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Summary 

 

The decay of higher order solitons in optical fiber, initiated by localized channel 

perturbations such as a step change in dispersion, a localized loss element, or a bandpass 

filter, is explored theoretically and experimentally as a means of generating pairs of 

pulses having wavelengths that are up and down-shifted from the input wavelength. The 

achievable wavelength separation between the two sub pulses increases with increasing 

the amount of perturbations. Pulse parameter requirements for achieving useful 

wavelength shifts while avoiding unwanted nonlinear effects are presented.  

Experimental studies for N=2 solitons having 1 ps initial width are performed to 

demonstrate tunable wavelength conversion using a step change in dispersion and using a 

loss element. Wavelength shifts are tunable by varying the magnitude of a dispersion step 

or loss element that is used to disrupt the soliton cycle. Competing nonlinear effects, such 

as cubic dispersion, self-steepening, and stimulated Raman scattering, can be minimized 

by using input pulsewidths of one picosecond or greater. The separated pulses at two 

wavelengths can in principle be amplified to form separate higher order solitons. The 

process repeated to produce multiple wavelength replicas of an input data stream, and 

may thus be of possible use in multi-casting applications in fiber communication systems. 

 



 xv 

The possibility of soliton recovery is also studied. For soliton recovery, conditions 

are stringent, in that the precise temporal overlap and phase relationship between sub-

pulses that occurred at the point of separation is in principle needed at the reverse 

perturbation location. Experimental studies on soliton recovery for an N=2 soliton is 

performed by using a dispersion-compensated intermediate link, and reversing the 

dispersion step. Detrimental effects on soliton recovery are studied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Research Motivation and Objectives 

The decay of higher-order solitons to form sub-pulses in optical fiber has been reported in 

early work to arise from phenomena such as self-steepening [1]-[2], stimulated Raman 

scattering [3], cubic dispersion in the vicinity of the zero dispersion wavelength [4], and 

in transitioning between negative and positive dispersion in dispersion-increasing fiber 

[5].  A recent theoretical study demonstrated the feasibility of using localized channel 

perturbations to initiate higher-order soliton decay [6]-[7]. During higher-order soliton 

decay, shifted-wavelength sub-pulses are formed in optical fiber. This property is useful 

for wavelength conversion applications. 

We propose a novel wavelength conversion method through N=2 or N=3 soliton 

decay, initiated by any one of three forms of localized perturbations in the fiber channel. 

These include 1) a step increase in dispersion, 2) a loss element, or 3) a bandpass filter. 

All result in the conversion of the soliton into two sub-pulses at wavelengths that are up 

and down shifted from that of the input pulse. The wavelengths can be varied by 

adjusting the magnitude of the perturbation. In principle, the converted pulses can be 
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amplified to form new higher order solitons, and the process repeated to produce multiple 

wavelengths of variable spacing. The converted pulses may form into fundamental 

solitons, or may propagate in the linear regime, depending on the perturbation conditions.  

In the case of linear sub-pulse propagation, we have found that the process can be 

reversed – in that the separated pulses at two wavelengths can be recombined to restore 

the higher order soliton at the original wavelength by using a reverse perturbation down-

channel.  

We envision the wavelength conversion as a method of replicating RZ data, 

forming duplicate data streams at two or more wavelengths that are shifted from the 

original wavelength. In one part of the proposed work, we intend to explore multicasting 

applications using the effect. We envision the pulse recovery process as having 

applications to secure data transmission, as will be discussed.  Of specific interest at the 

physical layer are the required configurations of optical amplifiers and filters such that 

stable data streams at multiple wavelengths can be successfully generated from a single 

wavelength source, and then separated using standard WDM filters for distribution to 

multiple subscribers.  Conditions for fundamental soliton generation at the multiple 

wavelengths are to be determined, as well as allowed tolerances in power levels and in 

link parameters.  For soliton recovery, conditions are stringent, in that the precise 

temporal overlap and phase relationship between sub-pulses that occurred at the point of 

separation is in principle needed at the reverse perturbation location.  Our numerical 

results and experiments have shown that some departure from the ideal conditions is 
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tolerable, which leads us to conclude that the process requires further investigation.   A 

method of secure data transmission, based on the recovery concept, is proposed. 

The object of this research is to investigate the decay and recovery of higher-order 

solitons initiated by localized channel perturbations. A detailed modeling effort for 

soliton propagation in optical fibers is performed to accomplish this task. A simulation 

tool is developed using the split step Fourier method (SSFM). Higher-order soliton decay, 

initiated by a localized channel perturbation in the fiber channel, is demonstrated 

theoretically and experimentally as a means of generating pairs of pulses having 

wavelengths that are up and down-shifted from the input wavelength. The amount of 

wavelength shift is tunable by controlling the magnitude of the perturbation. Pulse 

parameter requirements for achieving useful wavelength shifts while avoiding unwanted 

nonlinear effects are presented. Experimental works for N=2 solitons having 1 ps initial 

width are performed to demonstrate tunable wavelength conversion using a step change 

in dispersion and using a loss element. The separated pulses at two wavelengths can in 

principle be amplified to form separate higher order solitons. The process repeated to 

produce multiple wavelength replicas of an input data stream, and may thus be of 

possible use in multi-casting applications in fiber communication systems. 

The possibility of soliton recovery is also studied. The conditions are described, 

under which the separated pulses can be re-combined at a distant location to restore the 

higher order soliton at the original wavelength. Experiments on soliton recovery using a 

dispersion-compensated intermediate link and reversing the dispersion step will be 

performed to verify the theoretical predictions. 
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1.2 Higher-Order Soliton Decay 

Golovchenko et al. have reported the decay of femtosecond higher-order solitons in an 

optical fiber [1]. They found that the higher-order solitons are structurally unstable,  and 

that a perturbation in the modified non-linear Schödinger equation (MNLSE) could cause 

remarkable changes in the nonlinear dynamics of intense sub-picosecond pulses. Among 

their other results, they found that the effect of self-steepening leads to breakup of higher-

order solitons into their constituents or sub-solitons. A second-order soliton (N=2) breaks 

up into two solitons, which have separated from each other within several soliton periods. 

Third-order solitons (N=3) show a similar decay patterns, and decay into three pulses [2]. 

The inverse scattering method with perturbation theory is helpful in understanding 

the soliton decay [8]-[9]. Solitons form a bound state when no perturbation exists. They 

have the same group velocity because their eigenvalues have the same real part. The 

effect of a perturbation is to introduce an instability into the bound state of solitons and to 

decrease the lifetime of the bound states. As a result, the degeneracy is broken. Two 

solitons have different group velocities and propagate at different speeds. They move 

apart each other and then separate asymptotically. 

C. R. Menyuk reported that solitons are robust in the presence of Hamiltonian 

(energy preserving) perturbations such as dispersion and birefringence but are destroyed 

in the presence of non-Hamiltonian (energy lost) perturbations such as attenuation, 

filtering, and the Raman effect because soliton solutions do not exist with non-

Hamiltonian perturbations [10]. However, higher-order solitons can be destroyed in the 
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presence of Hamiltonian perturbation when the amount of perturbation exceeds a 

threshold value.  

Kuochou Tai and Akira Hasegawa show the decay process induced by the 

stimulated Raman effect using a contour plot of pulse trajectory for N=2 and N=3 [3]. 

The decay pattern is similar to the case of self-steepening. The second-order soliton 

breaks up into two pulses and the third-order soliton decays into three pulses. The 

difference is that one soliton is advanced and the others are delayed in the case of the 

Raman effect, while all the solitons are delayed in the case of self-steepening. Hodel and 

Weber demonstrated that the Raman effect dominates the shock term on femtosecond 

time scales and leads to the decay of higher-order solitons [11]. After the decay of higher-

order solitons, each constituent shapes into a soliton-like pulse. 

Previous studies of the decay of higher-order solitons are applicable on a 

femtosecond time scale. In our study, we describe the decay of a higher-order soliton on a 

picosecond time scale by using different kinds of perturbations. These include attenuation, 

filtering, and a dispersion change using a short length of dispersion-shifted fiber. Higher-

order solitons are broken into their constituent pulses within several soliton periods when 

they are perturbed by a loss element, band-pass filter, or a dispersion change at the 

propagation location, at which their spectral bandwidths are at a maximum. After the 

decay of higher-order solitons, each constituent shapes into a soliton-like pulse. A 

second-order soliton (N=2) splits into two solitons. These continue to move apart with 

further propagation and then separate asymptotically inside the fiber. Two solitons have 

almost zero chirps and have center wavelengths that are different from that of the original 
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pulse; the new wavelength values are below and above that of the original pulse. Using 

the higher-order soliton decay, it is possible to generate two copies of an optical data 

stream, in which the copies are at different wavelengths. These wavelengths are also 

different from that of the original data. The data copies can be amplified and the process 

repeated to achieve multiple copies. Our method is very simple and in principle error-free. 
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1.3 Research Overview 

The goal of this research is to investigate the higher-order soliton decay process initiated 

by localized channel perturbations. A detailed modeling effort is performed to 

accomplish this task. The applications of soliton decay will be proposed. The important 

steps for the research are described below. 

This thesis is divided into five remaining chapters. Chapter 2 describes soliton 

propagation in optical fibers. A detailed modeling effort for this is performed. We solve 

the non-linear Schödinger equation (NLSE) using the split-step Fourier method (SSFM). 

Numerical studies are done for N=1, N=2, and N=3 soliton propagation.  

In Chapter 3, higher-order soliton decay will be studied. Numerical studies will be 

performed for N=2 and N=3 soliton decay initiated by localized channel perturbations. 

Pulse parameter requirements for achieving useful wavelength shifts while avoiding 

unwanted nonlinear effects are presented. Tunable wavelength separation is presented by 

controlling the magnitude of the perturbation.  

Chapter 4 proposes a tunable wavelength conversion method using N=2 soliton 

decay initiated by step changes in dispersion. We demonstrate wavelength conversion 

theoretically and experimentally.  

In Chapter 5, the possibility of soliton recovery is studied. The conditions are 

described, under which the separated pulses can be re-combined at a distant location to 

restore the higher order soliton at the original wavelength. We demonstrate soliton 

recovery numerically and experimentally.  
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Applications will be proposed in Chapter 6. These include multicasting using 

multi-wavelength data replication, and secure data transmission using the phase-sensitive 

properties of soliton recovery. The conclusion of this research is summarized in Chapter 

7. 
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CHAPTER 2 

SOLITON PROPAGATION IN OPTICAL 

FIBERS 

 

2.1 Introduction 

In this chapter, we study soliton propagation in optical fibers. A numerical model will be 

developed to describe the soliton propagation. The nonlinear Schrödinger equation 

(NLSE), modified to include cubic dispersion, self-steepening, and stimulated Raman 

scattering, will be solved numerically using the Split-Step Fourier Method (SSFM). 

Numerical results will be presented for N=1, N=2, and N=3 soliton propagation. 
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2.2 Numerical Analysis 

The nonlinear Schrodinger equation (NLSE) is a basic equation for the description of 

pulse propagation in optical fibers that are nonlinear and dispersive. The NLSE can be 

derived from the wave equation after the effects of the nonlinearity and dispersion are 

included under the slowly-varying envelope approximation. The derivation of the NLSE 

from wave equation can be found in Chapter 7 of the reference [12]. The resulting NLSE, 

modified to include higher-order effects, is: 
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where A is the complex envelope of the pulse, z is the propagation distance, t is the time, 

vg is the group velocity, β2 is the quadratic dispersion coefficient, β3 is the cubic 

dispersion coefficient,  α is the fiber loss,  TR is the Raman response parameter,  and γ = 

ω0 n2 / (c Aeff ) is the nonlinear parameter at the carrier angular frequency ω0. Aeff is the 

effective core area of the fiber.  

This equation is valid for describing the propagation of pulses as short as ~ 50 fs. 

The last three terms embody the higher-order effects; they are, respectively, cubic 

dispersion, self-steepening, and stimulated Raman scattering. The effect of cubic 

dispersion becomes important for ultrashort pulses, whose bandwidths are large. Under 

such conditions, cubic dispersion is important even when the wavelength λ is relatively 

far away from the zero-dispersion wavelength λ0 [13]-[14]. The effect of self-steepening 
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is responsible for shock formation at a pulse edge [15]-[17]. The last term, proportional to 

TR, results from Stimulated Raman scattering, and is responsible for the self-frequency 

shift, which transfers energy from shorter-wavelengths to longer-wavelengths. 

It is convenient to use normalized dimensionless units by using the definitions 

0P
AU = ,         (2.2.2) 

DL
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In the equation, U is the complex envelope of the pulse normalized to the initial pulse 

peak power P0, ξ is the distance normalized to the dispersion length LD, and τ is the local 

time (measured from the pulse center) normalized with respect to the characteristic width 

T0 of the hyperbolic secant pulse. T0 is related to the full-width at half-maximum intensity 

of the input pulse through ∆Tf = 1.763 T0. The dispersion distance LD is defined as 
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The pulse is assumed to propagate in the region of anomalous group velocity dispersion 

(β2<0) and the fiber loss is neglected (α=0). Using Equations (2.2.2) ~ (2.2.4), Equation 

(2.2.1) is transformed to the normalized from: 
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The cubic dispersion, self-steepening, and Raman response parameters are respectively 

given by δ=β3/(6|β2|T0), s=1/(T0ω0), and τR=TR/ T0, where TR = 3 fs [18]. The soliton 

order N in Equation (2.2.6) can be expressed in the form: 





 ∆












= 0
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where n2 is the nonlinear refractive index, Aeff is the effective area of the fiber mode 

intensity, and D(λ) is the quadratic dispersion in ps/nm-km. N provides a measure of the 

strength of the nonlinear response compared to the fiber dispersion. Not only the initial 

pulse width T0 and the peak power P0 of the incident pulse, but also the fiber parameters 

n2, Aeff, and D can change the soliton order N. 

The effects of δ, s, and τR are described in detail later. To minimize their 

contributions, pulses must be sufficiently broad to enable modest peak powers and longer 

rise and fall times, while satisfying the higher order soliton condition. Consequently, we 

are constrained to input pulses of widths T0>1ps such that T0ω0>>1 and TR/T0<<1, at 

which δ, s, and τR can be negligible [19]. For pulse widths of the order of 1 ps or longer, 

Equation (2.2.6) can be simplified to the following:  

UUiNUiU 22
2

2

2
=

∂
∂

+
∂
∂

ττ
.          (2.2.8) 

Equation (2.2.8) is referred to as the NLSE and has been extensively studied in the 

context of solitons, which are its solutions. Optical solitons can exist through balance and 

interplay between the dispersive (GVD) and nonlinear (SPM) properties of optical fibers. 

Fundamental solitons correspond to the case of a single eigenvalue (N=1). They can 
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propagate over arbitrarily long distances, maintaining their shapes and widths in time and 

in the spectral domain. Fundamental solitons are a good candidate for high-speed data 

transmission systems because they can easily overcome GVD induced pulse broadening. 

Higher-order solitons are the general solutions of the NLSE for integer values of 

N greater than 1. Instead of propagation without changing shape, they show periodic 

propagation behavior in their shapes and widths over the soliton period, DLz
20
π

= . 

Higher-order solitons have found applications to optical pulse compression. 

To investigate soliton propagation in optical fibers, we numerically solved 

Equation (2.2.8) using the Split-step Fourier method, which will be introduced in the next 

section. 
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2.3 Numerical Method: Split-step Fourier Method 

NLSE can be written using to operators D̂ and N̂  in the form [19] 

,)ˆˆ( AND
z
A

+=
∂
∂                    (2.3.1) 

where D̂  is a linear operator and N̂  is a nonlinear operator. These operators are given by  

3
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2

2

2
ˆ

τ
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τ ∂
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−
∂
∂

−=
iD         (2.3.2) 
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.   (2.3.3) 

The operator D̂ includes the effects of dispersion in a linear medium, whereas the operator 

N̂  includes the effects of fiber nonlinearities on pulse propagation. During the pulse 

propagation, dispersion and nonlinearity act together. This makes the numerical solution 

complicated. Under some assumption that dispersion and nonlinearity can act 

independently during the propagation of the optical field over a small distance, the 

numerical solution can be easily obtained. The split-step Fourier method adopts this 

assumption for the independent actions of GVD and SPM to obtain an approximate 

numerical solution. For example, propagation from z to z+h is carried out in two steps. In 

the first step, only nonlinearity is considered by setting D̂ =0. In the second step, only 

dispersion is considered by setting N̂ = 0. This can be expressed mathematically 

).,()ˆexp()ˆexp(),( TzANhDhThzA =+         (2.3.4) 
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The SSFM uses the Fourier-transform operation to carry out the exponential operator 

)ˆexp( Dh  in the Fourier domain using the relation 

),,(})](ˆexp[{),()ˆexp( 1 TzBFwDhFTzBDh −=     (2.3.5) 

where F is the Fourier-transform operation and )(ˆ wD is a Fourier-transform of Equation 

(2.3.2), which can be obtained by replacing the differential operator 
T∂
∂  by ωi  in the 

equation. The use of the FFT algorithm can make numerical evaluation of Equation 

(2.3.5) relatively fast comparing to other numerical methods. 

FIGURE 2.1 shows an operation diagram of the symmetrized split-step Fourier 

method used for numerical simulations. The propagation path is partitioned into a number 

of segments. The step size h should be small enough to satisfy the accuracy requirement 

for the approximation. As the step size decreases, accuracy increases but computation 

time is also increases. First, GVD acts alone in frequency domain without SPM between 

the input and the center of each segment. At the center of the segment, SPM is considered 

in time domain without GVD. Then GVD acts alone again in frequency domain without 

SPM through the remaining half of the segment. This process is repeated until all 

segments are completed. 
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FIGURE 2.1 Operation diagram of the split-step Fourier method used for numerical 

simulations [19]. 
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2.4 Numerical Results 

To investigate soliton propagation in optical fibers, we numerically solved the NLSE 

using Split-step Fourier method with the initial envelope of the soliton at ξ = 0 given by 

U(0,τ)=sech(τ) for N=1, N=2, and N=3 cases.  

 

2.4.1 Fundamental soliton propagation (N=1) 

Figures 2.2a and b show the temporal and spectral evolution of a fundamental soliton 

over one soliton period z0, where the latter is given by DLz
20
π

= . It shows that the 

soliton can propagate with an unchanging pulse envelope and its spectrum over long 

distances. This can be achieved through the balance between the effects of SPM and 

GVD.  

The physical process of a fundamental soliton propagation can be explained by 

considering the effects of SPM and GVD. During the pulse evolution, the effect of SPM 

is to produce positive chirp, whereas the effect of GVD (D>0) is to produce negative 

chirp. When relative strengths of SPM and GVD are exactly balanced, positive chirp 

generated by SPM is completely cancelled out by negative chirp generated by GVD. As a 

result, the pulse exhibits a zero chirp with time over its entire width. Under this condition, 

the pulse propagates without broadening or compressing for long distances.  

The soliton order, N, is an indicator of nonlinear strength, which means the ratio 

of the strength of nonlinear effect to that of dispersion effect. For fundamental solitons 

(N=1), the effects of SPM and GVD are exactly balanced. 
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FIGURE 2.2a Temporal evolution of an N=1 soliton over one soliton period, z0. The 

intensity is normalized to the input peak intensity.  
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FIGURE 2.2b Spectral evolution of an N=1 soliton over one soliton period, z0. The 

intensity is normalized to the input peak intensity.  
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2.4.2 Second-order soliton propagation (N=2) 

If N is an integer greater than 1, pulse evolution is totally different from the case of a 

fundamental soliton. Evolution of this Nth-order soliton is periodic. For higher-order 

solitons, the effect of SPM dominates the effect of GVD (N>1). As discussed in the 

previous section, the effect of SPM is to produce positive chirp, whereas the effect of 

GVD (D>0) is to produce negative chirp. Because of the higher intensity, the amount of 

positive chirp generated by SPM is greater than that of negative chirp produced by GVD; 

it cannot be cancelled out completely. As a result, the pulse acquires positive chirp.  

The effect of GVD (D>0) for a positively chirped pulse is to compress the pulse 

by forcing the energies associated with its spectral components toward the center. With 

SPM of greater magnitude than in the N =1 case, the pulse would compress until the 

energies reach the center. As they pass through the center, the pulse will broaden again. 

The temporal and spectral evolution of an N =2 soliton are shown in Figures 2.3a 

and b. In time domain, the pulse compresses up to the distance z0/2, at which it has a 

minimum pulse width. This pulse compression occurs because N is greater than 1. The 

amount of positive chirp from SPM is too large to be canceled by negative chirp 

generated from GVD. As a result, it is accumulated and is increased up to the distance 

z0/2, where the shifted energies by positive dispersion coincide at the pulse center. As 

soon as they pass through the center, the sign of chirp is changed from positive to 

negative. The effect of GVD (D>0) for a negatively chirped-pulse is to broaden the pulse. 

After the distance z0/2, the pulse begins to re-broaden. Because positive chirp generated 

by SPM rapidly cancels the negative chirp on the pulse, the amount of negative chirp is 
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decreased and pulse spreading slows down. The chirp becomes zero at the distance z0, 

where the pulse stabilizes at its original width. The process then repeats. 

In spectral domain, the pulse spectrum broadens as the pulse compression occurs. 

At the distance z0/2, the spectrum splits to form two peaks. This can be interpreted as two 

overlapping pulses at the two wavelengths in time domain. After the distance z0/2, the 

separated spectral peaks recombine as the pulse propagates. Then the spectrum is 

recompressed to recover the original input spectrum. 
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FIGURE 2.3a Temporal evolution of an N=2 soliton over one soliton period, z0. The 

intensity is normalized to the input peak intensity.  
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FIGURE 2.3b Spectral evolution of an N=2 soliton over one soliton period, z0. The 

intensity is normalized to the input peak intensity.  
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2.4.3 Third-order soliton propagation (N=3) 

Higher-order solitons show more complicated SPM-GVD interplay as the soliton order 

increases. Figure 2.4a and 2.4b show temporal and spectral evolution of N=3 soliton over 

one soliton period. The evolution is symmetric about z0/2 and is repeated every z0. At the 

initial stage of evolution, the pulse contracts with increasing intensity. It then splits into a 

two-peaked pulse near z0/2. After z = z0/2, pulse undergoes the reverse process. It merges 

again and recovers its initial shape. 

Figure 2.5 shows the temporal shape, phase, chirp, and spectrum during N =3 

evolution over one soliton period. In the initial stage of evolution (up to z/z0 = 0.25), 

pulse compression is a dominant property. SPM generates positive chirp. Therefore the 

pulse contracts like a positively pre-chirped pulse in anomalous GVD region. Since the 

positive chirp is linear near over the pulse center, only this part of  the pulse can contract. 

The rest of the pulse has negative chirp, so this portion becomes disperses and forms side 

lobes like a pulse shape at z/z0 = 0.25 in Figure 2.5. The pulse intensity has its maximum 

at around z/z0 = 0.25. The pulse spectrum of the initial stage shows the typical SPM-

induced spectral broadening, clearly seen at z/z0 = 0.25. Between 0.20 z0 and 0.25 z0, the 

energies at the offset frequencies pass through the pulse center. In Figure 2.5, the peak 

phase at z/z0 = 0.20 has reached π radians and thereafter flips to −π, as shown in the 

phase plot at z/z0 = 0.25. As a result, negative chirp appears across over the pulse center, 

as shown in the corresponding δω plots. The pulse now begins to re-broaden as result of 

having negative chirp within the anomalous GVD region. Then the pulse begins to split 

apart at z/z0 = 0.35, at which there are two regions of positive chirp on either side of a 
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region of negative chirp, as shown in the δω plot. With positive dispersion (D>0), the 

positively-chirped region of the pulse will be compressed, while the negatively-chirped 

region of the pulse will be broadened. This leads to a splitting of the pulse in time domain, 

as shown in the shape plot at z/z0 = 0.40. After 05.0 z  the pulse evolution is exactly the 

reverse process. Chirp is completely anti-symmetric about 05.0 z . Since GVD is a linear 

process, the pulse shape can be recovered. 
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FIGURE 2.4a Temporal evolution of an N=3 soliton over one soliton period, z0. The 

intensity is normalized to the input peak intensity. 
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FIGURE 2.4b Spectral evolution of an N=3 soliton over one soliton period, z0. The 

intensity is normalized to the input peak intensity. 
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FIGURE 2.5 (with the following three pages) Soliton temporal envelope, nonlinear phase 

shift, frequency chirp, and pulse spectrum of an N=3 soliton over one soliton period, z0.  
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FIGURE 2.5 (continued)  
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FIGURE 2.5 (continued)  
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FIGURE 2.5 (continued)  
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CHAPTER 3 

HIGHER-ORDER SOLTON DECAY USING 

LOCALIZED PERTURBATIONS 

   

3.1 Introduction 

In this chapter, we study the decay of higher order solitons in optical fibers. The decay of 

higher order solitons initiated by localized channel perturbations in the fiber will be 

proposed to obtain tunable wavelength separation. The perturbation is applied using a 

step change in dispersion, a loss element, or a bandpass filter. All result in the conversion 

of the soliton into two sub-pulses at wavelengths that are up and down-shifted from that 

of the input pulse. The wavelengths can be varied by adjusting the magnitude of the 

perturbation. Pulse parameter requirements for achieving useful wavelength shifts while 

avoiding unwanted nonlinear effects are presented. In principle, the converted pulses can 

be amplified to form separate higher order solitons, and the process repeated to produce 

multiple wavelengths of variable spacing; care is required, however, to assure that 

detrimental effects associated with amplification, such as amplified spontaneous emission 

(ASE), are avoided [20].  
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3.2 Physical Perspective 

Our studies center on the response of solitons of order N=2 or N=3 to the aforementioned 

three perturbations. As diagramed in Figure 3.1, during the unperturbed evolution of 

these solitons with distance, wavelength spectra broaden and separate into two peaks (for 

N=2) or three peaks (for N=3), where in the latter case, the original center wavelength is 

retained. The maximum spectral separation, ∆λmax, occurs at locations corresponding to 

0.5 z0 for N=2 and 0.25 z0 for N=3. As is well-known, further propagation results in the 

spectra re-compressing to form the original input. The process repeats, completing the 

cycle each soliton period distance, z0. While spectra are separated, the soliton in time 

domain can be thought of as two or three overlapping pulses that are associated with the 

separated spectral components. 

Figure 3.2 and Figure 3.3 show our soliton decay methods for N=2 and N=3 

solitons respectively. Our method involves placing the perturbations at the ∆λmax 

locations, where the maximum spectral separation occurs, corresponding to 0.5 z0 for 

N=2 and 0.25 z0 for N=3 (see Figure 3.1). By doing so, the nonlinear response of the fiber 

beyond the perturbation is effectively reduced, thus preventing the complete return of the 

spectrum to its original form. The composite pulses, retaining their individual spectra, 

separate in time owing to their different group velocities. The reduced nonlinear response 

beyond the perturbation then participates in the continued evolution of the separated 

pulses in the following ways: 1) the sub-pulses may evolve into fundamental solitons or 

nearly so — i.e., into pulses that exhibit little change over several dispersion distances; 2) 

the spectrum partially re-compresses, leading to a wavelength spacing between sub-
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pulses that is less than the value just before the perturbation. Consequently, by varying 

the magnitude of the perturbation (equivalent to varying the nonlinear strength in the 

channel beyond the perturbation), the wavelength spacing between the sub-pulses, ∆λ, 

can be varied.  

Maximum wavelength spacings obtainable for N=2 and N=3, as a functions of 

FWHM input pulse width, are plotted in Figure 3.4 for a 1.55 µm center wavelength. As 

an example, if a 10 ps pulse is used, a maximum spacing for N=2 of ∆λmax=0.8nm (100 

GHz) can be obtained by using a large perturbation at the 0.5 z0 position. The wavelength 

spacing can be reduced from this value by weakening the perturbation. If an N=2 soliton 

is used, only the shifted wavelengths remain in the signal. For an N=3 soliton, sub-pulses 

are generated that can have a larger wavelength spacing than those in an N=2 pulse, and a 

relatively weak pulse at the original carrier wavelength remains. 
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FIGURE 3.1 Temporal and spectral evolution of unperturbed N=2 and N=3 solitons at 

selected positions in the fiber channel. Perturbation locations used in this work are 

indicated. 
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FIGURE 3.2 Temporal separation of the N=2 soliton spectral components as a result of a 

perturbation applied at the half soliton period distance.  The perturbation reduces the 

value of the soliton number, N, and so only partial spectral re-compression occurs.  

Fundamental solitons at the separated wavelengths may evolve if a dispersion step 

perturbation is used. 
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FIGURE 3.3 Temporal separation of the N=3 soliton spectral components as a result of a 

perturbation applied at the half soliton period distance.  The perturbation reduces the 

value of the soliton number, N, and so only partial spectral re-compression occurs.  

Fundamental solitons at the separated wavelengths may evolve if a dispersion step 

perturbation is used. 
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FIGURE 3.4 Maximum obtainable wavelength separations ∆λmax as functions of input 

pulse width for N=2 (solid curve) and N=3 (dashed curve) solitons. The corresponding 

frequency separations at 1.55 µm wavelength are indicated on the right vertical axis. 
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3.3 Numerical Results 

To investigate the soliton decay, we solved the equation (2.2.6) given by: 
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As described in Section 2.2, U is the normalized complex envelope of the pulse, ξ is the 

normalized distance, and τ is the normalized local time. The cubic dispersion, self-

steepening, and Raman response parameters are respectively given by δ=β3/(6|β2|T0), 

s=1/(T0ω0), and τR=TR/ T0. The initial envelope of the soliton at ξ = 0 is given by 

U(0,τ)=sech(τ).  

The soliton order, N, in the above equation provides a measure of the strength of 

the nonlinear response, compared to the fiber dispersion. Applying the perturbation 

effectively reduces the value of N for all positions at and beyond the point of application. 

From (2.2.7), it is seen for example that N is decreased by increasing D or by decreasing 

P0, the latter being accomplished in our case by a loss element or a bandpass filter. With 

the perturbation applied, the separated pulses may evolve into fundamental solitons, 

provided energy is not removed from the pulse pair. A step increase in dispersion will 

satisfy this requirement, whereas a loss element or filter will not.  

The effects of δ, s, and τR are described in detail later. To minimize their 

contributions, pulses must be sufficiently broad to enable modest peak powers and longer 

rise and fall times, while satisfying the higher order soliton condition. Consequently, we 

are constrained to input pulses of widths T0>1ps such that T0ω0>>1 and TR/T0<<1, at 
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which δ, s, and τR can be negligible [19]. Under this constraint, but nevertheless 

including all higher order terms, the NLSE was solved using the split-step Fourier 

method, in which a reduction in pulse amplitude or bandwidth, or an increase in fiber 

dispersion was incorporated at the maximum bandwidth positions. 

Figure 3.5 shows the separation of ∆Tf =1 ps sub-pulses originating in an N=2 

soliton after a step increase in dispersion at the z0/2 location. Using a transition to higher 

dispersion fiber effectively reduces the value of N, while maintaining the pulse energy, 

thus enabling the sub-pulses to evolve into fundamental solitons. In this example, the 

initial dispersion is 8 ps/nm-km (for z=0 to 0.5z0) and is step-increased to 16 ps/nm-km 

(for z=0.5z0 to 2.5z0). As shown in Figure 3.5, the separation between the two pulses 

increases linearly with the distance, indicating group velocity differences arising from 

their having different center wavelengths. This is confirmed by the spectrum (Figure 3.5a 

inset). Increasing the run time, allowing further propagation over several dispersion 

lengths yielded no discernable change in pulse shape or width. 

 Sub-pulse formation from N =3 solitons using the same dispersion change as in 

Figure 3.5 are shown in Figure 3.6, except the position of the dispersion step is at 

z=0.225 z0. In this case, the original soliton decays into two sub-pulses at the shifted 

wavelengths, with a remnant of the original carrier wavelength surviving as a third 

weaker pulse. The spectral separation between pulses is greater than that in the N=2 case, 

and again, no discernable change in the wavelength-translated pulses was found after 

propagating through several dispersion lengths.  
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The plots in Figure 3.5 show results under lossless propagation. When including 

fiber loss of 0.2 dB/km, the effect is negligible for pulse widths on the order of 1 ps. With 

longer pulses, the dispersion length (proportional to the square of the pulse width) may be 

sufficiently long to affect the pulse energy during the evolution process. The effects are 

1) a longer distance is needed to achieve ∆λmax (for example 0.55z0 instead of 0.5 z0 for a 

10 ps N=2 input), and 2) the expected power reduction with distance of the output 

fundamental solitons occurs, along with their eventual dissipation. 

As an alternative to a dispersion step, use of an attenuator or a filter reduces the 

nonlinear response beyond the perturbation by removing energy from the pulse. Figure 

3.7 and 3.8 show the separation of ∆Tf =1 ps sub-pulses originating in an N=2 soliton 

after 3dB attenuation and bandbass filtering at the z0/2 location respectively. The 

transformed pulses appear similar to those shown in Figure 3.5, but decay asymptotically 

to eventually dissipate. Nevertheless, they were found to exhibit almost chirp-free 

fundamental soliton behavior over several dispersion lengths, even when distributed 

losses were included.  

Wavelength spacings between sub-pulses as functions of the dispersion difference, 

attenuation, and filter bandwidth (∆λf) of the channel perturbation are plotted in Figure 

3.9 for N=2 and N=3. In Figure 3.9, the wavelength spacing and the filter width are 

normalized with respect to the input spectral width ∆λin (in turn inversely proportional to 

the input pulse width). The bandpass filter has a Gaussian shape, and is centered at the 

input pulse carrier frequency. When a dispersion step or an attenuator is used, the 

wavelength separation increases toward the maximum allowable value (as can be 
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determined from Figure 3.4) as the perturbation magnitude increases. For example, 

wavelength spacings from 0 to 10 nm are predicted for a 1ps input pulse by changing 

dispersion between 10-80% or by attenuating the signal between 1 and 5 dB. On the other 

hand, when using a filter, the perturbation magnitude increases with decreasing filter 

width. The curves in Figure 3.9c are seen to reach local maxima, and then fall off as the 

filter width becomes narrower. This would be expected, since the filter itself would 

eventually block transmission of the more widely-spaced spectral components.  
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(a) 

 

FIGURE 3.5 Numerical results, showing the decay of an N=2 soliton, initiated by a step-

increasing the dispersion from 8 ps/nm-km to 16 ps/nm-km at the position, z/z0=0.5. 

Temporal (a) and spectral (b) evolution on next page show the formation of nearly 

fundamental solitons at two wavelengths. 
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(b) 

 

 

FIGURE 3.5 (continued) 
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(a) 

 

 

FIGURE 3.6 Numerical results, showing the decay of an N=3 soliton, initiated by a step-

increasing the dispersion from 8 ps/nm-km to 16 ps/nm-km at the position, z/z0=0.25. 

Temporal (a) and spectral (b) evolution on next page show the formation of nearly 

fundamental solitons at three wavelengths. 
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(b) 

 

 

FIGURE 3.6 (continued) 
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(a) 

 

 

FIGURE 3.7 Numerical results, showing the decay of an N=2 soliton, initiated by 

attenuation (3dB) at the position, z/z0=0.5. Temporal (a) and spectral (b) evolution on 

next page show the formation of subpulses at two wavelengths. 
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(b) 

 

 

FIGURE 3.7 (continued) 

 

 

 

 



 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

FIGURE 3.8 Numerical results, showing the decay of an N=2 soliton, initiated by 

bandpass filtering (∆λf /∆λin = 2.72) at the position, z/z0=0.5. Temporal (a) and spectral 

(b) evolution on next page show the formation of subpulses at two wavelengths. 
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(b) 

 

 

FIGURE 3.8 (continued) 
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(a) 

 

 

FIGURE 3.9 Wavelength separations obtained as functions of dispersion difference (a), 

attenuation (b), and filter bandwidth (c) for N=2 solitons (solid curves) and N=3 solitons 

(dashed curves). Wavelength separation and filter bandwidth are normalized with respect 

to the input FWHM spectral width. 
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(b) 

 

 

FIGURE 3.9 Wavelength separations obtained as functions of dispersion difference (a), 

attenuation (b), and filter bandwidth (c) for N=2 solitons (solid curves) and N=3 solitons 

(dashed curves). Wavelength separation and filter bandwidth are normalized with respect 

to the input FWHM spectral width. 
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(c) 

 

 

FIGURE 3.9 Wavelength separations obtained as functions of dispersion difference (a), 

attenuation (b), and filter bandwidth (c) for N=2 solitons (solid curves) and N=3 solitons 

(dashed curves). Wavelength separation and filter bandwidth are normalized with respect 

to the input FWHM spectral width. 
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3.4 Higher-Order Effects 

When pulse widths are reduced to values on the order of a few picoseconds or less, the 

higher order terms in Equation (2.2.6) involving δ, s, and τR can become appreciable and 

may lead to degradation of the signal after the perturbation. These were studied for the   

N =2 soliton case. The most important of the three, appearing with input pulse widths of 

∆Tf =1 ps and shorter, is Raman scattering; this has the effect of shifting energy from the 

shorter wavelength into the longer wavelength pulse, leading to an amplitude imbalance 

between the two pulses, in a manner observed in non-perturbed N=2 solitons [11]. In 

addition, both pulses experience a self frequency shift to longer wavelengths. These 

effects, shown in Figure 3.7, become more pronounced as input pulse widths become 

shorter, and ultimately prevent sub-pulse evolution into fundamental solitons, as expected 

[10]. The cubic dispersion term was found to introduce a slight asymmetry in the overall 

signal envelope which tends to counter-act the imbalance arising from the Raman effect. 

This effect, observed previously in N=2 solitons [21], imparts a slight correction to the 

Raman imbalance, but again is negligible for pulse widths of 1 ps and longer. The self 

steepening term was found to have a negligible effect for pulse widths above ∆Tf =0.1 ps. 

All three processes are thus avoided for N=2 solitons with input pulse widths of ∆Tf >1 ps.  
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FIGURE 3.10a Normalized temporal plots showing the effects of cubic dispersion and 

Raman scattering on the separated pulses after stepping up the dispersion. The dotted 

traces are those of the input pulse. Solid traces correspond to a 10 ps input pulse width. 

Dashed traces correspond to a 1 ps input width 
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FIGURE 3.10b Normalized spectral plots showing the effects of cubic dispersion and 

Raman scattering on the separated pulses after stepping up the dispersion. The dotted 

traces are those of the input pulse. Solid traces correspond to a 10 ps input pulse width. 

Dashed traces correspond to a 1 ps input width 
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CHAPTER 4 

EXPERIMENTS ON WAVELENGTH 

CONVERSION USING N=2 SOLITON DECAY 

  

4.1 Introduction  

In the previous chapter, the decay of higher order solitons in optical fiber, initiated by a 

step change in dispersion or by a localized loss element or filter, is explored numerically 

as a means of generating pairs of pulses having wavelengths that are up and down-shifted 

from the input wavelength. The wavelengths are tunable by varying the magnitude of the 

perturbation. In this chapter, we propose a tunable wavelength conversion method using 

the controlled decay of N=2 solitons. Tunable wavelength conversion using N=2 soliton 

decay initiated by a step change in dispersion will be demonstrated experimentally. 

Obtainable wavelength separations as a function of the dispersion difference will be 

measured for a 1 ps soliton pulse. Stability of the wavelength conversion process will be 

investigated.  
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4.2 Experiments Using a Step Change in Dispersion 

We have shown that the higher-order soliton decay initiated by localized channel 

perturbations could generate pairs of pulses having wavelengths that are up and down-

shifted from the input wavelength. Using the higher-order soliton decay, it is possible to 

generate two copies of an optical data stream, in which the copies are at wavelengths that 

differ from that of the original data. This proposed wavelength conversion method is very 

simple and in principle error-free. The process can in principle be repeated to produce 

multiple wavelength replicas of an input data stream, and may thus be of possible use in 

multi-casting applications in fiber communication systems. In this section, we 

experimentally demonstrate a tunable wavelength conversion using N=2 soliton decay 

initiated by a step change in dispersion. 

Figure 4.1 shows the experimental setup for N=2 soliton decay. A figure-8 laser 

(F8L) is used to produce a soliton pulse. The 1-ps FWHM output from a figure-8 laser 

(F8L) was amplified by an erbium-doped fiber amplifier (EDFA) and then launched at 

location A such that its pulse width and intensity satisfied the N=2 soliton condition 

within the initial low-dispersion fiber (LDF) section.  The center wavelength was 1550 

nm and the peak power was 36 W. The amplifier introduced low-level spectral features 

on the pulse that are associated with amplified spontaneous emission (ASE).  Simulations 

showed these features to have negligible effect on the pulse evolution. 

For a transition to higher dispersion fiber at one-half the soliton period for N=2, 

we use a half soliton period of a low dispersion fiber (LDF) and two soliton periods of a 

corning SMF-28 fiber. The dispersion parameter of the LDF at 1550 nm is 4.3 ps/km/nm, 
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and its mode field diameter (MFD) is 8.4 µm. For the SMF-28, the dispersion parameter 

at 1550 nm is 17 ps/km/nm, and its MFD is 10.4 µm. Using a transition to a higher 

dispersion fiber effectively reduces the value of N while maintaining the pulse energy. 

The result is the formation of two fundamental solitons at the separate wavelengths.  

Autocorrelation traces and spectral measurements at each stage (from locations A 

to C) are shown in Figure 4.2, along with results of the numerical simulations for a 1 ps 

(FWHM) N=2 soliton with ∆D = 75%. Measurements at position B confirmed the 

expected N=2 soliton temporal compression and spectral separation at the z0/2 location. 

The increase in dispersion to 17 ps/nm-km at B lowers the nonlinear response in the B-C 

segment, allowing the two sub-pulses to temporally separate and dispersively broaden, as 

confirmed by the autocorrelation measurement at position C. These results were found to 

be in excellent agreement with numerical simulations, shown as the dashed traces in 

Figure 4.2. The spectrum at point B (z=0.5z0) shows the maximum wavelength separation. 

Measured and simulated maximum wavelength separations are 6.2 nm and 6.9 nm 

respectively. About a 10 dB dip is observed between the two separated wavelength 

components. The measured autocorrelation trace at position C in Figure 4.2 shows 3 

peaks, which confirms that two sub-pulses are formed at this position. Measured and 

simulated wavelength separations between two subpulses at the end of the SMF-28 are 

6.1 nm and 6.7 nm respectively. 

Wavelength separations at position C as a function of the dispersion difference are 

measured at three data points. They are plotted in Figure 4.3 for the N=2 soliton case. 

The solid curve indicates a simulation result. The wavelength separation is normalized 



 60 

with respect to the input spectral width (in turn inversely proportional to the input pulse 

width). The experimental results are in a good agreement with the simulation results. 
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FIGURE 4.1 Experimental setup for N=2 soliton decay using a step increase in 

dispersion; OSA: Optical Spectrum Analyzer and AC: Auto-Correlator. 
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FIGURE 4.2 Measured (solid line) and simulated (dashed line) autocorrelation traces and 

spectra at the z/z0= 0, 0.5, and 2.5 for a 1 ps (FWHM) N=2 soliton with ∆D = 75%. 
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FIGURE 4.3 Measured wavelength separations as function of dispersion difference; solid 

line indicates a simulation result. The wavelength separation is normalized with respect 

to the input spectral width. 
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4.3 Stability of Wavelength Conversion 

In this section, stability or robustness of the wavelength conversion process will be 

investigated. The main emphasis is on the sensitivity of wavelength separation to 

fluctuations in power and/or variations in the perturbation locations in the fiber channel.  

For practical applications of the proposed wavelength conversion method, 

stability or robustness of the system is an important factor. Figure 4.4 shows the 

simulation and experimental studies on the sensitivity of wavelength separation to power 

fluctuations in the fiber channel. An input power decrease by a given percentage results 

in approximately twice that percentage decrease in spectral separation.  Increasing the 

input power beyond the N=2 condition slightly increases the spectral separation, which 

eventually saturates to a maximum. Therefore, the sensitivity of the system to power 

fluctuations in the fiber channel can be decreased significantly by operating the 

wavelength conversion in the saturation region. Discrepancy between measured and 

simulated wavelength separation increases as the input power increases. This may result 

from using larger Raman response parameters in the simulation because the effect of 

stimulated Raman scattering on wavelength separation tends to increase wavelength 

separation when the input power is high. 

The perturbation location in practical implementation may differ from the 

theoretical location, where the maximum wavelength separation occurs (seen in Figure 

4.1). The simulation studies on the sensitivity of wavelength separation to variations in 

the perturbation locations in the fiber channel have been performed. Figure 4.5 shows the 

output spectra obtained when changing the perturbation location from the maximum 
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wavelength separation location (0.50 z0) to 0.45 and 0.55 z0. The resulting wavelength 

separations are seen to change slightly (within ±10 percent). This result shows that the 

system is robust to variations in perturbation location in the fiber channel.  

The effect of using non-soliton pulses, whose pulse shapes and spectra may differ 

from those of the exact soliton, on wavelength separation has also been determined. 

FIGURE 4.6 shows that when using a Gaussian pulse with the same input peak power of 

the N=2 soliton, a reduced wavelength separation results. The amount of this decrease is 

less than 10 percent of the maximum wavelength separation. 
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FIGURE 4.4 Measured and simulated wavelength separation to input power fluctuations 

in the fiber channel.  
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FIGURE 4.5 Output spectra obtained when changing the perturbation location from the 

maximum wavelength separation location (0.50 z0) to 0.45 and 0.55 z0. 
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FIGURE 4.6 The effect of using a non-soliton pulse (Gaussian pulse) on wavelength 

separation. 
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4.4 Experiments Using a Loss Element 

In this section, we experimentally demonstrate a tunable wavelength conversion using 

N=2 soliton decay initiated by a loss element. Figure 4.7 shows the experimental setup. 

F8L is used to produce a 1-ps FWHM soliton pulse. The output from a F8L was 

amplified by an EDFA and then launched at location A such that its pulse width and 

intensity satisfied the N=2 soliton condition within the LDF section. The center 

wavelength was 1560 nm and the peak power was 36 W. To introduce a loss perturbation, 

a variable attenuator is used between a half soliton period of an LDF and two soliton 

periods of an LDF, whose dispersion parameter at 1550 nm is 4.3 ps/km/nm and mode 

field diameter (MFD) is 8.4 µm. The variable attenuator drops the pulse peak power and 

reduces the value of N. After the loss perturbation, N=2 soliton decays forming two 

subpulses at the separate wavelengths. 

Output spectrum measurements at location C are shown in Figure 4.8. By 

changing the amount of attenuation, wavelength separations between two subpulses are 

measured. Wavelength separations between 3nm and 5 nm are obtained for the 

attenuations between 3 dB to 8 dB.  
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FIGURE 4.7 Experimental setup for N=2 soliton decay using a loss element; OSA: 

Optical Spectrum Analyzer and AC: Auto-Correlator. 

 

 

 
 

Variable Attenuator
Figure 8 

Laser
EDFA
(2 m)

LDF
(D1 = 4.3 ps/nm-km)

2 z0

∆TF = 1ps

0.5 z0

OSA

AC

OSA: Optical Spectrum Analyzer
AC: Autocorrelator

A B C

LDF
(D1 = 4.3 ps/nm-km)

P0=36 W

Variable Attenuator
Figure 8 

Laser
EDFA
(2 m)

LDF
(D1 = 4.3 ps/nm-km)

LDF
(D1 = 4.3 ps/nm-km)

2 z0

∆TF = 1ps

0.5 z0

OSA

AC

OSA: Optical Spectrum Analyzer
AC: Autocorrelator

A B C

LDF
(D1 = 4.3 ps/nm-km)

P0=36 W



 71 

 
 
 

 
 
 
 
 
 
 
FIGURE 4.8 Output spectral separations achieved using a variable attenuator. 

Wavelength separations between 3~5 nm are obtained by changing the attenuation from 

3~8 dB.  
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CHAPTER 5 

SOLITON RECOVERY 

 

5.1 Introduction  

In the previous chapters, we have proposed and demonstrated the decay of higher order 

solitons in optical fiber, initiated by a step change in dispersion or by a localized loss 

element or filter as a means of generating pairs of pulses having wavelengths that are up 

and down-shifted from the input wavelength. After the soliton decay, recovery of the 

soliton by applying a reverse perturbation down-channel was also found to be feasible, 

provided that dispersion in the channel between perturbations is compensated and that 

higher order dispersion and nonlinearities are low.  In this chapter, the possibility of 

recovering the original higher-order soliton by using appropriate perturbing elements, 

along with dispersion compensation will be studied. The conditions are described under 

which the separated pulses can be re-combined at a distant location to restore the higher 

order soliton at the original wavelength. Numerical and experimental studies for soliton 

recovery will be performed. 
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5.2 Conditions for Soliton Recovery 

It is possible to recombine the two pulses and thus restore the original higher order 

soliton at a point farther down the channel. The requirements for this to occur are 

stringent, since the pulse widths, phase, and separation that occurred at the perturbation 

must be reproduced at the point of recombination. This ideally requires that the sub-

pulses undergo completely linear propagation with no losses after the perturbation, and 

that dispersion and walk-off are precisely compensated. We show later that some 

deviation from the ideal is allowed. By incorporating a sufficiently large perturbation (a 

large dispersion increase, for example), the nonlinear response can be reduced 

sufficiently so that subsequent pulse propagation occurs essentially in the linear regime. 

In such cases, the separated pulses broaden and eventually dissipate due to group 

dispersion, but can nevertheless remain intact over several soliton periods. By 

simultaneously compensating both the dispersive broadening and walkoff between the 

two pulses, it is feasible to reproduce, at a remote location in the channel, the phase 

structure and spacing between pulses that were found just after the perturbation. Then, by 

applying a perturbation that reverses the effect of the initial one (using an amplifier 

instead of a loss element, or stepping back down to the original dispersion, for example), 

the original higher-order soliton can in principle be recovered. 

This above “mirror-imaging” process essentially involves a solution of the NLSE 

from the original output to the input, while reversing the sign of the dispersion, and 

incorporating the reverse perturbation. The basic requirements ideally include 1) a 

lossless linear channel between perturbation elements in which group dispersion and 
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walk-off are precisely compensated, and 2) perturbations that impart no additional phase 

structure onto the pulses. The first requirement is most easily satisfied if the dispersion in 

the channel segments between perturbations is purely quadratic – in which case a 

compensating section whose dispersion-length product is equal and of opposite sign to 

that of the first section can be employed. Higher order dispersion terms represent a 

degradation, and must be minimized. A step in dispersion, either upward or downward, 

would meet the second requirement, whereas a bandpass filter or a loss element 

(requiring an amplifier as a restoring perturbation) would in general not. 
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5.3 Experiments on Soliton Recovery  

Figure 5.1 shows the experimental setup for soliton recovery. To compensate the 

dispersion, we used 9 m of dispersion compensation fiber (DCF) having a dispersion of –

91 ps/km-nm. The total dispersion at the second stage must be compensated by the total 

dispersion at the third stage. Thus, the requirement to do this is z2×D2 = -z3×D3.  

In the experiment, the 1-ps FWHM output from the F8L was amplified by the 

EDFA and then launched at location A as before such that its pulse width and intensity 

satisfied the N=2 soliton condition within the initial LDF section.  The fiber parameters 

and lengths for the segment between locations A and C are the exactly same as those in 

the previous experimental setup for the soliton decay shown in Figure 4.1.  

The segment between locations C and D is dispersion-compensating fiber (DCF), 

having D3 = -91 ps/nm-km. The purpose of this segment is to equalize the quadratic 

dispersion and sub-pulse walkoff that occur in the SMF-28 section.  Finally, the 

dispersion is stepped back to the original 4.3 ps/nm-km value at location D by connecting 

a second section of the LDF.  With zero net dispersion between B and D, and with no 

losses, the pulse should ideally return to the amplitude and phase configuration that it had 

just before the first dispersion step at B.  Beyond D, the pulse propagated through an 

additional distance of 4.5z0 in the low dispersion fiber, to location E, where 

measurements were again made.   Ideally, recovery of the original input at A is expected 

at E, which in fact was observed. 

Autocorrelation traces and spectral measurements at each stage (from A to E) are 

shown in Figure 5.2, along with results of the numerical simulations. Measurements at 
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location B confirm the expected N=2 soliton temporal compression and 6-nm spectral 

separation at the z0/2 location.  The increase in dispersion to 17 ps/nm-km at B lowers the 

effective nonlinear response (by significantly reducing the value of N) in the B-C 

segment. This allows the two sub-pulses to temporally separate and dispersively broaden, 

as was confirmed by the autocorrelation measurement at C.  These results were found to 

be in excellent agreement with numerical simulations, shown as the dashed traces in Fig. 

2.  The dispersion-compensating section is observed to have re-compressed and restored 

overlap of the sub-pulses at location D.   Finally, the autocorrelation trace of the pulse at 

location E resembles that of the original input. The spectrum at E differs from that of the 

input, but shows that most of the energy is re-centered on the original carrier. Our 

numerical model confirmed that incomplete recovery arises from the 2-dB insertion loss 

of the DCF and the residual nonlinear response between locations B and C.  The shape of 

the recovered spectrum at E is extremely sensitive to the power and phase conditions at 

D. This sensitivity is demonstrated by the noticeable differences between the simulated 

and experimental spectra shown at E in Figure 5.2, which arise from only slight 

differences in those shown at D. 

Residual SPM in the channel between positions B and D may also degrade the 

soliton recovery process by preventing the re-assembly of sub-pulse phases necessary to 

continue the original N=2 evolution from position D.  Instead, incomplete evolution 

occurs, which leads to some residual power in the separated wavelengths. As you can see 

next section, simulations show that the spectral energy remaining near each sub-pulse 

wavelength after recovery increases as the residual SPM increases [6], leading to 
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increased distortion in the recovered pulse. The process is nevertheless tolerant of 

appreciable SPM between perturbations, in that most of the pulse energy is restored to the 

original center wavelength, as shown at location E in Figure 5.2. 
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FIGURE 5.1 Experimental apparatus for demonstrating N=2 soliton decay and recovery.  

Pulsed input at A is provided by a figure 8 laser (F8L), amplified by a 2-m-long erbium-

doped fiber amplifier (EDFA).  Propagation segments include low-dispersion fiber 

(LDF), Corning SMF-28 fiber, and dispersion-compensating fiber (DCF).  Pulse 

autocorrelation (AC) and spectral (OSA) measurements were made at each interface 

between stages (A through E).  Splice losses are indicated at each interface.  Dispersion 

values are in ps/nm-km. 
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FIGURE 5.2 Measured (solid line) and simulated (dashed line) autocorrelation traces and 

spectra at locations A through E in the apparatus of Fig. 1.  ASE is amplified spontaneous 

emission from the fiber amplifier. 
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FIGURE 5.2 (continued)  
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5.4 Detrimental Effects on Soliton Recovery 

In modeling the soliton recovery process, it was found that a small amount of cubic 

dispersion and even some residual nonlinearity in the channel between dispersion step 

perturbations can be present, without substantial degradation. Figure 5.3 shows N=2 

pulse shapes and spectra after propagating through an initial step up in dispersion, 

followed by two channel segments having equal and opposite dispersion-length products, 

and finally a step down in dispersion to the original value. The initial dispersion step is 

adjusted to yield values of N in the intermediate channel (relative to the initial pulse 

width) of 1, 1/ 2 , 1/2, and 0. As expected, the amount of distortion in the final 

recovered pulse is seen to increase as N increases. The process is nevertheless tolerant of 

appreciable nonlinearity between the perturbations, in that most of the pulse energy is 

restored to the original center wavelength in all cases shown. 

Studies were also made of the allowed tolerances in achieving wavelength 

separation and soliton recovery.  Of particular concern are the effects of power 

fluctuations in the input, losses in the propagation path, and low-level self phase 

modulation (SPM) in the dispersion-compensated link.  We determined that the input 

pulse does not need to precisely satisfy the N=2 soliton condition in order to achieve a 

cleanly divided spectrum, but that the separation at a fixed location decreases as a nearly 

linear function of decreasing input power.  Specifically, a power decrease by a given 

percentage results in approximately twice that percentage decrease in spectral separation.  

Increasing the input power beyond the N=2 condition slightly increases the spectral 
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separation, which eventually saturates to a maximum, while a third peak begins to form at 

the original carrier wavelength. 

Splice loss and distributed fiber loss can decrease the spectral separation of the 

sub-pulses by diminishing the power during propagation. The effect of distributed loss 

(typically 0.2 dB/km) is negligible for short (~ 1 ps) pulses. With longer pulses, a longer 

fiber path is needed (because the soliton period increases) so that losses can have 

appreciable effect. To achieve the maximum spectral separation with losses present, an 

added length of LDF is required.  For example, using a 10-ps input pulse, a 0.55z0 length 

is needed instead of 0.5z0 if the loss is 0.2 dB/km.  After sub-pulse formation, the effect 

of the fiber loss is the expected power reduction with distance, along with the eventual 

pulse dissipation.  To achieve complete soliton recovery, the pulse energy must be 

maintained so that the N=2 condition is re-established at the second dispersion step.  

FIGURE 5.4 shows the output spectral changes arising from insufficient 

dispersion and walkoff compensation. Cases are shown for values of 5 (solid), 3(dashed), 

and 0 % (dotted). Influence of stimulated Raman scattering on soliton recovery for a 1ps 

N=2 soliton is shown in Figure 5.5. 
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(a) 

 

 

FIGURE 5.3 N=2 soliton pulse shapes (a) and spectra (b) after reverse-perturbation 

recovery as described in the text. Cases are shown for values of N between perturbations 

of 1 (dashed), 1/ 2 (solid), 1/2(dash-dotted), and 0 (dotted). 

 

 

 



 84 

 

 

 

 

(b) 

 

 

FIGURE 5.3 N=2 soliton pulse shapes (a) and spectra (b) after reverse-perturbation 

recovery as described in the text. Cases are shown for values of N between perturbations 

of 1 (dashed), 1/ 2 (solid), 1/2(dash-dotted), and 0 (dotted). 
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FIGURE 5.4 Output spectral changes arising from insufficient dispersion and walkoff 

compensation. Cases are shown for values of 5 (solid), 3(dashed), and 0 % (dotted). 
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FIGURE 5.5 Influence of stimulated Raman scattering on soliton recovery 
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CHAPTER 6 

PROPOSED APPLICATIONS 

 

6.1 Introduction 

 
The proposed applications can be grouped into two general categories:   

1) the demonstration of data stream replication at several carrier wavelengths using 

cascaded loss element perturbations interleaved with optical amplifiers;  

2) the demonstration of original data stream recovery from two wavelengths using a 

reverse perturbation.  Accompanying the second category is the investigation of a 

proposed method of secure transmission that uses the phased re-assembly requirement for 

the N=2 solitons.   
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6.2 Multi-Wavelength Data Replication 

In this work, the objective is to demonstrate the generation of a comb of wavelengths 

from a single wavelength RZ data stream, using the N=2 soliton spectral division effect. 

FIGURE 6.1 shows the proposed experiment, designed to generate eight wavelengths 

using a three stage device.  In it, the original data stream is amplified to a series of N=2 

solitons, which are then reduced in power at their z0/2 location by a variable loss element.  

Once the wavelength-separated pulse trains complete the partial re-compression of their 

spectra, they are to be amplified and transmitted through a second lower-loss element. 

After spectral re-compression, the pulses are again spectrally divided, but the spacing 

between adjacent wavelengths is less.  Re-amplifying and transmitting all four through a 

third loss element will then yield eight copies of the original data.  By adjusting the loss 

element values, it should be possible to produce nearly equal wavelength spacing 

between the data replicas.  Evolution of the data replicas into fundamental solitons is not 

anticipated in this experiment, since the loss elements remove sufficient energy from the 

sub-pulses so that the N=1 condition cannot be satisfied [10].   Use of dispersion steps 

would in principle allow this; we intend to attempt such a study provided fiber of the 

correct dispersion can be located.   Studies are to be made of the effects of accumulated 

amplifier noise, and an assessment is to be made of the maximum number of stages that 

can be practically employed before noise and other degrading effects limit performance. 

 

 

 



 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.1 Scheme for multi-wavelength replication of a data stream at wavelength λm 

by using cascaded amplifier-loss element pairs. The distance between each amplifier and 

loss element is one-half the soliton period. 
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6.2 Secure Data Transmission 

In this portion of the work, a method of establishing secure data transmission is to be 

explored that uses the phase-sensitive properties of soliton recovery.  The basic diagram 

for the scheme is shown in Figure 6.2.  In the figure, a single wavelength data stream is 

input at the left, amplified, and N=2 solitons are allowed to form.  At a point just before 

the first perturbation, a step up in dispersion, the spectrum has separated, and the 

dispersion step initiates the temporal separation between the two data streams as 

described previously.  Both data sets are then sent through a phase modulator which 

imparts a digital code (in this case 10101) onto the otherwise uniformly spaced pulses.  

The pulses that were acted upon by the modulator have had their phasing disrupted, and 

so will not recombine at the original wavelength.  At the output, one thus obtains the 

inverse of the data stream at the restored carrier wavelength, and the data as imparted by 

the modulator appears on the two wavelength-shifted components.  Without back-

conversion, only a continuous sequence of  “one” bits is received at the two shifted 

wavelengths. 

The scheme is potentially attractive because it is not possible to recover the data 

at any point in the channel other than at the receiver end, at which complete dispersion 

compensation has occurred.  This allows the pulses that have not been modulated to 

combine, return to the original center wavelength, and be direct detected as the message 

imparted by the modulator.  This can happen nowhere else in the channel.     

Proposed efforts on this system will initially involve studies of the effect on the 

pulses of phase modulation. It is anticipated that the modulation when applied to pulses at 
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different wavelengths will disrupt their relative phasing to an extent that is sufficient to 

prevent their re-assembly into the original pulse at the center wavelength.  Otherwise, it is 

possible to let the pulses separate temporally such that they have negligible overlap upon 

reaching the modulator.  A fast modulator can then be used to affect a pulse at one 

wavelength, but not the adjacent one at the other wavelength. Figure 6.3 shows apparatus 

for demonstrating secure data transmission using the phase-sensitive properties of soliton 

recovery. A phase modulator is inserted between SMF28 and DCF in the previous soliton 

recovery setup shown in Figure 5.1. Figure 6.4a shows that the pulse shape before phase 

modulation and the profiles of phase modulation. The modulation is applied to the one 

side of the subpulse with 0, π/3, and π phase difference. Simulation results for the N=2 

soliton pulse shapes and spectra after phase modulation and reverse-perturbation recovery 

are shown in Figure 6.4b and 6.4c. The pulse modulated with 0 phase modulation returns 

to the original center wavelength whereas the pulse with π phase modulation shows 

complete spectral separation. The pulse with π/3 phase modulation has not much spectral 

change comparing to the case of 0 phase modulation. To get a sufficient change in 

spectrum, the modulator needs to be operated near π phase modulation.  

Figure 6.5 shows an experimental setup for the secure data transmission using the 

phase-sensitive properties of soliton recovery. The total system loss is -9.2 dB including 

the -5.6 dB insertion loss of the phase modulator. This added loss prevents the subpulse 

from recombining at the original center wavelength even when 0 phase modulation is 

used. One method to overcome this problem is to use a different LDF, which has a less 

dispersion parameter, at the last stage of the experimental setup. From Equation (2.2.7), 
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further decrease in D may be used to compensate added loss (or reduction of P0), when 

restoring N = 2. For -9.2 dB loss, the required dispersion is 0.51 ps/km-nm. In our 

experiment, half soliton period of LDF with dispersion parameter of 0.54 ps/km-nm is 

used to overcome the loss. Figure 6.6 shows the measured and simulated spectrum after 

phase modulation and reverse-perturbation recovery. After 0 phase modulation, the 

spectrum is recovered at the original center wavelength.  

The rising time of the phase modulator is 35 ps, which is too slow to modulated 

only one side of subpulse as shown in Figure 6.4. We need a faster phase modulator. One 

alternative method to solve this problem is to use longer SMF28 and DCF to introduce 

enough separation between to subpulses. When we use 20 z0 of SMF28, we can obtain 

about 100 ps separation for a 1ps input pulse. However, the total system loss increases to 

-11 dB to increase the length of SMF28 and DCF. This requires 0.34 ps/km-nm LDF at 

the last stage in the experimental setup, which we have not now. 

For the recommended future researches, studies need to be performed on the 

robustness of the link, with regard to quantifying low-level nonlinear responses in the 

channel section between perturbations that will still allow pulse recovery at the receiver 

end.  Additionally, effects of cubic dispersion and stimulated Raman scattering in the 

intermediate channel need to be investigated. 
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FIGURE 6.2 Basic soliton recovery link employing dispersion step perturbations, and 

phase modulation to code the data stream.  The portion of the link between perturbations 

is dispersion compensated and requires linear propagation. 
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FIGURE 6.3 Apparatus for secure data transmission using the phase-sensitive properties 

of soliton recovery 
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(a) 

 
 
 
 
 
 
FIGURE 6.4a Pulse shapes before phase modulation. “0” (dotted), “π/3” (dashed), and 

“π” (solid) phase modulations are applied to the pulse. 
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(b) 
 
 
 
 

FIGURE 6.4b N=2 soliton pulse shapes after phase modulation and reverse-perturbation 

recovery. Cases are shown for “0” (dotted), “π/3” (dashed), and “π” (solid) phase 

modulations.  
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(c) 
 
 
 

FIGURE 6.4c N=2 soliton pulse spectra after phase modulation and reverse-perturbation 

recovery. Cases are shown for “0” (dotted), “π/3” (dashed), and “π” (solid) phase 

modulations.  
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FIGURE 6.5 Experimental setup for the secure data transmission using the phase-

sensitive properties of soliton recovery. 
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FIGURE 6.6 Measured (solid) and simulated (doted) spectrum after phase modulation 

and reverse-perturbation recovery for 0 phase modulation. 
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CHAPTER 7 

CONCLUSION 

 

The object of this research was to investigate the decay and recovery of higher-order 

solitons initiated by localized channel perturbation. A detailed modeling effort for soliton 

propagation in optical fibers was performed to accomplish this task. A simulation tool 

was developed using split step Fourier method (SSFM). The higher-order soliton decay 

initiated by a localized channel perturbation in the fiber channel has been demonstrated 

theoretically and experimentally as a means of generating pairs of pulses having 

wavelengths that are up and down-shifted from the input wavelength. Other effects such 

as Raman scattering and cubic dispersion were shown to de-stabilize the process, but can 

be minimized by operating with pulse widths on the order of 1 ps or longer. Recovery of 

the original pulse by applying a reverse perturbation down-channel was also found to be 

feasible, provided dispersion in the channel between perturbations is compensated, and 

that higher order dispersion and nonlinearities are low. The separated pulses at two 

wavelengths can in principle be amplified to form separate higher order solitons. The 

process is repeated to produce multiple wavelength replicas of an input data stream, and 

may thus be of possible use in multi-casting applications in fiber communication systems. 

We have shown that the spectral separation effect in N=2 solitons can be used as a 
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method of converting a single pulse into two sub-pulses at displaced wavelengths by 

incorporating a dispersion step at the half soliton period location.  Wavelength shifts are 

tunable by varying the magnitude of the dispersion step, or by varying the input pulse 

power above or below that required for the N=2 soliton condition.  The method may find 

applications in WDM data transmission, in that two wavelength-converted replicas of a 

single data stream can be generated.  Proposed applications have been presented for the 

wavelength separation and recovery processes. 
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Appendix 

 

SSFM Programming using MATLAB for Nonlinear 

Pulse Propagation in Optical Fibers 

 

1. Definition of Parameters 
 
 
First thing we need to do in the beginning stage of programming is to define parameters. 

Determine input parameters (such as input pulse width and peak power) and fiber 

parameters (such as dispersion parameter, nonlinear coefficient, and Raman response 

parameter in an optical fiber).  

 Then we need to set programming parameters and constants. The step size is an 

important programming parameter because it is a major factor to determine the numerical 

error of the SSFM. An assumption of the SSFM is to calculate linear terms and nonlinear 

terms in the NLSE independently in a small segment. To satisfy this assumption, we need 

enough resolution for the step size. If we decrease it, the error will be reduced whereas 

the calculation time increases. As the step size deceases, the numerical result converges. 

The efficient way to set the step size is to use 10~20 times smaller step size than the step 

size, which gives the permitted error.  
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 If we use a too small step size, the number of computation increases. This increases 

the numerical error from computational operation. However, we can get enough accuracy 

before this error becomes critical.   

 
 
% Examples of Input Parameters 
 
lambda=1.55*10^(-6);   % operating wavelength in micrometer 
Wo=2*pi*c/lambda;  % angular frrequency 
pulsewidth=1;        % input pulse width in ps 
Po= 36;     % input peak power 
Ao=sqrt(Po);    % input peak amplitude 
 
 
 
% Examples of Fiber Parameters 
 
b2=-5;         %quadratic dispersion parameter  in ps^2/km  
b3=0;     % cubic dispersion parameter  in ps^3/km 
non_coeff=2;      % nonlinear  coefficient in /W/km 
TR=3*10^(-15); % Raman response parameter in second  
shock=0;   % switch for optical shock (1:on 0:off) 
loss_fiber=0;  % fiber loss in dB 
alpha=log(10)*loss_fiber/10;  
 
 
 
 
% Examples of Programming Parameters and Constants 
 
PI=3.14; % π 
N=1024; % number of sample in time domain 
M=100; % number of step 
To=20; % characteristic pulse width of soliton 
c=2.99*10^8; % speed of light in free space 
 
z=0.5*soliton_length;    % propagation distance 
step_size = z/M;      % step size 
sampling_time = pulsewidth/To; % sampling time interval 
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2. Initialization 
 
After defining all parameters, we initialize the input pulse shape and spectrum, and 

calculate the required parameters, which will be used in the next step. 

 
 
% Example 
 
Ld=(pulsewidth^2)/abs(b2); % dispersion length 
Lnl=1/(non_coeff*Po);   % nonlinear length 
soliton_length=pi*Ld/2;   % soliton period 
soliton_order=sqrt(Ld/Lnl);  % soliton order 
 
 
% Define Input Pulse Shape  
 
for n=1:N, 
 
   u(n)= Ao*sech((n-N/2-1)/To); 
 
end 
 
spectrum=fft(u);  % Pulse spectrum 
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3. Implementation of Split Step Fourier Method 
 
 
To implementing the SSFM, we use a loop structure to solve the NLSE step by step. All 

parameters are plug into the NLSE. As described in Section 2.3, under some assumption 

that dispersion and nonlinearity can act independently during the propagation of the 

optical field over a small distance, propagation from z to z+h is carried out in three steps. 

In the first step, only dispersion is considered for the first half of the segment. Then, only 

nonlinearity is considered in the middle of the segment. In the third step, only dispersion 

is considered again for the rest half of the segment.  

 

 
 
% Example 
 
 
 
for j=1:M,   % M: number of step 
 
 % Calculation of Fiber Loss and Dispersion for the first half of a segment 
 
 for k=1:N, 
 
  spectrum(k) = spectrum(k) *  
       exp((-alpha/2 +(i*b2/2)*(2*PI*(k-N/2-1) /(pulsewidth/To)/N)^2 
         -i*b3/6*(2*PI*(k-N/2-1)/(pulsewidth/To)/N)^3)*z/M/2.0); 
 end 
  
 u=ifft(spectrum);   % Inverse Fourier transform 
   
 
 
 
 % Calculation of nonlinearity at the midpotint of a segment 
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 for n=1:N, 
  u(n)=u(n)*exp(i*non_coeff*((abs(u(n)))^2      % SPM 
         +i*shock*Steep(n)/Wo/e_f(n)  % Optical Shock 
         -TR*Raman(n))*z/M);    % Raman  
   end 
  
 spectrum=fft(u);  % Fourier transform   
 
 
 
  
 
 % Calculation of Fiber Loss and Dispersion for the rest half of a segment 
 
 
 for k=1:N, 
 
  spectrum(k) = spectrum(k) *  
       exp((-alpha/2 +(i*b2/2)*(2*PI*(k-N/2-1) /(pulsewidth/To)/N)^2 
         -i*b3/6*(2*PI*(k-N/2-1)/(pulsewidth/To)/N)^3)*z/M/2.0); 
 end 
   
 u=ifft(spectrum);   % Inverse Fourier transform 
 
 
 
end 
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4. Self-Steepening and Raman Coefficients 
 
 
 
Self-steepening parameters and stimulated Raman scattering response coefficients can be 

calculated and plugged into the above loop. For the pulse width greater than 1 ps, these 

effects can be ignored and the parameters can be set to zero. 

 
 
 
Steep(1)=0; 
Raman(1)=0; 
   
for n=2:1:N-1, 
 
 Steep(n)= (u(n+1)^2*u(n+1)-u(n-1)^2*u(n-1))/(2*pulsewidth*10^(-12)/To); 
 Raman(n)=(u(n+1)^2-u(n-1))/(2*pulsewidth*10^(-12)/To); 
 
end 
   
 
Steep(1)=Steep(2); 
Raman(1)=Raman(2); 
 
Steep(N)=Steep(N-1); 
Raman(N)=Raman(N-1); 
 
 
 
 

 

 

 
 


