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SUMMARY 

 

Photovoltaics offers a unique solution to the energy and environmental problems 

simultaneously because unlimited sunlight serves as the fuel for solar cells, which 

generate electricity with and no air pollution, hazardous waste, or noise.  However, 

widespread application of photovoltaics will not be realized until costs are reduced by 

about a factor of four.  The goal of The U.S. Photovoltaic Industry Roadmap is to achieve 

an installed system, end-user cost of $3/Wp by 2010 and near $1.50/Wp by 2020.  

Currently, more than 85% of photovoltaic modules are based on monocrystalline or 

multicrystalline silicon.  Silicon crystallization and wafering account for about 55% of 

the photovoltaic module manufacturing cost, which can be reduced significantly if a 

ribbon silicon material is used as an alternative to cast Si.  String Ribbon Si is grown 

directly from the Si melt, eliminating the need for ingot slicing and the removal of 

surface damage from wafers.  However, the growth of String Ribbon leads to a high 

density of electrically active bulk defects that limit the minority carrier lifetime and 

String Ribbon solar cell performance.  While the growth of String Ribbon Si makes it an 

attractive material for low-cost silicon photovoltaics, the as-grown minority carrier 

lifetime in the material is typically 1-10 µs.  Solar cell simulations performed in Chapter 

3 clearly indicate that, for a 300 µm-thick device, the as-grown lifetime in String Ribbon 

silicon is not suitable for high-efficiency (>16%) screen-printed solar cells.  However, 

cell efficiency increases sharply to 15.4% as the lifetime increases to 25 µs at which 

point, the back surface recombination velocity, Sb, begins to significantly impact solar 
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cell efficiency.  High-efficiency screen-printed cells (>16%) can be achieved if the bulk 

lifetime is in excess of 75 µs, and Sb is less than or equal to 300 cm/s. Therefore, to 

fabricate high-efficiency screen-printed devices on String Ribbon Si, impurity gettering 

and defect passivation techniques that can improve the minority carrier lifetime in the 

material without significantly raising the cost must be developed and understood.  The 

research tasks of this thesis focus on the understanding, development, and 

implementation of defect passivation techniques to reduce carrier recombination in the 

bulk of String Ribbon Si in order to enhance solar cell efficiency. 

Task 1 of this thesis was to develop an Al-enhanced, low-cost bulk defect hydrogen 

passivation treatment using a plasma-enhanced chemical vapor deposited (PECVD) 

silicon nitride (SiNx:H) anti-reflection coating.  This task is addressed in Chapter 4, 

where it is shown that PECVD SiNx:H-induced hydrogenation and Al gettering 

treatments combined in one heat treatment at 850°C for two minutes result in a 

noteworthy average lifetime improvement of 30 µs.  This improvement in lifetime was 

far greater than the sum of the SiNx:H hydrogenation and Al treatments alone, 

demonstrating that there is a positive synergistic interaction between the hydrogenation 

from the front surface and the Al alloying process occurring simultaneously at the back 

surface of the substrate.   

The objective of Task 2 was to develop a physical model to explain the Al-enhanced, 

SiNx:H-induced hydrogen passivation treatment.  A three step physical model was 

proposed in Chapter 4 which demonstrates that hydrogen defect passivation from 

PECVD SiNx:H during a post-deposition anneal depends on three processes: i) the release 

of hydrogen from the PECVD SiNx:H film; ii) the retention of hydrogen at defect sites in 
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silicon; and iii) Al alloying at the back surface of the wafer.  The model suggests that the 

synergistic effect of SiNx:H-induced passivation in the presence of Al could be the result 

of the interaction of vacancies and hydrogen in Si and the high solubility of hydrogen in 

the Al-Si melt.  Such interactions can increase the concentration and flux of atomic 

hydrogen in Si.  As a result, the combination of hydrogenation and Al gettering 

effectively improved the lifetime in String Ribbon silicon beyond 30 µs even though the 

retention of hydrogen at defects in silicon is low at high temperatures.  

The physical model for SiNx:H-induced hydrogenation was validated in Task 3  

through the appropriate implementation of Al-enhanced, SiNx:H-induced hydrogen 

passivation to achieve high-efficiency String Ribbon solar cells.  Chapter 5 demonstrated 

the importance of two components of the proposed physical model for SiNx:H-induced 

hydrogenation, namely Al-Si alloying and hydrogen retention by rapid cooling.  Partial 

Al coverage of the rear surface of String Ribbon samples eliminated thin wafer bowing, 

but decreased the spatially averaged lifetime enhancement to 80%, validating the 

importance of Al during hydrogenation.  Chapter 5 also showed that the SiNx:H-induced 

defect passivation can be improved by rapidly cooling samples at a rate of 40°C/s after 

the hydrogenation anneal.  When rapid cooling was implemented in String Ribbon solar 

cell fabrication during contact firing after the hydrogenation,  cell efficiencies as high as 

14.7% with bulk lifetimes in the range of 25-30 µs.  Rapid contact firing improved String 

Ribbon cell efficiency by an average of 1.2% (absolute) over slower belt furnace contact 

firing with a much lower cooling rate of 4°C/s, which may have led to the 

dehydrogenation of defects.       
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The goal of Task 4 was to provide further enhancement of defect passivation and bulk 

lifetime through in-situ NH3 plasma pre-treatment and low-frequency (LF) plasma 

excitation during SiNx:H deposition.  In Chapter 6, high-frequency (13.56 MHz) PECVD 

SiNx:H, deposited at 300°C, was replaced by low-frequency PECVD SiNx:H, deposited 

at 430°C. Chapter 6 showed that LF SiNx:H-induced hydrogenation increases the lifetime 

in String Ribbon to 92 µs and 62 µs with and without in-situ NH3 plasma pretreatment, 

respectively.  The SIMS depth profile of deuterium in Si after LF SiNx:H deposition at 

300°C from SiH4 and ND3 gases showed a surface concentration of 8 x 1018 cm-3.  Heat 

treatment after LF SiNx:H deposition reduced the surface concentration for deuterium, 

suggesting that the incorporated hydrogen may act as an additional source of hydrogen 

during LF SiNx:H-induced hydrogenation.  However, SIMS depth profiles of deuterium 

in Si were unable to show enhanced H incorporation due LF SiNx:H deposition or 

enhanced H diffusion in Si in the presence of Al alloying, presumably due to the high 

detection limit of deuterium.  Therefore, to detect hydrogen in Si at lower concentrations 

and support the proposed hydrogenation model, another profiling technique, such the 

infrared spectroscopy should be used.   

The objective of Task 5 was to investigate and optimize a rapid thermal anneal (RTA) 

to enhance LF SiNx:H-induced hydrogenation for high-efficiency String Ribbon solar 

cells.  This task is addressed in Chapter 7 which showed that optimum hydrogenation 

anneal temperature may be the result of competition between the supply of H from the 

SiNx:H film and H stored near the Si surface, and the retention of H at defects.  The 

optimum RTA temperature for high-frequency (HF) and LF SiNx:H-induced 

hydrogenation in String Ribbon was found to be 800°C and 740°C, respectively.  The 
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optimum RTA temperature for LF SiNx:H-induced hydrogenation was implemented in 

String Ribbon solar cells as part of a two-step RTA scheme.  Step 1 provided effective 

SiNx:H-induced hydrogenation and was designed to have a fast ramp-up rate (50°C/s) to 

improve Al-BSF quality, but was not suitable for sintering the Ag contacts.  Step 2, also 

performed in RTP, was designed for optimal Ag contact sintering and high retention of 

hydrogen at defects introduced in Step 1.  String Ribbon solar cells fabricated with a two-

step firing scheme that included LF SiNx:H-induced hydrogenation performed at the 

optimum RTA temperature of 740°C had an average Voc of 596 mV, an improvement of 

13 mV over co-firing at 700°C for one second.  The best String Ribbon solar cell 

fabricated with this two-step firing scheme had an efficiency of 15.6%.  Room 

temperature scanning photoluminescence showed that the enhancement of band-to-band 

photoluminescence, proportional to lifetime enhancement, was maxim in the sample 

annealed at 740oC, consistent with the lifetime and Voc enhancements.  Reduction of the 

average R-parameter, which is defined as the ratio of the intensity of the defect band 

photoluminescence to the band-to-band photoluminescence, was maximized in a sample 

annealed at 740°C.  This result indicated that the initial active dislocation density in the 

sample was reduced by 67% by LF SiNx:H-induced hydrogenation.   

Lifetime degradation of pre-hydrogenated String Ribbon samples during subsequent 

heat treatment shown in Chapter 7 indicated that the anneal time must be reduced to 

avoid dehydrogenation.  Very effective lifetime enhancement (6 µs to 92 µs) was 

observed during a short RTA (one second) even though the supply of H may be low.  The 

high average lifetime achieved during one second RTA at 740°C is attributed to the 

decrease in dehydrogenation of defects for this short RTA.  Record-high-efficiency 
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(17.8%) String Ribbon solar cells with photolithography defined contacts were fabricated 

to confirm that a short (one second) RTA can result in effective LF SiNx:H-induced 

hydrogenation and the formation of a high-quality Al-doped back surface field.  

The final task of this thesis was to fabricate record-high-efficiency, screen-printed 

String Ribbon Si solar cells by developing a single thermal treatment performed in a 

conveyer belt furnace for enhanced hydrogenation, back surface field, and screen-printed 

contacts.  The optimum belt furnace firing cycle was identified in Chapter 8 and had a 

peak temperature of 753°C, a heating rate of 68.8°C/s, a cooling rate of 18.7°C/s, and a 

dwell time near the peak temperature of four seconds.  String Ribbon samples annealed in 

this firing cycle for LF SiNx:H-induced hydrogenation had an average lifetime of 77 µs, 

confirming that this anneal is suitable for effective defect passivation.  String Ribbon 

solar cells fabricated with this firing cycle had an average efficiency of 15.2% and a 

maximum efficiency of 15.9%, which is the highest efficiency to date for a String Ribbon 

solar cell with screen-printed contacts.  Light-biased internal quantum efficiency 

measurement and analysis with PC1D indicated that the effective surface recombination 

velocity in the 15.9%-efficienct String Ribbon cell was 300 cm/s.  Thus, the belt furnace 

firing scheme developed in Chapter 8 not only provides effective defect passivation, but 

also forms an effective Al-doped back surface field.  Solar cell simulations in Chapter 9 

showed that planar String Ribbon solar cell efficiencies as high as 17.6% on 3 Ω-cm 

material with a lifetime of 140 µs could be achieved if the FF is improved to 0.78, Sb is 

reduced to 128 cm/s, the emitter doping is reduced from 40 Ω/sq. to 100 Ω/sq. coupled 

with a reduction in the front surface recombination velocity, the Ag front contacts 

coverage fraction is reduced, the cell thickness is reduced, and a good optical reflector is 
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applied to the rear surface.  Further improvement of efficiency could be realized if the 

base resistivity is reduced, provided that the effects of dopant-defect interactions are 

mitigated.  Finally, surface texturing could enhance the efficiency well over 18% if 

surface passivation and front contact quality can be maintained.  



CHAPTER 1 

 

Introduction and Research Objectives 

 

1.1 Opportunities and challenges in photovoltaic power 

generation 

The demand for energy is increasing at a rapid pace concurrent with a swift depletion 

of traditional energy resources. Since the availability of energy is critical for the 

advancement of civilizations around the world in the 21st century, energy will be an 

intensely sought commodity.  In 2001, the world’s energy consumption grew to 1.18 

x1014 kW-hr [1], and is expected to increase to 1.88x1014 kW-hr by 2025 [2].  Today, 

renewable energy resources contribute to only about 13% of the world’s energy needs, of 

which 80% comes from biomass, mainly in non-commercial applications.  A breakdown 

of the 2.84x1013 kW-hr of energy consumed in the U.S. in 2001 is shown in Figure 1 [1] 

and indicates that 86% of the energy came from the burning of fossil fuels, which 

produces harmful greenhouse gases such as CO2 [1].  In addition, the burning of crude oil 

and coal for electric power generation contributes about ⅔ of U.S. SO2 emissions [3], 

which is a main cause of acid rain.  The remaining 14% of energy in the U.S. comes from 
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Figure 1. Renewable energy share of total U.S. energy consumption, 2001 [1]. 

nuclear power and renewable energy sources.  While nuclear power generation does not 

contribute to harmful emissions, it does result in the production of dangerous nuclear 

waste that is costly to treat and store.  Figure 1 [1] shows that hydroelectric power is the 

second most widely consumed renewable energy source in the U.S.  Although 

hydroelectric power generation is considered to be a renewable energy resource, it 

negatively impacts the ecosystem surrounding the water source.  Wind power is the 

fastest growing renewable energy resource.  The worldwide total installed capacity for 

wind energy grew to 31,000 MW in 2002, a year in which 6,868 MW [4] of wind power 

was installed.  However, in many applications wind power is not the proper energy 

solution because wind power generation is noisy, occupies a large amount of space, and 

is harmful for birds, causing controversy in the environmental community. Among 

renewable energy sources, solar energy is particularly attractive because it is free, 

unlimited, and it is not localized in any part of the world.  Photovoltaics (PV) is the direct 
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conversion of sunlight into electrical energy using a semiconductor device called a solar 

cell.  PV offers a unique solution to the energy and environmental problems 

simultaneously because sunlight serves as the fuel and no air pollution, hazardous waste, 

or noise are produced during power generation.  PV is attractive to potential users 

because PV systems do not require the transportation of fuels and they can be sized 

according to the user’s needs.  The basic element of a PV system is the solar cell, which 

are connected together in a PV module, which generally provides 100-200 Wp of clean 

energy.  PV modules are connected with power conditioning equipment, which includes a 

DC/AC power inverter.  PV systems can be connected to the electric utility grid or 

operate with a battery bank in remote areas where the grid is not accessible.   

Figure 1 [1] shows that solar energy, including PV, supplies only 1% of U.S. 

renewable energy and is less than 0.1% of the total energy portfolio.  However, the 

worldwide demand for PV continues to grow as indicated by a 25-30% annual  
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Figure 2. Worldwide photovoltaic module shipments, 1988-2002 [5]. 
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increase in PV module shipments in recent years, as shown in Figure 2 [5].  Photovoltaic 

module prices continue to decrease and have followed an historical trend consistent with 

an 80% progress ratio, PR, shown in Figure 3.  A PR of 80% indicates that PV module 

prices are decreasing by 20% for every doubling of total cumulative PV module 

production worldwide [6].  In 2001, the value of the 396 MW of PV modules delivered 

was estimated at $2,067.5 million and this value is expected to nearly double by 2006 [7].  

Recognizing that a large and growing market for PV exists, representatives from the 

U.S
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Figure 3. PV module production experience curve [7]. 

. PV industry, Department of Energy, and academia have convened to develop the 

U.S. Photovoltaic Industry Roadmap [8] to guide U.S. PV research, technology, 

manufacturing, markets and policy through 2020.  The endpoint goal for the road

“For the domestic photovoltaic industry to provide up to 15% (about 3200 MW) of new 

U.S. peak electricity generating capacity expected to be required in 2020.  The 
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cumulative U.S. PV shipments will be about 30 GWp at this time.”  At the presen

rate of 25%/year, PV may account for 10% of the total energy production in the U.S. by 

2030.  The overall goals outlined in the roadmap can be categorized in two areas – 

installed volume of photovoltaics measured in MWp and the cost of the PV system 

measured in $/Wp.   

Currently, PV mo

t growth 

dules alone cost $3-4/Wp, with 88% of the market based on 

cry n 

97, a 

ication 

 the 

on and wafering costs is the 

rece  

stalline silicon (Si) technology.  The cost goal of the PV Industry Roadmap is a

installed system, end-user cost of $3/Wp by 2010 and near $1.50/Wp by 2020.  In 19

cost analysis of a hypothetical 500 MWp Si PV module fabrication facility performed by 

the European Commission found that multicrystalline Si ingot crystallization and 

wafering account for 55% of the total module fabrication cost, while solar cell fabr

and module assembly account for 12% and 33% of module fabrication cost respectively 

[9].  A major loss in crystallization and wafering is the slicing of wafers in which a kerf 

loss of 50% is common using the current multi-wire wafer sawing technology.  The 

findings of the European Commission’s study illustrate that a significant reduction in

total manufacturing cost of Si PV modules can be achieved if silicon crystallization and 

wafering costs are reduced by eliminating the kerf loss.   

Another driving force for the reduction of crystallizati

nt increase in the demand for high-purity Si feedstock. Most of the feedstock Si for

PV comes from polycrystalline or single-crystal Si material rejected from the integrated 

circuit (IC) industry, which has impurity levels suitable for Si PV.  Current projections 

indicate that the Si available from the IC industry alone will support only 220-440 MW 

of Si PV in 2003 [10].  As the Si PV industry grows and the production efficiency of IC 
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silicon improves, demand for suitable purity Si feedstock will quickly outgrow supply, 

and the cost of Si feedstock will rise.  Solar cell technologies that consume less Si, by 

reducing the Si wafer thickness, or use the feedstock more efficiently, by eliminating k

loss, will have a cost advantage in an economic environment of rising Si feedstock costs.  

Therefore, a major focus of this work is the investigation of a novel multicrystalline 

ribbon silicon material that reduces silicon crystallization and wafering costs, witho

sacrificing solar cell performance. 

To meet the PV Industry Roadm

erf 

ut 

ap’s installed volume target of 3200 MW for 2020 at 

$1.

torically, 

t 

lls 

high-

50/W, Si PV manufacturing is restricted to high-volume, high-throughput, 

technologies, such as conveyer belt furnace processes and screen-printing. His

these high-volume, high-throughput technologies limit the implementation of solar cell 

design features that enhance solar cell efficiency.  However manufacturing processes tha

lead to high-efficiency solar cells contribute to cost savings by reducing the amount of Si, 

glass, and module support materials required per Wp.  Therefore, this work seeks to 

provide some resolution to this challenging problem by fabricating high-efficiency ce

on low-cost Si material by developing low-cost, high-volume solar cell fabrication 

technologies.  A combination of materials characterization, device modeling, and 

technology development is used extensively to achieve low-cost, manufacturable, 

efficiency cells to reduce the cost of Si photovoltaics.   
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1.2 Specific Research Objectives 

To meet the production volume and cost goals identified in the PV Roadmap, the cost 

of PV module manufacturing must be reduced and the solar cell efficiency must increase.  

Low-cost ribbon Si materials reduce crystallization and wafering costs, but their growth 

leads to a high density of electrically active bulk defects that limit solar cell performance. 

There is a need to develop cost-effective bulk defect gettering and passivation techniques 

that can be easily integrated into the solar cell fabrication sequence and enable the 

fabrication of high-efficiency solar cells. The key requirements for achieving high-

efficiency solar cells on a low-cost Si material are 1) bulk defect passivation to reduce 

bulk carrier recombination, 2) rear surface passivation to reduce surface recombination, 

and 3) high-quality metallization to reduce carrier recombination at the contact interface.  

This study focuses on the understanding, development, and implementation of defect 

passivation techniques to reduce carrier recombination in the bulk of Si solar cells in 

order to enhance solar cell efficiency.  The specific research objectives of this study are 

detailed below. 

1.2.1 Task 1: Develop an Al-enhanced, low-cost bulk defect hydrogen 

passivation treatment using plasma-enhanced chemical vapor 

deposited silicon nitride anti-reflection coating  

An obvious approach towards reducing the cost of silicon photovoltaic modules is to 

reduce the cost of the silicon substrate, which accounts for 40-55% of the current module 
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cost.  The String Ribbon silicon growth process can reduce the cost of substrate growth 

because ribbon substrates for solar cells are grown directly from the melt, eliminating the 

losses associated with slicing and subsequent etching.  Another advantage of String 

Ribbon silicon is that it can be grown to a thickness’ below 100 µm, rather than the 

current commercial solar cell thickness of 300 µm, resulting in further material and cost 

savings. While the growth of String Ribbon silicon makes it an attractive material for 

low-cost silicon photovoltaics, the as-grown minority carrier lifetime in the material is 

limited to one to ten microseconds due to the presence of electrically active extended 

defects and impurities.  Solar cell simulations show that the as-grown lifetime in String 

Ribbon silicon is not suitable for high-efficiency (>15%) screen-printed solar cells, and 

there is only a small impact of back surface passivation.  However, the cell efficiency 

increases sharply as the lifetime increases to 25 µs or higher.  Therefore, to fabricate 

high-efficiency screen-printed devices on String Ribbon silicon we must understand and 

develop impurity gettering and defect passivation techniques that can improve the 

minority carrier lifetime in the material without significantly raising the cost.  

In this task, an atomic hydrogen defect passivation technique is developed using 

plasma-enhanced chemical vapor deposition of SiNx:H individually and in combination 

with phosphorus and aluminum gettering.  The aim of this task is to increase the bulk 

lifetime in String Ribbon beyond 25 µs, where device simulations indicate that solar cells 

with efficiencies in excess of 15% may be realized.  SiNx:H films deposited by PECVD 

perform several functions in a silicon solar cell. SiNx:H films contain atomic hydrogen 

that may be used to passivate electrically active bulk defects during a post-deposition 

anneal. SiNx:H films also serve as an effect anti-reflection coating, a surface passivation 
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layer, and prevent excessive penetration of the screen-printed silver paste during contact 

firing.  To maintain the cost-effectiveness inherent in String Ribbon Si, the heat 

treatments in this study will be performed in a conveyer belt furnace. In addition, 

commercially available phosphorus spin-on dopants and screen printable aluminum 

pastes will be used. The phosphors and aluminum gettering techniques employed will 

also be used in the formation of an n+ emitter that is compatible with screen-printed front 

contacts and a high-quality aluminum-doped back surface field.  Particular emphasis will 

be placed on exploiting the presence of Al on the rear of solar cells to enhance the defect 

hydrogenation from SiNx:H.  Carrier lifetime enhancement in String Ribbon samples will 

be evaluated using the quasi-steady state photoconductance technique. 

1.2.2 Task 2: Develop a physical model the for the Al-enhanced, SiNx:H-

induced hydrogen passivation treatment 

A physical model will be proposed to improve the fundamental understanding of 

SiNx:H-induced hydrogen passivation.  The model will relate PECVD SiNx:H-induced 

hydrogenation of defects to the supply of hydrogen released into the substrate, the 

retention of hydrogen at defect sites at high temperatures, and backside Al alloying.  The 

development of the model will be based on the behavior of hydrogen in silicon and the 

interaction of hydrogen with point defects in silicon.  
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1.2.3 Task 3: Validate the physical model through the appropriate 

implementation of Al-enhanced, SiNx:H-induced hydrogen 

passivation to achieve high-efficiency solar cells on a low-cost Si 

material 

The physical model for the Al-enhanced SiNx:H-induced hydrogenation of defects in 

Si will be used to design experimental strategies that provide additional support and 

verification of the model. Of particular interest are process conditions identified through 

application of the model that improve SiNx:H-induced hydrogenation by increasing the 

supply and retention of hydrogen in Si.  The effect of rapid cooling after the post-

deposition anneal of SiNx:H on hydrogen passivation will be investigated using a rapid 

thermal processing furnace (RTP) to improve the retention of hydrogen at defects and 

provide further lifetime enhancement. In addition, the effect of Al alloying on back of the 

wafer during hydrogenation will be studied by controlling the amount of Al coverage of 

the back surface.  The physical model will be further supported by the implementation of 

Al-enhanced SiNx:H-induced hydrogenation of defects to fabricate high-efficiency, 

manufacturable String Ribbon Si solar cells.  Rapid cooling will be implemented in the 

rapid thermal firing (RTF) of screen-printed contacts, which is performed after the 

simultaneous formation of a screen-printed Al-doped back surface field and SiNx:H- 

induced hydrogenation to improve defect passivation and contact quality.  For 

comparison, cells will also be fabricated by using a conventional lamp heated belt 

furnace, which is characterized by slow heating and cooling rates.  Solar cells will be 

analyzed by light-beam induced current (LBIC) mapping and internal quantum efficiency 

(IQE). 
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1.2.4 Task 4: Further enhancement of defect passivation through in- 

situ NH3 plasma pre-treatment and low-frequency plasma 

excitation during SiNx:H deposition 

While Al may play an important role in increasing the supply of hydrogen during 

SiNx:H-induced passivation, Al alloying is not compatible with thin Si substrates because 

the difference in the thermal expansion coefficients of Al and Si produces stresses which 

cause thin wafers to bend.  Consequently, the goal of this task is to further increase the 

lifetime in String Ribbon to 100 µs or higher by enhancing the supply of hydrogen 

without relying on Al-Si alloying.  In this task, further lifetime enhancement is sought 

through atomic hydrogen incorporation in silicon via ion bombardment near the substrate 

surface during PECVD SiNx:H deposition using a low plasma excitation frequency.  In 

addition, the effect of NH3 plasma pre-treatment will be investigated for enhanced 

hydrogen incorporation and hydrogen passivation of defects in String Ribbon Si.   

Hydrogen incorporation in Si during PECVD treatments will be characterized by 

secondary ion mass spectroscopy (SIMS) profiling of deuterium in Si.  Hydrogen 

incorporated in the Si wafer during PECVD SiNx:H deposition and subsequent anneal 

will be compared with the release of hydrogen from SiNx:H films.  This study will 

involve detecting hydrogen by Fourier transform infrared spectroscopy (FTIR).  
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1.2.5 Task 5: Investigate and optimize a rapid thermal anneal to 

enhance low-frequency SiNx:H-induced hydrogenation for high-

efficiency String Ribbon solar cells 

The hydrogen stored in the SiNx:H film and incorporated in the Si wafer near the 

front surface must be driven into the Si wafer during a post-deposition anneal. The post-

deposition anneal must be designed to maximize the release of stored hydrogen, while 

preventing dehydrogenation of passivated defects during prolonged anneals at high 

temperatures.  Rapid thermal annealing (RTA) appears to be suitable for the post-

deposition hydrogenation anneal because high heating and cooling rates on order of 50-

100°C/s can be achieved. RTA also offers accurate control of the sample temperature and 

the hold time at the peak temperature.  In this task, the optimum RTA temperature for 

hydrogenation will be identified through a combination of solar cell analysis, carrier 

lifetime enhancement, and room temperature mapping of the photoluminescence response 

of String Ribbon solar cells.  In addition, the presence of hydrogen in silicon will be 

confirmed by FTIR detection of Pt-H pairs in hydrogenated Si wafers.  

1.2.6 Task 6: Fabricate record high-efficiency String Ribbon Si solar 

cells by developing a single thermal treatment for enhanced 

hydrogenation, back surface field, and screen-printed contacts  

The main objective of this task is to achieve a record-high-efficiency solar cell on 

String Ribbon Silicon using optimized SiNx:H deposition and a single thermal treatment 

for hydrogen in a continuous belt furnace. The hydrogen anneal will be merged with 

screen-printed Ag and Al contact firing to form a high quality Al-doped back surface 

 12 



 13 

field and Ag front contacts.  A post-deposition anneal of the SiNx:H film is required to 

redistribute atomic hydrogen incorporated near the surface of the Si substrate.  At the 

same time, commercial String Ribbon solar cells suffer from a FF response that is 

generally in the range of 0.73 to 0.74.  A heat treatment that simultaneously serves as the 

hydrogenation anneal and contact firing in a continuous belt furnace is desirable to 

reduce the number of high temperature steps in solar cell processing.  Important aspects 

of this anneal such as the peak temperature, dwell time, and cooling rate, which can be 

controlled by the setpoint temperatures and belt speed will be investigated.  The 

appropriately designed conveyer belt furnace anneal will be implemented in the 

fabrication of record high-efficiency screen-printed String Ribbon silicon solar cells. 

Finally, through device simulation and characterization by internal quantum efficiency, 

the rear surface recombination velocity in String Ribbon solar cells will be evaluated and 

guidelines for the next generation of high-efficiency, manufacturable String Ribbon solar 

cells will be established.  

 



CHAPTER 2 

 

A Review of Silicon Solar Cell Operation and the 

Impact of Impurities and Defects on Carrier 

Recombination  

 

2.1 Silicon solar cell operation 

Solar cells are semiconductor devices that operate by directly converting sunlight into 

electrical energy.  The energy conversion efficiency of a solar cell is defined as the ratio 

of the maximum power generated by the solar cell (Pmax) to the energy of the incident 

light (Pin) as follows  

in

ocsc

in

mas

P
FFVJ

P
P ••

==η (1) 

where Jsc is the short circuit current, Voc is the open circuit voltage, and FF is the fill 

factor.  A basic silicon solar cell is composed of an n-p junction, front and rear electrical 

contacts, and an anti-reflection coating.  Most commercial silicon solar cells are 

fabricated using boron doped, p-type silicon wafers into which phosphorus is diffused to 

form an n+-emitter layer and an n-p junction near the front surface as shown in Figure 4. 
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Figure 4. Structure of a basic silicon solar cell. 

When light with energy greater than the band gap (Eg
Si=1.12eV) strikes a solar cell, 

electrons and holes are generated in the semiconductor layers and diffuse randomly.  

Electrons in the base are minority carriers and diffuse close to the n-p junction where 

they are swept into the emitter by the very high local electric field and extracted to the 

external circuit through the electrical contacts. Solar cell efficiency is typically 

characterized by three parameters as shown in (1) and identified in Figure 5: Voc, Jsc, FF. 

Voc can be expressed as 









+= 1

o

sc
oc J

J
q
kTV ln (2) 

 15 



where k is the Boltzman constant, T is the temperature, q is the unit charge, and Jo is the 

reverse saturation current density. Jo links Voc to the device and material properties of the 

solar cell and can be expressed as 
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where Dn,p is the diffusivity of electrons or holes, Ln,p is the minority carrier diffusion 

length of electrons or holes, NA,D is the base and emitter doping level, ni is the intrinsic 

carrier concentration, Wn,p is the thickness of the emitter or base, and Sf,b is the front or 

back surface recombination velocity.  Equations 2 and 3 show that Voc is strongly 
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I 

Figure 5. Current-voltage characteristic of a solar cell. 
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dependent on the surface recombination velocities, minority carrier diffusion length, 

device thickness, and doping level. Like Voc, Jsc is strongly affected by bulk and surface 

recombination of minority carriers in all regions of the device. In addition, Jsc is affected 

by the optical properties of the solar cell such as the quality of the anti-reflection coating 

and light trapping schemes. The FF is a measure of the squareness of the I-V curve and is 

an indicator of the quality of the metallization.  The FF depends on the total series 

resistance of the cell and the presence and magnitude of all shunt elements.  Elements of 

a solar cell contact that effect the FF can be evaluated through the use of the dc 

equivalent circuit shown in Figure 6 where JL is the photogenerated current density, Rsh is 

the shunt resistance across the n+-p junction, J1 is the total recombination current density 

in the emitter and base regions, J2 is the recombination current density in the depletion 

region, and Rs is the total series resistance of the cell.     

Load 

Rs 

JL J1 Rsh J2 

Figure 6.  DC equivalent circuit of an n+-p solar cell. 
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2.2 Electron-hole recombination in the bulk 

Recombination of photogenerated electron-hole pairs significantly limits solar cell 

efficiency. Recombination is typically characterized by the effective carrier lifetime τeff, 

where U is the net rec

which is defined as  

ombination rate and ∆n is the excess carrier concentration.  The 

to 

mechanisms: 1) Shockley-Read-Hall (SRH) recombination; 2) radiative band to ban

, is 

given by  

 is the Shockley-Read-Hall recombination lifetime, τrad is the radiative 

 in the 

ensity 

U
n

eff
∆

=τ (4) 

effective lifetime in Si solar cells must be maximized to allow photogenerated carriers 

reach the collecting junction.  The effective lifetime is composed of the bulk lifetime, τr, 

and surface lifetime, τs as follows 

τ

The bulk recombination lifetime is determined by three electron-hole pair recombination 

recombination; and 3) Auger recombination.  The total bulk recombination lifetime, τr

where τSRH

rs
(5) 11

1
−− +

=eff ττ

d 

(6) 111 −−− ++
=

AugerradSRH
r τττ

τ
1

recombination lifetime, and  τAuger is the Auger recombination lifetime.  In SRH 

recombination, electrons and holes recombine through intermediate energy levels

band gap, shown in Figure 7 (c), and energy as is released mainly through lattice  

vibrations.  The energy levels in the band gap or traps are characterized by a trap d
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Figure 7.  Illustration of recombination processes 
in silicon: (a) radiative band to band; 
(b) Auger; (c) Shockley-Read-Hall. 
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NT, trap energy level, ET, and capture cross sections for electrons and holes, σn and σp.  

The SRH lifetime is given by (7) below [11] 
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where po and no are the hole and electron concentrations in equilibrium, ∆p and ∆n are 

the excess hole and electron concentrations and n1, p1, τpo, and τno are defined as [11] 

Radiative recombination involves electrons and holes directly from band to band as 

shown in Figure 7 (a) and energy is released as photons.  The radiative recombination 

lifetime is inversely related to the carrier concentration and is given by [11] 

( )nnpB oo
rad ∆++

=
1

τ (12)

where B is the radiative recombination coefficient equal to 2 x 10-15 cm3/s in Si [11].  In 

Auger recombination, a third carrier (majority carrier) absorbs the energy released from a 

radiative recombination event as shown in Figure 7 (b), and τAuger is inversely related to 
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the square of the carrier concentration as followswhere Cp is the Auger recombination 

coefficient equal to 0.1 to 1.1 x 10-30 cm6/s in Si [11]. 

2.2.1 Impact of defects and impurities on solar cell performance 

2.2.1.1 Properties of transition metal impurities and their effect on silicon solar cell 

Me grade Si solar cell performance primarily by introducing SRH 

cen

y 

gh 

y 

performance 

tal impurities de

ters in the band gap that reduce the minority carrier diffusion length in the base.  

Transition metals are the most detrimental impurities in silicon solar cells because the

can be found in the silicon growth environment, and have energy levels near mid-gap, 

high diffusivities, and high solubilities. The energy levels, diffusivity, and solubility for 

common transition metal impurities in silicon are listed in Table 1 [12].  Impurities such 

as Cr, Mn, Fe, Co, Ni, and Cu are well known as fast diffusers in silicon, and are 

particularly harmful if found in the material growth environment. However, the hi

diffusivity of metal impurities in silicon often improves the effectiveness of external 

impurity gettering techniques.  The diffusivity for transition metal impurities generall

increases with atomic number with Cu having the highest diffusivity.  Substitutional  
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Table 1. Trap position, solubility, and diffusion coefficient at 1000°C for transition
metal impurities in Si [12]. 
Transition 
Metal 

Atomic 
Number 

Trap position 
(eV) 

Impurity solubility 
in Si at 1100°C 

(cm-3) 

Diffusion coefficient 
in Si at 1100°C 

(cm2/s)  

Ev+0.30 
Ti 22 

Ec-0.26 
2 x 1013 6 x 10-11 

Ev+0.42 

Ec-0.22 V 23 

Ec-046  

1 x 1013 1 x 10-7 

Ev+0.22 

Ev+0.31 Cr 24 

Ec-0.25 

3 x 1014 2 x 10-6 

Mn 25 Ev+0.40 3 x 1015 3 x 10-6 

Fe 26 Ev+0.40 3 x 1015 4 x 10-6 

Ev+0.35 
Co 27 

Ec-0.54 
4 x 1015 1 x 10-5 

Ev+0.23 
Ni 28 

Ec-0.49 
5 x 1017 4 x 10-5 

Ev+0.24 

Ev+0.4 Cu 29 

Ev+0.53 

9 x 1017 1 x 10-4 
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Figure 8. Effect of various impurity concentrations on single crystal 
silicon solar cell performance [13]. 

impurity diffusion is somewhat retarded in Si and the diffusion coefficient can be 10-11 

cm2/s even at temperatures near the melting point of Si.  Among the metallic impurities  

that occupy substitutional sites in silicon are Au and Pt.  The solubility of transition 

metals also increases with atomic number as shown in Table 1. Highly supersaturated and 

mobile transition metal impurities show a strong tendency for silicide precipitation, 

electrical behavior of which is discussed in the next section. An analytical model 

developed by Davis et al. predicts the threshold concentration for metallic impurities in 

Czochralski Si, above which solar cell efficiency declines due to carrier lifetime 

reduction [13]. The results of the model shown in Figure 8 show that some impurities 

such as Al, Ni, Cu and Ag do not significantly reduce solar cell performance until 

concentration levels of 1015 cm-3 are reached.  Metal impurities such as Ti and V are 

more detrimental and concentrations of only 1014 cm-3 lead to a 50% (relative) reduction 
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in solar cell efficiency.  The effect of Ti on EFG solar cells has be studied by Borenstein 

et al. [14] who found that a Ti concentration of 4x10-13 in the space charge region reduces 

solar cell efficiency to 60% of its original value, in good agreement with Figure 8.  

2.2.1.2 Impact of metal precipitates on solar cell performance 

The impact of fast diffusing impurities can be mitigated by gettering techniques and 

as a result, transition metals in the dissolved state do not present an insurmountable 

problem for silicon solar cells.  However, metal precipitates are highly stable in silicon 

and are not easily dissolved in a reasonable thermal budget.  Most metals precipitate as 

silicon rich, thermally stable metal silicides (MSi2), and precipitation usually occurs 

heterogeneously at lattice defects or other impurity clusters. Metal precipitates 

themselves may not produce deep level states responsible for recombination, but they 

may affect solar cell performance by creating a conductive shunt element across the 

depletion region of the n-p junction. Segregation and precipitation of impurities at grain 

boundaries and dislocations in mc-Si has been observed in intentionally contaminated 

samples by Auger electron spectroscopy (AES) and secondary ion mass spectroscopy 

(SIMS) [15], and in uncontaminated samples by synchrotron based x-ray fluorescence 

[16].  Analysis of the x-ray absorption spectra of sub-micron size Fe precipitates in Si has 

shown that precipitates may be in multicrystalline Si as oxides or silicates.  This makes 

precipitate dissolution difficult because of the high binding energy of Fe atoms to oxides 

and silicates [16].  The precipitation rate of Fe has been studied in solar-grade materials 

including float zone, Czochralski, and EFG Si [17].  In low defect density materials such 

as float zone and Czochralski silicon, Fe precipitation occurs at a low rate and most of the 

intentionally diffused Fe can be gettered.  In EFG Si wafers, Fe precipitation occurs at a 
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higher rate and is enhanced by heterogeneous nucleation at intragranular microdefects, 

dislocations, and grain boundaries.  The precipitation of Fe in EFG Si has a lasting effect, 

and even after gettering the diffusion length cannot be improved substantially.   

2.2.1.3 Effect of defect complexes in solar performance 

Impurities in silicon may interact with defects, dopants, or other impurities to form 

defect complexes. Two important impurity complexes in solar grade silicon are the FeB 

complex and and BO complex.  Interstitial Fe is positively charged near room 

temperature in p-type silicon and forms pairs with shallow level acceptors such as B.  The 

FeB complex has a donor level at Ev+0.1 eV and an acceptor level at Ec-0.29 eV, while 

Fei has an acceptor level at Ev+0.40 eV [18]. Both Fei and FeB are strong recombination 

centers, but the recombination activity for FeB is about ten times lower than that of Fei.   

The FeB complex can be dissociated at temperatures of about 200°C or illumination of 

high intensity light [18]. This has important consequences for Si solar cells because a 

high level of Fe contamination may be present in multicrystalline Si wafers, but 

undetectable because of FeB formation.  However, FeB pair dissociation during solar cell 

operation increases the interstitial Fe concentration, and reduces the carrier lifetime.  

Another defect complex that is detrimental to solar cell performance is the BO 

complex. Carrier injection processes such as forward bias and illumination stimulate the 

formation of the BO complex and for this reason, the effect of the defect is commonly 

referred to as light induced degradation or LID.  Activation of the metastable boron-

oxygen defect complex results in an efficiency degradation of 3-7% (relative) in 

commercially manufactured, B-doped Czochralski Si solar cells. While the chemical 

structure of this defect is not fully understood, the impact of the defect on the carrier 
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lifetime in Czochralski silicon has been studied in detail [19,20].  Two defect generation 

rates have been observed, indicating that the defect formation process is composed of two 

steps.  The first defect formation step results in a fast initial degradation of carrier 

lifetime and occurs in the first 200 seconds of light illumination. In this step, an interstial 

O dimer is transformed to an active configuration (O2i → O2i
*).  The second step occurs 

during the next ten hours of illumination, when the fast O2i
* is captured by substitutional 

B to form the electrically active, metastable BO2i defect complex. Recently, it has been 

shown that there is a quadratic dependence of the normalized defect concentration (Nt
*) 

on the interstitial oxygen concentration ([Oi]) for [Oi]>4x1017 cm-3, and a linear 

dependence for lower oxygen concentrations [21].  A linear dependence of Nt
* on the 

substitutional B concentration has also been found.  The impact of LID can be greatly 

reduced through the use of magnetic stabilization of the melt during Czochralski silicon 

growth to reduce the incorporation of oxygen, and the use of Ga as a p-type dopant in 

Czochralski silicon [22].  

2.2.1.4 Effect of extended defects solar cell performance 

Extended defects such as grain boundaries and dislocations are prevalent in multi-

crystalline silicon used in the majority of commercially manufactured solar cells. Grain 

boundaries are not considered to be significantly deleterious to solar cell efficiency, 

because the grain size in multicrystalline silicon is several millimeters and many times 

greater than the thickness of a crystalline silicon solar cell.  However, enhanced 

recombination is observed if there is a high degree of asymmetry at the grain boundary 

[23] and there is impurity segregation [18].  Intragranular dislocations result from the 

stresses created by high thermal gradients during the growth, and are the most common 
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Figure 9. Modeled and experimental results of the 
effect of dislocation density on Leff for various Sd : 
1- Sd=103cm/s; 2 - Sd =104 cm/s; 3 - Sd = 105 cm/s; 
4 - Sd = 106 cm/s [25]. 

defect in ribbon multicrystalline silicon materials, where the dislocation density is in the 

range of 105-106 cm-2.  The effect of the density (Ndis) and recombination strength (Sd) of 

dislocations on solar cell performance has been modeled by El Ghitani et al.  [24].  This 

model considers a density of dislocation (Ndis) that are perpendicularly oriented to the 

solar cell surface and are surrounded by a space charge region with a surface 

recombination velocity, Sd. El Ghitani’s model predicts that the photocurrent and 

effective minority carrier diffusion length (Leff) will decrease when the dislocation 

density of is greater than 103 cm-2, and the impact is larger when the Sd ≥ 104 cm/s, as 

shown in Figure 9.  Experimental results have shown that recombination at dislocations 

limit Leff  when Ndis and Sd exceed 104 cm-2 and 1000 cm/s, respectively [25].  The 

recombination strength of dislocations is strongly enhanced by impurity decoration. 
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Electron hole pair recombination at impurity-decorated dislocations in silicon can be 

understood through a description of the electronic band structure around the dislocation  

core.  Figure 10 shows the band structure of an impurity decorated dislocation and is 

composed of shallow dislocation bands, EDe and EDh, induced by the dislocation strain 

field, and a deep level, EM, caused by a segregated impurity [26].  The probability of a 

recombination event directly between EDe and EDh  is low, and as a result the 

recombination rate through the channel RDe-Dh is low. The presence of the deep level EM 

near midgap introduces the additional recombination channels RDe-M and RDh-M, and 

Figure 10. Energy band diagram of an impurity-decorated dislocation.  
Recombination in clean dislocations proceeds directly from 
EDe to EDh through recombination channel RDe-Dh.  Impurity 
decoration introduces a deep level center at energy level EM 
and adds the RDe-M and RDh-M recombination channels [26]. 
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increases the recombination rate dramatically.  The energy level of the segregated 

impurity has little effect on the recombination activity as long as the impurity level is 

deeper than Ec-0.3 eV.  In general dislocations and impurities are non-uniformly 

distributed throughout a multicrystalline wafer.  As a result, the carrier lifetime in 

multicrystalline silicon can show significant variance from wafer to wafer or within a 

single wafer.  The clustering of defects, such as dislocations, stacking faults, and grain 

boundaries, can also have a profound influence on the performance of large area solar 

cells made on multicrystalline silicon. In addition to mediating electron-hole pair 

recombination, defect clusters act as shunts, dissipating power internally in the solar cell 

due to the parallel interconnection of good and bad regions.  Impurity decoration of 

defect clusters enhances the shunt behavior and cannot be resolved by conventional 

impurity gettering treatments.     

2.2.2 Measurement of the bulk lifetime in solar-grade silicon wafers 

Carrier recombination lifetimes in silicon are commonly determined from 

photoconductance (PC) data or the photoconductance decay (PCD) transient after 

excitation by a laser, flash lamp, or LED array.  In the PCD technique, measurement of 

the decay transient is made upon termination of a rapidly decaying light pulse by use of 

an rf-bridge circuit that senses the photoconductance of the silicon wafer.  The effective 

lifetime of carriers in a sample during PCD measurement is expressed as 
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where ∆n is the photo-induced excess carrier concentration and t is time.  A typical PCD 

apparatus is capable of accurately measuring carrier lifetimes greater than 50 µs.  A 

drawback of the PCD technique is that the measurement of low lifetimes, common in 

industrial grade silicon, requires the use of fast electronics to capture the decay transient 

and an illumination source with a steep cut-off.  

Recently a technique known, as quasi-steady state photoconductance [27], has been 

developed to directly relate the carrier lifetime to the steady-state photoconductance.  

During steady-state illumination, the rates of photo-generation and recombination events 

are balanced and may be expressed in terms of current density 

qUJJ recph == (15) 

where Jph and Jrec, are the generation and recombination rate of electron hole pairs 

expressed as current densities, an U is the electron-hole pair recombination rate. The total 

recombination in a sample of thickness W can be written as [28] 
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where ∆nav is the average excess electron carrier concentration through the sample 

thickness.  The increase in electron and hole concentration during illumination results in 

an increase in the conductance of the sample under test.  The difference between the dark 

and illuminated conductance, or excess photoconductance, is given by [28] 
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where µn and µp are the electron and hole mobilities.  It should be noted that the 

approximation in (17) assumes that the variation in mobilities with carrier concentration 

can be accommodated by evaluating them at the average excess carrier concentration.  

Equations 16 and 17 must be combined to arrive at an expression for the carrier lifetime 

[28]. 
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The instrumentation used in this thesis was developed by Sinton Consulting and utilizes a 

flash lamp with an exponentially decaying light pulse.  The decay constant of the flash 

lamp is greater than the lifetime of the carriers in the sample and a so-called quasi-steady 

state condition of electron-hole pair generation and recombination is established.  The 

decay of the light intensity during the flash pulse allows the determination of the effective 

lifetime over a range of excess carrier concentrations.  The lifetime measurement relies 

upon the use of a calibrated instrument with an rf-bridge circuit to detect the conductance 

of the sample, and a reference solar cell to measure the illumination intensity as depicted 

in Figure 11.  Current flowing through a coil under the test sample creates a magnetic 

field that induces Eddy currents in the sample. The power loss resulting from the 

interaction of Eddy currents and the sample is proportional to the conductance of the 

sample.  An increase in the conductance causes an increase in the power loss and a  

 31 



Oscilloscope 

RF-bridge 

Reference 
solar cell 

Coil 

Si wafer 

Flash lamp 

Figure 11. Configuration of the QSSPC lifetime measurement apparatus 
developed by Sinton Consulting and used in this thesis. 
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reduction of the Q-factor of the coil.  The circuit relates the Q-factor to a voltage output 

displayed on an oscilloscope. The coil is calibrated by placing a series of samples each of 

known conductance, and measuring the output voltage. The illumination intensity is 

determined by measuring the voltage across a resistor connected in series with the 

reference solar cell.  This measured voltage is compared with the known voltage 

measured at one Sun (one Sun = 100 mW/cm2) to determine the illumination intensity 

during the measurement. A linear dependence of Jph on the illumination intensity is 

assumed and a value of Jph=38 mA/cm2 is used for a 300 µm thick sample at an 

illumination intensity of one Sun. Figure 12 shows the voltage traces for the output of the 

reference solar cell and the RF-bridge circuit.  A spreadsheet calculates the effective 

lifetime of the sample using (19) below where T is the transmissivity of the wafer.   

( )pnSunph SunsTJ µµ +⋅⋅⋅1,

L
eff

σ
τ

∆
= (19) 

The corresponding excess carrier concentration is determined by    

( )pn

L

qW
n

µµ
σ
+

∆
=∆ (20) 

Knowledge of some properties of the test sample including the doping level, 

transmissivity, and thickness is required.   Equations 19 and 20 applied to the measured 

voltage data in Figure 12 (a) to produce a plot of the effective lifetime as a function of 

excess carrier concentration shown in Figure 12 (b).  Quasi-steady state lifetime 

measurements of defective Si materials often show abnormally high lifetimes at low-

injection levels.  This phenomenon has been attributed to the presence of shallow level 
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traps located near the edge of the conduction band that trap electrons, but do not 

contribute to recombination [29].  The trapped electrons lead to an excess of holes, 

resulting in a larger photoconductance and lifetime than would be expected without traps.  

The effect of shallow traps on the lifetime measurement can be mitigated if traps are 

filled, which occurs at an injection level of 1015 cm-3 [29].   

As indicated by (4) the bulk lifetime can be approximated by the effective lifetime if 

the surface recombination velocity approaches zero.  In this work, bulk lifetime 

measurements are performed on samples whose surfaces have been thoroughly cleaned in 

the series of solutions listed in Appendix A.  After surface cleaning, samples are 

individually immersed in a solution of 70 mg I2 in 250 mL of methanol, which has been 

shown to reduce the surface recombination velocity to below 10 cm/s on single crystal 

silicon [30].  
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Figure 12. Measurement of carrier lifetime by QSSPC technique showing (a)
output of RF-bridge circuit and reference solar cell and (b) measured
lifetime as a function of minority carrier concentration. 
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CHAPTER 3 

 
History of Low-cost and High-efficiency Silicon 

Solar Cells 

 

In an effort to achieve its aggressive long-term cost goals, the U.S. Photovoltaic 

Industry Roadmap has set a mid-term R&D milestone to develop an 18% solar cell 

fabrication line in the next three to five years using low-cost thin Si materials.  While 

solar cell efficiencies in excess of 18% have been demonstrated on multicrystalline 

silicon materials, cell fabrication involved multiple high-temperature and photomask 

steps that make costs prohibitively high for commercial purposes.  In addition, ingot 

based multicrystalline silicon solar cells have been unable to meet the cost target of $1/W 

due in part to a high cost of crystallization and wafering. In contrast, ribbon silicon 

substrates are pulled directly from the melt, eliminating the need for wafering.  As a 

result, ribbon silicon materials have the potential to reduce the silicon crystallization and 

wafering costs that plague ingot based silicon technologies.  However, a high density of 

electrically active defects limits the as-grown minority carrier lifetime in ribbon silicon 

materials to less than 10 µs, which is too low for achieve high target efficiencies.  Model 

calculations performed in this chapter indicate that the key to improving solar cell 

efficiencies to 16% and higher is lifetime enhancement to 75 µs.  Several impurity 
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gettering and defect passivation techniques have been developed to improve the as-grown 

lifetime in silicon for photovoltaic applications.  Phosphorus and Al gettering are 

effective in improving the lifetime, but require high temperatures (≥800°C) and long 

processing times (more than one hour) due to their dependence on impurity diffusion.  In 

contrast hydrogen passivation of defects in silicon can be performed at low temperatures 

for short times due to the high diffusivity of hydrogen in silicon.  Hydrogen passivation 

can be performed during solar cell processing by utilizing the hydrogen available in 

PECVD SiNx:H films, which are used for anti-reflection coating.  In this chapter, the 

state of the art in crystalline silicon solar cell research is reviewed with particular 

emphasis on the growth, characterization, and fabrication of solar cells on ribbon silicon.  

In addition, widely used impurity gettering and defect passivation techniques are 

discussed. 

 

3.1 A review of high-efficiency laboratory scale and 

manufacturable silicon solar cells 

Single crystal Si solar cell efficiencies as high as 24.7% have been achieved using 

expensive float zone Si and laboratory scale processing, both of which are not suitable 

industrial manufacturing.  Multicrystalline Si (mc-Si) is better suited to meet the low-cost 

and high-volume production goals of large scale Si PV due to its lower crystallization 

cost.  In the 1980s, the performance of laboratory scale mc-Si solar cells reached only 

17% due to the presence of performance limiting defects and impurities. Directionally 

solidified and cast mc-Si wafers are generally characterized by large grains (a few mm) 
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and a high density of intragranular defects such as dislocations, twins, vacancies, self-

interstitials, and impurities such as carbon, oxygen, and transitions metals.  The 

simultaneous presence of these defects makes their interaction very complex.  The rate of 

defect interactions increases with temperature, making it difficult to predict the effect of 

solar cell processing steps, such as phosphorus diffusion and SiO2 growth, which are 

performed at elevated temperatures (800°C).  

Recent breakthroughs in mc-Si solar cell efficiencies have been achieved through an 

improved understanding of the behavior of defects in mc-Si during thermal processing, 

concurrent with improvements in the control of mc-Si ingot growth.  In 1996, Georgia 

Tech reported the highest efficiency (18.6%) planar, mc-Si device using 0.65 Ω-cm cast 

mc-Si material grown by the heat exchanger method (HEM) and laboratory-scale 

processing technologies [31].  Cell fabrication involved a 900°C/30 minute phosphorus 

n+-emitter diffusion followed by a second high temperature step, which provided 

excellent SiO2 emitter surface passivation, aluminum back surface field (Al-BSF) 

formation, and hydrogen passivation of defects via forming gas anneal (FGA).  High 

quality front contacts were formed by photolithography and a double layer anti-reflection 

coating (ARC) was applied.  Then in 1999, the highest mc-Si cell efficiency (19.8%) was 

reported by the University of New South Wales using 1.2 Ω-cm, 260 µm thick, 

Eurosolare cast mc-Si in conjunction with passivated emitter, rear locally-diffused 

(PERL) solar cell technology [32].  This technology involves multiple high temperature 

and photomask steps to achieve a phosphorus diffused selective emitter, local boron-

doped back surface field, excellent front and back SiO2 passivation with point contacts on 

the rear, front and back photolithography contacts, and a sophisticated honeycomb 
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textured surface also formed by photolithography.  The solar cell processes necessary to 

achieve these world record efficiencies involve over 16 hours of manual labor and 

include multiple energy consuming high temperature steps that are clearly inappropriate 

for high-volume, high-throughput production.  However, these results demonstrate that 

low-cost Si materials are capable of exceeding the 18% efficiency target set by the PV 

Roadmap if high-efficiency features are included in the solar cell design.  The challenge 

in Si PV is to incorporate solar cell design features which raise the cell efficiency while 

using high-volume, high-throughput manufacturing technologies and low-cost materials. 

Today, commercial mc-Si solar cell efficiencies lie in the range of 12-15%, but 

research is under way to improve these efficiencies.  Sharp Solar, the world leader in 

sales of PV modules, announced the highest efficiency manufacturable mc-Si solar cell 

(16.7%) in 2000 using a high-volume solar cell fabrication process [33].  This process 

involved chemical texturing of a cast mc-Si substrate in a NaOH/IPA solution to reduce 

surface reflection, followed by phosphorus n+-emitter diffusion in lateral quartz tube.  

The emitter was capped with a SiNx:H film deposited by PECVD which serves as a 

single layer anti-reflection coating, a surface passivation dielectric, and a source of 

hydrogen for bulk defect passivation.  Finally, front and rear contacts were screen-printed 

and co-fired.  While this result demonstrates that cast mc-Si substrates can be used to 

achieve high-efficiency cells (>16%) using a manufacturable process, the cast mc-Si 

substrate is not the most cost-effective for PV.   A major component of mc-Si module 

fabrication is the wafering of ingots, which results in a kerf loss that can be greater than 

50% of the ingot.   
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3.2 Ribbon silicon: A promising material for cost-effective 

photovoltaics 

Ribbon silicon is a promising alternative material for cost effective Si PV because the 

production cost of the Si substrate is less than that of wafers from mc-Si cast ingots or CZ 

boules.  In ribbon Si growth, substrates for solar cell fabrication can be grown directly 

from the melt, eliminating the need for ingot slicing.  Ribbon silicon materials have been 

under development since 1967 and currently five ribbon silicon materials are pursued for 

photovoltaics.  Ribbon Si technologies provide an intermediate path between thin film 

PV technologies, which have a lower substrate cost and lower cell efficiency, and CZ and 

mc-Si ingot wafer technologies, which yield slightly higher efficiencies at a higher cost.  

Table 2 [9] shows a cost breakdown of module fabrication for CZ, directionally solidified 

mc-Si, and edge-defined film-fed growth (EFG) Si, a ribbon silicon material.  The EFG 

so

E

 

Table 2. Breakdown of module fabrication cost for a 500 MWp manufacturing 
scenario using screen-printing technology [9]. A June 30, 1997 exchange rate 

of 0.886 Euro/USD was applied. 
Material Crystallizati
on Wafering Solar Cell 

Fab. 
Module 

Assembly 
Mod. 
Power 

Cost  
($/W) 

CZ 0.7 0.24 0.13 0.35 85.6 1.42 

Directionally 
lidified mc-Si 0.32 0.25 0.12 0.34 86.9 1.03 

FG ribbon Si 0.32 0 0.12 0.36 81.5 0.80 
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ribbon silicon growth technique reduces the cost of crystallization and wafering by 44% 

and 66% when compared to directionally solidified mc-Si and CZ materials.  Though the 

EFG Si module produces slightly less power, the cost advantage achieved in 

crystallization and wafering still brings the total cost per Watt peak to below $1/Wp for a 

500 MW production line.   

While ribbon materials offer the potential for cost reduction, challenges that ribbon Si 

materials face include material quality and throughput.  Table 3 [34] shows the defect and 

impurity levels for ribbon silicon materials and other Si PV materials for comparison.  

The growth of ribbon Si materials results in high impurity segregation in the melt, C or O 

incorporation from the crucible, die, and/or supporting materials, and a high  

dislocation density in the range of 105-106/cm2.   EFG Si and String Ribbon Si are both 

grown from graphite crucibles, which results in a high carbon incorporation in the 

ribbons.  Carbon can be a harmful impurity in Si and may form SiC precipitates near 

grain boundaries in ribbon silicon, increasing grain boundary recombination [35].  

Ribbon materials are more susceptible to metal impurity segregation than Czochralski 

growth because there is a confined interface-melt volume without forced convection 

stirring.  Impurity segregation in the crucible is particularly troublesome in long growth 

runs that require melt replenishment.  The equilibrium segregation coefficient for most 

transition metal impurities in Si, ko, is about 10-5 [34].  It has been shown that the 

effective segregation coefficient during ribbon Si growth, keff, is between ko and 10-5 for 

EFG  [36], Dendritic Web [34], and String Ribbon [34].  For RGS and Silicon Film, 

impurity transport away from the interface is inhibited resulting in a keff ≤1 [34].  The 

throughput characteristics for the commercial ribbon materials are shown in Table 4, with 
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a projection of the number for growth furnaces that will be required for 100 MW/year 

module production [37].   Much effort is underway at the industry level to improve the 

throughput of ribbon silicon materials, which is expected to lower the capital cost of 

installed capacity and the direct labor cost. At the same time, improvement of the 

efficiency of laboratory-scale and manufacturable ribbon silicon solar cells, shown in 

Table 5, suggests that there is potential for improvement of commercial products based 

on these materials.  The approach that each ribbon technology has taken to balance the  

tradeoff between throughput and material quality is presented in the following sections. 

Material Resistivity  
(Ω-cm) 

Carbon       
(cm-3) 

Oxygen      
(cm-3) 

Dislocation 
Density          
(cm-2) 

Czochralski 1-3          
p-type 0.5-2.5 x1017 0.1-2x1018 500 

Directionally 
solidified          

mc-Si 

1.5           
p-type <5x1017 <2.5x1017 1x105 

Thin film a-Si intrinsic 1016-1018 1016-1018 -- 

EFG 2-4          
p-type 1018 <5x1016 105-106 

String Ribbon 1-3          
p-type 4x1017 <5x1016 5x105 

Dendritic Web 5-30         
n-type Not detected 1018 104-105 

Table 3. Defect levels and carbon and oxygen impurity levels in commercial Si PV 
materials [34]. 
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Table 4. Comparison of furnace performance for commercial ribbon Si growth 

technologies [37]. 

Method Pull Speed 
(cm/s) 

Width  
(cm) 

Thickness 
(µm) 

Throughput 
(cm2/min) 

Furnaces per 
100 MW 

EFG 1.65 10 250-350 165 100 

String Ribbon 1-2 5-8 100-300 5-16 1175 

Dendritic Web 1-2 5-8 75-150 5-16 2000 

RGS 600-1000 12.5 250-350 7,500-12,500 2-3 

 

Table 5. Ribbon Si solar cell efficiency for cells made using laboratory-scale, 
manufacturable, and commercial processes. 

Ribbon 
Laboratory scale 

cell efficiency 
(%) 

Manufacturable cell 
efficiency (%) 

Commercial cell 
efficiency (%) 

EFG 18.2 15.9 14 

String Ribbon 17.8 15.9 13.7 

Dendritic Web 17.3 14.5 13-15 

Silicon Film 16.6 -- -- 

RGS 12.5 10.1 -- 
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3.2.1 Edge-defined film-fed grown Si 

The edge-defined film-fed growth (EFG) technique was first developed by Labelle 

and Mvalasky of Tyco Labs. in 1965 to grow crystalline ribbons of sapphire and then 

silicon.  In 1974, Tyco Labs. joined Mobil to form Mobil Solar Energy Company to 

commercialize EFG Si for photovoltaics. Today EFG Si is the most technologically 

mature silicon ribbon and is in full commercial production by RWE-Schott Solar with an 

annual capacity expected to reach 20-25 MW by 2004 [38] in Billerica, MA with 

additional capacity installed in Alzenau, Germany.  In the EFG growth process shown in 

Figure 13 [34], an octagon-shaped capillary graphite die is lowered into the Si melt. 

Liquid Si rises to the top of the die and is contacted by a Si seed crystal.  The liquid 

spreads across the surface of the die as the seed is pulled upward, and freezes on the solid 

Figure 13. Growth of silicon by the edge-defined film fed growth (EFG) technique [34]. 
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seed.  More liquid Si is drawn into the die as the seed is withdrawn so that the growth 

process may continue. Currently, octagon-shaped tubes with 10 cm sides are grown to a 

height of 5.4 m with an average wall thickness of 300 µm with continuous melt 

replenishment.  The growth rate of EFG is 1.65 cm/s resulting in a throughput of 165 

cm2/min of ribbon Si as shown in Table 4 [37].  The threat of contamination during EFG 

growth is high due to direct contact between the large surface of the graphite die and 

molten Si.  Dies also suffer from erosion and must be replaced before ribbon thickness 

becomes non-uniform.  After growth, 10 cm x 10 cm wafers are cut from the octagon 

shaped tube using a laser scribe.  It should be noted that this laser scribing process 

introduces microcracks near the edges of EFG wafers that requires a Si etch step to 

improve wafer yield during solar cell manufacturing.  Although the use of the die to grow 

the octagon shaped crystals has increased the throughput of 300 µm EFG ribbon, 

coupling between temperature and capillary variables creates difficulty in the growth of 

thin octagon shaped EFG ribbons.  In spite of the high defect density in EFG, Georgia 

Tech reported an cell efficiency of 18.2% using laboratory scale processing including 

photolithography defined, metal evaporated contacts in 2003 [39]. Georgia Tech also 

reported the highest efficiency manufacturable EFG cell in 2003 with an efficiency of 

16.1% [40].  Today, the average EFG production cell efficiency at RWE-Schott Solar is 

14%.  
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3.2.2 Dendritic Web Si 

Dendritic Web growth was developed originally developed by Seidensticker of 

Westinghouse Electric Corp. in 1962 for GaAs crystals and adapted by Dermatis and 

Faust, also of Westinghouse Electric Corp., in 1967 for Si crystal growth.  Dendritic Web 

Si modules are in production at Ebara Solar Inc. with an annual production capacity of 

one megawatt in 2002.  The growth of Dendritic Web Si proceeds directly from the melt 

without the need for foreign support materials as illustrated in Figure 14 [34].  Growth is 

initiated when a dendrite seed makes contact with the supercooled melt, and spreads 

laterally to form a button.  The button is pulled from the melt at a rate of one to two 

cm/min. and two dendrite arms grow into the supercooled melt to support a film of 

molten silicon between them.  The molten silicon between the dendrites solidifies into 

(111) oriented Si with a thickness of about 100 µm.  The width of the ribbon is controlled 

by the separation of the supporting dendrites [34] and can be maintained at 6 cm resulting 

in a growth rate of 10 cm2/min.  However, precise temperature of the melt control within 

a few tenths of a degree is vital for uninterrupted growth [37].  After growth, the 

dendrites are cut from the edges of the ribbon and can be recycled.  Though Dendritic 

Web is essentially a single crystal material, there are twin boundaries oriented parallel to 

the ribbon surface and a dislocation density of 1014-1015/cm2.  Georgia Tech reported the 

highest efficiency Dendritic Web solar cell with an efficiency of 17.3% in 1996 using 

laboratory scale processes [41] and 14.5% using manufacturable processing technologies 

[42].   Commercial Dendritic Web cells are based on the PhosTop technology with 
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Figure 14. Growth of Dendritic Web silicon.

efficiencies in the range of 13-15% and feature an n-type Dendritic Web substrate, Al-

doped p+ emitter, and P-diffused front surface field and [43]. 

3.2.3 Ribbon growth on substrate  

The concept for ribbon growth on substrate (RGS) was introduced by Bleil in 1969 

and Si ribbon growth by the RGS technique was developed in 1990.  Currently RGS 

growth is in developmental phases at ECN with support from Deutsche Solar.  Research 

in RGS growth is focused on reducing costs by pulling ribbons at a rate of 600 cm/min. 

with a throughput of 7,500 cm2/min [44]. This high pull speed is achievable because 

growth proceeds from an inclined, wedge-shaped solid liquid interface in which the 

crystallization and crystal pulling direction are perpendicular as illustrated in Figure 15 

[44].  The wedge-shape solid-liquid interface increases the crystallization rate by 

allowing efficient extraction of the latent heat of solidification during ribbon growth.  In 
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RGS growth, the wedge-shaped melt interface is achieved by placing a shaping die, 

which contains the melt and defines the width of the ribbon, on a moving substrate.  As 

the substrate is pulled, the Si melt solidifies forming a ribbon adhering to the substrate 

with a thickness of 250-350 µm. RGS ribbons are characterized by columnar grains 

comparable to the ribbon thickness oriented perpendicular to the ribbon surface.  RGS 

silicon has a higher density of defects compared to vertically grown ribbon and leads to a 

very low carrier lifetime of 0.4 µs and a low Jsc.  Implementing remote-plasma hydrogen 

passivation and mechanical V-texturing, the University of Konstanz was able to achieve 

cell efficiencies as high as 12.5% on RGS Si.  RGS cell efficiencies as high as 10.1% 

have been achieved using an industrial type screen-printing process [44].  While progress 

has been impressive, the very low as-grown lifetime continues to limit cell performance, 

making RGS non-competitive with conventional ribbon silicon materials. 

 

Figure 15. Horizontal growth of RGS silicon on conveyer belt. Insert shows a large
wedge-shape crystallization front [44]. 
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3.2.4 Silicon-Film 

Silicon-Film was developed by Barnett at the University of Delaware in 1984 and 

bears more resemblance to thin film deposition rather than the above silicon ribbon 

growth technologies. The Silicon-Film technology is under development at AstroPower, 

Inc. under the trade name APexTM, where much of the material growth and solar cell 

fabrication technology is guarded. AstroPower, Inc. has developed a growth machine 

capable of producing 15 MW of 200 mm-wide sheet material per year [45]. Like RGS, 

Silicon-Film is a horizontal growth technique that is supported by a foreign substrate 

such as steel or quartz and is performed at 800°C-1000°C [46].  As a result, high growth 

rates are achievable and are expected to enable high-throughput manufacturing. Before 

Silicon-Film growth, the substrate is coated with a metallurgical barrier layer such as SiC 

to prevent contamination of the Silicon-Film by impurities in the substrate.  Silicon-Film 

is a saturated solution based growth process similar to liquid phase epitaxy [47].  The 

growth process is initiated by solution wetting of the substrate, followed by nucleation of 

crystals, non-impinging crystal growth, and finally film crystal growth.  In spite of the 

SiC barrier coating, the growth substrate is an obvious source of contamination. In fact, 

Fe, W, Al, Mo, and Ti have been found in the Silicon Film at high levels. However, 

impurity concentration has not correlated with bulk lifetime, possibly due to impurity 

segregation near C precipitates that show high recombination strength. The potential of 

the Silicon Film material has been demonstrated by a 1-cm2, laboratory-scale solar cell 

with an efficiency of 16.6% [48].  Limited published data show that the efficiency of 

commercial solar cells made on the Silicon Film material is as high as 80% that of 
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Czochralski Si solar cells due to the presence of defects and a high level of impurity 

contamination [45]. 

3.2.4 String Ribbon Si 

String Ribbon Si was originally developed by the Sachs of MIT and given the name 

edge-stabilized ribbon (ESR).  Evergreen Solar Inc. introduced commercial production of 

String Ribbon Si modules in 1994 and today, has an installed annual capacity of 3 MW.  

The growth of String Ribbon Si is uniquely equipped to meet the challenges of thin, high-

throughput ribbon growth with low stress and for this reason String Ribbon is the focus 

of this research.  The key component of the growth of String Ribbon Si is the use of two 

strings composed of a refractory material that define the width of the ribbon and provide 

edge stabilization.  The growth of String Ribbon Si, illustrated in Figure 16, proceeds 

directly from the melt and is supported by the two strings, which are fed through a 

graphite crucible containing molten Si [49].  Molten Si wets the strings as they pass 

through the crucible.  The strings support the meniscus and the ribbon and provide edge 

stability by relaxing the temperature control requirement in the melt to 5°C, greater than 

that for EFG or Dendritic Web [50].   String Ribbon growth has incorporated tunable 

afterheaters to modify the cooling profile and avoid the thermal stress produced by a 

thermal gradient of 500°C/cm near the melt-solid interface [49].  The tunable afterheater 

has allowed for an increase of the growth speed by 50% and has facilitated the growth of 

100 µm thick ribbons with low stress [49].  The thickness of the ribbon is controlled by 

the pull rate, surface tension, and heat loss from the sheet.  Careful control of the growth 

has allowed ribbon thickness as low as 5 µm to be grown, though the material was 

stressed and buckled.  The theoretical limit to the growth rate is 7 cm/min, but the 
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Figure 16. Growth of String Ribbon Si [49]. 

practical limit is one to three cm/min to prevent fracture of buckling of the ribbon [37].  

After ribbon growth, 8 cm x 15 cm wafers are cut using a specially developed laser that 

does not create microcracks in the wafers and eliminates the need for post-growth 

damage removal.  The strings on the edges of String Ribbon Si serve as a nucleation site 

for grains with high angle grain boundaries that propagate about 2 mm into the wafer.  

The central regions of the ribbon consist of millimeter or centimeter size grains that 

extend for many centimeters along the growth direction [50]. These large grains contain 

coherent twins along <112> directions in the (111) plane and have an average dislocation 

density of 5 x 105 cm/s found in dislocation loops, networks, and uniformly distributed 

slip dislocations [51].  To improve the throughput of String Ribbon Si growth, Evergreen 

Solar has  
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Figure 17. Simultaneous growth of two ribbons of String Ribbon Si
by the Gemini technique, currently in production at
Evergreen Solar. Image courtesy of Evergreen Solar. 

52 

Figure 18. Simultaneous growth of four ribbons of String Ribbon Si by
the Quad method, currently in under development at
Evergreen Solar. Image courtesy of Evergreen Solar. 

 



developed a technique for multiple ribbon growth termed Gemini and illustrated in Figure 

17.  In the Gemini technique, two ribbons are grown back to back from one crucible at a 

rate of 2.5 cm/min and a width of 8 cm.  Evergreen Solar has several Gemini furnaces in 

operation and expects the Gemini technique to reduce consumable costs for ribbon 

growth by nearly a factor of two while boosting production to 10-14 MW per year by 

2004 [52].  Evergreen Solar is also perusing the so-called Quad method, shown in Figure 

18, for further cost reduction and throughput enhancement. While this technique is still 

under development, it has been demonstrated on a ribbon growth machine utilizing an 

extremely narrow crucible with a width of only 2 cm. Current estimates are that the Quad 

technique will reduce the number of furnaces needed for a 100 MW factory by about 

60% [52]. In 2003, Georgia Tech reported the highest efficiency String Ribbon solar cell 

with an efficiency of 17.8% using laboratory scale processes and 15.9% using 

manufacturable processing technologies as a part of this research.  Commercial String 

Ribbon solar cells have an average efficiency of 12.3-12.6% [53]. 

 

3.3 A roadmap for high-efficiency ribbon silicon solar cells 

While the growth of String Ribbon silicon makes it an attractive material for low-cost 

silicon photovoltaics, crystallographic defects and impurities limit the as-grown minority 

carrier lifetime in the material to one to ten microseconds.  To assess the impact of the as-

grown lifetime on solar cell performance, simulations shown, in Figure 19, were 

performed using PC1D [54], a one-dimensional solar cell simulation program, with the 

inputs in Table 6.  The simulation inputs include a 300 µm thick 3 Ω-cm p-type substrate,  
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Figure 19. Effect of bulk lifetime and back surface recombination velocity (Sb) 
on the efficiency of a 300 µm thick, 3 Ω-cm, p-type solar cell. 

Table 6.  Input parameters for solar cell simulation shown in Figure 19.  

Solar cell parameter   PC1D  input   
3 Ω - cm   
300 µm   

40 Ω/sq., erfc   
35,000 cm/s   

10,000 Ω - cm 2   
0.8 Ω - cm 2   

1 x 10  8-   A/cm 2   
7%   

n = 2.03 , t = 78 nm
90% diffuse   

   

Base resistivity   
Thickness   

Emitter doping   
Front surface recombination velocity 

R shunt   
R series   

J o2   
Front gird coverage   

Anti - reflection coatin
R b   

g   
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a well-passivated 40 Ω/sq. emitter, high-quality electrical contacts resulting in a FF of 

0.78, front contact coverage of 7 %, and a single–layer ARC.  The results of the 

simulations indicate that the as-grown lifetime in String Ribbon silicon is not suitable for  

>16% efficient screen-printed solar cells.  However, cell efficiency will increase sharply 

to 14.4% to 15.4% as the lifetime increases to 25 µs at which point, the back surface 

recombination velocity, Sb, begins to significantly impact solar cell efficiency.  If the 

lifetime is enhanced further to 150 µs, the simulation indicates that cell efficiencies of 

15.0% to 16.6% can be achieved if Sb is in the range of 5000 cm/s to 100 cm/s.  It is 

important to note that there is a marginal benefit of lifetime enhancement after 50 µs for 

cells in which Sb ≥ 1000 cm/s, and the 16% efficiency level cannot be reached in these 

cells.  High-efficiency cells can be achieved if the bulk lifetime is in excess of 75 µs, and 

Sb is less than or equal to 300 cm/s.  Therefore, in order to achieve high efficiency ribbon 

silicon solar cell efficiencies, the first priority is to develop impurity gettering and defect 

passivation techniques that can improve the minority carrier lifetime to over 75 µs.  In the 

next section, impurity gettering and defect passivation techniques will be reviewed in 

order to design the appropriate treatments to enhance the lifetime in ribbon silicon.  

 

3.4 Gettering and passivation of defects and impurities 

Several techniques have been developed to improve the carrier lifetime in mc-Si, 

including hydrogen passivation of defects and phosphorus and aluminum gettering of 

impurities.  The best material lifetime enhancement techniques are those that can be 

performed during solar cell fabrication steps without adding to the cell processing cost.  

Phosphorus diffusion and aluminum alloying already play an important role in silicon 
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solar cell processing through the formation of the P-doped n+ emitter and Al-doped back 

surface field.  Thus, P and Al gettering can be performed during solar cell fabrication.   In 

this section, the mechanisms of P and Al gettering of impurities will be described.  

Hydrogen passivation of defects has also been demonstrated in silicon solar cells and is 

attractive because it can be performed at low temperatures.  Hydrogen can be 

incorporated in the solar cell during the deposition and anneal of SiNx:H films by 

PECVD.  SiNx:H films are also used in a solar cell for anti-reflection coating and surface 

passivation.  A review of hydrogen passivation of deep levels is presented in this section 

along with the diffusion and solubility of hydrogen in silicon.   

3.4.1 Al and P gettering of impurities in silicon 

 Gettering is the process of extracting impurities from active regions of the device 

and localizing them in inactive region.  The impurity gettering process involves the 

release of impurities from the device region, the diffusion of impurities away from the 

active device region, and the capture of the impurities in the inactive device region.  

Phosphorus gettering is facilitated by the formation of extended defects around SiP 

precipitates in heavily phosphorus-doped regions. The extended defects around the SiP 

precipitates act as sinks for metallic impurities. In addition, silicon self-interstitials are 

formed during the growth of SiP.  These self-interstitials play an important role in the 

kick-out mechanism, in which substitutional impurities such as gold exchange lattice 

position with self-interstitials and diffuse rapidly through interstitial sites. Aluminum 

gettering is driven by the segregation coefficient of metal impurities in the liquid 

aluminum alloy.  Impurities are incorporated in the Al alloy or the BSF region after 

solidification. Phosphorus and aluminum induced gettering have proven to be effective 
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gettering treatments, resulting in increase in the minority carrier diffusion length in the 

base region of the solar cell.  Phosphorus and aluminum gettering require no additional 

processing steps and result in the incorporation of impurities in heavily doped regions of 

the solar cell where Shockley-Read Hall recombination has little influence on the 

minority carrier lifetime. Phosphorus gettering can be performed during phosphorus 

emitter diffusion and Al gettering can be performed during Al-BSF formation.   

The release of impurities from device region and their diffusion to inactive device 

regions is a thermally activated process. As a result, effective phosphorus and aluminum 

gettering treatments must be performed at temperatures in the range of 800-1000°C for 

several hours.  The gettering of impurities that segregated at dislocations or in 

precipitates in the bulk of the device can be even more difficult.  Simulations by Tan et 

al. in Figure 20 [55] show the variation in normalized lifetime in Si with Al gettering 

Figure 20. Change in the normalized lifetime during Al gettering in 
the presence of Fe precipitates. Initial decrease in 
lifetime is due to an increase in Fei during Fe precipitate 
dissolution [55]. 
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time in the presence of precipitated iron.  When gettering temperature is above 700°C, the 

lifetime decreases due to the dissolution of Fe precipitates and an increase in the Fei 

concentration in the bulk, which act as recombination centers.  Only when the gettering 

time is increased to >103 s and the iron precipitates have been dissolved does lifetime 

begin to increase because of gettering of iron at the back surface. This example shows 

that gettering techniques performed at high temperatures can be complex in the presence 

of precipitated metals whose dissolution can reduce lifetime, unless the dissolved 

impurities are gettering out of the bulk into the surface regions.   

3.4.2 Hydrogen passivation of defects and impurities in silicon  

Hydrogen passivation of deep level defects and impurities in silicon solar cells is 

technologically viable because hydrogen is present during many device processing steps 

including deionized water rinse, contact annealing, plasma etching, and thin film 

deposition.  Compared to impurity gettering treatments, hydrogenation of defects can be 

performed at low temperatures (400°C) for short times because of the high diffusivity of 

atomic hydrogen in Si. Low temperature hydrogenation processes avoid the interaction of 

defects with impurities and precipitates that complicate high temperature gettering steps.  

De Kock et al. at Bell Labs were the first to observe the hydrogen passivation of defects 

in Si in 1975 [56].  They found that hydrogen introduced during growth decreased the 

electrical activity of swirl defects in single crystal Si.  In 1976, Seager and Ginely found 

that exposure of polycrystalline Si to atomic hydrogen plasma passivated grain 

boundaries in the material [57].  Still there were no reports of hydrogen passivation of 

defects in crystalline silicon solar cells until 1982 when Hanoka of Mobil Solar sent EFG 

Si samples to Sandia National Laboratories for H passivation from a Kaufman ion source.  
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Their electron beam induced current images showed that H passivated grain boundaries 

and enhanced solar cell efficiency by more than 1% absolute in EFG silicon [58].  

3.4.2.1 Hydrogen passivation of deep levels in Si 

Hydrogenation treatments of silicon solar cells are targeted at the passivation of 

dangling bond defects found at external surfaces, certain metal impurities, grain 

boundaries, and dislocations.  Dangling bond centers in Si give rise to levels in the 

forbidden gap that serve as intermediate states for electron hole pair recombination.  The 

bonding of hydrogen to a Si dangling bond forms an electrically inactive bonding state in 

the valence band and an electrically inactive anti-bonding state in the conduction band.  

Hydrogen passivation has proven to be effective in reducing the recombination activity of 

many crystalline defects in silicon including swirl defects [56] and grain boundaries [57] 

to depths of 200 µm [58].  Hydrogen also passivates many deep energy levels introduced 

by the isolated metal impurities and metal complexes, though the exact mechanism for 

passivation is not well understood.  Generally, it is believed that hydrogen passivation of 

metal impurities renders the impurity electrically inactive by forming a stable impurity-H 

bond or by rearranging the defect structure [59].  An example of hydrogen passivation of 

a metal impurity is illustrated in Figure 21 [60], which shows the DLTS peak due to a 

Au-donor level in p-type Si before (Figure 21 (a)) [60] and after hydrogen passivation 

from a plasma source (Figure 21 (c)) [60].  The peak amplitude or defect concentration 

decreases significantly after exposure to atomic hydrogen from the plasma source at 

300°C.  Figure 21 (b) [60] shows that hydrogen passivation during an anneal in H2 at 

300°C was unable to passivate Au because molecular hydrogen is not the species 

responsible for defect passivation. Table 7 [59] lists the metal impurities that can and  
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Figure 21. Capacitance transient spectra from Au-diffused p-type Si 
showing (a) electrically active Au-donor level; (b) no H 
passivation after anneal H2  for 2 hours at 300°C; (c) passivation 
of Au during H plasma exposure for 2 hours at 300°C; (d) 
partial reactivation of Au-donor level after vaccum anneal at 
400°C for 2 hours [60]. 
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Table 7.  Metal impurities that can be passivated by hydrogen and their reactivation 
energy [59]. 

 

 Metal Defect level Reactivation Energy 
(eV) 

Ev+0.35 eV 
Au 

Ec-0.54 eV 
2.3 

Ev+0.29 eV 
Ag 

Ec-0.54 eV 
2.2 

Ev+0.32 eV 
Pd 

Ec-0.22 eV 
2.4 

Ev+0.20 eV 

Ec+0.35 eV Cu 
complexes 

Ev+0.53eV 

2.5 

Ev+0.18 eV  

Ev+0.21 eV 2.5 Ni 
complexes 

Ev+0.33 eV  

Cr Ev+0.30 eV  

quenched 
Fe Ev+0.30 eV 1.5 

Metal impurities passivated by 
atomic hydrogen 

diffused 
Fe Ev+0.32 eV 1.5 

Fei Ev+0.40 eV  

Ti Ev+0.31 eV  Metal impurities not passivated by 
atomic hydrogen 

V Ec-0.50 eV  
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cannot be passivated by hydrogen.  The most notable level that cannot be passivated is 

Fei, which is a known “lifetime-killer” in Si.  Therefore, if Fei is the lifetime limiting 

defect in silicon, phosphorus or aluminum gettering must be performed first before 

hydrogen passivation can provide lifetime enhancement.   

Figure 21 (d) [60] shows that annealing of hydrogen passivated Au at 400°C in a 

vacuum causes partial reactivation of the donor level, demonstrating that hydrogen 

passivation of defects is not thermally stable. The activation energy for H dissociation 

from the defect-hydrogen bond is dependent on the temperature of the anneal as shown in 

(21) [61].  















=
N
NkTE o

D lnln
τυ
1            (21) 

 

where τ is the anneal time,  ν is the dissociation frequency, No is the initial density of 

defect-hydrogen complexes, and N is the density of defect-hydrogen complexes after 

annealing.  The activation energy for H dissociation for many metal impurities is given in 

Table 7 [58].  It has been shown that prolonged annealing (>20 min) of hydrogenated Si 

samples breaks the Si-H bond when the anneal temperature is above 500°C [62] and has 

an activation every of 2.0-2.5 eV.  The thermal instability of the hydrogen passivation 

makes hydrogen retention an important issue, during as well as after the hydrogenation 

process.  All of the heat treatments must be designed for maximum hydrogen retention 

during solar cell processing.  
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Figure 22. Unit cell of Si illustrating the substitutional site (S), 
bond center site (BC), antibonding site (Q), 
tetrahedral interstitial site (T), hexagonal interstitial 
site [63].  

3.4.2.2 Solubility and diffusivity of hydrogen in silicon 

Hydrogen exists in both the molecular (H2) and atomic (H) form in silicon, though 

only H contributes to defect passivation [59].  Isolated H2 is the most stable state of 

hydrogen in silicon at low temperatures and occupies the tetrahedral interstitial site (T) in 

Si shown in Figure 22 [64].  H can be found in three charge states: neutral (H0), 

positively charged (H+), or negatively charged (H-).  The charge state of hydrogen can 

change through electron exchange with the Fermi level [64]. As a result, the charge state 

depends on the location of the Fermi level.  H- and H+ are the dominant forms of 

hydrogen in n- and p-type Si respectively.  Both H0 and H+ are found in the bond center  
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(BC) site, shown in Figure 22.  The additional electron diminishes tendency for H- to 

interact with host atoms and causes H- to maximize its distance from host atoms, 

positioning it in the T site [64].   

Van Wieringen and Warmoltz have determined the solubility of hydrogen in silicon over 

the temperature range of 970°C to 1200°C given by [65] 

][.exp. 321 8811042 −





 −= cm

kT
evxSH              (22) 

 

Extrapolation of (19) to 300°C yields a value of 105 cm-3. Ichimiya and Furuichi [66] 

showed that the low temperature (400°C-500°C) solubility could be significantly higher 

than predicted by (19), and found a low temperature solubility of 2x107 cm-3 at 300°C. 

However, neither finding considers the effect of hydrogen trapping at defects that can 

control hydrogen incorporation.  It has been shown that dislocations can enhance the 

solubility of hydrogen in Si at 800°C by three orders of magnitude [67].  

The high diffusivity of hydrogen in Si enables low-temperature hydrogenation 

treatments to be effective throughout the thickness of a solar cell.  The diffusivity of 

hydrogen in silicon as measured by Van Wieringen and Warmoltz (VWW) for 

temperatures in the range of 970-1200°C, and often extrapolated to lower temperatures, is 

[65]  

1-2scm .exp, 





−= −

kT
eVxDH

4801049 3                 (23) 

 

Figure 23 shows a calculation of the depth to which hydrogen will diffuse at 740°C based 

on the VWW diffusivity and the d=(Dt)-1/2 relation.  Astonishingly, hydrogen can diffuse  
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through the entire thickness of a conventional silicon solar cell in only 30s!  However, 

experimental measurements of hydrogen diffusion at lower temperatures have found 

lower hydrogen diffusivity, as shown in Figure 24 [59] explained by two effects.  First, at 

low temperatures, the bonded forms of hydrogen (H2 and Si-H) are dominant.  The 

activation energy for diffusion of H2 in Si is 2.7 eV making H much more mobile than 

H2, as illustrated by the ratio of their respective diffusion coefficients in Table 8 [68].   

Further impeding the transport of hydrogen at low temperatures is the trapping of 

hydrogen by ionized acceptors and other defects.  At high temperatures, the bonded 

forms dissociate and H dominates, increasing effective diffusivity of hydrogen.  At  

temperatures greater than 300°C, most of the diffusion is by H0, which is not trapped by 

ionized acceptors.  Additionally slower hydrogen diffusion in n-type Si, has been 

attributed to molecule formation [69].   

 

 

 

Table 8. Ratio of the diffusion coefficients for H and H2 at 
various temperatures [68]. 
Temperature 
(K) 

DH/DH2 

300 1.2 x 1042 

500 1.8 x 1025 

750 6.8 x 1016 

1000 4.3 x 1012 

1250 1.3 x 1010 

1500 2.6 x 108 
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Table 9. Distribution of H2 and H in Si [68]. 

Total Hydrogen Content 
(cm-3) 

[H2]/[H] 
at 300 K 

Temp. at which [H2]/[H] =1 
(°C) 

1.5 x 1014 1.6 x 109 626 

1.5 x 1015 5 x 109 748 

1.5 x 1016 1.6 x 1010 892 

1.5 x 1017 5 x 1010 1075 

Table 9 [68] shows the relative amounts of molecular and atomic hydrogen in silicon 

at room temperature and the temperature at which H2 and H are in equal concentration.  

At room temperature H2 outnumbers H by a factor of 1.6 x 109 - 5 x 1010.  Even at 748°C, 

typical for solar cells processing, the concentration of H2 is equal to that of H when the 

total hydrogen content is 1.5 x 1015 cm-3.  The presence of H2 in Si in high concentrations 

indicates that molecule dissociation into H is needed to provide more effective defect 

passivation.  Recent molecular dynamics calculations have shown that hydrogen reacts 

with point defects in silicon.  While H2 is stable in crystalline silicon, H2 spontaneously  

dissociates when placed inside a vacancy cluster, releasing 4.0 eV according the 

following equation [70]  

eV. 4.0 H}H,{V,HV 2 +→+ (24)
 

The release of 4.0 eV is associated with the formation of Si-H bonds and the reduction of 

the strain associated with the original defect.  This reaction predicts that when rapidly 

diffusing V's encounter interstitial H2, they will dissociate the molecule.  At temperatures 
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above about 500 K, the interaction can release two H interstitials and the energy released 

can be kinetic, allowing H to escape the defect and diffuse independently.   

Experimental observation of the diffusion profile of H in Si has been unsuccessful 

due to the low mass of hydrogen and the presence of H residue in the sample chamber.  

Therefore, hydrogen diffusion profiles in Si are inferred from deuterium diffusion 

profiles measured by SIMS.  Deuterium shows no chemical difference to hydrogen, but 

its diffusion coefficient is lower by a factor of 2-1/2 due to the difference in mass between 

deuterium and hydrogen.  Figure 25 [71] shows that surface damage produced by 

mechanical polishing enhances the deuterium profile in EFG Si.  The enhanced diffusion 

profile is believed to be the result of the spontaneous dissociation of H2 by vacancies 

generated by surface damage as predicted by (24).  Other factors that increase the 

Figure 25.  Enhancement of the deuterium profile in edge-
defined film-fed grown Si due to surface damage 
measured by SIMS [71]. 
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vacancy concentration include high growth speed and high carbon concentration [72] and 

are also expected to enhance the diffusion of hydrogen and incorporation of hydrogen in 

silicon.  In addition, a higher penetration depth for deuterium during plasma annealing 

has been found in low oxygen content silicon ribbon [73].   This observation suggests that 

hydrogen should diffuse rapidly in String Ribbon silicon, which has a reasonably high 

growth rate, high carbon content, low oxygen content, grain boundaries and dislocations.   

3.4.2.3 Hydrogen passivation of defects in Si through the anneal of PECVD SiNx:H 

films 

Incorporation of hydrogen in Si has been achieved by many methods including 

exposure to H2 gas during crystal growth, hydrogen ion beam bombardment, hydrogen 

plasma exposure, annealing in forming gas, and the deposition and anneal of PECVD 

SiNx:H films applied to the surfaces of Si wafers.  Unfortunately, most of the 

hydrogenation techniques developed in the 1970s were not compatible with high–

volume, high-throughput solar cell manufacturing.  Hydrogen passivation by ion beam 

bombardment is performed on individual samples at a base pressure of 1 x 10-5 Torr 

before the chamber is back filled with hydrogen gas, making this process non-

manufacturable [74].  Hydrogen passivation by low temperature hydrogen plasma anneal 

[75,76,77,78] or forming gas anneal (5-10% H2) [79] has improved the performance of 

low-cost Si solar cells, but requires treatments of 30-240 minutes.   

The concern about the manufacturability of hydrogenation were erased in 1982 when 

Morita et al. [80] of Toshiba showed that simple and rapid deposition of SiNx:H films by 

PECVD enhances the grain boundary photoresponse in cast mc-Si wafers.  Subsequently, 

SiNx:H films have proven to be suitable for AR coatings and provide surface passivation.  
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More recently, comparative studies performed at IMEC have shown a 1.6% absolute cell 

efficiency enhancement when a PECVD SiNx:H film is used in some mc-Si solar cells 

[81].  The efficiency enhancement is due to the multiple performance enhancing features 

that SiNx:H films offer for solar cells including bulk defect passivation, surface defect 

passivation, and an anti-reflection coating.   

An RF-induced plasma is used during the deposition of SiNx:H by PECVD,  to 

transfer energy to the reactant gases allowing film deposition at low temperatures 

(<500°C) with high deposition rates (~20 nm/min). SiNx:H films are deposited by the 

reaction of dissociated, ionized, and excited species of SiH4 and NH3, created by electron 

impact in the plasma.  In the case of N-rich silicon nitride, an ammoniosilane precursor 

(Si(NH2)n≤4 is adsorbed on the surface as a result of the following reaction [82] 

SiH4 + 4NH3 → Si(NH2)4 + 4H2 (25) 

On the surface of the growing film, the ammonia gas desorbs from the ammoniosilane 

precursor as follows [81] 

 

Si(NH2)4 → Si3N4 + 8NH3 (26) 

Because of the presence of hydrogen in SiH4 and NH3, there is a substantial amount of 

hydrogen in Si-H and N-H bonds of SiNx:H that is detectable by Fourier transform 

infrared spectroscopy (FTIR).  The bonded hydrogen content in SiNx:H has been found to 

be as high as 2 x 1022 cm-3,  about 75% of which is bound to Si [83].  A higher deposition 

temperature promotes NH3 evolution and reduces the content of bonded nitrogen and 

hydrogen [82].  Hydrogen evolves from SiNx:H films during thermal treatment above 
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400°C and is marked by a decrease in the area under the Si-H and N-H peaks in the 

SiNx:H FTIR spectrum.   

Two common PECVD reactors are the conventional parallel plate reactor and the 

horizontal tube reactor. Both types of reactors are investigated in this research. In the 

radial parallel plate reactor, RF power is typically delivered at a frequency of 13.56 MHz 

to the upper electrode, while the bottom electrode on which the samples are placed, is 

grounded. These reactors can be heated to temperatures up to 300-400°C and operated at 

pressures in the range of 0.1 to 5 Torr.  Introducing and removing gases either from the 

periphery/center or center/periphery achieves radial flow of reactant gases.  Throughput 

is an issue for parallel plate reactors and no more than four 100 mm wafers can be coated 

in one run with a batch time of 15 minutes, including a five-minute temperature 

stabilization period.  For this reason, parallel plate reactors are only useful for laboratory-

Figure 26. Graphite boat that serves as the substrate holder and 
electrodes in a horizontal tube PECVD reactor [84]. 
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scale studies for photovoltaics and are not found in commercial solar cell manufacturing 

lines.  In horizontal tube PECVD reactors, samples are loaded on specially designed 

boats with vertically or horizontally oriented graphite plates as shown in Figure 26 [84].  

The plates are stacked parallel to one another with alternate plates serving as ground and 

power while the plasma is generated between them with an excitation frequency in the 

range of 50 to 450 kHz.  The boat also consists of electrical contacts to connect the plates 

to an RF power supply and wheels to aid the loading on unloading of the boat from a 

radially heated quartz tube. Horizontal tube reactors have a higher throughput than 

parallel plate reactors and can coat 120, 100 mm wafers in one run with a batch time of 

40 minutes, including 20 minutes for temperature stabilization.  Thus PECVD SiNx:H  

films may be deposited using a low frequency (50-450 kHz) or high frequency (13.56 

MHz)  plasma excitation.  The average ion energies in low frequency plasma deposition 

are higher than those found in a high frequency plasma deposition and leads to hydrogen 

implantation and damage to the Si surface.  The SiNx:H-induced hydrogen passivation is 

particularly effective in a "fire-through" process in which the Ag and Al electrodes are 

screen-printed onto the Si substrate after SiNx:H film deposition.  During a subsequent 

contact sintering anneal, hydrogen is released from the SiNx:H film and is available for 

the passivation of defects in the Si substrate.  A model for H diffusion has been proposed 

by Sopori et al. [85] to incorporate process-induced traps for H created by plasma 

damage.  In this model, H is stored in traps near the surface after SiNx:H film deposition.  

H is freed from the traps states during a post-deposition anneal when the de-trapping rate 

exceeds the trapping rate.   

 



CHAPTER 4 

 

Development of an Al-enhanced, Silicon Nitride-

induced Low-cost Bulk Defect Hydrogen 

Passivation Treatment  

 

While the growth of String Ribbon Si makes it an attractive material for low-cost 

silicon photovoltaics, the as-grown minority carrier lifetime in the material is typically 1-

10 µs.  The results of the solar cell simulations shown in Chapter 3 clearly indicate that, 

for a 300 µm device, the as-grown lifetime in String Ribbon silicon is not suitable for 

high-efficiency (>16%) screen-printed solar cells, and there is only a small impact of 

back surface passivation.  However, the simulations in Figure 19 indicate that the cell 

efficiency will increase sharply to 15.3 % as the lifetime increases from 1 µs to 25 µs, 

followed by slow but gradual enhancement in efficiency up to 16.9 % for a lifetime of 

150 µs and Sb=100 cm/s.  Therefore, to fabricate high-efficiency screen-printed devices 

on String Ribbon Si, impurity gettering and defect passivation techniques that can 

improve the minority carrier lifetime in the material without significantly raising the cost 

must be developed and understood.  The aim of this phase of the study is to raise the 
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lifetime in String Ribbon Si to at least 25 µs using manufacturable impurity gettering and 

defect passivation techniques.  In Chapter 3, it was shown that the gettering of impurities 

could improve the lifetime if gettering is performed at high temperatures.  However, 

Figure 3-8 showed that prolonged gettering (one hour) is required to enable the 

dissolution of metallic precipitates.  Unfortunately, solar cell manufacturers cannot afford 

lengthy, energy intensive processing steps that limit the throughput necessary for low-

cost manufacturing.  Therefore, the rapid and manufacturable gettering techniques that 

are employed in this study include phosphorus gettering using a liquid spin-on dopant, 

and Al gettering using a screen-printed Al layer.  The heat treatments are performed in an 

industrial-type belt furnace.  The effectiveness of the gettering treatments is evaluated by 

lifetime measurements before and after each treatment using the QSSPC technique 

described in Chapter 2.  It was also shown in Chapter 3 that hydrogen passivation could 

be performed at low temperatures for short times due to the high diffusivity of hydrogen 

in Si.  During solar cell manufacturing, hydrogen in available for defect passivation 

during PECVD SiNx:H film deposition and subsequent anneal.  In this study, hydrogen 

passivation of defects in String Ribbon Si is investigated using a PECVD SiNx:H film as 

the source of hydrogen followed by heat treatment in a belt furnace to drive hydrogen 

into the substrate.  In Chapter 3 it was shown that hydrogen can interact with point 

defects in Si indicating that there may be synergistic interactions during solar cell 

processing steps that introduce point defects, altering the effectiveness of hydrogenation 

from SiNx:H.  For this reason, the effectiveness of PECVD SiNx:H hydrogenation 

individually and in combination with phosphorus and Al gettering in String Ribbon 

silicon is evaluated in this chapter.  To investigate the release of hydrogen from PECVD 
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SiNx:H films and subsequent passivation defects in String Ribbon Si, a combination of 

FTIR measurements of PECVD SiNx:H films and QSSPC bulk minority carrier lifetime 

measurements are used.  

 

4.1 Minority carrier lifetime enhancement from P and Al 

gettering of String Ribbon Si 

Phosphorus and aluminum gettering are often performed in a conventional tube 

furnace and their gettering mechanisms have been reviewed in Chapter 3.  The 

phosphorus gettering treatment investigated in this section involves the application of a 

liquid spin-on dopant followed by an anneal in a belt furnace.  Prior to dopant 

application, samples were cleaned using the series of solutions shown in Appendix A.  

After spin-on dopant application, substrates were dried at 200°C for two minutes on a 

hotplate and annealed in a lamp-heated belt furnace (Radiant Technology Corp. LA-310) 

for six minutes in air at a set-point temperature of 925°C to obtain the target sheet 

resistance of 45 Ω/sq.  After diffusion, the phosphorus-doped glass layer was etched in 

dilute HF and substrates were again cleaned.  Al gettering was performed using a thick 

film of Al screen printed to the back surface of String Ribbon substrates using a 

commercially available Al paste (Ferro FX 53-038).  Then substrates were dried on a 

hotplate for two minutes at 200°C and annealed in a belt furnace for two minutes in air at 

a set-point temperature of 850°C. After heat treatment, the Al layer and underlying p+ Al-

doped layer were removed by chemical etching.  All substrates were cleaned prior to the 

post-process lifetime measurement.  Lifetime measurements were made using the QSSPC 
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technique with samples immersed in a solution of 70 mg of I2 in 250 mL of methanol.  

Lifetime values were recorded at an injection level of 1 x 1015 cm-3 to avoid recording 

erroneously high recombination lifetimes at lower injection levels caused by shallow 

traps [29].  Four lifetime measurements were made at different locations on each ~4 in2 

sample and the mean lifetime value was used to characterize the bulk lifetime of the 

entire substrate.    

Figure 27 shows that the lifetime improvement in String Ribbon Si after the rapid and 

manufacturable P and Al gettering treatments.  The short P gettering alone at 925°C was 

only able to increase the lifetime from 8.5 µs to 10.5 µs and Al gettering performed at 

850°C for two minutes raised the lifetime to 18.3 µs from 9.7 µs.  The lifetime 

improvement provided by individual P and Al gettering treatments does not meet the 

initial minimum target of 25 µs, hence additional lifetime enhancement is required. 

Figure 27. Effectiveness of P and Al gettering and treatments. 
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However, the lifetime improvements achieved by the individual gettering steps are 

noteworthy considering that the P gettering step also forms the n+-emitter compatible 

with current screen-printed solar cells, and the Al gettering step forms an effective Al-

doped BSF at no additional cost.   

 

4.2 Lifetime enhancement due to hydrogen passivation of 

defects in String Ribbon Si from the anneal of a high-

frequency PECVD SiNx:H film 

PECVD SiNx:H films deposited at 200°C -300°C have a hydrogen concentration 

between 1.3 x 1022 and 2.0 x 1022 cm-3 [86], and have been shown to provide efficient 

bulk and surface hydrogen passivation when annealed [87,79].  Many studies claim that 

the release of hydrogen from the PECVD SiNx:H film into the silicon substrate and 

subsequent passivation of bulk defects during thermal anneal is responsible for 

enhancement in multicrystalline Si (mc-Si) solar cell performance [79, 88-92].  In this 

section, the release of hydrogen from a PECVD SiNx:H film during anneal in a belt 

furnace is measured by FTIR.  Subsequently the release of hydrogen is correlated with 

the increase in lifetime in String Ribbon.  

4.2.1 Temperature dependence of the release of hydrogen from PECVD 

SiNx:H films 

SiNx:H films were deposited on the front surface of float zone Si wafers for FTIR 

analysis of the hydrogen content in PECVD SiNx:H films.  SiNx:H films were deposited 
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at 300°C using a direct, parallel plate PECVD reactor operating at 13.56 MHz with a 

flow rate of 320 and 1.55 sccm for SiH4 (2% in N2) and NH3 respectively.  The SiNx:H 

films had a thickness of 860 Å and a refractive index of 1.94.  After SiNx:H deposition, 

selected float zone Si samples were annealed in a tube furnace at 400°C in forming gas 

(10% H2 in N2) and in a belt furnace with set-point temperatures of 730°C and 850°C in 

air.  The actual wafer temperature for these belt furnace heat treatments is revealed in 

Appendix B.  Room temperature FTIR measurement and analysis was performed on each 

float zone Si sample after the heat treatments.   

The FTIR spectra in Figure 28 show that upon post-deposition anneal of the PECVD 

SiNx:H film, the bonded hydrogen content in the film, proportional to the total area under 
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Figure 28. FTIR spectrum of PECVD SiNx:H films after post-deposition anneals. 
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the Si-H and N-H peaks, decreases as the anneal temperature is increased.  Calculation of 

the bonded hydrogen content was performed using the methodology shown in Ref. 83. 

The total bonded hydrogen content in the as-deposited high-frequency (13.56 MHz) 

PECVD SiNx:H film was found to be 2.7x1022 cm-3 which decreased by a factor of 4.3, 

2.1, and 1.2 for the 850°C, 730°C, and 400°C anneals respectively.  This indicates that 

more hydrogen is released from the film as the anneal temperature is increased.  If the 

degree of defect passivation depends only on the release of hydrogen from the SiNx:H 

film, one would expect the passivation effect to increase as the anneal temperature is 

increased.  However, this is not the case as shown in the next section.   

4.2.2 Effect of the release of hydrogen from SiNx:H on lifetime 

enhancement 

To establish the effect of the release of hydrogen from SiNx:H on defect passivation 

in the underlying String Ribbon substrate, the lifetime of String Ribbon substrates were 

measured after post-deposition anneal in the belt furnace.  Because there is some 

variability in the as-grown lifetime in various String Ribbon samples, the average of four 

lifetime measurements, taken on different regions of each sample, was measured before 

and after the passivation treatments in this section.  SiNx:H films were deposited  on both 

sides of String Ribbon samples using the process described in Section 4.2.1 and annealed 

at temperatures in the range of 600°C - 850°C.  Figure 29 illustrates the effect of the post-

deposition anneal temperature on the bulk passivation of String Ribbon samples with and 

without SiNx:H.  Samples coated with SiNx:H had an average as-grown lifetime of 13.2 

µs, while samples without SiNx:H had an average as-grown lifetime of 3.2 µs.  Due to the 

variability in the as-grown lifetime of String Ribbon samples, the relative change in 
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lifetime (τfinal - τas-grown/τas-grown x 100) that results from PECVD SiNx:H-induced 

hydrogenation is plotted in Figure 29 as a function of the post-deposition anneal 

temperature.  For all anneal temperatures investigated, the relative change in lifetime for 

samples annealed without SiNx:H is small with respect to the change in lifetime for 

samples annealed with SiNx:H.  Therefore, the difference between the two curves in 

Figure 29 is attributed to SiNx:H-induced hydrogen passivation of bulk defects.  The 

lifetime measurements in Figure 29 indicate that with SiNx:H, defect passivation 

increases as the post-deposition anneal temperature approaches 725°C commensurate 

with the decrease in the bonded hydrogen content in the SiNx:H film with temperature 

shown in Figure 28.  This result supports the hypothesis that the degree of hydrogen 

passivation is dependent on the amount of hydrogen released from the SiNx:H film up to 
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725°C.  However, the hypothesis fails above 725°C because of desorption of hydrogen 

from defects, as discussed in the next section.   

4.2.3 Competition between the release of hydrogen from the SiNx:H film 

and the retention of hydrogen at defects 

Figure 29 shows that at anneal temperatures between 600°C and 725°C, the relative 

improvement in lifetime is greater than 50%, while in the temperature range of 750°C-

850°C, the relative improvement drops to near 30%. It should be noted that the degree of 

defect passivation from the anneal of SiNx:H films, without prior Al or phosphorus 

treatments, is highly material dependent due to the variety of defects in different Si PV 

materials [93, 94].  The dramatic decrease in the effectiveness of hydrogen passivation 

above 725°C may be due to the high temperature instability of hydrogen at defect sites in 

silicon.  Since hydrogen is known to diffuse out of silicon above 500°C during prolonged 

anneals [62], SiNx:H-induced hydrogenation may be governed by the thermal budget 

(time and temperature) of the post-deposition anneal.  The degree of hydrogen passivation 

of silicon defects should be proportional to the release of hydrogen from the SiNx:H film 

and the out diffusion of hydrogen from the defect during the anneal cycle as well as the 

retention of hydrogen at defect sites in silicon.  

 

4.3 Al enhanced SiNx:H-induced hydrogenation of defects 

To further enhance the lifetime of String Ribbon Si and investigate the interaction of 

the hydrogenation process with phosphorus and Al gettering, combinations of phosphorus 

and Al gettering with SiNx:H hydrogenation using a 850°C post-deposition anneal were 
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investigated.  Though Figure 29 indicates that there is little bulk passivation from the 

SiNx:H post-deposition at 850°C, this anneal temperature was chosen so that Al gettering, 

the formation of a high quality Al-BSF, and defect hydrogenation can be simultaneously.  

The lifetime enhancement provided by various combinations of P and Al gettering and 

SiNx:H-induced hydrogen are shown in Figure 30 along with the effect of individual 

treatments.  The combination of phosphorus gettering and SiNx:H hydrogenation at 

850°C improves the lifetime by 7 µs, which is nearly equal to the sum of the 

enhancement provided by individual phosphorus gettering and hydrogenation treatments.  

A similar additive effect is observed in the combination of phosphorus and Al gettering in 
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which the lifetime improved by 11 µs.  Still the 25 µs threshold is not exceeded by any of 

the above combinations.  In contrast, a noteworthy average lifetime of 38 µs, an 

improvement of 30 µs, is observed when the PECVD SiNx:H hydrogenation treatment 

and Al gettering treatment are combined in one heat treatment at 850°C for two minutes.  

This improvement in lifetime is far greater than the sum of the 850°C SiNx:H 

hydrogenation and Al treatments alone, suggesting that there may be a positive 

synergistic interaction between the hydrogenation from the front surface and the Al 

alloying process occurring simultaneously at the back surface of the substrate.   

 

4.4 Proposed model for the Al enhanced hydrogenation of 

defects  

The above gettering and passivation study indicates that SiNx:H-induced 

hydrogenation of String Ribbon Si is most effective when it occurs simultaneously with 

backside Al alloying.  A three step physical model, illustrated in Figure 31, is proposed to 

describe the observed Al alloying-aided hydrogenation based on recent theoretical 

calculations of hydrogen and vacancy interactions and the solubility of hydrogen in the 

Al-Si melt.  The results in Figure 28 and Figure 29 showed that hydrogen released from 

the SiNx:H film passivates defects in String Ribbon silicon during a post-deposition 

anneal at temperatures below 725°C when anneal time is two minutes.  This is depicted 

in Figure 31 (a).  The data in Figure 31 also indicated that during higher temperature 

anneals (>725°C), the retention of hydrogen at defect sites in String Ribbon Si must 

decrease since the SiNx:H-induced passivation is significantly reduced.  This is depicted 
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in Figure 31 (b).  In contrast, as shown in Figure 31 (c), Al-Si alloying can promote 

hydrogenation of defects by enhancing the dissociation of hydrogen molecules and the 

migration of atomic hydrogen deep into the bulk Si.  Three mechanisms that may 

contribute to the Al-enhanced hydrogen passivation are the interaction of hydrogen with 

vacancies generated during Al-Si alloying, the prevention of hydrogen out diffusion by 

Al, and the segregation to hydrogen toward the Al-Si melt.  During the Al-Si alloying, Si 

is dissolved in the Al melt, generating defects such as voids [95] and vacancies in Si, the 

latter of which can rapidly diffuse through silicon. These vacancies are now available to 

participate in the dissociation of molecular hydrogen into rapidly diffusing atomic 

hydrogen.  In a perfect Si lattice, hydrogen is proportioned nearly equally between the 

molecular and atomic species at high temperatures (> 626°C) [68].  Estreicher’s recent ab 

initio tight binding molecular dynamics calculations have shown that the H2 molecule is 

stable in a perfect Si lattice, but disassociates into atomic hydrogen in the presence of 

vacancies or interstitials [70].  Dissociation is important because atomic hydrogen is 

more mobile in silicon than the molecular species by a factor of 1010 to 1012 at 850°C 

[68] and atomic hydrogen is responsible for defect passivation.  Grain boundaries may 

further assist the diffusion of hydrogen [58], though hydrogen may not be retained at 

grain boundaries during prolonged annealing at high temperatures.  In addition to 

promoting dissociation, vacancies may also enhance the transport of atomic hydrogen in 

Si.  Theoretical calculations have shown that the binding energy of hydrogen to vacancies 

(Vn
0) is high, 3 to 3.5 eV greater than the binding energy of hydrogen at the bond center 

[96].  This affinity of hydrogen to vacancies can increase the flux of hydrogen in silicon.   
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Figure 31. A schematic representation the of three step model for 
SiNx:H-induced defect passivation depicting: (a) the release 
of hydrogen during SiNx:H anneal, (b) the retention 
probability of hydrogen at defects during high temperature 
SiNx:H anneal, and (c) vacancy induced dissociation of 
molecular hydrogen and vacancy and segregation enhanced 
migration of atomic hydrogen.  
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The flux of hydrogen atoms can be described in terms of a chemical potential as shown in 

the equation below [97]    

x
CMJ H

HHH
∂
∂

−=
µ (27) 

where JH is the flux of hydrogen into the wafer, MH is the mobility of atomic hydrogen, 

CH is the concentration of atomic hydrogen, and µH is the chemical potential of atomic 

hydrogen in the wafer.  In the absence of vacancies, the chemical potential gradient is 

dictated by the concentration gradient.  In the presence of vacancies, the attraction of 

hydrogen to vacancies at the backside of the wafer may increase the chemical potential 

gradient, and as shown by (27), increasing the flux of hydrogen in the silicon.  In this 

model backside Al alloying generates vacancies, which enhance the dissociation of 

molecular hydrogen into mobile atomic hydrogen and increase the driving force for the 

migration of atomic hydrogen in the material, enabling and promoting the passivation of 

defects deep in the material.  At this time, no direct evidence of alloying induced vacancy 

generation in Si can be provided.  Therefore other models SiNx:H-induced hydrogenation 

cannot be ruled out. 

The high solubility of hydrogen in the Al melt could provide an additional driving 

force of hydrogen diffusion in Si.  The solubility of hydrogen in an Al-Si melt can be 

determined from the activity and activity coefficient of hydrogen as [98] 

[ ]
H

HlAlSi

f
aHwt =)(% (28) 
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where aH is the activity of hydrogen in the aluminum melt and fH is the activity 

coefficient of hydrogen in the Al-Si melt.  Equation 29 gives the activity coefficient of 

 

hydrogen in an Al-Si melt [98] 

here eH
Si and rH

Si are the first and second order interaction coefficients, respectively.  

 

here T is the temperature in K. The activity of hydrogen is equal to its concentration in 

ntropy data 

 is equal 

n 

 w

The temperature dependence of the interaction coefficients are given by [98] 
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the pure Al melt.  Anyalebechi [99] determined an empirical expression for the 

temperature dependence of hydrogen solubility in the pure Al melt given by  

through a combined linear regression analysis of the published enthalpy and e

321962691
10 ..].%[log )( −

−
=

T
Hwt lAl (32) 

for hydrogen in the pure Al melt.  Equations (29) through (32) can be used together to 

calculate the solubility of hydrogen in an Al-Si melt of any composition.  The 

composition of Si in the melt at 850°C is given by the Al-Si phase diagram and

to approximately 30 wt%.  Figure 32 shows the calculated of the solubility of hydrogen i
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an Al Si melt with 30 wt.% Si based on (25) through (29), the solubility of hydrogen in Si 

from (33) [65], and the segregation coefficient, k, of hydrogen in the Al-Si melt given by 

(34). 

Figure 32 sho

and  a 

ws that the solubility of hydrogen in the Al-Si melt is 2.7 x 1018 cm-3 

(34)
[ ]Si

lAlSi

H
Hk

)(][=

][.exp.][ 321 8811042 −





 −= cm

kT
evxH Si (33)

 the solubility of hydrogen in Si given by is 9.4 x 1012 cm-3 at 850°C.  This results in

segregation coefficient for H in the Al-Si melt of 2.9 x 105, comparable to that for Co, 

Figure 32. The segregation coefficient of H in the Al-Si melt (30 wt%
d from the solubility of H in Si and Al-Si melt. 
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which has a lower bound of 104 [100], and Fe, where k=106 [101].  In Al gettering, 

high segregation coefficient for metal impurities in the Al-Si melt provides the driving 

force for impurity diffusion.  The segregation coefficient for Fe has been shown to 

provide sufficient driving force for the gettering of Fe as deep as 400 µm in Si [101]. If 

hydrogen transport in Si is analogous to the segregation of transition metal impurities

the Al melt during Al gettering, then the high segregation coefficient of hydrogen in t

Al-Si melt provides an additional driving force for the flux of hydrogen deep in Si.  

Therefore the synergistic effect of SiNx:H-induced passivation in the p

the 

 in 

he 

 

ity 

rt of 

 

igure 31, passivation is dependent on the release of hydrogen from 

e SiNx:H film, the retention of hydrogen at defect sites, and the presence of Al on the 

back of the wafer.  

 

4.5 Conclusions 

tring 

resence of Al

could result from the interaction of vacancies and hydrogen in Si and the high solubil

of hydrogen in the Al-Si melt.  Vacancies enable the dissociation of H2 into highly 

mobile H and enhance the chemical potential gradient for H in Si. Deep transpo

hydrogen in Si may also be promoted by the high segregation coefficient of hydrogen in 

the Al-Si melt.  Al-Si alloying enables hydrogen passivation of defects at high 

temperatures, even though retention hydrogen to defect sites decreases.  In the three step

physical model in F

th

This study shows that commercially viable gettering and hydrogen passivation 

treatments investigated in this study are effective in improving the bulk lifetime of S

Ribbon silicon substrates.  The solar cell simulation in Figure 19 indicates that the 

lifetime improvement of 30 µs achieved in this chapter should be sufficient for the 
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fabrication of low-cost, high efficiency (>15%), screen-printed solar cells if Sb is less

than 1000 cm/s.  The three step physical model proposed in Figure 31 summarizes the 

results of this study.  The model demonstrates that hydrogen defect passivation from 

PECVD SiNx during a post-deposition anneals depends on three processes: i) the relea

of hydrogen from the PECVD SiNx film; ii) the retention of hydrogen at defect sites 

silicon; and iii) Al alloying at the back surface of the wafer.  In this chapter, PECVD 

SiNx:H films were deposited with a plasma excitation frequency of

 

se 

in 

at a 

f 

, greater 

easur

s.   

eater 

 

 13.56 MHz 

temperature of 300°C.  FTIR measurements of this film on float zone Si wafers showed 

that the bonded hydrogen content (Si-H and N-H) in film is 2.7x1022 cm-3 after 

deposition.  After heat treatment, the bonded hydrogen content decreases by a factor o

4.3, 2.1, and 1.2 for the 850°C, 730°C, and 400°C anneals respectively.  This indicates 

that more hydrogen is released from the film as the anneal temperature is increased.  

When SiNx:H coated String Ribbon Si samples were annealed for hydrogenation

than 50% improvement in the lifetime was observed at anneal temperatures between  

600°C and 725°C due to hydrogen passivation of defects.  The observed defect 

passivation is commensurate with the decrease in the hydrogen content in the SiNx:H film 

m ed by FTIR.  When the anneal temperature is increased to 750°C-850°C, the 

relative improvement drops to near 30% due to the low retention of hydrogen at defect

  When the PECVD SiNx:H-induced hydrogenation and Al gettering treatments 

were combined in one heat treatment at 850°C for two minutes, a noteworthy average 

lifetime improvement of 30 µs was achieved.  This improvement in lifetime is far gr

than the sum of the SiNx:H hydrogenation and Al treatments alone suggesting that there

may be a positive synergistic interaction between the hydrogenation from the front 
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 the 

nd Al gettering effectively improved the lifetime in String Ribbon silicon beyond 30 µs 

even though the retention of hydrogen at defects in silicon is low at high temperatures.   

 

surface and the Al alloying process occurring simultaneously at the back surface of

substrate.  The synergistic effect of SiNx:H-induced passivation in the presence of Al 

could be the result of the interaction of vacancies and hydrogen in Si and the high 

solubility of hydrogen in the Al-Si melt.  As a result, the combination of hydrogenation 

a



CHAPTER 5 

 
Improved Understanding and Implementation of 

SiNx:H-induced Hydrogenation for High-

efficiency String Ribbon Solar Cells 

 

In the previous chapter, it was shown that the simultaneous anneal of a screen-printed 

Al layer on the back and a PECVD SiNx:H film on the front after phosphorus gettering, 

can improve the spatially averaged lifetime in String Ribbon to over 30 µs, which is 

required to achieve >15 % efficient cells.  To describe the Al-enhanced SiNx:H-induced 

hydrogenation, a physical model was proposed in which defect passivation is governed 

by the release of hydrogen from the SiNx:H film, Al-Si alloying on the back of the wafer, 

and the retention of hydrogen at defect sites. During this anneal, hydrogen is released 

from the SiNx:H film and passivates defects in the String Ribbon substrate.  The role of 

Al in this process be could two-fold.  First Al-Si alloying generates vacancies in Si that 

dissociate molecular hydrogen into atomic hydrogen, and may enhance the diffusion of 

hydrogen in silicon. Second, the formation of an Al-Si melt may promote H transport in 

Si because of the high segregation coefficient of H in the melt.  In this study, two 

experimental strategies that validate the proposed model are investigated, and lead to the 

implementation of Al-enhanced hydrogen passivation to fabricate manufacturable String 
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Ribbon solar cells.  To assess the impact of Al on hydrogenation, the effect of Al 

coverage of the back surface is investigated.  A reduction of the Al coverage is of 

technological importance. While beneficial for lifetime enhancement, full Al rear 

coverage causes thin (100 µm) String Ribbon Si wafers to bow up to five millimeters 

during alloying at 850°C.  However, the bowing of thin wafers can be avoided by 

depositing Al in a grid pattern resulting in partial coverage of the back surface.  Partial 

coverage of the rear also permits bifacial solar cell designs where the Si surface between 

the Al grid may be passivated with by dielectric films.  The proposed model for 

hydrogenation postulates that hydrogen passivation is dependent on the retention of 

hydrogen during the anneal.  This suggests that rapid cooling may improve hydrogen 

passivation.  To further understand the role of hydrogen retention, the impact of 

improved hydrogen retention by rapid cooling after the hydrogenation anneal is 

investigated in this study for increased defect passivation.  Rapid cooling is achieved in a 

rapid thermal processing (RTP) system in which cooling rates up to 50°C/s can be 

realized.  The impact of partial Al coverage of the back surface and rapid cooling will be 

evaluated by QSSPC measurement of the lifetime in String Ribbon Si.   

Solar cell fabrication using RTP has been explored to reduce the thermal budget of 

solar cell processing and hence reduce processing costs.  In this study, RTP will be used 

to implement rapid cooling during solar cell fabrication after screen-printed contact firing 

to improve the retention of hydrogen in String Ribbon solar cells.  It has been shown that 

firing of screen-printed contacts in an RTP system can result in a contact resistance as 

low as 10-5 Ω-cm2 [102], though the resulting fill factor (FF) was only 0.724 on 

multicrystalline silicon, presumably due to junction leakage.  Recently, the Design of 
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Experiment technique has been implemented to optimize a rapid thermal firing (RTF) 

process resulting in FF as high as 0.782 on Cz Si and 0.774 on multicrystalline Si [103].  

However, the influence of rapid cooling during RTF on the bulk defect passivation of 

mc-Si solar cells, if any, was not identified.  In this study, the impact of RTF, with fast 

heating and cooling rates, performed after the simultaneous Al-BSF formation and 

SiNx:H hydrogenation anneal is investigated for improved defect passivation and contact 

quality in String Ribbon Si solar cells.  To assess the impact of RTF on solar cell 

performance, solar cells are also fabricated with a lamp heated belt furnace contact firing 

scheme, characterized by slow heating and cooling rates.   

 

5.1 Impact of partial Al coverage on Al-enhanced SiNx:H-

induced defect passivation 

The effect of reduced Al area rear coverage on Al-enhanced SiNx:H-induced 

hydrogenation is investigated to eliminate bowing of thin wafers while achieving defect 

passivation.  The results of this study also confirm the importance of Al in SiNx:H-

induced hydrogenation.  Figure 33 shows the lifetime enhancement as a function of rear 

Al coverage after SiNx:H/Al anneal at 850°C/2 min in a belt furnace followed by cooling 

at a rate of 6°C/s.  Samples shown in Figure 33 had a spatially averaged as-grown 

lifetime in the range of 2.0-3.8 µs.  Full coverage (100%) of the rear surface by Al results 

in an average relative change in lifetime of String Ribbon Si by 219%. This lifetime 

enhancement is larger than expected based on the exponential fit of the data points in 

Figure 33.  This discrepancy in the lifetime enhancement is likely due to differences in 

 94 



the as-grown spatially averaged lifetime and the defect distribuition in among the samples 

of the two experiments.  The lifetime enhancement drops dramatically to 80% when the 

Al area coverage is reduced to 75%, which illustrates the importance of Al in the 

hydrogenation process.  According to the model for Al-enhanced hydrogenation, the 

reduction in Al coverage reduces the amount of Al-Si alloying and thus the dissociation 

and migration of atomic hydrogen is reduced.  The lifetime enhancement decreases 

monotonically as the Al coverage decreases from 75% to 0%.  While partial Al coverage 

reduces hydrogenation, 100 µm thick String Ribbon samples do not bow during Al-Si 

alloying when the Al coverage is reduced to 75% or below.     
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Figure 33.  Impact of Al area coverage on Al-enhanced SiNx-induced 
hydrogenation at 850°C/2 min with a cooling rate of 6°C/s.  The 
spatially averaged as-grown lifetime was in the range of 2.0-3.8 µs. 
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5.2 Effect of the cooling rate on SiNx:H-induced hydrogenation 

In this section, the impact of improved hydrogen retention by rapid cooling after the 

hydrogenation anneal for increased bulk defect passivation is investigated.   The spatially 

averaged relative improvement in the lifetime of String Ribbon samples, with a spatially 

averaged as-grown lifetime of 2.9 µs, is measured as a function of the cooling rate after 

the post deposition anneal of the SiNx:H film with and without Al in a rapid thermal 

processing (RTP) system.  The cooling rate plotted in Figure 34 is determined by 

measuring the time required for the sample temperature to decrease to 300°C from 850°C 

(curves (b) and (c)) or 700°C (curve (a)).  Figure 34 shows that the spatially averaged 

relative improvement in lifetime is about 40% for all cooling rates for rapid thermal firing 

(curve a) performed at 700°C for one second.  In this process, the lifetime enhancement is 

probably limited by the release of hydrogen from the SiNx:H due to the relatively short, 

low temperature anneal .  When the anneal temperature and time are increased to 850°C 

and two minutes, the spatially averaged relative change in lifetime increases with the 

cooling rate after anneal even when no Al is present on the back (curve (b)).  This 

suggests that the ability to retain hydrogen at defect sites in Si can be improved by 

increasing the cooling rate after the anneal.  The spatially averaged relative change in 

lifetime increases for all cooling rates when Al is present on the back (curve (c)) due to 

Al-Si alloying.  When Al is present on the back, vacancies generated during Al-Si 

alloying and formation of an Al-Si melt increase the flux of hydrogen in Si, which results 

in significant defect passivation.  Figure 34 also shows that the Al-enhanced 

hydrogenation process is less sensitive to the cooling rate (curve (c)).  The increased flux, 
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Figure 34.  Impact of rapid cooling on SiNx:H-induced hydrogenation. 
The spatially averaged as-grown lifetime was 2.9 µs. 

or supply, of hydrogen in Si due to Al-Si alloying reduces the dependence of the 

passivation process on the retention of hydrogen.   

5.3 Implementation of SiNx:H-induced hydrogen passivation to 

fabricate high-efficiency, manufacturable String Ribbon Si 

solar cells  

In this study, RTF is investigated for improved defect passivation and contact quality 

in String Ribbon Si solar cells.  Solar cell fabrication begins with sample cleaning, 

described in Appendix A, followed by phosphorus emitter diffusion that is performed at a 

temperature of ~960°C in a belt furnace using a commercially available spin-on liquid 
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dopant (Filmtronics P507-6%) to achieve a sheet resistance of 35-45 Ω/sq.  A SiNx:H 

film is deposited on the front surface and serves as an anti-reflective coating (ARC), a 

surface passivation dielectric, and a source of hydrogen for bulk defect passivation.  After 

SiNx:H deposition, Al paste (Ferro53-038) is screen-printed to the back surface of all 

samples, baked, and annealed in a belt furnace at a set-point temperature of 850°C for 

two minutes providing hydrogenation and forming an aluminum back surface field (Al-

BSF).  A silver paste (Ferro 3349) is screen-printed in a grid pattern onto the front 

surface of all samples and baked.  RTF is performed on selected samples at 700°C for 

one second with a cooling rate of 40°C/s in an RTP system to sinter the Ag contacts.  For 

comparison, Ag sintering is performed on selected samples in a lamp heated belt furnace, 

with a setpoint temperature of 730°C for 30 seconds and a cooling rate for 4°C/s.  During 

this belt furnace firing the sample temperature reaches a peak temperature of 700°C for 

2.7 s.  String Ribbon solar cells are analyzed by illuminated IV measurement, light beam 

induced current (LBIC) mapping of spectral response, and light-biased internal quantum 

efficiency (IQE) measurements.   

5.3.1 Efficiency distribution of String Ribbon solar cells with RTF and belt furnace 

fired contacts 

Figure 35 shows the efficiency distribution of 93 String Ribbon cells with RTF with a 

cooling rate of 40°C/s or belt furnace contact firing with a cooling rate of 4°C/s.  The 

solar cell efficiencies shown in Figure 35 were measured using a calibrated String Ribbon 

Si solar cell that was measured at Sandia National Labs.  While there is a wide 

distribution in the cell performance in both schemes, RTF is clearly superior with an 

average cell efficiency of 13.8%, an improvement of 1.2% absolute higher than 
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conventional belt furnace contact firing.  QSSPC measurement on finished solar cells 

showed that the lifetime was 25-30 µs after RTF.  It has recently been shown by Rohatgi 

et al. [104] that the performance of EFG Si solar cells improves by 1.4% absolute due to 

RTF.  The highest efficiency cell made with RTF had an efficiency of 14.7%, while the 

highest efficiency cell made with belt furnace firing had an efficiency of only 13.4%.  

This difference in efficiency is the result of differences in Jsc, Voc, and FF, shown Table 

10, indicating that RTF improves the contact quality, minority carrier diffusion length, 

and possibly the rear surface passivation in String Ribbon devices.  The impact of the FF 

enhancement provided by RTF is illustrated by Figure 36, which shows the FF 

distribution for 93 String Ribbon solar cells with RTF and belt furnace firing schemes.  
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Figure 35.  Efficiency distribution of String Ribbon cells with RTF and belt furnace 
front contact firing. 

Table 10. Average String Ribbon cell efficiency for belt furnace contact 
firing and RTF. 

Contact Firing Voc   
(mV) 

Jsc          
(mA/cm2) FF Eff.         

(%) 

RTF 576 31.4 0.763 13.8 

belt furnace  562 30.1 0.746 12.6 
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and belt furnace fired Ag contacts. 

 

5.3.2 Comparison of the effective minority carrier diffusion length in String Ribbon 

cells with RTF and belt fired contacts 

LBIC and light biased or differential IQE analysis were performed on cell b3-4 and 

cell 18-1, fired in the belt furnace and RTP respectively, in order to evaluate the effective 

diffusion length in these cells.  These cells were selected for analysis because their 

efficiency is similar to the average efficiencies of cells fired with RTF and belt furnace 

firing shown in Table 10.  LBIC scans were performed using the PVSCAN 5000 system 

with a 905 nm laser to scan each cell.  Hemispherical reflectance and differential spectral 

response measurements were performed by focusing the one mm diameter, chopped 

monochromatic beam on the areas of the solar cells identified by LBIC analysis shown in 

Figure 37.  The response in these areas was approximately equal to the average response 

for the entire cell.  Differential spectral response [105] measurements were biased by 

steady illumination with white  
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Figure 37. LBIC map of (a) cell 18-1 with RTF and an average spectral 0.53 
A/W, and (b) cell b3-4 fired in the belt furnace with an average 
spectral response of 0.50 A/W.  Circled areas indicate the location 
of the monochromatic beam during differential spectral response 
and hemispherical reflectance measurements.  
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Figure 38. Long wavelength differential IQE of cells with 
RTF and belt furnace contact firing. 

light. The long wavelength differential IQE of two cells, shown in Figure 38, indicates 

that cells with RTF have a higher response than those fired in the belt furnace, supporting 

the theory that RTF improves bulk by improving hydrogen retention and may improve 

the rear surface passivation in String Ribbon solar cells.  The effective diffusion length, 

Leff, in these four cells was determined by the well-known relation shown below using 

tabulated absorption coefficient, α, data and measured IQE data in the wavelength range 

of 800-900 nm.   

effLIQE α
111

+= (35) 

Leff values for the two cells analyzed, shown in Table 11, indicate that cell 18-1 with 

RTF has a higher effective diffusion length, as expected based on the IQE data in Figure 

38.  An estimate of the bulk diffusion length (Lbulk) in these cells was determined by 
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assuming a low rear surface recombination velocity (S=200 cm/s), which has been 

measured on 2 Ω-cm float zone silicon solar cells with a similar screen-printed Al-BSF 

[106].   Table 11 shows that the minimum bulk diffusion  

length in average regions of cell b3-4 fired in the belt furnace is 197 µm and 411 µm for 

cell 18-1 fired with RTF.  This result supports the theory that rapid cooling during RTF 

may improve the retention of hydrogen at defects and promote hydrogen  

passivation. 

Table 11. Results of Leff analysis and Lbulk estimate for cells 
fired in the belt furnace and by RTF. 

 

Cell Firing Efficiency 
(%) 

Leff      
(µm) 

Minimum Lbulk* 
(µm) 

b3-4 belt furnace 12.8 212 197 
18-1 RTF 13.8 544 411 

* - Denotes estimate value 

 

5.3.3 Analysis of electrical activity of defects in String Ribbon solar cells with RTF 

and belt fired contacts 

LBIC scans were made on cells taken from consecutive sections of the ribbon to 

identify differences in defect activity due to contact firing.  After the SiNx:H/Al 

hydrogenation at 850°C, cell 16-1 was subjected to RTF while cell 1-3 underwent  
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Figure 39.  LBIC maps of String Ribbon solar cells from the same 
ribbon showing improved passivation of intergrain and 
intragrain defects by RTF. 
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belt contact firing.  The LBIC maps of these cells, shown in Figure 39, demonstrate that 

these cells have similar crystallographic defect structures.  The LBIC response reveals 

that intragrain regions improve from 0.58 A/W to 0.64 A/W due to RTF.  Figure 39 also 

shows a defect whose activity decreases as the defect extends from cell 1-3 into cell 16-1.  

The reduced electrical activity of defects and the improvement in average cell efficiency 

(13.8% vs. 12.6%) suggest that RTF is more effective in retaining the hydrogenation 

introduced during the 850°C simultaneous Al/SiNx:H anneal.  In accordance with our 

model, these results suggest that the fast cooling rate associated with RTF improve the 

retention of hydrogen after the initial Al-enhanced SiNx:H-induced hydrogenation.  The 

slow ramp rates in belt furnace contact firing result in dehydrogenation of defects, 

increasing their electrical activity.   

 

5.4 Conclusions 

The results of this study demonstrate the importance of two components of the 

proposed physical model for SiNx:H-induced hydrogenation, namely Al-Si alloying and 

hydrogen retention.  While full Al coverage of the backside of samples results in the 

maximum spatially averaged lifetime enhancement of 219%, it causes 100 µm thick 

substrates to bow during Al-Si alloying.  Partial Al coverage eliminates wafer bowing, 

but decreases the spatially averaged lifetime enhancement to 80% and validates the 

importance of Al during hydrogenation.  This study also showed that the SiNx:H-induced 

defect passivation can be improved by rapidly cooling samples after the hydrogenation 

anneal even when no Al is present on the back.  Rapid cooling increases the retention of 

hydrogen at defects, improving defect passivation.  RTF improves String Ribbon cell 
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efficiency by 1.2%, on average, over slower belt furnace contact firing.  The efficiency 

improvement is the result of improved Jsc, Voc, and FF.  Based on our model for Al-

enhanced hydrogenation, the improved bulk defect passivation during RTF is due to the 

fast cooling rate after the firing, which improves the retention of hydrogen at defects in 

the material.  LBIC mapping and Leff analysis of long wavelength differential IQE data 

confirm that RTF improves bulk and possibly surface passivation.  An estimate of the 

minimum bulk diffusion length ranges from 99-197 µm for belt furnace fired cells to 247-

411 µm for RTP fired cells.  LBIC analysis also identified a reduction of the electrical 

activity of defects supporting the idea that RTF is more effective in retaining the 

hydrogenation introduced in the 850°C simultaneous Al/SiNx:H anneal.  The difference is 

largely attributed to a long contact firing time and slower cooling rate (4°C/s) during the 

belt process used in this study, which increases the dehydrogenation of defects.   



CHAPTER 6  

 

Investigation of the Deposition Conditions of 

SiNx:H to Maximize Defect Passivation 

 

In Chapter 5, the proposed model for SiNx:H-induced hydrogenation was 

experimentally validated by demonstrating the importance of Al alloying during 

hydrogenation and the positive impact of rapid cooling.  Rapid cooling was implemented 

using RTP to fabricate manufacturable String Ribbon solar cells with efficiencies as high 

as 14.7%.  While this is a noteworthy achievement, the efficiency is still below the 

targeted cell efficiencies of 16-17%.   The solar cell simulations in Figure 19 indicate that 

additional cell performance enhancement up to 16 % is possible with further lifetime 

improvement up to 75 µs if Sb is 100 cm/s to 300 cm/s.  In this chapter, the proposed 

model for hydrogenation will be further examined to identify direction and means for 

further lifetime enhancement.  One component of the model that has not yet been fully 

explored is the supply of hydrogen from the deposition and anneal of the PECVD SiNx:H 

film.  In this chapter, a low-frequency SiNx:H film will be examined in order to increase 

the supply of H in the substrate and improve hydrogenation of defects in String Ribbon.  

The parallel plate PECVD reactor used in the experiments in Chapters 4 and 5 operated at 

a plasma excitation frequency of 13.56 MHz and had a throughput of fewer than 20 
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wafers per hour.  The horizontal tube reactor design, shown in Figure 26, operates at 

frequencies below 500 kHz and has a throughput nearly 10 times that of the parallel plate 

reactor.  Excitation frequency is an important parameter in PECVD film deposition and 

has been used to control the quality of SiNx:H used as an interlayer dielectric or 

passivation film in integrated circuit technologies.  During low frequency PECVD film 

deposition, the oscillation of the RF field is slow enough that ions are accelerated in one 

direction for a longer time and bombard the substrate with a higher energy.  It has been 

shown that mixing high-frequency and low-frequency plasma excitation during PECVD 

SiNx:H film deposition improves chemical reactions, increases film density, and changes 

the state of film stress from tensile to compressive [107].  Of importance to Si solar cells 

is the ion bombardment during low frequency PECVD, which may increase H 

incorporation during SiNx:H deposition, and improve hydrogenation of defects in Si.  Ion 

bombardment also creates surface damage and traps for hydrogen that enable 

incorporation of H during SiNx:H deposition [108].  A theoretical model to fit 

experimental diffusion profiles of H in Si has been developed by Sopori et al. [85].  This 

model considers the capture of hydrogen at bulk and processing induced surface traps 

created during SiNx:H deposition, and the release of hydrogen from traps during heat 

treatment [85].  In this chapter, the hydrogenation of defects in String Ribbon Si from the 

deposition and anneal of low and high frequency SiNx:H films will be studied.  To 

understand the mechanisms during hydrogenation from the two types of nitride films, the 

release of hydrogen from the nitride films during heat treatment will be measured by 

FTIR.  In addition, secondary ion mass spectroscopy (SIMS) will be used to measure the 

depth profile of deuterium in Si substrates after nitride deposition from SiH4 and 
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deuterated ammonia (ND3) gases.  Deuterium is substituted for hydrogen in this study 

because deuterium is a stable isotope of hydrogen and has one neutron making its mass 

two times greater than of hydrogen, enabling its detection by SIMS analysis.  The goal of 

this chapter is to increase the supply of H during hydrogenation and improve defect 

passivation to enhance the lifetime in String Ribbon to over 80 µs. 

  
 

6.1 Comparison of defect passivation from low-frequency and 

high-frequency PECVD reactors 

It has been shown that the anneal of high-frequency (13.56 MHz) SiNx:H films 

increases the lifetime in String Ribbon to over 30 µs when Al alloying occurs on the back 

surface.  Without Al alloying, the lifetime enhancement after high-frequency SiNx:H-

induced hydrogenation reaches only 12 µs.  In this section a SiNx:H film deposited at 

low-frequencies is investigated in order to increase the supply of hydrogen and increase 

the lifetime to 100 µs or higher.  To assess the degree of defect passivation, 300 µm-

thick, 3 Ω-cm p-type String Ribbon samples were cleaned using the solutions listed in 

Appendix A.  Then, a P diffusion was performed at 893°C in a tube furnace using a 

POCl3 liquid source to achieve a sheet resistance of 40-45Ω/sq.  Sample were cleaned 

after P diffusion and a PECVD SiNx:H film was deposited on String Ribbon Si samples 

using a parallel plate PECVD reactor operating at high-frequency (13.56 MHz) or a 

horizontal tube PECVD system operating at low-frequency (50 kHz).  The relevant  
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Table 12. Deposition parameters for HF and LF SiNx:H depositions and in-situ NH3 
plasma pretreatments. 

 Deposition Parameter HF SiNx:H LF SiNx:H 
Plasma excitation 

frequency 13.56 MHz 50 kHz 

Temperature 300°C 430°C 

Plasma Power 30 W 150 W 

Pressure 0.9 Torr 2 Torr 

SiH4 flow rate 320 sccm  
(2% SiH4 in N2) 

300 sccm  
(100% SiH4) 

NH3 flow rate 6.0 sccm 300 sccm 

N2 flow rate 900 sccm 0 sccm 

SiNx:H 
deposition 

Deposition time 6.75 min 4.1 min 
Plasma excitation 

frequency 13.56 MHz 50 kHz 

Temperature 300°C 430°C 

Plasma Power 250 W 250 W 

Pressure 0.9 Torr 1.5 Torr 

NH3 flow rate 6.0 sccm 1000 sccm 

N2 flow rate 900 sccm 0 sccm 

NH3 plasma 
pretreatment 

Pretreatment time 2.0 min 2.0 min 
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parameters for high-frequency (HF) and low-frequency (LF) SiNx:H deposition are 

provided in Table 12.  To increase hydrogen incorporation in Si, selected samples were 

subjected to an NH3 plasma pretreatment performed at low- and high frequency before 

SiNx:H deposition.  The plasma processing parameters for the NH3 plasma pretreatment 

steps before LF and HF SiNx:H deposition are also given in Table 12.  After SiNx:H 

deposition, String Ribbon samples were annealed in an RTP system at temperatures in the 

range of 650-850°C to the drive hydrogen from the SiNx:H film.  To investigate Al-

enhanced hydrogenation with LF and HF SiNx:H, an Al paste (Ferro 53-038) was screen-

printed on the back of selected String Ribbon wafers before RTP heat treatment.  After 

heat treatment, the Al, n+, and p+ layers were removed by chemical etching and samples 

were cleaned before post-processing lifetime measurement using the solutions listed in 

Appendix A. 

6.1.1 Beneficial effect of in-situ NH3 plasma pretreatment on lifetime 

enhancement during low- and high-frequency SiNx:H-induced 

hydrogenation 

To investigate the effect of an in situ-NH3 plasma pretreatment step prior to LF and 

HF SiNx:H deposition, lifetime measurements were performed after heat treatment of 

SiNx:H coated samples with and without pretreatment.  After NH3 plasma pretreatment 

and SiNx:H film deposition, Al was printed on the back of all samples.  The samples 

coated with LF and HF SiNx:H were annealed in RTP at optimum temperatures of 740°C 

and 800°C respectively.  The identification of the optimum hydrogenation anneal 

temperatures for LF and HF SiNx:H films is described in Chapter 7.  Figure 40 shows that 
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Figure 40. Effect of in-situ NH3 plasma pretreatment before LF and HF 
SiNx:H deposition on lifetime enhancement.  The as-grown 
lifetime was 5 µs. 

without pretreatment, LF SiNx:H-induced hydrogenation increased the lifetime to 63 µs, 

while anneal of HF SiNx:H increased the lifetime to only 20 µs.  This result indicates that 

the deposition and anneal of LF SiNx:H is more effective in passivating defects in String 

Ribbon.  Recently, it has been shown that LF SiNx:H is more effective than HF SiNx:H in 

reducing the recombination activity of defects in mc-Si solar cells [109].  The 

effectiveness of the LF SiNx:H hydrogenation  may be due to an increased supply of 

hydrogen in the SiNx:H film or hydrogen incorporation in Si during SiNx:H deposition.  

The hydrogen content in SiNx:H films and the incorporation of H during PECVD SiNx:H 

deposition are analyzed in Sections 6.2 and 6.3.  Figure 40 shows that the addition of an 

NH3 plasma pretreatment step improves the SiNx:H-induced lifetime enhancement for 

both LF and HF SiNx:H films, but was more beneficial for LF SiNx:H-induced 
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hydrogenation.  The pretreatment step before LF SiNx:H deposition improved the lifetime 

by 29 µs, resulting in a final lifetime of 92 µs.  The HF-pretreatment was not as effective 

and provided a lifetime increase of only 7 µs, and a final lifetime of 27 µs.   

6.1.2 Impact of simultaneous Al alloying on low-frequency and high-

frequency SiNx:H-induced hydrogenation 

In Chapter 4, it was shown that Al plays an important role in HF SiNx:H-induced 

hydrogenation.  However Al alloying causes thin wafers (100 µm) to bow, preventing the 

implementation of Al-enhanced hydrogenation on thin solar cells.  Wafer bowing during 

Al alloying can be eliminated if the Al coverage fraction is reduced to 75%.  

Unfortunately, as shown in Section 5.1, decreasing the Al coverage fraction also reduces 

the degree of defect passivation.  There is a need to develop an effective defect 

hydrogenation process that does not require Al, or depend on it strongly.  In this section, 

LF SiNx:H-induced hydrogenation is studied to determine if Al plays a significant role in 

hydrogenation.  Figure 41 shows the lifetime enhancement from a LF and HF SiNx:H 

films with and without Al alloying on the back of String Ribbon wafers.  The lifetime 

after HF SiNx:H-induced hydrogenation at 800°C without Al was only 9 µs and is 

consistent with the results in Chapter 4.  When Al was present on the back during HF 

SiNx:H-induced hydrogen, the lifetime reached 29 µs, once again demonstrating Al-

enhanced hydrogenation.  Figure 41 shows that hydrogenation during the anneal of LF 

SiNx:H film at 740°C increased the lifetime to 91 µs even when no Al is present on the 

back.   When Al is present on the back of the wafer during LF SiNx:H-induced 

hydrogenation at 740°C, the lifetime increased to 106 µs.  The relatively small difference 

in the lifetime of samples with and without Al (15 µs) indicates that Al does not play as 
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Figure 41. Impact of Al on hydrogenation of String Ribbon Si from low- and 
high-frequency PECVD SiNx:H. The as-grown lifetime was 5 µs.   

significant a role in hydrogenation from LF SiNx:H as it does in the case of HF SiNx:H-

induced hydrogenation.  In accordance with the proposed model, Al may not play a vital 

role in hydrogenation if there is a large supply of hydrogen.  If LF SiNx-induced 

hydrogenation increases the supply of hydrogen in Si, then Al-induced dissociation of 

molecular hydrogen by vacancies and the enhanced transport of hydrogen in Si may not 

be required for effective hydrogenation.  The results in this section demonstrate that 

hydrogenation from the LF SiNx:H film provides an additional lifetime enhancement and 

is less dependent on the presence of Al, presumably due to an increased supply of 

hydrogen.    
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6.2 Quantitative assessment of the release of bonded hydrogen 

from low- and high-frequency SiNx:H films 

To determine if the enhanced hydrogenation from LF SiNx:H films is due to a greater 

supply of hydrogen from SiNx:H,  the release of hydrogen from LF and HF SiNx:H films 

was measured by FTIR.  Before FTIR measurements, 300 µm-thick, 500 Ω-cm n-type 

float zone Si wafers were cleaned in the solutions listed in Appendix A.  After cleaning, 

wafers were coated with LF and HF SiNx:H films as described in Section 6.1.1 using the 

deposition parameters in Table 12.  An NH3 plasma pretreatment was performed before 

LF SiNx:H deposition, while no pretreatment was performed before HF SiNx:H 

deposition.  A DigiLab FTS 6000 FTIR was used to collect FTIR spectra, and the 
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Figure 42. Bonded H content in as-deposited LF and HF SiNx:H. 

 



DigiLab Win-IR Pro software was used to calculate the area under the Si-H and N-H 

peaks located at 2160  cm-1 and 3350 cm-1, respectively.  The total bonded hydrogen 

content in SiNx:H films was determined by calculating the Si-H and N-H bond densities 

as described in Ref. 83.  Figure 42 shows that the hydrogen content in HF and LF SiNx:H 

films is 2.0 x 1022 cm-3 and 4.1 x 1021 cm-3 respectively.  This suggests that there is more 

hydrogen available in HF SiNx:H for defect passivation, even though the results in 

Section 6.1 clearly show that LF SiNx:H-induced hydrogenation is more effective.  Figure 

43 shows the bonded hydrogen content in HF and LF SiNx:H films after heat treatment in 

RTP at temperatures in the range of 650-850°C.  After anneal at 600°C, the bonded 

hydrogen content in HF SiNx:H films drops to  3.6 x 1021 cm-3, a decrease of 82% when 

compared to the as deposited film.  This result indicates that most of the hydrogen in HF 

Figure 43. Decrease in the bonded H content in LF and HF  
SiNx:H films as a function of anneal temperature.  The 
anneal time was 60 s. 
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SiNx:H films is released at or below 600°C and the hydrogen content decreases at a rate 

of 1 x 1021 cm-3 for every 100°C increase of temperature.  Figure 43 shows that after 

anneal at 600°C, the hydrogen content in LF SiNx:H films is essentially unchanged from 

the as-deposited state.  Further increase in the anneal temperature releases of hydrogen at 

a rate of 9 x 1020 cm-3 for every 100°C increase of the anneal temperature.  These results 

show that not only is there more hydrogen in HF SiNx:H after deposition, hydrogen is  

easily released from this film during the same heat treatment.  Thus it must be concluded 

that the ability of a SiNx:H film to provide defect hydrogenation cannot be judged solely 

on the bonded hydrogen content in the nitride film.   

 

6.3 Demonstration of hydrogen incorporation near the Si 

surface during PECVD SiNx:H deposition 

Section 6.1 showed that LF SiNx:H-induced hydrogenation is more effective than HF 

SiNx:H even though there is less hydrogen released from HF SiNx:H films.  This suggests 

that there may be an additional source of hydrogen that is responsible for the enhanced 

bulk defect passivation provided by LF SiNx:H films.  In this section, hydrogen 

incorporation in Si is measured after LF and HF SiNx:H deposition by SIMS depth 

profiling. Deuterated ammonia (ND3) was substituted for NH3 during LF and HF SiNx:H 

deposition in order to detect deuterium incorporation.  SiNx:H was deposited using LF 

and HF PECVD on mirror polished, 8 Ω-cm p-type Czochralski Si wafers.  After 

deposition, SiNx:H films were removed in dilute HF and SIMS depth profiles of 

deuterium in Si were measured by the Surface Analysis Group at the National Renewable  
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Figure 44. SIMS depth profiles of deuterium in Si after      
deposition of LF SiNx:H at 300°C and anneal in RTP 
at 740°C for 60 s.
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Figure 45. SIMS depth profiles of deuterium in Si after deposition of 
LF and HF SiNx:H with and without in-situ ND3 plasma 
pretreatment.   

 



Energy Laboratory.  Figure 44 shows the deuterium profile in Si measured by SIMS after 

LF SiNx:H deposition at 300°C and anneal at 740°C for 1 minute. in RTP.  The detection 

limit for deuterium in these SIMS measurements is approximately 1015 cm-3.  Figure 44 

shows that the deuterium depth profile after deposition at 300°C has a surface 

concentration of 8 x 1018 cm-3 and can be detected up to 0.064 µm where the deuterium 

concentration reaches the detection limit.  The detection of deuterium incorporation in Si 

by SIMS after direct and remote PECVD SiNx:H deposition from deuterated reactant 

gases has also been recently reported by Refs. 110 and 111.  Ref. 110 reported a 

deuterium surface concentration of 1018 cm-3 and an incorporation depth of about 0.10 

µm after direct PECVD SiNx:H deposition.  Figure 44 also shows that the anneal at 

740°C for 1 minute. reduced the surface concentration of deuterium from 8 x 1018 cm-3 to 

3 x 1017 cm-3.  This result demonstrates that the hydrogen incorporated during PECVD 

deposition may act as an additional source of hydrogen.  The data in Figure 44 also 

shows that the presence of Al during the anneal does not result in significant change in 

the deuterium profile in Si.  The inability to detect enhanced deuterium diffusion due to 

Al may be due to the high detection limit (1015 cm-3) of the SIMS measurement.  

Recently, infrared spectroscopy has been performed on hydrogenated, Pt doped Si to 

determine the bulk concentration of H in Si after hydrogenation from the HF SiNx:H film 

used in this thesis [112].  The latest results show that the H concentration in the bulk of Si 

is in the range of 1-5 x 1013 cm-3 [112], and well below the detection limit of SIMS.  This 

result supports the idea that the extent of the deuterium profiles in this section cannot be 

fully detected by SIMS.  Figure 44 also shows the profile of deuterium in a Si wafer in 

which the SiNx:H film was removed in dilute HF before heat treatment.  The surface  
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Table 13. Dose and depth of deuterium incorporation in Si after LF and HF SiNx:H 
deposition. 

Processing Condition Dose 
(atoms/cm2) 

Depth 
(µm) 

HF SiNx:H without pretreatment 1.11 x 1011 0.064 

LF SiNx:H without pretreatment 1.30 x 1011 0.080 

HF SiNx:H with pretreatment 1.87 x 1012 0.079 

LF SiNx:H with pretreatment 1.63 x 1012 0.090 

concentration of deuterium in this sample after heat treatment is only 2 x 1016 cm-3, which 

is more than an order of magnitude lower than in the other samples that were annealed 

with the SiNx:H coatings.  This indicates that SiNx:H prevents the out diffusion of 

hydrogen during heat treatment.  Figure 45 shows the deuterium profile in Si under HF 

and LF SiNx:H films deposited with and without NH3  plasma pretreatment.  Figure 45 

shows that in spite of the different plasma excitation frequencies during deposition, there 

was only a small difference in the incorporation of deuterium in Si during LF and HF 

SiNx:H depositions.  In both HF and LF SiNx:H depositions, the surface concentration of 

deuterium was 4 x 1016 cm-3.  Table 13 shows that the dose of deuterium in Si after 

deposition from LF SiNx:H was slightly higher  (1.30 x 1011 cm-2) than the dose after HF 

SiNx:H (1.11 x 1011 cm-2).  The lifetime enhancement provided by LF SiNx:H-induced 

hydrogenation without pretreatment shown in Figure 40 may be only partly explained by 

the higher dose of hydrogen during LF SiNx:H deposition.  Also contributing to LF SiNx-

induced hydrogenation is deeper hydrogen incorporation that is expected during LF  
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SiNx:H because deposition is performed at a higher temperature (430°C).  The data in 

Figure 45 shows that the addition of an ND3 pretreatment increases deuterium 

incorporation resulting in a surface concentration of 8 x 1017 cm-3 for both HF and LF 

SiNx:H films.  The pretreatment also increases the dose of deuterium in Si to 1.87 x 1012 

cm-2 and 1.63 x 1012 cm-2 for HF and LF SiNx:H respectively.   Therefore the lifetime 

enhancement of 29 µs provided by NH3 pretreatment before LF SiNx:H deposition, 

shown in Figure 40, is attributed to enhanced hydrogen incorporation which increases the 

supply of hydrogen.  NH3 plasma pretreatment before HF SiNx:H deposition also 

enhances H incorporation as shown in Figure 45.  However, Figure 40 shows that NH3 

plasma pretreatment before HF SiNx:H deposition resulted in a lifetime enhancement of 

only 7 µs.  The small lifetime enhancement from NH3 pretreatment before HF SiNx:H 

deposition and anneal cannot be predicted from the SIMS data in Figure 45 and may be 

due to the lower deposition temperature (300°C) that prevents deep  H incorporation, 

undetectable by SIMS .   

 

6.4 Conclusions 

The results presented in this chapter show that LF SiNx:H-induced hydrogenation 

increases the lifetime in String Ribbon to 92 µs and 62 µs with and without in situ NH3 

plasma pretreatment, respectively.  It is shown that LF SiNx:H is more effective than HF 

SiNx:H-induced hydrogenation in passivating defects in String Ribbon because HF SiNx-

induced hydrogenation results in a lifetime of only 29 µs.  However, FTIR measurements 

of SiNx:H films showed that there is more bonded hydrogen in HF SiNx:H after 
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deposition and this hydrogen is more easily released during heat treatment.  Therefore the 

enhanced hydrogenation from LF SiNx:H cannot be explained by a larger supply of 

hydrogen in the LF SiNx:H film.  To identify an additional source of hydrogen to explain 

the lifetime enhancement, the incorporation of deuterium in Si during SiNx:H deposition 

was measured by SIMS.  The SIMS depth profile of deuterium in Si had a surface 

concentration of 8 x 1018 cm-3 after LF SiNx:H deposition at 300°C, and deuterium can be 

detected up to 0.064 µm.  Heat treatment after LF SiNx:H deposition reduced the surface 

concentration of deuterium suggesting that the incorporated hydrogen may act as an 

additional source of hydrogen during LF SiNx:H-induced hydrogenation.  When the 

SiNx:H film was removed before heat treatment, the surface concentration of deuterium 

drops to 2 x 1016 cm-3 after heat treatment, suggesting that the SiNx:H film helps to 

prevent out diffusion of hydrogen.   

The results of the lifetime studies in this chapter also show that the addition of a NH3 

plasma pretreatment step before nitride deposition improves the SiNx:H-induced 

hydrogenation for both LF and HF SiNx:H films.  The pretreatment step was more 

beneficial for LF SiNx:H-induced hydrogenation, providing an increase in the lifetime of 

29 µs and resulting in a final lifetime of 92 µs.  The plasma pretreatment increased 

deuterium incorporation for both HF and LF SiNx:H films and delivered a dose of 

deuterium in Si equal to 1.87 x 1012 cm-2 and 1.63 x 1012 cm-2 for HF and LF SiNx:H 

respectively.  The small difference in the lifetime of samples with and without Al during 

(15 µs) indicates that Al does not play a crucial a role in LF SiNx:H-induced 

hydrogenation.  This result can be explained by the proposed hydrogenation model only 

if there is a large supply of hydrogen.  The lifetime enhancement provided by three 
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processes cannot be explained on the basis of the deuterium profiles measured in this 

chapter.  First, the SIMS measurements were only able to detect a small difference in the 

incorporation of deuterium in Si under LF and HF SiNx:H even though LF SiNx:H 

hydrogenation results in a much higher lifetime.  Second, NH3 plasma pretreatment 

before HF SiNx:H deposition enhanced the hydrogen profile under the SiNx:H film, but 

did not dramatically increase the lifetime.  These results may be explained by H 

incorporation deep in Si that is not detectable by SIMS.  Deeper hydrogen incorporation 

is expected from the deposition of LF SiNx:H because it is performed at 430°C, while HF 

SiNx:H deposition is performed at 300°C.  The final process that cannot be explained by 

the SIMS data in this chapter is Al-enhanced hydrogenation.  Al alloying on the back of 

the wafer during hydrogenation did not alter the deuterium profile within the first 0.1 µm 

of Si as expected.  This may also be a result of the inability to measure the deuterium 

profile deeper in Si where Al alloying may enhance the transport of deuterium. To detect 

hydrogen at lower concentrations and support the proposed hydrogenation model, another 

profiling technique, such the infrared spectroscopy of Pt-H pairs presented in Ref. 112, 

must be used. 

 



CHAPTER 7 

 
Development of a Rapid Thermal Anneal (RTA) 

for Enhanced Low-frequency SiNx:H-induced 

Hydrogenation and High-efficiency String Ribbon 

Solar Cells 

 

Chapter 6 showed that SiNx:H-induced hydrogenation is more effective when the 

nitride is deposited using low-frequency plasma excitation.  Hydrogenation from a low-

frequency SiNx:H film annealed at 740°C for one minute resulted in a lifetime of 92 µs.  

With this lifetime, the simulations in Chapter 3 indicate that a solar cell efficiency greater 

than 16% can be achieved if the surface recombination velocity is 300 cm/s or less.  In 

this chapter, the optimum rapid thermal anneal (RTA) temperatures for LF SiNx:H-

induced hydrogenation is determined to understand the hydrogenation mechanism.  

During low-frequency SiNx:H deposition, ions in the plasma can follow the RF field and 

may be accelerated and implanted into the String Ribbon substrate.  However during 

high-frequency film deposition, reactant ions in the plasma are “frozen” with respect to 

the oscillation of the RF field and are not accelerated and implanted into the String 
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Ribbon substrate.  As a result, low-frequency SiNx:H deposition may increase the supply 

of H.  The data in Chapter 6 suggests that H in the substrate is redistributed and driven 

deeper in the substrate during heat treatment.  Sopori et al. [85] have proposed a model 

for the diffusion of hydrogen in Si that includes trapping and de-trapping of hydrogen at 

defect sites in Si.  This model is based on the formation of processing induced traps 

during PECVD film deposition and hydrogen trapping and de-tramping from these traps.  

Simulations based on the model of Sopori et al. demonstrate that the incorporated H is 

released from processing-induced traps near the surface when the sample is annealed 

[85].  This model along with the model proposed in Chapter 4 will be used to understand 

the development of an optimum hydrogenation temperature.  The optimum 

hydrogenation temperature may be the result of competition between the supply of H to 

defects and the retention of H at defects.  The optimum hydrogenation temperature is also 

studied through the fabrication and analysis of String Ribbon solar cells.   

String Ribbon solar cells are made with a two-step contact firing scheme in order to 

obtain optimum hydrogenation and high-quality screen-printed contacts.  The 

performance of these solar cells experimentally demonstrates the importance of lifetime 

enhancement on cell performance.  The optimum hydrogenation anneal temperature is 

implemented in a two-step contact firing scheme to fabricate high-efficiency String 

Ribbon solar cells with screen-printed contacts.  A room temperature scanning 

photoluminescence mapping technique is employed to characterize the defect passivation 

in String Ribbon samples and further support the optimum hydrogenation temperature.  

Then, RTA of pre-hydrogenated String Ribbon samples is performed to understand the 
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retention of H at defects.  Finally the RTA time is reduced to merge the hydrogenation 

anneal and Ag contact firing, without significantly reducing the lifetime enhancement.       

 

7.1 Optimization of the RTA temperature for low-frequency 

SiNx:H-induced hydrogenation of defects in String Ribbon 

This section focuses on the optimization of the RTA temperature for LF SiNx:H-

induced hydrogenation.  The objective of the carrier lifetime optimization study in this 

section is to gain insight on the HF and LF SiNx:H-induced hydrogenation mechanisms 

that are at play during RTA at various anneal temperatures.  To understand the 

hydrogenation mechanisms, the lifetimes of String Ribbon samples are measured after 

HF and LF SiNx:H-induced hydrogenation at temperatures in the range of 600°C to 

900°C.  The results of this study are then interpreted with the aid of the proposed model 

for hydrogenation.  Then String Ribbon solar cells are fabricated to demonstrate the 

significance of lifetime enhancement that results from LF SiNx:H-induced hydrogenation.  

A two-step firing scheme is implemented in order to study the effect of hydrogenation in 

String Ribbon solar cells independent of Ag grid firing.  Step 1 provides effective 

SiNx:H-induced hydrogenation and is designed to have a fast ramp-up rate (50°C/s) to 

improve Al-BSF quality, but is not suitable for sintering the Ag contacts.  Step 2, also 

performed in RTP, is designed for optimal Ag contact sintering and high retention of 

hydrogen at defects introduced in Step 1.  In this section, cells benefit from optimized 

RTP cycles designed for PECVD SiNx:H-induced hydrogen passivation of bulk defects, 

good ohmic contacts, and the formation of an effective Al-BSF.  Finally in this section, 

 127 



the reduction of the electrical activity of defects in String Ribbon due to hydrogen 

passivation is assessed by a room-temperature scanning photoluminescence technique.  

This measurement is performed before and after LF SiNx:H hydrogenation on String 

Ribbon silicon to demonstrate maximum defect passivation at the optimum 

hydrogenation anneal temperature.  

Substrates for the carrier lifetime and scanning photoluminescence studies, and solar 

cell fabrication were  ~300 µm thick,  ~3 Ω-cm String Ribbon Si grown by Evergreen 

Solar.  After substrate growth, P diffusion was performed on all samples in a conveyor 

belt furnace at Evergreen Solar to form the n+-emitter with a sheet resistance of 45-50 

Ω/sq.  A LF SiNx:H film was deposited on top of the n+-emitter of all samples in 

commercial low-frequency (kHz range) PECVD at Evergreen Solar with refractive index 

of 2.0 and thickness of 780 Å.  A commercial Al paste (Ferro FX-53-038) was printed on 

the entire backside of all wafers and annealed in a single wafer RTP system at 

temperatures in the range of 600-800°C.  This simultaneous anneal of Al and SiNx:H 

involves fast a ramp-up rate (50°C/s) and cooling rate (30°C/s) to promote and enhance 

PECVD SiNx:H-induced hydrogen passivation of defects in Si.  Samples coated with LF 

SiNx:H were annealed at 700°C for one second after hydrogenation to simulate two-step 

RTP firing.  To complete fabrication of solar cells, a grid pattern was screen printed using 

a commercial Ag paste (Ferro 3349) on top of the SiNx:H AR coating and fired through 

SiNx:H rapidly at 700oC for one second in RTP to form ohmic contact to the n+-emitter.  

Solar cells were isolated using a dicing saw and annealed in forming gas (10% H2 in N2) 

at 400oC for ~10 min.  In order to determine the minority carrier lifetime in finished solar 

cells, the metallization, SiNx film, and diffused layers were removed using the solutions 
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listed in Appendix A.  QSSPC lifetime measurements were performed with Si samples 

immersed in a solution of 70 mg of I2 in 250 mL of methanol.   

7.1.1 Effect of anneal temperature on lifetime enhancement provided by 

HF and LF SiNx-induced hydrogenation   

The lifetime of String Ribbon substrates after SiNx:H-induced hydrogenation with Al 

on the back surface at temperatures in the range of 700-900°C is shown in Figure 46.  

Samples coated with LF SiNx:H were annealed at 700°C for one second after 

hydrogenation to simulate two-step RTP firing.  The first observation that can be made 

from Figure 46 is that LF SiNx:H-induced hydrogenation is superior to HF SiNx:H-

induced hydrogenation for all temperatures investigated. At 700°C the hydrogenation 
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Figure 46. Lifetime enhancement from HF and LF SiNx:H 
for hydrogenation anneals performed at 700-
900°C.  The average as-grown lifetime was 3 µs. 
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from LF SiNx:H results in an average lifetime of 35 µs in String Ribbon.  As the anneal 

temperature is increased to 720°C, the average lifetime after LF SiNx:H-induced 

hydrogenation increases to 47 µs, and reaches a maximum of 65 µs at 740°C.  This 

increase in lifetime up to 740°C is attributed to the release of H from the SiNx:H film and 

from the surface of Si as shown in Chapter 6.  Figure 46 also shows that defect 

hydrogenation from HF SiNx:H films annealed at 700°C to 750°C results in average 

lifetimes of only 10-13 µs.  The average lifetime increases to a maximum of 29 µs when 

the anneal temperature reaches 800°C, likely due to the greater release of bonded 

hydrogen from the HF SiNx:H film.  The increase in the release of bonded hydrogen from 

HF SiNx:H was  measured by FTIR and plotted in Figure 43.  The lifetime decreases after 

hydrogenation above 740°C and 800°C for LF and HF SiNx:H-induced hydrogenation 

respectively.  This decrease in lifetime is probably due to the low retention of H in Si at 

high temperatures, resulting in the dehydrogenation of defects.  Dehydrogenation of 

defects causes the lifetime to decrease to 25 µs and 15 µs after LF and HF SiNx:H-

induced hydrogenation at 800°C and 900°C respectively.  The key observations in Figure 

46 are: a) both LF and HF SiNx:H nitride films exhibit an optimum anneal temperature; 

and b) the optimum anneal temperature is different for the two films.   

Figure 46 suggests that there are competing factors in the LF and HF SiNx:H 

hydrogenation processes that lead to the optimum hydrogenation temperatures. The 

optimum hydrogenation temperatures (T*
LF and T*

HF) observed in String Ribbon Si may 

be the result of competition between the release of H from SiNx:H and H traps in Si, and 

the retention of H at defects in Si.  The release of H from traps created during solar cell 

processing is predicted by the model of Sopori et al [85].  This model proposes that H is 
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Figure 47. Illustration of the formation of the optimum 
hydrogenation anneal temperature from the competition 
between H incorporation and retention.

trapped and “stored” in Si after SiNx:H deposition.  Simulations based on this model 

show that stored H is released during heat treatment at 800°C and may diffuse throughout 

the wafer in 10 s when the density of H traps in the bulk is 1016 cm-3[85].  The 

competition between the supply of hydrogen released from the SiNx:H film and stored in 

H traps in Si and H retention at defects is illustrated in Figure 47.  Hydrogenation from 

LF-SiNx:H and HF-SiNx:H SiNx films is represented by two H incorporation curves. The 

incorporation of H from both LF-SiNx:H and HF-SiNx:H films increases with anneal 

temperature because more hydrogen is released from the SiNx:H film. However, more H 

may be available in the case of LF-SiNx if there is larger incorporation of H in Si during 

SiNx deposition.  At temperatures below the optimum, hydrogenation of bulk defects is 

limited by the low release of atomic hydrogen from the SiNx:H film and H stored in Si.  

As the anneal temperature is increased, more hydrogen is released from the SiNx:H film 
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and H traps in Si.  Additionally, Al-Si alloying may begin to play a role in hydrogenation 

as proposed in Chapter 4.  Vacancies may be generated by the Al alloying process, and 

may enhance hydrogenation by increasing the flux of hydrogen into Si and dissociate H2 

into H.  Additionally, the high solubility of H in the Al-Si melt may enhance the transport 

of H deep in Si.  However, as shown in Chapter 6, Al plays a small role in LF SiNx:H-

induced hydrogenation, probably due to the increased supply of H.  Opposing H 

incorporation is the retention of H at defect sites in Si.  It is well know that H evolves 

from defect sites in Si at temperatures above 400°C [4.13].  The retention of H at defect 

sites decreases as the anneal temperature increases and is represented by the gray curve in 

Figure 47, and may be influenced by the cooling rate after the anneal. The optimum 

anneal temperature for LF and HF SiNx:H-induced hydrogenation occur at the 

intersection of the H retention line and H incorporation lines for LF-SiNx:H and HF-

SiNx:H.  Therefore, the optimum hydrogenation temperature represents a balance 

between the release of hydrogen from trap sites and the SiNx:H film and the retention of 

hydrogen at electrically active defects in Si. The optimum hydrogenation temperature for 

LF SiNx:H is lower because Si subsurface damage provides additional source of 

hydrogen and the defect passivation is strongly limited by the retention.  

7.1.2 Assessment of the impact of LF SiNx:H-induced hydrogenation on 

String Ribbon Si solar cell performance  

In this section, the effect of the hydrogenation anneal temperature will be investigated 

in String Ribbon solar cells to demonstrate the significance of lifetime enhancement 

shown in Figure 46.  Fabrication of String Ribbon solar cells with co-firing the Al and Ag 

contacts at temperatures above 700°C damages the junction and reduces the fill factor.   
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Therefore, in order to fabricate String Ribbon solar cells with the optimum SiNx:H-

induced hydrogenation, a two-step firing scheme is implemented.  The effect of the RTA 

anneal temperature on the average Voc of screen-printed 49-cm2 String Ribbon cells is 

shown in Figure 48.   Figure 48 shows that two-step firing in which the hydrogenation 

anneal (Step 1) is performed at temperatures in the range of 600°C to 700°C improves the 

Voc of String Ribbon cells by only 4-7 mV over co-fired cells.  As the hydrogenation 

anneal (Step 1) temperature is increased to 740°C, the average Voc of String Ribbon cells 

increases to 596 mV, a 13 mV improvement over co-firing.  As the anneal temperature is 

increased further to 800°C, the Voc decreases to 582 mV, a decrease of 1 mV when 

compared to co-firing.  The results in Figure 48 show that the optimum hydrogenation 

temperature for String Ribbon solar cells is 740°C, consistent with the optimum 

temperature of LF SiNx:H-induced hydrogenation shown in Figure 46.  This confirms 

that the lifetime enhancement from LF SiNx:H is significant and beneficial to String 

Ribbon solar cell performance.  The implementation of the two-step firing scheme with 

the optimized hydrogenation temperature of 740°C has resulted in 4-cm2 screen-printed 

String Ribbon solar cells with efficiencies as high as 15.6% (verified by NREL), as 

shown in Figure 49.   

7.1.3 Analysis of SiNx:H-induced hydrogenation of defects in String 

Ribbon by room temperature scanning photoluminescence  

Room temperature scanning photoluminescence (PL) is a technique that has been 

used to assess the electronic quality of mc-Si substrates.  In this section, room 

temperature scanning PL is employed to further characterize and understand defect 

hydrogenation during LF SiNx:H-induced hydrogenation.  The PL spectrum of mc-Si 
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wafers at room temperature, under AlGaAs laser excitation, is generally composed of two 

broad bands: band-to-band emission which shows a maximum at 1.09eV, and a defect 

band PL observed at ~0.8eV  [113]. The intensity of band-to-band emission, Ibb, and the 

defect band, Idef, can be expressed as follows [113] 

rad

eff
bb GCI τ

τ
××= 1

(36)

( ) 1−= nthdefSRH vN στ

SRH

eff
def GCI τ

τ
××= 2

(37)

(38)

where C1 and C2 are temperature dependent constants, G is the carrier generation rate, τeff 

is the effective minority carrier lifetime including surface and bulk contributions, τSRH is 

the radiative component of the Shockley-Read-Hall (SRH) lifetime, σn is the electron 

capture cross section, vth is the electron thermal velocity, and Ndef is the active defect 

concentration.  Equations 36 and 37 show that Ibb is proportional the effective lifetime of 

minority carriers, and Idef is inversely proportional to the radiative SRH lifetime.  Thus a 

PL map of a typical mc-Si wafer will show regions of good lifetime as high Ibb.  Idef is 

localized in low-lifetime regions and gives inverse contrast to Ibb and lifetime maps [113].  

The defect band has been attributed to luminescence of dislocations decorated with a low 

level of impurity contamination [114]. The point-by-point ratio of the two PL intensities, 

R= Idef/Ibb, at a given illumination intensity is proportional to the concentration of 

electrically active defects, is given by (39) and is independent of surface or other bulk 

recombination channels [113]. 
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(39)
defNR ×= constant

In this study, 56 cm2 String Ribbon samples were prepared as described in Section 

7.1.  PL maps of the String Ribbon samples were measured by S. Ostapenko and I. 

Tarasov at the University of South Florida using an AlGaAs laser diode (λex = 804nm) as 

the excitation source.  The PL mapping was performed after SiNx:H deposition prior 

RTA, and after RTA at temperature in the range of 640°C to 800°C.  

Figure 50 [115], shows the PL maps of Ibb (a, b) and Idef (c, d) and the R-parameter (e, 

f) measured on one representative sample, C2, before and after LF SiNx:H-induced 

hydrogenation at 740°C for one minute in RTP.  Figure 50 shows that Ibb and Idef increase 

across the wafer after RTA in sample C2.  The increase of both Ibb and Idef  after RTA is 

attributed to τeff enhancement, and has also been observed in PL maps before and after 

EFG solar cell processing [113]. The ratio of the average Ibb, Idef, and R-parameter for 

String Ribbon samples before and after RTA at various temperatures is shown in Table 

14 [115].  The ratio of Ibb, proportional to lifetime enhancement, has a maximum value in 

samples B2 and C2, which were annealed at 740°C.  This maximum is consistent with the 

maximum lifetime and Voc enhancement also observed at 740°C, shown in Figures 46 

and 48.   

Figures 50 (e) and (f) [115] show the maps of the R-parameter for sample C2 before 

and after LF SiNx:H-induced hydrogenation.  It has been shown that the R-parameter is 

proportional to the concentration of electrically active dislocations in mc-Si [113, 114].  

Figure 50  (e) and (f) show that the R-parameter across sample C2 decreases after  
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InitialDef
RTPDef  1.28 1.16 1.57 1.90 1.15 1.26 1.03 
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InitialR
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W A1 A2  B1  B2  C2  D1  D2  afer ID 

Figure 50. Room temperature PL mapping of (a,b) band-to-band 
intensity; (c,d) “defect” PL intensity, and (e,f) R-parameter 
measured before and after RTA at 740°C for 60 s in sample 
C2 [115]. 

Table 14. Ratio of average PL intensities measured on LF SiNx:H coated String Ribbon 
samples before and after RTA at 640°C, 700°C, 740°C, and 800°C [115]. 



hydrogenation at 740°C for 1 minute.   A point-by-point ratio of the two PL intensities, 

R= Idef/Ibb, was calculated and averaged across each sample in Table 14 [115] to quantify 

the effect of LF SiNx:H-induced hydrogenation on defect activity.  In Table 14, the 

reduction of the active “defect” concentration after RTA is expressed through the ratio of 

the average R-parameter before and after RTA.   Table 14 shows that the ratio of the 

average R-parameter before and after RTA decreases for all samples, with the maximum 

reduction (RRTP/RInitial = 0.33) occurring in sample B2, annealed at 740°C.  Since the R-

parameter is proportional to the active dislocation density, this result indicates that the 

initial active dislocation density in sample B2 has been reduced by 67% by LF SiNx:H-

induced hydrogenation.   

 

7.2 Optimization of the RTA time during LF SiNx:H-induced 

hydrogenation 

 

In Section 7.1, it was shown that the optimum anneal temperature for LF SiNx:H-

induced hydrogenation in String Ribbon is 740°C.  The implementation this optimum 

hydrogenation anneal for high-efficiency solar cells required a two-step RTA firing 

scheme because prolonged firing of Ag contacts (>10 s) damages the n+-p junction.  If the 

hydrogenation anneal time can be reduced without degrading the lifetime enhancement, 

then hydrogenation, Al-BSF formation, and Ag grid firing can be performed in one step. 

In this section, the RTA time is reduced in an effort to merge hydrogenation, Al-BSF 

formation, and Ag grid firing.   In addition to reducing the number of thermal processing 

steps, the RTA time has important consequences on hydrogenation.  In this section the 
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effect of anneal time on the retention of hydrogen at defects is studied by lifetime 

measurements after successive anneals of pre-hydrogenation String Ribbon samples. 

Then the effect of RTA time during LF SiNx:H-induced hydrogenation on lifetime 

enhancement is investigated.  Finally String Ribbon solar cells are fabricated with a very 

short hydrogenation time.   The front contacts in these solar cells are applied by 

photolithography and lift-off evaporation to avoid dehydrogenation of defects during Ag 

grid firing.  To assess the effect of RTA time on defect passivation, 300 µm-thick, 3 Ω-

cm p-type String Ribbon samples grown by Evergreen Solar were cleaned using the 

solutions listed in Appendix A.  Then, P diffusion was performed at 893°C in a tube 

furnace using a POCl3 liquid source to achieve a sheet resistance of 40-45Ω/sq.  For solar 

cells with photolithography-defined contacts, the P diffusion temperature was reduced to 

achieve a sheet resistance of 80-85Ω/sq.  Sample were cleaned after P diffusion and a LF 

SiNx:H film was deposited on String Ribbon Si samples using a horizontal tube PECVD 

system operating at 50 kHz.  The relevant parameters for LF SiNx:H deposition are 

provided in Table 12.  Samples were subjected to an in situ NH3 plasma pretreatment 

performed at 50 kHz before SiNx:H deposition.  The plasma processing parameters for 

the in situ NH3 plasma pretreatment steps before LF SiNx:H deposition are also given in 

Table 12.  After SiNx:H deposition, an Al paste (Ferro 53-038) was screen-printed on the 

back of all String Ribbon samples.  String Ribbon samples were annealed in an RTP 

system at temperature of 740°C for various times in the range of one second to 60 

seconds.  After heat treatment, the Al, n+, and p+ layers were removed by chemical 

etching and samples were cleaned before post-processing lifetime measurement using the 

solutions listed in Appendix A. 
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7.2.1 Effect of RTA on the dehydrogenation of defects and lifetime 

degradation in String Ribbon silicon in the absence of a supply of 

hydrogen 

In order to investigate the dehydrogenation of defects in String Ribbon in the absence 

of H supply SiNx:H, pre-hydrogenated samples were annealed successively for 1s, 10s, 

and 60s at RTA temperatures in the range of 400°C to 650°C.  No SiNx:H film, n+ layer, 

p+ layer, or Al were present on the samples during the anneals.  It should be noted that the 

SiNx:H layer on the front and Al layer on the rear of a solar cell may prevent the out 

diffusion of H during heat treatment.  Figure 51 shows the change of the normalized 

carrier lifetime (τf/τo) in String Ribbon samples after dehydrogenation anneals.  The 

lifetime degradation in String Ribbon samples during the one second, 10 s and 60 s 

anneals is attributed to the dehydrogenation of defects.  In the case of the 60 s RTA, the 

normalized lifetime decreases to 0.76 after anneal at 400°C, and falls to 0.10 after anneal 

at 525°C.  This indicates that the hydrogen passivation of defects is not stable above 

400°C when the RTA time is 60 s.  Figure 51 shows that when the anneal time is reduced 

to 10 s and one second, two distinct phases of lifetime degradation appear in the range of 

400°C to 600°C.  This indicates that there may be more than one mechanism that 

contributes to the dehydrogenation of defects.  In the first phase, there is moderate 

dehydrogenation and the normalized lifetime drops to 0.63 after anneal at 525°C for 10 s.   

The moderate decrease in lifetime during the first phase may be attributed to 

dehydrogenation of defects that play a secondary role in limiting the lifetime.  When 
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Figure 51. Decrease of the lifetime in hydrogenated String 
Ribbon during RTA at 400°C to 650° for 1s, 10s, 
and 60s. 

these secondary defects are dehydrogenated, the lifetime does not drop dramatically 

because the primary defect remains passivated.  When the RTA temperature is increased 

from 525°C to 550°C, a second phase of lifetime degradation begins.  The normalized 

lifetime drops to 0.47 at 550°C for the 10 s anneal, and the dramatic decrease continues to 

585°C, where the normalized lifetime reaches 0.07.  For the one second anneals, 

moderate dehydrogenation was observed up to 550°C where the normalized lifetime was 

0.79, followed by a dramatic dehydrogenation up to 625°C where the normalized lifetime 

falls to 0.27.  This second phase of lifetime degradation may be attributed to the 

dehydrogenation of the primary lifetime limiting defect in String Ribbon. The results for 

the 10 s and one second anneals shown in Figure 51 indicate that dehydrogenation occurs 

at low temperatures (400-500°C), but does not become severe until temperatures above 

 141 



525°C when no SiNx:H is present on the wafer.  The data also shows that the onset 

temperature for severe dehydrogenation increases from 525°C to 550°C when the anneal 

time is reduced from 10 s to one second.  This indicates that hydrogenated defects can 

tolerate higher temperatures if the anneal time is reduced.  This result could prove to be 

very important in designing the appropriate contact firing cycle for String Ribbon solar 

cells. 

7.2.2 Effect of RTA time on the lifetime enhancement from LF SiNx:H-

induced hydrogenation  

The effect of RTA time during LF SiNx:H-induced hydrogenation at 740°C is shown 

in Figure 52.  In this study, RTA for 60 s at 740°C resulted in an average lifetime of 106 

µs.  As the anneal time was reduced to 30 s, 20 s, and 15 s, the average lifetime decreases 

to 81 µs, 67 µs, and 63 µs respectively. When the anneal time was reduced further to one 

second, the lifetime increased to 93 µs.  The decrease in lifetime between 60 s and 15 s 

may be due to a an imbalance between the supply of H to defects and the retention of H 

at defects.  The study in Section 7.2.1 showed that the hydrogen passivation of defects in 

Si is highly unstable at temperatures above 550°C even when the anneal time is one 

second.  This indicates that at the optimum hydrogenation temperature of 740°C, the 

supply of hydrogen should be very high in order to out pace dehydrogenation and result 

in the excellent defect passivation observed for the 60 s anneal. As the anneal time is 

reduced from 60 s to 10 s, the rate of the supply of hydrogen to defects may be less than 

the rate of hydrogen-defect dissociation and the degree of defect passivation decreases.  

When the anneal time is reduced to five seconds and 1s, the lifetime enhancement 

increases to 78 µs and 92 µs respectively.  This suggests that when the anneal time is 
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Figure 52. Effect of anneal time on lifetime enhancement 
from SiNx:H-induced hydrogenation at 740°C. 
The average as-grown lifetime was 6 µs. 

reduced below five seconds, the retention of H at defects may increase.  This results in 

very effective lifetime enhancement (6 µs to 92 µs ) because H retention is high, even 

though the supply of H may be low during the short RTA (one to five seconds).  String 

Ribbon solar cells with photolithography defined contacts were fabricated to confirm that 

a short (one second) RTA can result in effective LF SiNx:H-induced hydrogenation.  The 

use of photolithography-defined front contacts avoids the need for post-hydrogenation 

heat treatments that may be associated with solar cells made with screen-printed Ag 

contacts.  Figure 53 shows the illuminated current-voltage characteristics of the record-

high-efficiency (17.8 %) String Ribbon solar cell verified by NREL.  This solar cell was 

fabricated with LF SiNx:H hydrogenation performed at 740°C for one second.  This solar 

cell efficiency is consistent with a high bulk lifetime approaching 100 µs, an effective Al-

BSF, and a double layer anti-reflection coating for this simple n+-p-p+ cell design.  
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Figure 53. I-V data for the 17.8 %-efficient String Ribbon 
solar cell with LF SiNx:H-induced hydrogenation 
performed at 740°C for one second.  Front 
contacts were formed by photolithography and 
lift-off evaporation. 

7.3 Conclusions 

In this chapter, the optimum RTA for LF SiNx:H-induced hydrogenation of defects in 

String Ribbon was established in order to understand the hydrogenation mechanism.  The 

optimum hydrogenation anneal temperature may be the result of competition between the 

supply of hydrogen from the SiNx:H film and H stored near the Si surface, and the 

retention of H at defects, as illustrated in Figure 47.  In Section 7.1.1, the optimum RTA 

temperature for HF and LF SiNx:H-induced hydrogenation in String Ribbon was found to 

be 800°C and 740°C, respectively.  If the supply of H from LF SiNx:H deposition is 

greater than that during HF SiNx:H deposition, the effectiveness of HF SiNx:H-induced 

hydrogenation may be limited by the supply of H while, LF SiNx:H-induced 
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hydrogenation may be limited by the retention of H, as illustrated in Figure 47.  The 

optimum RTA temperature (740°C) for LF SiNx:H-induced hydrogenation was 

implemented in String Ribbon solar cells with screen-printed contacts.  Fabrication of 

String Ribbon solar cells with co-fired Al and Ag contacts at temperatures above 700°C 

damages the junction and reduces the fill factor.  Therefore, String Ribbon solar cells 

were fabricated with a two-step firing scheme with SiNx:H-induced hydrogenation 

performed at the optimum RTA temperature of 740°C.  An average Voc of 596 mV, an 

improvement of 13 mV over co-firing at 700°C/one second, was obtained when the RTA 

temperature was 740°C for one minute.  Room temperature scanning photoluminescence 

showed that Ibb enhancement, proportional to lifetime enhancement, was a maximized in 

samples annealed at 740oC, consistent with the lifetime and Voc maximum observed in 

Figure 46 and 48.  Reduction of the average R-parameter, which is proportional to the 

active dislocation density, was maximized in a sample annealed at 740°C and indicates 

that the initial active dislocation density in the sample was reduced by 67% by LF 

SiNx:H-induced hydrogenation.   

The effect of the RTA time on LF SiNx:H-induced hydrogenation was  investigated in 

Section 7.2.  The objective of this section was to reduce the hydrogenation anneal time, 

so that LF SiNx:H-induced hydrogenation, Al-BSF formation, and Ag grid firing can be 

performed in one step.  Very effective lifetime enhancement (6 µs to 92 µs) was observed 

even though the supply of H may be low during the short RTA (one second).  The high 

average lifetime achieved during one second RTA at 740°C is attributed to the decrease 

in dehydrogenation of defects for this short RTA.  Record-high-efficiency (17.8%) String 

Ribbon solar cells with photolithography defined contacts were fabricated to confirm that 
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a short RTA can result in effective LF SiNx:H-induced hydrogenation.  The results 

confirm that a high bulk lifetime approaching 100 µs and an effective Al-BSF can be 

achieved in during LF SiNx:H-induced hydrogenation at 740°C in only one second. 
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CHAPTER 8 

 

Fabrication and Analysis of High-efficiency 

Screen-printed String Ribbon Solar Cells with 

Single-step Firing Performed in a Conveyer Belt 

Furnace 

 

Chapter 7 showed that the optimum anneal temperature for LF SiNx:H-induced 

hydrogenation is 740°C, which can result in average lifetimes of 90-100 µs in String 

Ribbon Si.  Screen-printed String Ribbon solar cells fabricated with hydrogenation 

performed at the optimum RTA temperature had a maximum efficiency of 15.6 %, but 

required a two-step RTA firing scheme.  Step 1 was performed at 740°C for one minute 

for LF SiNx:H-induced hydrogenation and Al-BSF formation, followed by Step 2, 

performed at 700°C for one second to anneal the screen-printed Ag front contacts.  

Chapter 7 showed that heat treatment after hydrogenation at temperatures above 550°C 

significantly reduces the lifetime due to the dehydrogenation of defects, even if the 

anneal time is one second.  As a result, the optimized hydrogenation achieved in Step 1 

may not be retained in the finished solar cell due to dehydrogenation of defects during 
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Step 2.  Chapter 7 also showed that the average lifetime in String Ribbon could be 

improved to over 90 µs even when the RTA time at 740°C is reduced to one second.  

This was validated by String Ribbon solar cells with photolithography-defined contacts 

and LF SiNx:H-induced hydrogenation performed at 740°C for one second that produced 

a record-high-efficiency of 17.8% in Chapter 7.  This result confirms that the short RTA 

provides excellent defect hydrogenation and forms an effective Al-BSF.  This result also 

suggests that the two-step firing can be merged into a single rapid thermal treatment that 

provides hydrogenation, Al-BSF formation, and Ag front contact firing.  In addition, 

single-step rapid firing for screen-printed solar cells reduces processing time and 

complexity, which should reduce costs.  Currently there is no commercially available 

RTP system for high-volume, high-throughput solar cell manufacturing.  Therefore, to 

improve the manufacturability of screen-printed String Ribbon solar cells, the optimized 

RTA must be transferred to a commercially available conveyer belt furnace, which is 

widely used in Si solar cell manufacturing.   

The final objective of this thesis is to develop and implement a manufacturable, 

single-step firing cycle performed in a conveyer belt furnace for LF SiNx:H-induced 

hydrogenation, Al-BSF formation, and Ag contact firing.  Chapters 5 and 7 showed that 

increasing the cooling rate above 40°C/s and reducing the anneal time to one second 

during SiNx:H-induced hydrogenation in RTP may improve the lifetime enhancement.  It 

has also been shown that the heating rate should be high to promote the formation of a 

uniform Al-BSF [106].  Therefore, in developing a novel conveyer belt furnace firing 

cycle, particular attention is paid to selecting the peak temperature, reducing the anneal 

time, and increasing heating rate and cooling rate.  In this chapter, screen-printed String 
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Ribbon solar cells are fabricated using an appropriate conveyer belt furnace firing cycle.  

Solar cell characterization and analysis is performed on high-efficiency String Ribbon 

cells to assess the impact of the back surface recombination velocity on solar cell 

performance.    

 

8.1 Development of a belt furnace firing cycle for co-firing of 

the LF SiNx:H film for hydrogenation, Al-BSF, and Ag 

front contacts  

The goal of this section is to develop a conveyer belt furnace firing cycle to replicate 

the 740°C/1s RTA that resulted in a lifetime of 92 µs demonstrated in Chapter 7.  The 

conveyer belt furnace used in this thesis has a three heating zones, with lengths of 7.5 

inches 15 inches, and 7.5 inches, respectively.  Thus the total length of the heating zones 

in the belt furnace is 30 inches.  The furnace is heated by tungsten-halogen lamps 

mounted above and below the conveyer belt in each of the three heating zones.  The 

furnace temperature is monitored by a thermocouples positioned above the conveyer belt  

in each of the three heating zones.   Automated control of the furnace allows belt speeds 

of 5 to 120 inches per min (ipm) to be achieved.  The setpoint temperatures and belt 

speed for the five firing cycles (A-E) in this section are shown in Table 15.  Uniform 

setpoint zone temperatures were selected for firing cycles A through D, and the belt 

speed in each was 80 ipm.  Compressed and dried air was circulated through the heating 

and cooling zones of the furnace.  The flow rate of compressed and dried air in each 

section of the furnace is shown in Table 16.  The gas flow rate was unchanged for firing  
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Table 15. Belt speed and heating zone setpoint temperatures for the five belt furnace 
firing cycles investigated. 

Firing Cycle   
Belt speed  
(inches per  

minute)   

Zone 1 Setpoint  
Temperature  

(°C)   

Zone 2 Setpoint  
Tempe rature  

(°C)   

Zone 3 Setpoint  
Temperature  

(°C)   

   600   936   955   120   E

   900   900   900   80D   

   850   850   850   80C   

   815   815   815   80B   

   800   800   800   80A   

Table 16. Flow rate (sccm) of compressed and dried air in each section of the furnace 
during the five firing cycle investigated. 

Firing 
cycle 

Ent. 
eductor 

Ent. 
baffle 

Zone 
1 

Zone 
2 

Zone 
3 

Ex. 
baffle 

Ex. 
eductor Plenum Cooling 

section 
A - D 15 100 110 150 150 100 58 40 100 

E 10 25 75 100 100 100 50 40 100 
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Figure 54. Temperature profile in the belt furnace for firing 
cycles A through E, described in Tables 15 and 16. 

cycles A through D to investigate the impact of changing the zone temperature alone.  

The temperature measured by the internal thermocouples may differ significantly from  

the wafer temperature, particularly when the belt speed is high.  For this reason, the wafer 

temperature was monitored by a thermocouple on a test wafer or the conveyer belt for the 

firing cycles investigated.  The furnace temperature profile for firing cycles A through E 

is shown in Figure 54.  Important characteristics of the temperature profiles, including the 

peak temperature, dwell time near the peak temperature, heating rate, and cooling rate, 

are summarized in Table 17.  The dwell time near peak temperature is equal to the time 

above 95% of the peak temperature.  The heating rate was measured from 100°C to 95% 

of the peak temperature, and the cooling rate is measured from 95% of the peak 

temperature to 400°C.  Table 17 shows that when the temperature of all zones was 

increased from 800°C to 900°C (firing cycles A to D), the peak temperature increased 
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Firing 
cycle  

Peak 
temperature    

(°C) 

Dwell time near 
peak temperature 

(s) 

Heating rate     
(°C/s) 

Cooling rate      
(°C/s) 

A 645 13 27.0 10.3 

B 729 12 34.5 12.4 

C 781 11 38.9 13.4 

D 831 12 40.7 13.6 

E 754 4 68.8 18.7 

Table 17. Characteristics of the five firing cycles investigated determined from the 
temperature profiles shown in Figure 54. 

from 645°C to 831°C, and the heating rate increased from 27.0°C/s to 40.7°C/s.  Table 17 

also shows that the change in the cooling rate and dwell time near the peak temperature 

for firing cycles A through D is 10.3°C/s to 13.6°C/s, and 11 s to 13 s, respectively.   

Table 18 shows the average FF, Rseries, and Rshunt of 10 String Ribbon solar cells 

fabrication using firing cycles A and B.  Note that the excellent FF (0.779) achieved 

using firing cycles A and B are suitable for high-efficiency solar cells as shown in 

Chapter 3.  However, as shown in Chapters 5 and 7, these cooling rates and dwell times 

are not suitable for effective SiNx:H-induced hydrogenation.  Therefore, firing cycle E 

was developed with a high belt speed (120 ipm) and non-uniform zone temperatures in an 

effort to increase the cooling rate and reduce the dwell time near the peak temperature 

Table 17 shows that the cooling rate and dwell time for firing cycle E was 18.7°C/s and 4 

s, respectively.  Table 17 also shows that the heating rate for firing cycle E was 68.8°C/s 
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Table 18. Average FF, series resistance (Rs), and shunt resistance (Rsh) 
achieved using firing cycles A and B in String Ribbon solar cells. 

Firing cycle Setpoint temperature 
(°C) FF Rs (Ω-

cm2) 
Rsh (Ω-

cm2) 

A 800 0.779 0.66 61884 

B 815 0.799 0.72 54645 

and the peak temperature was 754°C.  Thus, firing cycle E is a suitable match for the 

740°C, one second RTA for hydrogenation.   

The carrier lifetime of String Ribbon samples was measured after LF SiNx:H-induced 

hydrogenation performed in firing cycle E.  The average lifetime after hydrogenation in 

firing cycle E was 77 µs.  This demonstrates that effective hydrogenation can be achieved 

in an industrial-type conveyer belt furnace in only one short heat treatment.   

 

8.2 Fabrication and analysis of record-high-efficiency screen-

printed String Ribbon solar cells with co-fired contacts  

String Ribbon solar cells were fabricated using a single firing cycle E which should 

enhance LF SiNx:H-induced hydrogenation, Al-BSF formation, and provide good ohmic 

contacts under the Ag grid.  As explained in Section 8.1, firing cycle E should improve H 

retention in the finished solar cell, and reduce the solar cell processing time and 

complexity.  Solar cell fabrication began with sample cleaning, described in Appendix A 

and P diffusion to form the n+-emitter on the front surface at 893°C in a tube furnace 
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Figure 55. Efficiency distribution of String Ribbon solar cells 
fabricated with firing cycle E. 

15.4

15.6

15.8

16.0

)

using a POCl3 liquid source.  A LF SiNx:H film was deposited by PECVD with in-situ 

NH3 plasma pretreatment on the n+-emitter using the deposition parameters shown in  

Table 12.  A commercially available Al paste (Ferro 53-038) was printed on the entire 

back surface and a commercially available Ag paste (DuPont 4948) was printed in a grid 

pattern on the front.  Front and back contacts were co-fired in a conveyer belt furnace  

(RTC LA-310) using firing cycle E described in Tables 15, 16, and 17.  Cells were 

isolated using a dicing saw and annealed in forming gas (10% H2 in N2) for 15 minute 

s.    Figure 55 shows the efficiency distribution of 11 4-cm2-String Ribbon solar cells 

fabricated with LF SiNx:H-induced hydrogenation, Al-BSF, and Ag contacts, all provided 

by belt furnace firing cycle E.  The average efficiency of these cells was 15.2%.  The 

lighted I-V curve of the best cell made with firing cycle E and measured by NREL is 

shown in Figure 56.  This cell had a noteworthy efficiency of 15.9%, the highest 
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Figure 56. Lighted I-V curve of the highest efficiency String 
Ribbon solar cell fabricated with firing cycle E for LF 
SiNx:H-induced hydrogenation, Al-BSF formation, 
and Ag grid firing.  

efficiency achieved to date on String Ribbon silicon using screen-printed contacts.  This 

cell was characterized by light biased IQE and QSSPC to determine the carrier lifetime 

and effective surface recombination velocity at the rear surface (Seff).  The light biased 

spectral response of the 15.9%-efficient cell was measured on six different regions of the 

4-cm2 cell.  These six measurements were combined with one measurement of the 

specular reflectance of the cell to calculate six light biased IQE plots.  The maximum, 

minimum, and average of the six IQE measurements in the long wavelength region are 

shown in Figure 57.  For lifetime measurement, the Ag and Al contacts, SiNx:H film, and 

n+ and p+ layers were removed from the 15.9%-efficient cell after IQE measurement by 

chemical etching described in  Appendix A.  The 4-cm2 cell was cleaved from the ~50-

cm2 String Ribbon wafer to measure the lifetime only in the active area of the device.   
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Figure 58. Bulk lifetime in the 15.9%-efficienct String 
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The cell was cleaned using the solutions shown in Appendix A and immersed in a 

solution of 70 mg of I2 in 250 mL of methanol for surface passivation before lifetime 

measurement.  Figure 58 shows the injection level dependence of lifetime measured on 

one location of the 15.9%-efficenct cell and indicates that LF SiNx:H-induced 

hydrogenation during firing cycle E resulted in lifetime enhancement up to 140 µs.  This 

lifetime value was used to characterize the entire cell and combined with the maximum, 

minimum, and average of the six light biased IQE measured on this cell, shown in Figure 

57, for further analysis of Seff.  Figure 57 also shows the simulated IQE curves generated 

by the PC1D [54] solar cell simulation program.  The simulated curves were generated in  

PC1D by adjusting Seff to fit the maximum, minimum, and average of the measured IQE 

data, while fixing the bulk lifetime to 140 µs for all three cases.  Table 19 shows that the 

Seff values obtained from PC1D fits to the maximum, minimum, and average IQE plots 

were 300 cm/s, 1200 cm/s, and 575 cm/s respectively.  These Seff values were used to 

simulate device performance in PC1D to identify which value best represents Seff in  

Table 19. Seff values used to simulate the maximum, minimum, and average long 
wavelength IQE for the 15.9%-efficient String Ribbon solar cell shown in Figure 57.  
The simulated solar cell performance based on the extracted Seff values is also shown 

for comparison with the actual solar cell performance. 

 τbulk (µs) Seff 
(cm/s) 

Voc 
(mV) 

Jsc 
(mA/cm2) FF Efficiency 

(%) 

Actual 140  615 33.8 0.765 15.9 

Min. IQE 140 1200 602 33.0 0.765 15.2 

Avg. IQE 140 575 609 33.5 0.765 15.6 

Max. IQE 140 300 615 33.8 0.765 15.9 
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the actual device.   The simulated Jsc, Voc, FF and solar cell efficiency corresponding to 

the extracted Seff values are also shown in Table 19.  The best agreement with the 

performance of the actual 15.9%-efficienct String Ribbon cell was obtained through 

PC1D simulation with Seff  = 300 cm/s.  This result endorses the PC1D-fit method of Seff 

extraction from the measured IQE data shown in Figure 57.  Furthermore, the solar cell 

simulation in Figure 19 indicates that a surface recombination velocity of 300 cm/s is 

suitable for solar cell efficiencies in excess of 16%.  It should be noted that String Ribbon 

Si is a spatially non-uniform material.  The distribution of solar cell efficiencies shown in 

Figure 55 might be partly due to a variation of Seff across a String Ribbon wafer. 

Therefore, large area String Ribbon solar cells fabricated with firing scheme E are not 

expected to have an Seff value of 300 cm/s across the entire back surface.   

 

8.3 Conclusions  

 Based on the understanding developed in Chapters 5 and 7, a single-step firing 

cycle performed in a conveyer belt furnace was developed and implemented in this 

chapter.  This anneal designed to maximize LF SiNx:H-induced hydrogenation of defects 

in String Ribbon, has a peak temperature of 740°C, a dwell time below five seconds, and 

a high cooling rate.  The single-step firing cycle includes a fast heating rate to promote 

the formation of a uniform Al-BSF.  Five belt furnace firing cycles were studied by 

temperature profiling, and the optimum firing cycle (E) had a peak temperature of 753°C, 

a heating rate of 68.8°C/s, a cooling rate of 18.7°C/s, and a dwell time near the peak 

temperature of four seconds.  String Ribbon samples annealed in cycle E had an average 
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lifetime of 77 µs, confirming that this anneal is suitable for effective defect passivation.  

String Ribbon solar cells fabricated with firing cycle E had an average efficiency of 

15.2% and a maximum efficiency of 15.9%, which is the highest efficiency to date for 

String Ribbon solar cells with screen-printed contacts.  The bulk lifetime of this cell, 

measured after removal of the Ag and Al contacts, SiNx:H film, and n+ and p+ layers, was 

140 µs .  This bulk lifetime was used together with the average, minimum, and maximum 

of six measurements of light biased IQE from different regions of the cell to extract the 

Seff of the rear surface using the PC1D solar cell simulation program.  The Seff values 

obtained from PC1D-fits to the maximum, minimum, and average IQE plots were 300 

cm/s, 1200 cm/s, and 575 cm/s respectively.  These Seff values were used to simulate 

device performance in PC1D to identify which value best represents the Seff in the actual 

device.   The best agreement with the performance of the actual 15.9%-efficienct String 

Ribbon cell was obtained through PC1D simulation with Seff  = 300 cm/s, endorsing the 

PC1D-fit method of Seff extraction from the measured IQE data.  Thus, firing scheme E 

not only provides effective defect passivation resulting in an average lifetime of 77 µs, 

but also forms a high quality Al-BSF with an Seff as low as 300 cm/s.  Extensive device 

modeling is performed in Chapter 9 to show that the 15.9% efficiency achieved in this 

chapter can be raised to 17-18% through improvements to the FF, back surface 

passivation, grid line width, the addition of a well-passivated, lightly doped emitter, a cell 

thickness of 150 µm, and a good optical reflector on the rear surface. 



CHAPTER 9 

 

Guidelines for Future Work 

 

While String Ribbon solar cells with efficiencies as high as 15.9% with a bulk 

lifetime of 140 µs were achieved on 3 Ω-cm material in this thesis, considerable work 

remains in order to enhance the efficiency to 17-18%.  In this chapter, realistic 

simulations of further solar cell efficiency enhancement are presented to provide 

guidance for future research.  A roadmap is developed using practically achievable 

parameters that can have a significant impact on efficiency.  Justification for the 

parameters is provided based on the progress made in this thesis and in the literature. 

Figure 59 shows the progression of solar cell efficiency from the 15.9%-efficienct screen-

printed String Ribbon cell, achieved in Chapter 8, up to an efficiency of 17.6% without 

further lifetime enhancement.  The inputs for these simulations are provided in Table 20.  

Figure 59 shows that FF improvement from 0.764 to 0.783 results in a 0.4% (absolute) 

increase in efficiency from 15.9% to 16.3%.  This efficiency enhancement seems within 

reach, as FFs of 0.78 in screen-printed String Ribbon cells were achieved in Chapter 8.  

The next efficiency improvement in Figure 59 is due to a reduction of the back surface 

recombination velocity, Sb, at the p-p+ interface.  Reduction of Sb below 300 cm/s, which 
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Figure 59. Simulation of planar solar cell efficiency enhancements that 
result from technology developments.  Important simulation 
inputs are provided in Table 20.   

was achieved in the 15.9%-efficient cell, appears to be possible based on extrapolation of 

(40), which predicts Sb as a function of base doping, NA, for an 8 µm to 10 µm thick Al-

BSF on float zone silicon [116].   

(40) 
25102104 14231 ++= −−

AAb NxNxS

For 3 Ω-cm material,  (40) predicts that the Sb in String Ribbon solar cells could be 

reduced to a value as low as 128 cm/s, which should drive the efficiency to 16.6%, as 

shown in Figure 59.  Figure 59 shows that the efficiency can be improved to 17.0% 

through the implementation of a well-passivated (Sf = 7269 cm/s [116]), lightly-doped 

emitter (100 Ω/sq.).  Ohmic contact to high-sheet-resistance emitters has been achieved 

with a very simple co-firing process, resulting in screen-printed float zone solar cell  
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Table 20. PC1D inputs for the simulation shown in Figures 59 and 60. 

 

Highest 
efficiency 

String Ribbon 
cell 

Improve FF Reduce Sb 

Well 
passivated, 

lightly 
doped 
emitter 

Reduce gridline 
width Reduce thickness 

Cell thickness 
(µm) 300 300 300 300 300 150 

Bulk lifetime (µs) 140 140 140 140 140 140 

Sb (cm/s) 300 300 128 128 128 128 

Sf (cm/s) 35000 35000 35000 7269 7260 7260 

ρs (Ω/sq.) 40 40 40 100 100 100 

Ns (cm-3) 3.95 x 1020 3.95 x 1020 3.95 x 1020 1.38 x 1020 1.38 x 1020 1.38 x 1020 
Junction depth 

(µm) 0.305 0.305 0.305 0.299 0.299 0.299 

Jo2 (A/cm2) 3.0 x 10-8 1.0 x 10-8 1.0 x 10-8 1.0 x 10-8 1.0 x 10-8 1.0 x 10-8 

Rs (Ω-cm2) 0.9 0.8 0.8 0.8 0.8 0.8 
Grid Coverage 

fraction 7% 7% 7% 7% 5% 5% 

Rear Internal 
Reflectance 66% diffuse 66% 

diffuse 66% diffuse 66% 
diffuse 66% diffuse 80% diffuse 

Voc (mV) 616 616 622 631 632 640 

Jsc (mA/cm2) 33.8 33.8 34.1 34.5 35.3 35.4 

FF 0.764 0.783 0.782 0.786 0.780 0.777 

η (%) 15.9 16.3 16.6 17.0 17.4 17.6 
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efficiencies as high as 17.5% and FFs above 0.78  [117].  However, excellent emitter 

surface passivation, used in these simulations, is required to realize the full performance 

benefit of lightly-doped emitters.  Figure 59 shows that the final efficiency enhancement 

up to 17.4% can be achieved by a reduction of the grid area coverage fraction down to 

5%.  Reduced grid area coverage may be achieved by reducing the Ag gridline width 

using emerging technologies such as the Hot Melt screen-printing technique [118].  

Further efficiency enhancement up to 17.6% is possible if the cell thickness is reduced 

150 µm and the rear surface internal reflectance is increased to 80% with a good optical 

reflector.  Thus, the simulations in Figure 59 show that the lifetime enhancement (up to 

140 µs) achieved in this thesis on 3 Ω-cm String Ribbon Si can result in solar cell 

efficiencies as high 17.6% through the combination of improved FF, reduced Sb, a well-

passivated lightly-doped emitter, reduced shadow losses, and a cell thickness of 150 µm 

with a good reflector on the rear surface.   

The simulations in Figure 60 show the effect of base resistivity as a function of bulk 

lifetime for further efficiency enhancement.  The starting point for the simulation is the 

17.4%-efficienct, 3 Ω-cm cell, whose PC1D input parameters are provided in Table 20.   

The Sb for each resistivity curve plotted in Figure 60 was calculated according to (37).  

Figure 60 reveals that when the bulk lifetime is 140 µs, the efficiency can be increased 

from 17.4% to 17.6% if the base resistivity is reduced from 3 Ω-cm to 1.0 Ω-cm.  

However, achieving a bulk lifetime of 140 µs on 1.0 Ω-cm String Ribbon may prove to 

be quite challenging due to the presence of dopant-defect interactions that tends to reduce 

the lifetime in low resistivity mc-Si [119].  Figure 60 also shows that solar cell 

efficiencies of about 17% can still be achieved on 0.5 Ω-cm to 1.0 Ω-cm even if the bulk 
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lifetime drops to 40 µs.  These simulations also demonstrate that if additional lifetime 

enhancement can be achieved to enable bulk lifetimes in excess of 400 µs, then planar 

solar cell efficiencies approaching 18% can be achieved on 1 Ω-cm to 3 Ω-cm material.  

Further efficiency enhancement is possible, if surface texturing or light trapping can be 

incorporated.  Thus future research should focus on developing the above-mentioned 

designed features in a cost-effective manner to reduce the cost of PV module fabrication 

below $1/W.  
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APPENDIX A 

 

Sample preparation before lifetime measurement 

Al etch solution 
 

2:2:5 HCl:H2O2:H2O for 20 minutes 
 
 
 

Ag etch solution 
 

1:1 HNO3:H2O for 15 seconds 

Cleaning before lifetime measurement or phosphorus diffusion 

1.  Rinse in DI H2O for 5 minutes 
2.  HF:H2O (1:10) for 1:30 minutes 
3.  Rinse in H20 for 3 minutes 
4.  H2O:H2SO4:H2O2 (2:1:1) for 5 minutes 
5.  Rinse in H2O for 3 minutes 
6.  HNO3:CH3COOH:HF (15:5:2) for 3 minutes 
7.  Rinse in H2O for 3 minutes 
8.  H2O:HCl:H2O2 (2:1:1) for 5 minutes 
9.  Rinse in H2O for 3 minutes 
10. HF:H2O (1:10) for 3 minutes 
11. Rinse in H2O 30 seconds
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APPENDIX B 

 

Belt furnace firing profiles 
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Figure 61.Temperature profile for the conveyer belt furnace firing cycle used 
for HF SiNx:H-induced hydrogenation and Al-BSF formation.  

 
 

Table 21. Set point temperatures and characteristics of the belt furnace firing cycle 
used for HF SiNx:H-induced hydrogenation and Al-BSF formation. 

 

Zone 1 
Temp.  
(°C) 

Zone 2 
Temp. 
(°C) 

Zone 3 
Temp.  
(°C) 

Peak 
Temp. 
(°C) 

Belt speed 
(ipm) 

Heating 
rate (°C/s) 

Cooling 
rate 

(°C/s) 

Dwell 
time (s) 

850 850 850 845 15 20 6 98 
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Belt furnace firing profiles 
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Figure 62. Temperature profile for the conveyer belt furnace firing cycle used for 
slow Ag grid firing.  

 
 

Table 22. Set point temperatures and characteristics of the belt furnace firing cycle 
used for slow belt furnace contact firing. 

Zone 1 
Temp.     
(°C) 

Zone 2 
Temp  
(°C) 

Zone 3 
Temp.   
(°C) 

Belt 
speed 
(ipm) 

Peak 
Temp. 
(°C) 

Heating 
rate 

(°C/s) 

Cooling 
rate 

(°C/s) 

Dwell 
time (s) 

430 580 730 15 705 6 4 23 
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