
THE SYSTEM-ON-A-CHIP LOCK CACHE

A Thesis
Presented to

The Academic Faculty

by

Bilge Ebru Saglam Akgul

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

April 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4675364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE SYSTEM-ON-A-CHIP LOCK CACHE

Approved by:

Professor Vincent J. Mooney III, Committee
Chair

Professor Douglas M. Blough

Professor James O. Hamblen

Professor John F. Dorsey

Professor Umakishore Ramachandran

Date Approved: 04/09/2004

To my mother, Mihrican Saglam,

and

my father, Mustafa Saglam,

for their love, support and selfless sacrifices.

iii

ACKNOWLEDGMENTS

I am grateful to everyone who made this Ph.D. thesis possible. First, I owe special

thanks to my supervisor, Professor Vincent Mooney, for his patience and guidance

from the very beginning until the end. Also, I would like thank everyone in the

Hardware/Software Codesign Group at Georgia Tech for their important feedback.

Finally, special thanks to my husband Tankut whose love and support enabled me to

complete this work.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xii

I INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Thesis Contributions . 3

1.3 Thesis Organization and Roadmap 5

II BACKGROUND AND PREVIOUS WORK 6

2.1 Locking Schemes . 6

2.1.1 Hardware Instructions for Locking 8

2.1.2 Traditional Spin-Lock . 10

2.2 Hardware Based Synchronization Mechanisms 13

2.2.1 Cache Based Synchronization 13

2.2.2 Transactional Memory . 14

2.2.3 Speculative Lock Elision . 15

2.2.4 Speculative Synchronization Unit 17

2.2.5 Speculative Lock Reordering 18

2.2.6 Summary of Hardware Based Mechanisms 18

2.3 Software Based Synchronization Mechanisms 19

v

2.3.1 Spin on Read . 19

2.3.2 Ticket Lock . 20

2.3.3 Anderson’s Array Based Locks 21

2.3.4 Graunke and Thakkar’s Locks 22

2.3.5 Queue Based Locks . 22

2.3.6 Reactive Synchronization . 25

2.3.7 Summary of Software Based Mechanisms 25

2.4 Performances of the Mechanisms . 26

2.4.1 Benchmark Programs . 26

2.4.2 Performance Results . 27

2.5 Blocking versus Non-blocking Synchronization 29

2.6 Priority Inversion . 30

2.7 Summary . 31

III BASIC LOCK CACHE DESIGN AND OPERATION 33

3.1 Methodology . 33

3.2 SoCLC Hardware . 37

3.2.1 Control Logic . 41

3.2.2 Overview of SoCLC operation for Short CSes and Long CSes 44

3.3 Short Critical Sections . 47

3.3.1 SoCLC Hardware Mechanism for Short CSes 49

3.3.2 SoCLC Interrupt Mechanism for Short CSes 50

3.4 Long Critical Sections . 57

3.5 Summary . 64

IV LOCK CACHE PRIORITY INHERITANCE 65

4.1 The Priority Inversion Problem . 65

4.2 Solution: Priority Inheritance . 67

4.3 Priority Inheritance in Hardware . 70

vi

4.3.1 Atalanta RTOS Priority Inheritance vs. SoCLC Priority In-
heritance . 70

4.3.2 Priority Inheritance Hardware Architecture 73

4.4 Summary . 79

V PARLAK LOCK CACHE SYNTHESIS 81

5.1 Lock Cache Generator . 82

5.1.1 PARLAK . 82

VI EXPERIMENTAL RESULTS . 91

6.1 Experimental Platform . 91

6.2 Basic Lock Cache Experimental Results 97

6.2.1 Microbenchmark . 97

6.2.2 False Sharing Experiment . 99

6.2.3 Effect of Critical Section Length on Performance 100

6.2.4 Effect of Memory Latency on Performance 102

6.2.5 Database Example . 103

6.3 Priority Inheritance Experimental Results 108

6.4 PARLAK Lock Cache Synthesis Results 114

6.4.1 SoCLC Hardware Synthesis Results 114

6.4.2 SoCLC with Priority Inheritance Hardware Synthesis Results 117

VII CONCLUSION . 120

REFERENCES . 124

vii

LIST OF TABLES

Table 1 Specifications of Seamless CVE’s MPC755 PSP that we used in our
experiments. 92

Table 2 Specifications of the L1 caches and the ARM9TDMI PSP that we
used in our experiments. 96

Table 3 Microbenchmark simulation results. 99

Table 4 False sharing effect on locking performance. 100

Table 5 CS length effect on locking performance. 101

Table 6 SoCLC speedup over spin-lock and MCS locks for different CS lengths.101

Table 7 Microbenchmark total execution times for different memory latencies
and the corresponding SoCLC speedup over spin-lock and MCS locks.104

Table 8 Database application simulation results. 108

Table 9 Simulation results of the robot application. 112

Table 10 Task worst-case response times (WCRT) and actual completion times.113

Table 11 SoCLC hardware with priority inheritance logic synthesis results.
(Note that the area results include sum of memory-only area and
non-memory logic area.) . 118

Table 12 SoCLC hardware with priority inheritance logic synthesis results
with 10ns clock period. 118

Table 13 An estimate hardware cost of an example SoC including SoCLC. . 119

viii

LIST OF FIGURES

Figure 1 Shared data structures may cause contention in a shared-memory
multiprocessor system. 2

Figure 2 MIPS assembly code for test-and-set functionality that is imple-
mented using the LL/SC pair of instructions. 10

Figure 3 Spin-lock algorithm using test-and-set instruction. 11

Figure 4 MCS algorithm pseudo code. 24

Figure 5 Software only solution vs. hardware and software solution. 36

Figure 6 Hardware system architecture with SoC Lock Cache. (Note: Hard-
ware not drawn to scale; e.g., PE1 is at least a factor of ten larger
than the SoC Lock Cache.). 38

Figure 7 PE address space mapping example. 39

Figure 8 Basic units of the SoCLC hardware. 40

Figure 9 SoCLC basic control logic hardware architecture. 43

Figure 10 SoCLC Lock Unit contains counters for long CS locks. 45

Figure 11 An example with four tasks running on two PEs. 46

Figure 12 C and MIPS assembly codes of lock acquire function in the (a) tra-
ditional spin-lock and (b) SoCLC mechanism. 48

Figure 13 SoCLC (new) mechanism and spin-lock (old) mechanism. 49

Figure 14 (a) Initial condition of lock and Pr bit locations in a four-PE system.
(b) Bit values after PE3 has acquired the lock. (c) Bit values after
both PE1 and PE2 have read the lock. 52

Figure 15 ISR assembly code for MPC755. 52

Figure 16 Basic units of the SoCLC hardware. 54

Figure 17 The event flow occurring in action (1) – top flow – and the event
flow occurring in action (2) – bottom flow. 56

ix

Figure 18 Disallowing preemption for long CSes may cause inefficient CPU
utilization among tasks. 58

Figure 19 Lock-wait tables. 59

Figure 20 Hardware/software architecture with RTOS extension. 60

Figure 21 Flowchart illustrating the long CS locking steps in software. 61

Figure 22 LOCK struct type. 62

Figure 23 Lock-wait table states and the RTOS scheduler ready list states.
(a) Tasks 2, 7, and 19 are waiting for lock#6 to be freed. (b) Tasks
3, 5, 6, 17, 21 and 37 are ready in the Atalanta RTOS priority
scheduler ready table. (c) Task2 bit location in the lock-wait table 6
is cleared by the ExIntrHdlr function. (d) Task2 bit location in the
ready table is set to 1. 63

Figure 24 Priority inversion problem. 66

Figure 25 Priority inheritance protocol (PIP) prevents unbounded blocking. . 68

Figure 26 Flow charts of locking operation for (a) Atalanta RTOS priority
inheritance mechanism, (b) SoCLC priority inheritance mechanism. 71

Figure 27 Priority inheritance hardware components in the SoCLC. 73

Figure 28 Status board corresponding to the (a) initial and (b) final states as
described in Example 4.3.1. 75

Figure 29 Hardware architecture of SoCLC priority inheritance unit. 77

Figure 30 (a) PE1 task mask register contents, and (b) PE2 task mask register
contents of Example 4.3.2. 78

Figure 31 A typical target SoC architecture. 82

Figure 32 PARLAK building blocks. 85

Figure 33 Pseudo algorithms of code generation. 86

Figure 34 (a) An example SoCLC skeleton file with three labels. (b) The cor-
responding SoCLC output file after labels of the skeleton file are
scanned and the codes at the corresponding labels are generated. . 87

Figure 35 Flowchart of code generation with PARLAK. 88

Figure 36 Seamless CVE tool components. 92

Figure 37 Hardware architecture setup with MPC755 processors. 93

x

Figure 38 Reservation Logic (RL) connected to the system bus. 94

Figure 39 Reservation Logic operation between LL and SC instructions. . . . 95

Figure 40 Hardware architecture setup with ARM9TDMI processors. 96

Figure 41 Microbenchmark program pseudo code. 98

Figure 42 Microbenchmark codes used for the false sharing experiment. . . . 100

Figure 43 Microbenchmark total execution times for different memory latencies.103

Figure 44 Database example (a) transactions and (b) object-copy. 106

Figure 45 Hardware/software architectures used in our experiments. (a) Ata-
lanta RTOS handles the priority inheritance and the spin-lock mech-
anisms in software. (b) SoCLC handles the priority inheritance and
lock-based synchronization in hardware. 110

Figure 46 Robot application model and job-partitioning among tasks. 111

Figure 47 Task3 inherits task1’s priority during the time that task3 executes
its CS. After completing its CS, task3 yields the CPU2 to task2. . . 112

Figure 48 Synthesis results for several number of lock combinations in the So-
CLC. Number of PEs is equal to 4 and clock period is 10ns. 115

Figure 49 Synthesis results of the total area of the SoCLC for increasing num-
ber of PEs for number of locks = 32, 64, 128 and 256. Clock pe-
riod is 50ns. 116

Figure 50 (a) Memory-only area of the SoCLC. (b) Non-memory area of the
SoCLC. Clock period is 50ns. 117

xi

SUMMARY

The objective of this thesis is to implement efficient lock-based synchronization

by a novel, high performance, simple and scalable hardware technique that is easily

applicable to a shared-memory multiprocessor System-on-a-Chip (SoC). Our solution

is provided in the form of an intellectual property (IP) hardware unit which we call the

SoC Lock Cache (SoCLC). The SoCLC provides effective lock hand-off by reducing

on-chip memory traffic and improving performance in terms of lock latency, lock delay

and bandwidth consumption.

In our methodology, lock variables are accessed via SoCLC hardware. The SoCLC

consists of one-bit registers to store lock variables and associated control logic to

effectively implement the lock hand-off via interrupt generation, which eliminates

busy-wait problems. In this way, the SoCLC eliminates the use of the main memory

bus for unnecessary spinning and thus enables the memory bandwidth to be available

for other useful work.

xii

On the other hand, unlike the related previous work in the literature, the SoCLC

does not require any special atomic assembly instructions (e.g., compare-and-swap,

test-and-set, load-linked/store-conditional instructions), extended cache protocol(s),

extra cache lines/tags or any other architectural modifications/extensions to the pro-

cessor core. Rather, the SoCLC methodology is a processor/memory/cache-hierarchy

independent solution.

Our experimental results indicate that SoCLC can achieve 37% overall speedup

over traditional locking mechanism in a microbenchmark program with a high con-

tention condition for four processor system. Moreover, with increased memory la-

tency, the speedup of SoCLC for the same microbenchmark is also increased, achiev-

ing up to 107% speedups for a memory latency of 33 clock cycles. We also examine

the false sharing effect as well as increased CS length effect on locking performance.

Another set of experiments have been conducted with a database application program

for which SoCLC has been shown to achieve speedup of 31% in the overall execution

time.

To automate SoCLC design, we have also developed an SoCLC-generator tool,

PARLAK, that is capable of generating parametrized, synthesizable and user specified

configurations of a custom SoCLC. Using PARLAK with .25µ TSMC technology and

a 10ns clock period, we have generated customized SoCLCs from a version for two

processors to a version for four processors occupying up to 37,940 gates of area for

256 lock variables. We have also generated customized SoCLCs for larger number of

xiii

processors with a 50ns clock period; e.g., an SoCLC version for 14 processors occupied

78,240 gates of area for 256 lock variables.

Furthermore, the SoCLC mechanism has been extended to support priority inher-

itance with an immediate priority ceiling protocol (IPCP) implemented in hardware,

which enhances the hard real-time performance of the system. The experimental re-

sults indicate that the SoCLC can achieve up to 43% overall speedups on practical

applications. Furthermore, it has been shown in a robot application that with the

IPCP mechanism integrated into the SoCLC, all of the tasks could meet their dead-

lines (e.g., a high priority task with 250µs worst case response time could complete

its execution in 93µs with SoCLC, however the same task missed its deadline by com-

pleting its execution in 283µs without SoCLC). Therefore, with IPCP support, our

solution can provide better real-time guarantees for real-time systems.

xiv

CHAPTER I

INTRODUCTION

1.1 Problem Statement

Synchronization has always been a fundamental problem in multiprocessor systems.

As multiprocessors run multitasking application software with a real-time operating

system (RTOS), important shared data structures, also called critical sections (CSes),

are accessed for inter-process communication and synchronization events occurring

among the tasks/processors in the system. The consistency of the critical sections

can be guaranteed by a lock variable whose use allows only one execution unit at a

time to access the shared data. However, given the limited communication resources

(e.g., a single memory bus), the locks may easily become a bottleneck of the system:

processors spin on the lock, i.e., busy-wait, until the lock is released. During this

busy-wait time, the amount of useful work is degraded; and, even worse, the lock

owner processor contends with the other spinning processors for the memory bus

and hence the time at which the lock owner releases the lock is delayed, causing

1

L1 L1 L1

PE1 PE2 PE3

Memory

shared
data

task1 task2 task3 task4 task5 task6 task7

Figure 1: Shared data structures may cause contention in a shared-memory multi-
processor system.

additional unpredictable stalls in the system. Figure 1 illustrates typical resource

contention among processing elements (PEs) in a system.

On the other hand, the length of a CS – whether it is long or short – affects

system behavior. In case the CS is long, the locking mechanism should allow the

lock requester task to yield the processor to another task – via a context switch (i.e.,

preemption) – because the lock would be busy for a long time. In case the CS is short,

in which case switching context would be relatively expensive, the locking mechanism

should avoid a context switch and hence spin until the lock is released. Therefore, it

is essential to identify these two (short and long) types of CSes and develop effective

locking mechanisms for both.

As for the long CSes, where context switching is allowed, the priority inversion

problem arises. Priority inversion occurs when a higher priority task is blocked on a

2

lock owned by a lower priority task. Because the blocking time is unbounded, i.e.,

unpredictable, it is vital to prevent priority inversion in a real-time system so that

real-time guarantees can still be achieved.

One other aim is to have the solution be processor-/cache-independent. Unlike

previous work that requires special synchronization instruction support, special caches

or special micro-architectural extensions to the processor core, we aim to develop a

hardware solution that works with different types of processors (i.e., for heterogeneous

multi-processor systems), even with processors that do not have special synchroniza-

tion instructions or even with processors having no caches at all. Moreover, the

hardware solution needs to be reusable, scalable, customizable and reconfigurable in

a time-efficient way for a target SoC.

1.2 Thesis Contributions

This thesis presents a hardware solution to lock synchronization in a shared-memory

multiprocessor SoC. Our solution is provided in the form of an intellectual prop-

erty (IP) hardware unit which we call the SoC Lock Cache (SoCLC). The SoCLC

resolves critical section interactions among multiple PEs/tasks, provides an effec-

tive lock hand-off, eliminates the need for special synchronization instructions or for

specialized caches/micro-architectural units, provides a more predictable real-time

solution and improves the performance criteria in terms of lock latency, lock delay

and bandwidth consumption in the system.

3

Moreover, the SoCLC can be easily integrated into an SoC via the system bus.

Unlike the previous work presented in Chapter 2, the SoCLC does not require any

special assembly instructions, extended cache protocol, extra cache lines/tags or any

other architectural modifications/extensions to the processor core. Rather, SoCLC is

a PE/memory/cache-hierarchy independent solution.

One other contribution of this thesis is the priority inheritance (with immediate

priority ceiling protocol) implementation which is employed into the SoCLC mech-

anism in hardware. Our implementation improves the performance of the system,

prevents unbounded blockings and chained blockings. Furthermore, our implementa-

tion is ported to custom application specific interface (API) calls within the RTOS;

therefore, from the application programmer’s perspective, our custom SoCLC with

priority inheritance looks like any other RTOS component.

We also measure the area cost of our hardware mechanism. We address cus-

tomizability/reusability problems with the SoCLC hardware mechanism and, for this

purpose, present the parametrized lock cache generator, which we call PARLAK.

PARLAK is an IP-generator tool that can be used to generate custom, synthesiz-

able SoCLC architectures for a target SoC. Two experimental configurations with

(1) multiple Motorola PowerPC755 processors and with (2) multiple ARM9TDMI

processors connected to the SoCLC via the system bus have been set up and sim-

ulated. Performance results of our approach are given for this experimental setup.

Several synthesizable versions of the SoCLC architecture have been generated using

4

PARLAK. The output files generated by PARLAK have been directly synthesized by

the Synopsys Design Compiler, and the relevant area results of these configurations

are presented in Chapter 6.

In short, SoCLC is a high performance hardware solution that addresses lock-

based synchronization for a shared-memory multiprocessor SoC. Furthermore, using

the PARLAK tool, scalable, easily applicable, customizable versions of the SoCLC

can be generated for a target SoC.

1.3 Thesis Organization and Roadmap

This thesis is organized as follows. Chapter 2 presents lock-based synchronization

primitives, software and hardware based synchronization schemes in previous work

and describes other operating system related issues such as blocking/non-blocking

synchronization and the priority inversion problem. Chapter 3 presents our method-

ology and the basic SoCLC hardware mechanism. Chapter 4 presents our priority in-

heritance hardware support as part of the SoCLC. Chapter 5 presents an IP-generator

tool that can generate synthesizable SoCLC architectures. Chapter 6 presents the per-

formance results of the basic SoCLC mechanism and the priority inheritance hardware

mechanism as well as SoCLC synthesis results using PARLAK. Finally, Chapter 7

summarizes the thesis.

5

CHAPTER II

BACKGROUND AND PREVIOUS WORK

Locks are associated with shared/critical data that needs to be kept consistent among

multiple tasks/processes executing on one or more processing elements (PEs). If one

of the PEs wants to access a shared data, the PE first has to acquire a lock variable

and only then will the PE modify/read the shared data. If there are other PEs

requiring access to the same shared data, then they have to busy-wait to acquire the

lock. Busy-waiting occurs when PEs continuously poll a lock variable – thus using

up valuable communication bandwidth – until they acquire the lock themselves. As

such, the consistency of the shared data is preserved at a cost of increased contention

among the PEs and decreased amount of useful work in the system.

2.1 Locking Schemes

Before proceeding further, we define two important performance criteria often used

to compare locking schemes: lock delay and lock latency.

6

Definition 2.1.1 Lock Delay. Given one or more PEs waiting for a lock, lock delay

is the time between when the lock is released and when the next spinning or otherwise

waiting PE acquires the lock. 2

Example 2.1.1 Consider a web-server application program which consists of multiple

client threads Ci (i=1,2,...,n) and server threads Sj (j=1,2,...,m). Let’s say a lock is being

held by S1. Also assume that there are 10 client threads, C1,C2,C3,...,C10 that attempt

to acquire the same lock in order to safely read from the shared memory space of the

server S1. Clearly, the clients will fail to acquire the lock. When the server thread S1

releases the lock, one client thread, say C3 will contend with the other waiting clients

(C1,C2,C4,...,C10) and will acquire the lock first. The lock delay time spent by C3 is the

time between when S1 releases the lock and when C3 acquires the lock. 2

Definition 2.1.2 Lock Latency. The time required for a PE to acquire a lock in the

absence of contention. 2

Example 2.1.2 Again consider the same application in Example 1, but where the lock

is available (the lock is not in use and there is no request to acquire the lock). If client C3

attempts to acquire the lock, C3 will be successful. The lock latency is the time between

when C3 attempts to acquire the lock and when C3 acquires the lock. 2

Next we present the common hardware instructions that can be used to implement

the traditional locking mechanism in software.

7

2.1.1 Hardware Instructions for Locking

A PE that performs a locking operation reads a lock value and checks whether the

lock is free or not. If the lock is free, then the PE can acquire the lock by setting

the lock value to a ‘1’. Because the lock variable itself is a shared resource, its access

should be mutually exclusive, so as to provide coherent locking of the lock variable

among multiple requesters.

To guarantee that only one PE is able to obtain the lock, special hardware in-

structions can be used to implement mutually exclusive lock access. In the next

subsections, we examine the two types of these hardware instructions: (1) a single

test-and-set instruction and (2) a load-linked/store-conditional pair of instructions.

2.1.1.1 Test-and-Set Instruction

The accesses to lock variables can be made completely atomic by use of a special

instruction ensuring consistent updates on a lock variable. A test-and-set instruction

is a primitive hardware instruction that serves this purpose. The test-and-set in-

struction reads the value at a location of a lock variable in memory and, if the lock is

available, writes a value to the location atomically such that the lock is now acquired.

All practical implementations (more than five) of the test-and-set instruction ex-

amined by the author of this thesis use a ‘0’ to indicate that the lock is free and a ‘1’

to indicate that the lock is busy. Furthermore, each read of the lock variable is always

followed unconditionally by a write of a ‘1’, i.e., regardless of the lock value read out.

In other words, the read and the write accesses to that location are successive and

8

indivisible. The read access corresponds to the test operation and the write access

corresponds to the set operation of the test-and-set instruction, respectively. Note

that the test-and-set instruction returns the original value read. If a processor reads

‘0’ (test) from a location using a test-and-set instruction, then the successive write

(set) operation sets the lock variable to a ‘1’. Because the value returned is ‘0’, the

lock is acquired. However, if the processor reads ‘1’ (test), then test-and-set returns

‘1’, in which case the processor fails to acquire the lock.

2.1.1.2 LL/SC Instructions

General purpose processors like MIPS, Alpha AXP and PowerPC1 architectures sup-

port the LL/SC (load linked/store conditional) pair of instructions. The LL and SC

instructions are paired in such a way that both of them must reference the same

physical address – effective address (EA) – location in memory, otherwise execution

of these instructions is undefined. Moreover, their execution establishes a breakable

link between the two instructions. The status of the link (whether the link exists or

not) between LL and SC is kept in a special LL/SC register of each processor. If an

external device (e.g., a second processor) has modified the value stored at the EA or

an exception has occurred in the meanwhile (i.e., after LL but before SC), the link

between LL and the subsequent SC will be broken and the special LL/SC register

(which holds the status of the link between LL and the subsequent SC) is cleared.

1“LDQ L” and “STQ C” instructions in Alpha AXP and “lwarx” and “stwcx.” instructions in
PowerPC.

9

In this case, the SC instruction fails to execute. If the link is not broken, the SC

instruction will succeed.

With the functionality brought by these special instructions, traditional synchro-

nization operations have been developed in software, such as test-and-set, compare-

and-swap, fetch-and-increment and fetch-and-add [30]. Figure 2 depicts an example

usage of LL/SC instructions in the MIPS instruction set [15] implementing the func-

tionality of the test-and-set instruction.

test: LL R2, (R1) ; read lock

ORI R3, R2, 1 ;

BEQ R3, R2, test ; spin if lock is busy

SC R3, (R1) ; try to acquire lock

BEQ R3, 0, test ; spin if SC fails

Figure 2: MIPS assembly code for test-and-set functionality that is implemented
using the LL/SC pair of instructions.

2.1.2 Traditional Spin-Lock

The traditional spin-lock mechanism is the lock acquire mechanism that uses the

test-and-set algorithm. Figure 3 depicts a spin-lock using a test-and-set instruction,

and Figure 2 depicts a spin-lock using the LL/SC pair of instructions.

The LL/SC instructions are used to test the lock value – whether it is free or

busy – and atomically set the lock in case it is free or go back to test again in case

it is busy. If all attempts to acquire the lock always make appropriate use of LL and

10

SC instructions, this prevents more than one processor from modifying the lock at

the same time. In this way, the mutual exclusion of lock access is guaranteed.

Lock acquire:

while(test-and-set(lock)==1) ;

Figure 3: Spin-lock algorithm using test-and-set instruction.

In Figure 2, the LL instruction simply loads the lock value into the register R2

and sets a special LL/SC register for the EA of the lock; here, the EA of the lock is

the address stored in the register R1. Thus, R2 will have the lock value which will be

‘0’ if the lock is free or ‘1’ if lock is busy. Next, R3 is set to ‘1’ by the ORI instruction

and then compared with R2 by the BEQ instruction. If R2 were ‘1’, meaning the

lock is busy, then the program will continue from the test: label, beginning with the

LL instruction again. However, if R2 were ‘0’, then program would continue with

the SC instruction. The SC instruction will store ‘1’ into the EA location (which is

pointed by R1) only if the special LL/SC register is still set. If the link register is

cleared, which implies that another PE has written to the same EA location, SC does

not store a ‘1’ to the EA. The target register, R3, will indicate if the SC has failed

(R3 == 0) or succeeded (R3 == 1). If SC has failed, the subsequent instruction,

BEQ R3, R2, test, causes the program to loop back to the test label again; otherwise,

the lock has been held and the PE can access the shared data.

Looping back and reading the lock value to test the lock value again can dramat-

ically increase memory traffic. This increase is due to lock releases followed by cache

invalidations invoking all the spinning processors unnecessarily to update their cache

11

lines having the old copy of the lock. These invalidations cause waste of memory bus

cycles (bandwidth consumption) and prevent other PEs from using the memory bus

to do useful work. Even worse, spinning may cause an extra delay for the lock holder

after it decides to release the lock, because the lock holder also contends for the bus

with the other spinning processors. In a multi-stage network, such a condition may

result in the so-called “hot-spot” problem; i.e., one specific memory unit (that con-

tains the lock variable) becomes the hot node in the network, which causes congestion

on the interconnect of the hot node and, therefore, severe performance degradation

in the affected system [36].

To prevent limited memory and/or communication resources from becoming bot-

tlenecks, effective synchronization mechanisms are necessary. These mechanisms can

be categorized into two groups: (1) hardware-based solutions and (2) software-based

solutions. The hardware-based solutions include cache-based mechanisms, queue-

based mechanisms and several speculative locking schemes. Software-based solutions,

on the other hand, include several spin-lock alternatives such as spin-on-read and

delayed spin loops. Software-based solutions also include several queue-based algo-

rithms such as Anderson’s array-based locks [5], Graunke and Thakkar’s locks [13],

MCS locks [28] and LH-and-M locks [25]. The following sections explain these syn-

chronization mechanisms and discuss their drawbacks and/or limitations.

12

2.2 Hardware Based Synchronization Mechanisms

It has been shown that a hardware solution brings a much better performance im-

provement [17], [18] than the algorithmic locking alternatives developed in software.

Several cache-based locking primitives were developed and evaluated [12], [40], [41] as

a hardware solution to the synchronization problem. These different approaches ex-

amine synchronization in terms of busy-waiting of the processors, intrinsic latency for

accesses to the synchronization variables in the memory and the bus and/or network

contention generated by these accesses. There have been other hardware approaches

to address the synchronization problems speculatively, such as transactional mem-

ory [17], speculative lock elision [38] and speculative synchronization [26]. However,

most of the hardware solutions introduced are nothing but improvements on processor

caches in the form of special caches with a new cache protocol and/or modifications

and extensions to the processor core.

2.2.1 Cache Based Synchronization

As a hardware solution, one previous work concentrates on special cache schemes

where they implement hardware FIFO queues of the lock requesters using cache

lines [41]. Their work combines synchronization with the cache coherency proto-

col, which allows local spinning in the cache. However, the implementation requires

extra states in the cache controller. For instance, the lock variables and the state

information of these lock variables have to be kept in the cache lines, which requires a

larger cache tag and brings a further complexity in the cache/memory system design.

13

There has been other previous work implementing queues in hardware such as

queue on lock bit (QOLB)2 [12], [19]. QOLB keeps the waiting processors as a queue

in the cache line and enables local spinning on cache. One feature of QOLB is to

take advantage of collocation so that the critical section, i.e., the shared data can be

transferred to the waiting processor at the same time with the lock hand-off. However,

QOLB requires extra hardware mechanisms, such as direct cache-to-cache transfer

during hand-off and queue states to be kept in the cache lines. QOLB also assumes

that the coherency protocol is not activated when multiple processor nodes operate

on the same address location. Moreover, the benefit of collocation is dependent on

the cache line size; if the shared data does not fit in the cache line, that shared data

will not benefit from collocation [18].

2.2.2 Transactional Memory

Transactional memory (TM) is a generalization of the LL/SC pair of instructions [17].

A transaction is a finite sequence of instructions executed by a single process spec-

ulatively until an access conflict is detected (resulting in a squash and a roll-back)

or until the transaction is validated/committed. In the conventional scheme, LL/SC

provides an atomic access to a single shared-memory location. TM, however, requires

special assembly instructions by which atomic accesses to multiple independent ad-

dresses can be performed. As such, a critical section does not need to be protected

by a lock variable any more (enabling a lock-free synchronization).

2Originally called queue on synch bit (QOSB).

14

However, the consistency of the shared data within a critical section is provided

by the special transactional memory instructions operating on the shared data ad-

dresses. As such, the shared data in the critical section can themselves be accessed

atomically using the special transactional memory instructions. The cost of TM is

that it needs (1) special processor instruction support to handle speculative execution

and (2) a separate cache (inside the processor and other than the regular Level one

(L1) cache) with an extended cache coherency protocol to support the transactional

memory operations for detecting access conflicts and buffering the speculative data.

These inflexible requirements make it expensive to apply the TM approach, for in-

stance, to a heterogeneous multiprocessor SoC consisting of different types of general

purpose processors: the TM approach requires modifications to the processor instruc-

tion set and the cache hierarchy of each processor in the SoC. Other drawbacks of

the TM approach are that it requires a significant programming effort and it does not

guarantee forward progress, which might be a serious problem for long transactions

having large data sets (e.g., long critical sections).

2.2.3 Speculative Lock Elision

Similar to TM, speculative lock elision (SLE) can provide, in certain situations, spec-

ulative synchronization without acquiring the lock (i.e., in a lock-free manner); how-

ever, in the worst case SLE requires the acquisition of a lock [38]. SLE is advanta-

geous over TM in that the SLE mechanism is transparent to the programmer (there

is no programming effort) and SLE does not require special instructions or dedicated

15

cache/cache-coherency protocol. Note that, however, SLE assumes an invalidation-

based cache protocol to detect atomicity violations.

However, SLE does not guarantee forward progress without roll-back either, and

the write-buffer/cache size required to hold the speculatively accessed data is still a

concern. Forward progress guarantee is important, as the data conflicts or resource

limitations cause squashes, in which case the SLE mechanism will be reduced to

the traditional spin-lock mechanism. Therefore, SLE does not perform well in the

presence of data conflicts. Moreover, SLE requires a hardware support within the

processor core: modifications on the write-buffer and a dedicated hardware unit to

detect misspeculations.

Note that an extension to SLE has been proposed by the same authors: transac-

tional lock removal (TLR) [39]. In the TLR approach, the tasks execute speculatively

(using the SLE mechanism) and the speculative data is buffered locally in a write

buffer. If any data conflicts occur (e.g., a cache miss) during the speculative execu-

tion, then these conflicts are resolved dynamically using timestamps. All speculative

data requests (e.g., due to a cache miss) between processor caches are assigned times-

tamps. The processor with the earliest timestamp wins the conflict and commits the

speculative data from its write buffer into its cache. (Note that the speculative data

committed into the cache is kept coherent at all levels of caches from L1 to L2,...,Ln

among the PEs in the system by use of a cache coherency protocol.) The processors

with older timestamps lose the conflict and restart.

16

The cost of TLR (in addition to the cost of SLE – TLR requires SLE support) is a

hardware queue for buffering the incoming timestamped requests, a new cache state

to distinguish the speculative data being processed under TLR and finally dedicated

TLR hardware support within the cache coherence controller. Also note that TLR

assumes ability to retain an exclusive ownership of a cache block.

2.2.4 Speculative Synchronization Unit

A speculative synchronization unit (SSU), on the other hand, is differentiated from

SLE and TM in that SSU guarantees forward progress [26]. However, SSU is not a

lock-free mechanism because it requires lock acquisition, which may cause convoying

problems as the speculative tasks cannot commit before the lock holder releases the

lock.

Note that an adaptive extension of SSU that can utilize the benefits of SLE is

discussed in [27]. The adaptive approach may implement lock-based synchronization

in the presence of conflicts/overflows and may implement the lock-free synchronization

in the absence of conflicts/overflows [27].

As far as the hardware cost is concerned, the SSU mechanism also imposes mod-

ifications to the memory hierarchy in the form of special cache tags/bits, an extra

cache line for speculative synchronization variables and some hardware logic to be

integrated into the cache hierarchy of each processor in the system.

17

2.2.5 Speculative Lock Reordering

One other speculative approach, speculative lock reordering (SLR) [43], exploits the

fact that the critical sections guarded by the same lock can execute out-of-order.

SLR allows the tasks to execute CSes speculatively and records any data dependency

violations during this speculative execution. Then, using the record of dependency

violations, SLR detects the data dependencies among the tasks and determines a

commit order that would enable a smaller number of tasks to be squashed/restarted.

This scheme is implemented with a speculation co-processor connected to the caches

and to the CPU core, speculation hardware support within the caches and a commit

order generator hardware unit connected to each processor [43].

Also note that the SLR approach is similar to TLR in that they can both resolve

conflicts and hence avoid unnecessary squashes/restarts. However, while TLR solves

this problem by using timestamps, SLR solves the problem by reordering the tasks:

the reordering is determined by finding the data dependencies among tasks.

2.2.6 Summary of Hardware Based Mechanisms

In general, the hardware approaches solve the problem of spin-lock overhead by al-

lowing the PEs spin locally in their caches and by implementing the lock hand off

via special cache schemes (e.g., cache-to-cache transfer and extra cache states to keep

track of lock requests) [19], [41]. Dedicated hardware to detect data violations in case

of speculative approaches is also required [27], [38], [39]. In short, these approaches

impose modifications to the caches/cache protocols in the system and require special

18

microarchitectural extensions to the processor core, which restricts the applicability

of these approaches into general purpose processors. Our approach (described later

in Chapter 3), on the other hand, does not require any modifications to the processor

core but rather is a custom hardware unit that can be used even with a primitive

microcontroller with no caches at all while still achieving performance similar to that

of the other hardware approaches presented in this section.

Next, we present the software-based synchronization mechanisms.

2.3 Software Based Synchronization Mechanisms

2.3.1 Spin on Read

To reduce the burden on the memory bus during spinning and busy-waiting, the

spin-on-read (also called test-and-test-and-set) construct has been proposed [42]. In

spin-on-read, each PE spins locally on its cache for the lock variable (i.e., test),

before actually attempting to acquire the lock (i.e., test-and-set). As such, the bus

consumption can be reduced during spinning. However, as far as the lock hand-off

is concerned, the PEs still cause unnecessary memory traffic. The spinning PEs are

invoked by the cache-invalidations upon a lock release and contend with each other

to acquire the lock by executing test-and-set. However, only one of the PEs acquires

the lock, while the rest of the PEs cause waste of bus cycles. Especially for small

critical sections, spin-on-read can render similar performance characteristics as the

spin-lock (Figure 3).

19

To remedy this problem, exponential/proportional back off has been applied into

the spin loops [5], [28]. Delays can be inserted after noticing the release of a lock

or between each reference to the lock variable. As such, the PEs are delayed before

actually attempting to acquire the lock resulting in reduced contention. However,

the delays in the spin loops may cause the lock latency to be high, which is not

advantageous for low-contention conditions. Nevertheless, with its relatively easy

implementation, spin-on-read with/without back off has been popular and evaluated

in the literature as a base technique.

2.3.2 Ticket Lock

In case of spin-on-read, although all spinning PEs crowd on the released lock, only

one PE will acquire the lock and the rest will be wasting communication bandwidth

by performing a test-and-set. To decrease the effects of invalidations, the ticket lock

approach has been introduced [28]. The ticket lock mechanism uses two counters:

one counter is used to count the number of releases of a lock and the other counter

is used to count the number of locking requests. When a PE releases a lock, the

release counter of the lock is incremented. When a PE attempts to acquire a lock,

it performs a fetch-and-increment operation on the request counter of the lock and

thereby obtains a request number (the current value of the request number). Each

spinning PE compares its request number with the release counter: if the release

counter equals the PE’s request number, then the PE can stop spinning and acquire

20

the lock. Note that, unlike spin-on-read, the ticket lock supports a first-come-first-out

(FIFO) based acquisition, providing a fair lock hand-off.

However, the ticket lock mechanism still causes traffic due to polling a common

memory location: the release counter. To reduce this traffic, proportional delay has

been inserted into the spin loops between the references to the release counter. The

delay is set proportional to the difference between the values of the request and

release counters. However, the delay time cannot be optimally determined due to

unpredictable critical section lengths.

2.3.3 Anderson’s Array Based Locks

Anderson proposed an array-based queuing algorithm that allows each PE to spin

on a different memory location; thus, PEs spin locally on their caches without using

the memory bus [5]. The array based queuing algorithm also requires the fetch-and-

increment primitive for the PEs to obtain a sequence number (which is incremented

by each newly arriving PE) to atomically enqueue themselves into a chain of waiting

PEs. A PE releases a held lock by notifying the next PE in the chain of that lock.

The cost of lock hand-off is an invalidation and a read miss by the next PE before

acquiring the lock.

One drawback of this approach is that it requires a fixed memory space per lock

(i.e., space due to the distinct memory locations dedicated to each PE for local spin-

ning). Moreover, because the queuing/dequeuing operations take time, the algorithm

21

performs poor in terms of lock latency, which makes array-based queuing unattractive

for low contention conditions.

2.3.4 Graunke and Thakkar’s Locks

Independent from Anderson, a similar array-based queuing algorithm has been de-

veloped by Graunke and Thakkar [13]. The difference is in the implementation their

algorithm. The algorithm represents the PEs in an array such that each element of

the array flags whether the corresponding PE is the owner of the lock or not. Each

lock requester PE spins on the array element that belongs to the PE ahead of itself.

Upon a lock release, the owner PE updates its array element (on which the next

PE is spinning) and thereby invokes the next PE. Note that Graunke and Thakkar’s

locks require the fetch-and-store primitive (instead of fetch-and-increment used in

Anderson’s locks).

The drawbacks of this approach are the same as with Anderson’s approach: fixed

memory space required to enable local spinning at distinct addresses and poor lock

latency for low contention conditions.

2.3.5 Queue Based Locks

2.3.5.1 MCS Locks

Mellor-Crummey and Scott (MCS) introduce an algorithm that generates a unique

linked-list queue – per lock – for the PEs holding and waiting for each lock [28].

The MCS algorithm uses the fetch-and-store primitive and the compare-and-swap

22

primitive to guarantee atomic FIFO ordering of the lock requesters. The fetch-and-

store and the compare-and-swap primitives can be implemented using the LL/SC

instructions as described previously in Chapter 2.1.1.2.

Figure 4 shows the MCS algorithm pseudo code. The lock requester PEs are linked

to each other via software pointers. Each PE holds a record (of type MCSnode in

Figure 4) that consists of a flag variable on which the PE spins locally and a software

pointer pointing to the record of the next PE.

Similar to array based mechanisms, PEs spin locally on their flags. Upon a lock

release call, the lock holder PE unsets the flag of the processor behind itself, invoking

the next PE to acquire the lock. Note that the MCS algorithm requires less memory

space than the array-based alternatives.

MCS is a scalable algorithm; it retains a good performance behavior when there

is contention in the system. However, the lock latency is high, showing a constant

software overhead due the complexity of the algorithm. Also, note that the lock hand-

off strictly obeys a FIFO order, so lock hand-off cannot be prioritized among PEs

nor can fast arbitrary (i.e., non-FiFO and non-priority) lock acquisition (especially if

parallelism is high) be realized. (Note that as described in version (1) of Chapter 3.3.2,

our approach can support fast arbitrary lock acquisition.)

MCS seems to be one of the best software locking algorithms appearing in the

literature. Therefore, we compare SoCLC approach with MCS locks later in Chapter 6

23

1 type MCSnode{
2 MCSnode *next;
3 WORD flag;
4 };
5

6 MCSnode* lock = NULL; //initialize lock to NULL
7

8 MCS LockAcquire(MCSnode** lock, MCSnode* mynode)
9 {
10 MCSnode *prevnode;
11 mynode−>next = NULL; //mynode becomes the last in queue
12 prevnode = fetch and store(lock, mynode); //atomically do the following:
13 //prevnode = lock
14 //lock = mynode
15 IF prevnode != NULL THEN //if lock is busy
16 mynode−>flag = TRUE;
17 prevnode−>next = mynode;
18 while(mynode−>flag); //spin until lock is released
19 ENDIF

20 }
21

22 MCS LockRelease(MCSnode** lock, MCSnode* mynode)
23 {
24 IF mynode−>next == NULL THEN
25 IF compare and swap(lock,mynode,NULL) THEN
26 return;
27 ENDIF

28 while(mynode−>next==NULL);
29 ENDIF

30 mynode−>next−>flag = FALSE;
31 }

Figure 4: MCS algorithm pseudo code.

24

quantitatively. However, note that it has been shown in [49] that MCS does worse than

tournament barriers for a cache-only memory architecture (COMA) based system.

2.3.5.2 LH and M Locks

LH and M locks are also implemented using a similar method to MCS locks, except

that LH and M locks use the compare-and-swap primitive and, as claimed in [25],

LH locks perform better than MCS locks in the presence of contention at a cost of

increased lock latency (note that the increased lock latency problem is reduced in the

case of M locks, but with a more complex algorithm).

2.3.6 Reactive Synchronization

A reactive synchronization mechanism has been introduced in [24]. In this approach,

different software based mechanisms have been dynamically interchanged depending

on the contention level of the system. For example, during a low contention execu-

tion, the test-and-set with exponential back off is used and during a high contention

execution, queue based locking is used.

2.3.7 Summary of Software Based Mechanisms

In summary, test-and-set or spin-on-read mechanisms suffer from wasting useful bus

cycles due to hold-cycles (i.e., cache response time due to simultaneous cache in-

validations in case of a lock release). Therefore, test-and-set and spin-on-read both

generate unnecessary memory traffic and thus do not scale well under contention.

25

The array- and queue-based algorithms, on the other hand, allow each PE to spin

on its local address (rather than a single effective address) and provide a FIFO based

notification between the lock releaser and the lock requester that is at the head of the

queue when a lock is released. These queue-based alternatives bring better perfor-

mance for high contention systems; however, they introduce large overheads in cases

without contention and cause an increase in lock latency. Furthermore, as discussed

in [5], queuing in shared memory has other negative effects such as convoying. For

example, if a task holding a lock is preempted, every other task spinning behind the

preempted task in the chain will have to wait for the preempted task to be resched-

uled to release the lock. Also, note that queue-based alternatives require a specific

atomic instruction (fetch-and-store, compare-and-swap) and a complex algorithmic

implementation.

2.4 Performances of the Mechanisms

2.4.1 Benchmark Programs

Some of the application programs used in the previous work in evaluating the per-

formance of the mechanisms have been chosen from the SPLASH/SPLASH-II bench-

mark suite (which includes scientific parallel applications developed for shared mem-

ory multiprocessors) [45], [52] and from Olden [9]. Microbenchmark programs, in-

cluding spin-loop benchmark and counting, producer/consumer, doubly-linked list

benchmarks, have also been used. In evaluating SoCLC approach, we have chosen

the spin-loop microbenchmark program (and measured performance under varying

26

parameters such as CS length and memory latency), a multi-tasking database ap-

plication and a robot application, all of which will be described later in Chapter 6.

Similar to the benchmarks used by the previous approaches, our benchmarks include

high contention scenarios that can be used to measure locking performance.

2.4.2 Performance Results

Among the software solutions outlined in Chapter 2.3, MCS has been one of the

most popular algorithms showing relatively better performance when compared to

the other software based approaches described in Sections 2.3.1 through 2.3.3. For

this reason, MCS has been used as a competitive mechanism for its hardware counter-

parts [19], [39]. On the other hand, the test-and-test-and-set mechanism (described

in Section 2.3.1) and test-and-set with exponential back off have also been cited in

the literature as the best approaches for performance comparison purposes. However,

because MCS has been shown to perform better than these approaches, we compare

against MCS rather than compare against test-and-test-and-set or test-and-set with

exponential back off.

In this thesis, as presented in Chapter 6, we evaluate the performance of our

approach when compared to the traditional spin-lock mechanism implemented with

LL/SC instructions and when compared to MCS locks.

On the other hand, although each previous work has different simulation environ-

ments and application sets, albeit early, it may be remarkable to report here that

27

QOLB has been shown to achieve 1.5X speedup3 [19]; SSU has been shown to achieve

1.08X speedup – 7.4% reduction as indicated in [27] – when compared to the tradi-

tional spin-lock and the combined support of SLE and TLR for a 16 processor system

has been shown to achieve up to 1.47X speedup [39] when compared to the spin-on-

read mechanism. As it will be shown in Chapter 6, our results for a four-processor

system show similar performance speedups (e.g., up to 1.37X) without using extensive

in-processor hardware modifications at all.

Our approach constitutes a paradigm shift in the context of lock-based synchro-

nization for multiprocessor shared memory systems. SoCLC approach eliminates

the busy-wait overheads due to polling via a simple, stand-alone hardware without

any constant software overhead present with previous software-based approaches or

without any extra within-processor core modification requirements present with pre-

vious hardware-based approaches. As will be described later in Chapter 3, SoCLC

distributes the locking functionality between hardware and software in an efficient

manner with low cost.

In this thesis, we also consider task preemption (context switch) events under a

real-time operating system. As the CS length is increased, so does the waiting time

for the tasks blocked on the lock variable guarding that CS. Therefore, the waiting

tasks should be allowed to yield the PE for long CSes, in which case, the tasks are

3Please see [16] for the definition of speedup that we used in our calculations.

28

not blocked on the lock variable. In the next section, we identify some blocking and

non-blocking synchronization approaches that appear in the literature.

2.5 Blocking versus Non-blocking Synchronization

So far, we have discussed previous work in terms of reducing the overhead of the

busy-wait problem, where the waiting processor spins on executing the synchroniza-

tion primitive/algorithm. Busy-waiting (i.e., spinning) may be the preferred synchro-

nization construct to implement if the waiting period is short. If the waiting period

is long, however, it may be more advantageous to implement the blocking synchro-

nization construct instead, where the waiting process/task suspends itself and yields

the processor for other tasks to run and do useful work. However, blocking intro-

duces an overhead associated with switching context, which involves a function call

at the operating system level. Therefore, the busy-wait construct may be preferred

over the blocking (i.e., preemptive) construct if the waiting time is less than the over-

head introduced by suspending the waiting task and resuming the new ready task

afterward.

Several blocking and non-blocking algorithms have been implemented and com-

pared in the literature [31], [32], [33], [51], [20], where it has been shown that non-

blocking (preemption-safe) locking outperforms blocking as parallelism (e.g., number

of tasks per processor) is increased. This is because, especially in queue-based lock-

ing, the waiting tasks impose a strict FIFO order and this ordering may cause delays

when, for example, a lock holder at the head of a queue is preempted. This may

29

degrade performance as all the other waiting tasks cannot be scheduled to do useful

work until the lock holder is rescheduled and releases the lock.

On the other hand, in the case of long critical sections (CSes), non-preemption of

waiting tasks may cause inefficient CPU utilization because disallowing preemption

may incur stalls during the execution time of a long critical section holding a lock

for which a task on another processor is waiting. In such a case, the lock will not be

released for a long time, and the waiting task on the other processor will occupy the

CPU resources, causing performance degradation. Therefore, it is desirable to enable

the scheduler to preempt those tasks that are waiting for the lock and resume other

tasks ready to run on the CPU, which makes the CPU resources available for other

tasks in the system while the suspended tasks are waiting for the lock release.

2.6 Priority Inversion

Task scheduling involves additional concerns due to the fact that tasks share resources.

In a parallel system with a preemptive RTOS, if a high priority task is blocked by

lower priority tasks (due to a common CS), the priority inversion problem occurs.

The consistency of shared data is maintained (by use of a lock variable) at a cost of

serialized accesses to the shared resources, i.e., no more than one task can access a

shared resource at the same time. This may lead to the following situation. A low

priority task may have accessed some shared data before a high priority task attempts

to access the same shared data, in which case the high priority task is forced to wait

for the low priority task. Even worse, there might a middle priority task that preempts

30

the low priority task before releasing the lock, causing unpredictable and unacceptable

delays for the high priority task. A detailed example of the priority inversion problem

is given in Example 4.1.1 of Chapter 4.

The priority inversion problem is unavoidable when lock-based synchronization

(i.e., mutual exclusion) is used to maintain consistency; however, it is possible to

bound the waiting time and thereby avoiding unpredictable delays. Previous work

has addressed the priority inversion problem and proposed the priority inheritance

solution with priority inheritance protocols for uniprocessor systems [44] and multi-

processor systems [37], [10]. The proposed priority ceiling protocols in [37] and [10]

avoid unbounded blocking and prevent deadlocks.

In this thesis, we present a solution to the priority inversion problem in the context

of a multi-processor SoC by integrating a priority inheritance protocol, specifically, the

immediate priority ceiling protocol (IPCP), implemented in hardware. Our approach

provides higher performance and better predictability for a real-time system on an

SoC. The IPCP is integrated with the SoCLC, which is a specialized custom hardware

unit realizing effective lock-based synchronization for a multiprocessor shared-memory

SoC.

2.7 Summary

In this chapter, we presented how a traditional locking algorithm, spin-lock, is im-

plemented, and identified the busy-wait problem caused by spin-lock. We explained

different software-based and hardware-based approaches presented in prior work as

31

solutions to the problems associated with the traditional spin-lock approach; we fur-

ther introduced some drawbacks and/or limitations of each of the prior approaches.

We also stated the difference between blocking and non-blocking synchronization

constructs and why it is important to distinguish the two. Finally, we presented the

priority inversion problem and what support we will add into SoCLC to remedy this

problem.

In the next chapter, we present our methodology and the basic SoCLC architec-

ture.

32

CHAPTER III

BASIC LOCK CACHE DESIGN AND

OPERATION

3.1 Methodology

A locking scheme (typically using lock variables) provides atomic access to shared

memory locations through which multiple execution units (processes/threads/tasks)

in an application program can interact.

We have expressed in Chapter 2 that blocking synchronization renders an overhead

associated with switching task context and that blocking was preferred over busy-wait

if the CS length (equivalently, the waiting time for the lock to be released) were long.

In this context, we match the busy-wait approach with short critical sections and

the blocking approach with long critical sections as the more advantageous construct

to implement. Our hardware architecture, SoC Lock Cache, is designed to support

both types of lock synchronization (blocking and non-blocking) constructs effectively.

Therefore, our solution addresses two different types of critical section interactions,

33

namely, (1) short CSes and (2) long CSes. Before going into detail about the lock

synchronization mechanism, we first clarify the difference between a long CS and a

short CS.

Definition 3.1.1 Short CS. In a short CS, the duration of execution on the shared

data structure is fine grained, that is, the time between the lock acquisition and release

is short (e.g., less than 1000 clock cycles). 2

Definition 3.1.2 Long CS. In a long CS, the duration of execution on the shared data

structure is coarse grained, that is, the time between the lock acquisition and release is

long (e.g., more than 1000 clock cycles). 2

For short CSes, the execution units which the SoCLC tracks are the PEs; however,

for long CSes, the execution units which the SoCLC tracks are the tasks. In the case

of a short CS (i.e., for non-blocking synchronization), if a task fails to acquire the lock

variable associated with the short CS, the task does not yield the PE; hence, the task

running on the PE does not change until after the requested lock is obtained. For

this reason, since keeping track of PEs also inherently keeps track of tasks (i.e., the

task executing on the PE), for short CSes the SoCLC keeps track of PEs requesting

lock variables associated with short CSes.

However, for long CSes (i.e., for blocking synchronization), if a task fails to acquire

a lock variable, the task yields the PE to another task; therefore, SoCLC needs to

know which task has accessed a lock variable. (Note that, as explained in detail

34

later in Sections 3.2.2 and 3.4, SoCLC keeps track of tasks for long CSes via use of a

combination of hardware and software.)

We assume that the user decides whether a particular CS is long or short, which

can be especially difficult when considering code with data dependent execution

length. Therefore, we provide to the user memory mapped lock addresses which

are only for short CSes; we also provide a distinct set of memory mapped lock ad-

dresses which are only for long CSes. Besides the combined support of the short

and long CSes (i.e., both blocking and non-blocking lock variable accesses) outlined

above, we have realized the following key implementations as well. First, our ap-

proach spreads the locking algorithm across both software and hardware [34], thus

introducing a hybrid solution to the lock synchronization problem. This spreading

or distribution of the decision making can be seen in Figure 5. For example, some

of the software-oriented overheads (e.g., memory bandwidth consumption in case of

busy-waiting illustrated in bold-face in Figure 5) can be reduced by a specific hard-

ware support (e.g., interrupt generation upon a lock release can enable a task not to

spin/busy-wait but just sleep until being awakened by the interrupt).

Second, in our methodology, the lock requests are being tracked by hardware.

In other words, the SoC Lock Cache hardware contains an algorithm to determine

the next PE/task to acquire the lock, thus helping to provide a deterministic choice

and hence improving predictability. In our approach, in the case of a short CS, no

preemption is allowed and the tasks requesting a lock do not poll or spin, but instead

35

Locking Attempt

Fail to Lock

Busy-wait
(spin

�
 memory contention)

Unpredictable locking
(may hurt real-time behavior)

Software Only

Locking Attempt

Fail to Lock

Software sleeps until interrupt received
Hardware keeps track of all lock requests
and decides who acquires the lock next

No memory contention

Predictable locking occurs after
hardware interrupt notification

(better real-time behavior)

Hardware/Software

Figure 5: Software only solution vs. hardware and software solution.

sleep until the PE receives an interrupt from the SoC Lock Cache when the requested

lock is released. In the case of a long CS, our approach allows preemption, and

the lock cache sends an interrupt to the PE whose turn it is. However, in the long

CS case, there may be more than one task on the same PE and they all might be

requesting the same lock. In such a case, upon the release of a lock, the PE that

receives the interrupt must select the correct task to wake up. Therefore, we use

a software mechanism that keeps track of which task is requesting which lock with

which priority. This software mechanism is part of the RTOS and is aware of the

hardware mechanism, SoC Lock Cache. This software mechanism can manipulate

the lock acquisitions among multiple application tasks according to the scheduling

requirements/characteristics that the user may decide. In other words, after the

interrupt is received, a software mechanism, which we call the lock cache scheduler

and which is independent from the RTOS scheduler, chooses the next task to acquire

36

the lock. For example, the choice of which task to acquire the lock next is dependent

on whether the lock cache scheduler is a priority based scheduler or a round-robin

scheduler. In our software architecture, we have implemented a priority based lock

cache scheduler.

Finally, our approach involves interfacing of the hardware and software function-

alities which are necessary to build the system. These interfacing functionalities are

the interrupt service routine (ISR) and other software constructs which interpret the

interrupt (e.g., whether the interrupt is due to a short CS lock release or a long CS

lock release) and link the data read from the SoC Lock Cache with the operating sys-

tem level functions (e.g., searching the highest priority task to acquire the lock next

– this is handled by the lock cache scheduler). We have ported all of these constructs

into APIs within an RTOS so that the SoCLC mechanism can remain transparent to

the user/programmer.

Also note that the other spin-lock alternatives can still be implemented with

our method in the regular memory/bus system as we do not introduce a new cache

protocol nor do we impose the traditional atomic instructions. However, our approach

does eliminate the need for those atomic instructions (e.g., LL and SC) for locking.

3.2 SoCLC Hardware

This section gives an explanation of the basic SoCLC hardware for short CSes and

long CSes. Section 3.3 will describe additional important details about the short CS

37

locking mechanism. Similarly, Section 3.4 will describe additional important details

about the long CS locking mechanism.

The SoC Lock Cache hardware unit is connected to the PEs via the system bus

as shown in Figure 6. Each PE accesses the lock cache in order to acquire/release

lock variables at a specific address range mapped to the address space of every PE.

PE1 PE2 PEn

…

SoC
Lock
Cache

Memory
Arbiter/
Memory

Controller

Figure 6: Hardware system architecture with SoC Lock Cache. (Note: Hardware
not drawn to scale; e.g., PE1 is at least a factor of ten larger than the SoC Lock
Cache.).

An example of the address space mapping of a PE is shown in Figure 7. In Figure 7,

the address range 0xffff0000-0xffff03ff is mapped to the SoCLC; for a PE with byte-

addressing mode, the total number of lock variables that can fit into this range is

1024. Furthermore, the SoCLC address range is divided into two spaces: a range for

long CS lock variables and a range for short CS lock variables. Thus, whenever a

PE accesses a variable whose address lies within the range 0xffff0000-0xffff03ff, that

variable will be used as a lock variable possessing the lock synchronization features

38

supported by the SoC Lock Cache. On the other hand, whenever a PE references a

lock variable whose address is out of that range, it will be a regular lock.

PE’s Private Memory

 RTOS

0x0 – 0x2fff

0x3000 – 0x9000

Shared data with other PEs 0xf0000 – 0xfffff

SoC Lock Cache
address range

0xffff0000 – 0xffff03ff

Short CS lock variables

Long CS lock variables

Figure 7: PE address space mapping example.

The SoC Lock Cache has a number of bit entries where each bit represents a single

lock variable. For example, an SoCLC may have 256 such entries (these bit entries are

also illustrated in Figure 8 as lv1, lv2, ..., lvK in each row). The lock variable addresses

are mapped into a common address range in every PE’s address space. The SoCLC is

connected to the memory bus of each PE through an arbiter/memory-controller that

directs incoming access requests either to the memory or to the SoCLC (Figure 6).

The basic SoCLC hardware architecture for an SoC with N PEs in Figure 8. As

seen in Figure 8, each row in the Lock Unit is reserved for one lock variable. The

architecture includes a set of N 1-bit Pri locations (where Pri stands for Processori

and i ranges from 1 to N) associated with each lock variable in a row. A Boolean ‘1’

in Pri indicates that PEi has unsuccessfully tried to acquire the lock and so is waiting

39

 Pr1 Pr2 … PrN lv2

 Pr1 Pr2 … PrN lvK

 Pr1 Pr2 … PrN lv1

Data

Interrupts

Decoder

Control
Logic

RE
WE

Address

lv k : Lock variable k (k : 1 to K, K : number of locks)
Pr i : Processor i (i : 1 to N, N : number of processors)
RE : Read Enable
WE : Write Enable
p1, p2,…,pN : signals designating transactions from
 PE1, PE2,…,PEN respectively

. . .

Lock Unit

…

p1
p2

pN

…

Figure 8: Basic units of the SoCLC hardware.

for the lock to be released. This Boolean ‘1’ is also used by the interrupt generation

logic to send an interrupt to the waiting PE. When a lock is released, the associated

Pri bits are checked in order to determine which PE is waiting for this lock so that

an interrupt can be sent to these waiting PEs one at a time. Note that Figure 8

presents basic SoCLC hardware for short CSes. Some additional logic (specifically,

logic due to counters shown in Figure 10) is needed to implement long CS locks. This

additional hardware and why we need it in the case of long CSes will be presented in

Section 3.2.2.

The interrupts in Figure 8 can be sent based on PE priorities (using a Priority En-

coder in the SoCLC) or based on FIFO ordering (using FIFO queues in the SoCLC).

The main key feature supported by our hardware mechanism is that no matter which

40

ordering (Priority or FIFO) is used, only one PE is sent a notification (after a lock

release). This facility prevents unnecessary signaling to the other waiting PEs in the

system. In our version of SoCLC that we have used in our experimental measure-

ments, we have chosen the priority order for interrupt generation; therefore, for the

rest of this thesis, with the term interrupt generation, we refer to the priority based

interrupt generation.

SoCLC also includes a decoder unit that decodes the incoming address and enables

the corresponding lock entry to start the transaction. The control logic block in Fig-

ure 8 handles the setting of the lock locations (for acquired locks) and interrupt gen-

eration (when a lock is released and other PEs are waiting for the lock). Furthermore,

the control logic keeps track of which PE has accessed the lock cache by interpreting

the signals {p1,p2,. . . ,pN} illustrated in Figure 8. The signals {p1,p2,. . . ,pN} are

generated by the interface logic that decodes the data/address bus transfer signals of

the PEs. The interface logic is typically included as a part of the SoCLC (but could

also be placed close to the particular PE to which the interface logic connects). In

our implementation, we designed this interface logic as a part of the arbiter/memory

controller unit (Figure 6).

3.2.1 Control Logic

The control logic of Figure 8 is shown in detail with Figure 9. The control logic

communicates with the lock unit (i.e., the lock variables, as well as the N 1-bit Pri

locations – per lock – residing in the lock unit) shown in Figure 8 – also shown as a

41

Lock Unit block in Figure 9. The control logic is mainly responsible for reading the

Pri locations from the lock unit to generate interrupts to the PEs when necessary

and to update the lock unit contents (i.e., lock variable values and the Pri locations)

during lock acquire/release events.

After an incoming lock variable address is decoded, the lock variable accessed, lvi,

mapped to that address is activated by the decoder logic to drive a temporary register

which we call the prid reg. shown in Figure 9. The contents of the prid reg. is transfered

to another logic which we call the prid update unit shown in Figure 9. In case of a

read (in which case the re input signal is asserted) or a write (in which case the we

input signal is asserted) operation, the prid update unit updates the corresponding

PE bit location (i.e., the Pr locations corresponding to the lvi shown in Figure 8) by

writing back its updated contents to the corresponding Pr locations in the Lock Unit.

Which PE bit location needs to be updated depends on the {p1,p2,. . . ,pN} input

signals (also shown in Figure 8), since the {p1,p2,. . . ,pN} signals determine which

PE initiated the read/write operation.

On the other hand, upon a lock release (in which case the we input signal is

asserted), prid reg. is read by the write detect modules. The control logic includes a

distinct write detect module for each PE in the system. A write detect module asserts

its output if the corresponding Pr location of the corresponding PE is set in the prid

reg. In other words, each write detect module is responsible to detect the condition to

generate an interrupt to the corresponding PE when that PE is the highest priority

42

write detect
module0

write detect
module1

write detect
moduleN

Priority
encoder

IRQ1

IRQ2

…

IRQN

addr

Lock
Unit

prid of lv
at addr

 re
we

prid update unit we

dataout
pr

id
 r

eg
.

 p1 p2 … pN

re

…

lv : lock variable
addr : address of lv being accessed from Lock Unit
re : read enable
we : write enable
p1, p2,…,pN : signals designating transactions from PE1, PE2,…,PEN respectively
IRQ1, IRQ2,…,IRQN : interrupt lines connected to PE1, PE2,…,PEN respectively

Control Logic

de
co

de
r

Figure 9: SoCLC basic control logic hardware architecture.

PE waiting for the lock release at that time. Next, the write detect module output

signals are passed through the priority encoder, which decides on which specific PE

to send the interrupt depending on the PE priorities. On the other hand, for a

read/write operation, the lv bit location (inside the Lock Unit shown in Figure 8)

that corresponds to the incoming address decoded is set/cleared in the lock unit. If

the operation is a read operation, then, the data output line (dataout in Figure 9) is

drived by the corresponding lv value.

While we have not implemented the details, Figure 9 could be modified in a

straightforward way to grant locks in FIFO (instead of priority) order.

43

3.2.2 Overview of SoCLC operation for Short CSes and Long CSes

Up to this point, we have introduced the hardware mechanism that is common for

both short and long CS locks. In this subsection, we give two examples describing the

overview of SoCLC mechanisms for short CS locks and long CS locks, respectively.

Note that while the SoCLC keeps track of whether or not a short CS or a long CS

lock is held and which PEs are waiting for the lock, the SoCLC does not know, in

the case that a lock is held, which PE is holding the lock. Example 3.2.1 describes a

brief sample scenario of interrupt generation for short CS locks.

Example 3.2.1 Suppose that PE2 attempts to acquire one of the short CS locks, but

fails. Then, the Pr2 location (see Figure 8) for that lock entry will be set to ‘1’ by the

control logic. As soon as the lock holder releases the lock, an interrupt will be generated

in the next clock cycle in order to notify PE2. After this notification, the Pr2 bit location

will be cleared (set to ‘0’). 2

Now we will explain how the control logic behaves differently depending on whether

the lock is a long CS lock or a short CS lock. As shown in Figure 10, there exist N

counters, {C1,C2,. . . ,CN} (where N is the number of PEs), for each long CS lock.

These counters are needed due to the fact that in a long CS lock implementation

(unlike a short CS implementation), there may be more than one task waiting for the

same lock, on the same PE. The counters reside inside the Lock Unit (for long CS

locks only). As an example, if a PE has multiple tasks that failed to acquire the same

lock and therefore slept, i.e., yielded the PE, that PE needs a notification for each

44

sleeping task to be awakened. In this case, for each failing task, the counter of the

PE is incremented and for each time the PE is sent an interrupt upon a lock release,

the counter of the PE is decremented. As such, when the last task receives the lock,

the counter value becomes zero. In this way, the notification events are centralized

on the SoCLC in an SoC.

Counters of lvM

. . .

C1 C2 CN …

. . .

C1 C2 CN …

C1 C2 CN …

C1 C2 CN …

Counters of lv1

Counters of lv2

Counters of lv3

lv m : lock variable m (m : 1 to M, M : number of long CS locks)
Ci : Counter i (i : 1 to N, N : number of processors)

Figure 10: SoCLC Lock Unit contains counters for long CS locks.

Example 3.2.2 Assume there are four tasks and two PEs in a system. Task1, task2

and task3 run on PE1 (such that task1 is the highest priority task, task2 the second and

task3 the third), and task4 runs on PE2 as shown in Figure 11. Initially, task1 and task4

are running, and task4 is holding a long CS lock which is lock#4. Next, task1 tries to

acquire the same lock as task4 holds, but fails; therefore, the counter of PE1 for lock#4

is set to ‘1’ in the SoCLC and task1 yields PE1 to task2 after a context switch in the

RTOS. Then, task2 also tries to acquire lock#4 but fails as task1 did, and the counter

45

of PE1 is incremented to ‘2’. Then, task2 is preempted and task3 is scheduled on PE1.

Now, task4 releases the lock and an interrupt is sent to PE1 for task1 and the counter

of PE1 is decremented. Then, task1 is scheduled by the RTOS scheduler to execute next

on PE1. On the other hand, after task1 releases the lock and completes its execution,

another interrupt from the SoCLC is sent to PE1 for task2 and counter of PE1 is cleared.

Finally, task2 is made ready and scheduled on PE1 by the RTOS internally. 2

PE2

PE1

task1

task2

task3

task4

holding lock#4

fail to acquire lock#4

release lock#4

execution without holding lock#4

Figure 11: An example with four tasks running on two PEs.

Note that long CS locking/unlocking operations with detailed RTOS and interrupt

service routine (ISR) events will be explained later in Section 3.4.

Next, we examine how the software (both the high-level programming language

level and the assembly language level) will make use of the SoCLC mechanism and

what kind of instructions will start a transaction on the lock cache. We examine short

CS and long CS implementations separately.

46

3.3 Short Critical Sections

In this section, we describe the SoCLC locking mechanism for short CS locking. Our

mechanism provides lock access with a single load instruction. The need for the special

load-linked (LL) and store conditional (SC) assembly instructions has been removed

so that our mechanism can be applied to any general-purpose processor (whether the

processor supports special load-linked/store conditional instructions or not).

As seen in the MIPS assembly example in Figure 12(b), the new assembly routine

of Figure 12(b) does not contain the special atomic instructions LL and SC anymore.

Rather, by use of the regular load instruction, LW, the lock value from the lock

variable address (this address is stored in register R1) is loaded into the target register

(R2), and the code leaves the rest of the atomic locking operation to the hardware

(i.e., to the SoCLC). After loading the lock value into the target register, the program

tests the contents of the register and then the program either jumps to sleep (failure

to acquire the lock) or acquires the lock (success in acquiring the lock) and enters the

CS.

It is important to note that only reading the lock value as a ‘0’ implies that the

lock has been acquired. In other words, there is no need to store a ‘1’ back to the

lock variable address location in software, because SoCLC guarantees the atomic lock

acquisition in hardware. On the other hand, if the lock value is read as ‘1’, this will

imply that the lock is busy and, therefore, that the PE cannot begin to execute the

CS. In this case, the PE must wait for the lock to be released by the lock owner

47

C: Lock (l ock_var i abl e) ;
 / * …cr i t i cal sect i on…* /
 UnLock (l ock_var i abl e) ;

ASM: try: LL R2, (R1) ; read the lock
 ORI R3, R2, 1
 BEQ R3, R2, try ; spin if lock is busy
 SC R3, (R1) ; acquire the lock
 BEQ R3, 0, try ; spin if store fails
 / * …cr i t i cal sect i on…* /
 SW R2, (R1) ; release lock

(a) Traditional code for spin-lock:
C code and MIPS assembly example.

C: Lock (l ock_var i abl e) ;
 / * …cr i t i cal sect i on…* /
 UnLock (l ock_var i abl e) ;

ASM: begi n: LW R2, (R1) ; read the lock
 BEQ R2, 1, sl eep ; succeed?
 / * …cr i t i cal sect i on…* /
 SW R2, (R1) ; release lock
 . . .
 s l eep: B sl eep ; sleep if lock is busy

(b) New code with SoCLC hardware support:
C code and MIPS assembly example.

Figure 12: C and MIPS assembly codes of lock acquire function in the (a) traditional
spin-lock and (b) SoCLC mechanism.

and for an interrupt to be sent to this waiting PE. After interrupt notification, the

PE will leave the infinite sleep loop (Figure 12(b)) and jump to an interrupt service

routine that enables the sleeping task to restart; correspondingly, the appropriate Pr

bit location in the SoCLC will be cleared by the control logic. For the traditional

spin-lock method, on the other hand, as shown in Figure 12(a), the lock acquisition

consists of trials of the SC operation within the spinning loops (as emphasized by the

48

 PE1 PE2 other PEs PE1 PE2 other PEs

time Locking_
Attempt();
Succeed

CS

UnLock();

Locking_
Attempt();

Fail

Sleep();

Receive
Interrupt

Locking_
Attempt();
Succeed

No stalls
due to busy-
wait loops;
Process job

Locking_
Attempt();
Succeed

CS

UnLock();

Stall due to
busy-wait

loops;
Memory

contention;
Useful work

is less

 NEW METHOD OLD METHOD

 Locking_
 Attempt();

Fail

Contend
for released
lock in the
spin-loop

Succeed?
Lock();

Figure 13: SoCLC (new) mechanism and spin-lock (old) mechanism.

bold-faced try labels in the figure). These loops are the busy-wait loops that waste

memory bandwidth and cause cache invalidations/hold-cycles.

Figure 13 shows the paradigm shift of our approach in terms of these busy-wait

loops. In case there are many requests for a lock from multiple PEs, the PE stalls

are reduced and a much more predictable lock acquisition is guaranteed with our

new method. However, in the old methodology, not only are the lock acquisitions

unpredictable for the lock requesters, but also the useful work done by the other PEs

in the SoC is degraded and, even worse, CS length is increased because of the memory

bandwidth consumption due to spinning PEs.

3.3.1 SoCLC Hardware Mechanism for Short CSes

Now we describe the hardware mechanism (previously illustrated in Figure 8). Our

SoC Lock Cache unit includes lock entries mapped to an address range in the ad-

dress space of each PE. For example, 256 lock entries could be mapped to the range

49

0xffff0000-0xffff00ff, where each address in that range references one byte location

(assuming the PE has a byte-addressing mode) dedicated for a lock variable. When

a load instruction is executed, the incoming lock address to the decoder shown in

Figure 8 will enable the corresponding lock entry, lvi, and the lock value residing in

this entry will drive the Data line (shown in Figure 8); as such, the requesting PE

will read the Data line (i.e., the value of the lock variable) from the SoCLC as if

the PE had accessed a regular memory location. After this transaction, in the next

clock cycle, the lock entry will be set to ‘1’ in the lock cache (which is equivalent to

SC instruction execution for the spin-lock software method shown in Figure 12(a)).

However, if the lock value were already a ‘1’, the PE then fails to acquire the lock,

and therefore a ‘1’ value will be put into the PE’s Pr bit location in the lock cache

indicating that the PE is waiting for the lock to be released. When the lock holder

stores back a zero to the entry, i.e., releases the lock, an interrupt will be generated in

the next clock cycle, enabling the next PE to wake up, execute its interrupt handler,

and finally enter the CS guarded by the obtained lock.

3.3.2 SoCLC Interrupt Mechanism for Short CSes

Now we present how interrupts with SoCLC work for short CSes with the following

example.

Example 3.3.1 We are using the Priority Encoder of Figure 9 for interrupt generation

and assume that the priority assigned to each PE is in descending order, i.e., PE1 has

the highest priority, PE2 has the second highest priority and so on. Initially, all of the

50

Pri locations are ‘0’ as seen in Figure 14(a). Now, PE3 reads a lock variable at address

0xffff0000. The lock variable at 0xffff0000 in the SoCLC is set to a ‘1’ in the following

clock cycle as shown in Figure 14(b). Just after PE3, both PE1 and PE2 successively read

the same lock variable (at 0xffff0000) as a ‘1’ (meaning that the lock is not available).

Note that the bus arbiter prevents more than one PE from accessing any address location

(whether it is a regular memory location or an SoCLC lock variable location) at the same

cycle. Then two separate actions occur, one in hardware and the other in software. The

hardware action can be explained as follows. From the lock cache, PE1 reads the lock

as a ‘1’; similarly PE2 reads the lock as a ‘1’ in the next arbitration cycle. Then, the

corresponding bit locations Pr1 and Pr2 (associated with the lock address 0xffff0000),

are set to ‘1’ in the next clock cycle as shown in Figure 14(c). The Pr1 and Pr2 bits

indicate that PE1 and PE2 are waiting for the lock variable at 0xffff0000 to be released.

On the other hand, the software actions on PEs PE1 and PE2 are as follows. PE1 and

PE2 compare the lock variable value read with a ‘0’. Because the lock value read were ‘1’,

the result of this comparison turns out to be a failure to acquire the lock and therefore

the PEs will sleep. After PE3 releases the lock (by writing a ‘0’ to the location at address

0xffff0000), the SoCLC will send an interrupt to PE1 (since PE1 has higher priority than

PE2) and clear the Pr1 bit. PE1 will therefore execute the external interrupt service

routine that enables the sleeping task in PE1 to return back to its original program flow

(i.e., acquire the lock and enter the CS). PE1 has an ISR (Figure 15), composed of three

lines of Motorola PowerPC755 (MPC755) assembly code, which stores back the initial

51

0 0 0 0 0

 (a) (b) (c)

 Pr1 Pr2 Pr3 Pr4 lock Pr1 Pr2 Pr3 Pr4 lock Pr1 Pr2 Pr3 Pr4 lock
0 0 0 0 1

1 1 0 0 1

Figure 14: (a) Initial condition of lock and Pr bit locations in a four-PE system.
(b) Bit values after PE3 has acquired the lock. (c) Bit values after both PE1 and
PE2 have read the lock.

mflr %r0 /* Move from link register to R0 */
mtspr %SRR0, %r0 /* Move from R0 to special purpose register SRR0*/
rfi /* Return from interrupt */

Figure 15: ISR assembly code for MPC755.

value of the Link Register (that holds the return address) into the special purpose register

SRR0, which enables PE1 to jump back to the program to execute CS. After PE1 finishes

its CS, it releases the lock and SoCLC sends an interrupt to PE2 enabling PE2 to acquire

the lock and enter into its CS. 2

As explained in Example 3.3.1, the total number of instructions executed after

the interrupt received is three (Figure 15). For short CS locks, there is no need to

save context before ISR execution, because context does not change due to the fact

that tasks do not yield PE upon failing to acquire a short CS lock. Otherwise, there

would be an overhead in interrupt handling (namely, save/restore of register context),

and this would cause the system responsiveness to be reduced significantly (which is

critical for real-time applications). However, for long CSes, as will be described in

Section 3.4, since the tasks yield the PE (upon a failure to acquire a lock), the context

changes on the PE, and a context has to be saved/restored during the ISR.

52

Note that in Example 3.3.1, if PE4 had accessed the SoCLC and read the lock

variable just after the lock had been released by PE3, then two actions could have

occurred: either (1) PE4 would have been able to obtain the lock before PE1 and PE2,

or (2) PE4 would have been prevented from obtaining the lock and PE2 – the PE that

receives the interrupt – would have obtained the lock first. We have implemented two

hardware versions of the SoCLC: one that supports action (1) above, and the other

that supports action (2). Among these two versions, the SoCLC supporting action

(2) is a more fair method because action (1) prevents a waiting PE from acquiring the

lock when another PE – if any – tries to acquire the lock prior to the time the waiting

PE receives interrupt. Therefore, action (1) favors arbitrary (possible non-priority

and non-FIFO order) newly arriving PEs rather than the PEs already waiting for the

lock release. The SoCLC can be configured for either of the actions using a status

register inside the SoCLC. In our experiments, we have used the second version of

SoCLC (that supports action(2)) for short CSes and the first version of SoCLC (that

supports action(1)) for long CSes (including the version of long CSes with priority

inheritance support described in Chapter 4).

The next subsection describes the two versions in more detail.

3.3.2.1 Understanding the Two Versions of SoCLC Hardware

For the second version of SoCLC hardware, when a lock release occurs, the PE that

releases the lock asserts the WE signal shown in Figure 8, repeated here as Figure 16,

and then the SoCLC generates an interrupt to the highest priority PE that was waiting

53

for the lock. To make sure that no other PE making a new request can acquire the

lock, SoCLC hardware does not clear the lock value back to a zero. As such, if a new

PE reads the same lock in the meantime (i.e., before the PE that has just received

the interrupt and has not responded to the interrupt yet), the new PE request will

see the lock value as ‘1’ and will not be able to acquire the lock before the PE that

received the interrupt. Whereas for the first version of SoCLC, as the lock releaser

PE asserts the WE signal upon a lock release, the lock value in the SoCLC hardware

is cleared back to ‘0’, which allows another PE to acquire the lock before the PE that

received the interrupt. Note that the software used in implementing the two versions

are different. Example 3.3.2 describes the difference.

 Pr1 Pr2 … PrN lv2

 Pr1 Pr2 … PrN lvK

 Pr1 Pr2 … PrN lv1

Data

Interrupts

Decoder

Control
Logic

RE
WE

Address

lv k : Lock variable k (k : 1 to K, K : number of locks)
Pr i : Processor i (i : 1 to N, N : number of processors)
RE : Read Enable
WE : Write Enable
p1, p2,…,pN : signals designating transactions from
 PE1, PE2,…,PEN respectively

. . .

Lock Unit

…

p1
p2

pN

…

Figure 16: Basic units of the SoCLC hardware.

54

Example 3.3.2 Assume that PE3 is the owner of lock#4 and is executing a CS asso-

ciated with lock#4. Furthermore, assume that PE1 is waiting for lock#4. After exiting

the CS, PE3 releases lock#4, and then an interrupt is generated for the waiting PE,

PE1. Just after the lock release, PE2 attempts to acquire the same lock (lock#4) before

PE1 executes its ISR. Figure 17 illustrates what happens next in the two versions of the

SoCLC. The top flow indicates the events occurring in the first version and the bottom

flow indicates the events occurring in the second version. Here, it is important to note

that, in the bottom flow, PE1 directly jumps into the CS (6th event in the bottom flow)

without jumping to the “begin:” label in order to acquire the lock. This is because, in

action (2), the lock is not cleared back to 0, it is kept as 1 (3rd event in the bottom

flow) for action (2). In other words, the PE that receives the interrupt can assume that

the ownership of the lock is already bestowed on itself. However, in the top flow, as can

be followed by the 7th and 8th events, PE1 (after receiving the interrupt) has to jump

to the “begin:” label in order to make an attempt to acquire lock#4 before entering the

CS. In this case, because the lock is held by PE2 by the time that the 7th event occurs,

PE1 fails to acquire the lock and is put in the waiting list of lock#4. 2

3.3.2.2 Preemption vs. Non-preemption

Tasks unable to acquire a short CS lock should not be preempted. This is because,

by Definition 3.1.1, we know that in the case of short CSes, the time between lock

acquisition and release is short. Therefore, it is very likely that a short CS lock holder

will release the lock in a period of time shorter that it takes to switch context. Thus,

55

1

lock#4 is
released
by PE3

2

interrupt
sent

 to PE1

3

lock#4 is
cleared
to ‘0’ in
SoCLC

3

lock#4 is
kept as
‘1’ in

SoCLC

4

attempt
by PE2

to
acquire
lock#4

5

lock#4 is
set to

‘1’ and
acquired
by PE2

5

PE2 fails
to

acquire
lock#4

and is put
in waiting

list

6

PE2
enters
 into
CS

6

PE1
enters
into
CS

7

attempt
by

PE1 to
acquire
lock#4

8

PE1 fails
to

acquire
lock#4

and is put
in waiting

list

4

attempt
by PE2

to
acquire
lock#4

Figure 17: The event flow occurring in action (1) – top flow – and the event flow
occurring in action (2) – bottom flow.

the lock requester task simply waits for the short CS lock release (instead of being

preempted). As a result, for short CSes we disable the scheduler in the RTOS before

executing the locking primitive and re-enable the scheduler after acquiring the lock.

This approach provides better performance for short CSes, as the context switching

of tasks introduces a great overhead, and it is very likely that the lock will be released

before the context switching is completed.

On the other hand, for long CSes (Definition 3.1.2), it is more desirable to preempt

a task if the task failed to acquire a long CS lock. The next section describes the

long CS implementation. We explain (1) possible drawbacks encountered when there

is no preemption support, (2) how we avoid these drawbacks by the newly designed

RTOS functionality and (3) the hardware mechanism beneath the RTOS.

56

3.4 Long Critical Sections

As mentioned before, in the case of long CSes, non-preemption of sleeping tasks may

cause inefficient CPU utilization. This is because disallowing preemption may incur

stalls during the execution time of a long critical section holding a lock for which

a task on another PE is waiting. In such a case, the lock will not be released for

a long time, and the waiting task on the other PE will occupy the CPU resources,

causing performance degradation. Therefore, it is desirable to enable the scheduler

to preempt those tasks that are waiting for the lock and resume other tasks ready

to run on the CPU, which makes the CPU resources available for other tasks in the

system while the suspended tasks are waiting for the lock release.

Example 3.4.1 illustrates such a scenario.

Example 3.4.1 In Figure 18, there are two processing elements and three tasks. PE1

runs task1 and PE2 runs two tasks, task2 of priority 1 and task3 of priority 2. Let us

also assume that task1 on PE1 and task2 on PE2 have a common, long critical section.

Initially, task1 is running on PE1 and task3 is running on PE2. At time t1, task2 becomes

ready and since task2 has a higher priority than task3, task3 is preempted. After PE2

context switches out of task3, task2 begins its execution at time t2. On PE1, t3 is the

time at which task1 acquires a lock and begins to execute a long CS, and t4 is time at

which task2 tries to acquire the same lock before executing the same CS. However, since

the lock is not free, task2 sleeps until PE2 receives an interrupt (signaling the release of

the lock). Note that task1 releases the lock at time t5 and the interrupt is generated

57

at time t6. So, after t6, task2 can at that moment access the CS. As shown in the

figure, the sleeping of task2 occupies the CPU during the dead time between t4 and t6,

preventing other tasks, e.g., task3, from using CPU resources. However, if preemption is

allowed, task3 can fill the dead time and even finish its execution, which could improve

the real-time behavior of the system. 2

Figure 18: Disallowing preemption for long CSes may cause inefficient CPU utiliza-
tion among tasks.

In order to realize preemptive functionality for the long CSes, the lock cache

mechanism has been integrated with the Atalanta RTOS [11], a multiprocessor, pre-

emptive RTOS with a priority based scheduler. Preemptive synchronization requires

the states of tasks (containing information about which tasks are waiting for which

locks) to be saved in the RTOS kernel. Therefore, we propose an RTOS extension

in order to support preemptive lock synchronization via the SoCLC: the lock cache

58

scheduler (a lock state saving mechanism). This mechanism uses lock-wait tables

which are associated with every lock variable (Figure 19).

…

7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24
39 38 37 36 35 34 33 32
47 46 45 44 43 42 41 40
55 54 53 52 51 50 49 48
63 62 61 60 59 58 57 56

7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24
39 38 37 36 35 34 33 32
47 46 45 44 43 42 41 40
55 54 53 52 51 50 49 48
63 62 61 60 59 58 57 56

7 6 5 4 3 2 1 0
15 14 13 12 11 10 9 8
23 22 21 20 19 18 17 16
31 30 29 28 27 26 25 24
39 38 37 36 35 34 33 32
47 46 45 44 43 42 41 40
55 54 53 52 51 50 49 48
63 62 61 60 59 58 57 56

Lock0

Lock1

.

LockN

.

.

 lock-wait table 1
 (LockTbl [1])

 lock-wait table 0
 (LockTbl [0])

 lock-wait table N
 (LockTbl [N])

Figure 19: Lock-wait tables.

A lock-wait table consists of maximum number of tasks many bit entries. For the

Atalanta RTOS, the RTOS that we have used in our simulations, we set the maximum

number of tasks to 64; therefore, the lock-wait table is an 8x8 matrix of which entries

are 1-bit locations, containing either a ‘0’ (indicating the task is not waiting for the

lock) or a ‘1’ (indicating the task is waiting for the lock). Note that the highest

priority task is task#0 and the lowest priority task is task#63. Also note that the

lock tables and the SoCLC lock variables are initially zero.

59

MPC755 MPC755

SoC
Lock
Cache

Atalanta-RTOS

Application Software (Tasks)

MPC755 MPC755

Software
Hardware

Extension

Figure 20: Hardware/software architecture with RTOS extension.

Clearly, in the Atalanta RTOS (which has priority-based scheduling), after a PE

receives an interrupt notification for a lock variable, the RTOS must perform a search

in order to determine the highest priority task that is waiting for the lock that has

just been released. This search can be performed on the lock-wait table accessed

by the RTOS level external interrupt handler (ExIntrHdlr in Atalanta). Figure 20

shows both the hardware architecture with four MPC755s plus SoCLC unit and the

software architecture with an RTOS extension developed to support the lock cache

mechanism at the kernel level.

Therefore, using the external interrupt handler RTOS facility to search, the highest-

priority waiting task is selected from the lock-wait table (Figure 19), and then the

task is inserted into the ready list of the kernel. This ready list is a linked list of

ready tasks sorted according to their priorities in the Atalanta RTOS. The scheduler

accesses the ready list in order to find the highest priority task to be run on the PE

in case of a context switch.

60

yes no

2. read lock

3. free?

4. return from
Lock_longCS()

5. Execute CS

7. remove task
from ReadyList

8. Context Switch

 1. Lock_longCS()

6. UnLock() 9. new task

10. Execute ISR,
 ExIntr_Hdlr

Interrupt
received

Figure 21: Flowchart illustrating the long CS locking steps in software.

Figure 21 illustrates the basic steps through locking, unlocking, interrupt handling

and context switching events. First, the Lock longCS function is called in order to

read the lock variable from SoCLC (steps 1–2). Lock longCS has an argument of type

LOCK∗ (Figure 22), which is a pointer to a struct consisting of lock (lock variable

address), LockTbl (lock table of the lock variable) and a variable of type LockGrp

(corresponding to a group of tasks waiting for the lock). Note that grouping of waiting

tasks provides a much faster and effective searching mechanism as described in [23]:

the tasks are represented in a two-dimensional array and the tasks are grouped ac-

cording to the row and the column that they reside in. As such, a state of an arbitrary

task in that two-dimensional array can be accessed in two steps: (1) indicating the

row number, and (2) indicating the column number.

61

typedef struct _LOCK {
 UINT8 LockTbl [LOCK_TBL_SIZE]; /* List of tasks waiting
 * for the lock to be
 * released*/
 UINT8 LockGrp; /* Group corresponding to
 * tasks waiting for lock */
 UINT32* lock; /* Will be initialized to one of the
 * locks in SoC Lock Cache */
} LOCK;

Figure 22: LOCK struct type.

After reading the lock variable for a long CS, there exist two paths through which

the program may flow depending on whether or not the lock is free. In the first case,

that is, if the lock is free, the lock cache hardware, SoCLC, sets the lock variable,

and the task executes the long CS (steps 4–5 of Figure 21). After the long CS, the

task releases the lock in the lock cache by calling the UnLock function (step 6). In

the second case, that is, if the lock is busy (i.e., another PE is in the CS already), the

current task which has failed to acquire the lock is removed from the kernel ready list

and it is marked as waiting in the lock-wait table (this is done by setting the task’s

bit entry in the lock-wait table to a 1). Next, context switching is performed in step

8 so that a new task can use the CPU resources (step 9).

The lock state saving mechanism (using the lock-wait tables), interrupt handling

mechanism and RTOS scheduling is explained in Example 3.4.2 and Figure 23.

Example 3.4.2 When an interrupt is received, the interrupt service routine (ISR) first

checks whether the interrupt is for a short or a long CS lock release. Suppose that PE1

receives an interrupt which signals the release of a long CS lock, lock#6. As seen from

Figure 23(a), there are three tasks: task2, task7 and task19 that are in the lock-wait table

62

lock-wait table 6
 (LockTbl [6])

1

1

1

1 1

1

1

1

Atalanta RTOS
priority scheduler

ready-table

1

1 1

1

1

1 1

Atalanta RTOS
priority scheduler

ready-table

1 1

1

task2 task7

task19

lock-wait table 6
 (LockTbl [6])

(a) (b)

(c) (d)

Figure 23: Lock-wait table states and the RTOS scheduler ready list states.
(a) Tasks 2, 7, and 19 are waiting for lock#6 to be freed. (b) Tasks 3, 5, 6, 17,
21 and 37 are ready in the Atalanta RTOS priority scheduler ready table. (c) Task2
bit location in the lock-wait table 6 is cleared by the ExIntrHdlr function. (d) Task2
bit location in the ready table is set to 1.

of lock#6. On the other hand, as illustrated in Figure 23(b), tasks 3, 5, 6, 17, 21 and 37

are ready in the Atalanta’s priority scheduler ready-table, and task3 is currently holding

the CPU resources. Among these tasks, task2 is the highest priority task. In this case,

as the interrupt is received, the ISR will jump to the ExIntrHdlr function which recovers

task2 from the lock-wait table of lock#6, clear the bit location of task2 in the lock-wait

table (indicating task2 is not waiting for lock#6 anymore) as illustrated in Figure 23(c),

63

and mark task2 as ready in the ready-table. Afterwards, the priority scheduler is called

to preempt task3 and re-schedule task2 which has a higher priority than task3. The final

ready-table indicating task2 as ready is illustrated in Figure 23(d). 2

On the other hand, as explained previously in Example 3.3.1, if the received

interrupt is for a short CS lock release, then the ISR stores back the initial value

of Link Register of the PE so that the PE jumps to the last instruction just before

sleeping, i.e., the short CS lock primitive execution. Note that the ISR for the short

CSes takes a few instruction cycles, whereas the ISR for long CSes includes context

saving, ExIntrHdlr function execution, and context restoring.

3.5 Summary

This chapter presented the basic SoCLC hardware and software operation for short

CSes as well as long CSes, including interrupt handling and kernel level functions

such as context switch with comparisons to the Atalanta RTOS through examples.

Next chapter describes the priority inheritance hardware support – for long CS

locks – integrated with the SoCLC.

64

CHAPTER IV

LOCK CACHE PRIORITY INHERITANCE

In a system with a preemptive priority-based RTOS, tasks (having different priorities)

might block on each other due to shared resources. In this chapter, we use the term

CS and the term lock (that guards a CS) interchangeably, both referring to a shared

resource among multiple tasks. Also note that in rest of the thesis, we refer to a

“high priority” task/resource as the task/resource that has a smaller priority value.

For example, a task T1, having a priority of 10, is a higher priority task than a task

T2, having a priority of 11.

4.1 The Priority Inversion Problem

In the case of long CSes, where tasks unable to acquire a long CS lock may be

preempted, the priority inversion problem may occur. Priority inversion occurs when

a higher priority task has to wait for a lower priority task and this waiting time is

unbounded, i.e., unpredictable. For example, if a low priority task owns a long CS

lock before a high priority task attempts to acquire the lock, the high priority task is

65

blocked. In such a condition, an unbounded blocking for the high priority task may

occur if middle priority task(s) arrive(s) and preempt(s) the low priority task before

the low priority task releases the lock on which the high priority task is blocked (see

Figure 24 and Example 4.1.1). In other words, the high priority task is deprived of the

CPU resources for the execution time of the middle priority task(s) plus the execution

time of the critical section run by the low priority task; this has the practical impact

of altering the de facto task priorities at run time, disturbing the real-time system

behavior. The next example gives an example priority inversion scenario.

lock
request

lock
grant

lock
request

blocking

lock
release

lock
grant

CS

CS

low
priority

task

high
priority

task

middle
priority

task

task
arrival

task
arrival

task
arrival

CS

Figure 24: Priority inversion problem.

Example 4.1.1 Figure 24 illustrates an example for a priority inversion. Initially a low

priority task acquires a lock and before it releases the lock, a new task, a high priority

task, arrives and takes the CPU resource from the low priority task. However, the high

priority task requests the same lock and fails to acquire, therefore, it yields the CPU for

another task, a middle priority task that is ready at that time. In this case, a priority

66

inversion condition arises: the high priority task is blocked by the low priority task plus

the middle priority task, and the blocking time is unbounded (i.e., unpredictable) as the

blocking time also depends on the execution of middle priority task. 2

4.2 Solution: Priority Inheritance

Priority inversion causes unpredictable delays and it can be avoided by a priority

inheritance protocol (PIP). As introduced in [44], the basic PIP prevents unbounded

blocking of higher priority tasks due to lower priority tasks. In the basic PIP, if a

lower priority task blocks a higher priority task, then this lower priority task executes

its critical section with the priority level of the higher priority task that it blocks.

As such, the lower priority task inherits the priority of the higher priority task (that

is blocked by the lower priority task). In the PIP, the maximum blocking time (due

to a lower priority task) is equal to the length of one CS and the blocking can occur

at most once for each lock. The next example gives an example priority inheritance

scenario.

Example 4.2.1 Figure 25 illustrates an example for a priority inheritance. Initially a low

priority task acquires a lock and before it releases the lock, a new task, a high priority task,

arrives and takes the CPU resource from the low priority task. However, the high priority

task requests the same lock and fails to acquire. Next, the low priority task, which is the

holder of the lock that high priority task is blocked on, inherits the priority of high priority

task. At that time, although a middle priority task is ready, the CPU resource is given to

the low priority task. In this case, the priority inheritance prevents the priority inversion:

67

the high priority task is not blocked by the middle priority task, and the blocking time is

bounded by the CS execution of the low priority task. 2

lock
request

lock
grant

lock
request

blocking

lock
release

lock
grant

CS

CS

low
priority

task

high
priority

task

middle
priority

task

task
arrival

task
arrival

task
arrival

CS

Figure 25: Priority inheritance protocol (PIP) prevents unbounded blocking.

In PIP, the high priority tasks may still suffer from chained blocking. Chained

blocking is the condition in which a high priority task is blocked from obtaining more

than one lock due to more than one lower priority task, as described in [44]. Chained

blocking causes extra context switching overheads. To remedy this problem, the

basic PIP has been extended to the original priority ceiling protocol (OPCP) which

prevents both priority inversion and chained blocking [37], [44].

In OPCP, each CS is assigned a static ceiling priority which is equal to the priority

of the highest priority task that can ever acquire the CS. When a higher priority task,

say HT, is blocked on a CS that is held by a low priority task, say LT, the dynamic

priority of LT is raised to the ceiling priority of the CS that LT holds currently. In

such a case, any other task (i.e., other than HT and LT), say Tx, trying to acquire a

68

CS with the same ceiling priority as that of the CS held by LT, will not be granted.

Moreover, after LT’s priority is raised to the ceiling priority of the CS that LH holds,

no any other task is allowed to preempt LH, unless that task’s dynamic priority is

higher than the ceiling priority of the CS held by LT. OPCP guarantees that a task

can be blocked for at most the duration of a CS for at most once.

In OPCP, however, the blocking relationships are tracked in the RTOS, which

constitutes an overhead in the implementation. An immediate priority ceiling pro-

tocol (IPCP), on the other hand, provides a much easier implementation and still

guarantees prevention of chained blocking [44], [21]. As soon as a lock is granted to

a task, the task’s dynamic priority is immediately raised to the ceiling priority of the

CS (unlike the OPCP which does not raise the task’s priority unless the task actually

blocks a higher priority task). Moreover, in IPCP, there are potentially fewer context

switches, because IPCP requires less preemptions to occur. This feature of IPCP

is also advantageous in allocation of stacks for the task-preemption events; in other

words, the number of stacks required can be specified initially – during system anal-

ysis before start-up – at a lower cost (in terms of the stack memory space) [7]. Note

that the IPCP mechanism has been applied to POSIX [14], Ada [22] and Real-Time

Java [8].

In our hardware implementation of the priority inheritance, we use the IPCP

approach because of its advantages listed above.

69

4.3 Priority Inheritance in Hardware

In this section, we present the hardware implementation of IPCP [3] and qualita-

tive comparisons with its software counterpart implemented as part of the Atalanta

RTOS [11]. Note that the Atalanta RTOS supports the basic PIP instead of IPCP;

however, the application program we use to compare Atalanta and SoCLC in Chap-

ter 6.3 measures the performance of locking/unlocking operations in a multiprocessor

environment and does not include a condition in which IPCP is favored as opposed

to PIP or vice versa. Chapter 6 contains a number of quantitative comparisons. Note

that in the rest of this thesis whenever we use the term SoCLC priority inheritance,

we imply the SoCLC IPCP mechanism.

4.3.1 Atalanta RTOS Priority Inheritance vs. SoCLC Priority Inheri-

tance

The specific functions provided within an RTOS manage the tasks’ priority levels. As

described in previous sections, the priority inheritance protocols change the dynamic

priority of the tasks when necessary. The priority movements in the Atalanta RTOS

works as follows: If a high priority task is blocked on a CS due to a lower priority

task, then the RTOS removes the high priority task from the ready-list of tasks. Then

the high priority task is inserted to the waiting-list for the specific CS on which the

high priority task is blocked. Next, Atalanta RTOS calls another function to raise the

dynamic priority of the lower priority task up to the priority level of the high priority

task. Next, the ready-list is updated: the lowest priority task, whose dynamic priority

70

is now equal to the priority of the higher priority task, is inserted to the ready-list

according to the newly assigned dynamic priority. Note that each time a priority

movement occurs due to priority inheritance, the ready-list is re-adjusted with the

new dynamic priorities, such that the highest priority task is kept at the head of the

list and the lowest priority task at the end. Finally, the scheduler is called to context

switch to the task that is at the head of the ready-list. Figure 26(a) depicts the above

mentioned algorithmic flow of operations performed within the Atalanta RTOS.

yes no

read lock

lock is free?

update lock list of
the current task

enter CS

remove current task
from ready-list

change priority of
lock owner if needed

update ready-list

reschedule

insert current task
to the waiting list

for the lock

yes no

read lock

lock is free?

write current task
priority into SoCLC

enter CS remove current task
from ready-list

reschedule

(a) (b)

write current task
priority into SoCLC

Figure 26: Flow charts of locking operation for (a) Atalanta RTOS priority inheri-
tance mechanism, (b) SoCLC priority inheritance mechanism.

In our hardware implementation of the priority inheritance, on the other hand,

the priority movements are managed by the SoCLC – in hardware. Therefore, unlike

the Atalanta RTOS, we do not require a task removal/insertion operation from/into

71

a ready-list or from/into a list of tasks waiting for a CS. Furthermore, there is no

re-adjustment of the ready-list every time a change in the task priority-levels is per-

formed. Figure 26(b) depicts the algorithmic flow of operations performed in the

RTOS with the support of the SoCLC hardware. Note that in the SoCLC case (Fig-

ure 26(b)) the dynamic task priorities as well as task states indicating which task is

blocked on which lock, etc., are kept in dedicated memory logic inside the SoCLC as

shown in Figure 27. After a task reads the lock, whether the task succeeds or not –

in both cases – the task writes its static priority to the SoCLC, which then updates

the corresponding state/dynamic priority of the task trying to acquire the lock. The

priority movements and other details with the hardware operation will be described

in detail later in Section 4.3.2.

In the Atalanta RTOS priority inheritance mechanism, the task removal/ insertion

operations performed on the waiting-list of tasks lead to another drawback. These

lists are a linked list of tasks that are waiting for a CS and the number of tasks in a

list affects the removal/insertion operations. For example, upon a task removal, the

corresponding search time/computation-effort will increase as the number of tasks in

the list is increased. For the SoCLC case, on the other hand, no matter how many

tasks there are (which could be at most 64 for a 64-task RTOS), the hardware can

manage the tasks states and update the priorities of the tasks in a fixed number of

clock cycles. This feature of our hardware implementation not only provides higher

72

tasks' states 1

tasks' states 2

tasks' states 3

tasks' states N

lock

lock

lock

lock

owner 1

owner 2

owner 3

owner N

ceiling 1

ceiling 2

ceiling 3

ceiling N

task1

1 bit...

64 bit...

6 bit...

6 bit...

6 bit

...

Lock
variables Blocked tasks

 Static
priority of
lock owner

Dynamic
task priority

 Ceiling
value of

locks

Priority
Encoder

Interrupt
Generator

Interrupts
to PEs

Task-wakeup
Register

Output Data

 Status Board

dyn. priority task1

2

3

N

1

dyn. priority task 2

dyn. priority task 3

dyn. priority task 64

Figure 27: Priority inheritance hardware components in the SoCLC.

performance but also improves predictability. Therefore, our hardware approach can

help to seize a better optimality in the analysis of worst-case execution time.

4.3.2 Priority Inheritance Hardware Architecture

Figure 27 illustrates the basic components of the hardware: status board, priority

encoder, interrupt generator and task-wakeup register.

The status board holds the state of each lock variable (whether a lock is free

or not), information about which tasks are blocked waiting for each lock, the static

priority of the current lock-owner-task for each lock, the ceiling priority of each lock

and the dynamic task priority of each task. The lock, the owner, each dynamic task

priority and the task-wakeup register can be accessed by each processing element

73

(PE). Note that Figure 27 shows a hardware configuration for a 64-task RTOS and

an SoCLC supporting N lock variables.

To acquire a lock locki, a task taskj running on a PE PEk first accesses the

SoCLC by reading the corresponding locki bit value from the status board. If the

locki value is ‘0’, taskj becomes the owner of locki. Therefore, taskj’s current priority

(i.e., taskj’s dynamic priority residing at the “dynamic task priority” column in the

status board shown in Figure 27) is written into the owneri position. Next, if taskj’s

dynamic priority is less than the value ceilingi, than taskj’s new dynamic priority

in the “dynamic task priority” column of the status board is updated to the value

ceilingi. When the priority of taskj has been raised to ceilingi, this implies that the

lock owner task, taskj, has inherited the priority of the highest priority task that

will ever acquire locki. If another task taskj+1 running on a PE PEk+1 also wants

to acquire locki, since locki is not free anymore (it is held by taskj), taskj+1 fails

to acquire the lock and its bit location (j+1) in the “tasks’ states” position of locki

is set to a ‘1’ – indicating that taskj+1 is waiting for locki. When taskj releases

locki, if taskj+1 is the only task waiting for locki, then taskj+1’s PE, PEk+1 receives

an interrupt from the SoCLC and the interrupt handler re-schedules taskj+1 on the

PE PEk+1. Note that if more than one task is waiting for the same lock, then the

priority encoder selects the highest priority task, say taskh, so that the SoCLC sends

an interrupt to the PE that runs taskh.

74

1 42 11

...

Lock
variables Blocked tasks

 Static
priority of
lock owner

Dynamic
task priority

 Ceiling
value of

locks

 1... 0 0 1

1 20 35

...

64

1

2

3

N

1 20 11

...

... ...

 0... 0 0 1

... 11

1

2

3

N

1

20

64
63

(a) Initial state

(b) Final state

...

 42 42

...
......

 20

1

20

64
63

...

 11 42

...
1 20 35 64

Figure 28: Status board corresponding to the (a) initial and (b) final states as
described in Example 4.3.1.

Also recall that, for priority inheritance support, we use the first version of SoCLC

as described in Chapter 3.3.2.

Example 4.3.1 explains the hardware and software operations occurring for our

SoCLC approach with a sample scenario (depicted in Figure 28).

Example 4.3.1 Assume that initially task42 is the owner of lock3 and the static priority

of task42 is 42. Moreover, task20 and task35 are waiting for the same lock, lock3, and

their static priorities are 20 and 35, respectively. Also assume that the highest priority task

that will ever acquire lock3 is task11 and task11’s priority is 11, which implies that the

75

ceiling value of lock3 is also 11. The status board state that captures the corresponding

state information is illustrated in Figure 28(a). Notice from the figure that the dynamic

priority of task42 is 11, which implies that task42’s priority has been raised to the ceiling

priority. Now, assume that task42 releases the lock. Because of the fact that task20 is the

highest priority task among all the tasks that are waiting for lock3, the priority encoder

selects task20 and task20 is entered into the “Task-wakeup Register” (see Figure 27).

Next, an interrupt is sent to the PE of task20, say PE2. As PE2 receives the interrupt, it

accesses the “Task-wakeup Register” to learn which task – task20 in this case – to wakeup.

Finally, PE2 reschedules task20 so that task20 enters into the CS protected by lock3. The

corresponding state of the status board at this point is illustrated in Figure 28(b). 2

As shown in Figure 29, the accesses to the task states table, lock variables, lock

owner priorities, dynamic task priorities and ceiling priorities are controlled by a

decoder logic that decodes the incoming address, addr, referencing a particular lock

variable. Note that the decoder logic also decodes the priority of the task, prio in

Figure 29, that has acquired the lock or failed to acquire the lock. The priority of the

task that acquired a lock is needed by the SoCLC so as to update the corresponding

lock owner location in the status board. Similarly, the priority of the task that failed

to acquire a lock is needed by the SoCLC so as to update the corresponding location

in the task states table. Finally, when a lock is released, the task states corresponding

to the lock released (recall that the task states register for a particular lock variable

has one bit per task; a ‘1’ indicates that the task has requested the lock) are passed

76

decoder
logic

lock variables

lock owner
priorities

dynamic task
priorities

ceiling
priorities

priority reg

ceiling reg

>?

task states

priority
encoder

interrupts
to PEs

re
we

prio

addr

…

PE1 task mask
PE2 task mask

PEn task mask

task wakeup reg output data
(read during ISR)

addr : address of lock being accessed
prio : priority of the task that accesses the
lock
re : read enable
we : write enable

Figure 29: Hardware architecture of SoCLC priority inheritance unit.

through a priority encoder that determines the highest priority task that is blocked

on that lock so far.

The PE task mask registers shown in Figure 29, on the other hand, are responsible

to detect the PE on which the highest priority task determined by the priority encoder

runs. Each PE in the system has its own PE task mask register that is marked at

those bit locations corresponding to the ID of the tasks that are run on that PE.

The width of each PE task mask register is equal to the total number of tasks run in

the system. For example, for a 64 task RTOS, each PE task mask register includes

64 bit locations, and each location in each register corresponds to a task. Note that

these registers need to be initialized at start up by the RTOS. Next we illustrate an

example for PE task mask registers.

77

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 11

1 11
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(a)

(b)

PE1 task mask register

PE2 task mask register

Figure 30: (a) PE1 task mask register contents, and (b) PE2 task mask register
contents of Example 4.3.2.

Example 4.3.2 Consider a 16-task RTOS running on a two-PE system. Assume that

task1, task2, task5 and task9 run on PE1, and task1, task13, task4 and task15 run on

PE2. The corresponding PE1 task mask register and the PE2 task mask register contents

are shown in Figure 30(a) and Figure 30(b), respectively. 2

On the other hand, the comparator in Figure 29 compares the ceiling value of a

lock accessed with the dynamic priority of the task attempting to access the lock. If

the task succeeds in acquiring the lock, and if the task’s current dynamic priority is

less than the ceiling priority of the lock it acquires, then the task’s dynamic priority

is raised to the ceiling priority of the lock. Otherwise, the task’s dynamic priority is

not changed.

Our implementation also has benefits for tasks sharing CSes on the same PE. The

next example illustrates this fact.

Example 4.3.3 Assume that a low priority task, task9, a middle priority task, task8,

and a high priority task, task7 run on the same PE. To be specific, task9 has priority 9,

78

task8 has priority 8 and task7 has the highest priority, priority 7. The three tasks share

two CSes guarded by two locks, lock1 and lock2. In such a case, the ceiling priority of

both locks will be 7, which is the priority of the highest priority task that can acquire the

locks. Suppose that task9 accesses the first CS and hence is the owner of lock1. Also

assume that task8 becomes ready and will request lock2. Because of the fact that IPCP

raises the priority of task9 to the ceiling priority of lock1, even if task8 becomes ready,

task8 cannot preempt task9 (because the priority of task8 is smaller than the ceiling

priority – the priority of task9). In this case, a possible blocking of the highest priority

task, task7, should task7 become ready and request lock1 after task8 requests lock2,

would be avoided. Also, extra context switches due to preemptions (task9 preempted by

task8 and task8 preempted by task7) would be prevented. 2

Our hardware implementation of IPCP integrated into the SoCLC performs effi-

cient and fast priority movements for the tasks that inherit the priority of a higher

priority task. The RTOS can simply access the SoCLC to learn the dynamic task

priorities without having to keep track of lists of tasks that wait on a resource, hence,

avoiding the cost of software overhead.

4.4 Summary

In this chapter we introduced the priority inversion problem and several priority in-

heritance protocols developed as a solution to the priority inversion problem. Among

these protocols, the IPCP requires fewer context switches (since it renders less pre-

emptions due to priority movements) plus IPCP implementation is relatively easier.

79

We have thus presented the IPCP hardware support integrated into the SoCLC mech-

anism. SoCLC with the IPCP support tracks the priority of the tasks, performs the

task priority movements, and notifies the blocked tasks via interrupt generation when

the blocked tasks may become unblocked (via lock acquisition).

The next chapter presents an SoCLC generator tool, which we call PARLAK.

80

CHAPTER V

PARLAK LOCK CACHE SYNTHESIS

Introducing a solution in the form of an IP block does not fully satisfy the SoC world:

the solution should be reflected to the silicon die with the minimum engineering effort

possible, yet it should be customizable/configurable and parameterizable according

to the customer specifications, and, finally, this process should be automated. One

approach to solve these demands can be referred to as an IP-generator tool. For

example, memory and I/O generators by Artisan [6], memory compilers by Virage

Logic [50] and processor generators by Tensilica [48] supply application specific cus-

tomized IP designs that can be specialized for specific applications.

In this context, we present PARLAK1, parametrized lock cache generator, that

generates a custom SoCLC for an SoC including reconfigurable and/or custom logic

and multiple heterogeneous processors such as in Figure 31. Note that PARLAK

can help either prior to SoC fabrication when most or all of the SoCLC may be

1Parlak means bright in Turkish (the native language of the author of this thesis).

81

targeted for placement in custom logic or after fabrication when changes in the SoCLC

can only be targeted for placement in reconfigurable logic on the SoC. Figure 31

depicts the case where PARLAK is used to reconfigure a Platform SoC for an SoCLC

implementation for four PEs. Our approach facilitates the SoC design process by

providing an automatic hardware configurability and customization: using PARLAK,

the user can build an application specific configuration of the SoCLC. PARLAK can

produce a synthesizable SoCLC with a user specified number/type of lock variables

and PEs. Several configurations of the SoCLC hardware have been generated using

PARLAK. The designs – including the SoCLC locks ranging from 32 locks to 256

locks for a number of PEs ranging from 2 to 14 – have been synthesized using Design

Compiler from Synopsys. The synthesis area results are reported in Section 5.1.

Reconfigurable
Logic

Memory Controller
and

Address Decoder

SoCLC

Shared
Memory

DSP 1

DSP 2

uP 1

uP 2

Figure 31: A typical target SoC architecture.

5.1 Lock Cache Generator

5.1.1 PARLAK

PARLAK, which is written in C, is a synthesizable lock cache generator. The output

of this tool is the SoCLC architecture plus the top hierarchy, described in Verilog

82

hardware description language. The modules that comprise the lock cache and the

top hierarchy (including PE instantiations) are parametrized. The number of short

CS locks, number of long CS locks, number of PEs and the type of the PEs are

parameters that are used by PARLAK to build the lock cache and the top hierarchy.

On the other hand, PARLAK uses a library of components of the base architectures

– built previously – of the lock cache and the top hierarchy. Each module of the lock

cache is customized using the parameters specified by the user and using the library

components. There are two commands executed by the user:

GenLC { NUM PEs } { NUM SHORT } { NUM LONG }

GenTOP { PE TYPE NUM PEs }+ { NUM SHORT } { NUM LONG }

where NUM SHORT, NUM LONG, PE TYPE and NUM PEs specify the number of short CS locks,

number of long CS locks, type of PE and number of PEs, respectively. The first

command, GenLC, generates the synthesizable SoCLC Verilog code. The second com-

mand, GenTOP, generates the top hierarchy including all the PEs, SoCLC, arbiter,

memory controller and shared memory module instantiations. Note that the GenLC

command does not need the PE TYPE as one of the input parameters, because the

SoCLC is independent of the type of PEs used [4], [1], [2]. The GenTOP command,

however, needs to know the type(s) of PE(s) used so that the corresponding PE mod-

ule and memory/interrupt controller module instantiations are performed in the top

hierarchy. Also, note that {PE TYPE NUM PEs}+ specifies that one or more occurrences

of “PE TYPE NUM PEs” may appear in the command line. Currently, GenTOP is geared to

generate code for simulation in Seamless CVE [29] and three PE TYPEs are supported:

83

MPC750, MPC755 and ARM9TDMI. However, GenTOP can be extended to target any

SoC environment with any processor types.

PARLAK (Figure 32) handles the lock cache generation process through the fol-

lowing three building blocks (see Figure 33 for pseudo code). The first building block

is the set of input parameters specified by the user that determines the SoCLC size

and capacity (for how many PEs the SoCLC will be generated and how many short

and long CS locks the SoCLC will support). The second building block is a skeleton

SoCLC Verilog file which includes the basic signal, process and module descriptions

(e.g., for a processor) that do not depend on any input parameters. Moreover, this

skeleton file is labeled at those signal/module/process locations that strictly depend

on the input parameters. Based on this skeleton file, the corresponding parametrized

descriptions are generated and inserted into an output file incrementally at each la-

bel. The third building block consists of seed PARLAK functions that generate the

actual parameter-dependent signal/module/process descriptions. These functions in-

teract with the library that includes the code sections to be enumerated/instantiated

according to the input parameters. The library has been manually extracted from

a complete, fully customized SoCLC Verilog file. The functions are executed at the

corresponding labels as the skeleton input file is scanned.

Finally, there is PARLAK executable code that manipulates these three build-

ing blocks. The PARLAK executable gathers the parameters obtained from the user,

84

scanner

function1 function2 functionN...
lab

el
1 label N

la
be

l 2
SoCLC

SoCLC
skeleton

file

Top
skeleton

file

library of
 modules/componentsTop

hierarchy

input
parameters

Figure 32: PARLAK building blocks.

scans the skeleton input file for labels, calls the relevant functions at each label encoun-

tered in order to generate the customized Verilog code and integrates the generated

code with the skeleton into an output file (the pseudo code in Figure 33 depicts the

steps taken by the PARLAK executable). Execution is continued until all the labels

in the skeleton input file are exhausted. The resulting output file represents the final,

synthesizable, customized SoCLC architecture that the user is interested in. Note

that a similar flow of operations is performed for the top hierarchy generation as well

(Figure 33).

Figure 35 shows a flowchart of the PARLAK tool. First, the user provides

PARLAK with the input skeleton file, the number of PEs, the number of short CS

locks and the number of long CS locks as input parameters. Then, PARLAK checks

the validity of the inputs. If the inputs are invalid, the user is required to provide

85

GenLC (NUM SHORT, NUM LONG, NUM PEs) {

/* Begin scanning the SoCLC skeleton file */
L = First label of SoCLC skeleton file;

WHILE (L) /*loop until labels are exhausted*/
{ switch (L) /*generate customized code for each label*/

case(1): { function1();}
case(2): { function2();}
. . .
case(N): { functionN();}

Insert customized code into SoCLC output file for L;
L = Next label of SoCLC skeleton file;

}
}

GenTOP ({PE TYPE NUM PEs}+, NUM SHORT, NUM LONG) {

/* Begin scanning the top skeleton file */
L = First label of top skeleton file;

WHILE (L) /*loop until labels are exhausted*/
{ switch (L) /*generate customized code for each label*/

case(1): { function1();}
case(2): { function2();}
. . .
case(N): { functionN();}

Insert customized code into top output file for L;
L = Next label of top skeleton file;

}
}

Figure 33: Pseudo algorithms of code generation.

a new set of inputs and this step is repeated until a correct set of inputs are pro-

vided. After the verification step, PARLAK creates an output file and fetches the

first label from the input skeleton file. Then, PARLAK finds the matching module for

the fetched label and generates the corresponding code for the module by using the

library of modules/components shown in Figure 32. The generated code is appended

to the output file. Then, PARLAK fetches the next label and the same steps (module

86

module LockCache (clk, reset, re, we, D, A, IRQ, prbits)
 …
// LABEL #1 – PARAMETER declarations
 …

// LABEL #2 – Interrupt lines updated (with priority)
 …

// LABEL #3 – Control logic instantiation (one per PE)
 …

module LockCache (clk, reset, re, we, D, A, IRQ, prbits)
 …
// LABEL #1 – PARAMETER declarations
parameter NUM_PE = 2;
parameter SMALL_LOCKS = 64;
parameter LONG_LOCKS = 32;
parameter ADDR_W = 5;
parameter COUNT = 5;
 …

// LABEL #2 – Interrupt lines updated (with priority)
IRQ[0] = irq_w[0];
IRQ[1] = irq_w[1] & ~irq_w[0];
 …

// LABEL #1 – Control logic instantiation (one per PE)
ctrl ctrl1 (.clk(clk), .reset(reset),
 .in(pr_id[{1'h0, addr}] & (~irq_w[0])),
 .out(irq_w[0]), .we(we));
ctrl ctrl2 (.clk(clk), .reset(reset),
 .in(pr_id[{1'h1, addr}] & (~irq_w[1])),
 .out(irq_w[1]), .we(we));
 …

Figure 34: (a) An example SoCLC skeleton file with three labels. (b) The corre-
sponding SoCLC output file after labels of the skeleton file are scanned and the codes
at the corresponding labels are generated.

matching, code generation for the matched module and writing of the generated code

into the output file) are repeated until the labels in the input skeleton file are ex-

hausted. At the exit from the loop, PARLAK provides the user with the final output

file that corresponds to the user-configured synthesizable version of SoCLC.

Next, we describe how PARLAK generates SoCLC Verilog code with an example.

Example 5.1.1 Consider the code generation of an SoCLC with 64 short CS locks and

32 long CS locks for an SoC with two PEs. First, the user inputs the parameters:

{NUM SHORT} {NUM LONG} {NUM PEs} as

64 32 2

from the GenLC command line. Then, PARLAK begins to scan the skeleton file. For the sake

87

num_of_PEs
num_of_shortCS_locks
num_of_longCS_locks
SoCLC_skeleton_file

are inputs valid?

Is L null?

M = Find_module(L)

Outfile += Generate(M)

L = L � next

Outfile = φ

L = SoCLC_skeleton_file.first_label

Yes

No

No

end

start

Yes

Outfile

Figure 35: Flowchart of code generation with PARLAK.

88

of simplicity, we show an example SoCLC skeleton file with three labels in Figure 34(a).

The skeleton file labels are at those locations where the actual configuration takes place.

For example, the first label in Figure 34 corresponds to a position where the Verilog

PARAMETER declarations are edited into the output file. The second label corresponds to

a position where the interrupt lines are updated for each PE (in this example with two

PEs, there will be two interrupt lines). Finally, the third label is the location where the

control logic module instantiations take place. As seen from Figure 34(b), two control

logic module instantiations (one for each PE) are inserted to the SoCLC output file at the

location of Label #3. The code generation of the parameters, interrupt line updates and

the control logic is performed by the functions block shown in Figure 32. For example,

function3 for Label #3 utilizes a library description of the control logic to generate the

ctrl1 and ctrl2 modules as shown in Figure 34(b). Note that the control logic of a PE

signals an interrupt when a lock for which the PE has been waiting is released. Obviously,

the ctrl modules scale according to the parameter, NUM PEs, which is equal to two in this

example: i.e., function3 generates two instantiations of the ctrl module. In this way, each

label is scanned and the generated code at each label is inserted to the output SoCLC

Verilog file. Similarly, GenTOP outputs the top hierarchy Verilog file after the labels in the

top skeleton file are scanned and the corresponding code replacements are performed. 2

The PARLAK tool has a linear computational complexity depending on the user

parameters (e.g., number of PEs, number of short CS locks and long CS locks). A

skilled designer could instantiate the proper modules/signals manually for a version

89

of SoCLC that he/she desires without the PARLAK tool. On the other hand, it is

also possible to use a Verilog PreProcessor (VPP) to generate different versions of

SoCLC without PARLAK.

90

CHAPTER VI

EXPERIMENTAL RESULTS

6.1 Experimental Platform

In order to evaluate the performance of SoCLC, we have setup two experimental archi-

tectures: (1) a PowerPC based SoC platform, and (2) an ARM based SoC platform.

Both of these architectures have been implemented in the Seamless CVE tool from

Mentor Graphics [29] with processor instruction set simulators (ISS) that are used for

software debugging and execution trace. The simulation backplane of Seamless inte-

grates the ISSes with hardware simulators: we chose to use VCS from Synopsys [47]

(see Figure 36).

As for the PowerPC based SoC platform, an experimental architecture consisting

of four Motorola PowerPC755 (MPC755) processors, shared-memory, SoCLC, mem-

ory controller and arbiter units has been setup as shown in Figure 37. Each MPC755

processor includes a 32 KB instruction cache and a 32 KB data cache. The cache

protocol is the modified-exclusive-invalid (MEI) coherency protocol with a write-back

91

XRAY
Debugger
Interface Instruction Set

Simulator (ISS)

Seamless CVE
Co-simulation Kernel

Hardware Verilog
Simulator

Hardware
design

Software
Executable

Seamless
CVE GUI

VCS
Simulator
Interface

Figure 36: Seamless CVE tool components.

write update policy and with an insert-in-cache write allocate policy. Seamless CVE’s

MPC755 processor support package (PSP) specifications are listed in Table 1. Note

that the MPC755 PSP that we used is not cycle-accurate but is instruction-accurate.

System (MPC755 and Bus) Clock Freq. 100 MHz
Instruction Cache Size 32 KByte
Data Cache Size 32 KByte

Cache protocol/policy MEI, write-back, insert-in-cache
Cache line size 32 Byte (i.e., 8 words)

Global Shared Memory Size 16 MByte

Table 1: Specifications of Seamless CVE’s MPC755 PSP that we used in our exper-
iments.

As for the MPC755 PSP that we used in our experiments, the LL/SC pair of in-

structions (see Chapter 2.1) are not supported for multiprocessor architectures. How-

ever, we need these instructions to perform fair comparison among the with-SoCLC

92

SoC
Lock
Cache

INT1
INT2
INT3
INT4

WE
RE
DB
AB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

 Arbiter

and
Memory

Controller

Shared
Memory

 L1

L1

L1

M
P
C
7
5
5

M
P
C
7
5
5

M
P
C
7
5
5

M
P
C
7
5
5

BG
BR

ACCK
TA

ABB
TS

DBB

DB
AB

INT

DB
AB

INT

DB
AB

INT

DB
AB

INT

WE RE

AB
DB
RE

WE

 p1 p2 p3 p4

p1
p2
p3
p4

L1

Figure 37: Hardware architecture setup with MPC755 processors.

and without-SoCLC platforms. Therefore, we developed a custom hardware, which

we call the Reservation Logic (RL), that provides the correct operation of the LL/SC

pair of instructions for the without-SoCLC experimental architecture with MPC755s.

As seen in Figure 38, the RL unit is connected to the system bus. The RL unit snoops

the bus for all lock requests performed by LL/SC instructions and enforces the pro-

cessors to obey the actual operating principles of the LL/SC instructions as described

in Chapter 2.1. The RL unit realizes this enforcement by exploiting the address retry

(ARTRY) signal of the MPC755s: if the ARTRY of an MPC755 is asserted during a

bus transaction, then that MPC755 leaves the current bus transaction as incomplete

and retries later.

93

MPC755

Shared Memory

lock 1
lock 2
lock 3
…
lock N

CS 1

CS 2

CS 3

CS N

…

ARTRY

MPC755

ARTRY

MPC755

ARTRY

MPC755

ARTRY

Reservation
Logic
(RL)

ADDR &
DATA BUS

Figure 38: Reservation Logic (RL) connected to the system bus.

The RL hardware mechanism operates as follows (also shown in Figure 39). The

RL unit monitors each processor’s access to one of the lock variables (the addresses

of which are known by RL) in memory. RL includes a flag dedicated for each lock

variable. After a processor reads a lock (i.e., executes the LL instruction), the flag

of that lock variable in the RL unit is asserted as shown in Figure 39. If any other

processor tries to read the same lock variable from the memory, then the RL unit

prevents the processor from reading the lock variable by asserting the processor’s

ARTRY signal. When the original MPC755 processor sets the lock variable (executes

the SC instruction), then the flag for that lock variable inside the RL unit is cleared

and no more ARTRY signals are sent to the other processors. In this way, the

correct paired execution of LL and the successive SC instructions can be provided.

94

lock 1 flag
in RL

LL
executed by

PE1 at 1

Other processors
(PE2, PE3, PE4)

cannot access lock 1

SC
executed by

PE1 at 2
test: LL R2, (R1) 1
 ORI R3, R2, 1
 BEQ R3, R2, test
 SC R3, (R1) 2
 BEQ R3, 0, test

Figure 39: Reservation Logic operation between LL and SC instructions.

However, as can be deduced, the exact LL/SC behaviour is not precisely mimicked;

nonetheless, since MPC755 PSP is not cycle-accurate anyway, such lack of precise

mimicking should not alter our results in any significant fashion.

On the other hand, to verify that SoCLC can support different type of processors,

and that SoCLC is portable, we have also integrated SoCLC into an ARM based SoC

platform as seen in Figure 40. We have verified the functionality of SoCLC (both in

the hardware and the software) on this platform. Each ARM9TDMI processor core is

connected to a 32 KB unified cache (i.e., including both data and instructions). The

cache protocol is the modified-exclusive-shared-invalid (MESI) coherency protocol

with a write-back write update policy and with an insert-in-cache write allocate policy.

Also, the cache controller of the Level one (L1) caches supports cache-to-cache data

transfers. Seamless CVE’s ARM9TDMI PSP specifications are listed in Table 2.

Unlike the MPC755 PSP, the ARM9TDMI PSP is cycle-accurate. Note that the

system bus clock frequency of ARM based platform is 10 MHz (which is a factor of 10

less than that of PowerPC based platform) because of the way that we implemented

95

ARM9TDMI

L1 Cache (32 KB)
and Cache Cntrl

ARM9TDMI

ARM9TDMI

ARM9TDMI

Shared Memory

512 MB

L1 Cache (32 KB)
and Cache Cntrl

L1 Cache (32 KB)
and Cache Cntrl

L1 Cache (32 KB)
and Cache Cntrl

Arbiter

SoCLC

Memory
Cntrl

Figure 40: Hardware architecture setup with ARM9TDMI processors.

System (ARM9TDMI and Bus) Clock Freq. 10 MHz
Unified Cache Size 32 KByte
Cache protocol/policy MESI, write-back, insert-in-cache
Cache line size 16 Byte (i.e., 4 words)

Global Shared Memory Size 512 MByte

Table 2: Specifications of the L1 caches and the ARM9TDMI PSP that we used in
our experiments.

the L1 cache1. (We give this information here as part of the description of our

platform).

In order to evaluate SoCLC and compare its performance results with a base

architecture, we have developed two versions for each SoC platform: the first one is

the setup with SoCLC and the second one is the setup without SoCLC. Therefore we

can list these SoC platforms as follows:

1The L1 cache is not from a Seamless CVE model; instead, we have written it in Verilog and we
made use of delay statements to ease its design without worrying about the clock period.

96

1. MPC755 based platform with SoCLC

2. MPC755 based platform without SoCLC

3. ARM9TDMI based platform with SoCLC

4. ARM9TDMI based platform without SoCLC

The ARM9TDMI platforms have been used only for functional verification of

SoCLC. All of the experimental results presented in the rest of this thesis have been

obtained using the MPC755 based platforms. The next sections describe the software

programs simulated on the MPC755 based SoC platforms.

6.2 Basic Lock Cache Experimental Results

6.2.1 Microbenchmark

Previous work has constructed microbenchmark programs that simulate a critical sec-

tion being entered repeatedly [5], [18]. The critical section includes a set of data from

the shared memory space which is accessed by the PEs in the system. The consistency

of the shared data is guaranteed by a lock that is acquired before entering the critical

section and released after exiting the critical section. As shown in Figure 41, the crit-

ical section is repeatedly accessed in a loop that loops N times. In our experiment, N

is chosen to be 500. Within the critical section, some critical shared data is accessed.

The amount of data accessed in our microbenchmark at line #7 of Figure 41 is a total

of 24 bytes.

97

1 #define N 500 // N = number of loop iterations
2 int i;
3 for (i = 0; i < N ; i++)
4 {
5 Lock(lock variable); // Acquire lock
6 // Begin critical section
7 Access shared data here();
8 // End critical section
9 UnLock(lock variable); // Release lock
10 }

Figure 41: Microbenchmark program pseudo code.

The microbenchmark program is run (1) on the MPC755 experimental setup with

SoCLC (shown in Figure 37) and (2) on the MPC755 experimental setup without

SoCLC. For the without SoCLC case, we have performed two different experiments.

The first experiment uses the spin-lock mechanism implemented using LL/SC in-

structions (as shown in Figure 2) and the second one uses MCS locks (please see

Chapter 2.3.5.1 for the pseudo code of the MCS algorithm). Please note that MCS

locks seem to be the best software solution that has appeared in the literature to date,

so we have chosen MCS locks for comparison (in addition to traditional spin-lock).

For the implementation of MCS locks, we have built compare-and-swap and fetch-

and-store primitives using LL/SC instructions with the support of the RL described

in Section 6.1.

Table 3 shows the performance comparison results. SoCLC achieves a 37% speedup

over the regular spin-lock approach and 19% speedup over MCS locks.

98

Total elapsed time (µ sec) SoCLC SoCLC
Without With Speedup Speedup
SoCLC SoCLC over over

Spin-lock MCS Spin-lock MCS locks

5521.5 4820.8 4044.5 1.37 X 1.19 X

Table 3: Microbenchmark simulation results.

6.2.2 False Sharing Experiment

In this experiment, we have simulated a microbenchmark to examine the effect of

cache invalidations – due to false sharing [16] – on locking performance. For this

microbenchmark, we have used a similar microbenchmark described in the previous

section – with N=500 and 24 bytes of shared data being accessed in the CS. The

only difference is that we have used separate locks for each of the four processors

instead of using one lock (see Figure 42). Therefore, there is no lock contention at

all, i.e., the processors will never fail to acquire a lock before entering the associated

CS. However, these four lock variables lie on the same cache line, which implies

that there will still be cache invalidations and associated bus traffic for the hardware

architecture without SoCLC. For the hardware architecture with the SoCLC, on the

other hand, there will be no bus traffic due to cache invalidations, as the lock variables

are not cached. Table 4 compares the performance of the three approaches: SoCLC

outperforms spin-lock (implemented with LL/SC instructions) by 1.27X and MCS

locks by 1.48X when there is no lock contention, but false sharing in the system.

99

#define N 500
int i;
for (i=0; i<N; i++)
{
 Lock(lock_variable1);
 Access_shared_data();
 UnLock(lock_variable1);
}

#define N 500
int i;
for (i=0; i<N; i++)
{
 Lock(lock_variable2);
 Access_shared_data();
 UnLock(lock_variable2);
}

#define N 500
int i;
for (i=0; i<N; i++)
{
 Lock(lock_variable3);
 Access_shared_data();
 UnLock(lock_variable3);
}

#define N 500
int i;
for (i=0; i<N; i++)
{
 Lock(lock_variable4);
 Access_shared_data();
 UnLock(lock_variable4);
}

CPU1 CPU2

CPU3 CPU4

lock_variable1 lock_variable2 lock_variable3 lock_variable4
cache
line

Figure 42: Microbenchmark codes used for the false sharing experiment.

SoCLC speedup SoCLC speedup
Spin-lock MCS SoCLC over spin-lock over MCS

Total
elapsed time
(µ sec) 2375.7 2768.7 1868.6 1.27 X 1.48 X

Table 4: False sharing effect on locking performance.

6.2.3 Effect of Critical Section Length on Performance

To investigate how CSes of varying lengths would affect the locking performance,

we have altered the CS length of the microbenchmark by increasing the number of

shared data variables being accessed within the CS at line #7 of the pseudo code of

Figure 41. Table 5 shows the total execution time results of spin-lock, MCS locks

and SoCLC for the three CSes: (1) 24-byte shared data is accessed in a loop, (2)

48-byte data is accessed in a loop, and (3) 64-byte shared data is accessed in a loop.

100

The loops in all the three cases iterate 500 times (N=500). Table 6 shows the SoCLC

speedup over spin-lock and MCS locks.

Total Execution Time in µsec
Locking CS1 CS2 CS3

Scheme Used 24 Bytes, N=500 48 Bytes, N=500 64 Bytes, N=500

Spin-lock 5521.5 7685.4 9728.1
MCS locks 4820.8 7026.3 9257.0
SoCLC 4044.5 6227.4 8545.5

Table 5: CS length effect on locking performance.

CS1 CS2 CS3
(24 Bytes, N=500) (48 Bytes, N=500) (64 Bytes, N=500)

SoCLC speedup
over Spin-lock 37% 23% 14%
SoCLC speedup
over MCS locks 19% 13% 8%

Table 6: SoCLC speedup over spin-lock and MCS locks for different CS lengths.

As seen from the tables above, as the CS length is increased, the lock requests

will be performed between larger time intervals, which means the lock contention

is reduced (i.e., there will be less traffic). Note that, as mentioned in Chapter 2,

to decrease the traffic induced due to lock requests, exponential/proportional delays

have been inserted into the spin loops so as to increase the time between successive

lock requests of a processor. Similarly, increasing the CS length would defer the next

time a lock is requested and hence would reduce the contention.

101

6.2.4 Effect of Memory Latency on Performance

One important factor that affects the performance of locking schemes is memory

latency. By memory latency we refer the time that takes for a PE to access a single

word from the memory or the first word of a burst transfer (for burst transfers,

following the first word, the consecutive words are accessed, each, in one clock cycle).

As memory latency increases, the cache miss penalty increases, as does the over-

head of intrusive cache invalidations due to processors spinning on a lock variable.

Figure 43 shows the total execution time of the microbenchmark program (with 48

bytes of data being accessed in a loop that loops 200 times) for a spin-lock mecha-

nism, MCS locks and SoCLC mechanism when memory latency varies from 1 clock

cycle to 33 clock cycles. Table 7 also shows the speedup of SoCLC over spin-lock and

MCS locks for the same experiment.

As seen from Table 7, the speedup of SoCLC over spin-lock tends to increase from a

memory latency of 1 clk cycle to 33 clock cycles. However, the speedup decreases from

79% for 14 clock cycle latency to 69% for 19 clock cycle latency and then increases to

a higher level, to 82% for 23 clock cycle latency. Similarly, for MCS locks, the SoCLC

speedup over MCS increases from 10% for 4 clock cycle latency to 12% for 9 clock

cycle latency and then decreases to 9% for 14 clock cycle latency and finally increases

to 22% for 19 clock cycle latency. This fluctuation in the speedup values might be

due to the different/arbitrary runtime cache invalidation events induced on the shared

data that is being accessed inside the CS. However, in the overall range, from 1 clock

102

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 9 14 19 23 33

Spin-lock

MCS locks

SoCLC

 Memory latency (clock cycles)

T
ot

al
 e

xe
cu

ti
on

 ti
m

e
(m

ic
ro

 s
ec

on
ds

)

Figure 43: Microbenchmark total execution times for different memory latencies.

cycle latency to 33 clock cycle latency, the speedup of SoCLC over spin-lock increases

from 23% to 107% and the speedup of SoCLC over MCS increases from 12% to 26%.

6.2.5 Database Example

So far, we have evaluated the short CS performance. In this section we measure the

SoCLC performance for long CSes when compared to a typical RTOS with semaphores

(therefore, we do not compare SoCLC with MCS locks, but with semaphores). For this

purpose, in addition to microbenchmarks, which are synthetic, we have constructed a

realistic software application, a database example which constitutes a good example

for task synchronization scenarios [35]. As for the RTOS, we installed Atalanta RTOS

103

Memory Total Execution Time in µ sec SoCLC Speedup
Latency
(clk cycle) Spin-lock MCS locks SoCLC over Spin-lock over MCS locks

1 3077.8 2815.4 2509.4 23% 12%
4 3339.8 2967.7 2699.1 24% 10%
9 4505.6 3361.2 2999.7 50% 12%
14 5955.6 3638.0 3324.9 79% 9%
19 6169.0 4449.5 3650.2 69% 22%
23 7101.9 4814.4 3910.5 82% 23%
33 9432.0 5740.3 4560.9 107% 26%

Table 7: Microbenchmark total execution times for different memory latencies and
the corresponding SoCLC speedup over spin-lock and MCS locks.

Version 0.3 on each PE [11]. For comparison reasons (similar to what we performed in

the microbenchmark measurement) we simulated (1) an application program running

on a four-processor MPC755 system together with the SoCLC and (2) the application

program running on a four-processor MPC755 system, but without the SoCLC. For

both cases, the application program consists of 40 tasks. The Atalanta RTOS sup-

ports synchronization of tasks running on different PEs; therefore, we can use RTOS

calls (e.g., semaphore system calls) to set up the communication between tasks run-

ning on different PEs. In the case without an SoCLC, we use the traditional spin-lock

synchronization facility (the test-and-set primitive implemented using LL/SC instruc-

tions) for short CSes. If the requested lock is not available, the traditional spin-lock

mechanism degrades the performance. Because the spin-lock mechanism is a non-

blocking operation for the caller task, the spin-lock mechanism prevents useful job

execution during spinning and consumes memory bandwidth (impacting the other

104

PEs memory accesses). On the other hand, for long CSes, we use the Atalanta RTOS

semaphores. A semaphore is very much like a lock variable; a semaphore in the sys-

tem without SoCLC is analogous to the long CS lock variables in the system with

SoCLC. There are three basic operations performed in a semaphore: (1) initialization

of the semaphore, (2) seek for (or request) a semaphore and (3) signal a task after a

semaphore release. The first operation initializes the semaphore at system startup.

The second operation seeks a semaphore, so that, if the seek operation is successful,

the caller will be the owner of the semaphore and can enter into the critical section.

However, if the semaphore is not available, the calling task will yield the PE and

will be put into the waiting list of the semaphore that the calling task failed to ac-

quire. Finally, the third operation releases the semaphore and signals the waiting task

that is at the head of the waiting list of the semaphore (the Atalanta RTOS keeps

a FIFO queue for the waiting tasks). Note that the semaphore wait list update and

task signaling actions among different PEs are done via system calls in the Atalanta

RTOS.

In the case with an SoCLC, a long CS lock request action is similar to a semaphore

seek operation: if the lock is available, the lock bit entry in the lock cache is marked

as ‘1’ and the task is given the exclusive ownership of the lock; if the lock is not

available, however, the task is inserted into the lock-wait table of the lock (as explained

in Section 3.4) and the task yields the PE. The SoCLC unit, on the other hand,

105

performs the signaling of waiting tasks with an interrupt notification to the PE,

which guarantees a predictable and fair lock hand-off.

As illustrated in Figure 44(a), a system may have several transactions which

are thread level applications. Each thread must acquire a lock before initiating a

transaction. A transaction is a process of accessing a database (labeled as Oi objects),

which is equivalent to a CS in our simulations. For instance, in Figure 44(a), long Req1

is the request initiated from transaction1 to acquire the long CS lock for accessing

Object2 (O2). Other signals in the figure also refer to lock acquisition requests of the

transactions.

long_Req1

Access of
Object O2

by transaction1

transaction1

transaction2

transaction3

O4

transaction4

short_Req4 short_Req3

O2

O3

long_Req3

O2

Access of

Object O4

by transaction3

O2

O4

Client Server

Shared
Memory

Client address space
Server address space

client
local
memory

server
local

memory

shared
data

(a)

(b)

Figure 44: Database example (a) transactions and (b) object-copy.

106

The above database system specification example has been combined with a client-

server pair execution model for a shared-memory multiprocessor system. For some

systems, shared memory is the fastest form of inter-process communication (IPC)

available [46]. Once the memory is mapped into the address space of the processes

that are sharing the memory region, no kernel involvement occurs in passing the data

between the processes. However, some form of synchronization is needed between the

PEs that are storing and fetching information to and from the shared memory region,

which we provide by the SoCLC.

The client-server object-copying program that we used as an example for the

database system object transactions includes accesses to short CSes as well as long

CSes. Long CSes are the actual database object copying actions (as illustrated in

Figure 44(b), whereas the short CSes are the synchronization actions among the

server tasks and the client tasks before the long database transaction is initiated [2].

In Figure 44(b), the data is first copied from the server’s local memory into the

shared memory and then from the shared memory into the client s local memory.

The shared memory object, which is equivalent to a long CS, appears in the address

space of both the client and the server. Note that our database objects copied from

the server side into the client side are of size 1.6 Kbytes.

Our experimental results in Table 8 presents the lock latency, lock delay and the

total execution times for two cases, (1) simulation with SoCLC and (2) simulation

without SoCLC. As seen in the table, the SoCLC mechanism achieves 1.06X speedup

107

in short CS lock latency, 1.52X speedup in short CS lock delay, 3.65X speedup in

long CS lock latency, 1.77X speedup in long CS lock delay and 1.31X speedup in the

total execution time of the database example.

Without With

SoCLC SoCLC Speedup

Short CS

lock latency 33 31 1.06X

(clk cycles)

Short CS

lock delay 111 73 1.52X

(clk cycles)

Long CS

lock latency 726 199 3.65X

(clk cycles)

Long CS

lock delay 4070 2300 1.77X

(clk cycles)

Elapsed time

(clk cycles) 495542 378595 1.31X

Table 8: Database application simulation results.

6.3 Priority Inheritance Experimental Results

This section presents the performance speedups obtained by SoCLC IPCP (LCPI)

implemented in hardware when compared to Atalanta RTOS PIP (AtalantaPI) im-

plemented in software. As for the experimental setup, the SoCLC has been integrated

with MPC755 processors. The specifications of the MPC755 processor that we used

in our experiments are listed in Table 1. Please note that we assume three cycles of

the system bus clock (including bus arbitration) are needed to access the first word

in the 16 MB global memory (if the transcation is a burst transaction, the succesive

108

words of the burst are accessed each in one clock cycle). The Atalanta RTOS [11]

with the application programs are installed on each processor.

Figure 45 depicts the two hardware/software architectures that we compare. The

first architecture, as seen in Figure 45(a), comprises four MPC755 processors in hard-

ware and the user-level application tasks plus the Atalanta RTOS in software. The

Atalanta RTOS version used includes the priority inheritance protocol and the spin-

lock mechanism for lock-based synchronization of long CSes and short CSes, respec-

tively. The second architecture in Figure 45(b), on the other hand, comprises four

MPC755 processors plus the SoCLC in hardware and the user-level application tasks

plus the Atalanta RTOS in software. However, the Atalanta RTOS of the second ar-

chitecture does not include the priority inheritance protocol nor the spin-lock mech-

anism. Rather, the priority inheritance protocol (which is part of the lock-based

long CS synchronization) and the lock-based short CS synchronization facility are

implemented as part of the SoCLC in hardware.

The tasks that we simulated in our experimental setups represent a robot control

(RC) application and an MPEG decoder. Figure 46 illustrates the algorithmic model

of the RC application.

The first task detects the obstacles over the path via a sensor operation and then

computes the coordinates of the next path to be taken by the robot to avoid a collision

with the obstacle. As seen from the figure, Object Recognition and Avoid Obstacle

parts of the model have been assigned to task1, which is the highest priority task

109

MPC755 MPC755 MPC755 MPC755

 Atalanta-RTOS
 priority inheritance

protocol

Application Tasks

spin-lock

MPC755 MPC755 MPC755 MPC755

 Atalanta-RTOS

Application Tasks

Interrupt
Handler

SoCLC

(a) (b)

 16 MB Global Shared Memory 16 MB Global Shared Memory

Figure 45: Hardware/software architectures used in our experiments. (a) Atalanta
RTOS handles the priority inheritance and the spin-lock mechanisms in software.
(b) SoCLC handles the priority inheritance and lock-based synchronization in hard-
ware.

with critical hard real-time requirements. The worst case response time (WCRT) of

task1 is 250µs; missing the deadline of task1 causes instability in the sensor function

and tracking to fail. Also seen in the figure, task2 handles the movement of the

robot according to the position information already determined by task1. Task2 is

the second highest priority task with firm real-time requirements and has a response

time of 300µs. Missing the deadline of task2 causes the speed of the robot to decrease

and/or gouging or breakage. Task3 and task4, on the other hand, have relatively

soft timing requirements and are responsible for the robot trajectory display and

recording. The WCRT of task3 and task4 are 300µs and 600µs, respectively. Finally,

the MPEG decoder task, task5, is the lowest priority task in the system and has a

soft timing requirement.

In our simulations, we ran these five tasks as follows: task1 runs on CPU1 and

it has a priority of 1 (highest priority task), task2 is the second priority task with

110

Start

Object_Recognition

Avoid_Obstacle

Reached target? End

Move

no

yes

Display
Robot_Trajectory

Record_Data

task1

task2

task3

task4

Figure 46: Robot application model and job-partitioning among tasks.

priority 2 and it runs on CPU2, task3 also runs on CPU2 with priority 3, task4

runs on CPU3 and task5 runs on CPU4. Figure 47 shows the execution traces of

task1, task2 and task3. As seen in the figure, during the time that task1 is waiting

for task3 to release the lock, task1 (highest priority task) is prevented from having

unbounded blocking. Because, with IPCP, task3’s priority is raised to the ceiling

priority immediately after acquiring the lock. Therefore, when task2 (whose priority

is higher than task3) arrives, task2 cannot preempt task3, so task3 runs on CPU2

until task3 completes the CS and releases the lock.

We measured the lock latency, lock delay and overall execution times for both

architectures shown in Figure 45. The first architecture does not include SoCLC,

111

lock
request

lock
grant

lock
request

blocking

lock
release

lock
grant

CS

CS

lock
latency

CPU 2
task

CPU 1
task

CPU 2
task

task
arrival

task
arrival

task
arrival

1

3

2

2

3

1

Figure 47: Task3 inherits task1’s priority during the time that task3 executes its
CS. After completing its CS, task3 yields the CPU2 to task2.

AtalantaPI LCPI

(without SoCLC) (with SoCLC) Speedup

Lock Latency

(time in clock cycles) 570 318 1.79 X

Lock Delay

(time in clk cycles) 6701 3834 1.75 X

Overall Execution

(time in clk cycles) 112170 78226 1.43 X

Table 9: Simulation results of the robot application.

and is named as the “AtalantaPI” case; the second architecture includes SoCLC,

and is named as the “LCPI” case. As seen from Table 9, the priority inheritance

implemented as part of the SoCLC hardware achieves 79% speedup (i.e., 1.79X)

in the lock latency, 75% speedup (i.e., 1.75X) in the lock delay and 43% speedup

(i.e., 1.43X) in the overall execution time when compared to the priority inheritance

implementation under Atalanta RTOS.

112

Task1 Task2 Task3 Task4

WCRT 250µs 300µs 300µs 600µs

Completion Time for

Software PI Protocol 283µs 556µs 80µs 517µs

Completion Time for

Lock Cache PI Protocol 93µs 247µs 77µs 337µs

Table 10: Task worst-case response times (WCRT) and actual completion times.

We also analyzed the execution traces of all the five tasks that we ran. As seen from

Table 10, in the case of “LCPI” simulation, all tasks meet their deadlines; whereas

in the case of “AtalantaPI,” task1 and task2 miss their deadlines, which causes the

tracking to fail and entails a restart of the RC application.

Note that we performed a comparison with the software implementation of priority

inheritance but not with a system including an additional processor dedicated to run

the priority inheritance protocol. An additional MPC755 processor would impose

extra processor-to-processor communication overheads plus a higher hardware cost, as

the additional processor would occupy a larger chip area than our priority inheritance

hardware logic (see Chapter 6.4). However, one could consider using a microcontroller

or other small processor in place of custom SoCLC hardware, but we would expect

the speedups shown to be much smaller in such a scenario.

We also did not attempt to change the memory architecture of the system. For

example, using a two-port memory would not help in reducing the lock contention due

to the fact that the lock address specifies a unique physical memory location. This

implies that multiple ports would still contend with each other to access the lock

113

from that unique physical location. Moreover, altering the memory/bus system of an

SoC requires all the system components to comply with newly designed memory/bus

system.

6.4 PARLAK Lock Cache Synthesis Results

This section presents the synthesis results of the SoCLC. The Design Compiler from

Synopsys with a 0.25µ technology TSMC standard cell library from LEDA has been

used for the synthesis of the SoCLC.

We classify the synthesis results into two: the synthesis results of SoCLC without

priority inheritance logic (Chapter 6.4.1) and the synthesis results of SoCLC with the

priority inheritance logic (Chapter 6.4.2).

6.4.1 SoCLC Hardware Synthesis Results

Figure 48 illustrates how the total area (logic area plus memory area) of a 4-PE

SoCLC scales as the number of locks is increased from 32 to 256 with several short

CS and long CS lock combinations for an SoCLC clock period of 10ns (i.e., a 100

MHz SoCLC operating frequency).

In case of four PEs and 32 lock variables (16 short CS locks and 16 long CS locks)

in Figure 48, the SoCLC occupies an area of 6,560 logic gates. However, in the case

of four PEs and 256 lock variables (128 short CS locks and 128 long CS locks), the

SoCLC occupies 37,940 logic gates. Here, the gate unit represents the area of a 2-

input standard NAND gate. Note that the area occupied by the long CS locks is

114

A
re

a
(g

at
es

)

0

5000

10000

15000

20000

25000

30000

35000

40000

Area of long CS locks
Area of short CS locks

16
 s

ho
rt

 +
 1

6
lo

ng

16
 s

ho
rt

 +
 3

2
lo

ng

16
 s

ho
rt

 +
64

 lo
ng

16
 s

ho
rt

 +
 1

28
 lo

ng

32
 s

ho
rt

 +
 3

2
lo

ng

32
 s

ho
rt

 +
 6

4
lo

ng

32
 s

ho
rt

 +
 1

28
 lo

ng

64
 s

ho
rt

 +
 1

6
lo

ng

64
 s

ho
rt

 +
 3

2
lo

ng

64
 s

ho
rt

 +
 6

4
lo

ng

64
 s

ho
rt

 +
 1

28
 lo

ng

12
8

sh
or

t +
 3

2
lo

ng

12
8

sh
or

t +
 6

4
lo

ng
 12

8
sh

or
t +

 1
28

 lo
ng

32 48 80 144 64 96 160 80 96 128 192 160 180 256
Total number of locks in SoCLC for different

short CS and long CS lock combinations

Figure 48: Synthesis results for several number of lock combinations in the SoCLC.
Number of PEs is equal to 4 and clock period is 10ns.

larger that the area occupied by the short CS locks due to the counters (see Figure 10

in Section 3.2.2) that are present in SoCLC for the long CS locks.

Figure 49, on the other hand, illustrates how SoCLC scales as the number of

processors is increased for different combinations of number of lock variables from 32

locks to 256 locks for a clock period of 50ns. Note that for the larger combinations,

e.g., 8 processors with 128 locks, we could not achieve synthesis results with a 10ns

clock period. Furthermore, due to the area bottleneck of counters that slowed down

the synthesis process, we have synthesized the logic without the counters first and

115

then added the counters overhead manually to the final synthesis results shown in

Figures 49 and Figure 50.

Total Area Occupied by the SoCLC

A
re

a
(g

at
es

)

Number of PEs

0

10000

20000

30000

40000

50000

60000

70000

80000

2 4 6 8 10 12 14

Figure 49: Synthesis results of the total area of the SoCLC for increasing number
of PEs for number of locks = 32, 64, 128 and 256. Clock period is 50ns.

The number of short CS locks and long CS locks in each combination of Fig-

ure 49 are equal. While Figure 49 shows the total area of the SoCLC, Figure 50-(a)

and Figure 50-(b) illustrate the memory-only logic area and non-memory logic area,

respectively (in short, adding Figure 50-(a) and Figure 50-(b) together results in

Figure 49). Note that the area cost of counters have been included in the memory-

only area but not in the non-memory logic area. As seen from the figures, the area

increases linearly as the number of processors in the SoC and the number of lock

variables residing in the lock cache are increased.

116

0

10000

20000

30000

40000

50000

60000

70000

2 4 6 8 10 12 14
0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14

Memory-only Area Non-memory Logic Area
A

re
a

(g
at

es
)

A
re

a
(g

at
es

)

Number of PEs Number of PEs

Figure 50: (a) Memory-only area of the SoCLC. (b) Non-memory area of the
SoCLC. Clock period is 50ns.

6.4.2 SoCLC with Priority Inheritance Hardware Synthesis Results

Table 11 shows the logic area occupied by the SoCLC with and without the priority

inheritance hardware for different combinations/numbers of locks in terms of the

area of a two-input NAND gate, for a clock period of 50ns. As an example, for a

four-processor SoC, the SoCLC, including the IPCP hardware, supporting 32 short

CS locks and 32 long CS locks occupies 21,430 gates of area. The IPCP hardware

area has been found by subtracting the SoCLC without the IPCP area cost from the

SoCLC with IPCP area cost.

Note that the larger area cost of the IPCP unit (when compared to the SoCLC

area without the IPCP support) is due to larger memory elements (described in Chap-

ter 4.3.2) such as the task states table, lock owner priorities, dynamic task priorities,

117

total SoCLC SoCLC IPCP

Number of short CS long CS number with IPCP without IPCP hardware

processors locks locks of locks total area total area total area

4 16 16 32 13063 4604 8459
4 16 32 48 20859 6873 13986
4 32 32 64 21430 7435 13995
4 32 64 96 36877 12084 24793
4 64 64 128 38231 13109 25122

Table 11: SoCLC hardware with priority inheritance logic synthesis results. (Note
that the area results include sum of memory-only area and non-memory logic area.)

ceiling priorities plus the associated decoder and comparator logics that control the

accesses to these memory elements contained in the IPCP hardware.

On the other hand, Table 12 shows the SoCLC area with IPCP support for 32

locks (16 short CS locks and 16 long CS locks) synthesized for our experimental

simulations of IPCP hardware in Section 6.3 with a 10ns clock period.

total SoCLC SoCLC IPCP

Number of short CS long CS number with IPCP without IPCP hardware

processors locks locks of locks total area total area total area

4 16 16 32 13642 6563 7079

Table 12: SoCLC hardware with priority inheritance logic synthesis results with
10ns clock period.

Finally, we give an estimate for a target SoC that includes four MPC755 proces-

sors (with instruction and data caches) occupying 6.75M transistors; 16MB shared

memory occupying 134.217M transistors; and the SoCLC hardware with IPCP for

128 locks occupying less than 40K gates (see Table 11), i.e., 160K transistors in Ta-

ble 13. As shown in Table 13, the SoCLC area to the total SoC area ratio for the

given system is only 0.1%.

118

Four MPC755 processors with I-cache and D-cache 6,75M x 4 = 27M transistors
16MB shared memory 134.217M transistors
SoCLC with IPCP 40K gates x 4 transistors/gate
for 128 locks = 160K transistors
Total SoC Area 161.377M transistors
SoCLC/SoC (%) 160K / 161.377M = 0.1%

Table 13: An estimate hardware cost of an example SoC including SoCLC.

119

CHAPTER VII

CONCLUSION

SoCLC is an effective and scalable hardware mechanism that can be integrated into

a shared-memory multiprocessor SoC as an intellectual property (IP) core. The pro-

posed solution is independent from the memory hierarchy, cache protocol and the

processor architectures used in the SoC, which enables easily applicable implemen-

tations of the SoCLC (e.g., as a reconfigurable or partially/fully custom logic), and

which distinguishes SoCLC from previous approaches.

The SoCLC eliminates the unnecessary lock variable reads over the main memory

bus, hence enabling the memory bus to be used for other useful work. On the other

hand, unlike the related previous work in the literature, the SoCLC does not require

any special atomic assembly instructions (e.g., compare-and-swap, test-and-set, load-

linked/store-conditional instructions), extended cache protocol, extra cache lines/tags

or any other architectural modifications/extensions to the processor core. Rather, the

SoCLC methodology is a processor/memory/cache-hierarchy independent solution.

120

Indeed, the SoCLC is a stand-alone hardware unit that can be connected to any

general-purpose processor via the system bus, which distinguishes our work as an

attractive approach in the IP-based SoC design area.

The SoCLC hardware mechanism has been implemented to support both short and

long CSes and has been integrated with four Motorola PowerPC755 processors and

with four ARM9TDMI processors in the Seamless CVE tool from Mentor Graphics

that provides instruction set simulators.

In order to realize the preemptive functionality of the long CSes, the lock cache

mechanism has been integrated with the Atalanta RTOS, a multiprocessor, preemp-

tive RTOS with a priority based scheduler. The Atalanta RTOS with the application

software programs is installed on each processor.

In evaluating the SoCLC approach, we have chosen the spin-loop microbenchmark

program (and measured performance under varying parameters such as CS length and

memory latency), a multi-tasking database application and a robot application for

comparison experiments.

The application programs used to test the basic SoCLC mechanism are several

microbenchmark programs that simulate SoCLC for a high contention scenario under

different parameters (such as false sharing condition, CS length and memory latency)

and a database application program with multiple client/server task pairs. Perfor-

mance results of the microbenchmark programs and the database program simulated

121

under the multiprocessor experimental setup with four MPC755 processors connected

to the SoCLC indicate that SoCLC achieves speedups of up to 1.37X.

In case of long CSes, where tasks unable to acquire a lock are preempted, the

priority inversion problem may occur. Priority inversion is the condition that forces

a higher priority task to wait for a lower priority task, thereby disturbing real-time

behavior. This problem has been solved by integrating a priority inheritance proto-

col with the lock cache hardware mechanism and has been tested with an example

RC application. The priority inheritance implemented as part of the SoCLC hard-

ware achieves 1.79X speedup in lock latency, 1.75X speedup in lock delay and 1.43X

speedup in overall execution time when compared to the priority inheritance imple-

mentation under the Atalanta RTOS. It has been also shown that the tasks could meet

their deadlines with SoCLC and that the tasks missed their deadlines in a scenario

without the SoCLC.

On the other hand, we have also implemented a parametrized lock cache genera-

tor tool, which we call PARLAK, to address the customizability/reusability problems

with the SoCLC hardware unit. PARLAK generates a synthesizable SoCLC archi-

tecture with a user specified number of lock variables and user specified number of

processors. Several configurations of SoCLC hardware have been generated using

PARLAK and the designs have been synthesized using the Design Compiler from

Synopsys. For example, PARLAK can generate a full range of customized SoCLCs,

from a version for two processors with 32 lock variables occupying 2,520 gates of area

122

to a version for 14 processors with 256 lock variables occupying 78,240 gates of area

(in TSMC 0.25µ technology).

In summary, we believe that our approach constitutes a paradigm shift in the

context of lock-based synchronization for multiprocessor shared memory SoCs. Our

methodology is an example of hardware/software partitioned decision making that

distributes the overhead of lock-based synchronization by using the co-design of hard-

ware and software effectively. SoCLC hardware is a high performance, low cost unit

that addresses short CSes as well as long CSes together with the IPCP mechanism all

integrated into one unit. Furthermore, using the PARLAK tool, customizable versions

of the SoCLC can be generated for a target SoC with heterogeneous multiprocessors.

123

REFERENCES

[1] Akgul, B. E. S., Lee, J., andMooney, V. J., “A system-on-a-chip lock cache
with task preemption support,” Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES’01),
pp. 149–157, November 2001.

[2] Akgul, B. E. S. and Mooney, V. J., “The system-on-a-chip lock cache,” In-
ternational Journal of Design Automation for Embedded Systems, Vol. 7, pp. 139–
174, September 2002.

[3] Akgul, B. E. S.,Mooney, V. J., Thane, H., andKuacharoen, P., “Hard-
ware support for priority inheritance,” Proceedings of the IEEE Real-Time Sys-
tems Symposium (RTSS’03), pp. 246–254, December 2003.

[4] (Akgul) Saglam, B. E. and Mooney, V. J., “System-on-a-chip processor
synchronization support in hardware,” Design Automation and Test in Europe
(DATE’01), pp. 633–639, March 2001.

[5] Anderson, T., “The performance of spin lock alternatives for shared-memory
multiprocessors,” IEEE Transactions on Parallel and Distributed Systems 1,
Vol. 1, pp. 6–16, January 1990.

[6] Artisan Components, Inc. Avaliable HTTP: http://www.artisan.com/ .

[7] Baker, T. P., “Stack-based scheduling of realtime processes,” The Journal of
Real-Time Systems, Vol. 3, pp. 67–100, 1991.

[8] Bollella, G. and Gosling, J., “The real-time specification for Java,” IEEE
Computer, Vol. 33, No. 6, pp. 47–54, 2000.

[9] Carlisle, M. C. and Rogers, A., “Software caching and computation migra-
tion in Olden,” Proceedings of the 5th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 29–38, July 1995.

124

[10] Chen, C. and Tripathi, S. K., “Multiprocessor priority ceiling based proto-
cols,” Tech. Rep. CS-TR-3252, Department of Computer Science, University of
Maryland, April 1994.

[11] Di-Shi, S., Blough, D., and Mooney, V. J., “Atalanta: a new multiproces-
sor RTOS kernel for system-on-a-chip applications,” Tech. Rep. GIT-CC-02-19,
Georgia Institute of Technology, College of Computing, Atlanta, GA, March
2002.

[12] Goodman, J., Vernon, M. K., andWoest, P. J., “Efficient synchronization
primitives for large-scale cache-coherent multiprocessors,” Proceedings of the 3rd
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-III), pp. 64–75, April 1989.

[13] Graunke, G. and Thakkar, S., “Synchronization algorithms for shared-
memory multiprocessors,” IEEE Computer, Vol. 23, pp. 60–69, June 1990.

[14] Harbour, M. G., “Real-time POSIX: an Overview,” VVConex 93 Interna-
tional Conference, Moscu, June 1993.

[15] Heinrich, J., “MIPS R4000 microprocessor user’s manual (2nd edition),”MIPS
Technologies, Inc., Mt. View, CA, pp. 286–291, 1994.

[16] Hennessy, J. L. and Patterson, D. A., Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, Second ed., 1996, pp. 29–31, pp. 669–670.

[17] Herlihy, M. andMoss, J. E. B., “Transactional memory: Architectural sup-
port for lock-free data structures,” Proceedings of the 20th Annual International
Symposium on Computer Architecture, pp. 289–301, May 1993.

[18] Kagi, A., Mechanisms for efficient shared-memory lock-based synchronization.
PhD thesis, Computer Sciences Department, University of Wisconsin, Madison,
1999.

[19] Kagi, A., Burger, D., and Goodman, J., “Efficient synchronization: let
them eat QOLB,” Proceedings of the 24th Annual International Symposium on
Computer Architecture, pp. 170–180, June 1997.

[20] Karlin, A. R., Li, K.,Manasse, M. S., and Owicki, S., “Empirical studies
of competitive spinning for a shared-memory multiprocessor,” Proceedings of the
13th ACM Symposium on Operating Systems Principle (SOSP), Pacific Grove,
CA, USA, pp. 41–55, October 1991.

[21] Klein, M. H. and Ralya, T., “An analysis of input/output paradigms for real-
time systems,” Tech. Rep. CMU/SEI-90-TR-19, Software Engineering Institute,
Carnegie Mellon University, 1990.

125

[22] Kwok-bun, Y., Davari, S., and Leibfried, T., “Priority ceiling protocol
in ada,” Conference Proceedings on Disciplined Software Development with Ada,
Vol. 3, December 1996.

[23] Labrosse, J. J., MicroC/OS-II The Real-Time Kernel. R&D Books, Miller-
Freeman, Inc., Lawrence, KS, 1999.

[24] Lim, B. H. and Agarwal, A., “Reactive Synchronization Algorithms for Mul-
tiprocessors,” Proceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS VI),
pp. 25–35, October 1994.

[25] Magnusson, P., Landin, A., and Hagersten, E., “Efficient software syn-
chronization on large cache coherent multiprocessors,” SICS Research Report
T94:07, Swedish Institute of Computer Science, Kista, Sweden, February 1994.

[26] Martinez, J. F. and Torrellas, J., “Speculative locks for concurrent ex-
ecution of critical sections in shared-memory multiprocessors,” Workshop on
Memory Performance Issues, June 2001.

[27] Martinez, J. F. and Torrellas, J., “Speculative synchronization: Applying
thread-level speculation to parallel applications,” Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 2002.

[28] Mellor-Crummey, J. M. and Scott, M. L., “Algorithms for scalable syn-
chronization on shared memory multiprocessors,” ACM Transactions on Com-
puter Systems, Vol. 9, pp. 21–65, February 1991.

[29] Mentor Graphics. Hardware/Software Co-Verification: Seamless. Avaliable
HTTP: http://www.mentor.com/seamless/ .

[30] Michael, M. M. and Scott, M. L., “Implementation of general-purpose
atomic primitives for distributed shared-memory multiprocessors,” Proceedings
of the 1st International Symposium on High-Performance Computer Architec-
ture, pp. 222–231, January 1995.

[31] Michael, M. M. and Scott, M. L., “Concurrent update on multiprogrammed
shared memroy multiprocessors,” Tech. Rep. 614, Department of Computer Sci-
ence, University of Rochester, April 1996.

[32] Michael, M. M. and Scott, M. L., “Simple, fast and practical non-blocking
and blocking concurrent queue algorithms,” Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing, pp. 267–275, May 1996.

126

[33] Michael, M. M. and Scott, M. L., “Relative performance of preemption-safe
locking and non-blocking synchronization on multiprogrammed shared memory
multiprocessors,” Proceedings of the 11th International Parallel Processing Sym-
posium, pp. 267–273, April 1997.

[34] Mooney, V. J. and DeMicheli, G., “Hardware/software co-design of run-
time schedulers for real-time systems,” International Journal of Design Automa-
tion for Embedded Systems, Vol. 6, pp. 89–144, September 2000.

[35] Olson, M. A., “Selecting and implementing an embedded database system,”
IEEE Computer, pp. 27–34, September 2000.

[36] Pfister, G. F. and Norton, V. A., “Hot spot contention and combin-
ing in multistage interconnection networks,” IEEE Transactions on Computers,
Vol. 34, pp. 943–948, October 1985.

[37] Rajkumar, R., Sha, L., and Lehoczky, J. P., “Real-time synchronization
protocols for multiprocessors,” Real Time Systems Symposium, pp. 259–269, De-
cember 1988.

[38] Rajwar, R. and Goodman, J. R., “Speculative lock elison: Enabling highly
concurrent multithreaded execution,” 34th International Symposium on Microar-
chitecture, pp. 294–305, December 2001.

[39] Rajwar, R. and Goodman, J. R., “Transactional lock-free execution of lock-
based programs,” 10th Symposium on Architectural Support for Programming
Languages and Operating Systems, pp. 5–17, October 2002.

[40] Ramachandran, U. and Lee, J., “Synchronization with multiprocessor
caches,” Proceedings of the 17th International Symposium on Computer Archi-
tecture, pp. 27–37, May 1990.

[41] Ramachandran, U. and Lee, J., “Cache-based synchronization in shared
memory multiprocessors,” Journal of Parallel and Distributed Computing,
Vol. 32, pp. 11–27, 1996.

[42] Rudolph, L. and Segall, Z., “Dynamic decentralized cache schemes for
MIMD parallel processors,” 11th Annual International Symposium on Computer
Architecture, pp. 340–347, June 1984.

[43] Rundberg, P. and Stenstrom, P., “Reordered speculative execution of criti-
cal sections,” Tech. Rep. TR-02-07, Chalmers University of Technology, Depart-
ment of Computer Engineering, Goteborg, Sweden, February 2002.

[44] Sha, L., Rajkumar, R., and Lehoczky, J. P., “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions on Com-
puters, Vol. 39, September 1990.

127

[45] Singh, J. P., Weber, W., and Gupta, A., “SPLASH: Stanford parallel ap-
plications for shared-memory,” Computer Architecture News, Vol. 20, pp. 5–44,
March 1992.

[46] Stevens, W. R., UNIX Network Programming, Second Edition: Interprocess
Coomunications, Vol. 2. Prentice Hall, 1999.

[47] Synopsys VCS Verilog Simulator. Avaliable HTTP:
http://www.synopsys.com/products/ simulation/simulation.html .

[48] Tensilica, Inc. Avaliable HTTP: http://www.tensilica.com .

[49] Umakishore Ramachandran, Gautam Shah, R. K. J. M., “Scalability
study of the ksr-1,” Parallel Computing, Vol. 22, No. 5, pp. 739–759, 1996.

[50] Virage Logic Corporation. Avaliable HTTP: http://www.viragelogic.com .

[51] Wisniewski, R. W., Kontothanassis, L., and Scott, M. L., “Scalable
spin locks for multiprogrammed systems,” Tech. Rep. TR454, September 1993.

[52] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A.,
“SPLASH-2 Programs: Characterization and methodological considerations,”
Proceedings of the 22nd International Symposium on Computer Architecture,
pp. 24–36, June 1995.

128

