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SUMMARY

Utilizing the universal approximation property of neural networks, we develop

several novel approaches to neural network-based adaptive output feedback control of

nonlinear systems, and illustrate these approaches for several flight control applica-

tions. In particular, we address the problem of non-affine systems and eliminate the

fixed point assumption present in earlier work. All of the stability proofs are carried

out in a form that eliminates an algebraic loop in the neural network implementa-

tion. An approximate input/output feedback linearizing controller is augmented with

a neural network using input/output sequences of the uncertain system. These ap-

proaches permit adaptation to both parametric uncertainty and unmodeled dynamics.

All physical systems also have control position and rate limits, which may either de-

teriorate performance or cause instability for a sufficiently high control bandwidth.

Here we apply a method for protecting an adaptive process from the effects of input

saturation and time delays, known as “pseudo control hedging”. This method was

originally developed for the state feedback case, and we provide a stability analysis

that extends its domain of applicability to the case of output feedback. The approach

is illustrated by the design of a pitch-attitude flight control system for a linearized

model of an R-50 experimental helicopter, and by the design of a pitch-rate control

system for a 58-state model of a flexible aircraft consisting of rigid body dynamics

coupled with actuator and flexible modes.

A new approach to augmentation of an existing linear controller is introduced.

It is especially useful when there is limited information concerning the plant model,

and the existing controller. The approach is applied to the design of an adaptive

autopilot for a guided munition. Design of a neural network adaptive control that

ensures asymptotically stable tracking performance is also addressed.

xiv



CHAPTER I

INTRODUCTION

1.1 Nonlinear Adaptive Control

Historically, linear control design has dominated flight control applications and is

thus well established. Linear controllers are designed to achieve desired stability and

performance requirements for a linearized model of the system dynamics at selected

operating points. As modern high-performance aircraft are required to be ever more

maneuverable, they encounter complex nonlinear dynamics that cannot be easily

approximated by linear models. Thus the use of nonlinear control theory is motivated

to meet the stability and performance requirements in the presence of highly nonlinear

dynamics.

Recently, a systematic approach to nonlinear control called “feedback lineariza-

tion” [1, 2] has gained popularity and has been applied to flight control [3, 4, 5]. It

utilizes a smooth nonlinear coordinate transformation to transform an original nonlin-

ear plant into an equivalent linear time-invariant form, and then uses well-known and

powerful linear control design techniques to complete the control design. Limitations

of the method of feedback linearization are that it is applicable only to minimum

phase systems, and that it requires an accurate nonlinear model. Thus robustness

to uncertainties is not guaranteed. Unfortunately, uncertainties are common in real-

world systems. Such uncertainties include parametric uncertainty and unmodeled

dynamics. Systems with uncertainties can be dealt with by robust control. Given up-

per bounds on the modeling error, one designs a feedback control law that guarantees

stability and performance specifications for all uncertainties within the given bounds.

The design process requires both a nominal model and some characterization of the
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model uncertainties.

An alternative to robust control is adaptive control. Adaptive control offers the

advantage that the bounds on uncertainty are not necessarily required to be known

since the uncertainty is adaptively cancelled online. In an adaptive control setting,

the controller parameters are updated online using signals that are available within

the system. Gain scheduling can be categorized as an adaptive control within the

context of this broad definition. It alters linear controller gains according to the

environmental properties at different operating points. Adaptive control has been

most successful for plants in which the unknown parameters appear linearly. Standard

adaptive control design methods are limited by the assumption that there exists a

linear parametrization of the plant uncertainty. The difficulty lies in finding the

correct parametrization to use. Neural networks (NNs) offer the potential to overcome

the difficulties associated with applying adaptive control to highly uncertain nonlinear

systems, for which a linear parametrization of the uncertainty is not known.

NNs are universal approximators [6, 7, 8] and provide a convenient way to pa-

rameterize uncertainty. NNs provide a way to approximate a continuous nonlinear

function to any degree of accuracy on a compact set. We can leave the burden of

parameterizing an unknown nonlinear function to the NN and use nonlinear stability

theory to derive adaptation laws for updating the NN weights. NNs are nonlinear

functions whose parameters are the weights and biases of the network. Adaptation of

the NN parameters (weights) is typically obtained by gradient algorithms using the

tracking error, which in turn is a filtered difference between the output of the NN and

the unknown function to be approximated by the NN. There are other approximator

structures such as conventional polynomials and fuzzy systems [9, 10, 11].

Early results in adaptive control suffered from lack of robustness (i.e. parameter

drift) to bounded disturbances and unmodeled dynamics. This led many researchers

to study the instabilities arising from the lack of robustness which led to a body of

2



research known as robust adaptive control. Several techniques and alterations were

proposed to assure boundedness of all signals in the presence of system uncertainties.

These include σ-modification [12, 13], e-modification [14, 15], parameter projection

[16, 17] and dead-zone [18, 19]. The idea is to modify the adaptive law so that the

time derivative of the Lyapunov function used to analyze the adaptive scheme be-

comes negative when the adaptive parameters go beyond certain bounds. Although

σ-modification was introduced to avoid parameter drift, it has a disadvantage that

even in the ideal case when there is perfect NN reconstruction without other distur-

bances, σ-modification does not drive the errors to zero. This shortcoming motivated

another variation called e-modification, which eliminates the main drawback of σ-

modification by multiplying the norm of error signal with the σ-modification term

in the adaptive law. Parameter projection keeps the NN weights inside a prescribed

convex set that contains the unknown optimal weights. This approach requires a

known norm bound for the NN weights, while both σ and e-modifications require no

a priori information about the NN weights. A comprehensive treatment of robust

adaptive control can be found in Ioannou and Sun [20] and in Ortega and Tang [21].

1.2 NN Augmented Feedback Linearization

NN adaptive control combined with feedback linearization [22, 23, 24] is a popular

method for control of nonlinear systems. This method takes advantage of feedback

linearization and assigns the NN to deal with uncertainty in the system. In [22]

linearly-parameterized NNs have been used in combination with feedback lineariza-

tion to compensate online for the error introduced by using an approximate inverting

transformation. Stability analysis pertaining to control of affine discrete-time non-

linear systems using nonlinearly-parameterized NNs first appeared in [25]. The first

analysis of nonlinearly-parameterized NNs for continuous-time systems appeared in

[26]. Applications in robotics are described in [27, 28, 29]. Extensions to non-affine
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systems together with applications in flight control can be found in [22, 30, 23, 31, 24].

Comprehensive overviews of NNs for control systems are provided in survey papers

[32, 33, 34].

Extensions of the methods described above to observer-based output feedback

controls are treated in [35, 36]. However, these results are limited to systems with

full relative degree (vector relative degree = degree of the system) with the added

constraint that the relative degree of each output is less than or equal to two [37]. In

the SISO (single-input single-output) case, this implies that observer-based adaptive

output feedback control is limited to second order systems with position measurement.

Moreover, since state observers are employed, the dimension of the plant must be

known. Therefore, methods that rely on a state observer are vulnerable to unmodeled

dynamics. In [38] a direct adaptive approach is developed that removes the limitations

inherent in state observer-based design. In [39] these same limitations are overcome

by employing an error observer, in place of a state observer. The only requirement

in the latter two approaches is that the relative degree of the regulated output be

known. These works have been limited to the use of σ-modification. This thesis

provides proof of boundedness for e-modification and parameter projection, thereby

allowing more latitude in choosing an adaptive algorithm for output feedback control.

Adaptive systems are known to be sensitive to control limits. All physical sys-

tems have control position and rate limits. These limits are potentially destabilizing,

particularly under high-bandwidth control. In [40, 41] a novel approach for treat-

ing control limits within an adaptive control setting called “pseudo-control hedging”

(PCH) was introduced and developed for the state feedback case. A PCH signal is

first calculated by taking the difference between the pseudo control and an estimate

of the achievable pseudo control, and then the PCH signal is used to modify the

reference model. The PCH method removes selected plant input characteristics (dis-

crepancies between commanded and actual plant input) from tracking error dynamics

4



and prevents adaptation to these characteristics.

Both classical and modern control design methods are fundamentally limited by

the presence of unmodeled high frequency effects. The same is particularly true in

adaptive methods that attempt to learn and interact with these effects. One goal of

this thesis has been to develop an approach to flight control design that is inspired by

the performance levels that pilots are able to attain through long hours of training.

This implies that we explicitly account for and adapt to the presence of unmodeled

and potentially nonlinear dynamics in an output feedback setting, even if all the

states of the modeled portion of the system are available for feedback. Adaptation

to unmodeled dynamics is achieved by recognizing the effect that these dynamics

have; both in terms of degree and relative degree of the system. This implies that, in

the context of controlling the system with unmodeled dynamics, we must treat the

design like an output feedback problem. Our main assumptions are that the system

is minimum phase, stabilizable and observable, and that the relative degree of the

regulated output variable is known. The dimension of the plant need not be known.

1.3 NN Augmentation of Existing Controllers

The main idea of NN augmentation of an existing controller is to combine the use

of a NN adaptive element, which can accommodate for model errors online, and the

simplicity of a linear fixed-gain control, such as a PID controller. Several attempts

to develop a method for adding an adaptive element to an existing linear controller

architecture have appeared in the literature [42, 43, 44]. These methods are limited

to state feedback, and matched uncertainty [43, 44]. In [42], dynamic systems that

are particular to robots are considered. In [45, 46] output feedback adaptive control

approaches for augmenting an existing linear controller are developed, and applied to

control of uncertain flexible systems. These approaches are limited to minimum phase

systems. An extension to control of non-minimum phase systems can be found in [47].
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In all of these approaches, a reference model is chosen by making use of an existing

controller that guarantees performance requirements when applied to a known plant

model. Knowledge of the plant model and the existing controller is assumed. However,

there are many situations in which the plant model is unknown (or only its structure

is known), and the controller is designed by tuning its parameters. Consequently, the

controller design (often gain scheduled) is not directly linked to a known plant model,

and the plant model is not available to define a reference model for adaptive control

design purposes. Here we develop an approach that makes use of a simple reference

model which has the same relative degree as the true plant. The advantage here is

that the designer is free to specify the reference model without requiring information

on how the existing linear controller was designed. The reference model can be chosen

freely as long as it is stable and of the same relative degree as the true plant.

1.4 Assumption on Sign of Control Effectiveness

Knowledge of the sign of control effectiveness is a common assumption in adaptive

control. For an affine system with constant control effectiveness it is not difficult to

show that knowledge of the sign of control effectiveness is needed to obtain a reason-

able adaptive law. For an affine system with state-dependent control effectiveness or

for a non-affine system, the requirement for knowledge of the sign of control effective-

ness has not been adequately addressed in the existing literature. In [38, 48, 39] this

issue is addressed by introducing a fixed point assumption. In the NN-augmented

feedback linearization approach, the modeling error is a function of the output of the

NN, which is in turn designed to cancel the modeling error. This approach requires

existence of a fixed point solution to the equation relating the output of the NN and

the modeling error. In [38], it has been pointed out that applying the condition for

a contraction mapping to the modeling error leads to the conclusion that control

effectiveness for an approximate model has the same sign as the plant. Thus the

6



requirement for knowledge of the sign of the control effectiveness is implicit in the

overall approach, but does not appear explicitly in the stability analysis. However,

it can be shown that applying the contraction mapping to an equivalent condition

leads to the opposite conclusion, that the estimate for the control effectiveness has

the opposite sign of the true control effectiveness. This suggests that knowledge of

the sign of the control effectiveness is not relevant to the issue of existence of a fixed

point solution. Here we employ the mean value theorem to avoid the assumption of

a fixed point solution, and elucidate the role of the sign of control effectiveness both

in the boundedness analysis and in the adaptive law.

In [49] signal boundedness was proven by using the mean value theorem in a

non-affine system. The mean value theorem was utilized to represent the non-affine

system in an affine form. This proof was limited to state feedback control without

internal dynamics. Here we adopt the method in [49] to reformulate the modeling

error such that it is not an explicit function of the NN output, thus eliminating the

issue of a fixed point solution. A new adaptive law is developed in which knowledge

of the sign of the control effectiveness is explicitly needed to prove that the response

is bounded. We also extend the stability analysis so that it is applied to an output

feedback setting with internal dynamics as well.

1.5 Contributions of this Thesis

The main contributions of this thesis include:

• Elimination of the so-called “fixed point problem” in adaptive control of non-

affine systems, and clarification on the role that knowledge of the sign of control

effectiveness plays in adaptive control of non-affine systems.

• A novel approach to approximate input/output feedback linearization that em-

ploys a pole shifting idea.
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• Boundedness analysis of PCH with NN adaptive control in an output feedback

setting.

• Boundedness proof of NN adaptive output feedback control with e-modification.

• Boundedness proof of NN adaptive output feedback control with parameter

projection.

• Implementations of NN adaptive control for high-bandwidth helicopter pitch

attitude control and flexible aircraft pitch rate control.

• Extension of the direct adaptive output feedback control method in [38] to

include nonlinearly-parameterized NNs.

• Development of a method to augment an existing controller with a NN when

there is limited information of the plant and existing controller. Demonstration

of the efficacy of the adaptive scheme in a JDAM munition autopilot design.

• Extension of the augmentation of existing controllers to multi-input multi-

output (MIMO) systems.

• A technique of command limiting so as to avoid an excessive excursion in a

selected state variable.

• A design of a NN adaptive control which ensures asymptotic tracking perfor-

mance. This work is done with nonlinearly-parameterized NN and parameter

projection.

1.6 Thesis Outline

Chapter 2 eliminates the requirement that there exists a fixed-point solution for the

output of NN to cancel the modeling error. The need of knowledge of the sign
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of control effectiveness is shown both in new NN adaptive laws and the proof of

boundedness. The NN universal approximation property is briefly explained.

Chapter 3 presents an approach combining NN-based adaptive control and in-

put/output feedback linearization in an output feedback setting. Designs of the

adaptive controller and an observer for the error dynamics are described. Ultimate

boundedness of all the signals is proven in three adaptive schemes. The approach is

illustrated by the design of a pitch-angle flight control system for a linearized model

of an R-50 experimental helicopter and a pitch-rate command system design of a

58-state model of a flexible aircraft. A direct adaptive approach with a nonlinearly-

parameterized NN, without the use of the error observer, is presented and a numerical

example is included to demonstrate the efficiency of the approach.

Chapter 4 describes an approach to augment an existing controller with a NN-

based adaptive element. The augmenting architecture developed offers two choices in

the output feedback setting: the error observer approach and the direct approach. An

application to a JDAM munition autopilot design is treated. These results include

command limiting in the case of excessive angle of attack. The augmenting archi-

tecture is extended to MIMO systems with the error observer approach in Section

4.2.

Chapter 5 introduces an adaptive scheme which achieves asymptotic convergence

of the tracking error to zero while guaranteeing boundedness of other signals. The

method utilized parameter projection, adaptive bounding and Barbalat’s lemma.

The results of the research effort are summarized in Chapter 6, where conclu-

sions are presented along with directions for future research. The main proofs of

boundedness are given in Appendices A.1 - A.8.
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CHAPTER II

SIGN OF CONTROL EFFECTIVENESS

Experience in simulation has shown that an unknown reversal in the sign of the control

effectiveness invariably leads to an unstable response. Nevertheless, knowledge of the

sign of control effectiveness is not incorporated explicitly in the proof of stability

[38, 39, 48]. A fixed point of f(x) is defined as a point x ∈ D satisfying f(x) =

x where f(x) is a function with domain D [50]. In the NN-augmented feedback

linearization approach, the modeling error, ∆, is a function of the output of NN, vad,

which is designed to cancel ∆(·, vad) and obtain stable error dynamics. This raises

the question of existence of a fixed point solution to the equation vad = ∆(·, vad). In

[38] a contraction mapping assumption is imposed on ∆(·, vad) with respect to vad to

guarantee the existence of a fixed point solution to vad = ∆(·, vad). The contraction

mapping condition on ∆(·, vad) requires that sgn(∂ĥr(x, u)/∂u) = sgn(∂hr(x, u)/∂u),

where hr is the rth derivative of output and ĥr is an approximate model of hr. This

implies knowledge of the sign of the control effectiveness. However, it can be argued

that a solution to vad = ∆(·, vad) exists if and only if there exists a solution to

v = hr(x, u)−vad, where u = ĥ−1
r (x, v) is the inverting solution for the control. It can

be shown that applying the condition for a contraction to hr(x, u)− vad with respect

to v leads to the condition sgn(∂ĥr(x, u)/∂u) = −sgn(∂hr(x, u)/∂u). This suggests

that the sign of control effectiveness is not relevant to the existence of a fixed point

solution to vad = ∆(·, vad). Note that in general, the contraction mapping condition is

overly restrictive because it is a sufficient condition for existence of a unique solution,

which is more than what may be required. Regardless of this apparent contradiction,

knowledge of the sign of the control effectiveness is not explicit in the proofs of

10



boundedness in [38, 39, 48]. Thus we are inclined to develop an alternate approach

to the proof in which the knowledge of the sign of the control effectiveness is explicit.

This chapter will show that knowledge of the control effectiveness appears as an

explicit requirement in the adaptation law, and that it is essential for boundedness

analysis in the adaptive control setting. This is done by eliminating the issue of a

fixed point solution with the use of the mean value theorem so that a reformulated

modeling error, ∆̄, is not an explicit function of vad. We apply this method to aug-

mentation of an existing controller in Chapter 4 as well.

2.1 Problem Formulation

For simplicity of presentation of the main idea we consider a SISO nonlinear system

of the following form:

ẋi = xi+1, i = 1, 2, · · · , n − 1

ẋn = f(x, u)

(2.1.1)

where x ∈ Dx ⊂ <n, and u ∈ < is the control input. The function f(x, u) may be

unknown. The control objective is to synthesize a state-feedback control law such that

x(t) tracks a smooth reference trajectory xm(t) asymptotically. Let f̂(x, u) denote

an approximate model for f(x, u) so that

f(x, u) = f̂(x, u) + ∆ (2.1.2)

where the modelling error is ∆(x, u) = f(x, u) − f̂(x, u). The model f̂(x, u) should

be chosen to be invertible with respect to its second argument. The invertibility is

warranted by the following assumption.

Assumption 2.1.1. ∂f̂(x, u)/∂u is continuous and non-zero for every (x, u) ∈ Dx ×

<.
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Let the approximate function be recast as

v = f̂(x, u) (2.1.3)

where v is called pseudo-control. Then the control law can be defined directly from

(2.1.3)

u = f̂−1(x, v) (2.1.4)

The pseudo-control is composed of three signals:

v , x(n)
m + vc − vad (2.1.5)

where x
(n)
m is the nth time derivative of xm(t), vc is the output of a linear controller,

and vad is an adaptive term designed to cancel ∆(x, u).

The reference model can be expressed in state space form as:

ẋm = Amxm + bmxc (2.1.6)

xm ,

[

xm ẋm · · · x
(n−1)
m

]T

Am =
















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 0 1

−a1 −a2 −a3 · · · −an
















, bm =
















0

0

0

...

a1
















,

where xm ∈ <n are the state vector of the reference model, xc ∈ < is a bounded

external command signal, and Am is Hurwitz.

Let e , xm − x1. Then

e(n) = −vc + vad − ∆ (2.1.7)

For simplicity, the linear controller is defined as:

vc = k1e + k2ė + · · · + kne
(n−1) (2.1.8)
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where the gains ki are chosen such that the dynamics in (2.1.7) are asymptotically

stable when vad − ∆ = 0. In state space form:

Ė = AE + b(vad − ∆(x, u)) (2.1.9)

where E =

[

e ė · · · e(n−1)

]T

, and

A =
















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 0 1

−k1 −k2 −k3 · · · −kn
















, b =
















0

0

0

...

1
















.

Remark 2.1.1. Reference [38] points out that ∆ depends on vad through (2.1.4)

and (2.1.5) and that vad is designed to cancel ∆. The contraction assumption was

introduced to guarantee the existence and uniqueness of a solution for vad to vad =

∆(·, vad). The contraction is satisfied by the following condition:

∣
∣
∣
∣

∂∆

∂vad

∣
∣
∣
∣
< 1 (2.1.10)

This implies:

∣
∣
∣
∣

∂∆

∂vad

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂(f − f̂)

∂u

∂u

∂v

∂v

∂vad

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂(f − f̂)

∂u

∂u

∂f̂

∣
∣
∣
∣
∣
< 1, (2.1.11)

which can be rewritten in the following way:
∣
∣
∣
∣
∣

∂f/∂u

∂f̂/∂u
− 1

∣
∣
∣
∣
∣
< 1. (2.1.12)

Condition (2.1.12) is satisfied if and only if the two following conditions hold:

sgn

(
∂f

∂u

)

= sgn

(

∂f̂

∂u

)

, (2.1.13)

0 <
1

2

∣
∣
∣
∣

∂f

∂u

∣
∣
∣
∣
<

∣
∣
∣
∣
∣

∂f̂

∂u

∣
∣
∣
∣
∣
< ∞ (2.1.14)
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This leads to the conclusion that one of the sufficient conditions that ensures exis-

tence of a solution to the equality vad = ∆(·, vad) is that the sgn(∂f̂(x, u)/∂u) =

sgn(∂f(x, u)/∂u). Thus, knowledge of the sign of the control effectiveness is im-

plicit in the approach to guarantee existence of a solution. However, a solution to

vad = ∆(·, vad) exists if and only if there exists a solution to v = f(x, u)− vad. It can

be shown that applying the condition for a contraction mapping to v = f(x, u)− vad

leads to the condition sgn(∂f̂(x, u)/∂u) = −sgn(∂f(x, u)/∂u). Examining the con-

traction mapping condition we are led to:
∣
∣
∣
∣

∂f

∂v
− ∂vad

∂v

∣
∣
∣
∣
=

∣
∣
∣
∣

∂f

∂v
+ 1

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∂f/∂u

∂f̂/∂u
+ 1

∣
∣
∣
∣
∣
< 1

−2 <
∂f/∂u

∂f̂/∂u
< 0

(2.1.15)

which is equivalent to:

sgn

(

∂f̂

∂u

)

= −sgn

(
∂f

∂u

)

(2.1.16)

0 <
1

2

∣
∣
∣
∣

∂f

∂u

∣
∣
∣
∣
<

∣
∣
∣
∣
∣

∂f̂

∂u

∣
∣
∣
∣
∣
< ∞ (2.1.17)

Since both (2.1.13) and (2.1.16) are sufficient for existence of a fixed point solution

to vad = ∆, it follows that

0 <
1

2

∣
∣
∣
∣

∂f

∂u

∣
∣
∣
∣
<

∣
∣
∣
∣
∣

∂f̂

∂u

∣
∣
∣
∣
∣
< ∞ (2.1.18)

alone is sufficient for existence of a fixed point solution. This suggests that knowledge

of the sign of the control effectiveness is not relevant to the issue of existence of a

fixed point solution to vad = ∆(·, vad).

2.2 NN Approximation of the Inversion Error

The term “artificial NN” has come to mean any architecture that has massively

parallel interconnections of simple “neural” processors [51]. Given x ∈ D ⊂ <n1 , a
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nonlinearly-parameterized (three layer) NN has an output given by

yi =

n2∑

j=1

[

wji σj

(
n1∑

k=1

vkjxk + θvj

)]

+ θwi,

i = 1, . . . , n3

(2.2.1)

where σ(·) is activation function, vkj are the first-to-second layer interconnection

weights, wji are the second-to-third layer interconnection weights, and θvj, θwi are

bias terms.

Definition 2.2.1. A function σ : < → < is a squashing function if it is an activation

function, limx→−∞ σ(x) = 0, and limx→∞ σ(x) = 1.

The NN structure is depicted in Figure 1. Such an architecture is known to be

a universal approximator of continuous nonlinearities with “squashing” activation

functions [6, 7, 8]. This implies that a continuous function g(x) with x ∈ D ⊂ <n1

can be written as

g(x) = W T σ(V T x) + ε(x) (2.2.2)

where D is a compact set and ε(x) is the function reconstruction error (also called

representation error or approximation error). In general, given a constant real number

ε∗ > 0, g(x) is within ε∗ range of the NN, if there exist constant weights V,W , such

that for all x ∈ D ⊂ <n1 , (2.2.2) holds with ‖ε‖ < ε∗. W and V are the optimal

weights defined as:

{W,V } = arg min
W,V

{

max
x∈D

‖g(x) − W T σ(V T x)‖
}

(2.2.3)

2.3 Modeling Error Reformulation

Define the following signals,

vl , x(n)
m + vc

v∗ , f̂(x, f−1(x, vl))

(2.3.1)
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Figure 1: Nonlinearly-parameterized NN architecture
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Assumption 2.3.1. ∂f(x, u)/∂u is continuous and non-zero for every (x, u) ∈ Dx×<

and its sign is known.

Invertibility of f(x, u) with respect to its second argument is guaranteed by As-

sumption 2.3.1. From (2.3.1), it follows that vl can be written as

vl = f(x, f̂−1(x, v∗)) (2.3.2)

and,

vad − ∆(x, u) = vad − f(x, u) + f̂(x, u)

= vad − f(x, f̂−1(x, v)) + vl − vad

= −f(x, f̂−1(x, v)) + vl

(2.3.3)

Applying the mean value theorem to f(x, f̂−1(x, v))

f(x, f̂−1(x, v)) = f(x, f̂−1(x, v∗)) + fv̄(v − v∗)

= vl + fv̄(v − v∗)

(2.3.4)

where

fv̄ ,
∂f

∂u

∂u

∂v

∣
∣
∣
∣
v=v̄

, v̄ = θv + (1 − θ)v∗, and 0 ≤ θ(v) ≤ 1 (2.3.5)

Using (2.3.1) and (2.3.4) in (2.3.3),

vad − ∆ = fv̄[vad − vl + f̂(x, f−1(x, vl))]

= fv̄[vad − ∆̄(x, vl)]

(2.3.6)

where ∆̄ = vl − f̂(x, f−1(x, vl)). By Assumption 2.3.1 and 2.1.1, it follows that

fv̄ = ∂f
∂u

/∂f̂
∂u
|v=v̄ is either strictly positive or strictly negative. Using (2.3.6), we have

the following error dynamics.

Ė = AE + bfv̄(vad − ∆̄(x, vl)) (2.3.7)

Since ∆̄ is not a function of vad, there is no need of solving a fixed point solution for

vad to cancel ∆̄.

17



The adaptive element is defined as:

vad = Ŵ T σ(V̂ T µ)

σ(z) =

[

1 σ1(z1) · · · σn2
(zn2

)

]T

∈ <n2+1

σi(zi) =
1

1 + e−aizi
, i = 1, 2, · · · , n2

(2.3.8)

The NN input is µ =

[

1 xT vl

]T

. The NN weights are updated by the following

adaptation law.

˙̂
W = −ΓW

[

sgn(fv̄)σ̂ET Pb + ke‖E‖Ŵ
]

˙̂
V = −ΓV

[

sgn(fv̄)µET PbŴ T σ̂′ + ke‖E‖V̂
] (2.3.9)

where ΓV , ΓW > 0 and ke > 0 is the e-modification gain. σ̂ = σ(V̂ T µ) and σ̂′ is the

Jacobian of σ̂

σ̂′ ,
dσ

dz
|z=V̂ T µ =












0 · · · 0

dσ1

dz1

· · · 0

...
. . .

...

0 · · · dσn2

dzn2












∈ <(n2+1)×n2 (2.3.10)

and has the following property.

|ziσ
′
i(zi)| ≤ δ = 0.224, (2.3.11)

The equality in (2.3.11) holds when aizi = 1.543 [52].

Since A is Hurwitz, then for any Q > 0, there exists a unique P > 0 that solves

the Lyapunov equation:

AT P + PA = −Q (2.3.12)

Introduce the vec operator for a matrix M ∈ <n×m

vecM ,












col1(M)

col2(M)

...

colm(M)












∈ <nm (2.3.13)
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which is a vector of dimension nm× 1 obtained by stacking the columns of M where

coli(M) is the ith column vector of M .

Assumption 2.3.2. The NN approximation ∆̄(x, vl) = W T φ(x, vl)+ε with ‖ε‖ < ε∗

holds on a compact set D and the compact set D is sufficiently large such that

E ∈ BR , {ζ : ‖ζ‖ ≤ R} ensures x ∈ D, where ζ =

[

ET W̃ T (vecṼ )T

]T

.

Assumption 2.3.2 requires D to encompass a ball of radius ‖xm‖ + R.

‖x‖ ≤ ‖xm‖ + ‖E‖ ≤ ‖xm‖ + R (2.3.14)

Assumption 2.3.3. fv̄ and d
dt

(
1
fv̄

)

are continuous functions in D.

Any continuous function has a maximum on a compact set. Define

fB , max
x,u∈D

|fv̄|, F , max
x,u∈D

∣
∣
∣
∣

d

dt

(
1

fv̄

)∣
∣
∣
∣

(2.3.15)

We assume that there exist a compact set D inside which the NN approximation and

(2.3.15) are valid as long as x stays in D. We will show that if the initial error E(0)

starts in a compact set Ωα ⊂ BR, then the feedback law (2.1.4) and the adaptive law

(2.3.9) guarantee that E(t) is ultimately bounded inside Ωβ ⊂ Ωα so that x ∈ D for

all time.

Using the Taylor series expansion of σ(z) at z = ẑ, one gets:

σ = σ̂ − σ̂′Ṽ T µ + O(‖Ṽ ‖2) (2.3.16)

where O(‖Ṽ ‖2) represents the higher order terms and z = V T µ, ẑ = V̂ T µ. Then

vad − ∆̄ = Ŵ T σ̂ − W T σ − ε

= Ŵ T σ̂ − W T
(

σ̂ − σ̂′Ṽ T µ + O(‖Ṽ ‖2)
)

− ε

= W̃ T σ̂ + W T σ̂′Ṽ T µ − W TO(‖Ṽ ‖2) − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄

(2.3.17)

where w̄ = −W̃ T σ̂′Ṽ T µ − W TO(‖Ṽ ‖2) − ε.
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Theorem 2.3.1. Let Assumptions 2.3.1, 2.1.1, 2.3.2 and 2.3.3 hold. Then there exists

a positive invariant set Dζ in the space of the error variables ζ wherein the control

law given by (2.1.4), (2.1.5) and the adaptive law (2.3.9) ensure, for all ζ(0) ∈ Ωα,

that E, W̃ , Ṽ are ultimately bounded.

Proof. Choose the following Lyapunov function candidate

L =

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE + W̃ T Γ−1

W W̃ + tr(Ṽ T Γ−1
V Ṽ ) (2.3.18)

Differentiating with respect to time,

L̇ =
d

dt

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣

(
−ET QE + 2ET Pbfv̄(vad − ∆̄)

)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V )

(2.3.19)

Applying the adaptive law (2.3.9) and the representation of (2.3.17),

L̇ =
d

dt

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣

(
−ET QE + 2ET Pbfv̄w̄

)

− 2ke‖E‖(W̃ T Ŵ + tr(Ṽ T V̂ ))

≤ Fλmax(P )‖E‖2 − 1

fB
λmin(Q)‖E‖2

+ 2‖E‖‖Pb‖(γ1‖Z̃‖2 + ε∗) − 2ke‖E‖(‖Z̃‖2 − Z∗‖Z̃‖)

≤ Fλmax(P )‖E‖2 − 1

fB
λmin(Q)‖E‖2

+ 2‖E‖‖Pb‖(γ1‖Z̃‖2 + ε∗) − ke‖E‖(2‖Z̃‖2 − Z∗2 − ‖Z̃‖2)

(2.3.20)

We combine the terms to obtain

L̇ ≤ −‖E‖
[

{ 1

fB
λmin(Q) − Fλmax(P )}‖E‖

+ (ke − 2γ1)‖Pb‖‖Z̃‖2 − (keZ
∗2

+ 2ε∗‖Pb‖)
]

(2.3.21)

The above inequality requires that

ke > 2γ1,
λmin(Q)

λmax(P )
> FfB (2.3.22)

20



Figure 2: Geometric representation of the sets in the error space

Either of the following two conditions renders L̇ < 0.

‖E‖ >
(keZ

∗2

+ 2ε∗‖Pb‖)
1

fB λmin(Q) − Fλmax(P )

‖Z̃‖ >
(keZ

∗2

+ 2ε∗‖Pb‖)
(ke − 2γ1)‖Pb‖

(2.3.23)

Therefore E, Z̃ are ultimately bounded inside Ωβ in Figure 2.

Remark 2.3.1. λmin(Q)
λmax(P )

is related to the convergence rate of (2.3.7) when vad = ∆̄

and the second inequality in (2.3.22) demands a sufficiently stable error dynamics in

(2.3.7).

2.4 Extension to Output Feedback Control

Consider the following observable and stabilizable nonlinear SISO system:

ẋ = f(x, u)

y = h(x)

(2.4.1)

where x is the state of the system on a domain Dx ⊂ <n, and u, y ∈ < are the

control and regulated output variables, respectively. The functions f and h may be

unknown.
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Assumption 2.4.1. The functions f : Dx × < → <n and h : Dx → < are in-

put/output feedback linearizable [2], and the output y has relative degree r for all

(x, u) ∈ Dx ×<.

Based on this assumption, the system (2.4.1) can be transformed into normal form

[1]

χ̇ = f 0(ξ,χ)

ξ̇i = ξi+1 i = 1, · · · , r − 1

ξ̇r = hr(ξ,χ, u)

y = ξ1

(2.4.2)

where ξ = [ ξ1 . . . ξr ]T , hr(ξ,χ, u) = Lr
fh,and χ is the state vector associated

with the internal dynamics

χ̇ = f 0(ξ,χ) (2.4.3)

Assumption 2.4.2. The internal dynamics in (2.4.3), with ξ viewed as input, are

input-to-state stable. [53]

Assumption 2.4.3. ∂hr(x, u)/∂u is continuous and non-zero for every (x, u) ∈ Dx×

< and its sign is known.

The control objective is to synthesize an output feedback control law such that

y(t) tracks a smooth reference model trajectory yrm(t) within bounded error. Let

ĥr(y, u) denote an approximate model for hr(x, u) so that:

hr(x, u) = ĥr(y, u) + ∆ (2.4.4)

where the modelling error is ∆(x, u) = hr(x, u)− ĥr(y, u). The model ĥr(y, u) should

be chosen to be invertible with respect to its second argument so as to be consistent

with the following assumption.
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Assumption 2.4.4. ∂ĥr(y, u)/∂u is continuous and non-zero for every (y, u) ∈ Dy ×

<.

Let the approximate function be recast as

v = ĥr(y, u) (2.4.5)

where v is called pseudo-control. Then the control law can be defined directly from

(2.4.5)

u = ĥ−1
r (y, v) (2.4.6)

The pseudo-control is composed of three signals:

v , y(r)
rm + vdc − vad (2.4.7)

where y
(r)
rm is the rth time derivative of yrm(t), vdc is the output of a linear controller,

and vad is an adaptive term designed to cancel ∆(x, u).

The reference model can be expressed in state space form as:

ẋrm = Armxrm + brmyc

yrm = Crmxrm

(2.4.8)

xrm ,

[

xrm ẋrm · · · x
(r−1)
rm

]T

Arm =
















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 0 1

−a1 −a2 −a3 · · · −ar
















, brm =
















0

0

0

...

a1
















,

Crm =

[

1 0 0 · · · 0 0

]

where xrm ∈ <r is the state vector of the reference model, yc ∈ < is a bounded

external command signal, and Arm is Hurwitz.
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Let e , yrm − y. Then

e(r) = −vdc + vad − ∆ (2.4.9)

For the case r > 1, the following linear dynamic compensator is introduced to stabilize

the dynamics in (2.4.9):

η̇ = Acη + bce, η ∈ <nc

vdc = ccη + dce

(2.4.10)

where nc is the order of the compensator. The vector e = [ e ė · · · e(r−1) ]T

together with the compensator state η will obey the following error dynamics:





η̇

ė




 =






Ac bcc

−bcc A − bdcc






︸ ︷︷ ︸

Ā






η

e






︸ ︷︷ ︸

E

+






0nc×1

b






︸ ︷︷ ︸

b̄

(vad − ∆)

z =






Inc
0nc×r

01×nc
c






︸ ︷︷ ︸

C̄






η

e




 =






η

e






(2.4.11)

where

A =
















0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

0 0 0 · · · 0
















∈ <r×r, b =
















0

0

...

0

1
















∈ <r×1,

c =

[

1 0 0 · · · 0

]

∈ <1×r,

(2.4.12)

and z is a vector of available signals. With these definitions, the tracking error

dynamics in (2.4.11) can be rewritten in a compact form:

Ė = ĀE + b̄(vad − ∆)

z = C̄E

(2.4.13)
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where Ac, bc, cc, dc should be designed such that Ā is Hurwitz. The same argument

as in Remark 2.1.1 can be applied here.

Define the following signals

vl , y(r)
rm + vdc

v∗ , ĥr(y, h−1
r (x, vl))

(2.4.14)

Invertibility of hr(x, u) with respect to its second argument is guaranteed by Assump-

tion 2.4.3. From (2.4.14), it follows that vl can be written as

vl = hr(x, ĥ−1
r (y, v∗)) (2.4.15)

and,

vad − ∆(x, u) = vad − hr(x, u) + ĥr(y, u)

= vad − hr(x, ĥ−1
r (y, v)) + vl − vad

= −hr(x, ĥ−1
r (y, v)) + hr(x, ĥ−1

r (y, v∗))

(2.4.16)

Applying the mean value theorem to (2.4.16),

vad − ∆ = hv̄(v
∗ − v)

= hv̄[ĥr(y, h−1
r (x, vl)) − vl + vad]

= hv̄[vad − ∆̄(x, vl)]

(2.4.17)

where ∆̄ = vl − ĥr(y, h−1
r (x, vl)) and

hv̄ ,
∂hr

∂u

∂u

∂v

∣
∣
∣
∣
v=v̄

, v̄ = θv + (1 − θ)v∗, and 0 ≤ θ(v) ≤ 1 (2.4.18)

By Assumption 2.4.3 and 2.4.4, it follows that hv̄ = ∂hr

∂u
/∂ĥr

∂u
|v=v̄ is either strictly

positive or strictly negative.

Assumption 2.4.5. hv̄ and d
dt

(
1
hv̄

)

are continuous functions in D.

With this assumption we can define

hB , max
x,u∈D

|hv̄|, H , max
x,u∈D

∣
∣
∣
∣

d

dt

(
1

hv̄

)∣
∣
∣
∣

(2.4.19)
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Now we have the following error dynamics.

Ė = ĀE + b̄hv̄(vad − ∆̄(x, vl)) (2.4.20)

Since Ā is Hurwitz, then for any Q > 0, there exists a unique P > 0 that solves the

Lyapunov equation:

ĀT P + PĀ = −Q (2.4.21)

For an adaptive law in the output feedback setting, we adopt the error observer

approach. Consider the following full-order linear observer for the tracking error

dynamic system in (2.4.13):

˙̂
E = ĀÊ + K (z − ẑ)

= (Ā − KC̄)Ê + Kz

ẑ = C̄Ê

(2.4.22)

where K should be chosen in a way to make Ā − KC̄ asymptotically stable.

Remark 2.4.1. Notice that (2.4.22) provides estimates only for the error of states

that are feedback linearized, and not for the error of states that are associated with

the zero dynamics.

Let

Ã , Ā − KC̄, Ẽ , Ê − E (2.4.23)

Then the observer error dynamics can be written:

˙̃
E = ÃẼ − b̄hv̄(vad − ∆̄). (2.4.24)

and there exists a positive definite matrix P̃ solving the Lyapunov equation for arbi-

trary Q̃ > 0:

ÃT P̃ + P̃ Ã = −Q̃ (2.4.25)

The following theorem extends the results found in [6, 7, 8] to map the unknown

dynamics of an observable plant from available input/output history.
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Theorem 2.4.1. [54] Given ε∗ > 0 and the compact set D ⊂ Dx × <, there exists a

set of bounded weights V,W and n2 sufficiently large such that a continuous function

∆̄(x, vl) can be approximated by a nonlinearly-parameterized NN

∆̄(x, vl) = W T σ(V T µ) + ε(µ, d),

‖W‖F < W ∗, ‖V ‖F < V ∗, ‖ε(µ, d)‖ < ε∗
(2.4.26)

using the input vector

µ(t) =

[

1 vl vT
d (t) yT

d (t)

]T

∈ <2N1−r+2, ‖µ‖ ≤ µ∗ (2.4.27)

where

vd(t) =

[

v(t) v(t − d) · · · v(t − (N1 − r − 1)d)

]T

yd(t) =

[

y(t) y(t − d) · · · y(t − (N1 − 1)d)

]T
(2.4.28)

with N1 ≥ n and d > 0.

The input/output history of the original nonlinear plant is needed to map ∆ in

systems with zero dynamics, because for such systems the unobservable subspace is

not estimated by (2.4.22) but can be accounted for by the input/output history, as

noted in Remark 2.4.1. If the system has full relative degree (r = n), the observer

in (2.4.22) provides all the estimates needed for the reconstruction of ∆̄, and no past

input/output history is required [55].

The adaptive element is defined as:

vad = Ŵ T σ(V̂ T µ)

σi(zi) =
1

1 + e−aizi
, i = 1, 2, · · · , n2

(2.4.29)

where N1 ≥ n and d > 0.

Remark 2.4.2. In the case of full relative degree (r = n), the input to the NN need

not include the pseudo control signal since the states can be reconstructed without
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the use of control input and ∆̄ is not dependent on v. It should be noted that for

the case of r < n, although there is no need to solve a fixed point solution for vad to

cancel ∆̄, there exists a fixed point solution problem for the NN output since v is used

to reconstruct state x. This problem can be avoided by removing the current time

step pseudo control signal at the expense of increased NN approximation error bound.

A NN approximation bound can be derived when µ =

[

1 vl vT
d (t − d) yT

d (t)

]

is

used as an input to the NN. Define

∆
(0)
d v(t) , v(t)

∆
(k)
d v(t) ,

∆
(k−1)
d v(t) − ∆

(k−1)
d v(t − d)

d

(2.4.30)

Using

1

d

∫ t−d

t−2d

∫ τ1

t

v(2)(τ2) dτ2dτ1 =
1

d

∫ t−d

t−2d

v(1)(τ1) − v(1)(t) dτ1

=
1

d

[
v(τ1) − τ1v

(1)(t)
]t−d

t−2d

=
1

d

[
v(t − d) − v(t − 2d) − dv(1)(t)

]

= ∆
(1)
d v(t − d) − v(1)(t)

∆
(1)
d v(t − d) = v(1)(t) +

1

d

∫ t−d

t−2d

∫ τ1

t

v(2)(τ2) dτ2dτ1 (2.4.31)

The following can be shown:

|∆(1)
d v(t − d) − v(1)(t)| ≤ 3d

2
max

t−2d≤τ≤t
|v(2)(τ)|

|∆(k)
d v(t − d) − v(k)(t)| ≤ 3d

2
k max

t−(k+1)d≤τ≤t
|v(k+1)(τ)|

(2.4.32)

which can be made arbitrarily small by using a sufficiently small value of d. Using

the bounds in (2.4.32), the NN approximation upper bound becomes

‖∆̄(x, vl) − Ŵ T σ̂(V̂ T µ)‖ ≤ C1

√
2n − r

n2

+ C2
d

2
M (2.4.33)

where M = (2n− r − 1)
3

2 maxt≥0{max1≤k≤n−1 |y(k+1)(t)|, max1≤k≤n−r−1 |3v(k+1)(t)|}.

See [54] for definitions of C1, C2 and detailed derivations of the bounds. Note that

the only disadvantage of using vd(t − d) in µ is that M is increased.
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The NN weights are updated by the following adaptation law.

˙̂
W = −ΓW

[

sgn(hv̄)σ̂Ê
T
Pb + ke‖Ê‖Ŵ

]

˙̂
V = −ΓV

[

sgn(hv̄)µÊ
T
PbŴ T σ̂′ + ke‖Ê‖V̂

] (2.4.34)

where ΓV , ΓW > 0 and ke > 0 is the e-modification gain.

Assumption 2.4.6. The NN approximation ∆̄(x, vl) = W T φ(x, vl) + ε holds on a

compact set D and the compact set D is sufficiently large such that E ∈ BR ,

{ζ : ‖ζ‖ ≤ R} ensures x ∈ D with an error vector ζ =

[

ET Ẽ
T

W̃ T (vecṼ )T

]T

Assumption 2.4.7. Assume

R > C

√

λmax(T )

λmin(T )
≥ C (2.4.35)

where λmax(T ) and λmin(T ) are the maximum and minimum eigenvalues of the fol-

lowing matrix:

T ,












P 0 0 0

0 P̃ 0 0

0 0 Γ−1
W 0

0 0 0 Γ−1
V












(2.4.36)

which will be used in a Lyapunov function candidate as L = ζT Tζ, and

C , max
(2

q̄
Υ, 2

(
θ2
1

k2
e

+
θ2

ke

) 1

2 )

(2.4.37)

is a radius of a ball BC containing Γ, where

θ1 =

(√
n2 + 1 + δ +

a∗

4
V ∗µ∗

)

‖P b̄‖,

θ2 =
ke

2
Z∗2

+ ‖P b̄‖W ∗
(

δ +
a∗

4
V ∗µ∗

)

,

κ2 = γ1‖P b̄‖ + α1(‖P̃ b̄‖hB + ‖P b̄‖)

κ3 = 2γ2‖P b̄‖ + 2α2(‖P̃ b̄‖hB + ‖P b̄‖) + keZ
∗2

Υ , κ2
2 + κ3

(2.4.38)
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Let α be the minimum value of the Lyapunov function L on the boundary of BR:

α , min
‖ζ‖=R

L = R2λmin(T ) . (2.4.39)

Define the compact set:

Ωα = {ζ ∈ BR | L ≤ α}. (2.4.40)

Theorem 2.4.2. Let Assumptions 2.4.1−2.4.7 hold. If the initial errors belong to the

compact set Ωα defined in (2.4.40), then the feedback control law given by (2.4.6) and

the adaptation law (2.4.34) ensure that the signals E, Ẽ, W̃ and Ṽ in the closed-loop

system are ultimately bounded with the ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.1.

Remark 2.4.3. This design approach can be also applied to σ-modification and

projection approaches as presented in Chapter 3.
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CHAPTER III

NEURAL NETWORK AUGMENTED

INPUT/OUTPUT FEEDBACK

LINEARIZATION

This chapter presents an approach for augmenting a nonlinear controller designed via

input/output feedback linearization with a NN-based adaptive element, similar to

that described in [39, 56]. We suggest a method which transforms a nonlinear system

to a linear system which does not have to be a chain of integrators. This added

design flexibility enables the use of lower order dynamic compensation in the linear

part of the design. The usefulness in design increases with the relative degree (r) of

the regulated output variable. It is particularly useful in fixed structure compensator

design, when the structure specified is not able to stabilize a chain of r integrators.

We first state what is assumed to be known about the system dynamics, followed by a

statement of the design objective. Next, a summary of the main results on NN-based

adaptive output feedback control via the approach in [56] is given. Three variations

of adaptive laws with proofs of boundedness are given, followed by a description

of the control architecture including PCH. Two numerical examples are presented

to demonstrate the efficacy of the adaptive output feedback control methods. The

first illustrates the main ideas by considering high-bandwidth pitch-attitude tracking

control design for a linearized representation of the R-50 dynamics in hover, in which

there are control limits, actuator dynamics, time delay, and significant coupling with

control rotor dynamics. Results obtained using a full nonlinear model and flight

test results on the R-50 model helicopter are reported in [57]. The second example
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considers a 58 state model of a flexible aircraft consisting of rigid body dynamics

coupled with actuator and flexible modes. A pitch-rate command system design is

treated providing a smooth response in the presence of flexible modes, without the use

of structural mode filters. Finally, we consider the approach in [38], which eliminates

the need for an error observer, but is limited to the use of linearly-parameterized NNs,

and extend these results to the case of nonlinearly-parameterized NNs. A numerical

example of Van der Pol is presented and compared with the approach found in [38].

3.1 Plant Description

Consider the following observable and stabilizable nonlinear SISO system:

ẋ = f(x, u)

y = h(x)

(3.1.1)

where x is the state of the system on a domain Dx ⊂ <n, u ∈ < is the control

input, and y ∈ < is the regulated output variable. The functions f and h have origin

as equilibrium point f(0, 0) = 0 and h(0) = 0, but may be unknown. In practice,

however, some information about f and h will generally be known, and it is best to

use whatever information is available. The signals available for feedback are y along

with any additional measurements that may be available, but that are not regulated.

We will denote these additional measurements by ȳ.

Assumption 3.1.1. The output y has a known relative degree r for all (x, u) ∈

Dx ×<.

This assumption implies that ∂hr(x, u)/∂u is non-zero for every (x, u) ∈ Dx ×<.

Assumption 3.1.2. The sign of ∂hr(x, u)/∂u is known.

Assumption 3.1.3. The system (3.1.1) is input/output feedback linearizable [2].
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Based on Assumption 3.1.3, the mapping Φ(x) where

Φ(x) =



















χ1(x)

...

χn−r(x)

h(x)

...

Lr−1
f h(x)



















,






χ

ξ




 (3.1.2)

with Li
fh, i = 1, . . . , r−1 being the Lie derivatives, transforms the system (3.1.1) into

normal form:

χ̇ = f 0(ξ,χ)

ξ̇i = ξi+1 i = 1, · · · , r − 1

ξ̇r = hr(ξ,χ, u)

y = ξ1

(3.1.3)

where ξ = [ ξ1 . . . ξr ]T , hr(ξ,χ, u) = Lr
fh, and χ is the state vector associated

with the internal dynamics

χ̇ = f 0(ξ,χ) (3.1.4)

Assumption 3.1.4. The internal dynamics in (3.1.4), with ξ viewed as input, are

input-to-state stable. [53]

3.2 Controller Design and Tracking Error Dy-

namics

The control objective is to synthesize an output feedback control law such that y(t)

tracks a smooth bounded reference trajectory yrm(t) with bounded error using the

available signals. Since the system is not exactly known, and only y and ȳ are available

for feedback, input/output feedback linearization is approximated by introducing the
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following control input signal

u = ĥ−1
r (y, ȳ, b1v −

r−1∑

i=0

ai+1ĥi(y, ȳ)) (3.2.1)

where v is commonly referred to as a pseudo control, and b1 and ai’s are constants.

The continuous function ĥr(y, ȳ, u), which is required to be invertible with respect to

its third argument, represents any available approximation of hr(x, u) = Lr
fh, and

the continuous functions ĥi(y, ȳ)’s are approximations of hi(x) = Li
fh’s. Constants

ai’s and b1 are determined later in the process of controller design.

With the available knowledge of the system dynamics, start by choosing approxi-

mate expressions for every derivative of the output up to rth derivative:

ẏ = h1(x) = ĥ1(y, ȳ) + ∆1

ÿ = h2(x) = ĥ2(y, ȳ) + ∆2

...

y(r−1) = hr−1(x) = ĥr−1(y, ȳ) + ∆r−1

y(r) = hr(x, u) = ĥr(y, ȳ, u) + ∆r

(3.2.2)

where ∆i’s are model errors defined as ∆i = hi(x)− ĥi(y, ȳ) for i = 1, 2, · · · , r−1 and

∆r = hr(x, u) − ĥr(y, ȳ, u). The following assumption guarantees the invertibility of

ĥr(y, ȳ, u) with respect to u.

Assumption 3.2.1. ∂ĥr(y, ȳ, u)/∂u is continuous and non-zero for every (y, ȳ, u) ∈

Dy ×<.

If a linear model is used, then

y(i) = ciy + c̄iȳ + ∆i, i = 1, · · · , r − 1

y(r) = cry + c̄rȳ + dru + ∆r

(3.2.3)

In the absence of any modelling information, we may select the approximation as

ĥ1(y, ȳ) = ĥ2(y, ȳ) = · · · = ĥr−1(y, ȳ) = 0 and ĥr(y, ȳ, u) = dru.
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Figure 3: Control system architecture without PCH

To design the linear dynamic compensator we need to specify the desired linearized

system from v to y when ∆ = 0, Gd(s) in Figure 3, where

Gd(s) =
b1

Dd(s)
(3.2.4)

Dd(s) = sr + ars
r−1 + · · · + a2s + a1 (3.2.5)

Gd(s) should be considered together with the form of the dynamic compensator used

to achieve a desired closed-loop level of performance.

Consider the model reference adaptive control architecture of Figure 3. A dynamic

compensator is designed to ensure that the resulting error dynamics, for ∆ = 0, are

asymptotically stable. Combining (3.2.4) and (3.2.5) for ∆ 6= 0 (See Figure 3),

b1(v + ∆) = y(r) + ary
(r−1) + · · · + a2ẏ + a1y

= ĥr(y, ȳ, u) + ∆r + ar(ĥr−1(y, ȳ) + ∆r−1)

+ · · · + a2(ĥ1(y, ȳ) + ∆1) + a1y

= ĥr(y, ȳ, u) +
r−1∑

i=0

ai+1ĥi(y, ȳ) +
r∑

i=1

ai+1∆i

(3.2.6)
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where ĥ0(y) = y, it can be seen that

v =
1

b1

(

ĥr(y, ȳ, u) +
r−1∑

i=0

ai+1ĥi(y, ȳ)

)

(3.2.7)

∆ =
1

b1

r∑

i=1

ai+1∆i (3.2.8)

The control law in (3.2.1) follows directly from (3.2.7). Applying the linear expressions

in (3.2.3), we have

u =
1

dr

(b1v −
r∑

i=0

ai+1(ciy + c̄rȳ)) (3.2.9)

where ar+1 = 1, c0 = 1 and c̄0 = 0.

The model inversion errors ∆i’s can be regarded as continuous functions of x and v.

∆i(x) = hi(x) − ĥi(y, ȳ) for i = 1, 2, · · · , r − 1

∆r(x, v) = hr(x, u) − ĥr(y, ȳ, u)

= hr

(

x, ĥ−1
r {y, ȳ, b1v −

r−1∑

i=0

ai+1ĥi(y, ȳ)}
)

− ĥr

(

y, ȳ, ĥ−1
r {y, ȳ, b1v −

r−1∑

i=0

ai+1ĥi(y, ȳ)}
)

(3.2.10)

Thus, the total model inversion error is a continuous function of x and v.

∆(x, v) =
1

b1

(

∆r(x, v) +
r−1∑

i=1

ai+1∆i(x)

)

(3.2.11)

The pseudo control in (3.2.1) is chosen to have the form:

v = vrm + vdc − vad (3.2.12)

where vrm is a reference model output, vdc is the output of a linear dynamic compen-

sator, and vad is the adaptive control signal. With the choice of pseudo control in

(3.2.12), the dynamics in (3.2.6) reduce to

r∑

i=0

ai+1y
(i) = b1(vrm + vdc − vad + ∆) (3.2.13)
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Define the reference model pseudo control vrm:

vrm =
1

Gd(s)
yrm =

Dd(s)

b1

yrm

=
1

b1

(y(r)
rm + ary

(r−1)
rm + · · · + a2ẏrm + a1yrm)

(3.2.14)

Then the dynamics in (3.2.13) can be rewritten:

r∑

i=0

ai+1e
(i) + b1(vdc − vad + ∆) = 0 (3.2.15)

where e = yrm − y. When vad = ∆ = 0, the error dynamics in (3.2.15) reduces to:

Dd(s)e + b1vdc = 0 (3.2.16)

For the case r > 1, the following linear dynamic compensator is introduced to stabilize

the dynamics in (3.2.16):

η̇ = Acη + bce, η ∈ <nc

vdc = ccη + dce

(3.2.17)

where nc is the order of the compensator.

Returning to (3.2.15), the vector e = [ e ė · · · e(r−1) ]T together with the

compensator state η will obey the following dynamics, hereafter referred to as the

tracking error dynamics:






η̇

ė




 =






Ac bcc

−b1bcc A − b(b1dcc + a)











η

e




 +






0nc×1

b




 b1(vad − ∆)

z ,






η

e






(3.2.18)
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where

A =
















0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

0 0 0 · · · 0
















∈ <r×r, b =
















0

0

...

0

1
















∈ <r×1,

c =

[

1 0 0 · · · 0

]

∈ <1×r, a =

[

a1 a2 · · · ar

]

∈ <1×r

(3.2.19)

and z is a vector of available error signals. For ease of notation, define the following:

Ā ,






Ac bcc

−b1bcc A − b(b1dcc + a)




 ∈ <(nc+r)×(nc+r),

b̄ ,






0nc×1

b




 , C̄ ,






Inc
0nc×r

01×nc
c




 , E ,






η

e




 ∈ <nc+r

(3.2.20)

where Inc
is an nc × nc identity matrix. With these definitions, the tracking error

dynamics in (3.2.18) can be rewritten as

Ė = ĀE + b̄b1(vad − ∆)

z = C̄E

(3.2.21)

where it has already been noted that Ac, bc, cc, dc should be designed such that Ā is

Hurwitz.

Define the following signals

vl , vrm + vdc

v∗ , ĥr(y, ȳ, h−1
r (x, b1vl −

r−1∑

i=0

ai+1hi(x)))
(3.2.22)

where h0(x) = h(x). The invertibility of hr(x, u) with respect to u is guaranteed by

Assumption 3.1.1. From (3.2.22), it follows that vl can be written as

vl =
1

b1

[

hr(x, ĥ−1
r (y, ȳ, v∗)) +

r−1∑

i=0

ai+1hi(x)

]

(3.2.23)
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and,

vad − ∆(x, u) = vad −
1

b1

[

hr(x, u) − ĥr(y, ȳ, u) +
r−1∑

i=0

ai+1(hi(x) − ĥi(y, ȳ))

]

= vad −
1

b1

[

hr(x, u) +
r−1∑

i=0

ai+1hi(x))

]

+ v

=
1

b1

[

hr(x, ĥ−1
r (y, ȳ, v∗)) +

r−1∑

i=0

ai+1hi(x)

]

− 1

b1

[

hr(x, u) +
r−1∑

i=0

ai+1hi(x))

]

=
1

b1

[

hr(x, ĥ−1
r (y, ȳ, v∗)) − hr(x, ĥ−1

r (y, ȳ, v))
]

(3.2.24)

Applying the mean value theorem to (3.2.24),

vad − ∆ =
1

b1

hv̄(v
∗ − v)

=
1

b1

hv̄

[

ĥr

(

y, ȳ, h−1
r (x, b1vl −

r−1∑

i=0

ai+1hi(x))

)

− vl + vad

]

=
1

b1

hv̄[vad − ∆̄(x, vl)]

(3.2.25)

where ∆̄ = vl − ĥr

(

y, ȳ, h−1
r (x, b1vl −

r−1∑

i=0

ai+1hi(x))

)

and

hv̄ ,
∂hr

∂u

∂u

∂v

∣
∣
∣
∣
v=v̄

, v̄ = θv + (1 − θ)v∗, and 0 ≤ θ(v) ≤ 1 (3.2.26)

By Assumptions 3.1.2 and 3.2.1, it follows that hv̄ = ∂hr

∂u
/∂ĥr

∂u
|v=v̄ is either strictly

positive or strictly negative. Now we have the following error dynamics.

Ė = ĀE + b̄hv̄(vad − ∆̄(x, vl)) (3.2.27)

As in Section 2.4, define

hB , max
x,u∈D

|hv̄|, H , max
x,u∈D

∣
∣
∣
∣

d

dt

(
1

hv̄

)∣
∣
∣
∣

(3.2.28)
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3.3 Design of an Observer for the Error Dynam-

ics

In the case of full state feedback [28, 31, 24], Lyapunov-like stability analysis of the

error dynamics in (3.2.21) results in update laws for the adaptive control parameters

in terms of the error vector E. In [42, 36, 37] an adaptive state observer is developed

for the nonlinear plant to provide state estimates needed in the adaptation laws.

However, the stability analysis was limited to second order systems with position

measurements. To relax these assumptions, we make use of a simple linear observer

for the tracking error dynamics in (3.2.21) [39, 55]. This observer provides estimates

of the unavailable error signals for the update laws of the adaptive parameters that

will be presented in (3.4.20).

Consider the following full-order linear observer for the tracking error dynamic

system in (3.2.21):

˙̂
E = ĀÊ + K (z − ẑ)

ẑ = C̄Ê,

(3.3.1)

where K should be chosen in a way to make Ā − KC̄ asymptotically stable. The

following remarks will be useful in the sequel.

Remark 3.3.1. One can also design a minimal order optimal estimator that treats

the η component of z as a noiseless measurement [58].

Remark 3.3.2. Additional measurements contained in ȳ may also be used both in

the compensator design and in the observer design. This idea is employed in the

application treated in Section 3.6.

The error observer design ignores nonlinearities that enter the tracking error dy-

namics (3.2.21) as a forcing function. This is suggested by the fact that the original

nonlinear system with adaptation is approximately feedback linearized, or that vad

nearly cancels ∆̄.
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The stability of the closed-loop system should be considered along with the ob-

server error dynamics. Let

Ã , Ā − KC̄, Ẽ , Ê − E. (3.3.2)

Then the observer error dynamics can be written:

˙̃
E = ÃẼ − b̄hv̄

[
vad − ∆̄

]
. (3.3.3)

and there exists a positive definite matrix P̃ solving the Lyapunov equation

ÃT P̃ + P̃ Ã = −Q̃ (3.3.4)

for arbitrary Q̃ > 0.

The adaptive term in (3.2.12) is designed as:

vad = Ŵ T σ(V̂ T µ), (3.3.5)

where Ŵ and V̂ are the NN weights to be updated online in accordance with one of

the weight adaptation laws presented in Section 3.4. These are modified backprop-

agation algorithms, which are commonly used to train a nonlinearly-parameterized

NN [59]. The variations which distinguish these laws from standard backpropagation

algorithms are due to methods employed to compensate for the NN reconstruction

error, and the Taylor series expansion higher order terms in the error dynamics.

3.4 Adaptive Laws and Boundedness Analysis

We will give three different adaptive laws utilizing the error observer introduced in

Section 3.3. Proofs of boundedness for each adaptive law are given by using direct

Lyapunov analysis. Consider the following vector

ζ =

[

ET Ẽ
T

W̃ T (vecṼ )T

]T

∈ Dζ (3.4.1)

Introduce the largest convex compact set which is contained in Dζ such that

BR , {ζ : ‖ζ‖ ≤ R} , R > 0 (3.4.2)
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We want to ensure that a Lyapunov function level set Ωβ is a positive invariant set

for the error ζ in Dζ by showing that the level set Ωβ inside BR contains a compact

set Γ outside which a time derivative of the Lyapunov function candidate is negative

as in Figure 2. A Lyapunov function level set Ωα is introduced to ensure that Ωβ is

contained in BR, and a ball BC is introduced to provide that Ωβ contains Γ. Before

we state theorems, we give assumptions that will be used in proofs of the theorems.

3.4.1 NN Adaptation with σ-modification

The update law which we use in this section is a modification of backpropagation.

The algorithm was first proposed by Lewis et.al. [28] in state feedback setting with

e-modification. Here the error observer is implemented to generate the estimated

error vector used as a teaching signal to the NN when r ≥ 2.

Define

W̃ , Ŵ − W, Ṽ , V̂ − V , Z̃ ,






W̃ 0

0 Ṽ




 (3.4.3)

and note that:

‖Ŵ‖F < ‖W̃‖F + W ∗, ‖V̂ ‖F < ‖Ṽ ‖F + V ∗ (3.4.4)

where W ∗, V ∗ are the upper bounds for the weights in (2.4.26). For the stability proof

we will need the following representation:

vad − ∆ = Ŵ T σ(V̂ T µ) − W T σ(V T µ) − ε

= Ŵ T σ̂ − W T
(

σ̂ + σ̂′(V T µ − V̂ T µ) + O2
)

− ε

= W̃ T σ̂ − W T σ̂′V T µ +
(

W T σ̂′V̂ T µ − Ŵ T σ̂′V̂ T µ
)

+
(

Ŵ T σ̂′V̂ T µ − Ŵ T σ̂′V T µ
)

+ Ŵ T σ̂′V T µ − W TO2 − ε

= W̃ T
(

σ̂ − σ̂′V̂ T µ
)

+ Ŵ T σ̂′Ṽ T µ + W̃ T σ̂′V T µ − W TO2 − ε

= W̃ T
(

σ̂ − σ̂′V̂ T µ
)

+ Ŵ T σ̂′Ṽ T µ + w̄

(3.4.5)

where σ = σ(V T µ), σ̂ = σ(V̂ T µ), the disturbance term w̄ = W̃ T σ̂′V T µ−W TO2−ε

and O2 = O(−Ṽ T µ)2 = σ − σ̂ + σ̂′Ṽ T µ. This representation is achieved via Taylor
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series expansion of σ(V T µ) around the estimates V̂ T µ [28]. The following bounds

are useful to prove the stability of adaptive schemes.

‖W T σ‖ ≤
√

n2 + 1‖W‖, (3.4.6)

‖W T σ̂′V̂ T µ‖ ≤ δ
√

n2 + 1‖W‖ (3.4.7)

where δ = 0.224 according to (2.3.11). Using the above bounds, a bound for w̄ over

the compact set Dµ can be expressed:

‖w̄‖ = ‖W T σ̃ − W T σ̂′V̂ T µ + Ŵ T σ̂′V T µ − ε‖

≤ 2
√

n2 + 1W ∗ + δ
√

n2 + 1W ∗ + ‖Ŵ‖a∗

4
V ∗µ∗ + ε∗

≤ γ1‖Z̃‖F + γ2

(3.4.8)

where γ1 = a∗

4
Z∗µ∗, γ2 = ((2 + δ)

√
n2 + 1 + γ1)W

∗ + ε∗. vad −∆ can be shown to be

bounded by:

‖vad − ∆‖ = ‖Ŵ T σ̂ − W T σ − ε‖

≤ α1‖Z̃‖ + α2

(3.4.9)

where α1 =
√

n2 + 1 and α2 = 2
√

n2 + 1W ∗ + ε∗

Assumption 3.4.1. Assume

R > C

√

λmax(T )

λmin(T )
≥ C (3.4.10)

where λmax(T ) and λmin(T ) are the maximum and minimum eigenvalues of the fol-

lowing matrix:

T ,












P 0 0 0

0 P̃ 0 0

0 0 Γ−1
W 0

0 0 0 Γ−1
V












(3.4.11)
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which will be used in a Lyapunov function candidate as L = ζT Tζ with an error

vector ζ =

[

ET Ẽ
T

W̃ T (vecṼ )T

]T

, and

C , max
( Υ

√

{ 1
hB λmin(Q) − Hλmax(P )} − (γ1 + γ2)‖P b̄‖

,

Υ
√

λmin(Q̃) − (κ1 + κ2)
,

Υ
√

k − κ1 − γ1‖P b̄‖

) (3.4.12)

is a radius of a ball BC containing Γ. The ball BC is introduced to quantify β of Ωβ

in (3.4.16), where

Z̄ = ‖W − W0‖2
F + ‖V − V0‖2

F

kσ > κ1 + γ1‖P b̄‖

κ1 = Θα1 + ‖P b̄‖γ1

κ2 = Θα2 + ‖P b̄‖γ2

Θ = ‖P b̄‖ + hB‖P̃ b̄‖

Υ =
√

γ2‖P b̄‖ + κ2 + kZ̄

(3.4.13)

The above quantities are used to show negativeness of the time derivative of the

Lyapunov function candidate in Γ, and P, P̃ > 0 satisfy:

ĀT P + PĀ = −Q,

ÃT P̃ + P̃ Ã = −Q̃,

(3.4.14)

for some Q, Q̃ > 0 with minimum eigenvalues

λmin(Q) > hBHλmax(P ) + hB(γ1 + γ2)‖P b̄‖

λmin(Q̃) > (κ1 + κ2).

(3.4.15)

Let β be the maximum value of the Lyapunov function L on the edge of BC :

β , max
‖ζ‖=C

L = C2λmax(T ) . (3.4.16)

Introduce the set as depicted in Figure 2:

Ωβ = {ζ | L ≤ β} . (3.4.17)
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Let α be the minimum value of the Lyapunov function L on the edge of BR:

α , min
‖ζ‖=R

L = R2λmin(T ) . (3.4.18)

Define the compact set:

Ωα = {ζ ∈ BR | L ≤ α}. (3.4.19)

Theorem 3.4.1. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1 and 3.4.1 hold.

Consider the following weight adaptation laws:

˙̂
W = −ΓW

[

sgn(hv̄)(σ̂ − σ̂′V̂ T µ)Ê
T
P b̄ + kσ(Ŵ − W0)

]

˙̂
V = −ΓV

[

sgn(hv̄)µÊ
T
P b̄Ŵ T σ̂′ + kσ(V̂ − V0)

] (3.4.20)

where ΓV , ΓW > 0. If the initial errors belong to the compact set Ωα defined in

(3.4.19), then the feedback control law given by (3.2.1), (3.2.12) and (3.3.5) ensures

that the signals E, Ẽ, W̃ and Ṽ in the closed-loop system are ultimately bounded

with the ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.2.

Remark 3.4.1. Knowledge of the sign of the control effectiveness has been made

explicit in the adaptive law. It is also used in the proof of boundedness in Appendix

A.2.

Remark 3.4.2. For fixed values of R and C, the inequality in (3.4.10) implies upper

and lower bounds for the adaptation gains ΓW and ΓV in (3.4.20). For example,

for ΓW = γW I, and γW large, so that the minimum eigenvalue of T in (3.4.11) is

determined by 1/γW , we have γW < R2/(C2λmax(T )) as an upper bound. Likewise,

for small γW , so that the maximum eigenvalue of T is determined by the value of

1/γW , we have γW > C2/(R2λmin(T )) as a lower bound.
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3.4.2 NN Adaptation with e-modification

The drawback of σ-modification is that the origin of the error signal i.e. E = 0, W̃ =

0, Ṽ = 0 is not an equilibrium point of (3.2.21) and (3.4.20) even if w̄ = 0 in (3.4.5).

This implies that when the tracking error becomes small,
˙̂

W,
˙̂
V are dominated by the

σ-modification term in (3.4.20) and Ŵ , V̂ are driven towards W0, V0 which may not

be a good guess of the optimal weights. Therefore, even if the NN reconstruction

error and Taylor series expansion higher order terms are eliminated, the errors do not

converge to the origin. This drawback motivates the use of another variation called

e-modification, which was suggested by Narendra and Annaswamy [14, 15]. The idea

is to multiply the tracking error component to the σ-modification term so that it

tends to zero with the tracking error. The adaptive law with e-modification is given

by:

˙̂
W = −ΓW

[

sgn(hv̄)σ̂Ê
T
P b̄ + ke‖Ê‖Ŵ

]

˙̂
V = −ΓV

[

sgn(hv̄)µÊ
T
P b̄Ŵ T σ̂′ + ke‖Ê‖V̂

] (3.4.21)

where ΓV , ΓW > 0 and ke > 0. Note that the contribution from the e-modification

term is reduced as ‖Ê‖ becomes small.

For the boundedness proof we need the Taylor series expansion of W T σ(V T µ) at

W = Ŵ and V = V̂ .

W T σ = Ŵ T σ̂ − W̃ T σ̂ − Ŵ T σ̂′Ṽ T µ + O(‖Z̃‖2) (3.4.22)

where the higher order terms O(‖Z̃‖2) = −W T (σ̂ − σ) + Ŵ T σ̂′Ṽ T µ. Then

vad − ∆ = Ŵ T σ̂ − W T σ − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ −O(‖Z̃‖2) − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄

(3.4.23)

where w̄ = −O(‖Z̃‖2)−ε = W T (σ̂−σ)−Ŵ T σ̂′Ṽ T µ−ε. Utilizing (3.4.6) and (3.4.7),
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w̄ is bounded by:

‖w̄‖ ≤ 2
√

n2 + 1W ∗ + Ŵ σ̂′(V̂ T µ − V T µ) + ε∗

≤ 2
√

n2 + 1W ∗ + (‖W̃‖ + W ∗)(δ
√

n2 + 1 +
a∗

4
V ∗µ∗) + ε∗

≤ γ1‖Z̃‖ + γ2

(3.4.24)

where γ1 = a∗

4
V ∗µ∗+δ

√
n2 + 1, γ2 = 2

√
n2 + 1W ∗+γ1+ε∗ and δ is defined in (2.3.11).

Assumption 3.4.2. Assume

R > C

√

λmax(T )

λmin(T )
≥ C (3.4.25)

where λmax(T ) and λmin(T ) are the maximum and minimum eigenvalues of the fol-

lowing matrix:

T ,












P 0 0 0

0 P̃ 0 0

0 0 Γ−1
W 0

0 0 0 Γ−1
V












(3.4.26)

which will be used in a Lyapunov function candidate as L = ζT Tζ with an error

vector ζ =

[

ET Ẽ
T

W̃ T (vecṼ )T

]T

, and

C , max
(2

q̄
Υ, 2

(
θ2
1

k2
e

+
θ2

ke

) 1

2 )

(3.4.27)

is a radius of a ball BC containing Γ, where

θ1 =

(√
n2 + 1 + δ +

a∗

4
V ∗µ∗

)

‖P b̄‖,

θ2 =
ke

2
Z∗2

+ ‖P b̄‖W ∗
(

δ +
a∗

4
V ∗µ∗

)

,

Θ = ‖P b̄‖ + hB‖P̃ b̄‖, κ9 = α1‖P b̄ + P̃ b̄‖,

κ10 = 2α2‖P b̄ + P̃ b̄‖, κ12 = 2‖P b̄‖γ2, κ14 = ‖P b̄‖γ1

Υ , (κ9 + κ14)
2 + (κ10 + κ12)

(3.4.28)
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Define the Lyapunov function level sets Ωα and Ωβ
1

Ωα = {ζ ∈ BR | L ≤ α , min
‖ζ‖=R

L}

Ωβ = {ζ ∈ BR | L ≤ β , max
‖ζ‖=C

L}
(3.4.29)

Theorem 3.4.2. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1 and 3.4.2 hold. If

the initial errors belong to the compact set Ωα defined in (3.4.29), then the feedback

control law given by (3.2.1), (3.2.12), (3.3.5) and the adaptation law (3.4.21) ensure

that the signals E, Ẽ, W̃ and Ṽ in the closed-loop system are ultimately bounded

with the ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.3.

3.4.3 NN Adaptation with Projection

A projection operator [17] is employed to constrain the weight estimates to lie inside

a known convex bounded set in the weight space that contains the unknown optimal

weights. Let us start with a convex set having a smooth boundary defined by

Πc , {Ŵ ∈ <n | g(Ŵ ) ≤ c}, 0 ≤ c ≤ 1 (3.4.30)

where g : <n → < is a smooth known function:

g(Ŵ ) =
Ŵ T Ŵ − W 2

max

εW

(3.4.31)

where Wmax is known bound on the weight vector Ŵ and εW > 0 denotes the projec-

tion tolerance. Define the projection operator:

Proj(Ŵ , ξ) ,







ξ if g(Ŵ ) ≤ 0,

ξ if g(Ŵ ) > 0 and ∇gT ξ ≤ 0,

ξ − ∇g∇gT ξ
‖∇g‖2 g(Ŵ ) if g(Ŵ ) ≤ 0 and ∇gT ξ > 0

(3.4.32)

1Since R and C are defined differently from Section 3.4.1, we should have different sets Ωα and
Ωβ when we state a new theorem.
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where ∇g is defined as a column vector.

∇g(x) ,

[

∂g(x)
∂x1

· · · ∂g(x)
∂xn

]T

=
2

εW

Ŵ (3.4.33)

The projection operator concept is illustrated in Figure 4. Projection streamlines ξ

toward Π0 so that we get a smooth transformation from the original vector field ξ

to a less outward vector for 0 < c ≤ 1 or to a tangent to the boundary vector field

for c = 1. It follows from (3.4.32) that when g(Ŵ ) = 1 and ξ points outward, we

have ∇gT Proj(Ŵ , ξ) = 0, which implies that the projection operator points along

the tangent plane of Π1 so that once Ŵ (0) ∈ Π1, Ŵ will never leave Π1. The vector

∇g evaluated at a boundary point of the convex set Πc is pointed away from the

set. Proj(Ŵ , ξ) does not alter the vector ξ if Ŵ belongs to the convex set Π0 or ξ

points inward. In the set {0 < g(Ŵ ) ≤ 1}, the projection operator subtracts a vector

parallel to ∇g and weighted by g from ξ in a way that it still points outward but

with reduced magnitude. ξ − Proj(Ŵ , ξ) has the same direction as ∇g(Ŵ ) and its

magnitude is less than c‖ξ‖.

‖ξ − Proj(Ŵ , ξ)‖ =
‖∇g‖|∇gT ξ|

‖∇g‖2
|g(Ŵ )|

≤ c‖ξ‖
(3.4.34)

If we consider the function W̃ T Γ−1
W W̃ , its time derivative has the following additional

term due to the projection operator.

W̃ T (Proj(Ŵ , ξ) − ξ) =







0 if g(Ŵ ) ≤ 0,

0 if g(Ŵ ) > 0 and ∇gT ξ ≤ 0,

− (Ŵ−W )T∇g∇gT ξ
‖∇g‖2 g(Ŵ ) if g(Ŵ ) ≤ 0 and ∇gT ξ > 0

≤ 0

(3.4.35)

This additional term can only make the time derivative of the function more negative.

The above property will be used in Lyapunov stability analysis.
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Figure 4: Projection operator

For a weight matrix, we can define the projection operator

Proj(V̂ , Ξ) ,

[

Proj(V̂1, ξ1) · · · Proj(V̂n2
, ξn2

)

]

(3.4.36)

where V̂ =

[

V̂1 · · · V̂n2

]

∈ <(n1+1)×n2 and Ξ =

[

ξ1 · · · ξn2

]

∈ <(n1+1)×n2 . Then,

the matrix projection has the following property similar to (3.4.35).

trṼ T (Proj(V̂ , Ξ) − Ξ) =

n2∑

i=1

Ṽ T
i (Proj(V̂i, ξi) − ξi) ≤ 0 (3.4.37)

Using (3.4.32) and (3.4.36), the NN weight update law can be given by:

˙̂
W = ΓW Proj(Ŵ ,−sgn(hv̄)σ̂Ê

T
Pb)

˙̂
V = ΓV Proj(V̂ ,−sgn(hv̄)µÊ

T
PbŴ T σ̂′)

(3.4.38)

where ΓV , ΓW are positive definite matrices.

Alternatively, we can introduce the vec operator as defined in (2.3.13), and use

the projection operator defined for a vector in (3.4.32). In that case, the NN weights

are updated by the following adaptation laws.

˙̂
W = ΓW Proj(Ŵ ,−sgn(hv̄)σ̂Ê

T
Pb)

˙̂
V = ΓV vec−1Proj[vecV̂ ,−vec(sgn(hv̄)µÊ

T
PbŴ T σ̂′)]

(3.4.39)
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We are going to show boundedness of the signals E, Ẽ, Ŵ , V̂ . First, the NN

weights Ŵ , V̂ will be shown to be bounded in a prescribed set by using the projection

operator. Using the boundedness of the NN weights, we will show the derivative of

a Lyapunov function is negative outside a compact set to guarantee the boundedness

of E, Ẽ.

Assumption 3.4.3. Assume

R > C

√

λmax(T )

λmin(T )
≥ C (3.4.40)

where λmax(T ) and λmin(T ) are the maximum and minimum eigenvalues of the fol-

lowing matrix:

T ,












P 0 0 0

0 P̃ 0 0

0 0 Γ−1
W 0

0 0 0 Γ−1
V












(3.4.41)

which will be used in a Lyapunov function candidate as L = ζT Tζ with an error

vector ζ =

[

ET Ẽ
T

W̃ T (vecṼ )T

]T

, and

C , max
( c1

λmin(Q)
+

√

Υ

λmin(Q)
,

c2

λmin(Q̃)
+

√

Υ

λmin(Q̃)

)

(3.4.42)

is a radius of a ball BC containing Γ, where

c1 = w̄∗‖Pb‖,

c2 = ‖Pb + P̃b‖θ∗,

Υ =
c2
1

λmin(Q)
+

c2
2

λmin(Q̃)

(3.4.43)

Define the Lyapunov function level sets Ωα and Ωβ

Ωα = {ζ ∈ BR | L ≤ α , min
‖ζ‖=R

L}

Ωβ = {ζ ∈ BR | L ≤ β , max
‖ζ‖=C

L}
(3.4.44)
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Theorem 3.4.3. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1 and 3.4.3 hold. Then

there exists a positive invariant set Dζ in the space of the error variables ζ wherein the

control law given by (3.2.1), (3.2.12) and (3.3.5) ensures, for all ζ(0) ∈ Ωα in (3.4.44),

that E, Ẽ, W̃ , Ṽ are ultimately bounded with the ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.4.

3.5 Pseudo Control Hedging

Adaptive controllers are sensitive to input nonlinearities such as actuator position

limits, actuator rate limits, actuator dynamics and time delay. The concept of hedging

the reference model to prevent an adaptive law from seeing (attempting to adapt

to) these unfavorable system-input characteristics was introduced in [40, 41]. This

approach permits adaption even during finite periods of control saturation. When

the nonlinear actuator characteristics include time delay, the relative degree is not

well-defined since the rth derivative of the output does not have a current time control

input. In the presence of time delay, the relative degree is redefined as the number of

differentiations of the output y(t) required for the delayed input u(t− TD) to appear

in the derivative explicitly. A pseudo control hedge, vh, is obtained by first estimating

the actuator position, û, using a model for the actuator characteristics. This estimate

is then used to compute the difference between commanded pseudo control, v, and

the estimated achievable pseudo control. The process is illustrated in Figure 5 for

an actuator model that has position limits, rate limits, actuator dynamics and time

delay. Using (3.2.7) the PCH signal, vh, can be expressed as

vh = v − 1

b1

{ĥr(y, ȳ, û) +
r−1∑

i=0

ai+1ĥi(y, ȳ)}

=
1

b1

{ĥr(y, ȳ, ucmd) − ĥr(y, ȳ, û)}
(3.5.1)

where ucmd is commanded control input from (3.2.1) and û is the estimated control

input as depicted in Figure 5. The PCH signal is then subtracted from the reference

52



Figure 5: Computation of the PCH signal

model dynamics as described by the following equation

x(r)
rm = frm(xrm, ẋrm, · · · , x(r−1)

rm , ycom) − b1vh (3.5.2)

where ycom is the unfiltered command signal. The manner in which it is incorporated

in a linear reference model is shown in Figure 6. Notice that the PCH signal is

integrated before it is introduced as the reference model pseudo control component

so there is no algebraic loop. The nth-order linear reference model augmented with

the PCH signal can be expressed in the following state space form:
















ẋrm

ẍrm

...

x
(r−1)
rm

x
(r)
rm
















=
















0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

−m1 −m2 −m3 · · · −mr
















︸ ︷︷ ︸

Arm
















xrm

ẋrm

...

x
(r−2)
rm

x
(r−1)
rm
















+
















0 0

0 0

...
...

0 0

1 1
















︸ ︷︷ ︸

Brm






m1ycom

−b1vh






yrm = xrm

vrm =
1

b1

[

a1 a2 · · · ar

]

xrm +
1

b1

(x(r)
rm + b1vh)

=
1

b1

[

(a1 − m1) (a2 − m2) · · · (ar − mr)

]

xrm +
m1

b1

ycom

(3.5.3)
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Figure 6: The nth-order reference model with PCH signal
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where m1,m2, · · · ,mr are the reference model gains chosen such that Arm is Hurwitz.

There exists Prm > 0 satisfying the following Lyapunov equation

AT
rmPrm + PrmArm = −Qrm (3.5.4)

for all Qrm > 0. It is reasonable to introduce the following assumption.

Assumption 3.5.1. The command ycom(t) is uniformly bounded so that

‖ycom(t)‖ ≤ y∗
com, y∗

com ≥ 0

In [39], in the absence of input nonlinearity, ultimate boundedness of error signals

has been shown in an output feedback setting using Lyapunov’s direct method for

the case of unbounded actuation. In the presence of input nonlinearity, it is not

obvious how to guarantee boundedness of reference model states since the PCH signal

is fed back to the reference model, hence boundedness of the tracking error signal

e(t) does not automatically imply boundedness of the system output y(t) unlike the

case without PCH. We first show boundedness of the errors in plant states, error

observer states and NN weights via Lyapunov analysis regardless of boundedness

of the reference model states, and then ensure that the reference model states are

bounded using the proven boundedness property of the errors in plant states and

NN weights, which is done without assuming boundedness of the reference model.

Boundedness analysis is given both for a static actuator with position limits and time

delay, and for a dynamic actuator with position/rate limits including time delay.

Boundedness of the errors in plant states, error observer states and NN weights can

be ensured by one of adaptive laws given in Section 3.4.1 - 3.4.3. Lemmas in this

section complete the proofs of boundedness by ensuring that the reference model

states are bounded.

55



Using the mean value theorem, the PCH signal is bounded by

‖vh‖ =
1

|b1|
‖ĥr(y, ȳ, ucmd) − ĥr(y, ȳ, û)‖

≤ ĥu

|b1|
‖ucmd − û‖

(3.5.5)

where ĥu = max
∥
∥
∥

∂ĥr

∂ū

∥
∥
∥, ∂ĥr

∂ū
= ∂ĥr

∂u
|u=ū, ū = θucmd + (1 − θ)û and θ ∈ [0, 1]. In the

presence of time delay, utilizing the Lipschitz continuity of the bounded function û(t),

‖vh‖ ≤ ĥu

|b1|
‖ucmd(t) − û(t − TD)‖

≤ ĥu

|b1|
(‖ucmd(t) − û(t)‖ + ‖û(t) − û(t − TD)‖)

≤ ĥu

|b1|
(‖ucmd(t) − û(t)‖ + l3TD)

(3.5.6)

where l3 is Lipschitz constant for û(t), and TD ≥ 0 is a time delay used in the actuator

model.

Remark 3.5.1. Recall that vd(t) in (2.4.27) is used only to reconstruct the state

x(t). In the case of time delay of TD in the actuator, vd(t − TD) should be used

instead of vd(t).

3.5.1 Static Actuation

For the proof of boundedness we choose linear approximations as stated in the fol-

lowing assumption.

Assumption 3.5.2. Linear models are used for approximate expressions for every

derivative of the output up to rth derivative:

ĥi(y, ȳ) = ciy, i = 1, · · · , r − 1

ĥr(y, ȳ, u) = cry + dru

Then ĥu in (3.5.5) boils down to dr.
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Assumption 3.5.3. When the true actuator nonlinearity is static, the actuator

model satisfies the following property

û(ucmd) = sgn(ucmd) · min(‖ucmd‖,M), M > 0

Utilizing Assumption 3.5.2, the commanded control input can be expressed as:

ucmd =
1

dr

(b1v −
r∑

i=0

ai+1ciy)

=
1

dr

(

φT xrm + m1ycom + b1(vdc − vad) +
r∑

i=0

ai+1ci(e − xrm)

) (3.5.7)

where φ =

[

(a1 − m1) · · · (ar − mr)

]T

, and

ucmd =
1

dr

(

φ̄
T
xrm + m1ycom + b1(vdc − vad) +

r∑

i=0

ai+1cie

)

(3.5.8)

where φ̄ =

[

(a1 − m1 −
r∑

i=0 ai+1ci) (a2 − m2) · · · (ar − mr)

]T

.

Assumption 3.5.4. The actuator model û follows the input command ucmd closely

enough such that

‖ucmd − û‖ ≤ δd‖φ̄‖‖xrm‖

where 0 < δd|dr| < 1.

Assumption 3.5.4 can be satisfied if the following condition holds.

‖m1ycom + b1(vdc − vad) +
r∑

i=0

ai+1cie‖ ≤ M

δd

(3.5.9)

where M is the limit value of actuator introduced in Assumption 3.5.3. From (3.2.17)

and (3.3.5), vdc and vad can be bounded by:

‖vdc‖ ≤
[
‖cc‖2 + d2

c

] 1

2 ‖E‖

‖vad‖ ≤
√

n2 + 1(‖Z̃‖ + Z∗)

(3.5.10)
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The ultimate boundedness of tracking error signal and NN weights error signal are

ensured by one of Theorems 3.4.1, 3.4.2 and 3.4.3. The ultimate bounds can be used

to impose a restriction on the magnitude of command signal ycom in Assumption 3.5.4.

‖m1ycom‖ ≤ M

δd

− b1

(

[‖cc‖2 + d2
c ]

1

2‖E‖ +
√

n2 + 1(‖Z̃‖ + Z∗)
)

−
∣
∣
∣
∣
∣

r∑

i=0

ai+1ci

∣
∣
∣
∣
∣
e

≤ M

δd

− b1C

√

λmax(T )

λmin(T )

(

[‖cc‖2 + d2
c ]

1

2 +
√

n2 + 1 +

∣
∣
∣
∣
∣

r∑

i=0

ai+1ci

∣
∣
∣
∣
∣

)

− b1

√
n2 + 1Z∗

(3.5.11)

where C is defined in (3.4.12), (3.4.27), or (3.4.42). Applying Assumptions 3.5.2 and

3.5.4 to (3.5.6),

‖vh‖ ≤ 1

|b1|
(δd|dr|‖φ̄‖‖xrm‖ + l3TD) (3.5.12)

Utilizing the above assumptions, the following Lemma ensures the boundedness of

reference model states.

Lemma 3.5.1. Let Assumptions 3.5.1, 3.5.2, 3.5.3, and 3.5.4 hold. If E and Z̃ are

bounded, then the reference model state, xrm, is bounded.

Proof. Introduce a Lyapunov function candidate to show boundedness of xrm,

Lrm = xT
rmPrmxrm (3.5.13)

Its time derivative becomes,

L̇rm = −xT
rmQrmxrm + 2xT

rmPrmBrm






m1ycom

−b1vh






≤ −λmin(Qrm)‖xrm‖2 + 2‖xrm‖‖PrmBrm‖(m1y
∗
com + δd|dr|‖φ̄‖‖xrm‖ + l3TD)

≤ −λmin(Qrm)‖xrm‖2 + k5‖xrm‖2 + k6‖xrm‖

≤ −‖xrm‖ [(λmin(Qrm) − k5)‖xrm‖ − k6]

(3.5.14)
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where k5 = 2δd|dr|‖φ̄‖‖PrmBrm‖, k6 = 2(l3TD +y∗
com)‖PrmBrm‖. Choose Qrm so that

λmin(Qrm) > k5. Then, L̇rm ≤ 0 when

‖xrm‖ ≥ γrm ,
k6

λmin(Qrm) − k5

(3.5.15)

Hence the reference model state xrm is ultimately bounded. The bound on xrm can

be calculated as:

λmin(Prm)‖xrm‖2 ≤ Lrm ≤ λmax(Prm)‖xrm‖2 ≤ λmax(Prm)γ2
rm

‖xrm‖ ≤
√

λmax(Prm)

λmin(Prm)
γrm

(3.5.16)

Remark 3.5.2. This lemma is applied to the following linear scalar system.

ẋ(t) = ax(t) + bu(t) (3.5.17)

Consider the following approximate model.

ẋ(t) = crx(t) + dru(t) + ∆

ucmd =
1

dr

(v − crx)

vdc = kpe

(3.5.18)

The PCH signal is

vh = dr(ucmd − û)

The reference model with PCH is expressed as:

ẋrm = −mxrm + mycom − vh, m > 0 (3.5.19)

The inequality (3.5.9) becomes

|mycom| ≤
M

δd

− C

√

λmax(T )

λmin(T )
(|cr − kp| +

√
n2 + 1) −

√
n2 + 1Z∗ (3.5.20)

Assumption 3.5.4 becomes

|ucmd − û| ≤ δdm|xrm| (3.5.21)
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In case that the values of a and b are known, (3.5.9) boils down to

|mycom| ≤
M

δd

(3.5.22)

Consider the following Lyapunov function candidate:

Lrm =
1

2
x2

rm (3.5.23)

The time derivative of Lrm is

L̇rm = xrm(−mxrm + mycom − b(ucmd − û))

≤ −mx2
rm + mycomxrm + mδd|b|x2

rm

≤ −m|xrm|[(1 − δd|b|)|xrm| − ycom]

(3.5.24)

L̇rm < 0 when |xrm| > ycom

(1−δd|b|) . Hence, xrm is ultimately bounded.

3.5.2 Dynamic Actuation

For a dynamic actuator we have the following assumption.

Assumption 3.5.5. The 1st-order dynamic actuator model with position/rate satu-

rations and time delay is expressed in the following form:

ẋa(t) = satR

(

−1

τ
xa(t) +

1

τ
satP (uc(t))

)

û(t) = xa(t − TD)

(3.5.25)

The position/rate saturation functions are defined as:

satP (x) , sgn(x) · min(θP , |x|)

satR(x) , sgn(x) · min(θR, |x|)
(3.5.26)

where θP and θR denote the position bound and rate bound respectively.

Using (3.5.5), the reference model can be rewritten as:

ẋrm = Armxrm + b(m1ycom − ∂ĥr

∂ū
(uc(t) − û(t)))

= Armxrm + b(m1ycom − ∂ĥr

∂ū
(uc(t) − xa(t) + ẋa(t − θTD)TD))

(3.5.27)
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where b =

[

0 · · · 0 1

]T

∈ <r and θ ∈ [0, 1]. The augmented reference model can

be given by:





ẋrm

ẋa




 =






Arm
∂ĥr

∂ū
b

01×r − 1
τ






︸ ︷︷ ︸

Ārm






xrm

xa






︸ ︷︷ ︸

x̄rm

+






b 0r×1

0 1






︸ ︷︷ ︸

B̄rm






m1ycom − ∂ĥr

∂ū
(uc + ẋa(t − θTD)TD)

satR(w) − w + 1
τ
satP (uc)






(3.5.28)

where w = − 1
τ
xa(t) + 1

τ
satP (uc(t)). There exists a unique P̄rm > 0 that solves the

following Lyapunov equation

ĀT
rmP̄rm + P̄rmĀrm = −Q̄rm (3.5.29)

for arbitrary Q̄rm > 0.

Lemma 3.5.2. Let Assumptions 3.5.1 and 3.5.5 hold. If E and Z̃ are bounded, the

reference model state, xrm, is bounded.

Proof. Consider the following Lyapunov function,

Lrm = x̄T
rmP̄rmx̄rm (3.5.30)

Differentiating Lrm with respect to time,

L̇rm = −x̄T
rmQ̄rmx̄rm + 2x̄T

rmP̄rmB̄rm






m1ycom − ∂ĥr

∂ū
(uc + ẋa(t − θTD)TD)

satR(w) − w + 1
τ
satP (uc)






≤ −λmin(Q̄rm)‖x̄rm‖2 + ‖x̄rm‖(q1‖xrm‖ + q2‖xa‖ + q3)

(3.5.31)

where q1 = 2‖P̄rmB̄rm‖ĥul1(k1 + 1), q2 = 2‖P̄rmB̄rm‖ 1
τ
, q3 = 2‖P̄rmB̄rm‖{m1y

∗
com +

ĥu(l1(E
∗ + k2) + l2) + θRTD) + θR}. Utilizing the following inequality,

∥
∥
∥
∥
∥
∥
∥

z

y

∥
∥
∥
∥
∥
∥
∥

≤ ‖z‖ + ‖y‖ ≤
√

2

∥
∥
∥
∥
∥
∥
∥

z

y

∥
∥
∥
∥
∥
∥
∥

(3.5.32)

L̇rm ≤ −(λmin(Q̄rm) −
√

2q4)‖x̄rm‖2 + q3‖x̄rm‖ (3.5.33)

where q4 = max(q1, q2). Lrm is negative when ‖x̄rm‖ > q3

λmin(Q̄rm)−
√

2q4

. Hence xrm

and xa are bounded.
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Figure 7: R-50 unmanned helicopter

3.6 Design and Performance Results of R-50 He-

licopter Model

To demonstrate that the developed approach is adaptive to both parametric uncer-

tainty and unmodeled dynamics (including time delay), we illustrate a design and

performance evaluation using a simplified model for the longitudinal dynamics of an

R-50 experimental helicopter shown in Figure 7. A linear model is used both for

design and simulation so as not to obscure the effects due to unmodeled dynamics

and actuation limits. Figure 8 presents the implementation block diagram.

The pitch channel equations of motion of the R-50 helicopter can be expressed as

a single-input multi-output system:

ẋ = f(x, δ),






ȳ

y




 =






q

θ




 (3.6.1)

where x = [u, q, θ, β, w]T is the state vector , u being the forward velocity, q the pitch

rate, θ the pitch angle, β control rotor longitudinal tilt angle, w vertical velocity, δ

longitudinal cyclic input (deflection angle of swashplate in radian), ȳ is an additional
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Figure 8: Generic block diagram of single channel of adaptive attitude command
system with pseudo control hedging

measurement and y is the controlled output. Note that since only pitch angle and

pitch rate are used in the inversion process, the main sources of unmodeled dynamics

are the control rotor dynamics and time delay.

The following linearized model was obtained based on flight test data:
















u̇

q̇

θ̇

β̇

ẇ
















=
















Xu Xq Xθ Xβ Xw

Mu Mq 0 Mβ Mw

0 1 0 0 0

Bu −1 0 Bβ 0

Zu Zq Zθ Zβ Zw































u

q

θ

β

w
















+
















Xδ

Mδ

0

Bδ

Zδ
















δ (3.6.2)
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where the actual coefficient values are:

Xu = −0.0553, Xq = 1.413, Xθ = −32.1731,

Xβ = −19.9033, Xw = 0.0039,Mu = 0.2373,

Mq = −6.9424,Mβ = 68.2896,Mw = 0.002,

Bu = 0.0101, Bβ = −2.1633, Zu = −0.0027,

Zq = −0.0236, Zθ = −0.2358, Zβ = −0.1233,

Zw = −0.5727, Xδ = 11.2579,Mδ = −38.6267,

Bδ = −4.2184, Zδ = 0.0698.

(3.6.3)

In Assumption 3.1.3 we have assumed the relative degree of the output is known.

If we assume that the actuator responds to the commanded input according to the

1st-order dynamics

τ δ̇(t) = −δ(t) + δc(t − TD) (3.6.4)

then θ has relative degree 3. The time delay TD will be dealt with by PCH.

We choose the desired linearized system in (3.2.4) so that we can stabilize the

closed-loop system with the PD (proportional + derivative) controller depicted in

Figure 8.

Gd(s) =
p

s2(s + p)
(3.6.5)

This corresponds to a1 = p, a2 = 0, a3 = 0 and b1 = p in (3.2.4), and the error

dynamics with vdc = (KDs + KP )e in (3.2.16) become

(s3 + ps2 + pKDs + pKP )e = 0 (3.6.6)

The PD controller is designed to place the closed-loop poles at −20,−8 ± 6i, which

corresponds to that p = 36, KP = 55.56 and KD = 11.67. From (3.2.6), the relation-

ship between pseudo control v and the controlled output y is given by:

p(v + ∆) =
...
y + pÿ (3.6.7)
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In order to get the inversion law we are considering only q and θ as in (3.6.8) leaving

other states (u, β, w) as unmodeled dynamics.






q̇

θ̇




 =






M̂q 0

1 0











q

θ




 +






M̂δ

0




 δ (3.6.8)

We can get the approximations for ÿ and
...
y from (3.6.8).

ˆ̈y = M̂qq

.̂..
y = M̂2

q q +
M̂δ

τ
δcmd

(3.6.9)

where M̂q and M̂δ are introduced to account for parametric uncertainty in Mq and

Mδ, respectively. Utilizing the above approximation, (3.6.7) becomes

p(v + ∆) = M̂2
q q +

M̂δ

τ
δcmd + pM̂qq + ∆3 + p∆2 (3.6.10)

where ∆3 =
...
y − .̂..

y and ∆2 = ÿ − ˆ̈y. Using (3.6.10), the approximate inversion law

(3.2.1) becomes

δcmd =
τ

M̂δ

(pv − M̂q(M̂q + p)q) (3.6.11)

and from (3.2.11), the model inversion error ∆ can be expressed as

∆ =
1

p
(∆3 + p∆2)

=
1

p
{...y − .̂..

y + p(ÿ − ˆ̈y)}
(3.6.12)

The eigenvalues of Ã in (3.3.2) have been placed to be 4 times faster than those of

Ā in (3.2.21). The weight update laws for the application were chosen to be (3.4.20).

The adaptation gains have been set to ΓV = 20I, ΓW = 100I. The following sigmoidal

function

σ(z) =
1

1 + e−az
(3.6.13)

was implemented in the NN design with five hidden neurons, with activation po-

tentials chosen to be [2, 1.6, 1.2, 0.8, 0.2]. The σ-modification gain kσ in the NN
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update laws (3.4.20) was selected to be 2.5. The σ-modification initial matrices W0

and V0 are set to zero since no a priori knowledge for estimates of the weight matri-

ces is available. The number of neurons was chosen experimentally by starting with

a large number and gradually reducing until a degradation in performance became

non-negligible.

As shown in Figure 8, the commanded pitch attitude is processed through a linear

3rd-order reference model,

yrm =
2ω3

(s + 2ω)(s2 + 2ζωs + ω2)
ycom (3.6.14)

The reference model is incorporated with PCH in state space form.
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−2w3 −(1 + 4ζ)w2 −2(1 + ζ)w
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ẋrm
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vrm =
1

p

[

−2w3 −(1 + 4ζ)w2 p − 2(1 + ζ)w

]









xrm

ẋrm

ẍrm









+
2w3

p
ycom

where ω = 10, and ζ = 0.8. Pseudo-control hedging signal vh is generated as in (3.5.1)

vh =
M̂δ

τp
(δcmd − δ̂) (3.6.15)

and is multiplied by p and subtracted from the reference model, which becomes the

reference model state update (
...
x rm) as in (3.5.2).

Figures 9-11 provide simulated performance results of the adaptive controller using

the helicopter model in (3.6.2). The simulation includes the control rotor dynamics,

actuator dynamics (τ = 0.04 sec), time delay (TD = 0.03 sec) and control limits (7.8◦

in position and 78◦/sec in rate). The command to the reference model is a sequence of

positive, zero and negative steps. The parameter estimates used in (3.6.11) are M̂δ =

0.7Mδ and M̂q = 2Mq. Figure 9 presents the pitch tracking performance without NN
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Figure 9: Pitch tracking performance without NN controller

augmentation. The upper plot gives a comparison of the un-hedged reference model

output (dash-dotted line), and the hedged reference model output (dashed line), which

includes the effect of pseudo-control hedging, with the pitch attitude response of the

airframe (solid line). The inversion error causes an unstable attitude response and

commands control input (δcmd) beyond the capacity of the actuator. The pseudo-

control hedging modifies the reference model output so that the airframe response

appears to follow the hedged reference model within the capacity of the actuator.

Note that the actuator response is either position or rate limited throughout the

entire time interval. The airframe response without hedging is similar. The main

sources of the limit cycle behavior observed here are the unmodeled dynamics and

the actuation limits.
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Figure 10: Pitch tracking performance with NN controller and σ-modification
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Figure 11: NN weights (Ŵ , V̂ ) history and ∆ vs. vad with σ-modification
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Figure 12: Pitch tracking performance with e-modification
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Figure 13: NN weights (Ŵ , V̂ ) history and ∆ vs. vad with e-modification
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Figure 14: Pitch tracking performance with projection
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Figure 15: NN weights (Ŵ , V̂ ) history and ∆ vs. vad with projection
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Figure 16: R-50 flight test in attitude control without NN
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Figure 17: R-50 flight test in attitude control with NN
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Figure 10 repeats the plots presented in Figure 9 with NN augmentation. Accept-

able tracking of the filtered hedged command is obtained even during brief periods

where the position and rate limits are encountered. The results demonstrate the

ability of the high-bandwidth flight control system to operate at the physical lim-

its of the aircraft hardware while delivering acceptable tracking performance. This

is made possible by the introduction of hedging, that permits correct adaptation to

continue while not in control. Note that the un-hedged reference model outputs in

Figures 9 and 10 are identical and the airframe response appears to lag the un-hedged

command for a period of time, but lead the hedged command. This behavior is a

consequence of the feedforward term from the reference model, vrm in Figure 8. Fig-

ure 11 shows the NN weights time history Ŵ (Output layer) in the top and V̂ (Input

layer) in the middle. The weights have a tendency to return to zero after each step

in command due to the σ-modification term in (3.4.20). The bottom plot in Fig-

ure 11 shows the inversion error (∆) and the output of the NN (vad). The adaptive

signal vad approximates ∆ except when the command is initiated. This inability of

the NN to immediately adapt causes slight overshoots in the pitch attitude response

in Figure 10. This demonstrates the effectiveness of PCH in allowing adaptation to

continue during periods of control saturation.

Figures 12 and 13 are the simulation result with e-modification as presented in

Section 3.4.2. It has the same simulation conditions as the σ-modification except

the adaptation gains ΓV = I, ΓW = 2.5I, the e-modification gain ke = 10, and the

activation potentials [1, 2, 4, 8, 16]. Figure 12 shows a better tracking performance

than Figure 10 when the command is initiated. Figure 13 shows that the NN weights

are not driven to zero in the steady state.

Figure 14 shows the pitch tracking performance with the projection operator as

presented in Section 3.4.3. The adaptation gains are ΓV = 0.05I, ΓW = 4I and

the activation potentials are [13, 13.5, 14, 14.5, 15]. The estimated bounds on the NN
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weights are chosen to be Wmax = 5, Vmax = 0.5. The projection tolerances are set

to be εW = 0.1W 2
max, εV = 0.1V 2

max. Although it takes more time to adapt to the

uncertainties, it shows better tracking performance after the initial adaptation phase.

Figure 15 shows the NN weights history (Ŵ , V̂ ) are well behaved without the use

of σ-modification or e-modification and the output of the NN adapts and cancels

approximately the inversion error.

Figures 16 and 17 present the flight test results of attitude command tracking

for the pitch channel using the error observer-based design at design bandwidth of

10 rad/sec without NN and with NN, respectively. Sinusoidal type pitch attitude

commands are generated directly by a remote pilot. Figure 17 shows that reasonably

good tracking of the command is accomplished for the NN. The adaptive control

design parameters used for the flight test are ΓW = 70, ΓV = 30 and kσ = 1.3.

3.7 Application to High Bandwidth Longitudinal

Flight Control

In this section we consider a 58 state model of a flexible aircraft consisting of rigid

body dynamics (short period model) coupled with actuator and flexible modes.2 The

truncated short period dynamics can be expressed as






α̇

q̇




 =






Zα/U0 1 + Zq/U0

Mα Mq











α

q




 +






Zδ/U0

Mδ




 δ +






∆α

∆1




 (3.7.1)

where α is the angle of attack, q is the pitch rate, δ is the control perturbation input,

∆α, ∆1 are approximation errors (representing the functional dependence on states

associated with the actuator and flexible dynamics).

2For information of the model, refer to James M. Buffington, Ph.D. Branch Specialist Flight
Control/Vehicle Management Systems, Lockheed Martin Aeronautics Company PO Box 748 Ft.
Worth TX 76101 Mail Zone 9338
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3.7.1 Relative Degree = 1 Design

For the relative degree = 1 design, we assume the simplest feedback-linearized system

as in (3.2.4)

Gd(s) =
1

s
(3.7.2)

From the feedback-linearized system in (3.7.2) the pseudo control/output dependence

can be given:

v + ∆ = ẏ

= ˆ̇y + ∆1

(3.7.3)

where y is the controlled output which is the pitch rate q. Utilizing the short period

approximation in (3.7.1) the above equation becomes

v + ∆ = Mαα + Mqq + Mδδ + ∆1 (3.7.4)

From (3.7.4) we can acquire the inversion law and the inversion error as following.

δ =
1

Mδ

(v − Mαα − Mqq)

∆ = ∆1 = ẏ − ˆ̇y

(3.7.5)

A PI (proportional and integral) controller is designed for the feedback-linearized

system to have the both closed-loop poles at −wc

2
. The PI controller gains are KP =

wc and KI = w2
c

4
. To construct the reference model pseudo control signal vrm, a

1st-order reference model is introduced as:

yrm =
1

2
wc

s + 1
ycom (3.7.6)
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where yrm is the output of the reference model and ycom is the pre-filtered command.

The error dynamics can be presented as in (3.7.7)

ẏ = v + ∆

= vdc + vrm − vad + ∆

= KIη + KP ỹ + ẏrm − vad + ∆





˙̃y

η̇




 =






−KP −KI

1 0











ỹ

η




 +






1

0




 (vad − ∆)

(3.7.7)

where ỹ , yrm − y and η is the state of the PI controller.

The adaptation gains have been set to ΓV = 5I, ΓW = 0.05I. The following

sigmoidal function

σ(zi) =
1

1 + e−aizi
(3.7.8)

has been implemented in the NN design with nine hidden neurons, activation poten-

tials chosen to be a = [1, 2, 3, 4, 5, 6, 7, 8, 9]. The σ-modification coefficient kσ in the

NN update laws (3.4.20) is selected to be 10. The σ-modification initial matrices W0

and V0 are set to zero since no a priori knowledge for estimates of the weight matrices

is available. Figure 18 presents the implementation block diagram.

The adaptive output feedback approach assumes that the relative degree (r) of

the regulated variable is known. What is important is not the theoretical relative

degree, but the relative degree over the bandwidth of the design. That is, high

frequency poles and zeros can be disregarded. Another way to view this is in terms

of the roll-off and phase shift in the vicinity of the gain crossover frequency in a Bode

plot. In general, the relative degree may be determined from modeling equations,

or it can be experimentally estimated. Taking q as the regulated output variable,

and considering only the rigid body dynamics, then r = 1. For an r = 1 design,

the error observer described in the last section is not needed, since E in (3.2.21)

involves only the regulated output and the compensator states. In a sense, the output

75



Dynamic

Compensator

adv

dcv

rmv

comy rmy y~ v y
Plant

Approx.

Inversion

Reference

Model

Neural

Network

v

Error

Observerh
BPE

T
)

Figure 18: Generic block diagram of single channel of an adaptive rate command
system

feedback approach becomes nearly equivalent to the case of state feedback, except that

it retains the potential for adaptation to unmodeled dynamics, if these unmodeled

dynamics do not significantly affect the assumed relative degree (and therefore become

the zero dynamics). The essential difference between this approach and adaptive

approaches using full state feedback lies in the use of delayed values at the input side

of the adaptive element, as defined in (2.4.27).

3.7.2 Relative Degree = 2 Design

For the relative degree = 2 design, we assume the feedback-linearized system as in

(3.2.4)

Gd(s) =
p2

(s + p)2
, (3.7.9)

where a2 = 2p, a1 = p2 and b1 = p2. The reason we have two shifted poles from the

origin in (3.7.9) is to keep a PI controller structure. We cannot stabilize 1
s2 by using

a PI controller. For the approximation of the second derivative of the output (y), a
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1st-order actuator model is introduced

δ =
1

τs + 1
δcmd (3.7.10)

where δ is a state of the actuator dynamics, δcmd is the control input and τ is the time

constant. From the feedback-linearized system in (3.7.9) the pseudo control/output

dependence can be given:

p2(v + ∆) = ÿ + 2pẏ + p2y

= ˆ̈y + 2pˆ̇y + p2y + ∆2 + 2p∆1

(3.7.11)

where y is the controlled output which is the pitch rate q. Utilizing the short period

approximation in (3.7.1) and the actuator model in (3.7.10), the approximation of

the second derivative of the output is given by

ˆ̈y = Mα(Zαα + Zqq + Mδδ) + Mq(Mαα

+ Mqq + Mδδ) + Mδ(−
1

τ
δ +

1

τ
δcmd)

(3.7.12)

Substituting (3.7.12) into (3.7.11), we obtain the following expression for the inversion

law and the inversion error:

δcmd =
τ

Mδ

(p2v − Cαα − Cqq)

∆ =
1

p2
(∆2 + 2p∆1)

=
1

p2
(ÿ − ˆ̈y + 2p(ẏ − ˆ̇y))

(3.7.13)

where Cα = Mα(Zα + Mq + 2p) and Cq = MαZq + M2
q + 2pMq + p2.

The PI controller is designed for the feedback-linearized system to have the both

closed-loop poles at −wc. The value of p in (3.7.9) is chosen to be 2ζwc and the

PI controller gains are KP = w2
c/p

2 and KI = pKP . Note that the shifted pole (p)

cancels the zero of the PI controller so that the closed-loop system remains second

order. To construct the reference model pseudo control signal vrm, a second order

reference model is introduced as:

yrm =
w2

c/4

s2 + wcs + w2
c/4

ycom (3.7.14)
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where yrm is the output of the reference model, ycom is the pre-filtered command. The

error dynamics can be represented as in (3.7.15)
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˙̃y

¨̃y
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0 1 0

0 0 1

−p2KI −p2(1 + KP ) −2p

















η
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˙̃y









+









0

0

1









p2(vad − ∆)

(3.7.15)

where ỹ , yrm−y and η is the state of the PI controller. The error observer poles have

been placed to be 4 times faster than those of the error dynamics (3.7.15). The adap-

tation gains have been set to ΓV = 20I, ΓW = 10I. The sigmoidal function in (3.7.8)

is used with activation potentials 100 × [1, 2, 3, 4, 5, 6, 7, 8, 9]. The σ-modification co-

efficient kσ in the NN update laws (3.4.20) is selected to be 4. The σ-modification

initial matrices W0 and V0 are set to zero.

3.7.3 Numerical Results

Figure 19 depicts and quantifies to some degree the effect of the flexible modes in

this model. Two responses are shown. The solid line shows the response in pitch rate

to a step command for a baseline controller without a structural model filter. The

baseline design is a α, q feedback inverting design with PI compensation. The effect

of unmodeled dynamics is apparent from the response. To verify that this is due to a

structural mode interaction (rather than an interaction with the actuator mode), the

following two structural compensation filters were placed in series in the pitch rate

feedback path:

s2 + 1.58s + 1181.2

s2 + 6.87s + 1181.2
,

s2 + 4.87s + 2667.2

s2 + 20.66s + 2667.2
(3.7.16)
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Figure 19: Baseline design performance.

The dashed line in Figure 19 demonstrates that the structural mode interaction

is indeed eliminated with the introduction of these filters.

Figure 20 shows the result of the r = 1 adaptive design using wc = 7 rad/sec in

the reference model. Note that it exhibits even greater interaction with the flexible

modes, than does the baseline design of Figure 19. However, this design reaches the

command level much faster.

To examine why this design fails to suppress the effect of the flexible modes,

we considered the rigid body model and the full plant model by comparing their

respective Bode plots. The magnitude plot in Figure 21 shows that the rigid body

model is a good approximation over much of the frequency range of interest, but the

phase plot shows significant differences in the vicinity of the design bandwidth, as

set by the command model frequency. It appears that an additional phase shift of

90 degrees is introduced up to about 20 rad/sec, which lies beyond the bandwidth

of our design. A slight change in the slope is also evident in the magnitude plot at
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Figure 20: Relative degree = 1 design (wc = 7 rad/sec).
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Figure 22: Relative degree = 2 design (wc = 7 rad/sec).

around 10 rad/sec. However, it is evident that the phase plot is a clearer indicator

of relative degree than is the magnitude plot. Therefore, we tried an r = 2 design,

which required the introduction of the error observer in (3.3.1). Figure 22 shows that

the r = 2 design does eliminate the structural mode interaction, without requiring

notch filtering, which was the main objective in this phase of the effort.

3.8 Nonlinearly-Parameterized NN with SPR Ap-

proach

As presented in the previous sections, Lyapunov stability analysis results in a NN

update law in terms of the error vector. When r ≥ 2 and the derivatives of the output

signal are not available for feedback, we used an error observer in realizing the estimate

of the error vector for the use of the update law. Alternatively, we can use a direct

adaptive approach that employs a strictly positive real (SPR) filter [38]. It utilizes

a low-pass filter so that the error dynamics satisfy an SPR condition, and a scalar
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error signal can be directly used in the Lyapunov stability analysis in place of the

error vector. In [38] a linearly-parameterized NN controller with SPR approach was

introduced by redefining the teaching signal so that the training signal is related to the

NN approximation error through an SPR transfer function. In this section, we develop

an adaptive law for nonlinearly-parameterized NNs using the SPR approach. This is

done by augmenting an auxiliary error signal with the tracking error signal so that

the augmented error is associated with the NN approximation error through an SPR

transfer function. The idea of augmenting an auxiliary error when r ≥ 2 was proposed

by Sastry et.al. [60]. The performance of the adaptive scheme is demonstrated by

a numerical example of a modified Van der Pol oscillator and compared with the

approach found in [38]. Moreover, in contrast to the σ-modification term used in [38],

we show that it is possible to incorporate an e-modification term in the adaptive law.

3.8.1 Controller Design

Consider the following error dynamics taken from (3.2.27)

Ė = AE + bhv̄(Ŵ
T σ̂ − W T σ − ε)

e = CE

(3.8.1)

where A is Hurwitz and r ≥ 2. It can be expressed in frequency domain.

e = G(s)hv̄(Ŵ
T σ̂ − W T σ − ε) (3.8.2)

Currently, the boundedness analysis with SPR approach is limited to the following

assumption.

Assumption 3.8.1. hv̄ is a known constant.

Introduce an auxiliary error signal ea and a low-pass filter T (s) such that Ḡ(s) ,
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G(s)T−1(s) is SPR:

ea , Ḡ(s)hv̄

(

Ŵ T T (s)σ̂ − T (s)(Ŵ T σ̂)
)

= Ḡ(s)hv̄

(

Ŵ T σ̂f − W T σf + W T σf

)

− G(s)hv̄(Ŵ
T σ̂)

= Ḡ(s)hv̄

(

Ŵ T σ̂f − W T σf

)

+ G(s)hv̄(W
T σ − Ŵ T σ̂)

(3.8.3)

where σf = T (s)σ, σ̂f = T (s)σ̂ and T (s) is called an SPR filter. Note that ea can

be computed since the estimated weight Ŵ and the activation function σ̂ are both

available online and that ea goes to zero if Ŵ is replaced by the optimal weight W .

In the controller canonical form it is given by:

Ėa = AEa + bhv̄

(

Ŵ T T (s)σ̂ − T (s)(Ŵ T σ̂)
)

ea = C̄Ea

(3.8.4)

Since Ḡ(s) is SPR, the following equations hold:

AT P + PA = −Q < 0

Pb = C̄T

(3.8.5)

Remark 3.8.1. Assumption 3.8.1 implies that ∂hr

∂u
is known. Knowledge of ∂hr

∂u
is

needed to generate ea. It can still be applied to a non-affine system as long as

Assumption 3.8.1 holds.

Define the augmented error signal as:

ē , e + ea

= Ḡ(s)hv̄

(

Ŵ T σ̂f − W T σf − εf

) (3.8.6)

where εf = T (s)ε and is bounded by ‖εf‖ ≤ ε∗f . For the stability proof we will need
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the following representation:

Ŵ T σ̂f − W T σf − εf

= Ŵ T σ̂f − W T σf − W T σ̂f + W T σ̂f − Ŵ T σ + Ŵ T σ − εf

= W̃ T σ̂f − W T σ̃f − Ŵ T (σ̂ − σ̂′Ṽ T µ + O(‖Ṽ ‖2) + Ŵ T σ − εf

= W̃ T σ̂f − W T σ̂′V T µ +
(

W T σ̂′V̂ T µ − Ŵ T σ̂′V̂ T µ
)

+
(

Ŵ T σ̂′V̂ T µ − Ŵ T σ̂′V T µ
)

+ Ŵ T σ̂′V T µ − W TO(‖Ṽ ‖2) − εf

= W̃ T
(

σ̂f − σ̂′V̂ T µ
)

+ Ŵ T σ̂′Ṽ T µ + W̃ T σ̂′V T µ − W TO(‖Ṽ ‖2) − εf

= W̃ T
(

σ̂f − σ̂′V̂ T µ
)

+ Ŵ T σ̂′Ṽ T µ + w̄

(3.8.7)

where σ = σ(V T µ), σ̂ = σ(V̂ T µ), σ̂′ = dσ
dz
|z=V̂ T µ, O(‖Ṽ ‖2) = σ − σ̂ + σ̂′Ṽ T µ and

the disturbance term w̄ = W T σ̂f − W T σf + Ŵ T σ̂′V T µ − W T σ̂′V̂ T µ − εf is upper

bounded as:

‖w̄‖ ≤ 2
√

n2 + 1W ∗ + δ
√

n2 + 1W ∗ + ‖Ŵ‖a∗

4
V ∗µ∗ + ε∗f

≤ c1‖Z̃‖F + c2

(3.8.8)

where c1 = a∗

4
Z∗µ∗, c2 = ((2 + δ)

√
n2 + 1 + c1)W

∗ + ε∗f . Using (3.8.7), the error

dynamics (3.8.6) can be expressed as:

ē = Ḡ(s)hv̄

(

W̃ T (σ̂f − σ̂′V̂ T µ) + Ŵ T σ̂′Ṽ T µ + w̄
)

(3.8.9)

and in the controller canonical form.

˙̄E = AĒ + bhv̄

(

W̃ T (σ̂f − σ̂′V̂ T µ) + Ŵ T σ̂′Ṽ T µ + w̄
)

ē = C̄Ē

(3.8.10)

The filter T (s) can be realized in a state space form

żf = Afzf + Bf σ̂

σ̂f = Cfzf

(3.8.11)

The signal σ̂f is used in the NN adaptation law

˙̂
W = −ΓW

[

sgn(hv̄)(σ̂f − σ̂′V̂ T µ)ē + ke|ē|Ŵ
]

˙̂
V = −ΓV

[

sgn(hv̄)µēŴ T σ̂′ + ke|ē|V̂
] (3.8.12)
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where ΓV , ΓW > 0 are the learning rate and ke > 0 is the e-modification gain.

Assumption 3.8.2. Assume

R > C

√

λmax(T )

λmin(T )
≥ C (3.8.13)

where λmax(T ) and λmin(T ) are the maximum and minimum eigenvalues of the fol-

lowing matrix:

T ,









P 0 0

0 Γ−1
W 0

0 0 Γ−1
V









(3.8.14)

which will be used in a Lyapunov function candidate as L = ζT Tζ with a redefined

error vector ζ =

[

Ē
T

W̃ T (vecṼ )T

]T

, and

C , max
(‖C̄‖(c2

1 + 2c2 + keZ
∗2)

λmin(Q)
,

√

(c2
1 + 2c2 + keZ∗2)

ke − 1

)

(3.8.15)

is the radius of a ball BC containing Γ.

Define the Lyapunov function level sets Ωα and Ωβ

Ωα = {ζ ∈ BR | L ≤ α , min
‖ζ‖=R

L}

Ωβ = {ζ ∈ BR | L ≤ β , max
‖ζ‖=C

L}
(3.8.16)

Theorem 3.8.1. Let Assumptions 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1, 3.5.1, 3.8.1 and

3.8.2 hold. If the initial errors belong to the compact set Ωα defined in (3.8.16), then

the feedback control law given by (3.2.1) and the weight update law (3.8.12) ensure

that the signals Ē, W̃ and Ṽ in the closed-loop system are ultimately bounded with

the ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.5.
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3.8.2 Numerical Example

The efficacy of the adaptive output feedback controller developed in Section 3.8 is

demonstrated using a modified Van der Pol oscillator model treated in [38].

ẋ1 = x2

ẋ2 = −2(x2
1 − 1)x2 − x1 + u

ẋ3 = x4

ẋ4 = −x3 − 0.2x4 + x1

y = x1 + x3

(3.8.17)

The output has relative degree r = 2. We assume that we have an approximate model

as:

ˆ̈y = u (3.8.18)

The linear controller is designed such that the closed-loop poles of the approximate

model in (3.8.18) are placed at −3,−2 ± 2i.

vdc =
20(s + 1.2)

s + 7
ỹ (3.8.19)

Then the error dynamics becomes,

ỹ = G(s)(vad − ∆),

G(s) =
s + 7

s3 + 7s2 + 20s + 24

(3.8.20)

where ∆ = −2(x2
1−1)x2−x3−0.2x4. We select an SPR filter T (s) so that G(s)T−1(s)

is SPR.

T (s) =
s + 7

(s + 1)(s + 2)
(3.8.21)

Five hidden layer neurons are used and their activation potentials are
[

1 0.9 0.8 0.7 0.6

]

. The learning rates for adaptation laws in (3.8.12) are ΓW =

30, ΓV = 40 and the e-modification coefficient is ke = 0.001. A second order reference

model is selected with a natural frequency of 1 rad/sec and damping ratio of 0.707.

The initial condition for the plant is x1(0) = 0.5, x2(0) = 2.5, x3(0) = 0, x4(0) = 0.
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The system response without NN augmentation in Figure 23 exhibits a limit-cycle-

like oscillation due to unmodeled dynamics. With NN augmentation as developed in

Section 3.8, the oscillation is removed after about a 3 second adaptation period as

shown in Figure 24. The performance obtained using a linearly-parameterized NN is

shown in Figure 25. Figure 24 takes more time to adapt but has better steady state

tracking performance than seen in Figure 25. Nonlinearly-parameterized NN weight

histories in Figures 27 and 28 show that NN weights approach nearly constant values

that are non-zero, in contrast to the linearly-parameterized NN weight histories that

tend to return to zero as shown in Figure 26. The control efforts are shown in Figures

29 and 30. Figures 31 and 32 show the degree to which the NN output approximates

∆.
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Figure 23: System response with a linear compensator
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Figure 24: System response with nonlinearly-parameterized NN
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Figure 25: System response with linearly-parameterized NN
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Figure 26: Weight history with linearly-parameterized NN
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Figure 27: Weight (W) history with nonlinearly-parameterized NN
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Figure 28: Weight (V) history with nonlinearly-parameterized NN

90



0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5

10

15

20

C
on

tr
ol

 p
os

iti
on

 [r
ad

]

Time [sec]

Figure 29: Control position with nonlinearly-parameterized NN
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Figure 30: Control position with linearly-parameterized NN
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Figure 31: ∆ vs. vad with nonlinearly-parameterized NN
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Figure 32: ∆ vs. vad with linearly-parameterized NN
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CHAPTER IV

NN AUGMENTATION OF EXISTING

CONTROLLERS

This chapter presents an approach to augment existing controllers with a NN. Previ-

ous adaptive output feedback control approaches have been applied within a control

architecture that uses an inverting type of controller for the non-adaptive portion of

the control system. Considering that the vast majority of existing controllers are not

based on inversion, it is desirable to retrofit such systems with an adaptive element.

Generally, when a complete control system already exists for the nominal plant, one

can augment it with an adaptive process to gain the benefits provided by adapta-

tion. In the particular case of aviation applications, the aircraft industry would much

prefer to augment flight control architectures that are already certified, rather than

replace them with a totally new architecture. In [44] adaptive augmentation of a

linear controller is examined for the case of state feedback. References [45, 46, 47]

introduced several methods for linear controller augmentation in an output feedback

setting. Here we develop an approach for a simple reference model which has the

same relative degree as the true plant as depicted in Figure 33. The approach is use-

ful for situations in which one wishes to augment an existing linear controller without

knowledge of the process by which the controller was designed. For example, the

controller gains may have been obtained by a tuning process while in operation with

the true plant, and not obtained (in its operational form) via a model based design

approach. This situation is often the case in many practical industrial settings, such

as process control, automotive engine and transmission control, and many aircraft,
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missile and guided munition flight control applications as well.

First we describe the control system architecture and develop the error equation

needed to apply an existing approach to adaptive output feedback augmentation. A

reference model is constructed to represent the ideal response characteristics of the

closed-loop system. NN augmentation of an existing controller is used to force the

plant output to track the reference model trajectory. This approach involves formu-

lating an architecture for which the associated error equations have a form suitable

for applying the same NN and update laws as those given in Chapter 3. In addition

Section 4.1.2 develops an SPR filter approach for directly using the tracking error sig-

nal to update the NN weights. The augmentation methodology is extended to MIMO

systems in Section 4.2. The efficacy of the design is demonstrated via application

to autopilot design for a guided munition model. In Section 4.3.2, command limit-

ing is introduced to avoid an oscillatory response at high angle of attack in normal

acceleration tracking.

4.1 Existing Controller Augmentation Scheme

Consider the following observable and stabilizable SISO nonlinear system:

ẋ = f(x, u)

y = h(x)

(4.1.1)

where x is the state of the system on a domain Dx ⊂ <n, and u, y ∈ < are the

control and regulated output variables, respectively. The functions f and h may be

unknown. The regulated output is available for feedback and its relative degree is

known to be r.

Assumption 4.1.1. The output y has relative degree r for all (x, u) ∈ Dx ×<.
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We assume that the system (4.1.1) can be transformed into a normal form,

χ̇ = f 0(ξ,χ)

ξ̇i = ξi+1 i = 1, · · · , r − 1

ξ̇r = hr(ξ,χ, u)

y = ξ1

(4.1.2)

where ξ = [ ξ1 . . . ξr ]T , hr(ξ,χ, u) = Lr
fh, and χ is the state vector associated

with the internal dynamics.

Assumption 4.1.2. The internal dynamics in (3.1.4), with ξ viewed as input, are

input-to-state stable. [53]

Assumption 4.1.3. The sign of ∂hr/∂u is known.

It is assumed that there already exists a linear controller:

ẋc = Acxc + bc(yc − y)

uec = Ccxc + Dc(yc − y)

(4.1.3)

where yc ∈ < is a command signal, xc ∈ <nc is the state vector of the linear controller

and Ac is Hurwitz. However, the process by which this controller was obtained in

its final form does not lend itself to a straightforward model-based design method.

Consequently, a linear plant model is not available which can be combined with the

controller in (4.1.3) to define the desired closed-loop performance.

We suggest using a simple linear performance model G(s) as a reference model

G(s) =
b1

sr + arsr−1 + · · · + a1

(4.1.4)

as shown in Figure 33. The reference model should be designed to have relative degree

r and to satisfy performance requirement of closed-loop system. G(s) has r poles in

the open left half plane and can be expressed in state-space form as:

ẏm = Amym + bmb1yc

ym = Cmym

(4.1.5)
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Figure 33: Adaptive control architecture with existing controller augmentation using
simple reference model
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ym ,

[

ym ẏm · · · y
(r−1)
m

]T

Am =
















0 1 0 · · · 0

0 0 1 · · · ...

...
...

...
. . . 0

0 0 · · · 0 1

−a1 −a2 −a3 · · · −ar
















, bm =
















0

0

0

...

1
















,

Cm =

[

1 0 0 0 · · · 0

]

where Am is Hurwitz.

Assumption 4.1.4. The command yc(t) is bounded so that

‖yc(t)‖ ≤ y∗
c

By Assumption 4.1.4, ym is guaranteed to be bounded. Then the rth derivative

of ym is

y(r)
m = Crym + Dryc (4.1.6)

where Cr , CmAr
m =

[

−a1 −a2 −a3 · · · −ar

]

and Dr , CmAr−1
m bmb1 = b1.

The feedback control law is designed as:

u = uec − uad (4.1.7)

y(r) in (4.1.2) can be put in the following form.

y(r) = −ary
(r−1) · · · − a1y + b1(yc − uad + ∆)

= Cry + b1(yc − uad + ∆(yc,y, u))

(4.1.8)

where y ,

[

y ẏ · · · y(r−1)

]T

and ∆(yc,y, u) , 1
b1

(y(r) − Cry) − yc + uad

Its state-space form is given by 1

ẏ = Amy + bmb1(yc − uad + ∆(yc,y, u))

y = Cmy

(4.1.9)

1If additional outputs are available for feedback, which are not regulated, they can easily be
incorporated into the design, similar to what was done in Chapter 3.
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Let the error be defined as e , ym − y. Then we have the following tracking error

dynamics.

e(r) = CrE + b1(uad − ∆)

= −(a1e + a2ė + · · · + are
(r−1)) + b1(uad − ∆)

(4.1.10)

where E =

[

e ė · · · e(r−1)

]T

. In state space form it can be represented as:

Ė = AmE + bmb1(uad − ∆(yc,y, u))

z = CmE

(4.1.11)

Define the following signal

u∗ , h−1
r (x, b1yc + Cry) (4.1.12)

From (4.1.12), the following equation is satisfied.

b1yc + Cry = hr(x, u∗) (4.1.13)

uad − ∆ can be expressed as

uad − ∆ = uad −
1

b1

(y(r) − Cry) + yc − uad

= − 1

b1

(hr(x, u) − Cry − b1yc)

=
1

b1

(hr(x, u∗) − hr(x, u))

(4.1.14)

Applying the mean value theorem,

uad − ∆ =
hū

b1

(u∗ − u)

=
hū

b1

(h−1
r (x, b1yc + Cry) − uec + uad)

=
hū

b1

(uad − ∆̄(x, yc, uec))

(4.1.15)

where ∆̄ = uec − h−1
r (x, b1yc + Cry) and

hū ,
∂hr

∂u

∣
∣
∣
∣
u=ū

, ū = θu + (1 − θ)u∗, and 0 ≤ θ(u) ≤ 1 (4.1.16)
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Using the representation of (4.1.15), we have the following error dynamics.

Ė = AmE + bmhū(uad − ∆̄)

z = CmE

(4.1.17)

Define the bounds for hū and d
dt

(
1

hū

)

in a compact set,

hB , max
x,u∈D

|hū|, H , max
x,u∈D

∣
∣
∣
∣

d

dt

(
1

hū

)∣
∣
∣
∣

(4.1.18)

Now we design the adaptive term as

uad = Ŵ T σ(V̂ T µ) (4.1.19)

If the NN output signal uad perfectly cancels ∆̄, then we have asymptotically stable

error dynamics. Since Am is Hurwitz, there exists a unique P > 0 solving the following

Lyapunov equation

AT
mP + PAm = −Q (4.1.20)

for arbitrary Q > 0. Lyapunov stability analysis of the error dynamics results in

update laws for the adaptive element in terms of E. However, for r ≥ 2 it is assumed

that E is not available for feedback. We can deal with it by either using the error

observer approach [47] or the direct adaptive approach [45, 46], similar to what was

done in Chapter 3. These two approaches will be detailed in the sequel.

4.1.1 Error Observer Approach

Here we treat the problem using the error observer approach and the update law

with σ-modification as presented in Section 3.4.1. Introducing a linear observer for

the tracking error dynamics as in Section 3.3, we have:

˙̂
E = AmÊ + K (z − ẑ)

ẑ = CmÊ,

(4.1.21)

where K should be chosen in a way to make Am − KCm asymptotically stable. Let

Ã , Am − KCm, Ẽ , Ê − E. (4.1.22)
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Then the observer error dynamics can be written:

˙̃
E = ÃẼ − bmhū(uad − ∆). (4.1.23)

Since Ã is Hurwitz, there exists P̃ > 0 satisfying the following Lyapunov equation

ÃT P̃ + P̃ Ã = −Q̃, (4.1.24)

for an arbitrary positive definite matrix Q̃. In the same manner as (3.4.5), we have

the following representation.

uad − ∆ = W̃ T
(

σ̂ − σ̂′V̂ T µ
)

+ Ŵ T σ̂′Ṽ T µ + w̄ (4.1.25)

where the disturbance term is bounded by:

‖w̄‖ ≤ γ1‖Z̃‖F + γ2 (4.1.26)

where γ1 = a∗

4
Z∗µ∗, γ2 = ((2 + δ)

√
n2 + 1 + γ1)W

∗ + ε∗ and δ as defined in (2.3.11).

Assumption 4.1.5. Assumption 3.4.1 holds with bm in place of b̄.

Theorem 4.1.1. Let assumptions 4.1.1, 4.1.2, 4.1.3, 4.1.4 and 4.1.5 hold. Let the

adaptation law be given by:

˙̂
W = −ΓW

[

sgn(hū)(σ̂ − σ̂′V̂ T µ)Ê
T
Pbm + kσ(Ŵ − W0)

]

˙̂
V = −ΓV

[

sgn(hū)µÊ
T
PbmŴ T σ̂′ + kσ(V̂ − V0)

] (4.1.27)

where ΓV , ΓW > 0. Then there exists a positive invariant set, Ωα such that if the

initial errors belong to Ωα, then the feedback control law given by (4.1.7) ensures that

the signals E, Ẽ, W̃ and Ṽ in the closed-loop system are ultimately bounded with the

ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. The proof is the same as that of Theorem 3.4.1 with bm in place of b̄.

Remark 4.1.1. Theorem 4.1.1 can be applied to the e-modification as in (3.4.21) or

the projection operator as in (3.4.38).
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4.1.2 SPR Filter Approach

Reference [38] presents a direct adaptive output feedback design approach employing

feedback linearization and a linearly-parameterized NN to compensate for modeling

errors without using the error observer. It introduces an additional error signal for

training the NN by using a two-output dynamic compensator. The training signal

can be interpreted as a filtered tracking error signal. Here we will directly use the

tracking error signal to update weights in the linearly-parameterized NN. An exten-

sion to a nonlinearly-parameterized NN is given in Section 3.8. The control system is

augmented by a low-pass filter designed to meet a SPR condition of a transfer func-

tion of error dynamics. The SPR condition is used in the Lyapunov stability analysis

to construct the NN adaptation law using only available measurements.

Following [6, 7, 8], ∆ can be represented by W T φ + ε, and with the adaptive

element of (4.1.19) the error dynamics in (4.1.11) can be expressed as:

e = G(s)hū(W̃
T φ − ε) (4.1.28)

where G(s) is defined in (4.1.4) and φ(µ) is a radial basis function defined by:

φi = e−(µ−ci)
T (µ−ci)/2, i = 1, 2, · · · , n2 (4.1.29)

The centers ci are randomly chosen over a range of possible values of the input vector

µ. The proof of ultimate boundedness requires (4.1.28) to be strictly positive real

(SPR). If r ≥ 2, we introduce an (r − 1)th order SPR filter T (s) to meet the SPR

condition.

e = G(s)T−1(s)T (s)hū(W̃
T φ − ε)

= G(s)T−1(s)hū(W̃
T φf + δf − εf )

(4.1.30)

where φf = T (s)φ, δf = T (s)(W̃ T φ) − W̃ T φf , εf = T (s)ε, and are bounded as:

‖δf‖ ≤ κ1‖W̃‖F , ‖ε‖ ≤ ε∗f (4.1.31)
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T (s) can be constructed by Kalman-Yakubovich-Popov (KYP) approach [61]. As-

sume that

G(s)T−1(s) =
crs

r−1 + cr−1s
r−2 + · · · + c1

sr + arsr−1 + · · · + a1

(4.1.32)

The state space realization of the transfer function G(s)T (s)−1 is given by

ż = Amz + b̄(hū(W̃
T φf + δf − εf )

e = C̄z

(4.1.33)

where

Am =
















0 1 0 · · · 0

0 0 1 · · · ...

...
...

...
. . . 0

0 0 · · · 0 1

−a1 −a2 −a3 · · · −ar
















, b̄ =
















0

0

...

0

1
















C̄ =

[

c1 c2 · · · cr−1 cr

]

(4.1.34)

G(s)T (s)−1 is SPR if and only if it complies with KYP Lemma, i.e. there exists Q > 0

such that the solution P of

AT
mP + PAm = −Q (4.1.35)

is positive definite and

C̄ = b̄
T
P (4.1.36)

From the elements of C̄ which is the last row of P in this canonical form, we can

construct a stable low-pass filter T (s) ensuring G(s)T (s)−1 is SPR.

T (s) =
b1

crsr−1 + cr−1sr−2 + · · · + c1

(4.1.37)

The filter T (s) can be realized in a state space form.

żf = Afzf + Bfφ

φf = Cfzf

(4.1.38)
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The signal φf is used in the NN adaptation law

˙̂
W = −ΓW [sgn(hū)eφf + kσŴ ] (4.1.39)

where ΓW > 0 is the learning rate and kσ > 0 is the σ-modification gain. Since the

filter is stable, for any positive definite Qf , there exists Pf satisfying

AT
f Pf + PfAf = −Qf (4.1.40)

Assumption 4.1.6. Assume

R > C

√

λmax(T )

λmin(T )
≥ C (4.1.41)

where λmax(T ) and λmin(T ) are the maximum and minimum eigenvalues of the fol-

lowing matrix:

T ,









P 0 0

0 Pf 0

0 0 Γ−1
W









(4.1.42)

which will be used in a Lyapunov function candidate as L = ζT Tζ with an error

vector ζ =

[

zT zT
f W̃ T

]T

, and

C , max
(
√

Υ
λmin(Q)

hB − Hλmax(P ) − κ2

,

√

Υ

λmin(Qf ) − κ3

,

√

Υ

kσ − κ4

)

(4.1.43)

is a radius of a ball BC containing Γ (See Figure 2), where

κ2 = (κ1 + ε∗f )‖C‖, κ3 = ‖PfBf‖‖φ‖, κ4 = κ1‖C‖ + kσW
∗,

Υ = ε∗f‖C‖ + ‖PfBf‖‖φ‖ + kσW
∗,

λmin(Q) > hB(Hλmax(P ) − κ2), λmin(Qf ) > κ3, kσ > κ4

(4.1.44)

Define the Lyapunov function level sets Ωα and Ωβ

Ωα = {ζ ∈ BR | L ≤ α , min
‖ζ‖=R

L}

Ωβ = {ζ ∈ BR | L ≤ β , max
‖ζ‖=C

L}
(4.1.45)
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Theorem 4.1.2. Let assumptions 4.1.1, 4.1.2, 4.1.3, 4.1.4 and 4.1.6 hold. If the initial

errors belong to the compact set Ωα defined in (4.1.45), then the feedback control law

given by (4.1.7) and the weight update law (4.1.39) ensure that the signals z,zf , W̃ in

the closed-loop system are ultimately bounded with the ultimate bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.6.

4.2 Extension to MIMO Systems

Let the dynamics of an observable and stabilizable nonlinear MIMO system be given

by the following equations:

ẋ = f(x,u), y = g(x) (4.2.1)

where x ∈ Ω ⊂ <n is the state of the system, u,y ∈ <n3 are the system input (con-

trol) and output (measurement) signals, respectively, and f(·, ·), g(·) are unknown

functions. Moreover, n need not be known.

Assumption 4.2.1. The dynamic system in (4.2.1) has vector relative degree [r1, r2, · · · , rn3
]T , r =

r1 + r2 + · · · + rn3
≤ n [62].

Then there exists a mapping ξ = Φ(x), where

Φ(x) =












φ1

φ2

...

φn3












, φi(x) =












gi

L1
fgi

...

Lri−1
f gi












, ξi ∈ <ri (4.2.2)

with Lj
fgi being the Lie derivatives, gi’s the elements of the vector g in (4.2.1), that
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transforms the system (4.2.1) into the so called normal form [62, 63]:

χ̇ = f 0(ξ,χ)

ξ̇1
i = ξ2

i ,

...

ξ̇ri

i = hi(ξ,χ,u)

ξ1
i = yi, i = 1, · · · , n3 , (4.2.3)

where hi(ξ,χ,u) = Lri

f gi, ξ =

[

ξT
1 . . . ξT

n3

]T

∈ <r, ξi =

[

ξ1
i . . . ξri

i

]T

, and

χ ∈ <n−r are the states associated with the internal dynamics.

Assumption 4.2.2. The internal dynamics in (4.2.3), with ξ viewed as input, are

input-to-state stable. [53]

The objective is to synthesize a feedback control law that utilizes the available

measurements y, so that yi(t) track bounded reference trajectories yci
(t) within

bounded errors.

The reference model should be designed to have the same vector relative degree

as the plant dynamics and satisfy closed-loop performance requirements. Define a

rth-order block-diagonal matrix reference model as:

ẋm = Amxm + Bmyc

ym = Cmxm

(4.2.4)

where yc ∈ <n3 is a raw command, ym ∈ <n3 is the output of the reference model

and

xm =












xm,1

xm,2

...

xm,n3












r×1

, xm,i ∈ <ri , i = 1, · · · , n3 (4.2.5)
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Am =












A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 · · · 0 An3












r×r

, Ai =
















0 1 0 · · · 0

0 0 1 · · · ...

...
...

...
. . . 0

0 0 · · · 0 1

−a1
i −a2

i −a3
i · · · −ari

i
















ri×ri

,

Bm =












b1 0 · · · 0

0 b2 · · · 0

...
...

. . .
...

0 · · · 0 bn3












r×n3

, bi =












0

0

...

bi












ri×1

,

Cm =












c1 0 · · · 0

0 c2 · · · 0

...
...

. . .
...

0 · · · 0 cn3












n3×r

, ci =

[

1 0 0 · · · 0

]

1×ri

(4.2.6)

where every Ai is Hurwitz and so is Am. (4.2.4) can be decomposed of

ẋm,i = Aixm,i + biyc,i

ym,i = cixm,i

(4.2.7)

Note that given Hurwitz Am, for all Q > 0 there exist a positive definite matrix P

solving the following Lyapunov equation,

AT
mP + PAm = −Q (4.2.8)

ξ̇ri

i in (4.2.3) can be put in the following form:

ξ̇ri

i = −aiξi + bi(yc,i − uad,i + ∆i) (4.2.9)

where ∆i(ξ,χ,u) = 1
bi

(ξ̇ri

i + aiξi) − yc,i − ui + uec,i and ai =

[

a1
i a2

i · · · ari

i

]T

. It

can be expressed in state space form:

ξ̇i = Aiξi + bi(yc,i − uad,i + ∆i)

ξ1
i = ciξi

(4.2.10)

106



Denote ei , xm,i − ξi, then error dynamics for each block can be represented as:

ėi = Aiei + bi(uad,i − ∆i)

zi = ciei

(4.2.11)

In the same manner as Section 4.1 we reformulate the modeling error such that a new

modeling error is not a function of uad. Define the following signal

u∗
i , h−1

i (x, u1, · · · , ui−1, biyc,i − aiξi, ui+1, · · · , un3
) (4.2.12)

From (4.2.12), the following equation is satisfied.

biyc,i − aiξi = hi(x, u1, · · · , ui−1, u
∗
i , ui+1, · · · , un3

) (4.2.13)

uad,i − ∆i can be expressed as

uad,i − ∆i = − 1

b1

(hi(x,u) − aiξi) + yc,i

=
1

b1

(hi(x, u1, · · · , ui−1, u
∗
i , ui+1, · · · , un3

) − hi(x,u))

(4.2.14)

Applying the mean value theorem with respect to ui,

uad,i − ∆i =
hū,i

bi

(u∗
i − ui)

=
hū,i

bi

(h−1
i (x, u1, · · · , ui−1, u

∗
i , ui+1, · · · , un3

) − uec,i + uad,i)

=
hū,i

bi

(uad,i − ∆̄i(x, yc,i, uec,i))

(4.2.15)

where ∆̄i = uec − (h−1
i (x, u1, · · · , ui−1, u

∗
i , ui+1, · · · , un3

) and

hū,i ,
∂hi

∂u

∣
∣
∣
∣
ui=ūi

, ūi = θui + (1 − θ)u∗
i , and 0 ≤ θ(ui) ≤ 1 (4.2.16)

Using the representation of (4.2.15), the complete error dynamics are given by:

Ė = AmE + B̄mHū(uad − ∆̄)

z = CmE

(4.2.17)

107



where

E =












e1

e2

...

en3












, uad =












uad,1

uad,2

...

uad,n3












, ∆̄ =












∆̄1

∆̄2

...

∆̄n3












, Hū =












hū,1 0 · · · 0

0 hū,2 0
...

0 0
. . . 0

0 · · · 0 hū,n3












,

B̄m =












b̄1 0 · · · 0

0 b̄2 · · · 0

...
...

. . .
...

0 · · · 0 b̄n3












r×n3

, b̄i =












0

0

...

1












ri×1

,

and z represents the signals available for feedback.

Assumption 4.2.3. The signs of hū,i’s are known for i = 1, · · · , n3.

Define the following matrices,

|Hū| ,












|hū,1| 0 · · · 0

0 |hū,2| 0
...

... 0
. . . 0

0 · · · 0 |hū,n3
|












,

|H−1
ū | ,












1
|hū,1| 0 · · · 0

0 1
|hū,2| 0

...

... 0
. . . 0

0 · · · 0 1
|hū,n3

|












,

sgn(Hū) ,












sgn(hū,1) 0 · · · 0

0 sgn(hū,2) 0
...

... 0
. . . 0

0 · · · 0 sgn(hū,n3
)












(4.2.18)
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and the bounds for the use of boundedness analysis,

hB , λmax(|Hū|),

H , max

[

max
x,u∈D

∣
∣
∣

d
dt

1
hū,1

∣
∣
∣ , max

x,u∈D

∣
∣
∣

d
dt

1
hū,2

∣
∣
∣ , · · · , max

x,u∈D

∣
∣
∣

d
dt

1
hū,n3

∣
∣
∣

] (4.2.19)

Introduce the following linear error observer for the tracking error dynamic system

in (4.2.17):

˙̂
E = AmÊ + K (z − ẑ)

ẑ = CmÊ,

(4.2.20)

where K should be chosen to ensure asymptotic stability of Am−KCm. The stability

of the closed-loop system should be considered along with the observer error dynamics.

Let

Ã , Am − KCm, Ẽ , Ê − E. (4.2.21)

Then the observer error dynamics can be written:

˙̃
E = ÃẼ − B̄mHū(uad − ∆̄). (4.2.22)

and there exists a positive definite matrix P̃ solving the Lyapunov equation for arbi-

trary Q̃ > 0:

ÃT P̃ + P̃ Ã = −Q̃ (4.2.23)

We design the adaptive element

uad = Ŵ T σ(V̂ T µ),

where Ŵ ∈ <(n2+1)×n3 , V̂ ∈ <(n1+1)×n2 are estimates of NN weights that will be

updated online. For the NN weight update law we can choose any of the three adaptive

schemes presented in Section 3.4.1-3.4.3. Here we will adopt the e-modification scheme

in Section 3.4.2 and show boundedness of all the error signals of the closed-loop

system.
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For the boundedness proof we need the Taylor series expansion of W T σ(V T µ) at

W = Ŵ and V = V̂ .

W T σ = Ŵ T σ̂ − W̃ T σ̂ − Ŵ T σ̂′Ṽ T µ + O(‖Z̃‖2) (4.2.24)

where the higher order terms O(‖Z̃‖2) = −W T (σ̂ − σ) + Ŵ T σ̂′Ṽ T µ. Then

uad − ∆ = Ŵ T σ̂ − W T σ − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ −O(‖Z̃‖2) − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄

(4.2.25)

where w̄ = −O(‖Z̃‖2) − ε = W T (σ̂ − σ) − Ŵ T σ′Ṽ T µ − ε and it is bounded by:

‖w̄‖ ≤ 2
√

n2 + 1W ∗ +
a∗

4
‖Ṽ ‖(‖W̃‖ + W ∗)µ∗ + ε∗

≤ γ1‖Z̃‖2 + γ2‖Z̃‖ + γ3

(4.2.26)

where γ1 = a∗

4
, γ2 = a∗

4
W ∗µ∗, γ3 = 2

√
n2 + 1W ∗ + ε∗

Assumption 4.2.4. Assumption 3.4.1 holds, where

C , max
(2

q̄
Υ, 2

(
θ2
1

k2
e

+
θ2

ke

) 1

2 )

(4.2.27)

is a radius of a ball BC containing Γ, and

θ1 =

(√
n2 + 1 + δ +

a∗

4
V ∗µ∗

)

‖PB̄m‖,

θ2 =
ke

2
Z∗2

+ ‖PB̄m‖W ∗
(

δ +
a∗

4
V ∗µ∗

)

,

k9 = α1(h
B‖P̃ B̄m‖ + ‖PB̄m‖),

k10 = 2α2(h
B‖P̃ B̄m‖ + ‖PB̄m‖),

k11 = 2‖PB̄m‖γ1, k12 = (2γ3‖PB̄m‖ + keZ
∗2

),

k14 = ‖PB̄m‖γ2, Υ , (k9 + k14)
2 + (k10 + k12)

(4.2.28)

Define the Lyapunov function level sets Ωα and Ωβ

Ωα = {ζ ∈ BR | L ≤ α , min
‖ζ‖=R

L}

Ωβ = {ζ ∈ BR | L ≤ β , max
‖ζ‖=C

L}
(4.2.29)
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Theorem 4.2.1. Let the assumption 4.2.1, 4.2.2, 4.2.3 and 4.2.4 hold. Consider the

following weight adaptation laws:

˙̂
W = −ΓW

[

σ̂Ê
T
PB̄msgn(Hū) + ke‖Ê‖Ŵ

]

˙̂
V = −ΓV

[

µÊ
T
PB̄msgn(Hū)Ŵ

T σ̂′ + ke‖Ê‖V̂
] (4.2.30)

for ΓV , ΓW > 0. If the initial errors belong to the compact set Ωα, the signals

E, Ẽ, W̃ and Ṽ in the closed-loop system are ultimately bounded with the ultimate

bound C
√

λmax(T )
λmin(T )

.

Proof. See Appendix A.7.

4.3 Application to Guided Munitions

The Joint Direct Attack Munition (JDAM) is a guidance tail kit that converts ex-

isting unguided free-fall bombs into accurate munitions. The unit attaches directly

to the iron bomb, and directs it to the target through controlled tail fin movements.

With the addition of the tail section that contains an inertial navigational system

and a global positioning system guidance control unit, JDAM upgrades the existing

inventory of general purpose bombs. A schematic of a JDAM is shown in Figure 34.

The design challenge is to synthesize a single adaptive autopilot to provide adequate

control and performance for a family of guided munitions using only an approximate

aerodynamic data. Ideally, a single controller for these guided munitions would be de-

signed to handle several different configurations without compromising performance,

thereby reducing the time required for developing each new JDAM variant as well as

minimizing reliance on high-fidelity wind tunnel aerodynamic data for autopilot de-

sign. The ability of NN-based adaptive control to correct for parametric uncertainty

and unmodeled dynamics leads to the conclusion that it is a promising method for

achieving the design goals of the JDAM program. Since JDAM is a tail controlled

munition, its transfer function from fin deflection to normal acceleration has a non-

minimum phase zero. The approach in [64] was limited to feedback linearization
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Figure 34: A schematic diagram of JDAM

of the minimum phase inner loop. The non-minimum phase outer loop was closed

using a conventional PI controller. The previous work adapted uncertainty only in

the moment equation of the inner loop, but did not adapt the force equation of the

outer loop. Hence it required accurate knowledge of the force derivative coefficients

in the outer loop. Here we implement the controller scheme proposed in Figure 33

which can reduce the dependence on knowledge of force derivatives in the outer loop.

Since feedback linearization is not implemented, we can apply a simple control system

where the existing controller and the true plant can remain largely unknown; only

information required is knowledge of the relative degree of the true plant. Section

4.3.2 presents a method for limiting the command to compensate for poor tracking

when control authority is diminished due to high angles of attack flight.
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4.3.1 Numerical Results

Consider the following short-period approximation of the vehicle longitudinal dynam-

ics with acceleration at the c.g. as a measured output.





α̇

q̇




 =






Zα/U0 1

Mα Mq











α

q




 +






Zδ/U0

Mδ




 δ

Az = Zαα + Zδδ

(4.3.1)

This yields the following transfer function from the fin deflection to acceleration.

GAz , δ =
Zδs

2 − ZδMqs + ZαMδ − MαZδ

s2 − (Zα

U0

+ Mq)s + ZαMq

U0

− Mα

(4.3.2)

The zeros of this transfer function are determined by the properties of the stability

derivatives. In general all of the stability derivatives in (4.3.2) are negative and the

following holds

|ZαMδ| > |MαZδ| (4.3.3)

Then (4.3.2) has one zero in the LHP and one zero in the RHP and is thus confirmed

to be non-minimum phase. The non-minimum phase zeros can be addressed by a

”virtual” acceleration sensor; the implementation of which allows us to place the non-

minimum zeros far enough from the origin so that they become ignorable in the design

[64]. Consider again the short-period approximation of the vehicle’s longitudinal

dynamics, but now with acceleration measured at a favorable location different from

the c.g.





α̇

q̇




 =






Zα/U0 1

Mα Mq











α

q




 +






Zδ/U0

Mδ




 δ

AzIMU = Az + lxq̇

= (Zα + lxMα)α + lxMqq + (Zδ + lxMδ)δ

(4.3.4)

where lx represents the distance (xIMU − xcg) i.e. lx < 0 when the Inertial Mea-

surement Unit (IMU) is located forward of the c.g. The transfer function from fin
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deflection to acceleration is then given by

GAzIMU
, δ =

(Zδ + lxMδ)s
2 +

(
lx
U0

(MαZδ − MδZα) − ZδMq

)

s + ZαMδ − MαZδ

s2 − (Zα

U0

+ Mq)s + ZαMq

U0

− Mα

(4.3.5)

By adjusting lx, it is possible to ensure that the zeros are sufficiently far from the

origin to allow their effects to be neglected in the design. This condition facilitates the

use of a low frequency approximation to neglect the zeros entirely, thereby ensuring

a stable closed-loop system. Application of the low frequency approximation (s ≈ 0

in the numerator) results in

ĜAzIMU
, δ =

ZαMδ − MαZδ

s2 − (Zα

U0

+ Mq)s + ZαMq

U0

− Mα

(4.3.6)

Now we have a relative degree 2 approximate system dynamics from fin deflection to

acceleration measured at the virtual IMU. In state space form, it can be expressed

as:





˙̂α

˙̂q




 =






Zα/U0 1

Mα Mq











α̂

q̂




 +






0

Mδ




 δ

ŷ = (Zα − Zδ

Mδ

Mα)α̂

(4.3.7)

where α̂ and q̂ represent approximate model states and ŷ denotes approximate model

output. For simplicity let y be AzIMU
from now on and (4.3.7) will be used for

designing a reference model.

A 10%-to-90% rise time criteria is used as the performance specification in this

application. This criteria removes the effect of the time delay and the initial curvature

characteristics of systems whose relative degree is greater than one [64]. The desired

performance is scheduled according to the dynamic pressure as in Figure 35. The

transient-response simulation is performed by commanding ramp inputs in normal

acceleration as in Figure 36 to avoid the actuator rate limits (100 deg/sec). The

existing controller gains of a representative guided munition [64] for a single flight
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Table 1: Flight Conditions for Simulation
Mach Number Altitude (Kft) Dynamic Pressure (psf)

0.8 30 281.6
0.8 20 435.7
0.8 10 652
1.0 30 439.9
1.0 20 680.8
1.0 10 1019
1.2 30 633.5
1.2 20 980.4
1.2 10 1467

condition (Mach 1.2 and 10 Kft) were used. Flight conditions where linear simulations

of a representative guided munition are performed are listed in Table 1. Thus this

study will illustrate that with adaptation it is possible to eliminate the need for gain

scheduling. Since r = 2 within the bandwidth of the control design in this application,

a simple 2nd-order linear system is used as a reference model.

ym = G(s)yc

where G(s) =
w2

s2 + 2ζws + w2

(4.3.8)

G(s) has two poles at −ζw ± w
√

1 − ζ2 and we used w = 9.9, ζ = 0.8 when the

dynamic pressure is over 500 psf, and w = 3.3, ζ = 0.8 when the dynamic pressure is

less than 500 psf. Then the 2nd derivative of ym can be represented as:

ÿm = −2ζwẏm − w2ym + w2yc (4.3.9)

Let the 2nd derivative of y be

ÿ = −2ζwẏ − w2y + w2(yc − uad + ∆) (4.3.10)

where ∆(yc, y, ẏ, u, uec) = 1
w2 (ÿ + 2ζwẏ + w2y) − yc − u + uec

With the definition of e , ym − y, we derive the following error dynamics.

ë = −2ζwė − w2e + w2(uad − ∆)

e = G(s)(uad − ∆)

(4.3.11)
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Reformulating the modeling error as detailed in Section 4.1,

e = G(s)hū(uad − ∆̄) (4.3.12)

For the SPR filter approach suggested in Section 4.1.2, the 1st-order low-pass filter

T (s) is chosen as:

T (s) =
1

s + 1
(4.3.13)

It is not difficult to verify that Ḡ(s) , G(s)T−1(s) is SPR.

Re[Ḡ(jz)] = Re

[
w2(1 + jz)(w2 − z2 − 2jζwz)

(w2 − z2 + 2jζwz)(w2 − z2 − 2jζwz)

]

= w2 w2 + (2ζw − 1)z2

(w2 − z2)2 + 4(ζwz)2
> 0 for all z ≥ 0

(4.3.14)

Then the error dynamic system in (4.3.12) can be given in the form of (4.1.30).

e = Ḡ(s)hū(W̃
T φ + δf − εf ) (4.3.15)

A Gaussian Radial Basis Function NN with seven neurons and a bias term is used

as the adaptive element. The input vector to the NN is composed of the current and

delayed values for y and v including a bias term. The learning rate F = 2 and the σ-

modification coefficient kσ = 0.005 are used for the update law. Figure 37 shows one

of the simulation results at Mach 1 and 20 Kft. The dash-dotted line is the reference

model response to the ramp command in Figure 36, the response with NN (solid

line) shows almost the same rise time performance as the reference model while the

vehicle shows slow response without the NN. The rise time performance at several

flight conditions is summarized in Figure 38. “ECA NN” in the legend stands for

existing controller augmentation with NN. “w/o NN” in Figure 38 indicates results

of using the existing controller gains given at one flight condition (Mach 1.2 and 10

Kft), where it overlaps with the existing autopilot gain for that flight condition. The

NN controller exhibits superior rise time performance in comparison to the response

without NN. Figure 39 shows similar transient response using the error observer

approach suggested in Section 4.1.1.
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Figure 37: Transient response at Mach 1 and 20 Kft with SPR filter approach
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Figure 39: Transient response at Mach 1 and 20 Kft with error observer approach

4.3.2 Command Limiting Using Angle of Attack

Several research projects have demonstrated the necessity of PCH in the case of

actuator saturations [41, 40, 57]. As explained in Section 3.5, PCH estimates the

control discrepancy between the commanded control and the achievable control due

to the actuator limits, and modifies the reference model output so that it is performed

within the capacity of the actuator. Inspired by the idea of PCH, we propose to limit a

command when a state causes unfavorable output response. In the JDAM application

the pitching moment control sensitivity abruptly vanishes and lacks in control power

to control at high angle of attack (AoA). As the munition begins to depart, it cannot

recover due to this lack of control power. Hence it would be desirable to keep the

AoA below a certain level. The earlier work in [64] limited the guidance command to

avoid high AoA. This method requires knowledge of the force derivative to design the

command limit. In the approach adopted here, the AoA limiting signal is defined as
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the AoA excess beyond a prescribed maximum value, and is zero when it is below the

prescribed maximum. This signal is used to estimate the amount of output command

to be subtracted from the guidance command. The limiting action both reduces the

magnitude of the output response by decreasing the reference model output, and

ensures bounded response even in the presence of large guidance command inputs.

It reduces the dependence of the design on knowledge of the force derivative, Zα,

knowledge of which was required in the existing design. An alternative approach for

dealing with this problem can be found in [65, 66, 67].

A nonlinear model data table in the longitudinal channel at Mach 0.8 is considered.

It is parameterized by AoA (0 to 26 deg) and longitudinal control deflection angle

(-15 to 15 deg). Figure 40 shows results similar to those achieved with a linear model

both with and without NN. To simulate the high AoA phenomenon, we choose a

model for pitching moment at -20 deg of control surface deflection so that the control

power (Mδ) vanishes at high control surface deflection. The control actuator limits

are ±25 deg. A consequence of this choice of model is that the munition does not

have sufficient control power to trim at a high AoA flight condition. The objective is

to limit the command, yc, by an amount corresponding to the AoA excess to avoid

the oscillatory phenomena due to lack of control power. The limiting signal (αl) is

defined as

αl ,







0 if α ≤ αmax,

α − αmax if α > αmax

(4.3.16)

where αmax = 22 deg. The command limiting signal yl is calculated using the plant

model (4.3.7) with parametric uncertainty in the aerodynamic coefficients.

yl = (Ẑα − Ẑδ

M̂δ

M̂α)αl (4.3.17)

and is subtracted from yc as depicted in Figure 41.

We will derive error dynamics incorporated with the command limiting signal.

Consider a SISO minimum-phase nonlinear system as in (4.1.1) with relative degree
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Figure 40: Nonlinear model at Mach 0.8 and 20 Kft

r and an existing controller:

ẋc = Acxc + bc(ycl − y)

uec = Ccxc + Dc(ycl − y)

(4.3.18)

where ycl = yc − yl and Ac is Hurwitz. The system (4.1.1) can be transformed into a

normal form as (4.1.2). Let the rth-order reference model be expressed as:

ẏm = Amym + bmb1ycl

ym = Cmym

(4.3.19)
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ym ,

[

ym ẏm · · · y
(r−1)
m

]T

Am =
















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 0 1

−a1 −a2 −a3 · · · −ar
















, bm =
















0

0

0

...

1
















,

Cm =

[

1 0 0 · · · 0

]

where Am is Hurwitz. Then the rth derivative of ym is

y(r)
m = Crym + Drycl (4.3.20)

where Cr , CmAr
m =

[

−a1 −a2 −a3 · · · −ar

]

and Dr = b1.

y(r) in (4.1.2) can be put in the following form.

y(r) = −ary
(r−1) · · · − a1y + b1(ycl − uad + ∆)

= Cry + b1(ycl − uad + ∆)

(4.3.21)

where y ,

[

y ẏ · · · y(r−1)

]T

and ∆(ycl,y, u, uec) , 1
b1

(y(r) − Cry) − ycl + uad

Its state-space form is given by

ẏ = Amy + bmb1(ycl − uad + ∆)

y = Cmy

(4.3.22)

Let the error be defined as e , ym − y, then we have the identical error dynamics as

in (4.1.11).

Ė = AmE + bmb1(uad − ∆)

z = CmE

(4.3.23)

where E =

[

e ė · · · e(r−1)

]T

. Boundedness of all the error signals can be shown

using the error observer approach in Section 4.1.1 or the SPR filter approach in

Section 4.1.2, and its proof is omitted here.
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A negative ramp command is used to produce a positive AoA, and its amplitude

is increased to 35 ft/sec2 so that a high AoA results in an oscillatory response.

Figures 42 and 43 show the simulation results at Mach 0.8 and 20,000 ft (Q=435.7)

without NN or command limiting. Its response is slow and starts to depart at around

5 seconds. The response with NN augmentation, but without command limiting

is shown in Figures 44 and 45. With NN adaptation, the munition responds more

quickly to the command, but encounters the effect of high AoA at around 2.5 seconds.

Note the oscillatory response that ensues after 2.5 seconds. Figure 45 shows that the

control is saturated after 2.5 seconds. The danger here is that a disturbance can cause

a total loss of the munition at this flight condition. Figures 46 and 47 incorporate the

NN with command limiting. As the AoA hits its limit, the command is modified to

an amplitude of 32 ft/sec2, and it keeps the AoA at the limit value avoiding control

saturation to streamline command tracking within the allowed AoA range. Figures 48

and 49 show the results when parametric uncertainties are included in calculating yl.

Figures 48 and 49 show the acceptable tracking performance with 80% and 150% of

the true value of Zα − Zδ

Mδ
Mα in (4.3.17), respectively. However, beyond the range of

parametric uncertainty (80% - 150%), the munition falls into the region of oscillation.

Thus, a reasonable estimate of the parameter is needed for the method.
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Figure 42: Nonlinear model without command limiting or NN at Mach 0.8 and 20
Kft
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Figure 44: Nonlinear model without command limiting and with NN at Mach 0.8
and 20 Kft
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Figure 45: AoA and control effort without command limiting and with NN at Mach
0.8 and 20 Kft
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Figure 46: Nonlinear model with command limiting and NN at Mach 0.8 and 20 Kft
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Figure 47: AoA and control effort with command limiting and NN at Mach 0.8 and
20 Kft
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Figure 48: Command limiting and NN at Mach 0.8 and 20 Kft with parametric
uncertainty in yl (80%)
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Figure 49: Command limiting and NN at Mach 0.8 and 20 Kft with parametric
uncertainty in yl (150%)
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CHAPTER V

NN ADAPTIVE CONTROL WITH

ASYMPTOTIC TRACKING

Early results on applications of NNs made use of linearly-parameterized networks to

cancel the effect of modeling error on tracking performance. Barbalat’s lemma can

show that when the NN reconstruction error is zero, the tracking error asymptotically

goes to zero. With nonlinearly-parameterized NNs the derivation of adaptive laws

entails Taylor series expansion, which necessitates bounding of higher order terms in

the derivative of the Lyapunov function [28]. Because of these higher order terms,

the limiting result on asymptotic convergence of the tracking error to zero has yet to

be obtained.

Here, using the Barbalat’s lemma [68], we show that with nonlinearly-parameterized

NNs, one can achieve asymptotic convergence of the tracking error to zero. For that

we employ a projection operator in the adaptive laws [17] and the notion of adaptive

bounding [69, 70].

5.1 System Description and Error Dynamics

For simplicity of presentation, we consider a SISO nonlinear system of the following

form:

ẋi = xi+1, i = 1, 2, · · · , n − 1

ẋn = f(x, u)

(5.1.1)

where x ∈ Dx ⊂ <n are measured, and u ∈ < is the control input. The function

f(x, u) may be unknown.
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Assumption 5.1.1. ∂f(x, u)/∂u is continuous and non-zero for every (x, u) ∈ Dx ×

<, and its sign is known.

The control objective is to synthesize a state-feedback control law such that x(t)

tracks a smooth reference trajectory xm(t) asymptotically. Let f̂(x, u) denote an

approximate model for f(x, u) so that

f(x, u) = f̂(x, u) + ∆ (5.1.2)

where the modelling error is ∆(x, u) = f(x, u) − f̂(x, u). The model f̂(x, u) should

be chosen to be invertible with respect to its second argument.

Assumption 5.1.2. ∂f̂(x, u)/∂u is continuous and non-zero for every (x, u) ∈ Dx ×

<.

Let the approximate function be recast as

v = f̂(x, u) (5.1.3)

where v is called pseudo-control. Then the control law can be defined directly from

(5.1.3)

u = f̂−1(x, v) (5.1.4)

The pseudo-control is composed of four signals:

v , x(n)
m + vc − vad + vr (5.1.5)

where x
(n)
m is the nth time derivative of xm(t), vc is the output of a linear controller,

and vad and vr are adaptive terms used to cancel ∆(x, u).

The reference model can be expressed in state space form as:

ẋm = Amxm + bmxc (5.1.6)
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xm ,

[

xm ẋm · · · x
(n−1)
m

]T

Am =
















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 0 1

−a1 −a2 −a3 · · · −an
















, bm =
















0

0

0

...

a1
















,

where xm ∈ <n are the states of the reference model, xc ∈ < is a bounded external

command signal, and Am is Hurwitz.

Let e , xm − x1. Then

e(n) = −vc + vad − vr − ∆ (5.1.7)

For simplicity, the linear controller is defined as:

vc = k1e + k2ė + · · · + kne
(n−1) (5.1.8)

where the gains ki are chosen such that the dynamics in (5.1.8) are asymptotically

stable when vad − vr − ∆ = 0. In state space form:

Ė = AE + b(vad − vr − ∆(x, u)) (5.1.9)

where E =

[

e ė · · · e(n−1)

]T

, and

A =
















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 0 1

−k1 −k2 −k3 · · · −kn
















, b =
















0

0

0

...

1
















.

Define the following signals

vl , x(n)
m + vc

v∗ , f̂(x, f−1(x, vl))

(5.1.10)
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vad − vr − ∆ can be expressed as:

vad − vr − ∆(x, u) = vad − vr − f(x, u) + f̂(x, u)

= −f(x, f̂−1(x, v)) + vl

= −f(x, f̂−1(x, v)) + f(x, f̂−1(x, v∗))

(5.1.11)

Applying the mean value theorem,

vad − vr − ∆ = fv̄(v
∗ − v)

= fv̄[vad − vr − vl + f̂(x, f−1(x, vl))]

= fv̄[vad − vr − ∆̄(x, vl)]

(5.1.12)

where ∆̄ = vl − f̂(x, f−1(x, vl)), and

fv̄ ,
∂f

∂u

∂u

∂v

∣
∣
∣
∣
v=v̄

, v̄ = θv + (1 − θ)v∗, and 0 ≤ θ(v) ≤ 1 (5.1.13)

with the following bounds:

fB , max
x,u∈D

|fv̄|, F , max
x,u∈D

∣
∣
∣
∣

d

dt

(
1

fv̄

)∣
∣
∣
∣

(5.1.14)

We have the following error dynamics.

Ė = AE + bfv̄(vad − vr − ∆̄(x, vl)) (5.1.15)

Since A is Hurwitz, then for any Q > 0, there exists a unique P > 0 that solves the

Lyapunov equation:

AT P + PA = −Q (5.1.16)

5.2 Adaptive Control Augmentation

The adaptive term is defined as:

vad = Ŵ T σ(V̂ T µ) (5.2.1)
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where µ is the input to the NN. The NN weights are updated using the following

parameter projection algorithm as in Section 3.4.3.

˙̂
W = ΓW Proj(Ŵ ,−sgn(hv̄)σ̂Ê

T
Pb)

˙̂
V = ΓV Proj(V̂ ,−sgn(hv̄)µÊ

T
PbŴ T σ̂′)

(5.2.2)

where ΓV , ΓW are positive definite matrices. Using Taylor series expansion of W T σ

at W = Ŵ , V = V̂ , one gets:

W T σ = W T σ̂ − Ŵ T σ̂′Ṽ T µ + O(‖Z̃‖2) (5.2.3)

where O(‖Z̃‖2) represents the higher order terms. Then

vad − ∆̄ = Ŵ T σ̂ − W T σ − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ −O(‖Z̃‖2) − ε

= W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄

(5.2.4)

where w̄ = −O(‖Z̃‖2) − ε = W T (σ̂ − σ) − Ŵ T σ′Ṽ T µ − ε. From (3.4.6) and (3.4.7),

we can derive the following bound:

‖w̄‖ ≤ 2
√

n2 + 1W ∗ + ‖Ŵ σ̂′(V̂ T µ − V T µ)‖ + ε∗

≤ 2
√

n2 + 1W ∗ + ε∗ + ‖Ŵ‖δ
√

n2 + 1 +
a∗

4
V ∗‖Ŵ‖‖µ‖

(5.2.5)

where a∗ is the maximum of activation potentials, and δ is defined in (2.3.11). This

implies that

‖w̄‖ ≤ sT φ (5.2.6)

where s =

[

1 ‖Ŵ‖ ‖µ‖‖Ŵ‖
]T

is a known vector signal and φ =

[

φ0 φ1 φ2

]T

is an unknown constant vector. The following robustifying signal can be used to

compensate for w̄:

vr , sgn(ET Pb)sT φ̂ (5.2.7)

where φ̂ is updated according to the following differential equation [71, 70]

˙̂
φ = Γs‖ET Pb‖ (5.2.8)
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where Γ > 0.

With definition of the Lyapunov function level sets,

Ωα = {ζ ∈ BR | L ≤ α , min
‖ζ‖=R

L}

Ωβ = {ζ ∈ BR | L ≤ β , max
‖ζ‖=C

L}
(5.2.9)

we can now state the following theorem.

Theorem 5.2.1. Let Assumptions 5.1.1 and 5.1.2 hold. Then there exists a positive

invariant set Dζ in the space of the error variables ζ =

[

ET W̃ T (vecṼ )T φ̃
T

]T

wherein the control law given by (5.1.4), (5.1.5) and the adaptive laws (5.2.2) and

(5.2.8) ensure, for all ζ(0) ∈ Ωα, that W̃ , Ṽ , φ̃ are ultimately bounded, and that E

asymptotically approaches zero.

Proof. See Appendix A.8.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

6.1 Conclusion

This thesis introduced several methods of NN-based adaptive output feedback control

of uncertain nonlinear systems. It discussed two approaches for augmenting NNs with

linear controllers: input/output feedback linearization and augmentation of an exist-

ing controller. The former included a novel approach to approximate input/output

feedback linearization that employs a pole shifting. The latter introduced a control

methodology of the NN augmentation of existing controllers using a simple reference

model and extended it to MIMO systems.

Lack of full state information was dealt with by either the error observer approach

or the SPR filter approach, with special attention given to improvements and exten-

sions of the adaptation laws that apply to these approaches. The weight adaptation

laws were categorized according to a method used to limit growth in the network

weights. The methods consisted of σ-modification, e-modification and projection.

Any combination of approaches and modifications can be employed with guaranteed

ultimate boundedness of all the error signals in the presence of parametric uncertainty

and unmodeled dynamics.

One of common assumptions in adaptive control is knowledge of the sign of control

effectiveness. This work showed that the knowledge of the sign of control effectiveness

is not relevant to the issue of existence of a fixed point solution, which eliminated

the fixed point assumption in adaptive control of non-affine systems. It did, however,
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show that knowledge of the sign of control effectiveness is indispensable both in the

adaptive laws and the proof of boundedness with the use of mean value theorem.

Adaptive control systems are vulnerable to actuator limits. The applicability of

PCH, to address nonlinear characteristics of actuator, was extended to an output

feedback setting. The nonlinear characteristics of actuator included position limits,

rate limits, actuator dynamics, and time delays.

NN-augmented input/output feedback linearization with the error observer ap-

proach was used for pitch-attitude tracking control of a linearized representation of

R-50 helicopter dynamics along with each case of σ-modification, e-modification, and

parameter projection. NN-augmented input/output feedback linearization with the

error observer approach and σ-modification was used for pitch-rate tracking control of

a flexible aircraft dynamics. NN-augmented input/output feedback linearization with

the SPR filter approach was extended to include nonlinearly-parameterized NN and

e-modification, and was applied to a modified Van der Pol oscillator. For the guided

munition application, NN augmentation of an existing controller with σ-modification

was used along with both the error observer approach and the SPR filter approach.

A method of command limiting to keep the munition AoA below a certain level was

introduced so that the oscillatory phenomena caused by lack of control power at high

AoA was avoided. Numerical results from various applications showed that these

methods are very promising.

6.2 Recommendations for Future Research

The following presents recommendations for future research.

6.2.1 Relaxation of Assumption 3.5.2

The proof of boundedness in NN adaptive control with PCH is shown using a linear

approximation condition placed on ĥr(y, ȳ, v). Consequently it puts a restriction on
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selecting an approximate model ĥ(y, ȳ, u). Relaxation of Assumption 3.5.2 will enable

us to choose an approximate model from a wide class of functions but the proof of

boundedness will be more involved.

6.2.2 Relaxation of Assumption 3.8.1

Nonlinearly-parameterized NN with SPR approach has been developed under As-

sumption 3.8.1 which requires that the control effectiveness be known. The assump-

tion restricts the availability of this approach. It is desirable that one should remove

the assumption so that an unknown function hv̄ with known sign can be used in the

boundedness proof.

6.2.3 Extension of Chapter 4 to Non-minimum Phase Systems

All the control methodologies treated in this thesis impose the assumption on input-

to-state stability of the internal dynamics, and thus are limited to minimum phase

systems. The control architecture in Chapter 4 has similar features as the one in

[45, 46, 47], thus an extension to non-minimum phase systems can directly follow

augmentation of an existing controller for non-minimum phase systems given in [47].

6.2.4 Extension of Chapter 5 to Output Feedback

Chapter 5 has been treated in a state feedback setting for ease of presentation. Thus,

the arguments are limited to the system which relies on full-state information. An

extension of these results to output feedback is recommended. For output feedback

control, one could use either the error observer approach or the SPR filter approach

presented in this thesis to update the NN weights.
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APPENDIX A

PROOFS OF BOUNDEDNESS ANALYSIS

A.1 Error Observer Approach with e-modification

(Theorem 2.4.2)

Proof. Boundedness of all the error signals is shown in two steps. First, boundedness

of weight error signals is shown employing a Lyapunov analysis, and then this result

is used to show boundedness of the tracking and observer error signals.

Choose the following Lyapunov function candidate for the weight error signals

Lw =
1

2
W̃ T Γ−1

W W̃ +
1

2
tr(Ṽ T Γ−1

V Ṽ ) (A.1.1)

The time derivative of Lw is

L̇w = − W̃ T
[

sgn(hv̄)σ̂Ê
T
P b̄ + ke‖Ê‖Ŵ

]

− tr{Ṽ T
[

sgn(hv̄)µÊ
T
P b̄Ŵ T σ̂′ + ke‖Ê‖V̂

]

}

= − sgn(hv̄)W̃
T σ̂Ê

T
P b̄ − sgn(hv̄)Ê

T
P b̄Ŵ T σ̂′(V̂ T µ − V T µ)

− ke‖Ê‖{W̃ T Ŵ + tr(Ṽ T V̂ )}

(A.1.2)

Using (2.3.11) and −2tr(Z̃T Ẑ) ≤ −‖Z̃‖2 + Z∗2

,

L̇w ≤
√

n2 + 1‖W̃‖‖Ê‖‖P b̄‖ + ‖Ê‖‖P b̄‖‖Ŵ‖
(

δ +
a∗

4
V ∗µ∗

)

− ke

2
‖Ê‖(‖Z̃‖2 − Z∗2

)

≤ θ1‖Ê‖‖W̃‖ − ke

2
‖Ê‖‖Z̃‖2 + θ2‖E‖

≤ θ1‖Ê‖‖Z̃‖ − ke

2
‖Ê‖‖Z̃‖2 + θ2‖E‖

(A.1.3)

where θ1 =
(√

n2 + 1 + δ + a∗

4
V ∗µ∗) ‖P b̄‖ and θ2 = ke

2
Z∗2

+ ‖P b̄‖W ∗ (
δ + a∗

4
V ∗µ∗).
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Using θ1‖Z̃‖ ≤ ke

4
‖Z̃‖2 +

θ2

1

ke
,

≤ −‖Ê‖
{

ke

4
‖Z̃‖2 − θ2

1

ke

− θ2

}

< 0 if ‖Z̃‖ > 2

√

θ2
1

k2
e

+
θ2

ke

(A.1.4)

Hence Z̃ is bounded and its bound is denoted as: ‖Z̃‖ ≤ Z̃∗.

Choose the following Lyapunov function candidate for the entire error system

L =

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE + Ẽ

T
P̃ Ẽ + 2Lw (A.1.5)

Differentiating with respect to time,

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(
−ET QE + 2ET P b̄hv̄(vad − ∆̄)

)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V )

(A.1.6)

Applying the adaptive law (2.4.34) and the representation (2.3.17),

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(

−ET QE + 2Ê
T
P b̄hv̄w̄

)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄) − 2sgn(hv̄)Ẽ

T
P b̄(vad − ∆̄)

− 2ke‖Ê‖(W̃ T Ŵ + tr(Ṽ T V̂ ))

≤ Hλmax(P )‖E‖2 − 1

hB
λmin(Q)‖E‖2 + 2‖Ê‖‖P b̄‖(γ1‖Z̃‖ + γ2)

− λmin(Q̃)‖Ẽ‖2 + 2‖Ẽ‖(hB‖P̃ b̄‖ + ‖P b̄‖)(α1‖Z̃‖ + α2)

− 2ke‖Ê‖tr(Z̃T Ẑ)

(A.1.7)

Using q̄ , min[λmin(Q)
hB −Hλmax(P ), λmin(Q̃)], −2tr(Z̃T Ẑ) ≤ −‖Z̃‖2 +Z∗2 ≤ Z∗2

, and

‖Z̃‖ ≤ Z̃∗.

L̇ ≤− q̄

2
(‖E‖ + ‖Ẽ‖)2 + 2κ2(‖E‖ + ‖Ẽ‖)Z̃∗

+ κ3(‖E‖ + ‖Ẽ‖)
(A.1.8)
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where κ2 = γ1‖P b̄‖+ α1(‖P̃ b̄‖hB + ‖P b̄‖), κ3 = 2γ2‖P b̄‖+ 2α2(‖P̃ b̄‖hB + ‖P b̄‖) +

keZ
∗2

. Combining terms to obtain

L̇ ≤− (‖E‖ + ‖Ẽ‖)
[ q̄

2
(‖E‖ + ‖Ẽ‖) − 2κ2Z̃

∗ − κ3

]

(A.1.9)

The following condition renders L̇ < 0.

‖E‖ + ‖Ẽ‖ >
2

q̄
Υ (A.1.10)

where Υ = 2κ2Z̃
∗ + κ3. Therefore ζ remains in Ωβ after a finite time period. The

ultimate bound
√

λmax(T )
λmin(T )

C can be computed as (A.2.16).
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A.2 Error Observer Approach with σ-modification

(Theorem 3.4.1)

Proof. Consider the following Lyapunov function candidate:

L =

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE + Ẽ

T
P̃ Ẽ + (W̃ T Γ−1

W W̃ ) + tr(Ṽ T Γ−1
V Ṽ ), (A.2.1)

The derivative of L will be

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(
−ET QE + 2ET P b̄hv̄(vad − ∆̄)

)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V )

(A.2.2)

With the definition of Ẽ = Ê − E and (3.4.5), this can be written:

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET QE − Ẽ

T
Q̃Ẽ

+ 2sgn(hv̄)Ê
T
P b̄

[

W̃ T
(

σ̂ − σ̂′V̂ T µ
)

+ Ŵ T σ̂′Ṽ T µ + w̄
]

− 2Ẽ
T
(hv̄P̃ b̄ + sgn(hv̄)P b̄)(vad − ∆̄) + 2(W̃ T Γ−1

W
˙̃W ) + 2tr(Ṽ T Γ−1

V
˙̃V ).

(A.2.3)

Substituting the adaptive laws implies:

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET QE − Ẽ

T
Q̃Ẽ

+ 2sgn(hv̄)Ê
T
P b̄w̄ − 2Ẽ

T
(hv̄P̃ b̄ + sgn(hv̄)P b̄)(vad − ∆̄)

− 2kσ

[

W̃ (Ŵ − W0)
]

− 2kσtr
[

Ṽ (V̂ − V0)
]

(A.2.4)

Using upper bounds from (3.4.9) and (3.4.8), the derivative of the Lyapunov function

candidate can be upper bounded as:

L̇ ≤ Hλmax(P )‖E‖2 − 1

hB
λmin(Q)‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2‖P b̄‖‖Ê‖(γ1‖Z̃‖F + γ2) + 2Θ‖Ẽ‖(α1‖Z̃‖F + α2)

− kσ

[

‖W̃‖2
F + ‖Ŵ − W0‖2

F − ‖W − W0‖2
F

]

− kσ

[

‖Ṽ ‖2
F + ‖V̂ − V0‖2

F − ‖V − V0‖2
F

]

,

(A.2.5)
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where Θ = ‖P b̄‖ + hB‖P̃ b̄‖ and the following property for matrices has been used:

2tr
[

W̃ T (Ŵ − W0)
]

= ‖W̃‖2
F + ‖Ŵ − W0‖2

F − ‖W − W0‖2
F . (A.2.6)

Further

L̇ ≤ −
{

1

hB
λmin(Q) − Hλmax(P )

}

‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2‖P b̄‖(‖E‖ + ||Ẽ||)(γ1‖Z̃‖F + γ2) + 2Θ‖Ẽ‖(α1‖Z̃‖F + α2)

− kσ‖Z̃‖2
F + kσZ̄ .

(A.2.7)

Grouping terms, (A.2.7) can be written:

L̇ ≤ −
{

1

hB
λmin(Q) − Hλmax(P )

}

‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2‖P b̄‖‖E‖
[

γ1‖Z̃‖F + γ2

]

+ 2‖Ẽ‖
[

Θ
(

α1‖Z̃‖F + α2

)

+ ‖P b̄‖
(

γ1‖Z̃‖F + γ2

)]

− kσ‖Z̃‖2
F + kσZ̄,

(A.2.8)

and further put in the form:

L̇ ≤ −
{

1

hB
λmin(Q) − Hλmax(P )

}

‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2‖P b̄‖‖E‖
[

γ1‖Z̃‖F + γ2

]

+ 2‖Ẽ‖
[

κ1‖Z̃‖F + κ2

]

− kσ‖Z̃‖2
F + kσZ̄ .

(A.2.9)

where κ1 = Θα1 + ‖P b̄‖γ1, κ2 = Θα2 + ‖P b̄‖γ2.

Utilizing the following inequalities,

2γ1‖P b̄‖‖E‖‖Z̃‖F ≤ γ1‖P b̄‖(‖E‖2 + ‖Z̃‖2)

2γ2‖P b̄‖‖E‖ ≤ γ2‖P b̄‖(‖E‖2 + 1)

2κ1‖Ẽ‖‖Z̃‖F ≤ κ1(‖Ẽ‖2 + ‖Z̃‖2)

2κ2‖Ẽ‖ ≤ κ2(‖Ẽ‖2 + 1)

(A.2.10)
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Upon completion of squares, we get the following upper bound:

L̇ ≤ −
(

{ 1

hB
λmin(Q) − Hλmax(P )} − (γ1 + γ2)‖P b̄‖

)

‖E‖2

−
(

λmin(Q̃) − (κ1 + κ2)
)

‖Ẽ‖2

−
(
kσ − κ1 − γ1‖P b̄‖

)
‖Z̃‖2

F

+ γ2‖P b̄‖ + κ2 + kσZ̄.

(A.2.11)

One of the following conditions

‖E‖ >
Υ

√

{ 1
hB λmin(Q) − Hλmax(P )} − (γ1 + γ2)‖P b̄‖

‖Ẽ‖ >
Υ

√

λmin(Q̃) − (κ1 + κ2)

‖Z̃‖F >
Υ

√

kσ − κ1 − γ1‖P b̄‖

(A.2.12)

will render L̇ < 0 outside a compact set, where Υ2 = γ2‖P b̄‖ + κ2 + kσZ̄

To ensure that the conditions (A.2.12) define a compact set in the space of er-

ror variables, write (A.2.11) in the following way that the condition L̇ < 0 is true

everywhere in the space of error variables E, Ẽ, Z̃, outside the ellipsoid:
(

{ 1

hB
λmin(Q) − Hλmax(P )} − (γ1 + γ2)‖P b̄‖

)

‖E‖2

+
(

λmin(Q̃) − (κ1 + κ2)
)

‖Ẽ‖2 +
(
kσ − κ1 − γ1‖P b̄‖

)
‖Z̃‖2

F = Υ2 .

(A.2.13)

Define a compact set in the space of the error variables:

BC = {ζ ∈ BR | ‖ζ‖ ≤ C} , (A.2.14)

outside which L̇ < 0. Note from (3.4.10) that BC ⊂ BR. Consider the Lyapunov

function candidate in (A.2.1) and write it as:

L(ζ) = ζT Tζ .

and it satisfies the following inequality.

λmin(T )‖ζ‖2 ≤ L(ζ) ≤ λmax(T )‖ζ‖2 (A.2.15)
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The condition in (3.4.10) ensures that BC ⊂ Ωβ ⊂ Ωα and thus ultimate bounded-

ness of ζ. The argument shows that Ωβ is an invariant set and all trajectories starting

in Ωα enter Ωβ within a finite time. To calculate the ultimate bound on ζ, we use

the left inequality of (A.2.15) to show

λmin(T )‖ζ‖2 ≤ L(ζ) ≤ β ⇒ ‖ζ‖ ≤
√

β

λmin(T )
=

√

λmax(T )

λmin(T )
C (A.2.16)

Once the trajectory enters Ωβ, it never escapes from Ωβ and the ultimate bound can

be taken as
√

λmax(T )
λmin(T )

C. Let ‖E‖ ≤ E∗ and ‖Z̃‖ ≤ Z̃∗. Boundedness of yrm ensured

by Lemma 3.5.1 completes the proof.
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A.3 Error Observer Approach with e-modification

(Theorem 3.4.2)

Proof. As presented in Section A.1, boundedness of weight error signals is shown first,

and this result is used to show boundedness of the tracking and observer error signals.

Consider the following Lyapunov function candidate for the weight error signals

Lw =
1

2
W̃ T Γ−1

W W̃ +
1

2
tr(Ṽ T Γ−1

V Ṽ ) (A.3.1)

The time derivative of Lw is

L̇w = − W̃ T
[

sgn(hv̄)σ̂Ê
T
P b̄ + ke‖Ê‖Ŵ

]

− tr{Ṽ T
[

sgn(hv̄)µÊ
T
P b̄Ŵ T σ̂′ + ke‖Ê‖V̂

]

}

= − sgn(hv̄)W̃
T σ̂Ê

T
P b̄ − sgn(hv̄)Ê

T
P b̄Ŵ T σ̂′(V̂ T µ − V T µ)

− ke‖Ê‖{W̃ T Ŵ + tr(Ṽ T V̂ )}

(A.3.2)

Using (2.3.11) and −2tr(Z̃T Ẑ) ≤ −‖Z̃‖2 + Z∗2

,

L̇w ≤
√

n2 + 1‖W̃‖‖Ê‖‖P b̄‖ + ‖Ê‖‖P b̄‖‖Ŵ‖
(

δ +
a∗

4
V ∗µ∗

)

− ke

2
‖Ê‖(‖Z̃‖2 − Z∗2

)

≤ θ1‖Ê‖‖W̃‖ − ke

2
‖Ê‖‖Z̃‖2 + θ2‖E‖

≤ θ1‖Ê‖‖Z̃‖ − ke

2
‖Ê‖‖Z̃‖2 + θ2‖E‖

(A.3.3)

where θ1 =
(√

n2 + 1 + δ + a∗

4
V ∗µ∗) ‖P b̄‖ and θ2 = ke

2
Z∗2

+ ‖P b̄‖W ∗ (
δ + a∗

4
V ∗µ∗).

Using θ1‖Z̃‖ ≤ ke

4
‖Z̃‖2 +

θ2

1

ke
,

≤ −‖Ê‖
{

ke

4
‖Z̃‖2 − θ2

1

ke

− θ2

}

< 0 if ‖Z̃‖ > 2

√

θ2
1

k2
e

+
θ2

ke

(A.3.4)

Hence Z̃ is bounded and its bound is denoted as: ‖Z̃‖ ≤ Z̃∗.

Consider the following Lyapunov function candidate for the entire error system

L =

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE + Ẽ

T
P̃ Ẽ + 2Lw (A.3.5)
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The time derivative of L will be

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(
−ET QE + 2ET P b̄hv̄(vad − ∆̄)

)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V )

(A.3.6)

Using (3.4.23), this can be written:

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET QE − Ẽ

T
Q̃Ẽ

+ 2sgn(hv̄)Ê
T
P b̄

[

W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄
]

− 2Ẽ
T
(hv̄P̃ b̄ + sgn(hv̄)P b̄)(vad − ∆̄) + 2(W̃ T Γ−1

W
˙̃W ) + 2tr(Ṽ T Γ−1

V
˙̃V ).

(A.3.7)

Substituting the adaptive laws implies:

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET QE − Ẽ

T
Q̃Ẽ

+ 2sgn(hv̄)Ê
T
P b̄w̄ − 2Ẽ

T
(hv̄P̃ b̄ + sgn(hv̄)P b̄)(vad − ∆̄)

− 2ke

[

W̃ T Ŵ‖Ê‖
]

− 2ketr
[

Ṽ T V̂ ‖Ê‖
]

.

(A.3.8)

Using upper bounds from (3.4.9) and (3.4.24), the derivative of the Lyapunov function

candidate can be upper bounded as:

L̇ ≤ Hλmax(P )‖E‖2 − 1

hB
λmin(Q)‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2‖P b̄‖‖Ê‖(γ1‖Z̃‖F + γ2) + 2Θ‖Ẽ‖(α1‖Z̃‖F + α2)

− ke‖Ê‖
[

‖Z̃‖2
F − Z∗2

]

(A.3.9)

Further

L̇ ≤ Hλmax(P )‖E‖2 − 1

hB
λmin(Q)‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ ‖Ẽ‖(2κ9‖Z̃‖F + κ10)

+ κ12(‖E‖ + ‖Ẽ‖) + 2κ14(‖E‖ + ‖Ẽ‖)‖Z̃‖

(A.3.10)

where Θ = ‖P b̄‖ + hB‖P̃ b̄‖, κ9 = α1Θ, κ10 = 2α2Θ, κ12 = 2‖P b̄‖γ2 + keZ
∗2

,

κ14 = ‖P b̄‖γ1.
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Grouping terms, (A.3.10) can be written:

L̇ ≤ Hλmax(P )‖E‖2 − 1

hB
λmin(Q)‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2(κ9 + κ14)(‖E‖ + ‖Ẽ‖)Z̃∗ + (κ10 + κ12)(‖E‖ + ‖Ẽ‖)
(A.3.11)

Using 2(x2 + y2) ≥ (x + y)2 and q̄ , min[λmin(Q)
hB − Hλmax(P ), λmin(Q̃)],

L̇ ≤ − q̄

2
(‖E‖ + ‖Ẽ‖)2 + Υ(‖E‖ + ‖Ẽ‖)

≤ −(‖E‖ + ‖Ẽ‖)
[ q̄

2
(‖E‖ + ‖Ẽ‖) − Υ

] (A.3.12)

where Υ , 2(κ9 + κ14)Z̃
∗ + (κ10 + κ12). The following condition

‖E‖ + ‖Ẽ‖ >
2

q̄
Υ (A.3.13)

will render L̇ < 0 outside a compact set. In the same manner as in Theorem 3.4.1, it

is ensured that E, Ẽ, Z̃ are ultimately bounded and the ultimate bound
√

λmax(T )
λmin(T )

C

can be calculated as (A.2.16). In the case when PCH is implemented, boundedness

of yrm can be shown by using Lemma 3.5.1.
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A.4 Error Observer Approach with Projection (The-

orem 3.4.3)

Proof. Define a Lyapunov function of the NN weight Ŵ .

LW = g(Γ−1
W Ŵ ) +

W 2
max

εW

=
(Γ−1

W Ŵ )T Γ−1
W Ŵ

εW

(A.4.1)

Differentiating with respect to time,

L̇W = ∇gT Γ−1
W

˙̂
W

=







gT ξ if g(Ŵ ) ≤ 0,

gT ξ if g(Ŵ ) > 0 and ∇gT ξ ≤ 0,

gT ξ(1 − g) if g(Ŵ ) > 0 and ∇gT ξ > 0

(A.4.2)

We can see that L̇W ≤ 0 outside Π1 and Ŵ is bounded in a compact set Π1. We

denote the maximum value of the norm of Ŵ :

Ŵ ∗ , max
Ŵ∈ Π1

‖Ŵ (t)‖ (A.4.3)

In the same manner, V̂ is bounded and the maximum value of its norm is denoted as:

V̂ ∗ , max
V̂ ∈ Π1

‖V̂ (t)‖ (A.4.4)

Using the bound on Ŵ in (A.4.3) and V̂ in (A.4.4), w̄ in (3.4.23) can be bounded

by a constant:

‖w̄‖ ≤ 2
√

n2 + 1W ∗ +
a∗

4
‖Ŵ‖(‖V̂ ‖ + V ∗)‖µ‖ + ε∗

≤ w̄∗ , 2
√

n2 + 1W ∗ +
a∗

4
Ŵ ∗(V̂ ∗ + V ∗)µ∗ + ε∗

(A.4.5)

where a∗ is the maximum value of activation potentials in the NN hidden layer. vad−∆̄

can be shown to be bounded by a constant:

‖vad − ∆̄‖ = ‖Ŵ T σ̂ − W T σ − ε‖

≤ θ∗ ,
√

n2 + 1(Ŵ ∗ + W ∗) + ε∗
(A.4.6)
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Consider the following Lyapunov candidate of E, Ẽ, Ŵ , V̂ :

L =

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE + Ẽ

T
P̃ Ẽ + W̃ T Γ−1

W W̃ + tr(Ṽ T Γ−1
V Ṽ ) (A.4.7)

Differentiating with respect to time,

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(
−ET QE + 2ET P b̄hv̄(vad − ∆̄)

)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V )

(A.4.8)

Using (3.2.21),(3.3.1) and the update laws in (3.4.38) ,

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
ET QE − Ẽ

T
Q̃Ẽ

+ 2sgn(hv̄)Ê
T
Pb

[

W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄
]

+ 2Ẽ
T
(sgn(hv̄)Pb + hv̄P̃b)(vad − ∆̄)

+ 2W̃ T Proj(Ŵ ,−sgn(hv̄)σ̂Ê
T
Pb)

+ 2trṼ T
[

Proj(V̂ ,−sgn(hv̄)µÊ
T
PbŴ T σ̂′)

]

= − ET QE − Ẽ
T
Q̃Ẽ + 2sgn(hv̄)w̄ET Pb

+ 2Ẽ
T
(sgn(hv̄)Pb + hv̄P̃b)(vad − ∆̄)

+ 2W̃ T
[

Proj(Ŵ ,−sgn(hv̄)σ̂Ê
T
Pb) + sgn(hv̄)σ̂Ê

T
Pb

]

+ 2trṼ T
[

Proj(V̂ ,−sgn(hv̄)µÊ
T
PbŴ T σ̂′) + sgn(hv̄)µÊ

T
PbŴ T σ̂′

]

≤− ET QE − Ẽ
T
Q̃Ẽ + 2sgn(hv̄)w̄ET Pb

+ 2Ẽ
T
(sgn(hv̄)Pb + hv̄P̃b)(vad − ∆̄)

(A.4.9)

where c1 = w̄∗‖Pb‖, c2 = (‖Pb‖ + hB‖P̃b‖)θ∗.
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Utilizing the boundedness of (A.4.5, A.4.6),

L̇ ≤− λmin(Q)‖E‖2 − λmin(Q̃)‖Ẽ‖2 + 2c1‖E‖ + 2c2‖Ẽ‖

≤ − λmin(Q)

(

‖E‖ − c1

λmin(Q)

)2

+
c2
1

λmin(Q)

− λmin(Q̃)

(

‖Ẽ‖ − c2

λmin(Q̃)

)2

+
c2
2

λmin(Q̃)

≤− λmin(Q)

(

‖E‖ − c1

λmin(Q)

)2

− λmin(Q̃)

(

‖Ẽ‖ − c2

λmin(Q̃)

)2

+ Υ

(A.4.10)

L̇ is rendered negative when

‖E‖ >
c1

λmin(Q)
+

√

Υ

λmin(Q)
or ‖Ẽ‖ >

c2

λmin(Q̃)
+

√

Υ

λmin(Q̃)

where Υ =
c2
1

λmin(Q)
+

c2
2

λmin(Q̃)
. Hence ultimate boundedness of E, Ẽ, Ŵ , V̂ is established.

The ultimate bound
√

λmax(T )
λmin(T )

C can be obtained in the same manner as (A.2.16).

When PCH is implemented, Lemma 3.5.1 can be used to ensure boundedness of xrm

as in Section 3.4.1.
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A.5 SPR Filter Approach with e-modification (The-

orem 3.8.1)

Proof. Choose the following Lyapunov function candidate,

L =

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
Ē

T
P Ē + W̃ T Γ−1

W W̃ + tr(Ṽ T Γ−1
V Ṽ ) (A.5.1)

The time derivative of L will be

L̇ = −
∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
Ē

T
QĒ + 2sgn(hv̄)Ē

T
Pb(W̃ T (σ̂f − σ̂′V̂ T µ) + Ŵ T σ̂′Ṽ T µ + w̄)

+ 2(W̃ T Γ−1
W

˙̃W ) + 2tr(Ṽ T Γ−1
V

˙̃V )

= −
∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
Ē

T
QĒ + 2sgn(hv̄)ē(W̃

T (σ̂f − σ̂′V̂ T µ) + Ŵ T σ̂′Ṽ T µ + w̄)

− 2W̃ T
[

sgn(hv̄)(σ̂f − σ̂′V̂ T µ)ē + ke|ē|Ŵ
]

− 2tr(Ṽ T
[

sgn(hv̄)µēŴ T σ̂′ + ke|ē|V̂
]

)

= −
∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
Ē

T
QĒ + 2sgn(hv̄)ēw̄ − 2ke|ē|(W̃ T Ŵ + tr(Ṽ T V̂ ))

(A.5.2)

Using the bound of w̄ in (3.8.8),

L̇ ≤−
∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
Ē

T
QĒ + 2‖ē‖(c1‖Z̃‖ + c2) − 2ke|ē|(W̃ T Ŵ + tr(Ṽ T V̂ ))

≤− λmin(Q)

|hv̄|
‖Ē‖2 + 2‖C̄‖‖Ē‖(c1‖Z̃‖ + c2) − ke‖C̄‖‖Ē‖(‖Z̃‖2 − Z∗2

)

≤− λmin(Q)

|hv̄|
‖Ē‖2 + ‖C̄‖‖Ē‖

(

2c1‖Z̃‖ + 2c2 − ke‖Z̃‖2 + keZ
∗2

)

≤− λmin(Q)

|hv̄|
‖Ē‖2 + ‖C̄‖‖Ē‖

(

c2
1 + ‖Z̃‖2 + 2c2 − ke‖Z̃‖2 + keZ

∗2
)

≤− ‖Ē‖
[
λmin(Q)

|hv̄|
‖Ē‖ + ‖C̄‖

{

(ke − 1)‖Z̃‖2 − c2
1 − 2c2 − keZ

∗2
}]

(A.5.3)

Then L̇ ≤ 0 when one of the following conditions is satisfied.

‖Ē‖ ≥ |hv̄|‖C̄‖(c2
1 + 2c2 + keZ

∗2)

λmin(Q)

‖Z̃‖ ≥

√

(c2
1 + 2c2 + keZ∗2)

ke − 1

(A.5.4)
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Ultimate boundedness of Ē and Z̃ has been shown. The ultimate bound
√

λmax(T )
λmin(T )

C

can be obtained in the same manner as (A.2.16). From (3.8.4) Ea is bounded with

bounded signal Z̃. Hence boundedness of E is established.
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A.6 Augmentation of Existing Controllers with

SPR Filter and σ-modification (Theorem 4.1.2)

Proof. Consider the following Lyapunov function candidate.

L =

∣
∣
∣
∣

1

hū

∣
∣
∣
∣
zT Pz + zT

f Pfzf + W̃ T F−1W̃ (A.6.1)

Then the derivative of L is expressed as

L̇ =
d

dt

∣
∣
∣
∣

1

hū

∣
∣
∣
∣
zT Pz +

∣
∣
∣
∣

1

hū

∣
∣
∣
∣

[

−zT Qz + 2zT P b̄hū(W̃
T φf + δf − εf )

]

− zT
f Qfzf + 2zT

f PfBfφ − 2W̃ T (sgn(hū)eφf + kσW )

= − zT Qz + 2sgn(hū)e(W̃
Tφf + δf − εf )

− zT
f Qfzf + 2zT

f PfBfφ − 2W̃ T (sgn(hū)eφf + kσŴ )

(A.6.2)

Utilizing the property of (4.1.31), we get the following inequality

L̇ ≤−
(

λmin(Q)

hB
− Hλmax(P )

)

‖z‖2 + 2‖C‖‖z‖(κ1‖W̃‖ + ε∗f )

− λmin(Qf )‖zf‖2

+ 2‖zf‖‖PfBf‖‖φ‖ − kσ‖W̃‖2 + kσW
∗2

≤−
(

λmin(Q)

hB
− Hλmax(P )

)

‖z‖2 + κ1‖C‖(‖z‖2 + ‖W̃‖2) + ε∗f‖C‖(‖z‖2 + 1)

− λmin(Qf )‖zf‖2 + ‖PfBf‖‖φ‖(‖zf‖2 + 1)

− kσ‖W̃‖2 + kσW
∗2

≤−
(

λmin(Q)

hB
− Hλmax(P ) − κ2

)

‖z‖2 − (λmin(Qf ) − κ3)‖zf‖2

− (kσ − κ4)‖W̃‖2 + Υ

(A.6.3)
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where κ2 = (κ1+ε∗f )‖C‖, κ3 = ‖PfBf‖‖φ‖, κ4 = κ1‖C‖, Υ = ε∗f‖C‖+‖PfBf‖‖φ‖+

kσW
∗2

. One of the following conditions

‖z‖ >

√

Υ
λmin(Q)

hB − Hλmax(P ) − κ2

‖zf‖ >

√

Υ

λmin(Qf ) − κ3

‖Ŵ‖ >

√

Υ

2kσ − κ4

(A.6.4)

will render L̇ < 0 outside a compact set provided the following conditions hold

λmin(Q) > hB(Hλmax(P ) − κ2), λmin(Qf ) > κ3, kσ > κ4 (A.6.5)

The ultimate bound
√

λmax(T )
λmin(T )

C can be computed in the same manner as (A.2.16).
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A.7 Augmentation of Existing Controllers in MIMO

Systems with Error Observer and e-modification

(Theorem 4.2.1)

Proof. As presented in Section A.1, boundedness of weight error signals is shown first,

and this result is used to show boundedness of the tracking and observer error signals.

Consider the following Lyapunov function candidate for the weight error signals

Lw =
1

2
tr(W̃ T Γ−1

W W̃ ) +
1

2
tr(Ṽ T Γ−1

V Ṽ ) (A.7.1)

The time derivative of Lw is

L̇w = − tr{W̃ T
[

σ̂Ê
T
PB̄msgn(Hū) + ke‖Ê‖Ŵ

]

}

− tr{Ṽ T
[

µÊ
T
PB̄msgn(Hū)Ŵ

T σ̂′ + ke‖Ê‖V̂
]

}

= − tr{W̃ T σ̂Ê
T
PB̄msgn(Hū)} − tr{ÊT

PB̄msgn(Hū)Ŵ
T σ̂′(V̂ T µ − V T µ)}

− ke‖Ê‖{tr(W̃ T Ŵ ) + tr(Ṽ T V̂ )}

(A.7.2)

Using (2.3.11) and −2tr(Z̃T Ẑ) ≤ −‖Z̃‖2 + Z∗2

,

L̇w ≤
√

n2 + 1‖W̃‖‖Ê‖‖PB̄m‖ + ‖Ê‖‖PB̄m‖‖Ŵ‖
(

δ +
a∗

4
V ∗µ∗

)

− ke

2
‖Ê‖(‖Z̃‖2 − Z∗2

)

≤ θ1‖Ê‖‖W̃‖ − ke

2
‖Ê‖‖Z̃‖2 + θ2‖E‖

≤ θ1‖Ê‖‖Z̃‖ − ke

2
‖Ê‖‖Z̃‖2 + θ2‖E‖

(A.7.3)

where θ1 =
(√

n2 + 1 + δ + a∗

4
V ∗µ∗) ‖PB̄m‖ and θ2 = ke

2
Z∗2

+‖PB̄m‖W ∗ (
δ + a∗

4
V ∗µ∗).

Using θ1‖Z̃‖ ≤ ke

4
‖Z̃‖2 +

θ2

1

ke
,

≤ −‖Ê‖
{

ke

4
‖Z̃‖2 − θ2

1

ke

− θ2

}

< 0 if ‖Z̃‖ > 2

√

θ2
1

k2
e

+
θ2

ke

(A.7.4)
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Hence Z̃ is bounded and its bound is denoted as: ‖Z̃‖ ≤ Z̃∗.

Consider the following Lyapunov function candidate:

L =

n3∑

i=1

[∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
eT

i Piei

]

+ Ẽ
T
P̃ Ẽ + 2Lw (A.7.5)

The derivative of L will be

L̇ =

n3∑

i=1

[
d

dt

∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
eT

i Piei +

∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
[−eT

i Qiei + 2eT
i Pibihū,i(uad,i − ∆̄i)]

]

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ B̄mHū(uad − ∆) + 2tr(W̃ T Γ−1

W
˙̃W ) + 2tr(Ṽ T Γ−1

V
˙̃V )

=

n3∑

i=1

[
d

dt

∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
eT

i Piei −
∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
[eT

i Qiei]

]

+ 2ET PB̄msgn(Hū)(uad − ∆̄)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ B̄mHū(uad − ∆) + 2tr(W̃ T Γ−1

W
˙̃W ) + 2tr(Ṽ T Γ−1

V
˙̃V )

(A.7.6)

Substituting (4.2.25) and the adaptive laws, this can be written as:

L̇ =

n3∑

i=1

[
d

dt

∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
eT

i Piei −
∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
[eT

i Qiei]

]

+ 2Ê
T
PBmsgn(Hū)

[

W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄
]

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
(PB̄msgn(Hū) + P̃ B̄mHū)(uad − ∆)

− 2tr(W̃ T σ̂Ê
T
PB̄msgn(Hū) + ke‖Ê‖W̃ T Ŵ )

− 2tr(Ṽ T µÊ
T
PB̄msgn(Hū)Ŵ

T σ̂′ + ke‖Ê‖Ṽ T V̂ ).

(A.7.7)

L̇ =

n3∑

i=1

[
d

dt

∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
eT

i Piei −
∣
∣
∣
∣

1

hū,i

∣
∣
∣
∣
[eT

i Qiei]

]

− Ẽ
T
Q̃Ẽ + 2Ê

T
PBmsgn(Hū)w̄

− 2Ẽ
T
(PB̄msgn(Hū) + P̃ B̄mHū)(uad − ∆)

− 2ketr
[

W̃ T Ŵ‖Ê‖
]

− 2ketr
[

Ṽ T V̂ ‖Ê‖
]

.

(A.7.8)

Using upper bounds from (3.4.9) and (3.4.8), the derivative of the Lyapunov function
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candidate can be upper bounded as:

L̇ ≤ −
(

λmin(Q)

hB
− Hλmax(P )

)

‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ 2(hB‖P̃ B̄m‖ + ‖PB̄m‖)‖Ẽ‖(α1‖Z̃‖F + α2)

+ 2‖PB̄m‖‖Ê‖(γ1‖Z̃‖2 + γ2‖Z̃‖ + γ3)

− ke‖Ê‖
[

‖Z̃‖2
F − Z∗2

]

(A.7.9)

Further

L̇ ≤ −
(

λmin(Q)

hB
− Hλmax(P )

)

‖E‖2 − λmin(Q̃)‖Ẽ‖2

+ ‖Ẽ‖(2k9‖Z̃‖F + k10) + k11(‖E‖ + ‖Ẽ‖)‖Z̃‖2

+ k12(‖E‖ + ‖Ẽ‖) − k13(‖E‖ + ‖Ẽ‖)‖Z̃‖2 + 2k14(‖E‖ + ‖Ẽ‖)‖Z̃‖

(A.7.10)

where k9 = α1(h
B‖P̃ B̄m‖ + ‖PB̄m‖), k10 = 2α2(h

B‖P̃ B̄m‖ + ‖PB̄m‖),

k11 = 2‖PB̄m‖γ1, k12 = (2γ3‖PB̄m‖ + keZ
∗2

), k13 = ke, k14 = ‖PB̄m‖γ2.

Grouping terms, (A.7.10) can be written:

L̇ ≤ −
(

λmin(Q)

hB
− Hλmax(P )

)

‖Ẽ‖2 − (k13 − k11)(‖E‖ + ‖Ẽ‖)‖Z̃‖2

+ 2(k9 + k14)(‖E‖ + ‖Ẽ‖)‖Z̃‖ + (k10 + k12)(‖E‖ + ‖Ẽ‖)
(A.7.11)

Using 2(x2 + y2) ≥ (x + y)2 and q̄ , min[λmin(Q)
hB − Hλmax(P ), λmin(Q̃)],

L̇ ≤ − q̄

2
(‖E‖ + ‖Ẽ‖)2 − (k13 − k11)(‖E‖ + ‖Ẽ‖)‖Z̃‖2

+ 2(k9 + k14)(‖E‖ + ‖Ẽ‖)‖Z̃‖ + (k10 + k12)(‖E‖ + ‖Ẽ‖)

≤ −(‖E‖ + ‖Ẽ‖)[ q̄
2
(‖E‖ + ‖Ẽ‖) − (k13 − k11)‖Z̃‖2

+ 2(k9 + k14)‖Z̃‖ + (k10 + k12)]

≤ −(‖E‖ + ‖Ẽ‖)[ q̄
2
(‖E‖ + ‖Ẽ‖) − (k13 − k11 − 1)‖Z̃‖2

+ (k9 + k14)
2 + (k10 + k12)]

(A.7.12)
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The e-modification coefficient ke should be large enough so that k13 > k11 + 1, equiv-

alently ke > a∗‖PB̄m‖
2

+ 1. One of the following conditions

‖E‖ >
2

q̄
Υ

‖Ẽ‖ >
2

q̄
Υ

‖Z̃‖F >

(
Υ

k13 − k11 − 1

) 1

2

(A.7.13)

will render L̇ < 0 outside a compact set, where Υ , (k9 + k14)
2 + (k10 + k12). In the

same manner as in Theorem 3.4.1, it is ensured that E, Ẽ, Z̃ are ultimately bounded.

The ultimate bound
√

λmax(T )
λmin(T )

C can be obtained in the same manner as (A.2.16).

Consequently Ê, Ẑ are also bounded.
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A.8 Asymptotic Tracking with Adaptive Bound-

ing (Theorem 5.2.1)

Proof. Consider the following Lyapunov function candidate:

L =

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE + W̃ T Γ−1

W W̃ + tr(Ṽ T Γ−1
V Ṽ ) + φ̃

T
Γ−1φ̃ (A.8.1)

where φ̃ , φ̂ − φ. The derivative of L will be,

L̇ =
d

dt

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE +

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣

(
−ET QE + 2ET Pbfv̄(vad − ∆̄)

)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V ) + 2φ̃
T
Γ−1 ˙̃

φ

(A.8.2)

Using (5.2.3) and the update laws in (3.4.38) and (5.2.8),

L̇ =
d

dt

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET QE

+ 2sgn(fv̄)E
T Pb

[

W̃ T σ̂ + Ŵ T σ̂′Ṽ T µ + w̄ − vr

]

+ 2W̃ T Proj(Ŵ ,−sgn(fv̄)σ̂ET Pb) + 2φ̃
T
s‖ET Pb‖

+ 2trṼ T
[

Proj(V̂ ,−sgn(fv̄)µET PbŴ T σ̂′)
]

=
d

dt

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET PE −

∣
∣
∣
∣

1

fv̄

∣
∣
∣
∣
ET QE

+ 2sgn(fv̄)E
T Pb(w̄ − vr)

+ 2W̃ T
[

Proj(Ŵ ,−sgn(fv̄)σ̂ET Pb) + sgn(fv̄)σ̂ET Pb
]

+ 2trṼ T
[

Proj{V̂ ,−sgn(fv̄)µET PbŴ T σ̂′} + sgn(fv̄)µET PbŴ T σ̂′
]

(A.8.3)

Utilizing the property of the projection operator of (3.4.35) and (3.4.37),

L̇ ≤−
(

λmin(Q)

fB
− Fλmax(P )

)

‖E‖2 + 2‖w̄‖‖ET Pb‖ − 2φT s‖ET Pb‖

≤ −
(

λmin(Q)

fB
− Fλmax(P )

)

‖E‖2

(A.8.4)

L̇ is rendered non-positive provided that λmin(Q)
λmax(P )

> fBF , i.e. A is sufficiently stable.

Then all the error signals are bounded and the error dynamics are Lyapunov stable.

We will show the asymptotic tracking performance of E using the Barbalat’s Lemma
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[68]. Let η be

η , −
(

λmin(Q)

fB
− Fλmax(P )

)

‖E‖2 ≤ 0 (A.8.5)

We show that η is integrable and uniformly continuous. Notice that

L(∞) − L(0) =

∫ ∞

0

L̇dt ≤
∫ ∞

0

ηdt ≤ 0 (A.8.6)

Since E, Ŵ , V̂ , φ̂ are bounded, Ė is bounded (See (5.1.9)). Therefore,

η̇ = −2

(
λmin(Q)

fB
− Fλmax(P )

)

ET Ė ∈ L∞ (A.8.7)

Hence η is uniformly continuous. Using the Barbalat’s Lemma, η tends to zero as

t goes to infinity. This implies the tracking error asymptotically converges to the

origin.
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