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SUMMARY

Discrete-data based statistical methods for the calibration of financial models driven

by Lévy processes are presented. The procedures rely on minimum contrast estimators

for Poisson processes and on the short-time properties of Lévy processes. Therefore, the

estimation is suitable for high-frequency data and for the analysis of the microstructure of

stock prices.

Nonparametric estimation of the Lévy densitys of a Lévy process is studied. Con-

cretely, given a linear spaceS of possible Lévy densities, an asymptotically unbiased es-

timator for the orthogonal projection ofs ontoS is found. It is proved that the expected

standard error of the proposed estimator realizes the smallest possible distance between

the true Lévy density and the linear spaceS as the frequency of the data increases and as

the sampling time period gets longer. Also, we develop data-driven methods to select a

model among a collection of models{Sm}m∈M. The method is designed to approximately

realize the best trade-off between the error of estimation within the model and the distance

between the model and the unknown Lévy density. As a result of this approach and of con-

centration inequalities for Poisson functionals, we proveoracles inequalitiesthat guarantee

us to reach the best expected error (using projection estimators) up to a constant.

A numerical study of our methods is presented for the case of histogram estimators and

for Gamma Lévy processes as well as variance Gamma processes. To calibrate parametric

models, a nonparametric estimation method with least-square errors is studied. Comparison

with maximum likelihood estimation is provided.

On a separate problem, we review the theoretical properties of tempered stable pro-

cesses, a class of processes of potential great use in Mathematical Finance.
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CHAPTER I

INTRODUCTION

1.1 Opening thoughts

In its most primitive form, a “thesisis a formal (in depth) treatment of a subject based on

original research”. Researchitself can be defined as a “methodical investigation into a

subject in order todiscover facts, to establish or revise atheory, or to develop aplan of

actionsbased on the facts discovered”. In this chapter, we intend to describe the subject of

our dissertation and our main motivations, proceed to establish the novelty of our results

by briefly reviewing the existing theories on the subject, and finally present our findings.

Let us give a short preview. The subject of the thesis isthe estimation of (pure jump)

Lévy processes. More formally, the statistical estimation of the “parameter” that controls

the random evolution of the process (namely, the parameter in question is a measure, but for

the sake of simplicity think of it as a nonnegative function that we call the Lévy density of

the Lévy process). Our motivation comes from mathematical finance, and concretely, the

recent application of pure jump Lévy processes for asset price modeling (see for instance

[13], [11], [12], [4], [3], [14], [6], and references therein).

In our opinion, the existing theory and practice of estimation for pure jump Lévy pro-

cesses do not provide reliable results and concrete objective measures of estimation errors,

particularly when based on high frequency data where the microstructure of the market

plays a fundamental role (see [10] for a good review of market microstructure and more re-

cently [17]). Most of the existing works on the subject are informal and greatly intuitive in

what estimation concerns. Even in the case where the theory behind the methods is sound

and perfectly established, as maximum likelihood estimation and fast Fourier transforms

are, no formal quantitative appreciation of the goodness of fit of the model or sensitivity to
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model mis-specifications has been discussed. These are real concerns that need to be dealt

with since in most cases the likelihood function is intractable or does not have a close form

at all, and thus, it is necessary to rely on numerical approximations and manipulation of

the data to meet the assumptions of the method. On this matter, it seems that no detailed

numerical analysis has been performed, and issues, like numerical stability and robustness

to errors in data andmodel, have not been addressed (not even in numerical experiments).

The method that we use to deal with some of the previous issues relies precisely on the

“microstructure” of Lévy processes; that is to say, the distributional and path properties of

Lévy processes for small time spans. Locally, the dynamics of a Lévy process with non-

continuous paths is better described as a (possibly infinite) “superposition of (compensated)

jumps” plus a continuous Gaussian process with drift having independent and stationary

increments (a Brownian motion with drift in the real case). This representation, called the

Lévy-Itô decomposition of sample paths, associates to every Lévy process a unique process

of jumps in time, mathematically described by a (marked) Poisson process or a Poisson

process in (0,∞)×Rd. Such a one-to-one relationship between the pure-jump Lévy process

and the spatial Poisson process associated with the jump process, is the justification and

motivation for our methods: we plan to estimate the Lévy density (that ultimately describes

the jump nature of the process) using methods of estimation for Poisson processes.

The statistical inference for spatial Poisson processes has a long history (see for in-

stance [23] and [21]), but to say the truth, our main incentive for this approach come from

recent results on the nonparametric estimation of spatial Poisson processes and model se-

lection methods (see [33]). There are two appealing accomplishments obtained by this

theory: Oracle inequalities and competitive performance against minimax estimators. The

theory assumes that the real model is not one of the models that are postulated, and content

with selecting the model and a representative from it that approximately realizes the best

tradeoff between the error of estimation within the model and the distance between the pro-

posed models and the actual unknown model. Oracle inequalities precisely materialized
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this ideal. However, the methods presented in [33] seem to require finitely many jumps

almost surely, and that condition is too much to ask for the general type of processes that

one encounters in mathematical finance. We prove that this condition is actually super-

fluous, and properly modified the constructions in [33] to estimate nonparametrically the

Lévy density, preserving Oracle inequalities.

To the best of our knowledge, the estimation of Lévy processes using statistical methods

for point processes has not been formally considered so far. One can think of at least two

reasons for this absence. On one hand, the fact that the increments of Lévy processes (on

equally spaced time spans) constitute a random sample suggests to use standard statistical

methods based on i.i.d. random variables; for instance, maximum likelihood estimation.

The other reason is the apparent inaccessibility of the jumps of the process since we can

only aspire to observe the process at finitely many times. The fact that the jumps are defined

as limits of increments makes possible, at least theoretically, to approximate the jump at a

particular point. However, that would require high frequency data, which in the old days

was not a viable approach. Nowadays, we can access (almost in real time) financial data,

and moreover data bases of intraday quotes are widely available.

The present work successfully combines both approaches, the microstructure of Lévy

processes and the methods of estimation for Poisson processes in space, to estimate non-

parametrically the Lévy density of the Lévy process. We believe that this approach will

reduce the drawbacks of the standard methods. Being nonparametric, we do not rely on a

particular model and hope that data itself validates the best model. Furthermore, we expect

that the method will be more robust to departures from the assumptions of Lévy processes,

since the representation of the jumps as a Poisson process is valid even if we do not have

stationary increments. This last assumption is particularly suspicious for high-frequency

financial returns due to intrinsic intraday seasonality. Moreover, hight-frequency returns

(sometimes even daily returns) presents discreteness effects which contradicts the mathe-

matical behavior of Lévy processes. However, we believe that our methods will still be
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informative to explain the probabilistic micro structure of the returns and to address the

goodness of fit of Lévy based models in general.

1.2 General framework and background

The goal in this part is to introduce the framework of our results. In particular, we introduce

the main object of study of this dissertation: Lévy processes. As a secondary objective,

we present some results that are fundamental to our work and set some terminology used

throughout all the thesis. Our review is by no means intended to be complete and we

present results without proof. An excellent review of the subject is found in [39].

1.2.1 Lévy processes

Throughout this section, we assume the existence of a probability space (Ω,F ,P), where

all the random variables and stochastic processes are defined. The expectation with respect

to the probability measureP is denoted byE. The basic definitions and terminology of

probability theory will be introduced as needed.

We say that{X(t)}t≥0 is stochastically continuous (in probability) if, for allt ≥ 0 and

ε > 0,

lim
h→0
P[|X(t + h) − X(t)| > ε] = 0.

Here is our main object of study:

Definition 1.2.1 A stochastic process{X(t)}t≥0 on Rd is a Lévy process if the following

conditions are satisfied.

(1) For any n≥ 1 and reals t0 = 0 ≤ t1 ≤ · · · ≤ tn, the random variables

X(t1) − X(t0), . . . ,X(tn) − X(tn−1)

are mutually independent;

(2) X(0) = 0 almost surely (a.s.) ;

(3) The distribution ofX(t + h) − X(t) does not depend on t;
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(4) It is stochastically continuous;

(5) a.s. it has right continuous with left limits paths;

As usualright continuous with left limitsis written càdlàg. When a process satisfies (1)

above, we say that the process has independent increments, while when (2) is satisfied

we say the process has stationary increments. A process is calledadditive if the process

satisfies (1), (2), (4), and (5).

The theory of Lévy processes is closely related to the concept of infinitely divisible

distribution. Below, ˆµ stands for the characteristic function of the probability measureµ:

µ̂(z) =
∫
Rd

eix·zµ(dx).

The notation ˆµt stands for thedistinguished t- th powerof the the complex valued function

µ̂ (see pp. 33 of [39]).

Definition 1.2.2 The distribution measureµ onRd is infinitely divisible if, for any integer

n, there is a probability measureµn such that

µ̂ = µ̂n
n.

A more probabilistic characterization can be stated as follows. Ifµ is the distribution of

a random variableX defined on a probability space (Ω,F ,P), thenµ is infinitely divisible

if on a possibly different probability space there exist independent identically distributed

(i.i.d.) random variablesX1, . . . ,Xn such that

X
D
= X1 + · · · + Xn,

where
D
= means that the random variables on the right and left hand sides of the equality

sign have the same distribution. We emphasize that having independent and stationary

increments, the process{X(t)}t≥0 is characterized by the distribution ofX(1). That is, if

{Y(t)}t≥0 is another Lévy process, possibly defined on a different probability space, such

thatX(1)
D
=Y(1) then

{X(t)}t≥0
D
={Y(t)}t≥0,
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where the above notation means that their finite dimensional distributions are the same.

Moreover, the distribution ofX(1) is infinitely divisible, and reciprocally, for any infinitely

divisible distributionµ there exists a stochastic process{X(t)}t≥0 defined on a probability

space such thatµ ∼ X(1) (here,∼ means thatµ is the distribution ofX(1)).

The following representation characterize the distribution of a Lévy process in terms of

a measureν, a matrixΣ, and a vectorb. This representation is called the Lévy-Khintchine

representation.

Theorem 1.2.3 (i) If {X(t)}t≥0 is a Lévy process, then there exist a d× d matrixΣ, a vector

b ∈ Rd and a measureν onRd
0 ≡ R

d\{0} such that

E
[
eiz·X(t)

]
= exp(tψ(z)) , z ∈ Rd

where

ψ(z) = −
1
2

z · Σz+ i z · b +
∫
Rd

0

{
ei z·x − 1− i z · x I (‖x‖ ≤ 1)

}
ν(dx). (1.2.1)

Moreover,Σ is nonnegative-definite symmetric andν satisfies∫
Rd

0

(‖x‖2 ∧ 1)ν(dx) < ∞. (1.2.2)

(ii) The representation given in (i) viaΣ, ν, andb is unique.

(iii) Conversely, ifΣ is a symmetric nonnegative-definite matrix,ν is a measure satisfying

1.2.2, andb ∈ Rd, then there exists a Lévy process{X(t)}t≥0 on a probability space, possibly

different from(Ω,F ,P), whose characteristic function is as in (i).

Definition 1.2.4 We calledν the Lévy measure of the Lévy processX. The triple(Σ, ν,b) is

called thegenerating tripleof the distribution ofX(1) or the generating triple of the Lévy

process{X(t)}t≥0. The functionψ is sometimes called the Lévy exponent or the characteris-

tic exponent of the Lévy process. If in additionν is absolutely continuous, we say that the

function s satisfyingν(dx) = s(x)dx is the Lévy density of the process{X(t)}t≥0.
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It is illustrative to give a few snapshots of the proof of the above theorem that are relevant

to our work. Concretely, we are looking for short-time characterizations of the generating

triplet that are feasible for estimation based on high-frequency observations ofX.

Remark 1.2.5 (i) The uniqueness of the matrixΣ is a consequence of the following limit

for X(t):
1
√

t
X(t)

D
→Y, t → 0

whereY ≡ (Y1, . . . ,Yd) is a Multivariate Gaussian vector with variance-covariance matrix

Σ (see pp. 40 in [39]). Above,
D
→ means limit in distribution, in this case as random

elements ofRd.

(ii) Another consequence of the proof for Theorem 1.2.3 is the following characterization

of the Lévy measureν. Namely, for any function f fromRd toR that is continuous, bounded

and vanishes on a neighborhood of the origin:

lim
t→0

1
t
E

[
f (X(t))

]
=

∫
Rd

0

f (x)ν(dx).

We will use this type of limits in Section 2.3 to estimate the integral of f with respect to the

random measure associated with the jumps of{X(t)}t≥0. In the same chapter we will also

state related results for more general functions (these results are obtained in [36]). For

now, let us state the next limit:

lim
n→∞

nE
[
|X(1/n)|p

]
=

∫
Rd

0

|x|pν(dx),

where p≥ 2 and where it is assumed thatE
[
|X(1)|p

]
< ∞ andE [X(1)] = 0 (see [2] for a

proof).

(iii) Finally, let us introduce the concept of drift of a Lévy process. If
∫
‖x‖≤1
‖x‖ν(dx) < ∞,

the vectorb0 ≡ b−
∫
‖x‖≤1

xν(dx), where the integration is component wise, is called the drift

of the Lévy process . IfΣ = 0 and the drift exists,

P

[
lim
t→0

1
t
X(t) = b0

]
= 1.
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On the other hand, if
∫
‖x‖>1
‖x‖ν(dx) < ∞, thenX(t) has finite mean for any t (this is a

necessary condition too) and

E [X(t)] = t

(∫
‖x‖>1

xν(dx) + b
)
.

Similarly, if
∫
‖x‖>1
‖x‖2ν(dx) < ∞, thenX(t) has finite second moment for any t (this is a

necessary condition too) and

E [(Xi(t) − Xi(t))(Xk(t) − Xk(t))] = t

Σi,k +

∫
Rd

0

xi xkν(dx)

 ,
for i, k = 1, . . . ,d. Here, Xi(t) and xi refers to the ith component of the vectorsX(t) andx,

respectively.

The Lévy-Khintchine representation states that the law of any Lévy process is character-

ized by three components: A Gaussian component, a “drift” component, and a “pure jump

component”. The celebrated Lévy-Itô decomposition extends this characterization to the

sample paths of the process. We present below the Lévy-Itô decomposition for processes

with independent increments. This version is taken from [20], Theorem 13.4. Throughout

this section, the integrals of vector-valued functions with respect to measures are defined

component wise.

Theorem 1.2.6 Let {X(t)}t≥0 be a càdlàg process inRd with X(0) = 0. ThenX has inde-

pendent increments and no fixed jumps1 if and only if, a.s.

X(t) = b(t) +G(t) +
∫ t

0

∫
‖x‖≤1

x (J − EJ)(ds dx) +
∫ t

0

∫
‖x‖>1

xJ(ds dx), (1.2.3)

for every t≥ 0, for some continuous functionb with b(0) = 0, some continuous centered

Gaussian processG with independent increments andG(0) = 0, and some independent

Poisson processJ on (0,∞) × Rd
0 with∫ t

0

∫
Rd

0

(‖x‖2 ∧ 1)EJ(ds dx) < ∞, t > 0. (1.2.4)

1We say theX has a fixed jump at some t> 0 if P[X(t) , X(t−)] > 0.
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In the special case whenX is real and nondecreasing, (1.2.3) simplifies to

X(t) = a(t) +
∫ t

0

∫ ∞

0
xJ(ds dx)), (1.2.5)

for some nondecreasing continuous functiona with a(0) = 0 and some Poisson processJ

on (0,∞) × (0,∞) with ∫ t

0

∫ ∞

0
(‖x‖ ∧ 1)EJ(ds dx) < ∞, t > 0. (1.2.6)

Both representations are almost surely unique, and all functionsb, a and processesG, J

with the stated properties may occur in (1.2.3) or (1.2.5) for a process{X(t)}t≥0 defined on

some probability space.

As a corollary, we readily obtain the Lévy-Itô decomposition for Lévy processes:

Theorem 1.2.7 A càdlàg process{X(t)}t≥0 in Rd is a Lévy process if and only a.s.

X(t) = bt + Σ0B(t) +
∫ t

0

∫
‖x‖≤1

x (J − EJ)(ds dx) +
∫ t

0

∫
‖x‖>1

xJ(ds dx), (1.2.7)

for every t≥ 0, for some vectorb ∈ Rd, some d× d matrixΣ0, some independent Poisson

processJ on (0,∞) × Rd
0 with mean measure of the formEJ(dt dx) = dtν(dx), and a

standard Brownian MotionB in Rd independent of the processJ . Moreover, the measure

ν satisfies ∫
Rd

0

(‖x‖2 ∧ 1)ν(dx) < ∞. (1.2.8)

The representations is unique, and allb, Σ0. andν with the stated properties may occur in

(1.2.7) for a process{X(t)}t≥0 defined on some probability space.

The Poisson integrals in (1.2.3) and (1.2.7) are defined in the sense of “approximation in

probability” (see Definition 1.2.11 below). Now, let us give some other specifications of

the representation. The following remarks are useful in the application of the Lévy-Itô

representation (see Section 19 of [39]).
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Remark 1.2.8 (i) In the equation (1.2.3), we can take∫ t

0

∫
‖x‖≤1

x (J − EJ)(ds dx) = lim
ε↓0

∫ t

0

∫
ε<‖x‖≤1

x (J − EJ)(ds dx). (1.2.9)

where the limit exists almost surely. Furthermore, a.s., the convergence is uniform in t on

any bounded interval.

(ii) As a consequence of representation (1.2.3), the random measureJ is almost surely

determined by the sample paths of{X(t)}t≥0. Concretely, a.s.

J(B) = #{t : (t,∆X(t)) ∈ B},

for every Borel set B of[0,∞) × Rd
0. Here,# denotes cardinality, and∆X(t) is the “jump”

of X at time t defined as∆X(t) ≡ X(t) − lims↑t X(s). In view of this, we usually callJ the

random measure associated with the jumps ofX or simply the jump measure. One of the

statements of the Lévy-Itô representation is that the random measure associated with the

jumps of a Lévy process is a Poisson process on[0,∞) × Rd
0. For a better understanding of

equation (1.2.3), note it can be written in terms of the jump process as follows:

X(t) = b(t) +G(t)

+ lim
ε↓0

∑
s:s≤t

∆X(s)1(ε < ‖∆X(s)‖ ≤ 1)−
∫
ε<‖x‖≤1

x νt(dx)


+

∑
s:s≤t

∆X(s)1(‖∆X(s)‖ > 1),

whereνt(B) ≡
∫ t

0

∫
B
EJ(ds,dx). Here,1(C) is the indicator function of C, that takes the

value1 if C is true and takes the value0 otherwise. The first two terms are called the

continuous partof the process, the last two terms are calledthe pure jump partof the

process. Sometimes, the second termG(t) is called theGaussian componentof the process ,

the third term thecompensated Poisson partand the last term simply thecompound Poisson

component. A pure-jump Lévy processis a Lévy process that has no continuous part.

(iii) If in addition, we have∫ t

0

∫
‖x‖≤1
‖x‖ EJ(ds dx) < ∞, ∀t > 0, (1.2.10)
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then a.s.

X(t) = b(t) +G(t) +
∫ t

0

∫
Rd

xJ(ds dx), (1.2.11)

whereb andG are as in Theorem 1.2.6.

(iv) Another nontrivial consequence of the Lévy-Itô decomposition is the fact that the

marginal distributions ofX are infinitely divisible distributions and thus, admit the Lévy-

Khintchine representation of Theorem 1.2.3. Concretely, we have that

E
[
ei z·X(t)

]
= exp(tψt(z)) , z ∈ Rd

where

ψt(z) = −
1
2

z · Σtz+ i z · b(t) +
∫
Rd

0

{
ei z·x − 1− i z · x I (‖x‖ ≤ 1)

}
νt(dx), (1.2.12)

whereΣt is the variance-covariance matrix ofG(t), b(t) is as in (1.2.3), andνt(dx) ≡

EJ(t,dx).

1.2.2 Poisson processes and Poisson integrals

There are excellent references about Poisson processes (see for instance [32] and [20]). In

this section we give the very basic results that are used in the present dissertation. Below,

Z̄+ is the union of the set of all positive integers and+∞. Also, as a convention, we say that

a random variableX has Poisson distribution with mean 0 ifX = 0 a.s. Similarly, we say

that a random variableX has Poisson distribution with mean∞ if X = ∞ a.s.

Definition 1.2.9 Let (S,S, ρ) be aσ-finite measure space. A collection ofZ̄+-valued ran-

dom variables{J(B) : B ∈ S} is called a Poisson process (or Poisson random measure)

with mean measureρ, if the following hold:

(1) for every B,J(B) is a Poisson random variable with meanρ(B);

(2) if B1, . . . , Bn are disjoint, thenJ(B1), . . . ,J(B1) are independent;

(3) for everyω,J(·;ω) is a measure onS.

The proof of the following proposition can be found in [39]
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Proposition 1.2.10 For anyσ-finite measure space(S,S, ρ), there exists, on some prob-

ability space(Ω0,F 0,P0), a Poisson process{J(B) : B ∈ S} on S with mean measure

ρ.

Note that for fixedω ∈ Ω the integral

I (ϕ;ω) ≡
∫

S
ϕ(x)J(dx;ω).

can be defined for all measurable functionsϕ : S→ R+, because of (3) in the definition of

Poisson processes. For general measurable functionsϕ : S→ R, the integralI (ϕ;ω) might

not exist in the sense of Lebesgue integration. This is not a problem if we assume thatρ

is finite (see Proposition 19.5 of [39]). In this case, we actually have thatI (ϕ) is infinitely

divisible of the compound Poisson type with characteristic function:

E
{
exp(iz · I (ϕ))

}
= exp

{∫
S
(eiz·ϕ(x) − 1)ρ(dx)

}
(1.2.13)

= exp

{∫
Rd

(eiz·x − 1)(ρϕ−1)(dx)

}
.

Below, we give conditions to define Poisson integrals whenS is a locally compact metric

space with countable basis,S is the corresponding Borelσ-field, andρ is a radon measure

(see Chapter 10 of [20] for a detailed exposition). For our purposes, we can assume thatS

is an open subset ofRd. Notice that
∫

S
ϕ(x)J(dx) exists a.s. ifϕ has compact support and

is bounded. The following definition introduces a weaker type of integration.

Definition 1.2.11 We say that
∫

S
ϕ(x)J(dx) exists (in the sense of approximation in prob-

ability) when, for any sequence{ϕn} of bounded functions with compact support such that

|ϕn| ≤ |ϕ| andϕn → ϕ, the random variable
∫

S
ϕn(x)J(dx) converge in probability to the

same limit (which is denoted by
∫

S
ϕ(x)J(dx)).

The next theorem states conditions for the existence of Poisson integrals and compen-

sated Poisson integrals (see 10.2 and 10.15 of [20]).
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Theorem 1.2.12LetJ andJ ′ be independent Poisson processes on S with commonσ-

finite radon mean measureρ. Fix any measurable functionϕ : S → R. The following

statements hold true:

1. If ϕ : S→ R+, then
∫

S
ϕ(x)J(dx;ω) exists (in the sense of Lebesgue integration) for

almost everyω and

E

{
exp

(
−

∫
S
ϕ(x)J(dx)

)}
= exp

{
−

∫
S
(1− e−ϕ(x))ρ(dx)

}
. (1.2.14)

2. If insteadϕ : S→ R and
∫

S
(|ϕ(x)| ∧1)ρ(dx) < ∞, then

∫
S
ϕ(x)J(dx;ω) exists (in the

sense of Lebesgue integration) for almost everyω, and

E

{
exp

(
i
∫

S
ϕ(x)J(dx)

)}
= exp

{∫
S
(eiϕ(x) − 1)ρ(dx)

}
. (1.2.15)

3.
∫

S
ϕ(x)(J −J ′)(dx) exists in the sense of approximation in probability if and only if∫

S
(|ϕ(x)|2 ∧ 1)ρ(dx) < ∞.

4. The compensated integral
∫

S
ϕ(x)(J − ρ)(dx) exists in the sense of approximation in

probability if and only if
∫

S
(|ϕ(x)|2 ∧ |ϕ(x)|)ρ(dx) < ∞.

The next proposition is well known and easy to derive.

Proposition 1.2.13 If
∫

S
(|ϕ(x)|ρ(dx) < ∞, thenE

∣∣∣∫
S
ϕ(x)J(dx;ω)

∣∣∣ < ∞, and

E

∫
S
ϕ(x)J(dx;ω) =

∫
S
ϕ(x)ρ(dx).

If
∫

S
ϕ2(x)ρ(dx) < ∞ thenE

∫
S
ϕ2(x)J(dx;ω) < ∞, and

Var

(∫
S
ϕ(x)J(dx;ω)

)
=

∫
S
ϕ2(x)ρ(dx).

1.3 Motivation for our research

Consider a real Lévy process{X(t)}t≥0 with unknown characteristic triplet (Σ, ν,b). Statis-

tical inference for Lévy processes in principle should be a straightforward extensions of
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the standard statistical machinery for random samples. This appreciation is justified up to

certain point. The mere definition of Lévy processes as processes with independent and

stationary increment implies that we can readily construct the random sample

Xh
i ≡ X(ti) − X(ti−1), i = 1, . . . ,n,

whenever 0= t0 < t1 < . . . are equally spaced sampling times with given time spanh.

In that case, by applying “standard” statistical methods to a finite sampleX(t1), . . . ,X(tn),

statistical inferences for the distribution ofX(h) seem to be doable.

There are two problems with this paradigm. First, it is well known that parsimonious

models in the “Fourier domain” do not corresponds to parsimonious models in the “space

domain”. Indeed, parsimonious parametric models for the Lévy measure can produce not

only intractable but sometimes not even expressible density functions (assuming such den-

sity exists). We can give numerous examples of this phenomenon, but the most obvious

and relevant one, in what statistical inference concerns, is a scaling of the Lévy mea-

sure. The density function, sayfh, corresponding to the characteristic triplet (hΣ,hν,hb)

has no general relationship to the density functionf of (Σ, ν,b). In particular, the den-

sity function ft(·) of X(t) can “greatly” change in shape (even for small changes) int.

Consider the case of a Gamma Lévy process{X(t)}t≥0 with Lévy measure of the form

ν(dx) = x−1 exp(−x)1(x > 0)dx (see Section 3.2.2 for a more comprehensive description

of this model). The density function ofX(1) is exponential. For anyt < 1, the density is

strictly decreasing with asymptote atx = 0. However, for anyt > 1, the density ofX(t) is

unimodal and approaches to 0 asx→ 0. From the point of view of the paradigm outlined

above, this implies that the likelihood function is going to be “instable” as a function ofh

aroundh = 1. In other word, the likelihood function based on daily data will be completely

different from the likelihood function based on weekly data. Another easy change in the

Fourier space that leads to striking changes in the “space domain” is the superposition of

Lévy measures. This will not be pursued any longer since we think that we already made

our point here.
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The other problem with the procedure above is more delicate to describe and harder to

quantify. We pose the following question: what are the effects of small time increments

in the results of standard statistical methods over finite time horizons?. This problem is

relevant in applications involving high frequency data. The fact that the sample size of

the data increases does not necessarily mean an improved “reliability” or precision of our

results because the target distributionL(X(h)) is changing as well.

Let us come back to the first situation where the Lévy process has simple Lévy density,

but “intractable” density function. Such settings are particularly common in recent appli-

cation of Lévy processes to asset price modeling. These financial models are driven by

Lévy processes in the same way as Samuelson’s geometric Brownian motion is driven by

the Brownian motion (see [38]). Namely, the model represents the priceS(t) at timet of a

risky asset by

S(t) = S(0)eX(t), (1.3.1)

where{X(t)}t≥0 is a Lévy process. One of the first to propose this geometric Lévy process

was Mandelbrot [26]. He postulates that the prices of commodities is given by (1.3.1) with

{X(t)}t≥0 being a Symmetricα-stable Lévy motion withα < 2. Later, Press [30] proposed

a Brownian motion plus an independent compound Poisson process with normally dis-

tributed jumps. More recently, Madan and Seneta [24] introduced a model of this type that

has influenced many future works in this area. They propose a Lévy process with “infinite

activity of jumps” but bounded variation of paths, namely, the variance gamma model for

log prices (see Section 3.2.3 for more on this model). This model has been increasingly

specialized to better fit the empirically observed distributions and simultaneous fit the op-

tion prices (see [13], [11], [12]). The density function in most of these models do not have

closed form expressions, and techniques using the characteristic function are inevitable.

Another school of modeling considers the so called generalized hyperbolic distributions

(see for instance [4], [3], [14], [6], and the references therein). The density functions in

this class of models have closed form expressions, but in most case, they lead to intractable
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likelihood functions involving Bessel functions, exponentials, powers ofx, etc. Statistical

inference becomes numerically challenging and expensive.

In a technical report, Rosiński [35] studies thetempered stablemodel that encompasses

the variance Gamma model and the CGMY model of [11]. One important contribution of

this work is to recognize and stress the relationship of this type of models to the class of

stable processes. Two fundamental connections were pointed out. On one hand, the scaling

behavior of the process for both short time spans and long time spans are considered. It

is found that in the short term the increments of the process behave (in the limit) as the

increments of stable process, while in long spans the increments behave like the increments

of a Brownian motion (up to a scaling in space and a shift). We found this property quite

enlightening for financial applications. The second connection has to do with changes

in the probability measure. In short, statistically a tempered stable process looks like a

stable process under a suitable change in the probability measure. We study in detail this

class of processes in Chapter 4 providing our own proofs to his results (so far we have not

had the opportunity to see a complete version with proofs of this technical report). In its

most general form, tempered stable processes involves a completely monotone functionq

(typical examples aree−x, 1/(x+ 1), etc). This fact was another incentive for looking into

nonparametric estimation methods for Lévy densities.

1.4 Brief overview of estimation methods for Lévy pro-
cesses

Let {X(t)}t≥0 be a real-valued Lévy process. The following problem is tackled: Assume that

expressions for the characteristic functionϕh or for the Lévy densitysh of X(h) are simple,

but that the corresponding (marginal) density functionfh has either one of the following

two shortcomings: it produces “intractable” likelihood functions, or it does not have a

“closed expression”. We mention below some methods found in the literature to deal with

this problem.
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The most wide spread approach isLikelihood based methods. This approach relies on

an inversion formula for the characteristic function that evaluates the density functionfh

at a pointx from the characteristic functionϕh. The following fundamental result gives an

inversion formula for probability densities:

Proposition 1.4.1 Letϕ be the characteristic function of a probability measureµ and sup-

pose that
∫
R
|ϕ(z)|dz< ∞. Thenµ has a bounded continuous density f given by the Fourier

transform ofϕ:

f (x) =
1
2π

∫ ∞

−∞

e−izxϕ(z)dz. (1.4.1)

Therefore, based on sampling observationsx1, . . . , xn of the incrementsX(h), X(2h)−X(h),

..., X(nh) − X((n− 1)h), the likelihood function ofϕ is implicitly given by

Lh(x1, . . . , xn;ϕ) =
n∏

i=1

fh(xi) =
1

(2π)n

n∏
i=1

∫ ∞

−∞

e−izxiϕh(z)dz. (1.4.2)

As it is clear from the previous expression, any statistical inference forϕh based on the

likelihood function is highly computational expensive since it requires to compute a Fourier

transform for each data pointxi, i = 1, . . . ,n. For instance, say that the characteristic

functionϕθ is determined by one parameterθ ∈ R that we wish to estimate. Let us write

Lh(θ) = Lh(x1, . . . , xn;ϕθ). In order to find the maximum likelihood estimator ofθ it is

necessary to repeatedly evaluate the likelihood functionLh(θ) at different values ofθ. Each

evaluation requiresn Fourier transforms. Therefore, the computational intensity of this

approach appears non-viable for applications.

The following method is outlined in [11]. Fast Fourier transforms are applied to eval-

uate the levels of the functionf at a regular lattice{xk} of an interval [−b,b]. In their own

words, “fast Fourier transform effectively renders the level of the probability density at

prespecified set of points”, sayxk = k∆x, for k = −N, . . . ,N and∆ = b/N. Certainly, this

statement deserves better justification or at least a reference. In any case, the next step is to

“bin” the data to get an approximate likelihood functionLN(θ). Concretely, they consider
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the following multinomial like likelihood function:

LN(θ) =
N∏

k=−N

fθ(xk)
nk,

wherenk is the number of points in the sample for which the closest grid point isxk. Finally,

“the parameter estimates that maximize the likelihood of this binned data are searched”. To

the best of our knowledge, there is no detailed numerical analysis of this method.

When explicit forms for the density functions are available, [6] considers a multinomial

log likelihood function. More precisely, ifI1, . . . , Ik are disjoint intervals with union the

entire real line andnj is the number of observations inI j , j = 1, . . . , k, the multinomial

log-likelihood function is given byl(θ) =
∑k

j=1 nj log pj, wherepj is the probability that the

increment takes a value inI j.

Another popular approach issimulation based methods. The very general idea behind

this approach is to select a model (probably described via a parameter) that best “matches”

the sampling observations and simulated observations using the model. To measure the

closeness between the observed data and the simulated data it is necessary to look for

concrete empirical characteristics like quantiles. So, the estimated model can be proposed

to be one that minimize the distance between some empirical quantiles computed from the

sample observations and the corresponding quantiles computed from simulated data using

the model (see for instance [19]).

The most meaningful approach for the subject of our work isjumps based methods.

As far as we know, this approach has not been fully explored in the context of estimation

for Lévy densities before this dissertation. While the present thesis was in progressed, we

became aware of a relevant result of S. Raible [31]. He considers the estimation of the Lévy

density of Generalized Hyperbolic Lévy processes. It is proved there that some parameters

in that model are invariant under equivalent changes in the probability measure. He also

recognizes that this is a consequence of the fact that these parameters are “sample path

dependent” and not “distributional dependent”. In relation to that, the following general

result is obtained in [31].
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Proposition 1.4.2 Let X be a Lévy process with finite second moments such that the Lévy

measure has a density s(x) with asymptotic behavior

s(x) =
a
x2
+ o

(
x−2

)
, as x ↓ 0.

Fixed an arbitrary time T and consider the sequence of random variables

Sn =
1

Tn
#

{
s≤ T : ∆X(s) ∈

[
1

k+ 1
,1

)}
, k ≥ 1.

Then, a.s., Sn converges to the value a as n→ ∞.

It can be said thata is a “path dependent” parameter that can be determined from properties

of a “typical path”. Using simulation, the convergence of the estimator as the number of

jumps in the sample path gets larger was numerically illustrated . However, the problem of

approximatingSn if the jump process is not observed is not considered.

1.5 Outline of the thesis

In Chapter 2, it is discussed the nonparametric estimation of the Lévy densitys of a real

Lévy processX = {X(t)}t≥0 based on discrete observations of the process in a time period

[0,T]. We devise two methods to accomplish this. The first method constructs estimators,

say ŝ(x), which can be written in terms of integrals of deterministic functions with respect

to the random measure associated with the jumps ofX. Concretely, the first method consists

of two subparts:

(1) the selection of a good estimator ˆs from a linear modelS of possible estimators. Since

the proposed estimator ˆs is designed to be an unbiased estimator of the orthogonal

projection ofsontoS, ŝ is called theprojection estimatorof sonS. It is proved that,

when the time horizonT increases, the distance between the proposed estimator ˆsand

the Lévy densitys realizes the smallest distance betweens and any other estimator

in S;
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(2) the selection of a linear model among a given collection of linear models. The pro-

posed selection criteria is designed to approximately realize the best tradeoff between

the error of estimation withinin the model and the distance between the model and

the unknown Lévy densitys. The resultant estimator is a type ofpenalized projection

estimatorthat assesses the goodness of a projection estimator not only by its approx-

imation quality inside the model but also by its complexity and variance. These last

two characteristics are controlled by suitable penalty functions.

It is shown that the methodology of adaptive estimation, and model selection for non-

homogeneous Poisson processes by [33] can be modified to estimate Lévy densities, while

preserving desirable features likeOracle type inequalitiesand the convergence of the mean-

square error to 0 as the time horizon increases.

The second proposed method contemplates the problem that the Poisson jump mea-

sure cannot be retrieved from discrete observation and finds an approximation procedure

for Poisson integrals using time series of the form{X(ti)}
N
i=1. This approximation is based

on the “microstructure” of Lévy processes; that is to say, the distributional and path prop-

erties of Lévy processes for small time spans. It is proved the weak convergence of the

approximation to the actual integrals when the mesh of the partition approaches 0. Also, it

is proved that the mean-square error of the estimation based on the approximate integrals

converges to the mean square-error of the estimation based on the unattainable Poisson in-

tegrals. Other connections to the non-parametric estimation of density functions are also

considered.

In Chapter 3, we address the performance of penalized projection estimators and model

selection methods based on computer simulations. The considered estimators are histogram

projection estimators and their approximate versions based on increments. We analyze in

detail two classes of Lévy processes that are relevant in financial applications: Variance

Gamma processes and Gamma Lévy processes. A projection estimation method with least-

squares errors is considered to calibrate parametric or semiparametric models based on
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nonparametric estimation outputs. This methodology is applied to calibrate Gamma Lévy

processes and compare with standard methods of maximum likelihood estimation.

In Chapter 4, we study the class oftempered stable processesintroduced by Rosiński

in [35]. We presente a survey of his results, providing our own proofs, and make some

additional remarks.
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CHAPTER II

NONPARAMETRIC ESTIMATION OF LÉVY

DENSITIES

We discuss the nonparametric estimation of the Lévy densityp of a real Lévy process

X = {X(t)}t≥0 based on discrete observations of the process. We develop two methods to

accomplish this. The first method construct estimators ˆp(x) which can be written in terms

of integrals of deterministic functions with respect to the random measure associated with

the jumps ofX. Moreover, the first method consists of two parts: (1) the selection of a good

estimator from a linear space of proposed Lévy densities, and (2) a data-driven selection of

a linear model among a given collection of linear models. It is shown that the methodology

of adaptive estimation, and model selection for nonhomogeneous Poisson processes (see

[33]) can be modified to estimate Lévy densities, while preserving desirable features of

estimation like Oracle type inequalities. The second method contemplates the fact that

the Poisson jump measure is never observed and proposes an approximation procedure for

Poisson integrals using time series of the form{X(ti)}
N
i=1. It is proved the weak convergence

of the approximation to the actual integrals when the mesh of the partition approaches 0.

Also, it is proved the convergence of the mean-square error of estimation based on the

approximations to the mean square-error of estimation based on the Poisson integrals.

2.1 The basic method of estimation

Consider a real Lévy processX = {X(t)}t≥0 with Lévy densityp. That is,X is a càdlàg

process with independent and stationary increments such that its characteristic function is
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given by

E
[
eiuX(t)

]
= exp

t
iub−

u2σ2

2
+

∫
R0

{
eiux − 1− iux1[|x|≤1]

}
p(x)dx


 , (2.1.1)

whereR0 = R\{0} andp satisfies∫
R0

(1∧ x2)p(x)dx< ∞. (2.1.2)

Being a càdlàg process, the set of jump times{t > 0 : X(t) − X(t−) > 0} is countable and,

for Borel subsetsB of [0,∞) × R0,

J(B) = #
{
t > 0 : (t,X(t) − X(t−)) ∈ B

}
, (2.1.3)

is a well-defined random measure on [0,∞) × R0. The Lévy-Itô decomposition of sample

functions (see Theorem 19.2 of [39]) implies thatJ is a Poisson process on the Borel sets

of B([0,∞) × R0) with mean measure given by

µ(B) =
"

B

p(x) dt dx. (2.1.4)

We study the problem of estimating the Lévy densityp on a domainD ∈ B (R0), where

p is bounded and
∫

D
p2(x)dx < ∞. For instance, ifp is bounded outside of any neighbor-

hood of the origin, (2.1.2) implies that for anyε > 0:∫
|x|>ε

p2(x)dx< ∞. (2.1.5)

More generally, let us assume that the Lévy measureν(dx) ≡ p(x)dx is absolutely continu-

ous with respect to a known measureη onB (D) and that the Radon-Nikodym derivative

dν
dη

(x) = s(x), x ∈ D, (2.1.6)

is positive, bounded, and satisfies∫
D

s2(x)η(dx) < ∞. (2.1.7)
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Definition 2.1.1 If (2.1.6) and (2.1.7) are verified, we say thatη is aregularization measure

for the Lévy density p. In that case, s is referred to as theregularized Lévy densityof p on

D (underη).

Our goal will be to estimate the regularized Lévy densitys, and using (2.1.6) to proceed

to retrievep on D from s. Notice that under the previous regularization assumption, the

measureJ of (2.1.3), when restricted toB([0,∞) × D), is a Poisson process with mean

measure

µ(B) =
"

B

s(x) dtη(dx), B ∈ B([0,∞) × D). (2.1.8)

Example 2.1.2 The statistician could be interested in continuous densities p such that

p(x) = O

(
1
x

)
, as x→ 0.

This type of densities admit the regularization measureη(dx) = x−2dx on domains of the

form D = {x : 0 < |x| < b}. Indeed, s(x) = x2p(x) will be bounded and fulfills (2.1.7). The

problem reduces to first estimate s and to subsequently estimate p by x−2s(x).

The general methodology we use is motivated by the recent procedures ofmodel se-

lectionandadaptive estimationof the intensity function of non-homogeneous Poisson pro-

cesses (see [33]). In this paper, theprojection estimatoris proposed as a plausible candi-

date for the intensity among a set of functions that constitute a finite dimensional subspace,

whereaspenalized projection estimationis devised as a data driven criterion for model

selection among a family of linear models. One of the advantages of this approach com-

pared to previous ones is to accomplishOracle inequalitiesunder quite general conditions

(see Section 2.2 for a brief explanation of this type of inequalities). However, there are

some drawbacks when facing domains of estimation with infinite measure as the domain

D = {x : |x| > ε} is under the Lebesgue measure orD = {x : 0 < |x| < b} is under the

measureη(dx) = x−2dx. Actually, the total measure of the domain plays a key role in the

definitions of projection estimators, contrast functions, and penalization. Our job in this
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section is to develop and heuristically justify a methodology that does not relies on the

finiteness of the domain.

Let us describe the main ingredients of our procedure. Consider the random functional

γD( f ) ≡ −
2
T

"
[0,T]×D

f (x)J(dt,dx) +
∫
D

f 2(x) η(dx), (2.1.9)

well defined for any functionf ∈ L2 ((D, η)), whereD ∈ B (R0) andη is as in equations

(2.1.6)-(2.1.8). Following [33], we callγD thecontrast function. Throughout this section,

‖ f ‖2 ≡
∫
D

f 2(x) η(dx),

for any f ∈ L2 ((D, η)). Let S be a finite dimensional subspace ofL2 = L2 ((D, η)). The

projection estimatorof s onS is defined by

ŝ(x) ≡
d∑

i=1

β̂iϕi(x), (2.1.10)

where{ϕ1, . . . , ϕd} is any orthonormal basis ofS and

β̂i ≡
1
T

"
[0,T]×D

ϕi(x)J(dt,dx). (2.1.11)

Let us give another characterization of the projection estimator.

Remark 2.1.3 The projection estimator is the unique minimizer of the contrast function

γD over S . Indeed, plug f=
∑d

i=1 βiϕi in (2.1.9) to get thatγD( f ) =
∑d

i=1

(
−2βi β̂i + β

2
i

)
,

and thus,γD( f ) ≥ −
∑d

i=1 β̂
2
i , for all f ∈ S . In particular, this characterization implies that

ŝ does not depend on the choice of the orthonormal basis, and suggests a mechanism to

numerically approximatês when we do not have an explicit orthonormal basis forS.

The remark above helps to make sense of ˆsas an estimator of the regularized Lévy density

sbecause the minimizer ofE
[
γD( f )

]
over all f ∈ S is precisely the closest function inS to

s. Concretely, theorthogonal projectionof s on the subspaceS, namely

s⊥ =
d∑

i=1

(∫
D
ϕi(y)s(y)η(dy)

)
ϕi(x), (2.1.12)
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is such that

−‖s⊥‖2 = E
[
γD(s⊥)

]
≤ E

[
γD( f )

]
, ∀ f ∈ S. (2.1.13)

Moreover, by Proposition 1.2.13, we can corroborate that ˆs is an unbiased estimator of

the orthogonal projections⊥. In order to assess the quality of estimation, we compute the

“square error” of ˆs:

χ2 ≡ ‖s⊥ − ŝ‖2 =
d∑

i=1


"

[0,T]×D

ϕi(x)
J(dt,dx) − s(x) dtη(dx)

T


2

. (2.1.14)

Then, using Proposition 1.2.13, the mean square error takes the form

E
[
χ2

]
=

1
T

d∑
i=1

∫
D

ϕ2
i (x)s(x) η(dx). (2.1.15)

The quantityE
[
χ2

]
is called thevariance termand the equation above shows that this term

will shrink to 0 when the time horizonT goes to infinity. It is not hard to see that therisk

of ŝ, E
[
‖s− ŝ‖2

]
, can be decomposed into a nonrandom term plus the variance term:

E
[
‖s− ŝ‖2

]
= ‖s− s⊥‖2 + E

[
χ2

]
. (2.1.16)

The first term, called thebias term, accounts for the distance of the unknown functions to

the modelS and does not depend on the estimation criteria we use within the model.

The next natural problem to tackle is to design a data-driven scheme for selecting a

“good” model from a collection of linear models{Sm,m ∈ M}. Namely, we wish to select

a model that approximately realizes the best trade-off between the risk of estimation within

the model and the distance of the unknown Lévy density to the model. Let ˆsm ands⊥m be

respectively the projection estimator and the orthogonal projection ofs on Sm. For each

m ∈ M, letχ2
m be as in (2.1.14). The following simplifications of the equation (2.1.16) will
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give us insight on a possible solution:

E
[
‖s− ŝm‖

2
]
= ‖s− s⊥m‖

2 + E
[
χ2

m

]
= ‖s‖2 − ‖s⊥m‖

2 + E
[
χ2

m

]
(2.1.17)

= ‖s‖2 − E
[
‖ŝm‖

2
]
+ 2E

[
χ2

m

]
= ‖s‖2 + E

[
γD (ŝm) + pen(m)

]
,

where pen(m) is defined in terms of an orthonormal basis
{
ϕ1,m, . . . , ϕdm,m

}
for Sm by the

equation:

pen(m) =
2
T2

"
[0,T]×D

 dm∑
i=1

ϕ2
i,m(x)

J(dt,dx). (2.1.18)

Equation (2.1.17) shows that the risk of ˆsm moves “parallel” to the expectation of theob-

servable statisticsγD (ŝm) + pen(m). This fact heuristically justifies to choose the model

that minimizes such a penalized contrast value. We will show in a subsequent section that

it is possible to take simpler penalty functions pen :M → [0,∞). In general, apenalized

projection estimator (p.p.e.) is of the form

s̃≡ ŝm̂, (2.1.19)

whereŝm is defined as in (2.1.10) for eachm ∈ M, and where ˆm is chosen so thatγD (ŝm)+

pen(m) is minimal:

m̂≡ argminm∈M

{
γD (ŝm) + pen(m)

}
.

Methods of estimation based on the minimization of penalty functions have a long history

in the literature of regression and density estimation (for instance, [1], [25], and [40]). The

general idea is to choose among a given collection of parametric models the model that

minimizes a loss function plus a penalty term that controls the complexity of the model.

Thenonparametric point of viewof penalized estimation has been promoted in the context

of density estimation by Birgé and Massart (see [7] and references herein). In fact, the work

on non-homogeneous Poisson processes by [33] is directly inspired by them. There are two
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main accomplishments obtained in these works both in the context of density estimation

and intensity estimation of nonhomogeneous Poisson processes: Oracles inequalities and

competitive performance against minimax estimators. The following section shows that the

method outlined here preserves Oracle inequalities.

2.2 Oracle inequalities

Consider the problem of model selection among a collection of linear models,{Sm,m ∈ M},

for the regularized Lévy densitys on D as outlined in Section 2.1. We showed through

(2.1.17) that a sensible criterion to decide for a projection estimator is to penalize its con-

trast value with a properly chosen penalty function pen :M → [0,∞). Of course, the

“best” model, namely

m̄≡ argminm∈M E
[
‖s− ŝm‖

2
]
, (2.2.1)

is not accessible, but we can aspire to achieve the smallest possible risk up to a constant. In

other words, it is desirable that our estimator ˜s comply with an inequality of the form

E
[
‖s− s̃‖2

]
≤ C inf

m∈M
E

[
‖s− ŝm‖

2
]
, (2.2.2)

for a constantC “independent” of the linear models. The model that achieves the mini-

mal risk of projection estimation is called theOracle modeland inequalities of the type

(2.2.2) are calledOracle inequalities. "Approximate" Oracle inequalities were proved

by Reynaud-Bouret [33] for the intensity function of a nonhomogeneous Poisson process

{NA}A∈V on a measurable space (V,V). Concretely, she defines projection estimators ˆsm

and penalized projection estimators ˜s satisfying

E
[
‖s− s̃‖2

]
≤ C inf

m∈M
E

[
‖s− ŝm‖

2
]
+

C′

ζ(V)
,

wheres is a bounded function andζ is finite measure onV such that

µ(A) ≡ E[NA] =
∫

A
s(x)dζ(x).
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The finiteness ofζ plays an important role in her definitions and results, and it is not neces-

sarily satisfied by the mean measure of the Poisson processJ(·) of (2.1.3) onB([0,T] ×D)

(for instance, ifD = {|x| > ε} underζ(dx) = dx dtas in (2.1.4), or ifD = {0 < |x| < b} and

ζ(dx) = x−2dx dt as in Example 2.1.2). In this section we show that, based on one sam-

ple of the Lévy processX on [0,T], the projection estimators{ŝm}m∈M and the penalized

projection estimator ˜s described in Section 2.1 yield the approximate Oracle inequality

E
[
‖s− s̃‖2

]
≤ C inf

m∈M
E

[
‖s− ŝm‖

2
]
+

C′

T
.

for the Lévy measuresunder suitable chosen penalization functions. The proof we present

essentially follows the same line of reasoning as [33]; however, to overcome the possible

lack of finiteness inη and avoid unnecessary use of upper bounds, we include a new element

in the penalization functions which is also appealing: the dimension of the linear model.

We also address the problem of estimating the order of the constantsC andC′ appearing in

the Oracle inequality.

The following regularity condition was introduced by [33] to make a distinction be-

tween not too “large” families of linear models and wavelet-type linear models. We will

focus here on the simplest case.

Definition 2.2.1 A collection of models{Sm,m ∈ M} is said to be polynomial if there exist

constantsΓ > 0 and R≥ 0 such that for every positive integer n

# {m ∈ M : dm = n} ≤ ΓnR,

where dm stands for the dimension of the model Sm, while# denotes cardinality.

We assume below the setting of Section 2.1; that is to say,X = {X(t)}t≥0 is a Lévy process

with Lévy densityp and regularizedLévy densitys on a domainD ∈ B (R0) under a

regularization measureη (see Definition 2.1.1). Define

Dm = sup

{
‖ f ‖2∞ : f ∈ Sm, ‖ f ‖

2 ≡

∫
D

f 2(x)η(dx) = 1

}
. (2.2.3)
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Remark 2.2.2 If
{
ϕ1,m, . . . , ϕdm,m

}
is an orthonormal basis ofSm, then Dm = ‖

∑dm
i=1 ϕ

2
i,m‖∞

(see Section 2.5 for a verification).

Here is the main result of this section:

Theorem 2.2.3 Let {Sm,m ∈ M} be a polynomial family of finite dimensional linear sub-

spaces of L2((D, η)). Let T be large enough so that Dm ≤ T, for all m ∈ M. If ŝm and s⊥m

are respectively the projection estimator and the orthogonal projection of the regularized

Lévy density s onSm then, the penalized projection estimators̃ of (2.1.19) is such that

E
[
‖s− s̃‖2

]
≤ C inf

m∈M

{
‖s− s⊥m‖

2 + E
[
pen(m)

]}
+

C′

T
, (2.2.4)

wheneverpen :M → [0,∞) takes one of the following forms for constants c> 1, c′ > 0,

and c′′ > 0:

(a) pen(m) ≥ cDmN

T2 +c′ dm

T , whereN ≡ J([0,T]×D) is the number of jumps prior to T with

sizes falling in D and where it is assumedρ ≡
∫

D
s(x)η(dx) < ∞;

(b) pen(m) ≥ cV̂m

T , whereV̂m is defined in terms of an orthonormal basis
{
ϕ1,m, . . . , ϕdm,m

}
of

Sm by the equation:

V̂m ≡
1
T

"
[0,T]×D

 dm∑
i=1

ϕ2
i,m(x)

J(dt,dx), (2.2.5)

and where it is assumedβ ≡ infm∈M
E[V̂m]

Dm
> 0 andφ ≡ infm∈M

Dm

dm
> 0;

(c) pen(m) ≥ cV̂m

T + c′ Dm

T + c′′ dm

T .

Moreover, the constant C depends only on c, c′ and c′′, while C′ varies with c, c′, c′′, Γ, R,

‖s‖, ‖s‖∞, ρ, β, andφ.

The next corollary immediately follows from the first equality in (2.1.17), equation

(2.1.15), and part (b) above:

Corollary 2.2.4 In the setting of Theorem 2.2.3, if the penalty function is of the form

pen(m) ≡ cV̂m

T , for every m∈ M, β > 0, andφ > 0, then

E
[
‖s− s̃‖2

]
≤ C1 inf

m∈M

{
E

[
‖s− ŝm‖

2
]}
+

C2

T
, (2.2.6)
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for a constant C1 depending only on c, and a constant C2 depending on c,Γ, R,‖s‖, ‖s‖∞,

β, andφ.

We will break the proof of Theorem 2.2.3 into several preliminary results.

Lemma 2.2.5 For any penalty functionpen :M → [0,∞) and any m∈ M, the penalized

projection estimator̃s satisfies

‖s− s̃‖2 ≤ ‖s− s⊥m‖
2 + 2χ2

m̂+ 2νD
(
s⊥m̂− s⊥m

)
+ pen(m) − pen(m̂), (2.2.7)

whereχ2
m ≡ ‖s

⊥
m− ŝm‖

2 and where the functionalνD : L2 ((D, η))→ R is defined by

νD( f ) ≡
"

[0,T]×D

f (x)
J(dt,dx) − s(x) dtη(dx)

T
. (2.2.8)

The general idea to obtain (2.2.4) is to bound the unattainable termsχ2
m̂ andνD

(
s⊥m̂− s⊥m

)
in the right hand side of (2.2.7) by observable statistics. Then, the form of pen(·) will be

determined by this observable statistics so that the right hand side in (2.2.7) does not involve

m̂. To carry out this plan, we use concentration inequalities forχ2
m̂ and for the compensated

Poisson integralsνD( f ). The following result gives a concentration inequality for general

compensated Poisson integrals.

Theorem 2.2.6 Let N be a Poisson process on a measurable space(V,V) with mean

measureµ and let f : V → R be an essentially bounded measurable function satisfying

0 <
∫

V
f 2(v)µ(dv) and

∫
V
| f (v)|µ(dv) < ∞. Then, for any u> 0,

P

[∫
V

f (v)(N(dv) − µ(dv)) ≥ ‖ f ‖L2(µ)

√
2u+

1
3
‖ f ‖∞u

]
≤ e−u, (2.2.9)

where‖ f ‖2
L2(µ)
=

∫
V

f 2(v)µ(dv). In particular, if f : V → [0,∞) then, for anyε > 0 and

u > 0,

P

[
(1+ ε)

(∫
V

f (v)N(dv) +

(
1
2ε
+

5
6

)
‖ f ‖∞u

)
≥

∫
V

f (v)µ(dv)

]
≥ 1− e−u. (2.2.10)
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The inequality (2.2.9) is proved in [18] (see also Proposition 7 of [33]). A verification of

(2.2.10) is provided in Section 2.5.

The next result allow us to bound the Poisson functionalχ2
m. This results is essentially

Proposition 9 of [33].

Lemma 2.2.7 Let N be a Poisson process on a measurable space(V,V) with mean mea-

sureµ(dv) = p(v)η(dv) and intensity function p∈ L2(V,V, η). LetS be a finite dimensional

subspace of L2(V,V, η) with orthonormal basis{ϕ̃1, . . . , ϕ̃d}, and define

p̂(v) ≡
d∑

i=1

(∫
V
ϕ̃i(w)N(dw)

)
ϕ̃i(v) (2.2.11)

p⊥(v) ≡
d∑

i=1

(∫
V

p(w)ϕ̃i(w)η(dw)

)
ϕ̃i(v). (2.2.12)

Then,χ2(S) ≡ ‖p̂− p⊥‖2
L2(η)

is such that for any u> 0 andε > 0

P
[
χ(S) ≥ (1+ ε)

√
E

[
χ2(S)

]
+

√
2kMSu+ k(ε)BSu

]
≤ e−u, (2.2.13)

where we can take k= 6, k(ε) = 1.25+ 32/ε, and where

MS ≡ sup

{∫
V

f 2(v)p(v)η(dv) : f ∈ S, ‖ f ‖L2(η) = 1

}
, (2.2.14)

BS ≡ sup
{
‖ f ‖∞ : f ∈ S, ‖ f ‖L2(η) = 1

}
. (2.2.15)

Following the same strategy as [33], the idea is to obtain first concentration inequality of

the form

P
[
‖s− s̃‖2 ≤ C

(
‖s− s⊥m‖

2 + pen(m)
)
+ h(ξ)

]
≥ 1−C′e−ξ,

for constantsC andC′, and a functionh(ξ) (all independent ofm). This will prove to be

enough in view of the following result (see Section 2.5 for a proof).

Lemma 2.2.8 Let h : [0,∞) → R+ be an strictly increasing function with continuous

derivative and such that h(0) = 0andlimξ→∞ e−ξh(ξ) = 0. If Z is random variable satisfying

P
[
Z ≥ h(ξ)

]
≤ Ke−ξ,
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for everyξ > 0, then

EZ ≤ K
∫ ∞

0
e−uh(u)du.

We are now in position to prove the main result of this section. Throughout the proof, we

shall have to introduce various constants and inequalities that will hold with high probabil-

ity. In order to clarify the role that the constants play in these inequalities, we shall make

some conventions and give to the lettersx, y, f , a, b, ξ, K , c, andC, with various sub- or

superscripts, special meaning. The letters withx are reserved to denote positive constants

that can be chosen arbitrarily. The letters withy denote arbitrary constants greater than

1. f , f1, f2, . . . denote quadratic polynomials of a variableξ whose coefficients (denoted

by a′s andb′s) are determined by the values of thex′s andy′s. The inequalities will be

true with probabilities greater that 1− Ke−ξ, whereK is determined by the values of the

x′s and they′s. Finally, c′s andC′s are used for constants constrained by thex′s andy′s.

It is important to remember that the constants in a given inequality are only used in that

inequality. The pair of equivalent inequalities below will be repeatedly used through the

proof:

(i) 2ab≤ xa2 + 1
xb2, and

(ii) (a+ b)2 ≤ (1+ x) a2 +
(
1+ 1

x

)
b2, (for x > 0).

(2.2.16)

Proof of Theorem 2.2.3: We consider successive improvements of the inequality (2.2.7):

Inequality 1: For any positive constants x1, x2, x3, and x4, there is a positive numberK

and an increasing quadratic function f(ξ) (both independent of the family of linear models

and of T) such that, with probability larger than1− Ke−ξ,

‖s− s̃‖2 ≤ ‖s− s⊥m‖
2 + 2χ2

m̂+ 2x1‖s⊥m̂− s⊥m‖
2

+x2
Dm̂

T + x3
Dm

T + x4
dm̂

T

+ pen(m) − pen(m̂) + f (ξ)
T .

(2.2.17)

Verification: Let us find an upper bound forνD

(
s⊥m′ − s⊥m

)
, m′,m ∈ M. Since the operator

νD defined by (2.2.8) is just a compensated integral with respect to a Poisson process with
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mean measureµ(dtdx) = dtη(dx), we can apply Theorem 2.2.6 to obtain that, for any

x′m′ > 0, and with probability larger than 1− e−x′
m′

νD
(
s⊥m′ − s⊥m

)
≤

∥∥∥∥s⊥m′ − s⊥m
T

∥∥∥∥
L2(µ)

√
2x′m′ +

‖s⊥m′ − s⊥m‖∞x′m′
3T

. (2.2.18)

In that case, the probability that (2.2.18) holds for everym′ ∈ M is larger than 1−∑
m′∈M e−xm′ becauseP(A ∩ B) ≥ 1 − a − b, wheneverP(A) ≥ 1 − a andP(B) ≥ 1 − b.

Clearly,

∥∥∥∥s⊥m′ − s⊥m
T

∥∥∥∥2

L2(µ)
=

"
[0,T]×D

(
s⊥m′(x) − s⊥m(x)

T

)2

s(x)dtη(dx)

≤ ‖s‖∞
‖s⊥m′ − s⊥m‖

2

T
.

Using (2.2.16-i), the first term on the right hand side of (2.2.18) is then bounded as follows:

∥∥∥∥ s⊥m′ − s⊥m
T

∥∥∥∥
L2(µ)

√
2x′m′ ≤ x1‖s

⊥
m′ − s⊥m‖

2 +
‖s‖∞xm′

2T x1
, (2.2.19)

for anyx1 > 0. Using (2.2.3) and (2.2.16-i),

‖s⊥m′ − s⊥m‖∞x′m′ ≤
(
‖s⊥m′‖∞ + ‖s

⊥
m‖∞

)
x′m′

≤
( √

Dm′‖s
⊥
m′‖ +

√
Dm‖s

⊥
m‖

)
xm′

≤
√

Dm′‖s‖x
′
m′ +

√
Dm‖s‖x

′
m′

≤ 3x2Dm′ + 3x3Dm+
‖s‖2x′2m′

12

(
1
x2
+

1
x3

)
,

for all x2 > 0, x3 > 0. It follows that, for anyx1 > 0, x2 > 0, andx3 > 0,

νD
(
s⊥m′ − s⊥m

)
≤ x1‖s

⊥
m′ − s⊥m‖

2 + x2
Dm′

T
+ x3

Dm

T

+
‖s‖∞x′m′
2T x1

+
‖s‖2x′2m′
36Tc

,

where we set1c =
1
x2
+ 1

x3
. Next, take

x′m′ ≡ x4

√
dm′

(
1
‖s‖
∧

1
‖s‖∞

)
+ ξ.
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Then, for any positivex1, x2, x3, and x4, there is aK and a functionf such that, with

probability greater than 1− Ke−ξ,

νD

(
s⊥m′ − s⊥m

)
≤ x1‖s⊥m′ − s⊥m‖

2 + x2
Dm′

T + x3
Dm

T

+

(
x2

4
18c +

x4
2x1

)
dm′

T +
f (ξ)
T , ∀m′ ∈ M.

(2.2.20)

Concretely,

f (ξ) = ‖s‖18cξ
2 + ‖s‖∞2x1

ξ,

K = Γ
∑∞

n=1 nR exp
(
−
√

nx4

(
1
‖s‖ ∧

1
‖s‖∞

))
.

(2.2.21)

Here, we use the assumption of polynomial models (Definition2.2.1) to come up with the

constantK . Pluging (2.2.20) in (2.2.7), and renaming the coefficient of dm′/T, we can

corroborate inequality 1.

Inequality 2: For any positive constants y1 > 1, x1, x2, and x3, there are positive constants

C1 < 1, C′1 > 1, andK , and a strictly increasing quadratic polynomial f (all independent

of the class of linear models and T) such that with probability larger than1− Ke−ξ,

C1‖s− s̃‖2 ≤ C′1‖s− s⊥m‖
2 + y1χ

2
m̂

+x2
Dm̂

T + x3
Dm

T + x4
dm̂

T

+ pen(m) − pen(m̂) + f (ξ)
T .

(2.2.22)

Moreover, if1 < y1 < 2, then C′1 = 3− y1 and C1 = y1 − 1. If y1 ≥ 2, then C′1 = 1+ 4x1 and

C1 = 1− 4x1, where x1 is any positive constant related to f according to equation (2.2.21).

Verification: Let us combine the term on the left hand side of (2.2.17) with the first three

terms on the right hand side. Using the triangle inequality followed by (2.2.16-ii),

‖s⊥m̂− s⊥m‖
2 ≤ 2‖s− s⊥m‖

2 + 2‖s⊥m̂− s‖2.

Then, sinceχ2
m̂ = ‖s

⊥
m̂− ŝm̂‖

2, and‖s⊥m̂− s‖2 = ‖s− ŝm̂‖
2 − ‖s⊥m̂− ŝm̂‖

2, it is found that

‖s− s⊥m‖
2 + 2χ2

m̂+ 2x1‖s⊥m̂− s⊥m‖
2 − ‖s− s̃‖2

≤ (1+ 4x1) ‖s− s⊥m‖
2 + (2− 4x1) ‖s⊥m̂− ŝm̂‖

2

+ (4x1 − 1) ‖s− s̃‖2,
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for everyx1 > 0. Then, for anyy1 > 1, there are positive constantC, C′1 > 1, andC1 < 1

such that

‖s− s⊥m‖
2 + 2χ2

m̂+ 2C‖s⊥m̂− s⊥m‖
2 − ‖s− s̃‖2

≤ C′1‖s− s⊥m‖
2 + y1χ

2
m̂−C1‖s− s̃‖2.

(2.2.23)

Combining (2.2.17) and (2.2.23), we obtain (2.2.22).

Inequality 3: For any y2 > 1 and positive constants xi, i = 2,3,4, there exist positive

numbers C2 < 1, C′2 > 1, an increasing quadratic polynomial of the form f2(ξ) = aξ2 + bξ,

and a constantK2 > 0 (all independent of the family of linear models and of T) so that,

with probability greater than1− K2e−ξ,

C2‖s− s̃‖2 ≤ C′2‖s− s⊥m‖
2

+y2
Vm̂

T + x2
Dm̂

T + x3
dm̂

T − pen(m̂)

+x4
Dm

T + pen(m) + f (ξ)
T .

(2.2.24)

Verification:We boundχ2
m′ using Lemma 2.2.7 with V= R+ × D andµ(dx) = s(x)dtη(dx).

We regard the linear modelSm as a subspace ofL2(R+×D,dtη(dx)) with orthonormal basis{
ϕ1,m
√

T
, . . . ,

ϕdm,m√
T

}
. Recall that

χ2
m = ‖s

⊥
m− ŝm‖

2 =

d∑
i=1

["
[0,T]×D

ϕi,m(x)
J(dt,dx) − s(x)dtη(dx)

T

]2

.

Then, with probability larger than 1−
∑

m′∈M e−x′
m′ ,

√
Tχm′ ≤ (1+ x1)

√
Vm′ +

√
2kMm′x′m′ + k(x1)Bm′x

′
m′ , (2.2.25)

for everym′ ∈ M, whereBm′ =
√

Dm′/T,

Vm′ ≡

∫
D

 dm∑
i=1

ϕ2
i,m(x)

 s(x)η(dx), and (2.2.26)

Mm′ ≡ sup

{∫
D

f 2(x)s(x)η(dx) : f ∈ Sm′ , ‖ f ‖ = 1

}
.

Since
∫

D
f 2(x)s(x)η(dx) ≤ ‖ f ‖∞‖s‖, Mm′ is bounded above by‖s‖

√
Dm′. In that case, we

can use (2.2.16-i) to obtain√
2kMm′x′m′ ≤ x2

√
Dm′ +

k‖s‖
2x2

x′m′ ,
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for anyx2 > 0. On the other hand, by hypothesisDm′ ≤ T, and (2.2.25) implies that

√
Tχm′ ≤ (1+ x1)

√
Vm′ + x2

√
Dm′ +

(
k‖s‖
2x2
+ k(x1)

)
x′m′ ,

where the constantsx′m′ are chosen as

x′m′ =
x3
√

dm′

k‖s‖
2x2
+ k(x1)

+ ξ.

Then, for anyx1 > 0, x2 > 0, x3 > 0, andξ > 0,

√
Tχm′ ≤ (1+ x1)

√
Vm′ + x2

√
Dm′ + x3

√
dm′ + f1(ξ), (2.2.27)

with probability larger than 1−K1e−ξ, whereK1 is determined by the Polynomial property

and where

f1(ξ) =

(
k‖s‖
2x2
+ k(x1)

)
ξ.

Squaring (2.2.27) and using (2.2.16-ii) repeatedly, we conclude that, for anyy > 1, x2 > 0,

andx3 > 0, there are both a constantK1 > 0 and a quadratic function of the formf2(ξ) =

aξ2 (independent ofT, m′, and the family of linear models) such that, with probability

greater than 1− K1e−ξ,

χ2
m′ ≤ y

Vm′

T
+ x2

Dm′

T
+ x3

dm′

T
+

f2(ξ)
T

, ∀m′ ∈ M. (2.2.28)

Then, (2.2.24) immediately follows from (2.2.28) and (2.2.22).

Proof of (2.2.4) for case (c):

By the inequality (2.2.10), we can upper boundVm′ by V̂m′ on an event of large probability.

Namely, for everyx′m′ > 0 andx > 0, with probability greater than 1−
∑

m′∈M e−x′
m′

(1+ x)

(
V̂m′ +

(
1
2x
+

5
6

)
Dm′

T
x′m′

)
≥ Vm′ , ∀m

′ ∈ M, (2.2.29)

(recall thatDm = ‖
∑dm

i=1 ϕ
2
i,m‖∞). Since by hypothesisDm′ < T, and choosing

x′m′ = x′dm′ + ξ, (x′ > 0),
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it is seen that for anyx > 0 andx4 > 0, there are a positive constantK2 and a function

f (ξ) = bξ (independent ofT and of the linear models) such that with probability greater

than 1− K2e−ξ

(1+ x)V̂m′ + x4dm′ + f (ξ) ≥ Vm′ , ∀m
′ ∈ M. (2.2.30)

Here, we getK2 from the Polynomial assumption on the class of models. Combining

(2.2.30) and (2.2.24), it is clear that for anyy > 1, and positivexi, i = 1,2,3, we can

choose a pair of positive constantsC1 < 1, C′1 > 1, an increasing quadratic polynomial of

the form f (ξ) = aξ2 + bξ, and a constantK > 0 (all independent of the family of linear

models and ofT) so that, with probability greater than 1− Ke−ξ

C1‖s− s̃‖2 ≤ C′1‖s− s⊥m‖
2

+yV̂m̂

T + x1
Dm̂

T + x2
dm̂

T − pen(m̂)

+x3
Dm

T + pen(m) + f (ξ)
T .

(2.2.31)

Next, we takey = c, x1 = c′, andx2 = c′′ to cancel−pen(m̂) in (2.2.31). By Lemma 2.2.8,

it follows that

C1E
[
‖s− s̃‖2

]
≤ C′1‖s− s⊥m‖

2 +

(
1+

x3

c′

)
E

[
pen(m)

]
+

C′′1
T
. (2.2.32)

Sincem is arbitrary, we obtain the case (c) of (2.2.4).

Proof of (2.2.4) for case (a):

By Remark 2.2.2, we can boundVm′, as given in (2.2.26), byDm′ρ (assuming thatρ < ∞).

On the other hand, (2.2.10) implies that

(1+ x1)

(
N

T
+

(
1

2x1
+

5
6

)
ξ

T

)
≥ ρ, (2.2.33)

with probability greater than 1− e−ξ. Using these bounds forVm′ and the assumption that

Dm′ ≤ T, (2.2.24) reduces to

C1‖s− s̃‖2 ≤ C′1‖s− s⊥m‖
2

+yDm̂N

T2 + x1
dm̂

T − pen(m̂)

+x2
DmN

T2 + pen(m) + f (ξ)
T ,

(2.2.34)
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which is valid with probability 1− Ke−ξ. In (2.2.34),y > 1, x1 > 0 and x2 > 0 are

arbitrary, whileC1, C′1, the increasing quadratic polynomial of the formf (ξ) = aξ2 + bξ,

and a constantK > 0 are determined byy, x1, andx2 independently of the family of linear

models and ofT. We point out that we divided and multiplied byρ the termsDm̂/T and

Dm/T in (2.2.24), and then applied (2.2.33) to get (2.2.34). It is now clear thaty = c, and

x1 = c′ will produce the desired cancelation.

Proof of (2.2.4) for case (b):

We first upper boundDm̂ by β−1Vm̂ anddm̂ by (βφ)−1Vm̂ in the inequality (2.2.24):

C1‖s− s̃‖2 ≤ C′1‖s− s⊥m‖
2 +

(
y+ x1β

−1 + x2(βφ)−1
)

Vm̂

T

−pen(m̂) + x3β
−1 Vm

T + pen(m) + f (ξ)
T .

(2.2.35)

Then, usingdm′ ≤ (βφ)−1Vm′ in (2.2.30) and lettingx4(βφ)−1 vary on (0,1), we verify that for

anyx′ > 0, a positive constantK4 and a polynomialf can be found so that with probability

greater than 1− K4e−ξ,

(1+ x′)V̂m′ + f (ξ) ≥ Vm′ , ∀m
′ ∈ M. (2.2.36)

Putting together (2.2.36) and (2.2.35), it is clear that for anyy > 1 andx1 > 0, we can find

a pair of positive constantsC1 < 1,C′1 > 1, an increasing quadratic polynomial of the form

f (ξ) = aξ2 + bξ, and a constantK > 0 (all independent of the family of linear models and

of T) so that, with probability greater than 1− Ke−ξ,

C1‖s− s̃‖2 ≤ C′1‖s− s⊥m‖
2 + yV̂m̂

T − pen(m̂)

+x1
Vm

T + pen(m) + f (ξ)
T .

(2.2.37)

In particular, by takingy = c, the term−pen(m̂) cancels out. Lemma 2.2.8 implies that

C1E
[
‖s− s̃‖2

]
≤ C′1‖s− s⊥m‖

2 + (1+ x1)E
[
pen(m)

]
+

C′′1
T
. (2.2.38)

Finally, (2.2.4) (b) follows sincem is arbitrary. �

Remark 2.2.9 Let us analyze more carefully the values that the constants C and C′ can

take in the inequality (2.2.4). For instance, consider the penalty function of part (c). As
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we saw in (2.2.32), the constants C and C′ are determined by C1, C′1, C′′1 , and x3. The

constant C1 was proved to be y1 − 1 if y1 < 2, while it can be made arbitrarily close to one

otherwise (see the comment immediately after (2.2.22)). On the other hand, y1 itself can be

made arbitrarily close to the c of (2.2.31) by taking x small enough in (2.2.29) and y close

to 1 in (2.2.28). Then, when c≥ 2, C1 can be made arbitrarily close to one at the cost of

increasing C′′1 in (2.2.32). Similarly, paying the same cost, we are able to select C′
1 as close

to one as we wish and x3 arbitrarily small. Therefore, it is possible to find for anyε > 0, a

constant C′(ε) (increasing inε) so that

E‖s− s̃‖2 ≤ (1+ ε) inf
m∈M

{
‖s− s⊥m‖

2 + E
[
pen(m)

]}
+

C′(ε)
T

. (2.2.39)

A more thorough inspection shows that

lim
ε→0

C′(ε)ε = K,

where K depends only c, c′, c′′, Γ, R, ‖s‖, and ‖s‖∞. The same reasoning apply to the

other two types of penalty functions when c≥ 2. In particular, we point out that C1 can be

made arbitrarily close to 2 in the Oracle inequality (2.2.6) at the price of having a large

C2 constant.

2.3 Calibration based on discrete time data: approxima-
tion of Poisson integrals

One drawback to the method outlined in Section 2.1 is that in general we do not observe

the jumps of a Lévy processX = {X(t)}t≥0. In practice, we can aspire to sample the process

X(t) at discrete times, but we are neither able to measure the size of the jumps∆X(t) ≡

X(t) − X(t−) nor the times of jumps{t : ∆X(t) > 0}. Poisson integrals of the type

I ( f ) ≡
"

[0,T]×R0

f (x)J(dt,dx) =
∑
t≤T

f (∆X(t)), (2.3.1)

are simply not accessible. In this section, we discuss the approximation of the integral

(2.3.1) based on time series of the form
{
X(tnk)

}n

k=0
, wheretnk =

kT
n .
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Let us motivate our approximation scheme. The natural way of interpolating the sam-

ple path of a Lévy process from the sampling observations
{
X(tnk)

}n

k=0
is to take a càdlàg

piecewise constant approximation of the form

Xn(t) ≡
n∑

k=1

X
(
tnk−1

)
1
(
t ∈ [tnk−1, t

n
k)
)
, t ∈ [0,T). (2.3.2)

Above,1 denotes the indicator function of the corresponding set. It is quite simple to prove

that we have the convergence ofXn to X at finitely many points with probability one (a

quality shared by any right-continuous processX). Furthermore, the approximated process

Xn, having independent increments, converges toX in D[0,∞), under the Skorohod metric

(see VI of [29] and in concrete Example VI.18). Hence, a first guess is that

In ( f ) ≡
∑
t≤T

f (∆Xn(t)) =
n∑

k=1

f
(
X

(
tnk
)
− X

(
tnk−1

))
, (2.3.3)

converges to (2.3.1) asn → ∞. We are able to prove the weak convergence of (2.3.3)

to (2.3.1) using well-know facts on the transition distributions ofX in small time (see for

instance pp. 39 of [5], Corollary 8.9 of [39], or Corollary 3 of [36]).

Lemma 2.3.1 Let X= {X(t)}t≥0 be a Lévy process with Lévy measureν. Then:

1) For each a> 0,

lim
t→0

1
t
P (X(t) > a) = ν([a,∞)), and lim

t→0

1
t
P (X(t) ≤ −a) = ν((−∞,−a]). (2.3.4)

2) For any continuous bounded function h vanishing on a neighborhood of the origin,

lim
t→0

1
t
E [h (X(t))] =

∫
R0

h(x)ν(dx). (2.3.5)

Remark 2.3.2 In particular, the two parts in the previous Lemma imply (2.3.5) when

h(x) = 1(a,b](x) f (x), where(a,b] is an interval ofR0 and f is a continuous function.

It is worth mentioning that [36] provides stronger conclusions on the distribution ofX(t)

for small timet. The following theorem summarizes some of their results.
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Theorem 2.3.3 Let X = {X(t)}t≥0 be a Lévy process with Lévy measureν. Let Ft be the

distribution function of X(t) and G thespectral functionof ν; i.e. G(x) = ν([x,∞)) for

x > 0 and G(x) = ν((−∞, x]) for x < 0. The following properties hold:

(i) If F t and G have densities1 ft and g, then for x, 0

lim
t→0

1
t

ft(x) =
∂

∂t
ft(x)

∣∣∣∣
t=0
= g(x), (2.3.6)

where we additionally assume that Ft(x) is continuous in a neighborhood of(t = 0, x) and

that moreover(∂/∂t)Ft(x), (∂/∂x)Ft(x), and(∂/∂t)(∂/∂x)Ft(x) exist and are continuous in

(t = 0, x).

(ii) For a fixed N≥ 1, there existε′(N) > 0 and t0 > 0 such that, for allε ∈ (0, ε′(N)) and

t ∈ (0, t0), and for x> η > 0,

1− Ft(x) =
N−1∑
i=1

ti

i!
G?i
ε (x) +Oε,η(t

N), (2.3.7)

where Gε(x) = 1(|x| ≥ ε)G(x). Similarly, for x< −η < 0,

Ft(x) =
N−1∑
i=1

ti

i
G?i
ε (x) +Oε,η(t

N). (2.3.8)

(iii) If h is continuous and bounded and iflim |x|→0 h(x)|x|−2 = 0, then

lim
t→0

1
t
E [h (X(t))] =

∫
R0

h(x)ν(dx).

Moreover, if
∫
R0

(|x|∧1)ν(dx) < ∞, it is enough to postulate that h(x)(|x|∧1)−1 is continuous

and bounded.

Limiting results like (2.3.5) are useful to establish the convergence in distribution of In ( f )

since

E
[
eiuIn( f )

]
=

(
E

[
eiu f(X( T

n ))
])n
=

(
1+

an

n

)n

,

wherean = nE
[
h
(
X

(
T
n

))]
with h(x) = eiu f(x) − 1. So, if f is such that

lim
t→0

1
t
E

[
eiu f(X(t)) − 1

]
=

∫
R0

(
eiu f(x) − 1

)
ν(dx), (2.3.9)

1The function g≥ 0 is said to be the density of the spectral function G if G′(x) = g(x) for x < 0 and
G′(x) = −g(x) for x > 0.
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thenan converges toa ≡ T
∫
R0

h(x)ν(dx), and thus

lim
n→∞

(
1+

an

n

)n

= lim
n→∞

en log(1+ an
n ) = ea.

We thus have the following result (see Section 2.5 for verification):

Proposition 2.3.4 Let X= {X(t)}t≥0 be a Lévy process with Lévy measureν. Then,

lim
n→∞
E

[
eiuIn( f )

]
= exp

{
T

∫
R0

(
eiu f(x) − 1

)
ν(dx)

}
,

if f satisfies either one of the following:

1) f(x) = 1(a,b](x)h(x) for an interval(a,b] ⊂ R0 and a continuous function h;

2) f(x) is continuous onR0 and lim |x|→0 f (x)|x|−2 = 0.

In particular, In( f ) converges in distribution to I( f ) under any of the two previous condi-

tions.

Remark 2.3.5 Notice that ifS is a linear space of functions such that every f∈ S fulfill

(2.3.9), then the stochastic process{In( f )} f∈S, with “time-space”S, converges in law to

{I ( f )} f∈S. The convergence is in the sense of finite dimensional distributions; i.e.

(In ( f1) , . . . , In ( fd))
D
→ (I ( f1) , . . . , I ( fd)) ,

as n→ ∞, for all f1, . . . , fd ∈ S. This results is a direct consequence of the fact that

the “random functionals” In(·) and I(·) are both linear. Proposition 2.3.4 describes two

possibilities for the spaceS.

Example 2.3.6 Consider the case where f is the indicator function in an interval(a,b] ⊂

R0 so that In( f ) counts the number of increments{X(tnk) − X(tnk−1)}
n
k=1 that fall on that inter-

val. As we will see, this type of statistics is relevant for the estimation of the Lévy density

by histograms (piece-wise constant functions). The distribution of In( f ) is Binomial with

parameters n and “success” probability pn ≡ P [X(T/n) ∈ (a,b]] . In that case, Proposi-

tion 2.3.4 merely asserts the elementary “Poisson approximation to Binomial”, namely the
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distribution of In( f ) converges to a Poisson distribution with mean

lim
n→∞

npn = Tν((a,b]).

Also, notice that

Var(In( f )) = npn(1− pn)→ Tν((a,b]) (2.3.10)

as n→ ∞. In general, if f(1), . . . , f (d) are indicator functions onmutually exclusiveBorel

sets ofR0, the vector
(
In

(
f (1)

)
, · · · , In

(
f (d)

))
has a multinomial distribution with param-

eters n and “membership” probabilities p(i)
n = E

[
f (i)

(
X

(
T
n

))]
, for i = 1, . . . ,d. In that

case,

lim
n→∞

nCov
(
In

(
f (i)

)
, In

(
f ( j)

))
= −T2

∫
R0

f (i)(x)ν(dx)
∫
R0

f ( j)(x)ν(dx), i , j.

Moreover, the random variables In

(
f (1)

)
, · · · , In

(
f (d)

)
happen to be asymptotically uncor-

related as seen from

lim
n→∞

nρ
(
In

(
f (i)

)
, In

(
f ( j)

))
= −T

(∫
R0

f (i)(x)ν(dx)
∫
R0

f ( j)(x)ν(dx)

)1/2

,

valid for i , j.

Remark 2.3.7 Clearly, if f and f2 satisfy (2.3.5), then the mean and variance of In( f ) obey

the asymptotics:

lim
n→∞
E

[
In( f )

]
= T

∫
R0

f (x)ν(dx);

lim
n→∞

Var
[
In( f )

]
= T

∫
R0

f 2(x)ν(dx).

2.4 Estimation Method

Let us summarize the previous sections and outline the proposed algorithm of estimation:

Statistician’s parameters: The procedure is fed with a Borelwindow of estimation D⊂

R0, a collection{Sm}m∈M of finite dimensionallinear modelsof L2 ((D, η)), and a

level of penalization c> 1.
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Model and data: It is assumed that a Lévy process{X (t)}t∈[0,T] is monitored at equally

spaced timestnk = kT
n , k = 1, . . . ,n, during the time period [0,T]. The data con-

sists of the time series
{
X

(
tnk
)}n

k=1
. The Lévy process admits a Lévy densityp with

regularizations under the measureη on D (see Definition 2.1.1).

Estimators: Inside the linear modelSm, the estimator ofs is theapproximated projection

estimator:

ŝn
m(x) ≡

dm∑
i=1

β̂n
i,mϕi,m(x), (2.4.1)

where
{
ϕ1,m, . . . , ϕdm,m

}
is an orthonormal basis forSm, and

β̂n
i,m ≡

1
T

n∑
k=1

ϕi,m
(
X

(
tnk
)
− X

(
tnk−1

))
, (2.4.2)

is the estimator of the inner productβi,m ≡
∫

D
ϕi,m(x)s(x)η(dx), for i = 1, . . . ,dm.

Across the collection of linear models{Sm : m ∈ M}, the estimator ˆsn
m which mini-

mizes−‖ŝn
m‖

2 + c penn(m), is selected, where

penn(m) =
1
T2

n∑
k=1

 dm∑
i=1

ϕ2
i,m

(
X

(
tnk
)
− X

(
tnk−1

)) .
Remark 2.4.1 It is worthwhile to point out the great similarity of the scheme above to

the methods of density estimation given by L. Birgé and P. Massart [7]. In this article,

the authors estimate the probability density function f of a random sample X1, · · · ,Xn by

projection estimators of the type:

f̂ (x) =
d∑

i=1

1
n

n∑
k=1

ϕi (Xk)

ϕi(x), (2.4.3)

where{ϕi}
d
i=1 is an orthonormal basis of a linear modelS of L2((R,dx)). To solve the prob-

lem of model selection, they propose penalized projection estimators with penalty function:

pen(S) =
2

n(n+ 1)

n∑
k=1

d∑
i=1

ϕ2
i (Xk) .

Then, it is intuitive that when estimating the Lévy density p of (2.1.1), the method outlined

at the beginning of this section “works” as a byproduct of the small time qualities of Lévy
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processes and of the standard methods of nonparametric estimation of probability densities.

Concretely, consider the statistics

β̂
n, j
i,m ≡

n
T j

j∑
k=1

ϕi,m
(
X

(
tnk
)
− X

(
tnk−1

))
.

Notice that n takes charge of the time length of the increments and j determines the num-

ber of increments. By the methods of Birgé and Massart, as j progresses the (penalized)

projection estimator

ŝn, j
m (x) ≡

dm∑
i=1

β̂
n, j
i,m ϕi,m(x),

will estimate n
T fT/n(x), where ft stands for the probability density function of X(t) (if it

exists). By the small time properties of{X(t)}t≥0 as summarized by Theorem 2.3.3, this will

be enough to estimate the Lévy density p, if n is large enough. Notice that in general a.s.

lim
n→∞

lim
j→∞

n
T j

j∑
k=1

ϕ
(
X

(
tnk
)
− X

(
tnk−1

))
=

∫
R0

ϕ(x)ν(dx),

wheneverϕ satisfies (2.3.5). Our method essentially conjectures that we can do both op-

erations simultaneously and simply take n= j. Below, we prove that some asymptotically

nice properties are still preserved with such a simplification.

Let R(X) be the linear space of measurable functionsϕ such thatE
[
ϕ (X(t))

]
< ∞, for t in

some (0, ε), and

lim
t→0

1
t
E

[
ϕ (X(t))

]
=

∫
R0

ϕ(x)ν(dx), (2.4.4)

whereν is the Lévy measure of the Lévy process{X(t)}t≥0. Let S be a linear space of

functions f such that

lim
t→0

1
t
E

[
eiu f(X(t)) − 1

]
=

∫
R0

(
eiu f(x) − 1

)
ν(dx),

for everyu ∈ R. The following holds (see Section 2.5 for a proof).

Proposition 2.4.2 Let s⊥m be the orthogonal projection of s onSm. If ϕi,m andϕ2
i,m belong

toR(X) for every m∈ M and i= 1, . . . ,dm, then the approximated projection estimatorŝn
m
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of s onSm (based on n discrete observations) satisfies:

lim
n→∞
E

[
‖ŝn

m− s⊥m‖
2
]
= E

[
‖ŝm− s⊥m‖

2
]
. (2.4.5)

Furthermore,

lim
n→∞
E

[
‖ŝn

m− s‖2
]
= E

[
‖ŝm− s‖2

]
.

2.5 Some additional proofs

Verification of Remark 2.2.2: Suppose thatDm is finite, and thus eachf ∈ S, with ‖ f ‖ = 1

is bounded. It follows using Lagrange multipliers that, for eachx ∈ D,

D(x) ≡ sup

∣∣∣ dm∑
i=1

ciϕi(x)
∣∣∣2 :

dm∑
i=1

c2
i = 1

 = dm∑
i=1

ϕ2
i (x).

SinceDm ≥ D(x) for every x ∈ D, we obtainDm ≥ ‖
∑dm

i=1 ϕ
2
i ‖∞. On the other hand, for

everyε > 0, there areb1, . . . ,bn satisfying
∑dm

i=1 b2
i = 1 and anx ∈ D such that

Dm− ε <
∣∣∣ dm∑

i=1

biϕi(x)
∣∣∣2 ≤ D(x) =

dm∑
i=1

ϕ2
i (x) ≤

∥∥∥ dm∑
i=1

ϕ2
i

∥∥∥
∞
.

Lettingε→ 0, it follows thatDm =
∥∥∥∑dm

i=1 ϕ
2
i

∥∥∥
∞

. �

Proof of Lemma 2.2.5:Clearly,γD as defined by (2.1.9) can be written as

EγD( f ) = ‖ f ‖2 − 2 f · sD − 2νD( f ) = ‖ f − sD‖
2 − ‖sD‖

2 − 2νD( f ).

By the very definition of ˜s as the penalized projection estimator and by Remark 2.1.3,

γD(s̃) + pen(m̂) ≤ γD(ŝm) + pen(m) ≤ γ(s⊥m) + pen(m),

for anym ∈ M. Using the previous two equations:

‖s̃− sD‖
2 = γD(s̃) + ‖sD‖

2 + 2νD(s̃)

≤ γ(s⊥m) + ‖sD‖
2 + 2νD(s̃) + pen(m) − pen(m̂)

= ‖s⊥m− sD‖
2 + 2νD(s̃− s⊥m) + pen(m) − pen(m̂).

47



Finally, notice thatνD(s̃− s⊥m) = νD(s̃− s⊥m̂) + νD(s⊥m̂− s⊥m) andνD(ŝm− s⊥m) = χ2
m. �

Verification of inequality (2.2.10): Notice just that for anya,b, ε > 0:

a−
√

2ab−
1
3

b ≥
a

1+ ε
−

(
1
2ε
+

5
6

)
b. (2.5.1)

Evaluating the integral in (2.2.9) for− f , we can write

P

[∫
X

f (x)N(dx) ≥
∫

X
f (x)µ(dx) − ‖ f ‖µ

√
2u−

1
3
‖ f ‖∞u

]
≥ 1− e−u.

Using that‖ f ‖2µ ≤ ‖ f ‖∞
∫

X
f (x)µ(dx) and (2.5.1),

P

[∫
X

f (x)N(dx) ≥
1

1+ ε

∫
X

f (x)µ(dx) −

(
1
2ε
+

5
6

)
‖ f ‖∞u

]
≥ 1− e−u,

which is precisely inequality (2.2.10). �

Proof of Lemma 2.2.8:

Let Z+ be the positive part ofZ. First,

E [Z] ≤ E
[
Z+

]
=

∫ ∞

0
P[Z > x]dx.

Sinceh is continuous and strictly increasing,P[Z > x] ≤ K exp(−h−1(x)), whereh−1 is the

inverse ofh. Then, changing variables tou = h−1(x),∫ ∞

0
P[Z > x]dx≤ K

∫ ∞

0
e−h−1(x)dx= K

∫ ∞

0
euh′(u)du.

Finally, integration by parts yields
∫ ∞

0
euh′(u)du=

∫ ∞
0

h(u)e−udu. �

Proof of Proposition 2.3.4:

It suffices to prove (2.3.9). Clearly,f andh(x) ≡ eiu f(x) − 1 both have the identical support

and set of continuity. For the first case, the limit follows from Lemma 2.3.1 applied to the

real and the imaginary parts ofh (see also Remark 2.3.2). Next, if lim|x|→0 f (x)|x|−2 = 0,

lim
|x|→0

h(x)
x2
= lim
|x|→0

eiu f(x) − 1
x2

= iu lim
|x|→0

f (x)
x2
= 0.

By part (iii) of Theorem 2.3.3, we get (2.3.9). The last statement in Proposition 2.3.4

follows from the characteristic function of a Poisson integral (Proposition 1.2.12). �
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Proof of Proposition 2.4.2:

From the orthonormality property,

E
[
‖ŝn

m− s⊥m‖
2
]
=

dm∑
i=1

E
[(
β̂n

i,m− βi,m

)2
]

=

dm∑
i=1

{
Var

(
β̂n

i,m

)
+

(
E

[
β̂n

i,m

]
− βi,m

)2
}
.

By remark 2.3.7,

lim
n→∞
E

[
In(ϕi,m)

]
= T

∫
R0

ϕ(x)s(x)η(dx) and lim
n→∞

Var
[
In(ϕi,m)

]
= T

∫
R0

ϕ2
i.m(x)s(x)η(dx).

Then, (2.4.5) is true from (2.1.14) and (2.1.15). The second statement in the proof is

straightforward since

E
[
‖ŝn

m− s‖2
]
= E

[
‖ŝn

m− s⊥m‖
2
]
+ ‖s⊥m− s‖2.

�
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CHAPTER III

NUMERICAL TESTS OF THE METHOD

This part studies the performance of penalized projection estimators and model selection

methods based on computer simulations. The first section shows some procedures, due to

Rosínski [34], to simulate pure jump Lévy processes. These procedures are based onshot-

noice processesand has the advantage of providing us with a set of jumps. Concretely,

the method generated the jumps of the Lévy process. The second section analyzes the

performance of projection estimators and approximated projection estimators to simulated

data. We consider two relevant classes of Lévy processes for our numerical experiments:

Gamma, and Variance Gamma models. A projection estimation method with least-squares

errors is used to calibrate parametric or semiparametric models.

3.1 Simulation of Lévy processes
3.1.1 Brief overview

Accurate path simulation of a pure jump Lévy processesX = {X (t)}t∈[0,T], regardless of the

relatively simple statistical structure of their increments, present some challenging prob-

lems when dealing withinfinite activity (namely, processes with infinite Lévy measure).

Just try to conceive that in this case the jump times are in fact dense on [0,∞) (see Theo-

rem 21.3 of [39]).

One of the most popular simulation schemes is based on the generation ofdiscrete

skeletons. Namely, given a partitiont0 = 0 < t1 < · · · < tn → ∞ of [0,∞), the discrete

skeleton ofX (based on this partition) is defined by

X̃(t) =
∞∑

k=1

X (tk−1) 1 (t ∈ [tk−1, tk)) =
∞∑

k=1

∆k1 (t ≥ tk) ,
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where∆k = X(tk) − X(tk−1). Moreover, if the partition is regular (that is,tk = k/n for some

positive integern), thenX̃(t) =
∑[nt]

k=1∆k, and the increments{∆k}k≥1 are i.i.d. with common

distributionL(X(1/n)). In that case, the discrete skeletons can readily be generated with

any accuracy if the marginal distribution ofX(t) can be simulated for anyt. This type of

approximation for the Lévy process was the motivation behind our approach to estimate

the integrals with respect to the jump measure ofX in Section 2.3. The main drawback

to the previous scheme is the fact that most often the marginal distributions are not easily

generated (at least for some popular financial models). The approximated processX̃, hav-

ing independent increments, converges toX in D[0,∞) under the Skorohod metric (see VI

of [29] and in concrete Example VI.18).

The second easiest scheme would be to approximate the Lévy process by finite activity

Lévy processes. That is, the Lévy-Itô decomposition of sample paths establishes that a.s.

the process

Xε(t) ≡ t

(
b −

∫
‖x‖≥ε

x ν(dx)

)
+

∑
s≤t

∆X(s)1(‖∆X(s)‖ ≥ ε) (3.1.1)

converges uniformly on any bounded interval, and a.s. the limiting process coincides with

the paths ofX (above,∆X(t) ≡ X(t) − X(t−)). The process
∑

s≤t ∆X(s)1(‖∆X(s)‖ ≥ ε) can

easily be simulated by acompound Poisson processof the form
∑Jε(t)

k=1 Yε
k , whereJε(t) is

a homogeneous Poisson process with intensityν(‖x‖ ≥ ε) and where
{
Yε

k

}∞
k=1

are i.i.d with

common distribution

νε(dx) ≡ 1(‖x‖ ≥ ε)
ν(dx)

ν(‖x‖ ≥ ε)
.

Clearly, such a scheme is unsatisfactory because all jumps smaller thanε are ignored. An

alternative method of simulation is based on time series representations of the form

X(t) = bt +
∞∑

i=1

[H (Γi ,Vn) 1(Ui ≤ t) − tci] ,

which will be explained in the next section. We shall simulate the Lévy processes for our

numerical experiments using this method. We decide on this method because it generates

directly a sample of the process jumps, which are needed for the basic method of estimation
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described in 2.1. It is worth mentioning that the previous representation still exhibit some

difficulties regarding the small jumps of the process. Indeed, in practice the series need

to be truncated to finitely many terms, and since theresponse functionH is decreasing in

the first variable, this operation has a tendency to remove small jump sizes. Asmussen and

Rosínski [2] introduce a further improvement to the jump-based method above that relies

on a Brownian motion approximation for the small jumps of the process.

3.1.2 Simulations based on series representations

Throughout, let againX = {X(t)}t∈[0,T] be a Lévy process onRd with characteristic function

E
[
eiu·X(t)

]
= etψ(u),

whereψ is characteristic exponent defined by

ψ(u) = iu · b +
∫
Rd

0

{
eiu·x − 1− iu · x 1 (‖x‖ ≤ 1)

}
ν(dx). (3.1.2)

We now introduce a methodology to simulate the processX based on series representations

for the Lévy processX. The results below are presented in [34] and are given here for the

sake of completeness. A series representation forX can be derived from a series represen-

tations for the random measure associated with the jumps ofX. In general terms, if the

random measure

J(B) = #
{
t > 0 : (t,X(t) − X(t−)) ∈ B

}
, (3.1.3)

has the representation

J (·) =
∞∑

i=1

δ(Ui ,Ji ) (·) , (3.1.4)

for a sequence of i.i.d uniform random variables{Ui}i≥1 on [0,T] and a sequence of random

vectors{Ji}i≥1, then a.s.X has theshot-noise seriesrepresentation

X(t) = bt +
∞∑

i=1

[Ji1(Ui ≤ t) − tci] , 0 ≤ t ≤ T, (3.1.5)

for suitable centersci that compensate the jumps. The random variablesU ’s govern the

times of the jumps, while theJ’s give the size of the jumps.
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Let us first describe the techniques used to obtain representations of the form (3.1.4).

Think of the jumpsJ’s as random responses to fictitious “shots” occurring in the past ac-

cording to a homogeneous Poisson process. The distribution of the jumps are dictated by

a probability measureσ(u; ·) onB(Rd) which might depend on the elapsed timeu between

the jump and the shot. Moreover, ifJi is the jump originating from a shotΓi time units ago,

assume that

P
(
Ji ∈ B |

{
Γ j

}
j≥1
,
{
J j

}
j,i

)
= σ (Γi , B) , B ∈ B(Rd). (3.1.6)

It follows that, under the measurability ofσ(·; B) for anyB ∈ B(Rd), the jumpsJ1, J2, . . .

form a Poisson process inRd with mean measureT
∫ ∞

0
σ(u; B)du, whenever the elapsed

times among shots 0< Γ1 < Γ2 < . . . form themselves a homogeneous Poisson process

on (0,∞) with intesity T (see Proposition 3.8 of [32]). Consequently, the marked point

process
∑∞

i=1 δ(Ui ,Ji ) (·) will have mean measure of the form

µ(dt,dx) =
∫ ∞

0
σ(u; dx)dudt.

Combining the previous arguments with the Lévy-Itô decomposition for Lévy processes,

we conclude that the measureJ of (3.1.3) has the same law as
∑∞

i=1 δ(Ui ,Ji ) (·) whenever the

Lévy measureν has the representation

ν(B) =
∫ ∞

0
σ(u; B)du. (3.1.7)

Under the additional assumption that the probability space (Ω,F ,P) whereJ is defined is

rich enough to be equipped with an independent uniform random variable, [34] shows that

the sequences{Γi}i≥1, {Ji}i≥1, and{Ui}i≥1 can be defined in (Ω,F ,P) and the representation

(3.1.4) holds a.s.

There are other considerations we need to think about for the representation (3.1.5) to

hold. It has to do with the probabilistic structure of the jumps{Ji}. Roughly speaking, to

avoid divergence problems and to guarantee the existence of compensating centersci, it is

necessary that the magnitude of the jumps decreases as the elapsed time between the jump
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and the shot increases (an appealing physical assumption as well). This is better explained

if we notice that (3.1.6) is equivalent to having

Ji = H (Γi ,V i) ,

for a sequence of random elements{V i}i≥1 independent of{Ui ,V i}i≥1 (see Lemma 2.22 of

[20]). Then, we expect that‖H(r, v)‖ should decrease inr for (3.1.5) to be true. Let us

summarize the conditions and the main theorem for the simulation of Lévy processes.

Condition 3.1.1 The jump measure ofX can be written as

J(·) =
∞∑

i=1

δ(Ui ,H(Γi ,V i )) (·) , a.s. (3.1.8)

for a measurable functionH : (0,∞) × S → Rd, where S is an arbitrary measurable

space. Here,{Γi}
∞
i=1 is a homogeneous Poisson process onR+ with intensity T,{Ui}

∞
i=1

is an independent random sample with uniform distribution on(0,T), and {V i}
∞
i=1 is an

independent random sample{V i}
∞
i=1 with common distribution F on the space S .

Condition 3.1.2 For any Poisson process{Γ1
i }
∞
i=1 onR+ with unit rate,

A(Γ1
n) − A(n)→ 0 a.s., (3.1.9)

where

A(s) ≡
∫ s

0

∫
S

H(r, v)1 (‖H(r, v)‖ ≤ 1) F(dv)dr. (3.1.10)

The next lemma gives sufficient conditions for (3.1.9) (see pp. 409 [34]):

Lemma 3.1.3 The limit in (3.1.9) holds true if either one of the following conditions is

satisfied:

i) a ≡ lims→∞ A(s) exists inRd;

ii) the mapping r→ ‖H(r, v)‖ is nonincreasing for each v∈ S .

The following result establishes the series representations for Lévy processes.
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Proposition 3.1.4 If the conditions 3.1.1 and 3.1.2 are satisfied then, a.s.

X(t) = bt +
∞∑

i=1

[H(Γi ,V i)1 (Ui ≤ t) − tci] , (3.1.11)

for all t ∈ [0,T], whereci ≡ A(i) − A(i − 1).

Proof: Notice that the Lévy-Itô representation (1.2.3) takes the form

X(t) = bt +
∫

[0,t]×Rd
0

x1(‖x‖ ≤ 1)(J − EJ)(du,dx) +
∫

[0,t]×Rd
0

x1(‖x‖ > 1)J(du,dx).

Define

M(·) ≡
∞∑

i=1

δ(Ui ,Γi ,V i ) (·) .

From Proposition 3.8. of [32],M is a (marked) Poisson process onR ≡ [0,T] × R+ × Rd
0

with mean measuredu dr F(dv). By a “change of variables”,

X(t) = bt +
∫

Rt

H(r, v)1(‖H(r, v)‖ ≤ 1)(M(du,dr,dv) − dudrF(dv))

+

∫
Rt

H(r, v)1(‖H(r, v)‖ > 1)(M(du,dr,dv) − dudrF(dv)),

whereRt ≡ [0, t] × R+ × Rd
0. Define

Xs(t) = bt +
∫

Rs
t

H(r, v)1(‖H(r, v)‖ ≤ 1)(M(du,dr,dv) − dudrF(dv))

+

∫
Rs

t

H(r, v)1(‖H(r, v)‖ > 1)(M(du,dr,dv) − dudrF(dv)),

whereRs
t ≡ [0, t]× [0, s]×Rd

0. Using that the Poisson processM is an independently scatter

measure (that is,M(A1), . . . ,M(An) are mutually independent for disjoint setsA1, . . . ,An),

we can verify in a standard way thatXs(t) has independent increments both with respect to

s ∈ [0,∞) andt ∈ [0,T]. Also, notice that

Xs(t) = bt +
∑
i:Γi≤s

H(Γi ,V i)1 (Ui ≤ t) − tA(s), (3.1.12)

implying thatXs(t) enjoys càdlàg paths in s for eacht. We claim that almost surely,

lim
s→∞

Xs(t) = X(t),
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for all t ∈ [0,T]. Fix t ∈ [0,T] and take a sequencesn ↑ ∞. SinceX ·(t) has càdlàg paths,

it suffices to check that limn→∞ Xsn(t) = X(t) a.s. Furthermore, sinceXsn(t) =
∑n

i=1(Xsi (t) −

Xsi−1(t)) and sinceX ·(t) has independent increment, it is enough to have convergence is in

distribution. The later can be deduced from arguments based on characteristic function.�

Remark 3.1.5 We finally point out that if condition (3.1.9) is true, and the representation

(3.1.8) holds in distribution, then the representation (4.5.12) is valid in the sense of finite

dimensional distributions. In view of our opening arguments in the present Section, (3.1.8)

can be obtained in law if if and only if the Lévy measure has the decomposition

ν(B) =
∫ ∞

0
σ(u; B)du, (3.1.13)

whereσ(u; B) = P [H(u,V) ∈ B].

The following remark considers the case of Lévy processes with paths ofbounded varia-

tion.

Remark 3.1.6 The series (4.5.12) simplifies further when
∫
‖x‖≤1
‖x‖ν(dx) < ∞, namely,

whenX has paths of bounded variation a.s. (see Theorem 21.9 of [39]). Concretely, a.s.

X(t) = (b − a) t +
∞∑

i=1

JiI (Ui ≤ t) , (3.1.14)

wherea=
∑∞

i=1 ci = lim i→∞ A(i). Such a constant is finite and equals

a =
∫ ∞

0

∫
S

H(r, v)1 (‖H(r, v)‖ ≤ 1) F(dv)dr =
∫
‖x‖≤1

xν(dx).

The vectord ≡ b − a is called thedrift of the Lévy process and, when it exists, is uniquely

determined by the following form of the characteristic function ofX:

E
[
ei u·X(t)

]
= exp

t

iu · d + ∫
Rd

0

{
eiu·x − 1

}
ν(dx)


The previous methodology can be applied to generate series representation for a wide range

of Lévy processes. We illustrate this technique in the next Chapter, Section 4.2, to obtain

series for thetempered stable processesto be introduced in Chapter 4. Besides its im-

portance as technique of simulations, Rosiński [34] suggests to use such representation in

obtaining path sample properties of the Lévy process.
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3.2 Numerical tests of projection estimators

This section addresses the performance of some projection estimators of Lévy densities

based on simulations of the Lévy processes. For this initial analysis, we essentially take

piece-wise constant estimation functions on regular partitions. Two relevant classes of Lévy

processes are considered for our numerical tests: Gamma, and variance Gamma processes.

For purposes of comparison, a method of least-squares errors is then used to generate the

parametric Lévy density that best fit our nonparametric results.

3.2.1 Specifications of the statistical methods

Let us describe in greater detail the projection estimators we consider. Below, we write

J (A) instead of the notationJ ([0,T] × A) of (2.1.3) when referring to the number of

jumps of sizes inA ∈ B(R0) occurring prior toT, and we writeχA(x) for the indicator

function onA. LetC : a = x0 < x1 < · · · < xm = b be a partition of the intervalD ≡ [a,b]

(0 < a < b), and letSC be the span of the indicator functionsχ[x0,x1), . . . , χ[xm−1,xm). In other

words, the linear modelSC consists of “histogram functions” on the windowD with cutoff

points inC. We assume that the Lévy process has a Lévy densitys bounded outside of

any neighborhood of the origin. This assumption is very mild, and yet good enough for the

integral
∫

D
s2(x)dx to be finite. In that case, the orthogonal projection ofs ontoSC exists

(under the standard inner product ofL2 (D,dx)), and thus the projection estimation onSC

is meaningful. In the terminology of Section 2.1, the regularization measure is simplydx,

the regularized Lévy density coincides with the Lévy density, and the orthonormal basis

{ϕ1, . . . , ϕm} for SC is

ϕi(x) =
1

√
xi − xi−1

χ[xi−1,xi )(x), i = 1, . . . ,m.

Following thebasic estimation methodoutlined in Section 2.1, the projection estimator,

previously defined in (2.1.10), on the linear modelSC is given by

ŝC(x) =
1
T

m∑
i=1

J([xi−1, xi))
xi − xi−1

χ[xi−1,xi )(x). (3.2.1)
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Remember that the projection estimator on a linear model is characterized by having min-

imal contrast value on that model (see Remark 2.1.3). Under the previous notation, the

contrast value of (3.2.1) takes the form:

γ(ŝC) = −
1
T2

m∑
i=1

(J([xi−1, xi)))
2

xi − xi−1
.

Similarly, the statistiĉV of (2.2.5), needed for the penalty function, is given by

V̂C =
1
T

m∑
i=1

J([xi−1, xi))
xi − xi−1

. (3.2.2)

In that case, following the heuristics of Section 2.1 and Theorem 2.2.3 part (b), an appealing

procedure to select a projection estimator of the form (3.2.1) is to look for the minimization

of the following penalized contrast value

1
T2

m∑
i=1

1
xi − xi−1

{
cJ([xi−1, xi)) − [J([xi−1, xi))]

2
}
. (3.2.3)

Here,c > 1 is a constant that controls the level of penalization. In fact, Theorem 2.2.3

and Corollary 2.2.6 ensure us that, for large enoughT, the previous procedure will yield

competitive results against the best projection estimator. For that to happen it is necessary

to restrict ourselves to modelsC satisfying thatDC ≤ T, whereDC is defined as in (2.2.3).

In this case, the constantDC is 1/min1≤i≤m{xi − xi−1} as seen from Remark 2.2.2. Notice

also that the mean square error (2.1.15) of ˆsC is

E
[
‖s⊥[a,b] − ŝC‖

2
]
=

1
T

m∑
i=1

1
xi − xi−1

∫ xi

xi−1

s(x)dx,

which goes to infinity whena = x0 ↓ 0.

The simplest case is to take regular partitions{xi = a+ i∆x}mi=0, where∆x = (b− a)/m

is the mesh of the partition. Then, the projection estimators of (3.2.1) becomes

ŝm(x) ≡
m

T(b− a)

m∑
i=1

J([xi−1, xi)) χ[xi−1,xi )(x), (3.2.4)

and penalized projection estimation will look to minimize

m
T2(b− a)

cJ([a,b)) −
m∑

i=1

(J([xi−1, xi)))
2

 , (3.2.5)
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over all m such thatDm = m/(b − a) is smaller thanT. Observe that (3.2.4) is simply a

scaling of a histogram of the jumps ofX. There are three new ingredients though: the base

of the histograms is deliberately taken off the origin; the number of intervals in the partition

is restricted to be at mostT(b − a); the use of penalized contrast values to choose an ap-

propriate partition. Let us emphasize this point: the three previous conditions are not only

perfectly objective, but also have very well-defined consequence: The Oracle inequality.

This is in contrast to common practitioner methods of histogram construction, where the

choice of the partition is made qualitatively and usually to try to match an assumption that

bias our results and “don’t let the data speak by itself”. It is still open the choice of the

estimation windowD and penalization parameterc, but the arbitrariness of the method is

reduced.

For comparison against other procedures and to assess the goodness of fit to specific

parametric models, it is useful to find the parametric model of a given type that “best fits”

our non-parametric estimators; for instance, suppose the we want to assess whether or not

the nonparametric results supports the parametric Gamma model for the Lévy density. The

method of least square errors provides an easy solution to this problem. For instance, if

sθ(x) is the parametric form of the Lévy density, a plausible estimator ofθ can be defined

by

θ̂ = argminθ d(sθ, ŝ),

whereŝ is the (penalized) projection estimator on a given family of linear models, andd is

a function that accounts for the difference betweensθ andŝ. For instance, for a fixed set of

points{xi}
k
i=1 ⊂ D, d(·, ·) can simply be defined for functionsf andg as

d( f ,g) ≡
k∑

i=1

[
f (xi) − g(xi)

]2 .

If it is preferable to have a least-square method that is linear in the parameters to avoid

ill-poseness1 numerical problems, we can look for a functionalT so thatT(sθ) is linear in

1In numerical methods, the term ill-conditioned or ill-posed refers to problems were small changes in the
input data can cause “large” errors in the final solution
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θ and define

d( f ,g) ≡
k∑

i=1

[
T( f )(xi) − T(g)(xi)

]2 .

Example 3.2.1 To illustrate the previous least-square scheme, let us go ahead and con-

sider the case of Gamma Lévy densities

s(x) =
α

x
e−x/β,

for x > 0. Given a (penalized) projection estimatorŝ, the least-square estimates ofα andβ

based on the values at{xi}
k
i=1 are the solution̂α and β̂ to the minimization problem:

min
α,β

m∑
i=1

(
α

xi
exp

(
−

xi

β

)
− ŝ(xi)

)2

. (3.2.6)

However, the estimation would be very susceptible to points with small xi and ill-conditioned

problems might arise. We could try instead a regression method that is linear in the param-

eters using a logarithmic transformation:

min
α,β

m∑
i=1

(
−

1
β

xi + log(α) − log(xi ŝ(xi))

)2

. (3.2.7)

The simulation method we use (described in Section 3.1.2) generates a sample ofn

jumps of the Lévy process{X(t)}t∈[0,T] by truncating the series (3.1.5) or (4.5.12) ton terms.

In our numerical experiments below, we will use this sample to approximate the integrals

with respect to the jump measureJ as follows"
[0,T]×R0

f (x)J(dt,dx) =
∑
t≤T

f (∆X(t)) ≈
n∑

i=1

f (Ji) , (3.2.8)

whereJi is thei th jump in the sample (see Proposition 3.1.4 for more detailed description).

In particular, the projection estimators ˆsC of (3.2.1) and ˆsm of (3.2.4) will be approximated

by

ŝC(x) ≈
1
T

m∑
i=1

#{i : Ji ∈ [xi−1, xi)}
xi − xi−1

χ[xi−1,xi )(x); (3.2.9)

ŝm(x) ≈
m

T(b− a)

m∑
i=1

#{i : Ji ∈ [xi−1, xi)} χ[xi−1,xi )(x). (3.2.10)
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If instead we apply discrete skeletons to simulate the path of the Lévy process or if we apply

the method developed in Section 2.4, the integrals with respect toJ shall be approximated

using the increments
{
X(tni ) − X(tni−1)

}n

i=1
. From an algorithmic point of view, this can be

achieved by takingJi = X(tni ) − X(tni−1) in the previous expressions. Notice that in the

previous case, the approximation of the estimator ˆsm is simply a scaling of a histogram of

the i.i.d random variables
{
X(tni ) − X(tni−1)

}n

i=1
. In particular, we expect that such a histogram

will be similar to the density function ofL(X(T/n)). This is not a contradiction since

whenn is large, the density ofnT X
(

T
n

)
converges to the Lévy density under some regularity

conditions (see Section 2.3 and Remark 2.4.1 for a discussion of this matter).

3.2.2 Estimation of Gamma Lévy densities.

3.2.2.1 The model

As a first example, we discuss the calibration of Gamma Lévy processes. These pro-

cesses are fundamental building blocks in the construction of other Lévy processes like

the variance Gamma model [13] and the generalized Gamma convolutions [8]. Moreover,

by Berstein’s theorem, any Lévy density of the formu(x)/|x|, whereu is a completely

monotone function, is the limit of superpositions of Gamma Lévy densities.

The Gamma Lévy processX = {X(t)}t≥0 is determined by two positive parametersα

andβ so that the probability density function ofX(t) is

ft(x) =
xαt−1e−x/β

Γ(αt)βαt
, (3.2.11)

for x > 0. In this case, the characteristic function ofX is

E
[
eiuX(t)

]
= (1− iβt)αt = exp

[
t

(
α

∫ ∞

0

(
eiux − 1

)
ν(dx)

)]
,

where the Lévy measureν is

ν(dx) =
α

x
exp

(
−

x
β

)
dx, for x > 0; (3.2.12)

see [16] pp. 87 or Example 8.10. of [39]. From the point of view of the marginal densities,

β is ascale parameterandα is ashape parameter. In terms of the jump activity,α controls
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the overall activity of the jumps, whileβ takes charge of the heaviness of the Lévy density

tail, and hence, of the frequency of big jumps. Notice that changes in the time units is

statistically equivalent to changes of the parameterα, while changes in the units at which

the values ofX are measured are statistically reflected on changes of the parameterβ. That

is to say, the scaled process{cX(ht)}t≥0 is also a Gamma Lévy process with shape parameter

αh and scale parameterβc. This property is consistent with the previous remark onα taking

charge of the jump activity and onβ taking charge of the frequency of large jumps.

3.2.2.2 The simulation procedure

Let us specialize the simulation procedure of Section 3.1.2 to Gamma Lévy processes.

That is to say, we need to find random elementV on a measurable spaceS and a function

H : (0,∞) × S → R0 such that

ν(B) =
∫ ∞

0
P [H(u,V) ∈ B] du.

It is not hard to check thatV can be made exponentially distributed with mean 1 and

H(u, v) = βve−u/α. Indeed, for allb > 0,∫ ∞

0
P [H(u,V) > b] du=

∫ ∞

0

∫ ∞

0
1
[
βve−

u
α > b

]
e−vdvdu

=

∫ ∞

0
exp

(
−

b
β

e
u
α

)
du.

=

∫ ∞

b

α

x
e−

x
βdx,

by changing variables tox = beu/α in the last equality.H(u, v) being non-increasing inv,

Remark 3.1.4 implies that the conditions of Proposition 4.5.12 are satisfied and thus, the

process

X(t) ≡ β
∞∑

i=1

Vi exp

(
−
Γi

α

)
, (3.2.13)

is a Gamma Lévy process on [0,T] with shape parameterα and scale parameterβ (see also

Remark 3.1.6). Below, we shall truncate the series ton terms (corresponding ton jumps in
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the processX) to simulate a path ofX and moreover, to simulate the jump processJ by

Jn(·) ≡
n∑

i=1

δJi (·), (3.2.14)

whereJi ≡ αVi exp
(
−
Γi

α

)
.

3.2.2.3 The numerical results

We now present a few cases to illustrate the technique of projection estimation on his-

togram functions based on regular partitions (see Section 3.2.1 for the specifications of the

estimation method). Figure 3.1 shows the Gamma density withα = 1 andβ = 1 and its

(approximate) penalized projection histogram on regular partitions of the form (3.2.10).

The estimation is based on 2000 jumps of the Gamma Lévy process on [0,365], and their

approximated Poisson integrals (3.2.8). The least-square method (3.2.7), taking thexi ’s as

the mid points of the partition intervals, yields the estimators ˆα = 0.932 andβ̂ = 1.055.

The maximum likelihood estimators based on the increments of the sample path of time

length 1 are 1.015 forα and 0.949 forβ (we do not observe real improvement if the time

length of the increments is reduced).

In the next simulation, we consider a Gamma density with a lighter tail (β = 0.5) and

more jump activity (α = 2). The opposite setting was also studied: a heavier tail determined

by a β = 2 and a lower jump activity given by anα = 0.5 (see Figures 3.2 and 3.3). In

the first scenario, the least-square method estimators are ˆα = 1.907 andβ̂ = 0.472, while

the maximum likelihood estimators are 1.924 and 0.527, respectively. For this second

Gamma density, the least-square method (3.2.6), taking thexi ’s as the midpoints of the

partition intervals, produce estimators ˆα = 0.5 andβ̂ = 1.72, while the maximum likelihood

estimators are 0.55 and 1.99, respectively.

Approximate histogram estimation on regular partitions is less successful in case of

high activity levels. This problem is particularly evident when we have in addition heavy

tails in the Lévy density. For instance, ifα = 3 andβ = 3, the method requires a large

sample size to satisfactorily retrieve the behavior around the origin (see Figures 3.4 and
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3.5). For 2000 jumps, the least square estimates are ˆα = 1.87 andβ̂ = 4.45, while the

estimates are ˆα = 2.8893 andβ̂ = 2.9268 for twice as many jumps. The maximum likeli-

hood estimators based on the increments of time length .5 are 2.4134054 forα and 3.30971

for β when the approximate process is made out of 2000 jumps, while when the process

is approximated using the 4000 jumps, these estimates are 2.8281 and 3.1007 forα andβ,

respectively. We also notice in our experiments that the estimates for the first simulation

improve considerably if the window of estimation is taken “far away” from the origin (for

example, ˆα = 3.20944 and̂β = 2.68775 on [a,b] = [1.5,5]; see Figure 3.6 ).
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3.2.2.4 Regularized projection estimation around the origin

We present another way to estimate the Gamma Lévy density even around the origin based

on the regularization technique described in Section 2.1. The key observation is the follow-

ing: the Gamma Lévy measure (3.2.12) can be written as

ν(dx) = αxexp

(
−

x
β

)
η(dx), (3.2.15)

whereη(dx) = 1
x2 dx. Then,s(x) ≡ αxexp

(
− x
β

)
is square integrable with respect toη, open-

ing the possibility to use the projection estimation ofson a linear spaceS of L2 ((0,∞), η).

Once an estimator ˆs for s has been obtained, ˆp defined by ˆp(x) = ŝ(x)/x2 can work as

an estimator for the Lévy densityp(x) ≡ αexp (−x/β)/x. In the terminology introduced

in Section 2.1,η is a regularization measure for the Gamma Lévy densityp, ands is the

respective regularized Lévy density (see Definition 2.1.1).
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Let us specify this method for the linear model

SC =

 f : [0,∞)→ R : f (x) = c1xχ[x0,x1)(x) +
m∑

i=2

ci χ[xi ,xi+1)(x), for c1, . . . , cm ∈ R

 ,
whereC : 0 = x0 < x1 < · · · < xm = b is a partition of an chosen intervalD = [0,b]. The

projection estimator ˆsC ontoSC, under the standard inner product ofL2 ((0,∞), η), takes on

the value

ŝC(x) = x
1

T x1

∑
t≤T

∆X(t)I [∆X(t) < x1] ,

if x < x1, while if xi−1 ≤ x < xi, for somei ∈ {2, . . . ,m}, then

ŝC(x) =
xi−1xi

T(xi − xi−1)
J([xi−1, xi)).

We shall use the penalty function of Theorem 2.2.3 part (b) to perform model selection.

That is, among different partitionsC that satisfy

DC = max

{
1
x1
,

x2x1

x2 − x1
, . . . ,

xmxm−1

xm− xm−1

}
≤ T,

we choose the projection estimator ˆsC that minimize

γ(ŝC) + V̂C =
1
T2

m∑
i=2

xi xi−1

xi − xi−1

[
cJ([xi−1, xi)) − (J([xi−1, xi)))

2
]

+
c

T2x1

∑
t≤T:

∆X(t)<x1

(∆X(t))2 −
1
x1


∑
t≤T:

∆X(t)<x1

∆X(t)


2

.

The previous formulas are found directly from the definitions and results given in Section

2.1 (see for instance formulas (2.1.9), (2.1.10), (2.2.3), and (2.2.5)).

Let us also point out that the risk of estimation inside the linear modelSC is given by

E
[
‖s⊥[0,b] − ŝC‖

2
η

]
=

1
T

 1
x1

∫ x1

0
x2s(x)dx+

m∑
i=2

xi−1xi

xi − xi−1

∫ xi

xi−1

s(x)dx

 ,
where‖ · ‖η stands for theL2-norm with respect toη.

Remark 3.2.2 Observe that the previous procedure is appropriate to estimate the density

function s(x) = α
x exp(− x

β
) around the origin as far as

α̂ ≡
1

T x1

∑
t≤T

∆X(t)I [∆X(t) < x1] ,

68



is a good estimator ofα. It is not hard to check that the bias ofα̂ tend to zero as x1 ↘ 0.

However, the variance of̂α converges toα2T , suggesting that the method works better when

T is “large” and α is “small”.

We apply the above method to the simulated Lévy process used in Figure 3.1; i.e. a

Gamma process withα = 1 andβ = 1. Figure 3.7 shows the estimator ˆp2(x) = ŝ(x)/x2

and the actual Lévy densityp(x) = exp(−x)/x for x ∈ [0.02,1] (we used regular partitions

on [0,1]). From Figure 3.1, the improvement is notorious, and moreover, we accomplish a

good estimation around the origin of ˆp2(x) = 0.9/x, for x ∈ [0,0.2).
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Figure 3.7: Penalized projection estimation ofe−x

x using ŝ(x)
x2 .

This procedure was also applied to the simulations of Gamma Lévy process with (α =

3, β = 3) and with (α = 1/2, β = 2) (see the results of projection estimation for these

two cases in Figures 3.3 and 3.5). The results are plotted in Figures 3.8 and 3.9 below.

We observe an improvement under both sample data. For instance, forα = β = 3, the

nonparametric estimator ˆs(x)/x2 combined with a method of least-squares errors estimate
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α by 2.7296 andβ by 3.2439. Similarly, whenα = .5 andβ = 2, least-square errors

estimates ˆα = .4825 andβ̂ = 2.1131.
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Real Gamma density: α=3 and β =3
Estimated Gamma density: α=2.7296 and β =3.2439

Figure 3.8: Regularized penalized projection estimation of3
x exp

(
− x

3

)
.

3.2.2.5 Performance of projection estimation based on finitely many observation

In this part, we study the performance of the (approximate) projection estimators intro-

duced in Section 2.3, and formally stated in Section 2.4. Namely, the method obtained by

approximating the Poisson process of jumpsJ by

Jn(·) =
n∑

i=1

δJi (·),

whereJi is the i th increment ofX from tni−1 to tni and tni = iT/n. The time span between

increments is denoted by∆t = T/n. Concretely, the estimators we consider are histogram

estimators as defined in Section 3.2.1 and applied in Section 3.2.2.3.

Table 3.1 compares (approximate) projection estimators with least-square errors (PPE-

LSE) to maximum likelihood estimators (MLE) for the Gamma Lévy process withα = β =
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1 using different time spans∆t. We also consider two simulation procedures: jump-based

and increment-based. The jump-based method uses series representation withn = 36500

jumps occurring during the time period [0,365] (notice that if we think of 365 as days, the

number of jumps corresponds to an average of about 1 jump every minute). The increment-

based method is adiscrete skeleton(see Section 3.1.1) with mesh of 0.001.

Jump-based Simulation Increment-based Simulation
∆t PPE-LSE MLE PPE-LSE MLE
1 1.01 1.46 .997 .995 .73 1.78 1.09 .99
.5 1.03 1.09 .972 .978 .9 1.49 1.01 1.06
.1 .944 .995 1.179 .837 .923 1.03 .989 1.09
.01 .969 .924 6.92 .5 .955 1.019 .9974 1.083

Table 3.1: Estimation of a Lévy Gamma process withα = β = 1. Two types of simu-
lation are considered: series-representation based and increments-based. The estimations
are based on equally spaced sampling observation at the time span∆t. Results for the ap-
proximate penalized projection estimators with least-squares errors, and for the maximum
likelihood estimators are given.
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Notice that maximum likelihood estimation does not perform well for small time spans

when the approximate sample path is based on jumps. Similarly, penalized projection

estimation does not provide good results for long time spans when the approximate sample

path is based on increments.

3.2.3 Estimation of variance Gamma processes.

Variance Gamma processes have been introduced in [13] as a substitute to Brownian Mo-

tion in the Black-Scholes model. There are two useful representations for this type of

processes. In short, a variance Gamma processX = {X(t)}t≥0 is a Brownian motion with

drift, time changed by a Gamma Lévy process. Concretely,

X(t) = θS(t) + σW(S(t)), (3.2.16)

where{W(t)}t≥0 is a standard Brownian motion,θ ∈ R,σ > 0, andS = {S(t)}t≥0 is a Gamma

Lévy process with density at timet given by

f (x) =
xt/β−1 exp

(
− x
β

)
βt/βΓ

(
t
β

) . (3.2.17)

Notice that E[S(t)] = t and Var[S(t)] = βt; therefore, the random timeS has a “mean rate”

of one and a “variance rate” ofβ. There is no loss of generality in restricting the mean rate

of the Gamma processS to one since, as a matter of fact, any process of the form

θ1S1(t) + σ1W(S1(t)),

whereS1(t) is an arbitrary Gamma Lévy process,θ1 ∈ R, andσ1 > 0, has the same law as

(3.2.16) for suitably chosenθ, σ, andβ. This a consequence of theself-similarity2 property

of the Brownian motion and the fact thatβ in (3.2.17) is a scale parameter.

The processX is itself a Lévy process since Gamma processes aresubordinators(see

2namely,{W(ct)}t≥0
D
= {c1/2W(t)}t≥0, for anyc > 0.
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Theorem 30.1 of [39]). Moreover, it is not hard to check that “statistically”X is the differ-

ence of two Gamma Lévy processes (see 2.1 of [11]):

{X(t)}t≥0
D
= {X+(t) − X−(t)}t≥0, (3.2.18)

where{X+(t)}t≥0 and{X−(t)}t≥0 are Gamma Lévy processes with respective Lévy measures

ν±(dx) = αexp

(
−

x
β±

)
dx, for x > 0.

Here,α = 1/β and

β± =

√
θ2β2

4
+
σ2β

2
±
θβ

2
.

As a consequence of this decomposition, the Lévy density ofX takes the form

s(x) =


α
|x| exp

(
−
|x|
β−

)
if x < 0,

α
x exp

(
− x
β+

)
if x > 0,

whereα > 0, β− ≥ 0, andβ+ ≥ 0 (of course,β2
− + β

2
+ > 0). As in the case of Gamma Lévy

processes,α controls the overall jump activity, whileβ+ andβ− take respectively charge

of the intensity of large positive and negative jumps. In particular, the difference between

1/β+ and 1/β− determines the frequency of drops relative to rises, while their sum measures

the frequency of large moves relative to small ones.

The conclusion we want to draw in this part is that, from an algorithmic point of view,

the estimation of this model based on projection estimation or approximate projection es-

timate is not different from the estimation of the Gamma process. We can simply estimate

both tails of the variance Gamma process separately. However, from the point of view

of maximum likelihood estimation, the problem is numerically challenging. The density

function has closed form expression, but they involves Bessel functions (see [13]).
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CHAPTER IV

TEMPERED STABLE DISTRIBUTIONS

The class oftempered stabledistributions and its associated Lévy processes were recently

studied by J. Rosiński [35] as a generalization of thetruncated stabledistributions intro-

duced in the physics literature by [28], [27], and [22]. It is worthy to point out that Lévy

processes with truncated stable distributions has been rediscovered and applied to mathe-

matical finance by [11], [4], and others (see the references herein). In this part, we present a

survey of his results, provide proofs when not given, and make some additional remarks.

4.1 Basic properties

There are different ways to construct tempered stable distributions from stable distributions.

First, let us recall some features of the stable class (see e.g. Theorem 14.3 and 14.10 of

[37]). Bellow and throughout,‖ · ‖ is the Euclidean norm inRd.

Theorem 4.1.1 Let η be a non-trivial infinitely divisible probability measure onRd with

generating triplet(Σ, γ,b) and letY = {Y(t)}t∈[0,1] be its associated Lévy process so that

η̂(z) = E
[
ei z ·Y(1)

]
= exp(ψ(z)), where

ψ(z) = −
1
2

z · Σz+ i z · b +
∫
Rd

0

{
ei z·x − 1− i z · x I (‖x‖ ≤ 1)

}
γ(dx). (4.1.1)

For 0 < α < 2, the following statements are equivalent:

(i) η is α − stable;

(ii) Σ = 0 and there is a finite measureσ on the unit sphere Sd−1 such that

γ(B) =
∫

Sd−1

∫ ∞

0
IB(ru)r−α−1drσ(du), (4.1.2)
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for every B∈ B(Rd);

(iii) there exist a finite measureσ on Sd−1, a constant cα depending only onα, and a vector

a ∈ Rd such that

η̂(z) = exp

{
−cα

∫
Sd−1
|z · u|α

(
1− i tan

πα

2
sgn(z · u)

)
σ(du) + i a · z

}
, (4.1.3)

for α , 1, and

η̂(z) = exp

{
−c1

∫
Sd−1

(
|z · u| + i

2
π

(z · u) log |z · u|
)
σ(du) + i a · z

}
, (4.1.4)

for α = 1.

We proceed to introduce the tempered stable distribution.

Definition 4.1.2 An infinitely divisible probability measureµ onRd is called tempered sta-

ble if it does not have a Gaussian component (Σ = 0), and if its Lévy measureν is of the

form

ν(B) =
∫
Rd

0

∫ ∞

0
IB(sx)s−α−1e−sdsρ(dx), (4.1.5)

whereα ∈ (0,2) andρ is aσ − f inite Borel measure onRd
0 ≡ R

d\{0} such that∫
Rd

0

‖x‖αρ(dx) < ∞. (4.1.6)

The following remark will help us to better understand the relationship between the tem-

pered and the standard stable distributions. In particular, it will be clear thatν above satis-

fies the integrability conditions of a Lévy measure.

Remark 4.1.3 Given a Lévy measureν as in (4.1.5) consider the measure

γ(B) =
∫
Rd

0

∫ ∞

0
IB(sx)s−α−1dsρ(dx), B ∈ B

(
Rd

0

)
. (4.1.7)

It is not hard to see thatγ above is indeed of the form (4.1.2) with spherical partσ given

by

σ(C) =
∫
Rd

0

IC

(
x
‖x‖

)
‖x‖αρ(dx), (4.1.8)
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for any C∈ B
(
Sd−1

)
. Therefore, we can associate a stable distribution with each tempered

stable distribution, namely, an stable distribution with Lévy densityη. In the next sections

we will explore the relationship between these two distributions from the point of view of

the corresponding Lévy processes. Notice also that sinceν ≤ γ everywhere, the fact thatγ

satisfies
∫
Rd

0
(‖x‖2 ∧ 1)γ(dx) < ∞ implies the same condition forν.

Example 4.1.4 For d = 1, the tempered stable distributionµ has the Lévy density

s(x) =


x−α−1q+(x) if x > 0,

|x|−α−1q−(|x|) if x < 0,

where

q+(x) =
∫

(0,∞)
e−x/ssαρ(ds), andq−(x) =

∫
(−∞,0)

e−x/|s||s|αρ(ds).

In particular, Bernstein’s representation tell us that q+ and q− are completely monotone

functions such that q±(∞) = 0 and q±(0+) < ∞ (see XIII.4 in [15] for versions of the

Bernstein’s Theorem). In fact, any completely monotone function q on(0,∞) for which

q(∞) = 0 and q(0+) < ∞ can be written as q(x) =
∫

(0,∞)
e−x/ssαρ(ds), for a suitable finite

measureρ on (0,∞). The tempered stable distribution withρ(ds) = w−δλ−(ds)+w+δλ+(ds),

whereλ− < 0 < λ+, is an important case that has been studied in financial applications by

[11], [9], and [4]. Such distributions will be called truncated stable.

We establish now the analog of Theorem 4.1.1 (iii) for tempered stable distributions. Bel-

low, the branches of log(v) = log |v| + i arg(v) andvα = |v|ei αarg(v) are chosen such that

arg(v) ∈ (−π, π], for any complex numberv.

Theorem 4.1.5 Let µ be a tempered stable distribution with Lévy measure (4.1.5). Then,

its characteristic function̂µ is given by

µ̂(z) = exp

kα

∫
Rd−1

0

ψα(z · x)ρ(dx) + i a · z

 , (4.1.9)
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where

ψα(ω) =


1− (1− i ω)α , if 0 < α < 1,

(1− i ω) log(1− i ω) , if α = 1,

(1− i ω)α − 1+ i αω, if 1 < α < 2,

and kα = |Γ(−α)|1, for α , 1, and k1 = 1.

The previous theorem allows us to study the “scaling properties” of tempered stable dis-

tributions. Let{X(t)}t≥0 be the Lévy process such thatµ = L(X(1)). Suppose that we are

interested in the dynamics of the process when time is measured in small or large units.

That is, we want to studyXh(t) ≡ X(ht) for small or largeh > 0. For instance, if originally

t is measured in years,X1/365(t) is simply the value ofX in t days. The following result of

[35] addresses the "microscalar" (h→ 0) and "macroscalar" (h→ ∞) behavior of tempered

stable distributions (referred by Rosiński [35] as the short and long time behavior):

Theorem 4.1.6 Letµ be a tempered stable distributions with characteristic function as in

(4.1.9) witha = 0. Let {X(t)}t≥0 be the Lévy process such thatµ = L(X(1)), and define

Xh(t) ≡ X(ht), t ≥ 0.

The limits below hold in the sense of convergence in law of the finite dimensional distribu-

tions:

(i) If α , 1, then {
1

h1/α
Xh(t)

}
t≥0

D
→ {Y(t)}t≥0 , as h→ 0, (4.1.10)

where{Y(t)}t≥0 is a strictly stable process with characteristic function

E
[
ei z·Y(t)

]
= exp

−tcα

∫
Rd−1

0

|z · x|α
(
1− i tan

πα

2
sgn(z · x)

)
ρ(dx)

 , (4.1.11)

and cα is a constant depending only onα.

(ii) If α = 1, then {
1
h

Xh(t) − tah

}
t≥0

D
→ {Y(t)}t≥0 , as h→ 0, (4.1.12)

1The function Gamma is defined for negative real numbers x, −1,−2, . . . by applying recursively the
propertyΓ(x) = Γ(x+ 1)/x. For instance,Γ(−α) = Γ(2− α)/(α(α − 1)) if 0 < α < 2, α , 1.
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whereah ≡ log(h)
∫
Rd

0
xρ(dx) and where{Y(t)}t≥0 is a strictly stable process such that

E
[
ei z·Y(t)

]
= exp

−tc1

∫
Rd−1

0

(
|z · x| + i

2
π

(z · x) log |z · x|
)
ρ(dx)

 . (4.1.13)

(iii) If 1 ≤ α < 2 and ∫
Rd

0

‖x‖2ρ(dx) < ∞, (4.1.14)

then {
1

h1/2
Xh(t)

}
t≥0

D
→ {B(t)}t≥0 , as h→ ∞, (4.1.15)

where{B(t)}t≥0 is a Brownian motion with characteristic function

E
[
ei z·B(t)

]
= exp

− t
2
Γ(2− α)

∫
Rd−1

0

|z · x|2ρ(dx)

 . (4.1.16)

(iv) If 0 < α < 1 and condition (4.1.14) is met, then{
1

h1/2
Xh(t) − tah

}
t≥0

D
→ {B(t)}t≥0 , as h→ ∞, (4.1.17)

whereB is as above andah ≡ h1/2Γ(1− α)
∫
Rd

0
xρ(dx).

4.2 Series Representations

It is clear from (4.1.5) and (4.1.7) thatν(B) ≤ γ(B), for all B ∈ B
(
Rd

0

)
. We might wonder

on which regions ofRd the Lévy measureν is more alike to or more different from the

Lévy measureγ. An answer to this is relevant in order to compare the jump dynamics

of the Lévy processes associated withν andγ. The subsequent result of [35] addresses

this question and establishes roughly speaking that the tempered stable Lévy process is

generated by truncating the jumps of the stable Lévy process. The truncation procedure

truncates the size of the jumps, while keeping the direction of the jumps. We assume

through this part, that the canonical tempered stable distributionµ of Definition 4.1.2 has

characteristic function

µ̂(z) = exp

iz · b + ∫
Rd

0

{
eiz·x − 1− iz · x I (‖x‖ ≤ 1)

}
ν(dx)

 , (4.2.1)
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while η is a stable distribution with the same characteristic function asµ but substitutingγ

for ν (see Remark 4.1.3 above).

Theorem 4.2.1 Let {X(t)}t∈[0,1] and {Y(t)}t∈[0,1] be Lévy processes such thatL(X(1)) ∼ µ

andL(Y(1)) ∼ η. On a common probability space, define independent sequences as fol-

lows:

• {Ui}i≥1, {Ti}i≥1 are i.i.d. uniform on[0,1] random variables;

• {Ei}i≥1, {Wi}i≥1 are i.i.d. exponential random variables with mean1;

• {V i}i≥1 are i.i.d. random vectors inRd
0 with common distribution

ρ1(dx) =
1

m(ρ)α
‖x‖αρ(dx), (4.2.2)

where m(ρ)α is the normalizing constant
∫
Rd

0
‖x‖αρ(dx).

Then, ifα ∈ (0,1) or if ρ is symmetric, the following series representations hold

Y(t)
D
=

∞∑
i=1

m(ρ) (αΓi)
−1/α V i

‖V i‖
I (Ti ≤ t) + b1t, (4.2.3)

while

X(t)
D
=

∞∑
i=1

{(
m(ρ) (αΓi)

−1/α
)
∧

(
‖V i‖EiU

1/α
i

)} V i

‖V i‖
I (Ti ≤ t) + b2t, (4.2.4)

for suitable vectorsb1,b2 ∈ R
d. Here, the sequence{Γi}i≥1 is the Poisson processΓi =∑i

k=1 Wk. Moreover, the representations in (4.2.3) and (4.2.4) are in the sense of finite

dimensional distributions and the series on the right hand sides converge uniformly in

t ∈ [0,1], with probability1.

In the next section we show another method to construct series representations for tempered

stable Lévy processes from Lévy stable processes. The procedure consists inthinning the

“big” jumps of the stable process by a suitablerejectioncriterion (see Remark 4.3.3).
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4.3 Spectral Decomposition

The following result gives thespectral representationof the tempered stable distributions.

If we view an infinitely divisible random variable as a superposition of infinitely many

jumps, a spectral representation of its distribution decomposes the content information of

the jumps into a spherical part and a radial part. Generally speaking the former controls

the direction of the jumps, while the latter determines the size of the jumps, although some

compensation may be necessary.

Theorem 4.3.1 The measureν is the Lévy measure of a tempered stable distribution onRd

if and only if for B∈ B(Rd
0)

ν(B) =
∫

Sd−1

∫ ∞

0
IB(ru)r−α−1q(r,u)drσ(du), (4.3.1)

whereσ is a probability measure on Sd−1 and q: (0,∞)×Sd−1→ (0,∞) is a Borel function

such that q(·,u) is completely monotone with q(∞,u) = 0, for everyu ∈ Sd−1, and such that∫
Sd−1

q(0+,u)σ(du) < ∞. (4.3.2)

Remark 4.3.2 Let us briefly digress on a possible probabilistic interpretation of the spec-

tral representation (4.3.1). Consider the more general setting whereX is an infinitely di-

visible random vector without Gaussian component and with Lévy measureν of the form:

ν(B) =
∫

Sd−1

∫ ∞

0
IB(ru)π(u,dr)σ(du), (4.3.3)

whereσ is a finite measure on Sd−1 and π : Sd−1 × B((0,∞)) → [0,∞] is a transition

kernel. In the special case whereσ is a probability measure andπ is a probability kernel

(a probability measure for eachu), the probabilistic nature ofX is given by

X
D
=

N∑
i=1

RiUi + b, (4.3.4)

where theUi ’s, i ≥ 1, are Sd−1-valued independent random elements with common distri-

butionσ, and {Ri}i≥1 is a sequence of conditionally independent random variables given
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{Ui}i≥1 such that

π(Ui ,dr) = Pr[Ri ∈ dr|Ui] = Pr[Ri ∈ dr|{U j} j≥1, {Rj} j,i]. (4.3.5)

In (4.3.4), N is a Poisson random variable with mean1 independent of{U}i≥1 and {R}i≥1.

This fact follows from Propositions 3.7 and 3.8 of [32]. Ifπ is not a probability kernel, but

m ≡
∫

Sd−1 π(u,R+0)σ(du) < ∞, we can normalizeπ by π(Ui ,R
+
0) in (4.3.5) so that (4.3.4)

holds with N∼ Poisson(m) and

Ui ∼
1
m
π(u,R+0)σ(du).

In the most general scenario, the jumps of small size need to be compensated to generate

X as a limit in distribution of processes of the form

X
D
= lim

ε↓0

N(ε,1)∑
i=1

Ri,εUi,ε −

∫
Sd−1

∫ 1

ε

ru π(u,dr)σ(du)


+

N(1,∞)∑
i=1

RiUi + b,

where

• N(a,b) ∼ Poisson(m(a,b)) ,with m(a,b) ≡
∫

Sd−1 π(u, (a,b))σ(du), for 0 < a < b <

∞;

• For eachε > 0, the Ui,ε, i ≥ 1, are Sd−1-valued random elements with common

distribution 1
m(ε,1)π(u, (ε,1))σ(du).

• For eachε > 0, {Ri,ε}i≥1 are conditionally independent given{Ui,ε}i≥1 such that

Pr[Ri,ε ∈ dr|{U j,ε} j≥1, {Rj,ε} j,i] =
1

π(Ui,ε, (ε,1))
π(Ui,ε,dr ∩ (ε,1)).

• Similar definitions for{Ri} and{Ui} holds but substituting(ε,1) by (1,∞).

• N(ε,1), N(1,∞), {Ui,ε}i≥1 and {Ui}i≥1 are mutually independent.{Ri,ε}i≥1 is indepen-

dent of N(ε,1), N(1,∞), and{Ui}i. A similar statement holds for{Ri}i≥1.
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Remark 4.3.3 Notice that (4.3.1) can be written as

ν(B) =
∫

Sd−1

∫ ∞

0
IB(ru)r−α−1q̃(r,u)drσ̃(du), (4.3.6)

whereσ̃(du) = q(0+,u)σ(du) and

q̃(r,u) =


q(r,u)

q(0+,u) q(0+,u) > 0,

1 elsewhere.
(4.3.7)

We can use (4.3.6) to obtain series representations of a Lévy tempered stable processX =

{X(t)}t∈[0,1], with Lévy measureν. Let us consider for simplicity the case of symmetricσ or

0 < α < 1 (otherwise, compensating constants will be needed in the terms of the series).

The method, a straightforward application of therejection methodof [34], consists in

“thinning” the jumps of the stable Lévy processY = {Y(t)}t∈[0,1] with Lévy measure

γ(B) =
∫

Sd−1

∫ ∞

0
IB(ru)r−α−1drσ̃(du). (4.3.8)

It was shown in Theorem 4.2.1 that for a random sample{Ti}i≥1 of uniform[0,1] random

variables, a homogeneous Poisson process{Γi}i≥1 on R+ with unit rate, and a constant

vectorb, the following representation holds:

Y(t)
D
=

∞∑
i=1

RiUi I (Ti ≤ t) + bt, (4.3.9)

whereD is in the sense of finite dimensional distributions. Here,

Ri ≡

(
αΓi

m(σ̃)

)−1/α

,

m(σ̃) ≡ σ̃(Sd−1), and{Ui}i≥1 is an independent sequence of i.i.d. Sd−1-valued vectors with

common distributioñσ(du)/m(σ̃). Since

dν
dγ

(x) = q̃

(
‖x‖,

x
‖x‖

)
,

andq̃(r,u) ≤ 1, the rejection method implies that the random measure NX associated with

the jumps onX has the same law as the Poisson process

∞∑
i=1

δ(Ti ,RiUi I[q̃(Ri ,Ui )≥Wi]),
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where{Wi}i≥1 is a sequence of i.i.d. random variables uniformly distributed on[0,1] and

independent of all the other sequences. Moreover, the tempered stable Lévy processX is

such that

X(t)
D
=

∞∑
i=1

RiUi I (q̃(Ri ,Ui) ≥Wi) I (Ti ≤ t) + b1t, (4.3.10)

for a suitable vectorb1 (see the proof of Theorem 4.2.1 for more details). Notice that the

representation (4.3.10) is different from (4.2.4) even when both series are generated from

the same stable Lévy process. In some sense, the method above filters the jumps ofY when

they are too big, while in (4.2.4) the jumps are truncated .

4.4 Absolutely continuity with respect to stable processes

From the point of view of the corresponding Lévy Processes, there is yet another relation-

ship between stable and tempered stable distributions. It is shown below that the distribu-

tion of a tempered stable Lévy process is (locally) absolutely continuous with respect to

the distribution of its associated Lévy stable process. This implies the existence of a new

probability measure, equivalent to the primary measure, such that under this measure the

tempered stable process has the same statistical behavior as the associated stable process.

Necessary and sufficient conditions for (locally) absolutely continuity between Lévy pro-

cesses are well-known in the literature (see Section 33 of [39]), and we only need to apply

these results in the context of tempered stable and stable distributions. We assume below

thatµ is a tempered stable distribution having generating triple (0, ν,b) with Lévy measure

ν of the form (4.3.1), whileη is a stable distribution with generating triple (0, γ, c), whereγ

is given in (4.3.8) (see Remark 4.3.3). Recall thatD[0,T] stands for the space of functions

f : [0,T] → Rd, that are right-continuous on [0,T) and have left limits on (0,T] (cádlág).

Theorem 4.4.1 Let {X(t)}t≥0 be a Lévy process defined on a probability space(Ω,F ,P)

such thatX(1) ∼ µ underP. Let{Y(t)}t≥0 be another Lévy processes defined on a probability
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space(Ω̃, F̃ ,Q) such thatY(1) ∼ η underQ. Let∫
Sd−1

(
q̃′(0+,u)

)2
σ̃(du) < ∞, (4.4.1)

and let

c = b +
∫

Sd−1
u
∫ 1

0
(q̃ (r,u) − 1) r−αdrσ̃(du), (4.4.2)

with q̃ given by (4.3.7). Then, for each T> 0, the distribution of{X(t)}0≤t≤T on D[0,T] is

absolutely continuous with respect to the distribution of{Y(t)}0≤t≤T . Moreover, let UT be

given by

UT ≡ lim
ε→0

(∫ T

0

∫
{‖x‖>ε}

ln g(x)JY(dt,dx) − T
∫
{‖x‖>ε}

(g(x) − 1) γ(dx)

)
, (4.4.3)

where

g(x) = q̃

(
‖x‖,

x
‖x‖

)
,

and whereJY is the random measure associated with the jumps ofY. Then, for any A∈ FT ,

P [{ω ∈ Ω : X(·;ω) ∈ A}] = EQ
[
eUT I

[
{ω ∈ Ω̃ : Y(·;ω) ∈ A}

]]
, (4.4.4)

whereX(·;ω) (respectively,Y(·;ω)) is the function in D[0,T] defined by the mapping t→

X(t;ω) (similarly definition forY(·;ω)). Above,EQ refers to the expectation with respect

to the probability measureQ andFT is theσ-field on D[0,T] generated by the family of

marginal projections{πt}t∈[0,T], whereπt(ξ) ≡ ξ(t), for ξ ∈ D[0,T].

Remark 4.4.2 We are not assuming thatX and Y are defined on the same probability

space. Note as well that the expectation on the right hand side defines an equivalent proba-

bility measure such that the process{Y(t)}0≤t≤T under this probability measure has the same

distribution as the process{X(t)}0≤t≤T . Indeed, defining

Q̃ [C] = EQ
[
eUT I [C]

]
, (4.4.5)

for C ∈ σ (Yt : 0 ≤ t ≤ T), it immediately follows that

P [{ω ∈ Ω : X(·;ω) ∈ A}] = Q̃
[
{ω ∈ Ω̃ : Y(·;ω) ∈ A}

]
,

for any A∈ FT .
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Remark 4.4.3 The conditions (4.4.1) and (4.4.2) are sufficient for the (local) absolutely

continuity of the processesX and Y. As it is indicated in the proof of Theorem 4.4.1,

(4.4.2) combined with∫
Sd−1

∫ ∞

0

(
q̃ (r,u) − 1

r

)2

r1−αdrσ̃(du) < ∞. (4.4.6)

are both necessary and sufficient for the conclusion of Theorem 4.4.1. Now, suppose thatq̃

has Bernstein’s representation

q̃(r,u) =
∫

[0,∞)
e−rsF(ds; u),

where{F(ds; u)}u∈Sd−1 is a measurable family of probability measures on[0,∞). Then, by

the property (iii) of Section XIII.2 of [15], the condition (4.4.6) is equivalent to∫
Sd−1

∫ ∞

0

∫ ∞

0

1
(s1 + s2)2−α

F([s1,∞); u)F([s2,∞); u)ds1ds2σ̃(du) < ∞. (4.4.7)

In particular, the above integral is finite if∫
Sd−1

(E [Ru])2 σ̃(du) < ∞,

where Ru is a random variable with distribution F(·; u). The condition below is also suffi-

cient for (4.4.7) to hold: ∫
Sd−1
E

[
Rα

u
]
σ̃(du) < ∞.

4.5 Proofs of the main results.

Proof of Theorem 4.1.5:The Lévy-Khintchine representation forµ takes the form:

µ̂(z) = exp

i z · b +
∫
Rd

0

[
ei z·x − 1− i z · x I (‖x‖ ≤ 1)

]
ν(dx)

 .
Using standard arguments of integration that goes from simple functions to integrable mea-

surable functions, the integral in the exponent above is equal to∫
Rd

0

∫ ∞

0

[
eis(z·x) − 1− is(z · x)I (s‖x‖ ≤ 1)

]
s−α−1e−sdsρ(dx). (4.5.1)
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Since for 0< α < 1

c ≡
∫
Rd

0

x
∫ ∞

0
I (s‖x‖ ≤ 1) s−αe−sdsρ(dx) < ∞,

the integral (4.5.1) can be broken up into the two terms
∫
Rd

0

∫ ∞
0

[
eis(z·x) − 1

]
s−α−1e−sdsρ(dx)−

i z · c. Then, (4.1.9) will be true witha ≡ b − c since∫ ∞

0

[
eisω − 1

]
s−α−1e−sds=

Γ(1− α)
α

[1− (1− iω)α] . (4.5.2)

Indeed, we can write the left hand side of (4.5.2) as

i
∫ ∞

0

∫ ω

0
eisvdvs−αe−sds= i

∫ ω

0

∫ ∞

0
e−s(1−iv)s−αdsdv

= Γ(1− α)i
∫ ω

0
(1− iv)α−1dv.

Note that the second equality above follows from the form of the characteristic function of

the Gamma distributions. For 1< α < 2, we take instead

c ≡ −
∫
Rd

0

x
∫ ∞

0
I (s‖x‖ > 1) s−αe−sdsρ(dx) < ∞,

so that (4.5.1) can written as
∫
Rd

0

∫ ∞
0

[
eis(z·x) − 1− is(z · x)

]
s−α−1e−sdsρ(dx)− i z·c. It suffices

to show that∫ ∞

0

[
eisω − 1− isω

]
s−α−1e−sds=

Γ(2− α)
α(α − 1)

[(1− iω)α − 1+ iαω] , (4.5.3)

for any real numberω and any 0< α < 2 (α , 1) . Integrating by parts the left hand side

in (4.5.3) and applying (4.5.2):

−
1
α

∫ ∞

0

[
eisω − 1− isω

]
e−sd(s−α) =

1
α

∫ ∞

0

[
(iω − 1)

(
eisω − 1

)
+ isω

]
s−αe−sds

=
Γ(2− α)
α(α − 1)

[(1− iω)α − 1+ iαω] .

Now, if α = 1, (4.5.1) can be written as∫
Rd

0

∫ ∞

0

[
eis(z·x) − 1− is(z · x)I (s≤ 1)

]
s−2e−sdsρ(dx) + i c · z,
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wherec ≡
∫
Rd

0
x
∫ ∞

0
[I (s≤ 1) − I (s‖x‖ ≤ 1)] s−1e−sdsρ(dx) < ∞. So, we need to evaluate

integrals of the form ∫ ∞

0

[
eisω − 1− isωI (s≤ 1)

]
s−2e−sds. (4.5.4)

Then, (4.5.4) can be written as

Ψ(1− iω) − Ψ(1)− iω
∫ 1

0

[
e−s− 1

]
s−1ds, (4.5.5)

where

Ψ(y) ≡
∫ ∞

0

[
e−sy− 1+ syI(s≤ 1)

]
s−2ds, (4.5.6)

provided thatΨ is well-defined. By Theorem 25.17 of [39],Ψ is definable for any fory ∈ C

with Re(y) ≥ 0. For any positive realy, we have that

Ψ(y) =
∫ 1/y

0

[
e−sy− 1+ sy

]
s−2ds+

∫ ∞

1/y

[
e−sy− 1

]
s−2ds+ y

∫ 1

1/y
s−1ds

= cy+ y log(y),

wherec =
∫ ∞

0
[e−v − 1+ vI (v ≤ 1)] v−2dv. Since the functioñΨ(y) = cy+y log(y) is analytic

on D = {c ∈ C : arg(c) ∈ (−π, π)}, by analyticity inside and continuity to the boundary,

Ψ(y) = Ψ̃(y) for anyy ∈ C with Re(y) > 0 (see for instance p. 51 of [37] and references

here in). Evaluating̃Ψ at 1− iω and−1, (4.5.4) is equal to

(1− iω) log(1− iω) − iω

(∫ 1

0

[
e−s− 1

]
s−1ds+ c

)
.

We can easily infer (4.1.9) for the caseα = 1. �

Proof of Theorem 4.1.6:Since the processes involved in the limits are Lévy processes, we

only need to prove the weak convergence of the marginal distributions att = 1. Below, we

will need the following expansion valid for any real numberu andn ∈ N:

eiu =

n−1∑
k=0

(iu)k

k!
+ θ
|u|n

n!
, (4.5.7)

whereθ ∈ C satisfies|θ| ≤ 1 and depends onu andn (see Lemma 8.6 of [39]).

(i) By Theorem 4.1.5, the characteristic function ofh−1/αXh(1) − ah, for a constant vector
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ah to be determined, is

exp

kα

∫
Rd−1

0

hψα
(
h−1/α(z · x)

)
ρ(dx) − i ah · z

 . (4.5.8)

Notice that

hψα(h
−1/αω) =


h−

(
h1/α − i ω

)α
, if 0 < α < 1,(

h1/α − i ω
)α
− h− i ωh1−1/α, if 1 < α < 2,

converges to−(−iω)α ash→ 0. By (4.5.2) or (4.5.3), there exists a constantCα depending

only onα such that|ψα(ω)| ≤ Cα|ω|
α (indeed, make the change of variablesu = sω, upper

bounde−u/ω by 1, and apply (4.5.7)). Therefore,∣∣∣∣hψα (
h−1/α(z · x)

)∣∣∣∣ ≤ Cα|z · x|α ≤ Cα‖z‖α‖x‖α,

and thus the limit and the integral in (4.5.8) can be exchanged. Fixingah = 0, the limit

yields

exp

−kα

∫
Rd−1

0

(iz · x)αρ(dx)

 , (4.5.9)

which is equal to (4.1.11) withcα = kα cos(πα/2) (remember that arg(v) ∈ (−π, π] in

vα = |v|ei αarg(v)).

(ii) If α = 1 andah is chosen to be log(h)
∫
Rd

0
xρ(dx), (4.5.8) becomes

exp


∫
Rd−1

0

(
(h− i z · x) log(h− i z · x) − h log(h)

)
ρ(dx)

 .
As h→ 0, the expression above converges to exp

{∫
Rd−1

0
(−i z · x) log(−i z · x) ρ(dx)

}
,which

is itself equal to (4.1.13) because log(−iz · x) = log |z · x| − i(π/2)sgn(z · x).

(iii) Let 1 < α < 2. By (4.5.3),

hψα(h
−1/2ω) =

α(α − 1)
Γ(2− α)

∫ ∞

0
h
[
eish−1/2ω − 1− ish−1/2ω

]
s−α−1e−sds.

Then, (4.5.7) withn = 2 implies that|hψα(h−1/2ω)| ≤ α(α − 1)ω2/2, and from the bounded

convergence theorem,

lim
h→∞

∫
Rd−1

0

hψα(h
−1/2(z · x))ρ(dx) =

α(α − 1)
2

∫
Rd−1

0

|z · x|2ρ(dx).
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Above, we apply (4.5.7) withn = 3 to evaluate the limit. This proves (4.1.15) because

according to Theorem 4.1.5 the characteristic function ofh−1/2Xh(1) is given by

exp

kα

∫
Rd−1

0

hψα
(
h−1/α(z · x)

)
ρ(dx)

 .
wherekα = Γ(2− α)/(α(1− α)).

(iv) Take 0 < α < 1 andah ≡ h1/2Γ(1 − α)
∫
Rd

0
xρ(dx). The characteristic function of

h−1/2Xh(1)− ah is

exp

Γ(1− α)
α

∫
Rd−1

0

h
[
1−

(
1− ih−1/2z · x

)α
− iαh−1/2z · x

]
ρ(dx)

 .
Then, we can proceed as in the case (iii). �

Proof of Theorem 4.2.1:The series representation (4.2.3) is well known in the literature.

It has a long history from Gnedenko to LePage and beyond (see [34] and the references

therein). We present below another method of proof in the context of theShot Noise Method

of [34] because of its relevance for the case of tempered stables laws (for a review of this

method see Section 3.1.2). Consider the marked Poisson processN(·) =
∑∞

i=1 δ(Γi ,V i )(·) on

R+ × R
d
0 with mean measureρ(dt,dx) ≡ dtρ1(dx) (see Proposition 3.8. of [32]), and take

the transformationH : R+ × Rd
0 → R

d
0 defined by

H(t, v) ≡
(
m(ρ) (αt)−1/α

) v
‖v‖

.

Then,N◦H−1(·) =
∑∞

i=1 δH(Γi ,V i )(·) is a Poisson process onRd
0, with mean measureρ◦H−1(·).

A straightforward evaluation of (4.1.7) and ofρ ◦ H−1(·) for sets of the form (a,∞)C ={
x ∈ Rd

0 : x/‖x‖ ∈ C, ‖x‖ > a
}

shows the equality between these two measures. Indeed,

ρ ◦ H−1((a,∞)C) =
∫
R+×R

d
0

I (H(t, x) ∈ (a,∞)C)) dtρ1(dx)

=

∫
Rd

0

1
α

(
m(ρ)

a

)α
IC

(
x
‖x‖

)
‖x‖αρ1(dx)

=

∫
Rd

0

∫ ∞

a
r−α−1drIC

(
x
‖x‖

)
‖x‖αρ(dx)

= γ((a,∞)C).

89



Therefore, the marked Poisson processN(·) =
∑∞

i=1 δ(Ti ,H(Γi ,V i ))(·) has the same law as the

random measureJY associated with the jumps of the Lévy processY. From the arguments

of [34] Section 5, if the function

A(s) ≡
∫ s

0

∫
Rd

0

H(r, v)I (‖H(r, v)‖ ≤ 1) ρ1(dv)dr, (4.5.10)

is such that, a.s.

lim
n→∞

(A(Γn) − A(n)) = 0, (4.5.11)

then the series

Ỹ(t) ≡
∞∑

i=1

(H(Γi ,V i)I (Ti ≤ t) − t (A(i) − A(i − 1))) , (4.5.12)

converges (uniformly int ∈ [0,1]) a.s. Moreover, the process
{
Ỹ(t)

}
t∈[0,1]

is a pure jump

Lévy process with the same Lévy measure as the processY. Hence, the two processes have

the same law up to a term of the form̃b1t. The relation (4.5.11) holds for anyα ∈ (0,2),

because for eachv ∈ Rd
0, r → ‖H(r, v)‖ is non-decreasing (see p. 409 of [34]). When

0 < α < 1, then lims→∞ A(s) converges tôb1 ≡
∫
‖x‖≤1

xγ(dx) and

Ỹ(t) = −b̂1t +
∞∑

i=1

(H(Γi ,V i)I (Ti ≤ t)) , (4.5.13)

in the sense of convergence of the finite dimensional distributions. Then, the representation

(4.2.3) follows by takingb1 = b̂1 + b, whereb is as in (4.2.1). A similar argument works

whenρ is a symmetric measure sinceA(·) will be identically equal to zero.

To prove the representation (4.2.4), we follow the same technique starting now from the

Poisson processM(·) ≡
∑∞

i=1 δ(Γi ,V i ,Ei ,Ui )(·) and applying the transformation

H1(t, v,e,u) =
{(

m(ρ) (αt)−1/α
)
∧

(
‖v‖eu1/α

)} v
‖v‖

.

The mean measure ofM is ρ1(dt,dx,ds,du) ≡ dtρ1(dx)e−sdsduonR+ × Rd
0 × R+ × [0,1],

and the transformed Poisson process
∑∞

i=1 δH(Γi ,V i ,Ei ,Ui )(·) has mean measure determined as
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follows:

ρ ◦ H−1
1 ((a,∞)C) =

∫ ∞

0

∫
Rd

0

∫ ∞

0

∫ 1

0
I (H1(t, x, s,u) ∈ (a,∞)C)) e−sdudsρ1(dx)dt

=

∫
Rd

0

1
α

a−α
∫ ∞

0

∫ 1

0
I(a,∞)

(
su

1
α ‖x‖

)
due−sdsIC

(
x
‖x‖

)
‖x‖αρ(dx)

=

∫
Rd

0

∫ ∞

0
I(a,∞) (s‖x‖)

a−α − (s‖x‖)−α

α
e−sdsIC

(
x
‖x‖

)
‖x‖αρ(dx)

=

∫
Rd

0

∫ ∞

0
I(a,∞) (s) e−s/‖x‖s−α−1dsIC

(
x
‖x‖

)
‖x‖αρ(dx)

= ν((a,∞)C).

Sincer → ‖H1(r, v,e,u)‖ is nondecreasing, the series

Ỹ(t) ≡
∞∑

i=1

(H1(Γi ,V i ,Ei ,Ui)I (Ti ≤ t) − t (A1(i) − A1(i − 1))) , (4.5.14)

converges to a pure jump Lévy process with Lévy measureν, whereA1 is given by

A1(s) ≡
∫ s

0

∫
Rd

0

∫ ∞

0

∫ 1

0
H1(r, x, s,u)I (‖H1(r, x, s,u)‖ ≤ 1) due−sdsρ1(dx)dr. (4.5.15)

Clearly, A1(s) is identically 0 if ρ is symmetric, while lims→∞ A1(s) =
∫
‖x‖≤1

xν(dx) if

0 < α < 1. In any case, the representation (4.2.4) follows. �

Proof of Theorem 4.3.1:Consider aspectral decompositionof the measureρ of the form

ρ(A) =
∫

Sd−1

∫ ∞

0
IA(ru)F(u,dr)σ(du), (4.5.16)

whereσ is a probability measure onSd−1 and{F(u, ·)}u∈S is a measurable family of mea-

sures onB((0,∞)) (or transition kernel fromSd−1 to (0,∞)) such thatF(u, {0}) = 0. Such

a representation can be deduced from disintegration results2 like Theorems 5.3 and 5.4. of

[20]. It is enough to prove (4.3.1) for sets of the form

BC = {x : ‖x‖ ∈ B, x/‖x‖ ∈ C},

2Concretely, we can takeσ as 1
m

∫
Rd

0
‖x‖αIC (x/‖x‖) ρ(dx), for a suitable normalizing constantm, and

F(u,dr) = mr−απ(u,dr), where{π(u, ·)}u∈S is the regular version ofP[R ∈ ·|U = u]. Here,P is a probability
measure onΩ = Rd

0 defined byP(A) = 1
m

∫
A
‖x‖αρ(dx), while R(ω) = ‖ω‖ andU = ω/‖ω‖, for ω ∈ Ω.
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whereB andC are Borel subsets of (0,∞) andSd−1, respectively. Then, the measureν is

of the form (4.1.5) if and only if

ν(BC) =
∫

Sd−1

∫ ∞

0

∫ ∞

0
IBC(sru)s−α−1e−sdsF(u,dr)σ(du)

=

∫
C

∫ ∞

0

∫ ∞

0
IB(sr)s−α−1e−sdsF(u,dr)σ(du)

=

∫
C

∫ ∞

0

∫ ∞

0
IB(v)v−α−1e−v/rdvrαF(u,dr)σ(du)

=

∫
Sd−1

∫ ∞

0
IBC(vu)v−α−1q(u, v)dvσ(du),

where

q(u, v) =
∫ ∞

0
e−v/rrαF(u,dr). (4.5.17)

We thus proved thatν is of the form (4.1.5) if and only ifν is of the form (4.3.1) withq(u, ·)

given by (4.5.17) for eachu ∈ Sd−1. By Bernstein’s Theorem and the change of variables

r → 1/r, q(u, ·) is as in (4.5.17), forF(u, ·) such thatF(u, {0}) = 0, if and only if it is

completely monotone withq(u,∞) = 0. Further, by the monotone convergence theorem,

q(u,0+) =
∫ ∞

0
rαF(u,dr), and the condition∫

Rd
0

‖x‖αρ(dx) =
∫

Sd−1

∫ ∞

0
rαF(u,dr)σ(du) < ∞,

is equivalent to
∫

Sd−1 q(u,0+)σ(du) < ∞. �

Proof of Theorem 4.4.1:Clearly, for any measurable nonnegative functionh∫
Rd

0

h(x)γ(dx) =
∫

Sd−1

∫ ∞

0
h(ru)r−α−1drσ̃(du).

Then,

g(x) ≡
dν
dγ

(x) = q̃

(
‖x‖,

x
‖x‖

)
.

By Theorem 33.1 of [39], forX andY to be locally absolutely equivalent, it is necessary

and sufficient that (4.4.2) holds and the integration condition below holds∫
Sd−1

∫ ∞

0

( √
q̃ (r,u) − 1

)2
r−α−1drσ̃(du) < ∞. (4.5.18)
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Since the 0< q̃(·,u) ≤ 1, the above inequality is equivalent to∫
Sd−1

∫ 1

0

(
q̃ (r,u) − 1

r

)2

r1−αdrσ̃(du) < ∞.

Then, (4.5.18) will follow from (4.4.1), since 0< α < 2 and(
q̃ (r,u) − 1

r

)2

≤
(
q̃′(0+,u)

)2
,

when q̃′′(r,u) > 0. By Theorem 33.2 of [39], the equation (4.4.4) is satisfied when the

processUT is defined by

UT = lim
ε→0

(∫
[0,T]×{‖x‖>ε}

ln g(x)JY(dt,dx) − T
∫
{‖x‖>ε}

(g(x) − 1) γ(dx)

)
,

(see (33.7) and (33.9) in [39]). �
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tempered stable, 79
the pure jump part, 10

Lévy-Itô decomposition, 8, 23
Lévy-Khintchine representation, 6
least-squares methods, 59

model selection problem, 26

Oracle inequality, 28, 30
Oracle model, 28
orthogonal projection, 25

estimator of, 25

penalized projection estimation, 24
bound for the risk, 30
Oracle inequality, 30

penalized projection estimator, 27
Poisson approximation to Binomial, 43
Poisson integrals, 40

approximation in probability, 12
approximation of, 40, 43, 44
compensated, 13
concentration inequality, 31
existence, 13

Poisson processes
definition, 11
existence, 12
integration, 12

polynomial collection, 29
projection estimator, 25

application to fit parametric models,
59

approximation of, 45, 60
mean, 26
mean-square error, 26
on histogram type functions, 57, 58

risk of, 26
with least-squares methods, 59

pure-jump Lévy process, 10

regularization measure, 24
regularized Lévy density, 24
risk of an estimator, 26

selfsimilarity, 72
shot-noise processes, 53
spectral decomposition, 80

of Borel measures, 91
probabilistic interpretation, 80
relation to disintegration, 91

Spectral function, 42
stable distributions

characteristic function, 75
series representation, 79
spectral decomposition, 74

stable Lévy processes
series representation, 79

stationary increments, 5
stochastically continuous, 4

tempered stable distributions
characteristic function, 76
definition, 75
series representation, 79, 83
spectral decomposition, 80
time scaling behavior, 77

tempered stable Lévy processes
series representation, 79

tempered stable processes
absolutely continuity wrt stable pro-

cesses, 83
change of measure, 84

variance term, 26
concentration inequality, 32
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