(q) and K(q), q ∈ R
n, are often unbounded. Next,

we provide a corollary to Theorem 6.1 that addresses the case where C(·) and K(·)

can be unbounded operators.

Corollary 6.1. Consider the nonlinear dynamical system (6.3), or, equivalently,

the nonlinear matrix second-order dynamical system (6.1). Assume there exist known

matrix functions Cb(·), Kb(·) ∈ S and a scalar ε ∈ R such that C(x1)−Cb(x1) ≥ εIn

and K(x1) − Kb(x1) ≥ εIn, x1 ∈ R
n. Let Q1, Q2 ∈ R

n×n, Y ∈ R
2n×2n, Z ∈ R

d×d,

and P ∈ R
2×2 be positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0. Then the
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adaptive feedback control law

u(t) = Kb(x1(t))x1(t) + Cb(x1(t))x2(t) + Ψ(t)x(t) + Φ(t)w(t), (6.15)

where Ψ(t) ∈ R
n×2n, t ≥ 0, and Φ(t) ∈ R

n×d, t ≥ 0, with update laws (6.5) and (6.6)

guarantees that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D), where Kg ∈ R
n×2n, of

the closed-loop system given by (6.3), (6.5), (6.6), and (6.15) is Lyapunov stable and

x(t)→ 0 as t→∞ for all x0 ∈ R
2n.

Proof. Rewrite (6.1) as

Mq̈(t) + Ĉ(q(t))q̇(t) + K̂(q(t))q(t) = û(t) +Dw(t), q(0) = q0, q̇(0) = q̇0, t ≥ 0,

(6.16)

where Ĉ(q) , C(q) − Cb(q), K̂(q) , K(q) − Kb(q), and û , u − Cb(q)q̇ − Kb(q)q.

Now, the result is a direct consequence of Theorem 6.1. ¤

Remark 6.4. Note that Corollary 6.1 gives an adaptive stabilizing controller for

a large class of nonlinearities in the generalized damping and stiffness operators C(q)

and K(q), q ∈ R
n. For example, in the special case where n = 1, let C(·) and K(·)

belong to the set of nonlinearities given by

N , {n : R→ R : n′(q)→ 1 as |q| → ∞}. (6.17)

See Figure 6.1 for a representative nonlinearity in N . In this case, with Cb(q) = q and

Kb(q) = q, Corollary 6.1 can be used to construct “robustly” stabilizing controllers

with respect to the class of nonlinearities considered. Note that unlike absolute sta-

bility theory, the nonlinearities n(·) ∈ N are not required to be sector bounded nor

satisfy n(0) = 0.

Next, we generalize Theorem 6.1 and Corollary 6.1 to the case where C(q)− (θTc ⊗

In)Cb(q) and K(q)− (θTk ⊗ In)Kb(q) are lower bounded and θc, θk ∈ R
p are unknown

parameters and Cb, Kb : R
n → R

pn×n are known functions.
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Figure 6.1: Representative nonlinearity n(·) ∈ N

Theorem 6.2. Consider the nonlinear dynamical system (6.3), or, equivalently,

the nonlinear matrix second-order dynamical system (6.1). Assume there exist a

constant ε ∈ R, vectors θc, θk ∈ R
p, and symmetric matrix functions Cb, Kb : R

n →

R
pn×n such that C(x1)−(θTc ⊗In)Cb(x1) ≥ εIn andK(x1)−(θTk⊗In)Kb(x1) ≥ εIn, x1 ∈

R
n. Furthermore, let Cbi(·), Kbi(·) ∈ S, i = 1, . . . , p, where Cbi(·), Kbi(·), i = 1, . . . , p,

are such that Cb(x1) = [Cb1(x1), · · · , Cbp(x1)]
T andKb(x1) = [Kb1(x1), · · · , Kbp(x1)]

T,

and let Q1, Q2 ∈ R
n×n, Q3, Q4 ∈ R

p×p, Y ∈ R
2n×2n, Z ∈ R

d×d, and P ∈ R
2×2 be

positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0. Then the adaptive feedback

control law

u(t) = (ΘT
k (t)⊗ In)Kb(x1(t))x1(t)+ (ΘT

c (t)⊗ In)Cb(x1(t))x2(t)+Ψ(t)x(t)+Φ(t)w(t),

(6.18)

where Θk(t),Θc(t) ∈ R
p, t ≥ 0, Ψ(t) ∈ R

n×2n, t ≥ 0, and Φ(t) ∈ R
n×d, t ≥ 0, with

update laws (6.5), (6.6), and

Θ̇k(t) = −Q3(Ip ⊗ xT1 (t))Kb(x1(t))B
T
0 (P ⊗ In)x(t), Θk(0) = Θk0, (6.19)

Θ̇c(t) = −Q4(Ip ⊗ xT2 (t))Cb(x1(t))B
T
0 (P ⊗ In)x(t), Θc(0) = Θc0, (6.20)

guarantees that the solution (x(t),Ψ(t),Φ(t),Θc(t),Θk(t)) ≡ (0, Kg,−D, θc, θk),
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whereKg ∈ R
n×2n, of the closed-loop system given by (6.3), (6.5), (6.6), (6.18)–(6.20),

is Lyapunov stable and x(t)→ 0 as t→∞ for all x0 ∈ R
2n.

Proof. Let α, β ∈ R be such that

αM ≤ K(q)− (θTk ⊗ In)Kb(q), βM ≤ C(q)− (θTc ⊗ In)Cb(q),

and let k1g, k2g ∈ R be such that (6.8) and (6.9) hold. Furthermore, define C̃(x1) ,

C(x1)− (θTc ⊗ In)Cb(x1)− k2gM , K̃(x1) , K(x1)− (θTk ⊗ In)Kb(x1)− k1gM , Θ̃k(t) ,

Θk(t)− θk, and Θ̃c(t) , Θc(t)− θc, and consider the Lyapunov function candidate

V (x,Ψ,Φ,Θk,Θc) =
1
2
xT(P ⊗M)x+ p2

∫ x1

0,path

σTK̃(σ)dσ + p12

∫ x1

0,path

σTC̃(σ)dσ

+1
2
tr Q−11 Ψ̃Y −1Ψ̃T + 1

2
tr Q−12 Φ̃Z−1Φ̃T + 1

2
Θ̃T

kQ
−1
3 Θ̃k

+1
2
Θ̃T

c Q
−1
4 Θ̃c, (6.21)

where the path integrals in (6.21) are taken over any path joining the origin to x1 ∈

R
n. Now, the proof is identical to the proof of Theorem 6.1. ¤

Remark 6.5. Theorem 6.2 generalizes Corollary 6.1 in that C(q)−(θTc ⊗In)Cb(q)

and K(q)− (θTk ⊗In)Kb(q) are lower bounded as opposed to C(q)−Cb(q) and K(q)−

Kb(q) be lower bounded. This gives yet a larger class of nonlinearities that can be

considered in C(·) and K(·). To see this, recall Remark 6.4, let n = 1, and let C(·)

and K(·) belong to the set of nonlinearities given by

Ne , {n : R→ R : lim
|q|→∞

n′(q) exists}. (6.22)

In this case, there exists θc, θk ∈ R such that C(q) − θcq and K(q) − θkq are lower

bounded. Note that Ne ⊃ N .
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6.3. Polynomial Uncertainty with Unknown Coefficients and

Unknown Order

In this section we provide special cases to Corollary 6.1 and Theorem 6.2 that

address nonlinearities for which there always exist Cb(·) and Kb(·) satisfying the

conditions of Corollary 6.1 and Theorem 6.2. Our first result considers scalar second-

order systems.

Proposition 6.1. Consider the nonlinear dynamical system (6.3), or, equiva-

lently, the nonlinear second-order dynamical system (6.1). Assume n = 1 and let

C(·) and K(·) be unknown polynomials. Let Q1, Q2 ∈ R, Y ∈ R
2×2, Z ∈ R

d×d, and

P ∈ R
2×2 be positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0. Finally, let

α, β > 0 and let Cb : R → R (resp., Kb : R → R) be given by one of the following

conditions, as appropriate:

i) If the order N of the polynomial C(q) (resp., K(q)) is known, then choose

Cb(q) = −αqN+1 (resp., Kb(q) = −βqN+1) if N is odd, or Cb(q) = −αqN+2

(resp., Kb(q) = −βqN+2) if N is even. If N is even and the sign of the leading

coefficient is positive, then choose Cb(q) = 0 (resp., Kb(q) = 0).

ii) If the order N of the polynomial C(q) (resp., K(q)) is unknown but the sign,

σ , sgn a = a/|a|, of the leading coefficient a is known, then choose Cb(q) =

−αcosh(βq) + ασ sinh(βq) (resp., Kb(q) = −αcosh(βq) + ασ sinh(βq)) if N is

odd, or Cb(q) = α(σ − 1)cosh(βq) (resp., Kb(q) = α(σ − 1)cosh(βq)) if N is

even.

iii) If neither the order N of the polynomial C(q) (resp., K(q)) nor the sign σ

of the leading coefficient are known, then choose Cb(q) = −αcosh(βq) (resp.,

Kb(q) = −αcosh(βq)).
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Then the adaptive feedback control law

u(t) = Kb(x1(t))x1(t) + Cb(x1(t))x2(t) + Ψ(t)x(t) + Φ(t)w(t), (6.23)

where Ψ(t) ∈ R
1×2, t ≥ 0, and Φ(t) ∈ R

1×d, t ≥ 0, with update laws (6.5) and (6.6)

guarantees that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D), where Kg ∈ R
1×2, of

the closed-loop system given by (6.3), (6.5), (6.6) and (6.23) is Lyapunov stable and

x(t)→ 0 as t→∞ for all x0 ∈ R
2.

Proof. The proof is a direct consequence of Corollary 6.1 by noting that Cb(q) and

Kb(q), q ∈ R, given by i)–iii) yield bounds to C(q) and K(q), q ∈ R, respectively, in

each of the three cases. Here we give the proof for C(q) polynomials with α = β = 1.

Identical arguments hold for K(q) polynomials as well as for the case where α, β >

0 are arbitrary. Specifically, note that any polynomial of even order with leading

coefficient as unity is lower bounded. Hence, for all q ∈ R, C(q) + qN+1 is lower

bounded if N is odd and C(q) + qN+2 is lower bounded if N is even. Furthermore, if

N is even and the leading coefficient is positive then C(q), q ∈ R, is lower bounded

which proves the result for condition i). To prove the result for condition ii), note

that for all q ∈ R, C(q) if lower bounded if N is even and the leading coefficient is

positive, C(q) + 2cosh(q) is lower bounded if N is even and the leading coefficient

is negative, C(q) + eq is lower bounded if N is odd and the leading coefficient is

positive, and C(q) + e−q is lower bounded if N is odd and the leading coefficient is

negative. Finally, to prove the result for condition iii) it need only be noted that

for all q ∈ R, C(q) + cosh(q) is lower bounded irrespective of N and the sign of the

leading coefficient. ¤

Remark 6.6. Proposition 6.1 provides a parametrization free universal adaptive

controller for scalar second-order systems with polynomial nonlinearities with un-

known coefficients and unknown order. We emphasize that (6.23) is distinct from
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standard adaptive controllers involving an N -vector parameter estimate update law

for the uncertain polynomial coefficients. In contrast, (6.23) provides a minimal com-

plexity adaptive controller involving the scalar parameters Kb(x1) and Cb(x1).

A multivariable generalization to Proposition 6.1 is not straightforward. To see

this let C(q) and K(q) be multivariable polynomial matrix functions in q = [q1, . . . ,

qn]
T. Then even though it can be shown that C(q) − Cb(q) ≥ εIn and K(q) −

Kb(q) ≥ εIn, where Cb(q) = Kb(q) = −∏n
i=1 cosh(qi)U and U ∈ R

n×n is the ones

matrix containing all unity elements, Cb(q) and Kb(q), q ∈ R
n, do not belong to

the set S given by (6.2). Of course, a trivial extension to Proposition 6.1 is the

case where C(q) and K(q), q ∈ R
n, are diagonal and component decoupled; that

is, C(q) = diag[C(1,1)(q1), C(2,2)(q2), · · · , C(n,n)(qn)] and similarly for K(q). Next, we

consider a partial generalization to Proposition 6.1 for matrix second-order systems.

To state this result the following key lemma is needed.

Lemma 6.1. Let f : R
n → R be a twice continuously differentiable function such

that f(q)→∞ as ‖q‖→ ∞, f(0) = 0, and ∂f
∂q

∣

∣

∣

q=0
= 0. Then there exists ε ∈ (−∞, 0]

such that f(q) ≥ εqTq.

Proof. It follows from the radially unbounded condition that there exists r > 0

such that

F , {q ∈ R
n : f(q) ≤ 0} ⊆ {q ∈ R

n : ‖q‖≤ r},

which implies that F is compact. Hence, since f(·) is continuous it follows that there

exists ε0 ∈ (−∞, 0] such that f(q) ≥ ε0, q ∈ F . Now, since f(q) > 0, q ∈ R
n\F , it

follows that

f(q) ≥ ε0, q ∈ R
n. (6.24)
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Next, define H , 1
2

∂2f
∂q2

∣

∣

∣

q=0
and let ε̂ ∈ R be such that H − ε̂In > 0. Hence, since

f(0) = 0 and ∂f
∂q

∣

∣

∣

q=0
= 0, it follows that

f(q)− ε̂qTq = qT(H − ε̂In)q +O(q),

where O : R
n → R is such that O(q)

‖q‖2 → 0 as ‖q‖→ 0. Thus, there exists δε̂ > 0 such

that

f(q)− ε̂qTq ≥ 0, q ∈ R
n, ‖q‖≤ δε̂. (6.25)

Next, note that it follows from (6.24) that

f(q)

qTq
≥ ε0
qTq

>
ε0
δ2ε̂
, q ∈ R

n, ‖q‖> δε̂.

Hence, f(q) ≥ εqTq, q ∈ R
n, where ε , min{ε̂, ε0

δ2
ε̂

}. ¤

Proposition 6.2. Consider the nonlinear dynamical system (6.3), or, equiva-

lently, the nonlinear matrix second-order dynamical system (6.1). Let C(·), K(·) be

matrix functions with unknown polynomial entries. Furthermore, assume C(·) is such

that C(i,j)(q) = C(i,j), i 6= j, and C(i,i)(q) = C(i,i)(qi), where C(i,i)(qi), i = 1, · · · , n, is

an unknown polynomial. Let Q1, Q2 ∈ R
n×n, Y ∈ R

2n×2n, Z ∈ R
d×d, and P ∈ R

2×2

be positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0. Finally, let αi, βi > 0,

i = 1, · · · , n, and let Cb : R
n → R

n×n (resp., Kb : R
n → R

n×n) be given by one of the

following conditions, as appropriate:

i) If the highest order N of the polynomial functions in C(q) (resp., K(q)) is

known, then choose Cb(q)=−diag[α1q
M
1 , · · · , αnq

M
n ] (resp.,Kb(q)=−diag[α1q

M
1 ,

· · · , αnq
M
n ]), where M is the smallest even integer such that M > N .

ii) If the highest order N of the polynomial functions in C(q) (resp., K(q)) is

unknown, then choose Cb(q) = −diag[α1 cosh(β1q1), · · · , αn cosh(βnqn)] (resp.,

Kb(q) = −diag[α1 cosh(β1q1), · · · , αn cosh(βnqn)]).
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Then the adaptive feedback control law

u(t) = Kb(x1(t))x1(t) + Cb(x1(t))x2(t) + Ψ(t)x(t) + Φ(t)w(t), (6.26)

where Ψ(t) ∈ R
n×2n, t ≥ 0, and Φ(t) ∈ R

n×d, t ≥ 0, with update laws (6.5) and (6.6)

guarantees that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D), where Kg ∈ R
n×2n, of

the closed-loop system given by (6.3), (6.5), (6.6), and (6.26) is Lyapunov stable and

x(t)→ 0 as t→∞ for all x0 ∈ R
2n.

Proof. The proof is a direct consequence of Corollary 6.1 and Remark 6.3 by

noting that Cb(q) and Kb(q) given by i) and ii) belong to S and there exists ε ∈ R

such that C(q) − Cb(q) ≥ εIn and qT(K(q) − Kb(q))q ≥ εqTq, q ∈ R, for each of

the cases. The first inequality is immediate from Proposition 6.1 given the assumed

structure of C(·). To show the second inequality, define f(q) , f1(q) + f2(q), where

f1(q) , qTK(q)q and f2(q) , −qTKb(q)q. Note that for condition i), f2(q) is a

negative definite function for all q ∈ R
n and has order M + 2. Furthermore, since

−f2(q) is radially unbounded and has a higher order than f1(q), it follows that f(q)

is radially unbounded. Next, note that f(0) = 0 and ∂f
∂q

∣

∣

∣

q=0
= 0 and hence the result

follows from Lemma 6.1. To show the result for condition ii), note that f(q) is radially

unbounded since −f2(q) = −qTKb(q)q =
∑n

i=1 αicosh(βiqi)q
2
i is a hyperbolic function

and radially unbounded. Once again, the result now follows from Lemma 6.1. ¤

Remark 6.7. Proposition 6.2 presents a partial generalization to Proposition 6.1

for multivariable matrix second-order systems. It is important to note that K(·) is

a general matrix function with unknown polynomial entries and hence no internal

structural constraints are imposed on K(·). However, unlike K(·), C(·) is assumed to

be a matrix function with constrained structure involving unknown polynomials on

the diagonal entries and unknown constants on the off-diagonal entries. As shown in
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the proof of the proposition, this constraint guarantees the existence of ε ∈ R such

that C(q)− Cb(q) ≥ εIn.

Finally, we use Theorem 6.2 to provide a generalization of Proposition 6.1.

Proposition 6.3. Consider the nonlinear dynamical system (6.3), or, equiva-

lently, the nonlinear matrix second-order dynamical system (6.1). Assume n = 1 and

let C(·) and K(·) be unknown polynomials. Let Q1, Q2 ∈ R, Y ∈ R
2×2, Z ∈ R

d×d,

and P ∈ R
2×2 be positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0. Finally, let

α, β > 0 and let Cb : R → R
2 (resp., Kb : R → R

2) be given by one of the following

conditions, as appropriate:

i) If the order N of the polynomial C(q) (resp., K(q)) is even and known, then

choose Cb(q) = [qN+2, qN+2]T (resp., Kb(q) = [qN+2, qN+2]T).

ii) If the order N of the polynomial C(q) (resp., K(q)) is unknown, then choose

Cb(q) = [cosh(αq), sinh(αq)]T (resp., Kb(q) = [cosh(βq), sinh(βq)]T).

Then the adaptive feedback control law

u(t) = ΘT
k (t)Kb(x1(t))x1(t) + ΘT

c (t)Cb(x1(t))x2(t) + Ψ(t)x(t) + Φ(t)w(t), (6.27)

where Θk(t),Θc(t) ∈ R
2, t ≥ 0, Ψ(t) ∈ R

1×2, t ≥ 0, and Φ(t) ∈ R
1×d, t ≥

0, with update laws (6.5), (6.6), (6.19), and (6.20) guarantees that the solution

(x(t),Ψ(t),Φ(t),Θc(t),Θk(t)) ≡ (0, Kg,−D, θc, θk), where Kg ∈ R
1×2, of the closed-

loop system given by (6.3), (6.5), (6.6), (6.19), (6.20), and (6.27) is Lyapunov stable

and x(t)→ 0 as t→∞ for all x0 ∈ R
2.

Proof. The result is a direct consequence of Theorem 6.2. Specifically, as noted

in the proof of Proposition 6.1, if the order N of the polynomial C(q) (resp., K(q))
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is even and known, then there exist θc1, θc2 ∈ {−1, 0, 1} (resp., θk1, θk2 ∈ {−1, 0, 1})

such that C(q)−θc1qN+2−θc2qN+2 (resp., K(q)−θk1qN+2−θk2qN+2) is lower bounded.

Alternatively, if the order N of the polynomial C(q) (resp., K(q)) is unknown, then

there exist θc1, θc2 ∈ {−1, 0, 1} (resp., θk1, θk2 ∈ {−1, 0, 1}) such that for every α >

0, C(q) − θc1cosh(αq) − θc2sinh(αq) (resp., for every β > 0, K(q) − θk1cosh(βq) −

θk2sinh(βq)) is lower bounded. ¤

6.4. Illustrative Numerical Examples

In this section we present two numerical examples to demonstrate the utility of

the proposed direct adaptive control framework for adaptive stabilization.

Example 6.1. Consider the nonlinear matrix second-order dynamical system

with sign varying stiffness and damping matrix functions given by (6.1) where n = 2,

M , C(q), K(q) are unknown, M > 0, C(q) and K(q), q ∈ R
2, are lower bounded,

and w(t) ≡ 0. Now, with p2 > 0 and p12 > 0, it follows from Theorem 6.1 that the

adaptive feedback controller (6.4) guarantees that x(t)→ 0 as t→∞. With

M =

[

m1 m12

m12 m2

]

, C(q) =

[

c1 sin(q1) 0
0 c2 cos(q2)

]

,

K(q) =

[

k1 sin(q1) 0
0 k2 cos(q2)

]

,

where m1 = m2 = 2, m12 = 1, c1 = c2 = k1 = k2 = 1, and p12 = 1, p2 = 2, Q1 = M ,

Y = 2I4, and initial conditions q(0) = [1, 2]T, q̇(0) = [3, 4]T, and Ψ(0) = 02×4,

Figure 6.2 shows the state trajectories versus time and the control signals versus

time. Figure 6.3 shows the adaptive gain history versus time.

Example 6.2. Consider the nonlinear matrix second-order dynamical system

with nonlinear damping and stiffness matrix functions given by (6.1) where n = 2,

M , C(q), K(q) are unknown, M > 0, C(q) and K(q), q ∈ R
2, are lower bounded,
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Figure 6.2: State trajectories and control signals versus time
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C(·), K(·) ∈ S, and w(t) ≡ 0. Now, with p2 > 0 and p12 > 0, it follows from Theorem

6.1 that the adaptive feedback controller (6.4) guarantees that x(t) → 0 as t → ∞.

With

M =

[

m1 m12

m12 m2

]

, C(q) =

[

c1(q
2
1 − c2) 0
0 c3(q

2
2 − c4)

]

, K(q) = diag[k1, k2],

where m1 = m2 = 2, m12 = 1, c1 = c2 = 2, c3 = c4 = 1, k1 = k2 = 20, and p12 = 1,

p2 = 2, Q1 = M , Y = 0.5I4, and initial conditions q(0) = [5, 0]T, q̇(0) = [0, 0]T, and

Ψ(0) = 02×4, Figure 6.4 shows the phase portraits of the controlled and uncontrolled

system. Note that the adaptive controller is switched on at t = 15 sec. Figure 6.5

shows the state trajectories versus time and the control signals versus time. Finally,

Figure 6.6 shows the adaptive gain history versus time.

Example 6.3. Consider the nonlinear matrix second-order dynamical system

with nonlinear damping and stiffness matrix functions given by (6.1) where n = 2,

M , C(q), K(q) are unknown, M > 0, C(q) and K(q), q ∈ R
2, are lower bounded,

C(·), K(·) ∈ S, and w(t) ≡ 0. Now, with p2 > 0 and p12 > 0, it follows from Theorem

6.1 that the adaptive feedback controller (6.4) guarantees that x(t) → 0 as t → ∞.

With

M =

[

m1 0
0 m2

]

, C(q) =

[

c1(q
2
1 − c2) 0
0 c3

]

,

K(q) =

[

k1 + k3(q
2
1 − 2q1q2 + 3q22) −k1 − k3(q21 + q22)

−k1 − k3(q21 + q22) k1 + k2 + k3(3q
2
1 − 2q1q2 + q22)

]

,

where m1 = 3, m2 = 2, c1 = 3, c2 = 1, c3 = −0.5, k1 = −1, k2 = 5, k3 = 1, and p12 =

2, p2 = 1, Q1 = I2, Y = I4, and initial conditions q(0) = [0, 0]T, q̇(0) = [3, 0]T, and

Ψ(0) = 02×4, Figure 6.7 shows the phase portraits of the controlled and uncontrolled

system. Note that the adaptive controller is switched on at t = 10 sec. Figure 6.8

shows the state trajectories versus time and the control signals versus time. Finally,

Figure 6.9 shows the adaptive gain history versus time.
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Figure 6.8: State trajectories and control signals versus time
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Example 6.4. Consider the nonlinear scalar second-order dynamical system with

nonlinear damping and stiffness functions given by (6.1) where n = 1, M , C(q), K(q)

are unknown,M > 0, C(q) is known to be a polynomial but otherwise unknown,K(q),

q ∈ R, is lower bounded, and w(t) ≡ 0. Now, with p2 > 0 and p12 > 0, it follows

from Proposition 6.1 that the adaptive feedback controller (6.23) with Kb(x1) ≡ 0

guarantees that x(t) → 0 as t → ∞. For illustrative purposes we choose M = 1,

C(q) = c1(q
N − c2), and K(q) = k1 + k2 tanh(q), where c1 = −2, c2 = 1, k1 = 2,

k2 = −1, and p12 = 2, p2 = 1, Q1 = I2, Y = I4. Furthermore, we choose the initial

conditions q(0) = 2, q̇(0) = 1, and Ψ(0) = 01×2. First, we consider the case where the

order of the polynomial C(q) is odd and known (N = 3). In this case, it follows from

i) of Proposition 6.1 that Cb(q) = −αq4. Figure 6.10 shows the state trajectories,

adaptive gains, and the control signal versus time for the case where α = 1. Next,

we assume that the order of the polynomial C(q) is even and known (N = 4). In

this case, it follows from i) of Proposition 6.1 that Cb(q) = −αq6. Figure 6.11 shows

the state trajectories, adaptive gains, and the control signal versus time for the case

where α = 0.5.

Next, we consider the case where the order of the polynomial C(q) is odd but

unknown. Furthermore, we assume that c1 is known to be negative. In this case, it

follows from ii) of Proposition 6.1 that Cb(q) = −α(cosh(βq)+sinh(βq)). Figure 6.12

shows the state trajectories, adaptive gains, and the control signal versus time for the

case where N = 3, α = 2, and β = 1. Finally, we consider the case where C(q)

is an unknown polynomial. In this case, it follows from iii) of Proposition 6.1 that

Cb(q) = −α cosh(βq). Figure 6.13 shows the state trajectories, adaptive gains, and

the control signal versus time for the case where N = 3, α = 3, and β = 1.

Example 6.5. Consider the nonlinear matrix second-order dynamical system

with nonlinear damping and stiffness matrix functions given by (6.1) where n = 2,
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M , K(q) are unknown, M > 0, C(q) = 02, K(q), q ∈ R
2, is known to be a ma-

trix function with unknown polynomial entries but otherwise unknown, K(·) ∈ S,

and w(t) ≡ 0. Now, with p2 > 0 and p12 > 0, it follows from Proposition 6.2 that

the adaptive feedback controller (6.26) guarantees that x(t) → 0 as t → ∞. For

illustrative purposes we choose

M = diag[m1,m2],

K(q) =

[

k1 + k3(q
4
1 − 3q31q2 + 10q21q2 − 10q1q

3
2 + 4q42)

−k1 − k3(q41 + q42)

−k1 − k3(q41 + q42)
k1 + k2 + k3(4q

4
1 − 10q31q2 + 10q21q2 − 3q1q

3
2 + q42)

]

,

where m1 = 3, m2 = 2, k1 = −1, k2 = 5, k3 = −0.5, and p12 = 1, p2 = 2, Q1 = I2,

Y = I4. Furthermore, we choose the initial conditions q(0) = [0, 0]T, q̇(0) = [3, 0]T,

and Ψ(0) = 02×4. First, we consider the case where the highest order of the polynomial

functionK(q) is known (N = 4). In this case, it follows from i) of Proposition 6.2 that

Kb(q) = −diag[α1q
6, α2q

6
2]. for the case where α1 = α2 = 4. Figure 6.14 shows the

state trajectories versus time and the control signals versus time for the case where

α1 = α2 = 4. Figure 6.15 shows the adaptive gain history versus time. Finally, we

consider the case where C(q) is an unknown polynomial matrix function. In this case,

it follows from ii) of Proposition 6.2 that Kb(q) = −diag[α1 cosh(β1q), α2 cosh(β2q)].

Figure 6.16 shows the state trajectories versus time and the control signals versus

time for the case where α1 = α2 = 4, β1 = β2 = 1. Finally, Figure 6.17 shows the

adaptive gain history versus time.
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Figure 6.14: State trajectories and control signals versus time
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Figure 6.16: State trajectories and control signals versus time
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6.5. Nonlinear Matrix Second-Order Systems with Time-

Varying and Sign-Indefinite Damping and Stiffness Op-

erators

In this section we further generalize the result of Section 6.2 in several directions.

In particular, for a class of nonlinear multivariable matrix second-order uncertain

dynamical systems, with time-varying and sign-indefinite damping and stiffness op-

erators, we develop a nonlinear adaptive control framework that guarantees global

partial asymptotic stability of the closed-loop system; that is, global asymptotic sta-

bility with respect to part of the closed-loop system states associated with the plant.

This is achieved without requiring any knowledge of the system nonlinearities other

than the assumption that they are continuous and bounded. Hence, unlike standard

adaptive control methods [12,121,147,176], the proposed adaptive control framework

does not require any parametrization of the state-dependent system uncertainty. The

class of systems represented by our framework includes nonlinear vibrational sys-

tems, as well as multivariable nonlinear matrix second-order dynamical systems with

sign-varying; that is, nondissipative, generalized stiffness and damping time-varying

operators. In the special case of scalar second-order systems with linear time-varying

coefficients, our results specialize to the results of [199]. Finally, we note that a sim-

ilar adaptive control framework for nonlinear uncertain matrix second-order systems

was considered in Sections 6.2 and 6.3 (see also [37, 38]). The results presented in

Sections 6.2 and 6.3 however only address time-invariant, sign-indefinite stiffness and

damping operator uncertainty, with the damping operator uncertainty being a partial

function of the system state. In this case, the unknown system nonlinearities need

only be continuous and lower bounded as opposed to continuous and bounded.

In this section we consider the problem of adaptive stabilization of nonlinear

time-varying matrix second-order dynamical systems with exogenous disturbances.
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Specifically, consider the controlled nonlinear time-varying uncertain matrix second-

order dynamical system G given by

Mq̈(t) + C(q(t), q̇(t), t)q̇(t) +K(q(t), t)q(t) = u(t) +Dw(t), q(0) = q0, q̇(0) = q̇0,

t ≥ t0, (6.28)

where q(t), q̇(t), q̈(t) ∈ R
n, t ≥ t0, represent generalized position, velocity, and accel-

eration coordinates, respectively, u(t) ∈ R
n, t ≥ t0, is the control input, w(t) ∈ R

d,

t ≥ t0, is a known bounded disturbance, M ∈ R
n×n, C : R

n × R
n × R → R

n×n,

K : R
n×R→ R

n×n, and D ∈ R
n×d. We assume that M > 0 and C(·, ·, ·) and K(·, ·)

are continuous and symmetric maps. Otherwise, we assume that M , C(·, ·, ·), K(·, ·),

and D are unknown. Note that even though w(t), t ≥ t0, is assumed to be known,

the disturbance signal Dw(t), t ≥ t0, is an unknown bounded disturbance. The con-

trol input u(·) in (6.28) is restricted to the class of admissible controls consisting of

measurable functions such that u(t) ∈ R
n, t ≥ t0. Furthermore, for the uncertain

dynamical system G we assume that the required properties for the existence and

uniqueness of solutions are satisfied; that is, C(·, ·, ·), K(·, ·), u(·), and w(·) satisfy

sufficient regularity conditions such that (6.28) has unique solution forward in time.

Next, with x1 , q, x2 , q̇, and x , [xT1 , x
T
2 ]

T, it follows that the state space

representation of (6.28) is given by

[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)

−M−1
(

K(x1(t), t)x1(t) + C(x1(t), x2(t), t)x2(t)− u(t)−Dw(t)
)

]

,

[

x1(0)
x2(0)

]

=

[

q0
q̇0

]

, t ≥ t0. (6.29)

For the statement of our main result let P ∈ R
2×2 be positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0, and define B0 , [0n, In]
T.

Theorem 6.3. Consider the nonlinear time-varying matrix second-order dynam-

ical system G given by (6.28), or, equivalently, the nonlinear time-varying dynamical
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system given by (6.29). Assume there exist scalars α1, α2, β1, β2 ∈ R such that

α1M ≤ K(x1, t) ≤ α2M, β1M ≤ C(x1, x2, t) ≤ β2M, (x1, x2) ∈ R
n×R

n, t ≥ t0.

(6.30)

Let Q1, Q2 ∈ R
n×n, Y ∈ R

2n×2n, and Z ∈ R
d×d be positive definite. Then the adaptive

feedback control law

u(t) = Ψ(t)x(t) + Φ(t)w(t), (6.31)

where Ψ(t) ∈ R
n×2n, t ≥ t0, and Φ(t) ∈ R

n×d, t ≥ t0, with update laws

Ψ̇(t) = −Q1B
T
0 (P ⊗ In)x(t)xT(t)Y, Ψ(0) = Ψ0, (6.32)

Φ̇(t) = −Q2B
T
0 (P ⊗ In)x(t)wT(t)Z, Φ(0) = Φ0, (6.33)

guarantees that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg, −D), where Kg ∈ R
n×2n, of

the closed-loop system given by (6.29), (6.31)–(6.33) is uniformly Lyapunov stable

and x(t)→ 0 as t→∞ for all x0 ∈ R
2n.

Proof. Define γ1 , p2α1 + p12β1, γ2 , p2α2 + p12β2, γ , max{|γ1|2, |γ2|2}, and

define the set K ⊂ R
n×2n by

K , {[k1M,k2M ] ∈ R
n×2n : k1 < α1, k2 < β1, p1 + p2k1 + p12k2 < 0,

p12(α1 − k1)[p2(β1 − k2)− p12] ≥ 2(γ − γ1
√
γ),

p12(α1 − k1)[p2(β1 − k2)− p12] > γ}. (6.34)

Note that since all of the inequalities in (6.34) may be rewritten as upper bounds on k1

and k2, K is not empty. Next, letKg , [k1gM,k2gM ] ∈ K and define Ψ̃(t) , Ψ(t)−Kg,

Φ̃(t) , Φ(t) + D, C̃(x, t) , C(x1, x2, t) − k2gM , and K̃(x1, t) , K(x1, t) − k1gM .

Furthermore, define p̂1 , −(p1 + p2k1g + p12k2g) and H(x, t) , −(p1 + p̂1)M +

p12C̃(x, t) + p2K̃(x1, t) and note that p̂1 > 0. Now, it follows from the definitions of

γ1 and γ2 that

γ1M ≤ H(x, t) ≤ γ2M, x ∈ R
2n, t ≥ t0. (6.35)
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Moreover, it follows from (6.35) and the definition of γ that

0 ≤ H(x, t)M−1H(x, t) ≤ γM, x ∈ R
2n, t ≥ t0. (6.36)

Next, with u(t), t ≥ t0, given by (6.31), (6.29) becomes

[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)

−M−1
(

K̃(x1(t), t)x1(t) + C̃(x(t), t)x2(t)− Ψ̃(t)x(t)− Φ̃(t)w(t)
)

]

,

[

x1(0)
x2(0)

]

=

[

q0
q̇0

]

, t ≥ t0. (6.37)

To show uniform Lyapunov stability of the closed-loop system (6.32), (6.33), and

(6.37), consider the Lyapunov function candidate

V (x,Ψ,Φ) =
1

2

[

xT(P ⊗M)x+ p̂1x
T
1Mx1+trQ−11 Ψ̃Y −1Ψ̃T+trQ−12 Φ̃Z−1Φ̃T

]

. (6.38)

Note that V (0, Kg,−D) = 0 and, since P , M , Q1, Q2, Y , and Z are positive def-

inite, V (x,Ψ,Φ) > 0 for all (x,Ψ,Φ) 6= (0, Kg,−D). Furthermore, V (x,Ψ,Φ) is

radially unbounded. Now, letting x(t), t ≥ t0, denote the solution to (6.37) and using

(6.32) and (6.33) it follows that the Lyapunov derivative along the closed-loop system

trajectories is given by

V̇ (x(t),Ψ(t),Φ(t), t) = xT(t)(P ⊗M)ẋ(t) + p̂1x
T
1 (t)Mẋ1(t) + trQ−11 Ψ̃(t)Y −1 ˙̃ΨT(t)

+trQ−12 Φ̃(t)Z−1 ˙̃ΦT(t)

= p1x
T
1 (t)Mx2(t) + p12x

T
2 (t)Mx2(t)− p12xT1 (t)K̃(x1(t), t)x1(t)

−p12xT1 (t)C̃(x(t), t)x2(t)− p2xT2 (t)K̃(x1(t), t)x1(t)

−p2xT2 (t)C̃(x(t), t)x2(t) + p12x
T
1 (t)Ψ̃(t)x(t) + p2x

T
2 (t)Ψ̃(t)x(t)

+p12x
T
1 (t)Φ̃(t)w(t) + p2x

T
2 (t)Φ̃(t)w(t) + p̂1x

T
1 (t)Mx2(t)

+trQ−11 Ψ̃(t)Y −1 ˙̃ΨT(t) + trQ−12 Φ̃(t)Z−1 ˙̃ΦT(t)

= p12x
T
2 (t)Mx2(t)− p12xT1 (t)K̃(x1(t), t)x1(t)

−p2xT2 (t)C̃(x(t), t)x2(t)− xT1 (t)H(x(t), t)x2(t)
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+tr Ψ̃(t)[x(t)xT(t)(P ⊗ In)B0 + Y −1 ˙̃ΨT(t)Q−11 ]

+tr Φ̃(t)[w(t)xT(t)(P ⊗ In)B0 + Z−1 ˙̃ΦT(t)Q−12 ]

= −p12xT1 (t)K̃(x1(t), t)x1(t)− xT1 (t)H(x(t), t)x2(t)

−xT2 (t)(p2C̃(x(t), t)− p12M)x2(t)

≤ −p12(α1 − k1g)xT1 (t)Mx1(t)− xT1 (t)H(x(t), t)x2(t)

−(p2(β1 − k2g)− p12)xT2 (t)Mx2(t)

= −xT(t)R(x(t), t)x(t), t ≥ t0, (6.39)

where

R(x, t) ,
[

p12(α1 − k1g)M H(x, t)/2
H(x, t)/2 (p2(β1 − k2g)− p12)M

]

.

Next, define

R ,
1

2

[

p12(α1 − k1g) √
γ√

γ p2(β1 − k2g)− p12

]

and note that, using (6.34), R > 0. Hence, it follows from (6.34)–(6.36) thatR(x, t) ≥

(R⊗M) > 0, t ≥ t0. Thus, it follows from (6.39) that

V̇ (x(t),Ψ(t),Φ(t), t) ≤ −xT(t)R(x(t), t)x(t)

≤ −xT(t)(R⊗M)x(t)

≤ 0, t ≥ t0, (6.40)

which proves that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D) of the closed-loop

system (6.32), (6.33), and (6.37) is uniformly Lyapunov stable. Furthermore, since

(R ⊗ M) > 0, it follows from Theorem 2 of [42] that x(t) → 0 as t → ∞ for all

x0 ∈ R
2n. ¤

Remark 6.8. Note that the conditions in Theorem 6.3 imply that x(t) → 0 as

t → ∞ and hence it follows from (6.32) and (6.33) that (x(t),Ψ(t),Φ(t)) → M ,

{(x,Ψ,Φ) ∈ R
n × R

n×2n × R
n×d : x = 0, Ψ̇ = 0, Φ̇ = 0} as t→∞.
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Remark 6.9. It is important to note that the bounds for K(x1, t), (x1, t) ∈

R
n×R, and C(x1, x2, t), (x1, x2, t) ∈ R

n×R
n×R, do not need to be known in order

to implement the adaptive controller (6.31)–(6.33). All that is required is that K(·, ·)

and C(·, ·, ·) are continuous, symmetric, and bounded; otherwise they are unknown.

Likewise, M ∈ R
n×n needs to be positive definite but is otherwise unknown.

Remark 6.10. Although K(·, ·) and C(·, ·, ·) are assumed to be symmetric, The-

orem 6.3 also holds for the more general case where K(·, ·) and C(·, ·, ·) are nonsym-

metric operators. In this case however, the inequalities in (6.30) involving K(·, ·)

and C(·, ·, ·) should be replaced with the symmetric part of K(·, ·) and C(·, ·, ·),

respectively. Furthermore, if M is known to be negative definite but otherwise

unknown, then Theorem 6.3 holds with u(t) given by (6.31) replaced by u(t) =

−Ψ(t)x(t)− Φ(t)w(t).

Theorem 6.3 is applicable to the case where C(q, q̇, t) andK(q, t), q, q̇ ∈ R
n, t ≥ t0,

are bounded. In practice however, C(q, q̇, t) and K(q, t), q, q̇ ∈ R
n, t ≥ t0, are often

unbounded. Next, we provide a corollary to Theorem 6.3 that addresses the case

where C(·, ·, ·) and K(·, ·) can be unbounded operators.

Corollary 6.2. Consider the nonlinear time-varying dynamical system G given

by (6.29), or, equivalently, the nonlinear matrix second-order dynamical system G

given by (6.28). Assume there exist known, symmetric matrix functions Kb : R
n ×

R → R
n×n and Cb : R

n × R
n × R → R

n×n and scalars α1, α2, β1, β2 ∈ R such that

β1M ≤ C(x1, x2, t) − Cb(x1, x2, t) ≤ β2M and α1M ≤ K(x1, t) − Kb(x1, t) ≤ α2M ,

x1, x2 ∈ R
n, t ≥ t0. Let Q1, Q2 ∈ R

n×n, Y ∈ R
2n×2n, Z ∈ R

d×d, and P ∈ R
2×2 be

positive definite, where P =

[

p1 p12
p12 p2

]

and p12 > 0. Then the adaptive feedback

control law

u(t) = Kb(x1(t), t)x1(t) + Cb(x1(t), x2(t), t)x2(t) + Ψ(t)x(t) + Φ(t)w(t), (6.41)
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where Ψ(t) ∈ R
n×2n, t ≥ t0, and Φ(t) ∈ R

n×d, t ≥ t0, with update laws (6.32)

and (6.33) guarantees that the solution (x(t),Ψ(t),Φ(t)) ≡ (0, Kg,−D), where Kg ∈

R
n×2n, of the closed-loop system given by (6.29), (6.32), (6.33), and (6.41) is uniformly

Lyapunov stable and x(t)→ 0 as t→∞ for all x0 ∈ R
2n.

Proof. Rewrite (6.28) as

Mq̈(t) + Ĉ(q(t), q̇(t), t)q̇(t) + K̂(q(t), t)q(t) = û(t) +Dw(t), q(0) = q0, q̇(0) = q̇0,

t ≥ t0, (6.42)

where Ĉ(q, q̇, t) , C(q, q̇, t) − Cb(q, q̇, t), K̂(q) , K(q, t) − Kb(q, t), and û , u −

Cb(q, q̇, t)q̇ −Kb(q, t)q. Now, the result is a direct consequence of Theorem 6.3. ¤

Finally, we generalize Theorem 6.3 and Corollary 6.2 to the case where C(q, q̇, t)−

(θTc ⊗ In)Cb(q, q̇, t) and K(q, t)− (θTk ⊗ In)Kb(q, t) are bounded, where θc ∈ R
pc and

θk ∈ R
pk are unknown parameters and Cb : R

n × R
n × R → R

pcn×n as well as

Kb : R
n × R→ R

pkn×n are known functions.

Theorem 6.4. Consider the nonlinear time-varying dynamical system G given

by (6.29), or, equivalently, the nonlinear matrix second-order dynamical system G

given by (6.28). Assume there exist scalars α1, α2, β1, β2 ∈ R, vectors θc ∈ R
pc ,

θk ∈ R
pk , and symmetric matrix functions Cb : R

n × R
n × R → R

pcn×n and Kb :

R
n × R → R

pkn×n such that α1M ≤ K(x1, t) − (θTk ⊗ In)Kb(x1, t) ≤ α2M and

β1M ≤ C(x1, x2, t)− (θTc ⊗ In)Cb(x1, x2, t) ≤ β2M , x1, x2 ∈ R
n, t ≥ t0. Furthermore,

let Cbi : R
n×R

n×R→ R
n×n, i = 1, . . . , pc, and Kbj : R

n×R→ R
n×n, j = 1, . . . , pk,

be symmetric maps such that Cb(x1, x2, t) = [Cb1(x1, x2, t), · · · , Cbpc(x1, x2, t)]
T and

Kb(x1, t) = [Kb1(x1, t), · · · , Kbpk(x1, t)]
T. Let Q1, Q2 ∈ R

n×n, Q3 ∈ R
pk×pk , Q4 ∈

R
pc×pc Y ∈ R

2n×2n, Z ∈ R
d×d, and P ∈ R

2×2 be positive definite, where P =
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[

p1 p12
p12 p2

]

and p12 > 0. Then the adaptive feedback control law

u(t) = (ΘT
k (t)⊗ In)Kb(x1(t), t)x1(t) + (ΘT

c (t)⊗ In)Cb(x1(t), x2(t), t)x2(t)

+Ψ(t)x(t) + Φ(t)w(t), (6.43)

where Θk(t) ∈ R
pk , t ≥ t0, Θc(t) ∈ R

pc , t ≥ t0, Ψ(t) ∈ R
n×2n, t ≥ t0, and Φ(t) ∈ R

n×d,

t ≥ t0, with update laws (6.32), (6.33), and

Θ̇k(t) = −Q3(Ipk ⊗ xT1 (t))Kb(x1(t), t)B
T
0 (P ⊗ In)x(t), Θk(0) = Θk0, (6.44)

Θ̇c(t) = −Q4(Ipc ⊗ xT2 (t))Cb(x1(t), x2(t), t)B
T
0 (P ⊗ In)x(t), Θc(0) = Θc0, (6.45)

guarantees that the solution (x(t),Ψ(t),Φ(t),Θc(t), Θk(t)) ≡ (0, Kg,−D, θc, θk),

where Kg ∈ R
n×2n, of the closed-loop system given by (6.29), (6.32), (6.33), (6.43)–

(6.45) is uniformly Lyapunov stable and x(t)→ 0 as t→∞ for all x0 ∈ R
2n.

Proof. Let Kg , [k1gM,k2gM ] ∈ K. Furthermore, define C̃(x1, x2, t) , C(x1, x2,

t)− (θTc ⊗ In)Cb(x1, x2, t)− k2gM , K̃(x1, t) , K(x1, t)− (θTk ⊗ In)Kb(x1, t)− k1gM ,

Θ̃k(t) , Θk(t) − θk, and Θ̃c(t) , Θc(t) − θc, and consider the Lyapunov function

candidate

V (x,Ψ,Φ,Θk,Θc) =
1

2

[

xT(P ⊗M)x+ p̂1x
T
1Mx1 + trQ−11 Ψ̃Y −1Ψ̃T

+ trQ−12 Φ̃Z−1Φ̃T + Θ̃T
kQ

−1
3 Θ̃k + Θ̃T

c Q
−1
4 Θ̃c

]

. (6.46)

Now, the proof is identical to the proof of Theorem 6.3. ¤

Remark 6.11. Theorem 6.4 generalizes Corollary 6.2 since C(x1, x2, t) − (θTc ⊗

In)Cb(x1, x2, t) andK(x1, t)−(θTk⊗In)Kb(x1, t) are bounded as opposed to C(x1, x2, t)

−Cb(x1, x2, t) and K(x1, t) −Kb(x1, t) being bounded. This gives yet a larger class

of nonlinearities that can be considered in the operators C(·, ·, ·) and K(·, ·). See

Remark 6.4 for further details.
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Remark 6.12. Once again, as in the case of Theorem 6.3, Corollary 6.2 and The-

orem 6.4 also hold for the case where M is only sign definite and C(·, ·, ·) and K(·, ·)

are nonsymmetric operators. In this case, C(·, ·, ·) and K(·, ·) should be replaced

by their symmetric parts in the expressions C(x1, x2, t) − (θTc ⊗ In)Cb(x1, x2, t) and

K(x1, t)− (θTk ⊗ In)Kb(x1, t), respectively. Furthermore, when M is negative definite

but otherwise unknown, the control law (6.41) takes the form

u(t) = −(ΘT
k (t)⊗ In)Kb(x1(t), t)x1(t)− (ΘT

c (t)⊗ In)Cb(x1(t), x2(t), t)x2(t)

−Ψ(t)x(t)− Φ(t)w(t). (6.47)

6.6. Illustrative Numerical Example

In this section we present a numerical example to demonstrate the utility of the

proposed direct adaptive control framework for adaptive stabilization. Specifically,

consider the nonlinear time-varying matrix second-order dynamical system with non-

linear damping and stiffness matrix functions given by (6.28), where n = 2, and M ,

C(q, q̇, t), and K(q, t) are unknown with M > 0, and C(q, q̇, t) and K(q, t) bounded

for all q, q̇ ∈ R
2 and t ≥ t0. Furthermore, assume w(t) ≡ 0. Now, with p2 > 0

and p12 > 0, it follows from Theorem 6.3 that the adaptive feedback controller (6.31)

guarantees that x(t) → 0 as t → ∞. For illustrative purposes, consider (6.28) with

n = 2 and

M =

[

5 0.5
0.5 4

]

,

C(q, q̇, t) =

[

exp(−q̇21) sin(t) sin(
√
t/4)

sin(
√
t/4) exp(−q22) sin(t)

]

,

K(q, t) =

[

sin(q1t) sin(t)
sin(t) cos(q2t)

]

.

Let p1 = 2, p2 = p12 = 1, Q1 = 2I2, Y = I4, and set the initial conditions q(0) =

[1, −2]T, q̇(0) = [0, −1]T, and Ψ(0) = 02×4. Figure 6.18 shows the phase portraits of
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the controlled and uncontrolled systems. Note that the adaptive controller is switched

on at t = 10 sec. Figure 6.19 shows the state trajectories and the control signals versus

time. Finally, the adaptive gain history versus time is shown in Figure 6.20.

6.7. Applications to Combustion Processes

In this section we apply the framework developed in Section 6.5 to suppress the

effects of thermoacoustic instabilities in uncertain combustion processes. As shown in

Section 2.6, a matrix second-order model with sign-indefinite damping and stiffness

operators can be used to capture the coupling between unsteady combustion and

acoustics in a combustion process. Specifically, using the mass, momentum, and

energy conservation equations for a two phase mixture in a combustor and using a

Galerkin decomposition the authors in [50,98] obtain

η̈i(t)+ω
2
i ηi(t)+

∞
∑

p=1

(dipη̇p(t)+eipηp(t))+
∞
∑

p=1

∞
∑

q=1

(aipqη̇p(t)η̇q(t)+bipqηp(t)ηq(t)) = ui(t),

(6.48)

where ηi denotes the ith modal combustion pressure, dip, eip, aipq, and bipq, i =

1, · · · , n, are constants depending on the unperturbed mode shapes and natural fre-

quencies of the combustor [50], and ui(t), t ≥ 0, i = 1, · · · , n, is the control input to

the ith mode and is given by

ui(t) =
ā2

p̄E2
i

m
∑

j=1

ûj(t)ψi(xsj), (6.49)

where ā ,
√

γ p̄
ρ̄
is the local average sound velocity inside the combustor, ρ̄ is the

average density in the two phase mixture, γ is the mixture ratio of specific heats,

p̄ is the average pressure inside the combustor, ψi(·), i = 1, · · · , n, are the normal

modes of the system, E2
i =

∫ L

0
ψi(x)Ac(x)dx, Ac(x) is the cross sectional area of

the combustor, L is the combustor length, ûa(t) is a control excitation through an

acoustic driver, and xsj corresponds to the location of the jth actuator.
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Figure 6.18: Phase portraits of controlled and uncontrolled systems
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To design a direct adaptive controller for combustion systems we use the nonlinear

combustion model given by the matrix second-order system (6.48) with nonlinearities

present due to the second-order gas dynamics. Furthermore, we assume that actuation

is provided by loud speakers while we measure pressure fluctuations via pressure-type

microphones. Assuming a two-mode, nonlinear combustion plant model, (6.48) and

(6.49) yield

η̈1(t) = 2α1η̇1(t)− (ω2
1 − 2θ1ω1)η1(t)− F11η̇1(t)η̇2(t)− F12η1(t)η2(t)

+ ā2

p̄E2
1
(ψ1(xs1)û1(t) + ψ1(xs2)û2(t)), η1(0) = η10, η̇1(0) = η̇10, t ≥ 0, (6.50)

η̈2(t) = 2α2η̇2(t)− (ω2
2 − 2θ2ω2)η2(t)− F21η̇

2
1(t)− F22η

2
1(t)

+ ā2

p̄E2
2
(ψ2(xs1)û1(t) + ψ2(xs2)û2(t)), η2(0) = η20, η̇2(0) = η̇20, (6.51)

where ûi(t), i = 1, 2, are control input signals, αi = −1
2
dii ∈ R represents

a growth/decay constant, θi = −1
2
eii
ωi
∈ R represents a frequency shift constant, ω1

and ω2 are the frequencies of the first and second modes, F11 =
3−2γ
2γ

, F12 =
5(γ−1)

2γ
ω2
1,

F21 = −γ+3
2γ

, and F22 =
γ−1
2γ
ω2
1. In the case where we consider a cylindrical combustor

closed at both ends with pure longitudinal modes, it follows that the first two modes

are given by

ψi(x) = cos(kix), ki = i
π

L
, i = 1, 2. (6.52)

For the nondimensionalized (using the time factor τt = πL/ā) data parameters [63]

α1 = 0.0144, α2 = −0.0559, θ1 = 0.0062, θ2 = 0.0178, γ = 1.2, ω1 = 1, ω2 = 2, and

[ηT0 η̇
T
0 ]

T = [0.01, 0.1, 0, 0]T, the open-loop (ûi(t) ≡ 0, i = 1, 2) dynamics (6.50) and

(6.51) result in a limit cycle instability. Figure 2.26 shows the open-loop response

versus time of the system.

Next, we assume that loud speakers are placed at xs1 = 3
4
L and xs2 = 1

2
L. It is

important to note that our proposed adaptive controller would stabilize any nonlinear
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time-varying, matrix second-order dynamical system with unknown nonlinear sign-

indefinite damping and stiffness operators given by (6.28). Hence, we assume our

combustion model is given by (6.50), (6.51) with n = 2, q = [η1, η2]
T, u = [û1, û2]

T,

M = − p̄

ā2

[ √
2E2

1 0
0 E2

2

]

,

C(q, q̇, t) = − p̄

ā2

[ √
2E2

1(F11q̇2 − 2α1) 0
E2

2F21q̇1 −2E2
2α2

]

,

K(q, t) = − p̄

ā2

[ √
2E2

1(F12q2 + ω2
1 − 2θ1ω1) 0

E2
2F22q1 E2

2(ω
2
2 − 2θ2ω2)

]

,

where αi, θi, ωi, Fij, and ā2

p̄E2
i

(> 0), i, j = 1, 2, are unknown. Next, let θc =

− p̄
ā2
[
√
2E2

1F11,
1
2
E2

2F21]
T, θk = − p̄

ā2
[
√
2E2

1F12,
1
2
E2

2F22]
T, and

Cb1(q, q̇, t) =

[

q̇2 0
0 0

]

, Cb2(q, q̇, t) =

[

q̇1 0
0 q̇1

]

,

Kb1(q, t) =

[

q2 0
0 0

]

, Kb2(q, t) =

[

q1 0
0 q1

]

.

Now, it follows from Theorem 6.4 and Remark 6.12 (since the sign-indefinite stiffness

and damping operators are not symmetric) that the adaptive feedback controller

(6.47) with update laws (6.32), (6.33), (6.44), and (6.45) guarantees that the closed-

loop system is uniformly Lyapunov stable and q(t)→ 0 as t→∞.

To illustrate the dynamic behavior of the closed-loop system, let α1 = 0.0144,

α2 = −0.0559, θ1 = 0.0062, θ2 = 0.0178, γ = 1.2, ω1 = 1, ω2 = 2, Q1 = Q3 = Q4 =

0.1I2, Y = 0.5I2, and
ā2

p̄E2
i

= 0.4, i = 1, 2. The response of the controlled system (6.28)

with the adaptive feedback control law (6.47) and initial conditions q0 = [0.01, 0.1]T,

q̇0 = [0, 0]T, Ψ(0) = 02×4, Θc(0) = 02×1, and Θk(0) = 02×1 is shown in Figure 6.21.

Uniform Lyapunov stability of the closed-loop system (6.28), (6.32), (6.33), (6.44),

(6.45), and (6.47) as well as attraction of q(t) is guaranteed by Theorem 6.4 and

Remark 6.12. Note that the adaptive controller is switched on at t = 300.

To illustrate the robustness of the proposed adaptive control law, we switch the

growth constant of the first mode from α1 = 0.0144 to α1 = 0.0720 at t = 600. The
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closed-loop response is shown in Figure 6.22. Figure 6.23 shows the same change in

the growth constant of the first mode with the switch occurring at t = 350 while the

control law is still in process of adapting.

Finally, we change the transient parameters θ1 = 0.0062 and θ2 = 0.0178 to

θ1 = 0.4998 and θ2 = 1.009 at t = 600. The closed-loop response is shown in

Figure 6.24. Note that this change corresponds to 8061% and 5669%, respectively, of

the original values of the parameters. The same change in the transient parameters

occurring at t = 350 is shown on Figure 6.25.

To illustrate the robustness of the proposed adaptive control law, we switch the

growth constant of the first mode from α1 = 0.0144 to α1 = 0.0720 at t = 600. The

closed-loop response is shown in Figure 6.22. Figure 6.23 shows the same change in

the growth constant of the first mode with the switch occurring at t = 350 while the

control law is still in process of adapting.

Finally, we change the transient parameters θ1 = 0.0062 and θ2 = 0.0178 to

θ1 = 0.4998 and θ2 = 1.009 at t = 600. The closed-loop response is shown in

Figure 6.24. Note that this change corresponds to 8061% and 5669%, respectively, of

the original values of the parameters. The same change in the transient parameters

occurring at t = 350 is shown on Figure 6.25.

6.8. Conclusion

A direct adaptive control framework for a class of nonlinear matrix second-order

systems with state-dependent uncertainty was developed. In particular, using a

Lyapunov-based framework, global asymptotic stability of the closed-loop system

states associated with the plant dynamics was guaranteed without requiring any

knowledge of the system nonlinearities other than the assumption that they are con-
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tinuous and lower bounded. Generalizations to the case where the system nonlinear-

ities are unbounded were also considered. The efficacy of the proposed approach was

demonstrated on several nonlinear systems with sign varying; that is, nondissipative,

generalized stiffness and damping operators.
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Figure 6.21: Closed-loop state response versus time
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Second Mode

Dimensionless Time, t/(L/πā)
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Figure 6.22: Closed-loop state response versus time
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Figure 6.23: Closed-loop state response versus time
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First Mode
η1
η̇1

η2
η̇2

Dimensionless Time, t/(L/πā)
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Figure 6.24: Closed-loop state response versus time
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S
ec

o
n
d

M
o
d
e

0 500 1000 1500
−1.5

−1

−0.5

0

0.5
u

1
u

2

PSfrag replacements

Dimensionless Time, t/(L/πā)
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Figure 6.25: Closed-loop state response versus time
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Chapter 7

Adaptive Control for Nonnegative

and Compartmental Dynamical

Systems with Applications to

General Anesthesia

7.1. Introduction

Even though advanced robust and adaptive control methodologies have been (and

are being) extensively developed for highly complex engineering systems, modern ac-

tive control technology has received far less consideration in medical systems. The

main reason for this state of affairs is the steep barriers to communication between

mathematics/control engineering and medicine. However, this is slowly changing and

there is no doubt that control-system technology has a great deal to offer medicine.

For example, critical care patients, whether undergoing surgery or recovering in in-

tensive care units, require drug administration to regulate key physiological (state)

variables (e.g., blood pressure, cardiac output, heart rate, glucose, etc.) within desired

levels. The rate of infusion of each administered drug is critical, requiring constant

monitoring and frequent adjustments. Open-loop control (manual control) by clinical

personnel can be very tedious, imprecise, time consuming, and often of poor quality.
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Hence, the need for active control (closed-loop control) in medical systems is crucial;

with the potential in improving the quality of medical care as well as curtailing the

increasing cost of health care.

The complex highly uncertain and hostile environment of surgery places strin-

gent performance requirements for closed-loop set-point regulation of physiological

variables. For example, during cardiac surgery, blood pressure control is vital and

is subject to numerous highly uncertain exogenous disturbances. Vasoactive and

cardioactive drugs are administered resulting in large disturbance oscillations to the

system (patient). The arterial line may be flushed and blood may be drawn, cor-

rupting sensor blood pressure measurements. Low anesthetic levels may cause the

patient to react to painful stimuli, thereby changing system response characteristics.

The flow rate of vasodilator drug infusion may fluctuate causing transient changes in

the infusion delay time. Hemorrhage, patient position changes, cooling and warm-

ing of the patient, and changes in anesthesia levels will also effect system response

characteristics.

In light of the complex and highly uncertain nature of system response charac-

teristics under surgery requiring controls, it is not surprising that reliable system

models for many high performance drug delivery systems are unavailable. In the face

of such high levels of system uncertainty, robust controllers may unnecessarily sacri-

fice system performance whereas adaptive controllers can tolerate far greater system

uncertainty levels to improve system performance [12, 121, 147, 176]. In contrast to

fixed-gain robust controllers, which maintain specified constants within the feedback

control law to sustain robust performance, adaptive controllers directly or indirectly

adjust feedback gains to maintain closed-loop stability and improve performance in

the face of system uncertainties. Specifically, indirect adaptive controllers utilize pa-

rameter update laws to identify unknown system parameters and adjust feedback
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gains to account for system variation, while direct adaptive controllers directly adjust

the controller gains in response to system variations (drug administration).

In this chapter we develop a direct adaptive control framework for adaptive set-

point regulation of linear uncertain nonnegative and compartmental systems. Non-

negative and compartmental dynamical systems [6,19,24,62,70,75,123,124,164,166,

172,182,187,203] are composed of homogeneous interconnected subsystems (or com-

partments) which exchange variable nonnegative quantities of material with conser-

vation laws describing transfer, accumulation, and elimination between the compart-

ments and the environment. It follows from physical considerations that the state

trajectory of such systems remains in the nonnegative orthant of the state space for

nonnegative initial conditions. Nonnegative and compartmental models thus play a

key role in understanding many processes in biological and medical sciences. Using

nonnegative and compartmental model structures, a Lyapunov-based direct adaptive

control framework is developed that guarantees partial asymptotic set-point stabil-

ity of the closed-loop system; that is, asymptotic set-point stability with respect

to part of the closed-loop system states associated with the physiological state vari-

ables. In particular, adaptive controllers are constructed without requiring knowledge

of the system dynamics while providing a nonnegative control (source) input for ro-

bust stabilization with respect to the nonnegative orthant. Furthermore, in certain

applications of nonnegative and compartmental systems such as biological systems,

population dynamics, and ecological systems involving positive and negative inflows,

the nonnegativity constraint on the control input is not natural. In this case, we also

develop adaptive controllers that do not place any restriction on the sign of the control

signal while guaranteeing that the physical system states remain in the nonnegative

orthant of the state space.

Even though the proposed adaptive control framework is applicable to general
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nonlinear nonnegative and compartmental dynamical systems, in this chapter our

application objective is in clinical pharmacology. In particular, we develop adaptive

controllers for drug administration for general anesthesia. Adaptive control algo-

rithms in pharmacology are vital since the relationships between drug dose and blood

concentration (pharmacokinetics) and between blood concentrations and physiologi-

cal effect (pharmacodynamics) vary widely among individual patients. Active control

for the administration of general anesthesia is not new to this dissertation and has

been considered in the literature. Specifically, building on pioneering work of Bick-

ford [26] several groups have developed and clinically tested closed-loop controllers for

the delivery of intravenous anesthesia using an electroencephalogram (EEG) signal

for the performance and measurement variable. Two model-based control algorithms

have been developed using a pharmacokinetic model relating drug concentration to

drug dose and a pharmacodynamic model relating drug effect to drug concentration.

Unfortunately, biological systems have significant pharmacokinetic and pharmaco-

dynamic variability among individual subjects and using population mean values of

pharmacokinetic and pharmacodynamic model parameters may result in very pro-

nounced bias for any specific individual. To simplify one could assume that phar-

macodynamics (the relationship between drug concentration and effect) do not vary

among individuals and any difference between individual responses is due to phar-

macokinetic variability. Alternatively, one could assume that the pharmacokinetic

parameters are always correct and all variability is pharmacodynamic. Schwilden

et al. [207, 208] developed an algorithm which used the former strategy and devel-

oped an adaptive control algorithm which progressively refined estimates of individual

pharmacokinetic parameters by minimizing the difference between the observed and

predicted EEG signal. This algorithm was implemented for the intravenous anes-

thetic agents methohexital and propofol but did not appear to offer great advantage
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over standard manual control. This may have been due to the approximations of the

algorithm or due to the deficiencies of the median EEG frequency (the EEG signal

utilized by the investigators) as a measure of consciousness. In the alternative ap-

proach, Struys et al. [227] have described a closed-loop controller of the delivery of the

intravenous anesthetic propofol using a model-based adaptive control algorithm with

the bispectral index (BIS), a derivative of the EEG signal, as the performance and

measurement variable that assumes that all variability is pharmacodynamic. More

specifically, with induction of anesthesia they calculated a predicted concentration us-

ing the pharmacokinetic model and then constructed a BIS-concentration relationship

using the observed BIS during induction and the predicted propofol concentration.

With each time epoch, the difference between the target BIS signal and the observed

BIS signal is used to update the pharmacodynamic parameters relating concentration

and BIS signal for the individual patient. Using this algorithm, Struys et al. [227]

demonstrated excellent performance as measured by the difference between the target

and observed BIS signals. However, as pointed out by Glass and Rampil [69], the

excellent performance of the system may have been because the system was not fully

stressed. In their study, Struys et al. [227] administered a relatively high fixed dose

of the opioid remifentanil, in conjunction with propofol. This blunted the patient

response to surgical stimuli and meant that the propofol was needed only to produce

unconsciousness in patients who were profoundly analgesic. The result was that only

small adjustments in propofol concentrations were necessary. Whether the system

would have been robust in the absence of deep narcotization is an open question.

In contrast, to the above adaptive control algorithms, Absalom et al. [2] have de-

scribed and implemented a proportional-integral-derivative control algorithm that is

independent of pharmacokinetic and pharmacodynamic models. While overall preci-

sion and bias of this controller was good, the clinical performance was not acceptable
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due to oscillations observed in 3 of the 10 patients investigated. In this chapter, we

present a less restrictive direct adaptive control framework as compared to the ex-

isting algorithms discussed above that accounts for interpatient pharmacokinetic and

pharmacodynamic variability.

7.2. Mathematical Preliminaries

In this section we introduce notation, several definitions, and some key results

concerning linear nonnegative dynamical systems [19, 20, 24, 75] that are necessary

for developing the main results of this chapter. Specifically, for x ∈ R
n we write

x ≥≥ 0 (resp., x >> 0) to indicate that every component of x is nonnegative (resp.,

positive). In this case we say that x is nonnegative or positive, respectively. Likewise,

A ∈ R
n×m is nonnegative1 or positive if every entry of A is nonnegative or positive,

respectively, which is written as A ≥≥ 0 or A >> 0, respectively. Let R
n

+ and R
n
+

denote the nonnegative and positive orthants of R
n; that is, if x ∈ R

n, then x ∈ R
n

+

and x ∈ R
n
+ are equivalent, respectively, to x ≥≥ 0 and x >> 0. The following

definition introduces the notion of a nonnegative (resp., positive) function.

Definition 7.1. Let T > 0. A real function u : [0, T ] → R
m is a nonnegative

(resp., positive) function if u(t) ≥≥ 0 (resp., u(t) >> 0) on the interval [0, T ].

The next definition introduces the notion of essentially nonnegative matrices.

Definition 7.2 [24, 75]. Let A ∈ R
n×n. A is essentially nonnegative if A(i,j) ≥ 0,

i, j = 1, · · · , n, i 6= j.

1In this dissertation it is important to distinguish between a square nonnegative (resp., positive)
matrix and a nonnegative-definite (resp., positive-definite) matrix.
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Next, consider the linear nonnegative dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (7.1)

where x(t) ∈ R
n, t ≥ 0, and A ∈ R

n×n is essentially nonnegative. The solution to

(7.1) is standard and is given by x(t) = eAtx(0), t ≥ 0. The following lemma proven

in [24] (see also [75]) shows that A is essentially nonnegative if and only if the state

transition matrix eAt is nonnegative on [0,∞).

Proposition 7.1. Let A ∈ R
n×n. Then A is essentially nonnegative if and only

if eAt is nonnegative for all t ≥ 0. Hence, if A is essentially nonnegative and x0 ≥≥ 0,

then x(t) ≥≥ 0, t ≥ 0, where x(t), t ≥ 0, denotes the solution to (7.1).

The following result shows that, for nonnegative initial conditions, the states of a

time-varying linear dynamical system G of the form

ẋ(t) = A(t)x(t), x(0) = x0, t ≥ t0, (7.2)

where t0 ∈ [0,∞) and A : [0,∞) → R
n×n is continuous and essentially nonnegative

pointwise-in-time, remain nonnegative.

Proposition 7.2. Consider the time-varying dynamical system (7.2) where A :

[0,∞)→ R
n×n is continuous. Then R

n

+ is an invariant set with respect to (7.2) if and

only if A : [0,∞)→ R
n×n is essentially nonnegative pointwise-in-time.

Proof. The result is a direct consequence of Proposition 6.1 of [75] (see also

[22]) by equivalently representing the time-varying system (7.2) as an autonomous

nonlinear system by appending another state to represent time. Specifically, defining

y(t− t0) , x(t) and yn+1(t− t0) , t, it follows that the solution x(t), t ≥ t0, to (7.2)
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can be equivalently characterized by the solution y(τ), τ ≥ 0, where τ , t − t0, to

the nonlinear autonomous system

ẏ(τ) = A(yn+1(τ))y(τ), y(0) = y0, τ ≥ 0, (7.3)

ẏn+1(τ) = 1, yn+1(0) = t0, (7.4)

where ẏ(·) and ẏn+1(·) denote differentiation with respect to τ . Now, since ẏi(τ) ≥ 0,

τ ≥ 0, for i = 1, · · · , n + 1, whenever yi(τ) = 0, the result is a direct consequence of

Proposition 6.1 of [75]. ¤

The following theorems give necessary and sufficient conditions for asymptotic

stability of a linear nonnegative dynamical system using linear and quadratic Lya-

punov functions, respectively. For the statement of the first theorem recall that (7.1)

is semistable if and only if limt→∞ e
At exists [24,25,75].

Theorem 7.1 [75]. Consider the linear dynamical system G given by (7.1) where

A ∈ R
n×n is essentially nonnegative. Then the following statements hold:

i) G is Lyapunov stable if and only if G is semistable.

ii) If there exist vectors p, r ∈ R
n such that p >> 0 and r ≥≥ 0 satisfy

0 = ATp+ r, (7.5)

then G is semistable (and hence Lyapunov stable).

iii) If G is semistable, then there exists vectors p, r ∈ R
n such that p ≥≥ 0, p 6= 0,

and r ≥≥ 0 satisfy (7.5).

iv) If there exist vectors p, r ∈ R
n such that p ≥≥ 0 and r ≥≥ 0 satisfy (7.5) and

(A, rT) is observable, then p >> 0 and G is asymptotically stable.

Furthermore, the following statements are equivalent:
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v) G is asymptotically stable.

vi) There exist vectors p, r ∈ R
n such that p >> 0 and r >> 0 satisfy (7.5).

Theorem 7.2 [75]. Consider the linear dynamical system G given by (7.1) where

A ∈ R
n×n is essentially nonnegative. Then G is asymptotically stable if and only if

there exist a positive diagonal matrix P ∈ R
n×n and an n×n positive-definite matrix

R such that

0 = ATP + PA+R. (7.6)

Next, we consider a subclass of nonnegative systems; namely, compartmental

systems. As discussed in the Introduction, linear compartmental dynamical systems

are of major importance in biological and physiological systems. For example, almost

the entire field of distribution of tracer labelled materials in steady state systems can

be captured by linear compartmental dynamical systems [123].

Definition 7.3. Let A ∈ R
n×n. A is a compartmental matrix if A is essentially

nonnegative and
∑n

i=1A(i,j) ≤ 0, j = 1, · · · , n.

If A is a compartmental matrix, then the nonnegative system (1) is called an

inflow-closed compartmental system [75, 123, 124]. As shown in [24, 75], if A is a

compartmental matrix, then the entries in A are given by

A(i,j) =

{

−∑n
k=1 akj, i = j,
aij, i 6= j,

(7.7)

where aii ≥ 0, i ∈ {1, · · · , n}, denotes the loss coefficient of the ith compartment and

aij ≥ 0, i 6= j, i, j ∈ {1, · · · , n}, denotes the transfer coefficient from the jth compart-

ment to the ith compartment. Note that it follows from (7.7) that
∑n

i=1A(i,j) ≤ 0,

j = 1, · · · , n. Recall that an inflow-closed compartmental system possesses a dissipa-

tion property and hence is Lyapunov stable since the total mass in the system given
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by the sum of all components of the state x(t), t ≥ 0, is nonincreasing along the

forward trajectories of (7.1). In particular, with V (x) = eTx, where e = [1, 1, · · · , 1]T,

it follows that V̇ (x) = eTAx =
∑n

j=1[
∑n

i=1A(i,j)]xj ≤ 0, x ∈ R
n

+. Furthermore,

since ind(A) ≤ 1 (see [24] and [75]), where ind(A) denotes the index of A, it follows

that A is semistable. Hence, all solutions of inflow-closed linear compartmental sys-

tems are convergent. Of course, if detA 6= 0, where detA denotes the determinant

of A, then A is asymptotically stable. Alternatively, semistability and asymptotic

stability can be deduced from Theorem 7.1. In particular, with p = e >> 0 and

r = −ATe = [−a11,−a22, · · · ,−ann] ≥≥ 0, (7.5) is satisfied which implies, by The-

orem 3.2 of [75], that an inflow-closed compartmental system is semistable if A is

singular and asymptotically stable if A is nonsingular. For details of the above facts

see [24,75].

Next, we show that every asymptotically stable linear nonnegative system is equiv-

alent, modulo a similarity transformation, to a compartmental system.

Proposition 7.3 [75]. Let A ∈ R
n×n be asymptotically stable. Then A is essen-

tially nonnegative if and only if there exists an invertible diagonal matrix S ∈ R
n×n

such that SAS−1 is a compartmental matrix.

Finally, in this chapter we consider controlled dynamical systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (7.8)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, A ∈ R
n×n, and B ∈ R

n×m. The following

definition and proposition are needed for the main results of the chapter.

Definition 7.4. The linear dynamical system given by (7.8) is nonnegative if for

every x(0) ∈ R
n

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (7.8) is nonnegative.
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Proposition 7.4 [75]. The linear dynamical system given by (7.8) is nonnegative

if and only if A ∈ R
n×n is essentially nonnegative and B ∈ R

n×m is nonnegative.

It follows from Proposition 7.4 that the control input signal Bu(t), t ≥ 0, needs to

be nonnegative to guarantee the nonnegativity of the state of (7.8). This is due to the

fact that when the initial state of (7.8) belongs to the boundary of the nonnegative

orthant, a negative input can destroy the nonnegativity of the state of (7.8). Alterna-

tively, however, if the initial state is in the interior of the nonnegative orthant, then

it follows from continuity of solutions with respect to the system initial conditions

that, over a small interval of time, nonnegativity of the state of (7.8) is guaranteed

irrespective of the sign of each element of the control input Bu(t) over this time in-

terval. However, unlike open-loop control wherein lack of coordination between the

input and the state necessitates nonnegativity of the control input, a feedback control

signal predicated on the system state variables allows for the anticipation of loss of

nonnegativity of the state. Hence, state feedback control signals can take negative

values while assuring nonnegativity of the system states. For further discussion of

the above fact see [53].

Next, we present a time-varying extension to Proposition 7.4 needed for the main

theorems of this chapter. Specifically, we consider the time-varying system

ẋ(t) = A(t)x(t) +Bu(t), x(t0) = x0, t ≥ t0, (7.9)

where A : [t0,∞) → R
n×n is continuous. For the following result the definition of

nonnegativity holds with (7.8) replaced by (7.9).

Proposition 7.5. Consider the time-varying dynamical system (7.9) where A :

[t0,∞) → R
n×n is continuous. If A : [t0,∞) → R

n×n is essentially nonnegative

pointwise-in-time and B ∈ R
n×m is nonnegative, then the solution x(t), t ≥ t0, to

(7.9) is nonnegative.
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Proof. The result is a direct consequence of Proposition 6.1 of [75] (see also

[22]) by equivalently representing the time-varying system (7.9) as an autonomous

nonlinear system by appending another state to represent time. Specifically, defining

y(t− t0) , x(t) and yn+1(t− t0) , t, it follows that the solution x(t), t ≥ t0, to (7.9)

can be equivalently characterized by the solution y(τ), τ ≥ 0, where τ , t − t0, to

the nonlinear autonomous system

ẏ(τ) = A(yn+1(τ))y(τ), y(0) = y0, τ ≥ 0, (7.10)

ẏn+1(τ) = 1, yn+1(0) = t0, (7.11)

where ẏ(·) and ẏn+1(·) denote differentiation with respect to τ . Now, since ẏi(τ) ≥ 0,

τ ≥ 0, for i = 1, · · · , n + 1, whenever yi(τ) = 0, the result is a direct consequence of

Proposition 6.1 of [75]. ¤

Since stabilization of nonnegative systems naturally deals with equilibrium points

in the interior of the nonnegative orthant R
n

+, the following proposition provides

necessary conditions for the existence of an interior equilibrium point xe ∈ R
n
+ of

(7.8) in terms of the stability properties of the system dynamics matrix A.

Proposition 7.6. Consider the nonnegative dynamical system (7.8) and assume

there exist xe ∈ R
n
+ and ue ∈ R

m

+ such that

0 = Axe +Bue. (7.12)

Then, A is semistable.

Proof. The proof is a direct consequence of ii) of Theorem 7.1 with A replaced

by AT, p = xe, and r = Bue. ¤

It follows from Proposition 7.6 that the existence of an equilibrium point xe ∈ R
n
+

for (7.8) implies that the system matrix A is semistable. Hence, if (7.12) holds for
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xe ∈ R
n
+ and ue ∈ R

m

+ , then A is asymptotically stable or 0 ∈ spec(A), where spec(A)

denotes the spectrum of A, is a simple eigenvalue of A and all other eigenvalues

of A have negative real parts since −A is an M -matrix [20]. In light of the above

constraints, it was shown in [53] using Brockett’s necessary condition for asymptotic

stabilizability [28] that if 0 ∈ spec(A), then there does not exist a continuous stabi-

lizing nonnegative feedback for set-point regulation in R
n
+ for a nonnegative system.

However, that is not to say that asymptotic feedback regulation using discontinuous

feedback is not possible.

7.3. Adaptive Control for Linear Nonnegative Uncertain Dy-

namical Systems

In this section we consider the problem of characterizing adaptive feedback control

laws for nonnegative and compartmental uncertain dynamical systems to achieve

set-point regulation in the nonnegative orthant. Specifically, consider the following

controlled linear uncertain dynamical system G given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (7.13)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

A ∈ R
n×n is an unknown essentially nonnegative matrix, andB ∈ R

n×m is an unknown

nonnegative input matrix. The control input u(·) in (7.13) is restricted to the class

of admissible controls consisting of measurable functions such that u(t) ∈ R
m, t ≥ 0.

As discussed in the Introduction, it follows from physical considerations that the

state trajectories of nonnegative and compartmental dynamical systems remain in the

nonnegative orthant of the state space for nonnegative initial conditions. However,

even though active control of drug delivery systems for physiological applications ad-

ditionally requires control (source) inputs to be nonnegative, in many applications of
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nonnegative systems such as biological systems, population dynamics, and ecological

systems, the positivity constraint on the control input is not natural. Hence, in this

section we do not place any restriction on the sign of the control signal and design

an adaptive controller that guarantees that the system states remain in the nonneg-

ative orthant and converge to a desired equilibrium state. Specifically, for a given

desired set point xe ∈ R
n

+, our aim is to design a control input u(t), t ≥ 0, such that

limt→∞ ‖x(t)− xe‖ = 0. However, since in many applications of nonnegative systems

and in particular, compartmental systems, it is often necessary to regulate a subset

of the nonnegative state variables which usually include a central compartment, here

we require that limt→∞ xi(t) = xdi ≥ 0 for i = 1, · · · ,m ≤ n, where xdi is a desired set

point for the ith state xi(t). Furthermore, we assume that control inputs are injected

directly into m separate compartments so that the input matrix is given by

B =

[

Bu

0(n−m)×m

]

, (7.14)

where Bu , diag[b1, · · · , bm] and bi ∈ R+, i = 1, · · · ,m. For compartmental systems

this assumption is not restrictive since control inputs correspond to control inflows to

each individual compartment. Here, we assume that for i ∈ {1, · · · ,m}, bi is unknown.

For the statement of our main result define xe , [xTd , x
T
u ]

T, where xd , [xd1, · · · , xdm]T

and xu , [xu1, · · · , xu(n−m)]
T.

Theorem 7.3. Consider the linear uncertain dynamical system G given by (7.13)

where A is essentially nonnegative and B is nonnegative and given by (7.14). For a

given xd assume there exist nonnegative vectors xu ∈ R
n−m

+ and ue ∈ R
m

+ such that

0 = Axe +Bue. (7.15)

Furthermore, assume there exists a diagonal matrix Kg = diag[kg1, · · · , kgm] ∈ R
m×m

such that As , A+BK̃g is asymptotically stable, where K̃g , [Kg, 0m×(n−m)]. Finally,
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let qi and q̂i, i = 1, · · · ,m, be positive constants. Then the adaptive feedback control

law

u(t) = K(t)(x̂(t)− xd) + φ(t), (7.16)

where K(t) = diag[k1(t), · · · , km(t)], x̂(t) = [x1(t), · · · , xm(t)]
T, and φ(t) ∈ R

m, t ≥ 0,

or, equivalently,

ui(t) = ki(t)(xi(t)− xdi) + φi(t), i = 1, · · · ,m, (7.17)

where ki(t) ∈ R, t ≥ 0, and φi(t) ∈ R, t ≥ 0, i = 1, · · · ,m, with update laws

k̇i(t) = −qi(xi(t)− xdi)2, ki(0) ≤ 0, t ≥ 0, i = 1, · · · ,m, (7.18)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) ≥ xdi,
−q̂i(xi(t)− xdi), otherwise,

φi(0) ≥ 0, i = 1, · · · ,m, (7.19)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) of the closed-loop system

given by (7.13), (7.16), (7.18), (7.19) is Lyapunov stable and xi(t)→ xdi, i = 1, · · · ,m,

as t→∞ for all x0 ∈ R
n

+. Furthermore, x(t) ≥≥ 0 for all t ≥ 0 and x0 ∈ R
n

+.

Proof. Note that with u(t), t ≥ 0, given by (7.16) it follows from (7.13) that

ẋ(t) = Ax(t) +BK(t)(x̂(t)− xd) +Bφ(t), x(0) = x0, t ≥ 0, (7.20)

or, equivalently, using (7.15) and As = A+BK̃g,

ẋ(t) = As(x(t)− xe) +B(K(t)−Kg)(x̂(t)− xd) +B(φ(t)− ue), x(0) = x0, t ≥ 0.

(7.21)

Furthermore, since As is essentially nonnegative and asymptotically stable, it follows

from Theorem 7.2 that there exists a positive diagonal matrix P , diag[p1, · · · , pn]

and a positive-definite matrix R ∈ R
n×n such that

0 = AT
s P + PAs +R. (7.22)
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To show Lyapunov stability of the closed-loop system (7.18), (7.19), and (7.21) con-

sider the Lyapunov function candidate

V (x,K, φ) = (x−xe)TP (x−xe)+ tr(K−Kg)
TQ−1(K−Kg)+ (φ−ue)TQ̂−1(φ−ue),

(7.23)

or, equivalently,

V (x,K, φ) =
n
∑

i=1

pi(xi − xei)2 +
m
∑

i=1

pibi
qi

(ki − kgi)2 +
m
∑

i=1

pibi
q̂i

(φi − uei)2,

where Q = diag
[

q1
p1b1

, · · · , qm
pmbm

]

and Q̂ = diag
[

q̂1
p1b1

, · · · , q̂m
pmbm

]

. Note that V (xe, Kg,

ue) = 0 and, since P , Q, and Q̂ are positive definite, V (x,K, φ) > 0 for all (x,K, φ) 6=

(xe, Kg, ue). Furthermore, V (x,K, φ) is radially unbounded. Now, letting x(t), t ≥ 0,

denote the solution to (7.21) and using (7.18) and (7.19), it follows that the Lyapunov

derivative along the closed-loop system trajectories is given by

V̇ (x(t), K(t), φ(t)) = 2(x(t)− xe)TP [As(x(t)− xe) +B(K(t)−Kg)(x̂(t)− xd)

+B(φ(t)− ue)] + 2tr(K(t)−Kg)
TQ−1K̇(t)

+2(φ(t)− ue)TQ̂−1φ̇(t)

= −(x(t)− xe)TR(x(t)− xe) + 2
m
∑

i=1

pibi(ki(t)− kgi)(xi(t)− xdi)2

+2
m
∑

i=1

pibi(xi(t)− xdi)(φi(t)− uei)

+2
m
∑

i=1

pibi
qi

(ki(t)− kgi)k̇i(t) + 2
m
∑

i=1

pibi
q̂i

(φi(t)− uei)φ̇i(t)

= −(x(t)− xe)TR(x(t)− xe)

+2
m
∑

i=1

pibi(φi(t)− uei)
[

(xi(t)− xdi) +
1

q̂i
φ̇i(t)

]

. (7.24)

Now, for each i ∈ {1, · · · ,m} and for the two cases given in (7.19), the last term on

the right-hand side of (7.24) gives:
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i) If φi(t) = 0 and xi(t) ≥ xdi, then φ̇i(t) = 0 and hence

pibi(φi(t)− uei)
[

(xi(t)− xdi) +
1

q̂i
φ̇i(t)

]

= −pibiuei(xi(t)− xdi) ≤ 0.

ii) Otherwise, φ̇i(t) = −q̂i(xi(t)− xdi) and hence

pibi(φi(t)− uei)
[

(xi(t)− xdi) +
1

q̂i
φ̇i(t)

]

= 0.

Hence, it follows that in either case

V̇ (x(t), K(t), φ(t)) ≤ −(x(t)− xe)TR(x(t)− xe)

≤ 0, t ≥ 0, (7.25)

which proves that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) to (7.18), (7.19), and

(7.21) is Lyapunov stable. Furthermore, since R > 0 it follows from Theorem 2 of [42]

that x(t)→ xe as t→∞ for all x0 ∈ R
n

+.

Finally, to show that x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+, note that the closed-loop

system (7.13), (7.16), (7.18), and (7.19) is given by

ẋ(t) = Ax(t) +BK(t)(x̂(t)− xd) +Bφ(t)

= (A+B[K(t), 0m×(n−m)])x(t)−BK(t)xd +Bφ(t)

= Ã(t)x(t) + v(t) + w(t), (7.26)

where

Ã(t) ,

























a11 + b1k1(t) a12 · · · a1m a1m+1 · · · a1n

a21 a22 + b2k2(t)
...

...
. . . a2n

...
. . .

...
am1 · · · amm + bmkm(t) amm+1 · · · amn

am+11 · · · am+1m am+1m+1 · · · am+1n
...

. . .
...

...
. . .

...
an1 · · · anm anm+1 · · · ann

























,

(7.27)
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v(t) , −



















b1k1(t)xd1
...

bmkm(t)xdm
0
...
0



















, w(t) ,



















b1φ1(t)
...

bmφm(t)
0
...
0



















. (7.28)

Now, since, by (7.18) and (7.19), ki(t) ≤ 0, t ≥ 0, i = 1, · · · ,m, and φi(t) ≥ 0,

t ≥ 0, i = 1, · · · ,m, it follows that v(t) ≥≥ 0, t ≥ 0, and w(t) ≥≥ 0, t ≥ 0.

Hence, since Ã(t), t ≥ 0, is essentially nonnegative pointwise-in-time, it follows from

Proposition 7.5 that x(t) ≥≥ 0 for all t ≥ 0 and x0 ∈ R
n

+. ¤

Remark 7.1. Note that the conditions in Theorem 7.3 imply that x(t) → xe as

t → ∞ and hence it follows from (7.18) and (7.19) that (x(t), K(t), φ(t)) → M ,

{(x,K, φ) ∈ R
n × R

m×m × R
m : x = xe, K̇ = 0, φ̇ = 0} as t→∞.

It is important to note that the adaptive control law (7.16), (7.18), and (7.19)

does not require the explicit knowledge of the system matrices A, B, the gain matrix

Kg, and the nonnegative constant vector ue; even though Theorem 7.3 requires the

existence of Kg and nonnegative vectors xu and ue such that As is essentially nonneg-

ative and asymptotically stable and condition (7.15) holds. Furthermore, in the case

where A is semistable and minimum phase with respect to the output y = x̂, or A is

asymptotically stable, then there always exists a diagonal matrix Kg ∈ R
m×m such

that As is asymptotically stable. Necessary and sufficient conditions for set-point

stabilization of the pair (A,B), where A is singular and compartmental are given

in [53, 113]. Finally, note that for i = 1, · · · ,m, the control input signal ui(t), t ≥ 0,

can be negative depending on the values of xi(t), ki(t), and φi(t), t ≥ 0. However,

as is required in nonnegative and compartmental dynamical systems the closed-loop

plant states remain nonnegative.

In the case where our objective is zero set-point regulation, that is, xe = 0, the
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adaptive controller given in Theorem 7.3 can be considerably simplified. Specifically,

since in this case x(t) ≥≥ xe = 0, t ≥ 0, and condition (7.15) is trivially satisfied with

ue = 0, we can set φ(t) ≡ 0 so that update law (7.19) is superfluous. Furthermore,

since (7.15) is trivially satisfied, A can possess eigenvalues in the open right-half

plane. Alternatively, exploiting a linear Lyapunov function construction for the plant

dynamics, an even simpler adaptive controller can be derived. This result is given in

the following theorem.

Theorem 7.4. Consider the linear uncertain dynamical system G given by (7.13)

where A is essentially nonnegative and B is nonnegative and given by (7.14). Assume

there exists a diagonal matrix Kg = diag[kg1, · · · , kgm] ∈ R
m×m such that As ,

A + BK̃g is asymptotically stable, where K̃g , [Kg, 0m×(n−m)]. Furthermore, let qi,

i = 1, · · · ,m, be positive constants. Then the adaptive feedback control law

u(t) = K(t)x̂(t), (7.29)

where K(t) = diag[k1(t), · · · , km(t)] and x̂(t) = [x1(t), · · · , xm(t)]
T, or, equivalently,

ui(t) = ki(t)xi(t), i = 1, · · · ,m, (7.30)

where ki(t) ∈ R, i = 1, · · · ,m, with update law

K̇(t) = −diag[q1x1(t), · · · , qmxm(t)], (7.31)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg) of the closed-loop system given

by (7.13), (7.29), (7.31) is Lyapunov stable and x(t) → 0 as t → ∞ for all x0 ∈ R
n

+.

Furthermore, x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

Proof. Note that with u(t), t ≥ 0, given by (7.29) it follows from (7.13) that

ẋ(t) = Ax(t) +BK(t)x̂(t), x(0) = x0, t ≥ 0,

= (A+B[K(t), 0m×(n−m)])x(t)

= Ã(t)x(t), (7.32)

209



where Ã(t), t ≥ 0, is given by (7.27). Now, since Ã(t), t ≥ 0, is essentially nonnegative

pointwise-in-time, it follows from Proposition 7.2 that x(t) ≥≥ 0, t ≥ 0, for all

x0 ∈ R
n

+. Next, using As = A+BK̃g, note that (7.32) can be equivalently written as

ẋ(t) = Asx(t) +B(K(t)−Kg)x̂(t), x(0) = x0, t ≥ 0. (7.33)

Furthermore, since As is essentially nonnegative and asymptotically stable, it follows

from Theorem 7.1 that there exist p, r ∈ R
n such that p >> 0 and r >> 0 satisfy

0 = AT
s p+ r. (7.34)

To show Lyapunov stability of the closed-loop system (7.31) and (7.33) consider the

Lyapunov function candidate

V (x,K) = pTx+ 1
2
tr(K −Kg)

TQ−1(K −Kg), (7.35)

or, equivalently,

V (x,K) = pTx+
1

2

m
∑

i=1

pibi
qi

(ki − kgi)2, (7.36)

where Q = diag
[

q1
p1b1

, · · · , qm
pmbm

]

. Note that V (0, Kg) = 0 and, since p >> 0 and

Q > 0, V (x,K) > 0 for all (x,K) 6= (0, Kg). Furthermore, V (x,K) is radially

unbounded with respect to the nonnegative orthant. Now, letting x(t), t ≥ 0, denote

the solution to (7.33) and using (7.31), it follows that the Lyapunov derivative along

the closed-loop system trajectories is given by

V̇ (x(t), K(t)) = pT[Asx(t) +B(K(t)−Kg)x̂(t)] + tr(K(t)−Kg)
TQ−1K̇(t)

= −rTx(t) +
m
∑

i=1

pibi(ki(t)− kgi)xi(t) +
m
∑

i=1

pibi
qi

(ki(t)− kgi)k̇i(t)

= −rTx(t)

≤ 0, t ≥ 0,

which proves that the solution (x(t), K(t)) ≡ (0, Kg) to (7.31) and (7.33) is Lyapunov

stable. Furthermore, since r >> 0 it follows from Theorem 2 of [42] that x(t)→ 0 as

t→∞ for all x0 ∈ R
n

+. ¤
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Finally, we generalize Theorem 7.3 to the case where the input matrix is not

necessarily nonnegative. For the statement of the following result define sgn bi ,

bi/|bi|.

Theorem 7.5. Consider the linear uncertain dynamical system G given by (7.13)

where A is essentially nonnegative and B is given by (7.14) where bi, i = 1, · · · ,m, is

an unknown constant, but sgn bi is known. For a given xd assume there exist a nonneg-

ative vector xu ∈ R
n−m

+ and a vector ue ∈ R
m such that (7.15) holds with Axe ≤≤ 0.

Furthermore, assume there exists a diagonal matrix Kg = diag[kg1, · · · , kgm] ∈ R
m×m

such that As , A + BK̃g is asymptotically stable, where K̃g , [Kg, 0m×(n−m)]. Fi-

nally, let qi and q̂i, i = 1, · · · ,m, be positive constants. Then the adaptive feedback

control law (7.16) with update laws

k̇i(t) = −(sgn bi)qi(xi(t)− xdi)2, i = 1, · · · ,m, (7.37)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) ≥ xd,
−(sgn bi)q̂i(xi(t)− xdi), otherwise,

i = 1, · · · ,m,

(7.38)

where ki(0) and φi(0) are such that (sgn bi)ki(0) ≤ 0 and (sgn bi)φi(0) ≥ 0, respec-

tively, guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) of the closed-loop

system given by (7.13), (7.16), (7.37), (7.38) is Lyapunov stable and xi(t) → xdi,

i = 1, · · · ,m, as t → ∞ for all x0 ∈ R
n

+. Furthermore, x(t) ≥≥ 0, t ≥ 0, for all

x0 ∈ R
n

+.

Proof. The proof is similar to that of Theorem 7.3 with Q and Q̂ replaced by

Q = diag
[

q1
p1|b1| , · · · ,

qm
pm|bm|

]

and Q̂ = diag
[

q̂1
p1|b1| , · · · ,

q̂m
pm|bm|

]

, respectively. ¤

Note that the adaptive controller given in Theorem 7.5 does not destroy nonnega-

tivity with respect to the plant states. In particular, the closed-loop system dynamics

are given by (7.26). Now, it can be seen that if bi is negative, then ki(t) ≥ 0, t ≥ 0,
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and φi(t) ≤ 0, t ≥ 0, and hence v(t) ≥≥ 0, t ≥ 0, and w(t) ≥≥ 0, t ≥ 0. Hence, by

Proposition 7.5, x(t) ≥≥ 0, t ≥ 0.

7.4. Adaptive Control for Linear Nonnegative Dynamical Sys-

tems with Nonnegative Control

As discussed in the Introduction, control (source) inputs of drug delivery systems

for physiological processes are usually constrained to be nonnegative as are the system

states. Hence, in this section we develop adaptive control laws for nonnegative systems

with nonnegative control inputs. However, as noted in Section 7.2, since condition

(7.12) is required to be satisfied for xe ∈ R
n

+ and ue ∈ R
m

+ , it follows from Brockett’s

necessary condition for asymptotic stabilizability [53] that there does not exist a

continuous stabilizing nonnegative feedback if 0 ∈ spec(A) and xe ∈ R
n
+. Hence, in

this section we assume that A is asymptotically stable and hence, without loss of

generality, by Proposition 7.3 we further assume that A is an asymptotically stable

compartmental matrix. Thus, we proceed with the aforementioned assumptions to

design adaptive controllers for uncertain compartmental systems that guarantee that

limt→∞ xi(t) = xdi ≥ 0 for i = 1, · · · ,m ≤ n, where xdi is a desired set point for the

ith compartmental state while guaranteeing a nonnegative control input.

Theorem 7.6. Consider the linear uncertain dynamical system G given by (7.13),

where A is an asymptotically stable compartmental matrix, and B is nonnegative

and given by (7.14). For a given xd ∈ R
m
+ assume there exist vectors xu ∈ R

n−m
+ and

ue ∈ R
m

+ such that (7.15) holds. Furthermore, let qi and q̂i, i = 1, · · · ,m, be positive

constants. Then the adaptive feedback control law

ui(t) = max{0, ûi(t)}, i = 1, · · · ,m, (7.39)
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where

ûi(t) = ki(t)(xi(t)− xdi) + φi(t), i = 1, · · · ,m, (7.40)

ki(t) ∈ R, t ≥ 0, and φi(t) ∈ R, t ≥ 0, i = 1, · · · ,m, with update laws

k̇i(t) =

{

0, if ûi(t) < 0,
−qi(xi(t)− xdi)2, otherwise,

ki(0) ≤ 0, i = 1, · · · ,m, (7.41)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) ≥ xdi, or if ûi(t) ≤ 0,
−q̂i(xi(t)− xdi), otherwise,

φi(0) ≥ 0, i = 1, · · · ,m, (7.42)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue), whereKg = diag[kg1, · · · ,

kgm] ≤ 0, of the closed-loop system given by (7.13), (7.39), (7.41), (7.42) is Lyapunov

stable and xi(t) → xdi, i = 1, · · · ,m, as t → ∞ for all x0 ∈ R
n

+. Furthermore,

u(t) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

Proof. First, define Ku(t) , diag[ku1(t), · · · , kum(t)] and φu(t) , [φu1(t), · · · ,

φum(t)]
T, where

kui(t) =

{

0, if ûi(t) < 0,
ki(t), otherwise,

i = 1, · · · ,m, (7.43)

φui(t) =

{

0, if ûi(t) < 0,
φi(t), otherwise,

i = 1, · · · ,m. (7.44)

Now, note that with u(t), t ≥ 0, given by (7.39) it follows from (7.13) that

ẋ(t) = Ax(t) +BKu(t)(x̂(t)− xd) +Bφu(t), x(0) = x0, t ≥ 0, (7.45)

or, equivalently, using (7.15),

ẋ(t) = A(x(t)−xe)+BKu(t)(x̂(t)−xd)+B(φu(t)−ue), x(0) = x0, t ≥ 0. (7.46)

Furthermore, note that since A is essentially nonnegative and asymptotically sta-

ble, it follows from Theorem 7.2 that there exists a positive diagonal matrix P ,

diag[p1, · · · , pn] and a positive-definite matrix R ∈ R
n×n such that

0 = ATP + PA+R. (7.47)
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To show Lyapunov stability of the closed-loop system (7.41), (7.42), and (7.46) con-

sider the Lyapunov function candidate

V (x,K, φ) = (x−xe)TP (x−xe)+ tr(K−Kg)
TQ−1(K−Kg)+ (φ−ue)TQ̂−1(φ−ue),

(7.48)

or, equivalently,

V (x,K, φ) =
n
∑

i=1

pi(xi − xei)2 +
m
∑

i=1

pibi
qi

(ki − kgi)2 +
m
∑

i=1

pibi
q̂i

(φi − uei)2,

where Q = diag
[

q1
p1b1

, · · · , qm
pmbm

]

and Q̂ = diag
[

q̂1
p1b1

, · · · , q̂m
pmbm

]

. Note that V (xe, Kg,

ue) = 0 and, since P , Q, and Q̂ are positive definite, V (x,K, φ) > 0 for all (x,K, φ) 6=

(xe, Kg, ue). Furthermore, V (x,K, φ) is radially unbounded. Now, letting x(t), t ≥ 0,

denote the solution to (7.46) and using (7.41) and (7.42), it follows that the Lyapunov

derivative along the closed-loop system trajectories is given by

V̇ (x(t), K(t), φ(t)) = 2(x(t)− xe)TP [A(x(t)− xe) +BKu(t)(x̂(t)− xd)

+B(φu(t)− ue)] + 2tr(K(t)−Kg)
TQ−1K̇(t)

+2(φ(t)− ue)TQ̂−1φ̇(t)

= −(x(t)− xe)TR(x(t)− xe) + 2
m
∑

i=1

pibikui(t)(xi(t)− xdi)2

+2
m
∑

i=1

pibi(xi(t)− xdi)(φui(t)− uei)

+2
m
∑

i=1

pibi
qi

(ki(t)− kgi)k̇i(t) + 2
m
∑

i=1

pibi
q̂i

(φi(t)− uei)φ̇i(t)

= −(x(t)− xe)TR(x(t)− xe)

+2
m
∑

i=1

pibi

[

kui(t)(xi(t)− xdi)2 +
1

qi
(ki(t)− kgi)k̇i(t)

]

+2
m
∑

i=1

pibi

[

(xi(t)− xdi)(φui(t)− uei) +
1

q̂i
(φi(t)− uei)φ̇i(t)

]

.

(7.49)

Now, for each i ∈ {1, · · · ,m} and for the two cases given in (7.41) and (7.42), the last

two terms on the right-hand side of (7.49) give:
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i) If ûi(t) < 0, then kui(t) = 0, φui(t) = 0, k̇i(t) = 0, and φ̇i(t) = 0. Furthermore,

since φi(t) ≥ 0 and ki(t) ≤ 0 for all t ≥ 0, it follows from (7.40) that ûi(t) < 0

only if xi(t) > xdi and hence

kui(t)(xi(t)− xdi)2 +
1

qi
(ki(t)− kgi)k̇i(t) = 0,

(xi(t)− xdi)(φui(t)− uei) +
1

qi
(φi(t)− uei)φ̇i(t) = −(xi(t)− xdi)uei ≤ 0.

ii) Otherwise, kui(t) = ki(t) and φui(t) = φi(t) and hence

kui(t)(xi(t)− xdi)2 +
1

qi
(ki(t)− kgi)k̇i(t) = kgi(xi(t)− xdi)2 ≤ 0,

(xi(t)− xdi)(φui(t)− uei) +
1

q̂i
(φi(t)− uei)φ̇i(t)

=

{

−(xi(t)− xdi)uei ≤ 0, if φi(t) = 0 and xi(t) ≥ xdi,
0, otherwise.

Hence, it follows that in either case

V̇ (x(t), K(t), φ(t)) ≤ −(x(t)− xe)TR(x(t)− xe)

≤ 0, t ≥ 0, (7.50)

which proves that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) to (7.41), (7.42), and

(7.46) is Lyapunov stable. Furthermore, since R > 0 it follows from Theorem 2 of [42]

that x(t)→ xe as t→∞ for all x0 ∈ R
n

+.

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (7.39). Now, since B ≥≥ 0 and

u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 7.4 that x(t) ≥≥ 0 for all t ≥ 0 and

x0 ∈ R
n

+. ¤

Remark 7.2. As in the case of Theorem 7.3, the conditions in Theorem 7.6

imply that x(t) → xe as t → ∞ and hence it follows from (7.41) and (7.42) that

(x(t), K(t), φ(t)) →M , {(x,K, φ) ∈ R
n × R

m×m × R
m : x = xe, K̇ = 0, φ̇ = 0} as

t→∞.
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It is important to note that the adaptive control law (7.39), (7.41), and (7.42) does

not require the explicit knowledge of the constant vector ue; even though Theorem 7.6

requires the existence of xu ∈ R
n−m
+ and ue ∈ R

m
+ such that condition (7.15) holds.

Furthermore, the control input ui(t), t ≥ 0, is always nonnegative regardless of the

values of xi(t), ki(t), and φi(t), t ≥ 0, i = 1, · · · ,m, which ensures that the closed-loop

plant states remain nonnegative by Proposition 7.4. Finally, it should be noted that

since A is asymptotically stable, the adaptive gains ki(t), t ≥ 0, i = 1, · · · ,m, only

change the performance of the closed-loop system and do not destroy stability even

when we set k̇i(t) = 0, t ≥ 0, with ki(0) ≤ 0, i = 1, · · · ,m.

7.5. Adaptive Control for General Anesthesia

The potential clinical applications of adaptive control for pharmacology in general,

and anesthesia and critical care medicine in particular, are clearly apparent. Specifi-

cally, monitoring and controlling the levels of consciousness in surgery is of particular

importance. Propofol is an intravenous anesthetic that has been used for both induc-

tion and maintenance of general anesthesia [54]. A simple yet effective patient model

for the disposition of propofol is based on the three-compartment mammillary model

shown in Figure 7.1 with the first compartment acting as the central compartment and

the remaining two compartments exchanging with the central compartment [68,161].

The three-compartment mammillary system provides a pharmacokinetic model for a

patient describing the distribution of propofol into the central compartment (identi-

fied with the intravascular blood volume as well as highly perfused organs) and the

other various tissue groups of the body. A mass balance for the whole compartmental

system yields

ẋ1(t) = −(a11 + a21 + a31)x1(t) + a12x2(t) + a13x3(t) + u(t), x1(0) = x10, t ≥ 0,

(7.51)
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Compartment 2 Compartment 3
Central

Compartment

u ≡ Continuous infusion

a12x2

a21x1

a31x1

a13x3

a11x1

Figure 7.1: Three-compartment mammillary model for disposition of propofol

ẋ2(t) = a21x1(t)− a12x2(t), x2(0) = x20, (7.52)

ẋ3(t) = a31x1(t)− a13x3(t), x3(0) = x30, (7.53)

where x1(t), x2(t), x3(t), t ≥ 0, are the masses in grams of propofol in the central

compartment and compartments 2 and 3, respectively, u(t), t ≥ 0, is the infusion

rate in grams/min of the anesthetic (propofol) into the central compartment, aij > 0,

i 6= j, i, j = 1, 2, 3, are the rate constants in min−1 for drug transfer between com-

partments, and a11 > 0 in min−1 is the rate constant for elimination from the central

compartment. Even though these transfer and loss coefficients are positive, they can

be uncertain due to patient gender, weight, pre-existing disease, age, and concomi-

tant medication. Hence, adaptive control for propofol regulation during surgery can

significantly improve the outcomes for drug administration over manual control.

It has been reported in [239] that a 2.5–6 µg/m` blood concentration level of

propofol is required during the maintenance stage in general anesthesia depending on

patient fitness and extent of surgical stimulation. Hence, continuous infusion control

is required for maintaining this desired level of anesthesia. Here we assume that the

transfer and loss coefficients a11, a12, a21, a13, and a31 are unknown and our objective is

to regulate the propofol concentration level of the central compartment to the desired

level of 4 µg/m` in the face of system uncertainty. Furthermore, since propofol mass

in the blood plasma cannot be measured directly, we measure the concentration of
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Table 7.1: Pharmacokinetic parameters [68]
Set a11 (min−1) a21 (min−1) a12 (min−1) a31 (min−1) a13 (min−1)
A 0.152 0.207 0.092 0.040 0.0048
B 0.119 0.114 0.055 0.041 0.0033

propofol in the central compartment; that is, x1/Vc, where Vc is the volume in liters

of the central compartment. As noted in [161], Vc can be approximately calculated by

Vc = (0.159 `/kg)(M kg), where M is the weight (mass) in kilograms of the patient.

In our control design we assume M = 70 kg so that the desired level of propofol mass

in the central component is given by xd1 = (4µg/m`)(0.159 `/kg)(70 kg) = 44.52 mg.

Next, note that (7.51)–(7.53) can be written in state space form (7.13) with x =

[x1, x2, x3]
T,

A =





−(a11 + a21 + a31) a12 a13
a21 −a12 0
a31 0 −a13



 , B =





1
0
0



 . (7.54)

Now, it can be shown that for xd1/Vc = 4 µg/m`, all the conditions of Theorem 7.6

are satisfied. Hence, it follows from Theorem 7.6 that the adaptive dynamic feedback

controller (7.39) with update laws (7.41), (7.42) guarantees that u(t) ≥ 0 for all t ≥ 0

and x1(t)→ xd1 as t→∞ for any (uncertain) positive values of the transfer and loss

coefficients. To illustrate the robustness properties of the proposed adaptive control

law, we use the average set of pharmacokinetic parameters given in [68] for 29 patients

requiring general anesthesia for noncardiac surgery. For our design we switch from

Set A to Set B given in Table 7.1 at t = 25 min. With q1 = 1000 g−2 min−2, q̂1 =

0.5 min−2, and initial conditions x(0) = [0, 0, 0]T g, k1(0) = 0 min−1, and φ1(0) = 0.01

g/min−1, Figure 7.2 shows the masses of propofol in all three compartments versus

time. Figure 7.3 shows the propofol concentration in the central compartment and

the control signal (propofol infusion rate) versus time. Finally, Figure 7.4 shows the

adaptive gain history versus time.

In the above simulations, the adaptive controller was designed using a pharma-
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Figure 7.2: Compartmental masses versus time

cokinetic model (a model describing drug concentrations as a function of time and

dose) for the disposition of propofol. Even though propofol concentration levels in

the blood plasma are a good indication of the depth of anesthesia, they cannot be

measured in real time during surgery. Furthermore, we are more interested in drug

effect (depth of hypnosis) rather than drug concentration. Hence, we consider a more

realistic model involving pharmacokinetics (drug concentration as a function of time)

and pharmacodynamics (drug effect as a function of concentration) for control of

anesthesia. Specifically, we use an electroencephalogram (EEG) signal as a measure

of drug effect of anesthetic compounds on the brain [215]. Since electroencephalog-

raphy provides real-time monitoring of the central nervous system activity, it can be

used to quantify levels of consciousness and hence is amenable for feedback (closed-

loop) control in general anesthesia. Recently, a new EEG indicator, the bispectral

index (BIS), has been proposed as a measure of anesthetic effect [174]. This index
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Figure 7.3: Drug concentration in the central compartment and control signal (in-
fusion rate) versus time

quantifies the nonlinear relationships between the component frequencies in the elec-

troencephalogram, as well as analyzing their phase and amplitude. The BIS signal

is a nonlinear monotonically decreasing function of the level of consciousness and is

given by

BIS(ceff) = BIS0

(

1− cγeff
cγeff + ECγ

50

)

, (7.55)

where BIS0 denotes the baseline (awake state) value and, by convention, is typically

assigned a value of 100, ceff is the propofol concentration in grams/liter in the effect

site compartment (brain), EC50 is the concentration at half maximal effect and repre-

sents the patient’s sensitivity to the drug, and γ determines the degree of nonlinear-

ity in (7.55). Here, the effect site compartment is introduced as a correlate between

the central compartment concentration and the central nervous system concentra-

tion [205]. The effect site compartment concentration is related to the concentration
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Figure 7.4: Adaptive gain history versus time

in the central compartment by the first-order delay model

ċeff(t) = aeff(x1(t)/Vc − ceff(t)), ceff(0) = x1(0), t ≥ 0, (7.56)

where aeff in min−1 is a positive time constant. Assuming x1(0) = 0, it follows that

ceff(t) =

∫ t

0

e−aeff(t−s)aeffx1(s)/Vc ds. (7.57)

In reality, the effect site compartment equilibrates with the central compartment in

a matter of a few minutes. The parameters aeff , EC50, and γ are determined by data

fitting and vary from patient to patient. BIS index values of 0 and 100 correspond,

respectively, to an isoelectric EEG signal and an EEG signal of a fully conscious

patient; while the range between 40 and 60 indicates a moderate hypnotic state [65].

In the following numerical simulation we set EC50 = 3.4 µg/m`, γ = 3, and

BIS0 = 100, so that the BIS signal is shown in Figure 7.5. The target (desired) BIS

value, BIStarget, is set at 50. In this case, the linearized BIS function about the target

221



0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Effect site concentration [µg/ml]

B
IS

 In
de

x 
[s

co
re

]

Target BIS

EC
50

 = 3.4 [µg/ml]

← Linearized range

Figure 7.5: BIS index versus effect site concentration

BIS value is given by

BIS(ceff) ' BIS(EC50)− BIS0 · ECγ
50 ·

γcγ−1eff

(cγeff + ECγ
50)

2

∣

∣

∣

∣

ceff=EC50

· (ceff − EC50)

= 125− 22.06ceff . (7.58)

Furthermore, for simplicity of exposition, we assume that the effect site compartment

equilibrates instantaneously with the central compartment; that is, we assume that

aeff →∞, so that (7.57) reduces to ceff(t) = x1(t)/Vc, t ≥ 0. Now, using the adaptive

feedback controller

u(t) = max{0, û(t)}, (7.59)

where

û(t) = −k(t)(BIS(t)− BIStarget) + φ(t), (7.60)

k(t) ∈ R, t ≥ 0, and φ(t) ∈ R, t ≥ 0, with update laws

k̇(t) =

{

0, if û(t) < 0,
−qBIS(BIS(t)− BIStarget)

2, otherwise,
k(0) ≤ 0, (7.61)

φ̇(t) =











0,
if φ(t) = 0 and BIS(t) > BIStarget,
or if û(t) ≤ 0,

q̂BIS(BIS(t)− BIStarget), otherwise,

φ(0) ≥ 0,
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(7.62)

where qBIS and q̂BIS are arbitrary positive constants, it follows from Theorem 7.6

that the control input (anesthetic infusion rate) u(t) is nonnegative for all t ≥ 0 and

BIS(t) → BIStarget as t → ∞ for any (uncertain) positive values of the transfer and

loss coefficients in the range of ceff where the linearized BIS equation (7.58) is valid.

It is important to note that during actual surgery the BIS signal is obtained directly

from the EEG and not (7.55). Furthermore, since our adaptive controller only requires

the error signal BIS(t)−BIStarget over the linearized range of (7.55), we do not require

knowledge of the slope of the linearized equation (7.58), nor do we require knowledge

of the parameters γ and EC50. Once again, for our design we assume M = 70 kg and

we switch from Set A to Set B given in Table 7.1 at t = 25 min. Furthermore, we

assume that at t = 25 min the pharmacodynamic parameters EC50 and γ are switched

from 3.4 µg/m` and 3 to 4.0 µg/m` and 4, respectively. Here we consider noncardiac

surgery since cardiac surgery often utilizes hypothermia which itself changes the BIS

signal. With qBIS = 1 × 10−6 g/min2, q̂BIS = 1 × 10−3 g/min2, and initial conditions

x(0) = [0, 0, 0]T g, k(0) = 0 g/min, and φ(0) = 0.01 g/min, Figure 7.6 shows the

masses of propofol in all three compartments versus time. Figure 7.7 shows the

BIS index versus time. Figure 7.8 shows the propofol concentration in the central

compartment and the control signal (propofol infusion rate) versus time. Finally,

Figure 7.9 shows the adaptive gain history versus time.

7.6. Conclusion

Nonnegative and compartmental systems are widely used to capture system dy-

namics involving the interchange of mass and energy between homogeneous subsys-

tems or compartments. Thus, it is not surprising that nonnegative and compartmental

models are remarkably effective in describing the dynamical behavior of biological and
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Figure 7.6: Compartmental masses versus time
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Figure 7.7: BIS index versus time
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Figure 7.8: Drug concentration in the central compartment and control signal (in-
fusion rate) versus time

physiological systems. In this chapter, we developed an adaptive control framework

for adaptive set-point regulation of linear uncertain nonnegative and compartmental

systems. Using Lyapunov methods the proposed framework was shown to guaran-

tee partial asymptotic set-point stability of the closed-loop system while additionally

guaranteeing the nonnegativity of the closed-loop system states associated with the

plant dynamics. Finally, using a three-compartment mammillary patient model for

the disposition of propofol, the proposed adaptive control framework was used to mon-

itor and control a desired constant level of consciousness for noncardiac surgery. Even

though measurement noise was not addressed in our framework, it should be noted

that EEG signals may have as much as 10% variation due to noise. In particular,

the BIS signal may be corrupted by electromyographic noise; that is, signals emanat-

ing from muscle rather than the central nervous system. Clinical implementation of

the proposed algorithm would thus have to include muscle paralysis to minimize the
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Figure 7.9: Adaptive gain history versus time

effects of electromyographic noise.
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Chapter 8

Direct Adaptive Control of

Nonnegative and Compartmental

Dynamical Systems with

Time Delay

8.1. Introduction

As discussed in Chapter 7, nonnegative and compartmental models play a key role

in the understanding of many processes in biological and medical sciences [6, 19, 24,

62, 70, 75, 123, 124, 164, 166, 172, 182, 187, 203]. Compartmental systems are modeled

by interconnected subsystems (or compartments) which exchange variable nonnega-

tive quantities of material with conservation laws describing transfer, accumulation,

and outflows between compartments and the environment. In many compartmen-

tal pharmacokinetic system models, transfers between compartments are assumed to

be instantaneous; that is, the model does not account for material in transit. Even

though this is a valid assumption for certain biological and physiological systems, it

is not true in general; especially in pharmacokinetic and pharmacodynamic models.

For example, if a bolus of drug is injected into the circulation and we seek its concen-

tration level in the extracellular and intercellular space of some organ, there exists a
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time lag before it is detected in that organ [74,123,165]. In this case, assuming instan-

taneous mass transfer between compartments will yield erroneous models. Hence, to

accurately describe the distribution of pharmacological agents in the human body, it

is necessary to include in any mathematical compartmental pharmacokinetic model

some information of the past system states. In this case the state of the system at

any given time involves a piece of trajectories in the space of continuous functions

defined on an interval in the nonnegative orthant. This of course leads to (infinite-

dimensional) delay dynamical systems [55,101,143,181].

In Chapter 7 (see also [85,86]), we present a direct adaptive control framework for

set-point regulation of linear nonnegative and compartmental systems with applica-

tions to clinical pharmacology. In this chapter, we extend the results of Chapter 7 to

the case of nonnegative and compartmental dynamical systems with unknown time

delay. Specifically, we develop a Lyapunov-Krasovskii-based direct adaptive control

framework for guaranteeing set-point regulation for linear uncertain nonnegative and

compartmental dynamical systems with unknown time delay. The specific focus of

the chapter is on pharmacokinetic models and their applications to drug delivery sys-

tems. In particular, we develop direct adaptive controllers with nonnegative control

inputs as well as adaptive controllers with the absence of such a restriction. Finally,

we demonstrate the framework on a drug delivery model for general anesthesia that

involves system time delays.

8.2. Mathematical Preliminaries

In this section we introduce some key results concerning linear nonnegative dy-

namical systems with time delay [81, 83] that are necessary for developing the main

results of this chapter. Specifically, consider a controlled linear time-delay dynamical
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system G of the form

ẋ(t) = Ax(t) + Adx(t− τ) +Bu(t), x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (8.1)

where x(t) ∈ R
n, u(t) ∈ R

m, t ≥ 0, A ∈ R
n×n, Ad ∈ R

n×n, B ∈ R
n×m, τ ≥ 0,

η(·) ∈ C = C([−τ, 0],Rn) is a continuous vector-valued function specifying the initial

state of the system, and C([−τ, 0],Rn) denotes a Banach space of continuous functions

mapping the interval [−τ, 0] into R
n with the topology of uniform convergence. Note

that the state of (8.1) at time t is the piece of trajectories x between t− τ and t, or,

equivalently, the element xt in the space of continuous functions defined on the interval

[−τ, 0] and taking values in R
n; that is, xt ∈ C([−τ, 0],Rn), where xt(θ) , x(t + θ),

θ ∈ [−τ, 0]. Furthermore, since for a given time t the piece of the trajectories xt is

defined on [−τ, 0], the uniform norm |||xt||| = supθ∈[−τ,0] ‖x(t+ θ)‖, where ‖ · ‖ denotes

the Euclidean vector norm, is used for the definitions of Lyapunov and asymptotic

stability of (8.1) with u(t) ≡ 0. For further details see [101, 143]. Finally, note that

since η(·) is continuous it follows from Theorem 2.1 of [101, p. 14] that there exists a

unique solution x(η) defined on [−τ,∞) that coincides with η on [−τ, 0] and satisfies

(8.1) for t ≥ 0.

The following theorem gives necessary and sufficient conditions for asymptotic

stability of a linear time-delay nonnegative dynamical system G given by (8.1) in the

case where u(t) ≡ 0. For this result, the following definition is needed.

Definition 8.1. The linear delay dynamical system given by (8.1) is nonnegative

if for every η(·) ∈ C+, and u(t) ≥≥ 0, t ≥ 0, where C+ , {ψ(·) ∈ C : ψ(θ) ≥≥ 0, θ ∈

[−τ, 0]}, the solution x(t), t ≥ 0, to (8.1) is nonnegative.

Theorem 8.1 [81, 83]. Consider the linear nonnegative dynamical system G given

by (8.1) where A ∈ R
n×n is essentially nonnegative, Ad ∈ R

n×n is nonnegative, and
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u(t) ≡ 0. Then, G is asymptotically stable for all τ ∈ [0,∞) if and only if there exist

p, r ∈ R
n such that p >> 0 and r >> 0 satisfy

0 = (A+ Ad)
Tp+ r. (8.2)

Next, we consider a subclass of nonnegative systems; namely, compartmental

systems.

Definition 8.2 [81, 83]. The linear time-delay dynamical system (8.1) is called a

compartmental dynamical system if A and Ad are given by

A(i,j) =

{

−∑n
k=1 aki, i = j,
0, i 6= j,

Ad(i,j) =

{

0, i = j,
aij, i 6= j,

(8.3)

where aii ≥ 0, i ∈ {1, · · · , n}, denotes the loss coefficient of the ith compartment

and aij ≥ 0, i 6= j, i, j ∈ {1, · · · , n}, denotes the transfer coefficient from the

jthcompartment to the ith compartment.

Note that if (8.1) is a compartmental system, then A + Ad is a compartmental

matrix. In pharmacokinetic applications, an important subclass of compartmental

systems are mammillary systems [123]. Mammillary systems are comprised of a cen-

tral compartment from which there is outflow and which exchanges material reversibly

with one or more peripheral compartments. An inflow-closed (i.e., u(t) ≡ 0) time-

delay mammillary system is given by (8.1) with A and Ad given by

A = diag
[

−
n
∑

j=1

aj1,−a12, · · · ,−a1n
]

, (8.4)

Ad(i,j) =







0, i = j,
0, i 6= 1 and j 6= 1,
aij, otherwise,

(8.5)

where the transfer coefficients aij, i, j = 1, · · · , n, are positive and the loss coefficient
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a11 is nonnegative. In this case,

A+ Ad =











−∑n
j=1 aj1 a12 · · · a1n
a21 −a12 · · · 0
...

...
. . .

...
an1 0 · · · −a1n











. (8.6)

The following proposition is needed for the main results of the chapter.

Proposition 8.1 [81, 83]. The linear delay dynamical system G given by (8.1)

is nonnegative if and only if A ∈ R
n×n is essentially nonnegative, Ad ∈ R

n×n is

nonnegative, and B ∈ R
n×m is nonnegative.

It follows from Proposition 8.1 that the control input signal Bu(t), t ≥ 0, needs to

be nonnegative to guarantee the nonnegativity of the state of (8.1). This is due to the

fact that when the initial state of (8.1) belongs to the boundary of the nonnegative

orthant, a negative input can destroy the nonnegativity of the state of (8.1). Alterna-

tively, however, if the initial state is in the interior of the nonnegative orthant, then

it follows from continuity of solutions with respect to the system initial conditions

that, over a small interval of time, nonnegativity of the state of (8.1) is guaranteed

irrespective of the sign of each element of the control input Bu(t) over this time in-

terval. However, unlike open-loop control wherein lack of coordination between the

input and the state necessitates nonnegativity of the control input, a feedback control

signal predicated on the system state variables allows for the anticipation of loss of

nonnegativity of the state. Hence, state feedback control signals can take negative

values while assuring nonnegativity of the system states. For further discussion of

the above fact see [53,86].

Next, we present a time-varying extension to Proposition 8.1 needed for the main

theorems of this chapter. Specifically, we consider the linear time-varying delay dy-
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namical system

ẋ(t) = A(t)x(t) + Ad(t)x(t− τ) +Bu(t), x(θ) = η(θ), θ ∈ [−τ, 0], t ≥ 0, (8.7)

where A : [0,∞) → R
n×n and Ad : [0,∞) → R

n×n are continuous. For the following

result the definition of nonnegativity holds with (8.1) replaced by (8.7).

Proposition 8.2. Consider the time-varying delay dynamical system (8.7) where

A : [0,∞) → R
n×n and Ad : [0,∞) → R

n×n are continuous. If for every t ∈ [0,∞),

A : [0,∞) → R
n×n is essentially nonnegative, Ad : [0,∞) → R

n×n is nonnegative,

B ∈ R
n×m is nonnegative, and u(t) is nonnegative, then the solution x(t), t ≥ 0, to

(8.7) is nonnegative.

Proof. The result is a direct consequence of the nonlinear analogue to Proposi-

tion 8.1 by equivalently representing the time-varying delay dynamical system (8.7) as

an autonomous nonlinear time-delay system by appending another state to represent

time. Specifically, defining y(t) , t it follows that (8.7) may be rewritten as

ẋ(t) = A(y(t))x(t) + Ad(y(t))x(t− τ) +Bu(t), x(θ) = η(θ), θ ∈ [−τ, 0], t ≥ 0,

(8.8)

ẏ(t) = 1, y(0) = 0, (8.9)

or, equivalently,

˙̃x(t) = f(x̃(t)) +G(x̃(t))x̃(t− τ) + B̃u(t), x̃(θ) =

[

η(θ)
0

]

, θ ∈ [−τ, 0], t ≥ 0,

(8.10)

where, x̃ =

[

x
y

]

, f(x̃) =

[

A(y)x
1

]

, G(x̃) =

[

Ad(y) 0
0 0

]

, and B̃ =

[

B
0

]

. Now,

the result is a direct consequence of the nonlinear analogue to Proposition 3.1 of [83].

¤
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Since stabilization of nonnegative systems naturally deals with equilibrium points

in the interior of the nonnegative orthant R
n

+, the following proposition provides

necessary conditions for the existence of an interior equilibrium point xe ∈ R
n
+ of

(8.1) in terms of the stability properties of the system matrices A and Ad. For this

result, recall that a matrix M ∈ R
n×n is semistable if and only if limt→∞ e

Mt exists.

Proposition 8.3. Consider the nonnegative time-delay dynamical system (8.1)

and assume there exist xe ∈ R
n
+ and ue ∈ R

m

+ such that

0 = (A+ Ad)xe +Bue. (8.11)

Then, A+ Ad is semistable.

Proof. The proof is a direct consequence of ii) of Theorem 3.2 in [75] with A

replaced by A+ Ad, p = xe, and r = Bue. ¤

It follows from Proposition 8.3 that the existence of an equilibrium point xe ∈ R
n
+

for (8.1) implies that the matrix A + Ad is semistable. Hence, if (8.11) holds for

xe ∈ R
n
+ and ue ∈ R

m

+ , then A + Ad is asymptotically stable or 0 ∈ spec(A + Ad),

where spec(A+Ad) denotes the spectrum of A+Ad, is a simple eigenvalue of A+Ad

and all other eigenvalues of A + Ad have negative real parts since −(A + Ad) is an

M -matrix [20].

Finally, the following lemma and proposition are needed for the main results of

this chapter.

Lemma 8.1. Let A, Ad ∈ R
n×n be such that A = AT < 0 and Ad = AT

d . If

A+ Ad < 0, then there exists Q ∈ R
n×n, Q > 0, such that

2A+Q+ AdQ
−1Ad < 0. (8.12)
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Proof. The proof is straightforward with Q = −A. Specifically, note that A +

Ad < 0 if and only if Ad < Q or, equivalently, Q−
1
2AdQ

− 1
2 < In, where Q−

1
2 ∈

R
n×n is such that Q−

1
2 > 0 and (Q−

1
2 )2 = Q−1. Hence, A + Ad < 0 if and only if

(Q−
1
2AdQ

− 1
2 )2 < In which is equivalent to AdQ

−1Ad < Q and which further implies

that

2A+Q+ AdQ
−1Ad = −Q+ AdQ

−1Ad < 0,

proving (8.12). ¤

Proposition 8.4. Consider a linear time-delay mammillary system given by (8.1)

where A and Ad are given by (8.4) and (8.5), respectively. Then there exist a positive-

definite matrix Q ∈ R
n×n and a positive diagonal matrix P ∈ R

n×n such that

0 > ATP + PA+Q+ PAdQ
−1AT

dP. (8.13)

Proof. Let Â , DAD−1 and Âd = DAdD
−1, where D = diag[1, d2, · · · , dn] and

dj =
√

a1j
aj1

, j = 2, · · · , n. Now, note that Â is diagonal and Âd is symmetric. Since

A+Ad is similar to Â+ Âd and Â+ Âd is symmetric, it follows that the eigenvalues

of A+Ad are real. Next, it can be shown that A+Ad is Hurwitz, which implies that

Â+ Âd < 0. Now, it follows from Lemma 8.1 that there exists Q̂ > 0 such that

0 > 2Â+ Q̂+ ÂdQ̂
−1Âd,

or, equivalently,

0 > D−1ATD +DAD−1 + Q̂+DAdD
−1Q̂−1D−1AT

dD. (8.14)

Next, (8.14) is equivalent to

0 > ATD2 +D2A+DQ̂D +D2AdD
−1Q̂−1D−1AT

dD
2. (8.15)

Now, the result follows from (8.15) with P = D2 and Q = DQ̂D. ¤
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8.3. Adaptive Control for Linear Nonnegative Uncertain Dy-

namical Systems with Time Delay

In this section we consider the problem of characterizing adaptive feedback control

laws for nonnegative and compartmental uncertain dynamical systems with time delay

to achieve set-point regulation in the nonnegative orthant. Specifically, consider the

following controlled linear uncertain time-delay dynamical system G given by

ẋ(t) = Ax(t) + Adx(t− τ) +Bu(t), x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (8.16)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

A ∈ R
n×n is an unknown essentially nonnegative matrix, Ad ∈ R

n×n and B ∈ R
n×m

are unknown nonnegative matrices, η(·) ∈ {ψ(·) ∈ C+([−τ, 0],Rn) : ψ(θ) ≥≥ 0,

θ ∈ [−τ, 0]}, and τ ≥ 0 is an unknown delay amount. The control input u(·) in (8.16)

is restricted to the class of admissible controls consisting of measurable functions such

that u(t) ∈ R
m, t ≥ 0.

It follows from Proposition 8.1 that the state trajectories of nonnegative and com-

partmental dynamical systems remain in the nonnegative orthant of the state space

for nonnegative initial conditions. However, as noted in Chapter 7, even though

active control of drug delivery systems for physiological applications additionally re-

quires control (source) inputs to be nonnegative, in many applications of nonnegative

systems such as biological systems, population dynamics, and ecological systems,

the positivity constraint on the control input is not natural. Hence, in this sec-

tion we do not place any restriction on the sign of the control signal and design an

adaptive controller that guarantees that the system states remain in the nonnega-

tive orthant and converge to a desired equilibrium state. Specifically, for a given

desired set point xe ∈ R
n

+, our aim is to design a control input u(t), t ≥ 0, such that

limt→∞ ‖x(t)− xe‖ = 0. However, since in many applications of nonnegative systems
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and in particular, compartmental systems, it is often necessary to regulate a subset

of the nonnegative state variables which usually include a central compartment, here

we require that limt→∞ xi(t) = xdi ≥ 0 for i = 1, · · · ,m ≤ n, where xdi is a desired set

point for the ith state xi(t). Furthermore, we assume that control inputs are injected

directly into m separate compartments such that the input matrix is given by

B =

[

Bu

0(n−m)×m

]

, (8.17)

where Bu , diag[b1, · · · , bm] and bi ∈ R+, i = 1, · · · ,m. For compartmental systems

this assumption is not restrictive since control inputs correspond to control inflows

to each individual compartment. Here, we assume that for i ∈ {1, · · · ,m}, bi is

unknown. For the statement of our main result define xe , [xd
T, xu

T]T, where xd ,

[xd1, · · · , xdm]T and xu , [xu1, · · · , xu(n−m)]
T.

Theorem 8.2. Consider the linear uncertain time-delay dynamical system G

given by (8.16) where A is essentially nonnegative, Ad is nonnegative, and B is non-

negative and given by (8.17). Assume there exist nonnegative vectors xu ∈ R
n−m

+ and

ue ∈ R
m

+ such that

0 = (A+ Ad)xe +Bue. (8.18)

Furthermore, assume there exist a diagonal matrix Kg = diag[kg1, · · · , kgm], positive

diagonal matrix P , diag[p1, · · · , pn], and positive-definite matrices Q̃, R ∈ R
n×n

such that

0 = AT
s P + PAs + Q̃+ PAdQ̃

−1

AT
dP +R, (8.19)

where As , A + BK̃g and K̃g , [Kg 0m×(n−m)]. Finally, let qi and q̂i, i = 1, · · · ,m,

be positive constants. Then the adaptive feedback control law

u(t) = K(t)(x̂(t)− xd) + φ(t), (8.20)
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where K(t) = diag[k1(t), · · · , km(t)], x̂(t) = [x1(t), · · · , xm(t)]
T, and φ(t) ∈ R

m, t ≥ 0,

or, equivalently,

ui(t) = ki(t)(xi(t)− xdi) + φi(t), i = 1, · · · ,m, (8.21)

where ki(t) ∈ R, t ≥ 0, and φi(t) ∈ R, t ≥ 0, i = 1, · · · ,m, with update laws

k̇i(t) = −qi(xi(t)− xdi)2, ki(0) ≤ 0, i = 1, · · · ,m, (8.22)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) ≥ xdi,
−q̂i(xi(t)− xdi), otherwise,

φi(0) ≥ 0, i = 1, · · · ,m, (8.23)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) of the closed-loop system

given by (8.16), (8.20), (8.22), (8.23) is Lyapunov stable and xi(t)→ xdi, i = 1, · · · ,m

as t→∞ for all η(·) ∈ C+. Furthermore, x(t) ≥≥ 0 for all t ≥ 0 and η(·) ∈ C+.

Proof. Note that with u(t), t ≥ 0, given by (8.20) it follows from (8.16) that

ẋ(t) = Ax(t)+Adx(t−τ)+BK(t)(x̂(t)−xd)+Bφ(t), x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0,

(8.24)

or, equivalently, using (8.18) and As = A+BK̃g,

ẋ(t) = As(x(t)− xe) + Ad(x(t− τ)− xe) +B(K(t)−Kg)(x̂(t)− xd) +B(φ(t)− ue),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0. (8.25)

To show Lyapunov stability of the closed-loop system (8.22), (8.23), and (8.25) con-

sider the Lyapunov-Krasovskii functional candidate V : C+×R
m×m ×R

m → R given

by

V (ψ,K, φ) = (ψ(0)− xe)TP (ψ(0)− xe) +
∫ 0

−τ

(ψ(θ)− xe)TQ̃(ψ(θ)− xe)dθ

+tr(K −Kg)
TQ−1(K −Kg) + (φ− ue)TQ̂−1(φ− ue), (8.26)
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or, equivalently,

V (ψ,K, φ) =
n
∑

i=1

pi(ψi(t)− xei)2 +
∫ 0

−τ

(ψ(θ)− xe)TQ̃(ψ(θ)− xe)dθ

+
m
∑

i=1

pibi
qi

(ki − kgi)2 +
m
∑

i=1

pibi
q̂i

(φi − uei)2,

where Q = diag
[

q1
p1b1

, · · · , qm
pmbm

]

and Q̂ = diag
[

q̂1
p1b1

, · · · , q̂m
pmbm

]

. Note that V (ψe, Kg,

ue) = 0, where ψe(θ) = xe, θ ∈ [−τ, 0]. Furthermore, note that there exist class K∞
functions α1(·), α2(·), α3(·) such that

V (ψ,K, φ) ≥ α1(‖ψ(0)− xe‖) + α2(‖K −Kg‖F) + α3(‖φ− ue‖),

where ‖ · ‖ denotes the Euclidean vector norm and ‖ · ‖F denotes the Frobenius

matrix norm. Now, letting x(t), t ≥ 0, denote the solution to (8.25) and using (8.22)

and (8.23), it follows that the Lyapunov-Krasovskii directional derivative along the

closed-loop system trajectories is given by

V̇ (xt, K(t), φ(t)) = −(x(t)− xe)TR(x(t)− xe)

−[AT
dP (x(t)− xe)− Q̃(x(t− τ)− xe)]T

·Q̃−1[AT
dP (x(t)− xe)− Q̃(x(t− τ)− xe)]

+2
m
∑

i=1

pibi(ki(t)− kgi)(xi(t)− xd)2

+2
m
∑

i=1

pibi(xi(t)− xe)(φi(t)− uei)

+2
m
∑

i=1

pibi
qi

(ki(t)− kgi)k̇i(t) + 2
m
∑

i=1

pibi
q̂i

(φi(t)− uei)φ̇i(t)

≤ −(x(t)− xe)TR(x(t)− xe)

+2
m
∑

i=1

pibi(φi(t)− uei)
[

(xi(t)− xdi) +
1

q̂i
φ̇i(t)

]

, t ≥ 0. (8.27)

Now for the two cases given in (8.23), the last term on the right-hand side of (8.27)

gives:
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i) If φi(t) = 0 and xi(t) ≥ xdi, then φ̇i(t) = 0 and hence

pibi(φi(t)− uei)
[

(xi(t)− xdi) +
1

q̂i
φ̇i(t)

]

= −pibiuei(xi(t)− xdi) ≤ 0.

ii) Otherwise, φ̇i(t) = −q̂i(xi(t)− xdi) and hence

pibi(φi(t)− uei)
[

(xi(t)− xdi) +
1

q̂i
φ̇i(t)

]

= 0.

Hence, it follows that in either case

V̇ (xt, K(t), φ(t)) ≤ −(x(t)− xe)TR(x(t)− xe)

≤ 0, t ≥ 0, (8.28)

which proves that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) to (8.22), (8.23), and

(8.25) is Lyapunov stable. Furthermore, since the positive orbit γ+(η(θ), K0, φ0) is

bounded and γ+(η(θ), K0, φ0) belongs to a compact subset of C+×R
m×m×R

m [100],

and since R > 0 it follows from the Krasovskii-LaSalle invariant set theorem for

infinite dimensional systems [101, p. 143] that x(t)→ xe as t→∞ for all η(·) ∈ C+.

Finally, to show that x(t) ≥≥ 0, t ≥ 0, for all η(·) ∈ C+, note that the closed-loop

system (8.16), (8.20), (8.22), and (8.23) is given by

ẋ(t) = Ax(t) + Adx(t− τ) +BK(t)(x̂(t)− xd) +Bφ(t)

= (A+B[K(t), 0m×(n−m)])x(t) + Adx(t− τ)−BK(t)xd +Bφ(t)

= Ã(t)x(t) + Adx(t− τ) + v(t) + w(t), (8.29)

where

Ã(t) ,

























a11 + b1k1(t) a12 · · · a1m a1m+1 · · · a1n

a21 a22 + b2k2(t)
...

...
. . . a2n

...
. . .

...
am1 · · · amm + bmkm(t) amm+1 · · · amn

am+11 · · · am+1m am+1m+1 · · · am+1n
...

. . .
...

...
. . .

...
an1 · · · anm anm+1 · · · ann

























,

(8.30)
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v(t) , −



















b1k1(t)xd1
...

bmkm(t)xdm
0
...
0



















, w(t) ,



















b1φ1(t)
...

bmφm(t)
0
...
0



















. (8.31)

Now, since, by (8.22) and (8.23), ki(t) ≤ 0, t ≥ 0, i = 1, · · · ,m, and φi(t) ≥ 0,

t ≥ 0, i = 1, · · · ,m, it follows that v(t) ≥≥ 0, t ≥ 0, and w(t) ≥≥ 0, t ≥ 0.

Hence, since Ã(t), t ≥ 0, is essentially nonnegative pointwise-in-time, it follows from

Proposition 8.2 that x(t) ≥≥ 0 for all t ≥ 0 and η(·) ∈ C+. ¤

Remark 8.1. Note that the conditions in Theorem 8.2 imply that x(t) → xe as

t → ∞ and hence it follows from (8.22) and (8.23) that (x(t), K(t), φ(t)) → M ,

{(x,K, φ) ∈ R
n × R

m×m × R
m : x = xe, K̇ = 0, φ̇ = 0} as t→∞.

It is important to note that the adaptive control law (8.20), (8.22), and (8.23)

does not require the explicit knowledge of the system matrices A, Ad, and B, the gain

matrixKg, and the nonnegative constant vector ue; even though Theorem 8.2 requires

the existence of Kg and nonnegative vectors xu and ue such that the conditions (8.18)

and (8.19) hold. Furthermore, in the case where A+ Ad is semistable and minimum

phase with respect to the output y = x̂, or A + Ad is asymptotically stable, then

there always exists a diagonal matrix Kg ∈ R
m×m such that As+Ad is asymptotically

stable. In addition, note that for i = 1, · · · ,m, the control input signal ui(t), t ≥ 0,

can be negative depending on the values of xi(t), ki(t), and φi(t), t ≥ 0. However,

as is required in nonnegative and compartmental dynamical systems the closed-loop

plant states remain nonnegative. Finally, in the case where (8.16) is a mammillary

system, As is diagonal and hence it follows from Proposition 8.4 there exists a positive

diagonal matrix P such that (8.19) holds.

In the case where our objective is zero set-point regulation, that is, ψe(θ) = xe =
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0, θ ∈ [−τ, 0], the adaptive controller given in Theorem 8.2 can be considerably

simplified. Specifically, since in this case x(t) ≥≥ xe = 0, t ≥ 0, and condition (8.18)

is trivially satisfied with ue = 0, we can set φ(t) ≡ 0 so that update law (8.23) is

superfluous. Furthermore, since (8.18) is trivially satisfied, A can possess eigenvalues

in the open right-half plane. Alternatively, exploiting a linear Lyapunov-Krasovskii

functional construction for the plant dynamics, an even simpler adaptive controller

can be derived. This result is given in the following theorem.

Theorem 8.3. Consider the linear uncertain time-delay system G given by (8.16)

where B is nonnegative and given by (8.17). Assume there exists a diagonal matrix

Kg = diag[kg1, · · · , kgm] such that As + Ad is asymptotically stable, where As =

A + BK̃g and K̃g = [Kg, 0m×(n−m)]. Furthermore, let qi, i = 1, · · · ,m, be positive

constants. Then the adaptive feedback control law

u(t) = K(t)x̂(t), (8.32)

where K(t) = diag[k1(t), · · · , km(t)] and x̂(t) = [x1(t), · · · , xm(t)]
T, or, equivalently,

ui(t) = ki(t)xi(t), i = 1, · · · ,m, (8.33)

where ki(t) ∈ R, i = 1, · · · ,m, with update law

K̇(t) = −diag[q1x1(t), · · · , qmxm(t)], K(0) ≤≤ 0, (8.34)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg) of the closed loop system given by

(8.16), (8.32), (8.34) is Lyapunov stable and x(t)→ 0 as t→∞ for all η(·) ∈ C+.

Proof. Note that with u(t), t ≥ 0, given by (8.32) it follows from (8.16) that

ẋ(t) = Ax(t)+Adx(t−τ)+BK(t)x̂(t), x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0. (8.35)
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Now, since for every t ∈ [0,∞), Ã(t) , A+B[K(t), 0m×n−m] is essentially nonnegative

and Ad is nonnegative it follows from Proposition 8.2 that x(t) ≥≥ 0, t ≥ 0, for all

x0 ∈ R
n

+. Next, using As = A+BK̃g, note that (8.35) can be equivalently written as

ẋ(t) = Asx(t)+Adx(t−τ)+B(K(t)−Kg)x̂(t), x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0.

(8.36)

Furthermore, since As is essentially nonnegative, Ad is nonnegative, and As + Ad is

asymptotically stable it follows from Theorem 8.1 that there exist vectors p >> 0

and r >> 0 satisfying

0 = (As + Ad)
Tp+ r. (8.37)

To show Lyapunov stability of the closed-loop system (8.34) and (8.36) consider the

Lyapunov-Krasovskii functional candidate V : C+ × R
m×m → R given by

V (ψ,K) = pTψ(0) +

∫ 0

−τ

pTAdψ(θ)dθ +
1

2
tr(K −Kg)

TQ−1(K −Kg), (8.38)

whereQ = diag[ q1
p1b1

, · · · , qm
pmbm

]. Furthermore, note that V (ψe, Kg) = 0, where ψe(θ) =

0, θ ∈ [−τ, 0], and, since x(t) ≥≥ 0, t ≥ 0, there exist class K functions α1(·), α2(·)

such that

V (ψ,K) ≥ α1(‖ψ(0)‖) + α2(‖K −Kg‖F), ψ(0) ∈ C+.

Now, letting x(t), t ≥ 0, denote the solution to (8.36) and using (8.34), it follows that

the Lyapunov-Krasovskii directional derivative along the closed-loop system trajec-

tories is given by

V̇ (xt, K(t)) = pTAsx(t) + pTAdx(t− τ) + pTB(K(t)−Kg)x̂(t) + pTAdx(t)

−pTAdx(t− τ) + tr(K(t)−Kg)
TQ−1K̇(t)

= −rTx(t)

≤ 0, t ≥ 0,

which proves that the solution (x(t), K(t)) ≡ (0, Kg) to (8.34) and (8.36) is Lyapunov

stable. Furthermore, since r >> 0 it follows from Krasovskii-LaSalle invariant set
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theorem for infinite dimensional systems [101, p. 143] that x(t)→ 0 as t→∞ for all

η(·) ∈ C+. ¤

8.4. Adaptive Control for Linear Nonnegative Dynamical Sys-

tems with Nonnegative Control and Time Delay

In drug delivery systems for physiological processes, control (source) inputs are

usually constrained to be nonnegative as are the system states. Hence, in this section

we develop adaptive control laws for nonnegative retarded systems with nonnegative

control inputs. However, since condition (8.11) is required to be satisfied for xe ∈ R
n

+

and ue ∈ R
m

+ , it follows from Brockett’s necessary condition for asymptotic stabiliz-

ability [53] that there does not exist a continuous stabilizing nonnegative feedback if

0 ∈ spec(A+Ad) and xe ∈ R
n
+. Hence, in this section we assume that A+Ad is asymp-

totically stable compartmental matrix. Thus, we proceed with the aforementioned

assumptions to design adaptive controllers for uncertain time-delay compartmental

systems that guarantee that limt→∞ xi(t) = xdi ≥ 0 for i = 1, · · · ,m ≤ n, where xdi is

a desired set point for the ith compartmental state while guaranteeing a nonnegative

control input.

Theorem 8.4. Consider the linear uncertain time-delay system G given by (8.16),

where A is essentially nonnegative, Ad is nonnegative, and B is nonnegative and given

by (8.17). For a given xd ∈ R
m, assume there exist vectors xu ∈ R

n−m
+ and ue ∈ R

m

+

such that (8.18) holds. Furthermore, assume that there exist a positive diagonal

matrix P , diag[p1, · · · , pn], and positive-definite matrices Q̃, R ∈ R
n×n such that

0 = ATP + PA+ Q̃+ PAdQ̃
−1AT

dP +R. (8.39)

Finally, let qi and q̂i, i = 1, · · · ,m, be positive constants. Then, the adaptive feedback

243



control law

ui(t) = max{0, ûi(t)}, i = 1, · · · ,m, (8.40)

where

ûi(t) = ki(t)(xi(t)− xdi) + φi(t), i = 1, · · · ,m, (8.41)

ki(t) ∈ R, t ≥ 0, and φi(t) ∈ R, t ≥ 0, i = 1, · · · ,m, with update laws

k̇i(t) =

{

0, if ûi(t) < 0,
−qi(xi(t)− xdi)2, otherwise,

ki(0) ≤ 0, i = 1, · · · ,m, (8.42)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) > xdi, or if ûi(t) ≤ 0,
−q̂i(xi(t)− xdi), otherwise,

φi(0) ≥ 0, i = 1, · · · ,m, (8.43)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, 0, ue) of the closed-loop system

given by (8.16), (8.40), (8.42), (8.43) is Lyapunov stable and xi(t)→ xdi, i = 1, · · · ,m,

as t→∞ for all η(·) ∈ C+. Furthermore, u(t) ≥≥ 0 and x(t) ≥≥ 0 for all t ≥ 0 and

η(·) ∈ C+.

Proof. First, define Ku(t) , diag[ku1(t), · · · , kum(t)] and φu(t) , [φu1(t), · · · ,

φum(t)]
T, where

kui(t) =

{

0, if ûi(t) < 0,
ki(t), otherwise,

i = 1, · · · ,m, (8.44)

φui(t) =

{

0, if ûi(t) < 0,
φi(t), otherwise,

i = 1, · · · ,m. (8.45)

Now, note that with u(t), t ≥ 0, given by (8.40) it follows from (8.16) that

ẋ(t) = Ax(t) + Adx(t− τ) +BKu(t)(x̂(t)− xd) +Bφu(t),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0, (8.46)

or, equivalently, using (8.18),

ẋ(t) = A(x(t)− xe) + Ad(x(t− τ)− xe) +BKu(t)(x̂(t)− xd) +B(φu(t)− ue),

x(θ) = η(θ), −τ ≤ θ ≤ 0, t ≥ 0. (8.47)
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To show Lyapunov stability of the closed-loop system (8.42), (8.43), and (8.47) con-

sider the Lyapunov-Krasovskii functional candidate V : C+×R
m×m ×R

m → R given

by

V (ψ,K, φ) = (ψ(0)− xe)TP (ψ(0)− xe) +
∫ 0

−τ

(ψ(θ)− xe)TQ̃(ψ(θ)− xe)dθ

+trKTQ−1K + (φ− ue)TQ̂−1(φ− ue), (8.48)

or, equivalently,

V (ψ,K, φ) =
n
∑

i=1

pi(ψi(0)− xei)2 +
∫ 0

−τ

(ψ(θ)− xe)TQ̃(ψ(θ)− xe)dθ

+
m
∑

i=1

pibi
qi
k2i +

m
∑

i=1

pibi
qi

(φi − uei)2,

where Q = diag[ q1
p1b1

, · · · , qm
pmbm

] and Q̂ = diag[ q̂1
p1b1

, · · · , q̂m
pmbm

]. Note that V (ψe, 0, ue) =

0, where ψe(θ) = xe, θ ∈ [−τ, 0]. Furthermore, there exist class K functions α1(·),

α2(·), α3(·) such that

V (ψ,K, φ) ≥ α1(‖ψ(0)− xe‖) + α2(‖K‖F) + α3(‖φ− ue‖).

Now, letting x(t), t ≥ 0, denote the solution to (8.47) and using (8.42) and (8.43),

it follows that the Lyapunov-Krasovskii directional derivative along the closed-loop

system trajectories is given by

V̇ (xt, K(t), φ(t)) = −(x(t)− xe)TR(x(t)− xe)

−[AT
dP (x(t)− xe)− Q̃(x(t− τ)− xe)]T

·Q̃−1[AT
dP (x(t)− xe)− Q̃(x(t− τ)− xe)]

+2
m
∑

i=1

pibikui(t)(xi(t)− ẋ(t))2

+2
m
∑

i=1

pibi(xi(t)− xe)(φui(t)− uei)

+2
m
∑

i=1

pibi
qi

(ki(t)− kgi)k̇i(t) + 2
m
∑

i=1

pibi
q̂i

(φi(t)− uei)φ̇i(t)
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≤ −(x(t)− xe)TR(x(t)− xe)

+2
m
∑

i=1

pibi

[

kui(t)(xi(t)− ẋ(t)i)2 +
1

qi
ki(t)k̇i(t)

]

+2
m
∑

i=1

pibi

[

(xi(t)− ẋ(t)i)(φui(t)− uei) +
1

q̂i
(φi(t)− uei)φ̇i(t)

]

.

(8.49)

Now, for the two cases given in (8.42) and (8.43), the last two terms on the right-hand

side of (8.49) give:

i) If ûi(t) < 0, then kui(t) = 0, φui(t) = 0, k̇i(t) = 0, and φ̇i(t) = 0. Furthermore,

since φi(t) ≥ 0 and ki(t) ≤ 0 for all t ≥ 0 and i = 1, · · · ,m, it follows from

(8.41) that ûi(t) < 0 only if xi(t) > xdi and hence

kui(t)(xi(t)− xdi)2 +
1

qi
ki(t)k̇i(t) = 0.

(xi(t)− xdi)(φui(t)− uei) +
1

qi
(φi(t)− uei)φ̇i(t) = −(xi(t)− xdi)uei ≤ 0.

ii) Otherwise, kui(t) = ki(t) and φui(t) = φi(t) and hence

kui(xi(t)− xdi)2 +
1

qi
ki(t)k̇i(t) = 0,

(xi(t)− xdi)(φui(t)− uei) +
1

q̂i
(φi(t)− uei)φ̇i(t)

=

{

−(xi(t)− xdi)uei ≤ 0, if φi(t) = 0 and xi(t) ≥ xdi,
0, otherwise.

Hence, it follows that in either case

V̇ (xt, K(t), φ(t)) ≤ −(x(t)− xe)TR(x(t)− xe)

≤ 0, t ≥ 0, (8.50)

which proves that the solution (x(t), K(t), φ(t)) ≡ (xe, 0, ue) to (8.42), (8.43), and

(8.47) is Lyapunov stable. Furthermore, since the positive orbit γ+(η(θ), K0, φ0) is

bounded and γ+(η(θ), K0, φ0) belongs to a compact subset of C+×R
m×m×R

m [100],

246



and since R > 0 it follows from the Krasovskii-LaSalle invariant set theorem for

infinite dimensional systems [101, p. 143] that x(t)→ xe as t→∞ for all η(·) ∈ C+.

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (8.40). Now, since B ≥≥ 0 and

u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 8.1 that x(t) ≥≥ 0, t ≥ 0, for all

x0 ∈ R
n

+. ¤

As in the case of Theorem 8.2, it is important to note that the adaptive control law

(8.40), (8.42), and (8.43) does not require the explicit knowledge of the nonnegative

constant vector ue; even though Theorem 8.4 requires the existence of nonnegative

vectors xu and ue such that the condition (8.18) holds. Furthermore, Theorem 8.4

requires that A and Ad are such that there exists a positive diagonal matrix P such

that (8.39) holds. However, in the case where (8.16) is a mammillary system the

existence of a positive diagonal matrix P satisfying (8.39) is a direct consequence of

Proposition 8.4.

8.5. Adaptive Control for General Anesthesia

In this section, we illustrate the adaptive control framework developed in this

chapter on a model for the disposition of propofol [54, 85, 161] which is based on

the three-compartment mammillary model shown in Figure 8.1 with the first com-

partment acting as the central compartment and the remaining two compartments

exchanging with the central compartment. The three-compartment mammillary sys-

tem with all transfer times between compartments given by τ > 0 provides a pharma-

cokinetic model for a patient describing the distribution of propofol into the central

compartment (identified with the intravascular blood volume as well as highly per-

fused organs) and other various tissue groups of the body. A mass balance for the
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Compartment 2 Compartment 3
Central

Compartment

u ≡ Continuous infusion

a12x2, τ

a21x1, τ

a31x1, τ

a13x3, τ

a11x1

Figure 8.1: Three-compartment mammillary model for disposition of propofol

whole compartmental system yields

ẋ1(t) = −(a11 + a21 + a31)x1(t) + a12x2(t− τ) + a13x3(t− τ) + u(t),

x1(θ) = η1(θ), −τ ≤ θ ≤ 0, t ≥ 0, (8.51)

ẋ2(t) = −a12x2(t) + a21x1(t− τ), x2(θ) = η2(θ), −τ ≤ θ ≤ 0, (8.52)

ẋ3(t) = −a13x3(t) + a31x1(t− τ), x3(θ) = η3(θ), −τ ≤ θ ≤ 0, (8.53)

where x1(t), x2(t), x3(t), t ≥ 0, are the masses in grams of propofol in the central

compartment and compartments 2 and 3, respectively, u(t), t ≥ 0, is the infusion

rate in grams/min of the anesthetic (propofol) into the central compartment, aij >

0, i 6= j, i, j = 1, 2, 3, are the rate constants in min−1 for drug transfer between

compartments, and a11 > 0 is the rate constant in min−1 for elimination from the

central compartment. Even though these transfer and loss coefficients and the delay

amount are positive, they can be uncertain due to patient gender, weight, pre-existing

disease, age, and concomitant medication. Hence, adaptive control for propofol set-

point regulation can significantly improve the outcome for drug administration over

manual control.

It has been reported in [239] that a 2.5–6 µg/m` blood concentration level of

propofol is required during the maintenance stage in general anesthesia depending on

patient fitness and extent of surgical stimulation. Hence, continuous infusion control

is required for maintaining this desired level of anesthesia. Here we assume that
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the transfer and loss coefficients a11, a12, a21, a13, a31, and the delay amount τ are

unknown and our objective is to regulate the propofol concentration level of the central

compartment to the desired level of 3.4 µg/m` in the face of system uncertainty.

Furthermore, since propofol mass in the blood plasma cannot be measured directly,

we measure the concentration of propofol in the central compartment; that is, x1/Vc,

where Vc is the volume in liters of the central compartment. As noted in [161], Vc

can be approximately calculated by Vc = (0.159 `/kg)(M kg), where M is the weight

(mass) in kilograms of the patient.

Next, note that (8.51)–(8.53) can be written in the state space form (8.16) with

x = [x1, x2, x3]
T,

A =





−(a11 + a21 + a31) 0 0
0 −a12 0
0 0 −a13



 , Ad =





0 a12 a13
a21 0 0
a31 0 0



 , B =





1
0
0



 .

(8.54)

In the following simulation, we use the bispectral index (BIS) as a measure of anes-

thetic effect and the BIS signal is given by (7.55), where the effect site compartment

concentration is given by the solution of the first-order delay model (7.56) (see Chap-

ter 7 for details). As similarly as in Chapter 7, we set EC50 = 3.4 µg/m`, γ = 3,

and BIS0 = 100, so that the BIS signal is shown in Figure 7.5. The target (desired)

BIS value, BIStarget, is set at 50. In this case, the linearized BIS function about the

target BIS value is given by (7.58). Furthermore, for simplicity of exposition, we

assume that the effect site compartment equilibrates instantaneously with the central

compartment; that is, we assume that aeff → ∞ and hence ceff(t) = x1(t)/Vc, t ≥ 0.

Now, using the adaptive feedback controller

u(t) = max{0, û(t)}, (8.55)

where

û(t) = −k(t)(BIS(t)− BIStarget) + φ(t), (8.56)
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k(t) ∈ R, t ≥ 0, and φ(t) ∈ R, t ≥ 0, with update laws

k̇(t) =

{

0, if û(t) < 0,
−qBIS(BIS(t)− BIStarget)

2, otherwise,
k(0) ≤ 0, (8.57)

φ̇(t) =











0,
if φ(t) = 0 and BIS(t) > BIStarget,
or if û(t) ≤ 0,

q̂BIS(BIS(t)− BIStarget), otherwise,

φ(0) ≥ 0,

(8.58)

where qBIS and q̂BIS are arbitrary positive constants, it follows from Theorem 8.4

that the control input (anesthetic infusion rate) u(t) ≥ 0 for all t ≥ 0 and BIS(t)

→ BIStarget as t → ∞ for any (uncertain) positive values of the transfer and loss

coefficients in the range of ceff where the linearized BIS equation (7.58) is valid. It

is important to note that during actual surgery or intensive care unit sedation the

BIS signal is obtained directly from the EEG and not (7.55). Furthermore, since our

adaptive controller only requires the error signal BIS(t)−BIStarget over the linearized

range of (7.55), we do not require knowledge of the slope of the linearized equation

(7.58), nor do we require knowledge of the parameters γ and EC50. To illustrate the

robustness properties of the proposed adaptive control law, we use the average set of

pharmacokinetic parameters given in [68] for 29 patients requiring general anesthesia

for noncardiac surgery. For our design we assume M = 70 kg and we switch from

Set A to Set B given in Table 7.1 in Chapter 7 at t = 25 min. Furthermore, we assume

that at t = 25 min the pharmacodynamic parameters EC50 and γ are switched from

3.4 µg/m` and 3 to 4.0 µg/m` and 4, respectively. Here we consider noncardiac

surgery since cardiac surgery often utilizes hypothermia which itself changes the BIS

signal. With qBIS = 1 × 10−6 g/min2, q̂BIS = 1 × 10−3 g/min2, and initial conditions

x(0) = [0, 0, 0]T g, k(0) = 0 min−1, and φ(0) = 0.01 g/min−1, Figure 8.2 shows

the masses of propofol in all three compartments versus time. Figure 8.3 shows the

BIS Index versus time. Figure 8.4 shows the propofol concentration in the central

compartment and the control signal (propofol infusion rate) versus time. Finally,

250



0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

C
om

pa
rtm

en
ta

l m
as

se
s 

[m
g]

Time [min]

x
1
(t)

x
2
(t)

x
3
(t)

Figure 8.2: Compartmental masses versus time

Figure 8.5 shows the adaptive gain history versus time.

8.6. Conclusion

In this chapter, we developed a direct adaptive control framework for linear uncer-

tain nonnegative and compartmental dynamical systems with unknown time delay. In

particular, a Lyapunov-Krasovskii-based direct adaptive control framework for guar-

anteeing set-point regulation for nonnegative and compartmental time-delay systems

with specific applications to mammillary pharmacokinetic models was developed. Fi-

nally, we demonstrated the framework on a drug delivery pharmacokinetic model with

time delay. Extensions of the proposed adaptive control framework to nonlinear non-

negative systems as well as to systems with exogenous disturbances will be addressed

in future research.
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Figure 8.3: BIS Index versus time
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Figure 8.4: Drug concentration in the central compartment and control signal (in-
fusion rate) versus time
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Chapter 9

Adaptive Control for Nonlinear

Nonnegative and Compartmental

Dynamical Systems with

Applications to Clinical

Pharmacology

9.1. Introduction

Administration of drugs to produce general anesthesia has traditionally been

guided by clinical evaluation. However, the clinical measures of depth of anesthe-

sia are imperfect, primarily since the most reliable, purposeful movement in response

to noxious stimulus, is masked by the concomitant administration of paralytic agents,

given to improve operating conditions for the surgeon. There has been a long-standing

interest in the use of the electroencephalogram (EEG) as an objective, quantitative

measure of consciousness. Recent work has demonstrated that a derivative of the EEG

signal, the Bispectral Index, correlates with changes in consciousness [67, 174, 215].

The Bispectral Index is a scalar measure ranging from 0 to 100, with the upper value

of 100 corresponding to the awake state and the lower limit of 0 corresponding to

an isoelectrical EEG signal. The ease of Bispectral Index (BIS) monitoring and its
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ready availability for use in the operating room, opens the possibility of closed-loop

control of anesthetic drug administration, using the BIS as the performance and mea-

surement variable. Current standard practice, open-loop control (manual control) by

clinical personnel, can be tedious, imprecise, time-consuming, and sometimes of poor

quality, depending on the skills and judgment of the clinician. Underdosing can result

in patients psychologically traumatized by pain and awareness during surgery, while

overdosing, at the very least, may result in delayed recovery from anesthesia and,

in the worst case, may result in respiratory and cardiovascular collapse. Closed-loop

control may improve the quality of drug administration, lessening the dependence of

patient outcome on the skills of the clinician.

Previous efforts to develop closed-loop control of general anesthesia have used

either a proportional-integral-derivative control algorithm or linear adaptive control

algorithms based on pharmacokinetic/pharmacodynamic models [2, 207, 227]. Adap-

tive algorithms are vital since the relationships between drug dose and blood con-

centration (pharmacokinetics) and between blood concentrations and physiological

effect (pharmacodynamics) vary widely among individual subjects. Previous model-

based algorithms have assumed either a fixed pharmacokinetic or pharmacodynamic

model. In this paper, we present a less restrictive direct adaptive control framework

that accounts for interpatient pharmacokinetic and pharmacodynamic variability. In

particular, we develop a direct adaptive control framework for adaptive set-point

regulation of nonlinear uncertain nonnegative and compartmental systems.

Nonnegative and compartmental models provide a broad framework for biological

and physiological systems, including clinical pharmacology, and are well suited for

the problem of closed-loop control of drug administration. Specifically, nonnegative

and compartmental dynamical systems [6,19,24,62,70,75,123,124,164,166,172,182,

187,203] are composed of homogeneous interconnected subsystems (or compartments)
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which exchange variable nonnegative quantities of material with conservation laws de-

scribing transfer, accumulation, and elimination between the compartments and the

environment. It thus follows from physical considerations that the state trajectory

of such systems remains in the nonnegative orthant of the state space for nonneg-

ative initial conditions. Using nonnegative and compartmental model structures, a

Lyapunov-based direct adaptive control framework is developed that guarantees par-

tial asymptotic set-point stability of the closed-loop system; that is, asymptotic set-

point stability with respect to part of the closed-loop system states associated with

the physiological state variables. In particular, adaptive controllers are constructed

without requiring knowledge of the system dynamics while providing a nonnegative

control (source) input for robust stabilization with respect to the nonnegative or-

thant. Furthermore, since in certain applications of nonnegative and compartmental

systems (e.g., biological systems, population dynamics, and ecological systems involv-

ing positive and negative inflows) the nonnegativity constraint on the control input

is not natural, we also develop adaptive controllers that do not place any restriction

on the sign of the control signal while guaranteeing that the physical system states

remain in the nonnegative orthant of the state space. Finally, we emphasize that

even though our application objective in this paper is closed-loop adaptive control of

drug administration for general anesthesia, the proposed nonlinear adaptive control

architecture can be readily applied to deliver sedation to critically ill patients in the

intensive care unit, as well as to control glucose, heart rate, and blood pressure during

surgery.

9.2. Mathematical Preliminaries

In this section we introduce some key results concerning nonlinear nonnegative

dynamical systems [19, 20, 24, 75] that are necessary for developing the main results
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of this chapter. Specifically, consider the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0 , (9.1)

where x(t) ∈ D, D is an open subset of R
n with 0 ∈ D, f : D → R

n is locally Lipschitz

continuous on D, and Ix0 = [0, τx0), 0 < τx0 ≤ ∞, is the maximal interval of existence

for the solution x(·) of (9.1). Recall that the point xe ∈ D is an equilibrium point of

(9.1) if f(xe) = 0. Furthermore, a subset Dc ⊆ D is an invariant set with respect

to (9.1) if Dc contains the orbits of all its points. The following definition introduces

the notion of essentially nonnegative vector fields [22,75,221].

Definition 9.1. Let f = [f1, · · · , fn]T : D → R
n, where D is an open subset of R

n

that contains R
n

+. Then f is essentially nonnegative if fi(x) ≥ 0, for all i = 1, . . . , n,

and x ∈ R
n

+ such that xi = 0, where xi denotes the ith element of x.

Note that if f(x) = Ax, where A ∈ R
n×n, then f is essentially nonnegative if and

only if A is essentially nonnegative [22,75].

Proposition 9.1 [22, 75]. Suppose R
n

+ ⊂ D. Then R
n

+ is an invariant set with

respect to (9.1) if and only if f : D → R
n is essentially nonnegative.

In this chapter we consider controlled nonlinear dynamical systems of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (9.2)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, f : R
n → R

n is locally Lipschitz continuous

and satisfies f(0) = 0, and G : R
n → R

n×m.

The following definition and proposition are needed for the main results of the

chapter.
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Definition 9.2. The nonlinear dynamical system given by (9.2) is nonnegative

if for every x(0) ∈ R
n

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (9.2) is

nonnegative.

Proposition 9.2 [75]. The nonlinear dynamical system given by (9.2) is nonneg-

ative if f : R
n → R

n is essentially nonnegative and G(x) ≥≥ 0, x ∈ R
n

+.

It follows from Proposition 9.2 that a nonnegative input signal G(x(t))u(t), t ≥ 0,

is sufficient to guarantee the nonnegativity of the state of (9.2).

Finally, we present a time-varying extension to Proposition 9.2 needed for the

main theorems of this chapter. Specifically, we consider the time-varying system

ẋ(t) = f(t, x(t)) +G(x(t))u(t), x(t0) = x0, t ≥ t0, (9.3)

where f : [t0,∞)×R
n → R

n. For the following result the definition of nonnegativity

holds with (9.2) replaced by (9.3).

Proposition 9.3. Consider the time-varying dynamical system (9.3) where f(t, ·) :

R
n → R

n is Lipschitz continuous on R
n for all t ∈ [t0,∞) and f(·, x) : [t0,∞) → R

n

is continuous on [t0,∞) for all x ∈ R
n. If for every t ∈ [t0,∞), f(t, ·) : R

n → R
n is

essentially nonnegative and G : R
n → R

n×m is nonnegative, then the solution x(t),

t ≥ t0, to (9.3) is nonnegative.

Proof. The result is a direct consequence of Proposition 9.2 by equivalently

representing the time-varying system (9.3) as an autonomous nonlinear system by

appending another state to represent time. Specifically, defining y(t− t0) , x(t) and

yn+1(t − t0) , t, it follows that the solution x(t), t ≥ t0, to (9.3) can be equiva-

lently characterized by the solution y(τ), τ ≥ 0, where τ , t − t0, to the nonlinear

258



autonomous system

ẏ(τ) = f(yn+1(τ), y(τ)) +G(y(τ))û(τ), y(0) = y0, τ ≥ 0, (9.4)

ẏn+1(τ) = 1, yn+1(0) = t0, (9.5)

where ẏ(·) and ẏn+1(·) denote differentiation with respect to τ and û(τ) , u(τ + t0).

Now, since ẏi(τ) ≥ 0, τ ≥ 0, for i = 1, · · · , n, whenever yi(τ) = 0 and G(y(τ))û(τ) ≥≥

0, τ ≥ 0, the result is a direct consequence of Proposition 9.2. ¤

9.3. Adaptive Control for Nonlinear Nonnegative Uncertain

Dynamical Systems

In this section we consider the problem of characterizing adaptive feedback control

laws for nonlinear nonnegative and compartmental uncertain dynamical systems to

achieve set-point regulation in the nonnegative orthant. Specifically, consider the

following controlled nonlinear uncertain system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (9.6)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

f : R
n → R

n is an unknown essentially nonnegative function and satisfies f(0) = 0,

and G : R
n → R

n×m is an unknown input matrix function. The control input u(·) in

(9.6) is restricted to the class of admissible controls consisting of measurable functions

such that u(t) ∈ R
m, t ≥ 0.

As discussed in the Introduction, it follows from physical considerations that the

state trajectories of nonnegative and compartmental dynamical systems remain in the

nonnegative orthant of the state space for nonnegative initial conditions. Hence, in

this chapter we design adaptive controllers that guarantee that the controlled system

states remain in the nonnegative orthant and converge to a desired equilibrium state.

Specifically, for a given desired set point xe ∈ R
n

+, our aim is to design a control input
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u(t), t ≥ 0, such that limt→∞ ‖x(t) − xe‖ = 0. We assume that we have m control

inputs and the input matrix function is given by

G(x) =

[

BuGn(x)
0(n−m)×m

]

, (9.7)

where Bu = diag[b1, · · · , bm] is an unknown positive diagonal matrix and Gn : R
n →

R
m×m is a known nonnegative matrix function such that detGn(x) 6= 0, x ∈ R

n.

Furthermore, for the nonlinear system G we assume that the required properties for

the existence and uniqueness of solutions are satisfied; that is, f(·), G(·), and u(·)

satisfy sufficient regularity conditions such that (9.6) has a unique solution forward

in time.

Theorem 9.1. Consider the nonlinear uncertain system G given by (9.6) where

f : R
n → R

n is essentially nonnegative and G : R
n → R

n×m is given by (9.7). For a

given xe ∈ R
n

+, assume there exists a vector ue ∈ R
m such that

0 = f(xe) + B̂ue, (9.8)

where B̂ , [Bu, 0m×(n−m)]
T. Furthermore, assume there exist a rectangular block-

diagonal matrix Kg , block-diag[kTg1, · · · , kTgm], where kgi ∈ R
si , i = 1, · · · ,m, con-

tinuously differentiable functions Vsi : R → R, i = 1, · · · ,m, and V̂s : R
n−m → R,

and continuous functions ` : R
n → R

p and Fi : R
n → R

si , i = 1, · · · ,m, with

Fi(x − xe) ≤≤ 0 whenever xi = 0 and Fi(0) = 0, i = 1, · · · ,m, such that Vs(·) is

positive definite, radially unbounded, Vs(0) = 0, `(0) = 0, and, for all e ∈ R
n,

Vs
′
i(ei)Fi(e) ≥≥ 0, i = 1, · · · ,m, (9.9)

0 = V ′s (e)[fe(e) + B̂KgF (e)] + `T(e)`(e), (9.10)

where

Vs(e) = Vs1(e1) + · · ·+ Vsm(em) + V̂s(em+1, · · · , en), (9.11)
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fe(e) , f(e + xe) − f(xe), and F (e) , [FT
1 (e), · · · , FT

m(e)]
T. Finally, let qi and q̂i,

i = 1, · · · ,m, be positive constants. Then the adaptive feedback control law

u(t) = G−1n (x(t))K(t)F (x(t)− xe) +G−1n (x(t))φ(t), (9.12)

where K(t) , block-diag[kT1 (t), · · · , kTm(t)], ki(t) ∈ R
si , i = 1, · · · ,m, t ≥ 0, and

φ(t) ∈ R
m, t ≥ 0, with update laws

k̇Ti (t) = − qi
2
Vs
′
i(xi(t)− xei)FT

i (x(t)− xe), ki(0) ≤≤ 0, i = 1, · · · ,m, (9.13)

φ̇i(t) =

{

0, if φi(t) = 0 and Vs
′
i(xi(t)− xei) ≥ 0,

− q̂i
2
Vs
′
i(xi(t)− xei), otherwise,

φi(0) ≥ 0, i = 1, · · · ,m, (9.14)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) of the closed-loop system

given by (9.6), (9.12)–(9.14) is Lyapunov stable. If, in addition, `T(e)`(e) > 0, e ∈ R
n,

e 6= 0, then x(t)→ xe as t→∞ for all x0 ∈ R
n

+. Furthermore, x(t) ≥≥ 0 for all t ≥ 0

and x0 ∈ R
n

+.

Proof. Let e(t) , x(t) − xe and note that with u(t), t ≥ 0, given by (9.12) it

follows from (9.6) that

ẋ(t) = f(x(t)) +G(x(t))G−1n (x(t))K(t)F (x(t)− xe) +G(x(t))G−1n (x(t))φ(t),

x(0) = x0, t ≥ 0, (9.15)

or, equivalently, using (9.7) and (9.8),

ė(t) = fe(e(t)) + f(xe) + B̂KgF (e(t)) + B̂(K(t)−Kg)F (x(t)− xe) + B̂φ(t)

= fs(e(t)) + B̂(K(t)−Kg)F (x(t)− xe) + B̂(φ(t)− ue), e(0) = x0 − xe, t ≥ 0,

(9.16)

where

fs(e) , fe(e) + B̂KgF (e). (9.17)

261



To show Lyapunov stability of the closed-loop system (9.13), (9.14), and (9.16) con-

sider the Lyapunov function candidate

V (e,K, φ) = Vs(e) + tr(K −Kg)
TQ−1(K −Kg) + (φ− ue)TQ̂−1(φ− ue), (9.18)

or, equivalently,

V (e,K, φ) = Vs(e) +
m
∑

i=1

bi
qi
(ki − kgi)T(ki − kgi) +

m
∑

i=1

bi
q̂i
(φi − uei)2,

where Q = diag
[

q1
b1
, · · · , qm

bm

]

and Q̂ = diag
[

q̂1
b1
, · · · , q̂m

bm

]

. Note that V (0, Kg, ue) = 0

and, since Vs(·), Q, and Q̂ are positive definite, V (e,K, φ) > 0 for all (e,K, φ) 6=

(0, Kg, ue). Furthermore, V (e,K, φ) is radially unbounded. Now, letting e(t), t ≥ 0,

denote the solution to (9.16) and using (9.13) and (9.14), it follows that the Lyapunov

derivative along the closed-loop system trajectories is given by

V̇ (e(t), K(t), φ(t)) = V ′s (e(t))
[

fs(e(t)) + B̂(K(t)−Kg)F (x(t)− xe) + B̂(φ(t)− ue)
]

+
m
∑

i=1

2bi
qi
k̇Ti (t)(ki(t)− kgi) +

m
∑

i=1

2bi
q̂i

(φi(t)− uei)φ̇i(t)

= −`T(e(t))`(e(t)) +
m
∑

i=1

Vs
′
i(ei(t))bi(ki(t)− kgi)TFi(e(t))

+
m
∑

i=1

biVs
′
i(ei(t))(φi(t)− uei) +

m
∑

i=1

2bi
qi
k̇Ti (t)(ki(t)− kgi)

+
m
∑

i=1

2bi
q̂i

(φi(t)− uei)φ̇i(t)

= −`T(e(t))`(e(t)) +
m
∑

i=1

bi(φi(t)− uei)
[

Vs
′
i(ei(t)) +

2

q̂i
φ̇i(t)

]

,

t ≥ 0. (9.19)

Now, for each i ∈ {1, · · · ,m} and for the two cases given in (9.14), the last term on

the right-hand side of (9.19) gives:

i) If φi(t) = 0 and Vs
′
i(xi(t) − xei) ≥ 0, then φ̇i(t) = 0 and hence, since, using
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(9.8), biuei ≥ 0, i = 1, · · · ,m, it follows that

bi(φi(t)−uei)
[

Vs
′
i(ei(t)) +

2

q̂i
φ̇i(t)

]

= −biueiVs′i(xi(t)−xei) ≤ 0, i = 1, · · · ,m.

ii) Otherwise, φ̇i(t) = − q̂i
2
V ′s i(xi(t)− xei) and hence

bi(φi(t)− uei)
[

Vs
′
i(ei(t)) +

2

q̂i
φ̇i(t)

]

= 0, i = 1, · · · ,m.

Hence, it follows that in either case

V̇ (e(t), K(t), φ(t)) ≤ −`T(e(t))`(e(t))

≤ 0, t ≥ 0, (9.20)

which proves that the solution (e(t), K(t), φ(t)) ≡ (0, Kg, ue) to (9.13), (9.14), and

(9.16) is Lyapunov stable. Furthermore, it follows from Theorem 2 of [42] that

`(e(t)) → 0 as t → ∞. If, in addition, `T(e)`(e) > 0, e ∈ R
n, e 6= 0, then x(t) → xe

as t→∞ for all x0 ∈ R
n

+.

Finally, to show that x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+ note that the closed-loop

system (9.6), (9.12)–(9.14) is given by

ẋ(t) = f(x(t)) + B̂K(t)F (x(t)− xe) + B̂φ(t)

= f̃(t, x(t)) + B̂K(t)F̃ (x(t)− xe) + B̂φ(t)

= f̃(t, x(t)) + v(t) + w(t), x(0) = x0, t ≥ 0, (9.21)

where F̃ (x − xe) , [F̃T
1 (x − xe), · · · , F̃T

m(x − xe)]
T, F̃i(x − xe) , Fi(x − xe)|xi=0,

i = 1, · · · ,m,

f̃(t, x) , f(x) + B̂K(t)[F (x− xe)− F̃ (x− xe)], (9.22)

v(t) ,





















b1k
T
1 (t)F̃1(x(t)− xe)

...

bmk
T
m(t)F̃m(x(t)− xe)

0
...
0





















, w(t) ,



















b1φ1(t)
...

bmφm(t)
0
...
0



















. (9.23)
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Now, since, by (9.9), (9.13), and (9.14), kTi (t) ≤≤ 0, t ≥ 0, i = 1, · · · ,m, and

φi(t) ≥ 0, t ≥ 0, i = 1, · · · ,m, and since F̃i(x(t) − xe) ≤≤ 0, t ≥ 0, i = 1, · · · ,m, it

follows that for every t ∈ [0,∞), f̃(t, x(t)) is essentially nonnegative, v(t) ≥≥ 0, and

w(t) ≥≥ 0. Hence, it follows from Proposition 9.3 that x(t) ≥≥ 0 for all t ≥ 0 and

x0 ∈ R
n

+. ¤

Remark 9.1. Note that in the case where `T(e)`(e) > 0, e ∈ R
n, e 6= 0, the

conditions in Theorem 9.1 imply that x(t)→ xe as t→∞ and hence it follows from

(9.13) and (9.14) that (x(t), K(t), φ(t))→M , {(x,K, φ) ∈ R
n × R

m×s × R
m : x =

xe, K̇ = 0, φ̇ = 0} as t→∞, where s , s1 + · · ·+ sm.

It is important to note that the adaptive control law (9.12)–(9.14) does not require

the explicit knowledge of the gain matrix Kg and the nonnegative vector ue. All

that is required is the existence of a vector ue and a partially component decoupled

Lyapunov function Vs(e) along with the construction of F (e) such that (9.10) and

the equilibrium condition (9.8) hold. In the case where f(x) in (9.6) is homogeneous,

cooperative; that is, the Jacobian matrix ∂f(x)
∂x

is essentially nonnegative for all x ∈

R
n

+, and the Jacobian matrix ∂f(x)
∂x

is irreducible for all x ∈ R
n

+ [20], it follows from

Corollary 1 of [52] that there exists an equilibrium point xe ∈ R
n
+ if and only if the zero

solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system (9.6) is globally asymptotically

stable for all x0 ∈ R
n

+. In this case, xe ∈ R
n
+ is a globally asymptotically stable

equilibrium point of (9.6) with a constant control input B̂ue satisfying (9.8). Finally,

it is important to note that for i = 1, · · · ,m, the control input signal ui(t), t ≥ 0, in

Theorem 9.1 can be negative depending on the values of x(t), ki(t), and φi(t), t ≥ 0.

However, as is required in nonnegative and compartmental dynamical systems the

closed-loop plant states remain nonnegative.

Unlike linear asymptotically stable nonnegative systems, the existence of a com-
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ponent decoupled Lyapunov function (see Theorem 7.2) is not necessarily guaranteed

for nonlinear asymptotically stable nonnegative systems. Diagonal-type Lyapunov

functions that are not necessarily quadratic take the form given by (9.11) with

V̂s(em+1, · · · , en) = Vsm+1(em+1) + · · ·+ Vsn(en) (9.24)

and hence are component decoupled. Component decoupled Lyapunov functions play

a key role in robust stability with structured uncertainty, neural networks, passive

circuits, ecological systems, variable structure systems, power systems, and large-scale

systems. For details see [135]. Even though the existence of diagonal-type Lyapunov

functions for asymptotically stable nonlinear nonnegative systems is not assured,

there do exist classes of nonnegative dynamical systems that do admit component

decoupled Lyapunov functions. In particular, if the system dynamics given by (9.17)

are in the Persidskii form

fs(e) = Af(e), (9.25)

where A is essentially nonnegative and asymptotically stable and f(·) belongs to the

set S given by

S , {f : R
n → R

n : f(0) = 0, fi(ei)ei > 0, ei 6= 0,

and
∫ ei
0
fi(σ)dσ →∞ as |ei| → ∞, i = 1, · · · ,m}, (9.26)

then the component decoupled Lyapunov function

Vs(e) =
1

2

n
∑

i=1

pi

∫ ei

0

fi(σ)dσ =
1

2

∫ e

0,path

fT(σ)Pdσ, (9.27)

where P = diag[p1, · · · , pn] satisfies (7.6) and the path integral in (9.27) is taken over

any path joining the origin to e ∈ R
n, guarantees that the zero solution e(t) ≡ 0 to

(9.17) with fs(e) given by (9.25) is globally asymptotically stable [135]. Alternatively,

if the system dynamics are given by (9.17) with

fs(e) = Ae−Df(e), (9.28)
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where A is essentially nonnegative and asymptotically stable, f(·) belongs to the set

S, and D is a nonnegative diagonal matrix, then the quadratic Lyapunov function

Vs(e) = eTPe, where P is the diagonal positive definite solution to (7.6), guaran-

tees that the zero solution e(t) ≡ 0 to (9.17) with fs(e) given by (9.28) is globally

asymptotically stable [135].

In the case where F : R
m → R

s is only a function of ê , [e1, · · · , em]T, the

adaptive feedback controller given in Theorem 9.1 can be viewed as an adaptive

output feedback controller with outputs y = Cx, where C , [Im, 0m×(n−m)]. In this

case, it follows from (9.12) that the explicit knowledge of xu , [xm+1, · · · , xn]
T and

xeu = [xem+1, · · · , xen]T as well as ue ∈ R
m is not required. In addition, if f(·) in (9.6)

is such that fe(·) is continuously differentiable, fe(0) = 0, and fe(e) is given by

fe(e) =

[

A11 + A11(ê) A12

A21 A22

]

e, (9.29)

where A11 : R
m → R

m×m is a continuous and essentially nonnegative, A11 ∈ R
m×m is

essentially nonnegative, A12 ∈ R
m×(n−m) is nonnegative, A21 ∈ R

(n−m)×m is nonnega-

tive, and A22 ∈ R
(n−m)×(n−m) is essentially nonnegative, and if (9.6) is stabilizable and

feedback linearizable, then there always exists a rectangular block-diagonal matrix

Kg ∈ R
m×s such that (9.10) holds. Furthermore, in this case Vs(·) need not be known.

To see this, let A11(ê)ê be parameterized as A11(ê)ê = [θT1 F̂1(ê), · · · , θTmF̂m(ê)]
T, where

F̂ (·) , [F̂T
1 (·), · · · , F̂T

m(·)]T is a known function such that F̂i : R
m → R

ŝi satisfies

F̂i(x̂ − x̂e) ≤≤ 0 whenever xi = 0 and F̂i(0) = 0, i = 1, · · · ,m, x̂e , [xe1, · · · , xem]T,

and θi ∈ R
ŝi , i = 1, · · · ,m, are unknown constant parameters such that θi ≥≥ 0,

i = 1, · · · ,m. Now, by viewing ê = Ce as an output, the zero dynamics of ė(t) =

fe(e(t)) +G(e(t) + xe)u(t), e(0) = e0, t ≥ 0, with fe(e) given by (9.29) are given by

ż(t) = A22z(t), z(0) = z0, t ≥ 0, (9.30)

where z , [em+1, · · · , em]T. Since CB̂ = (CB̂)T > 0, it follows from Theorem 2
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of [60] (see also [126]) that if A22 is asymptotically stable, then there exist matrices

P ∈ R
n×n, L ∈ R

n×p, and Φ̂ ∈ R
m×m, with P positive definite, and a positive constant

ε such that

0 = (Â+ B̂Φ̂C)TP + P (Â+ B̂Φ̂C) + εP + LTL, (9.31)

0 = B̂TP − C, (9.32)

where Â is given by

Â ,

[

A11 A12

A21 A22

]

. (9.33)

Note that it follows from (9.32) that P has the form P = block-diag[P1, P2], where

P1 , diag[p1, · · · , pm] ∈ R
m×m and P2 ∈ R

(n−m)×(n−m). Now, defining Φ , diag[ϕ1,

· · · , ϕm] such that Φ ≤ 1
2
(Φ̂ + Φ̂T) and Φ ≤ 0, it follows that

(Â+ B̂ΦC)TP + P (Â+ B̂ΦC) = (Â+ B̂Φ̂C)TP + P (Â+ B̂Φ̂C)

+CT(Φ− Φ̂)TBTP + PB(Φ− Φ̂)C

= −εP − LTL+ CT[2Φ− (Φ̂T + Φ̂)]C

≤ −εP, (9.34)

and thus Â + B̂ΦC is asymptotically stable. Now, with kTgi = [−θTi /bi, ϕi] ≤≤ 0,

i = 1, · · · ,m, and Fi(e) = [F̂T
i (ê), ei]

T, it follows that

fs(e) = fe(e) + B̂KgF (ê)

=

[

A11 + A11(ê) A12

A21 A22

]

e+

[

Bu

0(n−m)×m

]







−θT1 F̂1(ê)/b1 + ϕ1e1
...

−θTmF̂m(ê)/bm + ϕmem







=

[

A11 + A11(ê) A12

A21 A22

]

e−
[

A11(ê) 0
0 0

]

e+

[

Bu

0(n−m)×m

]







ϕ1e1
...

ϕmem







= (Â+ B̂ΦC)e. (9.35)

In this case, with Vs(e) = eTPe, the adaptive feedback controller (9.12) with update
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laws (9.13), (9.14), or, equivalently,

k̇Ti (t) = −qi(xi(t)− xei)FT
i (x̂(t)− x̂e), ki(0) ≤≤ 0, i = 1, · · · ,m, (9.36)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) ≥ xei,
−q̂i(xi(t)− xei), otherwise,

φ(0) ≥ 0,

i = 1, · · · ,m, (9.37)

with qi and q̂i in (9.13) and (9.14) replaced by qi
pi

and q̂i
pi
, respectively, guarantees

global asymptotic stability of the nonlinear uncertain dynamical system (9.6) with

f(x) = fe(e) + f(xe), where fe(e) satisfies (9.29).

It is important to note that the adaptive feedback controller (9.12) with update

laws (9.36), (9.37) does not require knowledge of the system dynamics (9.29). All

that is required is that A22 in (9.29) be asymptotically stable. Finally, in the case

where A11(e) = 0 and Gn(x) = Im, we can simply take F (e) = ê. In this case, the

adaptive feedback controller (9.12) with update laws (9.13), (9.14) collapses to

ui(t) = ki(t)(xi(t)− xei) + φi(t), i = 1, · · · ,m, (9.38)

k̇i(t) = −qi(xi(t)− xei)2, ki(0) ≤ 0, i = 1, · · · ,m, (9.39)

φ̇i(t) =

{

0, if φi(t) = 0 and xi(t) ≥ xei,
−q̂i(xi(t)− xei), otherwise,

φ(0) ≥ 0,

i = 1, · · · ,m. (9.40)

This is precisely the result given in Chapter 7 (see also [85,86]).

In the case where our objective is zero set-point regulation, that is, xe = 0, the

adaptive controller given in Theorem 9.1 can be simplified. Specifically, since in this

case x(t) ≥ xe = 0, t ≥ 0, and condition (9.8) is trivially satisfied with ue = 0, we

can set φ(t) ≡ 0 so that the update law (9.14) is superfluous. This result is given in

the following theorem.

Theorem 9.2. Consider the nonlinear uncertain system G given by (9.6) where

f : R
n → R

n is essentially nonnegative and G : R
n → R

n×m is nonnegative and
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is given by (9.7). Assume there exist a rectangular block-diagonal matrix Kg ,

block-diag[kTg1, · · · , kTgm], where kgi ∈ R
si , i = 1, · · · ,m, continuously differentiable

functions Vsi : R → R, i = 1, · · · ,m, and V̂s : R
n−m → R, and continuous functions

Fi : R
n → R

si , with Fi(0) = 0, i = 1, . . . ,m, and ` : R
n → R such that Vs(·) and

`(·) are positive definite in the nonnegative orthant and Vs(·) is radially unbounded

in the nonnegative orthant, Vs(0) = 0, `(0) = 0, and, for all x ∈ R
n

+,

0 = V ′s (x)fs(x) + `(x), (9.41)

where

Vs(x) , Vs1(x1) + · · ·+ Vsm(xm) + V̂s(xm+1, · · · , xn), (9.42)

fs(x) , f(x) + B̂KgF (x), (9.43)

and F (x) , [FT
1 (x), · · · , FT

m(x)]
T. Finally, let qi, i = 1, · · · ,m, be positive constants.

Then the adaptive feedback control law

u(t) = G−1n (x(t))K(t)F (x(t)), (9.44)

where K(t) , block-diag[kT1 (t), · · · , kTm(t)], with ki(t) ∈ R
si , i = 1, · · · ,m, satisfying

k̇Ti (t) = − qi
2
Vs
′
i(xi(t))F

T
i (x(t)), kTi (0) = ki

T
0, i = 1, · · · ,m, (9.45)

guarantees that the solution (x(t), K(t)) ≡ (0, Kg) of the closed-loop system given by

(9.6), (9.44), and (9.45) is Lyapunov stable and x(t) → 0 as t → ∞ for all x0 ∈ R
n

+.

Furthermore, x(t) ≥≥ 0 for all t ≥ 0 and x0 ∈ R
n

+.

Proof. The proof is identical to the proof of Theorem 9.1. ¤

Remark 9.2. Theorem 9.2 provides considerable simplification in the case where

(9.6) is feedback linearizable. Specifically, in this case fs(x) = Asx is asymptotically
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stable and essentially nonnegative and hence it follows from Theorem 3.2 of [75] that

there exist p >> 0 and r >> 0 such that Vs(x) = pTx and `(x) = rTx satisfy (9.41).

In this case, the update law (9.45) can be equivalently written as

k̇Ti (t) = − qi
2
FT

i (x(t)), kTi (0) = kTi0, i = 1, · · · ,m, (9.46)

with qi in (9.45) replaced by qi
pi
, where pi is the ith component of p. Furthermore,

condition (9.9) is not required in Theorem 9.2 and thus ki(t), i = 1, · · · ,m, is not

necessarily a nonincreasing function. Thus, the initial values ki(0), i = 1, · · · ,m, can

be chosen arbitrarily.

Remark 9.3. In the case where fs(x) is compartmental, that is, the ith compo-

nent of fs(x) is given by

fsi(x) = −âii(x) +
n
∑

j=1,i6=j

[âij(x)− âji(x)], (9.47)

for all i ∈ {1, · · · , n}, where âii(x) ≥ 0 denotes the instantaneous rate of flow of

material loss of the ith compartment and âji(x) ≥ 0 denotes the instantaneous rate

of material flow from ith compartment to jth compartment, it follows that by taking

Vs(x) = ı̂Tx, where ı̂ , [1, · · · , 1]T, the update law (9.45) can be equivalently written

as (9.46).

Finally, we generalize Theorem 9.1 to the case where the input matrix is not nec-

essarily nonnegative. Specifically, here we assume that bi in Theorem 9.1 is unknown

but sgn bi is known for all i = 1, · · · ,m.

Theorem 9.3. Consider the nonlinear uncertain system G given by (9.6) where

f : R
n → R

n is essentially nonnegative and G : R
n → R

n×m is given by (9.7). For a

given xe ∈ R
n

+, assume there exists a vector ue ∈ R
m such that (9.8) is satisfied with

f(xe) ≤≤ 0. Furthermore, assume there exist a rectangular block-diagonal matrix
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Kg , block-diag[kTg1, · · · , kTgm], where kgi ∈ R
si , i = 1, · · · ,m, continuously differen-

tiable functions Vsi : R → R, i = 1, · · · ,m, and V̂s : R
n−m → R, and continuous

functions ` : R
n → R

p and Fi : R → R
si , with Fi(x − xe) ≤≤ 0 whenever xi = 0

and Fi(0) = 0, i = 1, . . . ,m, such that Vs(·) is positive definite, radially unbounded,

Vs(0) = 0, `(0) = 0, and, for all e ∈ R
n, (9.9) and (9.10) hold. Finally, let qi and q̂i,

i = 1, · · · ,m, be positive constants. Then the adaptive feedback control law (9.12),

where K(t) , block-diag[kT1 (t), · · · , kTm(t)], ki(t) ∈ R
si , i = 1, · · · ,m, t ≥ 0, with

update laws

k̇Ti (t) = −(sgn bi) qi2 Vs′i(xi(t)− xei)FT
i (x(t)− xe), i = 1, · · · ,m, (9.48)

φ̇i(t) =

{

0, if φi(t) = 0 and Vs
′
i(xi(t)− xei) ≥ 0,

−(sgn bi) q̂i2 Vs′i(xi(t)− xei), otherwise,

i = 1, · · · ,m, (9.49)

where ki(0) and φi(0) are such that (sgn bi)ki(0) ≤≤ 0 and (sgn bi)φi(0) ≥ 0, respec-

tively, guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue) of the closed-loop

system given by (9.6), (9.12), (9.48), and (9.49) is Lyapunov stable. If, in addition,

`T(e)`(e) > 0, e ∈ R
n, e 6= 0, then x(t)→ xe as t→∞ for all x0 ∈ R

n

+. Furthermore,

x(t) ≥≥ 0 for all t ≥ 0 and x0 ∈ R
n

+.

Proof. The proof is similar to that of Theorem 9.1 with Q and Q̂ replaced by

Q = diag
[

q1
|b1| , · · · ,

qm
|bm|

]

and Q̂ = diag
[

q̂1
|b1| , · · · ,

q̂m
|bm|

]

, respectively. ¤

Note that the adaptive controller given in Theorem 9.3 does not destroy nonnega-

tivity with respect to the plant states. In particular, the closed-loop system dynamics

are given by (9.21). Now, it can be seen from (9.9), (9.48), and (9.49) that if bi is

negative, then ki(t) ≥≥ 0, t ≥ 0, and φi(t) ≤ 0, t ≥ 0, i = 1, · · · ,m, and hence

v(t) ≥≥ 0, t ≥ 0, and w(t) ≥≥ 0, t ≥ 0. Hence, by Proposition 9.3, x(t) ≥≥ 0, t ≥ 0,

for all x0 ∈ R
n

+.
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9.4. Adaptive Control for Nonlinear Nonnegative Dynamical

Systems with Nonnegative Control

As discussed in the Introduction, control (source) inputs of drug delivery systems

for physiological processes are usually constrained to be nonnegative as are the system

states. Hence, in this section we develop adaptive control laws for nonnegative systems

with nonnegative control inputs. Specifically, for a given desired set point xe ∈ R
n

+,

our aim is to design a control input u(t), t ≥ 0, such that limt→∞ ‖x(t) − xe‖ = 0.

We assume that control inputs are injected directly into m separate compartments

and the input matrix function is given by

G(x) =

[

BuGn(x)
0(n−m)×m

]

, (9.50)

where Bu = diag[b1, · · · , bm] is an unknown nonnegative diagonal matrix and Gn =

diag[gn1(x), · · · , gnm(x)], where gni : R
n

+ → R+, i = 1, · · · ,m, is a known nonneg-

ative diagonal matrix function. For compartmental systems this assumption is not

restrictive since control inputs correspond to control inflows to each individual com-

partment.

Theorem 9.4. Consider the nonlinear uncertain system G given by (9.6) where

f : R
n → R

n is essentially nonnegative and G : R
n → R

n×m is nonnegative and

is given by (9.50). For a given xe ∈ R
n

+, assume there exists a nonnegative vector

ue ∈ R
m

+ such that (9.8) is satisfied, where B̂ , [Bu, 0m×(n−m)]
T, and the equilibrium

point xe of (9.6) is asymptotically stable for all x0 ∈ R
n

+ with u(t) ≡ ue. Furthermore,

assume there exist continuously differentiable functions Vsi : R → R, i = 1, · · · ,m,

and V̂s : R
n−m → R, and continuous functions Fi : R

n → R
si , with Fi(0) = 0,

i = 1, · · · ,m, and ` : R
n → R

p such that Vs(·) is positive definite, radially unbounded,

Vs(0) = 0, `(0) = 0, i = 1, · · · ,m, and, for all e ∈ R
n,

0 = V ′s (e)fe(e) + `T(e)`(e), (9.51)
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and (9.9) holds, where Vs(e) is given by (9.11), fe(e) , f(e+xe)− f(xe), and F (e) ,

[FT
1 (e), · · · , FT

m(e)]
T. Finally, let qi and q̂i, i = 1, · · · ,m, be positive constants. Then

the adaptive feedback control law

ui(t) = max{0, ûi(t)}, i = 1, · · · ,m, (9.52)

where

ûi(t) = gn
−1
i (x(t))kTi (t)Fi(x(t)− xe) + gn

−1
i (x(t))φi(t), i = 1, · · · ,m, (9.53)

ki(t) ∈ R
si , t ≥ 0, i = 1, · · · ,m, and φi(t) ∈ R, t ≥ 0, i = 1, · · · ,m, with update laws

k̇Ti (t) =

{

0, if ûi(t) ≤ 0,
− qi

2
Vs
′
i(xi(t)− xei)FT

i (x(t)− xe), otherwise,

ki(0) ≤≤ 0, i = 1, · · · ,m, (9.54)

φ̇i(t) =











0,
if φi(t) = 0 and Vs

′
i(xi(t)− xei) ≥ 0,

or if ûi(t) ≤ 0,

− q̂i
2
Vs
′
i(xi(t)− xei), otherwise,

φi(0) = 0, i = 1, · · · ,m, (9.55)

guarantees that the solution (x(t), K(t), φ(t)) ≡ (xe, Kg, ue), where K(t) , block-

diag[kT1 (t), · · · , kTm(t)] and Kg , block-diag[kTg1, · · · , kTgm] ≤≤ 0, of the closed-loop

system given by (9.6), (9.52), (9.54), and (9.55) is Lyapunov stable. If, in addition,

`T(e)`(e) > 0, e ∈ R
n, e 6= 0, then x(t)→ xe as t→∞ for all x0 ∈ R

n

+. Furthermore,

u(t) ≥≥ 0 and x(t) ≥≥ 0 for all t ≥ 0 and x0 ∈ R
n

+.

Proof. First, let e(t) , x(t)−xe and define Ku(t) , block-diag[kTu1(t), · · · , kTum(t)]

and φu(t) , [φu1(t), · · · , φum(t)]
T, where

kui(t) =

{

0, if ûi(t) ≤ 0,
ki(t), otherwise,

i = 1, · · · ,m, (9.56)

φui(t) =

{

0, if ûi(t) ≤ 0,
φi(t), otherwise,

i = 1, · · · ,m. (9.57)

Now, note that with u(t), t ≥ 0, given by (9.52) it follows from (9.6) that

ẋ(t) = f(x(t)) + B̂Ku(t)F (x(t)− xe) + B̂φu(t), x(0) = x0, t ≥ 0, (9.58)
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or, equivalently, using (9.8),

ė(t) = fe(e(t))+B̂Ku(t)F (x(t)−xe)+B̂(φu(t)−ue), e(0) = x0−xe, t ≥ 0. (9.59)

To show Lyapunov stability of the closed-loop system (9.54), (9.55), and (9.59) con-

sider the Lyapunov function candidate

V (e,K, φ) = Vs(e) + tr(K −Kg)
TQ−1(K −Kg) + (φ− ue)TQ̂−1(φ− ue), (9.60)

or, equivalently,

V (e,K, φ) = Vs(e) +
m
∑

i=1

bi
qi
(ki − kgi)T(ki − kgi) +

m
∑

i=1

bi
q̂i
(φi − uei)2,

where Q = [ q1
b1
, · · · , qm

bm
] and Q̂ = diag[ q̂1

b1
, · · · , q̂m

bm
]. Note that V (0, Kg, ue) = 0 and,

since Vs(·), Q, and Q̂ are positive definite, V (e,K, φ) > 0 for all (e,K, φ) 6= (0, Kg, ue).

Furthermore, V (e,K, φ) is radially unbounded. Now, letting e(t), t ≥ 0, denote the

solution to (9.59) and using (9.54) and (9.55), it follows that the Lyapunov derivative

along the closed-loop system trajectories is given by

V̇ (e(t), K(t), φ(t)) = V ′s (e(t))
[

fe(e(t)) + B̂Ku(t)F (x(t)− xe) + B̂(φu(t)− ue)
]

+2tr(K(t)−Kg)
TQ−1K̇(t) + 2(φ(t)− ue)TQ̂−1φ̇(t)

= −`T(e(t))`(e(t)) +
m
∑

i=1

Vs
′
i(ei(t))bik

T
ui(t)Fi(e(t))

+
m
∑

i=1

biVs
′
i(ei(t))(φui(t)− uei) +

m
∑

i=1

2bi
qi
k̇Ti (t)(ki(t)− kgi)

+
m
∑

i=1

2bi
q̂i

(φi(t)− uei)φ̇i(t)

= −`T(e(t))`(e(t))

+
m
∑

i=1

bi

[

Vs
′
i(ei(t))k

T
ui(t)Fi(e(t)) +

2

qi
k̇Ti (t)(ki(t)− kgi)

]

+
m
∑

i=1

bi

[

Vs
′
i(ei(t))(φui(t)− uei) +

2

q̂i
(φi(t)− uei)φ̇i(t)

]

. (9.61)

Now, for each i ∈ {1, · · · ,m} and for the two cases given in (9.54) and (9.55), the last

two terms on the right-hand side of (9.61) give:
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i) If ûi(t) ≤ 0, then kui(t) = 0, φui(t) = 0, k̇i(t) = 0, and φ̇i(t) = 0. Furthermore,

since φi(t) ≥ 0 and ki(t) ≤ 0 for all t ≥ 0, it follows from (9.53) that ûi(t) ≤ 0

only if Fi(x(t)− xe) ≥≥ 0 which implies Vs
′
i(ei(t)) ≥ 0 by (9.9) and hence

Vs
′
i(ei(t))k

T
ui(t)Fi(e(t)) +

2

qi
k̇Ti (t)(ki(t)− kgi) = 0,

Vs
′
i(ei(t))(φui(t)− uei) +

2

q̂i
(φi(t)− uei)φ̇i(t) = −Vs′i(ei(t))uei ≤ 0.

ii) Otherwise, kui(t) = ki(t) and φui(t) = φi(t) and hence

Vs
′
i(ei(t))k

T
ui(t)Fi(e(t)) +

2

qi
k̇Ti (t)(ki(t)− kgi) = Vs

′
i(ei(t))k

T
gi(t)Fi(e(t)) ≤ 0,

Vs
′
i(ei(t))(φui(t)− uei) +

2

q̂i
(φi(t)− uei)φ̇i(t)

=

{

−Vs′i(ei(t))uei ≤ 0, if φi(t) = 0 and Vs
′
i(xi(t)− xei) ≥ 0,

0, otherwise.

Hence, it follows that in either case

V̇ (e(t), K(t), φ(t)) ≤ −`T(e(t))`(e(t))

≤ 0, t ≥ 0, (9.62)

which proves that the solution (e(t), K(t), φ(t)) ≡ (0, Kg, ue) to (9.54), (9.55), and

(9.59) is Lyapunov stable. Furthermore, it follows from Theorem 2 of [42] that

`(e(t)) → 0 as t → ∞. If, in addition, `T(e)`(e) > 0, e ∈ R
n, e 6= 0, then x(t) → xe

as t→∞ for all x0 ∈ R
n

+.

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (9.52). Now, since G(x(t)) ≥≥ 0,

t ≥ 0, and u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 9.2 that x(t) ≥≥ 0 for all

t ≥ 0 and x0 ∈ R
n

+. ¤

Remark 9.4. Note that in the case where `T(e)`(e) > 0, e ∈ R
n, e 6= 0, the

conditions in Theorem 9.4 imply that x(t)→ xe as t→∞ and hence it follows from

(9.54) and (9.55) that (x(t), K(t), φ(t))→M , {(x,K, φ) ∈ R
n × R

m×s × R
m : x =

xe, K̇ = 0, φ̇ = 0} as t→∞.
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In Theorem 9.4 we assumed that the equilibrium point xe of (9.6) is globally

asymptotically stable with u(t) ≡ ue. In general, however, unlike linear nonnegative

systems with asymptotically stable plant dynamics, a given set point xe ∈ R
n

+ for the

nonlinear nonnegative dynamical system (9.6) may not be asymptotically stabilizable

with a constant control u(t) ≡ ue ∈ R
m

+ . However, as discussed in Section 9.3, if

f(x) is homogeneous, cooperative; that is, the Jacobian matrix ∂f(x)
∂x

is essentially

nonnegative for all x ∈ R
n

+ [221], the Jacobian matrix ∂f(x)
∂x

is irreducible for all

x ∈ R
n

+ [221], and the zero solution x(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system

(9.6) is globally asymptotically stable, then the set point xe ∈ R
n
+ satisfying (9.8) is

a unique equilibrium point with u(t) ≡ ue ∈ R
m
+ and is also asymptotically stable for

all x0 ∈ R
n

+ [52]. This implies that the solution x(t) ≡ xe to (9.6) with u(t) ≡ ue is

asymptotically stable for all x0 ∈ R
n

+.

It is important to note that the adaptive control law (9.52), (9.54), and (9.55) does

not require the explicit knowledge of the nonnegative vector ue; all that is required

is the existence of the nonnegative constant vector ue and a partially component

decoupled Lyapunov function Vs(e) along with the construction of F (e) such that (9.9)

and (9.51) are satisfied and the equilibrium condition (9.8) holds. Furthermore, note

that in the case where F (e) is only a function of ê = [e1, · · · , em]T it follows from (9.53)

that the adaptive control law (9.52), (9.54), and (9.55) does not require the explicit

knowledge of the nonnegative constant vectors xeu = [xem+1, · · · , xen]T and ue ∈ R
m

+ ;

even though Theorem 9.4 requires the existence of xeu ∈ R
n−m

+ and ue ∈ R
m

+ such that

condition (9.8) holds. Finally, the control input u(t), t ≥ 0, is always nonnegative

regardless of the values of xi(t), ki(t), and φi(t), t ≥ 0, i = 1, · · · ,m, which ensures

that the closed-loop plant states remain nonnegative by Proposition 9.2.
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9.5. Illustrative Numerical Example

In this section we present a numerical example to demonstrate the utility of the

proposed direct adaptive control framework. Specifically, consider the controlled two-

compartment nonnegative dynamical system given by

ẋ1(t) = −a21(x1(t))x1(t) + a12(x1(t))x2(t) + bu(t), x1(0) = x10, t ≥ 0, (9.63)

ẋ2(t) = a21(x1(t))x1(t)− a12(x1(t))x2(t), x2(0) = x20, (9.64)

where a21(x1) , c1Q(x1), a12(x1) , c2+ c3Q(x1), Q(x1) ,
1

c4x1+c5
, and c1, · · · , c5, and

b are unknown positive constants. Note that with x = [x1, x2]
T, (9.63) and (9.64)

can be written in the form of (9.6) with f(x) = [−a21(x1)x1 + a12(x1)x2, a21(x1)x1 −

a12(x1)x2]
T and G(x) = B̂ = [b, 0]T. Here, our objective is to regulate x1 around

the desired value xe1 ≥ 0. Note that xe2 = c1Q(xe1)xe1/(c2 + c3Q(xe1)) and ue = 0

satisfy the equilibrium condition (9.8) with xe = [xe1, xe2]
T. Furthermore, define

e(t) , x(t)− xe so that fe(e) is given by

fe(e) =

[

−[a21(e1 + xe1) + a12(e1 + xe1)(e2 + xe2)− [−(a21(xe1) + a12(xe1)xe2]

a21(e1 + xe1)(e1 + xe1)− a12(e1 + xe1)(e2 + xe2)− [a21(xe1)xe1 − a12(xe1)xe2)]

]

.

(9.65)

Furthermore, let Kg = kg/b, F1(e) = e1, and Vs(e) = e21 + e22 so that Vs
′
1(e)F1(e) =

2e21 ≥ 0. Next, note that

V ′s (e)[fe(e) + B̂KgF1(e)]

= e1[fe1(e) + kge1] + e2fe2(e)

= −[a21(e1 + xe1) + ke(e1 + xe1)]e
2
1 + a12(e1 + xe1)e1e2

−xe1[a21(e1 + xe1)− a21(xe1)]e1 − xe2[a12(e1 + xe1)− a12(xe1)]e1

+a21(e1 + xe1)e1e2 − a12(e1 + xe1)e
2
2 + xe1[a21(e1 + xe1)− a21(xe1)]e2

−xe2[a12(e1 + xe1)− a12(xe1)]e2 + kge
2
1, (9.66)
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where fei(·) denotes the ith component of fe(·), i = 1, 2, and −kg ∈ R+. Now,

since Q(·) is Lipschitz continuous there exist positive constants α and β such that

|[Q(e1 + xe1)−Q(xe1)]e1| ≤ αe21 and |[Q(e1 + xe1)−Q(xe1)]e2| ≤ β|e1||e2|, and hence

it follows that there exist γ1, γ2 > 0 such that

V ′s (e)[fe(e) + B̂KgF1(e)] ≤ γ1e
2
1 + 2γ2|e1||e2| − c2e22 + kge

2
1

= −c2
(γ2
c2
|e1| − |e2|

)2

+
(

γ1 −
γ22
c22

+ kg

)

e21.

Hence, there exists kg < 0 such that

V ′s (e)[fe(e) + B̂KgF1(e)] < 0, e ∈ R
2, e 6= 0. (9.67)

Now, it follows from Theorem 2.1 that x(t)→ xe as t→∞ for any positive constant

c1, · · · , c5, and b. For xe1 = 2 and with c1 = 2, c2 = 0.1, c3 = 3, c4 = c5 = 1, b = 3,

q1 = 0.01, q̂1 = 0.1, and initial conditions x(0) = [5, 8]T, k1(0) = 0, and φ1(0) = 1,

Figure 9.1 shows the state trajectories versus time. Finally, Figure 9.2 shows the

control signal and the adaptive gain history versus time.

9.6. Nonlinear Adaptive Control for General Anesthesia

To illustrate the application of our adaptive control framework we consider a

hypothetical model for the intravenous anesthetic propofol. The pharmacokinetics of

propofol are described by a three compartment model [169]. The model is shown in

Figure 9.3. The mass of the drug in the intravascular blood volume as well as the

highly perfused organs (organs with high ratios of perfusion to weight) such as the

heart, brain, kidney, and liver is denoted by x1. The remainder of the drug in the

body is assumed to reside in two peripheral compartments, comprised of muscle and

fat, and the masses in these compartments are denoted by x2 and x3.
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Figure 9.1: State trajectories versus time
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Figure 9.2: Control signal versus time and adaptive gain history versus time
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Figure 9.3: Pharmacokinetic model for drug distribution during anesthesia

A mass balance of the three-state compartmental model yields

ẋ1(t) = −[ae(c(t)) + a21(c(t)) + a31(c(t))]x1(t) + a12(c(t))x2(t) + a13(c(t))x3(t)

+u(t), x1(0) = x10, t ≥ 0, (9.68)

ẋ2(t) = a21(c(t))x1(t)− a12(c(t))x2(t), x2(0) = x20, (9.69)

ẋ3(t) = a31(c(t))x1(t)− a13(c(t))x3(t), x3(0) = x30, (9.70)

where c(t) = x1(t)/Vc, Vc is the volume of the central compartment, a21(c) is the rate

of transfer of drug from the central compartment to Compartment II, a12(c) is the

rate of transfer of drug from Compartment II to the central compartment, a31(c) is

the rate of transfer of drug from the central compartment to Compartment III, a13(c)

is the rate of transfer of drug from Compartment III to the central compartment,

ae(c) is the rate of drug metabolism and elimination (metabolism typically occurs in

the liver), and u(t), t ≥ 0, is the infusion rate of the anesthetic drug propofol into the

central compartment. In order to formulate a physiologically realistic nonlinear model

we assume that the rate transfers are proportional to the cardiac output. Even though

this assumption has not been validated in clinical studies, we make the assumption

to develop a nonlinear model to illustrate implementation of our adaptive controller.

However, it does have some plausibility since transfer from the central compartment to

the peripheral compartments (or vice versa) requires physical transport via the blood

stream from the heart, brain, etc., to muscle and fat (or vice versa). Furthermore,
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since for many drugs the rate of metabolism (i.e., ae(c)) is proportional to the rate of

transport of drug to the liver we assume that ae(c) is also proportional to the cardiac

output. Thus, we assume a21(c) = A21Q(c), a12(c) = A12Q(c), a31(c) = A31Q(c),

a13(c) = A13Q(c), and ae(c) = AeQ(c), where A12, A21, A13, A31, and Ae are positive

constants. To develop a nonlinear model we assume a sigmoid relationship between

drug concentration in the central compartment and effect so that

Q(c) =
Q0C

α
50

Cα
50 + cα

, (9.71)

where the effect is related to c (since c is the presumed concentration in the highly

perfused myocardium), Q0 > 0 is a constant, C50 > 0 is the drug concentration asso-

ciated with a 50% decrease in the cardiac output, and α > 1 determines the steepness

of this curve (that is, how rapidly the cardiac output decreases with increasing drug

concentration, c). Even though the transfer and loss coefficients A12, A21, A13, A31,

and Ae are positive and α > 1, C50 > 0, and Q0 > 0, these parameters can be

uncertain due to patient gender, weight, pre-existing disease, age, and concomitant

medication. Hence, the need for adaptive control to regulate intravenous anesthetics

during surgery is crucial.

For set-point regulation define e(t) , x(t) − xe, where xe ∈ R
3 is the set point

satisfying the equilibrium condition for (9.68)–(9.70) with x1(t) ≡ xe1, x2(t) ≡ xe2,

x3(t) ≡ xe3, and u(t) ≡ ue, so that fe(e) = [fe1(e), fe2(e), fe3(e)]
T is given by

fe1(e) = −[ae(c) + a21(c) + a31(c)](e1 + xe1) + a12(c)(e2 + xe2) + a13(c)(e3 + xe3)

−[ae(ce) + a21(ce) + a31(ce)]xe1 + a12(ce)xe2 + a13(ce)xe3, (9.72)

fe2(e) = a21(c)(e1 + xe1)− a12(c)(e2 + xe2)− [a21(ce)xe1 − a12(ce)xe2], (9.73)

fe3(e) = a31(c)(e1 + xe1)− a13(c)(e3 + xe3)− [a31(ce)xe1 − a13(ce)xe3], (9.74)

where ce , xe1/Vc. Furthermore, let F (e) = e1 and Vs(e) = e21 + p2e
2
2 + p3e

2
3, where

p2, p3 > 0, so that Vs
′
1(e)F (e) = 2e21 ≥ 0. Next, linearizing fe(e) about 0 and
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computing the eigenvalues of the resulting (compartmental) Jacobian matrix, it can

be shown that xe is asymptotically stable.

Even though propofol concentrations in the blood are known to be correlated with

lack of purposeful responsiveness (and presumably consciousness) [137], they cannot

be measured in real-time during surgery. Furthermore, we are more interested in

drug effect (depth of hypnosis) rather than drug concentration. Hence, we consider

a more realistic model involving pharmacokinetics (drug concentration as a function

of time) and pharmacodynamics (drug effect as a function of concentration) for con-

trol of anesthesia. Specifically, we use an electroencephalogram (EEG) signal as a

measure of drug effect of anesthetic compounds on the brain [67, 174, 215]. Since

electroencephalography provides real-time monitoring of the central nervous system

activity, it can be used to quantify levels of consciousness and hence is amenable for

feedback (closed-loop) control in general anesthesia. As discussed in Chapter 7, a

new EEG indicator, the Bispectral Index (BIS), has been proposed as a measure of

anesthetic effect [174]. This index quantifies the nonlinear relationships between the

component frequencies in the electroencephalogram, as well as analyzing their phase

and amplitude. The BIS signal is a nonlinear monotonically decreasing function of

the level of consciousness and is given by

BIS(ceff) = BIS0

(

1− cγeff
cγeff + ECγ

50

)

, (9.75)

where BIS0 denotes the baseline (awake state) value and, by convention, is typically

assigned a value of 100, ceff is the propofol concentration in micrograms/mililiter in

the effect site compartment (brain), EC50 is the concentration at half maximal effect

and represents the patient’s sensitivity to the drug, and γ determines the degree of

nonlinearity in (9.75). Here, the effect site compartment is introduced as a corre-

late between the central compartment concentration and the central nervous system

concentration [205]. The effect site compartment concentration is related to the con-
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Figure 9.4: BIS index versus effect site concentration

centration in the central compartment by the first-order delay model

ċeff(t) = aeff(c(t)− ceff(t)), ceff(0) = c(0), t ≥ 0, (9.76)

where aeff in min−1 is a positive time constant. Assuming c(0) = 0, it follows that

ceff(t) =

∫ t

0

e−aeff(t−s)aeffc(s) ds. (9.77)

In reality, the effect site compartment equilibrates with the central compartment in

a matter of a few minutes. The parameters aeff , EC50, and γ are determined by data

fitting and vary from patient to patient. BIS index values of 0 and 100 correspond,

respectively, to an isoelectric EEG signal and an EEG signal of a fully conscious

patient; while the range between 40 and 60 indicates a moderate hypnotic state [215].

In the following numerical simulation we set EC50 = 5.6 µg/m`, γ = 2.39, and

BIS0 = 100, so that the BIS signal is shown in Figure 9.4. The target (desired) BIS

value, BIStarget, is set at 50. In this case, the linearized BIS function about the target
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BIS value is given by

BIS(ceff) ' BIS(EC50)− BIS0 · ECγ
50 ·

γcγ−1eff

(cγeff + ECγ
50)

2

∣

∣

∣

∣

ceff=EC50

· (ceff − EC50)

= 109.75− 10.67ceff . (9.78)

Furthermore, for simplicity of exposition, we assume that the effect site compartment

equilibrates instantaneously with the central compartment; that is, we assume that

aeff → ∞, so that (9.77) reduces to ceff(t) = c(t), t ≥ 0. Now, using the adaptive

feedback controller

u(t) = max{0, û(t)}, (9.79)

where

û(t) = −k(t)(BIS(t)− BIStarget) + φ(t), (9.80)

k(t) ∈ R, t ≥ 0, and φ(t) ∈ R, t ≥ 0, with update laws

k̇(t) =

{

0, if û(t) ≤ 0,
−qBIS(BIS(t)− BIStarget)

2, otherwise,
k(0) ≤ 0, (9.81)

φ̇(t) =











0,
if φ(t) = 0 and BIS(t) > BIStarget,
or if û(t) ≤ 0,

q̂BIS(BIS(t)− BIStarget), otherwise,

φ(0) ≥ 0, (9.82)

where qBIS and q̂BIS are arbitrary positive constants, it follows from Theorem 9.4

that the control input (anesthetic infusion rate) u(t) is nonnegative for all t ≥ 0 and

BIS(t) → BIStarget as t → ∞ for any (uncertain) positive values of the pharmacoki-

netic transfer and loss coefficients (A12, A21, A13, A31, Ae) as well as any (uncertain)

nonnegative coefficients α, C50, and Q0 in the range of ceff where the linearized BIS

equation (9.78) is valid. It is important to note that during actual surgery the BIS

signal is obtained directly from the EEG and not (9.75). Furthermore, since our

adaptive controller only requires the error signal BIS(t)−BIStarget over the linearized

range of (9.75), we do not require knowledge of the slope of the linearized equa-

tion (9.78), nor do we require knowledge of the pharmacodynamic parameters γ and
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EC50. For our simulation we assume Vc = (0.228 `/kg)(M kg), where M = 70 kg

is the weight (mass) of the patient, A21Q0 = 0.112 min−1, A12Q0 = 0.055 min−1,

A31Q0 = 0.0419 min−1, A13Q0 = 0.0033 min−1, AeQ0 = 0.119 min−1, α = 3, and

C50 = 4 µg/m` [169]. Note that the parameter values for α and C50 probably exag-

gerate the effect of propofol on cardiac output. They have been selected to accentuate

nonlinearity but they are not biologically unrealistic. Furthermore, to illustrate the

robustness of the proposed adaptive controller we switch the pharmacodynamic pa-

rameters EC50 and γ, respectively, from 5.6 µg/m` and 2.39 to 7.2 µg/m` and 3.39 at

t = 15 min and back to 5.6 µg/m` and 2.39 at t = 30 min. Here we consider noncar-

diac surgery since cardiac surgery often utilizes hypothermia which itself changes the

BIS signal. With qBIS = 1× 10−6 g/min2, q̂BIS = 1× 10−3 g/min2, and initial condi-

tions x(0) = [0, 0, 0]T g, k(0) = 0 g/min, and φ(0) = 0.01 g/min, Figure 9.5 shows the

masses of propofol in the three compartments versus time. Figure 9.6 shows the BIS

index and the control signal (propofol infusion rate) versus time. Finally, Figure 9.7

shows the adaptive gain history versus time.

9.7. Conclusion

Nonnegative and compartmental dynamical systems are widely used to capture

system dynamics involving the interchange of mass and energy between homogeneous

subsystems or compartments. Thus, it is not surprising that nonnegative and com-

partmental models are remarkably effective in describing the dynamical behavior of

biological and physiological systems. While compartmental systems have wide ap-

plicability in biology and medicine, their use in the specific field of pharmacology is

indispensable for developing models for active control of drug administration. In this

chapter, we developed an adaptive control framework for adaptive set-point regula-

tion of nonlinear nonnegative and compartmental systems. Using Lyapunov methods
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Figure 9.7: Adaptive gain history versus time

the proposed framework was shown to guarantee partial asymptotic set-point stabil-

ity of the closed-loop system while additionally guaranteeing the nonnegativity of the

closed-loop system states associated with the plant dynamics. Finally, using a hypo-

thetical nonlinear three-compartment patient model for the disposition of anesthetic

drug propofol, the proposed adaptive control framework was illustrated by the con-

trol of a desired constant level of consciousness for noncardiac surgery. Even though

measurement noise was not addressed in our framework, it should be noted that EEG

signals may have as much as 10% variation due to noise. While some of the noise is

due to signals emanating from muscle rather than the central nervous system (and

hence minimized by muscle paralysis) much of it is stochastic in nature. Extensions

of the proposed adaptive control framework that directly address robustness to noise

disturbances will be addressed in future research.
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Chapter 10

Neural Network Adaptive Control

for Nonlinear Nonnegative

Dynamical Systems

10.1. Introduction

Neural networks consist of a weighted interconnection of fundamental elements

called neurons, which are functions consisting of a summing junction and a nonlinear

operation involving an activation function. One of the primary reasons for the large

interest in neural networks is their capability to approximate a large class of continu-

ous nonlinear maps from the collective action of very simple, autonomous processing

units interconnected in simple ways. In addition, neural networks have attracted

attention due to their inherently parallel and highly redundant processing architec-

ture that makes it possible to develop parallel weight update laws. This parallelism

makes it possible to effectively update a neural network on line. These properties

make neural networks a viable paradigm for adaptive system identification and con-

trol of complex highly uncertain dynamical systems, and as a consequence the use of

neural networks for identification and control has become an active area of research

(see [44,119,159,160,178,226] and the numerous references therein).
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Modern complex engineering systems as well as biological and physiological sys-

tems are highly interconnected and mutually interdependent, both physically and

through a multitude of information and communication networks. By properly for-

mulating these systems in terms of subsystem interaction and energy/mass transfer,

the dynamical models of many of these systems can be derived from mass, energy,

and information balance considerations that involve dynamic states whose values are

nonnegative. Hence, it follows from physical considerations that the state trajectory

of such systems remains in the nonnegative orthant of the state space for nonnegative

initial conditions. Such systems are commonly referred to as nonnegative dynami-

cal systems in the literature [58, 75, 131, 135]. A subclass of nonnegative dynamical

systems are compartmental systems [6,24,62,70,75,123,124,164,166,172,203]. Com-

partmental systems involve dynamical models that are characterized by conservation

laws (e.g., mass and energy) capturing the exchange of material between coupled

macroscopic subsystems known as compartments. Each compartment is assumed to

be kinetically homogeneous; that is, any material entering the compartment is instan-

taneously mixed with the material of the compartment. The range of applications

of nonnegative systems and compartmental systems includes pharmacological sys-

tems [17, 229], chemical reaction systems [21, 47, 59, 150, 235], queuing systems [236],

large-scale systems [216, 217], stochastic systems (whose state variables represent

probabilities) [236], ecological systems [27, 112, 144, 166, 184], economic systems [20],

demographic systems [123], telecommunication systems [64], transportation systems,

power systems, heat transfer systems, and structural vibration systems [140–142], to

cite but a few examples. Due to the severe complexities, nonlinearities, and uncertain-

ties inherent in these systems, neural networks provide an ideal framework for on-line

adaptive control because of their parallel processing flexibility and adaptability.

In this chapter we develop a full-state feedback neural adaptive control frame-
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work for set-point regulation of nonlinear uncertain nonnegative and compartmental

systems. Nonzero set-point regulation for nonnegative dynamical systems is a key

design requirement since stabilization of nonnegative systems naturally deals with

equilibrium points in the interior of the nonnegative orthant. The proposed frame-

work is Lyapunov-based and guarantees ultimate boundedness of the error signals

corresponding to the physical system states as well as the neural network weighting

gains. The neuro adaptive controllers are constructed without requiring knowledge

of the system dynamics while guaranteeing that the physical system states remain in

the nonnegative orthant of the state space. The proposed neuro control architecture

is modular in the sense that if a linear design model is available, the neuro adaptive

controller can be augmented to the nominal design to account for system nonlineari-

ties and system uncertainty. Furthermore, since in certain applications of nonnegative

and compartmental systems (e.g., pharmacological systems for active drug adminis-

tration) control (source) inputs as well as the system states need to be nonnegative,

we also develop neuro adaptive controllers that guarantee the control signal as well as

the physical system states remain nonnegative for nonnegative initial conditions. We

note that neuro adaptive controllers for nonnegative dynamical systems have not been

addressed in the literature. Our approach however, is related to the neuro adaptive

control methods developed in [116–118]. Finally, the proposed neuro adaptive control

framework is used to regulate the temperature of a continuously stirred tank reactor

involving exothermic irreversible reactions.

The contents of this chapter are as follows. In Section 10.2 we provide mathemati-

cal preliminaries on nonnegative dynamical systems that are necessary for developing

the main results of this paper. Furthermore, we develop new Lyapunov-like theorems

for partial boundedness and partial ultimate boundedness for nonlinear dynamical

systems necessary for obtaining less conservative ultimate bounds for neuro adap-
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tive controllers as compared to ultimate bounds derived using classical boundedness

and ultimate boundedness notions in Section 10.2. In Section 10.3 we present our

main neuro adaptive control framework for adaptive set-point regulation of nonlinear

uncertain nonnegative and compartmental systems. In Section 10.4 we extend the

results of Section 10.3 to the case where control inputs are constrained to be nonneg-

ative. To demonstrate the efficacy of the proposed neuro adaptive control framework,

in Section 10.5 we apply our framework to control a continuously stirred tank reactor

involving exothermic irreversible reactions. Finally, in Section 10.6 we draw some

conclusions.

10.2. Mathematical Preliminaries

In this section we introduce notation, several definitions, and some key results

concerning linear and nonlinear nonnegative dynamical systems [19, 20, 24, 75] that

are necessary for developing the main results of this chapter. Specifically, consider

the controlled linear dynamical system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (10.1)

where

B =

[

B̂
0(n−m)×m

]

, (10.2)

A ∈ R
n×n is essentially nonnegative and B̂ ∈ R

m×m is nonnegative such that rank B̂ =

m. The following theorem shows that linear stabilizable nonnegative systems possess

asymptotically stable zero dynamics with x̂ , [x1, · · · , xm] viewed as the output. For

the statement of this result let spec(A) denote the spectrum of A, let C+ , {s ∈ C :

Re[s] ≥ 0}, and let A ∈ R
n×n in (10.1) be partitioned as

A =

[

A11 A12

A21 A22

]

, (10.3)
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where A11 ∈ R
m×m is essentially nonnegative, A12 ∈ R

m×(n−m) is nonnegative, A21 ∈

R
(n−m)×m is nonnegative, and A22 ∈ R

(n−m)×(n−m) is essentially nonnegative.

Theorem 10.1. Consider the linear dynamical system G given by (10.1) where

A ∈ R
n×n is essentially nonnegative and partitioned as in (10.3), and B ∈ R

n×m is

nonnegative and is partitioned as in (10.2) with rank B̂ = m. Then there exists a gain

matrix K ∈ R
m×n such that A + BK is essentially nonnegative and asymptotically

stable if and only if A22 is asymptotically stable.

Proof. First, let K , [K1, K2], where K1 ∈ R
m×m and K2 ∈ R

m×(n−m), and note

that

(A+BK)T =

[

(A11 + B̂K1)
T AT

21

(A12 + B̂K2)
T AT

22

]

.

Assume that A + BK is essentially nonnegative and asymptotically stable and sup-

pose, ad absurdum, A22 is not asymptotically stable. Then, it follows from Theo-

rem 7.1 that there does not exist a positive vector p2 ∈ R
n−m
+ such that AT

22p2 << 0.

Next, since A12 + B̂K2 is nonnegative it follows that (A12 + B̂K2)
Tp1 ≥≥ 0 for any

positive vector p1 ∈ R
m
+ . Thus, there does not exist a positive vector p , [pT1 , p

T
2 ]

T

such that (A+BK)Tp << 0 and hence it follows from Theorem 7.1 that A+BK is not

asymptotically stable leading to a contradiction. Hence, A22 is asymptotically stable.

Conversely, suppose A22 is asymptotically stable. Then taking K1 = B̂−1(As − A11)

and K2 = −B̂−1A12, where As is essentially nonnegative and asymptotically stable,

it follows that spec(A + BK) ∩ C+ = [spec(As) ∪ spec(A22)] ∩ C+ = Ø and hence

A+BK is essentially nonnegative and asymptotically stable. ¤

Next, consider the nonlinear dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0 , (10.4)

where x(t) ∈ D, D is an open subset of R
n with 0 ∈ D, f : D → R

n is locally

Lipschitz continuous on D, and Ix0 = [0, τx0), 0 < τx0 ≤ ∞, is the maximal interval
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of existence for the solution x(·) of (10.4). The following definition introduces the

notion of essentially nonnegative vector fields [22,75].

Definition 10.1. Let f = [f1, · · · , fn]T : D → R
n, where D is an open sub-

set of R
n that contains R

n

+. Then f is essentially nonnegative with respect to x̂ ,

[x1, · · · , xm]
T, m ≤ n, if fi(x) ≥ 0, for all i = 1, . . . ,m, and x ∈ R

n

+ such that xi = 0,

where xi denotes the ith element of x. f is essentially nonnegative if f(x) is essentially

nonnegative with respect to x.

Next, we present Lyapunov-like theorems for partial boundedness and partial ulti-

mate boundedness of nonlinear dynamical systems. These notions allow us to develop

less conservative ultimate bounds for neuro adaptive controllers as compared to ulti-

mate bounds derived using classical boundedness and ultimate boundedness notions.

Specifically, consider the nonlinear autonomous interconnected dynamical system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ∈ Ix10,x20 , (10.5)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (10.6)

where x1 ∈ D, D ⊆ R
n1 is an open set such that 0 ∈ D, x2 ∈ R

n2 , f1 : D×R
n2 → R

n1

is such that, for every x2 ∈ R
n2 , f1(0, x2) = 0 and f1(·, x2) is locally Lipschitz in x1,

f2 : D × R
n2 → R

n2 is such that, for every x1 ∈ D, f2(x1, ·) is locally Lipschitz in

x2, and Ix10,x20 , [0, τx10,x20), 0 < τx10,x20 ≤ ∞, is the maximal interval of existence

for the solution (x1(t), x2(t)), t ∈ Ix10,x20 , to (10.5), (10.6). Note that under the

above assumptions the solution (x1(t), x2(t)) to (10.5), (10.6) exists and is unique

over Ix10,x20 . For the following definition we assume that Ix10,x20 = [0,∞).

Definition 10.2. i) The nonlinear dynamical system (10.5), (10.6) is bounded

with respect to x1 uniformly in x20 if there exists γ > 0 such that, for every δ ∈
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(0, γ), there exists ε = ε(δ) > 0 such that ‖x10‖ < δ implies ‖x1(t)‖ < ε, t ≥ 0.

The nonlinear dynamical system (10.5), (10.6) is globally bounded with respect to x1

uniformly in x20 if, for every δ ∈ (0,∞), there exists ε = ε(δ) > 0 such that ‖x10‖ < δ

implies ‖x1(t)‖ < ε, t ≥ 0 (see Figure 10.1).

ii) The nonlinear dynamical system (10.5), (10.6) is ultimately bounded with respect

to x1 uniformly in x20 with ultimate bound ε if there exists γ > 0 such that, for every

δ ∈ (0, γ), there exists T = T (δ, ε) > 0 such that ‖x10‖ < δ implies ‖x1(t)‖ < ε,

t ≥ T . The nonlinear dynamical system (10.5), (10.6) is globally ultimately bounded

with respect to x1 uniformly in x20 with ultimate bound ε if, for every δ ∈ (0,∞),

there exists T = T (δ, ε) > 0 such that ‖x10‖ < δ implies ‖x1(t)‖ < ε, t ≥ T .

Note that if a nonlinear dynamical system is (globally) bounded with respect to

x1 uniformly in x20, then there exists ε > 0 such that it is (globally) ultimately

bounded with respect to x1 uniformly in x20 with an ultimate bound ε. Conversely,

if a nonlinear dynamical system is (globally) ultimately bounded with respect to
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x1 uniformly in x20 with an ultimate bound ε, then it is (globally) bounded with

respect to x1 uniformly in x20. The following results present Lyapunov-like theorems

for partial boundedness and partial ultimate boundedness. For these results define

V̇ (x1, x2) , V
′

(x1, x2)f(x1, x2), where f(x1, x2) , [fT1 (x1, x2), f
T
2 (x1, x2)]

T and V :

D×R
n2 → R is a given continuously differentiable function. Furthermore, let Bδ(x),

x ∈ R
n, δ > 0, denote the open ball centered at x with radius δ and let Bδ(x) denote

the closure of Bδ(x).

Theorem 10.2. Consider the nonlinear dynamical system (10.5), (10.6). Assume

there exist a continuously differentiable function V : D × R
n2 → R and class K

functions α(·), β(·) such that

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), x1 ∈ D, x2 ∈ R
n2 , (10.7)

V̇ (x1, x2) ≤ 0, x1 ∈ D, ‖x1‖ ≥ µ, x2 ∈ R
n2 , (10.8)

where µ > 0 is such that Bα−1(η)(0) ⊂ D with η ≥ β(µ). Then the nonlinear dynamical

system (10.5), (10.6) is bounded with respect to x1 uniformly in x20. Furthermore,

for every δ ∈ (0, γ), x10 ∈ Bδ(0) implies that ‖x1(t)‖ ≤ ε, where

ε(δ) ,

{

α−1(β(δ)), δ ∈ (µ, γ),
α−1(η), δ ∈ (0, µ],

(10.9)

and γ , sup{r > 0 : Bα−1(β(r))(0) ⊂ D}. If, in addition, D = R
n1 and α(·) is a class

K∞ function, then the nonlinear dynamical system (10.5), (10.6) is globally bounded

with respect to x1 uniformly in x20 and for every x10 ∈ R
n1 , ‖x1(t)‖ ≤ ε, t ≥ 0, where

ε is given by (10.9) with δ = ‖x10‖.

Proof. First, let δ ∈ (0, µ] and assume ‖x10‖ ≤ δ. If ‖x1(t)‖ ≤ µ, t ≥ 0, then it

follows from (10.7) that ‖x1(t)‖ ≤ µ ≤ α−1(β(µ)) ≤ α−1(η), t ≥ 0. Alternatively, if

there exists T > 0 such that ‖x1(T )‖ > µ, then it follows from the continuity of x1(·)
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that there exists τ < T such that ‖x1(τ)‖ = µ and ‖x1(t)‖ ≥ µ, t ∈ [τ, T ]. Hence, it

follows from (10.7) and (10.8) that

α(‖x1(T )‖) ≤ V (x1(T ), x2(T )) ≤ V (x1(τ), x2(τ)) ≤ β(µ) ≤ η,

which implies that ‖x1(T )‖ ≤ α−1(η). Next, let δ ∈ (µ, γ) and assume x10 ∈ Bδ(0)

and ‖x10‖ > µ. Now, for every t̂ > 0 such that ‖x1(t)‖ ≥ µ, t ∈ [0, t̂], it follows from

(10.7) and (10.8) that

α(‖x1(t)‖) ≤ V (x1(t), x2(t)) ≤ V (x10, x20) ≤ β(δ), t ≥ 0,

which implies that ‖x1(t)‖ ≤ α−1(β(δ)), t ∈ [0, t̂]. Next, if there exists T > 0 such

that ‖x1(T )‖ ≤ µ, then it follows as in the proof of the first case given above that

‖x1(t)‖ ≤ α−1(η), t ≥ T . Hence, if x10 ∈ Bδ(0)\Bµ(0), then ‖x1(t)‖ ≤ α−1(β(δ)),

t ≥ 0. Finally, if D = R
n1 and α(·) is a class K∞ function it follows that β(·) is a

class K∞ function and hence γ =∞. Hence, the nonlinear dynamical system (10.5),

(10.6) is globally bounded with respect to x1 uniformly in x20. ¤

Theorem 10.3. Consider the nonlinear dynamical system (10.5), (10.6). Assume

there exist a continuously differentiable function V : D × R
n2 → R and class K

functions α(·), β(·) such that (10.7) holds. Furthermore, assume that there exists a

continuous, positive-definite function W : D → R such that W (x1) > 0, ‖x1‖ > µ,

and

V̇ (x1, x2) ≤ −W (x1), x1 ∈ D, ‖x1‖ > µ, x2 ∈ R
n2 , (10.10)

where µ > 0 is such that Bα−1(η)(0) ⊂ D with η > β(µ). Then the nonlinear dynamical

system (10.5), (10.6) is ultimately bounded with respect to x1 uniformly in x20 with

ultimate bound ε , α−1(η). Furthermore, lim supt→∞ ‖x1(t)‖ ≤ α−1(β(µ)). If, in

addition, D = R
n and α(·) is a class K∞ function, then the nonlinear dynamical

system (10.5), (10.6) is globally ultimately bounded with respect to x1 uniformly in

x20 with ultimate bound ε.
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Proof. First, let δ ∈ (0, µ] and assume ‖x10‖ ≤ δ. As in the proof of Theo-

rem 10.2, it follows that ‖x1(t)‖ ≤ α−1(η) = ε, t ≥ 0. Next, let δ ∈ (µ, γ), where γ ,

sup{r > 0 : Bα−1(β(r))(0) ⊂ D} and assume x10 ∈ Bδ(0) and ‖x10‖ > µ. In this case,

it follows from Theorem 10.2 that ‖x1(t)‖ ≤ α−1(β(δ)), t ≥ 0. Suppose, ad absurdum,

‖x1(t)‖ ≥ β−1(η), t ≥ 0, or, equivalently, x1(t) ∈ O , Bα−1(β(δ))(0)\Bβ−1(η)(0), t ≥ 0.

Since O is compact and W (·) is continuous and W (x1) > 0, ‖x1‖ ≥ β−1(η) > µ, it

follows from Weierstrass’ theorem [201, p. 154] that k , minx1∈OW (x1) > 0 exists.

Hence, it follows from (10.10) that

V (x1(t), x2(t)) ≤ V (x10, x20)− kt, t ≥ 0, (10.11)

which implies that

α(‖x1(t)‖) ≤ β(‖x10‖)− kt ≤ β(δ)− kt, t ≥ 0. (10.12)

Now, letting t > β(δ)/k it follows that α(‖x1(t)‖) < 0 which is a contradiction.

Hence, there exists T = T (δ, η) > 0 such that ‖x1(T )‖ < β−1(η). Thus, it follows from

Theorem 10.2 that ‖x1(t)‖ ≤ α−1(β(β−1(η))) = α−1(η), t ≥ T , which proves that the

nonlinear dynamical system (10.5), (10.6) is ultimately bounded with respect to x1

uniformly in x20 with ultimate bound ε = α−1(η). Furthermore, lim supt→∞ ‖x1(t)‖ ≤

α−1(β(µ)). Finally, if D = R
n1 and α(·) is a class K∞ function it follows that β(·)

is a class K∞ function and hence γ = ∞. Hence, the nonlinear dynamical system

(10.5), (10.6) is globally ultimately bounded with respect to x1 uniformly in x20 with

ultimate bound ε. ¤

The following result on ultimate boundedness of interconnected systems is needed

for the main theorems in this chapter.

Proposition 10.1. Consider the nonlinear interconnected dynamical system

(10.5), (10.6). If (10.6) is input-to-state stable with x1 viewed as the input and
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(10.5), (10.6) is ultimately bounded with respect to x1 uniformly in x20, then the

solution (x1(t), x2(t)), t ≥ 0, of the interconnected dynamical system (10.5), (10.6) is

ultimately bounded.

Proof. Since (10.5), (10.6) is ultimately bounded with respect to x1 (uniformly

in x20), there exist positive constants ε and T = T (δ, ε) such that ‖x1(t)‖ < ε, t ≥ T .

Furthermore, since (10.6) is input-to-state stable with x1 viewed as the input, it

follows that x2(T ) is finite and hence there exist a class KL function η(·, ·) and a

class K function γ(·) such that

‖x2(t)‖ ≤ η(‖x2(T )‖, t− T ) + γ
(

sup
T≤τ≤t

‖x1(τ)‖
)

= η(‖x2(T )‖, t− T ) + γ(ε)

≤ η(‖x2(T )‖, 0) + γ(ε), t ≥ T, (10.13)

which proves that the solution (x1(t), x2(t)), t ≥ 0, to (10.5), (10.6) is ultimately

bounded. ¤

10.3. Neural Adaptive Control for Nonlinear Nonnegative

Uncertain Systems

In this section we consider the problem of characterizing neural adaptive feedback

control laws for nonlinear nonnegative and compartmental uncertain dynamical sys-

tems to achieve set-point regulation in the nonnegative orthant. Specifically, consider

the controlled nonlinear uncertain dynamical system G given by

ẋ(t) = fx(x(t), z(t)) +G(x(t), z(t))u(t), x(0) = x0, t ≥ 0, (10.14)

ż(t) = fz(x(t), z(t)), z(0) = z0, (10.15)

where x(t) ∈ R
nx , t ≥ 0, and z(t) ∈ R

nz , t ≥ 0, are the state vectors, u(t) ∈ R
m, t ≥ 0,

is the control input, fx : R
nx × R

nz → R
nx is essentially nonnegative with respect
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to x but otherwise unknown and satisfies fx(0, z) = 0, z ∈ R
nz , fz : R

nx × R
nz →

R
nz is essentially nonnegative with respect to z but otherwise unknown and satisfies

fz(x, 0) = 0, x ∈ R
nx , and G : R

nx × R
nz → R

nx×m is a known nonnegative input

matrix function. Here, we assume that we have m control inputs so that the input

matrix function is given by

G(x, z) =

[

BuGn(x, z)
0(nx−m)×m

]

, (10.16)

where Bu = diag[b1, · · · , bm] is a positive diagonal matrix and Gn : R
nx×R

nz → R
m×m

is a nonnegative matrix function such that detGn(x, z) 6= 0, (x, z) ∈ R
nx ×R

nz . The

control input u(·) in (10.14) is restricted to the class of admissible controls consisting

of measurable functions such that u(t) ∈ R
m, t ≥ 0. In this section we do not

place any restriction on the sign of the control signal and design a neuro adaptive

controller that guarantees that the system states remain in the nonnegative orthant

of the state space for nonnegative initial conditions and are ultimately bounded in

the neighborhood of a desired equilibrium point.

In this chapter, we assume that fx(·, ·) and fz(·, ·) are unknown functions with

fx(·, ·) given by

fx(x, z) = Ax+∆f(x, z), (10.17)

where A ∈ R
nx×nx is a known essentially nonnegative matrix and ∆f : R

nx × R
nz →

R
nx is an unknown essentially nonnegative function with respect to x and belongs to

the uncertainty set F given by

F = {∆f : R
nx × R

nz → R
nx : ∆f(x, z) = Bδ(x, z), (x, z) ∈ R

nx × R
nz}, (10.18)

where B , [Bu, 0m×(n−m)]
T and δ : R

nx × R
nz → R

m is an uncertain continuous

function such that δ(x, z) is essentially nonnegative with respect to x and δ ′(x, z),

(x, z) ∈ Dcx × Dcz, is bounded. Furthermore, we assume that for a given xe ∈ R
nx
+
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there exist ze ∈ R
nz
+ and ue ∈ R

m

+ such that

0 = Axe +∆f(xe, ze) +G(xe, ze)ue, (10.19)

0 = fz(xe, ze). (10.20)

In addition, we assume that (10.15) is input-to-state stable at z(t) ≡ ze with x(t)−xe
viewed as the input; that is, there exist a class KL function η(·, ·) and a class K

function γ(·) such that

‖z(t)− ze‖ ≤ η(‖z0 − ze‖, t) + γ

(

sup
0≤τ≤t

‖x(τ)− xe‖
)

, t ≥ 0, (10.21)

where ‖ ·‖ denotes the Euclidean vector norm. Unless otherwise stated, henceforth

we use ‖ · ‖ to denote the Euclidean vector norm. Note that (xe, ze) ∈ R
nx
+ × R

nz
+

is an equilibrium point of (10.14), (10.15) if and only if there exists ue ∈ R
m

+ such

that (10.19), (10.20) hold. Furthermore, we assume that, for a given ε∗i > 0, the ith

component of the vector function δ(x, z)−δ(xe, ze)−Gn(xe, ze)ue can be approximated

over a compact set Dcx × Dcz ⊂ R
nx
+ × R

nz
+ by a linear in the parameters neural

network up to a desired accuracy so that for i = 1, · · · ,m, there exists εi(·, ·) such

that |εi(x, z)| < ε∗i , (x, z) ∈ Dcx ×Dcz, and

δi(x, z)− δi(xe, ze)− [Gn(xe, ze)ue]i = WT
i σi(x, z) + εi(x, z), (x, z) ∈ Dcx ×Dcz,

(10.22)

where Wi ∈ R
si , i = 1, · · · ,m, are optimal unknown (constant) weights that minimize

the approximation error over Dcx × Dcz, σi : R
nx × R

nz → R
si , i = 1, · · · ,m, are a

set of basis functions such that each component of σi(·, ·) takes values between 0 and

1 and σ′(x, z), (x, z) ∈ Dcx × Dcz, is bounded, εi : Dcx × Dcz → R, i = 1, · · · ,m,

are the modeling errors, and ‖Wi‖ ≤ w∗i , where w
∗
i , i = 1, · · · ,m, are bounds for the

optimal weights Wi, i = 1, · · · ,m. Since fx(·, ·) is continuous, we can choose σi(·, ·),

i = 1, · · · ,m, from a linear space X of continuous functions that forms an algebra

and separates points in Dcx×Dcz. In this case, it follows from the Stone-Weierstrass
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theorem [201, p. 212] that X is a dense subset of the set of continuous functions on

Dcx × Dcz. Now, as is the case in the standard neuro adaptive control literature

[159], we can construct the signal uadi = ŴT
i σi(x, z) involving the estimates of the

optimal weights as our adaptive control signal. However, even though ŴT
i σi(x, z),

i = 1, · · · ,m, provide adaptive cancellation of the system uncertainty, it does not

necessarily guarantee that the state trajectory of the closed-loop system remains in the

nonnegative orthant of the state space for nonnegative initial conditions. To ensure

nonnegativity of the closed-loop plant states, the adaptive control signal is assumed

to be of the form ŴT
i σ̂i(x, z), i = 1, · · · ,m, where σ̂i : R

nx × R
nz → R

si is such that

each component of σ̂i(·, ·) takes values between 0 and 1, σ̂′i(x, z), (x, z) ∈ Dcx×Dcz, is

bounded, and σ̂i(x, z) = 0 whenever xi = 0 for all i = 1, · · · ,m. This set of functions

do not generate an algebra in X and hence if used as an approximator for δi(·, ·),

i = 1, · · · ,m, will generate additional conservatism in the ultimate bound guarantees

provided by the neural network controller. In particular, since each component of

σi(·, ·) and σ̂i(·, ·) takes values between 0 and 1, it follows that

‖σi(x, z)− σ̂i(x, z)‖ ≤
√
si, (x, z) ∈ Dcx ×Dcz, i = 1, · · · ,m. (10.23)

This upper bound will be used in the analysis of Theorem 10.4 below.

For the remainder of the chapter we assume that there exists a gain matrix K ∈

R
m×nx such that A+BK is essentially nonnegative and asymptotically stable, where

A and B have the forms of (10.3) and (10.2), respectively. Now, partitioning the state

in (10.14) as x = [xT1 , x
T
2 ]

T, where x1 ∈ R
m and x2 ∈ R

nx−m, and using (10.16), it

follows that (10.14), (10.15) can be written as

ẋ1(t) = A11x1(t) + A12x2(t) + ∆f(x1(t), x2(t), z(t)) +BuGn(x1(t), x2(t), z(t))u(t),

x1(0) = x10, t ≥ 0, (10.24)

ẋ2(t) = A21x1(t) + A22x2(t), x2(0) = x20, (10.25)
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ż(t) = fz(x1(t), x2(t), z(t)), z(0) = z0. (10.26)

Thus, since A + BK is essentially nonnegative and asymptotically stable, it follows

from Theorem 10.1 that the solution x2(t) ≡ x2e ∈ R
nx−m
+ of (10.25) with x1(t) ≡

x1e ∈ R
m
+ , where x1e and x2e satisfy 0 = A21x1e + A22x2e, is globally exponentially

stable and hence (10.25) is input-to-state stable at x2(t) ≡ x2e with x1(t) − x1e

viewed as the input. Thus, in this chapter we assume that the dynamics (10.25) can

be included in (10.15) so that nx = m. In this case, the input matrix (10.16) is given

by

G(x, z) = BuGn(x, z) (10.27)

so that B = Bu. Now, for a given desired set point (xe, ze) ∈ R
nx
+ ×R

nz
+ and for given

ε1, ε2 > 0, our aim is to design a control input u(t), t ≥ 0, such that ‖x(t)− xe‖ < ε1

and ‖z(t) − ze‖ < ε2 for all t ≥ T , where T ∈ [0,∞), and x(t) ≥≥ 0 and z(t) ≥≥ 0

for all t ≥ 0 and (x0, z0) ∈ R
nx
+ × R

nz
+ . However, since in many applications of

nonnegative systems and in particular, compartmental systems, it is often necessary

to regulate a subset of the nonnegative state variables which usually include a central

compartment, here we only require that ‖x(t)− xe‖ < ε1, t ≥ T .

Theorem 10.4. Consider the nonlinear uncertain dynamical system G given by

(10.14) and (10.15) where fx(·, ·) and G(·, ·) are given by (10.17) and (10.27), re-

spectively, fx(·, ·) is essentially nonnegative with respect to x, fz(·, ·) is essentially

nonnegative with respect to z, and ∆f(·, ·) is essentially nonnegative with respect to

x and belongs to F . For a given xe ∈ R
nx
+ assume there exist nonnegative vectors

ze ∈ R
nz
+ and ue ∈ R

nx
+ such that (10.19) and (10.20) hold. Furthermore, assume that

(10.15) is input-to-state stable at z(t) ≡ ze with x(t)−xe viewed as the input. Finally,

let K ∈ R
nx×nx be such that −K is nonnegative and As , A + BuK is essentially

nonnegative and asymptotically stable, and let qi and γi, i = 1, · · · , nx, be positive
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constants. Then the neural adaptive feedback control law

u(t) = G−1n (x(t), z(t))
[

K(x(t)− xe)− ŴT(t)σ̂(x(t), z(t))
]

, (10.28)

where

ŴT(t) , block-diag[ŴT
1 (t), · · · , ŴT

nx(t)], (10.29)

Ŵi(t) ∈ R
si , t ≥ 0, i = 1, · · · , nx, and σ̂(x, z) , [σ̂T1 (x, z), · · · , σ̂Tnx(x, z)]T with

σ̂i(x, z) = 0 whenever xi = 0, i = 1, · · · , nx, with update law

˙̂
W i(t) = qi

[

(xi(t)− xei)σ̂i(x(t), z(t))− γi‖P 1/2(x(t)− xe)‖Ŵi(t)
]

, Ŵi(0) = Ŵi0,

i = 1, · · · , nx, (10.30)

where P , diag[p1, · · · , pnx ] > 0 satisfies

0 = AT
s P + PAs +R (10.31)

for a positive definite R ∈ R
nx×nx , guarantees that there exists a compact positively

invariant set Dα ⊂ R
nx
+ ×R

nz
+ ×R

s×nx such that (xe, ze,W ) ∈ Dα, where W ∈ R
s×nx ,

and the solution (x(t), z(t), Ŵ (t)), t ≥ 0, of the closed-loop system given by (10.14),

(10.15), (10.28), and (10.30) is ultimately bounded for all (x(0), z(0), Ŵ (0)) ∈ Dα

with ultimate bound ‖P 1/2(x(t)− xe)‖ < ε, t ≥ T , where

ε >

√

√

√

√

(

ν

λmin(RP−1)

)2

+
nx
∑

i=1

(

w∗i
2
√
q̂i

+

√

ν

2qiγi

)2

, (10.32)

q̂i = qi/pibi, and

ν , 2

[

nx
∑

i=1

pib
2
i (ε

∗
i +
√
siw

∗
i )

2

]1/2

+
nx
∑

i=1

1

2
pibiγiw

∗
i
2. (10.33)

Furthermore, x(t) ≥≥ 0 and z(t) ≥≥ 0, t ≥ 0, for all (x0, z0) ∈ R
nx
+ × R

nz
+ .

Proof. First, note that with u(t), t ≥ 0, given by (10.28) it follows from (10.14),

(10.17), and (10.27) that

ẋ(t) = Ax(t) + ∆f(x(t), z(t)) +BuK(x(t)− xe)−BuŴ
T(t)σ̂(x(t), z(t)),

x(0) = x0, t ≥ 0. (10.34)
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Now, defining ex(t) , x(t) − xe and ez(t) , z(t) − ze, using (10.18)–(10.20), and

noting that As = A+BuK, it follows from (10.15) and (10.34) that

ėx(t) = Asex(t) + Axe +∆f(x(t), z(t))−BuŴ
T(t)σ̂(x(t), z(t))

= Asex(t) +Bu[δ(x(t), z(t))− δ(xe, ze)−Gn(xe, ze)ue − ŴT(t)σ(x(t), z(t))]

+BuŴ
T(t)[σ(x(t), z(t))− σ̂(x(t), z(t))], ex(0) = x0 − xe, t ≥ 0, (10.35)

and

ėz(t) = f̃z(ex(t), ez(t)), ez(0) = z0 − ze, (10.36)

where f̃z(ex, ez) , fz(ex + xe, ez + ze) − fz(xe, ze) and σ(x, z) is a basis function

satisfying (10.22). Furthermore, since As is essentially nonnegative and asymptoti-

cally stable, it follows from Theorem 7.2 that there exists a positive diagonal matrix

P = diag[p1, · · · , pnx ] and a positive-definite matrix R ∈ R
nx×nx such that (10.31)

holds.

Next, to show ultimate boundedness of the closed-loop system (10.30), (10.35),

and (10.36) consider the Lyapunov-like function

V (ex, ez, W̃ ) = eTxPex + tr W̃Q−1W̃T, (10.37)

where Q , diag
[

q̂1, · · · , q̂nx
]

= diag
[

q1
p1b1

, · · · , qnx
pnxbnx

]

, W̃ (t) , Ŵ (t)−W , and WT ,

block-diag[WT
1 , · · · ,WT

nx ]. Note that (10.37) satisfies (10.7) with x1 = [eTx , W̃
T
1 · · · ,

W̃T
nx ]

T, x2 = ez, α(‖x1‖) = β(‖x1‖) = ‖x1‖2, where ‖x1‖2 , eTxPex + tr W̃Q−1W̃T.

Furthermore, α(‖x1‖) is a class K∞ function. Now, letting ex(t), t ≥ 0, denote the

solution to (10.35) and using (10.22), (10.23), and (10.30), it follows that the time

derivative of V (ex, ez, W̃ ) along the closed-loop system trajectories is given by

V̇ (ex(t), ez(t), W̃ (t)) = 2eTx (t)P
[

Asex(t) +Bu[δ(x(t), z(t))− δ(xe, ze)−Gn(xe, ze)ue

−ŴT(t)σ(x(t), z(t))] +BuŴ
T(t)[σ(x(t), z(t))− σ̂(x(t), z(t))]

]

+2tr W̃T(t)Q−1
˙̂
W (t)

304



= −eTx (t)Rex(t)

+
nx
∑

i=1

2pibiexi(t)
[

− W̃T
i (t)σi(x(t), z(t)) + εi(x(t), z(t))

]

+
nx
∑

i=1

2pibiexi(t)Ŵ
T
i (t)[σi(x(t), z(t))− σ̂i(x(t), z(t))]

+
nx
∑

i=1

2pibiW̃
T
i (t)

[

exi(t)σ̂i(x(t), z(t))

−γi‖P 1/2(x(t)− xe)‖Ŵi(t)
]

= −eTx (t)Rex(t) +
nx
∑

i=1

2pibiεi(x(t), z(t))exi(t)

+
nx
∑

i=1

2pibiexi(t)W
T
i [σi(x(t), z(t))− σ̂i(x(t), z(t))]

−
nx
∑

i=1

2pibiγi‖P 1/2ex(t)‖W̃T
i (t)Ŵi(t). (10.38)

Next, completing squares yields

V̇ (ex(t), ez(t), W̃ (t)) ≤ −eTx (t)Rex(t) + 2‖P 1/2ex(t)‖
(

nx
∑

i=1

pib
2
i (ε

∗
i +
√
siw

∗
i )

2

)1/2

−
nx
∑

i=1

2pibiγi‖P 1/2ex(t)‖W̃T
i (t)W̃i(t)

−
nx
∑

i=1

2pibiγi‖P 1/2ex(t)‖W̃T
i (t)Wi

≤ −λmin(RP
−1)‖P 1/2ex(t)‖2

+2

(

nx
∑

i=1

pib
2
i (ε

∗
i +
√
siw

∗
i )

2

)1/2

‖P 1/2ex(t)‖

−
nx
∑

i=1

2pibiq̂iγi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖2

+
nx
∑

i=1

2pibi
√

q̂iγiw
∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

= ‖P 1/2ex(t)‖
[

−λmin(RP
−1)‖P 1/2ex(t)‖

+2

(

nx
∑

i=1

pib
2
i (ε

∗
i +
√
siw

∗
i )

2

)1/2
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−
nx
∑

i=1

2qiγi‖q̂−1/2i W̃i(t)‖2 +
nx
∑

i=1

2qiq̂
−1/2
i γiw

∗
i ‖q̂−1/2i W̃i(t)‖

]

= ‖P 1/2ex(t)‖
[

−λmin(RP
−1)‖P 1/2ex(t)‖

+2

(

nx
∑

i=1

pib
2
i (ε

∗
i +
√
siw

∗
i )

2

)1/2

−
nx
∑

i=1

2qiγi

[

‖q̂−1/2i W̃i(t)‖ −
w∗i
2
√
q̂i

]2

+
nx
∑

i=1

1

2
pibiγiw

∗
i
2
]

≤ ‖P 1/2ex(t)‖
[

−λmin(RP
−1)‖P 1/2ex(t)‖

−
nx
∑

i=1

2qiγi

[

‖q̂−1/2i W̃i(t)‖ −
w∗i
2
√
q̂i

]2

+ ν
]

, (10.39)

where ν is given by (10.33). Now, for

‖P 1/2ex‖ ≥
ν

λmin(RP−1)
, αx, (10.40)

or

‖q̂−1/2i W̃i‖ ≥
w∗i
2
√
q̂i

+

√

ν

2qiγi
, αW̃i

, i = 1, . . . , nx, (10.41)

it follows that V̇ (ex(t), ez(t), W̃ (t)) ≤ 0 for all t ≥ 0; that is, V̇ (ex(t), ez(t), W̃ (t)) ≤ 0

for all (ex(t), ez(t), W̃ (t)) ∈ D̃e\D̃r and t ≥ 0, where

D̃e ,

{

(ex, ez, W̃ ) ∈ R
nx × R

nz × R
s×nx : x ∈ Dcx

}

, (10.42)

D̃r ,

{

(ex, ez, W̃ ) ∈ R
nx × R

nz × R
s×nx :

‖P 1/2ex‖ ≤ αx, ‖q̂−1/2i W̃i‖ ≤ αW̃i
, i = 1, . . . , nx

}

. (10.43)

Next, define

D̃α ,

{

(ex, ez, W̃ ) ∈ R
nx × R

nz × R
s×nx : V (ex, ez, W̃ ) ≤ α

}

, (10.44)

where α is the maximum value such that D̃α ⊆ D̃e, and define

D̃η ,

{

(ex, ez, W̃ ) ∈ R
nx × R

nz × R
s×nx : V (ex, ez, W̃ ) ≤ η

}

, (10.45)
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Figure 10.2: Visualization of sets used in the proof of Theorem 10.4

where

η > β(µ) = µ = α2
x +

nx
∑

i=1

α2
W̃i

=

(

ν

λmin(RP−1)

)2

+
nx
∑

i=1

[

w∗i
2
√
q̂i

+

√

ν

2qiγi

]2

. (10.46)

To show ultimate boundedness of the closed-loop system (10.30), (10.35), and (10.36),

assume2 that D̃η ⊂ D̃α (see Figure 10.2). Now, since V̇ (ex, ez, W̃ ) ≤ 0 for all

(ex, ez, W̃ ) ∈ D̃e\D̃r and D̃r ⊂ D̃α, it follows that D̃α is positively invariant. Hence,

if (ex(0), ez(0), W̃ (0)) ∈ D̃α, then it follows from Theorem 10.2 that the solution

(ex(t), ez(t), Ŵ (t)), t ≥ 0, to (10.30), (10.35), and (10.36) is bounded with respect

to (ex, W̃ ) uniformly in ez(0) and hence ultimately bounded with respect to (ex, W̃ )

uniformly in ez(0). To show that ‖P 1/2(x(t) − xe)‖ < ε, t ≥ T , note that D̃η is also

positively invariant and hence if there exists t∗ > 0 such that (ex(t
∗), ez(t

∗), Ŵ (t∗)) ∈

D̃η, then (ex(t
∗), ez(t

∗), Ŵ (t∗)) ∈ D̃η, t ≥ t∗. Alternatively, suppose the solution

(ex(t), ez(t), Ŵ (t)), t ≥ 0, to (10.30), (10.35), and (10.36) remains in D̃α\D̃η. In this

case, the Lyapunov-like function (10.37) is nonincreasing. Furthermore, it follows

from (10.38) that

V̈ (ex(t), ez(t), W̃ (t)) = −2eTx (t)Rėx(t) + 2ėTx (t)P
[

Bu[δ(x(t), z(t))− δ(xe, ze)

2This assumption is standard in the neural network literature and ensures that in the error space
D̃e there exists at least one Lyapunov level set D̃η ⊂ D̃α. In the case where the neural network
approximation holds in R

nx × R
nz , this assumption is automatically satisfied. See Remark 10.1 for

further details.
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−Gn(xe, ze)ue − ŴT(t)σ̂(x(t), z(t))]
]

+2eTx (t)P
[

Bu[δ̇(x(t), z(t))− ˙̂
WT(t)σ̂(x(t), z(t))

−ŴT(t) ˙̂σ(x(t), z(t))]
]

+
nx
∑

i=1

2pibi
˙̃W i
T(t)

[

exi(t)σ̂i(x(t), z(t))

−γi‖P 1/2ex(t)‖Ŵi(t)
]

+
nx
∑

i=1

2pibiW̃
T
i (t)

[

ėxi(t)σ̂i(x(t), z(t))

+exi(t) ˙̂σi(x(t), z(t))− γi
( d

dt
‖P 1/2ex(t)‖

)

Ŵi(t)

−γi‖P 1/2ex(t)‖ ˙̂
W i(t)

]

, t ≥ 0, (10.47)

where

δ̇(x(t), z(t)) =
∂δ

∂x
(x(t), z(t))ẋ(t) +

∂δ

∂z
(x(t), z(t))ż(t), (10.48)

˙̂σ(x(t), z(t)) =
∂σ̂

∂x
(x(t), z(t))ẋ(t) +

∂σ̂

∂z
(x(t), z(t))ż(t). (10.49)

Note that δ′(x, z) and σ′(x, z) are assumed to be bounded and, since the state trajec-

tory (ex(t), ez(t), Ŵ (t)) is bounded, it follows from (10.30), (10.35), (10.36) that ėx(t),

ėz(t),
˙̂
W (t) are also bounded and hence V̈ (ex(t), ez(t), W̃ (t)) is bounded. Thus, it fol-

lows from Barbalat’s lemma [139, p. 192] that V̇ (ex(t), ez(t), W̃ (t)) → 0 as t → ∞.

Now, it follows from (10.39) that, since the quantity in the brackets in the right-hand

side of (10.39) is strictly positive in D̃α\D̃η, ‖P 1/2ex(t)‖ → 0 as t → ∞. Hence,

in either case, there exists T ≥ 0 such that ‖P 1/2(x(t) − xe)‖ < ε, t ≥ T , with

ε = α−1(η) =
√
η which yields (10.32).

Next, since (10.36) is input-to-state stable with ex viewed as the input, it follows

from Proposition 10.1 that the solution ez(t), t ≥ 0, to (10.36) is ultimately bounded.

Furthermore, it follows from Theorem 1 of [223] that there exist a continuously dif-

ferentiable, radially unbounded, positive-definite function Vz : R
nz → R and class K

functions γ1(·), γ2(·) such that

V ′z (ez)f̃z(ex, ez) ≤ −γ1(‖ez‖), ‖ez‖ ≥ γ2(‖P 1/2ex‖). (10.50)
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Since the upper bound for ‖P 1/2ex‖2 is given by η, it follows that the set given by

Dz ,

{

z ∈ R
nz : Vz(z − ze) ≤ max

‖z−ze‖=γ2(
√
η)
Vz(z − ze)

}

, (10.51)

is also positively invariant as long as3 Dz ⊂ Dcz. Now, since D̃α and Dz are positively

invariant, it follows that

Dα ,

{

(x, z, Ŵ ) ∈ R
nx×R

nz×R
s×nx : (x−xe, z−ze, Ŵ−W ) ∈ D̃α, z ∈ Dz

}

, (10.52)

is also positively invariant. In addition, since (10.14), (10.15), and (10.30) is ulti-

mately bounded with respect to (x, Ŵ ) and (10.15) is input-to-state stable at z(t) ≡ ze

with x(t)− xe viewed as the input it follows from Proposition 10.1 that the solution

(x(t), z(t), Ŵ (t)), t ≥ 0, of the closed-loop system (10.14), (10.15), (10.28), and

(10.30) is ultimately bounded for all (x(0), z(0), Ŵ (0)) ∈ Dα.

Finally, to show that x(t) ≥≥ 0 and z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈ R
nx
+ ×R

nz
+

note that the closed-loop system (10.14), (10.28), and (10.30), is given by

ẋ(t) = fx(x(t), z(t)) +BuK(x(t)− xe)−BuŴ
T(t)σ̂(x(t), z(t))

= (A+BuK)x(t) + ∆f(x(t), z(t))−BuŴ
T(t)σ̂(x(t), z(t))−BuKxe

= f̃(t, x(t), z(t)) + v, x(0) = x0, t ≥ 0, (10.53)

where

f̃(t, x, z) , (A+BuK)x+∆f(x, z)−BuŴ
T(t)σ̂(x, z), v , −BuKxe. (10.54)

Since f̃(t, x, z), t ≥ 0, is essentially nonnegative with respect to x pointwise-in-time,

fz(·, ·) is essentially nonnegative with respect to z, and v ≥≥ 0, it follows from

Proposition 9.3 that x(t) ≥≥ 0, t ≥ 0, and z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈

R
nx
+ × R

nz
+ . ¤

3See Remark 10.1.
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Figure 10.3: Block diagram of the closed-loop system

Remark 10.1. In the case where the neural network approximation holds in

R
nx × R

nz , the assumptions D̃η ⊂ D̃α and Dz ⊂ Dcz invoked in the proof of Theo-

rem 10.4 are automatically satisfied. Furthermore, in this case the control law (10.28)

ensures global ultimate boundedness of the error signals. However, the existence of

a global neural network approximator for an uncertain nonlinear map cannot in gen-

eral be established. Hence, as is common in the neural network literature, for a given

arbitrarily large compact set Dcx × Dcz ⊂ R
nx × R

nz , we assume that there exists

an approximator for the unknown nonlinear map up to a desired accuracy. This

assumption ensures that in the error space D̃e there exists at least one Lyapunov

level set such that D̃η ⊂ D̃α. In the case where δ(·, ·) is continuous on R
nx × R

nz , it

follows from the Stone-Weierstrass theorem that δ(·, ·) can be approximated over an

arbitrarily large compact set Dcx × Dcz. In this case, our neuro adaptive controller

guarantees semiglobal ultimate boundedness; that is, Dα can be arbitrarily increased.

An identical assumption is made in the proof of Theorem 10.6 below.

A block diagram showing the neuro adaptive control architecture given in Theo-

rem 10.4 is shown in Figure 10.3. It is important to note that the adaptive control

law (10.28), (10.30) does not require the explicit knowledge of the optimal weighting

matrix W and constants δ(xe, ze) and ue. All that is required is the existence of the

310



nonnegative vectors ze and ue such that the equilibrium conditions (10.19) and (10.20)

hold. Furthermore, in the case where Bu is an unknown positive diagonal matrix, we

can take the gain matrix K to be diagonal so that K = diag[−k1, · · · ,−knx ], where

ki, i = 1, · · · , nx, are positive. In this case, taking A in (10.17) to be the zero matrix,

As is given by As = diag[−b1k1, · · · ,−bnxknx ] which is clearly essentially nonnegative

and asymptotically stable. Furthermore, any P = diag[p1, · · · , pnx ] satisfies (10.31).

Finally, it is important to note that the control input signal u(t), t ≥ 0, in Theo-

rem 10.4 can be negative depending on the values of x(t), z(t), and Ŵ (t), t ≥ 0.

However, as is required for nonnegative and compartmental dynamical systems the

closed-loop plant states remain nonnegative.

Next, we generalize Theorem 10.4 to the case where the input matrix is not nec-

essarily nonnegative. For this result rowi(K) denotes the ith row of K ∈ R
nx×nx .

Theorem 10.5. Consider the nonlinear uncertain dynamical system G given by

(10.14) and (10.15) where fx(·, ·) and G(·, ·) are given by (10.17) and (10.27), respec-

tively, fx(·, ·) is essentially nonnegative with respect to x, fz(·, ·) is essentially nonneg-

ative with respect to z, and ∆f(·, ·) is essentially nonnegative with respect to x and

belongs to F . For a given xe ∈ R
nx
+ assume there exist a nonnegative vector ze ∈ R

nz
+

and a vector ue ∈ R
nx such that (10.19) and (10.20) hold with fx(xe, ze) ≤≤ 0. Fur-

thermore, assume that (10.15) is input-to-state stable at z(t) ≡ ze with x(t) − xe

viewed as the input. Finally, let K ∈ R
nx×nx be such that (sgn bi)rowi(K) ≤≤ 0,

i = 1, · · · , nx, and As , A+BuK is essentially nonnegative and asymptotically stable,

and let qi and γi, i = 1, · · · , nx, be positive constants. Then the neural adaptive feed-

back control law (10.28), where ŴT(t) , block-diag[ŴT
1 (t), · · · , ŴT

nx(t)], Ŵi(t) ∈ R
si ,

t ≥ 0, i = 1, · · · , nx, and σ̂(x, z) , [σ̂T1 (x, z), · · · , σ̂Tnx(x, z)]T with σ̂i(x, z) = 0 when-
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ever xi = 0, i = 1, · · · , nx, with update law

˙̂
W i(t) = (sgn bi)qi

[

(xi(t)− xei)σ̂i(x(t), z(t))− γi‖P 1/2(x(t)− xe)‖Ŵi(t)
]

,

Ŵi(0) = Ŵi0, i = 1, · · · , nx, (10.55)

where P , diag[p1, · · · , pnx ] > 0 satisfies (10.31), guarantees that there exists a

compact positively invariant set Dα ⊂ R
nx
+ ×R

nz
+ ×R

s×nx such that (xe, ze,W ) ∈ Dα,

where W ∈ R
s×nx , and the solution (x(t), z(t), Ŵ (t)), t ≥ 0, of the closed-loop

system given by (10.14), (10.15), (10.28), and (10.55) is ultimately bounded for all

(x(0), z(0), Ŵ (0)) ∈ Dα with ultimate bound ‖P 1/2(x(t) − xe)‖ < ε, t ≥ T , where

ε is given by (10.32). Furthermore, x(t) ≥≥ 0 and z(t) ≥≥ 0 for all t ≥ 0 and

(x0, z0) ∈ R
nx
+ × R

nz
+ .

Proof. The proof is identical to the proof of Theorem 10.4 with Q replaced by

Q = diag
[

q1
p1|b1| , · · · ,

qnx
pnx |bnx |

]

. ¤

Finally, in the case where Bu is an unknown diagonal matrix but the sign of each

diagonal element is known, we can take the gain matrix K to be diagonal so that

K = diag[k1, · · · , knx ], where ki is such that (sgn bi)ki < 0, i = 1, · · · , nx. In this case,

taking A in (10.17) to be the zero matrix, As is given by As = diag[b1k1, · · · , bnxknx ]

which is essentially nonnegative and asymptotically stable.

10.4. Neural Adaptive Control for Nonlinear Nonnegative

Uncertain Systems with Nonnegative Control

As discussed in the Introduction, control (source) inputs of drug delivery systems

for physiological and pharmacological processes are usually constrained to be non-

negative as are the system states. Hence, in this section we develop neuro adaptive

control laws for nonnegative systems with nonnegative control inputs. Specifically,

for a given desired set point (xe, ze) ∈ R
nx
+ × R

nz
+ and for given ε1, ε2 > 0, our aim
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is to design a nonnegative control input u(t), t ≥ 0, such that ‖x(t) − xe‖ < ε1 and

‖z(t)− ze‖ < ε2 for all t ≥ T , where T ∈ [0,∞), and x(t) ≥≥ 0 and z(t) ≥≥ 0, t ≥ 0,

for all (x0, z0) ∈ R
nx
+ × R

nz
+ . However, since in many applications of nonnegative

systems and in particular, compartmental systems, it is often necessary to regulate

a subset of the nonnegative state variables which usually include a central compart-

ment, here we only require that ‖x(t)−xe‖ < ε1, t ≥ T . Furthermore, we assume that

we have m independent control inputs such that the input matrix function is given

by G(x, z) = diag[g1(x, z), · · · , gm(x, z)], where gi : R
nx × R

nz → R+, i = 1, · · · ,m.

For compartmental systems this assumption is not restrictive since control inputs

correspond to control inflows to each individual compartment.

Theorem 10.6. Consider the nonlinear uncertain dynamical system G given by

(10.14) and (10.15) where fx(·, ·) and G(·, ·) are given by (10.17) and (10.27), respec-

tively, A is essentially nonnegative and asymptotically stable, fx(·, ·) is essentially

nonnegative with respect to x, fz(·, ·) is essentially nonnegative with respect to z,

and ∆f(·, ·) is essentially nonnegative with respect to x and belongs to F . For a

given xe ∈ R
nx
+ assume there exist positive vectors ze ∈ R

nz
+ and ue ∈ R

nx
+ such that

(10.19) and (10.20) hold and the equilibrium point (xd, ze) ∈ R
nx
+ × R

nz
+ of (10.14),

(10.15) is globally asymptotically stable with u(t) ≡ ue. Furthermore, assume that

(10.15) is input-to-state stable at z(t) ≡ ze with x(t)−xe viewed as the input. Finally,

let qi and γi, i = 1, · · · , nx, be positive constants and ki, i = 1, · · · , nx be nonpositive

constants. Then the neural adaptive feedback control law

ui(t) = max{0, ûi(t)}, i = 1, · · · , nx, (10.56)

where

ûi(t) = −gni−1(x(t), z(t))ŴT
i (t)σi(x(t), z(t)) (10.57)
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and Ŵi(t) ∈ R
si , t ≥ 0, i = 1, · · · , nx, with update law

˙̂
Wi(t) = qi

[

(xi(t)− xei)σi(x(t), z(t))− γi‖P 1/2(x(t)− xe)‖Ŵi(t)
]

, Ŵi(0) = Ŵi0,

i = 1, · · · , nx, (10.58)

where P , diag[p1, · · · , pnx ] > 0 satisfies

0 = ATP + PA+R (10.59)

for a positive definite R ∈ R
nx×nx , guarantees that there exists a compact positively

invariant set Dα ⊂ R
nx
+ ×R

nz
+ ×R

s×nx such that (xe, ze,W ) ∈ Dα, where W ∈ R
s×nx ,

and the solution (x(t), z(t), Ŵ (t)), t ≥ 0, of the closed-loop system given by (10.14),

(10.15), (10.56), and (10.58) is ultimately bounded for all (x(0), z(0), Ŵ (0)) ∈ Dα

with ultimate bound ‖P 1/2(x(t)− xe)‖ < ε, t ≥ T , where

ε >

√

√

√

√

(

ν

λmin(RP−1)

)2

+
nx
∑

i=1

[

1

2

(

√
bisi
qiγ2i

+
w∗i√
q̂i

)

+

√

ν

2qiγi

]2

, (10.60)

q̂i = qi/pibi, and

ν ,

(

nx
∑

i=1

pib
2
i ε
∗2
i

)1/2

+
nx
∑

i=1

[

2bi
√
pisiw

∗
i +

qiγi
2

(

√

bisi
qiγ2i

+
w∗i√
q̂i

)2]

. (10.61)

Furthermore, u(t) ≥≥ 0, x(t) ≥≥ 0, and z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈

R
nx
+ × R

nz
+ .

Proof. First, define ŴT
u (t) , block-diag[ŴT

u1(t), · · · , ŴT
unx(t)] and Ku , diag[ku1,

· · · , kunx ], where

Ŵui(t) =

{

0, if ûi(t) < 0,

Ŵi(t), otherwise,
i = 1, · · · , nx, (10.62)

kui =

{

0, if ûi(t) < 0,
ki, otherwise,

i = 1, · · · , nx. (10.63)
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Next, note that with u(t), t ≥ 0, given by (10.56) it follows from (10.14), (10.17), and

(10.27) that

ẋ(t) = Ax(t) + ∆f(x(t), z(t)) +Bu[Ku(x(t)− xe)− ŴT
u (t)σ(x(t), z(t))],

x(0) = x0, t ≥ 0. (10.64)

Now, defining ex(t) , x(t)− xe and ez(t) , z(t)− ze, and using (10.19) and (10.20),

it follows from (10.15) and (10.64) that

ėx(t) = Aex(t) + Axe +∆f(x(t), z(t)) +Bu[Kuex(t)− ŴT
u (t)σ(x(t), z(t))]

= Aex(t) +Bu[δ(x(t), z(t))− δ(xe, ze)−Gn(xe, ze)ue +Kuex(t)

−ŴT(t)σ(x(t), z(t))] +Bu(Ŵ (t)− Ŵu(t))
Tσ(x(t), z(t)),

ex(0) = x0 − xe, t ≥ 0, (10.65)

and

ėz(t) = f̃z(ex(t), ez(t)), ez(0) = z0 − ze, (10.66)

where f̃z(ex, ez) , fz(ex + xe, ez + ze)− fz(xe, ze). Furthermore, since A is essentially

nonnegative and asymptotically stable, it follows from Theorem 7.2 that there exist

a positive diagonal matrix P = diag[p1, · · · , pnx ] and a positive-definite matrix R ∈

R
nx×nx such that (10.59) holds.

Next, to show ultimate boundedness of the closed-loop system (10.58), (10.65),

and (10.66) consider the Lyapunov-like function

V (ex, ez, W̃ ) = eTxPex + tr W̃Q−1W̃T, (10.67)

where Q , diag
[

q̂1, · · · , q̂nx
]

= diag
[

q1
p1b1

, · · · , qnx
pnxbnx

]

and W̃T(t) , ŴT(t) − WT

with WT given by WT = block-diag[WT
1 , · · · ,WT

nx ]. Note that (10.67) satisfies (10.7)

with x1 = [eTx , W̃
T
1 · · · , W̃T

nx ]
T, x2 = ez, α(‖x1‖) = β(‖x1‖) = ‖x1‖2, where ‖x1‖2 ,

eTxPex + tr W̃Q−1W̃T. Furthermore, α(‖x1‖) is a class K∞ function. Now, letting
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ex(t), t ≥ 0, denote the solution to (10.65) and using (10.22) and (10.58), it follows

that the time derivative of V (ex, ez, W̃ ) along the closed-loop system trajectories is

given by

V̇ (ex(t), ez(t), W̃ (t)) = 2eTx (t)P
[

Aex(t) +Bu[δ(x(t), z(t))− δ(xe, ze)

−Gn(xe, ze)ue +Kuex(t)− ŴT(t)σ(x(t), z(t))]

+Bu(Ŵ (t)− Ŵu(t))
Tσ(x(t), z(t))

]

+ 2tr W̃T(t)Q−1
˙̂
W (t)

= −eTx (t)Rex(t) + 2eTx (t)PBuKuex(t)

+
nx
∑

i=1

2pibiexi(t)
[

− W̃T
i (t)σi(x(t), z(t)) + εi(x(t), z(t))

]

+
nx
∑

i=1

2pibiexi(t)(Ŵi(t)− Ŵui(t))
Tσi(x(t), z(t))

+
nx
∑

i=1

2pibiW̃
T
i (t)

[

exi(t)σi(x(t), z(t))

−γi‖P 1/2(x(t)− xe)‖Ŵi(t)
]

≤ −eTx (t)Rex(t) +
nx
∑

i=1

2pibiexi(t)εi(x(t), z(t))

+
nx
∑

i=1

2pibi

(

exi(t)(Ŵi(t)− Ŵui(t))
Tσi(x(t), z(t))

−γi‖P 1/2ex(t)‖W̃T
i (t)Ŵi(t)

)

. (10.68)

Now, for each i ∈ {1, · · · , nx} and for the two cases given in (10.62), the last term on

the right-hand side of (10.68) gives:

i) If ûi(t) < 0, then Ŵui(t) = 0 and hence

2pibi

(

exi(t)(Ŵi(t)− Ŵui(t))
Tσi(x(t), z(t))− γi‖P 1/2ex(t)‖W̃T

i (t)Ŵi(t)
)

= 2pibi

(

exi(t)(W̃i(t) +Wi)
Tσi(x(t), z(t))− γi‖P 1/2ex(t)‖‖W̃i(t)‖2

−γi‖P 1/2ex(t)‖W̃T
i (t)Wi

)

≤ 2bi
√

piq̂isi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖+ 2bi
√
pisiw

∗
i ‖P 1/2ex(t)‖
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−2piq̂ibiγi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖2

+2pibiq̂
1/2
i γiw

∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖.

ii) Otherwise, Ŵui(t) = Ŵi(t) and hence

2pibi

(

exi(t)(Ŵi(t)− Ŵui(t))
Tσi(x(t), z(t))− γi‖P 1/2ex(t)‖W̃T

i (t)Ŵi(t)
)

= −2pibiγi‖P 1/2ex(t)‖W̃T
i (t)Ŵi(t)

= −2pibiγi‖P 1/2ex(t)‖W̃T
i (t)(W̃i(t) +Wi)

≤ −2pibiγi‖P 1/2ex(t)‖W̃T
i (t)W̃i(t)

+2pibiq̂
1/2
i γiw

∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

≤ 2
√

qibisi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖+ 2bi
√
pisiw

∗
i ‖P 1/2ex(t)‖

−2qiγi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖2

+2qiq̂
−1/2
i γiw

∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖.

Hence, it follows from (10.68) that in either case

V̇ (ex(t), ez(t), W̃ (t)) ≤ −eTx (t)Rex(t) +
nx
∑

i=1

2pibiexi(t)εi(x(t), z(t))

+
nx
∑

i=1

(

2
√

qibisi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

+2bi
√
pisiw

∗
i ‖P 1/2ex(t)‖ − 2qiγi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖2

+2qiq̂
−1/2
i γiw

∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

)

≤ −eTx (t)Rex(t) + 2‖P 1/2ex(t)‖
(

nx
∑

i=1

pib
2
i ε
∗2
i

)1/2

+
nx
∑

i=1

2
√

qibisi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

+
nx
∑

i=1

2bi
√
pisiw

∗
i ‖P 1/2ex(t)‖

−2
nx
∑

i=1

qiγi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖2
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+2
nx
∑

i=1

qiq̂
−1/2
i γiw

∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖. (10.69)

Next, completing squares yields

V̇ (ex(t), ez(t), W̃ (t)) ≤ −λmin(RP
−1)‖P 1/2ex(t)‖2 + 2‖P 1/2ex(t)‖

(

nx
∑

i=1

pib
2
i ε
∗2
i

)1/2

+
nx
∑

i=1

2
√

qibisi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

+
nx
∑

i=1

2bi
√
pisiw

∗
i ‖P 1/2ex(t)‖

−2
nx
∑

i=1

qiγi‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖2

+2
nx
∑

i=1

qiq̂
−1/2
i γiw

∗
i ‖P 1/2ex(t)‖‖q̂−1/2i W̃i(t)‖

= ‖P 1/2ex(t)‖
[

−λmin(RP
−1)‖P 1/2ex(t)‖+ 2

(

nx
∑

i=1

pib
2
i ε
∗2
i

)1/2

+
nx
∑

i=1

2bi
√
pisiw

∗
i −

nx
∑

i=1

2qiγi‖q̂−1/2i W̃i(t)‖2

+
nx
∑

i=1

2qiγi(

√

bisi
qiγ2i

+
w∗i√
q̂i
)‖q̂−1/2i W̃i(t)‖

]

= ‖P 1/2ex(t)‖
[

−λmin(RP
−1)‖P 1/2ex(t)‖+ 2

(

nx
∑

i=1

pib
2
i ε
∗2
i

)1/2

+
nx
∑

i=1

2bi
√
pisiw

∗
i +

qiγi
2

(

√

bisi
qiγ2i

+
w∗i√
q̂i

)2]

−
nx
∑

i=1

2qiγi

[

‖q̂−1/2i W̃i(t)‖ −
1

2

(

√

bisi
qiγ2i

+
w∗i√
q̂i

)]2]

= ‖P 1/2ex(t)‖
[

−λmin(RP
−1)‖P 1/2ex(t)‖+ ν

−
nx
∑

i=1

2qiγi

[

‖q̂−1/2i W̃i(t)‖ −
1

2

(

√

bisi
qiγ2i

+
w∗i√
q̂i

)]2]

, (10.70)

where ν is given by (10.61). Now, for

‖P 1/2ex‖ ≥
ν

λmin(RP−1)
, αx, (10.71)
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or

‖q̂−1/2i W̃i‖ ≥
1

2

(

√
bisi
qiγ2i

+
w∗i
q̂i

)

+

√

ν

2qiγi
, αW̃i

, i = 1, . . . , nx, (10.72)

it follows that V̇ (ex(t), ez(t), W̃ (t)) ≤ 0 for all t ≥ 0; that is, V̇ (ex(t), ez(t), W̃ (t)) ≤ 0

for all (ex(t), ez(t), W̃ (t)) ∈ D̃e\D̃r and t ≥ 0, where D̃e and D̃r are given by (10.42)

and (10.43), respectively.

Next, define

D̃η ,

{

(ex, ez, W̃ ) ∈ R
nx × R

nz × R
s×nx : V (ex, ez, W̃ ) ≤ η

}

, (10.73)

where

η > β(µ) = µ = α2
x +

nx
∑

i=1

α2
W̃i

=

(

ν

λmin(RP−1)

)2

+ nx

∑

i=1

[

1

2

(

√
bisi
qiγ2i

+
w∗i√
q̂i

)

+

√

ν

2qiγi

]2

. (10.74)

To show ultimate boundedness of the closed-loop system (10.58), (10.65), and (10.66),

assume that D̃η ⊂ D̃α (see Remark 10.1), where D̃α is given by (10.44) and α

is the maximum value such that D̃α ⊆ D̃e. Now, since V̇ (ex, ez, W̃ ) ≤ 0 for all

(ex, ez, W̃ ) ∈ D̃e\D̃r and D̃r ⊂ D̃α, it follows that D̃α is positively invariant. Hence,

if (ex(0), ez(0), W̃ (0)) ∈ D̃α, then it follows from Theorem 10.3 that the solution

(ex(t), ez(t), Ŵ (t)), t ≥ 0, to (10.58), (10.65), and (10.66) is ultimately bounded with

respect to (ex, W̃ ) uniformly in ez(0) with ultimate bound given by ε = α−1(η) =
√
η

which yields (10.60). In addition, since (10.66) is input-to-state stable with ex viewed

as the input, it follows from Proposition 10.1 that the solution ez(t), t ≥ 0, to (10.66)

is also ultimately bounded. Furthermore, it follows from Theorem 1 of [223] that

there exist a continuously differentiable, radially unbounded, positive-definite func-

tion Vz : R
nz → R and class K functions γ1(·), γ2(·) such that

V ′z (ez)f̃z(ex, ez) ≤ −γ1(‖ez‖), ‖ez‖ ≥ γ2(‖P 1/2ex‖). (10.75)
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Since the upper bound for ‖P 1/2ex‖2 is given by η, it follows that the set given by

Dz ,

{

z ∈ R
nz : Vz(z − ze) ≤ max

‖z−ze‖=γ2(
√
η)
Vz(z − ze)

}

, (10.76)

is also positively invariant as long as Dz ⊂ Dcz (see Remark 10.1). Now, since D̃α

and Dz are positively invariant, it follows that

Dα ,

{

(x, z, Ŵ ) ∈ R
nx×R

nz×R
s×nx : (x−xe, z−ze, Ŵ−W ) ∈ D̃α, z ∈ Dz

}

, (10.77)

is also positively invariant. In addition, it follows using identical arguments as

in the proof of Theorem 10.4 that the solution (x(t), z(t), Ŵ (t)), t ≥ 0, of the

closed-loop system (10.14), (10.15), (10.56), and (10.58) is ultimately bounded for

all (x(0), z(0), Ŵ (0)) ∈ Dα.

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (10.56). Now, since G(x(t)) ≥≥ 0,

t ≥ 0, and u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 9.2 that x(t) ≥≥ 0 and

z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈ R
nx
+ × R

nz
+ . ¤

In Theorem 10.6 we assumed that the equilibrium point (xe, ze) of (10.14), (10.15)

is globally asymptotically stable with u(t) ≡ ue. In general, however, unlike linear

nonnegative systems with asymptotically stable plant dynamics, a given set point

(xe, ze) ∈ R
nx
+ ×R

nz
+ for the nonlinear nonnegative dynamical system (10.14), (10.15)

may not be asymptotically stabilizable with a constant control u(t) ≡ ue ∈ R
nx
+ .

However, if f(x̃) , [fTx (x, z), f
T
z (x, z)]

T, where x̃ , [xT, zT]T, is homogeneous, coop-

erative; that is, the Jacobian matrix ∂f(x̃)
∂x̃

is essentially nonnegative for all x̃ ∈ R
nx+nz
+

[221], the Jacobian matrix ∂f(x̃)
∂x̃

is irreducible for all x̃ ∈ R
nx+nz
+ [221], and the zero

solution x̃(t) ≡ 0 of the undisturbed (u(t) ≡ 0) system (10.14), (10.15) is globally

asymptotically stable, then the set point (xe, ze) ∈ R
nx
+ ×R

nz
+ satisfying (10.19), (10.20)

is a unique equilibrium point with u(t) ≡ ue ∈ R
nx
+ and is also asymptotically stable

for all (x0, z0) ∈ R
nx
+ × R

nz
+ [52]. This implies that the solution (x(t), z(t)) ≡ (xe, ze)

to (10.14), (10.15) with u(t) ≡ ue is asymptotically stable for all (x0, z0) ∈ R
nx
+ ×R

nz
+ .
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It is important to note that unlike Theorem 10.4, Theorem 10.6 does not require

that the set of basis functions σi(·, ·), i = 1, · · · , nx, be essentially nonnegative nor

satisfy σi(x, z) = 0 whenever xi = 0, i = 1, · · · , nx. This is due to the fact that the

control input is constrained to be nonnegative and hence the neuro adaptive controller

given by Theorem 10.6 cannot destroy nonnegativity of the closed-loop plant states.

10.5. Neural Adaptive Control for Continuous Stirred Tank

Reactors

In this section we apply the proposed neuro adaptive control framework to tem-

perature regulation of chemical reactors. In particular, we consider a perfectly mixed,

continuously stirred tank reactor shown in Figure 10.4 involving a single, first-order

exothermic (i.e., energy releasing) irreversible reaction A → B. The model involves

fluid streams that are continuously fed and removed from the reactor. Since we as-

sume perfect mixing in the reactor, the exit stream has the same concentration and

temperature as the reactor fluid. Furthermore, the jacket surrounding the reactor is

assumed to be perfectly mixed and at a lower temperature than the reactor. In this

case, energy (in the form of heat) transfers through the reactor walls into the jacket,

removing the heat generated by the reaction. A mass and energy balance of the reac-

tor, assuming constant volume, heat capacity, and density, yields (see [4,18,185,233])

ĊA(t) =
F

V̂
(CAf − CA(t))− r(T (t), CA(t)), CA(0) = CA0, t ≥ 0, (10.78)

Ṫ (t) =
F

V̂
(Tf − T (t))−

(−∆H
ρcp

)

r(T (t), CA(t))−
UA

V̂ ρcp
(T (t)− Tj(t)),

T (0) = T0, (10.79)

where CA(·) is the concentration of reactant A in the reactor effluent in mols/liter, CAf

is the concentration of reactant A in the feed stream in mols/liter, T (·) is the reactor

temperature in degrees Kelvin, Tj(·) is the jacket temperature in degrees Kelvin, Tf is
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Figure 10.4: Exothermic continuously stirred tank reactor

the feed temperature in degrees Kelvin, F is the constant feed flow rate in liters/min,

V̂ is the reactor volume in liters, −∆H is the heat of reaction in Joules/mol, ρ is the

density in grams/liter, cp is the specific heat in Joules/(gram·Kelvin), UA is the heat

transfer term in Joules/(min·Kelvin), and r(T,CA) is the rate of reaction satisfying

Arrhenius’ law given by

r(T,CA) = k0CAe
−∆E

RT , (10.80)

where k0 is the rate constant in min−1, ∆E is the activation energy in Joules/mol,

and R is the ideal gas constant in Joules/(mol·Kelvin).

Due to the exponential nonlinearity in r(T,CA), the nonlinear kinetic equations

(10.78), (10.79) can exhibit multiple equilibria, limit cycles, and chaos for fixed jacket

temperatures. Here, our control objective is to regulate the reactor temperature T (·)

to a prescribed set point Te by controlling the jacket temperature Tj(·). Note that

with x = T , z = CA, and u = Tj, (10.78) and (10.79) can be written in state-space

form (10.14) and (10.15) with

fx(x, z) = −(a1 + a3)x+ a4r(x, z) + a1d, (10.81)

fz(x, z) = −a1z − r(x, z) + a2, (10.82)
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G(x, z) = b, (10.83)

where a1 = F

V̂
, a2 = F

V̂
CAf , a3 = b = UA

V̂ ρcp
, a4 = ∆H

ρcp
, and d = Tf . Note that

fx(x, z) and fz(x, z) are essentially nonnegative with respect to x and z, respectively,

and hence it follows from Proposition 9.2 that the state trajectory of (10.78) and

(10.79) remain in the nonnegative orthant of the state space for nonnegative initial

conditions and a nonnegative input. We assume that there exists an equilibrium point

(xe, ze) ∈ R+ ×R+ so that (10.19) and (10.20) are satisfied (see [185]). Furthermore,

we assume that the system kinetics are uncertain with respect to the temperature as

well as a1, a2, a3, a4, b, and d are uncertain parameters.

To see that (10.79) is input-to-state stable with T (·) viewed as the input, define

ex(t) , x(t)−xe and ez(t) , z(t)−ze so that f̃z(ex, ez) , fz(ex+xe, ez+ze)−fz(xe, ze)

is given by

f̃z(ex, ez) = −a1ez − k0e−
∆E

R(ex+xe) ez − k0ze
(

e−
∆E

R(ex+xe) − e− ∆E
Rxe

)

. (10.84)

Now, defining Vz(ez) ,
1
2
e2z and noting that

(

e
− ∆E

R(e2+xe2) − e−
∆E
Rxe2

)

is bounded, it

follows that

V ′z (ez)f̃z(ex, ez) ≤ −a1e2z − k0ze
(

e−
∆E

R(ex+xe) − e− ∆E
Rxe

)

ez

≤ −‖ez‖
[

a1‖ez‖ − k0ze
∥

∥

∥e
− ∆E

R(ex+xe) − e− ∆E
Rxe

∥

∥

∥

]

≤ 0, ‖ez‖ ≥
k0ze
a1

∥

∥

∥e
− ∆E

R(ex+xe) − e− ∆E
Rxe

∥

∥

∥ , (10.85)

which shows that ėz(t) = f̃z(ex(t), ez(t)), t ≥ 0, is input-to-state stable with ex viewed

as the input. Hence, it follows from Theorem 10.6 that the adaptive feedback con-

troller (10.28) with update law (10.30) guarantees that there exist positive constants ε

and T such that |T (t)−Te| < ε, t ≥ T , for any (uncertain) positive system parameters

a1, · · · , a4, b, d, and any (uncertain) continuous rate of reaction r(·, ·).

For our simulation, we choose the system parameters given in Table 10.1. With
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Table 10.1: System parameter values [167]
Variable Value
UA 5× 104 J/min K
CA 0.5 mol/`
CAf 1 mol/`
cp 0.239 J/gK
F 100 `/min
k0 7.2× 1010 min−1

T 350 K
Tf 350 K

V̂ 100 `
∆E/R 8750 K
(−∆H) 5×104 J/mol

ρ 1000 g/`

Te = 375 K, k1 = −14, σ̂1(x, z) = η1(x)
[

1
1+e−a(x−Te)

, · · · , 1
1+e−6a(x−Te)

, 1
1+e−a(z−0.5) , · · · ,

1
1+e−6a(z−0.5)

]T

, where η1 : R→ R is a continuous monotone function such that η1(0) =

0 and η1(x) = 1, x ≥ ζ > 0, a = 0.5, q1 = 20, γ1 = 0.01, and initial conditions

CA(0) = 0.5 mol/`, T (0) = 350 K, and Ŵ (0) = 0 K, Figure 10.5 shows the state

trajectories (i.e., reactor temperature and concentration of reactant A) versus time

and the control signal (i.e., jacket temperature) versus time. Note that σ̂1(·, ·) takes

values between 0 and 1 and σ̂1(0, z) = 0. Finally, Figure 10.6 shows the neural

network weight history versus time.

10.6. Conclusion

Nonnegative and compartmental systems are widely used to capture system dy-

namics involving the interchange of mass and energy between homogenous subsys-

tems or compartments. Thus, it is not surprising that nonnegative and compartmen-

tal models are remarkably effective in describing the dynamical behavior of complex

highly uncertain dynamical systems such as biological systems, physiological systems,

pharmacological systems, chemical reaction systems, queuing systems, ecological sys-

324



0 1 2 3 4 5 6 7 8 9 10
340

350

360

370

380

Te
m

pe
ra

tu
re

 [K
]

Time [min]

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

C
on

ce
nt

ra
tio

n 
[m

ol
s/

L]

Time [min]

0 1 2 3 4 5 6 7 8 9 10
260

280

300

320

340

360

C
on

tro
l s

ig
na

l [
K

]

Time [min]

Figure 10.5: State trajectories (reactor temperature and concentration of reactant
A) and control signal (jacket temperature) versus time

tems, economic systems, telecommunication systems, transportation systems, power

systems, and network systems. In this chapter, we developed a neural adaptive con-

trol framework for adaptive set-point regulation of nonlinear uncertain nonnegative

and compartmental systems. Using Lyapunov-like methods the proposed framework

was shown to guarantee ultimate boundedness of the error signals corresponding to

the physical system states and the neural network weighting gains while additionally

guaranteeing the nonnegativity of the closed-loop system states associated with the

plant dynamics. We then generalized our neuro adaptive controller to address the
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Figure 10.6: Neural network weighting functions versus time

problem of nonnegative systems with nonnegative control inputs. This generalization

is crucial for physiological, pharmacological, and chemical processes as control inputs

are usually constrained to be nonnegative.
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Chapter 11

Passivity-Based Neural Network

Adaptive Output Feedback Control

for Nonlinear Nonnegative

Dynamical Systems

11.1. Introduction

Advanced control methodologies have been (and are being) extensively developed

for complex highly uncertain engineering systems. Adaptive control algorithms have

been devised that ensure system stability and performance in the face of unavoidable

discrepancies between system models and the real physical system. To this end, neu-

ral networks have provided an ideal framework for on-line identification and control

of many complex uncertain engineering systems because of their great flexibility in

approximating a large class of continuous nonlinear maps and their adaptability due

to their inherently parallel architecture. However, modern active control technology

has received far less consideration in medical systems. The main reason for this state

of affairs is the steep barriers to communication between mathematics/control engi-

neering and medicine. However, this is slowly changing and there is no doubt that

control-system technology has a great deal to offer medicine. This is particularly
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true when dealing with critically ill patients in the intensive care unit or operating

room. These patients often require administration of drugs to regulate control of key

physiological variables, such as level of consciousness, heart rate, blood pressure, ven-

tilatory drive, etc., within desired targets. The rate of administration of these drugs

is critical, requiring constant monitoring and frequent adjustments. Open-loop con-

trol (manual control) by clinical personnel can be tedious, imprecise, time-consuming,

and often of poor quality. Hence, the need for active control (closed-loop control) of

drug administration is crucial.

There has been a great deal of interest in the development of algorithms for

closed-loop control of intravenous anesthesia. Algorithms for closed-loop control of

inhalation anesthesia, using anesthetic concentration as the performance variable,

have been developed. However, since it is not possible with current sensor technol-

ogy to rapidly measure the plasma concentration of intravenously-administered drugs

(in contrast to inhalation agents), these algorithms are not useful for intravenous

agents. Furthermore, drug concentration, even if it could be measured rapidly, is

not the best measurement variable. We are far more interested in drug effect than

concentration. More relevant are recently described algorithms for the control of in-

travenous anesthesia using a processed electroencephalograph (EEG) as the control

variable. Building on pioneering work by Bickford [26], Absalom et al. [2] devel-

oped a proportional-integral-derivative controller using the bispectral index (BIS),

a processed EEG signal, as the performance variable to control the infusion of the

hypnotic, propofol. While the median performance of the system was good, in 3

of 10 patients oscillations of the BIS signal around the set point were observed and

anesthesia was deemed clinically inadequate in 1 of the 10 patients. This would not

be acceptable for clinical practice. Alternative algorithms have been devised by both

Schwilden et al. [207, 208] and Struys et al. [227]. Both groups have developed and
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clinically tested closed-loop, model-based adaptive controllers for the delivery of in-

travenous anesthesia using a processed EEG signal as the measurement variable. The

algorithms are based on a pharmacokinetic model predicting the drug concentration

as a function of infusion rate and time and a pharmacodynamic model relating the

processed EEG signal to concentration. The pharmacokinetic and pharmacodynamic

models are characterized by specific parameters. The two algorithms are similar in

assuming that certain model parameters are equal to the mean values from previous

pharmacokinetic/pharmacodynamic studies while varying a few select parameters of

the models to minimize the difference between the desired and observed processed

EEG signal. The primary difference between the two algorithms is in the parameters

which are fixed to the mean values from previous studies and the parameters that are

chosen for variation. Schwilden et al. [207, 208] assume that the pharmacodynamic

parameters may be fixed to mean values taken from the literature and vary phar-

macokinetic parameters to minimize bias from the target signal. In contrast, Struys

et al. [227] assume that the pharmacokinetic parameters are always correct and that

any variability in individual patient response is due to pharmacodynamic variability.

Thus they vary pharmacodynamic parameters to minimize the difference between the

observed and target processed EEG signal. Both algorithms have been implemented

in the operating room with clinically acceptable performance in small numbers of

patients. However, as pointed out by Glass and Rampil [69] in an analysis of the

algorithm of Struys et al. [227], the systems may not have been fully stressed. For ex-

ample, in their study, Struys et al. [227] administered a relatively high fixed dose of the

opioid remifentanil, in conjunction with closed-loop control of the hypnotic, propofol.

This blunted the patient response to surgical stimuli and meant that the propofol was

needed only to produce unconsciousness in patients who were profoundly analgesic.

The result was that only small adjustments in propofol concentrations were necessary.
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Whether either system would have been robust in less controlled situations is an open

question. And it should be noted that both algorithms are model dependent and only

partially adaptive, in the sense that only select pharmacokinetic/pharmacodynamic

parameters are varied to minimize the signal bias from the target.

Given the uncertainties in both pharmacokinetic and pharmacodynamic models,

and the magnitude of interpatient variability, in this chapter we present a neural

network adaptive control framework that accounts for combined interpatient phar-

macokinetic and pharmacodynamic variability. In particular, we develop a neural

adaptive output feedback control framework for adaptive set-point regulation of non-

linear uncertain nonnegative and compartmental systems. Nonnegative and compart-

mental models provide a broad framework for biological and physiological systems,

including clinical pharmacology, and are well suited for the problem of closed-loop

control of drug administration. Specifically, nonnegative and compartmental dynam-

ical systems [6, 19, 24, 62, 70, 75, 123, 124, 164, 166, 172, 182, 187, 203] are composed of

homogeneous interconnected subsystems (or compartments) which exchange variable

nonnegative quantities of material with conservation laws describing transfer, accu-

mulation, and elimination between the compartments and the environment. It thus

follows from physical considerations that the state trajectory of such systems remains

in the nonnegative orthant of the state space for nonnegative initial conditions. Using

nonnegative and compartmental model structures, a Lyapunov-based neural adaptive

control framework is developed that guarantees ultimate boundedness of the error sig-

nals corresponding to the physical system states as well as the neural network weight-

ing gains. The neuro adaptive controllers are constructed without requiring knowledge

of the system dynamics while guaranteeing that the physical system states remain in

the nonnegative orthant of the state space. Furthermore, since in pharmacological

applications involving active drug administration control (source) inputs as well as
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the system states need to be nonnegative, the proposed neuro adaptive controller

also guarantees that the control signal remains nonnegative. We emphasize that even

though neuro adaptive full-state feedback controllers for nonnegative systems have

been recently addressed in [104], our present formulation addresses adaptive output

feedback controllers for nonlinear systems with unmodeled dynamics of unknown di-

mension using the exponential passivity, feedback equivalence, and stabilizability of

exponentially minimum phase notions developed in [39, 60]. The framework devel-

oped in [104] is limited to full-state feedback controllers and does not address the

problem of unmodeled dynamics of unknown dimension. Output feedback controllers

are crucial in clinical pharmacology since key physiological (state) variables cannot be

measured in practice. Furthermore, the results in [104] are based on the new notions

of partial boundedness and partial ultimate boundedness as opposed to the approach

of this paper which imposes passivity and positive real requirements on the system

dynamics. Thus, the approach of the present paper is related to the neuro adaptive

control methods developed in [116,117].

11.2. Mathematical Preliminaries

In this section we introduce some key results concerning passive and exponentially

passive dynamical systems [39,60] that are necessary for developing the main results

of this chapter. Specifically, consider the nonlinear dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(t0) = x0, t ≥ t0, (11.1)

y(t) = h(x(t)), (11.2)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, y(t) ∈ R
m, t ≥ 0, f : R

n → R
n, and

G : R
n → R

n×m. We assume that f(·), G(·), and h(·) are continuous mappings and

f(·) has at least one equilibrium so that, without loss of generality, f(0) = 0 and
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h(0) = 0. Furthermore, for the nonlinear dynamical system G we assume that the

required properties for the existence and uniqueness of solutions are satisfied; that is,

f(·), G(·), and u(·) satisfy sufficient regularity conditions such that the system (11.1)

has a unique solution forward in time. The following definition introduces the notion

of exponential passivity.

Definition 11.1 [39]. A nonlinear dynamical system G of the form (11.1), (11.2)

is exponentially passive if there exists a constant ρ > 0 such that the dissipation

inequality

0 ≤
∫ t

t0

eρsuT(s)y(s)ds, (11.3)

is satisfied for all t ≥ t0 with x(t0) = 0. A nonlinear dynamical system of the form

(11.1), (11.2) is passive if the dissipation inequality (11.3) is satisfied with ρ = 0.

For the statement of the following result recall the definitions of zero-state observ-

ability and complete reachability given in [241].

Theorem 11.1 [39]. Let G be zero-state observable and completely reachable.

G is exponentially passive if and only if there exist functions Vs : R
n → R and

` : R
n → R

p, and a scalar ρ > 0 such that Vs(·) is continuously differentiable, positive

definite, Vs(0) = 0, `(·) is continuous, `(0) = 0, and, for all x ∈ R
n,

0 = V ′s (x)f(x) + ρVs(x) + `T(x)`(x), (11.4)

0 = 1
2
V ′s (x)G(x)− hT(x). (11.5)

As shown in [39], an equivalent statement for exponential passivity of G using

(11.4), (11.5) is given by

V̇s(x) = −ρVs(x) + uTy − `T(x)`(x), x ∈ R
n. (11.6)
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Hence, if G is exponentially passive (resp., passive), then the undisturbed (u(t) ≡ 0)

nonlinear dynamical system (11.1) is asymptotically stable (resp., Lyapunov stable).

If, in addition, there exist scalars α, β > 0 and p ≥ 1 such that α‖x‖p ≤ Vs(x) ≤

β‖x‖p, x ∈ R
n, then the undisturbed (u(t) ≡ 0) nonlinear dynamical system (11.1)

is exponentially stable. This leads to the following stronger notion of exponential

passivity [60].

Definition 11.2. A nonlinear dynamical system G of the form (11.1), (11.2) is

strongly exponentially passive if G is exponentially passive and there exist a continu-

ously differentiable function Vs : R
n → R and positive scalars α, β > 0 such that

α‖x‖2 ≤ Vs(x) ≤ β‖x‖2, x ∈ R
n. (11.7)

Since in this paper we consider nonlinear dynamical systems in normal form, for

the remainder of this section we restate some of the key results of [60] in a concise

and unified format that supports the developments in Section 11.3. Specifically, we

consider the normal form characterization of (11.1), (11.2) given by

ẋ(t) = fx(x(t), z(t)) +G(x(t), z(t))u(t), x(t0) = x0, t ≥ t0, (11.8)

ż(t) = fz(x(t), z(t)), z(t0) = z0, (11.9)

y(t) = x(t), (11.10)

where x(t) ∈ R
m, t ≥ 0, z(t) ∈ R

n−m, t ≥ 0, u(t) ∈ R
m, t ≥ 0, y(t) ∈ R

m, t ≥ 0,

fx : R
m×R

n−m → R
m and satisfies fx(0, z) = 0, z ∈ R

n−m, fz : R
m×R

n−m → R
n−m

and satisfies fz(x, 0) = 0, x ∈ R
m, and G : R

m×R
n−m → R

m×m with detG(x, z) 6= 0,

(x, z) ∈ R
m × R

n−m. The following definition introduces the notion of exponentially

minimum phase.
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Definition 11.3. A nonlinear dynamical system G of the form (11.8)–(11.10)

is exponentially minimum phase if there exist a continuously differentiable function

Vz : R
n−m → R and positive constants α, β, γ, and δ such that

α‖z‖2 ≤ Vz(z) ≤ β‖z‖2, (11.11)

V ′z (z)fz(0, z) ≤ −γ‖z‖2, (11.12)

‖V ′z (z)‖ ≤ δ‖z‖. (11.13)

It follows from converse Lyapunov theory that if the zero solution z(t) ≡ 0 to

ż(t) = fz(0, z(t)), z(0) = z0, t ≥ 0, is exponentially stable and fz(0, ·) is continuously

differentiable, then there exists a continuously differentiable function Vz : R
n−m → R

such that (11.11)–(11.13) hold. Finally, the following definition and theorem are

needed for the main results of this chapter. For the statement of this definition let

x̃ , [xT, zT]T, f̃(x̃) , [fTx (x, z), f
T
z (x, z)]

T, and G̃(x̃) , [GT(x̃), 0m×(n−m)]
T.

Definition 11.4 [60]. A nonlinear dynamical system G of the form (11.8)–(11.10)

is semiglobally output feedback exponentially passive if, for any compact set Dc ⊂ R
n,

there exists a continuous feedback u : R
m × R

m → R
m of the form

u = αDc(y) + βDc(y)v, (11.14)

where det βDc(y) 6= 0, y ∈ R
m, such that the closed-loop system given by (11.8)–

(11.10) and (11.14), or, equivalently,

˙̃x(t) = f̃Dc(x̃(t)) + G̃Dc(x̃(t))v(t), x̃(0) ∈ Dc, t ≥ 0, (11.15)

y(t) = x(t), (11.16)

where f̃Dc(x̃) = f̃(x̃) + G̃(x̃)αDc(y) and G̃Dc(x̃) = G̃(x̃)βDc(y), is strongly exponen-

tially passive from v to y for all x̃ ∈ Dc.
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Theorem 11.2 [60]. Consider the nonlinear dynamical system G given by (11.8)–

(11.10). Assume that the input matrix function G(x, z), (x, z) ∈ R
m ×R

n−m, can be

factored as

G(x, z) = Gu(z)Gn(x), (11.17)

where Gu : R
n−m → R

m×m and Gn : R
m → R

m×m are continuously differentiable

matrix functions such that Gu(z) = GT
u (z) > 0, z ∈ R

n−m, and detGn(x) 6= 0,

x ∈ R
m. Then G is semiglobally output feedback exponentially passive if and only if

G is exponentially minimum phase.

Remark 11.1. As noted in [60], if fz(·, ·) is globally Lipschitz continuous in R
m×

R
n−m, Gu(·) is uniformly positive definite; that is, there exists µ > 0 such that

Gu(z) = GT
u (z) ≥ µIm, z ∈ R

n−m, and the zero solution z(t) ≡ 0 to ż(t) = fz(0, z(t)),

z(0) = z0, t ≥ 0, is globally exponentially stable, then the above result holds globally.

Remark 11.2. It is important to note that if the conditions in Theorem 11.2 are

satisfied, then there exists an output feedback control law of the form (11.14) which

renders the closed-loop system exponentially passive from v to y. Specifically, as

shown in [60], the output feedback controller achieving exponential passivity is given

by

u = −G−1n (y)[G−1u (0)fx(0, y) + χy] +G−1n (y)v, (11.18)

where χ ∈ R is a positive constant. Finally, it is important to note that in the case

where Gu(z) ≡ Im, βDc(·) in (11.14) takes the form

βDc(y) = G−1n (y) = G−1(y). (11.19)

This fact will be used for our main result presented in the following section.
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11.3. Neural Output Feedback Adaptive Control for Nonlin-

ear Nonnegative Uncertain Systems

In this section we consider the problem of characterizing neural adaptive output

feedback control laws for nonlinear nonnegative and compartmental uncertain dynam-

ical systems to achieve set-point regulation in the nonnegative orthant. Specifically,

consider the controlled nonlinear uncertain dynamical system G given by

ẋ(t) = fx(x(t), z(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (11.20)

ż(t) = fz(x(t), z(t)), z(0) = z0, (11.21)

y(t) = x(t), (11.22)

where x(t) ∈ R
m, t ≥ 0, and z(t) ∈ R

n−m, t ≥ 0, are the state vectors, u(t) ∈ R
m,

t ≥ 0, is the control input, y(t) ∈ R
m, t ≥ 0, is the system output, fx : R

m ×

R
n−m → R

m is essentially nonnegative with respect to x but otherwise unknown and

satisfies fx(0, z) = 0, z ∈ R
n−m, fz : R

m × R
n−m → R

n−m is essentially nonnegative

with respect to z but otherwise unknown and satisfies fz(x, 0) = 0, x ∈ R
m, and

G : R
m → R

m×m is an unknown nonnegative input matrix function. Furthermore,

the system dimension n need not be known. The control input u(·) in (11.20) is

restricted to the class of admissible controls consisting of measurable functions such

that u(t) ∈ R
m, t ≥ 0.

As discussed in the Introduction, control (source) inputs of drug delivery systems

for physiological and pharmacological processes are usually constrained to be non-

negative as are the system states. Hence, in this chapter we develop neuro adaptive

output feedback control laws for nonnegative systems with nonnegative control in-

puts. Specifically, for a given desired set point (yd, ze) ∈ R
m
+ × R

n−m
+ and for given

ε1, ε2 > 0, our aim is to design a nonnegative control input u(t), t ≥ 0, such that

‖y(t)− yd‖ < ε1 and ‖z(t)− ze‖ < ε2 for all t ≥ T , where T ∈ [0,∞), and x(t) ≥≥ 0
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and z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈ R
m

+ × R
n−m

+ . However, since in many

applications of nonnegative systems and in particular, compartmental systems, it is

often necessary to regulate a subset of the nonnegative state variables which usually

include a central compartment, here we only require that ‖y(t) − yd‖ < ε1, t ≥ T .

Furthermore, we assume that we have m independent control inputs so that the in-

put matrix function is given by G(x) = diag[g1(x), · · · , gm(x)], where gi : R
n → R+,

i = 1, · · · ,m. For compartmental systems this assumption is not restrictive since

control inputs correspond to control inflows to each individual compartment.

In this chapter, we assume that for a given set point yd ∈ R
m
+ there exist ze ∈ R

n−m
+

and ue ∈ R
m
+ such that

0 = fx(yd, ze) +G(yd)ue, (11.23)

0 = fz(yd, ze), (11.24)

and the solution z(t) ≡ ze to (11.21) with x(t) ≡ yd is globally exponentially stable

so that G given by (11.20)–(11.22) is exponentially minimum phase at (yd, ze) with

constant control input ue. Note that (yd, ze) ∈ R
m ×R

n−m is an equilibrium point of

(11.20), (11.21) if and only if there exists ue ∈ R
m
+ such that (11.23), (11.24) hold.

Next, defining ex(t) , x(t)− yd, ez(t) , z(t)− ze, and Ĝ(ex) , G(ex + yd), and using

(11.23), (11.24), it follows that

ėx(t) = fx(ex(t) + yd, ez(t) + ze)− (fx(yd, ze) +G(yd)ue) +G(x(t))u(t)

= f̃x(ex(t), ez(t))−G(yd)ue + Ĝ(ex(t))u(t), ex(0) = x0 − yd, t ≥ 0, (11.25)

and

ėz(t) = f̃z(ex(t), ez(t)), ez(0) = z0 − ze, (11.26)

where f̃x(ex, ez) , fx(ex+yd, ez+ze)−fx(yd, ze) and f̃z(ex, ez) , fz(ex+yd, ez+ze)−

fz(yd, ze). Since, by assumption, the solution z(t) ≡ ze to (11.21) with x(t) ≡ yd is
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globally exponentially stable, it follows from Definition 11.3 and converse Lyapunov

theory that G is exponentially minimum phase and hence it further follows from

Theorem 11.2 and Remark 11.2 that for any compact set D̃c , D̃cx × D̃cz, where

D̃cx ⊂ R
m and D̃cz ⊂ R

n−m, and for all ẽ , [eTx , e
T
z ]

T ∈ D̃c, there exist continuous

functions αD̃c : R
m → R

m and βD̃c : R
m → R

m×m with βD̃c(ex) = Ĝ−1(ex), ex ∈ R
m,

such that, with u = αD̃c(ỹ)+βD̃c(ỹ)v, (11.25), (11.26) is strongly exponentially passive

from v to ỹ , x − yd = ex. Next, adding and subtracting Ĝ(ex)αD̃c(ex) to and from

(11.25), it follows that (11.25) can be rewritten as

ėx(t) = [f̃x(ex(t), ez(t)) + Ĝ(ex(t))αD̃c(ex(t))] + Ĝ(ex(t))[u(t)− αD̃c(x(t)− yd)

−G−1(x(t))G(yd)ue], ex(0) = x0 − yd, t ≥ 0. (11.27)

Now, we assume that for a given ε∗i > 0 the ith component of the vector function

αD̃c(x − yd) + G−1(x)G(yd)ue can be approximated over a compact set Dcx , {x ∈

R
m : x−yd ∈ D̃cx} by a linear in parameters neural network up to a desired accuracy

so that for i = 1, · · · ,m, there exists εi(·) such that |εi(x)| < ε∗i , x ∈ Dcx, and

αD̃c i(x− yd) + g−1i (x)gi(yd)uei = WT
i σi(x) + εi(x), x ∈ Dcx, (11.28)

where Wi ∈ R
si , i = 1, · · · ,m, are optimal unknown (constant) weights that minimize

the approximation error over Dcx, σi : R
m → R

si , i = 1, · · · ,m, are a set of basis

functions such that each component of σi(·) takes values between 0 and 1, εi : Dcx →

R, i = 1, · · · ,m, are the modeling errors, and ‖Wi‖ ≤ w∗i , where w
∗
i , i = 1, · · · ,m,

are bounds for the optimal weights Wi, i = 1, · · · ,m. Since αD̃c(·) and G(·) are

continuous functions, we can choose σi(·), i = 1, · · · ,m, from a linear space X of

continuous functions that forms an algebra and separates points in Dcx. In this case,

it follows from the Stone-Weierstrass theorem [201, p. 212] that X is a dense subset

of the set of continuous functions on Dcx. Hence, as is the case in the standard

neuro adaptive control literature [159], we can construct the signal uadi = ŴT
i σi(x)
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involving the estimates of the optimal weights as our adaptive control signal. For

the following theorem let s , s1 + · · · + sm denote the total dimension of the basis

functions.

Theorem 11.3. Consider the nonlinear uncertain system G given by (11.20)–

(11.22) where fx(·, ·) is essentially nonnegative with respect to x, fz(·, ·) is essentially

nonnegative with respect to z, and G : R
m → R

m×m is nonnegative and given by

G(x) = diag[g1(x), · · · , gm(x)]. For a given yd ∈ R
m
+ assume there exist positive

vectors ze ∈ R
n−m
+ and ue ∈ R

m
+ such that (11.23) and (11.24) hold and the equilibrium

point (yd, ze) of (11.20), (11.21) is globally asymptotically stable with u(t) ≡ ue. In

addition, assume that G is exponentially minimum phase at (yd, ze). Finally, let qi

and γi, i = 1, · · · ,m, be positive constants. Then the neural adaptive output feedback

control law

ui(t) = max{0, ûi(t)}, i = 1, · · · ,m, (11.29)

where

ûi(t) = ŴT
i (t)σi(y(t)), i = 1, · · · ,m, (11.30)

and Ŵi(t) ∈ R
si , t ≥ 0, i = 1, · · · ,m, with update law

˙̂
Wi(t) = −

qi
2

[

(yi(t)− ydi)σi(y(t)) + γi|yi(t)− ydi|Ŵi(t)
]

, Ŵi(0) = Ŵi0,

i = 1, · · · ,m, (11.31)

guarantees that there exists a compact positively invariant set Dα ⊂ R
m

+ × R
n−m

+ ×

R
s×m such that (yd, ze,W ) ∈ Dα, whereW ∈ R

s×m, and the solution (x(t), z(t), Ŵ (t)),

t ≥ 0, of the closed-loop system given by (11.20), (11.21), (11.29), and (11.31) is ulti-

mately bounded for all (x(0), z(0), Ŵ (0)) ∈ Dα with ultimate bound ‖y(t)−yd‖2 < ε1,

t ≥ T , where

ε1 >
1

α






β

(

ν

ρα

)2

+ qmin





√

√

√

√

m
∑

i=1

(

√
si + γiw∗i
2γi

)2

+

√

ν

γmin





2





, (11.32)
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ν ,

m
∑

i=1

(
√
siw

∗
i + ε∗i )µ+

m
∑

i=1

(
√
si + γiw

∗
i )

2

4γi
, (11.33)

Ŵ (t) , block-diag[Ŵ1(t), · · · , Ŵm(t)], (11.34)

µ , maxx∈Dcx λmax(G(x)) = maxi={1,···,m}maxx∈Dcx{gi(x)} > 0, qmin , mini∈{1,···,m}

{qi}, γmin , mini∈{1,···,m}{γi}, and α, β are positive constants. Furthermore, u(t) ≥≥

0, x(t) ≥≥ 0, and z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈ R
m

+ × R
n−m

+ .

Proof. First, since, by assumption, (11.20), (11.21) is exponentially minimum

phase at (yd, ze), it follows from Theorem 11.2 and Remark 11.2 that for any compact

set D̃c and for all ẽ , [eTx , e
T
z ]

T ∈ D̃c, there exist continuous functions αD̃c : R
m → R

m

and βD̃c : R
m → R

m×m with βD̃c(ex) = Ĝ−1(ex), ex ∈ R
m, such that, with u =

αD̃c(ỹ) + βD̃c(ỹ)v, (11.25), (11.26) is strongly exponentially passive from v to ỹ = ex.

Hence, it follows from Theorem 11.1 that there exist a continuously differentiable

function Vs : R
n → R, a continuous function ` : R

n → R
p, and positive constants

ρ, α, β such that Vs(·) is positive definite, Vs(0) = 0, `(0) = 0, and, for all ẽ ∈ R
n,

0 = V ′s (ẽ)[f̃(ẽ) + G̃(ẽ)αD̃c(ex)] + ρVs(ẽ) + `T(ẽ)`(ẽ), (11.35)

0 = 1
2
V ′s (ẽ)G̃(ẽ)βD̃c(ex)− ỹ, (11.36)

and (11.7) hold, where f̃(ẽ) , [f̃Tx (ex, ez), f̃
T
z (ex, ez)]

T and G̃(ẽ) , [Ĝ(ex), 0]
T.

Next, define

Ŵu(t) , block-diag[Ŵu1(t), · · · , Ŵum(t)], (11.37)

W , block-diag[W1, · · · , Ŵm], (11.38)

where

Ŵui(t) =

{

0, if ûi(t) < 0,

Ŵi(t), otherwise,
i = 1, · · · ,m (11.39)

and note that with u(t), t ≥ 0, given by (11.29) it follows that (11.26) and (11.27)
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become

ėx(t) = [f̃x(ex(t), ez(t)) + Ĝ(ex(t))αD̃c(ex(t))] + [Ĝ(ex(t))βD̃c(ex(t))]β
−1
D̃c

(ex(t))

·[ŴT(t)σ(y(t))− αD̃c(x(t)− yd)−G−1(x(t))G(yd)ue]

+[Ĝ(ex(t))βD̃c(ex(t))]β
−1
D̃c

(ex(t))(Ŵu(t)− Ŵ (t))Tσ(y(t)),

ex(0) = x0 − yd, t ≥ 0, (11.40)

and

ėz(t) = f̃z(ex(t), ez(t)), ez(0) = z0 − ze, (11.41)

or, equivalently,

˙̃e(t) = [f̃(ẽ(t)) + G̃(ẽ(t))αD̃c(ex(t))]

+[G̃(ẽ(t))βD̃c(ex(t))]β
−1
D̃c

(ex(t))

·[ŴT(t)σ(y(t))− αD̃c(x(t)− yd)−G−1(x(t))G(yd)ue]

+[G̃(ẽ(t))βD̃c(ex(t))]β
−1
D̃c

(ex(t))(Ŵu(t)− Ŵ (t))Tσ(y(t)),

ex(0) = x0 − yd, t ≥ 0. (11.42)

To show ultimate boundedness of the closed-loop system (11.31) and (11.42), consider

the Lyapunov-like function

V (ẽ, W̃ ) = Vs(ẽ) + tr W̃Q−1W̃T, (11.43)

where W̃T(t) , ŴT(t)−WT,WT , block-diag[WT
1 , · · · ,WT

m], andQ , diag[q1, · · · , qm].

Note that V (0, 0) = 0 and, since Vs(·) and Q are positive definite, V (ẽ, W̃ ) > 0 for all

(ẽ, W̃ ) 6= (0, 0). Next, letting ẽ(t), t ≥ 0, denote the solutions to (11.42) and using

(11.28), (11.31), (11.35), and (11.36), it follows that the time derivative of V (ẽ, W̃ )

along the closed-loop system trajectories is given by

V̇ (ẽ(t), W̃ (t)) = V ′s (ẽ(t))
[

[f̃(ẽ) + G̃(ẽ(t))αD̃c(ex(t))] + [G̃(ẽ(t))βD̃c(ex(t))]

·G(x(t))[ŴT(t)σ(y(t))− αD̃c(x(t)− yd)−G−1(x(t))G(yd)ue]
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+[G̃(e(t))βD̃c(ex(t))]G(x(t))(Ŵu(t)− Ŵ (t))Tσ(y(t))
]

+2tr W̃T(t)Q−1
˙̂
W (t)

= −ρVs(ẽ(t))− `T(ẽ(t))`(ẽ(t))

+
m
∑

i=1

ỹi(t)gi(x(t))
[

W̃T
i (t)σi(y(t))− εi(x(t))

]

+
m
∑

i=1

ỹi(t)gi(x(t))(Ŵui(t)− Ŵi(t))
Tσi(y(t))

−
m
∑

i=1

W̃T
i (t)

[

exi(t)σi(y(t)) + γi|yi(t)− ydi|Ŵi(t)
]

≤ −ρVs(ẽ(t))−
m
∑

i=1

ỹi(t)gi(x(t))εi(x(t))

+
m
∑

i=1

[

ỹi(t)gi(x(t))(Ŵui(t)−W )Tσi(y(t))− ỹi(t)W̃T
i (t)σi(y(t))

−γi|ỹi(t)|W̃T
i (t)Ŵi(t)

]

, t ≥ 0. (11.44)

Now, for each i ∈ {1, · · · ,m} and for the two cases given in (11.39), the last term on

the right-hand side of (11.44) gives:

i) If ûi(t) < 0, then Ŵui(t) = 0 and hence

ỹi(t)gi(x(t))(Ŵui(t)−Wi)
Tσi(y(t))− ỹi(t)W̃T

i (t)σi(y(t))− γi|ỹi(t)|W̃T
i (t)Ŵi(t)

= −ỹi(t)gi(x(t))WT
i σi(y(t))− ỹi(t)W̃T

i (t)σi(y(t))− γi|ỹi(t)|W̃T
i (t)(W̃i(t) +Wi)

≤ √siµw∗i |ỹi(t)|+
√
si|ỹi(t)|‖W̃i(t)‖ − γi|ỹi(t)|‖W̃i(t)‖2 + γiw

∗
i |ỹi(t)|‖W̃i(t)‖

≤ |ỹi(t)|
[√

siµw
∗
i + (

√
si + γiw

∗
i )‖W̃i(t)‖ − γi‖W̃i(t)‖2

]

.

ii) Otherwise, Ŵui(t) = Ŵi(t) and hence

ỹi(t)gi(x(t))(Ŵui(t)−Wi)
Tσi(y(t))− ỹi(t)W̃T

i (t)σi(y(t))− γi|ỹi(t)|W̃T
i (t)Ŵi(t)

= −ỹi(t)W̃T
i (t)σi(y(t))− γi|ỹi(t)|W̃T

i (t)(W̃i(t) +Wi)

≤ √si|ỹi(t)|‖W̃i(t)‖ − γi|ỹi(t)|‖W̃i(t)‖2 + γiw
∗
i |ỹi(t)|‖W̃i(t)‖
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≤ √siµw∗i |ỹi(t)|+
√
si|ỹi(t)|‖W̃i(t)‖ − γi|ỹi(t)|‖W̃i(t)‖2 + γiw

∗
i |ỹi(t)|‖W̃i(t)‖

≤ |ỹi(t)|
[√

siµw
∗
i + (

√
si + γiw

∗
i )‖W̃i(t)‖ − γi‖W̃i(t)‖2

]

.

Hence, it follows from (11.44) that in either case

V̇ (ẽ(t), W̃ (t)) ≤ −ρVs(ẽ(t))−
m
∑

i=1

ỹi(t)gi(x(t))εi(x(t))

+
m
∑

i=1

|ỹi(t)|
(√

siµw
∗
i + (

√
si + γiw

∗
i )‖W̃i(t)‖ − γi‖W̃i(t)‖2

)

≤ −ρα‖ẽ(t)‖2 +
m
∑

i=1

µε∗i |ỹi(t)|

+
m
∑

i=1

|ỹi(t)|
(√

siµw
∗
i + (

√
si + γiw

∗
i )‖W̃i(t)‖ − γi‖W̃i(t)‖2

)

≤ −ρα‖ẽ(t)‖2 +
m
∑

i=1

‖ẽ(t)‖
(

(
√
siw

∗
i + ε∗i )µ

+(
√
si + γiw

∗
i )‖W̃i(t)‖ − γi‖W̃i(t)‖2

)

≤ ‖ẽ(t)‖
[

−ρα‖ẽ(t)‖+
m
∑

i=1

(
√
siw

∗
i + ε∗i )µ

+
m
∑

i=1

(
√
si + γiw

∗
i )‖W̃i(t)‖ −

m
∑

i=1

γi‖W̃i(t)‖2
]

, t ≥ 0. (11.45)

Next, completing squares yields

V̇ (ẽ(t), W̃ (t)) ≤ ‖ẽ(t)‖
[

−ρα‖ẽ(t)‖+
m
∑

i=1

(
√
siw

∗
i + ε∗i )µ

−
m
∑

i=1

γi

(

‖W̃i(t)‖ −
√
si + γiw

∗
i

2γi

)2

+
m
∑

i=1

(
√
si + γiw

∗
i )

2

4γi

]

= ‖ẽ(t)‖
[

−ρα‖ẽ(t)‖ −
m
∑

i=1

γi

(

‖W̃i(t)‖ −
√
si + γiw

∗
i

2γi

)2

+ ν

]

, t ≥ 0,

(11.46)

where ν is given by (11.33). Now, for

‖ẽ‖ ≥ ν

ρα
, αẽ, (11.47)
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or

‖W̃‖F ≥

√

√

√

√

m
∑

i=1

(

√
si + γiw∗i
2γi

)2

+

√

ν

γmin

, αW̃ , (11.48)

it follows that V̇ (ẽ(t), W̃ (t)) ≤ 0 for all t ≥ 0; that is, V̇ (ẽ(t), W̃ (t)) ≤ 0 for all

(ex(t), ez(t), W̃ (t)) ∈ D̃e\D̃r and t ≥ 0, where

D̃e ,

{

(ex, ez, W̃ ) ∈ R
m × R

n−m × R
s×m : x ∈ Dcx

}

, (11.49)

D̃r ,

{

(ex, ez, W̃ ) ∈ R
m × R

n−m × R
s×m : ‖ẽ‖ ≤ αẽ, ‖W̃‖F ≤ αW̃

}

. (11.50)

Next, define

D̃α ,

{

(ex, ez, W̃ ) ∈ R
m × R

n−m × R
s×m : V (ẽ, W̃ ) ≤ α

}

, (11.51)

where α is the maximum value such that D̃α ∩ D̃e = D̃α, and define

D̃η ,

{

(ex, ez, W̃ ) ∈ R
m × R

n−m × R
s×m : V (ẽ, W̃ ) ≤ η

}

, (11.52)

where

η > max
‖ẽ‖=αẽ

Vs(ẽ) + max
‖W̃‖F=α

W̃

tr W̃Q−1W̃T = βα2
ẽ + qminα

2
W̃
. (11.53)

To show ultimate boundedness of the closed-loop system (11.31) and (11.42) assume4

that D̃η ⊂ D̃α (see Figure 11.1). Now, since V̇ (ẽ, W̃ ) ≤ 0 for all (ex, ez, W̃ ) ∈ D̃e\D̃r

and D̃r ⊂ D̃α, it follows that D̃α is positively invariant. Hence, if (ex(0), ez(0),

W̃ (0)) ∈ D̃α, then the solution (ex(t), ez(t), Ŵ (t)), t ≥ 0, to (11.31) and (11.42) is

ultimately bounded. Furthermore, since D̃α is positively invariant, it follows that

Dα ,

{

(x, z, Ŵ ) ∈ R
m × R

n−m × R
s×m : (x− yd, z − ze, Ŵ −W ) ∈ D̃α

}

, (11.54)

4This assumption is standard in the neural network literature and ensures that in the error space
D̃e there exists at least one Lyapunov level set D̃η ⊂ D̃α. In the case where the neural network
approximation holds in R

m × R
n−m, this assumption is automatically satisfied. See Remark 11.3

for further details.
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D̃ηinf

Figure 11.1: Visualization of sets used in the proof of Theorem 11.3

is also positively invariant. Now, to show that ‖y(t)−yd‖2 < ε1, t ≥ T = T (x0, z0, Ŵ0,

ε1), suppose there exists t∗ ≥ 0 such that ẽ(t∗) = 0 and Ŵ (t∗) = 0. In this case,

ẽ(t) = 0 and Ŵ (t) = 0 for all t ≥ t∗ and hence ‖y(t)− yd‖2 < ε1 is trivially satisfied

for all t ≥ t∗. Alternatively, suppose there does not exist t∗ ≥ 0 such that e(t∗) = 0

and Ŵ (t∗) = 0. In this case, consider the Lyapunov-like function

Ṽ (ẽ, W̃ ) =

{

V (ẽ, W̃ )− ηinf , (ex, ez, W̃ ) ∈ Dα\Dηinf ,

0, (ex, ez, W̃ ) ∈ Dηinf ,
(11.55)

where ηinf , βα2
ẽ+qminα

2
W̃

and D̃ηinf , {(ex, ez, W̃ ) ∈ R
m×R

n−m×R
s×m : V (ẽ, W̃ ) ≤

ηinf}. Note that Ṽ (ẽ, W̃ ) is continuous on R
m × R

n−m × R
s×m and D̃η is positively

invariant. Furthermore, note that

Ṽ (ẽ(t), W̃ (t)) ≤ Ṽ (ẽ(τ), W̃ (τ)), 0 ≤ τ ≤ t. (11.56)

Now, it follows from the generalized Krasovskii-LaSalle invariant set theorem (The-

orem 2.3 of [155]) that (ex(t), ez(t), Ŵ (t)) → M , ∪γ>0Mγ as t → ∞, where Mγ

denotes the largest invariant set contained inRγ , {(ex, ez, W̃ ) ∈ R
m×R

n−m×R
s×m :

Ṽ (ẽ, W̃ ) = γ}. Hence, since Mγ = Ø, γ > 0, and R0 = D̃ηinf ⊂ D̃η, there exists

T = T (x0, z0, Ŵ0, ε1) ≥ 0 such that (ex(t), ez(t), Ŵ (t)) ∈
◦
D̃η for all t ≥ T and hence

‖ẽ(t)‖2 < max{‖ẽ‖2 ∈ R : Vs(ẽ) = η} = η

α
, t ≥ T. (11.57)
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Figure 11.2: Block diagram of the closed-loop system

Since ‖ex‖ ≤ ‖ẽ‖, (11.57) implies ‖y(t)− yd‖2 < ε1, t ≥ T .

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (11.29). Now, since G(x(t)) ≥≥ 0,

t ≥ 0, and u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 9.2 that x(t) ≥≥ 0 and

z(t) ≥≥ 0 for all t ≥ 0 and (x0, z0) ∈ R
m

+ × R
n−m

+ . ¤

Remark 11.3. It follows from Theorem 11.2 that if G given by (11.20)–(11.22)

is exponentially minimum phase, then G is semiglobally output feedback exponen-

tially passive. Hence, for any arbitrarily large compact set D̃c there exists an output

feedback control law of the form (11.14) that renders the closed-loop system (11.20)–

(11.22) exponentially passive. For this compact set D̃c, as is common in the neural

network literature, we assume that there exists an approximator for the unknown

nonlinear map αDc(x− yd)−G−1(x)G(yd)ue up to a desired accuracy. Furthermore,

we assume that in the error space D̃e there exists at least one Lyapunov level set such

that D̃η ⊂ D̃α.

A block diagram showing the neuro adaptive control architecture given in Theo-

rem 11.3 is shown in Figure 11.2. In Theorem 11.3 we assumed that the equilibrium

point (yd, ze) of (11.20), (11.21) is globally asymptotically stable with u(t) ≡ ue.

In general, however, unlike linear nonnegative systems with asymptotically stable
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plant dynamics, a given set point (yd, ze) ∈ R
m
+ × R

n−m
+ for the nonlinear nonnega-

tive dynamical system (11.20), (11.21) may not be asymptotically stabilizable with

a constant control u(t) ≡ ue ∈ R
n

+. However, if f(x̃) , [fT
x (x, z), f

T
z (x, z)]

T is homo-

geneous, cooperative; that is, the Jacobian matrix ∂f(x̃)
∂x̃

is essentially nonnegative for

all x̃ , [xT, zT]T ∈ R
n

+, the Jacobian matrix ∂f(x̃)
∂x̃

is irreducible for all x̃ ∈ R
n

+ [20],

and the zero solution (x(t), z(t)) ≡ 0 of the undisturbed (u(t) ≡ 0) system (11.20),

(11.21) is globally asymptotically stable, then the set point (yd, ze) ∈ R
m
+ × R

n−m
+

satisfying (11.23), (11.24) is a unique equilibrium point with u(t) ≡ ue and is also

asymptotically stable for all (y0, z0) ∈ R
m

+ ×R
n−m

+ [53]. This implies that the solution

(x(t), z(t)) ≡ (yd, ze) to (11.20), (11.21) with u(t) ≡ ue is asymptotically stable for

all (y0, z0) ∈ R
m

+ × R
n−m

+ .

11.4. Neural Adaptive Control for General Anesthesia

Almost all anesthetics are myocardial depressants which lower cardiac output (i.e.,

the amount of blood pumped by the heart per unit time). As a consequence, decreased

cardiac output slows down redistribution kinetics; that is, the transfer of blood from

the central compartments (heart, brain, kidney, and liver) to the peripheral compart-

ments (muscle and fat). In addition, decreased cardiac output could increase drug

concentrations in the central compartments causing even more myocardial depres-

sion and further decrease in cardiac output. To study the effects of pharmacological

agents and anesthetics we propose the nonlinear two-compartment model shown in

Figure 11.3, where x1 denotes the mass of drug in the central compartment, which

is the site for drug administration and is generally thought to be comprised of the

intravascular blood volume as well as highly perfused organs such as the heart, brain,

kidney, and liver. These organs receive a large fraction of the cardiac output. Alter-

natively, x2 is the mass of drug in the peripheral compartment, comprised of muscle
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u ≡ Continuous infusion

a21(c)x1

a12(c)x2

ae(c)x1

Figure 11.3: Pharmacokinetic model for drug distribution during anesthesia

and fat which receive a smaller proportion of the cardiac output.

A mass balance of the two-state compartment model yields

ẋ1(t) = −a21(c(t))x1(t)− ae(c(t))x1(t) + a12(c(t))x2(t) + u(t), x1(0) = x10,

t ≥ 0, (11.58)

ẋ2(t) = a21(c(t))x1(t)− a12(c(t))x2(t), x2(0) = x20, (11.59)

where c , x1/Vc is the drug concentration in the central compartment, Vc is the vol-

ume of the central compartment, a21(c) is the rate of transfer of drug from Compart-

ment I to Compartment II, a12(c) is the rate of transfer of drug from Compartment II

to Compartment I, ae(c) is the rate of drug metabolism and elimination (metabolism

typically occurs in the liver), and u(t), t ≥ 0, is the infusion rate of an anesthetic drug.

As in Section 9.6, we assume a21(c) = A1Q(c), a12(c) = A2Q(c), and ae(c) = AeQ(c),

where A1, A2, and Ae are positive constants. Many anesthetics depress the heart,

decreasing the cardiac output. Furthermore, the transfer coefficients are functions of

the concentration c in the central compartment. Thus, to develop a physiologically

plausible model we assume a sigmoid relationship between drug concentration in the

central compartment and effect so that Q(c) = Q0C
α
50/(C

α
50 + cα), where the effect

is related to c (since that is the presumed concentration in the highly perfused my-

ocardium), Q0 > 0 is a constant, C50 > 0 is the drug concentration associated with

a 50% decrease in the cardiac output, and α > 1 determines the steepness of this
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curve (that is, how rapidly the cardiac output decreases with increasing drug concen-

tration). Furthermore, this model assumes instantaneous mixing and as c increases,

the rate constants decrease through their dependence on the cardiac output. Even

though the transfer and loss coefficients A1, A2, and Ae are nonnegative, and α > 1,

C50 > 0, and Q0 > 0, these parameters can be uncertain due to patient gender,

weight, pre-existing disease, age, and concomitant medication. Hence, the need for

adaptive control to regulate intravenous anesthetics during surgery is crucial.

Midazolam is an intravenous anesthetic that has been used for both induction and

maintenance of general anesthesia. A simple yet effective patient model for the dispo-

sition of midazolam is based on the two-compartment model shown in Figure 11.3 with

the first compartment acting as the central compartment. Here, we use the Bispectral

Index (BIS) as a measure of anesthetic effect. As discussed in Chapter 7, the BIS

signal is a nonlinear monotonically decreasing function of the level of consciousness

and is given by

BIS(ceff) = BIS0

(

1− cγeff
cγeff + ECγ

50

)

, (11.60)

where BIS0 denotes the baseline (awake state) value and, by convention, is typically

assigned a value of 100, ceff is the midazolam concentration in nanograms/liter in

the effect site compartment (brain), EC50 is the concentration at half maximal effect

and represents the patient’s sensitivity to the drug, and γ determines the degree of

nonlinearity in (11.60). Here, the effect site compartment is introduced as a correlate

between the central compartment concentration and the central nervous system con-

centration. The effect site compartment concentration is related to the concentration

in the central compartment by the first-order delay model

ċeff(t) = aeff(c(t)− ceff(t)), ceff(0) = x1(0), t ≥ 0, (11.61)
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Figure 11.4: BIS index versus effect site concentration

where aeff in min−1 is a positive time constant. Assuming x1(0) = 0, it follows that

ceff(t) =

∫ t

0

e−aeff(t−s)aeffc(s) ds. (11.62)

In reality, the effect site compartment equilibrates with the central compartment in

a matter of a few minutes. The parameters aeff , EC50, and γ are determined by data

fitting and vary from patient to patient. BIS index values of 0 and 100 correspond,

respectively, to an isoelectric EEG signal and an EEG signal of a fully conscious

patient; while the range between 40 and 60 indicates a moderate hypnotic state.

In the following numerical simulation we set EC50 = 150 ng/m`, γ = 3, and BIS0 =

100, so that the BIS signal is shown in Figure 11.4. The target (desired) BIS value,

BIStarget, is set at 50. Furthermore, for simplicity of exposition, we assume that the

effect site compartment equilibrates instantaneously with the central compartment;

that is, we assume that aeff → ∞, so that (11.61) gives ceff(t) = c(t), t ≥ 0. Now,

defining x , BIS0−BIS(c) = h(c) and z , x2, where h(c) ,
cγ

cγ+ECγ
50
, (11.58), (11.59)
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can be written in form of (11.20)–(11.22) with

fx(x, z) = h′(c)
[

−a21(c)h−1(x)− ae(c)h−1(x) + a12(c)z/Vc

]

, (11.63)

fz(x, z) = Vc[a21(c)h
−1(x)− a12(c)z], (11.64)

G(x) = h′(c)/Vc. (11.65)

Note that fx(x, z) is essentially nonnegative with respect to x, fz(x, z) is essentially

nonnegative with respect to z, and G(x) is nonnegative. In addition, note that

fx(x, z) is essentially nonnegative with respect to x, fz(x, z) is essentially nonnegative

with respect to z, and G(x) is nonnegative. In addition, note that since h(·) is a

monotonically decreasing function, the mapping (x1, x2) 7→ (x, z) is diffeomorphic.

Furthermore, note that since

f̃z(0, ez) = −a12(yd1/Vc)ez, (11.66)

where

f̃z(ex, ez) = fz(ex + yd, ez + ze)− fz(yd, ze) (11.67)

and a12(yd1/Vc) > 0, it follows that the system zero dynamics are exponentially

stable and hence the system given by (11.58), (11.59) is exponentially minimum phase

at (yd, ze). Thus, since the input matrix function satisfies (11.17), it follows from

Theorem 11.2 that (11.58), (11.59) is semiglobally output feedback exponentially

passive. Now, using the adaptive output feedback controller

u(t) = max{0, û(t)}, (11.68)

where

û(t) = ŴT(t)σ(BIS(t)), (11.69)

Ŵ (t) ∈ R
s, t ≥ 0, and σ : R→ R

s is a given basis function, with update law

˙̂
W (t) = qBIS

[

(−BIS(t) + BIStarget)σ(BIS(t))− γ|BIS(t)− BIStarget|Ŵ (t)
]

,

Ŵ (0) = Ŵ10, (11.70)
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where qBIS is an arbitrary positive constant, it follows from Theorem 11.3 that the

control input (anesthetic infusion rate) u(t) is nonnegative for all t ≥ 0 and there

exist positive constants ε and T such that |BIS(t) − BIStarget| ≤ ε, t ≥ T , for any

(uncertain) positive values of the transfer and loss coefficients (A1, A2, Ae) as well

as any (uncertain) nonnegative coefficients α, C50, and Q0. It is important to note

that during actual surgery the BIS signal is obtained directly from the EEG and not

(11.60). For our simulation we assume Vc = 31 `, A1Q0 = 0.01895 min−1, A2Q0 =

0.01003 min−1, AeQ0 = 0.01651 min−1, α = 3, and C50 = 200 ng/m`. Note that

these parameter values for α and C50 probably exaggerate the effect of midazolam on

cardiac output. They have been selected to accentuate nonlinearity but they are not

biologically unrealistic. To illustrate the robustness of the proposed neuro adaptive

controller we switch the pharmacodynamic parameters EC50 and γ, respectively, from

150 ng/m` and 3 to 170 ng/m` and 2 at t = 15 min and back to 150 ng/m` and 3

at t = 30 min. Furthermore, here we consider noncardiac surgery since cardiac

surgery often utilizes hypothermia which itself changes the BIS signal. With qBIS =

1 × 104, γ = 1 × 10−10, s = 6, σ(BIS) =
[

1

1+e−a(BIS−BIStarget)
, · · · , 1

1+e−6a(BIS−BIStarget)

]T

,

a = 1, and initial conditions x1(0) = 0 mg, x2(0) = 0 mg, Ŵ (0) = 06×1 mg/min,

Figure 11.5 shows the concentrations of midazolam in the two compartments versus

time. Figure 11.6 shows the BIS index and the control signal (midazolam infusion

rate) versus time. Finally, Figure 11.7 shows the neural network weight history versus

time.

Even though we did not calculate the analytical bounds given by (11.32) due to the

fact that one has to solve an optimization problem with respect to (11.28) to obtain

ε∗i and w∗i , i = 1, · · · , 6, the closed-loop BIS signal response shown in Figure 11.6 is

clearly acceptable. Furthermore, the basis functions for σ(BIS) are chosen to cover the

domain of interest of our pharmacokinetic/pharmacodynamic problem since we know
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Figure 11.5: Compartmental concentrations versus time

that the BIS index varies from 0 to 100. Hence, the basis functions are distributed

over that domain. The number of basis functions however is based on trial and error.

This goes back to the Stone-Weierstrass theorem which only provides an existence

result without any constructive guidelines. Finally, we note that simulations using

a larger number of neurons resulted in imperceptible differences in the closed-loop

system performance.

11.5. Conclusion

Nonnegative and compartmental systems are widely used to capture system dy-

namics involving the interchange of mass and energy between homogenous subsystems

or compartments. Thus, it is not surprising that nonnegative and compartmental

models are remarkably effective in describing the dynamical behavior of biological

systems, physiological systems, and pharmacological systems. In this chapter, we de-

353



0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

B
IS

 In
de

x 
[s

co
re

]

Time [min]

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

C
on

tro
l s

ig
na

l [
m

g/
m

in
]

Time [min]

Figure 11.6: BIS index versus time and control signal (infusion rate) versus time

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

A
da

pt
iv

e 
ga

in
s 

[m
g/

m
in

]

Time [min]

PSfrag replacements
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Ŵ2(t)
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veloped a neural adaptive output feedback control framework for adaptive set-point

regulation of nonlinear uncertain nonnegative and compartmental systems. Using

Lyapunov methods the proposed framework was shown to guarantee ultimate bound-

edness of the error signals corresponding to the physical system states and the neu-

ral network weighting gains while additionally guaranteeing the nonnegativity of the

closed-loop system states associated with the plant dynamics. Finally, using a nonlin-

ear two-compartment patient model for the disposition of anesthetic drug midazolam,

the proposed adaptive control framework was used to monitor and control a desired

constant level of consciousness for noncardiac surgery.
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Chapter 12

Neural Network Adaptive Dynamic

Output Feedback Control for

Nonlinear Nonnegative Systems

using Tapped Delay

Memory Units

12.1. Introduction

Neural networks offer an ideal framework for on-line system identification and

control of many complex uncertain nonlinear dynamical systems. One of the key

aspects of neural networks is that a very rich class of continuous nonlinear maps can

be approximated from the collective action of very simple, autonomous processing

units interconnected in simple ways. This massively parallel and highly redundant

processing architecture has resulted in concrete accomplishments in pattern recogni-

tion, system identification, and adaptive control (see [44, 119, 159, 160, 178, 226] and

the numerous references therein).

Given the complexity, uncertainties, and nonlinearities inherent in pharmacoki-

netic and pharmacodynamic models needed to capture the wide effects of pharma-

cological agents and anesthetics in the human body, neural networks can provide
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an ideal framework for addressing adaptive control for clinical pharmacology [13].

Nonnegative and compartmental models provide a broad framework for biological

and physiological systems, including clinical pharmacology, and are well suited for

the problem of closed-loop control of drug administration. Specifically, nonnegative

and compartmental dynamical systems [6, 70, 75, 123, 124, 203] are composed of ho-

mogeneous interconnected subsystems (or compartments) which exchange variable

nonnegative quantities of material with conservation laws describing transfer, accu-

mulation, and elimination between the compartments and the environment. It thus

follows from physical considerations that the state trajectory of such systems remains

in the nonnegative orthant of the state space for nonnegative initial conditions.

In this chapter, we extend the results of [117, 118] to nonnegative and compart-

mental dynamical systems with applications to the specific problem of automated

anesthesia. Specifically, we develop an output feedback neural network adaptive con-

troller that operates over a tapped delay line of available input and output measure-

ments. The neuro adaptive laws for the neural network weights are constructed using

a linear observer for the nominal normal form system error dynamics. The approach

is applicable to general class of nonlinear nonnegative dynamical systems without

imposing a strict positive real requirement on the transfer function of the linear error

normal form dynamics. Furthermore, since in pharmacological applications involving

active drug administration control inputs as well as the system states need to be non-

negative, the proposed neuro adaptive output feedback controller also guarantees that

the control signal remains nonnegative. We emphasize that the proposed framework

addresses adaptive output feedback controllers for nonlinear compartmental systems

with unmodeled dynamics of unknown dimension while guaranteing ultimate bound-

edness of the error signals corresponding to the physical system states as well as the

neural network weighting gains. Output feedback controllers are crucial in clinical

357



pharmacology since key physiological (state) variables cannot be measured in practice.

12.2. Neural Adaptive Output Feedback Control for Nonlin-

ear Nonnegative Uncertain Systems

In this section we consider the problem of characterizing neural adaptive dynamic

output feedback control laws for nonlinear nonnegative and compartmental uncertain

dynamical systems to achieve set-point regulation in the nonnegative orthant. Specif-

ically, consider the controlled square nonlinear uncertain dynamical system G given

by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (12.1)

y(t) = h(x(t)), (12.2)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

y(t) ∈ R
m, t ≥ 0, is the system output, f : R

n → R
n is essentially nonnegative

but otherwise unknown and satisfies f(0) = 0, G : R
n → R

n×m is an unknown

nonnegative input matrix function, and h : R
n → R

m is a nonnegative function and

satisfies h(0) = 0. We assume that f(·), G(·), and h(·) are smooth (i.e., C∞ mappings)

and the control input u(·) in (12.1) is restricted to the class of admissible controls

consisting of measurable functions such that u(t) ∈ R
m, t ≥ 0.

As discussed in the Introduction, control (source) inputs of drug delivery systems

for physiological and pharmacological processes are usually constrained to be non-

negative as are the system states. Hence, in this chapter we develop neuro adaptive

dynamic output feedback control laws for essentially nonnegative systems with non-

negative control inputs. Specifically, for a given desired set point yd ∈ R
m

+ and for a

given ε > 0, our aim is to design a nonnegative control input u(t), t ≥ 0, predicated

on the system measurement y(t), t ≥ 0, such that ‖y(t)−yd‖ < ε for all t ≥ T , where
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T ∈ [0,∞), and x(t) ≥≥ 0, t ≥ 0, and u(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

In this chapter, we assume that for the nonlinear dynamical system (12.1), (12.2),

the conditions for the existence of a globally defined diffeomorphism transforming

(12.1), (12.2) into normal form [32, 122] are satisfied so that there exist a global

diffeomorphism T : R
n → R

n and C∞ functions fξ : R
r × R

n−r → R
r and fz :

R
r × R

n−r → R
n−r such that, in the coordinates

[

ξ
z

]

, T (x), (12.3)

where ξ , [y1, ẏ1, · · · , y(r1−2)1 , · · · , ym, ẏm, · · · , y(rm−2)m ; y
(r1−1)
1 , · · · , y(rm−1)m ] ∈ R

r, z ∈

R
n−r, and r , r1 + · · · + rm is the (vector) relative degree of G, G given by (12.1),

(12.2) is equivalent to

ξ̇(t) = fξ(ξ(t), z(t)) +Gξ(ξ(t), z(t))u(t), ξ(0) = ξ0, t ≥ 0, (12.4)

ż(t) = fz(ξ(t), z(t)), z(0) = z0, (12.5)

y(t) = Cξ(t), (12.6)

with appropriate initial conditions ξ0 ∈ R
r and z0 ∈ R

n−r, where

fξ(ξ, z) = Aξ + f̃u(ξ, z), Gξ(ξ, z) =

[

0(n−m)×m

Gs(x̃)

]

, (12.7)

A =

[

A0

Â

]

, f̃u(ξ, z) =

[

0(n−m)×1
fu(x̃)

]

, (12.8)

x̃ , [ξT, zT]T, A0 ∈ R
(r−m)×r is a known matrix of zeros and ones capturing the

multivariable controllable canonical form representation [43], Â ∈ R
m×r is such that

A is asymptotically stable, fu : R
n → R

m is an unknown function and satisfies

fu(0) = 0, C ∈ R
m×r is a known matrix of zeros and ones capturing the system

output, and Gs : R
n → R

m×m is an unknown matrix function such that detGs(x̃) 6= 0,

x̃ ∈ R
n. Furthermore, we assume that for a given yd ∈ R

m

+ there exist ze ∈ R
n−r and
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ue ∈ R
m

+ such that xe , T −1(x̃e) ≥≥ 0 and

0 = fξ(ξe, ze) +Gξ(ξe, ze)ue, (12.9)

0 = fz(ξe, ze), (12.10)

where x̃e , [ξTe , z
T
e ]

T and ξe is given with yi = ydi, i = 1, · · · ,m, and ẏi = · · · =

y
(ri−1)
i = 0, i = 1, · · · ,m. In addition, we assume that (12.5) is input-to-state stable

at z(t) ≡ ze with ξ(t)−ξe viewed as the input; that is, there exist a class KL function

η(·, ·) and a class K function γ(·) such that

‖z(t)− ze‖ ≤ η(‖z0 − ze‖, t) + γ

(

sup
0≤τ≤t

‖ξ(τ)− ξe‖
)

, t ≥ 0, (12.11)

where ‖ · ‖ denotes the Euclidean vector norm. Unless otherwise stated, henceforth

we use ‖ · ‖ to denote the Euclidean vector norm. Note that (ξe, ze) ∈ R
r × R

n−r is

an equilibrium point of (12.4), (12.5) if and only if there exists ue ∈ R
m

+ such that

(12.9), (12.10) hold. Furthermore, we assume that, for given ε∗ > 0, the functions

fu(T (x)) − fu(T (xe)) − Gs(T (xe))ue and Gs(T (x)) − Bs, where Bs ∈ R
m×m, can

be approximated over a compact set Dc ⊂ R
n

+ by a linear in the parameters neural

network up to a desired accuracy so that there exist ε1 : R
n → R

m and ε2 : R
n →

R
m×m such that ‖ε1(x)‖ < ε∗ and ‖ε2(x)‖F < ε∗, x ∈ Dc, and

fu(T (x))− fu(T (xe))−Gs(T (xe))ue = WT
1 σ1(x) + ε1(x), x ∈ Dc, (12.12)

Gs(T (x))−Bs =WT
2 [Im ⊗ σ2(x)] + ε2(x), x ∈ Dc, (12.13)

where W1 ∈ R
s1×m and W2 ∈ R

ms2×m are optimal unknown (constant) weights that

minimize the approximation errors over Dc, σ1 : R
n → R

s1 and σ2 : R
n → R

s2

are sets of basis functions such that each component of σ1(·) and σ2(·) takes values

between 0 and 1, and ε1(·) and ε2(·) are the modeling errors. Since fu(·) and Gs(·)

are continuous, we can choose σ1(·) and σ2(·) from a linear space X of continuous

functions that forms an algebra and separates points in Dc. In this case, it follows
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from the Stone-Weierstrass theorem [201, p. 212] that X is a dense subset of the set

of continuous functions on Dc. Now, as is the case in the standard neuro adaptive

control literature [159], we can construct the signal uad = F (Ŵ1, Ŵ2, σ1(x), σ2(x))

involving the estimates of the optimal weights and basis functions as our adaptive

control signal. However, in order to develop an output feedback neural network, we

use the recent approach given in [152] for reconstructing the system states via the

system delayed inputs and outputs. Specifically, we use a memory unit as a particular

form of a tapped delay line that takes a scalar time series input and provides an mn-

dimensional vector output consisting of the present values of the system outputs and

system inputs and their (mn−2m) delayed values. As shown in [152], such a memory

unit can be used to characterize an equivalent input-output representation for (12.1),

(12.2) in the sense of guaranteeing the existence of a function g(·) and a number d

such that the future outputs of (12.1), (12.2) can be determined based on a number of

past observations of the inputs and outputs of (12.1), (12.2). The following theorem

is given in [152].

Theorem 12.1 [152]. Consider the nonlinear dynamical system G given by (12.1),

(12.2). Assume that the state vector x(t), t ≥ 0, of (12.1), (12.2) evolves on

Br(0) , {x ∈ R
n : ‖x‖ ≤ r} and G is observable. Furthermore, assume that the

system output y(t), t ≥ 0, and its derivatives up to the order (n− 1) are bounded for

all t ≥ 0. Then, given an arbitrary ε∗ > 0, there exists a set of bounded weights W

and a positive scalar d > 0 such that any continuous function g(x, u) : R
n×R

m → R
p

can be approximated over the compact set Br(0) by a linear in the parameters neural

network of the form

g(x(t), u(t)) = WTσ(ζ(t)) + ε(x(t), ζ(t)), ‖ε(x(t), ζ(t))‖ ≤ ε∗, t ≥ 0, (12.14)
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where x(t), t ≥ 0 is the solution to (12.1),

ζ(t) , [y1(t), y1(t− d), · · · , y1(t− (r1 − 1)d), · · · ,

ym(t), ym(t− d), · · · , ym(t− (rm − 1)d);u1(t), u1(t− d), · · · ,

u1(t− (n− r1 − 1)d), · · · , um(t), um(t− d), · · · , um(t− (n− rm − 1)d)]T,

t ≥ 0, (12.15)

‖ζ(t)‖ ≤ ζ∗, t ≥ 0, and ζ∗ > 0 is a uniform bound of ζ(·) over Br(0).

In light of the above theorem, it follows that if the dynamical system G is ob-

servable and its state trajectory x(t), t ≥ 0, evolves on Dc, then there exist ε1 :

R
n × R

nm → R
m and ε2 : R

n × R
nm → R

m×m such that ‖ε1(x(t), ζ(t))‖ < ε∗ and

‖ε2(x(t), ζ(t))‖F < ε∗, t ≥ 0, and

fu(T (x(t)))− fu(T (xe))−Gs(T (xe))ue =WT
1 σ1(ζ(t)) + ε1(x(t), ζ(t)), t ≥ 0,

(12.16)

Gs(T (x(t)))−Bs = WT
2 [Im ⊗ σ2(ζ(t))] + ε2(x(t), ζ(t)), t ≥ 0. (12.17)

For the statement of the main results of this chapter, define the projection operator

Proj(W̃ , Y ) given by

Proj(W̃ , Y ) ,











Y if µ(W̃ ) < 0,

Y if µ(W̃ ) ≥ 0 and µ′(W̃ )Y ≤ 0,

Y − µ′T(W̃ )µ′(W̃ )Y

µ′(W̃ )µ′T(W̃ )
µ(W̃ ) otherwise,

(12.18)

where W̃ ∈ R
s×m, Y ∈ R

n×m, µ(W̃ ) , tr W̃TW̃−w̃2max
ε
W̃

, w̃max ∈ R is the norm bound

imposed on W̃ , and εW̃ > 0. Note that, given the matrices W̃ ∈ R
s×m and Y ∈ R

s×m,

it follows that

tr[(W̃ −W )T(Proj(W̃ , Y )− Y )]

=
n
∑

i=1

[coli(W̃ −W )]T(Proj(coli(W̃ ), coli(Y ))− coli(Y ))

≤ 0, (12.19)
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where coli(X) denotes the ith column of the matrix X.

Theorem 12.2. Consider the nonlinear uncertain dynamical system G given by

(12.1) and (12.2) where f : R
n → R

n is essentially nonnegative and G : R
n → R

n×m

is nonnegative. For a given yd ∈ R
m

+ assume there exist nonnegative vectors xe ∈ R
n

+

and ue ∈ R
m

+ such that

0 = f(xe) +G(xe)ue, (12.20)

yd = h(xe). (12.21)

Furthermore, assume that the equilibrium point xe of (12.1) is globally asymptotically

stable with u(t) ≡ ue. In addition, assume that there exists a global diffeomorphism

T : R
n → R

n such that G can be transformed into the normal form given by (12.4)

and (12.5), and (12.5) is input-to-state stable at ze with ξ(t)− ξe viewed as the input.

Finally, let Q1, Q2 ∈ R
m×m be positive definite. Then the neural adaptive output

feedback control law

u(t) =

{

û(t), if û(t) ≥≥ 0,
0, otherwise,

(12.22)

where

û(t) = −
(

Bs + ŴT
2 (t)[Im ⊗ σ2(ζ(t))]

)−1
ŴT

1 (t)σ1(ζ(t)), (12.23)

Bs ∈ R
m×m is nonsingular, ζ(t), t ≥ 0, is given by (12.15), Ŵ1(t) ∈ R

s1×m, t ≥ 0, and

Ŵ2(t) ∈ R
ms2×m, t ≥ 0, with update laws

˙̂
W1(t) = Q1Proj(Ŵ1(t), σ1(ζ(t))ξ

T
c (t)P̃B0), Ŵ1(0) = Ŵ10, (12.24)

˙̂
W2(t) = Q2Proj(Ŵ2(t), [Im ⊗ σ2(ζ(t))]u(t)ξTc (t)P̃B0), Ŵ2(0) = Ŵ20, (12.25)

where P̃ ∈ R
r×r is a positive-definite solution of the Lyapunov equation

0 = (A− LC)TP̃ + P̃ (A− LC) + R̃, R̃ > 0, (12.26)
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and ξc(t) ∈ R
r, t ≥ 0, is the solution to the estimator dynamics

ξ̇c(t) = Aξc(t) + L(y(t)− yc(t)− yd), ξc(0) = ξc0, t ≥ 0, (12.27)

yc(t) = Cξc(t), (12.28)

where A ∈ R
r×r is asymptotically stable, L ∈ R

r×m is such that A−LC is asymptot-

ically stable, and B0 , [0m×(r−m), Im]
T, guarantees that there exists a compact posi-

tively invariant set Dα ⊂ R
n ×R

r ×R
s1×m ×R

ms2×m such that (xe, 0,W1,W2) ∈ Dα,

where W1 ∈ R
s1×m and W2 ∈ R

ms2×m, and the solution (x(t), ξc(t), Ŵ1(t), Ŵ2(t)),

t ≥ 0, of the closed-loop system given by (12.1), (12.22), (12.24), and (12.25) is

ultimately bounded for all (x(0), ξc(0), Ŵ1(0), Ŵ2(0)) ∈ Dα with ultimate bound

‖y(t)− yd‖2 < ε, t ≥ T , where

ε >

[

(
√

ν

λmin(RP−1)
+ α1

)2

+

(

√

ν

λmin(R̃P̃−1)
+ α2

)2

+λmax(Q
−1
1 )ŵ2

1max + λmax(Q
−1
2 )ŵ2

2max

] 1
2

(12.29)

ν ,
α2
1

λmin(RP−1)
+

α2
2

λmin(R̃P̃−1)
, (12.30)

α1 , [
√
s1ŵ1max + (bs +m

√
s2ŵ2max)u

∗]‖P−1/2(P − P̃ )B0‖

+(
√
s1ŵ1max + (ε∗1 + ε∗2u

∗))‖P 1/2B0‖, (12.31)

α2 , [3
√
s1ŵ1max + 2(bs +m

√
s2ŵ2max)u

∗ + (ε∗1 + ε∗2u
∗)]‖P̃ 1/2B0‖, (12.32)

u∗ , supt≥0 ‖u(t)‖, bs , λmax(Bs), ŵimax, i = 1, 2, are norm bounds imposed on Ŵi,

and P ∈ R
r×r is a positive-definite solution of the Lyapunov equation

0 = ATP + PA+R, R > 0. (12.33)

Furthermore, u(t) ≥≥ 0 and x(t) ≥≥ 0 for all t ≥ 0 and x0 ∈ R
n

+.

Proof. First, define

Ŵ1u(t) ,

{

Ŵ1(t), if û(t) ≥≥ 0,
0, otherwise.

(12.34)
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Next, defining eξ(t) , ξ(t)− ξe, ez(t) , z(t)− ze, and ξ̃(t) , ξc(t)− eξ(t), and using

(12.9), (12.10), (12.16), (12.17), and (12.22) it follows from (12.4), (12.5), and (12.27)

that

ėξ(t) = Aeξ(t) + Aξe + f̃u(ξ(t), z(t)) +Gξ(ξ(t), z(t))u(t)

= Aeξ(t) +B0[fu(T (x(t)))− fu(T (xe))−Gs(T (xe))] +B0Gs(T (x(t)))u(t)

+B0

(

Bs + ŴT
2 (t)[Im ⊗ σ2(ζ(t))]

)

·
(

−u(t)−
(

Bs + ŴT
2 (t)[Im ⊗ σ2(ζ(t))]

)−1
ŴT

1 (t)σ1(ζ(t))

)

= Aeξ(t)−B0W̃
T
1 (t)σ1(ζ(t))−B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

+B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t)) +B0ε1(x(t), ζ(t)) +B0ε2(x(t), ζ(t))u(t),

eξ(0) = ξ0 − ξe, t ≥ 0, (12.35)

ėz(t) = f̃z(eξ(t), ez(t)), ez(0) = z0 − ze, (12.36)

and

˙̃ξ(t) = ξ̇c(t)− ėξ(t)

= Ãξ̃(t) +B0W̃
T
1 (t)σ1(ζ(t)) +B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

−B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t))−B0ε1(x(t), ζ(t))−B0ε2(x(t), ζ(t))u(t),

ξ̃(0) = ξc0 − ξ0 + ξe, (12.37)

where Ã , A−LC, f̃z(eξ, ez) , fz(eξ +xe, ez + ze), and W̃i(t) , Ŵi(t)−Wi, i = 1, 2.

To show ultimate boundedness of the closed-loop system (12.24), (12.25), (12.35)–

(12.37), consider the Lyapunov-like function

V (eξ, ez, ξ̃, W̃1, W̃2) = eTξ Peξ + ξ̃TP̃ ξ̃ + tr W̃1Q
−1
1 W̃T

1 + tr W̃2Q
−1
2 W̃T

2 , (12.38)

where P > 0 and P̃ > 0 satisfy (12.26) and (12.33), respectively. Note that (12.38)

satisfies (10.7) with x1 = [eTξ , ξ̃
T, (vec Ŵ1)

T, (vec Ŵ2)
T]T, x2 = ez, α(‖x1‖) = β(‖x1‖) =

‖x1‖2, where ‖x1‖2 , eTξ Peξ + ξ̃TP̃ ξ̃ + tr W̃1Q
−1
1 W̃T

1 + tr W̃2Q
−1
2 W̃T

2 . Furthermore,
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α(‖x1‖) is a class K∞ function. Now, letting eξ(t), t ≥ 0, and ξc(t), t ≥ 0, denote the

solution to (12.35) and (12.27), respectively, and using (12.12), (12.19), (12.24), and

(12.25), it follows that the time derivative of V (eξ, ez, ξ̃, W̃1, W̃2) along the closed-loop

system trajectories is given by

V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t))

= 2eTξ (t)P
[

Aeξ(t)−B0W̃
T
1 (t)σ1(ζ(t))−B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

+B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t)) +B0ε1(x(t), ζ(t)) +B0ε2(x(t), ζ(t))u(t)

]

+2ξ̃T(t)P̃
[

Ãξ̃(t) +B0W̃
T
1 (t)σ1(ζ(t)) +B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

−B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t))−B0ε1(x(t), ζ(t))−B0ε2(x(t), ζ(t))u(t)

]

+2tr W̃T
1 (t)Q

−1
1

˙̂
W1(t) + 2tr W̃T

2 (t)Q
−1
2

˙̂
W2(t)

= −eTξ (t)Reξ(t)− ξ̃T(t)R̃ξ̃(t)− 2eTξ (t)PB0W̃
T
1 (t)σ1(ζ(t))

−2eTξ (t)PB0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

+2eTξ (t)PB0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t))

+2eTξ (t)PB0(ε1(x(t), ζ(t)) + ε2(x(t), ζ(t))u(t)) + 2ξ̃T(t)P̃B0W̃
T
1 (t)σ1(ζ(t))

+2ξ̃T(t)P̃B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

−2ξ̃T(t)P̃B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t))

−2ξ̃T(t)P̃B0(ε1(x(t), ζ(t)) + ε2(x(t), ζ(t))u(t))

+2tr W̃T
1 (t)Proj(Ŵ1(t), σ1(ζ(t))ξ

T
c P̃B0)

+2tr W̃T
2 (t)Proj(Ŵ2(t), [Im ⊗ σ2(ζ(t))]ξTc P̃B0)

≤ −λmin(RP
−1)‖P 1/2eξ(t)‖2 − λmin(R̃P̃

−1)‖P̃ 1/2ξ̃(t)‖2

−2eTξ (t)(P − P̃ )B0W̃
T
1 (t)σ1(ζ(t))

−2eTξ (t)(P − P̃ )B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

−4ξ̃T(t)P̃B0W̃
T
1 (t)σ1(ζ(t))− 4ξ̃T(t)P̃B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

+2eTξ (t)PB0(ε1(x(t), ζ(t)) + ε2(x(t), ζ(t))u(t))
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−2ξ̃T(t)P̃B0(ε1(x(t), ζ(t)) + ε2(x(t), ζ(t))u(t))

+2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t))

+2tr W̃T
1 (t)

[

Proj(Ŵ1(t), σ1(ζ(t))ξ
T
c P̃B0)− σ1(ζ(t))ξTc P̃B0

]

+2tr W̃T
2 (t)

[

Proj(Ŵ2(t), [Im ⊗ σ2(ζ(t))]ξTc P̃B0)− [Im ⊗ σ2(ζ(t))]ξTc P̃B0

]

≤ −λmin(RP
−1)‖P 1/2eξ(t)‖2 − λmin(R̃P̃

−1)‖P̃ 1/2ξ̃(t)‖2

−2eTξ (t)(P − P̃ )B0W̃
T
1 (t)σ1(ζ(t))

−2eTξ (t)(P − P̃ )B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

−4ξ̃T(t)P̃B0W̃
T
1 (t)σ1(ζ(t))− 4ξ̃T(t)P̃B0

(

Bs + W̃T
2 (t)[Im ⊗ σ2(ζ(t))]

)

u(t)

+2eTξ (t)PB0(ε1(x(t), ζ(t)) + ε2(x(t), ζ(t))u(t))

−2ξ̃T(t)P̃B0(ε1(x(t), ζ(t)) + ε2(x(t), ζ(t))u(t))

+2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t)), t ≥ 0. (12.39)

For the two cases given in (12.34), the last term on the right-hand side of (12.39)

gives:

i) If û(t) ≥≥ 0, then Ŵ1u(t) = Ŵ1(t) and hence

2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t)) = 0.

ii) Otherwise, Ŵ1u(t) = 0 and hence

2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t)− Ŵ1u(t))
Tσ1(ζ(t))

= 2(eTξ (t)P − ξ̃T(t)P̃ )B0Ŵ
T
1 (t)σ1(ζ(t))

≤ 2
√
s1‖P 1/2B0‖Ŵ1max‖P 1/2eξ(t)‖+ 2

√
s1‖P̃ 1/2B0‖Ŵ1max‖P̃ 1/2ξ̃(t)‖.

(12.40)

Hence, it follows from (12.39) that in either case

V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t))

≤ −λmin(RP
−1)‖P 1/2eξ(t)‖2 − λmin(R̃P̃

−1)‖P̃ 1/2ξ̃(t)‖2
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+2
√
s1Ŵ1max‖P−1/2(P − P̃ )B0‖‖P 1/2eξ(t)‖

+2(bs +m
√
s2Ŵ2max)u

∗‖P−1/2(P − P̃ )B0‖‖P 1/2eξ(t)‖

+4
√
s1Ŵ1max‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖

+4(bs +m
√
s2Ŵ2max)u

∗‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖

+2(ε∗1 + ε∗2u
∗)‖P 1/2B0‖‖P 1/2eξ(t)‖+ 2(ε∗1 + ε∗2u

∗)‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖

+2
√
s1Ŵ1max‖P 1/2B0‖‖P 1/2eξ(t)‖+ 2

√
s1Ŵ1max‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖

= −λmin(RP
−1)(‖P 1/2eξ(t)‖ − α1)

2 − λmin(R̃P̃
−1)(‖P̃ 1/2ξ̃(t)‖ − α2)

2 + ν,

(12.41)

where ν, α1, and α2 are given by (12.30) and (12.32), respectively. Now, for

‖P 1/2eξ‖ ≥
√

ν

λmin(RP−1)
+ α1, (12.42)

or

‖P̃ 1/2ξ̃‖ ≥
√

ν

λmin(R̃P̃−1)
+ α2, (12.43)

it follows that V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t)) ≤ 0 for all t ≥ 0; that is, V̇ (eξ(t), ez(t),

ξ̃(t), W̃1(t), W̃2(t)) ≤ 0 for all (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t)) ∈ D̃e\D̃r and t ≥ 0,

where (see Figure 12.1)

D̃e ,

{

(eξ, ez, ξ̃, W̃1, W̃2) ∈ R
m × R

n−m × R
r × R

s1×m × R
ms2×m : x ∈ Dc

}

, (12.44)

D̃r ,

{

(eξ, ez, ξ̃, W̃1, W̃2) ∈ R
m × R

n−m × R
r × R

s1×m × R
ms2×m :

‖P 1/2eξ‖ ≤ αeξ , ‖P̃ 1/2ξ̃‖ ≤ αξ̃

}

. (12.45)

Next, define

D̃α ,

{

(eξ, ez, ξ̃, W̃1, W̃2) ∈ R
m × R

n−m × R
r × R

s1×m × R
ms2×m :

V (eξ, ez, ξ̃, W̃1, W̃2) ≤ α
}

, (12.46)
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αx

D̃η̄

Figure 12.1: Visualization of sets used in the proof of Theorem 12.2

where α is the maximum value such that D̃α ⊆ D̃e, and define

D̃η ,

{

(eξ, ez, ξ̃, W̃1, W̃2) ∈ R
m × R

n−m × R
r × R

s1×m × R
ms2×m :

V (eξ, ez, ξ̃, W̃1, W̃2) ≤ η
}

, (12.47)

where

η > β(µ) = µ = α2
eξ
+ α2

ξ̃
+ λmax(Q

−1
1 )Ŵ 2

1 max + λmax(Q
−1
2 )Ŵ 2

2 max. (12.48)

To show ultimate boundedness of the closed-loop system (12.24), (12.25), (12.35)–

(12.37), assume5 that D̃η ⊂ D̃α (see Remark 12.1 and Figure 12.1). Now, since

V̇ (eξ, ez, ξ̃, W̃1, W̃2) ≤ 0 for all (eξ, ez, ξ̃, W̃1, W̃2) ∈ D̃e\D̃r and D̃r ⊂ D̃α, it follows

that D̃α is positively invariant. Hence, if (eξ(0), ez(0), ξ̃(0), W̃1(0), W̃2(0)) ∈ D̃α, then

it follows from Theorem 10.3 that the solution (eξ(t), ez(t), ξ̃(t), Ŵ (t)), t ≥ 0, to

(12.24), (12.25), (12.35)–(12.37) is ultimately bounded with respect to (eξ, ξ̃, W̃1, W̃2)

uniformly in ez(0) with ultimate bound given by ε = α−1(η) =
√
η which yields

(12.29). In addition, since (12.36) is input-to-state stable with eξ viewed as the

input, it follows from Proposition 10.1 that the solution ez(t), t ≥ 0, to (12.36) is

5This assumption is standard in the neural network literature and ensures that in the error space
D̃e there exists at least one Lyapunov level set D̃η ⊂ D̃α. In the case where the neural network
approximation holds in R

n with delayed values, this assumption is automatically satisfied. See
Remark 12.1 for further details.
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also ultimately bounded. Furthermore, it follows from Theorem 1 of [223] that there

exist a continuously differentiable, radially unbounded, positive-definite function Vz :

R
nz → R and class K functions γ1(·), γ2(·) such that

V ′z (ez)f̃z(eξ, ez) ≤ −γ1(‖ez‖), ‖ez‖ ≥ γ2(‖P 1/2eξ‖). (12.49)

Since the upper bound for ‖P 1/2eξ‖2 is given by η, it follows that the set given by

Dz ,

{

z ∈ R
n−r : Vz(z − ze) ≤ max

‖z−ze‖=γ2(
√
η)
Vz(z − ze)

}

, (12.50)

is also positively invariant. Now, since D̃α and Dz are positively invariant, it follows

that

Dα ,

{

(x, ξ̃, W̃1, W̃2) ∈ R
n × R

r × R
s1×m × R

ms2×m :

V (ξ − yd, z − ez, ξ̃, Ŵ1 −W1, Ŵ2 −W2) ≤ α
}

, (12.51)

is also positively invariant. In addition, since (12.24), (12.25), (12.35)–(12.37) is

ultimately bounded with respect to (eξ, ξ̃, W̃1, W̃2) and (12.36) is input-to-state sta-

ble with eξ viewed as the input it follows from Proposition 10.1 that the solution

(eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t)), t ≥ 0, of the closed-loop system (12.24), (12.25),

(12.35)–(12.37) is ultimately bounded for all (eξ(0), ez(0), ξ̃(0), W̃1(0), W̃2(0)) ∈ D̃α.

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (12.22). Now, since G(x(t)) ≥≥ 0,

t ≥ 0, and u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 9.2 that x(t) ≥≥ 0 for all

t ≥ 0 and x0 ∈ R
n

+. ¤

Remark 12.1. It is important to note that the existence of a global neural net-

work approximator for an uncertain nonlinear map using the system outputs and

inputs and its delayed values (as in (12.16), (12.17)) cannot in general be established.

In the proof of Theorem 12.2, as is common in the neural network literature, we
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assume that for a given arbitrarily large compact set Dc ⊂ R
n, there exists an ap-

proximator for the unknown nonlinear map up to a desired accuracy. This assumption

ensures that in the error space D̃e there exists at least one Lyapunov level set such

that D̃η ⊂ D̃α. In the case where fu(·) and Gs(·) are continuous on R
n, it follows

from the Stone-Weierstrass theorem that fu(·) and Gs(·) can be approximated over

an arbitrarily large compact set Dc in the sense of (12.12) and (12.13) and hence

(12.16) and (12.17) hold with sufficiently small d. In addition, we assume that Ŵ2(0)

is sufficiently close to the optimal weight W2 so that Bs + Ŵ2(t)[Im ⊗ σ2(ζ(t))] is

nonsingular for all t ≥ 0.

Remark 12.2. Implementation of (12.23) requires a fixed-point iteration at each

integration step; that is, the controller contains an algebraic constraint on u. For

each choice of σ1(·) and σ2(·) this equation must be examined for solvability in terms

of u. It is more practical to avoid this iteration by using one-step delayed values of

u in calculating û. Implementations using both approaches result in imperceptible

differences in our numerical studies.

Remark 12.3. In the case of systems of unknown dimension but with known

relative degree, Theorem 12.2 applies with a slight modification to the input vector

of the neural network; that is, n in (12.15) should be replaced by a sufficiently large

value that is greater than the largest possible system dimension.

In Theorem 12.2 we assumed that the equilibrium point xe of (12.1) is globally

asymptotically stable with u(t) ≡ ue. In general, however, unlike linear nonnegative

systems with asymptotically stable plant dynamics, a given set point xe ∈ R
n
+ for the

nonlinear nonnegative dynamical system (12.1) may not be asymptotically stabilizable

with a constant control u(t) ≡ ue ∈ R
m

+ . However, if f(x) is homogeneous, coopera-

tive; that is, the Jacobian matrix ∂f(x)
∂x

is essentially nonnegative for all x ∈ R
n

+, the
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Jacobian matrix ∂f(x)
∂x

is irreducible for all x ∈ R
n

+ [20], and the zero solution x(t) ≡ 0

of the undisturbed (u(t) ≡ 0) system (12.1) is globally asymptotically stable, then

the set point xe ∈ R
n
+ satisfying (12.9), (12.10) is a unique equilibrium point with

u(t) ≡ ue and is also asymptotically stable for all x0 ∈ R
n

+ [53]. This implies that the

solution x(t) ≡ xe to (12.1) with u(t) ≡ ue is asymptotically stable for all x0 ∈ R
n

+.

12.3. Nonlinear Adaptive Output Feedback Control for Gen-

eral Anesthesia

To illustrate the application of our adaptive control framework we consider a hy-

pothetical model for the intravenous anesthetic propofol. The pharmacokinetics of

propofol are described by the three compartment model given in Section 9.6. The

model is shown in Figure 9.3 in Chapter 9 and is given by the three-state compart-

mental system

ẋ1(t) = −[ae(c(t)) + a21(c(t)) + a31(c(t))]x1(t) + a12(c(t))x2(t) + a13(c(t))x3(t)

+u(t), x1(0) = x10, t ≥ 0, (12.52)

ẋ2(t) = a21(c(t))x1(t)− a12(c(t))x2(t), x2(0) = x20, (12.53)

ẋ3(t) = a31(c(t))x1(t)− a13(c(t))x3(t), x3(0) = x30, (12.54)

where c(t) = x1(t)/Vc, Vc is the volume of the central compartment, a21(c) is the rate

of transfer of drug from the central compartment to Compartment II, a12(c) is the rate

of transfer of drug from Compartment II to the central compartment, a31(c) is the rate

of transfer of drug from the central compartment to Compartment III, a13(c) is the

rate of transfer of drug from Compartment III to the central compartment, ae(c) is the

rate of drug metabolism and elimination (metabolism typically occurs in the liver),

and u(t), t ≥ 0, is the infusion rate of the anesthetic drug propofol into the central

compartment. As in Section 9.6, we assume a21(c) = A21Q(c), a12(c) = A12Q(c),

a31(c) = A31Q(c), a13(c) = A13Q(c), and ae(c) = AeQ(c), where A12, A21, A13, A31,
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and Ae are positive constants. To develop a nonlinear model we assume a sigmoid

relationship between drug concentration in the central compartment and effect so

that

Q(c) =
Q0C

α
50

Cα
50 + cα

, (12.55)

where the effect is related to c (since c is the presumed concentration in the highly

perfused myocardium), Q0 > 0 is a constant, and C50 > 0 is the drug concentra-

tion associated with a 50% decrease in the cardiac output, and α > 1 determines

the steepness of this curve (that is, how rapidly the cardiac output decreases with

increasing drug concentration, c). Even though the transfer and loss coefficients A12,

A21, A13, A31, and Ae are nonnegative, and α > 1, C50 > 0, and Q0 > 0, these

parameters can be uncertain due to patient gender, weight, pre-existing disease, age,

and concomitant medication. Hence, the need for neuro adaptive control to regulate

intravenous anesthetics during surgery is crucial.

Even though propofol concentrations in the blood are known to be correlated with

lack of purposeful responsiveness (and presumably consciousness) [137], they cannot

be measured in real-time during surgery. Furthermore, we are more interested in

drug effect (depth of hypnosis) rather than drug concentration. Hence, we consider

a more realistic model involving pharmacokinetics (drug concentration as a function

of time) and pharmacodynamics (drug effect as a function of concentration) for con-

trol of anesthesia. Specifically, we use an electroencephalogram (EEG) signal as a

measure of drug effect of anesthetic compounds on the brain [67, 174, 215]. Since

electroencephalography provides real-time monitoring of the central nervous system

activity, it can be used to quantify levels of consciousness and hence is amenable for

feedback (closed-loop) control in general anesthesia. As discussed in Chapter 7, a

new EEG indicator, the Bispectral Index (BIS), has been proposed as a measure of

anesthetic effect [174]. This index quantifies the nonlinear relationships between the
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component frequencies in the electroencephalogram, as well as analyzing their phase

and amplitude. The BIS signal is a nonlinear monotonically decreasing function of

the level of consciousness and is given by

BIS(ceff) = BIS0

(

1− cγeff
cγeff + ECγ

50

)

, (12.56)

where BIS0 denotes the baseline (awake state) value and, by convention, is typically

assigned a value of 100, ceff is the propofol concentration in micrograms/mililiter

in the effect site compartment (brain), EC50 is the concentration at half maximal

effect and represents the patient’s sensitivity to the drug, and γ determines the de-

gree of nonlinearity in (12.56). Here, the effect site compartment is introduced as

a correlate between the central compartment concentration and the central nervous

system concentration [205]. The effect site compartment concentration is related to

the concentration in the central compartment by the first-order delay model

ċeff(t) = aeff(c(t)− ceff(t)), ceff(0) = c(0), t ≥ 0, (12.57)

where aeff in min−1 is an unknown positive time constant. In reality, the effect site

compartment equilibrates with the central compartment in a matter of a few minutes.

The parameters aeff , EC50, and γ are determined by data fitting and vary from patient

to patient. BIS index values of 0 and 100 correspond, respectively, to an isoelectric

EEG signal and an EEG signal of a fully conscious patient; while the range between

40 and 60 indicates a moderate hypnotic state [215]. Figure 12.2 shows the combined

pharmacokinetic/pharmacodynamic model for propofol distribution.

For set-point regulation define e(t) , x(t) − xe, where xe ∈ R
4 is the set point

satisfying the equilibrium condition for (12.52)–(12.54) and (12.57) with x1(t) ≡ xe1,

x2(t) ≡ xe2, x3(t) ≡ xe3, ceff ≡ EC50, and u(t) ≡ ue, so that fe(e) = [fe1(e), fe2(e),

374



PSfrag replacements

u ≡ Continuous infusion

ae(c)x1 ≡ Elimination

Compartment II
Central

Compartment
Compartment III

a12(c)x2

a21(c)x1

a31(c)x1

a13(c)x3

Effect Site
Compartment

aeffc

ceff

Pharmacodynamics

BIS index

Figure 12.2: Combined pharmacokinetic/pharmacodynamic model

fe3(e), fe4(e)]
T is given by

fe1(e) = −[ae(c) + a21(c) + a31(c)](e1 + xe1) + a12(c)(e2 + xe2) + a13(c)(e3 + xe3)

−[ae(ce) + a21(ce) + a31(ce)]xe1 + a12(ce)xe2 + a13(ce)xe3, (12.58)

fe2(e) = a21(c)(e1 + xe1)− a12(c)(e2 + xe2)− [a21(ce)xe1 − a12(ce)xe2], (12.59)

fe3(e) = a31(c)(e1 + xe1)− a13(c)(e3 + xe3)− [a31(ce)xe1 − a13(ce)xe3], (12.60)

fe4(e) = aeff(c− (e4 + EC50))− aeff(ee − EC50), (12.61)

where ce , xe1/Vc. Next, linearizing fe(e) about 0 and computing the eigenvalues of

the resulting (compartmental) Jacobian matrix, it can be shown that xe is asymptot-

ically stable.

In the following numerical simulation we set EC50 = 5.6 µg/m`, γ = 2.39, and

BIS0 = 100, so that the BIS signal is shown in Figure 12.3. The target (desired) BIS

value, BIStarget, is set at 50. Now, using the adaptive output feedback controller

u1(t) = max{0, û1(t)}, (12.62)
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Figure 12.3: BIS index versus effect site concentration

where

û1(t) = −
ŴT

1 (t)σ1(ζ(t))

bs + ŴT
2 (t)σ2(ζ(t))

, (12.63)

ζ(t) = [BIS(t),BIS(t− d), u1(t), u1(t− d)]T, (12.64)

bs > 0, with update laws

˙̂
W1(t) = QBIS1Proj(Ŵ1(t), σ1(ζ(t))ξ

T
c (t)P̃B0), Ŵ1(0) = Ŵ10, (12.65)

˙̂
W2(t) = QBIS2Proj(Ŵ2(t), σ2(ζ(t))u(t)ξ

T
c (t)P̃B0), Ŵ2(0) = Ŵ20, (12.66)

where QBIS1 and QBIS2 are arbitrary positive scalars and ξc(t) ∈ R
2, t ≥ 0, is the

solution to the estimator dynamics

ξ̇c(t) = Aξc(t) + L(−BIS(t)− yc(t) + BIStarget), ξc(0) = ξc0, t ≥ 0, (12.67)

yc(t) = ξc(t), (12.68)

where A ∈ R
2×2 and L ∈ R

2×1, it follows from Theorem 12.2 that there exist positive

constants ε and T such that |BIS(t)−BIStarget| ≤ ε, t ≥ T , for any (uncertain) posi-

tive values of the pharmacokinetic transfer and loss coefficients (A12, A21, A13, A31, Ae)
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as well as any (uncertain) nonnegative coefficients α, C50, and Q0. It is important

to note that during actual surgery the BIS signal is obtained directly from the EEG

and not (12.56). Furthermore, since our adaptive controller only requires the er-

ror signal BIS(ceff(t)) − BIStarget, we do not require knowledge of the pharmacody-

namic parameters γ and EC50. For our simulation we assume Vc = (0.228 `/kg)(M

kg), where M = 70 kg is the weight (mass) of the patient, A21Q0 = 0.112 min−1,

A12Q0 = 0.055 min−1, A31Q0 = 0.0419 min−1, A13Q0 = 0.0033 min−1, AeQ0 =

0.119 min−1, α = 3, and C50 = 4 µg/m` [169]. Note that the parameter values

for α and C50 probably exaggerate the effect of propofol on cardiac output. They

have been selected to accentuate nonlinearity but they are not biologically unrealis-

tic. Furthermore, to illustrate the robustness of the proposed adaptive controller we

switch the pharmacodynamic parameters EC50 and γ, respectively, from 5.6 µg/m`

and 2.39 to 7.2 µg/m` and 3.39 at t = 15 min and back to 5.6 µg/m` and 2.39

at t = 30 min. Here, we consider noncardiac surgery since cardiac surgery often

utilizes hypothermia which itself changes the BIS signal. With A =

[

0 1
−1 −1

]

,

L = [0, 1]T, bs = 1, QBIS1 = QBIS2 = 8.0 × 10−5 g/min2, d = 0.005, and initial con-

ditions x(0) = [0, 0, 0]T g, ceff(0) = 0 g/m`, ξc(0) = [0, 0]T, Ŵ1(0) = 024×1 g/min,

and Ŵ2(0) = 024×1, Figure 12.4 shows the masses of propofol in the three compart-

ments versus time. Figure 12.5 shows the concentrations in the central and effect site

compartments versus time. Figure 12.6 shows the compensator states versus time.

Finally, Figure 12.7 shows the BIS index and the control signal (propofol infusion

rate) versus time.

12.4. Conclusion

Nonnegative and compartmental systems are widely used to capture system dy-

namics involving the interchange of mass and energy between homogenous subsystems
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or compartments. Thus, it is not surprising that nonnegative and compartmental

models are remarkably effective in describing the dynamical behavior of biological

systems, physiological systems, and pharmacological systems. In this chapter, we de-

veloped a neural adaptive dynamic output feedback control framework for adaptive

set-point regulation of nonlinear uncertain nonnegative and compartmental systems.

Using Lyapunov methods the proposed framework was shown to guarantee ultimate

boundedness of the error signals corresponding to the physical system states and

the neural network weighting gains while additionally guaranteeing the nonnegativity

of the closed-loop system states associated with the plant dynamics. Finally, us-

ing a nonlinear four-compartment pharmacokinetic/pharmacodynamic patient model

for the disposition of anesthetic drug propofol, the proposed neuro adaptive control

framework was used to monitor and control a desired constant level of consciousness

for noncardiac surgery.
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Chapter 13

A Lyapunov-Based Adaptive

Control Framework for

Discrete-Time Nonlinear

Systems with Exogenous

Disturbances

13.1. Introduction

The purpose of feedback control is to achieve desirable system performance in the

face of system uncertainty and system disturbances. Although system identification

can reduce uncertainty to some extent, residual modeling discrepancies always remain.

Controllers must therefore be robust to achieve desired disturbance rejection and/or

tracking performance requirements in the presence of such modeling uncertainty. To

this end, adaptive control along with robust control theory have been developed

to address the problem of system performance in the face of system uncertainty in

control-system design without excessive reliance on system models.

Adaptive controllers directly or indirectly adjust feedback gains to maintain closed-

loop stability and improve performance in the face of system errors. Specifically, indi-

rect adaptive controllers utilize parameter update laws to estimate unknown system
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parameters and adjust feedback gains to account for system variation, while direct

adaptive controllers directly adapt the controller gains in response to system varia-

tions. Even though adaptive control algorithms have been developed in the literature

for both continuous-time and discrete-time systems, the majority of the discrete-

time results are based on recursive least squares and least mean squares algorithms

[56,61,71,72,177] with primary focus on state convergence. Alternatively, Lyapunov-

based adaptive controllers have been developed for continuous-time systems guar-

anteeing asymptotic stability of the system states (see for example [136, 147, 176]).

Notable Lyapunov-based adaptive control algorithms for discrete-time systems are

given in [128,196,230,242]. However, the literature on discrete-time adaptive distur-

bance rejection control using Lyapunov methods is virtually nonexistent.

For discrete-time dynamical systems, Lyapunov-based frameworks for adaptive

control are quite intricate since the Lyapunov difference does not remove terms in-

volving the model reference stabilizing gain from the resulting Lyapunov difference

expression. This leads to asymptotic nonpositivity of the Lyapunov difference and

thus Lyapunov stability cannot be guaranteed [230]. This difficulty was first pointed

out by [132] and is the main reason why Lyapunov-based discrete-time adaptive con-

trol is not a straightforward extension of continuous-time adaptive control theory.

As a result, most of the discrete-time adaptive model reference and tracking con-

trol results are based on the classical key technical lemma which does not guarantee

Lyapunov stability.

In this paper, using a logarithmic Lyapunov function we develop a Lyapunov-based

direct adaptive control framework for adaptive stabilization, disturbance rejection,

and command following of multivariable discrete-time nonlinear uncertain systems

with exogenous bounded amplitude disturbances and `2 disturbances. These results

are analogous to, but by no means a direct extension of, the recent continuous-time
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adaptive disturbance rejection results in [84] for continuous-time nonlinear uncertain

systems. In contrast to the results presented in [84], logarithmic Lyapunov functions

are shown to be essential for discrete-time Lyapunov-based adaptive control. Specif-

ically, a logarithmic Lyapunov-based direct adaptive control framework is developed

that guarantees partial asymptotic stability of the closed-loop system; that is, asymp-

totic stability with respect to part of the closed-loop system states associated with

the plant. Furthermore, in the case where the nonlinear system is represented in

normal form, the nonlinear discrete-time adaptive controller is constructed without

requiring knowledge of the system dynamics or system disturbances. In the case

where the system disturbances are `2 disturbances, the proposed framework guaran-

tees that the closed-loop nonlinear input-output map from uncertain exogenous `2

disturbances to system performance variables is nonexpansive and the solution of the

closed-loop system is partially asymptotically stable. The proposed adaptive con-

troller thus addresses the problem of disturbance rejection for nonlinear uncertain

discrete-time systems with bounded energy (square-summable) `2 signal norms on

the disturbances and performance variables.

The contents of the chapter are as follows. In Section 13.2 we present our main

direct adaptive control framework for adaptive stabilization, disturbance rejection,

and command following of multivariable nonlinear uncertain discrete-time systems

with matched exogenous bounded disturbances. In Section 13.3 we extend the re-

sults of Section 13.2 to nonlinear uncertain discrete-time systems with exogenous `2

disturbances without a matching condition requirement. Three illustrative numerical

examples are presented in Section 13.4 to demonstrate the efficacy of the proposed

direct adaptive stabilization and tracking framework. Finally, in Section 13.5 we draw

some conclusions.
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13.2. Discrete-Time Adaptive Control for Nonlinear Systems

with Exogenous Disturbances

In this section we consider the problem of characterizing adaptive feedback con-

trol laws for nonlinear uncertain discrete-time systems with exogenous disturbances.

Specifically, consider the controlled nonlinear uncertain discrete-time system G given

by

x(k + 1) = f(x(k)) +G(x(k))u(k) + J(x(k))w(k), x(0) = x0, k ∈ N , (13.1)

where x(k) ∈ R
n, k ∈ N , is the state vector, u(k) ∈ R

m, k ∈ N , is the control input,

w(k) ∈ R
d, k ∈ N , is a known bounded disturbance vector such that ‖w(k)‖2 ≤ δ,

k ∈ N , f : R
n → R

n and satisfies f(0) = 0, G : R
n → R

n×m is such that rankG(x) =

m, x ∈ R
n, and J : R

n → R
n×d is a disturbance weighting matrix function with

unknown entries. Note that even though w(k), k ∈ N , is assumed to be known, the

disturbance signal J(x(k))w(k), k ∈ N , is an unknown bounded disturbance. The

control input u(·) in (13.1) is restricted to the class of admissible controls consisting

of measurable functions such that u(k) ∈ R
m, k ∈ N .

Theorem 13.1. Consider the nonlinear system G given by (13.1). Assume there

exist a matrix Kg ∈ R
m×s, functions Vs : R

n → R, Ĝ : R
n → R

m×m, F : R
n → R

s,

P1u : R
n → R

1×m, ` : R
n → R

t, a nonnegative-definite matrix function P2u : R
n →

R
m×m, and positive constants γ̄, ε, µ, and ν such that Vs(·) and `(·) are continuous,

Vs(0) = 0, `(0) = 0, det Ĝ(x) 6= 0, x ∈ R
n, ĜT(x)P2u(x)Ĝ(x) ≤ νIm, x ∈ R

n, and, for

all x ∈ R
n and u ∈ R

m,

Vs(f(x) +G(x)u) = Vs(f(x)) + P1u(x)u+ uTP2u(x)u, (13.2)

0 ≥ Vs(fs(x))− Vs(x) + `T(x)`(x) + εP1u(x)Ĝ(x)ĜT(x)PT
1u(x), (13.3)

FT(x)F (x) ≤ γ̄xTx, x ∈ R
n, (13.4)
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Vs(x) ≥ µxTx, (13.5)

where

fs(x) , f(x) +G(x)Ĝ(x)KgF (x). (13.6)

Furthermore, assume there exists a matrix Ψ ∈ R
m×d such that G(x)Ĝ(x)Ψ = J(x).

Finally, let x̃(k) , [FT(x(k)), wT(k)]T, c > 0, and Q ∈ R
m×m be positive definite

such that λmax(Q) < 2. Then the adaptive feedback control law

u(k) = Ĝ(x(k))K(k)x̃(k), (13.7)

where K(k) ∈ R
m×(s+d), k ∈ N , with update law

K(k+1) = K(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))[x(k+1)− fs(x(k))]x̃T(k), (13.8)

guarantees that the solution (x(k), K(k)) ≡ (0, [Kg,−Ψ]) of the closed-loop system

given by (13.1), (13.7), and (13.8) is Lyapunov stable and `(x(k))→ 0 as k →∞. If,

in addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then x(k)→ 0 as k →∞ for all x0 ∈ R

n.

Proof. First, define K̃(k) , K(k) − K̂g and ũ(k) , K̃(k)x̃(k), where K̂g ,

[Kg,−Ψ]. Note that with u(k), k ∈ N , given by (13.7) it follows from (13.1) that

x(k+1) = f(x(k))+G(x(k))Ĝ(x(k))K(k)x̃(k)+J(x(k))w(k), x(0) = x0, k ∈ N ,

(13.9)

or, equivalently, using (13.6) and the fact that G(x)Ĝ(x)Ψ = J(x),

x(k + 1) = fs(x(k)) +G(x(k))Ĝ(x(k))K̃(k)x̃(k)

= fs(x(k)) +G(x(k))Ĝ(x(k))ũ(k), x(0) = x0, k ∈ N . (13.10)

Furthermore, note that adding and subtracting K̂g to and from (13.8) and using

(13.10) it follows that

K̃(k + 1) = K̃(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))[G(x(k))Ĝ(x(k))K̃(k)x̃(k)]x̃T(k)

= K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k). (13.11)
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To show Lyapunov stability of the closed-loop system (13.10) and (13.11), consider

the Lyapunov function candidate

V (x,K) = ln(1 + Vs(x)) + atr(K − K̂g)
TQ−1(K − K̂g), (13.12)

where

a ≥
1
4ε

+ ν

λmin(2I −Q)
·max

{

δ2 + c,
γ̄

µ

}

. (13.13)

Note that V (0, K̂g) = 0 and, since Vs(·) and Q are positive definite and a > 0,

V (x,K) > 0 for all (x,K) 6= (0, K̂g). Furthermore, V (x,K) is radially unbounded.

Now, letting x(k), k ∈ N , denote the solution to (13.10) and using (13.2), (13.3),

and (13.11), it follows that the Lyapunov difference along the closed-loop system

trajectories is given by

∆V (x(k), K(k)) , V (x(k + 1), K(k + 1))− V (x(k), K(k))

= ln
(

1 + Vs(fs(x(k)) +G(x(k))Ĝ(x(k))ũ(k))
)

+atr
(

K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)
)T

Q−1

·
(

K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)
)

− ln(1 + Vs(x(k)))

−atrK̃T(k)Q−1K̃(k)

= ln
(

1 +
[

Vs(fs(x(k))) + P1u(x(k))Ĝ(x(k))ũ(k)

+ũT(k)ĜT(x(k))P2u(x(k))Ĝ(x(k))ũ(k)− Vs(x(k))
]

· [1 + Vs(x(k))]
−1
)

+atr K̃T(k)Q−1K̃(k)− 2a
c+x̃T(k)x̃(k)

tr K̃T(k)K̃(k)x̃(k)x̃T(k)

+ a
(c+x̃T(k)x̃(k))2

tr x̃(k)x̃T(k)K̃T(k)QK̃(k)x̃(k)x̃T(k)

−atrK̃T(k)Q−1K̃(k)

≤
[

−`T(x(k))`(x(k))− εP1u(x(k))Ĝ(x(k))ĜT(x(k))PT
1u(x(k))

+P1u(x(k))Ĝ(x(k))ũ(k) + νũT(k)ũ(k)
]

[1 + Vs(x(k))]
−1

386



− 2a
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)K̃(k)x̃(k)

+ a
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)QK̃(k)x̃(k), (13.14)

where in (13.14) we used ln a− ln b = ln a
b
and ln(1 + c) ≤ c for a, b > 0 and c ≥ −1,

respectively, and x̃Tx̃
c+x̃Tx̃

< 1. Now, adding and subtracting 1
4ε

ũT(k)ũ(k)
1+Vs(x(k))

to and from

(13.14) and collecting terms yields

∆V (x(k), K(k))

≤ − 1
1+Vs(x(k))

`T(x(k))`(x(k))

− 1
1+Vs(x(k))

[

P1u(x(k)), ũ
T(k)

]

[

εĜ(x(k))ĜT(x(k)) −1
2
Ĝ(x(k))

−1
2
ĜT(x(k)) 1

4ε
Im

] [

PT
1u(x(k))
ũ(k)

]

+ 1
1+Vs(x(k))

[ 1
4ε
ũT(k)ũ(k) + νũT(k)ũ(k)]

− a
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)(2Im −Q)K̃(k)x̃(k)

≤ −`
T(x(k))`(x(k))

1 + Vs(x(k))
− x̃T(k)K̃T(k)R̃(x(k), w(k))K̃(k)x̃(k)

(c+ x̃T(k)x̃(k))(1 + Vs(x(k)))
, k ∈ N , (13.15)

where

R̃(x,w) , a(1 + Vs(x))(2Im −Q)−
(

1

4ε
+ ν

)

(c+ x̃Tx̃)Im. (13.16)

Noting that 2Im − Q > 0, since by assumption λmax(Q) < 2, and a satisfies (13.13),

it follows that

R̃(x,w) ≥ a(1 + µxTx)(2Im −Q)−
(

1

4ε
+ ν

)

(δ2 + c+ FT(x)F (x))Im

≥ a(1 + µxTx)(2Im −Q)−
(

1

4ε
+ ν

)

(

δ2 + c+ γ̄xTx
)

Im

≥ 0, (x,w) ∈ R
n × R

d. (13.17)

Hence, the Lyapunov difference given by (13.15) yields

∆V (x(k), K(k)) ≤ −`
T(x(k))`(x(k))

1 + Vs(x(k))
− x̃T(k)K̃T(k)R̃(x(k), w(k))K̃(k)x̃(k)

x̃T(k)x̃(k)(1 + Vs(x(k)))

≤ 0, k ∈ N , (13.18)

387



which proves that the solution (x(k), K(k)) ≡ (0, K̂g) to (13.10) and (13.11) is Lya-

punov stable. Furthermore, it follows from (the discrete-time version of) Theorem 2

of [42] that `(x(k)) → 0 as k → ∞. Finally, if `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then

x(k)→ 0 as k →∞ for all x0 ∈ R
n. ¤

Remark 13.1. Note that in the case where `T(x)`(x) > 0, x ∈ R
n, x 6= 0, the

conditions in Theorem 13.1 imply that x(k)→ 0 as k →∞ and hence it follows from

(13.8) that (x(k), K(k)) → M , {(x,K) ∈ R
n × R

m×(s+d) : x = 0 and K(k + 1) =

K(k)} as k →∞.

Remark 13.2. Theorem 13.1 is also valid for time-varying uncertain dynamical

systems Gk of the form

x(k + 1) = f(k, x(k)) +G(k, x(k))u(k) + J(k, x(k))w(k), x(0) = x0, k ∈ N ,

(13.19)

where f : N × R
n → R

n and satisfies f(k, 0) = 0, k ∈ N , G : N × R
n → R

n×m, and

J : N × R
n → R

n×d. In particular, replacing F : R
n → R

s by F : N × R
n → R

s

and Ĝ : R
n → R

m×m by Ĝ : N × R
n → R

m×m, and requiring FT(k, x)F (k, x) ≤

γ̄xTx, γ̄ > 0, k ∈ N , in place of (13.4) and G(k, x)Ĝ(k, x)Ψ = J(k, x) in place

of G(x)Ĝ(x)Ψ = J(x), it follows by using identical arguments as in the proof of

Theorem 13.1 that the adaptive feedback control law

u(k) = Ĝ(k, x(k))K(k)x̃(k), (13.20)

where x̃(k) , [FT(k, x(k)), wT(k)]T, with update law

K(k + 1) = K(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(k, x(k))G†(k, x(k))[x(k + 1)− fs(x(k))]x̃T(k),

(13.21)

where fs(x) = f(k, x) +G(k, x)Ĝ(k, x)KgF (k, x), guarantees that the solution (x(k),

K(k)) ≡ (0, [Kg,−Ψ]) of the closed-loop system (13.19)–(13.21) is Lyapunov stable

and x(k)→ 0 as k →∞ for all x0 ∈ R
n.
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Remark 13.3. It follows from Remark 13.2 that Theorem 13.1 can also be used

to construct adaptive tracking controllers for nonlinear uncertain dynamical systems.

Specifically, let rd(k) ∈ R
n, k ∈ N , denote a command input and define the error

state e(k) , x(k)− rd(k). In this case, the error dynamics are given by

e(k + 1) = fk(k, e(k)) +Gk(k, e(k))u(k) + Jk(k, e(k))wk(k),

e(0) = e0, k ∈ N , (13.22)

where fk(k, e(k)) = f(e(k) + rd(k)) − n(k), with f(rd(k)) = n(k), Gk(k, e(k)) =

G(e(k)+ rd(k)), and Jk(k, e(k))wk(k) = n(k)− rd(k+1)+J(e(k)+ rd(k))w(k). Now,

the adaptive tracking control law (13.20) and (13.21), with x(k) replaced by e(k),

guarantees that e(k)→ 0 as k →∞ for all e0 ∈ R
n.

It is important to note that the adaptive control law (13.7) and (13.8) does not

require explicit knowledge of the gain matrix Kg, the disturbance matching matrix

Ψ, the disturbance weighting matrix function J(x), and the positive constants ν, γ̄, ε,

and µ; even though Theorem 13.1 requires the existence of Kg and Ψ along with the

construction of F (x), Ĝ(x), and Vs(x) such that G(x)Ĝ(x)Ψ = J(x) and (13.2)–(13.5)

hold. Furthermore, if (13.1) is in normal form with asymptotically stable internal

dynamics [122] and if the linear growth condition fT(x)f(x) ≤ γ̂xTx, x ∈ R
n, γ̂ > 0,

holds, then we can always construct functions Vs : R
n → R, F : R

n → R
s, and

Ĝ : R
n → R

n×m such that (13.2)–(13.5) hold without requiring knowledge of the

system dynamics. For simplicity of exposition in the ensuing discussion we assume

that J(x) = D, where D ∈ R
n×d is a disturbance weighting matrix with unknown

entries.
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To elucidate the above discussion assume that the nonlinear uncertain system G

is generated by the difference model

zi(k + τi) = fui(z(k)) +
m
∑

j=1

Gs(i,j)(z(k))uj(k) +
d
∑

l=1

D̂(i,l)wl(k), k ∈ N ,

i = 1, · · · ,m, (13.23)

where τi ∈ N denotes the time delay (or relative degree) with respect to the output zi,

z(k) = [z1(k), · · · , z1(k+ τ1− 1), · · · , zm(k), · · · , zm(k+ τm− 1)], z(0) = z0, D̂(i,l) ∈ R,

i = 1, · · · ,m, l = 1, · · · , d, and wl(k) ∈ R, k ∈ N , l = 1, · · · , d. Here, we assume that

the square matrix function Gs(z) composed of the entries Gs(i,j)(z), i, j = 1, · · · ,m, is

such that detGs(z) 6= 0, z ∈ R
τ̂ , where τ̂ = τ1+· · ·+τm. Furthermore, since (13.23) is

in a form where it does not possess internal dynamics, it follows that τ̂ = n. The case

where (13.23) possesses input-to-state stable internal dynamics can be analogously

handled as shown in Section 2.2.

Next, define xi(k) , [ zi(k), · · · , zi(k+τi−2)]T, i = 1, · · · ,m, xm+1(k) , [ z1(k+τ1

−1), · · · , zm(k + τm − 1)]T, and x(k) , [xT1 (k), · · · , xTm+1(k)]
T so that (13.23) can be

described by (13.1) with

f(x) = Ãx+ f̃u(x), G(x) =

[

0(n−m)×m

Gs(x)

]

, J(x) = D =

[

0(n−m)×d

D̂

]

, (13.24)

where

Ã =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1
fu(x)

]

,

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones capturing the multivariable

controllable canonical form representation [43], fu : R
n → R

m is an unknown function

and satisfies fTu (x)fu(x) ≤ γux
Tx, x ∈ R

n, where γu > 0, Gs : R
n → R

m×m, and

D̂ ∈ R
m×d. Here, we assume that fu(x) is unknown and is parameterized as fu(x) =

Θfn(x), where fn : R
n → R

q and satisfies fTn (x)fn(x) ≤ γnx
Tx, x ∈ R

n, where γn > 0,

and Θ ∈ R
m×q is a matrix of uncertain constant parameters.
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Next, to apply Theorem 13.1 to the uncertain system (13.1) with f(x), G(x), and

D given by (13.24), let Kg ∈ R
m×s, where s = q + r, be given by

Kg = [Θn −Θ, Φn ], (13.25)

where Θn ∈ R
m×q and Φn ∈ R

m×r are known matrices, and let

F (x) =

[

fn(x)

f̂n(x)

]

, (13.26)

where f̂n : R
n → R

r satisfying f̂Tn (x)f̂n(x) ≤ γ̂ux
Tx, x ∈ R

n, γ̂u > 0, is an arbitrary

function. In this case, it follows that, with Ĝ(x) = G−1s (x),

fs(x) = f(x) +G(x)Ĝ(x)KgF (x)

= Ãx+ f̃u(x) +

[

0(n−m)×m

Gs(x)

]

G−1s (x)
[

Θnfn(x)−Θfn(x) + Φnf̂n(x)
]

= Ãx+

[

0(n−m)×1
Θnfn(x) + Φnf̂n(x)

]

. (13.27)

Note that, with Ĝ(x) = G−1s (x), Ψ in Theorem 13.1 can be taken as Ψ = D̂ so that

G(x)Ĝ(x)Ψ = J(x) = D is satisfied, and (13.4) is satisfied with γ̄ ≥ γn + γ̂n.

Now, since Θn ∈ R
m×q and Φn ∈ R

m×r are arbitrary constant matrices and

f̂n : R
n → R

r is an arbitrary function we can always construct Kg, Vs(x), and

F (x) without knowledge of f(x) such that (13.2)–(13.5) hold. In particular, choosing

Θnfn(x) + Φnf̂n(x) = Âx, where Â ∈ R
m×n, it follows that (13.27) has the form

fs(x) = Asx, where As =
[

AT
0 , Â

T
]T

is in multivariable controllable canonical form.

Hence, in the case where G(x) ≡ B, choosing Â such that Ac is asymptotically stable

it follows that for sufficiently small ε > 0 there exists a positive-definite matrix P

satisfying the following Riccati inequality

0 ≥ AT
s PAs − P +R + 4εAT

s PBB
TPAs, (13.28)

where R is a positive-definite matrix. In this case, with Vs(x) = xTPx, (13.2)–

(13.5) are satisfied with Ĝ(x) ≡ Im, P1u(x) = 2xTAT
s PB, P2u(x) = BTPB, and

391



µ ≤ λmin(P ), and hence the adaptive feedback controller (13.7) with update law

(13.8) guarantees global asymptotic stability of the nonlinear uncertain discrete-

time dynamical system (13.1) where f(x), G(x), and J(x) are given by (13.24) with

Gs(x) ≡ Bs ∈ R
m×m. As mentioned above, it is important to note that it is not

necessary to utilize a feedback linearizing function F (x) to produce a linear fs(x).

However, when the system is in normal form, a feedback linearizing function F (x)

assures the existence of Vs(x) that satisfies the conditions (13.2)–(13.5).

It is important to note that by choosing Θn = Φn = 0 considerable simplification

occurs in the update law. Specifically, in this case it follows that

G†(x)fs(x) =
[

0m×(n−m), G−1s (x)
]

[

A0

0m×n

]

x = 0

and hence the update law (13.8) can be simplified as

K(k + 1) = K(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))x(k + 1)x̃T(k). (13.29)

Finally, it is also important to note that Theorem 13.1 is not restricted to dynamical

systems satisfying the linear growth constraint fT(x)f(x) ≤ γ̂xTx, x ∈ R
n, γ̂ > 0.

Theorem 13.1 can be used to construct adaptive discrete-time controllers so long as

the function F (x) satisfies (13.4) and and we can construct a function fs(x) such that

(13.3) holds.

Next, we consider the case where f(x) and G(x) are both uncertain. Specifically,

we assume that G(x) is such that Gs(x) is unknown and is parameterized as Gs(x) =

BuGn(x), where Gn : R
n → R

m×m is known and satisfies detGn(x) 6= 0, x ∈ R
n, and

Bu ∈ R
m×m, with detBu 6= 0 and σmax(Bu) ≤ α, α > 0, is an unknown symmetric

sign-definite matrix but a bound α for the maximum singular value of Bu and the

sign definiteness of Bu are known; that is, Bu > 0 or Bu < 0. For the statement of

the next result define B0 ,
[

0m×(n−m), Im
]T

for Bu > 0, and B0 ,
[

0m×(n−m),−Im
]T

for Bu < 0.
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Corollary 13.1. Consider the nonlinear system G given by (13.1) with f(x),

G(x), and J(x) given by (13.24), andGs(x) = BuGn(x), whereBu, with σmax(Bu) < α,

α > 0, is an unknown symmetric sign-definite matrix and the sign definiteness of

Bu is known. Assume there exist a matrix Kg ∈ R
m×s, functions Vs : R

n → R,

F : R
n → R

s, P1u : R
n → R

1×m, ` : R
n → R

t, a nonnegative-definite matrix function

P2u : R
n → R

m×m, and positive constants γ̄, ε, µ, and ν such that Vs(·) and `(·) are

continuous, Vs(0) = 0, `(0) = 0, α̂−2G−Tn (x)P2u(x)G
−1
n (x) ≤ νIm, x ∈ R

n, α̂ > α
2
,

and, for all x ∈ R
n and u ∈ R

m, (13.2)–(13.5) hold. Then the adaptive feedback

control law

u(k) = α̂−1G−1n (x(k))K(k)x̃(k), (13.30)

where K(k) ∈ R
m×(s+d), k ∈ N , and x̃(k) , [FT(x(k)), wT(k)]T, with update law

K(k + 1) = K(k)− 1
c+x̃T(k)x̃(k)

BT
0 [x(k + 1)− fs(x(k))]x̃T(k), (13.31)

guarantees that the solution (x(k), K(k)) ≡ (0, [Kg,−Ψ]), where Ψ ∈ R
m×d, of the

closed-loop system given by (13.1), (13.30), and (13.31) is Lyapunov stable and

`(x(k)) → 0 as k → ∞. If, in addition, `T(x)`(x) > 0, x ∈ R
n, x 6= 0, then

x(k)→ 0 as k →∞ for all x0 ∈ R
n.

Proof. The result is a direct consequence of Theorem 13.1. First, let Ĝ(x) =

α̂−1G−1n (x) and Ψ = α̂B−1u D̂ so that G(x)Ĝ(x) = [0m×(n−m), α̂
−1Bu]

T and G(x)Ĝ(x)Ψ

= D, and let Kg = α̂B−1u [Θn−Θ,Φn]. Next, since Q in (13.8) is an arbitrary positive-

definite matrix with λmax(Q) < 2, it can be replaced by α̂−1|Bu| = α̂−1(B2
u)

1
2 , where

(·) 12 denotes the (unique) positive-definite square root. Now, since Bu is symmet-

ric and sign definite it follows from the Schur decomposition that Bu = UDBuU
T,

where U is orthogonal and DBu is real diagonal. Hence, α̂−1|Bu|Ĝ−1(x)G†(x) =

[0m×(n−m), Im] = BT
0 , where Im = Im for Bu > 0 and Im = −Im for Bs < 0. Now,

(13.8) implies (13.31). ¤
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13.3. Adaptive Control for Nonlinear Systems with `2 Dis-

turbances

In this section we consider the problem of characterizing adaptive feedback con-

trol laws for nonlinear discrete-time uncertain dynamical systems with exogenous `2

disturbances. Specifically, we consider the controlled nonlinear uncertain system G

given by

x(k + 1) = f(x(k)) +G(x(k))u(k) + J(x(k))w(k), x(0) = x0, w(·) ∈ `2, k ∈ N ,

(13.32)

with performance variables

z(k) = h(x(k)), (13.33)

where x(k) ∈ R
n, k ∈ N , is the state vector, u(k) ∈ R

m, k ∈ N , is the control input,

w(k) ∈ R
d, k ∈ N , is an unknown bounded energy `2 disturbance, z(k) ∈ R

p, k ∈ N ,

is a performance variable, f : R
n → R

n and satisfies f(0) = 0, G : R
n → R

n×m,

J : R
n → R

n×d, and h : R
n → R

p is continuous and satisfies h(0) = 0. The following

theorem generalizes Theorem 13.1 to discrete-time nonlinear uncertain dynamical

systems with exogenous `2 disturbances.

Theorem 13.2. Consider the nonlinear system G given by (13.32) and (13.33).

Assume there exist a matrix Kg ∈ R
m×s, functions Vs : R

n → R, Ĝ : R
n → R

m×m,

F : R
n → R

s, P1u : R
n → R

1×m, P1w : R
n → R

1×d, Puw : R
n → R

m×d, nonnegative-

definite matrix functions P2u : R
n → R

m×m and P2w : R
n → R

d×d, and positive con-

stants γ̄, δ̂, a, ε, µ, and ν such that Vs(·) is continuous and satisfies (13.5), Vs(0) = 0,

det Ĝ(x) 6= 0, x ∈ R
n, F (x) satisfies (13.4), (Ĝ−1(x)G†(x)J(x))T(Ĝ−1(x)G†(x)J(x)) ≤

δ̂Id, x ∈ R
n, ĜT(x)P2u(x)Ĝ(x) < νIm, x ∈ R

n, and, for all x ∈ R
n, u ∈ R

m, and
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w ∈ R
d,

Vs(f(x) +G(x)u+ J(x)w) = Vs(f(x)) + P1u(x)u+ uTP2u(x)u+ P1w(x)w

+uTPuw(x)w + wTP2w(x)w, (13.34)

0 ≥ Vs(fs(x))− Vs(x) + Γ(x) + εP1u(x)Ĝ(x)ĜT(x)PT
1u(x), (13.35)

a
c+FT(x)F (x)

(2I −Q) ≥
1
4ε

+ ν

1 + Vs(x)
Im +

1

4λ̃
P̃uw(x)P̃

T
uw(x), x ∈ R

n, (13.36)

where fs(x) is given by (13.6),

Γ(x) , 1
4
P1w(x)[(γ

2 − γ̃2)Im − P2w(x)]
−1PT

1w(x) + hT(x)h(x), (13.37)

P̃uw(x) ,
1

1+Vs(x)
ĜT(x)Puw(x)− 2a

c+FT(x)F (x)
Ĝ−1(x)G†(x)J(x)

+ 2aFT(x)F (x)
(c+FT(x)F (x))2

QĜ−1(x)G†(x)J(x), (13.38)

γ > 0, (γ2 − γ̃2)Im − P2w(x) > 0, Q ∈ R
m×m is positive definite with λmax(Q) < 2,

and γ̃ is such that

γ̃2

1 + Vs(x)
− aδ̂λmax(Q)

c+ FT(x)F (x)
≥ λ̃ > 0, x ∈ R

n, (13.39)

where λ̃ ∈ R. Then the adaptive feedback control law

u(k) = Ĝ(x(k))K(k)F (x(k)), (13.40)

where K(k) ∈ R
m×s, k ∈ N , with update law

K(k + 1) = K(k)− 1
c+FT(x(k))F (x(k))

QĜ−1(x(k))G†(x(k))[x(k + 1)− fs(x(k))]FT(k),

(13.41)

guarantees that the solution (x(k), K(k)) ≡ (0, Kg) of the undisturbed (w(k) ≡ 0)

closed-loop system given by (13.32), (13.40), and (13.41) is Lyapunov stable and

h(x(k))→ 0 as k →∞. If, in addition, hT(x)h(x) > 0, x ∈ R
n, x 6= 0, then x(k)→ 0

as k →∞ for all x0 ∈ R
n. Furthermore, the solution x(k), k ∈ N , to the closed-loop

system given by (13.32), (13.40), and (13.41) satisfies the nonexpansivity constraint

K−1
∑

k=0

zT(k)z(k)

1 + Vs(x(k))
≤ γ2

K−1
∑

k=0

wT(k)w(k) + V (x(0), K(0)), K ≥ 0, γ > 0, w(·) ∈ `2,

(13.42)
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where

V (x,K) , ln(1 + Vs(x)) + atr(K −Kg)
TQ−1(K −Kg). (13.43)

Proof. First, define K̃(k) , K(k)−Kg, x̃(k) = F (x(k)), and ũ(k) , K̃(k)x̃(k).

Note that with u(k), k ∈ N , given by (13.40) it follows from (13.32) that

x(k + 1) = f(x(k)) +G(x(k))Ĝ(x(k))K(k)F (x(k)) + J(x(k))w(k),

x(0) = x0, w(·) ∈ `2, k ∈ N , (13.44)

or, equivalently, using the definition for fs(x) given in (13.6),

x(k + 1) = fs(x(k)) +G(x(k))Ĝ(x(k))K̃(k)x̃(k) + J(x(k))w(k)

= fs(x(k)) +G(x(k))Ĝ(x(k))ũ(k) + J(x(k))w(k),

x(0) = x0, w(·) ∈ `2, k ∈ N . (13.45)

Furthermore, note that by adding and subtracting Kg to and from (13.41) and using

(13.45) it follows that

K̃(k + 1) = K̃(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))[G(x(k))Ĝ(x(k))K̃(k)x̃(k)

+J(x(k))w(k)]x̃T(k)

= K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)

− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))J(x(k))w(k)x̃T(k). (13.46)

To show Lyapunov stability of the undisturbed closed-loop system (13.45) and (13.46)

consider the Lyapunov function candidate given by (13.43). Note that V (0, Kg) = 0

and, since Vs(·) and Q are positive definite and a > 0, V (x,K) > 0 for all (x,K) 6=

(0, Kg). Furthermore, V (x,K) is radially unbounded. Now, since (13.34) collapses to

(13.2) in the case where w(k) ≡ 0, Lyapunov stability of the undisturbed closed-loop

system (13.45) and (13.46) as well as x(k) → 0 as k → ∞ for all x0 ∈ R
n follows as

in the proof of Theorem 13.1.
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To show that the nonexpansivity constraint (13.42) holds, note that, for all w ∈

R
d,

0 ≤
[

1
2
PT
1w(x)− ((γ2 − γ̃2)Im − P2w(x))w

]T
[(γ2 − γ̃2)Im − P2w(x)]

−1

·
[

1
2
PT
1w(x)− ((γ2 − γ̃2)Im − P2w(x))w

]

= Γ(x) + (γ2 − γ̃2)wTw − zTz − P1w(x)w − wTP2w(x)w. (13.47)

Now, let w(·) ∈ `2 and let x(k), k ∈ N , denote the solution of the closed-loop system

(13.45). Then, using (13.34), (13.35), (13.39), (13.46), and (13.47), the Lyapunov

difference along the closed-loop system trajectories is given by

∆V (x(k), K(k))

= ln
(

1 + Vs(fs(x(k)) +G(x(k))u(k) + J(x(k))w(k))
)

+atr
(

K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)

− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))J(x(k))w(k)x̃T(k)
)T

Q−1

·
(

K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)

− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))J(x(k))w(k)x̃T(k)
)

− ln(1 + Vs(x(k)))− atrK̃T(k)Q−1K̃(k)

= ln
(

1 +
[

Vs(fs(x(k))) + P1u(x(k))Ĝ(x(k))ũ(k)

+ũT(k)ĜT(x(k))P2u(x(k))Ĝ(x(k))ũ(k) + P1w(x(k))w(k)

+ũT(k)ĜT(x(k))Puw(x(k))w(k) + wT(k)P2w(x(k))w(k)− Vs(x(k))
]

·[1 + Vs(x(k))]
−1
)

+ atrK̃T(k)Q−1K̃(k) + a
(c+x̃T(k)x̃(k))2

tr x̃(k)wT(k)

·JT(x(k))G†
T
(x(k))Ĝ−TQĜ−1(x(k))G†(x(k))J(x(k))w(k)x̃T(k)

+ a
(c+x̃T(k)x̃(k))2

tr x̃(k)x̃T(k)K̃T(k)QK̃(k)x̃(k)x̃T(k)

− 2a
c+x̃T(k)x̃(k)

tr K̃T(k)K̃(k)x̃(k)x̃T(k)

− 2a
c+x̃T(k)x̃(k)

tr K̃T(k)Ĝ−1(x(k))G†(x(k))J(x(k))w(k)x̃T(k)

+ 2a
(c+x̃T(k)x̃(k))2

tr x̃(k)x̃T(k)K̃T(k)QĜ−1(x(k))G†(x(k))J(x(k))w(k)x̃T(k)
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−atrK̃T(k)Q−1K̃(k)

≤ [−Γ(x(k))− εP1u(x(k))Ĝ(x(k))ĜT(x(k))PT
1u(x(k)) + P1u(x(k))Ĝ(x(k))ũ(k)

+νũT(k)ũ(k) + P1w(x(k))w(k) + wT(k)P2w(x(k))w(k)][1 + Vs(x(k))]
−1

+ũT(k)
[

1
1+Vs(x(k))

ĜT(x(k))Puw(x(k))− 2a
c+x̃T(k)x̃(k)

Ĝ−1(x(k))G†(x(k))J(x(k))

+ 2ax̃T(k)x̃(k)
(c+x̃T(k)x̃(k))2

QĜ−1(x(k))G†(x(k))J(x(k))
]

w(k)

+ a
c+x̃T(k)x̃(k)

wT(k)JT(x(k))G†
T
(x(k))Ĝ−TQĜ−1(x(k))G†(x(k))J(x(k))w(k)

− a
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)(2Im −Q)K̃(k)x̃(k)

≤
[

γ2wT(k)w(k)− zT(k)z(k)− εP1u(x(k))Ĝ(x(k))ĜT(x(k))PT
1u(x(k))

+P1u(x(k))Ĝ(x(k))ũ(k) + νũT(k)ũ(k)
]

[1 + Vs(x(k))]
−1

+ũT(k)P̃uw(x(k))w(k)− λ̃wT(k)w(k)

− a
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)(2Im −Q)K̃(k)x̃(k), k ∈ N , (13.48)

where in (13.48) we used ln a − ln b = ln a
b
and ln(1 + c) ≤ c for a, b > 0 and

c ≥ −1, respectively, and x̃Tx̃
c+x̃Tx̃

< 1. Now, using (13.36), adding and subtracting

ũT(k)
[

1
4ε

1
1+Vs(x(k))

Im+ 1
4λ̃
P̃uw(x(k)) · P̃T

uw(x(k))
]

ũ(k), k ∈ N , to and from (13.48), and

collecting terms yields

∆V (x(k), K(k))

≤ 1
1+Vs(x(k))

[γ2wT(k)w(k)− zT(k)z(k)]

− 1
1+Vs(x(k))

[

P1u(x(k)), ũ
T(k)

]

[

εĜ(x(k))ĜT(x(k)) −1
2
Ĝ(x(k))

−1
2
ĜT(x(k)) 1

4ε
Im

] [

PT
1u(x(k))
ũ(k)

]

−
[

ũT(k), wT(k)
]

[

1
4λ̃
P̃uw(x(k))P̃

T
uw(x(k)) −1

2
P̃uw(x(k))

−1
2
P̃T

uw(x(k)) λ̃Id

] [

ũ(k)
w(k)

]

+ũT(k)
[

1
4ε

1
1+Vs(x(k))

Im + 1
4λ̃
P̃uw(x(k))P̃

T
uw(x(k))

]

ũ(k) + ν
1+Vs(x(k))

ũT(k)ũ(k)

− a
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)(2I −Q)K̃(k)x̃(k),

≤ γ2wT(k)w(k)− zT(k)z(k)

1 + Vs(x(k))

−ũT(k)
[

a
c+x̃T(k)x̃(k)

(2I −Q)−
1
4ε

+ ν

1 + Vs(x(k))
Im −

1

4λ̃
P̃uw(x(k))P̃

T
uw(x(k))

]

ũ(k)

398



≤ γ2wT(k)w(k)− zT(k)z(k)

1 + Vs(x(k))
, k ∈ N . (13.49)

Now, summing (13.49) over k = 0, · · · ,K − 1 yields

V (x(K), K(K)) ≤
K−1
∑

k=0

[

γ2wT(k)w(k)− zT(k)z(k)

1 + Vs(x(k))

]

+ V (x(0), K(0)),

K ≥ 0, w(·) ∈ `2, (13.50)

which, by noting that V (x(K), K(K)) ≥ 0, K ≥ 0, yields (13.42). ¤

It is important to note that unlike Theorem 13.1 requiring a matching condition

on the disturbance, Theorem 13.2 does not require any such matching condition.

Furthermore, as shown in Section 13.2, if (13.32) is in normal form with asymptotically

stable internal dynamics and fT(x)f(x) ≤ γ̂xTx, x ∈ R
n, where γ̂ > 0, then we can

always construct a function F : R
n → R

s such that F (·) satisfies (13.4) and (13.34)–

(13.36) hold without requiring knowledge of the system dynamics. In addition, in the

case where J(x) = D and h(x) = Ex, the adaptive controller (13.40) can be verified to

guarantee the modified nonexpansivity constraint (13.42) using standard linear H∞

methods. Specifically, choosing fs(x) = Asx, where As is asymptotically stable and

in multivariable controllable canonical form, it follows from standard discrete-time

H∞ theory [73] that if (As, E) is observable, ‖G(s)‖∞ <
√

γ2 − γ̃2, where G(s) =

E(sIn−As)
−1D, if and only if there exists a positive-definite matrix P satisfying the

discrete-time bounded real Riccati inequality

0 > AT
s PAs − P + AT

s PD[(γ2 − γ̃2)Im −DTPD]−1DTPAs + ETE. (13.51)

In this case, if G(x) ≡ B is a constant matrix, then there exists a sufficiently small

ε > 0 such that

0 ≥ AT
s PAs−P +AT

s PD[(γ2− γ̃2)Im−DTPD]−1DTPAs +ETE +4εAT
s PBB

TPAs.

(13.52)
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Now, with Vs(x) = xTPx, there exists λ̃ > 0 such that (13.34)–(13.36) and (13.39) are

satisfied with Ĝ(x) = Im, Q = Im, P1u(x) = 2xTAT
s PB, P2u(x) = BTPB, P1w(x) =

2xTAT
s PD, Puw(x) = 2BTPD, P2w(x) = DTPD, and a > ( 1

4ε
+ν) ·max{c, γ̄

µ
}. Hence,

the adaptive feedback controller (13.40) with update law (13.41), or, equivalently,

K(k + 1) = K(k)− 1
c+FT(x(k))F (x(k))

B†[x(k + 1)− Asx(k)]F
T(k), (13.53)

guarantees global asymptotic stability of the nonlinear undisturbed (w(k) ≡ 0) dy-

namical system (13.32), where f(x) and G(x) are given by (13.24) with Gs(x) ≡ Bs.

Furthermore, the solution x(k), k ∈ N , of the closed-loop nonlinear dynamical system

(13.32), (13.33) is guaranteed to satisfy the nonexpansivity constraint (13.42).

Finally, if f(x) and G(x) given by (13.24) are uncertain and Gs(x) = BuGn(x),

where a bound for the maximum singular value α of Bu and the sign definiteness of

Bu are known, then using an identical approach as in Section 13.2, it can be shown

that the adaptive feedback control law

u(k) = α̂−1G−1n (x(k))K(k)F (x(k)), (13.54)

where α̂ > α
2
, with update law

K(k + 1) = K(k)− 1
c+x̃T(k)x̃(k)

BT
0 [x(k + 1)− fs(x(k))]x̃T(k), (13.55)

where B0 is defined as in Section 13.2, guarantees asymptotic stability and nonex-

pansivity of (13.32).

13.4. Illustrative Numerical Examples

In this section we present three numerical examples to demonstrate the utility

of the proposed discrete-time adaptive control framework for adaptive stabilization,

disturbance rejection, and command following.
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Example 13.1. Consider the linear uncertain system given by

z(k + 2) + a1z(k + 1) + a0z(k) = bu(k) + d̂ sin 7k, z(0) = z0, z(1) = z1, k ∈ N ,

(13.56)

where z(k) ∈ R, k ∈ N , u(k) ∈ R, k ∈ N , and a0, a1, b, d̂ ∈ R are unknown constants.

Note that with x1(k) = z(k) and x2(k) = z(k + 1), (13.56) can be written in state

space form (13.1) with x = [x1, x2]
T, f(x) = [x2,−a0x1 − a1x2]

T, G(x) = [0, b]T,

J(x) = [0, d̂]T, and w(k) = sin 7k. Here, we assume that f(x) is unknown and can be

parameterized as f(x) = [x2, θ1x1 + θ2x2]
T, where θ1 and θ2 are unknown constants.

Furthermore, we assume that sgn b is known and |b| < α = 2. Next, let Gn(x) = 1,

F (x) = x, α̂ = 1, and Kg =
1
b
[θn1 − θ1, θn2 − θ2] , where θn1 , θn2 are arbitrary scalars,

so that

fs(x) = f(x) +

[

0
b

]

1

b

[

θn1 − θ1, θn2 − θ2
]

F (x)

=

[

0 1
θn1 θn2

]

x.

Note that since (13.56) is linear all the conditions of Corollary 13.1 are trivially

satisfied. Now, with the proper choice of θn1 and θn2 , it follows from Corollary 13.1

that the adaptive feedback controller (13.30) guarantees that x(k) → 0 as k → ∞.

With α̂ = 1, θ1 = −1, θ2 = 0.25, b = 0.4, d̂ = 10, c = 1, θn1 = −0.02, θn2 = 0.3, and

initial conditions x(0) = [−1, 3]T and K(0) = [0, 0, 0], Figure 13.1 shows the phase

portrait of the controlled and uncontrolled system. Note that the adaptive controller

is switched on at k = 30. Figure 13.2 shows the state trajectories versus time and

the control signal versus time. Finally, Figure 13.3 shows the adaptive gain history

versus time.

Example 13.2. Consider the two-degree of freedom uncertain linear system given

by

Msz(k+2)+Csz(k+1)+Ksz(k) = u(k), z(0) = z0, z(1) = z1, k ∈ N , (13.57)
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Figure 13.1: Phase portrait of controlled and uncontrolled system

where z(k) ∈ R
2, u(k) ∈ R

2, k ∈ N , and Ms, Cs, Ks ∈ R
2×2 are unknown matrices.

Here we assume that Ms = MT
s > 0 and λmax(M

−1
s ) < α = 2 but otherwise Ms is

unknown. Let rd(k) be a desired command signal and define the error state ẽ(k) ,

z(k)− rd(k) so that the error dynamics are given by

Msẽ(k + 2) + Csẽ(k + 1) +Ksẽ(k) = u(k)−Msrd(k + 2)− Csrd(k + 1)−Ksrd(k),

ẽ(0) = ẽ0, ẽ(1) = ẽ1, k ∈ N . (13.58)

Note that with e1(k) = ẽ(k) and e2(k) = ẽ(k + 1), (13.58) can be written in state

space form (13.22) with e = [eT1 , e
T
2 ]

T, fk(k, e) = [eT2 ,−(M−1
s Kse1 + M−1

s Cse2)
T]T,

G(k, e) = [02×2,M
−1
s ]T, Jk(k, e) = [06×2, D̂

T
k ]

T, where D̂k = [−I2,−M−1
s Cs,−M−1

s Ks],

and wk(k) = [rTd (k+2), rTd (k+1), rTd (k)]
T. Next, let Gn(x) = I, F (e) = e, α̂ = 1, and

Kg = Ms[Θn1 +M−1
s Ks,Θn2 +M−1

s Cs], where Θn1 ∈ R
2×2, Θn2 ∈ R

2×2 are arbitrary
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Figure 13.2: State trajectories and control signal versus time
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Figure 13.3: Adaptive gain history versus time
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Figure 13.4: Positions and control signals versus time

matrices, so that

fs(e) =

[

02 I2
Θn1 Θn2

]

e.

Note that since (13.57) is linear all the conditions of Corollary 13.1 are trivially

satisfied. Now, with the proper choice of Θn1 and Θn2 , it follows from Corollary

13.1 and Remark 13.3 that the adaptive feedback controller (13.30) guarantees that

e(k)→ 0 as t→∞. With

Ms =

[

3 1
1 2

]

, Cs =

[

2 2
1 1

]

, Ks =

[

2 1
1 2

]

,

rd(k) = [sin 0.5k, 0.5]T, α̂ = 1, c = 1, Θn1 = Θn2 = 02, and initial conditions

x(0) = [3,−4,−2, 1]T and K(0) = 02×10, Figure 13.4 shows the actual positions

and the reference signals versus time and the control signals versus time. Note that

the adaptive controller is switched on at k = 40.
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Example 13.3. Consider the nonlinear uncertain system given by

z(k+2)+a1
z3(k)

1 + z2(k)
+a2 ln(1+|z(k+1)|) = bu(k), z(0) = z0, z(1) = z1, k ∈ N ,

(13.59)

where z(k) ∈ R, k ∈ N , u(k) ∈ R, k ∈ N , and a1, a2, b ∈ R are unknown constants.

Note that with x1(k) = z(k) and x2(k) = z(k+1), (13.59) can be written in state space

form (13.1) with x = [x1, x2]
T, f(x) = [x2,−a1 x31

1+x21
− a2 ln(1 + |x2|)]T, G(x) = [0, b]T,

and w(k) ≡ 0. Here, we assume that f(x) is unknown and can be parameterized

as f(x) = [x2, θ1
x31

1+x21
+ θ2 ln(1 + |x2|)]T, where θ1 and θ2 are unknown constants.

Furthermore, we assume that sgn b is known and |b| < α = 2. Next, let Gn(x) = 1,

F (x) = [
x31

1+x21
, ln(1 + |x2|), xT]T, α̂ = 1, and Kg = 1

b
[−θ1,−θ2, φn1 , φn2 ] , where φn1 ,

φn2 are arbitrary scalars, so that

fs(x) = f(x) +

[

0
b

]

1

b

[

−θ1,−θ2, φn1 , φn2
]

F (x)

=

[

0 1
φn1 φn2

]

x.

In addition, note that FT(x)F (x) =
(

x21
1+x21

)2

x21 + ln2(1 + |x2|) + xTx ≤ 2xTx and

thus (13.4) is satisfied with γ̄ = 2. Now, with the proper choice of φn1 and φn2 , it

follows from Corollary 13.1 that the adaptive feedback controller (13.30) guarantees

that x(k) → 0 as k → ∞. With α̂ = 1, θ1 = 2, θ2 = −3, b = 1.4, c = 1, θn1 = 0.1,

θn2 = 0.1, and initial conditions x(0) = [1.5, 7.3]T and K(0) = [0, 0, 0, 0], Figure 13.5

shows the state trajectory versus time and the control signal versus time. Finally,

Figure 13.6 shows the adaptive gain history versus time.

13.5. Conclusion

A discrete-time direct adaptive nonlinear control framework for adaptive stabi-

lization, disturbance rejection, and command following of multivariable nonlinear

uncertain dynamical systems with exogenous bounded disturbances and bounded en-
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Figure 13.5: State trajectory and control signal versus time
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Figure 13.6: Adaptive gain history versus time
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ergy `2 disturbances was developed. This framework is distinct from the standard

discrete-time adaptive control methods for model reference and tracking problems de-

veloped in the literature predicated on the classical key technical lemma and quadratic

Lyapunov functions, which does not guarantee Lyapunov stability. Specifically, using

logarithmic Lyapunov functions the proposed framework was shown to guarantee par-

tial asymptotic stability of the closed-loop system; that is, asymptotic stability with

respect to part of the closed-loop system states associated with the plant. Hence, un-

like continuous-time adaptive control theory based on quadratic Lyapunov functions,

logarithmic Lyapunov functions are shown to be essential for discrete-time Lyapunov-

based adaptive control. Furthermore, in the case where the nonlinear system is rep-

resented in normal form, the nonlinear adaptive controllers were constructed without

knowledge of the system dynamics. Future research will involve using logarithmic

Lyapunov functions to extend discrete-time adaptive control results based on recur-

sive least squares and least mean squares algorithms to additionally guarantee partial

asymptotic stability. Finally, output feedback extensions will also be considered.
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Chapter 14

Direct Discrete-Time Adaptive

Control with Guaranteed

Parameter Error

Convergence

14.1. Introduction

Adaptive control algorithms have been extensively developed in the literature for

both continuous-time and discrete-time systems [56, 61, 71, 72, 136, 147, 176, 177]. A

salient difference between continuous-time and discrete-time adaptive controllers is

that the majority of the discrete-time results are based on recursive least-squares

and least mean squares algorithms [56, 61, 71, 72, 177] with primary focus on state

convergence. Notable exceptions are given in [92, 128, 196, 231, 242]. In this chapter

we develop a direct adaptive nonlinear tracking control framework based on semidef-

inite or partial Lyapunov functions for discrete-time nonlinear uncertain dynamical

systems. The proposed framework guarantees attraction of the closed-loop tracking

error dynamics in the face of parametric system uncertainty. In addition, parameter

error convergence is also guaranteed when a generic geometric constraint on the up-

date error gain matrix function holds. This condition is shown to be consistent with
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the notion of persistent excitation in the adaptive control and system identification

literature.

14.2. Adaptive Tracking for Nonlinear Uncertain Systems

In this section we consider the problem of characterizing adaptive feedback track-

ing control laws for nonlinear uncertain discrete-time systems. Specifically, consider

the controlled nonlinear uncertain discrete-time system G given by

x(k + 1) = f(x(k)) +G(x(k))u(k), x(0) = x0, k ∈ N , (14.1)

where x(k) ∈ R
n, k ∈ N , is the state vector, u(k) ∈ R

m, k ∈ N , is the control input,

f : R
n → R

n, G : R
n → R

n×m, and N denotes the set of nonnegative integers. Here,

we assume that a desired trajectory (command) xd(k), k ∈ N , is given and the aim

is to determine the control input u(k), k ∈ N , so that lim
k→∞
‖x(k) − xd(k)‖ = 0. To

achieve this, we construct a reference system Gr given by

xr(k + 1) = Arxr(k) +Brr(k), xr(0) = xr0 , k ∈ N , (14.2)

where xr(k) ∈ R
n, k ∈ N , is the reference state vector, r(k) ∈ R

m, k ∈ N , is the

reference input, Ar ∈ R
n×n is Schur, and Br ∈ R

n×m. Now, we design u(k), k ∈ N ,

and a bounded reference function r(k), k ∈ N , such that lim
k→∞
‖x(k)−xr(k)‖ = 0 and

lim
k→∞
‖xr(k)−xd(k)‖ = 0, respectively, so that lim

k→∞
‖x(k)−xd(k)‖ = 0. The following

result provides a control architecture that achieves tracking error convergence in the

case where the dynamics in (14.1) are known. The case where G is unknown is

addressed in Theorem 14.2. For the statement of this result define the tracking error

e(k) , x(k)− xr(k).

Theorem 14.1. Consider the nonlinear dynamical system G given by (14.1) and

the reference system Gr given by (14.2) with Ar Schur. Assume there exist gain
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matrices K̂1 ∈ R
m×m and K̂2 ∈ R

m×s, and functions Ĝ : R
n → R

m×m and F : R
n →

R
s such that

0 = G(x)Ĝ(x)K̂1 −Br, x ∈ R
n, (14.3)

0 = f(x) +G(x)Ĝ(x)K̂2F (x)− Arx, x ∈ R
n, (14.4)

hold. Then the feedback control law

u(k) = Ĝ(x(k))(K̂1r(k) + K̂2F (x(k))), (14.5)

guarantees that the zero solution e(k) ≡ 0 of the error dynamics given by

e(k+1) = f(x(k))+G(x(k))u(k)−(Arxr(k)+Brr(k)), e(0) = x0−xr0 , e0, (14.6)

is globally asymptotically stable.

Proof. Using the feedback control law given by (14.5), (14.6) becomes

e(k + 1) = Are(k) + (G(x(k))Ĝ(x(k))K̂2F (x(k)) + f(x(k))− Arx(k))

+(G(x(k))Ĝ(x(k))K̂1 −Br)r(k), e(0) = e0, k ∈ N . (14.7)

Now, using (14.3) and (14.4), it follows from (14.7) that

e(k + 1) = Are(k), e(0) = e0, k ∈ N , (14.8)

which, since Ar is Schur by assumption, proves that the zero solution e(k) ≡ 0 to

(14.6) is globally asymptotically stable. ¤

Theorem 14.1 provides sufficient conditions for characterizing tracking controllers

for a given nominal nonlinear dynamical system G. In the next result we show how

to construct adaptive gains K1(k) ∈ R
m×m, k ∈ N , and K2(k) ∈ R

m×s, k ∈ N , for

achieving tracking control in the face of system uncertainty. For this result we do

not require explicit knowledge of the gain matrices K̂1 and K̂2; all that is required
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is the existence of K̂1 and K̂2 such that the compatibility relations (14.3) and (14.4)

hold. For the statement of the next result ( )† denotes the Moore-Penrose generalized

inverse.

Theorem 14.2. Consider the nonlinear dynamical system G given by (14.1) and

the reference system Gr given by (14.2). Assume there exist gain matrices K̂1 ∈ R
m×m

and K̂2 ∈ R
m×s, and functions Ĝ : R

n → R
m×m and F : R

n → R
s such that Ĝ(·)

is invertible and (14.3) and (14.4) hold. In addition, let x̃(k) , [rT(k), FT(x(k))]T,

c > 0, and Q ∈ R
m×m be positive definite such that λmax(Q) < 2. Then the adaptive

feedback control law

u(k) = Ĝ(x(k))K(k)x̃(k), (14.9)

where K(k) ∈ R
m×(m+s), k ∈ N , with update law

K(k + 1) = K(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))[e(k + 1)− Are(k)]x̃
T(k),

K(0) = K0, k ∈ N , (14.10)

guarantees that the solution (x(k), xr(k), K(k)), k ∈ N , of the closed-loop system

given by (14.1), (14.2), (14.9), and (14.10) satisfies x(k)→ xr(k) as k →∞.

Proof. First, note that with u(k), k ∈ N , given by (14.9) it follows from (14.1)–(14.4)

that the error dynamics e(k), k ∈ N , are given by

e(k + 1) = Are(k) + w(k), e(0) = e0, k ∈ N , (14.11)

where w(k) , G(x(k))Ĝ(x(k))K̃(k)x̃(k), k ∈ N , with K̃(k) , K(k) − K̂ and K̂ ,

[K̂1, K̂2]. Furthermore, note that adding and subtracting K̂ to and from (14.10) and

using (14.11) it follows that

K̃(k + 1) = K̃(k)− 1
c+x̃T(k)x̃(k)

QĜ−1(x(k))G†(x(k))[G(x(k))Ĝ(x(k))K̃(k)x̃(k)]x̃T(k)

= K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k), K(0) = K0, k ∈ N . (14.12)
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To show that x(k)→ xr(k) as k →∞ or, equivalently, e(k)→ 0 as k →∞, consider

the partial Lyapunov function

V (K) = tr (K − K̂)TQ−1(K − K̂). (14.13)

Note that since Q is positive definite V (K) > 0, K ∈ R
m×(m+s), K 6= K̂. Now,

letting e(k), k ∈ N , denote the solution to (14.11) and using (14.12), it follows that

the partial Lyapunov difference ∆V (K(k)) along the closed-loop system trajectories

is given by

∆V (k, x(k), K(k)) , V (K(k + 1))− V (K(k))

= tr
(

K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)
)T

Q−1

·
(

K̃(k)− 1
c+x̃T(k)x̃(k)

QK̃(k)x̃(k)x̃T(k)
)

− tr K̃T(k)Q−1K̃(k)

= tr K̃T(k)Q−1K̃(k)− 2
c+x̃T(k)x̃(k)

tr K̃T(k)K̃(k)x̃(k)x̃T(k)

+ 1
(c+x̃T(k)x̃(k))2

tr x̃(k)x̃T(k)K̃T(k)QK̃(k)x̃(k)x̃T(k)

−tr K̃T(k)Q−1K̃(k)

≤ − 2
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)K̃(k)x̃(k)

+
1

c+ x̃T(k)x̃(k)
x̃T(k)K̃T(k)QK̃(k)x̃(k)

= − 1
c+x̃T(k)x̃(k)

x̃T(k)K̃T(k)(2I −Q)K̃(k)x̃(k)

≤ 0, k ∈ N , (14.14)

where in (14.14) we used x̃Tx̃
c+x̃Tx̃

< 1 and 2I−Q > 0, since by assumption λmax(Q) < 2.

Hence, V (K(k)), k ∈ N , is a nonincreasing and bounded function of k. Thus,

it follows from the monotone convergence theorem (see Theorem 8.6 of [10]) that

lim
k→∞

V (K(k)) exists which implies that ∆V (k, x(k), K(k)) → 0 as k → ∞. Now, it

follows from (14.14) that G(·) and Ĝ(·) are bounded and K̃(k)x̃(k) → 0 as k → ∞.

Next, to show that e(k)→ 0 as k →∞, note that (14.11) is input-to-state stable [127]

with w(k) viewed as the input. Now, it follows from Lemma 3.8 of [127] that (14.11)
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admits a K-asymptotic gain [127]; that is, there exists a class K function γ(·) such

that

lim
k→∞
‖e(k)‖ ≤ lim

k→∞
γ(‖w(k)‖). (14.15)

Hence, since w(k)→ 0 as k →∞, it follows that e(k)→ 0 as k →∞. ¤

Remark 14.1. Note that it was shown in the proof of Theorem 14.2 that K̃(k)x̃(k)

→ 0 as k → ∞. If x̃(k) 6∈ N (K̃(k)), k ∈ N , where N (·) denotes the null space op-

erator, it follows that K̃(k) → 0 as k → ∞ and hence parameter convergence is

guaranteed. The condition x̃(k) 6∈ N (K̃(k)), k ∈ N , is a form of a persistent exci-

tation requirement and, within the proposed adaptive control framework, can always

be satisfied. Specifically, since x̃(k), k ∈ N , contains r(k), which is an arbitrary func-

tion, it is always possible to choose r(k), k ∈ N , to guarantee that x̃(k) 6∈ N (K̃(k)),

k ∈ N .

It is important to note that the adaptive control law (14.9) and (14.10) does not

require explicit knowledge of the gain matrices K̂1 and K̂2. Furthermore, no specific

structure on the nonlinear dynamics f(x) are required to apply Theorem 14.2; all that

is required is the existence of F (x) and Ĝ(x) such that the compatibility relations

(14.3) and (14.4) hold for a given reference system Gr. The compatibility conditions

(14.3) and (14.4) provide a generalization to the stronger conditions already existing

in the literature required for tracking control using feedback linearization techniques.

However, if (14.1) is in normal form with asymptotically stable internal dynamics

[122], then we can always construct functions Ĝ : R
n → R

m×m and F : R
n → R

s,

and a pair (Ar, Br) with Ar Schur, such that (14.3) and (14.4) hold without requiring

knowledge of the system dynamics.
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To elucidate the above discussion assume that the nonlinear uncertain system G

is generated by the difference model

zi(k + τi) = fui(z(k)) +
m
∑

j=1

Gs(i,j)(z(k))uj(k), k ∈ N , i = 1, · · · ,m, (14.16)

where τi ∈ N denotes the time delay (or relative degree) with respect to the output zi,

z(k) = [z1(k), · · · , z1(k+ τ1− 1), · · · , zm(k), · · · , zm(k+ τm− 1)], and z(0) = z0. Here,

we assume that the square matrix function Gs(z) composed of the entries Gs(i,j)(z),

i, j = 1, · · · ,m, is such that detGs(z) 6= 0, z ∈ R
τ̂ , where τ̂ = τ1 + · · · + τm.

Furthermore, since (14.16) is in a form where it does not possess internal dynamics,

it follows that τ̂ = n. The case where (14.16) possesses input-to-state stable internal

dynamics can be analogously handled as shown in Section 2.2.

Next, define xi(k) , [ zi(k), · · · , zi(k+τi−2)]T, i = 1, · · · ,m, xm+1(k) , [ z1(k+τ1

−1), · · · , zm(k + τm − 1)]T, and x(k) , [xT1 (k), · · · , xTm+1(k)]
T so that (14.16) can be

described by (14.1) with

f(x) = Ãx+ f̃u(x), G(x) =

[

0(n−m)×m

Gs(x)

]

, (14.17)

where

Ã =

[

A0

0m×n

]

, f̃u(x) =

[

0(n−m)×1
fu(x)

]

, (14.18)

A0 ∈ R
(n−m)×n is a known matrix of zeros and ones capturing the multivariable

controllable canonical form representation [43] and fu : R
n → R

m is an unknown

function. Here, we assume that fu(x) is unknown and is parameterized as fu(x) =

Θ̀ x + Θǹ fǹ (x), where fǹ : R
n → R

q, and Θ̀ ∈ R
m×n and Θǹ ∈ R

m×q are matrices

of uncertain constant parameters.

Next, to apply Theorem 14.2 to the uncertain system (14.1) with f(x) and G(x)

given by (14.17), let Br =
[

0(n−m)×m, Br
T
s

]T
, let Ar =

[

AT
0 , Θ

T
n

]T
, where Θn ∈ R

m×n

is a known matrix, let K̂2 ∈ R
m×s, where s = n+ q, be given by

K̂2 = [Θn − Θ̀ , −Θǹ ], (14.19)
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and let

F (x) =

[

x
fǹ (x)

]

. (14.20)

In this case, it follows that, with Ĝ(x) = G−1s (x) and K̂1 = Brs,

G(x)Ĝ(x)K̂1 = Br (14.21)

and

f(x) +G(x)Ĝ(x)K̂2F (x) = Ãx+ f̃u(x) +

[

0(n−m)×m

Im

]

[

Θnx− Θ̀ x−Θǹ fǹ (x)
]

= Ãx+

[

0(n−m)×1
Θnx

]

= Arx, (14.22)

where Ar is in multivariable controllable canonical form.

Next, we consider the case where f(x) and G(x) are both uncertain. Specifically,

we assume that G(x) is such that Gs(x) is unknown and is parameterized as Gs(x) =

BuGn(x), where Gn : R
n → R

m×m is known and satisfies detGn(x) 6= 0, x ∈ R
n, and

Bu ∈ R
m×m, with detBu 6= 0 and σmax(Bu) < α, α > 0, is an unknown symmetric

sign-definite matrix but a bound α for the maximum singular value of Bu and the

sign definiteness of Bu are known; that is, Bu > 0 or Bu < 0. For the statement of

the next result define B0 ,
[

0m×(n−m), Im
]T

for Bu > 0, and B0 ,
[

0m×(n−m), −Im
]T

for Bu < 0.

Corollary 14.1. Consider the nonlinear dynamical system G given by (14.1) with

f(x) and G(x) given by (14.17), and Gs(x) = BuGn(x), where Bu, with σmax(Bu) < α,

α > 0, is an unknown symmetric sign-definite matrix and the sign definiteness of Bu

is known. Furthermore, consider the reference system Gr given by (14.2) with Ar

Schur. Assume there exist gain matrices K̂1 ∈ R
m×m and K̂2 ∈ R

m×s, and functions

Ĝ : R
n → R

m×m and F : R
n → R

s such that (14.3) and (14.4) hold. In addition, let
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x̃(k) , [rT(k) FT(x(k))]T and c > 0. Then the adaptive feedback control law

u(k) = α̂−1G−1n (x(k))K(k)x̃(k), (14.23)

where α̂ > α
2
and K(k) ∈ R

m×(m+s), k ∈ N , with update law

K(k + 1) = K(k)− 1
c+x̃T(k)x̃(k)

BT
0 [e(k + 1)− Are(k)]x̃

T(k), K(0) = K0, k ∈ N ,

(14.24)

guarantees that the solution (x(k), xr(k), K(k)), k ∈ N , of the closed-loop system

given by (14.1), (14.2), (14.23), and (14.24) satisfies x(k)→ xr(k) as k →∞.

Proof. The result is a direct consequence of Theorem 14.2. First, let Ĝ(x) =

α̂−1G−1n (x) so that G(x)Ĝ(x)=[0m×(n−m), α̂
−1Bu]

T, and let K̂1 = α̂B−1u Brs and K̂2 =

α̂B−1u [ Θn−Θ̀ , −Θǹ ]. Next, since Q in (14.10) is an arbitrary positive-definite matrix

with λmax(Q) < 2, it can be replaced by α̂−1|Bu| = α̂−1(B2
u)

1
2 , where (·) 12 denotes the

(unique) positive-definite square root. Now, since Bu is symmetric and sign definite

it follows from the Schur decomposition that Bu = UDBuU
T, where U is orthogonal

and DBu is real diagonal. Hence, α̂−1|Bu|Ĝ−1(x)G†(x) = [0m×(n−m), Im] = BT
0 , where

Im = Im for Bu > 0 and Im = −Im for Bs < 0. Now, (14.10) implies (14.24).

14.3. Illustrative Numerical Examples

In this section we present two numerical examples to demonstrate the utility

of the proposed discrete-time adaptive control framework for adaptive tracking and

parameter identification. For both of the examples we use the reference system (14.2)

with

Ar =

[

0 1
−0.01 0.2

]

, Br =

[

0
1

]

, r(k) = B†r (xd(k + 1)− Arxd(k)), k ∈ N ,

(14.25)

where xd(k), k ∈ N , is the desired command signal. Note that (14.25) implies that

Θn = [−0.01, 0.2] and Brs = 1.
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Example 14.1. Consider the linear uncertain system given by

z(k + 2) + a1z(k + 1) + a0z(k) = bu(k), z(0) = z0, z(1) = z1, k ∈ N , (14.26)

where z(k) ∈ R, k ∈ N , u(k) ∈ R, k ∈ N , and a0, a1, b ∈ R are unknown constants.

Note that with x1(k) = z(k) and x2(k) = z(k + 1), (14.26) can be written in state

space form (14.1) with x = [x1, x2]
T, f(x) = [x2, −a0x1− a1x2]T, and G(x) = [0, b]T.

Here, we assume that f(x) is unknown and can be parameterized as f(x) = [x2, θ1x1+

θ2x2]
T, where θ1 and θ2 are unknown constants. Furthermore, we assume that sign b

is known and |b| < α = 2. Next, let Ĝ(x) = 1, Gn(x) = 1, Bu = b, F (x) = x, K̂1 =
1
b
,

and K̂2 =
1
b

[

Θn1 − θ1, Θn2 − θ2
]

, so that

G(x)Ĝ(x)K̂1 =

[

0
b

]

1

b
=

[

0
1

]

= Br,

f(x) +G(x)Ĝ(x)K̂2F (x) =

[

0 1
θ1 θ2

]

x+

[

0
b

]

1

b

[

Θn1 − θ1, Θn2 − θ2
]

x

=

[

0 1
Θn1 Θn2

]

x

= Arx.

Now, with the proper choice of Θn1 and Θn2 , it follows from Corollary 14.1 that the

adaptive feedback controller (14.23) guarantees that x(k) → xr(k) as k → ∞. For

our simulations we considered θ1 = −1, θ2 = 0.25, b = 0.4, c = 0.01, α̂ = 1, initial

conditions x(0) = xr(0) = [−1, 3]T and K(0) = [0, 0, 0], and xd(k) = 3 sin( π
10
k).

Figure 14.1 shows the state trajectories versus time and the control signal versus

time. Figure 14.2 shows the adaptive gain history versus time. Note that the adaptive

controller is switched on at k = 30. The given commanded signal is tracked well and

the convergence is fast. However, given the low frequency content of xd(k) and hence

r(k), r(k) is not a rich enough signal to provide persistent excitation and consequently

the adaptive gains do not converge to their actual values.
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Figure 14.1: State and reference trajectories and control signal versus time
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Figure 14.2: Adaptive gain history versus time
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Example 14.2. Consider the nonlinear uncertain system given by

z(k+2)+a1
z3(k)

1 + z2(k)
+a2 ln(1+|z(k+1)|) = bu(k), z(0) = z0, z(1) = z1, k ∈ N ,

(14.27)

where z(k) ∈ R, k ∈ N , u(k) ∈ R, k ∈ N , and a1, a2, b ∈ R are unknown constants.

Note that with x1(k) = z(k) and x2(k) = z(k+1), (14.27) can be written in state space

form (14.1) with x = [x1, x2]
T, f(x) = [x2, −a1 x31

1+x21
− a2 ln(1 + |x2|)]T, and G(x) =

[0, b]T. Here, we assume that f(x) is unknown and can be parameterized as f(x) =

[x2, θ1
x31

1+x21
+ θ2 ln(1 + |x2|)]T, where θ1 and θ2 are unknown constants. Furthermore,

we assume that sign b is known and |b| < α = 2. Next, let Ĝ(x) = 1, Gn(x) = 1,

Bu = b, F (x) = [xT,
x31

1+x21
, ln(1 + |x2|)]T, K̂1 =

1
b
, and K̂2 =

1
b
[Θn1 ,Θn2 ,−θ1,−θ2], so

that

G(x)Ĝ(x)K̂1 =

[

0
b

]

1

b
=

[

0
1

]

= Br,

f(x) +G(x)Ĝ(x)K̂2F (x) =

[

0 1
0 0

]

x+

[

0

θ1
x31

1+x21
+ θ2 ln(1 + |x2|)

]

+

[

0
b

]

1

b
[Θn1 ,Θn2 ,−θ1,−θ2]F (x)

=

[

0 1
Θn1 Θn2

]

x

= Arx.

Now, with the proper choice of Θn1 and Θn2 , it follows from Corollary 14.1 that the

adaptive feedback controller (14.23) guarantees that x(k)→ xr(k) as k →∞. For our

simulations we considered θ1 = 2, θ2 = −3, b = 1.4, c = 0.01, α̂ = 2, initial conditions

x(0) = xr(0) = [1.5, 7.3]T, K(0) = [0, 0, 0, 0, 0], and xd(k) = 3 sin( π
10
k). Figure 14.3

shows the state trajectory versus time and the control signal versus time. Finally,

Figure 14.4 shows the adaptive gain history versus time. As in the previous example,

the commanded signal is tracked well however the adaptive gains do not converge to

their actual values.
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Figure 14.3: State trajectory and control signal versus time
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Figure 14.4: Adaptive gain history versus time
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Figure 14.5: State trajectory and control signal versus time with random reference
input

In order to demonstrate parameter error convergence we consider the same uncer-

tain system but with a richer reference input corresponding to a random signal with

values in [−1, 1]. Figure 14.5 shows the corresponding state trajectory versus time

and the control signal versus time, while Figure 14.6 shows the adaptive gain history

versus time. In this case, the persistent excitation condition is satisfied and thus the

adaptive gains converge to their actual values.

14.4. Conclusion

A direct adaptive nonlinear tracking control framework for discrete-time multi-

variable nonlinear uncertain dynamical systems was developed. In addition to at-

traction to a desired trajectory, parameter error convergence was also guaranteed

when a generic geometric constraint holds on the update error gain matrix function.
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Figure 14.6: Adaptive gain history versus time with random reference input

This condition was shown to be consistent with a persistent excitation requirement.

Finally, two numerical examples were presented to demonstrate the efficacy of the

proposed adaptive tracking scheme.

422



Chapter 15

Hybrid Adaptive Control for

Nonlinear Uncertain Impulsive

Dynamical Systems

15.1. Introduction

Modern complex engineering systems involve multiple modes of operation placing

stringent demands on controller design and implementation of increasing complexity.

Such systems typically possess a multiechelon hierarchical hybrid control architec-

ture characterized by continuous-time dynamics at the lower levels of the hierarchy

and discrete-time dynamics at the higher levels of the hierarchy (see [8, 173] and

the numerous references therein). The lower-level units directly interact with the

dynamical system to be controlled while the higher-level units receive information

from the lower-level units as inputs and provide (possibly discrete) output commands

which serve to coordinate and reconcile the (sometimes competing) actions of the

lower-level units. The hierarchical controller organization reduces processor cost and

controller complexity by breaking up the processing task into relatively small pieces

and decomposing the fast and slow control functions. Typically, the higher-level units

perform logical checks that determine system mode operation, while the lower-level

units execute continuous-variable commands for a given system mode of operation.
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The mathematical description of many of these systems can be characterized by im-

pulsive differential equations [15,80,151,202].

The ability of developing a hierarchical nonlinear integrated hybrid control-system

design methodology for robust, high performance controllers satisfying multiple design

criteria and real-world hardware constraints is imperative in light of the increasingly

complex nature of dynamical systems requiring controls such as advanced high per-

formance tactical fighter aircraft, variable-cycle gas turbine engines, biological and

physiological systems, sampled-data systems, discrete-event systems, intelligent ve-

hicle/highway systems, and flight control systems, to cite but a few examples. The

inherent severe nonlinearities and uncertainties of these systems and the increasingly

stringent performance requirements required for controlling such modern complex

embedded systems necessitates the development of hybrid adaptive nonlinear control

methodologies.

Even though adaptive control algorithms have been extensively developed in the

literature for both continuous-time and discrete-time systems [56,61,71,72,92,128,136,

147, 176, 177, 196, 230, 242], hybrid adaptive control algorithms for hybrid dynamical

systems are nonexistent. In this chapter we develop a direct hybrid adaptive con-

trol framework for nonlinear uncertain impulsive dynamical systems. In particular,

a Lyapunov-based hybrid adaptive control framework is developed that guarantees

partial asymptotic stability of the closed-loop hybrid system; that is, asymptotic sta-

bility with respect to part of the closed-loop system states associated with the hybrid

plant dynamics. Furthermore, the remainder of the state associated with the adaptive

controller gains is shown to be Lyapunov stable. Next, using the hybrid invariance

principle given in [35, 80], we relax several of the conditions needed for guaranteeing

partial asymptotic stabilization to develop an alternative less restrictive hybrid adap-

tive control framework that guarantees attraction of the closed-loop system states
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associated with the hybrid plant dynamics. In this case, the remainder of the state

associated with the hybrid adaptive controller gains is shown to be bounded. In the

case where the nonlinear hybrid system is represented in a hybrid normal form, the

nonlinear hybrid adaptive controllers are constructed without requiring knowledge of

the hybrid system dynamics. Finally, we note that since impulsive dynamical systems

involve a hybrid formulation of continuous-time and discrete-time dynamics, our re-

sults build on our adaptive control algorithms for continuous-time and discrete-time

systems presented in Chapters 2 and 13 (see also [84,92,153]).

15.2. Mathematical Preliminaries

In this section we review some basic concepts on impulsive dynamical systems

[15,35,80,151,202]. Specifically, we consider controlled state-dependent [80] impulsive

dynamical systems G of the form

ẋ(t) = fc(x(t)) +Gc(x(t))uc(t), x(0) = x0, x(t) 6∈ Zx, (15.1)

∆x(t) = fd(x(t)) +Gd(x(t))ud(t), x(t) ∈ Zx, (15.2)

where t ≥ 0, x(t) ∈ D ⊆ R
n, D is an open set with 0 ∈ D, ∆x(t) , x(t+) − x(t),

uc(t) ∈ Uc ⊆ R
mc , ud(tk) ∈ Ud ⊆ R

md , tk denotes the kth instant of time at which

x(t) intersects Zx for a particular trajectory x(t), fc : D → R
n is Lipschitz continuous

and satisfies fc(0) = 0, Gc : D → R
n×mc , fd : Zx → R

n is continuous, Gd : Zx →

R
n×md is such that rankGd(x) = md, x ∈ Zx, and Zx ⊂ D is the resetting set.

Here, we assume that uc(·) and ud(·) are restricted to the class of admissible inputs

consisting of measurable functions such that (uc(t), ud(tk)) ∈ Uc × Ud for all t ≥ 0

and k ∈ N[0,t) , {k : 0 ≤ tk < t}, where the constrained set Uc × Ud is given with

(0, 0) ∈ Uc × Ud. We refer to the differential equation (15.1) as the continuous-time

dynamics, and we refer to the difference equation (15.2) as the resetting law. In
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this chapter we assume that Assumptions A1 and A2 established in [80] hold for all

ud(·) ∈ Ud; that is, the resetting set is such that resetting removes x(tk) from the

resetting set and no trajectory can intersect the interior of Zx. Hence, as shown

in [80], the resetting times are well defined and distinct. Since the resetting times

are well defined and distinct and since the solution to (15.1) exists and is unique it

follows that the solution of the impulsive dynamical system (15.1), (15.2) also exists

and is unique over a forward time interval.

Next, we provide a key result from [35, 80] involving an invariant set stability

theorem for hybrid dynamical systems. Specifically, consider the impulsive dynamical

system (15.1), (15.2) with hybrid adaptive feedback controllers uc(·) and ud(·) so that

the closed-loop hybrid system G̃ has the form

˙̃x(t) = f̃c(x̃(t)), x̃(0) = x̃0, x̃(t) 6∈ Zx̃, (15.3)

∆x̃(t) = f̃d(x̃(t)), x̃(t) ∈ Zx̃, (15.4)

where t ≥ 0, x̃(t) ∈ D̃ ⊆ R
ñ, x̃(t) denotes the closed-loop state involving the system

state and the adaptive gains, f̃c : D̃ → R
ñ and f̃d : D̃ → R

ñ denote the closed-

loop continuous-time and resetting dynamics, respectively, with f̃c(x̃e) = 0, where

x̃e ∈ D̃\Zx̃ denotes the closed-loop equilibrium point, and ñ denotes the dimension

of the closed-loop system state. For the statement of the next result the following

key assumption is needed.

Assumption 15.1 [35, 80]. Let s(t, x̃0), t ≥ 0, denote the solution of (15.3),

(15.4) with initial condition x̃0 ∈ D̃. Then for every x̃0 ∈ D̃, there exists a dense

subset Tx̃0 ⊆ [0,∞) such that [0,∞)\Tx̃0 is (finitely or infinitely) countable and for

every ε > 0 and t ∈ Tx̃0 , there exists δ(ε, x̃0, t) > 0 such that if ‖x̃0 − y‖ < δ(ε, x̃0, t),

y ∈ D̃, then ‖s(t, x̃0)− s(t, y)‖ < ε.
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Assumption 15.1 is a generalization of the standard continuous dependence prop-

erty for dynamical systems with continuous flows to dynamical systems with left-

continuous flows. Specifically, by letting Tx̃0 = T x̃0 = [0,∞), where T x̃0 denotes the

closure of the set Tx̃0 , Assumption 15.1 specializes to the classical continuous depen-

dence of solutions of a given dynamical system with respect to the system’s initial

conditions x̃0 ∈ D̃ [232]. Since solutions of impulsive dynamical systems are not

continuous in time and solutions are not continuous functions of the system initial

conditions, Assumption 15.1 is needed to apply the hybrid invariance principle devel-

oped in [35, 80] to hybrid adaptive systems. Henceforth, we assume that the hybrid

adaptive feedback controllers uc(·) and ud(·) are such that closed-loop hybrid system

(15.3), (15.4) satisfies Assumption 15.1. Necessary and sufficient conditions that guar-

antee that the nonlinear impulsive dynamical system G̃ satisfies Assumption 15.1 are

given in [35]. A sufficient condition that guarantees that the trajectories of the closed-

loop nonlinear impulsive dynamical system (15.3), (15.4) satisfy Assumption 15.1 are

Lipschitz continuity of f̃c(·) and the existence of a continuously differentiable function

X : D̃ → R such that the resetting set is given by Zx̃ = {x̃ ∈ D̃ : X (x̃) = 0}, where

X ′(x̃) 6= 0, x̃ ∈ Zx̃, and X ′(x̃)f̃c(x̃) 6= 0, x̃ ∈ Zx̃. The last condition above insures

that the solution of the closed-loop hybrid system is not tangent to the resetting

set Zx̃ for all initial conditions x̃0 ∈ D̃. For further discussion on Assumption 15.1

see [35,80].

The following theorem proven in [35, 80] is needed to develop the main results of

this chapter.

Theorem 15.1 [35, 80]. Consider the nonlinear impulsive dynamical system G̃

given by (15.3), (15.4), assume D̃c ⊂ D̃ is a compact positively invariant set with

respect to (15.3), (15.4), and assume that there exists a continuously differentiable
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function V : D̃c → R such that

V ′(x̃)f̃c(x̃) ≤ 0, x̃ ∈ D̃c, x̃ /∈ Zx̃, (15.5)

V (x̃+ f̃d(x̃)) ≤ V (x̃), x̃ ∈ D̃c, x̃ ∈ Zx̃. (15.6)

Let R , {x̃ ∈ D̃c : x̃ /∈ Zx̃, V
′(x̃)f̃c(x̃) = 0} ∪ {x̃ ∈ D̃c : x̃ ∈ Zx̃, V (x̃ + f̃d(x̃)) =

V (x̃)} and let M denote the largest invariant set contained in R. If x̃0 ∈ D̃c, then

x̃(t) → M as t → ∞. Finally, if D̃ = R
ñ and V (x̃) → ∞ as ‖x̃‖ → ∞, then

x̃(t)→M as t→∞ for all x̃0 ∈ R
ñ.

15.3. Hybrid Adaptive Stabilization for Nonlinear Hybrid

Dynamical Systems

In this section we consider the problem of hybrid adaptive stabilization for nonlin-

ear uncertain hybrid systems. Specifically, we consider the controlled state-dependent

impulsive dynamical system (15.1), (15.2) with D = R
n, Uc = R

mc , and Ud = R
md .

Theorem 15.2. Consider the nonlinear uncertain hybrid dynamical system

G given by (15.1), (15.2). Assume there exist a matrix Kcg ∈ R
mc×sc , a continuously

differentiable function Vs : R
n → R, and continuous functions Ĝc : R

n → R
mc×mc ,

Fc : R
n → R

sc , and `c : R
n → R

pc such that Vs(·) is positive definite, radially

unbounded, Vs(0) = 0, `c(0) = 0, Fc(0) = 0, and, for all x ∈ R
n\Zx,

0 = V ′s (x)fcs(x) + `Tc (x)`c(x), (15.7)

where

fcs(x) , fc(x) +Gc(x)Ĝc(x)KcgFc(x). (15.8)

Furthermore, assume there exist a matrix Kdg ∈ R
md×sd , continuous functions Ĝd :

Zx → R
md×md , Fd : Zx → R

sd , `d : Zx → R
pd , matrix functions P1u : Zx → R

1×md ,
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P2u : Zx → N
md , and positive constants ε, µ, and ν such that Ĝd(x), x ∈ Zx, is

invertible, ĜT
d (x)P2u(x)Ĝd(x) ≤ νImd

, x ∈ Zx, and, for all x ∈ Zx and ud ∈ R
md ,

Vs(x+ fd(x) +Gd(x)ud) = Vs(x+ fd(x)) + P1u(x)ud + uTdP2u(x)ud, (15.9)

0 ≥ Vs(x+ fds(x))− Vs(x) + `Td (x)`d(x) + εP1u(x)Ĝd(x)Ĝ
T
d (x)P

T
1u(x), (15.10)

FT
d (x)Fd(x) ≤ γ̄xTx, (15.11)

Vs(x) ≥ µxTx, (15.12)

where

fds(x) , fd(x) +Gd(x)Ĝd(x)KdgFd(x). (15.13)

Finally, let c > 0, Qc ∈ P
mc , Qd ∈ P

md , Y ∈ P
sc , and λmax(Qd) < 2. Then the hybrid

adaptive feedback control law

uc(t) = Ĝc(x(t))Kc(t)Fc(x(t)), x(t) 6∈ Zx, (15.14)

ud(t) = Ĝd(x(t))Kd(t)Fd(x(t)), x(t) ∈ Zx, (15.15)

where Kc(t) ∈ R
mc×sc , t ≥ 0, and Kd(t) ∈ R

md×sd , t ≥ 0, with update laws

K̇c(t) = − 1
2(1+Vs(x(t)))

QcĜ
T
c (x(t))G

T
c (x(t))V

′
s
T(x(t))FT

c (x(t))Y,

Kc(0) = Kc0, x(t) /∈ Zx, (15.16)

∆Kc(t) = 0, x(t) ∈ Zx, (15.17)

K̇d(t) = 0, Kd(0) = Kd0, x(t) /∈ Zx, (15.18)

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
QdĜ

−1
d (x(t))G†d(x(t))[∆x(t)− fds(x(t))]FT

d (x(t)),

x(t) ∈ Zx, (15.19)

where ∆Kc(t) , Kc(t
+)−Kc(t) and ∆Kd(t) , Kd(t

+)−Kd(t), guarantees that the

solution (x(t), Kc(t), Kd(t)) ≡ (0, Kcg, Kdg) of the closed-loop hybrid system given by

(15.1), (15.2), (15.14)–(15.19) is Lyapunov stable and `c(x(t)) → 0 as t → ∞. If, in

addition, `Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0, and W , {x ∈ Zx : `Td (x)`d(x) = 0} =

Ø, then x(t)→ 0 as t→∞ for all x0 ∈ R
n.
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Proof. First, define K̃d(t) , Kd(t) −Kdg and ũd(t) , K̃d(t)Fd(x(t)). Note that

with uc(t), t ≥ 0, and ud(tk), k ∈ N , given by (15.14) and (15.15), respectively, it

follows that the closed-loop hybrid system (15.1), (15.2) is given by

ẋ(t) = fc(x(t)) +Gc(x(t))Ĝc(x(t))Kc(t)Fc(x(t)), x(0) = x0, x(t) 6∈ Zx, (15.20)

∆x(t) = fd(x(t)) +Gd(x(t))Ĝd(x(t))Kd(t)Fd(x(t)), x(t) ∈ Zx, (15.21)

or, equivalently, using (15.8) and (15.13),

ẋ(t) = fcs(x(t)) +Gc(x(t))Ĝc(x(t))(Kc(t)−Kcg)Fc(x(t)),

x(0) = x0, x(t) 6∈ Zx, (15.22)

∆x(t) = fds(x(t)) +Gd(x(t))Ĝd(x(t))(Kd(t)−Kdg)Fd(x(t))

= fds(x(t)) +Gd(x(t))Ĝd(x(t))ũd(t), x(t) ∈ Zx. (15.23)

Furthermore, note that adding and subtracting Kdg to and from (15.19) and using

(15.23) it follows that

K̃d(t
+) = K̃d(t)− 1

c+FT
d (x(t))Fd(x(t))

QdĜ
−1
d (x(t))G†d(x(t))

·[Gd(x(t))Ĝd(x(t))K̃d(t)Fd(x(t))]F
T
d (x(t))

= K̃d(t)− 1
c+FT

d (x(t))Fd(x(t))
QdK̃d(t)Fd(x(t))F

T
d (x(t)), x(t) ∈ Zx. (15.24)

To show Lyapunov stability of the closed-loop hybrid system (15.16)–(15.18) and

(15.22)–(15.24), consider the Lyapunov function candidate

V (x,Kc, Kd) = ln(1 + Vs(x)) + tr Q−1c (Kc −Kcg)Y
−1(Kc −Kcg)

T

+atr (Kd −Kdg)
TQ−1d (Kd −Kdg), (15.25)

where

a ≥
1
4ε

+ ν

λmin(2Imd
−Qd)

·max

{

c,
γ̄

µ

}

. (15.26)

Note that V (0, Kcg, Kdg) = 0 and, since Vs(·), Qc, Qd, and Y are positive definite and

a > 0, V (x,Kc, Kd) > 0 for all (x,Kc, Kd) 6= (0, Kcg, Kdg). In addition, V (x,Kc, Kd)
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is radially unbounded. Now, letting x(t) denote the solution to (15.22) and using

(15.7), (15.16), and (15.18), it follows that the Lyapunov derivative along the closed-

loop system trajectories over the time interval t ∈ (tk, tk+1], k ∈ N , is given by

V̇ (x(t), Kc(t), Kd(t)) =
V ′

s (x(t))
1+Vs(x(t))

[

fcs(x(t)) +Gc(x(t))Ĝc(x(t))(Kc(t)−Kcg)Fc(x(t))
]

+2trQ−1c (Kc(t)−Kcg)Y
−1K̇T

c (t)

= −`
T
c (x(t))`c(x(t))

1 + Vs(x(t))

+ 1
1+Vs(x(t))

tr
[

(Kc(t)−Kcg)Fc(x(t))V
′
s (x(t))Gc(x(t))Ĝc(x(t))

]

− 1
1+Vs(x(t))

tr
[

(Kc(t)−Kcg)Fc(x(t))V
′
s (x(t))Gc(x(t))Ĝc(x(t))

]

= −`
T
c (x(t))`c(x(t))

1 + Vs(x(t))

≤ 0, tk < t ≤ tk+1. (15.27)

Furthermore, using (15.9), (15.10), (15.17), and (15.24), the Lyapunov difference

along the closed-loop system trajectories at the resetting times tk, k ∈ N , is given by

∆V (x(tk), Kc(tk), Kd(tk))

, V (x(t+k ), Kc(t
+
k ), Kd(t

+
k ))− V (x(tk), Kc(tk), Kd(tk))

= ln
(

1 + Vs(x(tk) + fds(x(tk)) +Gd(x(tk))Ĝd(x(tk))ũd(tk))
)

+atr
(

K̃d(tk)− 1
c+FT

d (x(tk))Fd(x(tk))
QdK̃d(tk)Fd(x(tk))F

T
d (x(tk))

)T

·Q−1d

(

K̃d(tk)− 1
c+FT

d (x(tk))Fd(x(tk))
QdK̃d(tk)Fd(x(tk))F

T
d (x(tk))

)

− ln(1 + Vs(x(tk)))− atr K̃T
d (tk)Q

−1
d K̃d(tk)

= ln
(

1 +
[

Vs(x(tk) + fds(x(tk))) + P1u(x(tk))Ĝd(x(tk))ũd(tk)

+ũTd (tk)Ĝ
T
d (x(tk))P2u(x(tk))Ĝd(x(tk))ũd(tk)− Vs(x(tk))

]

· [1 + Vs(x(tk))]
−1
)

+ atr K̃T
d (tk)Q

−1
d K̃d(tk)

− 2a
c+FT

d (x(tk))Fd(x(tk))
tr K̃T

d (tk)K̃d(tk)Fd(x(tk))F
T
d (x(tk))

+ a
(c+FT

d (x(tk))Fd(x(tk)))2
tr Fd(x(tk))F

T
d (x(tk))K̃

T
d (tk)QdK̃d(tk)
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·Fd(x(tk))F
T
d (x(tk))− atr K̃T

d (tk)Q
−1
d K̃d(tk)

≤
[

−`Td (x(tk))`d(x(tk))

−εP1u(x(tk))Ĝd(x(tk))Ĝ
T
d (x(tk))P

T
1u(x(tk))

+P1u(x(tk))Ĝd(x(tk))ũd(tk) + νũTd (tk)ũd(tk)
]

[1 + Vs(x(tk))]
−1

− 2a
c+FT

d (x(tk))Fd(x(tk))
FT
d (x(tk))K̃

T
d (tk)K̃d(tk)Fd(x(tk))

+ a
c+FT

d (x(tk))Fd(x(tk))
FT
d (x(tk))K̃

T
d (tk)QdK̃d(tk)Fd(x(tk)), k ∈ N , (15.28)

where in (15.28) we used ln a− ln b = ln a
b
and ln(1+ d) ≤ d for a, b > 0, and d > −1,

respectively, and x̃Tx̃
c+x̃Tx̃

< 1. Now, adding and subtracting 1
4ε

ũT(tk)ũ(tk)
1+Vs(x(tk))

to and from

(15.28) and collecting terms yields

∆V (x(tk), Kc(tk), Kd(tk))

≤ − 1
1+Vs(x(tk))

`Td (x(tk))`d(x(tk))

− 1
1+Vs(x(tk))

[

P1u(x(tk)), ũ
T
d (tk)

]

[

εĜd(x(tk))Ĝ
T
d (x(tk)) −1

2
Ĝd(x(tk))

−1
2
ĜT

d (x(tk))
1
4ε
Imd

]

·
[

PT
1u(x(tk))
ũd(tk)

]

+ 1
1+Vs(x(tk))

[ 1
4ε
ũTd (tk)ũd(tk) + νũTd (tk)ũd(tk)]

− a
c+FT

d (x(tk))Fd(x(tk))
FT
d (x(tk))K̃

T
d (tk)(2Imd

−Qd)K̃d(tk)Fd(x(tk))

≤ −`
T
d (x(tk))`d(x(tk))

1 + Vs(x(tk))
− FT

d (x(tk))K̃
T
d (tk)R̃(x(tk))K̃d(tk)Fd(x(tk))

(c+ FT
d (x(tk))Fd(x(tk)))(1 + Vs(x(tk)))

, k ∈ N ,
(15.29)

where

R̃(x) , a(1 + Vs(x))(2Imd
−Qd)−

(

1

4ε
+ ν

)

(c+ FT
d (x)Fd(x))Imd

. (15.30)

Noting that 2Imd
− Qd > 0, since by assumption λmax(Qd) < 2, and a is given by

(15.26), it follows that

R̃(x) ≥ a(1 + µxTx)(2Imd
−Qd)−

(

1

4ε
+ ν

)

(c+ FT
d (x)Fd(x))Imd

≥ a(1 + µxTx)(2Imd
−Qd)−

(

1

4ε
+ ν

)

(

c+ γ̄xTx
)

Imd

≥ 0, x ∈ Zx. (15.31)
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Hence, the Lyapunov difference given by (15.29) yields

∆V (x(tk), Kc(tk), Kd(tk)) ≤ −
`Td (x(tk))`d(x(tk))

1 + Vs(x(tk))

−F
T
d (x(tk))K̃

T
d (tk)R̃(x(tk))K̃d(tk)Fd(x(tk))

(c+ FT
d (x(tk))Fd(x(tk)))(1 + Vs(x(tk)))

≤ −`
T
d (x(tk))`d(x(tk))

1 + Vs(x(tk))

≤ 0, k ∈ N . (15.32)

Now, it follows from Theorem 1 of [80] that (15.27) and (15.32) imply that the

solution (x(t), Kc(t), Kd(t)) ≡ (0, Kcg, Kdg) to (15.16)–(15.18) and (15.22)–(15.24) is

Lyapunov stable. Furthermore, if `Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0, and W = Ø,

then it follows from Theorem 15.1 with R = M = {(x,Kc, Kd) ∈ R
n × R

mc×sc ×

R
md×sd : x = 0} that x(t)→ 0 as t→∞ for all x0 ∈ R

n. ¤

Remark 15.1. Note that in the case where `Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0,

andW = Ø, the conditions in Theorem 15.2 imply that x(t)→ 0 as t→∞ and hence

it follows from (15.16) that (x(t), Kc(t), Kd(t))→M , {(x,Kc, Kd) ∈ R
n×R

mc×sc×

R
md×sd : x = 0, K̇c = 0} as t→∞. Furthermore, if x(t), t ≥ 0, intersects Zx infinitely

many times, then (x(t), Kc(t), Kd(t))→M , {(x,Kc, Kd) ∈ R
n×R

mc×sc ×R
md×sd :

x = 0, K̇c = 0, Kd(t
+) = Kd(t)} as t→∞.

It is important to note that the hybrid adaptive control law (15.14)–(15.19) does

not require explicit knowledge of the gain matricesKcg,Kdg and the positive constants

ν, γ̄, ε, and µ. Theorem 15.2 simply requires the existence of Kcg, Kdg, ν, γ̄, ε, and µ

along with the construction of Fc(x), Fd(x), Ĝc(x), Ĝd(x), and Vs(x) such that (15.7),

(15.9)–(15.12) hold. Furthermore, no specific structure on the nonlinear dynamics

fc(x) and fd(x) is required to apply Theorem 15.2. However, if (15.1) and (15.2) are
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such that

fc(x) = Ãcx+ f̃cu(x), Gc(x) =

[

0(n−mc)×mc

Gcs(x)

]

, (15.33)

fd(x) = (Ãd − In)x+ f̃du(x), Gd(x) =

[

0(n−md)×md

Gds(x)

]

, (15.34)

where

Ãc =

[

Ac0

0mc×n

]

, Ãd =

[

Ad0

0md×n

]

, f̃cu(x) =

[

0(n−mc)×1
fcu(x)

]

, f̃du(x) =

[

0(n−md)×1
fdu(x)

]

,

Ac0 ∈ R
(n−mc)×n and Ad0 ∈ R

(n−md)×n are known matrices of zeros and ones capturing

a multivariable controllable canonical form representation [43], fcu : R
n → R

mc and

fdu : R
n → R

md are unknown functions with fcu(0) = 0 and fTdu(x)fdu(x) ≤ γux
Tx,

x ∈ Zx, where γu > 0, Gcs : R
n → R

mc×mc , and Gds : R
n → R

md×md , then we can

always construct functions Vs : R
n → R, with Vs(0) = 0, Ĝc : R

n → R
mc×mc , Ĝd :

R
n → R

md×md , Fc : R
n → R

sc , with Fc(0) = 0, and Fd : R
n → R

sd such that (15.7),

(15.9)–(15.12) hold without requiring knowledge of the hybrid system dynamics. To

see this assume that fcu(x) and fdu(x) are unknown and are parameterized as fcu(x) =

Θcfcn(x) and fdu(x) = Θdfdn(x), where fcn : R
n → R

qc and fdn : R
n → R

qd with

fcn(0) = 0 and fTdn(x)fdn(x) ≤ γnx
Tx, x ∈ Zx, where γn > 0, and Θc ∈ R

mc×qc and

Θd ∈ R
md×qd are matrices of uncertain constant parameters.

Next, to apply Theorem 15.2 to the uncertain nonlinear hybrid system (15.1)

and (15.2) with fc(x), fd(x), Gc(x), and Gd(x) given by (15.33) and (15.34), let

Kcg ∈ R
mc×sc and Kdg ∈ R

md×sd , where sc = qc + rc and sd = qd + rd, be given by

Kcg = [Θcn −Θc, Φcn ], Kdg = [Θdn −Θd, Φdn ], (15.35)

where Θcn ∈ R
mc×qc , Θdn ∈ R

md×qd , Φcn ∈ R
mc×rc , and Φdn ∈ R

md×rd are known

matrices, and let

Fc(x) =

[

fcn(x)

f̂cn(x)

]

, Fd(x) =

[

fdn(x)

f̂dn(x)

]

, (15.36)
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where f̂cn : R
n → R

rc and f̂dn : R
n → R

rd satisfying f̂cn(0) = 0 and f̂Tdu(x)f̂du(x) ≤

γ̂nx
Tx, x ∈ Zx, γ̂n > 0, are arbitrary functions. In this case, it follows that, with

Ĝc(x) = G−1cs (x) and Ĝd(x) = G−1ds (x),

fcs(x) = fc(x) +Gc(x)Ĝc(x)KcgFc(x)

= Ãcx+ f̃cu(x) +

[

0(n−mc)×mc

Gcs(x)

]

G−1cs (x)
[

Θcnfcn(x)−Θfcn(x) + Φcnf̂cn(x)
]

= Ãcx+

[

0(n−mc)×1
Θcnfcn(x) + Φcnf̂cn(x)

]

(15.37)

and

fds(x) = fd(x) +Gd(x)Ĝd(x)KdgFd(x)

= (Ãd − In)x+ f̃du(x)

+

[

0(n−md)×md

Gds(x)

]

G−1ds (x)
[

Θdnfdn(x)−Θfdn(x) + Φdnf̂dn(x)
]

= (Ãd − In)x+

[

0(n−md)×1
Θdnfdn(x) + Φdnf̂dn(x)

]

. (15.38)

Now, since Θcn ∈ R
mc×qc , Θdn ∈ R

md×qd , Φcn ∈ R
mc×rc , and Φdn ∈ R

md×rd are

arbitrary constant matrices and f̂cn : R
n → R

rc and f̂dn : R
n → R

rd are arbitrary

functions we can always construct Kcg, Kdg, Vs(x), Fc(x), and Fd(x) without knowl-

edge of fc(x) and fd(x) such that (15.7), (15.9), (15.10), (15.12) hold, while (15.11)

is satisfied with γ̄ ≥ γn + γ̂n. In particular, choosing Θcnfcn(x) + Φcnf̂cn(x) = Âcx

and Θdnfdn(x) + Φdnf̂dn(x) = Âdx, where Âc ∈ R
mc×n and Âd ∈ R

md×n, it follows

that (15.37) and (15.38) have the form fcs(x) = Acx and fds(x) = (Ad− In)x, respec-

tively, where Ac =
[

AT
0 , Â

T
c

]T

and Ad =
[

AT
0 , Â

T
d

]T

are in multivariable controllable

canonical form. Hence, we can choose Âc and Âd such that Ac is Hurwitz and Ad is

Schur. Now, it follows from standard converse Lyapunov theory that there exists a

positive-definite matrix P satisfying the Lyapunov equation

0 = AT
c P + PAc +Rc, (15.39)
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where Rc is positive definite. If, in addition, for Gd(x) ≡ Bd ∈ R
n×md , P satisfies the

Riccati inequality

0 ≥ AT
dPAd − P +Rd + 4εAT

dPBdB
T
d PAd, (15.40)

where ε > 0 and Rd is positive definite, then (15.7), (15.9), (15.10), and (15.12) are

satisfied with Vs(x) = xTPx, Ĝd(x) ≡ Imd
, P1u(x) = 2xTAT

dPBd, P2u(x) = BT
d PBd,

and µ ≤ λmin(P ). Hence, the hybrid adaptive feedback controller (15.14) and (15.15)

with update laws (15.16), or, equivalently,

K̇c(t) = − 1
2(1+xT(t)Px(t))

QcĜ
T
c (x(t))G

T
c (x(t))Px(t)F

T
c (x(t))Y, (15.41)

and (15.17)–(15.19) guarantees global asymptotic stability of the nonlinear hybrid

uncertain dynamical system (15.1) and (15.2) where fc(x), fd(x), Gc(x), and Gd(x)

are given by (15.33) and (15.34) with Gds(x) ≡ Bds ∈ R
md×md . Note that since Rc

and Rd are arbitrary, (15.39) and (15.40) can be cast as a linear matrix inequality

(LMI) feasibility problem involving P > 0, AT
c P + PAc < 0, and

[

AT
dPAd − P AT

dPBd

BT
d PAd −4εImd

]

< 0.

Finally, as mentioned above, it is important to note that it is not necessary to utilize

a feedback linearizing function Fc(x) and Fd(x) to produce linear functions fcs(x) and

fds(x). However, as shown above, when the hybrid system is in a hybrid normal form

given by (15.33), (15.34), the feedback linearizing functions Fc(x) and Fd(x) provide

considerable simplification in constructing Vs(x) necessary in computing the hybrid

update law (15.16).

Note that by choosing Θdn = Φdn = 0 considerable simplification occurs in the

update law (15.19). Specifically, in this case it follows that

G†d(x)fds(x) =
[

0m×(n−m), G−1ds (x)
]

[

A0

0m×n

]

x = 0, x ∈ Zx,
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and hence the update law (15.19) can be simplified as

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
QdĜ

−1
d (x(t))G†d(x(t))∆x(t)F

T
d (x(t)), x(t) ∈ Zx.

(15.42)

Furthermore, it is also important to note that Theorem 15.2 is not restricted to

hybrid dynamical systems satisfying the linear growth constraint fT
d (x)fd(x) ≤ γ̂xTx,

x ∈ Zx, γ̂ > 0. Theorem 15.2 can be used to construct hybrid adaptive controllers

so long as the function Fd(x) satisfies (15.11) and we can construct a function Vs(x)

such that (15.7), (15.9)–(15.12) hold. Finally, in the case where Zx is a bounded set,

there always exists γ̂ > 0 such that fT
d (x)fd(x) ≤ γ̂xTx, x ∈ Zx, holds. This implies

that in this case we can always construct Fd(x) such that (15.11) is satisfied.

Next, we consider the case where fc(x), fd(x), Gc(x), and Gd(x) are uncertain.

Specifically, we assume that Gc(x) and Gd(x) are such that Gcs(x) and Gds(x) are un-

known and are parameterized as Gcs(x) = BcuGcn(x) and Gds(x) = BduGdn(x), where

Gcn : R
n → R

mc×mc and Gdn : R
n → R

md×md are known and satisfy detGcn(x) 6= 0,

x ∈ R
n\Zx, detGdn(x) 6= 0, x ∈ Zx, and Bcu ∈ R

mc×mc and Bdu ∈ R
md×md ,

with detBcu 6= 0 and detBdu 6= 0, are unknown symmetric sign-definite matrices

but a bound α for the maximum singular value of Bdu is known and the sign def-

initeness of Bcu and Bdu are known. For the statement of the next result define

Bc0 ,
[

0mc×(n−mc), Imc

]T
for Bcu > 0, Bc0 ,

[

0mc×(n−mc), −Imc

]T
for Bcu < 0,

Bd0 ,
[

0md×(n−md), Imd

]T
for Bdu > 0, and Bd0 ,

[

0md×(n−md), −Imd

]T
for Bdu < 0.

Corollary 15.1. Consider the nonlinear uncertain hybrid dynamical system G

given by (15.1) and (15.2) with fc(x), fd(x), Gc(x), and Gd(x) given by (15.33),

(15.34), and Gcs(x) = BcuGcn(x) and Gds(x) = BduGdn(x), where Bcu ∈ R
mc×mc

and Bdu ∈ R
md×md are unknown symmetric matrices and the sign definiteness of

Bcu and Bdu are known and σmax(Bdu) < α, α > 0. Assume there exist a matrix
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Kcg ∈ R
mc×sc , a continuously differentiable function Vs : R

n → R, and continuous

functions Ĝc : R
n → R

mc×mc , Fc : R
n → R

sc , and `c : R
n → R

pc such that Vs(·) is

positive definite, radially unbounded, Vs(0) = 0, `c(0) = 0, Fc(0) = 0, and, for all x ∈

R
n\Zx, (15.7) holds. Furthermore, assume that there exist a matrix Kdg ∈ R

md×sd ,

continuous functions Ĝd : Zx → R
md×md , Fd : Zx → R

sd , `d : Zx → R
pd , matrix

functions P1u : Zx → R
1×md , P2u : Zx → N

md , and positive constants ε, µ, and ν

such that Ĝd(x), x ∈ Zx, is invertible, α̂−2ĜT
d (x)P2u(x)Ĝd(x) ≤ νIm, x ∈ Zx, where

α̂ ≥ α/2, and, for all x ∈ Zx and ud ∈ R
md , (15.9)–(15.12) hold. Finally, let c > 0

and Y ∈ P
sc . Then the hybrid adaptive feedback control law

uc(t) = G−1cn (x(t))Kc(t)Fc(x(t)), x(t) 6∈ Zx, (15.43)

ud(t) = α̂−1G−1dn (x(t))Kd(k)Fd(x(t)), x(t) ∈ Zx, (15.44)

where Kc(t) ∈ R
m×sc , t ≥ 0, and Kd(t) ∈ R

m×sd , t ≥ 0, with update laws

K̇c(t) = − 1
2(1+Vs(x(t)))

Bc
T
0V

′
s
T(x(t))FT

c (x(t))Y, Kc(0) = Kc0, x(t) /∈ Zx, (15.45)

∆Kc(t) = 0, x(t) ∈ Zx, (15.46)

K̇d(t) = 0, Kd(0) = Kd0, x(t) /∈ Zx, (15.47)

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
Bd

T
0[∆x(t)− fds(x(t))]FT

d (x(t)), x(t) ∈ Zx, (15.48)

guarantees that the solution (x(t), Kc(t), Kd(t)) ≡ (0, Kcg, Kdg) of the closed-loop

hybrid system given by (15.1), (15.2), (15.43)–(15.48) is Lyapunov stable. If, in

addition, `Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0, and W , {x ∈ Zx : `Td (x)`d(x) = 0} =

Ø, then x(t)→ 0 as t→∞ for all x0 ∈ R
n.

Proof. The result is a direct consequence of Theorem 15.2. First, let Ĝc(x) =

G−1cn (x) and Ĝd(x) = α̂−1G−1dn (x) so that Gc(x)Ĝcn(x) = [0m×(n−m), Bcu]
T and Gd(x)

·Ĝdn(x) = [0m×(n−m), α̂
−1Bdu]

T, and let Kcg = B−1cu [Θcn − Θc, Φcn] and Kdg = α̂B−1du

·[Θdn−Θd, Φdn]. Next, since Qc and Qd are arbitrary positive definite matrices with
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λmax(Qd) < 2, Qc in (15.16) and Qd in (15.19) can be replaced by qc|Bcu|−1 and

α̂−1|Bdu|−1, respectively, where qc is a positive constant, |Bcu| = (B2
cu)

1
2 , and |Bdu| =

(B2
du)

1
2 , where (·) 12 denotes the (unique) positive definite square root. Now, since Bcu

and Bdu are symmetric and sign definite it follows from the Schur decomposition that

Bcu = UcDBcuU
T
c and Bdu = UdDBduU

T
d , where Uc and Ud are orthogonal and DBcu and

DBdu are real diagonal. Hence, |Bcu|−1ĜT
c (x)G

T
c (x) = [0mc×(n−mc), Imc ] = Bc

T
0 and

α̂−1|Bdu|−1ĜT
d (x)G

T
d (x) = [0md×(n−md), Imd

] = Bd
T
0 , where Imc = Imc for Bcu > 0,

Imc = −Imc for Bcu < 0, Imd
= Imd

for Bdu > 0, and Imd
= Imd

for Bdu < 0. Now,

(15.16) and (15.19) imply (15.45) and (15.48), respectively. ¤

15.4. Hybrid Adaptive Attraction Control for Nonlinear Hy-

brid Dynamical Systems

In this section we relax several of the structural conditions given in Theorem 15.2,

needed for guaranteeing partial asymptotic stabilization, to develop hybrid adaptive

controllers with less restrictive conditions guaranteeing attraction of the closed-loop

system states associated with the hybrid plant dynamics. Specifically, we develop

hybrid adaptive attraction controllers without the linear growth assumption (15.11)

nor the structural constraints (15.9) and (15.12). Here, once again we consider the

controlled state-dependent impulsive dynamical system (15.1), (15.2) with D = R
n,

Uc = R
mc , and Ud = R

md .

Theorem 15.3. Consider the nonlinear uncertain hybrid dynamical system

G given by (15.1), (15.2). Assume there exist a matrix Kcg ∈ R
mc×sc , a continuously

differentiable function Vs : R
n → R, and continuous functions Ĝc : R

n → R
mc×mc ,

Fc : R
n → R

sc , and `c : R
n → R

pc such that Vs(·) is positive definite, radially

unbounded, Vs(0) = 0, `c(0) = 0, Fc(0) = 0, and, for all x ∈ R
n\Zx, (15.7) holds.

Furthermore, assume there exist a matrix Kdg ∈ R
md×sd and continuous functions
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Ĝd : Zx → R
md×md and Fd : Zx → R

sd such that Ĝd(x), x ∈ Zx, is invertible and, for

all x ∈ Zx,

0 > Vs(x+ fds(x))− Vs(x), (15.49)

where fds(x) is given by (15.13). Finally, let c > 0, Qc ∈ P
mc , Qd ∈ P

md , Y ∈ P
sc ,

and λmax(Qd) < 2. Then the hybrid adaptive feedback control law

uc(t) = Ĝc(x(t))Kc(t)Fc(x(t)), x(t) 6∈ Zx, (15.50)

ud(t) = Ĝd(x(t))Kd(t)Fd(x(t)), x(t) ∈ Zx, (15.51)

where Kc(t) ∈ R
mc×sc , t ≥ 0, and Kd(t) ∈ R

md×sd , t ≥ 0, with update laws

K̇c(t) = −1
2
QcĜ

T
c (x(t))G

T
c (x(t))V

′
s
T(x(t))FT

c (x(t))Y,

Kc(0) = Kc0, x(t) /∈ Zx, (15.52)

∆Kc(t) = 0, x(t) ∈ Zx, (15.53)

K̇d(t) = 0, Kd(0) = Kd0, x(t) /∈ Zx, (15.54)

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
QdĜ

−1
d (x(t))G†d(x(t))[∆x(t)− fds(x(t))]FT

d (x(t)),

x(t) ∈ Zx, (15.55)

where ∆Kc(t) , Kc(t
+)−Kc(t) and ∆Kd(t) , Kd(t

+)−Kd(t), guarantees that the

solution (x(t), Kc(t), Kd(t)), t ≥ 0, of the closed-loop hybrid system given by (15.1),

(15.2), (15.50)–(15.55) satisfies `c(x(t))→ 0 as t→ 0 for all x0 ∈ R
n. If, in addition,

`Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0, then x(t)→ 0 as t→∞ for all x0 ∈ R

n.

Proof. First, define K̃d(t) , Kd(t) − Kdg and w̃(t) , Gd(x(t))Ĝd(x(t))K̃d(t)

·Fd(x(t)). Note that with uc(t), t ≥ 0, and ud(tk), k ∈ N , given by (15.50) and

(15.51), respectively, it follows that the closed-loop hybrid system (15.1), (15.2) is

given by

ẋ(t) = fc(x(t)) +Gc(x(t))Ĝc(x(t))Kc(t)Fc(x(t)), x(0) = x0, x(t) 6∈ Zx, (15.56)

∆x(t) = fd(x(t)) +Gd(x(t))Ĝd(x(t))Kd(t)Fd(x(t)), x(t) ∈ Zx, (15.57)
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or, equivalently, using (15.8) and (15.13),

ẋ(t) = fcs(x(t)) +Gc(x(t))Ĝc(x(t))(Kc(t)−Kcg)Fc(x(t)),

x(0) = x0, x(t) 6∈ Zx, (15.58)

∆x(t) = fds(x(t)) +Gd(x(t))Ĝd(x(t))(Kd(t)−Kdg)Fd(x(t))

= fds(x(t)) + w̃(t), x(t) ∈ Zx. (15.59)

Furthermore, note that adding and subtracting Kdg to and from (15.55) and using

(15.59) it follows that

K̃d(t
+) = K̃d(t)− 1

c+FT
d (x(t))Fd(x(t))

QdĜ
−1
d (x(t))G†d(x(t))

·[Gd(x(t))Ĝd(x(t))K̃d(t)Fd(x(t))]F
T
d (x(t))

= K̃d(t)− 1
c+FT

d (x(t))Fd(x(t))
QdK̃d(t)Fd(x(t))F

T
d (x(t)), x(t) ∈ Zx. (15.60)

To show convergence of the plant states for the closed-loop hybrid system (15.52)–

(15.54) and (15.58)–(15.60) consider the Lyapunov-like function

V (x,Kc, Kd) = Vs(x) + tr Q−1c (Kc −Kcg)Y
−1(Kc −Kcg)

T

+tr (Kd −Kdg)
TQ−1d (Kd −Kdg). (15.61)

Note that V (0, Kcg, Kdg) = 0 and, since Vs(·), Qc, Qd, and Y are positive definite,

V (x,Kc, Kd) > 0 for all (x,Kc, Kd) 6= (0, Kcg, Kdg). In addition, V (x,Kc, Kd) is

radially unbounded. Now, using (15.7), (15.52), and (15.54), it follows that the time

derivative of V (x,Kc, Kd) along the closed-loop system trajectories over the time

interval t ∈ (tk, tk+1], k ∈ N , is given by

V̇ (x(t), Kc(t), Kd(t)) = V ′s (x(t))
[

fcs(x(t)) +Gc(x(t))Ĝc(x(t))(Kc(t)−Kcg)Fc(x(t))
]

+2trQ−1c (Kc(t)−Kcg)Y
−1K̇T

c (t)

= −`Tc (x(t))`c(x(t))

+tr
[

(Kc(t)−Kcg)Fc(x(t))V
′
s (x(t))Gc(x(t))Ĝc(x(t))

]
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−tr
[

(Kc(t)−Kcg)Fc(x(t))V
′
s (x(t))Gc(x(t))Ĝc(x(t))

]

= −`Tc (x(t))`c(x(t))

≤ 0, tk < t ≤ tk+1. (15.62)

Now, suppose there exists kmax > 0 such that k ≤ kmax; that is, the closed-

loop system trajectory x(t), t ≥ 0, intersects the resetting set Zx a finite number of

times. In this case, the closed-loop hybrid system possesses a continuous flow for all

t > tkmax and hence it follows from Theorem 2 of [42] that `c(x(t)) → 0 as t → ∞.

If, in addition, `Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0, then x(t) → 0 as t → ∞ for all

x0 ∈ R
n. Alternatively, suppose a trajectory x(t), t ≥ 0, intersects the resetting set

Zx infinitely many times. In this case, consider the partial Lyapunov-like function

VKd
(Kd) = tr (Kd −Kdg)

TQ−1d (Kd −Kdg). (15.63)

Note that since Qd is positive definite, VKd
(Kd) > 0, Kd ∈ R

md×sd , Kd 6= Kdg. Now,

using (15.60), the difference of VKd
(Kd) along the closed-loop system trajectories at

the resetting times tk, k ∈ N , is given by

∆VKd
(x(tk), Kd(tk))

, VKd
(x(t+k ), Kd(t

+
k ))− VKd

(x(tk), Kd(tk))

= tr
(

K̃d(tk)− 1
c+FT

d (x(tk))Fd(x(tk))
QdK̃d(tk)Fd(x(tk))F

T
d (x(tk))

)T

Q−1d

·
(

K̃d(tk)− 1
c+FT

d (x(tk))Fd(x(tk))
QdK̃d(tk)Fd(x(tk))F

T
d (x(tk))

)

−tr K̃T
d (tk)Q

−1
d K̃d(tk)

= tr K̃T
d (tk)Q

−1
d K̃d(tk)

− 2
c+FT

d (x(tk))Fd(x(tk))
tr K̃T

d (tk)K̃d(tk)Fd(x(tk))F
T
d (x(tk))

+ 1
(c+FT

d (x(tk))Fd(x(tk)))2
tr Fd(x(tk))F

T
d (x(tk))K̃

T
d (tk)QdK̃d(tk)

·Fd(x(tk))F
T
d (x(tk))− tr K̃T

d (tk)Q
−1
d K̃d(tk)
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≤ − 1
c+FT

d (x(tk))Fd(x(tk))
FT
d (x(tk))K̃

T
d (tk)(2Imd

−Qd)K̃d(tk)Fd(x(tk))

≤ 0, k ∈ N , (15.64)

where in (15.64) we used
FT
d (x)Fd(x)

c+FT
d (x)Fd(x)

< 1 and 2Imd
− Qd > 0, since by assumption

λmax(Qd) < 2. Hence, VKd
(x(tk), K(tk)), k ∈ N , is a nonincreasing and bounded func-

tion of k. Thus, it follows from the monotone convergence theorem (see Theorem 8.6 of

[10]) that limk→∞ VKd
(x(tk), Kd(tk)) exists which implies that ∆VKd

(x(tk), Kd(tk))→

0 as k → ∞. Now, it follows from (15.64) that K̃d(tk)Fd(x(tk)) → 0 as k → ∞ and

hence w̃(tk)→ 0 as k →∞. Next, to show that x(t)→ 0 as t→∞, note that, since

w̃(tk)→ 0 as k →∞, there exists k∗ ≥ 0 such that for all k ≥ k∗,

0 ≥ Vs(x(tk) + fds(x(tk)) + w̃(tk))− Vs(x(tk)) (15.65)

holds and hence there exist Ẑx ⊂ Zx and Kd ⊂ R
md×sd such that

0 ≥ Vs(x+fds(x)+Gd(x)Ĝd(x)K̃dFd(x))−Vs(x), (x,Kd) ∈ Ẑx×Kd ⊂ Zx×R
md×sd ,

(15.66)

and dist(x(tk), Ẑx) → 0 as k → ∞ and dist(K̃d(tk),Kd) → 0 as k → ∞. Hence, it

follows that the difference of V (x,Kc, Kd) along the closed-loop system trajectories

at the resetting times tk, k ≥ k∗, is given by

∆V (x(tk), Kc(tk), Kd(tk)) , V (x(t+k ), Kc(t
+
k ), Kd(t

+
k ))− V (x(tk), Kc(tk), Kd(tk))

= Vs(x(tk) + fds(x(tk)) + w̃(tk))− Vs(x(tk))

+∆VKd
(x(tk), Kd(tk))

≤ 0, k ≥ k∗. (15.67)

Next, for t ≥ tk∗ , define the translated closed-loop hybrid system

˙̂x(τ) = fc(x̂(τ)) +Gc(x̂(τ))Ĝc(x̂(τ))K̂c(τ)Fc(x̂(τ)),

x̂(0) = x(t+k∗), x̂(τ) 6∈ Zx, (15.68)
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∆x̂(τ) = fd(x̂(τ)) +Gd(x̂(τ))Ĝd(x̂(τ))K̂d(τ)Fd(x̂(τ)), x̂(τ) ∈ Zx, (15.69)

˙̂
Kc(τ) = −1

2
QcĜ

T
c (x̂(τ))G

T
c (x̂(τ))V

′
s
T(x̂(τ))FT

c (x̂(τ))Y, K̂c(0) = Kc(t
+
k∗),

x̂(τ) /∈ Zx, (15.70)

∆K̂c(τ) = 0, x̂(τ) ∈ Zx, (15.71)

˙̂
Kd(τ) = 0, K̂d(0) = Kd(t

+
k∗), x̂(τ) /∈ Zx, (15.72)

∆K̂d(τ) = − 1
c+FT

d (x̂(τ))Fd(x̂(τ))
QdĜ

−1
d (x̂(τ))G†d(x̂(τ))[∆x̂(τ)− fds(x̂(τ))]FT

d (x̂(τ)),

x̂(τ) ∈ Zx, (15.73)

where τ , t − tk∗ ≥ 0, x̂(τ) , x(t − tk∗), K̂c(τ) , Kc(t − tk∗), and K̂d(τ) ,

Kd(t − tk∗). Furthermore, define Rc , {(x̂, K̂c, K̂d) ∈ R
n × R

mc×sc × R
md×sd : x̂ 6∈

Zx, V̇ (x̂, K̂c, K̂d) = 0} = {(x̂, K̂c, K̂d) ∈ R
n×R

mc×sc×R
md×sd : x̂ 6∈ Zx, `

T
c (x̂)`c(x̂) =

0} and Rd , {(x̂, K̂c, K̂d) ∈ R
n × R

mc×sc × R
md×sd : x̂ ∈ Zx, ∆V (x̂, K̂c, K̂d) = 0}.

Now, letM denote the largest invariant set contained in R , Rc ∪Rd and note that

since w̃(tk)→ 0 as k →∞ it follows that for (x̂, K̂c, K̂d) ∈M∩ (Ẑx ×R
mc×sc ×Kd),

Gd(x̂)Ĝd(x̂)K̃dFd(x̂) = 0, K̃dFd(x̂) = 0, and Vs(x̂+fds(x̂))−Vs(x̂) = 0. However, since

(15.66) holds for all x ∈ Zx,M = Rc∪Ø and hence it follows from Theorem 15.1 that

the solution (x̂(τ), K̂c(τ), K̂d(τ)), τ ≥ 0, to (15.68)–(15.73) satisfies `c(x̂(τ)) → 0 as

τ →∞ and hence `c(x(t))→ 0 as t→∞. Furthermore, if `Tc (x)`c(x) > 0, x ∈ R
n\Zx,

x 6= 0, then x(t)→ 0 as t→∞ for all x0 ∈ R
n. ¤

Remark 15.2. Note that in the case where `Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0,

the conditions in Theorem 15.3 imply that x(t) → 0 as t → ∞ and hence it follows

from (15.52) that (x(t), Kc(t), Kd(t))→M , {(x,Kc, Kd) ∈ R
n×R

mc×sc ×R
md×sd :

x = 0, K̇c = 0} as t → ∞. Furthermore, if x(t), t ≥ 0, intersects Zx infinitely many

times, then (x(t), Kc(t), Kd(t)) →M , {(x,Kc, Kd) ∈ R
n × R

mc×sc × R
md×sd : x =

0, K̇c = 0, Kd(t
+) = Kd(t)} as t→∞.

Remark 15.3. In the case where ud(t) ≡ 0, Condition (15.49) can be replaced
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by

0 ≥ Vs(x+ fd(x))− Vs(x). (15.74)

Furthermore, taking Fd(x) = 0, x ∈ Zx, and Kd(t) ≡ 0, (15.65) holds for all k ∈ N .

In this case, since V (x(t), Kc(t), Kd(t)) is nonincreasing for all t ≥ 0, V (x,Kc, Kd)

is a Lyapunov function and hence the closed-loop hybrid system (15.52)–(15.54) and

(15.58)–(15.60) is Lyapunov stable and x(t)→ 0 as t→∞.

As shown in Section 15.3, if (15.1) and (15.2) are such that (15.33) and (15.34)

hold, then we can always construct functions Vs : R
n → R, Fc : R

n → R
sc , and

Fd : R
n → R

sd , with Fc(0) = 0, such that (15.7) and (15.49) hold without requiring

knowledge of the hybrid system dynamics. Specifically, parameterizing fcu(x) and

fdu(x) as in Section 15.3 and choosing Θcnfcn(x) + Φcnf̂cn(x) = Âcx and Θdnfdn(x) +

Φdnf̂dn(x) = Âdx, where Âc ∈ R
mc×n and Âd ∈ R

md×n, it follows that (15.37) and

(15.38) have the form fcs(x) = Acx and fds(x) = (Ad − In)x, respectively, where

Ac =
[

AT
0 , Â

T
c

]T

and Ad =
[

AT
0 , Â

T
d

]T

are in multivariable controllable canonical

form. Hence, we can choose Âc and Âd such that Ac is Hurwitz and Ad is Schur.

Now, it follows from standard converse Lyapunov theory that there exists a positive-

definite matrix P satisfying the Lyapunov equation

0 = AT
c P + PAc +Rc, (15.75)

where Rc is positive definite. If, in addition, P satisfies

0 = AT
dPAd − P +Rd, (15.76)

where Rd is positive definite, then (15.7) and (15.49) hold with Vs(x) = xTPx. Hence,

the hybrid adaptive feedback controller (15.50) and (15.51) with update laws (15.52),

or, equivalently,

K̇c(t) = −QcĜ
T
c (x(t))G

T
c (x(t))Px(t)F

T
c (x(t))Y, (15.77)
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and (15.53)–(15.55) guarantees global attraction of the nonlinear hybrid uncertain

dynamical system (15.1) and (15.2) where fc(x), fd(x), Gc(x), and Gd(x) are given by

(15.33) and (15.34). Note that since Rc and Rd are arbitrary, (15.75) and (15.76) can

be cast as a linear matrix inequality feasibility problem involving P > 0, AT
c P+PAc <

0, and AT
dPAd − P < 0. Finally, as mentioned in Section 15.3, it is important to

note that it is not necessary to utilize a feedback linearizing function Fc(x) and Fd(x)

to produce a linear fcs(x) and fds(x). However, as shown above, when the hybrid

system is in a hybrid normal form given by (15.33), (15.34), the feedback linearizing

functions Fc(x) and Fd(x) provide considerable simplification in constructing Vs(x)

necessary in computing the hybrid update law (15.52).

Finally, if fc(x), fd(x), Gc(x), and Gd(x) are uncertain and Gc(x) and Gd(x)

are such that Gcs(x) and Gds(x) are unknown and are parameterized as Gcs(x) =

BcuGcn(x) and Gds(x) = BduGdn(x), where Gcn : R
n → R

mc×mc and Gdn : R
n →

R
md×md are known and satisfy detGcn(x) 6= 0, x ∈ R

n\Zx, detGdn(x) 6= 0, x ∈ Zx,

and Bcu ∈ R
mc×mc and Bdu ∈ R

md×md , with detBcu 6= 0 and detBdu 6= 0, are

unknown symmetric sign-definite matrices but a bound α for the maximum singular

value of Bdu is known and the sign definiteness of Bcu and Bdu are known, then we

have the following result. For the statement of this result recall the definitions of Bc0

for Bcu > 0 and Bcu < 0 and Bd0 for Bdu > 0 and Bdu < 0 given in Section 15.3.

Corollary 15.2. Consider the nonlinear uncertain hybrid dynamical system G

given by (15.1) and (15.2) with fc(x), fd(x), Gc(x), and Gd(x) given by (15.33),

(15.34), and Gcs(x) = BcuGcn(x) and Gds(x) = BduGdn(x), where Bcu ∈ R
mc×mc

and Bdu ∈ R
md×md are unknown symmetric matrices and the sign definiteness of

Bcu and Bdu are known and σmax(Bdu) < α, α > 0. Assume there exist a matrix

Kcg ∈ R
mc×sc , a continuously differentiable function Vs : R

n → R, and continuous

functions Ĝc : R
n → R

mc×mc , Fc : R
n → R

sc , and `c : R
n → R

pc such that Vs(·)
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is positive definite, radially unbounded, Vs(0) = 0, `c(0) = 0, Fc(0) = 0, and, for

all x ∈ R
n\Zx, (15.7) holds. Furthermore, assume that there exist a matrix Kdg ∈

R
md×sd and continuous functions Ĝd : Zx → R

md×md and Fd : Zx → R
sd such that

Ĝd(x), x ∈ Zx, is invertible and, for all x ∈ Zx, (15.49) holds. Finally, let c > 0 and

Y ∈ P
sc . Then the hybrid adaptive feedback control law

uc(t) = G−1cn (x(t))Kc(t)Fc(x(t)), x(t) 6∈ Zx, (15.78)

ud(t) = α̂−1G−1dn (x(t))Kd(k)Fd(x(t)), x(t) ∈ Zx, (15.79)

where Kc(t) ∈ R
m×sc , t ≥ 0, Kd(t) ∈ R

m×sd , t ≥ 0, and α̂ ≥ α/2, with update laws

K̇c(t) = −Bc
T
0V

′
s
T(x(t))FT

c (x(t))Y, Kc(0) = Kc0, x(t) /∈ Zx, (15.80)

∆Kc(t) = 0, x(t) ∈ Zx, (15.81)

K̇d(t) = 0, Kd(0) = Kd0, x(t) /∈ Zx, (15.82)

∆Kd(t) = − 1
c+FT

d (x(t))Fd(x(t))
Bd

T
0[∆x(t)− fds(x(t))]FT

d (x(t)), x(t) ∈ Zx, (15.83)

guarantees that the solution (x(t), Kc(t), Kd(t)) of the closed-loop hybrid system given

by (15.1), (15.2), (15.78)–(15.83) satisfies `c(x(t)) → 0 as t → ∞. If, in addition,

`Tc (x)`c(x) > 0, x ∈ R
n\Zx, x 6= 0, then x(t)→ 0 as t→∞ for all x0 ∈ R

n.

Proof. The result is a direct consequence of Theorem 15.3. First, let Ĝc(x) =

G−1cn (x) and Ĝd(x) = α̂−1G−1dn (x) so that Gc(x)Ĝcn(x) = [0m×(n−m), Bcu]
T and Gd(x)

·Ĝdn(x) = [0m×(n−m), α̂
−1Bdu]

T, and let Kcg = B−1cu [Θcn − Θc,Φcn] and Kdg = α̂B−1du

·[Θdn−Θd, Φdn]. Next, since Qc and Qd are arbitrary positive definite matrices with

λmax(Qd) < 2, Qc in (15.52) and Qd in (15.55) can be replaced by qc|Bcu|−1 and

α̂−1|Bdu|−1, respectively, where qc is a positive constant, |Bcu| = (B2
cu)

1
2 , and |Bdu| =

(B2
du)

1
2 , where (·) 12 denotes the (unique) positive definite square root. Now, since Bcu

and Bdu are symmetric and sign definite it follows from the Schur decomposition that

Bcu = UcDBcuU
T
c and Bdu = UdDBduU

T
d , where Uc and Ud are orthogonal and DBcu and
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DBdu are real diagonal. Hence, |Bcu|−1ĜT
c (x)G

T
c (x) = [0mc×(n−mc), Imc ] = Bc

T
0 and

α̂−1|Bdu|−1ĜT
d (x)G

T
d (x) = [0md×(n−md), Imd

] = Bd
T
0 , where Imc = Imc for Bcu > 0,

Imc = −Imc for Bcu < 0, Imd
= Imd

for Bdu > 0, and Imd
= Imd

for Bdu < 0. Now,

(15.52) and (15.55) imply (15.80) and (15.83), respectively. ¤

15.5. Illustrative Numerical Examples

In this section we present two numerical examples to demonstrate the utility of

the proposed hybrid adaptive control framework for hybrid adaptive stabilization and

hybrid adaptive attraction, respectively.

Example 15.1. Consider the nonlinear uncertain controlled hybrid system given

by (15.1), (15.2) with n = 2, x = [x1, x2]
T,

fc(x) =

[

x2
−βx1 − µ(x21 − α)x2

]

, Gc(x) =

[

0
bc

]

, (15.84)

fd(x) =

[

−x1 + x2

−x2 − a1 x31
1+x21
− a2 x32

1+x22
− a3 ln(1 + |x2|)

]

, Gd(x) =

[

0
bd

]

, (15.85)

where µ, α, β, a1, a2, a3, bc, bd ∈ R are unknown. Furthermore, assume that the reset-

ting set Zx is given by

Zx = {x ∈ R
2 : X (x) = 0, x2 > 0}, (15.86)

where X : R
2 → R is a continuously differentiable function given by X (x) = x1.

It can be easily verified that the resetting set Zx satisfies Assumptions A1 and

A2 given in [80]. Furthermore, X ′(x) 6= 0, x ∈ Zx, and for the closed-loop hy-

brid system corresponding to the continuous-time dynamics given by (15.1) and

(15.14), X ′(x)ẋ = x2 6= 0, x ∈ Zx, and hence the closed-loop hybrid system sat-

isfies Assumption 15.1. Here, we assume that fc(x) and fd(x) are unknown and

can be parameterized as fc(x) = [x2, θc1x1 + θc2x2 + θc3x
2
1x2]

T and fd(x) =
[

−x1 +
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x2, −x2 + θd1
x31

1+x21
+ θd2

x32
1+x22

+ θd3 ln(1 + |x2|)
]T

, where θc1, θc2, θc3, θd1, θd2, and

θd3 are unknown constants. Furthermore, we assume that sign bc and sign bd are

known and |bd| < 2. Next, let Ĝc(x) = 1, Ĝd(x) = 1, Fc(x) = [x1, x2, x
2
1x2]

T
,

Fd(x) =
[

x31
1+x21

,
x32

1+x22
, ln(1 + |x2|), x1, x2

]T

, Kcg = 1
bc
[θcn1 − θc1, θcn2 − θc2,−θc3] , and

Kdg =
1
bd
[−θd1,−θd2,−θd3, φdn1 , φdn2 ], where θn1 , θn2 , φdn1 , φdn2 are arbitrary scalars,

so that

fcs(x) = fc(x) +

[

0
bc

]

1

bc

[

θcn1 − θc1, θcn2 − θc2,−θc3
]

Fc(x)

=

[

0 1
θcn1 θcn2

]

x (15.87)

and

x+ fds(x) = x+ fd(x) +

[

0
bd

]

1

bd

[

−θd1,−θd2,−θd3, φdn1 , φdn2
]

Fd(x)

=

[

0 1
φdn1 φdn2

]

x. (15.88)

In addition, note that FT
d (x)Fd(x) =

(

x21
1+x21

)2

x21 +
(

x22
1+x22

)2

x22 + ln2(1+ |x2|) + xTx ≤

3xTx, x ∈ R
2, and thus (15.11) is satisfied with γ̄ = 3. Now, with the proper

choice of θcn1 , θcn2 , φdn1 , and φdn2 , it follows from Corollary 15.1 that the hybrid

adaptive feedback controller (15.43) and (15.44) guarantees that x(t)→ 0 as t→∞.

Specifically, here we choose θcn1 = −1, θcn2 = −2, φdn1 = −0.1, φdn2 = −0.1, so that

(15.7) and (15.10) are satisfied with

Vs(x) = xTPx, P =

[

1 1
1 3

]

, `c(x) =

[

1 1
1 3

]

x, `d(x) = Ldx, (15.89)

where Ld ∈ R
2×2 is such that LT

dLd ≤ 0.3433I2.

With µ = 2, α = 1, β = 1, a1 = −5, a2 = −2, a3 = 3, γ = 1, bc = 3,

bd = 1.4, α̂ = 1, Y = I3, and initial conditions x(0) = [1, 1]T, Kc(0) = [0, 0, 0],

and Kd(0) = 01×5, Figure 15.1 shows the phase portraits of the uncontrolled and

controlled hybrid system. Figures 15.2 and 15.3 show the state trajectories versus
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time and the control signals versus time, respectively. Finally, Figure 15.4 shows the

adaptive gain history versus time.

Example 15.2. Consider the nonlinear uncertain controlled hybrid system given

by (15.1), (15.2) with n = 2, x = [x1, x2]
T,

fc(x) =

[

x2
−βx1 − µ(x21 − α)x2

]

, Gc(x) =

[

0
bc

]

, (15.90)

fd(x) =

[

−x1 + x2

−x2 − a1x21 − a2 x32
1+x22
− a3x32

]

, Gd(x) =

[

0
bd

]

, (15.91)

where µ, α, β, a1, a2, a3, bc, bd ∈ R are unknown. Furthermore, assume that the re-

setting set Zx is given by (15.86). Here, we assume that fc(x) and fd(x) are un-

known and can be parameterized as fc(x) = [x2, θc1x1 + θc2x2 + θc3x
2
1x2]

T and

fd(x) =
[

−x1 + x2, −x2 + θd1x
2
1 + θd2

x32
1+x22

+ θd3x
3
2

]T

, where θc1, θc2, θc3, θd1, θd2,

and θd3 are unknown constants. Furthermore, we assume that sign bc and sign bd are

known and |bd| < 2. Next, let Ĝc(x) = 1, Ĝd(x) = 1, Fc(x) = [x1, x2, x
2
1x2]

T
,

Fd(x) =
[

x21,
x32

1+x22
, x32, x1, x2

]T

, Kcg = 1
bc
[θcn1 − θc1, θcn2 − θc2,−θc3] , and Kdg =

1
bd
[−θd1,−θd2,−θd3, φdn1 , φdn2 ], where θn1 , θn2 , φdn1 , φdn2 are arbitrary scalars, so that

fcs(x) = fc(x) +

[

0
bc

]

1

bc

[

θcn1 − θc1, θcn2 − θc2,−θc3
]

Fc(x)

=

[

0 1
θcn1 θcn2

]

x (15.92)

and

x+ fds(x) = x+ fd(x) +

[

0
bd

]

1

bd

[

−θd1,−θd2,−θd3, φdn1 , φdn2
]

Fd(x)

=

[

0 1
φdn1 φdn2

]

x. (15.93)

Note that Fd(x) need not satisfy the linear growth condition (15.11). Now, with the

proper choice of θcn1 , θcn2 , φdn1 , and φdn2 , it follows from Corollary 15.2 that the

hybrid adaptive feedback controller (15.78) and (15.79) guarantees that x(t) → 0 as

t→∞. Specifically, here we choose θcn1 = −1, θcn2 = −2, φdn1 = −0.1, φdn2 = −0.1,
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Figure 15.1: Phase portraits of uncontrolled and controlled hybrid system
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Figure 15.4: Adaptive gain history versus time

so that (15.7) and (15.49) are satisfied with

Vs(x) = xTPx, P =

[

1 1
1 3

]

, `c(x) =

[

1 1
1 3

]

x. (15.94)

With µ = 2, α = 1, β = 1, a1 = −5, a2 = −2, a3 = 3, γ = 1, bc = 3,

bd = 1.4, α̂ = 1, Y = 0.1I3, and initial conditions x(0) = [1, 1]T, Kc(0) = [0, 0, 0],

and Kd(0) = 01×5, Figure 15.5 shows the phase portraits of the uncontrolled and

controlled hybrid system. Figures 15.6 and 15.7 show the state trajectories versus

time and the control signals versus time, respectively. Finally, Figure 15.8 shows the

adaptive gain history versus time.

15.6. Conclusion

A direct hybrid adaptive nonlinear control framework for hybrid nonlinear un-

certain dynamical systems was developed. Using Lyapunov methods the proposed
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Figure 15.8: Adaptive gain history versus time

framework was shown to guarantee partial asymptotic stability of the closed-loop

hybrid system; that is, asymptotic stability with respect to part of the closed-loop

system states associated with the hybrid plant dynamics. Furthermore, hybrid adap-

tive controllers guaranteeing attraction of the closed-loop system plant states were

also developed. In the case where the nonlinear hybrid system is represented in a hy-

brid normal form, the nonlinear hybrid adaptive controllers were constructed without

knowledge of the system dynamics. Finally, two numerical examples were presented to

show the utility of the proposed hybrid adaptive stabilization and attraction schemes.
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Chapter 16

Concluding Remarks and

Recommendations for

Future Research

16.1. Conclusions

The focus of this dissertation was to address several outstanding issues in direct

adaptive control of nonlinear uncertain dynamical systems with exogenous distur-

bances. The adaptive control laws were predicated on Lyapunov (resp., Lyapunov-

like) functions and guaranteed partial asymptotic stability (resp., partial ultimate

boundedness) with respect to part of the closed-loop system states associated with

the plant. Furthermore, adaptive controller gains (resp., weights) were shown to be

bounded. Even though it is not necessary to utilize the notion of feedback lineariza-

tion, throughout the dissertation it was shown that the adaptive control architecture

is considerably simplified if we make use of feedback linearizing functions so that up-

date laws can be constructed by solving Lyapunov/Riccati equations. Furthermore,

we have shown that feedback linearization is always possible in the case where the

nonlinear system is represented in normal form with input-to-state stable internal

dynamics.
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To arrive at a tractable control design formulation in spite of extreme complexity

of modern engineering systems, we first developed a direct adaptive control frame-

work for general nonlinear uncertain dynamical systems with bounded amplitude

and bounded energy disturbances. In the case where the system disturbances are

L2 disturbances, the proposed framework guaranteed that the closed-loop nonlinear

input-output map from uncertain exogenous L2 disturbances to system performance

variables is nonexpansive. Based on this result, the framework was extended for

nonlinear uncertain systems with constant linearly parameterized uncertainty and

nonlinear state-dependent uncertainty. It was shown that this framework captures

the residual approximation error inherent in linear parameterizations of system uncer-

tainty via basis functions. In addition, a direct adaptive tracking control framework

with actuator amplitude and rate saturation constraints was also developed. To guar-

antee asymptotic stability of the closed-loop tracking error dynamics in the face of

amplitude and rate saturation constraints, the adaptive control signal to a given ref-

erence (governor or supervisor) system was modified to effectively robustify the error

dynamics to the saturation constraints.

Next, we developed a novel parametrization-free adaptive control framework for a

class of nonlinear matrix second-order dynamical systems with state-dependent un-

certainty. The proposed framework guaranteed global asymptotic stability without

requiring any knowledge of the system nonlinearities other than the assumption that

they are continuous and (lower) bounded. Generalizations to the case where the sys-

tem nonlinearities are unbounded were also considered. In the special case of matrix

second-order systems with polynomial nonlinearities with unknown coefficients and

unknown order, we provided a universal adaptive controller that guarantees closed-

loop stability of the plant states.

Nonnegative and compartmental models provide a broad framework for biological
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and physiological systems, including clinical pharmacology, and are well suited for

developing models for closed-loop control of drug administration. Motivated by the

potential clinical applications of adaptive control for pharmacology in general, and

anesthesia and critical care unit medicine in particular, we proposed adaptive con-

trol frameworks for linear and nonlinear nonnegative and compartmental uncertain

dynamical systems. In particular, we focused on achieving set-point stabilization in

the nonnegative orthant of the state space as well as zero-point stabilization. Fur-

thermore, we developed neural network adaptive controllers that guarantee ultimate

boundedness of the closed-loop system states. For both cases, the adaptive controllers

were shown to guarantee that the physical system states remain in the nonnegative

orthant of the state space. In addition, we constructed adaptive controllers that con-

strain their inputs to be nonnegative, which is necessary to account for nonnegative

control inputs (infusion pumps) of drug delivery systems. The proposed approaches

were used to control the infusion of the anesthetic drug propofol and midazolam for

maintaining a desired constant level of depth of anesthesia for noncardiac surgery in

the face of combined interpatient pharmacokinetic and pharmacodynamic variability.

We then turn our attention to addressing the adaptive control problem for discrete-

time nonlinear uncertain systems. Specifically, we developed a direct adaptive control

framework for adaptive stabilization, disturbance rejection, and command following of

multivariable discrete-time nonlinear uncertain systems with exogenous bounded am-

plitude disturbances and bounded energy (square-summable) `2 disturbances. These

results are analogous to the continuous-time adaptive disturbance rejection results

discussed in Chapter 2 for continuous-time nonlinear uncertain systems. The pro-

posed adaptive controller addresses the problem of disturbance rejection for nonlin-

ear uncertain discrete-time systems with `2 signal norms on the disturbances and

performance variables. An adaptive control framework, via partial or semi-definite
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Lyapunov functions, that guarantees convergence of plant state and parameter errors

under a generic geometric constraints was also developed. The generic condition was

shown to be consistent with the notion of persistent excitation in the adaptive control

and system identification literature required for parameter error convergence.

Finally, we characterized hybrid adaptive control laws for nonlinear uncertain

impulsive dynamical systems. Using the the hybrid invariance principle the proposed

framework was shown to guarantee asymptotic stability of the closed-loop system

states associated with the hybrid plant dynamics. Furthermore, in the case where the

nonlinear hybrid system is represented in a hybrid normal form, the nonlinear hybrid

adaptive controllers were constructed without knowledge of the system dynamics.

Using less restrictive conditions, we also provide adaptive controllers that guarantee

attraction of the closed-loop hybrid plant states.

16.2. Recommendations for Future Research

Based on the results given in Chapter 2, we developed a robust adaptive control

framework in Chapter 3 that captures the residual approximation error inherent in

linear parameterizations of system uncertainty via basis functions. In this framework,

we assumed that the structured parametric uncertainty with bounded variation is

norm bounded with a known bound. The knowledge of the bound is required to

solve a Hamilton-Jacobi (bounded real Riccati) equation in order to construct V ′s (·).

However, the norm bound for the bounded variation is not always known. Hence,

it is plausible if we can characterize cases where we do not require knowledge of the

norm bound. A class of such cases would be matrix second-order systems.

In Chapter 6 we developed an adaptive control framework for a class of non-

linear matrix second-order dynamical systems with exogenous disturbances. The
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adaptive controller does not require a parametrization of uncertain nonlinear system

parameters. The framework is, however, applicable to the case where the generalized

damping matrix C(·) is only a function of the generalized position coordinates for the

case C(·) is lower bounded. Furthermore, in the case where damping and stiffness

operators are time-varying functions, the damping and stiffness operators have to be

lower and upper bounded. To address a more general matrix second-order dynam-

ical system it would be of interest to develop an adaptive feedback controller that

allows for C(t, q, q̇) and K(t, q) to be only lower bounded. This may be achieved via a

time-varying Lyapunov function which does not have to be decrescent [198, Theorem

6.23].

A direct adaptive control framework for linear nonnegative and compartmental

systems with unknown time delay was developed in Chapter 8. In particular, when

the compartmental dynamics are mammillary, we showed that the proposed controller

can always stabilize the closed-loop system without knowing the system parameters

nor the delay amount. The framework can be extended to nonlinear mammillary

systems with unknown time delay. Furthermore, an adaptive control framework for

general nonlinear systems with unknown time delay is virtually nonexistent in the

literature.

In Chapters 10–12, we consider neural network adaptive controllers for nonlinear

nonnegative dynamical systems to guarantee ultimate boundedness of the physical

system states as well as the neural network weighting gains. In the literature, there

are numerous results on neural network adaptive control framework for general non-

linear systems, but virtually none of them proves attraction of the plant states to

the equilibrium point. It may be possible to show state convergence by making use

of the robust adaptive ideas presented in Chapter 3; that is, update laws can be

constructed assuming that the neural network approximation error is sector bounded
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instead of amplitude bounded. In this case, the neural network may not require σ- or

e-modification terms in the update laws which can simplify stability proofs.

In Chapter 15 we developed a hybrid adaptive control framework for impulsive

(mixed continuous/discrete-time) dynamical systems. Closed-loop stabilization/at-

traction of the hybrid plant states is guaranteed if nonlinear Lyapunov(-like) equations

are satisfied for both continuous-time and discrete-time dynamics with the common

positive-definite function Vs(·). Due to this restriction, the framework is not applica-

ble to mechanical-type, matrix second-order (Hamiltonian) dynamical systems with

nonsmooth impacts. To address this problem it may be beneficial to first develop

an adaptive control framework for continuous-time matrix second-order systems with

Vs(·) having a Hamiltonian structure. Then the adaptive control problem for impul-

sive mechanical systems can be addressed with Vs(·) being Hamiltonian and satisfying

a hybrid continuous-time and discrete-time set of nonlinear Lyapunov equations. In

addition, a hybrid neuro adaptive control framework for hybrid dynamical systems

does note exist in the literature and hence a fruitful area of research would be to

develop a neural network adaptive control laws for impulsive dynamical systems.

There is no doubt that control-system technology has a great deal to offer phar-

macology in general, and anesthesia and critical care unit medicine in particular.

Critical care patients, whether undergoing surgery or recovering in intensive care

units, require drug administration to regulate key physiological variables (e.g., blood

pressure, cardiac output, heart rate, degree of consciousness, etc.) within desired

levels. The rate of infusion of each administered drug is critical, requiring constant

monitoring and frequent adjustments. Open-loop control by clinical personnel can

be very tedious, imprecise, time consuming, and sometimes of poor quality. Alter-

natively, closed-loop control can achieve desirable system performance in the face of

the highly uncertain and hostile environment of surgery and the intensive care unit.
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Since robust and adaptive controllers can achieve system performance without ex-

cessive reliance on system models, active (robust and adaptive) closed-loop control

has the potential in improving the quality of medical care as well as curtailing the

increasing costs of health care.

Even though there has been several control algorithms proposed in recent years

for active drug administration as reported in this dissertation, closed-loop control

for clinical pharmacology is still at its infancy. There are numerous challenges that

lie ahead. In particular, an implicit assumption inherent in all the proposed con-

trol frameworks discussed in this dissertation is that the control law is implemented

without any regard to actuator amplitude and rate saturation constraints. Of course,

any electromechanical control actuation device is subject to amplitude and/or rate

constraints leading to saturation nonlinearities enforcing limitations on control am-

plitudes and control rates. More importantly, in pharmacological applications, drug

infusion rates can vary from patient to patient and it is vital that they do not ex-

ceed certain threshold values. As a consequence, actuator nonlinearities and actuator

constraints (i.e., infusion pump rate constraints) need to be accounted for in drug de-

livery systems since they can severely degrade closed-loop system performance, and

in some cases drive the system to instability. These effects are even more pronounced

for adaptive controllers which continue to adapt when the feedback loop has been

severed due to the presence of actuator saturation causing unstable controller modes

to drift, which in turn leads to severe windup effects [156].

Another important issue not considered by most of the control algorithms dis-

cussed in this dissertation is sensor measurement noise. In particular, EEG signals

may have as much as 10% variation due to noise. For example, the BIS signal may be

corrupted by electromyographic noise; that is, signals emanating form muscle rather

that the central nervous system. Even though electromyographic noise can be min-
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imized by muscle paralysis, there are other sources of measurement noise that are

stochastic in nature and need to be accounted for within the control design processes.

In many compartmental pharmacokinetic system models, transfers between com-

partments are assumed to be instantaneous; that is, the model does not account for

material in transit. Even though this is a valid assumption for certain biological and

physiological systems, it is not true in general; especially in certain pharmacokinetic

and pharmacodynamic models. For example, if a bolus of drug is injected into the

circulation and we seek its concentration level in the extracellular and intercellular

space of some organ, there exists a time lag before it is detected in that organ [123].

In this case, assuming instantaneous mass transfer between compartments will yield

erroneous models. Hence, to accurately describe the distribution of pharmacological

agents in the human body, it is necessary to include in any mathematical pharma-

cokinetic model some information of the past system states. In this case the state of

the system at any given time involves a piece of trajectories in the space of continuous

functions defined on an interval in the nonnegative orthant. This of course leads to

(infinite-dimensional) delay dynamical systems [55,82]. This is especially relevant to

correctly address the time delay inherent in equilibrating the effect site compartment

with the central compartment and would have ramifications in the control design

processes. For example, for adaptive control, a nonlinear adaptive algorithm for com-

partmental systems with unknown time delay would need to be developed [40].

Optimal control for drug administration is also often necessary in clinical pharma-

cology. For therapeutic reasons in the intensive care unit, it may be desirable to reg-

ulate (maintain) the amount of a drug in one compartment above a certain minimum

threshold (dosage) level while maintaining the amount below a certain maximum level

in another compartment. Furthermore, to minimize drug side effects, it is desirable to

minimize the total amount (dosage) of drugs used [30,31,46,148,149,170,192,193,224].

464



Drug administration in clinics and hospitals do not generally satisfy the aforemen-

tioned conditions. To enforce the specialized structure of compartmental and non-

negative systems, nonnegative state and control constraints will need to be enforced

as part of the controller design. The optimal (nonnegative) control law will need

to be designed to maintain desired drug concentrations in the plasma dictated by

therapeutic effects while minimizing drug dosage to reduce side effects [180].

A fundamental constraint for nonnegative linear system stabilization with a non-

negative control signal arises in set-point regulation. In particular, it can be shown

that the existence of an equilibrium point in the interior of the nonnegative orthant

of the state space is assured only if the nonnegative dynamical system has a system

matrix that does not possess eigenvalues in the open right-half plane [53]. This im-

plies that the largest eigenvalue of the system lies on the imaginary axis. However, by

the Perron-Frobenius theorem [20] this eigenvalue is real and therefore equal to zero.

Hence, the system matrix is semistable. In light of this constraint, it can be shown

using Brockett’s necessary condition for asymptotic stabilizability [28, 53] that there

does not exist a continuous nonnegative stabilizing feedback for set-point regulation

in the nonnegative orthant for a nonnegative system. However, that is not to say

that asymptotic feedback regulation using discontinuous nonnegative feedback is not

possible. Of course, in the case where the system matrix is asymptotically stable, con-

tinuous nonnegative feedback for set-point regulation in the nonnegative orthant can

be used to improve system performance. In light of the above, it may be desirable to

develop hybrid (discontinuous) adaptive controllers for positive set-point regulation of

semistable compartmental systems. Hybrid adaptive control is virtually nonexistent

in the literature [93]. Furthermore, the problem of active control of sedation using

an intermittent clinician assessment with an ordinal sedation scoring system as a

performance variable necessitates hybrid control architectures to account for abstract
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decision making units (nurses or physicians) performing logical checks that identify

system mode operation and specify the lower-level continuous-time subcontroller to

be activated.

It is clear that closed-loop control for clinical pharmacology would significantly

advance our understanding of the wide effects of pharmacological agents and anes-

thetics as well as advance the state-of-the-art in drug delivery systems. While our

focus in this dissertation has been to survey the recent developments of active control

methods to deliver sedation to critically ill patients in an acute care environment and

outline some of the future challenges of active sedation control, these control methods

will have implications for other uses of closed-loop control of drug delivery. There

are numerous potential applications such as control of glucose, heart rate, blood pres-

sure, etc., that may be improved as a result of active drug dosing control. Payoffs

would arise from improvements in medical care, health care, reliability of drug dosing

equipment, as well as reduced cost for health care.
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[228] D. Taylor, P. V. Kokotović, R. Marino, and I. Kanellakopoulos, “Adaptive reg-
ulation of nonlinear systems with unmodeled dynamics,” IEEE Trans. Autom.

Contr., vol. 34, pp. 405–412, 1989.

[229] J. O. Tsokos and C. P. Tsokos, “Statistical modeling of pharmacokinetic sys-
tems,” ASME J. Dyn. Syst. Meas. Contr., vol. 98, pp. 37–43, 1976.

[230] R. Venugopal, V. G. Rao, and D. S. Bernstein, “Lyapunov-based backward-
horizon adaptive stabilization,” Int. J. Adapt. Control Signal Process., vol. 17,
pp. 67–84, 2003.

[231] R. Venugopal, V. G. Rao, and D. S. Bernstein, “Optimal Lyapunov-based back-
ward horizon adaptive stabilization,” in Proc. Amer. Contr. Conf., Arlington,
VA, pp. 1654–1658, June 2000.

[232] M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ: Prentice-
Hall, 1993.

[233] F. Viel, F. Jadot, and G. Bastin, “Global stabilization of exothermic chemical
reactors under input constraints,” IEEE Trans. Autom. Contr., vol. 42, pp. 473–
481, 1997.

[234] R. Vishnoi and R. J. Roy, “Adaptive control of closed-circuit anesthesia,” IEEE
Trans. Biomed. Eng., vol. 38, no. 1, pp. 39–47, 1991.

[235] S. M. Walas, Reaction Kinetics for Chemical Engineers. New York: McGraw-
Hill, 1959.

[236] G. G. Walter and M. Contreras, Compartmental Modeling with Networks.
Boston, MA: Birkhaeuser, 1999.

[237] A. Weinman, Uncertain Models and Robust Control. New York: Springer-
Verlag, 1991.

[238] P. G. Welling, Pharmacokinetics: Processes, Mathematics, and Applications.
Washington DC: American Chemical Society, 2 ed., 1997.

[239] M. White and G. N. C. Kenny, “Intravenous propofol anaesthesia using a com-
puterised infusion system,” Anaesthesia, vol. 45, pp. 204–209, 1990.

[240] J. C. Willems, “Least squares stationary optimal control and the algebraic
Riccati equation,” IEEE Trans. Autom. Contr., vol. 16, pp. 621–634, 1971.

[241] J. C. Willems, “Dissipative dynamical systems part I: General theory,” Arch.

Rational Mech. Anal., vol. 45, pp. 321–351, 1972.

483
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