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gĥ  : Global approximate vector for hydraulic head  

J  : Jacobian matrix in Newton-Raphson scheme 

M  : Mass matrix 

n  : Unit normal vector to the boundary 

S  : Stiffness matrix 

x  : Vector of unknown variables 

 

 

omlkji ,,,,,  : Indices

 xxvii 



 

 

 

SUMMARY 

 

 

A hybrid surface/subsurface flow and transport model is developed that blends 

distributed parameter models with simpler lumped parameter models. The hybrid model 

solves the channel flow and saturated groundwater flow domains in continuous time 

using fully distributed physically-based formulations. This system is supplemented with 

the overland flow and unsaturated groundwater flow that uses lumped parameter 

descriptions in discrete time. This hybrid formulation decreases the computational 

requirements associated with overland and unsaturated zone domains in a large scale 

continuous watershed modeling task but still allows a representative description of the 

watershed flow processes. 

In the proposed model, a one-dimensional channel flow model is dynamically 

coupled with a two-dimensional vertically-averaged groundwater flow model along the 

river bed. As an alternative to the commonly applied iterative solution technique, a so-

called simultaneous solution procedure is developed to provide a better understanding to 

the coupled flow problem. This new methodology is based on the principle of solving the 

two flow domains within a single matrix structure in a simultaneous manner. The method 

eliminates the iterative scheme that is otherwise required to obtain the convergence of the 

solution and provides a faster solution. 

 xxviii



In addition to the flow model, a coupled contaminant transport model is also 

developed to simulate the migration of contaminants between surface and subsurface 

domains. Based on its flow counterpart, the contaminant transport model dynamically 

couples a one-dimensional channel transport model with a two-dimensional vertically-

averaged groundwater transport model. The coupling is performed at the river bed 

interface via advective and dispersive transport mechanisms. A modified extension of the 

proposed simultaneous solution procedure is also implemented to solve the coupled 

contaminant transport problem. The dynamic coupling provides the much needed 

understanding for the continuity of contaminants in strongly interacting 

surface/subsurface systems such as a river and an unconfined aquifer.  

The coupled flow and transport models are applied to the lower Altamaha 

watershed in southern Georgia. The flow model is used to perform simulations of 

hydrologic and hydraulic conditions along the river and in the dynamically linked 

surfacial aquifer. The model predicted the flood patterns including the magnitude of 

peaks and their arrival times with accuracy. Under the given flow conditions, the 

transport model is then implemented to test alternative contaminant transport patterns 

both in the river and within the aquifer. It has been found that contaminated river water is 

much more likely to create significant consequences over the aquifer than would the 

contaminated aquifer water over the river due to the significant dilution of the river water 

over the contaminated seepage from the aquifer. Furthermore, it is observed that the 

channel network would serve as a conduit for rapid transport of contaminants within the 

aquifer to large distances in small time frames.  
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CHAPTER 1 

 

1. 

1.1. 

INTRODUCTION 

 

 

General 

Since the early days of watershed modeling, hydrologists have separated and 

isolated the hydrology of the system into its subcomponents. They have implemented 

discrete models for various hydrologic processes in an effort to simulate the response of 

the watershed to a hydrologic disturbance. Such models have been studied and improved 

constantly for decades. Currently, these models reached a certain level of sophistication 

and many commercialized software packages became available to accurately simulate 

discrete flow and transport patterns in surface and subsurface flow pathways including 

rivers and aquifers. 

It was perhaps in the early 1970s that hydrologic modelers realized that separating 

an otherwise strongly linked system would involve major errors in proper representation 

of the response characteristics. In this regard, the work of Freeze (1972a, 1972b) has been 

a milestone in the hydrologic simulation of watershed processes within the context of a 

‘single’ entity. Surface and subsurface processes have thus begun to be modeled as parts 

of a complete system. It was not surprising to see that this development in hydrologic 
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modeling coincided with an era when computers and computing power started to become 

easily accessible to hydrologic modelers. Consequently, modelers have developed 

coupled models within the last two decades. This effort is still on-going and facing some 

tough challenges despite all computational advances achieved. 

 

1.2. Integrated Watershed Modeling 

The concept of integrated watershed modeling has emerged as a new 

understanding for the interactions between the surface and subsurface pathways of water. 

It defines the bidirectional linkage that implies the main rationale for the unity of the two 

systems. In this regard, surface flow processes such as channel and overland flow are 

integrated to subsurface flow processes in the unsaturated and saturated groundwater 

flow zones via the dynamic interactions at the ground surface and channel bed. Only with 

this kind of approach, can one successfully quantify the volumetric and mass flux 

balances between the domains. 

The highly dynamic interactions between overland flow and unsaturated zone 

flow determine the amount of infiltrating/exfiltrating flux at the ground surface. Similar 

interactions also occur at the river bed where channel flow seeps into the underlying 

unconfined aquifer or vice versa. Both of these interactions are regarded as important 

links between the components of the hydrologic cycle and are responsible in maintaining 

the continuity of the entire cycle. While these interactions may operate as safety barriers 

to extreme conditions by decreasing the intensity and severity of major hydrological 

events such as floods and droughts, it is also likely that the opposite scenario is true and 

they tend to amplify the strength of such events and cause significant loss of life and 
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property. Therefore, it is of utmost importance to analyze these interactions 

systematically and develop management scenarios based on such quantitative 

assessments.  

Modeling watershed processes in an integrated fashion is thus the ultimate goal. 

Although there is no doubt about the necessity of integrated watershed modeling, the 

process is a complicated task. Therefore, despite advances in computational speed and 

capacity, integrated watershed models still require extensive computational times for 

large scale applications, which in turn require the modeler to have a clear understanding 

of the temporal and spatial scales of the processes. 

 

1.3. Temporal and Spatial Scales of Watershed Processes 

Different flow pathways of the watershed experience entirely different time and 

space scales. These differences have a direct impact on the numerical discretizations of 

these sub-processes. One of the most evident of these differences is the time scale 

dissimilarities between the overland flow and the saturated groundwater flow. While the 

former is a much faster pathway requiring time steps on the order of seconds, the latter is 

a fairly slow process and calls for much larger time steps on the order of days or even 

months. Such differences create problems in the numerical solution procedures. 

Moreover, these problems are even more pronounced when the two sub-systems are 

solved in an integrated fashion. Similar concerns await the modeler in the spatial 

discretization of various domains. An example of a space scale problem is experienced in 

the unsaturated zone. Space scale requirements of the unsaturated zone models are 
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several orders of magnitude smaller than their saturated zone counterpart, which becomes 

a major concern in integrated modeling applications. 

In addition to varying scales of subprocesses, the modeler also faces the critical 

issue of a representative time scale that is important to all watershed flow pathways. This 

directly leads to the problem of assigning a time frame for the overall analysis of the 

processes. For long term simulations (i.e., seasonal or annual simulations) that most 

modelers would prefer, the existence of the more dynamic subprocesses becomes an 

issue. An example is the overland flow process that only exists during a very short time 

frame compared to the other pathways. Additional problems are present in the simulation 

of overland flow when one considers the boundedness of the process in spatial and 

temporal dimensions. It is not easy to identify well-defined temporal and spatial extents 

of the overland flow pathway, hence a long term simulation of a large scale watershed 

clearly presents numerical difficulties when overland flow is included. 

 

1.4. Research Needs and Objectives of the Study 

Currently, integration of watershed processes are implemented at limited spatial 

and temporal scales. Many integrated models have been developed at the test bed scale to 

analyze the general consequences of interactions between flow pathways. Fewer models 

have been applied to small experimental watersheds. In this regard, there is an emerging 

need to develop models that can be applied to large scale watersheds using real-time data. 

Furthermore, the coupling mechanisms of the sub-processes are an important research 

area where the current methodologies are based on discrete solution of surface and 

subsurface flow systems. In discrete solution procedures, linkage between the domains is 
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achieved by (i) simplistic non-iterative methods in which results from the solution of one 

domain are directly fed into the other domain and do not accept any feedback from the 

other domain, or (ii) iterative methods where solutions from one domain are fed to the 

other in a cyclic manner until sufficient convergence is achieved between two 

consecutive solutions. Currently, iterative techniques are the state-of-the-art for coupling 

surface and subsurface flow processes. However, it is also believed that there is room for 

more sophisticated coupling procedures such as the advanced simultaneous solution of 

both processes, as proposed in this study. 

Finally, despite efforts to couple flow processes, hydrological modelers were 

hesitant in coupling contaminant transport processes. There is no model available that 

performs coupled surface-subsurface contaminant transport modeling at the watershed 

scale. Although this may be partially attributed to the current immature state of flow 

coupling, it does not justify the lack of attention by hydrologic modelers. It is believed 

that at least some of the efforts spent on flow coupling could be re-routed towards 

analyzing the relationships between surface and subsurface processes in terms of 

contaminant transport. 

Based on these facts, this study attempts to develop models that are directly 

applicable to large scale watershed systems. Coupled models of surface and subsurface 

flow processes are developed in an effort to provide a better understanding for the 

relative significance of the pathways that drive the hydrological cycle. Considering the 

numerical difficulties associated with mathematical representation and numerical solution 

of some of the flow processes, a hybrid modeling approach is proposed. This approach 

offers the much needed relief that fully physically-based distributed models suffer from 
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by compromising the process description of the problematic processes and proposing 

relatively simple empirical approaches in their representation. 

Sophisticated coupling mechanisms are also studied in detail and a new, more 

efficient coupling mechanism is proposed and applied to large scale systems. This new 

simultaneous coupling technique attempts to solve surface and subsurface flow and 

transport processes simultaneously rather than implementing a sequential solution and an 

iterative improvement of the common parameters. In this regard, it is believed that this 

new methodology has wide applicability for coupled hydrological modeling. In addition, 

this study is possibly one of the first applications of coupled contaminant transport 

modeling in a large watershed. The proposed approach uses a semi-simultaneous 

coupling of surface and subsurface transport and provides linkage via not only the 

generally used advective transport mechanism but also the commonly neglected 

dispersive transport mechanism as well. 

 

1.5. Thesis Organization  

With the above mentioned objectives, this thesis is organized in 6 chapters and 12 

appendices. The main text of each chapter is intentionally kept as short as possible in 

favor of easy reading and is written to include only the fundamental concepts and the new 

ideas. All details associated to the numerical solution procedures are given in the 

appendices. In Chapter 2, the thesis starts with a literature review where descriptions of 

watershed models as well as watershed flow and transport processes are presented. A 

summary of available coupling techniques and scale issues is also given in this chapter. 

Mathematical models of key watershed processes are discussed in Chapter 3, where the 
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governing equations, initial and boundary conditions and the implemented numerical 

solution procedures of each process are presented from the perspective of large scale 

watershed modeling. Two coupled models are studied in detail and a hybrid modeling 

approach is proposed. The details of the new simultaneous coupling procedure are also 

presented in this chapter. In Chapter 4, the focus switches to the major transport 

processes, and a coupled surface-subsurface contaminant transport model is presented. 

The governing equations, initial and boundary conditions and the numerical solution 

procedures of the proposed model are presented in this chapter of the thesis. As stated 

earlier, all the detailed derivations and formulations of the numerical solution schemes 

are given in the appendices. The new coupled models of flow and transport are then used 

to simulate the hydrological and hydrochemical characteristics of a large scale watershed. 

The details of this application are given in Chapter 5. Finally, the thesis concludes with a 

conclusion and recommendations section in Chapter 6. 

 

 7 



 

 

 

CHAPTER 2 

 

2. 

2.1. 

BACKGROUND AND LITERATURE REVIEW 

 

 

In this chapter, background information on watershed processes and modeling 

principles are reviewed with special emphasis on different hydrologic pathways 

encountered in a watershed. The mathematical description of these processes and their 

numerical solution are reviewed along with a discussion of alternative coupling 

mechanisms utilized to link various pathways in a watershed. After coupling processes 

are introduced, a detailed analysis of scale problems in watersheds is presented including 

the spatial and temporal scales that are common to various pathways. The chapter 

concludes with a discussion of the data requirements of watershed models. 

 

Characteristics of Watershed Models 

Models that describe watershed hydrology are classified according to several 

criteria. One of the most significant of these classifications is based on the spatial 

variability of the parameters that define the flow processes (Abbott and Refsgaard, 1996). 

In this regard, a distributed parameter model takes into account the spatial variability in 

all parameters of concern, whereas a lumped parameter model assumes the watershed to 
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be single unit with variables and parameters representing average values for the entire 

catchment. From this perspective, a lumped parameter model downscales and simplifies a 

complex system to a single unit entity. 

Another closely related classification of watershed models is based on system 

characteristics. Such a classification distinguishes models that are based on fundamental 

laws of physics from models that are solely based on certain empirical rules of 

input/output functions. In this regard, the so-called physically-based model describes the 

natural system using fundamental physics laws that define the movement of mass, 

momentum and energy by using complex mathematical representations (Abbott and 

Refsgaard, 1996). These mathematical relations are partial differential equations, 

integral-differential equations or integral equations including but not limited to the Saint 

Venant equations for channel and overland flow, Richards’ equation for unsaturated zone 

flow and Boussinesq’s equation for saturated groundwater flow. Such models are also 

known as ‘white box’ models expressing the fact that the details associated with the 

underlying processes are all known and clear to the modeler. Physically based models 

always display the characteristics of distributed models as they involve at least one 

spatial dimension and variations along this dimension. Well known examples of 

physically-based distributed models include the SHE model of Abbott et al. (1986a and 

1986b), IHDM model of Beven et al. (1987), THALES model of Grayson et al. (1992) 

and MIKE SHE model of Refsgaard and Storm (1995). 

On the opposite extreme, empirical models are developed with little or no 

consideration to the underlying physical theory and attempt to explain the natural 

behavior by using simple input-output relationships. In this regard, this type of a model is 
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generally called a “black box” model about which the modeler has often little or no 

physical understanding of its processes. It serves as a simple mechanism that converts the 

input information to some sort of an output response without any consideration of the 

internal characteristics of the process. Abbott and Refsgaard (1996) have further 

classified black box models into three main groups: (i) empirical hydrological methods; 

(ii) statistically-based methods; and, (iii) hydroinformatics-based methods. The empirical 

hydrological methods are amongst the best known black box models. Unit hydrograph 

theory and Soil Conservation Service (SCS) curve number method are examples of this 

type of model. The statistically-based methods include many models developed using 

regression and correlation analysis of the available data. These methods are also called 

the transfer function models that convert an input time series to some output time series. 

An example of this type of black box model is the antecedent precipitation index (API) 

model that correlates rainfall volume and duration, past days of rainfall and season of 

year to runoff. Finally, a new group of black box models called the hydroinformatics-

based methods are developed in parallel with the recent advances in information 

technology such as artificial neural networks and genetic algorithms. It is, however, 

important to note that, regardless of the level of advancement achieved with an empirical 

model, it will always be one step behind the physics-based models as the latter provides a 

thorough and more correct description of the hydrological processes in a watershed. 

Furthermore, physics-based models also provide a suitable platform where all 

information associated with the watershed could be extracted without much difficulty. 

Despite their drawbacks, however, empirically-based models are still extensively 

used due to the simplicity and speed of the analysis. Examples of empirically-based 
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distributed parameter models include the ones that are developed to perform simple 

rainfall-runoff analysis such as the SCS curve number method (Still and Shih, 1985) or 

the ones that are formulated to carry out fairly complicated watershed analysis such as the 

Hydrologic Simulation Program-Fortran (HSPF) model (Donigian et al., 1995). 

Another possible classification for hydrological models is carried out based the 

time scale of the process. From a broader perspective, models could be continuous in 

time performing real time simulations or they could be discrete in time implementing 

simulations that are based on daily, monthly or even yearly-averaged values of model 

parameters (Singh, 1995). Nevertheless, this classification does not have clear-cut 

boundaries similar to the previously mentioned classifications due to the fact that even a 

continuous-in-time model uses certain time steps that, in essence, represent the average 

values within that time step. In this regard, one can argue that there would never be a 

continuous time model since the definition of the time step violates the continuity of the 

process. This discussion could further branch out when one realizes the fact that some of 

the watershed processes such as overland flow are so limited in time, when compared to 

others such as channel or groundwater flow, that continuous simulation of all watershed 

flow pathways in a simultaneous manner is simply not feasible with our current level of 

understanding. It is probably this motivation that forces the modelers to develop event-

based models that run only during the time period when all watershed processes 

physically exist.  
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2.2. Hydrologic Flow Processes and Pathways in a Watershed 

The hydrology of a watershed could be analyzed in two broad categories: (i) 

surface flow processes; and, (ii) subsurface flow processes. A combination of these two 

major flow categories defines the overall response of the system to a hydrologic input. 

The surface flow processes are further classified into channel and overland flow sub-

systems where the surface flow depth, velocity and width clearly proposes the presence 

of two distinct domains which may or may not be analyzed separately depending on the 

purpose of the analysis. The channel flow is usually defined as the bulk movement of 

water in domains with relatively well-defined boundaries. It is considered to be the major 

conveyance medium in terms of the quantity of water transported downstream. The 

channel flow is characterized by high flow velocities and depths and is considered to be a 

fully-turbulent flow phenomenon (Chow, 1959). The overland flow subsystem, on the 

other hand, is defined over the entire surface area of the watershed with no well-defined 

boundaries. Although the small flow depths and velocities of overland flow suggest that 

the flow is in the laminar range, additional factors including rainfall impact, vegetation, 

channelized flow and the non-fixed bed phenomena complicate the problem. In this 

regard, a general consensus has been achieved among hydraulics experts that the 

overland flow covers both laminar and turbulent flows (Moore and Foster, 1990). Since 

overland flow occurs as an outcome of space and time variable precipitation input, it is 

represented by highly variable spatial distribution and temporal coverage. This major 

difficulty associated with overland flow becomes even more pronounced in the presence 

of small water depths and velocities and complicates accurate simulation of overland 

flow processes. 
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The subsurface flow is generally defined by the variably-saturated flow 

phenomena according to the level of saturation of the porous medium (Bear, 1979). The 

domain could be spatially and temporally variably-saturated depending on the overall 

flow behavior, boundary conditions and forcing functions. In general, the variably-

saturated three-dimensional domain is subdivided into: (i) a saturated flow zone; and, (ii) 

an unsaturated flow zone according to the level of saturation of the porous medium. 

These two sub-systems are separated from each other by the groundwater table, below 

which a saturated groundwater flow zone develops and above which, an unsaturated 

groundwater flow zone occurs. As the position of the water table is spatially and 

temporally variable in a watershed, the domain that is considered to be saturated varies 

accordingly and any modeling effort must consider the associated consequences. 

Although the subsurface flow processes can be modeled as a single variably-saturated 

medium, it is generally treated as two separated systems linked to each other at the 

groundwater table. This artificial separation of variably-saturated subsurface flow 

phenomenon into saturated and unsaturated zones simplifies the analysis and provides a 

more straightforward understanding of the overall hydrologic conditions of the 

watershed.  

In light of the above discussion, the major watershed processes of concern are 

considered to be: (i) the channel flow; (ii) the overland flow; (iii) the unsaturated zone 

groundwater flow; and, (iv) the saturated zone groundwater flow. The mathematical and 

physical characteristics as well as possible numerical solution methodologies of these 

watershed flow pathways are discussed in the following sections. 
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2.2.1. Channel Flow 

The channel flow is characterized by small water depths when compared to other 

major systems such as seas, oceans and large inland lakes. While these large flow 

processes are described by the general three-dimensional hydrodynamic equations of 

fluid flow (i.e., the mass conservation equation and the Navier-Stokes equations of 

motion), many flow systems of interest to the hydrologic modeler, including channel 

flow, are characterized by small flow depths in the vertical dimension compared to their 

lateral and longitudinal flow dimensions. For such systems, the two-dimensional, depth-

averaged hydrodynamic equations are generally deemed sufficient to describe this 

shallow water flow phenomenon as it occurs in rivers, estuaries, shallow lakes and over 

land surfaces. The shallow water equations that are used to model these flows are 

developed by vertically averaging the general three-dimensional equations of mass 

continuity and momentum (Dronkers, 1964; Chow and Ben-Zvi, 1973; Zhang and Cundy, 

1989; Weiyan, 1992).  

The channel flow is a good example of a shallow water flow system. It has a 

small vertical flow component when compared to its longitudinal and transverse flow 

dimensions (i.e., small depth to width and depth to length ratios). Furthermore, channel 

flow in small to moderate sized rivers is also characterized by small widths such that 

velocity and depth are assumed to vary only in the direction of flow and a single velocity 

and depth is assumed to govern the entire channel width. Under these assumptions, river 

channel flow is described by the one-dimensional analog of the three-dimensional 

hydrodynamics equations and is generally known as the Saint-Venant equations after 
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French hydraulic engineer B. de Saint-Venant who introduced them in late 19th century 

(Strelkoff, 1969). 

The assumption of one-dimensional flow has been widely accepted and numerous 

models have been developed for analyzing unsteady, non-uniform flow in open channels 

(Liggett and Woolhiser, 1967; Baltzer and Lai, 1968; Strelkoff, 1970; Fread, 1993; 

Havno et al, 1995). Particularly for large scale applications such as watershed modeling, 

the one-dimensional flow assumption is the only practically available option to the 

hydrologic modeler (Refsgaard and Storm, 1995; Jha et al., 2000). 

Even though the Saint-Venant equations form the basis of the general 

mathematical model of unsteady, non-uniform flow in channels, they should be modified 

for application to natural waterways since natural systems such as rivers and streams 

show significant variability from man-made channels in terms of channel geometry, 

channel bed roughness and river form. These characteristics are extremely important for 

alluvial systems where braiding and meandering are commonly observed. As a result, a 

number of researchers including Fread (1976) and DeLong (1986 and 1989) have 

modified the Saint-Venant equations so that they could be applied in river channels. They 

have introduced the effects of complex channel geometry (i.e., channel-floodplain 

system) and meandering pattern in the equations. Upon these modifications, the Saint-

Venant equations became capable of accounting for the effects of the floodplain, inactive 

(off-channel or dead) storage and the meandering ratio (sinuosity factor) of the river. 

Both the original and the modified Saint-Venant equations have various 

simplified forms, which are obtained by neglecting some of the terms in the one-

dimensional conservation of momentum equation. These simplified forms of the 
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momentum equation coupled with the continuity equation yield a number of approximate 

distributed flow methods. Without any simplification, the full Saint-Venant equation is 

also known as the dynamic wave model. It is the only model that can accurately simulate 

the backwater effects in a channel, by allowing for propagation of the changes in 

discharge and water depth in the upstream direction. The local and convective 

acceleration terms as well as the pressure force term describe this upstream movement of 

these changes. The dynamic wave model is the model of choice when the backwater 

effects are significant or the channel slope is mild (Sturm, 2001). If the local and 

convective acceleration terms in the momentum equation are neglected, the so-called 

diffusion wave model is obtained. The diffusion wave model can also be used to simulate 

backwater effects only to a certain degree, via the pressure force term. Therefore, it 

cannot be the model of choice when significant backwater effects are present. The 

diffusion wave model is further simplified by neglecting the pressure force term to obtain 

the simple kinematic wave model that is known to be the simplest channel flow model. 

The kinematic wave model assumes that friction slope is equal to channel bed slope and 

does not allow the simulation of backwater effects as flood wave can only travel 

downstream (Sturm, 2001).  

The complete Saint-Venant equations are a set of partial differential equations 

with two independent and two dependent variables. There is no analytical solution to 

these equations except in a few special cases. In general, the only choice of solution for 

these equations is through the application of numerical techniques, which are classified 

as: (i) method of characteristics; (ii) finite difference methods; and, (iii) finite element 
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methods. These methods can be further classified as explicit or implicit methods 

depending on the solution approach selected. 

Among the three available solution procedures, the method of finite elements is 

seldom used to solve the Saint-Venant equations of unsteady flow (Cooley and Moin, 

1976; Szymkiewicz, 1991; Blandford and Ormsbee, 1993). This is mainly due to the fact 

that the finite element method does not offer any advantages over the method of 

characteristics or the finite difference technique in a one-dimensional setup. The power of 

the finite element method becomes apparent in two- or three- dimensional treatment of 

unsteady flow routing in natural waterways, such as very wide river systems and 

estuaries. 

The method of characteristics was the first successfully applied technique for the 

solution of the Saint-Venant equations. The application of this technique required a 

transformation of the original partial differential equations to their characteristic forms, 

which are ordinary differential equations. In the 1960's, Liggett and Woolhiser (1967) 

and Streeter and Wylie (1967) developed explicit solution techniques to the characteristic 

forms of the Saint-Venant equations. Similarly, Amein (1966) and Wylie (1970) worked 

out some implicit solution methods for the same characteristic forms of the original 

equations. The characteristic method is applied either on a characteristic (curvilinear) grid 

or a rectangular grid in the x-t solution plane. The former is not suitable for application in 

natural waterways with irregular geometry (Fread, 1985). The latter, also known as the 

Hartree method, requires the interpolation formulae meshed within the finite difference 

mesh. This restriction has limited the application of the method of characteristics to flood 
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routing (Fread, 1985). However, it is still used in explicit and implicit finite difference 

techniques for a more accurate approximation of boundary conditions (Sturm, 2001). 

The finite difference methods are based on the principle of transforming the 

governing differential equations into algebraic equations by approximating the 

derivatives in terms of difference equations. In explicit finite difference methods, the 

solution of the Saint-Venant equations advances point by point along one time line in the 

x-t solution domain until all the unknowns associated with that time line have been 

evaluated. Then, the solution advances to the next time line. The numerical solution of 

the explicit method is quite straightforward and it is easily programmed. In implicit 

methods, the solution of the Saint-Venant equations advances from one time line to the 

next simultaneously for all points along the time line. Hence, the implicit method is 

numerically more complex and difficult to program. The major difference between the 

explicit and the implicit methods is the number of unknowns used from the time line 

where the solution is searched. In the explicit scheme, only the approximations of the 

time derivative involve the unknown variables, whereas in an implicit scheme, the 

approximations of all derivatives (i.e., time derivative, space derivative and non-

derivative terms) contain the unknown variables and are solved simultaneously (Fread, 

1985).  

The development of explicit techniques began with the pioneering work of Stoker 

(1953) and followed by Liggett and Woolhiser (1967) and Strelkoff (1970). Even though 

the explicit scheme is relatively simple compared to the implicit scheme, it has serious 

restrictions in the size of the computational time step in order to achieve numerical 

stability. It was this motivation that led to the development of implicit schemes, the first 
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of which was originally formulated by Preissmann (1961). Following his work, Amein 

and Fang (1970), Chaudhry and Contractor (1973), Amein and Chu (1975) and Fread 

(1976) have also developed implicit schemes to solve flood routing problems. The 

implicit method of Preissmann (1961) later became the method of choice for channel 

flow analysis due to its flexibility in using large time steps with unconditional stability 

and was implemented in many studies after 1970s. 

 

2.2.2. Overland Flow 

Overland flow is another example of shallow water flow that can be analyzed 

with vertically-averaged equations. It is considered to be an important subprocess of 

watershed hydrology. Regardless of its source (i.e., infiltration excess or saturation 

excess), it is considered to be the major contributor of channel flow. However, unlike 

channel flow, it is characterized by even smaller water depths that are in the order of a 

less than a couple of centimeters which makes its analysis more difficult when compared 

to channel flow. Although small depths and velocities propose a laminar treatment of the 

process, other parameters such as the rainfall impact, highly variable roughness patterns 

and channelization favor a turbulent analysis for the process. It is because of these 

complications the overland flow is generally assumed to experience all possible aspects 

of flow hydraulics in a time and space dependent fashion. In the context of a general 

watershed model, however, such complications are generally lumped into one roughness 

parameter and the entire overland flow phenomenon is modeled as a turbulent flow 

similar to its channel flow counterpart. While this assumption may not be true at all 

times, it is the only feasible way to tackle the associated difficulties. 
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Another major characteristic of the overland flow is its temporarily discontinuous 

flow behavior. Unlike any other watershed flow processes, the overland flow is highly 

driven by external sources that are intermittent in time. While channel flow and 

groundwater flow are generally considered to be continuous flow processes, overland 

flow shows discontinuities in time and space as a direct consequence of the temporally 

and spatially non-uniform source/sink function. In this regard, overland flow does not 

have well-defined flow boundaries. It may be regarded as the only flow process that 

experiences a continuously changing flow domain, which is one of the reasons for the 

difficulties encountered in its numerical simulation. 

Overland flow is generally modeled as a one- or two-dimensional process. 

Numerous one-dimensional models are used in simulating flows on idealized watersheds, 

laboratory flumes, or natural watersheds with well defined slopes in a particular direction. 

Such models include the works of Judah et al. (1975), Ross et al. (1977), Ross et al. 

(1979), Kawahara and Yokoyama (1980), Heatwole et al. (1982) and Shakill and Johnson 

(2000). Similarly, an extensive database exists in two-dimensional treatment of overland 

flows. Some selected examples of two-dimensional overland flow models are the studies 

of Chow and Zvi (1973), Katopodes and Strelkoff (1979), Hromadka and Lai (1985), 

Hromadka and Yen (1986), Akanbi and Katapodes (1988), Zhang and Cundy (1989), 

James and Kim (1990), Marcus and Julien (1990), Playan et al. (1994), Tayfur et al. 

(1993), Gottardi and Venutelli (1993b), Zhao et al. (1994), Di Giammarco et al. (1996), 

Gottardi and Venutelli (1997), Feng and Molz (1997), Hong and Mostaghimi (1997), Lal 

(1998), Esteves et al. (2000), Fiedler and Ramirez (2000), Chang et al. (2000) and Dutta 

et al. (2000). 
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Similar to the channel flow case, both the complete and the simplified forms of 

the two-dimensional Saint-Venant equations of overland flow are extensively used. Chow 

and Zvi (1973), Katopodes and Strelkoff (1979), Akanbi and Katopodes (1988), Zhang 

and Cundy (1989), Playan et al. (1994), Tayfur et al. (1993), Zhao et al. (1994), Hong 

and Mostaghimi (1997), Fiedler and Ramirez (2000) and Esteves et al. (2000) have 

preferred the full dynamic wave approach. However, their studies were all conducted on 

a limited spatial extent including laboratory experiments or test bed hypothetical runs. 

None of these studies were actually done at a realistic watershed scale. On the other hand, 

all overland flow models that are applied at the watershed scale used either the non-

inertia wave or kinematic wave assumptions. These simplifications essentially made the 

process more suitable for large scale applications. The models of  Hromadka and Lai 

(1985), Hromadka and Yen (1986), James and Kim (1990), Marcus and Julien (1990), 

Julien et al. (1995), Gottardi and Venutelli (1993b), Di Giammarco et al. (1996), Gottardi 

and Venutelli (1997), Feng and Molz (1997), Hong and Mostaghimi (1997), Lal (1998), 

Chang et al. (2000) and Dutta et al. (2000) can be listed in this line of work. 

In general, two-dimensional overland flow can only be solved using numerical 

methods. Among the three available solution procedures, the method of characteristics is 

rarely applied due to the difficulties encountered in multi-dimensional characteristics 

methods. Except for the model of Katopodes and Strelkoff (1988), there is no bi-

directional method of characteristic application of overland flow. On the other hand, both 

the finite element and the finite difference techniques have been widely used and have 

become the method of choice for two-dimensional overland flow modeling. While the 

works of Chow and Zvi (1973), Hromadka and Lai (1985), Hromadka and Yen (1986), 
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Zhang and Cundy (1989), James and Kim (1990), Tayfur et al. (1993), Playan et al. 

(1994), Julien et al. (1995), Feng and Molz (1997), Esteves et al. (2000), Fiedler and 

Ramirez (2000), Chang et al. (2000) and Dutta et al. (2000) have all used explicit and 

implicit finite difference methods; Akanbi and Katopodes (1988), Marcus and Julien 

(1990), Zhao et al. (1994), Hong and Mostaghimi (1997), Gottardi and Venutelli (1997) 

have preferred the finite element technique. Moreover, Di Giammarco et al. (1996), 

Gottardi and Venutelli (1997) and Lal (1998) have used the mass conservative control 

volume finite element method. As seen from the wide variety of studies, there is no direct 

preference for a particular method. However, the finite element method has obvious 

advantages over the finite difference method to discretize domains without any particular 

shape and size such as a watershed. 

 

2.2.3. Unsaturated Zone Flow 

The movement of moisture in the variably saturated flow is often modeled by 

using Richards’ equation and closed by constitutive relations to describe the relationship 

among fluid pressures, saturations and hydraulic conductivities. When the groundwater 

flow is studied in two zones separated by the water table, the region of low saturation 

values between the ground surface and the water table is often called the unsaturated zone 

to distinguish it from its saturated counterpart that is found below the water table. The 

unsaturated zone is characterized by spatially and temporarily varying levels of water 

content below saturation and negative capillary pressure heads. A major characteristic of 

flow in the unsaturated zone is the dependency of the hydraulic conductivity of the 

medium on the level of saturation, which generally becomes a strong non-linear function 

 22 



for many soil types. Therefore, in addition to the complexity of Richards’ equation, the 

complexity of constitutive relationships that link the level of saturation to capillary 

pressure and hydraulic conductivity further complicates the governing equations and its 

numerical solution. 

Although the unsaturated zone flow is three-dimensional in principle, it is often 

approximated with its one-dimensional counterpart along the vertical domain. This 

simplification essentially treats the unsaturated zone as a vertical link between the surface 

and the water table. As long as the source of moisture in this zone is either the infiltrating 

flux or rising water table, this simplification works fairly well. Particularly, in low land 

areas with mild surface topography, one can consider the unsaturated zone as columns of 

soil providing a conduit for bidirectional movement of soil moisture. Such an approach is 

widely used in large-scale watershed modeling including the SHE model of Abbott et al. 

(1986). A three-dimensional variably-saturated flow is practically not possible to 

implement in terms of computational resource limitations in large scale watershed 

models. Furthermore, Singh and Bhallamudi (1998) found out that the results don’t show 

significant differences when the unsaturated zone is modeled one-dimensionally (i.e., 

vertical) as opposed to a possible two-dimensional (i.e., vertical-horizontal) treatment. 

While Richards’ equation is originally based on the capillary pressure as the 

dependent variable, numerous researchers have developed various modified forms by 

changing the dependent variable of the equation. Over the years, three different forms of 

Richards’ equation have been widely applied by the soil scientist: (i) the pressure head-

based equation; (ii) moisture content-based equation; and, (iii) mixed form of the 
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equation with both the pressure head and the water content explicitly appearing as 

dependent variables of the equation.  

The original pressure-head based equation is applicable to all levels of saturation 

in the porous medium. It performs in a superior way under saturated conditions when 

some of the other forms fail to properly represent the flow conditions (Huang et al., 

1996). This behavior is mostly related to the fact that the pressure head is a continuous 

function, both in saturated and unsaturated media under non-homogeneous soil profiles. 

Unfortunately, the pressure head-based equation does not perform as well as the water 

content-based equation under significantly dry conditions (Huang et al., 1996). Especially 

under the condition of infiltration to a very dry soil, the pressure-based form develops 

large mass balance errors due to the highly nonlinear nature of specific moisture capacity 

and notably underestimates the infiltration depth. Regardless of the limitations associated 

with it, this original form of the equation has been used extensively in solving both the 

unsaturated zone and variably saturated-unsaturated zone flow problems (Neuman, 1973; 

Narasimhan et al., 1978; van Genuchten, 1982; Milly, 1985; Feddes et al., 1988; Celia et 

al., 1990; Paniconi et al., 1991; Gottardi and Venutelli, 1993a; Rathfelder and Abriola, 

1994; Pan and Wierenga, 1995; Pan et al., 1996; Romano et al., 1998; Williams et al., 

2000; van Dam and Feddes, 2000). 

To alleviate the problems associated with the pressure head-based form of the 

governing equation, a moisture-content based form was proposed as an alternative 

formulation of the unsaturated zone flow. This formulation is found to be superior in 

terms of mass conservation, particularly in the discrete approximations of its numerical 

solution such as finite element and finite difference methods (Hills et al., 1989; Gottardi 
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and Venutelli, 1993a; Pan and Wierenga, 1997). Moreover, the hydraulic functions are 

less nonlinear when expressed in terms of moisture content rather than capillary head, 

particularly when modeling infiltration into a relatively dry medium (Williams et al., 

2000). However, the water content-based form of the equation was also limited in 

application to variably saturated-unsaturated flow since it was not able to properly 

simulate the saturated conditions. When the flow domain gets locally or completely 

saturated, the equation degenerates since the time rate of change of the moisture content 

becomes zero (Celia et al., 1990). In addition, using moisture content as the dependent 

variable introduces problems of continuity in the domain since it is not a state variable 

which is always continuous in space regardless of the soil inhomogeneities.  

To overcome the difficulties associated with both the pressure-based and the 

moisture content-based forms of Richards’ equation, a so-called mixed-form has been 

proposed, which uses both the moisture content and the pressure head as the dependent 

variables. The mixed form has both the superior mass conservation characteristics of the 

moisture content-based equation as well as the unlimited applicability to both saturated 

and unsaturated regions of flow that the pressure-based equation offers (Celia et al., 

1990). In this regard, the numerical solution of the mixed form found wide applicability 

in the last decade and many researchers used this form to model the flow in variably 

saturated-unsaturated media (Celia et al., 1990; Gottardi and Venutelli, 1993a; Hong et 

al., 1994; Huang, et al., 1996; Tocci et al., 1997; Miller et al., 1998; Williams and Miller, 

1999; Zhang and Ewen, 2000; Zhang et al, 2002).  

Apart from these standard forms of the equations, some researchers did not 

directly use these three forms of the governing equation but rather applied certain 
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transformation functions to smooth the strong non-linearity of the constitutive functions 

(Pan and Wierenga, 1995; Pan et al., 1996; Pan and Wierenga, 1997; Williams and 

Miller, 1999; Williams et al., 2000). Even though these transformation techniques 

provide some relief to the problems associated with the numerical solution, they did not 

find wide applicability mainly due to the fact that they are only an approximation to the 

original equation and lack any underlying physical theory. 

Regardless of the form of Richards’ equation used, one needs to supplement the 

governing equation with the auxiliary equations to complete the mathematical 

representation of moisture movement in the unsaturated zone. These auxiliary relations 

are the soil-water retention and hydraulic conductivity relationships that rrelates the 

capillary pressure head to soil moisture and hydraulic conductivity (Bear, 1979). 

Although these relations are known to yield solutions to Richards’ equation, it is rarely 

available in the extent that a distributed watershed model would require in terms of 

spatial variability. Therefore, researchers developed numerous empirical formulae to 

describe the relation between capillary pressure head and soil moisture as well as 

capillary pressure head and hydraulic conductivity. The most commonly used relations 

were proposed by Brooks and Corey (1964), Campbell (1974), Mualem (1976), Clapp 

and Hornberger (1978) and van Genuchten (1980). It is important to note that the original 

forms of these relations did not consider the phenomenon of hysteresis and pressure head 

is considered to be a single-valued function of moisture content. 

The extreme variability and complexity of geological materials, dry initial 

conditions, varying boundary conditions and the strong non-linearity between the 

pressure head and moisture content as well as the pressure head and hydraulic 
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conductivity make the solution of Richards’ equation quite a challenge, particularly 

within acceptable limits of accuracy and computational effort. Since analytical solutions 

are only possible when these nonlinear relationships are linearized and simplified (Tracy, 

1995), numerical techniques are the only available method for the solution. In numerical 

solution of Richards’ equation, the spatial discretization is commonly performed by: (i) 

finite difference; and, (ii) finite element methods (van Genuchten, 1982; Milly, 1985; 

Celia et al., 1990; Hong et al., 1994; Rathfelder and Abriola, 1994; Pan and Wierenga, 

1995; Pan et al., 1996; Huang et al., 1996; Miller et al., 1998; van Dam and Feddes, 

2000; Zhang and Ewen, 2000; Zhang et al., 2002). The standard temporal discretization 

technique used to approximate Richards’ equation is the one-step Euler approach and the 

most common solution method uses a fully implicit time approximation of the time 

derivative. Recently, variable step size, variable time order integration methods are also 

used to discretize the temporal derivatives (Tocci et al., 1997; Miller et al., 1998; 

Williams and Miller, 1999).  

 

2.2.4. Saturated Zone Flow 

The saturated groundwater zone is defined as the domain below the water table. 

Since it is bounded by a dynamically changing water table, this zone is also known as the 

unconfined aquifer.  The significance of this zone comes from the fact that it provides a 

link to other watershed processes such as the unsaturated zone as well as the channel flow 

zone. Therefore, it is a critically important part of the watershed hydrology. The saturated 

groundwater flow is modeled by Boussinesq’s equation that describes the movement of 
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flow in porous medium. Darcy’s law is the momentum equation embedded in the mass 

conservation equation (Bear, 1979). 

The saturated zone flow could either be characterized by a three-dimensional 

groundwater flow model or a vertically-averaged two-dimensional groundwater flow 

model. Many modelers have used a three-dimensional representation of the groundwater 

flow such as Frind and Verge (1978), Huyakorn et al. (1986) and McDonald and 

Harbaugh (1988). Others such as Aral (1990) have preferred a vertically averaged two-

dimensional representation considering the essentially two-dimensional horizontal flow 

pattern of groundwater in aquifer systems. It is, however, important to note that all of 

these models were developed as multi-layer aquifer models and are certainly applicable 

to deep aquifer systems. In the case of an unconfined aquifer, however, a three-

dimensional representation might be necessary when the aquifer is under the influence of 

sources/sinks. In the close vicinity of wells, for example, flow becomes three 

dimensional. Vertically-averaged models are only suitable when the change in water table 

is not significant compared to the saturated aquifer thickness. Therefore, in cases where 

the assumption of vertical averaging might be violated, these models should be applied 

with utmost caution. 

The numerical solution of the saturated groundwater flow equation is performed 

by finite element or finite difference methods. The finite element method has found a 

wide application in the field of groundwater modeling and numerous models used the 

finite element discretization (Huyakorn et al., 1986; Aral, 1990). The finite difference 

method is also applied commonly and the well-known groundwater flow model 

MODFLOW uses this discretization (McDonald and Harbaugh, 1988). Today, saturated 
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groundwater flow modeling has reached a certain level of sophistication where several 

commercial software packages have been developed and used with success. 

 

2.3. 

2.3.1. 

Hydrologic Transport Processes and Pathways in a Watershed 

The contaminant transport phenomenon in a watershed is a strong function of the 

flow pathways and their characteristics. It is generally not possible to consider a transport 

problem without properly identifying the governing flow patterns. Therefore, exactly the 

same approach needs to be applied when the transport problem is confronted. In this 

regard, one could analyze the transport of contaminants in surface and subsurface 

domains and implement proper linkages between these two systems. These two 

subsystems could further be classified as was done in flow analysis. It is, therefore, 

logical to analyze the contaminant transport in a watershed as channel and overland 

transport in the surface subsystem and saturated and unsaturated zone transport in the 

subsurface system. 

 

Channel Transport 

Contaminant transport in channels is the most studied aspect of the general mass 

transport process in a watershed. It is not only the fastest transport mechanism but also 

occurs in a medium (i.e., surface water) that is of utmost concern to humans. 

Consequently, many models have been developed to simulate the migration of 

contaminants along the channel. In the majority of these studies, the focus was directed 

towards the general characteristics of the transport equation. 

 29 



Contaminant transport in a channel is a three dimensional phenomena. Even with 

the assumption of instantaneous vertical mixing, the transport process continues to be a 

two dimensional event until complete mixing is achieved in the transverse direction. Only 

after this point, the transport process can be effectively modeled with a one-dimensional 

behavior (Fischer et al., 1979). Although this condition limits the applicability of many 

models, one-dimensional transport modeling has been the choice of many researchers in 

analyzing transport phenomenon in channels and rivers. However, the modeler should 

always be concerned with the capabilities and the limitations of the one dimensional 

approach for contaminant transport modeling in channels. 

Even with the simplifying one-dimensional approximation, the numerical solution 

of the advection-dispersion equation is still a complicated numerical problem. 

Unfortunately, the advances achieved in the field of numerical modeling of partial 

differential equations do not lead to a globally accepted efficient algorithm to solve the 

advection-dispersion equation. Even though the equation looks simple, it mathematically 

shows a dual behavior in terms of its characteristics, depending on the relative 

significance of various terms of the equation. For advection-dominated flows, the 

equation shows the characteristics of a hyperbolic equation, whereas it becomes a 

parabolic partial differential equation when the dispersion is the dominant term (Holly 

and Preissmann, 1977; Leonard, 1979). Considering the fact that this changing behavior 

of transport phenomenon could occur in a time- and space-dependent fashion, 

computational of the numerical solution becomes an extremely challenging task.  

Several numerical solution techniques are implemented to solve the advection 

dispersion equation. These methods can be classified as: (i) Eulerian methods including 
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the finite difference, finite element or finite volume methods; (ii) Lagrangian methods; 

and, (iii) Eulerian-Lagrangian hybrid methods. As all major problems associated with the 

equation are linked to the advection operator, most of the literature is focused on 

handling the difficulties associated with the numerical solution of advection. Many 

researchers worked on finding more efficient algorithms to treat the advection component 

of the equation since the remaining terms, such as the dispersion and decay operators as 

well as the sink/source terms, do not pose any additional difficulties in the numerical 

solution. While some researchers focused on low (i.e., first and second) order 

conventional Eulerian techniques (Tucci and Chen, 1981; Bencala, 1983; Bencala and 

Walters, 1983; Leonard and Noye, 1989; Ristenpart and Wittenberg, 1991; Runkel and 

Chapra, 1993; Chen and Falconer, 1994; Jaque and Ball, 1994; Islam and Chaudhry, 

1997; Wang and Lacroix, 1997; Geisdal and Teigland, 1998; Runkel, 1998, Zhang, 

1998), some others preferred higher order conventional Eulerian techniques (Hirsch, 

1975; Adam, 1977; Basco, 1984; Komatsu et al., 1985, Falconer and Liu, 1988; Leonard 

and Noye, 1989; Noye, 1990; Stamou, 1991; Leonard, 1991; Stamou, 1992; Chen and 

Falconer, 1992; Chu and Fan, 1998; Chu and Fan, 1999; Radwan, 1999; Spotz and Carey, 

2001) to treat the advection operator. Although a common ground for all Eulerian 

methods is the fixed grid structure that these methods are based on and is the main reason 

why these methods are so popular, higher order methods utilize more nodes than the 

standard low order methods in an effort to reduce the false smearing and false oscillation 

problems of such methods particularly around steep front regions at the expense of 

computational power (Leonard, 1979). 
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In another line of work, several researchers proposed using Lagrangian and 

Eulerian-Lagrangian hybrid algorithms to treat the troublesome advection operator (Holly 

and Preissmann, 1977; Leonard, 1979; Glass and Rodi, 1982; Bedford et al., 1983; 

McBride and Rutherford, 1984; Jobson, 1987; Yu and Li, 1994; Oliveira and Baptista, 

1995; Manson and Wallis, 1995; Manson and Wallis, 2000; Manson et al., 2001). Pure 

Lagrangian methods follow the natural motion of the water mass along a changing mesh, 

which makes them computationally cumbersome due to the necessity to keep track of 

moving coordinates. Hybrid techniques, on the other hand, combine the advantageous 

aspects of Eulerian and Lagrangian methods. They solve the advection operator with the 

powerful Lagrangian-based particle tracking algorithm over a fixed Eulerian grid. 

Despite the increasing popularity of hybrid schemes, some major drawbacks must be 

resolved before they can become a reliable contaminant transport method. One of the 

major limitations of such methods lies in the fact that Lagrangian treatment of flow still 

did not develop to become the method of choice mainly due to the difficulties involved in 

its coding and the lack of intuitive analysis capabilities that the Eulerian methods provide. 

Finally, they are implemented and experimented with relatively simple flows and have 

not been put to tests on real channel systems involving network of channels. They are not 

currently used in well-developed water quality models and the accurate algorithms are yet 

to be formulated for complex systems such as river networks before these models could 

be applied in large scale watershed modeling. Because of these difficulties, the fixed grid 

Eulerian schemes are still commonly implemented and improved as the most popular 

solution technique. Particularly, higher order schemes are increasingly used in Eulerian 
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framework to increase the accuracy of these methods under extreme conditions such as 

flows involving sharp concentration gradients. 

 

2.3.2. Overland Transport 

Overland transport of contaminants is vital for quantifying land-based distributed 

pollution such as the release of nutrients, pesticides and other dissolved hazardous 

chemicals from agricultural fields into surface runoff. The soil chemical loss to overland 

flow is an extremely complex phenomenon that is dependent on various factors 

including, but not limited to, the chemical application rate, soil chemical kinetics, mass 

transport in the soil matrix, mass transfer in overland flow and the overland flow pattern 

(Wallach and Shabtai, 1992). Within a watershed modeling framework, the analyst is 

mostly focused on determining the flow and mass transfer patterns of overland processes. 

From another perspective, the process becomes the concern of the watershed modeler 

after the contaminant is released from the soil. 

The temporarily discontinuous behavior of overland flow over the land surfaces 

influences the transport of contaminants. The contaminant might be released and 

transported with the flow to a certain distance from its point of origin but then re-

accumulate at this new point if overland flow is not persistent to reach to a channel and 

cease due to several loss mechanisms. This behavior further complicates the analysis of 

overland transport of contaminants. 

Numerous models simulating overland transport characteristics are developed by 

various researchers including but not limited to Akan (1987), Yeh et al. (1998), Yan and 

Kahawita (2000), Garcia-Navarro et al. (2000) and Wallach et al. (2001). While the 
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studies of Yeh et al (1998) and Yan and Kahawita (2000) were based on two dimensional 

analysis of overland transport, Garcia-Navarro et al. (2000) and Wallach et al. (2001) 

worked on more simplistic one-dimensional models. Garcia-Navarro et al. (2000) and 

Yan and Kahawita (2000) have used a dynamic wave approach to model the overland 

flow patterns whereas Yeh et al. (1998) preferred non-inertia wave approach and Wallach 

et al. (2001) used a simpler kinematic wave approximation. These researchers have also 

implemented a variety of numerical solution schemes. While Yeh et al. (1998) have used 

a Eulerian-Lagrangian finite element method, Garcia-Navarro et al. (2000) implemented 

a Eulerian-Lagrangian finite difference method. On the other hand, Yan and Kahawita 

(2000) and Wallach et al. (2001) implemented standard Eulerian finite difference 

techniques to solve the transport equation. It is therefore clearly seen that no particular 

method is favorable compared to the other one. However, the general suitability of finite 

element methods to processes with irregular domains also applies to overland flow. 

 

2.3.3. Unsaturated Zone Transport 

Contaminant transport in the unsaturated zone plays an important role in many 

areas of agriculture and engineering. The analysis of the migration of fertilizers into the 

soil matrix and potentially becoming pollutants for the saturated groundwater system is 

one of these many areas. Therefore, a clear understanding of contaminant transport in the 

unsaturated zone, including proper quantification of the relevant transport processes is 

important for the engineer (van Genuchten, 1982). Although high dimensional modeling 

of the unsaturated zone transport is possible, the major pathway of concern within the 

unsaturated zone is the vertical movement of contaminants which eventually reaches and 
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pollutes the saturated groundwater reservoir. In this regard, the focus is kept on only the 

one dimensional unsaturated zone transport models. 

The major transport mechanisms responsible for vertical migration of 

contaminants are again advection and dispersion. Hence, the one-dimensional transport 

equation has a very similar form to its counterpart in channel flow with the exception of 

the relative magnitudes of advection velocities and dispersion coefficients. Advection in 

the unsaturated zone occurs in a much slower fashion and this assists the modeler in 

terms of the success of the numerical algorithm. In this regard, standard Eulerian finite 

difference and finite element methods have generally been the method of choice in 

numerous models including HYDRUS (Simunek et al., 1998), TETRANS (Corwin and 

Waggoner, 1990) and VLEACH (Ravi and Johnson, 1993).  

 

2.3.4. Saturated Zone Transport 

The advection-dispersion equation describing the contaminant transport in 

saturated groundwater exhibits similar characteristics to its counterpart in a channel. 

Although the advection operator is still the major concern for numerical solution, the 

severity of the problem is generally milder in groundwater transport due to the 

significantly slower advection velocities in aquifers. It is generally accepted that there are 

at least 4-5 orders of magnitude difference between the advection velocities in the 

channel and in the aquifer. This condition provides a certain amount of immunity to the 

problems associated with the advection operator. 

Similar to its flow counterpart, the contaminant transport in groundwater could be 

analyzed with either a three-dimensional model or a vertically-averaged two dimensional 
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model. The decision follows the same criteria depicted in the flow model selection and a 

similar approach is to be implemented to simulate the transport phenomenon. 

The transport modeling in groundwater flow is generally done with: (i) standard 

Eulerian finite difference or finite element methods (Voss, 1984; Huyakorn et al., 1985; 

Faust et al., 1990; Simunek et al., 1998); (ii) Lagrangian methods (Bear and Verrujit, 

1987; Tompson and Gelhar, 1990; LaBolle et al., 1996); and, (iii) mixed Eulerian-

Lagrangian hybrid methods combining Lagrangian treatment of advection with the 

standard finite element or finite difference schemes for non-advection terms (Neuman, 

1984; Celia et al., 1990; Yeh, 1990; Bentley and Pinder, 1992; Zhang et al., 1993;Yeh et 

al., 1993; Binning and Celia, 1995; Oliveira and Baptista, 1995). In spite of all the 

advances achieved and new techniques developed, there is not a single technique that can 

yield completely satisfactory solutions to the numerical solution of advection-dominated 

contaminant transport and it remains to be a difficult problem due to the often 

contradictory needs to suppress numerical dispersion, avoid artificial oscillation and 

conserve mass. 

 

2.4. Coupling of Flow Mechanisms 

During the last thirty-plus years of computerized modeling, many models have 

been developed to simulate the response of a watershed to an unsteady, non-uniform, 

spatially-variable precipitation event. Often, these models separated the watershed into 

surface and subsurface components and focused on only one of these hydrological 

processes. Although this artificial separation of an otherwise linked system helped to 

reduce most of the problems associated with physical process description as well as its 
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numerical solution, it failed to describe the system accurately and resulted in numerous 

discrete models of limited applicability. Therefore, an integration mechanism between 

surface and subsurface flows is particularly important for models of watershed hydrology 

where the response of the system is based on simultaneous interactions between these 

two major flow domains. 

The analysis of the hydrologic cycle reveals the fact that surface and subsurface 

flow processes are linked at a number of interfaces. The most obvious one of these 

interfaces is the ground surface where overland flow and unsaturated zone flow are 

linked to each other via the infiltration/exfiltration flux. The direction of the interacting 

flux is not only dependent on the overland flow conditions but also a strong function of 

the level of saturation of soil moisture. The two overland flow initiation mechanisms (i.e., 

saturation from above and saturation from below) are strongly related to these 

interactions as well as other factors such as the topography, land cover/use and rate of 

precipitation. Another major interface linking surface and subsurface flow processes is 

the river channel bottom. The seepage flux is responsible for providing the linkage 

between the two systems. The direction of the flux is a function of the relative values of 

groundwater head and river water stage. 

The mechanism that links surface and subsurface components at the ground 

surface is the interaction between soil water content and infiltration of water to the 

ground. In most of the surface flow models, infiltration is modeled as a sink for overland 

flow and approximated by semi-empirical infiltration formulae such as that of Green and 

Ampt (1911), Horton (1933) or Philip (1957). On the opposite end, most subsurface 

models take the infiltrated water as a source for groundwater flow. This separated 
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modeling approach is often deemed sufficient for watersheds with relatively low 

permeability soils (Freeze, 1972b). In watersheds with high permeability soils, interaction 

between surface and subsurface flow components becomes important especially during 

overland flow initiation (Morita and Yen, 2002). It has been observed that the surface 

flow is overestimated during the rising part of the hydrograph and underestimated during 

the recession part when surface-subsurface interaction is neglected (Wallach et al., 1997). 

In this regard, it is important to couple surface and subsurface components to obtain 

accurate and comprehensive watershed modeling (Morita and Yen, 2002). 

Depending on the accuracy required and numerical and computational complexity 

allowed, there are numerous techniques to couple surface and subsurface flow 

components: (i) true simultaneous coupling; (ii) iterative (internal) coupling; (iii) non-

iterative (external) coupling; and, (iv) sink function type coupling (i.e., also known as 

“no” coupling). Except for the sink function type coupling, all three methods are based on 

linking partial differential equations of surface and subsurface flow via infiltration and 

seepage as the internal boundary conditions. In sink function type coupling, however, 

infiltration is simulated with empirical equations, which are based on soil characteristics.  

The true simultaneous coupling is the ultimate, most advanced method of 

interacting surface and subsurface flows. The technique is based on numerically solving 

the surface flow, subsurface flow and the common internal boundary condition between 

the two as a set of simultaneous equations at each time step. Since the equations are 

solved simultaneously, the result directly yields the unknown quantities. This type of 

coupling is extremely difficult and this study is believed to be one of the earliest 

examples of true simultaneous coupling of watershed processes. The works of Gunduz 
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and Aral (2003a, 2003b, 2004b) are early examples of models implementing this 

technique. The true simultaneous coupling of watershed flow processes is deemed to be 

very promising and there is a wide open field for further research. Particularly, with the 

ever increasing computational power of personal computers, watershed models based on 

true simultaneous coupling are expected to emerge in the near future. 

In iterative (internal) coupling, the equations of surface and subsurface flows are 

solved separately but iteratively at each time step of the solution. The link between the 

two is supplied by the infiltration equation represented as a gradient-type expression. The 

technique provides fairly accurate solutions at the expense of computational cost. 

Furthermore, like any iterative solution procedure, the iterative coupling also requires the 

use of a pre-determined tolerance value below which the solution is assumed to converge. 

Morita and Yen (2002) presents a set of models that are based on iterative coupling of 

surface and subsurface flows. According to their study, the earliest examples of iterative 

coupling were the studies by Pinder and Sauer (1971) and Freeze (1972a). In the surface 

flow component, both included the solution of the one-dimensional dynamic wave 

equation along a rectangular channel. In the subsurface domain, Pinder and Sauer (1971) 

solved the two-dimensional horizontal groundwater flow equations in the saturated 

medium whereas Freeze (1972a) solved the three-dimensional Richards’ equation in both 

unsaturated and saturated media. These studies are followed by Akan and Yen (1981a) 

where they solved the one-dimensional dynamic wave equation for overland flow and 

two-dimensional Richards’ equation in unsaturated and saturated media. More recently, 

Govindaraju and Kavvas (1991) created an integrated model for hillslope hydrology, 

which included three flow pathways, including one-dimensional overland flow, one-
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dimensional channel flow, and two-dimensional saturated/unsaturated subsurface flow 

component. A more complex simulation of overland flow is achieved by Bradford and 

Katopodes (1998) where they solved the two-dimensional turbulent Navier-Stokes 

equations for overland flow with the two-dimensional Richards’ equation for 

groundwater flow. Recently, Morita and Yen (2002) developed a conjunctive two-

dimensional surface and three-dimensional variably-saturated subsurface flow model by 

applying the two-dimensional non-inertia wave approximation of the Saint-Venant 

equations in overland flow component and the three-dimensional Richards’ equation in 

unsaturated and saturated subsurface flow component. 

In non-iterative (external) coupling, the surface and subsurface components are 

again solved separately at the same time step but in a non-iterative fashion. Even though 

the accuracy of the solution from a non-iterative coupling technique is less than the 

solution from an iterative technique, this method found wide applicability among 

modelers due to its comparably less computational time requirements. In non-iterative 

coupling, the surface flow model is generally solved first in each time step and the results 

are passed to the subsurface flow model. Once the solution procedure of the subsurface 

component is completed at the same time step, the control is progressed to the next time 

step without entering an iterative loop where the model tries to satisfy the convergence of 

common flow variables such as overland flow water depth or infiltration flux. Numerous 

modelers have developed models with non-iterative coupling. One of the earliest of these 

studies is the one by Smith and Woolhiser (1971), where they solved the one-dimensional 

kinematic wave equations for surface flow together with one-dimensional Richards’ 

equation for the unsaturated subsurface domain. Abbott et al. (1986a and 1986b) 
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developed their well-known SHE model, which solved the two-dimensional non-inertia 

wave equations for the overland flow and the two-dimensional Richards’ equation for 

groundwater flow components. In a more recent study, Di Giammarco et al. (1994) 

combined two-dimensional overland flow equations, one-dimensional channel flow 

equations and one- and two-dimensional groundwater flow equations to obtain an 

integrated model for watershed runoff. Motha and Wigham (1995) also developed an 

externally coupled model of one-dimensional overland flow and two-dimensional 

subsurface flow. Wallach et al. (1997) studied the errors in surface runoff prediction by 

neglecting the relationship between infiltration rate and overland flow depth. They 

applied a kinematic wave approximation of the Saint-Venant equations in their surface 

flow components and coupled it with the two-dimensional Richards’ equation in their 

subsurface flow component. El-Hames and Richards (1998) combined three one-

dimensional models of channel flow, overland flow and subsurface flow. They have used 

the full dynamic wave equations for channel flow, kinematic wave equations for overland 

flow and Richards’ equation for subsurface flow. Similarly, Singh and Bhallamudi (1998) 

have coupled a one-dimensional dynamic wave model of overland flow with a two-

dimensional subsurface flow model based on Richards’ equation. 

Finally, the sink function type coupling is regarded as a further simplification of 

non-iterative coupling where infiltration is now considered as a sink for the surface flow 

component. The one-dimensional downward movement of infiltration is modeled using a 

semi-empirical algebraic equation such as Horton, Philip or Green and Ampt formula. 

Generally, the subsurface flow is not even modeled with models that apply sink function 

type coupling. In rare cases where it is modeled, infiltration is included as a source to 
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groundwater flow. In this regard, it is clear that there is no direct link between surface 

and subsurface components and sink function type coupling is therefore known as the 

“no-coupling” approach. Due to its computational ease, there exist many models that 

used sink function type coupling. Both Akanbi and Katapodes (1988) and Playan et al. 

(1994) used the two-dimensional non-inertia wave equations in the surface flow 

component and Kostiakov equation in the infiltration sink function. Singh and 

Bhallamudi (1996) used the one-dimensional dynamic wave equation in the surface flow 

component and Kostiakov equation in infiltration function. On the other hand, Esteves et 

al. (2000), Yan and Kahawita (2000) and Tayfur et al. (1993) used Green and Ampt 

formula to model infiltration in their two-dimensional overland flow models. In three 

large scale applications, James and Kim (1990), Julien et al. (1995) and Chang et al. 

(2000) also used the Green and Ampt infiltration equation to model two-dimensional 

overland flow but applied the non-inertia wave approximation to the Saint-Venant 

equations to reduce computational costs. 

Most of the time, the selection of the coupling technique is based on limitations of 

computational and data resources as well as the objectives of the study. Iterative coupling 

methods require significantly higher computational run-times when compared to non-

iterative and sink function type coupling methods, even to complete simulations of 

moderate time scales. The non-iterative and sink function type techniques reduce run-

times by eliminating the necessity to iterate on model variables at each time step at the 

cost of reducing the model realism. In most cases where data are the limiting factor of the 

modeling effort, such reduction in realism is tolerable. It is often a dilemma of the 

modeler to choose between coupling techniques of higher accuracy and techniques that 
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demand less data. Particularly for large scale modeling applications, this decision is 

biased towards techniques that require less data. In pilot or experimental scale studies, 

however, the modeler uses his luxury to implement models of high accuracy with 

unlimited data that he can collect from his ideal system. However, with the sophistication 

of remote sensing and geographic information systems, sophisticated coupling techniques 

started to become popular in large scale modeling efforts. 

Apart from the coupling technique used, models of surface and subsurface flows 

are also classified according to the number of spatial dimensions used in discretizing the 

two flow domains. All surface flow models typically apply one- or two-dimensional 

discretization due to the relatively shallow water depths and well-defined flow paths. In 

channel flows, modelers almost always prefer the one-dimensional Saint-Venant 

equations or its approximations. In overland flows, both one and two-dimensional 

modeling are equally applied. The selection is mostly based on the complexity of the 

system under investigation and the available computer resources. Subsurface flow 

models, on the other hand, have a wide spectrum of spatial domain discretization. One-

dimensional vertical flow models are mostly used with external and sink function type 

coupling techniques, where infiltration is mostly considered as a sink for overland flow 

phenomena. Two- and three-dimensional subsurface flow models are commonly applied 

with internal and simultaneous coupling methods. 

Just like their discrete analogs, the coupled models also implement a wide array of 

numerical solution methods including the finite difference, finite element and method of 

characteristics. The selection of the solution approach is based on: (i) the characteristics 

of the physical domain; (ii) number of spatial dimensions; (iii) ability to handle numerical 
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problems; (iv) available computational resources; and, (v) the level of comfort the 

modeler feels with a particular technique. 

Regardless of the wide spectrum of techniques that has been used to approximate 

surface and subsurface flows, there are still some particular methods that modelers 

concentrated on for particular domains. In essence, one-dimensional channel flow is 

mostly solved by finite difference techniques. Freeze (1972a), Pinder and Sauer (1971), 

Smith and Woolhiser (1971), Singh and Bhallamudi (1998) and El-Hames and Richards 

(1998) used explicit finite difference methods where as James and Kim (1990), 

Govindaraju and Kavvas (1991), Di Giammarco et al. (1994), Dutta et al. (2000), Chang 

et al. (2000) applied implicit finite difference methods. Although several examples of 

finite element method are published in discrete channel flow routing applications, it is 

generally not the method of choice for channel routing in coupled models. In one and 

two-dimensional overland flow modeling, Akan and Yen (1981), James and Kim (1990), 

Tayfur et al. (1993), Wallach et al. (1997), Feng and Molz (1997), Dutta et al. (2000) and 

Yan and Kahawita (2000) used implicit finite difference methods, where as Hromadka 

and Yen (1986), Zhang and Cundy (1989), Playan et al. (1994), Julien et al. (1995), El-

Hames and Richards (1998), Singh and Bhallamudi (1998), Chang et al. (2000), Esteves 

et al. (2000), Gandolfi and Savi (2000) and Morita and Yen (2002) preferred explicit 

finite difference methods. On the other hand, Akanbi and Katapodes (1988), Motha and 

Wigham (1995) and Tisdale et al. (1998) have preferred finite element method. More 

recently, a new technique called the finite volume method found applicability in the area 

of overland flow modeling, which is a combination of finite element and finite difference 

methods. Lal (1998) applied this technique to an overland flow model, where as Bradford 
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and Sanders (2002) and Bradford and Katapodes (2002) used the technique in shallow 

water flooding in lowland areas and flood plains. In subsurface flow models, Smith and 

Woolhiser (1971), Pinder and Sauer (1971), Freeze (1972a), Akan and Yen (1981), 

Abbott et al. (1986a and 1986b), Motha and Wigham (1995), Wallach et al. (1997), El-

Hames and Richards (1998) and Singh and Bhallamudi (1998) used a variation of explicit 

and implicit finite difference methods, where as Di Giammarco et al. (1994) and Motha 

and Wigham (1995) preferred finite element formulation. Of all the solution techniques 

implemented, the finite element and finite volume schemes showed to better suit the 

irregular boundaries of a watershed and also provided slightly better numerical accuracy. 

 

2.5. Coupling of Transport Mechanisms 

Despite the vast amount of literature describing the coupling of flow mechanisms, 

there is very limited information on how transport mechanisms of various domains must 

be linked together in a coupled modeling framework. It is the understanding of the author 

that coupled transport modeling is still a few steps behind its flow counterpart and there 

is a significant potential for development in this field. Only recently, a couple of studies 

emerged describing some level of coupling of surface and subsurface transport processes, 

including the works of Yeh et al. (1998), Ewen et al. (2000), Vanderkwaak and Loague 

(2001) and Lin and Medina (2003). 

Since the information from the flow coupling, such as the volumetric transfer rate, 

is directly used in coupling transport processes, the coupling of transport mechanisms are 

done at exactly the same interfaces where flow coupling is carried out. Hence, the river 

bed, ground surface and water table are again used to link transport models to provide a 
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continuous representation of the movement of a contaminant in the watershed. However, 

it is important to note that flow coupling must be executed smoothly and accurately 

before transport coupling could be attempted. The relatively immature level of flow 

coupling might explain to some degree why researchers were hesitant to tackle the 

coupled transport problem. 

Iterative and non-iterative coupling mechanisms are also used in linking 

contaminant transport in various domains. The idea behind coupling transport processes 

strictly follow flow coupling and relative heads are replaced by relative concentrations in 

different domains. The additional complication, however, arises from the nature of 

modeling transport processes and more sophisticated numerical algorithms with more 

computational requirements are generally necessary to obtain an equally accurate 

transport simulation. 

 

2.6. Scale Issues 

In a general definition, the term “scale” refers to the characteristic spatial or 

temporal dimensions at which entities, patterns, and processes can be observed and 

characterized to capture the important details of a hydrologic process. All hydrologic 

processes, large-scale or small-scale, have their own characteristic scales of reference, 

which is necessary to capture details of the processes modeled or observed. Independent 

of the size of the model used, all hydrologic models are based on some mathematical 

representation of a physical process which is scale dependent. When analysts use large-

scale models to predict small-scale events, or when small-scale models are used to predict 

large-scale events, problems may arise. In the following sections, scale issues are 
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discussed from a general perspective and specific details associated with subprocesses are 

presented in details. These sections closely follow the work of Aral and Gunduz (2003). 

 

2.6.1. Fundamental of Scales 

From saturated-unsaturated groundwater flow and contaminant transport models 

to flow and transport in river channel networks, the hydrological processes occur at a 

wide range of scales and span about ten orders of magnitude in space and time. When an 

integrated system is modeled, the major question to be answered is whether to include all 

components of the hydrologic cycle into one system model. In a global sense, no 

component of the cycle could be separated from the overall system. However, the need 

for some artificial separation might be inevitable depending on the goals of the analysis 

and the importance of the contribution of the subprocess to the understanding and 

evaluation of that goal (Aral and Gunduz, 2003). In this regard, if one is not interested in 

observing or reflecting the effect of one subcomponent on the other, than one can easily 

isolate a hydrologic process and analyze that subcomponent alone. For example there are 

numerous groundwater flow and contaminant transport models which are extensively 

used in the literature just to study groundwater systems such as the MODFLOW model of 

McDonald and Harbaugh (1988) and the SAINTS model of Aral (1990). In this type of 

an analysis, groundwater would consider some input/output from surface water but would 

not influence the conditions in the surface flow. On the other hand, if the simulation of 

multi-pathway interaction of hydrologic processes is the goal, than an integrated system 

modeling approach becomes a necessity and therein lie the difficulties of integration of 

scales. 
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The transfer of data or information across scales or linking sub-process models 

through a unified scale is referred to as “scaling” in the literature. Up-scaling consists of 

taking information at smaller scales to derive processes at larger scales, while 

downscaling consists of decomposing information at one scale into its constituents at 

smaller scales (Jarvis, 1995). In the context of absolute space and time, scaling primarily 

involves a change in the geometric and temporal structure of the data and their 

corresponding attributes. The term “absolute scale” refers to the definitions used in an 

Eulerian coordinate system where distances between points in time and space are well 

defined geometric and differential entities. Thus, linking sub-process parameters within 

these well defined rules can be considered to be objective and to be independent of one’s 

viewpoint or frame of reference in solving a problem. From the relative perspective, 

scaling becomes a more complex task than from the absolute framework. In the relative 

scale framework, one focuses on the sub hydrologic processes and defines the space and 

time as a measure of relationship between these sub-processes. In a way, one can 

interpret this definition as a Lagrangian frame of reference. Relative scales concept 

represents the transcending concepts that link processes at different levels of space and 

time. It entails a change in scale that identifies major factors operational on a given scale 

of observation, their congruency with those on the lower and higher scales, and the 

constraints and feedbacks on those factors (Caldwell et al., 1993). With this definition, 

one can observe that two processes that occur in close proximity by the definition of an 

absolute scale may be very distant from one another in a relative scale sense. An example 

could be the case of the two hydrologic processes such as overland flow and saturated 

groundwater flow zones separated by an unsaturated zone. These two hydrologic 
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processes could be close to each other in an absolute sense but in terms of their 

interaction with one another, these processes could be very distant from one another in 

relative space and time frame of reference due to limiting transfer rates that may exist in 

the unsaturated zone. In such cases, the relative frame of reference should take 

precedence when scaling is considered. 

As expressed by Jarvis (1995), what makes scaling a real challenge is the non-

linearity between processes and variables scaled, and the heterogeneity in properties that 

determines the rates of processes in a relative frame of reference. Therefore, it is 

important to realize that scaling requires an understanding of the complex hierarchical 

organization of the geographic and temporal worlds where different patterns and 

processes are linked to specific scales of observation, and where transitions across scales 

are based on geographically and temporarily meaningful rules (Marceau, 1999).  

Scaling and its effects on hydrological modeling are commonly linked to 

heterogeneity of the system modeled. However, this link should also include the 

refinement necessary to resolve the mathematical non-linearities incorporated into a 

hydrologic process. The importance of mathematical non-linearities can be clearly seen in 

the components of a sub hydrologic model such as groundwater flow. Scale differences 

of saturated and unsaturated groundwater flow could be given as an example of this type 

of a problem. While dependence of hydraulic conductivity on saturation in unsaturated 

zone is a major source of mathematical non-linearity in the solution of the governing 

equation, spatially variable hydraulic conductivity of the saturated zone is a heterogeneity 

that needs to be addressed but does not significantly alter the solution characteristics of 

the governing equation. Thus, non-linearity and heterogeneity are the two important 
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factors that need to be considered in scaling. The greater the degree of heterogeneity and 

non-linearity, the smaller the scale one would have to use to represent such variability or 

resolve such non-linearity (Aral and Gunduz, 2003). 

The other component of the scaling effect arises in the interpretation of field data. 

Integrated hydrologic models use a variety of parameters to represent the characteristics 

of a watershed. However, data on watershed parameters are only available at a limited 

number of locations. The task is then to transform this spatially limited data to a scale 

which can be used as input to a large scale watershed model. The problem then becomes 

the selection of a scale that can represent this data without losing accuracy during the 

extrapolation process. As the spatial scale of the model increases from a small area to a 

large area, the extrapolation of limited spatial data to a large scale system would 

introduce errors in the analysis from the start and should be avoided at all costs. 

 Singh (1995) defines scale as the size of a grid cell or sub watershed within 

which the hydrologic response can be treated as homogeneous. If this scale is too small, 

the process will be dominated by local physical features, if this scale is too large, the 

process will ignore significant hydrologic heterogeneity caused by spatial variability. As 

much as this definition is correct and reasonable, it does not incorporate the scale effects 

associated with the resolution of mathematical non-linearity issues associated with an 

integrated modeling effort of the type considered here, i.e. integrated overland, channel 

and groundwater flow and contaminant transport in large scale watershed systems. An 

optimum scale of an integrated watershed model should then reflect the functional scale 

that provides a compromise between the resolution of non-linearities of the mathematical 

model, availability and extrapolation of hydrologic data and the heterogeneity of system. 
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2.6.2. Scales of Watershed Subprocesses 

Different scales of space and time govern the physical flow and transport 

phenomena in the hydrologic cycle. For integrated watershed models, these scales vary 

by several orders of magnitudes in terms of the computational step size, the simulation 

extent that is necessary to capture the important aspects of the hydrologic process 

modeled as well as the proper scales that are necessary to interpret the input data. 

In the unsaturated groundwater flow in the vertical domain, the movement of 

moisture is relatively slow when compared to other sub-processes of the hydrological 

cycle. Simulation of this process is generally complicated by the existence of strong non-

linearity in the properties of the medium for a large scale simulation. This non-linearity 

can be further complicated by the presence of a relatively dry medium where large 

hydraulic gradients may develop between the dry lower layers of the soil and the wet 

surface layers or visa versa. Hence, unsaturated zone modeling requires very small time 

and spatial discretization to handle both the strong non-linearity that often occur in 

layered soils and also to accurately capture the piston-like flow pattern at the wetting 

front. Small discretization is also essential for maintaining the water balance in a strongly 

non-linear system. In this regard, effective simulations in field applications in large 

watershed modeling typically require time and space scales on the order of 10-1-102 sec 

and 10-2-101 cm, respectively (Aral and Gunduz, 2003). This results in a system with a 

very large number of nodes and time steps to simulate even a relatively small domain. 

Further complications might occur when modeling includes processes such as root uptake 

and evaporation. To model such processes the scales may have to be further refined to 
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achieve numerically acceptable and physically meaningful results. In extreme case, it is 

possible that one might have to face almost real-time simulation run times, which is 

impractical from an engineering standpoint. Therefore, selecting a suitable spatial and 

temporal scale in an unsaturated flow domain can become one of the most challenging 

tasks of the modeler. 

The overland flow is another challenging sub-process of the hydrologic cycle. The 

problem in this domain is the continuity of flow in this phase. While there is continuous 

flow in all other sub-processes, the overland flow pattern is highly discontinuous in time. 

Its behavior is a strong function of the intermittent and spatially distributed source pattern 

(i.e. precipitation). Furthermore, it is a temporally relatively short event when compared 

to other flow processes such as river flow and groundwater flow. Thus, the overland flow 

may best be described as a moving boundary problem, which requires sophisticated 

numerical solution strategies (Aral and Gunduz, 2003). In this type of application, 

discontinuities in time and space domains complicate the numerical solution of overland 

flow. Further difficulties arise from the small water depths associated with overland flow 

patterns. As a rule of thumb, it is highly uncommon to find overland flow depths larger 

than 2-3 cm, which produces small resistance coefficients (high resistance to flow). This 

characteristic of the flow combined with the strong, two-way and spatially-distributed 

interactions with the unsaturated zone might render the solution numerically unstable. 

Additional complications of the overland flow arise due to the tendency of overland flow 

to channelize, making it extremely difficult to define the flow boundaries. These 

difficulties of overland flow as well as the time and space scales of the forcing function 
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(i.e., precipitation) typical necessitate the use of 10-1 to 102 sec time steps and 101-104 cm 

spatial discretizations (Aral and Gunduz, 2003). 

The saturated groundwater flow is perhaps the only sub-process that scale issues 

do not introduce extra complications for its solution. Since groundwater flow is slow 

when compared to surface flow processes, such as river and overland flow, one can use 

very large time steps such as 103-106 secs or even higher (Aral and Gunduz, 2003). The 

spatial scales would generally depend on the non-linearity of the medium but are 

generally large compared to other processes such as 103-106 cm (Aral and Gunduz, 

2003). However, difficulties arise when the slowly moving groundwater flow is linked to 

other processes which are more dynamic. Therefore, it is possible to conclude that the 

numerical simulation of saturated groundwater flow can become extremely challenging 

when dynamic, real-time interactions with other sub-processes are included in an 

integrated model. 

Finally, the river flow is the most dynamic flow pathway of the hydrologic cycle. 

In general, the simulation time scales are a strong function of the steepness of the 

hydrograph to be routed in the flow channel. Time steps of 102-105 sec are used to 

simulate the flow patterns in moderate to large natural river networks (Aral and Gunduz, 

2003). On the other hand, spatial scales are mostly a function of the channel 

characteristics including slope, flow cross section area and roughness coefficient. Spatial 

steps of 103-106 cm are commonly used in simulations of gradually varied unsteady flow 

in river channels (Aral and Gunduz, 2003). Mainly due to the fact that the time and space 

scales are relatively large and mathematical procedures are well established, river flow 

modeling became well established within the overall watershed hydrology. Even with its 
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current level of advancement, river models face challenging simulations particularly with 

steep hydrographs and highly non-linear channel geometries, which in turn might require 

that the space and time scales given above are modified radically. 

 

2.7. Data Requirements 

The data requirements of watershed models are one of the major issues that the 

hydrologic modeler has to focus on. Depending on the type of the model, these 

requirements might occasionally reach to such levels that it might totally destroy the 

effort. Particularly, the distributed watershed models are very costly in terms of the 

operational data requirements. Since such models are based on spatial variability of 

parameters over the watershed area, the input data are expected to be compatible and 

satisfy the needs of each model component. Therefore, the data requirements of all the 

subprocesses included in an integrated model should be studied in details at the earlier 

stages where model formulation is done. Unless satisfactory data resources are found, a 

decision to include a watershed process in the integrated model is subjective and would 

not make much sense. 

The channel flow domain is among the few for which data are easily accessible. 

The major data requirement in the one-dimensional channel flow model is the 

characterization of the channel that would involve the analysis of channel topographic 

features (i.e., reach lengths, bottom elevations above a datum and slopes) and channel 

conveyance characteristics (i.e., tables relating water surface elevation to channel top 

width and roughness coefficients). Another crucial data requirement for a channel flow 

model is the time dependent boundary condition data that drives the model. Access to 
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stage and discharge hydrographs or stage-discharge rating curves is extremely important 

for accurate simulations of channel flow processes. Finally, reasonably accurate initial 

condition data is also important for successful start up of a model. Without such data, the 

numerical model could easily create stability problems which would eventually invalidate 

the simulation. 

The major data requirement of the overland flow model is the description of the 

overland surface. This description includes a basic topographic characterization of the 

watershed surface (i.e., surface elevation, slope, orientation) and a specification of 

overland roughness coefficients based on land use/cover data. Another crucial data 

requirement of the overland flow analysis is the source function specification. Access to 

spatially and temporarily distributed precipitation data is of vital importance for the 

success of the overland flow simulations. Using remote sensing technology such as 

weather radars and satellites, it is now not difficult to supply this data to overland flow 

models. The boundary condition data is generally not very important in overland flow 

analysis when the majority of the flow boundaries are taken as watershed boundaries that 

enforce a zero flow depth. Only at the outflow boundary, the conditions must be carefully 

determined and imposed on the model. Finally, the initial condition data of the overland 

flow domain is mostly supplied by a zero depth condition along the entire watershed as 

long as flow is purely a function of precipitation input and there exists no prior overland 

water accumulation on the watershed.  

In the saturated groundwater flow domain, the aquifer characteristics are the most 

significant data requirement. The modeler must have a clear understanding of the 

geological features of the aquifer and make sure that his representation of the system is a 
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replica of the real situation in the field. Aquifer characterization would also involve the 

determination of the material properties of the aquifer (i.e., hydraulic conductivity and 

specific storage), without which, groundwater flow analysis is not possible. The 

specification of boundary conditions is another major data requirement that all 

groundwater flow models require. Time-dependent specification of head, flux or head-

dependent boundary conditions must be done along the entire boundary of the modeling 

domain. Finally, a fairly accurate representation of initial hydraulic head is also crucial 

for successful modeling of groundwater flow patterns. However, the numerical solution 

of groundwater flow is generally more resistant to errors in initial conditions than channel 

flow models are. 

The data requirements of the unsaturated zone groundwater flow model are very 

similar to the saturated zone. The material characteristics of the medium (i.e., the 

hydraulic conductivity and storage coefficient) are the major data source that must be 

supplied to any unsaturated zone model. The problem is generally more complicated 

compared to the saturated zone due to the additional difficulty arising from the 

dependency of model parameters to the saturation level in the domain. Therefore, the 

hydraulic conductivity values are to be quantified according to the level of saturation in 

the medium. When the relationships between soil-water parameters are not properly 

quantified using field data, approximate empirical models are to be used, reducing the 

level of accuracy of the results. 

 56 



 

 

 

CHAPTER 3 

 

3. 

3.1. 

3.1.1. 

COUPLED FLOW MODEL 

 

 

In this chapter, watershed scale flow pathways are analyzed within the context of 

a coupled system approach. The governing equations, initial and boundary conditions, as 

well as the numerical solution schemes of each model component are first given to 

describe the physics of each flow pathway. Then, two possible coupled models of 

surface-subsurface flow processes are discussed comprehensively. A new simultaneous 

coupling methodology is proposed to solve the coupled system more accurately and with 

better representation of physical processes. The chapter concludes with the introduction 

of a ‘hybrid’ modeling concept to alleviate the difficulties of large scale, physically-based 

distributed watershed modeling. 

 

One Dimensional Channel Flow Model 

 

Governing Equations 

The mathematical model of the one-dimensional channel flow is given by the 

continuity and momentum equations that are modified to include the effects of natural 
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channel geometry and characteristics of rivers (Fread, 1993). In this study, the 

momentum equation is based on the complete dynamic wave form of the unsteady non-

uniform St. Venant equations: 

 

1 2
( ) 0c o

L L
s A A Q q q

t x
∂ + ∂+ − − =

∂ ∂
                                       (3.1) 

2

1 2
( / ) 0m r

f ec L L
s Q Q A hgA S S M M

t x x
β∂ ∂ ∂ + + + + + + ∂ ∂ ∂ 

=                    (3.2) 

 

where x is the longitudinal coordinate representing the distance along the channel/flood 

plain, t is the temporal coordinate, sc and sm are sinuosity factors for continuity and 

momentum equations, respectively, A is the active cross-sectional area of flow, Ao is the 

inactive (off-channel storage) cross-sectional area of the channel/floodplain, Q is the 

discharge, qL1 is the lateral seepage flow per channel length (positive for inflow and 

negative for outflow), qL2 is the lateral overland flow per channel length (positive for 

inflow and negative for outflow), β is the momentum coefficient for velocity distribution, 

g is the gravitational acceleration, hr is the water surface elevation in the river (i.e., 

stage), ML1 is the momentum flux due to lateral seepage inflow/outflow, ML2 is the 

momentum flux due to lateral overland inflow/outflow; and, Sf and Sec are channel/flood 

plain boundary friction slope and contraction/expansion slope, respectively. The 

momentum flux due to lateral seepage and overland flows, contraction/expansion slope 

and channel/flood plain boundary friction slope are evaluated as:  
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where υx is the velocity of the overland flow in the direction of channel flow, Kec is the 

expansion/contraction coefficient, ∆x is the reach length, c1 is a unit system dependent 

constant (i.e., 1.0 in SI unit system and 1.486 in British unit system), nc is the Manning’s 

roughness coefficient in river channel, K is the flow conveyance factor and Rh is the 

hydraulic radius. The hydraulic radius is defined as the ratio of cross-sectional area to 

wetted perimeter but is approximated in this study as the ratio of cross-sectional area to 

top width for large rivers. The lateral flow that provides the link between the channel 

flow model and the saturated groundwater flow model is defined as: 
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where Kr is the river bottom sediment hydraulic conductivity, mr is the thickness of river 

bottom sediments, zr is the river bottom elevation, wr is the wetted perimeter of the river 

bed and hg is the groundwater hydraulic head. The details of the coupling between river 

and groundwater flow systems are given in Section 3.5.1. 

 

3.1.2. 

)

)

3.1.3. 

Initial Conditions 

In order to start the transient solution, initial values of the unknowns (i.e., 

discharge and water surface elevation) are to be specified along the one-dimensional 

channel domain. The initial conditions can be obtained from: (i) field data; (ii) a previous 

unsteady model solution; or, (iii) solution of steady, non-uniform flow equation. In any 

case, the initial conditions are given as: 

 

( ) (xQxQ 00, =                                                     (3.8) 

( ) (xhxh rr 00, =                                                    (3.9) 

 

where Q0 and hr0 represent the discharge and water surface elevation in the channel at the 

beginning of the simulation, respectively. 

 

Boundary Conditions 

In the one-dimensional channel flow model, there are two different types of 

boundary conditions specified at: (i) external; and, (ii) internal boundaries of the domain. 

The external boundary conditions are given at the most upstream and downstream points 
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of the channel network, whereas the internal boundary conditions are specified at internal 

junction points of the channel network. 

 

3.1.3.1. External Boundary Conditions 

In this study, the proposed model is capable of modeling a network of river 

channels. The tree-like network is composed of several upstream and internal channels 

and a single downstream channel. Therefore, the model can accommodate several 

upstream boundary conditions and a single downstream boundary condition. In this 

regard, the model does not solve looped channel networks. At any upstream boundary, a 

discharge or a stage hydrograph can be used as the boundary condition. These conditions 

are expressed as discharge and stage time series and are given as: 

 

( ) (tQtQ u=,0 )

)

)

)

                                                  (3.10) 

( ) (thth ur =,0                                                   (3.11) 

 

where Qu and hu represent upstream boundary discharge and water surface elevation 

values, respectively. Similarly, the boundary condition at the downstream boundary can 

also be defined as a discharge or a stage hydrograph and specified as: 

 

( ) (tQtLQ dd =,                                                  (3.12) 

( ) (thtLh ddr =,                                                  (3.13) 
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where Qd and hd represent downstream boundary discharge and water surface elevation 

values, and Ld is the total domain length. In addition, it is also possible to define the 

downstream boundary condition as a single-valued rating curve, a looped rating curve or 

a critical depth section. The single-valued rating curve maps a particular stage value to a 

corresponding discharge value and can be expressed by using linear interpolation within a 

table of stage-discharge data: 
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where Qk, Qk+1, hr
k and hr

k+1 are consecutive tabular data sets of the rating curve and hd is 

the stage at the downstream boundary. A looped rating curve, on the other hand, maps a 

stage value to several possible discharge values depending on the hydraulic conditions of 

the channel and can be expressed using the Manning’s equation: 
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where Sf is given by the modified momentum equation as: 
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Finally, it is also possible to use critical depth as the downstream boundary condition 

when the most downstream point of the modeling domain is a controlling structure such 

as a weir. In this particular case, the critical depth is mapped to the critical discharge via 

the following equation: 

 

( ) 2/3, A
B
gtLQ d =                                               (3.17) 

 

where B is the cross-sectional top width of the channel.  

 

3.1.3.2. Internal Boundary Conditions 

Any two or more channels intersecting within a channel network form a junction 

where internal boundary conditions are specified to satisfy the mass and energy balances. 

In this study, the proposed model does not allow for looped networks and requires that 

there is always a single outflow channel from a junction. The mass balance equation at a 

junction can therefore be specified as:  

 

dt
dSQQ o

m

k
k =−∑

=1
                                                 (3.18) 

 

where m is the total number of inflowing channels to the junction, Qk is the discharge at 

the end of the kth inflowing channel to the junction, Qo represents the discharge at the 

beginning of the outflowing channel from the junction, and dS/dt corresponds to the 

change in storage within the junction. For many modeling applications, it is a common 
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practice to assume that the change in storage within a junction is negligible compared to 

the change in storage within in a channel (Akan and Yen, 1981b; Fread, 1993; Jha et al., 

2000). Consequently, the mass balance equation reduces to a simple continuity equation. 

On the other hand, the energy equation at a junction is written as: 
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where (hr)k and Vk are the stage and flow velocity at the end of the kth inflowing channel 

to the junction, (hr)o and Vo are the stage and flow velocity at the beginning of the 

outflowing channel from the junction and hT is the total headloss in the junction. When 

all the flows in all the branches joining a junction are subcritical and the head lost in the 

junction is negligible, the equation simplifies to: 

 

( ) ( ) mkhh orkr ,,2,1 …==                                    (3.20) 

 

and is commonly used in modeling channel networks (Akan and Yen, 1981b; Fread, 

1993; Jha et al., 2000). 

 

3.1.4. Numerical Solution Scheme 

In general, the available numerical techniques for the solution of the expanded 

Saint-Venant equations can be given as: (i) method of characteristics; (ii) finite difference 

methods; and, (iii) finite element methods. Of these methods, the finite element method is 

rarely used when flow is approximated as one-dimensional such as in the case of Saint-
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Venant equations. The other two methods have been commonly applied for the numerical 

solution of one-dimensional unsteady flow since 1960s. The finite difference methods 

can further be classified as explicit and implicit techniques, each of which holds distinct 

numerical characteristics. A major advantage of the implicit finite difference method over 

the method of characteristic and the explicit finite difference technique is its inherent 

stability without the requirement to satisfy the Courant condition, which sets the criteria 

for the maximum allowable time step. This requirement to satisfy Courant condition 

often makes the method of characteristics and explicit techniques very inefficient in terms 

of the use of computer time. Furthermore, certain implicit schemes such as the one 

proposed by Preissmann (1961) allow the use of variable time and spatial steps, which 

make the method extremely convenient for applications in routing of flood hydrographs 

in river systems (Sturm, 2001). Considering these advantages, the implicit finite 

difference technique is used to solve the channel flow equations given by equations (3.1) 

and (3.2). 

Of the various implicit schemes that have been developed, the "weighted four-

point" scheme of Preissmann is very valuable since it can readily be used with unequal 

distance steps that become particularly important for natural waterways where channel 

characteristics are highly variable even over short distances. Similarly, the possibility of 

unequal time steps is another important characteristic of this technique for hydrograph 

routing where floodwaters would generally rise relatively quickly and recess gradually in 

time. 

The finite difference counterparts of the continuity, momentum and boundary 

condition equations are derived in Appendix A. In a channel network, the discretized 
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forms of equations (3.1) and (3.2) form the core of the channel flow model. These 

equations are written for each channel in the network, and supplemented by the 

discretized forms of the boundary condition equations. For each channel, the final form 

of the continuity equation written for an intermediate node is given as: 
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Similarly, the finite difference form of the momentum equation written for an 

intermediate node is given as:  
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where corresponding formulations developed in Appendix A are substituted for the slope 

terms Sf and Sec, as well as the lateral flow terms ML1 and ML2 (depending on the direction 

of lateral flows) from equations (A.17), (A.18), (A.19) and (A.20), respectively. In 

equations (3.21) and (3.22), subscripts i and j represent the spatial and temporal indices, 

respectively. The terms with subscript j are known either from initial conditions or from 

the solution of Saint-Venant equations at the previous time step. Since cross sectional 

area and channel top width are functions of water surface elevation, the only unknown 

terms in these equations are discharge and water surface elevation at the (j+1)th time step 

at nodes (i) and (i+1). Therefore, there are only four unknowns in these two equations. 

All remaining terms are either constants or are functions of these unknowns. The 

resulting two algebraic equations obtained by the application of the weighted four-point 

scheme are nonlinear and an iterative solution technique is required. 

When the finite difference forms of the continuity and momentum equations are 

solved for each channel grid shown in Appendix A, a system of 2(Nk-1) equations are 

formed for each time-step between the upstream and downstream boundary of channel k, 

where Nk represents the number of nodes in channel k. The two unknowns in each of 

these equations yield a total of 2Nk unknowns for each time line. The system of 2(Nk-1) 

equations with 2Nk unknowns requires two additional equations for the closure of the 

system. These two additional equations are supplied by the upstream and downstream 

boundary conditions of the channel. The discretized forms of these equations are also 

presented in Appendix A. When this procedure is repeated for each channel of the 

network, a total of Σ(2Nk)=2N equations are formed, where k runs from 1 to the number 

of channels in the network, and N represents the total number of nodes in the entire 
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system. The resulting system of 2N non-linear equations with 2N unknowns is solved by 

a suitable non-linear matrix solution algorithm. 

Of all the non-linear solution procedures, the Newton-Raphson method is one of 

the most common iterative techniques used for the solution of a system of non-linear 

equations. It provides an efficient means of converging to a root given a sufficiently good 

initial guess. For any channel network application, the system of equations can be 

denoted as 2N functional relations to be zeroed that involve variables Q and hr 

represented by xk for k=1,2,…,2N: 

 

0),...,,,( 2321 =Nk xxxxf                                           (3.23) 

 

If x denotes the entire vector of unknown variables xk and f denotes the entire vector of 

functions fi, each of the functions fi can be expanded as a Taylor series expansion in the 

neighborhood of x: 
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where the matrix of first partial derivatives is called the Jacobian matrix, J. The elements 

of the Jacobian matrix for 2N unknowns are evaluated in Appendix B. In matrix notation, 

one can rewrite equation (3.24) as: 

 

( ) ( ) ( 2xxJxfxxf δδδ O+⋅+=+                                     (3.25) 
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Neglecting the higher order terms and setting the left hand-side equal to zero, one can 

obtain a set of linear equations that is written as: 

  

fxJ −=⋅ δ                                                       (3.26) 

 

This matrix equation is solved by a suitable matrix solver for the unknown δx, and an 

improved estimate of the solution is obtained by: 

 

kjkjkj ,1,11,1 ++++ += xxx δ                                            (3.27) 

 

where superscript k represents the level of iteration at the unknown time line. The 

iterative solution is tracked by finding the values of the unknowns Q and hr so that the 

residuals given in equation (3.27) are forced to zero or very close to zero. It must be 

noted that the convergence process depends on a good first estimate for the unknown 

variables. Fread (1985) states that a reasonably good estimate for the first time step is to 

use the initial condition of discharge and water surface elevation. For all other time steps, 

the first estimates of the unknown variables can be obtained by using the linearly 

extrapolated values from solutions at previous time steps according to the algorithm 

given below: 
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where xj+1,1 is the first estimate of unknown variables at (j+1)th time line, xj is the 

solution vector of Q and hr values from previous time step, xj-1 is the solution vector of Q 

and hr values from two previous time steps, αc is a weighing factor from 0 to 1 and ∆tj+1 

and ∆tj are the two consecutive time step sizes.  

 

3.1.5. Model Testing 

The channel flow model is one of the most complicated partial differential 

equations in the computational fluid dynamics area. Since there are no known analytical 

solutions to the coupled continuity and momentum equations, the proposed model is 

tested against the popular HEC-RAS river analysis software developed by the U.S. Army 

Corps of Engineers Hydrologic Engineering Center (Brunner, 2002) and the previously 

published model of Choi and Molinas (1993). 

Three tests are done to check the performance of the proposed model. In the first 

test, a triangular flood hydrograph is routed in a single channel. The 10000m long 

channel is rectangular in cross-section with a constant width of 20m and lies on the slope 

0.001 m/m. A Manning’s roughness coefficient of 0.020 is used throughout the channel. 

At the upstream boundary, the discharge hydrograph is used as the boundary condition. 

At the downstream boundary, a constant water depth of 2m is used throughout the 

simulations. The simulations are made with a constant grid spacing of 100m and a time 

step of 1hr. For this particular example, the results of the proposed model are compared 

with the results from both the HEC-RAS model and comparisons are made at the mid-

point of the channel and at the most downstream point of the channel. The results of the 

comparison are given in figures 3.1 and 3.2.  
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Figure 3.1. Comparison of single channel simulations at mid-point cross-section 
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Figure 3.2. Comparison of single channel simulations at most downstream cross-section 
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As seen in figures 3.1 and 3.2, the proposed model and HEC-RAS give identical 

results both at the mid-point of the channel and at the most downstream point of the 

channel. Therefore, the proposed model is shown to simulate a single channel case 

correctly by propagating and attenuating the triangular discharge hydrograph. 

In the second test, a simple channel network is simulated with the proposed model 

as well as the HEC-RAS model. The network contains 2 upstream channels, a junction, 

and a downstream channel (Figure 3.3). The upstream channels are 10,000m and 5,000m 

long respectively and have a slope of 0.001m/m. The downstream channel is 10,000m 

long and has slope of 0.001m/m. All channels have a roughness coefficient of 0.030. The 

channels are trapezoidal in cross-section with a base width of 10m and a side slope of 2 

to 1. At the upstream boundaries of the upstream channels, single and double peaked 

triangular discharge hydrographs are used as the boundary conditions. At the most 

downstream point of the channel system, a constant water depth of 2m is used throughout 

the simulations. The simulations are made with a constant grid spacing of 100m and a 

time step of 1hr. Comparisons are made at the mid-point and at the exit point of the 

downstream channel. The results are given in figures 3.4 and 3.5. 

The proposed model gives very similar results to the HEC-RAS model. The 

deviations in peaks and depressions are mainly due to the hydraulic radius evaluation 

differences in these two models. In the proposed model, the wetted perimeter of a cross-

section is approximated with the top width which makes it only an estimate for hydraulic 

radius evaluation, where as HEC-RAS uses an exact evaluation method for the wetted 

perimeter and the hydraulic radius. The approximate procedure implemented in the 

proposed model is a widely applied technique for modeling real river systems (Fread, 
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1985; Fread, 1993; Jha et al., 2000). It may, however, create some discrepancies for 

applications to artificial channels where wetted perimeter is significantly different from 

the top width. Except for this problem, the two models practically generate identical 

results in terms of hydrograph timing. 
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Figure 3.3. Simple network setup 
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Figure 3.4. Comparison of simple network simulations at mid-point cross-
section of downstream channel 
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Figure 3.5. Comparison of simple network simulations at most downstream cross-section 
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The final test is taken from Choi and Molinas (1993) who analyzed a hypothetical 

dendritic system composed of five tributary channels and three main channels (Figure 

3.6). A linear discharge variation with a maximum discharge of 2,300ft3/s is used as the 

upstream boundary condition of all tributary channels. The tributary and main channel 

lengths were taken as 6mile long. The channel widths varied from 100ft for tributaries to 

200ft for the reach downstream from tributaries 1 and 2, 400ft for the reach downstream 

of tributaries 3 and 4, to 500ft for the downstream main channel. The slope in each 

channel segment was taken to be 0.002ft/ft and the Manning’s roughness coefficient was 

0.04. The initial discharge per unit width was constant throughout the network. The 

simulations were performed with 10min time increments and 1mile spatial spacing. For 

the initial conditions, the same water depths are assumed in all branches and in the main 

channel. Comparisons are made at the most downstream point of the channel network. 

The results from the proposed model and HEC-RAS are overlaid on Choi and Molinas’ 

results and are presented in Figure 3.7. Since Choi and Molinas did not provide a detailed 

output of their results, an overlay technique is used to compare the results of their model 

with the proposed model and HEC-RAS. In their study, they compare their dendritic 

model to sequential kinematic and sequential dynamic models and show that their 

dendritic model is capable of producing similar results. Comparisons of the proposed 

model, HEC-RAS and their dendritic model do not provide a definite bias towards a 

particular model. The proposed model, however, closely follows the results from the 

Choi and Molinas’ dendritic model in the early parts of the rising limb of the hydrograph 

during which the HEC-RAS significantly creates a delay in the arrival of the rising limb. 

The proposed model then shows signs of delay in the later parts of the hydrograph rising 
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limb and creates a slightly delayed peak value when compared to the Choi and Molinas 

model and HEC-RAS. In the falling limb, however, the proposed model closely follows 

Choi and Molinas’ dendritic model as well as HEC-RAS. In terms of the value of the 

peak, the proposed model estimates very closely to Choi and Molinas’ model, whereas 

HEC-RAS slightly overestimates. An overall analysis of the results shown in Figure 3.7 

reveal that the proposed channel flow model performs accurately compared to some other 

models. Exact comparisons are only possible with analytical solutions of the 

mathematical model that are currently not available. 
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Figure 3.6. Choi and Molinas (1993) dendritic network setup 
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Figure 3.7. Comparison of results from Choi and Molinas (1993) with the 
proposed model and HECRAS 

 

 

3.2. 

3.2.1. 

Two Dimensional Saturated Groundwater Flow Model 

 

Governing Equations 

The governing equation of two-dimensional vertically-averaged saturated 

groundwater flow is obtained by vertically integrating the general three-dimensional 

conservation of mass and momentum equations describing subsurface flow (Aral, 1990). 

The equation is later on modified by Gunduz and Aral (2004a) to include the effect of a 

line source/sink. For an anisotropic, non-homogeneous, unconfined aquifer with principle 
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permeability directions not matching the coordinate directions, the governing equation of 

vertically-averaged saturated groundwater flow is given by: 
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where x and y are the spatial coordinates in the horizontal domain, t is the temporal 

coordinate, Sy is the specific yield of the unconfined aquifer, hg is the vertically-averaged 

hydraulic head, zb is the top elevation of bottom impervious layer, Kg is the anisotropic 

saturated hydraulic conductivity, nw is the number of wells in the domain, Qw,k is the well 

flow rate of the kth well located at (xw,k,yw,k) in the domain (i.e., positive for a discharging 

well and negative for an injecting well), δ is the Dirac Delta function, nr is the number of 

river channels in the domain, qL1 is the lateral flow at the river-bottom interface defined 

by equation (3.7) (i.e., positive for lateral outflow from the aquifer and negative for 

lateral inflow to the aquifer), gx,m and gy,m are the Cartesian coordinate components of the 

parametric equation defining the mth river channel in the domain, u is the dimensionless 

parameter of the parametric equation and I is the infiltration/exfiltration rate (i.e., positive 

for exfiltration and negative for infiltration). 

In general, the directions, along which the hydraulic conductivity measurements 

(i.e., the principle coordinate system) are made, are different from the assumed global 
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coordinate system on which the entire analysis is based. Under such circumstances, a 

transformation is necessary to make proper use of the hydraulic conductivity data 

obtained from field studies. Hence, if the values of hydraulic conductivity are known in 

the principle coordinate system (ξ,η), then their corresponding values in a global 

coordinate system (x,y) making an angle θc with the principle coordinate system are given 

as (Bear, 1979): 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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2 2
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2
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g cyy
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K K K K
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K K
K K

ξξ ηη ξξ ηη

ηηξξ ξξ ηη

ξξ ηη

θ

θ

θ

+ −
= +

+ −
= −

−
= = −

                    (3.30) 

 

3.2.2. 

)

Initial Conditions 

The initial values of the hydraulic head, hg0, are specified as the initial conditions 

of the groundwater flow model: 

 

( ) ( yxhyxh gg ,0,, 0=                                              (3.31) 

 

which can be obtained from: (i) field measurements, (ii) a steady state flow simulation; 

and, (iii) a previous unsteady model solution.  
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3.2.3. 

)

)g g

Boundary Conditions 

Three different types of boundary conditions can be specified along different 

external boundaries of the groundwater flow domain. Type-1 or specified head boundary 

conditions are used to model boundaries with known hydraulic head values. This is also 

known as a Dirichlet boundary condition and is given as: 

 

( ) (, , , ,g gDh x y t h x y t=                                            (3.32) 

 

where hgD is the known hydraulic head value. Type-2 or specified flux boundary 

conditions are used to model boundaries with known flux values. This is also known as a 

Neumann boundary condition and is given as: 

 

( ) ( )(, ,N g bq x y t h z h= − ⋅ − ⋅∇n K                                  (3.33) 

 

where qN is the known flux value and n is the unit normal to the boundary. Finally, Type-

3 or head-dependent boundary conditions are used to model boundaries on which the 

conditions depend on the changing hydraulic head such as streams, rivers or lakes at the 

external boundaries of the domain. It is also known as a Cauchy boundary condition and 

is given as: 
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3.2.4. 

 (3.34) 

 

where qC is the head-dependent flux value and is similar to the lateral seepage flow term 

defined internally in the domain and given in equation (3.7). 

 

Numerical Solution Scheme 

In the groundwater flow modeling literature, there exist numerous models 

implementing different numerical solution procedures. The most common of these 

procedures are the finite difference and finite element methods (Narasimhan and 

Witherspoon, 1977; Huyakorn et al., 1986; McDonald and Harbaugh, 1988; Aral, 1990; 

Yeh, 1999; Morita and Yen, 2002). The finite element method became a popular method 

due to the flexibility it offers in simulating large scale aquifer domains with irregular 

boundaries as well as heterogeneous aquifer properties. In this regard, the Galerkin finite 

element method based on the method of weighted residuals is used in this study to solve 

the groundwater flow. 

The numerical procedure starts with the idealization of the solution domain by a 

finite number of distinct, non-overlapping regions, called the finite elements, over which 

the unknown variables are to be interpolated. In any idealization, the elements are 

selected such that the material properties of the domain, such as hydraulic conductivity 

and specific yield, are retained in individual elements. In two-dimensional finite element 

analysis, families of triangular and/or quadrilateral elements are generally used to 
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discretize the analysis domain. Although these elements can be linear, quadratic or cubic, 

using simple linear elements generally provides sufficient accuracy and a better solution 

strategy. Quadrilateral elements are superior as opposed to triangular elements due to the 

fact that they are computationally more efficient and they simplify the task of tiling the 

problem domain without introducing any bias that the triangular elements possess. For 

these reasons, linear irregular quadrilateral elements with four nodes are selected to 

discretize the domain and develop basis functions in this study. The details associated 

with the basis functions are given in Appendix C. 

Following the idealization of domain and selection of the interpolating functions, 

an appropriate weak form of the problem is developed using the Galerkin weighted 

residual method as shown in Appendix D by using the standard steps of writing the 

weighted residual, integration by parts and incorporating the natural boundary conditions. 

The resulting finite element matrix equation obtained by applying the Galerkin procedure 

is given as: 

 

F
h

MhS g
g =⋅+⋅

dt
d ˆ

ˆ                                               (3.35) 

 

where S, M and F stand for global stiffness matrix, global mass matrix and global load 

vector, respectively, and ĥg is the approximate hydraulic head vector. These global 

matrices and vectors are obtained by tiling their element counterparts according to the 

connectivity of elements within the solution domain. The explicit formulations of element 

matrices and vectors are derived in Appendix E. At this point, it is clearly seen that these 

element integrals are generally complex and cannot be integrated analytically. Hence, a 
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numerical integration scheme is required to evaluate these element integrals. In this 

study, a two-dimensional Gaussian quadrature technique is implemented to evaluate these 

integrals numerically. The details of this technique are discussed in Appendix F. 

The ordinary differential equation (3.35) obtained as a result of finite element 

discretization could be solved using a number of techniques including the one-step finite 

difference approximations. Since the hydraulic head is a function of time, it is possible to 

define two positions, j and j+1, representing the known and unknown time steps, 

respectively. If one defines an intermediate point between the known and the unknown 

time step (i.e., j+α where 0≤α≤1.0), then the corresponding head could be calculated as a 

weighted average: 

 

( ) jjj
ggg hhh ˆ1ˆˆ 1 ααα −+= ++                                         (3.36) 

 

such that if the intermediate point is selected as the mid point between the two time steps 

(i.e., α=0.5), the head becomes an arithmetic average of the two heads at two ends. When 

the Taylor series expansion of the hydraulic head around the intermediate point is done 

using the points j and j+1, one would obtain: 

 

( ) ( ) ( ) (
2 22
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Neglecting the terms equal to or higher than second order and subtracting the second 

equation from the first yields: 

 

( )
t

t
t

t
jj

jj

∂
∂∆+

∂
∂∆−+−=

+
+

1
1

ˆ

!1

ˆ

!1
1ˆˆ0 gg

gg

hh
hh αα                          (3.39) 

 

and after rearranging, reduces to: 

 

( )
ttt

jjjj

∂
∂

+
∂

∂
−=

∆
− ++ 11 ˆˆ

1
ˆˆ

gggg hhhh
αα                                 (3.40) 

 

Since it is always possible to write the ordinary differential equation for a particular time 

step, one would obtain the following equations for the two time steps: 

 

j
j

jjj

dt
d

F
h

MhS g
g =⋅+⋅

ˆ
ˆ                                          (3.41) 

1
1

111
ˆ

ˆ +
+

+++ =⋅+⋅ j
j

jjj

dt
d

F
h

MhS g
g                                    (3.42) 

 

When these equations are multiplied by the weighing parameters (1-α) and α, 

respectively and added together, one would obtain: 
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                   (3.43) 

 

It must be noted that in saturated unconfined aquifer flow, the mass matrix, M, is a 

constant matrix which is not a function of hydraulic head and takes the same values for 

all time steps. Therefore, the above formulation can be simplified as: 

 

( ) ( ) ( ) jj
jj

jjjj

dt
d

dt
d

FF
hh

MhShS gg
gg αααααα −+=


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


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

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−+⋅+⋅−+⋅ +

+
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ˆ
1

ˆ
ˆ1ˆ 1

1
11  (3.44) 

 

It is now possible to substitute for the weighted averaged derivative terms given in 

equation (3.40) for the term in the parenthesis to obtain: 

 

( ) ( ) jj
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jjjj

t
FF

hh
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













∆
−

⋅+⋅−+⋅ +
+

++ 1
ˆˆ

ˆ1ˆ 1
1

11         (3.45) 

 

After rearrangement, the equation takes the following final from: 

 

( ) ( ) jjjjjj

tt gg hMSFFhMS ˆ11ˆ 111 ⋅
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From equation (3.46), one can obtain different time integration schemes depending on the 

value of the time weighing parameter. Even though infinitely many values of the 

weighing parameter are possible, several of these are particularly important and have 

significant properties With α=0, the equation becomes an explicit scheme and it does not 

require the solution of any system of equations in order to advance the solution across 

time. However, explicit schemes often encounter numerical instabilities if the time step is 

taken too large. When α=0.5, the scheme becomes the so-called Crank-Nicholson 

method, which implements a central-difference approximation between two time lines. It 

is known that this choice of the time weighing factor corresponds to the optimal sampling 

of the first temporal derivative over the time step. If the data associated the problem have 

sufficient continuity, this scheme exhibits its optimal accuracy properties and results in a 

very efficient method for handling the time-dependence of the transient problem. 

Unfortunately, the presence of any discontinuity in the data might lead to spurious 

oscillations of the computed solution. If α=1, the scheme becomes a fully-implicit 

scheme and resists the development of solution oscillations better than any other one-step 

method. Therefore, it is commonly used for most difficult problems. However, it should 

be noted that this scheme is not fully accurate or especially efficient but it will dampen 

spurious high-frequency effects more strongly than the other schemes. Based on this 

discussion, a time-weighing parameter of 0.5 is selected to be used in this study. 

The governing equation for an unconfined aquifer is non-linear since the saturated 

thickness is a function of hydraulic head. Therefore, the discretized equations are to be 

solved in an iterative manner. Common non-linear solution techniques such as the 

Newton-Raphson method or the successive substitution (Picard iteration) method can be 
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applied in this solution. Although the Newton-Raphson method is faster in convergence, 

it requires the computation of partial derivatives which is rather costly in a finite element 

framework. Hence, the relatively simple Picard iteration technique is applied in the 

solution of the groundwater flow model. The Picard method is a very simple technique 

and is based on successively substituting the latest values of the hydraulic head to 

compute new values until sufficient convergence is achieved. When the Picard method is 

applied, the discretized groundwater flow equation can be written as: 

 

( ) ( ) jjjkjkjkj

tt gg hMSFFhMS ˆ11ˆ ,11,1,1 ⋅







∆
−−−−+=⋅








∆
+ ++++ αααα         (3.47) 

 

where superscripts k and k+1 represent previous and current iteration values of hydraulic 

head at the unknown time level. For all iterations, most recent values of the hydraulic 

heads are used to obtain an improved estimate of the heads at the unknown time level 

according to the following formula: 

 

( ) kjkjkj ,11,11,1 ˆ1ˆˆ +++++ −+= ggg hhh γγ                                   (3.48) 

 

where γ is an iteration-dependent under-relaxation coefficient (or a damping parameter) 

taking values between 0 and 1. The left hand-side value at the (k+1)th iteration represents 

the improved estimate to be used in the next iteration. For very non-linear problems, head 

change in iterations might be large enough to cause the solution to oscillate. In such 

cases, a damping parameter can be used to restrict the head change from one iteration 
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cycle to the next (Huyakorn et al., 1986). In each iteration cycle, the value of the damping 

parameter is computed according to the following procedure: 
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where s is a scale parameter evaluated according to the following rule: 
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k
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ε                                              (3.50) 

 

where εk+1 and εk represent the hydraulic head change for iteration k+1 and k, 

respectively, that is largest in absolute value and γold is the value of the damping 

parameter at the previous iteration. 

 

3.2.5. Model Testing 

As there are no documented analytical solutions for unsteady groundwater flow in 

two dimensions, the proposed model is tested against two different sets of analytical 

solutions developed within a one dimensional framework. The first analytical solution is 

based on the simulation of a canal-aquifer system as shown in Figure 3.8. The water level 

in the canal as well as the aquifer is initially horizontal at a level hg1. The water level in 

the canal is raised instantaneously to an elevation hg2 above the datum line and 
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maintained constant thereafter, creating an increase in the aquifer head, hg. The one 

dimensional mathematical model of this bank storage flow problem is given as: 

 

g g
y

h h
S K h

t x
∂ ∂ ∂= ∂ ∂ ∂ 

g x                                              (3.51) 

 

with the following initial and boundary conditions: 
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                                                   (3.52) 

 

where it is assumed that the aquifer has uniform hydraulic conductivity. The model 

assumes that the aquifer is homogeneous and isotropic and rests on a horizontal 

impervious base. In addition, the sediment layer between the canal and aquifer has the 

same conductivity as the aquifer.  

 

,g th gh

0t =

0t >

,0gh
x  

 
Rise in water level 

Initial water level  

Impervious base 

 
Figure 3.8. Rise of water level in a semi-infinite unconfined aquifer 
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Following suitable linearization, the governing equation can be written in the following 

form: 

 

2 2 2
g gh h
t x

υ
∂ ∂

=
∂ ∂

                                                    (3.53) 

 

where the parameter υ  is given as: 

 

g

y

Kh
S

υ =                                                        (3.54) 

 

with gh  is a weighted average of the depth of saturation during the period of flow. The 

analytical solution to this model is given by Marino and Luthin (1982): 

 

( ) ( )2 2 2 2
,0 , ,0,

4g g g t g
xh x t h h h erfc

tυ
= + − 
 


                               (3.55) 

 

where erfc is the complimentary error function. To test the model’s capability against this 

analytical solution, a hypothetical aquifer-canal system is constructed in which flow is 

assumed to be one directional. Linear square elements of 5m side length are assembled to 

create an unconfined aquifer 100m long such that the assumption of an infinite aquifer is 

satisfied during the 10-hr simulation period. A uniform hydraulic conductivity field of 

0.001m/s is used in the simulations. The initial water level in the canal and in the aquifer 

is taken to be 5m. The water level in the aquifer is instantaneously increased to 7m and 
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kept constant at this level throughout the simulation. The groundwater movement in the 

aquifer is then simulated with the proposed model. The comparison of analytically 

computed and numerically simulated groundwater heads are given in Figure 3.9. As seen 

from the figure, the numerically simulated values are almost identical to the analytically 

calculated groundwater heads. It is also important to note that the goodness of fit does not 

deteriorate with time, which is an important issue in time-dependent solutions. 

In the second test, the model is verified with the analytical solution of Marino 

(1967) that describes the growth and decay of groundwater ridges due to vertical 

percolation (i.e., infiltration). Figure 3.10 shows a cross-section of an unconfined aquifer 

assumed to be infinite in areal extent and receiving uniform vertical percolation. The rate 

of percolation is maintained by a spreading area in the form of an infinitely long strip 

located above the main unconfined aquifer. After sufficient time, a groundwater ridge 

develops and initiates groundwater flow. The mathematical model for this flow system is 

written as in two separate zones. Zone 1 is defined as the region where the infiltration 

occurs. Zone 2, on the other hand, starts from the edge of Zone 1 extending throughout 

the aquifer and does not receive infiltration. The mathematical model of this problem is 

defined by the following boundary value problem (Marino, 1967): 
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Figure 3.9. Comparison of simulated hydraulic heads and analytical 
solution of canal-aquifer system 
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where ti is the time period during which vertical percolation or infiltration, I, occurs and 

the parameter A is equal to 2I/K. The following initial and boundary conditions are used 

to supplement the equation: 
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                                 (3.57) 

 

At the internal boundary between zones 1 and 2 (i.e., x=L), it is possible to write the 

continuity of mass fluxes and equality of hydraulic heads such that: 

 

( ) ( )1 2
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1 2

, 0 , 0

, ,g g

g
g g

x L t x L t

h L t h L t

h h
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Marino (1967) developed the analytical solution for this problem by applying a Laplace 

transform with respect to t and presented the results both for the period when infiltration 

occurs and for the period after it ceases. During the infiltration period 0<t≤ti, the 

analytical solution is written as: 
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                (3.59) 

 

Similarly, for t>ti, the analytical solution becomes: 
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            (3.60) 

 

where t’=t-ti is the time since the cessation of vertical percolation and 4i2erfc(y) is the 

second repeated integral of the error function of the argument y (Carslaw and Jaeger, 

1959). 

The proposed groundwater flow model is tested against the analytical solution of 

Marino (1967) given in equation (3.60). In his paper, Marino compared his analytical 

solution with a laboratory scale experiment. His experimental setup included a 100cm 

long flume filled with a soil that has a conductivity value of 0.42cm/s. A 23.8cm long 

apparatus provided the uniform infiltration rate of 5.6E-2cm/s over the aquifer. The 

experiment was conducted with an initial groundwater head of 11.3cm. In his study, 
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Marino (1967) found a good fit between measured and analytically calculated hydraulic 

head values. In this study, a numerical model is constructed to duplicate the aquifer 

conditions of Marino (1967) and the results from his analytical solution and laboratory 

experiments are compared with the numerically computed values. In the numerical 

model, the spatial discretization of the experimental aquifer is done with square finite 

elements that have a side length of 5cm. The temporal discretization is done with 10sec to 

cover a total simulation period of 660sec. Marino (1967) used the observation points of 

his experimental setup to compute the values of the analytical solution and presented his 

analytical solution at these discrete points. Following Marino’s approach, the analytical 

solution values are given discretely and the numerical solution is presented as a 

continuous line for comparison of the analytically computed and numerically simulated 

groundwater heads (Figure 3.11). When the figure is analyzed, one can see that a fairly 

close fit is obtained between the numerically computed results and Marino’s analytical 

and experimental results. Although the maximum deviation is fairly small (i.e., less than 

10%), the numerically simulated hydraulic head values start to deviate from the analytical 

solution as a function of time. It is interesting to note that the level of fit with the 

observed values is better then the level of fit with the analytical solution.  
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Figure 3.11. Comparison of simulated, observed and analytical hydraulic heads
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3.3. 

3.3.1. 

Two Dimensional Overland Flow Model 

 

Governing Equations 

The governing equation of overland flow model is obtained by the introducing 

non-inertia wave-approximation to the general continuity and momentum equations of 

the two-dimensional shallow water flow. The non-inertia or diffusion wave 

approximation is suitable for areas with mild topography where downstream backwater 

effect is important but accelerations are relatively small. Numerous researchers have 

chosen the non-inertia wave approximation to simulate shallow water hydrodynamics in 

order to reduce computational efforts without sacrificing accuracy (Hromadka II and 

Yen, 1986; Feng and Molz, 1997; Morita and Yen, 2002). For an anisotropic, non-

homogeneous ground surface with principle diffusion directions matching the coordinate 

directions, the governing equation for overland flow is written as: 

 

0o o o
ox oy

h h hK K R
t x x y y

 ∂ ∂ ∂∂ ∂ − − − +  ∂ ∂ ∂ ∂ ∂   
I =                           (3.61) 

 

where x and y are the spatial coordinates in the horizontal domain, t is the temporal 

coordinate, ho is the water surface elevation of overland flow, R is the rainfall rate, I is the 

infiltration rate, and Kox and Koy are the diffusion coefficients in the x- and y- directions of 

flow given by: 

 

 100 



( )
( )

( ) ( )

5/ 3

2
22

4 4

1 ,
1 1

o g
oi

o i
o o

o ox y

h z
K i

n h h
x yn n

−
= =

  ∂ ∂  +   ∂ ∂     

1/ 4 x y                 (3.62) 

 

where zg is the ground surface elevation and no is the Manning’s roughness coefficient for 

overland flow. It is important to note that friction factors for overland flow in natural 

areas are difficult to conceptualize from pure theory alone. Except for flow over man-

made surfaces such as asphalt or concrete, overland flow is usually a very complex 

hydraulic and geometric phenomenon. Ideally, different friction factors must be used to 

cover different flow regimes, and the dynamic effects of rainfall impact, channelization 

of flow, obstacles such as litter, crop ridges and rocks and erosion must all be considered 

during the formulation of a total friction coefficient. On the other hand, from a practical 

engineering standpoint, an “effective” coefficient of friction is adequate for applied cases 

of simulating an overland flow hydrograph or computing travel times.  

Overland flow typically occurs in wide thin films with very small depths (i.e., less 

than a couple of centimeters) and relatively small velocities (i.e., less than 0.1 m/s). 

These typical values result in relatively small Reynolds numbers when compared to open 

channel flow. The flow is typically considered to be laminar if only the Reynolds number 

is considered as a factor. However, the hydraulics of overland flow are much more 

complicated and numerous additional factors are to be addressed when quantifying this 

complex flow such as the added turbulence due to rainfall impact, vegetation and 

channelized flow as well as non-fixed bed phenomena due to erosion (Dingman, 1994). 

In this regard, a general consensus has been achieved among hydraulics experts that the 
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overland flow covers both laminar and turbulent flows and is considered to change from 

laminar to turbulent and back to laminar during the rise and recession of a hydrograph 

(Engman, 1986). 

The most theoretically sound friction formulae that can cover the entire flow 

spectrum is the Darcy-Weisbach relationship. This relationship was originally developed 

for pipe flow and has found wide applicability in pipe flow hydraulics. It included 

relative roughness and Reynolds number as two parameters required to find the 

roughness coefficient. However, the difficulty in obtaining an accurate roughness 

parameter helped other resistance expressions, such as the Manning and Chezy formulae, 

find wider applicability especially in open channel flow where flow is mostly 

characterized in the turbulent regime. Consequently, a wide collection of Manning and 

Chezy resistance coefficients accumulated over time, which further promoted their use in 

simulation models. Nevertheless, the Darcy-Weisbach relation still remained the method 

of choice when the flow is out of the turbulent regime and/or when there are sufficient 

data from the field. 

Considering the scale of the modeling effort and the accuracy of the available 

data, it is practically wise to use a single value for the resistance coefficient that basically 

assumes that the overland flow is turbulent. In this context, the effect of rainfall impact, 

vegetation, channelized flow and all other possible factors are lumped into an effective 

friction coefficient. This approximation is clearly justifiable from an engineering 

perspective for a distributed hydrological model of watershed scale. Hence, it is possible 

to use the Manning resistance factor and equation to formulate the friction slope in non-

inertia wave equations. Essentially, the Manning roughness coefficient not only includes 
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all the uncertainty in terms of process theory and data limitations but also covers our 

ignorance in terms of the effects of unsteadiness and non-uniformity of flow.  

 

3.3.2. 

)

3.3.3. 

)

Initial Conditions 

In the overland flow model, the initial conditions are given by specifying the 

water surface elevation at all points in the two-dimensional domain. In representing an 

initially dry overland surface, a very thin water film is assumed before the flow is 

initiated such that (Akan and Yen, 1981a): 

 

( ) (0, ,0 ,o oh x y h x y=                                               (3.63) 

 

This artificial assignment of an initial water depth facilitates the numerical solution 

procedure. As a rule of thumb, ho0 can be taken to be less than or equal to 0.1 mm to 

alleviate any possible numerical problems that might arise otherwise. 

 

Boundary Conditions 

Although overland flow is basically a source/sink driven flow mechanism, two 

different types of boundary conditions are still specified along different external 

boundaries of overland flow domain. Type-1 or specified head boundary conditions are 

generally used to model boundaries with known water surface elevation and are given as: 

 

( ) (, , , ,o oDh x y t h x y t=                                            (3.64) 
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where hoD is the known water surface elevation. Type-2 or specified flux boundary 

conditions are used to model boundaries with known flux values. It is also known as a 

Neumann boundary condition and is given as: 

 

( ) ( ) ((, ,N o oq x y t h h z= − ⋅ ⋅∇ = − ⋅ −n K n V ))o g

3.3.4. 

                         (3.65) 

 

where qN is the known flux value and n is the unit normal to the boundary. Although it is 

theoretically possible to define a head-dependent boundary condition for overland flow, it 

is generally not implemented for the sake of simplicity, since it is very difficult to keep 

track of changing stages over the land in a precipitation event. 

 

Numerical Solution Scheme 

In general, the finite difference and finite element methods are widely applied in 

overland flow modeling (Akan and Yen, 1981b; Hromadka and Yen, 1986; Akanbi and 

Katapodes, 1988; Zhang and Cundy, 1989; Motha and Wigham, 1995; Feng and Molz, 

1997; Lal, 1998; Dutta et al., 2000; Gandolfi and Savi, 2000; Morita and Yen, 2002; 

Bradford and Sanders, 2002). For watershed-scale applications where topography is 

highly variable, the finite element method is proven to be more powerful compared to the 

finite difference method due to the flexibility it offers in simulating land surfaces with 

spatially variable land use/cover patterns and irregular boundaries. Hence, the Galerkin 

finite element method based on the method of weighted residuals is used in this study to 

solve the overland flow equation. 
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The overland flow surface is discretized with two-dimensional quadrilateral finite 

elements such that the material properties of the domain (i.e., the roughness coefficient) 

are retained in individual elements. Following the idealization of the domain and 

selection of the interpolating functions, an appropriate weak form of the problem is 

developed as shown in Appendix G. The resulting finite element matrix equation 

obtained by applying the Galerkin procedure is given as: 

 

ˆˆ d
dt

⋅ + ⋅ =ο
o

hS h M F                                               (3.66) 

 

where S, M and F stand for global stiffness matrix, global mass matrix and global load 

vector, respectively, and ĥo is the overland flow stage vector. The explicit formulas for 

the element matrices and vectors are also derived in Appendix H. As these element 

integrals are generally complex and cannot be integrated analytically, a two-dimensional 

Gaussian quadrature technique is implemented to numerically integrate the integrals. 

When the same procedure implemented in the derivation of the groundwater flow 

equation is followed, one would obtain the final form of the discretized equation as: 

 

( ) ( )11 1ˆ ˆ1 1j jj j j j

t t
α α α α++ +   + ⋅ = + − − − − ⋅   ∆ ∆   

o o
M MS h F F S h             (3.67) 

 

Although different time integration schemes are now possible, a Crank-Nicholson 

scheme with α=0.5 is used in this study. This scheme provides the ideal approximation 

between the two time steps.  
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The overland flow equation is a highly non-linear equation since the diffusion 

coefficients are non-linear functions of the dependent variable (i.e., stage). To handle this 

non-linearity, the Picard iteration is used in this study such that the latest values of the 

stage are successively substituted to compute new values until sufficient convergence is 

achieved. When the Picard method is applied, the discretized overland flow equation can 

be written as: 

 

( ) ( )1, 11, 1,ˆ ˆ1 1j k jj k j k j j

t t
α α α α+ ++ +  + ⋅ = + − − − − ⋅  ∆ ∆  

o o
M MS h F F S 




h

3.3.5. 

         (3.68) 

 

where superscripts k and k+1 represent previous and current iteration values of stage at 

the unknown time level. 

 

Model Testing 

The overland flow model is probably the most difficult of the four major flow 

pathways discussed in this study. Even for a single event simulation, the model contains 

difficulties in defining the time dependent spatial extent of the flow phenomena as it 

changes continuously according to the flow characteristics and the spatially variability of 

the precipitation event. Although there are no analytical solutions to the two dimensional 

non-inertia wave form of the model, it is possible to write a simple analytical solution for 

the simplified kinematic wave form of the model in one-dimensional form (Stephenson 

and Meadows, 1986). The proposed model is tested against this analytical solution and 

the data collected from a test plot by Izzard (1946). 
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The kinematic wave model neglects not only the local and convective acceleration 

terms but also the pressure term in the momentum balance equation of the original St. 

Venant equations. It inherently assumes that the bed slope is equal to the friction slope in 

the channel. The kinematic wave model does not allow upstream migration of 

disturbances so is not suitable to systems with backwater effects. It is, however, found to 

be suitable for modeling overland flow in some upland watersheds as well as modeling 

channel flow in small streams with moderate to high bed slopes (Stephenson and 

Meadows, 1986).  

The kinematic wave model is written using the continuity equation and the 

simplified momentum equation by using Manning’s expression to define the velocity in 

the channel such that: 

 

( ) 1m
k

d dm d R
t x

α −∂ ∂+
∂ ∂

I= −                                         (3.69) 

 

where d is the water depth in the channel, m is a constant that is equal to 5/3 and αk is a 

constant that is a function of surface roughness and bed slope written as: 

 

o
k

S
n

α =                                                       (3.70) 

 

According to Stephenson and Meadows (1986), the analytical solution to the kinematic 

wave model in response to a uniform rainfall event with no infiltration is given as: 
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                   (3.71) 

 

where q is the discharge per unit width, tc is the time of concentration, tr is the duration of 

the rainfall event and tf is the total simulation time. The time of concentration is defined 

as the time at which the entire watershed starts to contribute to the outflow and is given 

by the expression: 

 

1/

1

m

c m

Lt
Rα −

 =  
 

                                                 (3.72) 

 

The proposed model is verified using the above model on a hypothetical test bed with a 

length of 100 m and a bed slope of 0.001 m/m. The Manning’s roughness coefficient is 

taken to be 0.02. A constant rainfall rate of 2.78E-6 m/s is applied for 8000sec over the 

entire test bed and the model is simulated for a total of 15000sec. The analytically 

computed and numerically simulated discharge per unit width values obtained at the 

outlet of the bed are shown in Figure 3.12. As seen from the figure, the proposed model 

gives a very close fit to the analytical solution. Only just before the time of concentration, 

the proposed model creates a much smoother transition to the peak value where as the 

analytical solution produces a sharper transition. 
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Figure 3.12. Comparison of simulated unit discharge and analytical 
solution of overland flow 
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In the second example, the proposed model is tested against the experimental work of 

Izzard (1946). Izzard analyzed the overland flow from paved and turf surfaces and 

performed a series of tests which he called ‘runs’. Run-136 of Izzard (1946) is used to 

test the model. The experimental plot in his run was a 72 m long flume with 0.01 ft/ft bed 

slope. The flume was an asphalt plane with a Manning’s roughness value of 0.024. In his 

Run-136, Izzard used a two stage rainfall event with both stages having a magnitude of 

3.56 inch/hr. The proposed model is run with the same data and the results are compared 

in Figure 3.13.  
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Figure 3.13. Comparison of simulated values of overland flow runoff with 
data from Izzard (1946) 
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As seen from this figure, the proposed model accurately predicts the peak discharge, time 

to peak and rising and falling limbs of the hydrograph. However, it shows slight 

deviations from Izzard’s experimental data during the transition to the peak value and 

during the minimum flow period between the two rainfall steps. Overall, the level of 

prediction by the model is considered to be satisfactory. 

 

3.4. 

3.4.1. 

One Dimensional Unsaturated Groundwater Flow Model 

 

Governing Equations 

The movement of soil moisture in the variably-saturated unsaturated zone is 

modeled using Richards’ equation, which is supplemented by constitutive relations to 

describe the relationship among fluid pressure, water saturation and unsaturated hydraulic 

conductivity. In an anisotropic, non-homogeneous media, the mixed-form of the equation 

with both the water content and the pressure head as the dependent variables is given as 

(Miller et al., 1998): 

 

s 1w uS S K
t t z z

ψ θ ψ∂ ∂ ∂ ∂ + − + = ∂ ∂ ∂ ∂  
0

                                (3.73) 

 

where z is the vertical coordinate, t is time, Sw is the degree of saturation, Ss is the specific 

storage coefficient, Ψ is the capillary pressure head, θ is the volumetric water content and 

Ku is the unsaturated hydraulic conductivity in the vertical direction. To complete the 

mathematical representation of moisture movement in the unsaturated zone, soil-water 

retention and hydraulic conductivity relationships that relate the capillary pressure head 
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to soil moisture and hydraulic conductivity must also be provided such as the ones shown 

in Figure 3.14. 

Although the relationships developed by Brooks and Corey (1964), Campbell 

(1974), Mualem (1976), Clapp and Hornberger (1978) and van Genuchten (1980) are 

used extensively in the solution of Richards’ equation, detailed analysis reveals that only 

the expressions of van Genuchten (1980) would describe the entire pressure spectrum 

including the saturated portion above the bubbling pressure. Therefore, the θ-ψ and K-ψ 

relations of van Genuchten (1980) are used in this study: 

 

( )1
v

v
mnr

e v
s r

S θ θ α ψ
θ θ

−− = = +−



                                    (3.74) 
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                     (3.75) 

 

where Se is the effective saturation, θr is the residual water content, θs is the saturated 

water content, Kg is the saturated hydraulic conductivity, nv and mv are constants that 

depend on soil type and mv is equal to ( ) .  1 1/ vn−
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Figure 3.14. Typical soil water retention curves for (a) hydraulic conductivity 
and (b) water content in unsaturated porous media 

 

3.4.2. Initial Conditions 

The initial conditions describe the capillary pressure head and/or soil moisture at 

all points in the vertical domain at the beginning of the simulation. Therefore, if zg and zwt 

represent the elevations of the ground surface and the water table, respectively, the initial 

conditions can be written as a function of pressure head or water content such that: 

 

( ) ( )0 wt,0 z     for   z gzψ ψ= z z≤ ≤                                 (3.76) 

( ) ( )0 wt,0 z     for   z gzθ θ= z z≤ ≤                                  (3.77) 

 

where ψ0 is the initial capillary pressure head and θ0 is the initial water content within the 

domain. 
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3.4.3. Boundary Conditions 

The boundary conditions are defined at the top and bottom of the domain. In this 

study, the top boundary condition is at the soil surface and the bottom boundary condition 

is defined at the groundwater table. At the ground surface, the boundary condition 

switches between specified head and specified flux depending on the conditions of the 

overland flow (Gunduz and Aral, 2003c): 

 

( ) ( )

( ) ( ) ( )

,g g

g

z t t

z
K q

z

ψ ψ

ψ
ψ

=

∂ +
− =

∂
t

0

                                          (3.78) 

 

where ψg is the positive overland flow depth over the ground surface and qg is the 

infiltration/exfiltration flux at the surface. At the water table, on the other hand, a zero 

pressure head boundary condition is defined at all times: 

 

( ),wtz tψ =                                                     (3.79) 

 

3.4.4. Numerical Solution Scheme 

In the numerical solution of Richards’ equation, the spatial discretization is 

commonly performed by (i) finite difference and (ii) finite element methods (Celia et al., 

1990; Gottardi and Venutelli, 1993a; Rathfelder and Abriola, 1994; Pan et al., 1996; 

Miller et al., 1998; Van Dam and Feddes, 2000; Zhang et al., 2002). Both methods are 

commonly used in the literature and neither method really surpasses the other. Regardless 
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of the spatial discretization method used, the time approximation commonly involves a 

fully implicit approximation of the time derivative.  

The Picard iteration, Modified Picard iteration or Newton-Raphson iteration 

techniques are frequently used to resolve the nonlinearities in Richards’ equation. While 

the first two converge linearly, the Newton iteration converges quadratically in the 

vicinity of the solution, which might lead to more efficient solutions depending on the 

type of nonlinearity. Paniconi et al. (1991) and Miller et al. (1998) studied the numerical 

properties of iterative methods and found that both the linearly-converging and the 

quadratically-converging methods provide similar convergence rates, especially for 

strongly nonlinear situations with linearly-converging methods requiring much less 

computational power. 

In this study, the numerical solution of Richards’ equation is done with a standard 

central difference control volume finite difference approximation to discretize the spatial 

derivatives and a first-order backward finite difference approximation to discretize the 

time derivatives. The modified Picard iteration of Celia et al. (1990) is then implemented 

to solve for the nonlinearity. The details of the numerical solution method are given in 

Appendix I. The discretized form of equation (3.73) is the core of the unsaturated zone 

flow model. This equation is written for each intermediate node of the domain, and 

supplemented by the discretized forms of the boundary condition equations at the top and 

bottom of the domain. For each intermediate node, the final form of the discretized 

Richards’ equation is written as: 
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(3.80) 

 

where subscripts i, j and k represent the spatial, temporal and iteration indices, 

respectively. The three pressure heads at nodal points i-1, i and i+1 at the unknown 

iteration level are the unknowns in the above equation. When written for all intermediate 

nodes, one would obtain a system of N-2 nonlinear equations with N unknowns. Upon 

including the two equations for the top and bottom boundary conditions, the system could 

be written as: 

 

( ) ( )1, 1, 1 1,1 1j k j j k j k jα α α+ + + + + − ⋅ + − A A x = f                      (3.81) 

 

where A is the coefficient matrix, x is the unknown vector and f is the known right hand 

side vector. This matrix equation is then solved by a suitable matrix solver. Due to the 

three-diagonal structure of the coefficient matrix, the efficient Thomas algorithm 

provides the best solution for this system. 

 

Model Testing 

The one-dimensional unsaturated groundwater flow equation is a difficult non-

linear partial differential equation due to the strong dependency of both the hydraulic 

conductivity and the water content on the capillary pressure. The empirical soil-water 

retention and conductivity relationships such as the van Genuchten model are the source 
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of this non-linearity. In this regard, there are no known analytical solutions to the one-

dimensional Richards’ equation with realistic soil-water relationships. Nevertheless, 

numerous researchers including Philip (1969), Warrick (1975), Sander et al. (1988), 

Warrick et al. (1990), Srivastava and Yeh (1991), Warrick et al. (1991), Barry et al 

(1993), Tracy (1995), Marinelli and Durnford (1998), Hogarth and Parlange (2000) and 

Chen et al. (2003) have developed various forms of exact solutions under fairly strict 

limitations. In all of these studies, the problematic soil-water relations are simplified and 

linearized by using various transformations and/or trouble-free linear functions. 

Therefore, it is believed that these solutions have very limited applicability in testing a 

practical model based on strongly non-linear soil-water relations such as the one of van 

Genuchten. In addition, these exact solutions are almost always extremely complicated, 

and require numerical methods which sometimes make them more labor intensive than 

the original numerical model used to solve the governing partial differential equation. 

Considering the factors discussed above, the proposed unsaturated zone flow 

model is tested against a well-documented and verified commercial programs such as 

HYDRUS-1D (Simunek et al., 1998) and the results from a benchmark paper by Celia et 

al. (1990). Three different tests are simulated with both the HYDRUS model and the 

proposed model to test the proposed model’s capabilities with different soil types and soil 

hydraulic parameters as well as different boundary conditions. The first test is called the 

Skagg’s column infiltration test and is intended to simulate infiltration into a 60cm 

column having -150cm initial pressure head. Constant pressure head values of -150cm 

and -1cm are applied at the bottom and top of the column as constant head boundary 

conditions, respectively. The hydraulic parameters of the soil are given in Table 3.1. The 
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moisture is allowed to migrate along the column for 2.5hrs and the advancing front is 

tracked within the column. The pressure head distribution is simulated with both 

HYDRUS and the proposed model and the results are shown in Figure 3.15 for various 

instances in time.  

 

Table 3.1. Soil Hydraulic Parameters of Test Cases 

 

Saturation 
Water 

Content 
θs(-) 

Residual 
Water 

Content 
θr(-) 

Van 
Genuchten 
parameter 
α (cm-1) 

Van 
Genuchten 
parameter 

n (-) 

Saturated 
Conductivity 

Ks (cm/hr) 

TEST 1 0.3500 0.020 0.0410 1.964 2.5992000 

TEST 2 0.4300 0.078 0.0360 1.560 1.0400004 

TEST 3 0.3308 0.000 0.0143 1.506 25.000000 

 

 

The first test case demonstrates the capabilities of the proposed model in 

simulating the characteristics of infiltration into a moderately dry soil. It can be seen from 

Figure 3.15 that the model performs extremely well in simulating the vertical movement 

of soil moisture in vertical direction. It is clearly seen that the results obtained from the 

proposed model are indistinguishable from the HYDRUS model. Moreover, the 

downward movement of the wetting front is accurately captured by the proposed model 

both in space and in time.  
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Figure 3.15. Comparison of pressure heads in TEST-1 
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The second test is a demonstration of an exfiltration condition, where moisture 

movement is opposite to the direction of gravitational acceleration. It is a condition in 

which the vertical drainage is overcome by the strong pressure gradient between the 

surface and the bottom boundary conditions. A 7.6cm column of soil is discretized in a 

non-uniform fashion such that the highly variable pressure head conditions at the bottom 

boundary could be captured accurately. A dry initial condition (i.e., -750cm pressure 

head) is used to start the simulation. The bottom boundary condition is selected to be a -

1cm constant head that is used to drive the upward movement of soil moisture. On the 

other hand, a zero flux condition is enforced at the top boundary. The soil hydraulic 

parameters of the test are given in Table 3.1. The upward migration of soil moisture is 

simulated for 3hrs and the results of pressure head distributions of HYDRUS and the 

proposed model are summarized in Figure 3.16 for various instances in time.  

The results from Figure 3.16 clearly represent the high accuracy achieved by the 

proposed model in simulating the exfiltration behavior in an extremely dry soil that is 

saturated from below. This test is a perfect example to observe the movement of soil 

moisture towards the surface by overcoming the pull of gravity. It is even possible to see 

fully saturated conditions developing in the domain towards the end of the simulation 

(i.e., t>7200sec). Just like in Test-1, the position of the advancing front is accurately 

predicted by the proposed model in both space and time.  
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Figure 3.16. Comparison of pressure heads in TEST-2 
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In the third test, the drainage in a 6m-long caisson is simulated for 100hrs to 

analyze the effect to gravitational drainage on soil-water distribution. To simulate this 

condition, a fully saturated soil column (i.e., 0m pressure head initially) is allowed to 

drain due to gravity. While a zero flux boundary condition is implemented at the top of 

the domain, the bottom of the domain is allowed to be saturated at all times and solved 

assuming a constant pressure head condition. The soil hydraulic parameters used in this 

test are given in Table 3.1. It is clearly seen from the table that the conductivity of the soil 

in this test is very high and represents a sandy soil which allows relatively fast changes  

in soil moisture. The pressure head distribution is simulated with both HYDRUS and the 

proposed model, and the results are shown in Figure 3.17 for various times. 

The drainage of soil moisture in a long caisson is simulated for relatively 

extended periods of time compared to the other test cases. The vertical drainage of upper 

layers creates dry conditions and negative pressure heads. It is seen from Figure 3.17 that 

the proposed model simulates the temporal and spatial distribution of soil moisture 

accurately and gives almost identical results to HYDRUS model. 

Finally, the proposed model is also tested against one of the simulations presented 

in the benchmark paper of Celia et al. (1990). The simulations are based on the van 

Genuchten model with a saturated hydraulic conductivity of 33.2cm/hr, saturated water 

content of 0.368, residual water content of 0.102 and n and α values of 2.0 and 0.0335, 

respectively. Uniform initial conditions were set at -10m. The upper and lower 

boundaries are simulated with a -0.75m and -10m constant pressure head, respectively. 
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Figure 3.17. Comparison of pressure heads in TEST-3 
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In this example, the intention of Celia et al. (1990) was to compare finite 

difference and finite element methods as well as the effect of temporal discretization. 

They compared several simulations using different time steps with the results of a dense 

grid simulation. Therefore, the results of the proposed model are also compared to their 

dense grid simulation shown in Figure 3.18. It is clearly seen that the proposed model 

produces results that are very close to the dense grid results of Celia et al. (1990). Both 

the timing and position of the wetting front simulated by this model match properly with 

their results.  

 

Proposed Model

 

Figure 3.18. Comparison of simulated pressure heads with Celia et al. (1990) 
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3.5. 

3.5.1. 

Coupled Surface-Subsurface Flow Model-1 

The river bed is one of the most significant interfaces between surface and 

subsurface flow systems. The seepage along the river bed not only provides the minimum 

flow in the river during low flow periods but also attenuates the severity of flood event 

via bank storage during high flow episodes. It also supplies significant recharge to the 

aquifer when groundwater heads fall below the river bed. Due to its significance in 

regulating the river flows and in providing the much needed recharge to the aquifer, it is 

imperative to accurately analyze the characteristics of the two systems in a coupled 

fashion and quantify volumetric transfer between these two domains. In order to satisfy 

these objectives, a coupled surface-subsurface flow model is developed to link the one-

dimensional channel flow with the two-dimensional vertically-averaged saturated 

groundwater flow. The following discussion closely follows the previous work of 

Gunduz and Aral (2003a, 2003b). 

 

Coupling at River Bed 

The lateral seepage flow between the channel flow and the groundwater flow 

domains provides the coupling mechanism at the river bed interface (Figure 3.19). The 

lateral flow term appears as a source/sink term in both the channel flow and the saturated 

groundwater flow equations. The analysis of the lateral flow expression given in equation 

(3.7) reveals that lateral seepage flow is a direct function of river water surface elevation 

and groundwater head. Therefore, several possibilities arise depending on the relative 

values of the river water surface elevation and the groundwater head: 
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Figure 3.19. Channel flow / groundwater flow interaction 
 

•  gr hh >

Seepage occurs from the channel to the groundwater flow domain. Hence, it 

becomes a lateral outflow for the channel flow model and an inflow for the 

groundwater flow model. 

•  gr hh =

No seepage occurs between the two domains. Hence, the lateral inflow/outflow 

term in equations (3.1) and (3.29) becomes zero representing a no flux condition 

for both models.  

•  gr hh <

Seepage occurs from the groundwater flow domain to the channel. Hence, it 

becomes a lateral inflow for the channel flow model and an outflow for the 

groundwater flow model. 

 126 



One can see from these conditions that seepage is generally a head-dependent 

phenomenon for the coupled system. However, when the groundwater head falls below 

the bottom elevation of river sediments, the second condition applies in equation (3.7) as 

the (zr - mr) term becomes constant. It then becomes no longer a head-dependent 

phenomenon and seepage flow is treated as a constant flux condition within the 

numerical solution. It is, however, important to note that if the groundwater head falls too 

far below the channel, the link between the two systems is essentially broken and 

possibly an unsaturated transition zone would develop. Under such conditions, the 

analysis is no longer based on the first order gradient expression given in equation (3.7) 

and the entire coupling mechanism described herein must be modified. 

It is also important to note that the coupling mechanism proposed in this study is 

based on the assumption that the movement of water at the river bed is at a steady state. If 

it cannot be assumed that an equilibrium condition is reached at the river bed, this 

analysis would yield erroneous results. Under such circumstances, flow within the 

channel bed must be analyzed with a one-dimensional unsteady vertical flow model. 

However, the equilibrium assumption is valid for most large scale practical analysis of 

surface-subsurface flow interactions. 

 

3.5.2. Proposed Simultaneous Solution Method 

As discussed in Chapter 2, iterative (implicit) and non-iterative (explicit) coupling 

techniques are commonly used to establish the interactions between the surface and 

subsurface flow systems. While iterative algorithms are considered to be the most 

advanced coupling mechanisms for today’s modeler, they can be computationally costly 
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for large systems due to the extra iteration loop in the solution. Moreover, they may be 

inaccurate at times when the convergence criterion is set at a high value to reduce 

computational run times. 

Considering the limitations of current coupling mechanisms, a new simultaneous 

coupling technique is proposed by the author in an effort to link surface-subsurface flow 

systems at the river bed interface. The idea of the method is based on the simultaneous 

solution of the discretized forms of the two systems rather than the sequential solution 

that both the iterative and non-iterative coupling methods implement (Gunduz and Aral, 

2003a). Although a theoretically similar approach might have already been applied in 

other branches of science, it is believed that the method is truly original in terms of its 

formulation in a coupled river-aquifer model framework.  

The initial step for the simultaneous solution of the coupled model is discretizing 

the analysis domain. In this procedure, the channel network is discretized first 

considering the stability requirements of the channel flow model. Then, the groundwater 

flow domain is discretized considering the heterogeneity of the aquifer. During the 

discretization of the groundwater flow domain, each node of the channel flow model is 

selected such that it coincides with a node in the groundwater flow model as seen in 

Figure 3.20. This one-to-one correspondence of the nodes along the channel network is 

essential for the proposed simultaneous solution of the coupled model (Gunduz and Aral, 

2003a). If there is a requirement for finer discretization of the groundwater flow domain 

at any point along the channel network due to highly variable aquifer properties, the 

discretization of the channel flow model must also be modified to satisfy the one-to-one 

correspondence of the nodes. In this regard, the simultaneous solution of the coupled 
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model is always based on finest discretized domain that either model enforces along the 

channel network (Gunduz and Aral, 2003a). For any other point in the analysis domain, 

the discretization is solely based on the requirements of the groundwater flow model. 

The only exception to the one-to-one correspondence of nodes is observed at the 

channel junction points. At any junction with k inflowing channels and one outflowing 

channel, the numerical discretization of the channel flow model requires that k+1 nodes 

are used to properly represent the k downstream boundary nodes of the inflowing 

channels and one upstream boundary node of the outflowing channel. Since all k+1 nodes 

physically represent the same junction point, they all correspond to a single point in the 

groundwater flow model. Therefore, at junction points, k+1 nodes of the channel flow 

model corresponds to one node of the groundwater flow model.  

 

Analysis domain 

Channel network 

Groundwater flow 
discretization 
Channel flow  
discretization 

 

Figure 3.20. General discretization of the domain 
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The second step of the simultaneous solution of the coupled model is to write 

discretized equations of channel and groundwater flow equations. These are given in 

equations (3.26) and (3.46), respectively. When these equations are written for all nodes 

of channel and groundwater flow domains, a system of equations is obtained for both 

channel and groundwater flow system. At this point, if the standard iterative coupling 

scheme is implemented to solve this system, one would have two separate matrix 

solutions to solve each domain separately by using the latest values of the common 

parameter from the other domain (i.e., river water surface elevation for groundwater flow 

model and groundwater head for channel flow model). Following each solution, a 

convergence check is performed with respect to a pre-determined criterion. Once the 

check is satisfied the solution proceeds to the next time level. In the proposed 

simultaneous solution of the coupled model, however, the systems of equations obtained 

from the channel flow and groundwater flow models are assembled together within a 

single system so that they can be solved together in a simultaneous manner inside a single 

matrix structure. The assembled final matrix equation is shown in Figure 3.21. In the 

assembled global matrix equation, A is the global coefficient matrix, B is the global load 

vector and x is the global unknown vector. As seen from Figure 21, the global matrix and 

vectors are obtained by combining their separate blocks obtained from channel and 

groundwater flow model. These separate blocks are written as: 

 

( )MSA tkjGW ∆+= + /1,1α                                           (3.82) 

kjRIVER ,1+= JA                                                   (3.83) 

( ) ( ) ( )( jjjkjGW t ghMSFFB ˆ/111,1 ⋅∆−−−−+= + ααα )                  (3.84) 
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kjRIVER ,1+−= fB                                                  (3.85) 

1,1ˆ ++= kjGW
ghx                                                  (3.86) 

1,1 ++= kjRIVER xx δ                                                 (3.87) 

 

Although the global matrix is shown in full-matrix format, the calculations are 

performed using a banded matrix structure to reduce computer memory required to store 

and solve the system. The total bandwidth of the global matrix depends on the relative 

magnitudes of the bandwidths of channel flow and groundwater flow models. Therefore, 

the size of the global matrix is determined by the size of the bigger bandwidth. In general, 

the bandwidth of the groundwater flow model is bigger than the bandwidth of the channel 

flow model (Gunduz and Aral, 2003a). 

 

xGWAGW BGW 0 
 

=

ARIVER xRIVER BRIVER 0 

 

Figure 3.21. Global matrix equation and component blocks 
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It is crucial to emphasize that the global matrix solution directly solves the 

unknown variable in groundwater flow domain (i.e., hydraulic head) whereas it solves for 

the change in unknown variables between two iterations in channel flow domain (i.e., 

change in discharge and stage). Therefore, one has to evaluate the actual values of the 

unknown values after each solution of the global matrix equation before the global 

coefficient matrix and the load vector are re-assembled for the next solution. It is also 

important to note that since the global system is non-linear due to the non-linearities in 

channel flow and groundwater flow, it is solved several times for each time step until 

sufficient convergence is achieved for the unknown parameters. Hence, the global matrix 

solution involves an iterative portion to handle the non-linearity of the governing 

equations of both models. However, this iterative non-linear solution does not affect the 

simultaneous solution behavior of the overall coupled system. The iterative solution is 

only used to treat the non-linearity in the two sub-systems. The convergence of the non-

linear solution is checked using two separate criteria for channel flow and groundwater 

flow components. Therefore, although the systems are solved together, the convergence 

of the solution is tested with respect to different criteria since the degree of the non-

linearity in channel flow is generally much higher than the degree of non-linearity in 

groundwater flow. Typically, 2 to 3 iterations are found to be sufficient for the 

convergence of two sub-domain models (Gunduz and Aral, 2003a). 

Even though the two hydrologic systems coupled in this model have significantly 

different time scales, their simultaneously coupled solution, unlike an iteratively coupled 

solution, requires a common time step in numerical discretization. Since the behavior of a 

channel flow model is generally more dynamic than the overall response of a 
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groundwater flow model, this constraint could occasionally create long simulation 

periods with the proposed algorithm. However, it is always faster than the iterative 

solution approach that utilizes the same time step size (Gunduz and Aral, 2003a). 

 

3.5.3. Model Testing 

As there are no analytical solutions to verify against, two sets of hypothetical 

simulations are performed using the proposed model and the solution algorithm. In the 

first application, a hypothetical test case is simulated to test the model’s capabilities and 

limitations with a rectangular groundwater flow domain and an overlying single channel 

domain. In the second application, the same hypothetical test case is modified to analyze 

the model’s response with the presence of a channel network.  

Single Channel-Aquifer System: 

The coupled channel/groundwater flow model is first applied to a hypothetical 

single channel stream-aquifer system to demonstrate the performance of the proposed 

simultaneous solution algorithm. The physical setup of the hypothetical domain is shown 

in Figure 3.22. In this application, the stream is a 30m wide, 10km long uniform 

rectangular channel with a constant slope of 0.0001m/m and divides the aquifer into two 

equal portions 2000m wide on each side of the channel. The Manning’s roughness 

coefficient of the stream is uniform throughout the channel and has a value of 0.025. At 

steady flow conditions, the channel carries 100m3/s discharge at the uniform flow depth 

of 3.56m. The thickness of the sediments at the bottom of the channel is 0.3m and the 

hydraulic conductivity of the deposits is 1.0E-6m/s. The channel bottom elevation at the 

most upstream point is given as 30m above mean sea level. To visualize results easily, 
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the 10km long and 4 km wide unconfined aquifer is assumed to have a uniform and 

isotropic hydraulic conductivity of 1.0E-3m/s and the aquifer base is set at mean sea 

level. The stream flow model is discretized into 100m long elements giving a total of 101 

nodes. The groundwater flow model domain is discretized by square elements with a side 

length of 100m giving a total of 4141 nodes and 4000 square elements. Furthermore, a 

constant time step of 1hr is used in simulations. 

In the channel flow model, the upstream boundary condition for the channel is 

given by a trapezoidal discharge hydrograph with a base discharge of 100m3/s, a peak 

discharge of 350m3/s and a time to peak of 10 days (Figure 3.23). The downstream 

boundary condition is given by a single-valued rating curve that maps the discharge to its 

normal depth. In the groundwater flow model, the boundaries parallel to the stream are 

specified as constant head condition and the boundaries perpendicular to the stream are 

specified as no-flux condition. Moreover, the internal boundary, where the stream runs 

through, is specified as a head-dependent line source. The initial conditions in the stream 

flow model is given as uniform flow conditions (i.e., 100m3/s of discharge and a 

corresponding 3.56m of depth) at all nodes. In the groundwater flow model, two different 

sets of initial hydraulic head surfaces are used. In the first simulation, the initial 

groundwater head in the aquifer is chosen to be at 32m at all nodes. This simulation 

illustrates a condition where lateral flow occurs from the stream to the aquifer. In the 

second simulation, the opposite scenario is simulated and the initial groundwater head in 

the aquifer is chosen to be 35m, illustrating a condition where the lateral flow occurs 

from the aquifer to the stream. These two simulations are referred to as Scenario-1 and 

Scenario-2, respectively and are abbreviated as S1 and S2 in the following discussion. 
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Figure 3.22. Physical setup of hypothetical domain, single channel 
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In both scenarios, the point comparisons of groundwater head and stream stage 

are presented in figures 3.23 and 3.25 at the mid point of the analysis domain (i.e., 5000m 

from the upper boundary of the aquifer, which also corresponds to the mid point of the 

stream). The spatial distribution of groundwater heads are also presented in figures 3.24 

and 3.26 along the line (-2000m ≤ x ≤ 2000m; y = 5000m). Analysis of groundwater head 

time series in figures 3.23 and 3.25 reveals that the passage of the flood wave creates an 

increase in the groundwater heads by creating a mound near the river as long as the 

stream stages are higher than the groundwater heads for a sufficiently long period of 

time. This mound is the result of lateral inflow to the aquifer (Figure 3.24). It is also seen 

that the mound subsides and the bank storage is drained back to the stream when the 

stream stage falls below the groundwater heads. It is also seen from figures 3.23 and 3.25 

that there is a lag between the peak values of the hydraulic head and the stream stage 

which clearly represents the dynamic behavior of the stream flow as opposed to the 

groundwater flow. 

The response of the coupled system to a flood wave is directly related to the 

initial conditions in the stream and the aquifer. A comparison of figures 3.24 and 3.26 

demonstrate the effect of initial groundwater head in the aquifer and its position relative 

to the stage in the stream. When the hydraulic head in the aquifer is higher than the 

stream stage (Figure 3.26), a discharge from bank storage occurs in the first 5 days of the 

simulation creating a drawdown near the stream. During the second 5 day period, stream 

stages increases due to the arrival of the flood peak and this creates a flow reversal 

towards the aquifer (Figure 3.26).  
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Figure 3.23. Groundwater head and river stage at the mid-point and river 
discharge at the upstream boundary for Scenario-1 
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Figure 3.24. Groundwater head profiles at various times along mid point for Scenario-1 
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Figure 3.25. Groundwater head and river stage at the mid-point and river 
discharge at the upstream boundary for Scenario-2 
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Figure 3.26. Groundwater head profiles at various times along mid point for Scenario-2 
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Channel Network-Aquifer System: 

In the second application, the coupled channel/groundwater flow model is applied 

to a hypothetical stream network-aquifer system to demonstrate the performance of the 

proposed simultaneous solution algorithm to multiple channel applications. The physical 

setup of the hypothetical domain is shown in Figure 3.27. In this application, two stream 

channels (i.e., channels 1 and 2) meet and form a larger channel (i.e., channel 3) at the 

junction point shown in Figure 3.27. The two upstream tributaries are 30m wide and 

7071m long uniform rectangular channels with a constant slope of 0.00015m/m. The 

downstream stream is 45m wide and 5000m long uniform rectangular channel with a 

constant slope of 0.0001m/m. The two upstream channels confluence at the mid-point of 

the domain and creates the junction. The Manning’s roughness coefficients of all 

channels are uniform through out the domain and have a value of 0.025. At steady flow 

conditions, the two upstream channels carry 100m3/s whereas the downstream channel 

carries 200m3/s. The thickness of the sediments at the bottom of the channel is 0.3m and 

the hydraulic conductivity of the deposits is 1.0E-6m/s. To visualize results easily, the 

10km long and 4 km wide unconfined aquifer is assumed to have a uniform and isotropic 

hydraulic conductivity of 1.0E-3m/s and the aquifer base is set at mean sea level. The 

stream flow model is discretized by variable length elements giving a total of 155 nodes. 

The groundwater flow model domain is discretized by quadrilateral elements with 

variable side lengths giving a total of 4161 nodes and 4022 elements. A constant time 

step of 1hr is used in simulations. 
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Figure 3.27. Physical setup of hypothetical domain, channel network 
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In the channel flow model, the upstream boundary conditions are given by a 

trapezoidal discharge hydrograph with a base discharge of 100m3/s, a peak discharge of 

350m3/s and a time to peak of 10 days (Figure 3.29). The downstream boundary 

condition is given by a single-valued rating curve that maps the discharge to its normal 

depth. In the groundwater flow model, the boundaries parallel to the stream are specified 

as constant head condition and the boundaries perpendicular to the stream are specified as 

no-flux condition. Moreover, the internal boundary, where the stream runs through, is 

specified as a head-dependent line source. The initial conditions in the stream flow model 

are given as uniform flow conditions at all nodes. In the groundwater flow model, two 

different sets of initial hydraulic head surfaces are used. In the first simulation, the initial 

groundwater head in the aquifer is chosen to be at 32m at all nodes. This simulation 

illustrates a condition where lateral inflow occurs from the stream to the aquifer. In the 

second simulation, the opposite scenario is simulated and the initial groundwater head in 

the aquifer is chosen to be 35m, illustrating a condition where the lateral inflow occurs 

from the aquifer to the stream. These two simulations are referred to as Scenario-1 and 

Scenario-2, respectively and are abbreviated as S1 and S2 in the following discussion. 

In both scenarios, the point comparisons of groundwater head and stream stage 

are presented in figures 3.28 and 3.32 at three points in the analysis domain. These points 

are shown in Figure 3.27. Among these three points, points 1 and 2 are on the left 

upstream channel and are situated 1745m and 4537m from the most upstream point of 

channel 1. On the other hand, point 3 is on the downstream channel and is situated at the 

mid point between the junction and the channel’s most downstream point (i.e., 2500m 

from the junction). These three points are also positioned on the three transects depicted 
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in Figure 3.27 (i.e., 1600m, 4200m, and 7500m from the upper boundary of the aquifer). 

These transects are used to present the spatial distributions of groundwater heads along 

the aquifer.  

Analysis of groundwater head time series in figures 3.29 through 3.31 and 3.33 

through 3.35 reveal that the passage of the flood wave creates an increase in the 

groundwater heads by creating a mound near the river as long as the stream stages are 

higher than the groundwater heads for a sufficiently long period of time. This mound is 

the result of lateral inflow to the aquifer. It is also seen that the mound subsides and the 

bank storage is drained back to the stream when the stream stage falls below the 

groundwater heads. The spatial distribution of groundwater heads in transects 1 and 2 

illustrate a symmetric response behavior since the physical characteristics of the upstream 

channels and their boundary conditions are exactly identical as a function of time. Any 

difference between these characteristics would clearly create an asymmetric hydraulic 

head distribution in the upper half of the aquifer.  

In S1, the initial groundwater head in all three transects are below the initial river 

stages. This situation creates a lateral outflow from stream channels towards the 

groundwater domain, creating an increase in groundwater heads as seen in figures 3.29, 

3.30 and 3.31. Then, the flood wave arrives and this increase is even more pronounced. 

Once the flood wave starts receding, the groundwater heads start falling. Since the water 

surface elevation decrease in channel is much more dynamic than the groundwater head 

decrease, a flow reversal is observed creating a lateral inflow to stream channels from the 

groundwater domain. This behavior is present in all transects after 15 days in figures 

3.29, 3.30 and 3.31. In S2, on the other hand, the initial groundwater head in all three 
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transects are above the initial river stages. Hence, an immediate lateral inflow to the 

stream channels starts to develop. In the absence of a flood wave, this situation creates a 

decrease in groundwater heads in the immediate vicinity of the channels. Therefore, it is 

possible to observe the drawdown associated with this behavior in all transects in the first 

5 days of the simulation in figures 3.33, 3.34 and 3.35. After the 5th day, the arrival of the 

flood wave forces an increase in the groundwater heads due to lateral outflow from the 

channel.  

It is important to mention the fact that a relatively high hydraulic conductivity 

value and a relatively smoothly-increasing upstream discharge hydrograph are used to 

promote a rapid response behavior so that the results could be analyzed in a simpler and 

idealized fashion. In real time simulations, however, the aquifer conductivity values are 

generally much smaller and the hydrographs are commonly much steeper on the rising 

limb. Such a situation is presented in the application chapter of this study. 
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Figure 3.28. Groundwater head and river stage at various points in domain and river 
discharge at the upstream boundary in Run-1 
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Figure 3.29. Groundwater head profiles at various times at transect-1 in Run-1 
 

 147 



 

 

 

 

-2000 -1000 0 1000 2000

Distance from aquifer centerline (m)

31

32

33

34

35

36

G
ro

un
dw

at
er

 h
ea

d 
(m

)

t=0 days
t=5 days
t=10 days
t=15 days
t =20 days
t=25 days
t=30 days

 

Figure 3.30. Groundwater head profiles at various times at transect-2 in Run-1 
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Figure 3.31. Groundwater head profiles at various times at transect-3 in Run-1 
 

 149 



 

 

0 10 20 3

Time (days)

0
30

32

34

36

38

40

G
ro

un
dw

at
er

 h
ea

d 
(m

)

River Stage Point 1 (Node17)
River Stage Point 2 (Node43)
River Stage Point 3 (Node130)
GW Head Point 1 (Node3442)
GW Head Point 2 (Node2340)
GW Head Point 3 (Node1034)
Upstream BC

50

150

250

350

450

U
pstream

 boundary
condition discharge  (m

3/s)

 

Figure 3.32. Groundwater head and river stage at various points in domain and river 
discharge at the upstream boundary in Run-2 
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Figure 3.33. Groundwater head profiles at various times at transect-1 in Run-2 
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Figure 3.34. Groundwater head profiles at various times at transect-2 in Run-2 
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Figure 3.35. Groundwater head profiles at various times at transect-3 in Run-2 
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3.6. 

3.6.1. 

Coupled Surface-Subsurface Flow Model-2 

In addition to the river bed interface, surface and subsurface flows are also linked 

at the ground surface which has the largest areal extent for surface-subsurface 

interactions. The ground surface serves as the first point-of-contact for the incoming 

meteorological input and is the place where it is distributed into various components. It 

essentially provides the medium for runoff generation which makes it an important part 

of the hydrologic cycle. Furthermore, if a saturated-unsaturated zone separation is made 

in groundwater flow, as has been done in this study, the water table would become 

another interface of importance to the hydrologist, where the unsaturated zone is divided 

from the saturated zone. In order to analyze the interactions between the overland flow 

zone, unsaturated groundwater flow zone and the saturated groundwater flow zone, a 

second coupled model is developed and presented in the following sections. This 

discussion closely follows the previous work of Gunduz and Aral (2003c). 

 

Coupling at Ground Surface and Water Table 

In this second coupled model, the infiltration/exfiltration flux between the 

overland flow and general groundwater flow domains provides the coupling mechanism 

at the ground surface and at the water table. A schematic of this model is shown in Figure 

3.36.  As seen from the figure, the overland flow domain is stacked on top of an 

unsaturated zone, which also lies above a saturated groundwater flow zone. This triple 

structure is dynamically linked at the ground surface and at the water table (Gunduz and 

Aral, 2003c).  
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Figure 3.36. Coupling at ground surface and water table 
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As the groundwater flow domain is separated into a saturated and unsaturated 

zone, one should pay special attention to the interactions between these two systems. 

Depending on the moisture levels in the ground, the unsaturated zone may totally 

diminish if the water table rises to the surface. In this regard, while the overland flow and 

saturated groundwater flow domains exist continuously in this model, the presence and/or 

the extent of the unsaturated zone flow domain is a fully dynamic process and becomes a 

function of the corresponding hydrologic conditions over the land surface and below the 

water table. In essence, these dynamic conditions determine the existence of ‘saturation 

from below’ or “saturation from above” mechanisms of overland flow generation and 

represent the highly dynamic behavior of surface-subsurface flow interactions. 

In the set up shown in Figure 3.36, the overland flow and saturated groundwater 

flow discretizations coincide in the two-dimensional horizontal domain such that an 

overland flow node and a saturated groundwater flow node are located at the same x-y 

position. The soil column between these two nodes is considered to be the one-

dimensional unsaturated zone. Therefore, the overall discretization yields a total of N 

unsaturated columns, where N is the total number of overland or saturated groundwater 

nodes. In this formation, it is important to note that the unsaturated zone columns are 

disconnected from each other and there is no flux in the x- or y- directions. This approach 

is the foundation for the proposed quasi three-dimensional structure (Gunduz and Aral, 

2003c). The alternative is a completely three-dimensional variably-saturated groundwater 

flow model coupled with the two-dimensional overland flow. In such a setup, the water 

table becomes a part of the solution and there is no deliberate separation between 

unsaturated and saturated groundwater flow zones. The three-dimensional groundwater 
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flow model is, however, not suitable for large scale watershed modeling applications due 

to computational limitations due to the large number of nodes required. 

At the ground surface, the overland flow model is coupled with the unsaturated 

zone model via the infiltration/exfiltration flux. Depending on the relative magnitudes of 

potential infiltration and water supply rate (i.e., the sum of rainfall rate and overland flow 

depth expressed as a rate within a time step), the top boundary condition of the 

unsaturated zone is set as a specified head or specified flux. Therefore, the unsaturated 

zone top boundary condition of the coupled model possibly switches from a specified 

head condition to a specified flux condition or vice versa within the course of a 

simulation (Gunduz and Aral, 2003c). When a specified flux condition is used at the top 

boundary of the unsaturated zone, the same flux value is also directly used in the 

overland flow equation. On the other hand, if a specified head condition is required at the 

top boundary, then the corresponding flux is evaluated according to Darcy’s law. The 

computed flux value is then used in the overland flow equation. 

In a similar manner, the unsaturated and saturated zone groundwater flow models 

are linked to each other with the infiltration/exfiltration flux evaluated at the water table. 

In the setup shown in Figure 3.36, the bottom of the unsaturated zone is always fixed to 

be the water table. Hence, the boundary condition becomes a zero pressure head 

condition. The flux computed at the bottom of the unsaturated zone is then used as the 

infiltration/exfiltration term in the saturated groundwater flow equation (Gunduz and 

Aral, 2003c). When the groundwater table elevation increases or decreases, the 

corresponding unsaturated zone depth decreases or increases, respectively. Consequently, 

the unsaturated zone discretization must be adjusted to the growing/shrinking domain 
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size. This adjustment would require adding new nodes or removing existing nodes at the 

bottom of the domain when the water table moves down and up, respectively. In this 

regard, a sophisticated dynamic mesh update routine is integrated to the coupled model 

and the unsaturated zone mesh is updated at each time step of the simulation.  

Although the initial idea was to implement the new simultaneous coupling idea in 

the solution of the current model, computational limitations became so severe that an 

iterative coupling idea had to be used. The unsaturated column between each 

overland/groundwater node couple increased not only the memory requirements of the 

model but also created extremely large matrices that were deemed impossible to solve 

within reasonable time frames. Consequently, the iterative coupling is used as an 

alternative solution method. 

While one of the advantages of iterative coupling is the ability to use different 

time step sizes for each component of the model, the minimum time step requirement of 

all processes is used in solving all three components of the coupled model. Despite the 

increased run-times, this method is believed to better represent the influence of the highly 

dynamic behavior of the overland flow process on unsaturated zone flow process much. 

For all time steps, first the unsaturated zone model is solved for each column using the 

corresponding overland flow stage and groundwater head values from previous time step. 

As the spatial discretization in the unsaturated zone is updated at every time step 

according to the relative time-dependent positions of the water table, the domain is 

essentially constant within each time step. After obtaining the top and bottom fluxes from 

the unsaturated model, they are used as inputs to the overland and saturated groundwater 

models. Then, the overland and saturated groundwater flows are solved to find the 
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overland flow depths and aquifer heads. Once the depths and water table elevations are 

computed, they are re-substituted to the unsaturated zone boundary condition values to 

solve all unsaturated zone columns again. This procedure is continued iteratively until 

sufficient convergence is achieved between two consecutive values of overland flow 

depth and groundwater head. Typically, one to two iteration cycles are sufficient to reach 

a converged solution due to the relatively slow response times of the saturated 

groundwater flow (Gunduz and Aral, 2003c). 

 

3.6.2. Model Testing 

The coupled model is applied to a rectangular test plot to demonstrate the 

performance of the different model components and the interactions in between. In this 

application, a 40 m wide and 500 m long rectangular plane (Figure 3.37) with a slope of 

0.001m/m in the longitudinal direction and 0.0 m/m in the transverse direction is used to 

model the response of a precipitation event shown in Figure 3.38. The response of the 

watershed is simulated for both sand and clay soils to demonstrate the effect of soil type 

on overland flow generation and groundwater recharge. The van Genuchten model 

parameters for both soils are taken from the statistically averaged values given by Carsel 

and Parrish (1988) and given in Table 3.2. 

 
Table 3.2. Soil Hydraulic Parameters of Sand and Clay Soils (Carsel and Parrish, 1988) 

 

Saturation 
Water 

Content 
θs(-) 

Residual 
Water 

Content 
θr (-) 

Van 
Genuchten 
parameter 
α (cm-1) 

Van 
Genuchten 
parameter 

n (-) 

Saturated 
Conductivity 

Ks (cm/hr) 

Sand 0.430 0.045 0.145 2.680 29.70 

Clay 0.380 0.068 0.008 1.090 0.20 
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Figure 3.38. Precipitation event used in model 
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Both the overland and saturated groundwater domains are discretized by square 

quadrilateral elements of 10m side length creating a total of 200 elements and 255 nodes 

(Figure 3.37). Each of these 255 unsaturated soil columns is discretized with a vertical 

spacing of 1 cm but the number of nodes varied during the solution according to the 

relative surface and groundwater table elevations for each column. 

In the overland flow model, critical depth conditions are used at the outflow side 

of the domain and no flux conditions are used along all other sides of the domain. An 

initial flow depth of 1.0E-4m is used to avoid numerical singularity for the first time step. 

In the saturated groundwater flow model, a fixed head condition is used beneath the 

outflow side of the overland flow model and no flux conditions are used at all other sides. 

A horizontal initial water table of 89.5 m is used in the simulation. The bottom boundary 

condition of the unsaturated zone is always taken to be a zero specified head condition at 

the water table. The top boundary condition, however, switches between a specified head 

and a specified flux condition depending on the presence of overland flow. An initial 

pressure head profile of -50 cm up to the capillary fringe of 3-4 cm is used to represent a 

moderately dry soil in all unsaturated soil columns. A constant time step of 1 sec is used 

in the simulation. 

The following results are presented at three nodes (i.e., 13, 123, 243) in the two 

dimensional domain. These nodes represent an upstream, a midstream and a downstream 

point along the flow direction. The overland flow depth time series and the groundwater 

head time series of both soils are shown in figures 3.39 and 3.40, respectively. The 

unsaturated zone profiles at t=9000sec and t=18000sec of simulation are shown for nodes 

13, 123 and 243 in figures 3.41, 3.42 and 3.43, respectively. 
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The simulations reveal that the selected rainfall event is intensive enough to create 

overland flow on both soil types. In the early stages of the simulation, the generated 

overland flow is governed by the saturation of the top soil layers and is therefore 

regarded as a “saturation from above” type overland flow. It is seen that the overland 

flow depths are larger in clay soils, which permits relative smaller amounts of infiltration 

compared to sandy soils. As seen from Figure 3.40, clay soil did not create any 

significant recharge to the groundwater since the hydraulic conductivity of clay is two 

orders of magnitude smaller than that of sandy soil. Consequently, considerable amounts 

of infiltration did not occur during the simulation period. On the other hand, it is seen 

from Figure 3.40 that sandy soil created significant recharge to the groundwater, 

particularly towards the downstream nodes where groundwater table reached very close 

to the surface. Hence, any further precipitation event will likely create a “saturation from 

below” type overland flow especially in down slope, lowland area. Particularly, the 

unsaturated zone profile of node 243 shown in Figure 3.43 demonstrates the fact that 

such lowland areas get saturated in a faster rate than the upland areas and create a 

potential recharge zone for the groundwater domain. This finding is consistent with the 

generally accepted overland flow generation mechanisms where highland areas mostly 

contribute to runoff via saturation from above and lowland areas are generally 

responsible for creating runoff via saturation from below (Dingman, 1994). 
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Figure 3.39. Overland flow depth time series in (a) sand and (b) clay soils at different 
nodes in the domain 
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Figure 3.40. Groundwater head time series in (a) sand and (b) clay soils at 
different nodes in the domain 
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Figure 3.41.Unsaturated zone profiles of clay and sand soils at an 
upstream node (Node 13) at t=9000sec and t=18000sec 
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Figure 3.42.Unsaturated zone profiles of clay and sand soils at a 

midstream node (Node 123) at t=9000sec and t=18000sec 

 166 



-0.6 -0.4 -0.2 0 0.2

Pressure Head (m)

89.2

89.6

90

90.4

90.8

Elevation (m
)

Both soils, t=0sec
Sandy soil, t=9000sec 
Clay soil, t=9000sec

-0.6 -0.4 -0.2 0 0.2

Pressure Head (m)

89.2

89.6

90

90.4

90.8

Elevation (m
)

Both soils, t=0sec
Sandy soil, t=18000sec
Clay soil, t=18000sec

 
Figure 3.43. Unsaturated zone profiles of clay and sand soils at a 

downstream node (Node 243) at t=9000sec and t=18000sec 
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3.7. Analysis of Coupled Models 

The sub-processes defining the hydrologic system are linked via the interfaces 

located at: (i) the groundwater table; (ii) ground surface; and, (iii) river bed. Of these, the 

river bed is the only interface which may have a certain thickness and may involve a 

sediment layer along the river bottom that may allow a delayed exchange between river 

and groundwater flow domains. All others are “zero-width” interfaces where water 

exchange occurs instantaneously. Although the river bottom sediment is considered to be 

a layered interface, it is assumed that the interactions occur instantly due to the relatively 

small thickness of the sediment layer. This assumption simplifies the overall coupling 

analysis (Aral and Gunduz, 2003). 

An important aspect of integrating various sub-processes is the selection of the 

method applied to solve the matrix equations defining the system. Even though coupling 

via iterative solution and coupling via simultaneous solution are the most advanced levels 

of solving the sub-processes in an integrated fashion, iterative solution requires much 

smaller matrices to solve than the simultaneous solution. In iterative solutions, each sub-

process model is integrated sequentially and solved separately by using the contributions 

from the other sub-processes. After each sub-model is solved, the common parameters 

linking these systems are checked for convergence (i.e., deviation from the previous 

iteration’s solution). If the solutions of these common parameters are not sufficiently 

close, the procedure is repeated until the differences between subsequent solutions are 

below a pre-determined convergence criteria. This iterative coupling idea is slow, 

especially when more than two sub-processes are linked together. On the other hand this 
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approach would be less restrictive from the perspective of scaling concerns since each 

sub-process can possibly be analyzed within its own scale. 

In the simultaneous solution approach proposed in this study, all sub-process 

models are solved together using a common time step. In this approach, all sub-model 

solution matrices are grouped into a single matrix structure and solved at once. Hence, 

this method requires the use of the smallest time step of all sub-models, which makes it 

impractical for the coupling processes requiring time steps from the two extremes (i.e., 

linking processes such as saturated groundwater flow and unsaturated groundwater flow). 

Attempting to solve such a system simultaneously results in very small time step 

requirements and creates numerical incompatibility between systems. On the other hand, 

this approach is more accurate than the iterative method since it does not involve 

improvement of the solution by iterating on the common parameters of the sub-models.  

The wide array of time scales required to efficiently simulate the flow pathways is 

the most important problem of the watershed modeling. The incompatibility of the sub-

process time scales makes the overall coupling of the system difficult and sometimes 

impractical. As described before, unsaturated flow numerically requires small time steps 

on the order of seconds to describe the vertical movement of moisture in the unsaturated 

domain, whereas the groundwater flow can be run with time steps on the order of days. If 

a simultaneous solution technique is used to couple these two systems, then the entire 

system would need to be run with the time step of the unsaturated zone. This condition is 

computationally costly and inefficient for the groundwater flow simulation. Moreover, 

including the entire unsaturated zone discretization to the overall matrix structure would 

simply make the matrix sizes impractical to solve with current computational power, 
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which is why the second coupled model discussed above is not solved with the 

simultaneous solution approach. 

Nevertheless, regardless of the method used, it is the understanding of the author 

that coupling of a process requiring large time steps with a process requiring small time 

steps over a large watershed application is still not practical with the current level of 

computational power. Small time step requirements of certain processes including the 

unsaturated zone and overland flow zone practically create very large simulation times to 

simulate watershed scale events (i.e., large areal extent and long temporal periods). When 

this is the case, certain engineering judgments are to be made to either simplify or totally 

neglect the processes that create the bottle neck. Although these judgments might violate 

the proper representation of the system, it would still allow the modeler to gain an insight 

of the system with optimal model performance. It is believed, without these shortcuts, 

large scale watershed modeling is still not feasible when distributed models are used in 

sub-process modeling and non iterative solution processes are selected in solving the 

integrated model. 

The problem of spatial scale compatibility between models is not as significant as 

the problem of time scale compatibility, discussed above. The spatial scale compatibility 

becomes most significant within the simultaneous solution framework where sub-

processes must be discretized to have common nodes. In the first model discussed above 

(i.e., coupled river/groundwater flow model), the system is composed of a common set of 

nodes representing the river discretization, which are also a member of the unconfined 

aquifer discretization. The corresponding dependent variables of both models (i.e., river 

water surface elevation and the groundwater head) at these nodes essentially perform the 

 170 



simultaneous coupling. While the iterative coupling method does not require having 

common nodes, it would still be more convenient for the modeler to work with two 

dependent variables at the same point without the need to go through the task of 

interpolation. 

The situation is much worse in the second coupled model discussed above (i.e., 

coupled overland flow/unsaturated zone/saturated zone model). Similar spatial scale 

compatibility issues become more pronounced within the solution of this model. 

Coinciding overland and saturated groundwater nodal points are used to effectively link 

the vertical distance between the groundwater table and ground surface with an 

unsaturated zone model with variable nodal points. The coinciding nature of nodal points 

is required to have an unsaturated zone in between and to guarantee correct volume 

balance within the unsaturated zone model. However, it is impractical to use the many 

discretized unsaturated zone nodes between each node-couple of overland/saturated zone 

model and solve a huge system matrix at each time step, a simultaneous solution 

algorithm is definitely not the method of choice with current level of computer speed.  

 

3.8. Hybrid Model 

The analysis of the two coupled models reveals some key features that have to be 

addressed for accurate understanding of the system. The problems associated with the 

scales of sub-processes and their coupled counterparts are probably the most significant 

difficulty in integrated watershed modeling.  As shown in sections 3.5 and 3.6, it is 

theoretically possible to couple all processes if computational cost is not an issue. 

However, for large scale applications such as catchment modeling, the small scale 
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requirements of overland and unsaturated zone flow domains exhibit severe limitations 

on efforts in fully integrating the system (Aral and Gunduz, 2003). Furthermore, the 

issues discussed in Chapter 2 further complicate the large scale applications of both 

overland and unsaturated zone flow modeling. Consequently, a hybrid modeling 

approach is proposed in this study in which distributed and lumped parameter models are 

essentially linked and blended to obtain a semi-distributed watershed model. In such 

models, the overland flow and unsaturated zone models are replaced with their lumped 

parameter empirical counterparts in an effort to simplify the overall analysis. When 

issues like computational limitations, proper mathematical formulation of physical 

processes and data requirements are addressed accurately and sufficiently, these systems 

would be included in the analysis as shown in sections 3.5 and 3.6. 
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CHAPTER 4 

 

4. 

4.1. 

4.1.1. 

COUPLED CONTAMINANT TRANSPORT MODEL 

 

 

In this chapter, a coupled contaminant transport model that is based on the 

proposed hybrid flow model given in Chapter 3 is presented. The coupled contaminant 

transport model is one of the earliest attempts to model multi-pathway contaminant 

transport phenomena. It essentially links the surface and subsurface transport processes 

and couples them in a semi-simultaneous manner. The difficulties associated with the 

numerical solution of the advection dispersion equation would presently not allow fully 

simultaneous coupling of these transport processes.  

 

One Dimensional Channel Transport Model 

 

Governing Equations 

The mathematical model of the one-dimensional channel contaminant transport is 

given by the mass conservation equation, including extra terms for lateral mass 

contribution from overland and seepage flows. As the contribution from seepage flows is 

not considered in previous studies, this study can be considered as a first attempt to 
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incorporate the impact of subsurface transport on surface transport of contaminants. In 

addition, the following governing equation not only considers the effect of advective 

seepage transport but also formulates a dispersive component of transport as a first order 

Fickian process over the thickness of the river bed. With these additions, the one-

dimensional advection-dispersion equation in channel flow can be written by using a 

control volume approach and presented in the following conservation form: 

 

( ) ( ) * *
1 1 2 2 0g rr r

r L r L L sed sed r L L
r

C CC A CVAC AD kC A q C n D w q C
t x x x m

−∂ ∂ ∂ ∂ + − + − + − ∂ ∂ ∂ ∂ 
=  (4.1) 

 

where x is the longitudinal coordinate representing the distance along the channel, t is the 

temporal coordinate, Cr is the contaminant concentration in the channel, A is flow area, V 

is the cross-sectionally averaged flow velocity, DL is the longitudinal dispersion 

coefficient in the channel, k is the decay coefficient, qL1 and qL2 are the lateral seepage 

and overland flows per channel length (positive for inflow and negative for outflow), C*
L1 

and C*
L2 are the contaminant concentration associated with lateral seepage and overland 

flows, respectively, nsed is the porosity of the sediment layer, Dsed is the vertical 

dispersion coefficient in the sediment layer, mr is the thickness of the sediment layer and 

wr is the wetter perimeter of the river. It is important to note that the values of C*
L1 and 

C*
L2 change according to the direction of the lateral flow terms such that when lateral 

flow is towards the channel (i.e., inflow to the channel), these values take the associated 

concentrations coming from the groundwater (i.e., Cg) and overland flow domains (i.e., 

Co) whereas they become the concentration in the channel (i.e., Cr) when the lateral flow 

is away from the channel (i.e., outflow from the channel):  
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The value of the longitudinal dispersion coefficient is an important parameter in 

the overall distribution of the contaminant within the channel network. It may become the 

major transport mechanism in mildly moving or stagnant sections of the channel such as 

ponds or small tributary inflow sites to the main channel. Although the ideal way to 

obtain the value of the longitudinal dispersion coefficient is to perform tracer tests, it is 

only available for selected reaches of only a small number of rivers. Therefore, water 

quality modelers often use empirical formulations that are mainly based on the easily 

measured hydraulic and channel characteristics. Following the early works of Taylor 

(1954) and Elder (1959), numerous researchers including Fischer (1966, 1968, 1975, 

1979), McQuivey and Keefer (1974), Liu (1977) and Aral et al. (1980) have developed 

methods to estimate the longitudinal dispersion coefficient. Their efforts were later 

followed by Magazine et al. (1988), Iwasa and Aya (1991), Kousis and Rodriguez-

Mirasol (1998), Seo and Cheong (1998), Deng et al. (2001) and Kashefipour and 

Falconer (2002), who have also developed both semi-analytical and empirical equations 

for estimating the longitudinal dispersion in river channels. Despite the vast amount of 

published work, there is no globally accepted formulation that is used extensively. In this 

study, the most recent study conducted by Kashefipour and Falconer (2002) is 

implemented. They have analyzed the available data via regression analysis and proposed 
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their version of an empirical formula for the longitudinal dispersion coefficient that can 

be written as: 

 

*10.612L
VD
V
 =  
 

Vd                                                (4.4) 

 

where d is the water depth in the channel and V* is the shear velocity defined as: 

 

*
h fV gR S=                                                      (4.5) 

 

They have obtained a coefficient of determination value of 0.84 for a data set including 

more than 30 major rivers in the United States. Following comparisons with the results 

obtained from Seo and Cheong’s equation (Seo and Cheong, 1998), they choose to 

combine the two equations in a linear manner to estimate the longitudinal dispersion 

coefficient more accurately. By comparison of predicted vs. measured dispersion 

coefficients, they proposed the following form of the equation as their second 

formulation for dispersion coefficient: 

 

0.620 0.572

* *7.428 1.775L
B V VD V
d V V

      = +      
       

d                          (4.6) 

 

Upon further investigation with the two alternative forms, Kashefipour and Falconer 

(2002) recommended the use of the first equation for open channel flows with width to 
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depth (i.e. B/d) ratios in excess of 50 and the use of second equation for open channel 

flows with width to depth ratios less than 50.  

 

4.1.2. 

)

4.1.3. 

Initial Conditions 

In order to start the transient solution, initial values of the contaminant 

concentration are to be specified along the one-dimensional channel domain such that: 

 

( ) (,0r roC x C x=                                                   (4.7) 

 

where Cro is the initial concentration distribution along the channel network. 

 

Boundary Conditions 

Similar to the one-dimensional channel flow model, the contaminant transport 

model also have two different types of boundary conditions specified at (i) external; and, 

(ii) internal boundaries of the domain. The external boundary conditions are given at the 

most upstream and downstream points of the channel network, whereas the internal 

boundary conditions are specified at internal junction points of the channel network. 

 

4.1.3.1. External Boundary Conditions 

In this study, the contaminant transport model can accommodate several upstream 

boundary conditions and a single downstream boundary condition. Thus, the model does 

not solve looped channel networks. At any upstream boundary, a specified concentration 

time series can be used as the boundary condition. The concentration time series is either 
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available from continuous measurement (i.e., specified concentration) or from simple 

contaminant mass loading computation (i.e., specified mass flux): 

 

( ) ( ) ( )0,
( )r ru

M tC t C t
Q t

= =                                             (4.8) 

 

where M(t) is the mass loading rate from some upstream source, Q(t) is the river flow at 

the upstream boundary and Cru is the corresponding upstream boundary concentration 

time series. At the downstream boundary, a zero concentration gradient is generally used 

as the boundary condition when the boundary is far away from the contaminant zone: 

 

0
d

r
L

x L

CA D
x =

∂ =
∂

                                                  (4.9) 

 

which states that advection dominates at the outflow and the contaminant propagates out 

of the domain unhindered. When the boundary is not far and the outflow concentration is 

measured, a specified total mass flux, f, is used as the downstream boundary condition: 

 

d

L
x L

CQC A D f
x =

∂−
∂

=                                             (4.10) 

 

4.1.3.2. Internal Boundary Conditions 

Any two or more channels intersecting within a channel network forms a junction 

where internal boundary conditions are specified to satisfy the contaminant mass balance. 
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In this study, the proposed contaminant transport model follows its flow counterpart and 

does not allow for looped networks. Hence, it requires that there is always a single 

outflow channel from a junction. The mass balance equation at a junction can then be 

specified as:  

 

dt
dMJAJA oo

m

k
kk =−∑

=1
                                            (4.11) 

 

where m is the total number of inflowing channels to the junction, Jk and Ak are the total 

mass flux and the area at the end of the kth inflowing channel to the junction, Jo and Ao 

represent the total mass flux and the area at the beginning of the outflowing channel from 

the junction, and dM/dt corresponds to the change in mass within the junction. Following 

the basic assumption applied in many modeling applications, the change in mass storage 

within a junction is assumed to be negligible compared to the change in mass within in a 

channel. Consequently, the mass balance equation can be written as:  

 

0
1

=−∑
=

oo

m

k
kk JAJA                                               (4.12) 

 

Furthermore, the continuity of concentration at the junction guarantees that all the 

concentrations must be equal to each other at the junction:  

 

( ) ( ) mkCC orkr ,,2,1 …==                                  (4.13) 
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4.1.4. Numerical Solution Scheme 

There are numerous numerical solution techniques for solving the advection-

dispersion equation. These techniques can be classified as: (i) Eulerian methods, 

including finite difference, finite element or finite volume methods; (ii) Lagrangian 

methods; and, (iii) Hybrid methods. When the limitations of these methods discussed in 

Chapter 2 are considered, it is tempting to use fixed grid methods for the solution of the 

advection-dispersion equation. One of the key criteria behind this selection lies in the fact 

that the flow model that would supply the necessary flow data to the contaminant 

transport model is based on an Eulerian framework. Therefore, information obtained 

from the flow model at fixed points can best be used in the transport model at the same 

grid points. Hence, the one-to-one correlation of flow and transport model discretizations 

greatly simplifies the implementation of the contaminant transport model and possibly 

increases its accuracy since it would not require unnecessary interpolations that would 

otherwise be inevitable. Furthermore, systematic modeling of complex channel networks 

is still only viable with fixed-grid methods. 

Based on this discussion, the advection-dispersion equation describing the 

transport of contaminants in a river channel is solved using a fixed grid control-volume 

finite difference scheme. In the context of this scheme and similar other fixed grid 

methods, it is widely accepted by the numerical modeler that the dispersion component of 

the equation could generally be solved without any problems using a variety of schemes. 

The problem generally arises from the advection component of the equation, particularly 

for highly advective transport of contaminants with sharp fronts, where the numerical 

methods start to lose accuracy and computational efficiency. While dispersion favors 
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implicit solution algorithms with possible use of large time steps, advection modeling 

generally utilizes an explicit algorithm with time steps limited by the Courant number 

criteria. Hence, the two major contaminant transport processes essentially behave in a 

contradictory manner. Since dispersion modeling could also be done with an explicit 

algorithm, a fully explicit scheme for the entire advection-dispersion equation is possible. 

However, such a scheme would not allow a simultaneous solution for the transport 

equation in a river with the transport equation in groundwater and is not favorable for this 

study. Rather, the matrix solution of implicit schemes is necessary to simultaneously 

solve the two transport systems. The only exception to this setup would be the 

problematic advection component of the river transport that should be solved using an 

explicit scheme. It is this motivation that forces to separate the two processes and solve 

them in two steps. Using a fairly recent development in the area that results in the 

formulation of the so-called ‘split operator’ approach, one can now separate the advection 

operator from the dispersion and the rest of the operators and solve them using the most 

suitable scheme possible for each operator. Although this approach appears to be a 

violation of the principle of “simultaneous presence” of these processes in nature, it 

provides a very powerful technique to handle the numerical difficulties associated with 

each particular operator. Essentially, this procedure provides a sound methodology that 

gives mathematically identical results to the traditional compact operator methods. 

Consequently, one could discretize the equation by evaluating the advection term 

explicitly in time and the remaining terms implicitly in time. The discretized form of the 

equation would then become: 
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which gives cell-average values of (CrA) in each control volume, i, at the future time line 

j+1, based on the cell-average values of (CrA) in each control volume at the current time 

line j, as well as the mass influx and outflux to/from the control volume. The square 

brackets represent some form of spatial discretization. Since the advection term is treated 

explicitly, the equation may be rewritten in two substeps without compromising the 

algorithmic integrity: 
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In essence, this procedure of splitting the operators first allows the fluid to advect for a 

time step, and then lets it disperse and decay in its new advected location. With this 

approach, it is possible to use a suitable solution scheme for advection and other 

operators. In this regard, the highly accurate Quadratic Upstream Interpolation for 

Convective Kinematics with Estimated Streaming Terms (QUICKEST) algorithm could 

be used to model the advection operator, while the dispersion operator is discretized with 

a standard central difference scheme. The remaining terms are just algebraic terms 
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evaluated at the (j+1)th time line. The details associated with the discretizations of the 

advection operator with the QUICKEST scheme and the dispersion operator with the 

central difference scheme are given in Appendix J. The formulations of the boundary 

conditions as well as the treatment of the junctions are also given in this appendix. Using 

the formulations given in the appendix, the channel transport equation becomes: 
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where (CrA)* is the result of the advection operator using the explicit QUICKEST 

algorithm as given in Appendix J.  

 

Model Testing 

The one-dimensional channel contaminant transport model is tested against the 

available analytical solutions in a single channel framework. Since there are no analytical 

solutions that define the transport of contaminants in a channel network, model testing of 

contaminant transport in channel networks is performed by a number of supplementary 

tests for various hypothetical conditions of pure advection and pure dispersion. 

The single channel verification of the proposed channel contaminant transport 

model is done with the exact solution originally developed by Ogata and Banks (1961) 
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and later modified by Bear (1972) and van Genuchten and Alves (1982). The original 

one-dimensional mathematical model is written as: 
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=                                      (4.18) 

 

that defines not only the advective-dispersive transport but also the first order decay of 

contaminants in a simple channel. The initial and boundary conditions of the problem can 

also be given as: 
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which defines the conditions for a continuous source of a finite duration, t*. The 

analytical solution of this problem for conservative species (k=0) can then be written as: 
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where: 
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For non-conservative species (k≠0), the solution is slightly modified as:  
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where the functions A(x,t) and B(x,t) are defined as: 
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The term Γ in function B(x,t) is given as: 

 

2

41 LkD
V

Γ = +                                                   (4.25) 

 

To test the proposed model with the analytical solution given above, a 

hypothetical rectangular channel domain is created so that steady uniform flow will 

prevail in the channel at all times. A constant discharge of 10m3/s is passed through a 
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10000m long rectangular channel that has a base width of 20m. The channel lies on a 

0.001m/m bed slope and carries the discharge at a uniform depth of 0.5m with a constant 

velocity of 1m/s. Initially, the channel is assumed to contain no contaminants. A constant 

specified concentration boundary condition of 1mg/L is implemented at the upstream 

boundary of the channel. The contaminant is allowed to advect, disperse and/or decay 

within the channel as a function of time. The results of numerical simulations and 

analytical solutions are compared in figures 4.1 through 4.6. 

In the first set of tests, the basic transport characteristics of the contaminant are 

analyzed and the decay of the contaminant is not allowed. Three different tests are 

performed with different dispersion coefficients representing (i) an essentially pure 

advection flow with very low dispersion (DL=1.0E-8 m2/s); (ii) a medium dispersion 

(DL=30 m2/s) flow; and, (iii) a high dispersion (DL=100 m2/s) flow. The numerically 

simulated vs. analytically computed results are compared in figures 4.1, 4.2 and 4.3. In 

the first test shown in Figure 4.1, a very small amount of dispersion is allowed and the 

contaminant transport is mainly an advection dominated event. It can be seen that the 

pattern and timing of the sharp front is properly captured with the proposed model in 

three different positions in time. Hence, it is possible to conclude that the model can 

accurately simulate advection dominated contaminant transport. The second test is 

performed with a moderate amount of dispersion representative of most of the flow 

patterns found in nature. As seen at all three times presented in Figure 4.2, the simulated 

results are either identical or very close to the analytical solution. Therefore, it can be 

concluded that the proposed model accurately captures the expected advection and 

dispersion patterns of the contaminant plume. Finally in the third test, simulations are 
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performed with a significantly high dispersion value. The dispersion coefficient is so high 

that the plume shows a ±3000m deviation from its center of gravity (Figure 4.3). Similar 

to the previous two tests, the comparison of simulated and calculated results also reveals 

an excellent fit and demonstrates the prediction power of the proposed model. 

In the second set of tests, the basic transport characteristics of the contaminant are 

analyzed under the influence of contaminant decay. Three different tests are performed 

with different dispersion and decay coefficients representing (i) a high decay rate in an 

essentially pure advection flow (k=3.0E-4 s-1); (ii) a low decay rate in a medium 

dispersion flow (k=1.0E-4 s-1); and, (iii) a high decay rate in a  medium dispersion flow 

(k=3.0E-4 s-1). The numerically simulated vs. analytically computed results are compared 

in figures 4.4, 4.5 and 4.6. As seen from the figures, the simulated and calculated results 

are almost identical or very close to each other which represent the predictive capabilities 

of the proposed model with decay. In all three cases, decay acts as an additional 

smoothing mechanism on the sharp contaminant profile that is already smoothened by the 

dispersion. 
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Figure 4.1. Comparison of numerically simulated and analytically computed 
concentrations in an advection dominated flow (DL=1.0E-8 m2/s) 
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Figure 4.2. Comparison of numerically simulated and analytically computed 
concentrations in a moderate dispersion flow (DL=30 m2/s) 
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Figure 4.3. Comparison of numerically simulated and analytically computed 
concentrations in a high dispersion flow (DL=100 m2/s) 
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Figure 4.4. Comparison of numerically simulated and analytically 
computed concentrations in an advection dominated flow (D=1.0E-8 m2/s) 

with decay (k=3.0E-4 s-1) 
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Figure 4.5. Comparison of numerically simulated and analytically 
computed concentrations in a moderate dispersion (D=10 m2/s) flow with 

moderate decay (k=1.0E-4 s-1) 
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Figure 4.6. Comparison of numerically simulated and analytically 
computed concentrations in a moderate dispersion (DL=10 m2/s) flow with 

high decay (k=3.0E-4 s-1) 
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In a channel network setup, there are no analytical solutions that the model could 

be tested against when advection, dispersion and/or decay are the governing mechanisms 

of fate and transport. It is, however, possible to perform simple benchmark tests when the 

steady uniform channel flow only allows advection of contaminants. Although such a 

situation is of no practical value, it is believed to provide an important test condition for 

the numerical model within a network setup. To test the simulation capabilities of the 

proposed model in a channel network under simple advection, a three channel network 

with two upstream tributaries and a downstream channel is used as shown in Figure 4.7. 
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Figure 4.7. Simple channel network for testing pure advective transport 
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The hypothetical channel network consists of three 10000m long rectangular 

channels laid on a 0.001m/m bed slope. The upstream tributaries and the downstream 

main channels have top widths of 20m and 40m and carry a discharge of 10m3/s and 

20m3/s, respectively. The steady uniform flow creates a normal depth of 0.5m and a 

velocity of 1m/s in all three channels. Initially, all channels contain zero contaminant 

concentration. Then, the first tributary starts to receive constant 1mg/L while the second 

tributary gets constant 3mg/L throughout the rest of the simulation period of 0.2 days. 

Since flow in the channel system is steady and uniform and advection is the only means 

of transport, it is expected that the two concentration streams blend in the junction and 

travel downstream with the volumetric average concentration. Considering the fact that 

both tributaries carry an equal amount of discharge, the blended main channel 

concentration is expected to balance out at 2mg/L and still continue to travel downstream 

as a step function based on the assumption that the mixing of the two streams occur 

instantaneously. The results of numerical simulation exactly follow this intuitive 

expectation. Figure 4.8 shows results before and after blending of the two streams. 

Although the channel network would not allow a similar intuitive analysis for 

pure diffusion/dispersion, the proposed model is still used to simulate the channel 

network shown in Figure 4.7, so that the results could at least be analyzed from a general 

perspective. In this test, however, the second tributary is assumed free of contamination 

and is assumed to have a zero concentration boundary condition at the most upstream 

point. Since the second tributary does not carry any contaminant, one would expect 

dispersion towards not only along the main channel but also towards the second tributary 

once the contaminant reaches the junction. Therefore, a symmetric pattern is expected 
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beyond the junction. The results of pure diffusion/dispersion test verify this expectation, 

as shown in Figure 4.9. The contaminant is allowed to diffuse from the upstream point of 

the first tributary for 30 days and the corresponding contaminant concentration is 

calculated at all points along the channel network. It is important to note that this test is 

performed with a diffusion coefficient of 10m2/s, which corresponds to an unrealistically 

high diffusion coefficient since dispersion is not a transport mechanism in stagnant water. 

It is, however, convenient to test the numerical functioning of the code rather than 

drawing any physical results. The results clearly demonstrate the symmetric behavior 

beyond the junction and follow an error function trend. It is therefore possible to 

conclude that the proposed model functions properly in the case of pure diffusion in a 

channel network setup.  
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Figure 4.8. Pure advective transport in a channel network 
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Figure 4.9. Pure diffusion/dispersion in a channel network 
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4.2. 

4.2.1. 

Two Dimensional Saturated Groundwater Transport Model 

 

Governing Equations 

The governing equation for contaminant transport in a two-dimensional 

vertically-averaged groundwater flow is obtained by vertically integrating the general 

three-dimensional conservation of mass equation in the groundwater. The equation is 

later modified to include the effect of line source/sink following the original idea 

proposed by Gunduz and Aral (2004a). For an anisotropic, non-homogeneous unconfined 

aquifer with principle permeability directions not matching the coordinate directions, the 

governing equation of contaminant transport in groundwater is given by: 
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where x and y are the spatial coordinates in the horizontal domain, t is the temporal 

coordinate, Cg is the vertically-averaged contaminant concentration, n is the porosity of 

the medium, q is the vertically-averaged Darcy flux, D is the hydrodynamic dispersion 

coefficient, hg is the vertically-averaged hydraulic head, zb is the elevation of the bottom 

impervious layer, I is the infiltration/exfiltration rate (i.e., positive for exfiltration and 

negative for infiltration), C*
I is the contaminant concentration associated with the 

filtrating water, λ is the radioactive decay constant for a radioactive contaminant, Kw is 

the biochemical decay constant for a biodegradable contaminant,  Sy is the specific yield 

of the unconfined aquifer, nw is the number of wells in the domain, Qw,k is the well flow 

rate of the kth well located at (xw,k, yw,k) in the domain (i.e., positive for a discharging well 

and negative for an injecting well), C*
w,k is the contaminant concentration associated with 

the kth well, δ is the Dirac Delta function, nr is the number of river channels in the 

domain, qL1,m is the lateral seepage flow between the groundwater and river flow domains 

in the mth river channel (positive for outflow from the aquifer or inflow to the river and 

negative for inflow to the aquifer or outflow from the river), C*
L1,m is the contaminant 

concentration associated the mth river channel, Cr,m is the contaminant concentration in 

the mth river channel, nsed is the porosity of the sediment layer, Dsed is the vertical 

dispersion coefficient in the sediment layer, mr is the thickness of the sediment layer, wr 

is the wetted perimeter of the mth river channel, gx,m and gy,m are the Cartesian coordinate 

components of the parametric equation defining the mth river channel in the domain, u is 

the dimensionless parameter of the parametric equation and Rd is the retardation 

coefficient given by: 
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K

R db
d

ρ
+= 1                                                  (4.27) 

 

where ρb is the bulk density of the porous medium and Kd is the portioning coefficient. It 

is important to note that the values of C*
I, C*

w,k and C*
L1,m change according to the 

direction of the volumetric flux driving the mass transport. Accordingly, when the 

volumetric flux is towards the aquifer, these values take the associated concentrations in 

the infiltrating water (i.e., CI), the well recharge (i.e., Cw,k) and the lateral seepage flow 

(i.e., Cr,m) where as they become the concentration in the groundwater (i.e., Cg) when the 

corresponding volumetric fluxes are away from the aquifer:  

 

* 0 (exfiltration)

0 (infiltration)
g

I
I

C when I
C

C when I

>
= 

<
                         (4.28) 
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,
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g w k

w k
w k w k

C when Q
C

C when Q

>=  <
                 (4.29) 

1,*
1,

, 1,

0 (outflow from aquifer)

0 (inflow to aquifer)
g L m

L m
r m L m

C when q
C

C when q

>=  <
          (4.30) 

 

Despite the vast number of alternative empirical formulations in open channels, 

the theory of dispersion is much better developed in groundwater systems. The developed 

equations are generally globally accepted and implemented in many modeling 

applications. The theory is based on the concept of a hydrodynamic dispersion coefficient 

that is defined as the sum of mechanical dispersion and molecular diffusion. Bear (1972) 

has formulated the hydrodynamic dispersion coefficient as: 
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m LD Dτ α= + v                                                   (4.31) 

 

where τ is the tortuosity of the medium, Dm is the molecular diffusion coefficient, αL is 

the longitudinal dispersivity and v is the average pore velocity defined by the ratio of 

Darcy velocity and porosity of the medium. When the relative importance of mechanical 

dispersion and molecular diffusion is studied, it is seen that the mechanical dispersion is 

almost always the major contributor of hydrodynamic dispersion coefficient under field 

conditions. In the last 30 years, Bear’s analysis has become the industry standard for the 

analysis of dispersion in groundwater systems, which describes the following three-

dimensional dispersion tensor: 

 

( ) i j
ij m ij T ij L T

v v
D D v

v
τδ α δ α α= + + −                                 (4.32) 

 

where αL and αT are the longitudinal and transverse dispersivities, respectively, and δij is 

the Kronecker delta. In a vertically-averaged two-dimensional setup, the hydrodynamic 

dispersion coefficient reduces to a second order tensor and is given as: 

 

( )

22

22

yx
xx L T m

yx
yy T L m

x y
xy yx L T

vvD D
v v

vvD
v v

v v
D D

v

α α

α α

α α

= + +

= + +

= = −

D

τ

τ                                         (4.33) 
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4.2.2. 

)

4.2.3. 

)

Initial Conditions 

The initial values of the contaminant concentration, Cg0, are specified as the initial 

conditions of the groundwater contaminant transport model: 

 

( ) (0, ,0 ,g gC x y C x y=                                            (4.34) 

 

which is generally taken to be zero, representing a contaminant release into an otherwise 

uncontaminated domain, or is obtained from: (i) field measurements, (ii) a steady state 

contaminant transport simulation; or, (iii) a previous unsteady model solution. 

 

Boundary Conditions 

Two different types of boundary conditions can be specified along different 

external boundaries of the groundwater domain. Type-1 or specified concentration 

boundary conditions are used to model boundaries with known contaminant 

concentration values. This is also known as a Dirichlet boundary condition and is given 

as: 

 

( ) (, , , ,g gDC x y t C x y t=                                           (4.35) 

 

where CgD is the known concentration. It is also possible to define a variable boundary 

condition, which becomes a zero dispersive flux for a volumetric outflow and a specified 

mass influx for a volumetric inflow: 
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n q D q n

n

4.2.4. 

 (4.36) 

 

where qv is the volumetric inflow rate and Cv is the contaminant concentration in the 

inflowing stream. 

 

Numerical Solution Scheme 

Although the form of the groundwater contaminant transport equation is very 

similar to the channel transport equation, the difficulties associated with the numerical 

solution are not as significant as the channel transport equation. This finding is mainly 

due to the fairly small advection velocities that govern the groundwater transport. The 

relative magnitudes of the advective and dispersive transport mechanisms are much 

closer to each other than their counterparts in channel flow. Hence, fixed grid finite 

element and finite difference models are still widely applied in groundwater transport 

modeling. Similar to its flow counterpart, the finite element method became a popular 

method due to the flexibility it offers in simulating aquifer domains with irregular 

boundaries as well as heterogeneous aquifer properties. In this regard, the Galerkin finite 

element method based on the method of weighted residuals is used in this study to solve 

the groundwater contaminant transport. The weak form of the problem is developed in 

Appendix K. Using the same discretization that its flow counterpart uses; the contaminant 

transport model also implements linear interpolating functions and quadrilateral elements. 

The resulting finite element matrix equation obtained by applying the Galerkin procedure 

is given as: 
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ˆ
ˆ d

dt
⋅ + ⋅ =g

g

C
S C M F                                               (4.37) 

 

where S, M and F stand for global stiffness matrix, global mass matrix and global load 

vector, respectively, and Ĉg is the approximate contaminant concentration vector. These 

global matrices and vectors are obtained by tiling their element counterparts according to 

the connectivity of elements within the solution domain. The explicit formulas of element 

matrices and vectors are derived in Appendix L. The element integrals are evaluated with 

the same numerical integration scheme used in the flow model. 

The ordinary differential in (4.37) is obtained as a result of finite element 

discretization and can be solved using a number of techniques including the one-step 

finite difference approximations. Since the concentration is a function of time, it is 

possible to define two positions, j and j+1, representing the known and unknown time 

lines, respectively. If one defines an intermediate point between the known and the 

unknown time line (i.e., j+α where 0≤α≤1.0), then the corresponding concentration could 

be calculated as a weighted average: 

 

( )1ˆ ˆ 1j jα α α+ += + −g gC C ˆ j
gC                                         (4.38) 

 

such that if the intermediate point is selected as the mid point between the two time lines 

(i.e., α=0.5), the concentration becomes an arithmetic average of the two concentrations 
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at two ends. Following the same procedure used in the flow model, one can obtain the 

final form as: 

  

( ) ( )
1

11 1ˆ ˆ1 1
j j

j jj j j j

t t
α α α α

+
++ +  

+ ⋅ = + − − − − ⋅  ∆ ∆  
g g

M MS C F F S




C

4.2.5. 

           (4.39) 

 

Since the transport equation is linear, solution does not require a non-linear solver as its 

flow counterpart does and the equation given above is solved by a suitable linear matrix 

solver. 

 

Model Testing 

Similar to its flow counterpart, there are no documented analytical solutions for 

the unsteady groundwater contaminant transport in two dimensions. Therefore, the 

proposed model is tested against the analytical solutions developed within a one 

dimensional framework. The analytical solution is very similar to the one showed in 

channel contaminant transport with slight modification with respect to the retardation 

coefficient. Following the works of Ogata and Banks (1961) and van Genuchten and 

Alves (1982), the one-dimensional mathematical model for groundwater contaminant 

transport is written as: 

 

2

2 0g g gx
d x

C C CqR D K
t n x x

∂ ∂ ∂
+ − +

∂ ∂ ∂ w gC =                                  (4.40) 
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in which advection, dispersion and decay are the three mechanisms of fate and transport. 

The initial and boundary conditions of the problem can also be given as: 
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∂

∞ = ≥
∂

t

*

*

                                (4.41) 

 

which defines the conditions for a continuous source of finite duration. The analytical 

solution of this problem for conservative species (Kw=0) is slightly modified from the 

solution of channel transport and is written as: 

 

( )
( ) ( )

( ) ( ) ( )

, 0

,

, , *

o gD o

g

o gD o gD

C C C A x t t t

C x t

C C C A x t C A x t t t t

 + − < ≤
= 
 + − − − >

        (4.42) 

 

where the function A(x,t) is now written as:: 

 

( ) ( ) ( ) ( )/ /1 1, exp
2 24 4

d x x d x

xx d x d

/R x q n t q n x R x q n t
A x t erfc erfc

DD R t D R t

  − + 
= +        





     (4.43) 

 

For non-conservative species (Kw ≠0), the solution is given as:  
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where the functions A(x,t) and B(x,t) are defined as: 
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            (4.46) 

 

The term Γ in function B(x,t) is given as: 

 

( )2

41
/
w x

x

K D
q n

Γ = +                                                   (4.47) 

 

To test the proposed model with the analytical solution given above, a two-

dimensional hypothetical rectangular aquifer is created so that steady uniform flow will 

prevail in the aquifer at all times. The 100m long aquifer is structured in such a way that 

the flow is essentially one-dimensional in the two dimensional domain between two fixed 

head boundaries creating a hydraulic gradient of 0.1m/100m. The unconfined aquifer 
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flow would then result in a constant Darcy velocity of 1.0E-5m/s when a uniform 

hydraulic conductivity value of 0.01m/s is used throughout the domain. The relative 

values of the aquifer conductivity and hydraulic gradient are deliberately selected to be 

on the high end to allow rapid response from the aquifer. In the following tests, a 

retardation coefficient of 1.2 and two dispersion coefficients of 1.0E-4m2/s and 1.0E-

5m2/s are used in the simulations. Moreover, a decay coefficient of 1.0E-6s-1 is also used 

to simulate the removal of contaminants from the aquifer. The simulations used a 

specified constant contaminant concentration of 1mg/L as the boundary condition of the 

transport module. On the opposite side of the domain, a zero concentration gradient 

boundary condition is implemented. The contaminant is allowed to advect, disperse 

and/or decay within the channel as a function of time. The results of numerical 

simulations and analytical solutions are compared in figures 4.10 through 4.13. 

The numerical solution demonstrates a perfect fit with the analytical solution for 

both moderate and low dispersion flows. Since high dispersion flows are always easier to 

simulate than low dispersion flows, it is not difficult to predict that dispersion values 

higher than the ones used herein will not create any problems. For pure advection flows, 

however, the spatial and temporal discretization used in these simulations must be further 

refined or a more sophisticated higher order numerical algorithm must be implemented to 

avoid numerical oscillations. Such conditions are not common and as problematic as in 

channel flow due to significantly lower advection velocities observed in groundwater 

flow. The simulated and computed results also demonstrate very good fit when 1.0E-6s-1 

of decay is added to the simulation. Therefore, the proposed model performs accurately 

when simulating contaminant transport in saturated groundwater flow domain. 
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Figure 4.10. Comparison of numerically simulated and analytically computed 
concentrations for Dx=1.0E-4 m2/s 
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Figure 4.11. Comparison of numerically simulated and analytically computed 
concentrations for Dx=1.0E-5 m2/s 
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Figure 4.12. Comparison of numerically simulated and analytically computed 
concentrations for Dx=1.0E-4 m2/s and Kw=1.0E-6 s-1 
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Figure 4.13. Comparison of numerically simulated and analytically computed 
concentrations for Dx=1.0E-5 m2/s and Kw=1.0E-6 s-1 
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4.3. 

4.3.1. 

Coupled Surface-Subsurface Contaminant Transport Model 

Even though there are many discrete contaminant transport models that describe 

the fate and transport of contaminant in rivers and aquifers, no coupled analysis has ever 

been attempted before to the best of the author’s knowledge. In this regard, this study is 

believed to be one of the earliest efforts to couple the surface and subsurface contaminant 

transport process. 

The proposed coupled surface-subsurface transport model follows the hybrid 

approach discussed in Chapter 3. The two systems are coupled at the river bed using both 

the advective and the dispersive transport mechanisms. These mechanisms provide 

possible pathways for the transfer of contaminants between the two domains. This is one 

of the crucial points of the proposed contaminant transport model since one or both of 

these mechanisms might be working to transport the contaminant. In previous studies of 

contaminant transport modeling in discrete systems, only the advective transport 

mechanism was considered, where the impact of other domains was included as 

source/sink terms possibly due to its relatively larger contribution compared to dispersive 

transport. Although this approach is reasonable when the interactions with other domains 

are only vaguely attempted and the focus is on one particular domain, it might yield to an 

incorrect treatment of the simultaneous interactions if the dispersive component is 

neglected from the analysis. 

 

Coupling at the River Bed 

In this analysis, the total mass flux along the river bed interface is considered to 

be a function of (i) the groundwater hydraulic head; (ii) river water surface elevation or 
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stage; (iii) contaminant concentration in the river; and, (iv) contaminant concentration in 

the groundwater: 

 

( , , ,r g r gTotal mass flux f h h C C= )                                (4.48) 

 

While the first two of these parameters determine the magnitude and the direction of the 

advective flux, the remaining two are responsible for the magnitude and the direction of 

dispersive flux. The vector sum of the advective and dispersive fluxes would then give 

the total mass flux between the two domains. It is important to note that the advective 

flux is a direct function of the water flow between the two domains and is always in the 

direction of the lower head. As the values of river water surface elevation and the 

groundwater head changes dynamically, the direction of the volumetric flux and the 

advective transport changes. On the other hand, the dispersive flux is a function of the 

concentration gradient and is always towards the domain with lower contaminant 

concentration based on the Fickian description of dispersion. The direction of the 

dispersive flux also changes when the contaminant concentration in the channel or in the 

aquifer changes. This situation represents a highly variable transport phenomenon and is 

a strong function of the dynamically varying flow conditions. Based on this discussion, 

one of the following alternative conditions would describe the interactions between the 

river and the aquifer at all times: 
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•  r g rh h and C C> > g

g

g

g

g

Both the advective and the dispersive fluxes are towards the aquifer since the 

river stage is larger than the groundwater head and the concentration in river is 

larger than the concentration in groundwater. 

•  r g rh h and C C> <

The advective flux is towards the aquifer since the river stage is larger than the 

groundwater head. The dispersive flux, on the other hand, is towards the river 

since the groundwater domain has a higher contaminant concentration than river. 

•  r g rh h and C C< >

The advective flux is towards the river since the groundwater head is larger than 

the river stage. The dispersive flux, on the other hand, is towards the aquifer since 

the river has a higher contaminant concentration than the aquifer. 

•  r g rh h and C C< <

Both the advective and the dispersive fluxes are towards the river since the 

groundwater head is larger than the river stage and the concentration in 

groundwater is larger than the concentration in river. 

•  r g rh h and C C= >

The advective flux does not exist since both heads are equal. The dispersive flux 

is the only available transport mechanism and it is towards the aquifer since the 

concentration in river is larger than the concentration in aquifer. 
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•  r g rh h and C C= < g

g

g

g

The advective flux does not exist since both heads are equal. The dispersive flux 

is the only available transport mechanism and it is towards the river since the 

concentration in aquifer is larger than the concentration in river. 

•  r g rh h and C C> =

The dispersive flux does not exist since both domains have the same contaminant 

concentrations. The advective flux is the only available transport mechanism and 

it is towards the aquifer since the river stage is larger than the groundwater head. 

•  r g rh h and C C< =

The dispersive flux does not exist since both domains have the same contaminant 

concentrations. The advective flux is the only available transport mechanism and 

it is towards the river since the groundwater head is larger than the river stage. 

•  r g rh h and C C= =

Both the advective and the dispersive flux do not exist and there is no mass 

transfer between the two domains. 

 

In any one of the cases discussed above, the total mass flux is the summation of the 

relative contributions from advective and dispersive components. In general, the 

advective transport mechanism is much larger than the dispersive transport mechanism. 

Therefore, the direction of the total mass flux typically follows that of the volumetric 

flux. Only under the condition that the river water surface elevation is in equilibrium with 

the groundwater head, the dispersive flux dominates the transport phenomenon. 
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It is important to note that the coupling mechanism for the contaminant transport 

model is similar to that proposed in the flow model. It is also based on the assumption 

that the vertical movement of contaminants at the river bed is at a steady state. If it is not 

possible to assume that an equilibrium condition is reached at the river bed, this analysis 

would yield erroneous results. Under such circumstances, contaminant transport within 

the channel bed must be analyzed with a one-dimensional unsteady vertical transport 

model at the river bed. However, the equilibrium assumption is valid for most large scale 

practical analysis of surface-subsurface interactions. 

The coupling of the contaminant transport model is provided with a modified 

form of the new simultaneous solution algorithm discussed in Chapter 3. Although the 

algorithm could have been directly used as discussed in flow coupling, the numerical 

solution of the advective transport mechanism enforced an explicit solution algorithm 

which in turn violated the full simultaneous coupling of the surface and subsurface flow 

processes. When an equally accurate implicit algorithm is devised to solve the advection 

mechanism of channel transport model, one can apply the fully simultaneous coupling of 

Chapter 3. Until that time, a semi-simultaneous algorithm is implemented in this study. In 

the proposed semi-simultaneous algorithm, the advection mechanism of channel 

contaminant transport model is solved as a separate event prior to the other processes. In 

a sense, water packet is first advected to its new position in channel. Then, the dispersion, 

source/sink and decay mechanisms of the channel transport model are solved in a fully 

simultaneous manner with all mechanisms of the groundwater transport model. 
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4.3.2. Model Testing 

The proposed coupled contaminant transport model is applied to a hypothetical 

river/aquifer system to demonstrate its performance and the proposed semi-simultaneous 

solution algorithm. The numerical mesh of the problem is shown in Figure 4.14. In this 

figure, two densely meshed regions are identified for detailed analysis. In this 

application, the stream is a 20m wide 5km long uniform rectangular channel with a 

constant slope of 0.0001m/m and a Manning’s roughness coefficient of 0.020. At steady 

flow conditions, the channel carries 100m3/s discharge at the uniform flow depth of 

4.12m. The thickness of the sediments at the bottom of the channel is 0.3m and the 

hydraulic conductivity of the deposits is 7.0E-6m/s. The river lies at the center of a 5km 

long and 0.8km wide unconfined aquifer which is formed by clay and gravel layers. The 

clay layer is located at the center of the aquifer (600≤x≤1400 and 2400≤y≤4700) and has 

a hydraulic conductivity value of 5.5E-8m/s. Two gravel layers are located to the north 

(600≤x≤1400 and 1000≤y≤2400) and south (600≤x≤1400 and 4700≤y≤6000) of the clay 

layer and have a hydraulic conductivity value of 1.0E-3m/s. 

The hydraulics of the aquifer is arranged so that it would be a discharging aquifer 

at the upstream portions of the river and a recharging aquifer at the downstream portions 

of the river as shown in Figure 4.15. With this particular setup, it is possible to analyze 

the potential of the river to serve as a fast transport medium for contaminants in the 

aquifer. Accordingly, any contaminant plume in the vicinity of the upstream reaches of 

the river will first be transported to the river and will then be quickly conveyed to the 

lower portions of the aquifer where the reversed seepage flow direction will reintroduce 

the contaminants to the aquifer.  
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Figure 4.14. Physical setup of hypothetical domain 
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In this setup, the hydraulics of the river are of little concern and is driven by a 

steady 100m3/s discharge at the upstream boundary throughout the simulation period. At 

the downstream boundary, a normal depth boundary condition is implemented. The 

hydraulics of the aquifer shown in Figure 4.15 is governed by fixed head boundary 

conditions on the left and right boundaries and no flux conditions at the top and bottom 

boundaries. Hence, the aquifer feeds the river in the upper 2500m, whereas the river 

feeds the aquifer in the lower 2500m. Therefore, any contaminant introduced from the 

upper region will first reach the river, transported with river flow and be later 

reintroduced to the aquifer in the lower region.  

 

Flux vectors

1E-011 3E-005

 

Figure 4.15. Hydraulic head distribution and flux pattern within the domain  
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In this study, a contaminated area covering a 20m by 20m area is located at the 

upper densely meshed zone centered at (900,5400) as shown in Figure 4.14. This zone is 

called the upper analysis zone in the following discussion and covers a 100m X 100m are 

on the left bank of the river. It is assumed that the contaminated area located at the core 

of the zone continuously releases a conservative contaminant of 1.0E+5mg/L throughout 

the simulation. Due to the dominant aquifer flow towards the river, the contaminant 

plume is then transported towards the river mainly by advective transport. Along the river 

bed, the contaminant passes through the bed sediments and pollutes the otherwise pristine 

river water. From this point of contamination, the contaminant is transported further 

downstream by river flow and quickly affects the lower portions of the aquifer. The 

analysis is focused on the lower portions of the aquifer on the lower densely meshed area 

located 3.5km downstream from the original contamination area. This region covers a 

300m X 300m are and is centered at position (1000,1950) as shown in Figure 4.14. It is 

also called the lower analysis zone in the following discussion. The migration of 

contaminant in the upper and lower analysis zones are analyzed as a function of time.  

Before reviewing the results, it is important to stress that fact that the physical 

setup shown in Figure 4.14 and discussed above is deliberately chosen to demonstrate the 

impact of a river passing through a contaminated aquifer. In general, it is well known that 

the travel time of a contaminant in an aquifer could easily be on the order of tens of years 

to cover a distance of a couple of kilometers under favorable geological settings. The 

purpose of this application, however, is to show that this commonly accepted belief might 

be totally wrong with the presence of a river in the system and suitable hydrological 

conditions. 
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Following the introduction of the contaminant, it is transported towards the river 

mainly due to the advective transport governed by the general flow field in the upstream 

portions of the aquifer where seepage velocities are observed to be in the order of 3.0E-

5m/s due to high conductivity value of gravel and large hydraulic head gradient between 

the boundaries of the aquifer and the river. The contaminant then starts to seep into the 

river waters where it is heavily diluted and transported downstream. The analysis reveals 

that the contaminant concentration underneath the river reaches a value of 2.0E+4mg/L in 

less than 25 days. After the contaminant reaches the river, it only takes about 0.8hrs to 

reach the point of analysis in the downstream reaches of the river due to the 1.2m/s 

average flow velocity in the river. Therefore, the river acts as a conduit for rapid transport 

of contaminants. The hydraulic head conditions in the lower portions of the aquifer favors 

seepage inflow to the aquifer as shown in Figure 4.14. This hydrologic pattern re-

introduces the contaminants to the otherwise uncontaminated portions of the aquifer. It 

must be mentioned that, without the river, the contamination in the aquifer cannot reach 

the lower analysis zone which is located about 3.5km downstream. Furthermore, the clay 

layer in between the two gravel layers acts as an additional barrier for the contamination 

to reach the lower analysis zone even in long time periods.  

First, the migration of the contaminant towards the river is analyzed as shown in 

Figure 4.16. The spatial distribution of time-dependent change in contaminant 

concentration in the upper analysis zone reveals the fact that contaminant quickly reaches 

the river due to the large advective and dispersive transport. The advection velocity in 

this zone is in the order of 7.0E-5m/s, which allows the contaminant to move about 

6m/day. Moreover, the dispersivity of the medium is taken to be 50m, which also 
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significantly contributes to the overall rapid movement of the contaminant. As soon as 

the contaminant reaches the river, it starts to cross the river bed via advective and 

dispersive transport and mix into the river waters. At this point, the advective transport is 

a function of the lateral seepage velocity where as the dispersive flux is based on the 

concentration gradient between the two domains. It is important to note that the dilution 

effect of the river is generally significant since it is a function of river discharge and total 

seepage from the aquifer. The contaminant concentration distribution in the river is 

shown in Figure 4.17 as a function of time and space. From this figure, it is seen that the 

river concentration is effectively constant from the point where the contamination zone is 

located as there is no reaction involved. The amount of dispersion in the channel allows is 

to migrate backwards towards the upstream boundary of the channel where a zero 

concentration is specified.  

Due to the fast travel times in the river channel, the contaminant is quickly 

transported downstream where it finds an opportunity to seep back into the aquifer 

according to the hydraulic head distribution in the region. However, the large dilution in 

the river reduced the concentration of the contaminant and is at least 5 orders of 

magnitude smaller when reintroduced to the aquifer. The spatial distribution of time-

dependent change in contaminant concentration in the lower analysis zone is shown in 

Figure 4.18. Since the river acts as a line source for the otherwise pristine lower zone of 

the aquifer, the contaminant migrates almost perpendicular to the governing flux 

direction. 
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Figure 4.16. Spatial distribution of time-dependent change in contaminant 
concentration (mg/L) in upper analysis zone  
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Figure 4.17. Time-dependent change in contaminant concentration in river 
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Figure 4.18. Spatial distribution of time-dependent change in contaminant 
concentration (mg/L) in lower analysis zone  
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CHAPTER 5 

 

5. 

5.1. 

MODEL APPLICATION 

 

 

In this chapter, the coupled flow and contaminant transport model developed 

earlier is applied to a large scale watershed to demonstrate the versatility and 

applicability of the proposed modeling system in a field application using site specific 

field data. The selected watershed is located in southern Georgia and is a part of the 

greater Altamaha river basin. The flow model is calibrated and verified with field data 

from several gaging stations operated by the U.S. Geological Survey. The transport 

model is then applied with this flow solution to test the consequences of various scenarios 

based on different contaminant loading conditions. These applications demonstrate the 

potential use of the model developed in this study in understanding and evaluating the 

environmental impacts of critical contaminant loading conditions in this watershed which 

is a relatively underdeveloped watershed otherwise.  

 

Data Requirements of the Proposed Model 

The proposed model requires significant amounts of data mainly due to the 

distributed nature of the hydrologic and hydraulic processes modeled as well as the 
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physics-based representation of the fundamental flow and contaminant transport laws 

defining these processes. For the successful application of the proposed model, these data 

requirements must be satisfied accurately and realistically. The model data are stored in 

several input files that are organized according to the flow pathway and characteristics. 

All files are standard text files with special formatting applied for easy preparation and 

retrieval of the data. A list of the required data files for the flow and transport model are 

given in Table 5.1. 

Table 5.1. Data files for the Proposed Model 

Component Module Data file 

Main Common module time_data.txt 
general_data.txt 

Channel flow 
module 

RIVflow_parameters.txt 
RIVflow_xs_data.txt 
RIVflow_channel_data.txt 
RIVflow_junction_data.txt 
RIVflow_initial_cond.txt 
Overland_flow.txt 
Boundary condition data files* 

Flow Model 

Groundwater flow 
module 

GWflow_parameter.txt 
GWflow_nodes.txt 
GWflow_elements.txt 
GWflow_infilt.txt 
GWflow_lines.txt 
GWflow_wells.txt 
GWflow_bc1.txt 
GWflow_bc2.txt 
GWflow_bc3.txt 

Channel transport 
module 

RIVtrans_parameters.txt 
RIVtrans_channel_data.txt 
RIVtrans_initial_cond.txt 
Overland_conc.txt 
Boundary condition data files* 

Transport Model 
Groundwater transport 

module 

GWtrans_parameter.txt 
GWtrans_nodes.txt 
GWtrans_elements.txt 
GWtrans_infilt.txt 
GWtrans_lines.txt 
GWtrans_wells.txt 
GWtrans_bc1.txt 
GWtrans_bc2.txt 

* The names of these files are application specific and are provided in channel data file. 
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The common data files (i.e., general_data.txt and time_data.txt) are used by both 

flow and transport models. The time parameters file specify the temporal simulation data 

including the starting and ending date and time as well as maximum, minimum and 

standard time steps to be used in variable time stepping algorithm. The minimum and 

maximum iteration boundaries used to alter the time step are also specified in the time 

parameters file. The general data file specifies the use of the model (i.e., flow simulation 

or flow and transport simulation) and the convergence criteria for transport model. 

The flow parameters in the channel and groundwater flow domains are specified 

in RIVflow_parameters.txt and GWflow_parameters.txt, respectively. These files include 

the total number of flow related parameters such as the total number of nodes, elements, 

boundary conditions, lines sources and wells in the groundwater flow domain as well as 

the total number of cross-sections, channels, junctions, data lines, overland flow 

contributions and boundary conditions in the channel flow domain. These files also 

include the tolerance values for the associated non-linear solvers. 

The cross-section data file RIVflow_xs_data.txt contains the major input 

information for the river flow model. This file is assembled to contain elevation vs. top 

width information at each user-specified cross-section along the channel network. The 

top width information is further classified as main channel, left and right floodplain and 

inactive storage widths. The file also includes elevation dependent Manning’s roughness 

coefficients as well as the straight and meandering distances of each cross-section to the 

starting position of each channel within the system. 

The channel data file RIVflow_channel_data.txt includes one line of information 

specific to each channel within the network. For single channel systems, this file contains 
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a single line of data. The data file contains the name, first and last cross-section number 

and order of the channel. It also specifies the types of boundary conditions at both ends of 

the particular channel as well as the names of the input files associated with these 

boundary condition types. The junction data file RIVflow_junction_data.txt contains one 

line of information for each junction within the channel network. This file is not used for 

single channel systems. For all networks, this file specifies the total number of inflowing 

channels to the particular junction and their channel identification numbers. In addition, 

the file also contains the identification number of the outflowing channel from the 

particular junction. 

The initial conditions along channel are specified in the RIVflow_initial_cond.txt 

file and contain the initial depth and discharge values observed at each cross-section of 

the system. These values are used to initiate the simulation and therefore are extremely 

important for the stability and accuracy of model solutions. 

If a channel has an external boundary condition at any end, a boundary condition 

data file is specified. The names of these files are supplied in the channel data file. It is 

important to note that only a single channel system would have two boundary conditions 

at the upstream and downstream ends of the channel. For all networks, a minimum of 

three boundary conditions are specified both at the upstream nodes of first order channels 

and the downstream node of the most downstream channel. The files would include the 

associated data type such as a discharge time series or stage time series or a rating curve 

as specified the channel data file. 

The model also requires a data file if overland flow is present in the system. The 

small creeks and tributaries could be modeled as overland flow if the reach length that 
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this flow discharges is selected to be small compared to the regular length of a reach. 

When such a condition is modeled, then the overland flow input file overland_flow.txt 

must be prepared to include the time-dependent discharge value and the reach number it 

discharges to. 

The data associated with each node in the two dimensional groundwater flow 

domain is specified in the GWflow_nodes.txt file. This file contains the x- and y- position 

of the node, the initial hydraulic head elevation prior at starting time of the simulation 

and the top elevation of the bottom impervious layer. Similarly, the data associated with 

each quadrilateral element of the two dimensional groundwater flow domain is specified 

in the GWflow_elements.txt file. This file contains the nodal connectivity of the element 

as well as the specified yield, hydraulic conductivity and angle of inclination between the 

global and the principle coordinate systems. The infiltration rate acting on each element 

of the domain is specified in the GWflow_infilt.txt file as a function of time. 

The river/aquifer interface data is provided in the GWflow_lines.txt file. This file 

includes the connectivity of the nodes in river and groundwater flow domains. It also 

contains the river bottom sediment hydraulic conductivity and thickness information 

together with the initial values of average river stage in the corresponding reaches of the 

channel network. The data associated with any discharge or recharge well in the aquifer 

is specified in the GWflow_wells.txt file. This file contains the node value of the well as 

well as the time-dependent flow rate value of the well. 

The three types of boundary conditions of the groundwater flow domain are 

specified in the files GWflow_bc1.txt, GWflow_bc2.txt and GWflow_bc3.txt. In the first 

type boundary condition file, the nodal value and the associated time-dependent specified 
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hydraulic head are provided in the data file. In the second type boundary condition file, 

the two nodes of the boundary side on which the condition applies are given together 

with the time-dependent specified flux value. Finally, in the third type boundary 

condition, the two nodes of the boundary side on which the head-dependent boundary 

condition applies are given with the hydraulic conductivity of the interface as well as the 

thickness, wetted perimeter, bottom elevation and time-dependent external head value.  

The data files associated with the transport models are very similar to their flow 

counter parts. In the RIVtrans_parameters.txt and GWtrans_parameters.txt files, the 

same discretization related parameters are repeated in addition to some global constants 

such as the biochemical and radioactive decay coefficients in channel and groundwater 

flow domains. In addition, the groundwater parameters file also includes the molecular 

diffusion coefficient. 

The RIVtrans_channel_data.txt and RIVtrans_initial_cond.txt files contain 

channel specific connectivity data as well as the types of boundary conditions at both 

ends of the particular channel with the names of the input files associated with these 

boundary condition types and the initial contaminant concentration values at each cross-

section of the channel network. 

The model also requires a data file if any overland inflow is present in the system. 

The small creeks and tributaries carrying contaminants could be modeled as overland 

flow if the reach length that this flow discharges is selected to be small compared to the 

regular length of a reach. When such a condition is modeled, then the contaminant 

concentration in the overland flow is input in the file overland_conc.txt. In addition to the 

time-dependent contaminant concentration value, the file also contains the reach number 
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it discharges. It is important to note that this file is only prepared for overland inflow to 

the channel. For overland outflow from the channel, the concentration is fixed and is 

equal to the river concentration and hence does not require an input file. 

The GWtrans_nodes.txt data file contains the initial contaminant concentration 

values at all nodes of the groundwater domain. The GWtrans_elements.txt data file 

includes the longitudinal and transverse dispersivity values, the density and porosity of 

the soil matrix as well as the portioning coefficient within the element. The contaminant 

concentration in the infiltration water is specified in the GWtrans_infilt.txt file for each 

element of the domain as a function of time. 

At the river/aquifer interface, the vertical dispersivity and the porosity of the river 

sediments are provided in the GWtrans_lines.txt file. It also contains the initial values of 

average contaminant concentration in river at the corresponding reaches of the channel 

network. The data associated with any discharge or recharge well in the aquifer is 

specified in the GWtrans_wells.txt file. This file contains the node value of the well as 

well as the time-dependent contaminant concentration value of the recharging well. 

The two types of boundary conditions of the groundwater transport are specified 

in the files GWtrans_bc1.txt and GWtrans_bc2.txt. In the first type boundary condition 

file, the nodal value and the associated time-dependent specified concentration are 

provided in the data file. In the second type boundary condition file, the two nodes of the 

boundary side, on which the condition applies, are given together with the time-

dependent specified mass flux value. 
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5.2. 

5.3. 

Applicability of the Model 

The applicability of a model is an important criterion to be ensured before 

performing any simulations in a watershed. The proposed model has several assumptions 

and limitations that must be considered carefully for each particular application. The 

most important of these assumptions is the vertically-averaged nature of the coupled 

model. Therefore, the proposed model is not applicable when vertical variations in 

surface and subsurface flow and contaminant transport domains become significant such 

as in the immediate vicinity of significant water recharge/withdrawal from the aquifer or 

when the river channel is deep enough to allow vertically stratified flow patterns. 

Moreover, the coupling between these two pathways is provided by the lateral seepage, 

which is modeled as a head-dependent line source term. It is, however, well-known that 

the river channel is essentially of finite width and this width could sometimes become 

significant with respect to the overall modeling domain width. In this regard, the ratio of 

average river width to watershed width must be carefully assessed for each application. 

The user must be aware that the proposed model results might deviate from reality when 

a wide river channel in a narrow floodplain aquifer is modeled. Under such conditions, 

the line source assumption is violated and the river channel must be modeled as an area 

source, which cannot be handled with the current model structure. 

 

General Description of the Lower Altamaha Watershed and Project Area 

The greater Altamaha river basin is the largest watershed in the State of Georgia 

draining about 25% of the state’s area. It is also the third largest basin draining to the 

Atlantic Ocean. It is formed by the confluence of the Ocmulgee, Oconee and Ohoopee 
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rivers (Figure 5.1). From the confluence point of Ocmulgee and Oconee rivers down to 

the Atlantic Ocean, the river system is known as the Altamaha river. It is only this most 

downstream part of this large basin, which is referred as the Lower Altamaha watershed. 

This particular application of the coupled flow and transport model focuses on this lower 

section of the entire Altamaha basin, including portions of the Altamaha and Ohoopee 

rivers as shown in Figure 5.1. 

The lower Altamaha watershed has a drainage area of about 3900 square 

kilometers compared to the total 35200 square kilometers of the entire Altamaha basin. 

The project area, on the other hand, covers an area of about 2500 square kilometers, 

which roughly corresponds to 64% of the lower Altamaha watershed. Looking at the 

overall hypsographic features of the entire Altamaha basin, it can be seen that, with an 

average width of 26 kilometers, the Lower Altamaha basin is like an 'outflow pipe' or a 

'conduit' discharging the combined flows of the Ocmulgee and Oconee rivers with some 

contribution from its own drainage area (Figure 5.1). The basin has an average elevation 

of 50m and an average annual precipitation of approximately 115cm. At the U.S. 

Geological Survey gaging station located at Doctortown, GA, the long term mean annual 

flow of the Altamaha river is measured to be about 400 cubic meters per second. 
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Figure 5.1. Altamaha river drainage area and project area 
 

The lower Altamaha watershed has characteristics typical of lowlands with gentle 

slopes. The maximum elevation difference between the lowest and highest points of the 

watershed is approximately 90m, representing a very mild topography. The main features 

of the drainage network show a gently meandering pattern in this low land area with a 

relatively mild slope. This pattern is reflected in Altamaha river with an average slope of 

0.0002 m/m below the confluence point of Ocmulgee and Oconee to Doctortown, GA.  

Wetlands are commonly observed in the low gradient areas, especially along the 

river banks and in the coastal region. The contour map of the Lower Altamaha watershed 

illustrates three distinct topographic zones: (i) the (relatively) highlands; (ii) the transition 
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zone, and (iii) the lowlands or the coastal plains. The topography of the region also shows 

the gradual increase in floodplain width as the river flows towards the lowland zone. 

Although the Altamaha river is the main drainage feature of the lower Altamaha 

watershed, the drainage pattern becomes extremely complex particularly in the coastal 

plains downstream of Jesup, GA. In this particular section, Altamaha river does not have 

a significant drainage area but rather resembles a 'conduit' composed of several inter-

connected channels to convey the combined flows of Ocmulgee, Oconee and Ohoopee. 

The project area covers a portion of the lower Altamaha watershed drainage area 

bounded by the U.S. Geological Survey stream gaging stations located at Baxley, 

Reidsville and Doctortown (Figure 5.2). The drainage pattern in this region is governed 

by Altamaha river which is later confluenced by Ohoopee river about midway between 

Baxley and Jesup. The sections of the Altamaha-Ohoopee river system within this area 

have a total reach length of about 90 km within a sinuous channel of about 115 km. 

To implement the proposed flow and transport model, this area is discretized by 

6,828 quadrilateral finite elements giving a total of 7,031 nodal points. The average 

element side length along the river sections varies from 150 m to 400 m and about 1000 

m elsewhere. On the other hand, the river network that is formed by three channels (i.e., 

the upstream channel of Altamaha river before the Ohoopee confluence, the Ohoopee 

river channel and the downstream channel of Altamaha after the Ohoopee confluence) 

and a single junction is discretized by 391 river reaches giving a total of 394 nodal points. 

The discretized modeling domain for the proposed model is shown in Figure 5.2. The 

channel profiles are given in Figure 5.3. As can be seen from the figure, the Ohoopee 

river channel has the biggest bottom slope compared to the mildly sloping Altamaha. 
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Ohoopee River at 
Reidsville, GA 
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Altamaha River at 
Baxley, GA 
USGS 02225000  

Altamaha River at 
Doctortown, GA 
USGS 02226000  

 

Figure 5.2. Discretized map of the project area in lower Altamaha river basin 
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Figure 5.3. River channel profiles 
 

 

The channel network is discretized by 394 cross-sections. The required data at 

these nodes are obtained by using: (i) the measurements taken at three gaging stations by 

USGS; (ii) the profiles of highway bridges along the river channels; and, (iii) the 

topographic maps of the area. For all intermediate nodes where no specific feature is 

present to aid the collect the cross-section data, linear interpolation is performed between 

the nearest upstream and downstream cross-section with specific data. The top widths are 

then verified with map readings for consistency. For this particular application, each 

cross-section is described with 10 sets of elevation-top width pairs starting with thalweg 

elevation and bottom width of the river. 
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The Manning’s roughness coefficients are generally considered to be the 

calibration parameter for channel flow models. Following a series of test runs on the 

Altamaha river system, a range of Manning’s roughness coefficients are used in the 

simulations. These values varied between 0.020 to 0.030 within the main channel and 

0.030 to 0.070 along the floodplain. Considering the accuracy of the timing of the flood 

peaks, these values are considered to be very close to the actual roughness values in the 

river. Unless actual field measurements are obtained, these values could be used as 

general figures in flood routing simulations in Altamaha and Ohoopee rivers. 

Three boundary conditions are specified for the channel flow model. The 

upstream nodes of the upper channel of Altamaha as well as the Ohoopee river is 

modeled with a discharge time-series that are obtained from the Baxley and Reidsville 

river gaging stations operated by the U.S. Geological Survey as shown in Figure 5.2. At 

the most downstream point of the network, a depth-discharge rating curve is used as the 

boundary condition. This rating curve is obtained from the Doctortown gaging station 

(Figure 5.2). The rating curve is generated by the U.S. Geological Survey staff for use in 

their modeling studies and is given in Figure 5.4. 

The initial discharge and stage conditions in the river network are determined by 

running the model for sufficiently long periods of time with time invariant constant 

boundary conditions. This method of obtaining the initial conditions is well-defined and 

documented in the literature (Fread, 1985). As river hydraulics are extremely dynamic 

compared to groundwater hydraulics, the initial conditions smooth out very rapidly after 

the real-time boundary conditions imposed on the system. Therefore, any possible errors 

in the initial conditions quickly fade away and the model returns to accurate real-time 
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operation. On the other hand, the initial conditions are very crucial on the stability of the 

model in the early phases of the simulation such that they should still be as accurate as 

possible to provide a stable start-up. 

An unconfined surfacial aquifer overlying the Upper Floridian aquifer is 

considered to be present in the entire project area, with an average thickness of about 40 

m. The groundwater flow domain is assumed to follow the surface drainage boundary 

line. Hence, the watershed boundary is also believed to be to a flux boundary for the 

groundwater flow domain. While this assumption may not be true for deep aquifers, it is 

generally accepted that surfacial aquifers demonstrate a replica of the surface topography. 

With this consideration, the groundwater flow domain is discretized by 6,828 

quadrilateral finite elements and 7,031 nodal points as shown in Figure 5.2.  
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Figure 5.4. USGS rating curve at Doctortown gaging station 
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The soil types in the aquifer were determined using the State Soils Geographic 

Database (STATSGO) of Georgia developed by the U.S. Department of Agriculture 

(STATSGO, 1998). Accordingly, the surfacial aquifer consists primarily of 

unconsolidated, well sorted sand and silt soils. The spatially distributed soil map of the 

project area is presented in Figure 5.5. The saturated hydraulic conductivities of these 

soils are assumed to follow the statistically averaged values provided by Carsel and 

Parrish (1988). The conductivity values used in the proposed model were selected to be 

1.25E-6m/s for silt loam soils, 4.05E-5m/s for loamy sand soils and 1.23E-5 m/s for 

sandy loam soils. In addition, a 0.3m thickness of river bottom sediments is estimated to 

be uniformly present along the channel system with a hydraulic conductivity of 6.94E-

7m/s, representing silt material deposited in channel bottoms. 

The Altamaha river system is modeled as a head-dependent line source that 

creates lateral in/out flow to/from the groundwater flow domain according to the relative 

values of the river stage and groundwater head. The natural and artificial lakes and ponds 

in the basin are modeled as constant-head boundary conditions. Moreover, the external 

watershed boundary is simulated as a no-flux boundary condition except for the 

immediate vicinity of the Altamaha River near Doctortown gage that is mostly 

characterized as marshland and modeled as a constant head boundary condition. 

Although there are several water extractions within the watershed, including the paper 

and pulp mill near Doctortown, these are not done from the surfacial aquifer that the 

proposed model focuses on. Therefore, such extractions are not considered in this study. 
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The initial conditions in the aquifer is simulated by running the model for 

extended periods of time with time invariant boundary conditions as well as steady state 

conditions in the river system since there exists no hydraulic head measurements in the 

surface aquifer that could serve as initial values of simulations. Considering the strong 

dynamic link of the aquifer with the surface water features (i.e., primarily the Altamaha 

river system), this technique of obtaining initial hydraulic head distribution is deemed 

sufficient.  

 

 
Figure 5.5. Soil type distribution in simulation area 
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The overland flow contributions to the model are obtained from the simulation 

results of an empirical model i.e., the Hydrologic Simulation Program-Fortran (HSPF). 

The HSPF model is a comprehensive, continuous, lumped parameter model developed 

for U.S. EPA to simulate watershed hydrology and water quality for both conventional 

and toxic organic pollutants. The HSPF model uses information such as the time history 

of rainfall, temperature and solar radiation; land surface characteristics such as land-use 

patterns; and land management practices to simulate the processes that occur in a 

watershed. The result of this simulation is a time history of the quantity and quality of 

runoff from an urban or agricultural watershed. Flow rate, sediment load, and nutrient 

and pesticide concentrations are predicted. HSPF includes an internal database 

management system to process the large amounts of simulation input and output. 

The HSPF is used to simulate the surface and subsurface hydrology of the project 

area. The results from the overland flow and unsaturated zone flow pathways are then 

used as input data to the simulations of the proposed model. The overland flow 

generation scheme of HSPF is used to obtain the flow of several small creeks and 

tributaries discharging to Altamaha and Ohoopee rivers (Valenzuela and Aral, 2004). The 

discharge hydrographs of these overland flow contributions are supplied to the model as 

approximate figures and are not expected to represent the real overland flow discharges. 

However, the simulation results are shown to get better even with these approximate 

results and is, therefore, included in the analysis. It is believed that once an accurate and 

physically-based overland flow algorithm is derived for large scale applications, the 

results of the analysis would probably improve to a greater extent. For this particular 

study, a total of 28 point loads representing the main tributaries of Altamaha and 
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Ohoopee rivers are used in model simulations. The locations of these inputs of overland 

flow associated with small tributaries and creeks are shown in Figure 5.6. The HSPF-

simulated discharge hydrographs for the three major tributary are presented in Figure 5.7. 

The simulations are performed over two different time periods. The first phase 

covers a three-year period starting with 01/01/1988 through 31/12/1990. The second 

phase, on the other hand, covers a four-year period starting with 01/01/1991 through 

12/31/1994. While the first phase is used as the calibration period, the second is used as a 

verification period. 

 

 

Figure 5.6. Overland flow input points to the channel network 
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Figure 5.7. Discharge hydrographs of three major tributaries of the Altamaha-Ohoopee 
system simulated by HSPF model 

 

 

In all calibration and verification simulations, a maximum time step of 86400secs 

is used to run the coupled flow model. The minimum time step below which the model is 

coded to stop simulations is selected to be 1secs for this particular application. All 

simulations initially started with a time step value of 86400secs, which is later modified 

dynamically within the simulation according to the convergence requirements of the 

channel flow model as well the number of iterations performed to converge. Commonly 

the model experiences a wide range of time steps during a simulation depending on the 

characteristics of the boundary conditions and the flood wave in the channel. The 

groundwater flow model generally did not impose any limits on the time step due to the 
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relatively slow response times in aquifers. In this regard, the coupled flow model is 

limited by the time step requirements of the channel flow model. The simulations are 

performed on an Intel Pentium IV computer with a clock time of 2.4GHz and 1.0GB 

RAM. The Altamaha river simulations take about 5secs per iteration. On the other hand, 

the number of iterations per time step and the value of the time step are highly variable 

and are a strong function of the flood wave that is routed in the channel as well as the 

boundary conditions. The time-weighing parameter used in the four-point Preissmann 

scheme of channel flow model is also important in the total number of iterations required 

for convergence. In this study, a weighing parameter value of 0.72 is used during 

calibration and verification periods. 

Simulations in calibration and verification periods revealed the fact that the lower 

Altamaha river watershed is mostly a boundary condition driven system and the model is 

highly sensitive to boundary condition data. Therefore, the accuracy of the boundary 

condition data is very critical for successful simulations of the watershed. In addition, 

several test runs in the watershed also revealed that the model is also relatively sensitive 

to other parameters including the Manning’s roughness coefficient in channel flow 

domain and hydraulic conductivity in subsurface flow domain. 

 

5.4. Coupled Flow Simulation 

The proposed model is used to simulate the flow conditions in the project area 

shown in Figure 5.2. Two different sets of runs are performed for calibration and 

verification purposes. The model calibration and verification is performed with respect to 

the Doctortown gaging station at the most downstream point of the domain (Figure 5.2). 
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Although more then one calibration point would generally provide a better assessment of 

the simulation results, the data availability in the Altamaha system imposes a single point 

calibration. In this regard, a midstream calibration point would have been a better option 

for calibrating the results. Nevertheless, the level of accuracy comparisons with a single 

calibration point is still believed to provide high standards when particularly in data 

scarce conditions such as the Altamaha river basin. The simulated vs. observed values of 

the three-year long calibration period is given in Figure 5.8. 
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Figure 5.8. Observed vs. simulated results in the calibration period 
(01/01/1988 – 12/31/1990) 
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As seen from the figure, the proposed coupled flow provides very good results 

when compared to the observed values at the Doctortown gage. However, the results are 

further divided into three separate years to show detailed comparison and to reduce the 

effect of time scale on the presented graph. These results are shown in figures 5.9a, 5.9b 

and 5.9c for years 1988, 1989 and 1990, respectively. The detailed comparisons further 

verify the high level of accuracy achieved by the model. Both the timing and the 

magnitude of the flood waves are properly captured. Slight deviations are observed at the 

peak values which are known to be high flow periods by definition. During these extreme 

events, the overland flow discharges from the small creeks and tributaries reach to 

considerable levels that would influence the simulation results. During these periods, a 

more sophisticated overland flow module is necessary to fully capture the flood peak 

values. It is clear that, in such high flow periods, the watershed becomes a critical 

contributor to the river flow in the system as opposed to the general boundary condition 

driven nature of the system. Therefore, it is possible to conclude that with an accurate 

overland flow algorithm or with measured discharge data of these creeks and tributaries, 

one could achieve an almost perfect fit using the proposed model. 

Unfortunately there exist no measurements to verify the spatial distribution of 

discharge and/or depth along the channel network. Nevertheless, the discharge 

distribution along the main Altamaha river is presented in figures 5.10a and 5.10b, 

representing low and high flow periods, respectively. It is clearly seen from this figure 

that there are small increases in the channel discharge due to overland flow contributions 

from the tributaries. The spike at the mid-channel is the point where Ohoopee river joins 

the Altamaha river.  
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Figure 5.9. Observed vs. simulated results in (a) 1988, (b) 1989 and (c) 1990 
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Figure 5.9 (cont’d). 
 

The response of the groundwater to the dynamic hydrologic and hydraulic 

variations in river channels could be analyzed by focusing on some of the groundwater 

nodes in the immediate vicinity of the channel network. The lateral seepage to/from the 

river in these sections determines the hydraulic head distribution in these areas of the 

surfacial aquifer. This analysis would also help to understand the significance of bank 

storage on flood peak attenuation in the Altamaha river system. The temporal variation of 

lateral seepage between cross-sections 45 and 46 in the upstream channel of Altamaha 

river is shown in Figure 5.11. The figure also presents the discharge hydrograph at cross-

section 46. The correlation between lateral seepage and channel discharge conditions is 

particularly obvious when a major flood event occurs after a relatively steady flow 

period. In this regard, one could observe the significant lateral outflux from the channel 
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around 9/10/88. When the flood wave arrives, it disturbs equilibrium that was achieved in 

the relatively steady flow period that covers a couple of months before the event. As a 

result of the flood event, the stage in the channel increases and creates a lateral outflow 

from the channel. 

The lateral seepage responses could also be seen in the early parts of the year 

when consecutive floods arrive to the particular location. However, these interactions are 

not as clear as the event in September 1988 as the interactions are very dynamic and 

strongly effected from the earlier events. The model could also predict the impact of bank 

storage on flood attenuation. Laterally seeping waters from the river are temporarily 

stored in the immediate vicinity of the channel and is released back to the channel when 

flood wave passes and river waters recede. 

Finally, the groundwater distribution in the watershed is demonstrated in Figure 

5.12. The hydraulic head distribution in the figure corresponds to the data at the end of 

1988. Since the groundwater flow domain does not experience major changes, a temporal 

variation in hydraulic head distribution is not meaningful to present. Only in the vicinity 

of the river channels, the hydraulic head distribution in the aquifer shows variation in 

accordance with the dynamic link with the river hydraulics. 
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Figure 5.10. Spatial distribution of discharge along the Altamaha 
river (a) 12/31/1988 and (b) 03/31/1990 
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Figure 5.11. Temporal variations in lateral seepage and its correlation with 
channel flow at Node-46 in upstream channel of Altamaha river 
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Figure 5.12. Simulated hydraulic head distribution in the watershed at 12/31/1988 
 

Following the calibration runs, a verification run is also performed to validate the 

proposed coupled flow model. The verification period covers a four-year period between 

1991 and 1995. The simulated vs. observed values of the verification period is given in 

Figure 5.13. As can be seen from the figure, the model performs accurately in the 

verification run as well. The flood wave is properly routed in the channel system. The 

discrepancies between observed and simulated extreme events are still visible in the 

verification run. Considering relatively insignificant, directionally variable contributions 

of groundwater seepage, these discrepancies are mainly attributed to the lack of an 
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accurate overland flow simulator. The contribution of overland flow becomes particularly 

important in extreme events where even small tributaries could carry large discharges.  

As seen from the figure, the proposed coupled flow provides very good results in 

the verification period as well. The results are further divided into four years to show 

detailed comparison and to reduce the effect of time scale on the presented graph. These 

results are shown in figures 5.14a, 5.14b, 5.14c and 5.14d for years 1991, 1992, 1993 and 

1994, respectively. The detailed comparisons also demonstrate the high level of accuracy 

achieved by the model. The discrepancies between observed and simulated peak flows 

are still present in the verification period and are most likely associated with significant 

overland inflow to the channel from tributaries. Finally, the hydraulic head distribution in 

the watershed is shown in Figure 5.15 which corresponds to the data at the end of 1991.  
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Figure 5.13. Observed vs. simulated results in the verification period 

(01/01/1991 – 12/31/1994) 
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Figure 5.14. Observed vs. simulated results in (a) 1991, (b) 1992, (c) 1993 and (d) 1994 
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Figure 5.14 (cont’d). 
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Figure 5.15. Simulated hydraulic head distribution in the watershed at 12/31/1991 
 

Overall, one could conclude that the coupled surface/subsurface flow model 

performs satisfactorily. About 4-8% of peak flows are missed at the most downstream 

location of the watershed where the calibration and verification is made. This discrepancy 

is expected to be lower in any intermediate point within the system. Nevertheless, this 

level of agreement is deemed normal for a large scale modeling effort such as the one 

discussed here. It is further believed that these discrepancies are mainly attributed to the 

relatively inaccurate overland flow discharge values used in this study that are obtained 

from an empirical model. Once proper mathematical formulation and cost-effective 

numerical simulation of overland flow is achieved (i.e., in a similar format shown in 
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second coupled model in Chapter 3), the large-scale watershed modeling efforts would 

most likely yield better results. 

 

5.5. Coupled Contaminant Transport Simulation 

The coupled contaminant transport model is applied in the lower Altamaha river 

basin. Since there are no water quality measurements in the project area, the model is 

primarily operated as a general tool to understand the overland contaminant transport 

patterns inside the system with particular focus on the interactions between the river 

network and the surfacial aquifer. The contaminant transport equations presented herein 

are all based on the calibrated and verified flow simulations presented in Section 5.3. 

Therefore, it is believed that the transport simulations would provide valuable insight to 

the potential transport of contaminants within the watershed. Furthermore, various 

scenario conditions could be tested with the proposed model and potential vulnerable 

points to contamination could be determined to assist the watershed management 

processes. In this regard, the results from the current Altamaha application of the 

transport model must be viewed from a general perspective and the focus should be on a 

broad understanding of system characteristics rather than on specific numerical values. 

Two important contamination scenarios are analyzed in this section. In the first 

scenario, the contamination is assumed to initiate from the river system. In this context, 

the upstream Altamaha river channel is assumed to receive a constant 100mg/L 

conservative contaminant continuously. The Ohoopee river channel, on the other hand, is 

considered to be uncontaminated throughout the simulation. The initial conditions in both 

the river network and the aquifer are taken to be zero. In the second scenario, the 
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contamination is assumed to initiate from the surfacial aquifer at a point close to the 

Ohoopee river channel. The contaminant area is assumed to sustain 100,000mg/L 

representing a continuously leaking source. The river system and the rest of the aquifer 

are considered to be clean and free of any contamination. 

These two conditions are simulated with the flow solution of the first 2 months of 

1988. The selection of the simulation period was arbitrary since any reasonably long 

period would cover all possible hydrologic interaction conditions (i.e., river system 

recharging the aquifer or aquifer discharging to the river system) along the river network. 

With this simulation period and with the above mentioned two scenarios, it is possible to 

analyze the influence of contaminated river waters on aquifer water quality and the 

influence of contaminated aquifer waters on river water quality. 

In the first scenario, the contamination is assumed to be entering the system from 

the upstream boundary of the domain at Baxley gaging station. The analysis of this 

contaminant is studied in two phases. The first phase covers the first 1-2 days of the 

simulation during which the contaminant advects and disperses within the channel 

network until a steady state is reached and the contaminant distribution stabilizes in the 

network. During this first phase, contaminant does not start to significantly affect the 

aquifer due to the relatively small response time the groundwater system. On the other 

hand, the second phase covers the entire extended simulation period where the major 

focus is on the dynamic interactions of contaminated waters between surface and 

subsurface systems. 

The time-dependent migration of the contaminant in the channel network is 

shown in Figure 5.16. As can be seen from the figure, the contamination enters the 
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otherwise clean system as a step function, which by itself is a numerically difficult 

problem to solve. It is then advected and dispersed in the system. The dilution effects of 

the Ohoopee waters are clearly seen from the figure. The influence of the clean overland 

flow contributions are not observed as strictly as the Ohoopee river due to the relatively 

small discharges these tributaries carry as opposed to the main Altamaha river discharge 

at any particular instant in time. By the end of the second day of simulation, the 

contamination essentially covers the entire Altamaha river network except for most of the 

Ohoopee channel that does not receive any contaminant from upstream. Under the 

hydrologic conditions of this period, the contaminant concentration in the downstream 

Altamaha channel stabilizes around 94mg/L. The effect of dispersion on the otherwise 

clean Ohoopee channel is also seen from Figure 5.16. The immediate vicinity of the 

junction is contaminated via the dispersed contaminants from Altamaha waters. 

After the initial phase in which the river contaminant concentration stabilizes 

throughout the channel network, the focus is switched to the contaminant migration in the 

aquifer. This second phase of the simulation demonstrates the difficulties associated with 

time scale differences in coupled contaminant transport modeling of the surface and 

subsurface processes. While the surface contaminant transport is a rapid phenomenon as 

seen from the first phase of the simulation, the subsurface response is fairly slow and 

requires longer times for representative output. In this regard, coupled simulation of these 

two processes necessitates significant computer time. A particular reason for this 

drawback is the explicit algorithm required to handle the problematic advection operator 

in the channel transport model as discussed in Chapter 4.  
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Figure 5.16. Time dependent migration of contamination (a) in upstream and downstream 

Altamaha river channels and (b) in Ohoopee river channel 
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Based on the above discussion, one could conclude that coupled 

surface/subsurface contaminant transport modeling would become much more feasible 

when sufficiently accurate implicit algorithms are found to handle the advection related 

numerical problems. Nevertheless, coupled contaminant transport simulations are still 

feasible in the current form of the model given enough computational time. 

In the second phase, the river contaminant concentrations are spatially and 

temporarily variable only as a function of the Ohoopee river and overland flow 

discharges. With their zero-concentration values, Ohoopee and tributary flows act as 

dilution mechanisms to the contaminant in main Altamaha channels (i.e., upstream and 

downstream). Therefore, the temporal concentration variations are the only major 

fluctuations observed within the system in response to time-dependent discharge values 

in these streams. However, these fluctuations are not significant considering their 

relatively small magnitudes. It is thus possible to conclude that the system operates on a 

quasi-steady state as long as the specified concentration boundary condition is 

continuously enforced on the upstream end. Furthermore, the time scales in the channel 

domain are much smaller than their groundwater counterparts such that possible slight 

variations in channel concentrations do not create long enough changes that could in turn 

affect the groundwater concentrations. The aquifer contaminant concentration 

distributions at the end of the first and second months are shown in figures 5.17 and 5.18. 

It is clearly seen from the figures that both the spatial extent of the contaminated zone as 

well as the strength of contaminant concentration in these locales increased due to longer 

exposure to contaminated river waters. 
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Figure 5.17. Contaminant concentration (mg/L) in aquifer after 1 month of simulation 
 

In the second scenario, the contaminant is introduced to the aquifer at a position 

that is likely to reach the river network. The selected locale is one of the several 

alternatives that experiences highest Darcy velocities. The selected area is located in the 

vicinity of the Ohoopee river roughly at the midstream position between the Reidsville 

gaging station and the Altamaha confluence point. The contaminated zone covers an area 

of about 0.2km about 150m away from the river 

channel as shown in Figure 5.19.  

2 in the Ohoopee flood plain and is 
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Figure 5.18. Contaminant concentration (mg/L) in aquifer after 2 month of simulation 
 

It is assumed that this area is contaminated with 100,000mg/L of a conservative 

contaminant. The source zone is selected to be a continuous zone to demonstrate the long 

term consequences of contamination in the river network and other portions of the 

aquifer. The contaminated zone is deliberately selected close to the river channel and in 

an area governed by high groundwater flow velocities towards the river such that the 

contaminant would quickly reach the river. In this regard, it only takes about 15days for 

the aquifer concentration to reach a value of 1000mg/L underneath the river channel as a 

result of large groundwater flow velocities as well as high dispersion coefficient (i.e., a 

dispersivity value of 50m is used in the simulations). 
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Figure 5.19. Contaminated zone location in Scenario-2 

Contaminated Zone

 268 



390800 391000 391200 391400 391600 391800 392000 392200 392400 392600

3540000

3540200

3540400

3540600

3540800

3541000

3541200

3541400

3541600

3541800

3542000

Ohoopee River
Channel

1000

10000

20000

30000

50000

80000

100000

 

Figure 5.20. Contaminant concentration (mg/L) in the immediate vicinity 
of the source area after 1 month of simulation 

 

The contaminant concentration at the end of one month of simulation in the 

immediate vicinity of the source area is presented in Figure 5.20. As seen from the figure, 

the contaminant reaches to high concentrations underneath the river, working as a 

significant source for the river pollution under suitable hydrologic conditions. 

As the concentration in the aquifer below the river increases, the dispersive flux 

between the aquifer and river increases since the river is supplying contaminant free 

waters from the upstream boundary. The lateral seepage towards the river also facilitates 

the migration of the contaminant to the Ohoopee channel. It is important to note that the 

 269 



mass flux in the lateral seepage flow is a direct function of the direction of the seepage 

flux. Hence, the contamination affects the river only when the lateral seepage is towards 

the river. When the river stage increases due to the arrival of a flood wave, the lateral 

seepage reverses and river starts to feed the aquifer. The time series graph of lateral 

seepage in the vicinity of the source zone is shown in Figure 5.21. The dynamic nature of 

the seepage is clearly reflected in the figure. The dips in the figure correspond to 

sequential flood waves that enter the reach as shown in Figure 5.22. Consequently, the 

increased river stage creates a seepage outflux from the river. The timing of seepage 

outflux dips are directly correlated with the arrival of the flood peaks. Once the wave is 

past the reach, the river stage retreats and seepage is reversed. 

In accordance to the above correlation between lateral seepage and river 

hydrology, the influence of contaminated aquifer water over the river is an intermittent 

phenomenon. Once the flood wave passes, the river stage retreats, seepage and 

corresponding advective contaminant transport is reversed. Despite this dynamic 

behavior of advective flux, the dispersive flux continuously transfers from the high 

concentration domain (i.e., the aquifer) to the low concentration domain (i.e., the river) 

and creates a general transport trend independent of the hydrologic conditions of the 

system. It is important to note however that the magnitude of mass transported with 

dispersion is small compared to mass transported with advection (i.e., lateral seepage). 
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Figure 5.21. Lateral seepage near the contamination zone 
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Figure 5.22. Discharge in the reach near the contamination zone 
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Another consequence of the variable lateral seepage direction is a highly variable 

contaminant concentration within the river. Since the main source of river contamination 

is lateral seepage-dependent-mass flux (i.e., due to pristine upstream conditions in the 

river), the river concentration downstream also shows dynamic variations as a direct 

result of both seepage and upstream discharge variability. The river concentrations 

downstream the contaminated area is shown in Figure 5.23. The seepage-dependent 

intermittent behavior of concentration is clearly observed in this figure. 
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Figure 5.23. Contaminant concentration in the river at the contaminated zone 
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Once the contaminant reaches the river, it is quickly transported downstream. 

Since the source is next to the Ohoopee river and the upstream Altamaha channel is 

clean, a significant amount of dilution occurs at the Ohoopee-Altamaha junction. The 

Ohoopee channel concentrations are significantly diluted with pristine Altamaha waters 

and continue their downstream transport. The lateral seepage along the downstream 

Altamaha channel allows the re-introduction of contaminated waters back to the aquifer. 

Therefore, the river system acts as a conduit for fast transport of contaminants. The 

contaminant distribution within the aquifer after one and two months of simulation are 

shown in figures 5.24 and 5.25. As can be seen from the figures, the contaminant is 

slowly entering the otherwise clean aquifer downstream of the contamination zone. The 

spatially patchy distribution of contaminant concentration in the aquifer is due to the 

spatially variable seepage between river and groundwater flow domains that transports 

contaminated water from the river to the aquifer. The high concentration patches along 

the river channel essentially coincides with areas with lateral seepage outflow from the 

river channel towards the aquifer. It is also clearly seen that the contamination is limited 

to the immediate vicinity of the river channels. Any further migration towards the inner 

regions of the aquifer did not occur in these time periods as the general groundwater flow 

direction is mostly directed towards the main river network in the watershed. Only during 

flood events, intermittent flow reversals allow rapid contaminant transport towards the 

inner regions of the aquifer. In all other hydrologic conditions, the magnitude of 

dispersive flux, which is independent of the dynamic hydrology of the system, is not 

deemed to be sufficient to create extensive migration of contaminants to such inner 

regions of the aquifer. Therefore, it can be concluded that depending on the hydrology of 
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Altamaha system, the contamination in the river might migrate large distance inside the 

aquifer particularly for extremely wet years that are characterized by the river system 

feeding the surfacial aquifer. 
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Figure 5.24. Contaminant concentration (mg/L) in aquifer after 1 month of simulation 
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Figure 5.25. Contaminant concentration (mg/L) in aquifer after 2 month of simulation 
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CHAPTER 6 

 

6. CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1. Conclusions 

Large scale watershed modeling has long been an important challenge for the 

hydrologist. Numerous models have been developed to analyze possible flow patterns in 

a watershed in response to a precipitation event. Although most of these models used 

empirically-based, lumped parameter formulations neglecting or oversimplify the 

underlying physical processes, they have provided basic data without needing a detailed 

analysis. In recent years, the trend has switched to more fundamental understandings of 

the processes affecting the overall response of the watershed, and hydrologic modelers 

have focused to physically-based distributed parameter models. These models are based 

on rigorous mathematical formulations of physical laws defining the flow of water over a 

watershed and provide better description of the watershed processes. Nevertheless, their 

application to large scale watersheds is severely limited by their computational 

requirements. Mainly due to the distributed nature of these models and the numerical 

solution techniques implemented to capture the flow patterns, these models require fine 

discretizations, which in turn increases the size of the overall matrix to be solved in each 
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computational time step. Therefore, both computational speed and memory requirements 

can become unmanageable given the limits of today’s computers. A good example of 

such limitations is the overland flow domain. Due to its spatially and temporally 

discontinuous flow pattern, very small water depths as well as strong non-linearity 

associated with land characteristics, overland flow models require finer spatial and 

temporal discretization. Furthermore, the flow boundaries are not as well-defined as other 

processes such as the channel flow or groundwater flow. Another example is 

groundwater flow in the unsaturated zone. The moisture movement in this zone is 

strongly non-linear due to the dependency of hydraulic conductivity and pressure head on 

moisture content. Effectively capturing this dependency requires fine discretization which 

becomes a problem in large scale watershed models. 

Considering these limitations, this study attempts to blend the powerful 

distributed parameter models with relatively simple lumped parameter models to form a 

so-called hybrid model to solve the major flow pathways in a distributed sense and 

simplify others in a lumped format. The proposed hybrid model considers the channel 

flow and groundwater flow as major pathways and treats them in a fully distributed sense 

using physically based formulations. The proposed model also implements full coupling 

of these flow processes along the river bed using lateral seepage. On the other hand, the 

model considers overland flow and unsaturated zone flow in a lumped parameter fashion 

without the details of these processes in a distributed modeling sense.  

When watershed processes are analyzed in an integrated fashion, coupling 

becomes a major issue. Coupling provides the link between different flow pathways and 

maintains the continuity of the system. As essential as it is, coupling is a computationally 
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costly procedure where the common parameters are generally iteratively improved until 

convergence is achieved with respect to some pre-determined criterion. Previous studies 

implemented iterative algorithms, which became a standard procedure for coupling flow 

pathways. In this study, a new simultaneous solution procedure is proposed to couple 

surface and subsurface flow along the river bed via the lateral seepage flow. This new 

technique does not rely on iterative improvement; making it a faster procedure compared 

to the iterative technique. The method is based on solving channel flow and groundwater 

flow equations within a single matrix structure, considering the interacting terms within 

the equations. Although the method requires solution of larger matrices, it is still faster 

and more accurate than other methods available. As the two systems are essentially 

solved simultaneously, it is also a more physically realistic technique to handle inter-

pathway interactions within the hydrologic cycle.  

This study is believed to be one of the first examples of coupled contaminant 

transport modeling. A coupled surface-subsurface contaminant transport model is 

formulated to provide a basic understanding for contaminant transfers between 

interacting domains. The proposed transport model uses the coupled flow solution and 

implements an advective-dispersive mass transport function along the river bed. This 

coupled analysis of contaminant transport is thought to be an important mechanism for 

strongly interacting systems under suitable hydrological conditions. The numerical 

difficulties associated with the advection operator in the channel transport model hinder 

the use of the proposed simultaneous solution algorithm. As an explicit solution 

procedure is necessary to capture the behavior of contaminants in advection dominant 

systems, an operator splitting algorithm is implemented to separate the explicit advection 
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from the remaining operators. Although this numerical separation scheme appears to 

violate the simultaneous presence of two physical transport processes, it is 

mathematically sound and essential for accurate analysis of transport in advection 

dominant systems. In this regard, the proposed simultaneous solution algorithm is 

modified such that the advection operator is solved discretely before the all other 

operators, which are then solved simultaneously with the groundwater transport equation 

in a single matrix structure. Because of this, the transport solution algorithm is called the 

semi-simultaneous solution method. The method could, however, be made fully 

simultaneous without much difficulty if an implicit advection algorithm is developed that 

would numerically yield accurate results without the restrictions of its explicit 

counterpart. 

The proposed coupled flow and transport models were applied to the lower 

Altamaha watershed in southern Georgia. Long term flow and contaminant transport 

simulations were performed to analyze the hydrologic and geo-hydrologic characteristics 

of the watershed. The coupled flow simulations revealed a dynamic and spatially variable 

interaction pattern between the river and the surfacial unconfined aquifer. Seepage rates 

are found to be a strong function of the hydrologic conditions in the river. The flow 

simulations show a good match with the observed data obtained from the downstream 

gauging station. The simulated values are capture the timing and magnitude of observed 

flood hydrographs accurately. The calibrated flow patterns in the river channels and in 

the aquifer are then used to test several contaminant transport scenarios for the watershed. 

The results from the contaminant transport simulations showed that contaminated river 

water is much more likely to create significant consequences over the aquifer than would 
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the contaminated aquifer water over the river due to the significant dilution of the river 

water over the contaminated seepage from the aquifer. Furthermore, it is observed that 

the immediate vicinity of the river channels is most likely to experience the highest 

contaminant concentrations under suitable hydrologic conditions due to the slow 

movement of groundwater. Therefore, an accidental instantaneous spill to the river is not 

likely to create significant groundwater pollution as the contaminants are quickly washed 

away by the fast flowing river waters. On the other hand, any potential continuous source 

of contamination near a discharging section of the aquifer (e.g., a leaking tank) is likely 

to create problems in otherwise clean river waters despite the diluting effect of the river. 

In this regard, it is believed that the coupled flow and transport model could allow more 

detailed analysis of possible sources and migration patterns of contamination in the lower 

Altamaha watershed. 

 

6.2. Recommendations 

Although this study provides a new approach to watershed modeling by 

introducing the concept of hybrid models, the future of watershed modeling still 

necessitates a fully distributed approach in all possible subprocesses of the water cycle. In 

the future, mathematical representation and numerical solution procedures of these 

processes could evolve to such a degree that the modeler will not have to compromise the 

fully physically-based distributed approach. In this regard, the author believes that there 

will be two major areas of work that the future hydrologic modeler will focus on. One of 

these would involve better representation of flow pathways with more accurate models, 
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and the other would focus on development of better numerical techniques for these 

sophisticated mathematical models. 

There is work to be done in better describing the overland flow component. This 

must not only represent the temporal discontinuity accurately but also must incorporate it 

in a suitable format so that long term simulations would be possible after including the 

overland flow domain in the overall simulations. It is believed that time-dependent 

moving boundary analysis and temporal Dirac delta representations could become the hot 

topics in overland flow modeling. Better numerical algorithms will be required to 

accurately handle the moving boundary problem, small water depths and wetting-drying 

conditions in the three-dimensional topography of the watershed. 

The current state of the proposed model could be improved by incorporating more 

sophisticated descriptions of subprocesses. These would certainly require more 

computational power and data. For example, a variably-saturated three-dimensional 

groundwater model will be an improvement of flow processes in porous media. This 

would not only eliminate the one-dimensional representation of the unsaturated zone but 

would also solve the entire soil column as a whole in a variably-saturated fashion. 

However, the data requirements would be extremely large compared to the present model 

and it could only be applied over a very limited spatial domain unless sophisticated data 

collection and analysis methods are developed and made available to the modeler in an 

easy to access fashion. In the long run, a two-dimensional river model might be linked to 

this three-dimensional variably saturated groundwater model. Such an improvement 

would probably constitute what is called the ‘ultimate watershed model’. However, better 
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coupling mechanisms would need to be developed before the interactions between the 

river and the aquifer can be accurately simulated. 

It is believed that enhanced numerical algorithms would have to be incorporated 

into river and groundwater transport models for more accurate results and for more 

general applicability of the model. Such algorithms would better handle the dual-nature 

of the advective-dispersive transport equation. However, compromises might need to be 

made in terms of using such algorithms versus using the simultaneous solution techniques 

since such algorithms generally require the use of explicit components to handle the 

advective transport that, in theory, violates the idea of simultaneous solution. In this 

regard, high-accuracy implicit schemes have to be developed before a fully simultaneous 

coupling of surface and subsurface transport processes could be done similar to their flow 

counterpart. 

Further research is also necessary on scale issues of coupled hydrologic modeling. 

Separate model components with different spatial and temporal scales are difficult to 

couple dynamically. In particular, scale issues associated with slow and fast hydrologic 

processes create problems in terms of computer resources and data availability. 

Therefore, only after computational speed reaches a point where the entire watershed 

hydrology could be modeled with the smallest time scale requirement, could one achieve 

an ultimate simultaneous coupling of all processes. 

An essential part of watershed modeling is the requirement for calibration and 

verification data. Such data sets are only available for small experimental watersheds. At 

larger scales, researchers are faced with data insufficiency to calibrate and verify their 

models. Therefore, additional resources should be allocated to provide not only extensive 
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field studies but also to increase the density of standard data collection facilities that are 

currently available. These efforts must be geared towards obtaining better subsurface 

data, since surface flow data are more abundant. 

Finally, the author firmly believes that, in the long term, the hydrology and 

hydraulics of watersheds will be modeled as a whole in a fully coupled way using three-

dimensional models. Such a comprehensive model would simultaneously couple all 

processes and would solve them as a single system considering all their interactions 

without the need to introduce artificially separated flow domains. This study is an initial 

step towards such an approach. 
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APPENDIX A 

 

7. FINITE DIFFERENCE EQUATIONS OF CHANNEL FLOW 

 

 

The finite difference forms of continuity, momentum and boundary condition 

equations of channel flow are derived in this appendix. For each channel of the network, 

the continuity and momentum equations given in equations (3.1) and (3.2) are discretized 

in the x-t plane using the “four-point” weighted difference scheme. Two additional 

equations are then used to represent the conditions in the upstream and downstream 

boundaries of the channel. When this procedure is done for all channels, a system of 2N 

equations is formed, which is then solved to evaluate the unknown discharge and stage at 

the nodes of the discretization. The discretized forms of the continuity, momentum and 

boundary condition equations are given in the following sections.  

 

Channel Network 

In the discussion that follows, in order to assist the derivation, the sample network 

shown in Figure A.1 is used. This network contains 5 channels and 2 junctions. The 

channel numbering scheme starts from the most upstream channel and follows the 

direction of flow. When a junction is reached, the node numbering continues from the 
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most upstream node of the next channel and follows sequentially down to the junction 

until all inflowing channels of the junction is numbered. When all inflowing channels are 

numbered for a particular junction, node numbering continues with the most upstream 

node of the outflowing channel. This procedure is continued until the entire system is 

numbered. 

 

Discretized forms of continuity and momentum equations 

The finite difference discretization of continuity and momentum equations is done 

for each channel as shown in Figure A.2. It can be seen from this figure that the solution 

plane for channel k is represented by a total of Nk nodes with local node numbers starting 

from 1 and running through Nk. In the four-point scheme, the approximations of 

derivatives and constant terms are given in equations (A.1), (A.2) and (A.3) for a dummy 

parameter E: 
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where i and j are subscripts representing spatial and temporal positions, respectively, ψf 

and θf are weighing factors between 0 and 1, and ∆xi and ∆t j are reach lengths between 

nodes i and i+1, and time step between timelines j and j+1, respectively. It is possible to 
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create different schemes using different values for the weighing factors. While θf value of 

0.0 corresponds to an “explicit” scheme, one could create a so-called “box” scheme by 

setting θf to 0.5. Similarly, a scheme with a θf value of 1.0 is known as the “fully-

implicit” scheme in space. Several researchers preferred using a ψf value of 0.5 and 

approximated the time derivative at the center of grid between (j)th and (j+1)th time lines 

(Amein and Fang, 1970; Chaudhry and Contractor, 1973) where as others used varying 

values depending on the particular application (Fread, 1985).  

Fread (1974) has shown that the weighted four-point implicit scheme is 

unconditionally stable for any time step if the value of θf is selected between 0.5 and 1.0. 

In addition to stability criteria, he also analyzed the influence of the weighing factor on 

the accuracy of computations and found out that the accuracy decreases as θf departs 

from 0.5 and approaches to 1.0. He reported that this effect became more pronounced as 

the magnitude of the computational time step increased. Furthermore, his analysis 

revealed that a θf value of between 0.55 and 0.6 provided unconditional stability and 

good accuracy, which makes this scheme superior compared to the explicit scheme that 

requires time steps of less than a critical value determined by the Courant condition. 
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Figure A. 2. The distance-time grid used to formulate the implicit finite difference 
scheme for channel k (Fread, 1974) 
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With the templates given in equations (A.1), (A.2) and (A.3), the space derivatives in 

Equations (3.1) and (3.2) are approximated as:  
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Similarly, the time derivatives are approximated as: 
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Finally, the constant terms such as qL1, qL2, Sf, Se, ML1, ML2 and A are approximated as: 
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where the variables with subscripts (i+½) are defined for the reach between nodes (i) and 

(i+1) as an average of the two nodal values. The following formulations are used to 

define the above variables:  
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The finite difference form of continuity equation is obtained when equations (A.4) 

through (A.29) are substituted into (3.1) and rearranged for each channel in the network:  
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Similarly, the finite difference form of the momentum equation is obtained when 

equations (A.4) through (A.29) are substituted into (3.2) and rearranged for each channel 

in the network:  
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where corresponding explicit formulations are substituted for the slope terms Sf and Sec, 

as well as the lateral flow terms (depending on the direction of lateral flows) ML1 and ML2 

from equations (A.17), (A.18), (A.19) and (A.20), respectively. 

 

Discretized forms of external boundary condition equations 

At any external upstream boundary of a channel, a discharge or a stage 

hydrograph can be used as the boundary condition equation. The discretized forms of 

these equations are given as: 
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where subscript m represents the global upstream node number of the channel. For a 

single channel system, m takes the value 1. In the sample network, channels 1, 2 and 4 

have external upstream conditions and m takes values 1, 5 and 14, respectively. Since the 

proposed model does not allow looped networks, only one external downstream boundary 

condition is required in the model. The boundary condition at the external downstream 

boundary can also be defined as a discharge or a stage hydrograph. The discretized forms 

of these equations are given as: 
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where N represents the last node in the entire network. In the case of the sample network 

shown in Figure A.1, N takes the value of 20. In addition to the stage and discharge 

conditions, the external downstream boundary condition can also be specified as a single-

valued rating curve, a looped-rating curve and a critical depth section. If a single-valued 

rating curve is used as the downstream boundary condition, the discretized form 

becomes: 
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where subscript k represents the values from the rating curve data. If a looped-valued 

rating curve is used as the downstream boundary condition, the discretized form 

becomes: 
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where the friction slope is approximated using the known values of discharge and stage at 

the downstream reach: 
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  (A.38) 

 

Finally, if a critical depth section is used as the downstream boundary condition, the 

discretized form becomes: 
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N A
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Discretized forms of internal boundary condition equations 

When the external boundary conditions are implemented, it is observed that 

certain channels do not have any upstream or downstream boundary condition. These 

missing conditions occur at the junction points of these channels. Therefore, internal 
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boundary conditions are written to satisfy the mass and momentum balance at these 

junctions. For any junction with m inflowing channels, it is required to specify a total of 

m+1 internal boundary condition. These conditions are specified as m downstream 

boundary conditions for each inflowing channel and one upstream boundary condition for 

the outflowing channel. In this regard, one momentum equation is written for each 

inflowing channel satisfying the continuity in stages.  

 

011 =− ++ j
or

j
ir hh                                                  (A.40) 

 

where subscript i now represent the last node of the particular inflowing channel to the 

junction and subscript o represent the first node of the outflowing channel from the 

junction. When equation (A.40) is written is for all inflowing channels, a total of m 

equations are written for the junction and the missing internal downstream boundary 

conditions of all inflowing channels are completed. Finally, one last condition is specified 

to get the missing internal upstream boundary condition of the outflowing channel. This 

condition is satisfied by writing the continuity equation for the junction: 
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m
j j

i k o
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Q Q+ +

=

− =∑                                               (A.41) 

 

where i represents the last node of channel k. For the first junction of the particular 

network shown in Figure A.1, the internal downstream boundary conditions of the 

inflowing channels 1 and 2 is specified by: 
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                                                  (A.42) 01
9

1
4 =− ++ j

r
j

r hh

01
9

1
8 =− ++ j

r
j

r hh                                                  (A.43) 

 

and the internal upstream boundary condition of the outflowing channel 3 is specified by: 

 

01
9

1
8

1
4 =−+ +++ jjj QQQ                                            (A.44) 

 

Similarly, for the second junction of the particular network shown in Figure A.1, the 

internal downstream boundary conditions of inflowing channels 3 and 4 is specified by: 

 

01
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01
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1
17 =− ++ j

r
j

r hh                                                  (A.46) 

 

and the internal upstream boundary condition of the outflowing channel 5 is specified by: 

 

01
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1
17

1
13 =−+ +++ jjj QQQ                                           (A.47) 
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APPENDIX B 

 

8. PARTIAL DERIVATIVES OF THE FINITE DIFFERENCE EQUATIONS OF 

CHANNEL FLOW 

 

 

The Newton-Raphson technique is based on the analytical or numerical 

differentiation of the continuity and momentum equations to evaluate the partial 

derivative terms of the Jacobian matrix. The difference forms of continuity and 

momentum equations given in (3.21) and (3.22) are partially differentiated with respect to 

the unknown terms h Q at the (j+1) e line for the nodal points (i) and (i+1). In 

the following derivations, the continuity and momentum equations are represented by the 

letters “C” and “M”, and the external upstream and external downstream boundary 

condition equations are represented by the letters “UB” and “DB”, respectively, for 

clarity. Similarly, the internal boundary condition equations are represented by “IB”. 

r and th tim

 

Partial Derivatives of the Continuity Equation 

The partial derivatives of the continuity equation with respect to the unknown 

terms (i.e., hri, hri+1, Qi and Qi+1 at (j+1)th time line) are computed as follows: 

 

 299 



( )

( )

1 1
1 11

1/ 2 1/ 21 1 1/ 2
1/ 2

11
1/ 2

1 1
2 2

2

j j
j jj ir

f i i r gij j i
rr ri ii

jji
c oij i

BC Kx B h h
mh h

x s B B
t

θ
+ +

+ ++
+ ++ + +

+

++
+

   ∆∂ = − ∆ − + −  ∂ ∆    
∆  + + ∆

       (B.1) 

( )

( )

1 1
1 11 1

1/ 2 1/ 21 1 1/ 2
1 11/ 2

11
1/ 2 1

1 1
2 2

2

j j
j jj ir

f i i r gij j i
rr ri ii

jji
c oij i

BC Kx B h h
mh h

x s B B
t

θ
+ +

+ ++ +
+ ++ + +

+ ++

++
+ +

   ∆∂ = − ∆ − + −  ∂ ∆    
∆  + + ∆

       (B.2) 

1 fj
i

C
Q

θ+

∂ = −
∂

                                                     (B.3) 

1
1

fj
i

C
Q

θ+
+

∂ =
∂

                                                      (B.4) 

 

Partial Derivatives of the Momentum Equation 

The partial derivatives of the momentum equation with respect to unknown terms 

(i.e., (hr)i, (hr)i+1, Qi and Qi+1 at (j+1)th time line) are computed as follows: 
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where: 
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Partial Derivatives of the External Boundary Conditions 

At upstream boundaries, a discharge or a stage hydrograph can be implemented as 

the boundary condition. When a discharge hydrograph is used as the upstream boundary 

condition, the partial derivatives of Jacobian become: 
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where subscript i represent the upstream node number of the channel. However, if a stage 

hydrograph is used as the upstream boundary condition, then the partial derivatives 

become: 
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At the downstream boundary, a discharge hydrograph, a stage hydrograph, a 

single-valued rating curve, a looped rating curve or a critical depth section can be 

implemented as the boundary condition. If a discharge hydrograph is used as the 

downstream boundary condition, the partial derivatives become: 
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If a stage hydrograph is used as the downstream boundary condition, the partial 

derivatives become: 
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For the single-valued rating curve, the partial derivatives become: 
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If a looped rating curve is used, the partial derivatives are written as: 
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Finally, if a critical section is used at the downstream boundary, the partial derivatives are 

written as: 
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where: 
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Partial Derivatives of the Internal Boundary Conditions 

At any junction with m inflowing channels, a total of m+1 internal boundary 

conditions are specified. The partial derivatives of the junction momentum equation 

shown in equation (A.40) written for each inflowing channel become: 
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where subscript i represents the last node of the particular inflowing channel to the 

junction. Similarly, the partial derivatives of the junction momentum equation shown in 

equation (A.40) written for the outflowing channel become: 
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where the subscript o represents the first node of the outflowing channel from the 

junction. The partial derivatives of the junction continuity equation shown in equation 

(A.41) written for each inflowing channels become: 
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where the subscript i represents the last node of the particular inflowing channel to the 

junction. Similarly, the partial derivatives of the junction continuity equation shown in 

equation (A.41) written for the outflowing channel become: 
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9. INTERPOLATING FUNCTIONS IN GALERKIN FINITE ELEMENT METHOD 

 

 

Interpolating (or basis/shape) functions form the core of the finite element 

analysis. There is a one-to-one relation between basis functions and nodes in the 

discretized domain. A basis function that is identified at a particular node is zero over any 

element unless that node is associated with the element of concern.  

Theoretically, basis functions can be written in global or local coordinates. 

However, it is practical to use a local coordinate system with quadrilateral elements, 

which is the element type selected in this study, to simplify the integrations and 

differentiations of the basis functions. In this regard, a local coordinate system together 

with a master element concept is implemented in this study (Figure C.1). A direct 

consequence of this approach is the necessity to formulate a transformation function 

between global and local coordinates. Unfortunately, this transformation is not linear for 

an irregular quadrilateral element and hence a numerical integration scheme is normally 

required to evaluate the integrals in the finite element analysis. 
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Figure C. 1. Global and local coordinate systems and the master element concept 
 

In this method, the two-dimensional domain is globally discretized using irregular 

quadrilateral elements. Then, coordinates of the nodes of each element is mapped to a 

local coordinate system via the master element concept. The master element is a 2X2 

square located at the center of the local coordinate axes with nodes at each corner. The 

corner coordinates of the master element are (-1,-1), (1,-1), (1,1) and (-1,1). Therefore, all 

integrations can be done on the master element using the limits -1≤ ξ ≤+1 and -1≤ η ≤+1. 

The general formula for the shape functions of a quadrilateral element can be obtained by 

taking the tensor product of the two shape functions for the linear line element and is 

given by the expression: 
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where ξ and η define the local coordinate system used with the master element concept. 

Using this formula and the local coordinates of the master element, it is possible to write 

the four shape functions of the quadrilateral element shown in Figure C.1 as: 
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There are two important modifications that should be done before the master 

element concept can be used in finite element analysis. The first one of these 

modifications is to transform the derivatives of the integrands into local coordinates. In 

order to implement this transformation from global to local coordinates, derivatives of 

these shape functions with respect to local coordinates are evaluated using the chain rule 

of differentiation: 
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which can be represented in matrix form as: 
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The derivatives of the shape functions with respect to local coordinates can easily be 

computed as follows: 
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The coefficient matrix, however, requires a functional relationship that maps the global 

coordinates to local coordinates. This transformation from global to local coordinates is 

obtained by using shape functions to interpolate the global coordinates. Hence, one can 

write: 
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If the derivatives of these expressions are taken with respect to the local coordinates, one 

would obtain a 2X2 matrix that is commonly known as the Jacobian matrix:  
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The determinant of the Jacobian is an important quantity and is extensively used in the 

master element integrations using local coordinates.  
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It should be noted, however, that the matrix required to transform the derivatives in 

global coordinates to derivatives in local coordinates is not exactly the Jacobian matrix 

given above. The link between these two matrices can be established if an identity matrix 

is written such that: 
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In the above equation, the second matrix is simply the transpose of the Jacobian matrix. 

Since the identity matrix is obtained by multiplying a matrix and its inverse, the first 

matrix then becomes the inverse of the Jacobian transpose.  
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It is now possible to complete the transformation of the shape function derivatives 

by using this matrix and the derivatives of the shape functions with respect to local 

coordinates. The second modification that is required to use the master element concept 

in finite element analysis is to convert the integration variables into local coordinates. 

The basic formula for a change of integration variables is given as: 
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element
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ddJyxfdxdyyxf ηξηξηξ ,,,,                         (C.11) 

 

where the determinant of the Jacobian is used explicitly. It should be noted that this 

change in integration variables does not pose any extra difficulty as long as the 

determinant of the Jacobian is a constant. For non-linear coordinate transformations, such 

as the one used here in quadrilateral elements, the Jacobian is not a constant and the 

above integration can only be done using a numerical integration scheme. 

 

 315 



 

 

 

 

 

 

 

 

 

 

APPENDIX D 

 

DERIVATION OF GALERKIN FORM OF  

GROUNDWATER FLOW EQUATION 

 316 



 

 

 

APPENDIX D 

 

10. DERIVATION OF GALERKIN FORM OF GROUNDWATER FLOW 

EQUATION 

 

 

The first step of the derivation of the weak form is to approximate the unknown 

function over the domain using interpolating functions, N ), of the form: 

)

j(x,y

 

( ) ( ) ( ) (
1

ˆ ˆ, , , , ( ) ,
N

g g g jjj
h x y t h x y t h t N x y

=

≈ =∑                            (D.1) 

 

where ĥg(t) is the approximate value of the hydraulic head and N is the total number of 

nodes in the two-dimensional groundwater flow domain. In essence, the temporal and 

spatial discretizations are separated from each other in the approximate solution. The 

nodal values, (ĥg(t))j, becomes only a function of time and the shape function, Nj(x,y), is 

now only a function of space. It is also important to note that the shape functions are 

defined only for its corresponding node. They are zero elsewhere in the domain. 

Since the Galerkin method is an approximate technique, the solution given in 

equation (D.1) does not satisfy the differential equation exactly and a residual occurs. 

The method states that the weighted average of this residual over the whole domain 
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becomes zero. If the approximate solution is substituted in the differential equation, one 

can write the total residual, Ř, as:  
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The Galerkin finite element method is based on the idea of minimizing this residual over 

the solution domain by letting the weighed integral residual tend to zero. In this 

formulation the weighing functions are selected as the interpolating functions used in 

element level: 
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Ω = =∫∫ �                         (D.3) 

 

For the sake of clarity, the description of the index i running from 1 to N is not repeated 

in the following equations. When the expression for the residual is substituted in equation 

(D.3) and the square root expression is written as the norm of the gradient of parametric 

vector equation g = gxi + gyj, the integral simplifies to: 
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The integration by parts is now applied to the second order derivative terms in the above 

integral to reduce them to first order and incorporate the natural boundary conditions: 
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where nx and ny represent the x and y components of unit normal vector. Substituting 

these expressions and rearranging gives: 
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In the above form, the boundary integral can be split into two parts, according to the 

boundary conditions along Γ2 and Γ3: 
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where these boundaries are known as specified flux boundary and head dependent 

boundary, respectively, and are called the natural boundary conditions. In addition to 

these second and third type boundaries, the domain might also have first type boundaries 

where the known hydraulic head is specified. Such boundaries form the essential 

boundary conditions. At the nodes of essential boundary conditions, the solution is 

known and the residual vanishes. When the expressions in the specified flux and head 
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dependent boundary conditions are substituted in the integrals of (D.8), one would obtain 

the following simplified form for the boundary integrals: 
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It is also possible to write the head-dependent boundary integral using the flux expression 

between the river and the aquifer when the hydraulic head is greater than river bottom 

sediment lower elevation (zr - mr): 
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Otherwise, the flux is no longer head dependent and is treated as a constant flux integral. 

From this point on, the derivation is based on the case where a head-dependent flux exists 

and does not collapse to a constant flux. With these modifications, equation simplifies to: 
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When lateral flow, qL1, is written according to the first condition of equation (3.7), one 

would obtain the weak form of the boundary-value problem: 
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It is seen that this boundary-value problem is non-linear due to the term (ĥg-zb). 

Therefore, it is required to use an iterative solution technique and a suitable convergence 
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criterion. In this study, this term is treated as a constant by using an element average 

value for each iteration step. Hence, it is possible to write this term as: 

 

( ) ( )( )bavggbg zhzh −≈− ˆˆ                                                (D.13) 

 

With this simplification, we obtain the following expression when the approximate 

solution in (D.1) is substituted in the weak from: 
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Since the nodal values are only a function of time and the shape functions are only a 

function of space, the above expression can be simplified by taking some of the terms out 

of the derivatives: 
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Simplifying further, one could obtain: 
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Since Ni is defined such that it is non-zero only over elements adjacent to node i, the 

integrations may be performed piecewise over each element and subsequently summed.  
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The element integrals can now be written in matrix form: 

 

ege
g

e F
h

MhS =⋅+⋅
dt

d ˆ
ˆ                                          (D.18) 

 

where ĥg is the unknown hydraulic head vector and Se, Me and Fe are element matrices 

and vectors defined as follows: 
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e
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= ∫∫eM                                            (D.21) 

 

Finally, the global assembly of these matrices would yield the following matrix equation: 

 

F
h

MhS g
g =⋅+⋅

dt
d ˆ

ˆ                                                (D.22) 

 

where S, M and F is generally known as stiffness matrix, mass matrix and load vector, 

respectively, from the structural mechanics analogy. 
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APPENDIX E 

 

11. DERIVATION OF ELEMENT INTEGRAL EQUATIONS FOR 

GROUNDWATER FLOW 

 

 

The key point in finite element analysis is the derivation of element matrices and 

vectors that are obtained as a result of element level integrations. These element level 

matrices and vectors are then later assembled sequentially to obtain their global 

counterparts. In this study, the element matrices and vectors are [4X4] and {4X1} 

systems, respectively, since four-nodal linear quadrilateral elements are used to discretize 

the domain. In what follows first the evaluation of element domain integrals are discussed 

followed by the discussion of element boundary integrals. Each integral given in 

equations (D.19), (D.20) and (D.21) are split and written separately with a bullet. They 

are analyzed such that a procedure for their numerical evaluation is presented.  

 

Derivation of Element Matrices and Vectors for the Element Domain 

For all elements in the domain, a series of integrals presented in (D.19), (D.20) 

and (D.21) are evaluated to obtain the members of the [4X4] element stiffness and mass 
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matrices and {4X1} element load vector. Hence, in what follows, each integral is 

analyzed individually in which subscripts i and j run from 1 to 4. 

 

• ( )( )
( ) ( )

( ) ( )
ˆ

e

j ji i
g gxx xy

e
g b

avg j ji i
g gyx yy

N NN NK K
x x y x

h z d
N NN NK K
x y y y

Ω

 ∂ ∂ ∂ ∂+  ∂ ∂ ∂ ∂  − Ω  ∂ ∂∂ ∂ + +  ∂ ∂ ∂ ∂   

∫∫   

 

This integral is associated with the flux term in x- and y- directions due to the 

changes in hydraulic head in x- and y- directions as shown in equation (D.19). The basic 

assumption is that the hydraulic conductivity components and average hydraulic head are 

taken to be constant over the element. Therefore, these terms can be taken out of the 

integral and the integral is separated into its components.  
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Each integral in (E.1) could then be written in local coordinates using the determinant of 

the Jacobian matrix and the master element concept. At this stage, it is important to 

transform the partial derivatives with respect to the global coordinates to the partial 

derivatives with respect to the local coordinates. For example, the derivatives in the first 

integral could be written as follows as using the chain rule of differentiation and the 

transformation matrix:  
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In these two equations, all the derivatives are partial derivatives of the shape functions 

with respect to local coordinates and can be computed easily. Substituting these two 

derivatives and writing the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as some function f: 
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the first integral simplifies to: 
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and evaluated using the Gaussian quadrature: 
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When the above procedure is implemented for all integrals, one could obtain the final 

form of the flux integral. The difference between the integrals occurs from the 

differentiation with respect to x and y coordinates of the shape functions and their 

corresponding forms in local coordinates. Hence, the function f takes a different form for 

each of the four integrals such that:  
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where f1, f2, f3 and f4 represent the local functional form of each integrand of the original 

element integral. Finally, one could obtain the final integral when the corresponding 

values of the hydraulic conductivity and element averaged saturated thickness are 

substituted in the original integral giving a final outcome of a [4X4] element matrix. 
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This integral is associated with the time rate of change of the hydraulic head over 

an element as shown in equation (D.21). The basic assumption is that the specific yield is 

constant over an element. Therefore, this term can be taken out of the integral. 

Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept.  
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 

specific yield. The final outcome of the integral is a [4X4] matrix from each element.  
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This integral represents the contribution of infiltration over an element as shown 

in equation (D.20). The basic assumption is that infiltration is taken to be constant over 

an element. Therefore, it can be taken out of the integral. Furthermore, the integral is 

written in local coordinates using the determinant of the Jacobian matrix and the master 

element concept.  
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element vector is written using the above formula and substituting the 

infiltration value. The final outcome of the integral is a {4X1} vector from each element.  
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This term represents the contribution of discharge/recharge wells in the domain as 

shown in equation (D.20). The basic assumption is that well locations coincide with the 

nodal points. The domain integral of point source term associated with wells can be 

simplified using the sifting property of the Dirac-δ function. After implementing the 

property for each delta function, one would obtain: 
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Since the interpolating function takes the value of 1 at the particular node, the expression 

simplifies to: 
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which is evaluated without any difficulty. 
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This integral represents the contribution of head-dependent part of the line source 

as shown in (D.19). When linear quadrilateral elements are used to discretize the domain, 

the sides of the element are straight lines between two nodal points. Therefore, the river 

(i.e., the line source) becomes a combination of several straight line segments. Each of 

these segments is defined by the two end points such that the parametric equation of each 

line segment is written as: 
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where points A(xA,yA) and B(xB,yB) define the global coordinates of the end points of a 

line segment. For a straight line, the gradient of parametric vector equation g is evaluated 

to be the length of the line segment:  
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It is assumed that the lateral flow associated with each line segment is constant along the 

segment and is not a function of the parameter u. Therefore, both the gradient term and 
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the lateral flow term can be taken out of the integral with respect to u such that the line 

source integral becomes: 
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Since Nj is not a function of u, it can also be taken out of the u integral and the integration 

with respect to u can now be performed using any one of the Dirac-δ function 

expressions. After substituting the expressions for gx and gy given in equation (E.31), the 

integral becomes: 
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If the x-component is selected to perform the integration, the y-component of the Dirac-δ 

function can be written as some function h(u) such that the integral becomes: 
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The expression in the Dirac-δ function can now be rearranged to give: 
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Since the term (xA,e,m-xB,e,m) is a constant, it can be written as: 
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Rewriting the Dirac-δ function gives: 
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Since the derivative of the Dirac-δ function is the Heaviside step function by using the 

sifting property (Harris and Stocker, 1998), the integration over u yields: 

 

( )
1

, ,

, , , ,, , , ,0

1

, , , ,

, , , , , , , ,, , , , 0

1

1

A e m

B e m A e mA e m B e m

u

A e m A e m

B e m A e m B e m A e mA e m B e m u

x x
h u u du

x xx x

x x x x
h H u

x x x xx x

δ

=

=

 −
−  −−  

  − −
= −    − −−   

∫





  (E.25) 

 

where H is the Heaviside step function. Evaluating this function at two points gives: 
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Along the line where xA,e,m ≤ x ≤ xB,e,m, the Heaviside function expression above is 

calculated to be 1, and 0 elsewhere. After evaluating the function h(u) and substituting, 

the integral with respect to parameter u yields: 
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This term can now be substituted back in the general line source term to give: 
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Taking the constant terms out of the domain integral and rearranging gives: 
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Focusing on the domain integral, the expression in front of the Dirac-δ function is treated 

as a function and the element integral can be evaluated using the sifting property and the 

Heaviside function: 
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where the parenthesis after the terms Krwr/mr, Nj and Ni show at which (x,y) position they 

are evaluated. In this equation, all terms are reduced to a single variable (i.e., x) that is 

valid along the line segment. Therefore, the integral with respect to x will be performed 

between the two end points of the line segment. If one assumes that the Krwr/mr term is 

constant along the line segment and the functional parenthesis is dropped out for Nj and 

Ni for simplicity, one would obtain the following: 
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It is important to note that the shape functions are evaluated along the line segment. The 

integration of the shape functions along the line can be done using global coordinates or 

local coordinates. The result is a [2X2] matrix. Below, a sample integration using global 

coordinates is shown for the (1,1) position such that:  
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The other positions follow the same idea. When the result of the integration is substituted 

in the original term and necessary simplifications are made, one would obtain: 
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The coefficient of the length of the line changes for other positions such that it is 1/3 for 

positions i = j and 1/6 for i ≠ j. 
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This integral represents the contribution of constant part of the line source as 

shown in equation (D.20). Following the steps shown in the above integral, the problem 

reduces to the evaluation of the following integral: 
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The integration of the shape functions along the line can be done using global coordinates 

or local coordinates. The result is now a {2X1} vector. Below, the integration is shown 

for the (1,1) position such that:  
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When the result of the integration is substituted in the original term, one would obtain: 
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The result is the same for the other position (2,1). 

 

Derivation of Element Matrices and Vectors for the Element Boundaries 

Elements involving a boundary, where a natural boundary condition (i.e., 

Neumann or Cauchy type) is specified, require the computation of the three boundary 

integrals shown in Appendix D. In these integrals, the integration is performed over the 

global boundary coordinate dΓe along the boundary of the element. To simplify the 

integration process, the integrands of these integrals must be written on the master 

element using the local coordinate system and must also be specified for a particular side 

of the element, which in turn requires that the shape functions are expressed for the 

particular boundary side of the element. As seen in Figure E.1, the boundary of the 
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element can be any side of the quadrilateral depending on its position in the analysis 

domain. In order to write the shape functions along each side, appropriate values of ξ and 

η are substituted for the general shape function formulae. 

The global boundary coordinate Γ is mapped to the local boundary coordinate a 

(i.e, -1≤a≤1) for each side as shown in Figure E.1. The local coordinates holds the values 

ξ = a, η = -1 for side 1, ξ = 1, η = a for side 2, ξ = -a, η = 1 for side 3 and ξ = -1, η = -a 

for side 4. Using these values, one would obtain the following four shape functions for 

each side of the element: 
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                                    (E.37) 

 

If the values of -1 and +1 are substituted for a in the above formulae, one would indeed 

obtain the fact that shape functions are equal to 1 at the node it is written for and 0 at all 

other nodes of the element. The integral over the element in global coordinates must also 

be transformed to an integral over the master element in local coordinates. This 

transformation introduces the determinant of the Jacobian between global boundary and 

local boundary coordinates.  
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Figure E. 1. Boundary coordinates on the master and actual element 
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where Ja is the Jacobian of the boundary. The incremental boundary coordinate in global 

coordinate system, dΓ, can be written as follows according to the Figure E.2: 
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Dividing both sides of this relationship with differential length, da, would give the 

following relationship between the global and local boundary coordinate:  
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Figure E. 2. Incremental boundary coordinate in global coordinate system 
 

Therefore, the Jacobian of the boundary is written as: 
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where da will always take the value of 2 since it is the length of any side on the master 

element. Using these fundamental concepts, the boundary integrals can be evaluated as 

follows: 
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This integral represents the contribution of Neumann boundary condition as 

shown in equation (D.20). The basic assumption is that flux is taken to be a constant over 

the boundary side of the element. Therefore, the qN term can be taken out of the integral.  
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Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 

the shape functions with respect to the global coordinates to the shape function with 

respect to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 

boundary side. 
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It is important to note that this integral is simple and does not need numerical integration. 

It can be integrated exactly to obtain 1 regardless of the side and the associated nodes of 

the element. Therefore, the final outcome of this boundary integral is a {2X1} vector 

from each boundary element. 
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This integral represents the contribution of head dependent boundary condition 

due to the constant term as shown in equation (D.20). The basic assumption is that the 

Krwrhr/mr term is taken to be a constant over the boundary side of the element. Therefore, 

it can be taken out of the integral to yield: 

 

∫∫
ΓΓ

Γ=Γ
ee

e
i

r

rrre
i

r

rrr dN
m

hwKdN
m

hwK

33

33                                (E.45) 

 

Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 

the shape functions with respect to the global coordinates to the shape function with 

respect to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 

boundary side. 
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As before, this integral is simple and does not need numerical integration. It can be 

integrated exactly to obtain 1 regardless of the side and the associated nodes of the 

element. Therefore, the final outcome of this boundary integral is a {2X1} vector from 

each boundary element. 
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Finally, this integral represents the contribution of head dependent boundary 

condition due to the variable groundwater head as shown in equation (D.19). It must be 

noted, however, that this term might also reduce to a constant flux term if the hydraulic 

head is below the bottom elevation of the river sediments. In such a case, the integral is 

evaluated as an added contribution to the constant flux integral. Otherwise, this integral is 

treated as a head-dependent boundary condition. In its head-dependent form, the basic 

assumption is that the Krwr/mr term is taken to be a constant over the boundary side of the 

element. Therefore, it can be taken out of the integral to yield: 
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Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 
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the shape functions with respect to the global coordinates to the shape function with 

respect to the local coordinates. 
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                                       (E.49) 

 

and can further be simplified since the Jacobian is simply one half the length of the 

boundary side. 
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                                       (E.50) 

 

As before, this integral is simple and does not need numerical integration. It can be 

integrated exactly using the non-zero shape functions to obtain 2/6 for i = j and 1/6 for i ≠ 

j, regardless of the side and the associated nodes of the element. Therefore, the final 

outcome of this boundary integral is a [2X2] vector from each boundary element. 

 

 348 



 

 

 

 

 

 

 

 

 

 

APPENDIX F 

 

NUMERICAL INTEGRATION OF ELEMENT INTEGRAL EQUATIONS 

 349 



 

 

 

APPENDIX F 

 

12. NUMERICAL INTEGRATION OF ELEMENT INTEGRAL EQUATIONS 

 

 

Element integral equations obtained after transformation to local coordinates are 

generally not evaluated by analytic integration since the integrands are very complicated 

non-linear functions of local coordinates due to the presence of non-constant Jacobian 

and its inverse. Particularly for irregular quadrilateral elements, a numerical integration 

scheme involving various numbers of integration points and corresponding weights is the 

only viable method of integration. The most common numerical integration scheme is the 

Gauss quadrature formula. In a one-dimensional setup, this formula takes the following 

form:  

 

                                             (F.1) 

where NSP is the total number of sampling locations, f(a  is any function evaluated at 

sampling location a w ghing constant. The sampling 

locations and corresponding weighing coefficients in Gauss quadrature formula are given 

in Table F.1 for the commonly applied schemes of less than six points. 

( ) ( )∫ ∑
− =

=
1

1 1

NSP

j
jj wafdf ξξ

 

j)

j and j is the corresponding wei
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Table F. 1. Integration Points and Weighing Coefficients in Gauss Quadrature Formula 
(Zienkiewicz and Taylor, 1989) 

Number of Sampling Point 
(NSP) 

Sampling Location 
(a) 

Weighing Coefficient 
(w) 

1    0.000 000 000 000 000 2.000 000 000 000 000 
2 ± 0.577 350 269 189 626 1.000 000 000 000 000 
3 ± 0.774 596 669 241 483 

   0.000 000 000 000 000 
0.555 555 555 555 556 
0.888 888 888 888 889 

4 ± 0.861 136 311 594 953 
± 0.339 981 043 584 856 

0.347 854 845 137 454 
0.652 145 154 862 546 

5 ± 0.906 179 845 938 664 
± 0.538 469 310 105 683 
   0.000 000 000 000 000 

0.236 926 885 056 189 
0.478 628 670 499 366 
0.568 888 888 888 889 

6 ± 0.932 469 514 203 152 
± 0.661 209 386 466 265 
± 0.238 619 186 083 197 

0.171 324 492 379 170 
0.360 761 573 048 139 
0.467 913 934 572 691 

 

 

In general, a one-dimensional Gauss quadrature scheme with NSP sampling 

locations integrates any polynomial of 2*NSP-1 order exactly on the interval [-1,1]. 

Therefore, a two-point scheme will integrate a 3 ial exactly. Integration 

in two-dimensions is done based on the same analogy according to the following 

formula: 

)

rd order polynom

 

( ) (∫ ∫ ∑ ∑
− − = =

=
1

1

1

1 1 1
,,

NSP

i

NSP

j
ijji fwwddf ηξηξηξ                                  (F.2) 

 

The inner integral is evaluated first by taking the η variable constant. The evaluated 

expression is then integrated with respect to the ξ variable. Generally, the same number 

of sampling points is used in both integration directions. In this study, the numerical 

integration is performed by using a three-point Gaussian quadrature formula. 
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APPENDIX G 

 

13. DERIVATION OF GALERKIN FORM OF OVERLAND FLOW EQUATION 

 

 

The first step of the derivation of the weak form is to approximate the unknown 

function over the domain using interpolating functions, N ), of the form: 

)

j(x,y

 

( ) ( ) ( )( ) (
1

ˆ ˆ, , , , ,
N

o o o j
jj

h x y t h x y t h t N x y
=

≈ =∑                            (G.1) 

 

where ĥo(t) is the approximate value of the water surface elevation and N is the total 

number of nodes in the two-dimensional overland flow domain. In essence, the temporal 

and spatial discretizations are separated from each other in the approximate solution. The 

nodal values, (ĥo(t))j, becomes only a function of time and the shape function, Nj(x,y), is 

now only a function of space. It is also important to note that the shape functions are 

defined only for its corresponding nodes. They are zero elsewhere in the domain.  

Since the Galerkin method is an approximate technique, the solution given in 

equation (G.1) does not satisfy the differential equation exactly and a residual occurs. 

The method states that the weighted average of this residual over the whole domain 
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becomes zero. If the approximate solution is substituted in the differential equation, one 

can write the total residual, Ř, as:  

 

( )
ˆ ˆ ˆ

, , o o o
ox oy

h h hR x y t K K R I
t x x y y

   ∂ ∂ ∂∂ ∂= − − − +      ∂ ∂ ∂ ∂ ∂   
�                    (G.2) 

 

The Galerkin finite element method is based on the idea of minimizing this residual over 

the solution domain by letting the weighed integral residual tend to zero. In this 

formulation the weighing functions are selected as the interpolating functions used in 

element level:  

 

( ) ( ), , , 0 1, 2,3,...,iR x y t N x y d i N
Ω

Ω = =∫∫ �                         (G.3) 

 

For the sake of clarity, the description of the index i running from 1 to N is not repeated 

in the following equations. When the expression for the residual is substituted in equation 

(G.3), the integral simplifies to: 

 

ˆ ˆ ˆ
0o o o

ox oy i
h h hK K R I N d
t x x y yΩ

    ∂ ∂ ∂∂ ∂ − − − +       ∂ ∂ ∂ ∂ ∂     
∫∫ Ω =               (G.4) 

 

The integration by parts is now applied to the second order derivative terms in the above 

integral to reduce them to first order and incorporate the natural boundary conditions: 

 

 354 



ˆ ˆ
o o i

ox i ox ox i x
h h NK N d K d K N n

x x x x xΩ Ω Γ
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h h NK N d K d K N n
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  ∂ ∂ ∂ ∂∂  Ω = − Ω + Γ   ∂ ∂ ∂ ∂ ∂   
∫∫ ∫∫ ∫ ôh d         (G.6) 

 

where nx and ny represent the x and y components of unit normal vector. Substituting 

these expressions and rearranging gives: 
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i

                                 (G.7) 

 

In the above form, the boundary integral can be written as a specified flux boundary 

condition, Γ2: 

 

( ) ( )
2

2... ...iN d N d
Γ Γ

Γ = Γ∫ ∫                                             (G.8) 

 

where it becomes the natural boundary conditions. In addition to the second type 

boundary, the domain might also have first type boundaries where the known stage is 

specified. Such boundaries form the essential boundary conditions. At the nodes of 

essential boundary conditions, the solution is known and the residual vanishes. When the 
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expression in the specified flux is substituted in (G.8), one would obtain the following 

simplified form for the boundary integral: 

 

ˆ ˆ
o o

ox i x oy i y N i
h hK N n K N n d q N d
x yΓ Γ

 ∂ ∂− + Γ = ∂ ∂  
∫ ∫ Γ                          (G.9) 

 

After simplifications and further manipulations, one could obtain the following weak 

from of the equation as: 
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               (G.10) 

 

When the approximate solution in (G.1) is substituted in the weak from, the equation is 

written as: 
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(G.11) 

 

Since the nodal values are only a function of time and the shape functions are only a 

function of space, the above expression can be simplified by taking some of the terms out 

of the derivatives: 

 356 



 

( ) ( )

( )
( )

1 1

1

ˆ ˆ

ˆ
0

N N
j ji i

N i o ox o oy
j jj j

N o
j

i j i
j

N NN Nq N d h K d h K d
x x y y

h
R I N d N N d

t

= =Γ Ω Ω

=Ω Ω

∂ ∂∂ ∂Γ + Ω + Ω
∂ ∂ ∂ ∂

∂
− − Ω + Ω =

∂

∑ ∑∫ ∫∫ ∫∫

∑∫∫ ∫∫
   (G.12) 

 

Since Ni is defined such that it is non-zero only over elements adjacent to node i, the 

integrations may be performed piecewise over each element and subsequently summed.  
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The element integrals can now be written in matrix form: 

 

ˆˆ d
dt

⋅ + ⋅ =e e o
o

hS h M Fe                                          (G.14) 

 

where ĥg is the unknown hydraulic head vector and Se, Me and Fe are element matrices 

and vectors defined as follows: 
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e
N i iq N d R I N d

Γ Ω

= − Γ + − Ω∫ ∫∫eF                                  (G.16) 

e

e
j iN N d

Ω

= ∫∫eM                                                (G.17) 

 

Finally, the global assembly of these matrices would yield the following matrix equation: 

 

ˆˆ d
dt

⋅ + ⋅ =o
o

hS h M F                                              (G.18) 

 

where S, M and F is generally known as stiffness matrix, mass matrix and load vector, 

respectively, from the structural mechanics analogy. 
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14. DERIVATION OF ELEMENT INTEGRAL EQUATIONS FOR 

OVERLAND FLOW 

 

 

The key point in finite element analysis is the derivation of element matrices and 

vectors that are obtained as a result of element level integrations. These element level 

matrices and vectors are then later assembled sequentially to obtain their global 

counterparts. In this study, the element matrices and vectors are [4X4] and {4X1} 

systems, respectively, since four-nodal linear quadrilateral elements are used to discretize 

the domain. In what follows first the evaluation of element domain integrals are discussed 

followed by the discussion of element boundary integrals. Each integral given in 

equations (G.15), (G.16) and (G.17) are split and written separately with a bullet. They 

are analyzed such that a procedure for their numerical evaluation is presented. 

 

Derivation of Element Matrices and Vectors within the Domain 

For all elements in the domain, a series of integrals presented in (G.15), (G.16) 

and (G.17) are evaluated to obtain the members of the [4X4] element stiffness and mass 
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matrices and {4X1} element load vector. Hence, in what follows, each integral is 

analyzed individually in which subscripts i and j run from 1 to 4. 

 

• 
e

j j ei i
ox oy

N NN NK K
x x y yΩ

∂ ∂ ∂ ∂+ Ω ∂ ∂ ∂ ∂ 
∫∫ d  

 

This integral is associated with the flux term in x- and y- directions due to the 

changes in overland flow stage in x- and y- directions as shown in equation (G.15). The 

basic assumption is that the diffusion coefficients are taken to be constant over the 

element. Therefore, these terms can be taken out of the integral and the integral is 

separated into its components. 
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x x y y x x y yΩ Ω

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ Ω = Ω + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∫∫ ∫∫ ∫∫ ei d

Ω

Ω  (H.1) 

 

Each integral in (H.1) could then be written in local coordinates using the determinant of 

the Jacobian matrix and the master element concept. At this stage, it is important to 

transform the partial derivatives with respect to the global coordinates to the partial 

derivatives with respect to the local coordinates. For example, the derivatives in the first 

integral could be written as follows as using the chain rule of differentiation and the 

transformation matrix:  
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In these two equations, all the derivatives are simple partials of the shape functions with 

respect to local coordinates and can be computed easily. Substituting these two 

derivatives and writing the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as some function f: 
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then the integral simplifies to: 

 

( )∫ ∫∫∫
− −Ω

=Ω
∂

∂
∂

∂ 1

1

1

1
, ηξηξ ddfd

x
N

x
N

e

eij                                     (H.5) 

 

 362 



and evaluated using the Gaussian quadrature: 
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When the above procedure is implemented for the other integral, one could obtain the 

final form of the flux integral. The only difference between the integrals is the form of 

the function f which now becomes:  
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Finally, one could obtain the final integral when the corresponding values of the diffusion 

coefficient are substituted in the original integral giving a final outcome of a [4X4] 

element matrix. 
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j iN N d
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Ω∫∫

 

This integral is associated with the time rate of change of the water surface 

elevation over an element as shown in equation (G.17). When the integral is written in 

local coordinates using the determinant of the Jacobian matrix and the master element 

concept, one obtains:  
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula. The final outcome of the 

integral is a [4X4] matrix from each element.  
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This integral represents the contribution of effective precipitation over an element 

as shown in equation (G16). The basic assumption is that both the precipitation and the 

infiltration are taken to be constant over an element. Therefore, the effective precipitation 

can be taken out of the integral. Furthermore, the integral is written in local coordinates 

using the determinant of the Jacobian matrix and the master element concept.  
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element vector is written using the above formula and substituting the 

effective infiltration value. The final outcome of the integral is a 4X1 vector from each 

element.  

 

Derivation of Element Matrices and Vectors along the Boundaries 

Elements involving a boundary, where a natural boundary condition is specified, 

require the computation of the boundary integral shown in Appendix G. In this integral, 

the integration is performed over the global boundary coordinate dΓe along the boundary 

of the element. To simplify the integration process, the integrands of these integrals must 

be written on the master element using the local coordinate system and must also be 

specified for a particular side of the element, which in turn requires that the shape 

functions are expressed for the particular boundary side of the element. As seen in Figure 

E.1, the boundary of the element can be any side of the quadrilateral depending on its 

position in the analysis domain. In order to write the shape functions along each side, 

appropriate values of ξ and η are substituted for the general shape function formulae. The 

global boundary coordinate Γ is mapped to a local boundary coordinate a (-1≤a≤1) for 

each side as shown in Figure E.1. The local coordinates holds the values ξ = a, η = -1 for 

side 1, ξ = 1, η = a for side 2, ξ = -a, η = 1 for side 3 and ξ = -1, η = -a for side 4. Using 
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these values, one would obtain the following four shape functions for each side of the 

element: 
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                                   (H.12) 

  

If the values of -1 and +1 are substituted for a in the above formulae, one would indeed 

obtain the fact that shape functions are equal to 1 at the node it is written for and 0 at all 

other nodes of the element. The integral over the element in global coordinates must also 

be transformed to an integral over the master element in local coordinates. This 

transformation introduces the determinant of the Jacobian between global boundary and 

local boundary coordinates.  

 

( ) ( )∫∫
−Γ

=Γ
1

1
daJafdBf a

e

e
                                        (H.13) 

 

where Ja is the Jacobian of the boundary and the incremental boundary coordinate in 

global coordinate system, dΓ, can be written as follows according to the Figure E.2: 

 

( ) ( )22 dydxd +=Γ                                             (H.14) 
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Dividing both sides of this relationship with differential length, da, would give the 

following relationship between the global and local boundary coordinate:  

 

daJd
da
dy

da
dx

da
d

a=Γ⇒





+






=Γ 22

                       (H.15) 

 

Therefore, the Jacobian of the boundary is written as: 

 

22







+






=

da
dy

da
dxJ a                                            (H.16) 

 

where da will always take the value of 2 since it is the length of any side on the master 

element. Using these fundamental concepts, the boundary integrals can be evaluated as 

follows: 

 

•  ∫
Γ

Γ
e

e
iN dNq

2

2

 

This integral represents the contribution of Neumann boundary condition as 

shown in equation (G.16). The basic assumption is that flux is taken to be a constant over 

the boundary side of the element. Therefore, the qN term can be taken out of the integral.  
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∫∫
ΓΓ

Γ=Γ
ee

e
iN

e
iN dNqdNq

22

22                                          (H.17) 

 

Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 

the shape functions with respect to the global coordinates to the shape function with 

respect to the local coordinates. 

 

∫∫
−Γ

=Γ
1

1
2

2

daJNdN ai
e

i
e

                                            (H.18) 

 

and can further be simplified since the Jacobian is simply one half the length of the 

boundary side. 

 

∫∫
−Γ

=Γ
1

1
2 2

2

daN
L

dN i
ee

i
e

                                             (H.19) 

 

It is important to note that this integral is simple and does not need numerical integration. 

It can be integrated exactly to obtain 1 regardless of the side and the associated nodes of 

the element. Therefore, the final outcome of this boundary integral is a {2X1} vector 

from each boundary element. 
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APPENDIX I 

 

15. FINITE DIFFERENCE EQUATIONS OF UNSATURATED 

GROUNDWATER FLOW 

 

 

The finite difference form of unsaturated zone flow model is derived in this 

appendix. For each column of unsaturated zone, the governing equation of flow given in 

equation (3.73) is discretized in the z-t plane using the control volume finite difference 

method. Two additional equations are then used to represent the conditions at the top and 

bottom of the unsaturated column. This procedure creates a system of N equations for N 

unknowns, which is then solved to evaluate the unknown pressure head at all nodes of the 

discretization. The discretized form of the governing equation is derived below for both 

an intermediate node and for top and bottom boundary nodes. 

The one-dimensional modeling domain used in the discretization is bounded by 

the soil surface at the top of the domain and by the water table at the bottom of the 

domain as shown in Figure I.1. The computational nodes are located at the centers of the 

control volumes or cells and are numbered from 1 to N starting from the lower boundary. 

The fluxes between cells are defined at the upper and lower boundaries of each control 

volume. This type of a discretization is extremely convenient when infiltration is the 
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upper boundary condition, allowing it to be defined right at the surface (i.e., at the upper 

boundary of top control volume). However, it requires special treatment when overland 

flow initiates and a certain amount of water depth is developed above the surface.  

Following the work of Celia et al. (1990), the mixed form of Richards’ equation 

has become popular for modeling the unsaturated zone flow. This form eliminates the 

mass balance errors associated with the classical head-based form of Richards equation. 

Simple Picard iteration is used to handle the non-linearity in the equation. Time stepping 

is done via the classical backward Euler method and a second order central differencing 

is used to discretize the spatial derivative. 

 

 

Figure I. 1. One-dimensional discretization in unsaturated zone 
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Discretized form of equation 

Using the setup discussed above, the one-dimensional unsaturated zone equation 

is discretized for an intermediate spatial node i to give: 
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(I.1) 

 

where the subscripts j and k represent the known time and iteration levels where as j+1 

and k+1 represent the unknown time and iteration levels, respectively. In addition, ∆zi is 

the thickness of control volume i, ∆zi+1/2 and ∆zi-1/2 are the distance between nodes i+1 

and i and i and i-1, respectively, as shown in Figure I.1. There are several available 

approaches to compute internodal hydraulic conductivities, (Ku)i+1/2 and (Ku)i-1/2. Of these 

methods, the arithmetic mean, geometric mean, harmonic mean, arithmetic mean 

saturation and upwinding are the most commonly applied techniques to evaluate the 

value of the unsaturated hydraulic conductivity at cell faces. Although each method has 

its advantages and disadvantages, they all perform well for uniform soils. In the case of 

non-uniform soils, however, only an integral approach gives accurate results (Williams 

and Miller, 1999). Since a uniform soil profile is assumed in this study, a computationally 

simple arithmetic averaging technique is used to evaluate the internodal hydraulic 

conductivities. 

It is clearly seen from the above formulation that all nonlinear occurrences of the 

unknowns are treated at the (k)th iteration level where as all linear occurrences of the 
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unknowns are computed at the (k+1)th iteration level. The key to the modified Picard 

iteration of Celia et al. (1990) is the expansion of the term θi
j+1,k+1 in a truncated Taylor 

series with respect to Ψ, about the point Ψi
j+1,k: 

 

( )
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j k

j k j k j k j k
i i i i

d H O T
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θθ θ ψ ψ
ψ

+
+ + + + + += + − +                          (I.2) 

 

The derivative of moisture content with respect to the pressure head is actually the 

specific moisture capacity (C). If the higher order terms are neglected and this equation is 

substituted in the discretization, one would obtain: 
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(I.3) 

 

In this form, both the degree of saturation in the left hand side and the internodal 

conductivities in the right hand side of the equation are treated at the known iteration 

level (k). Therefore, these terms become constants for the solution of the unknown 

iteration level (k+1). 
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Bottom Boundary Conditions 

In this study, a specified zero pressure head is implemented at the bottom of the 

domain since water table is selected as the bottom boundary of the domain. Figure I.2 

depicts the situation at the bottom boundary. Since there is not a node located precisely at 

the boundary, specifying a head condition at the boundary requires some extra work. 

Although there are several alternative treatments of the boundary, one of most commonly 

applied treatment is to pass an interpolating polynomial between the points 1, 2 and the 

boundary.  Once this polynomial is quantified, it can be differentiated with respect to z to 

obtain the term necessary for computing the boundary flux value that is required for the 

analysis: 
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Figure I. 2. Bottom boundary condition 
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The computation of the hydraulic conductivity at the bottom boundary is not required 

when the bottom boundary condition is specified at the groundwater table because of the 

fact that this point is always saturated and the hydraulic conductivity always takes its 

saturated value. Multiplying the first derivative of the polynomial with the saturated 

hydraulic conductivity would give the flux needed to run the standard scheme given 

above. 

In general, Lagrange polynomials can be used to interpolate between precise data 

points. For this particular application, the equation of a general second order Lagrange 

polynomial can be written as follows: 
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where x0, x1 and x2 are the known data points and f(x0), f(x1) and f(x2) are the 

corresponding values of the function (Chapra and Canale, 2002). When pressure head is 

taken as the function and the elevations of the points above a certain datum are used as 

the independent variable, the above polynomial can be written as: 

 

( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( 2

1202

10
1

2101

20
0

2010

21 z
zzzz

zzzz
z

zzzz
zzzz

z
zzzz

zzzzz ψψψψ
−−

−−
+

−−
−−

+
−−

−−
= )  (I.6) 

 

If points z0, z1 and z2 are taken the bottom of domain, node1 and node 2, respectively, 

one can substitute the differences and take the derivative with respect to z at the bottom 

of the domain to obtain: 
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It should be noted that this polynomial simplifies to the following form when uniform 

nodal spacing are used in the discretization: 
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Using this term and the hydraulic conductivity, the flux at the bottom of the domain is 

now written as: 
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which further simplifies to: 
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since Kbottom=(Kg)z and ψbottom=0 when the bottom boundary condition is defined at the 

groundwater table. Therefore, the discretized equation for the bottom boundary node can 

be written as: 
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Top boundary condition 

The top boundary of domain is always taken as the soil surface and either a 

specified head or a specified flux condition can be implemented. Figure I.3 depicts the 

situation at the top boundary for both head and flux conditions. Since there is not a node 

at the ground surface, specifying a head condition at the boundary requires some extra 

work. The flux condition is straightforward since it is specified at the upper boundary of 

the top control volume. Therefore, the specified flux value is simply substituted in the 

discretization to give: 
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Figure I. 3. Top boundary condition 
 

The discretization of the specified head condition is not as simple as the flux condition. 

The main difficulty is the fact that the head condition is specified at the boundary of a 

control volume. Hence, the classical treatment of the fluxes is not possible since such 

treatment requires the use of an upper node outside the modeling domain. In this regard, a 

similar idea that is used for the bottom boundary condition is also implemented in the top 

boundary. A Lagrange interpolating polynomial is passed between the points N-1, N and 

the boundary. Once this polynomial is quantified, it can be differentiated with respect to z 

to obtain the term necessary for computing the boundary flux value that is required for 

the analysis: 
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The hydraulic conductivity at the surface is computed using the specified pressure head at 

this particular point. Applying a procedure similar to the one used in bottom boundary 

condition, the points z0, z1 and z2 are taken at node N-1, node N and the top of domain, 

respectively, the differences are substituted and the derivative with respect to z at the 

bottom of the domain is calculated to obtain: 
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Again, it should be noted that this polynomial simplifies to the following form when 

uniform nodal spacing are used in the discretization: 
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Using this term and the hydraulic conductivity, the flux at the top of the domain is now 

written as: 
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where the hydraulic conductivity at the surface is computed by: 
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( )surfacesurface KK ψ=                                                (I.17) 

 

When the general non-uniform expression for flux term is substituted in the 

discretization, one would obtain: 
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APPENDIX J 

 

16. FINITE DIFFERENCE EQUATIONS OF CHANNEL TRANSPORT 

 

 

In this appendix, the finite difference solution of the mass balance and boundary 

condition equations of contaminant transport in channels are presented. For each channel 

of the network, advection, dispersion, decay and source/sink operators of the contaminant 

mass balance equation given in equation (4.1) are discretized in the x-t plane using the 

most suitable scheme for each process. In this regard, the numerical solution of the 

advection operator is performed with the explicit QUICKEST algorithm. A standard fully 

implicit differencing algorithm is then implemented to solve dispersion, decay and 

source/sink operator. Additional equations are also used to represent the conditions in the 

upstream and downstream boundaries of the channel as well as the channel junctions. The 

discretized forms of these equations are given in the following sections. 

 

Numerical solution of advection operator 

In the control-volume finite difference method, each node represents a control-

volume within which, mass is conserved. A control-volume for node i is shown in Figure 

J.1. The left-backward and right-forward cell faces of the control volume are represented 
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by the letters b and f. When similar control volumes are defined for all nodes of the 

domain, the domain is fully discretized in the control-volume sense guaranteeing mass 

balance. For volume i, the discretized equation could be written as: 
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where the subscript ‘f’ and ‘b’ represent the corresponding values of the variables at the 

forward and backward walls of the control volume.  One of the key issues is to determine 

the parameter to advect along the channel. In the conservative form of advection-

dispersion equation, the parameter (CrA) is to be advected that also properly captures the 

unsteady behavior of the flow. However, it is important to note that the variation of the 

parameter (CrA) may be totally different from Cr along the channel. Therefore, the 

numerical algorithm must be suitable to handle such variations and possible non-

monotonic behavior.  
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Figure J. 1. Numerical discretization of the domain for QUICKEST algorithm

 383 



 
The solution of the contaminant concentrations in the above equation is based on 

the principle of properly representing the parameters along the cell faces. In the equation 

given above, the flow variables V and A are obtained from the solution of the channel 

flow model and are known values for the transport solution. In general, the implicit flow 

model would allow much larger time steps than the explicit advection model shown here. 

Hence, for each flow model solution, numerous transport model solutions are to be made. 

In all of these transport solution steps, two techniques can be used to extract the flow 

data. One first is to linearly interpolate the flow information between the two time levels 

of flow solution data according to the transport time step. The second way is to use 

constant values of all flow parameters from the current or future time level within the 

transport solution. When the variation of flow variables within a flow time step is 

significant, then the first method may be more suitable. Otherwise, using constant values 

of flow parameters would give sufficient results.  

Once flow parameters are defined at all node points for each transport time line, 

then the next step is to find the cell wall values of these parameters. When (C ) is solved 

in the equation, a higher order interpolator is used to solve (C ) value and an extra 

interpolation (i.e., simple linear or higher order) is done to find the cell face values of the 

velocity. When C lved in the equation, a higher order interpolator is used to solve 

for the concentration and separate extra interpolations (i.e., simple linear or higher order) 

are used to find the cell face values of the velocity and the area. Regardless of the 

dependent variable of the equation, it is generally accepted that the remaining flow 

parameters (i.e., V when C  is the dependent variable; or V and A when C  

dependent variable) can be linearly interpolated with sufficient accuracy. Since A is a 

rA

rA

r is so

rA r is the
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known parameter to the transport model and very small time steps are enforced due to the 

explicit nature of the numerical scheme where A varies very mildly, the dependent 

variable of the equation can be reduced to C conservative behavior 

of the algorithm. Then one can write the equation as: 

r without violating the 
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where the cell wall values of flow parameters are evaluated as: 
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The cell face values of the concentration are evaluated using a higher order interpolator 

such as the QUICKEST scheme. For a non-uniform grid such as the one shown in Figure 

J.1, the forward face concentration can be written using the QUICKEST algorithm as: 
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where ∆xc is the control-volume length given by ½( ∆xi-1+∆xi) and P1 and P2 are the first 

and second order Lagrangian interpolating polynomials written such that: 
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              (J.6) 

 

where x denotes the position of the forward cell face. The first and the second derivatives 

of these functions are then evaluated to find the expressions required for the QUICKEST 

algorithm: 
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When substituted back in the interpolation equation, one would obtain the expression for 

the front cell face concentration value. For the particular case of a uniform grid, the 

forward cell face concentration value becomes: 
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where CN is the Courant number given by: 

 

V tCN
x
∆=

∆
                                                      (J.10) 

 

A similar procedure is implemented for the backward face concentration can be written 

using the QUICKEST algorithm as: 
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                  (J.11) 

 

where P1 and P2 are similar first and second order Lagrangian interpolating polynomials 

that can be written such that: 
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where x now denotes the position of the backward cell face. The first and the second 

derivatives of these functions are taken to evaluate the expressions required for the 

QUICKEST algorithm: 
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When substituted back in the interpolation equation, one would obtain the expression for 

the back cell face concentration value. Note that for a uniform grid, the backward cell 

face concentration value becomes: 
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Hence, for a control-volume i, the QUICKEST algorithm uses a total of 4 nodal points to 

interpolate the forward and backward cell face concentration values giving a third order 

accurate scheme. 

 

Flux limiting with ULTIMATE method 

Although the QUICKEST algorithm introduces significant advances in advection 

modeling, it still can not fully capture steep gradients. The algorithm creates spurious 

oscillations in the leading edge of such gradients. These oscillations can be effectively 

removed by using a flux limiting procedure. Leonard (1991) formulated a universal 
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limiter to be used in conjunction with the QUICKEST algorithm. The algorithm works as 

follows: 

 

1. Upstream, central and downstream nodes (i.e., U, C and D) are designated for the 

node under analysis by using the sign of the flow velocity for each cell face.  

2. The variable ADEL is computed for each cell face: 

 

( ) ( )j
r r

j

D U
ADEL DEL C C= = −                                      (J.17) 

 

3. The variable ACURV is computed for each cell face: 

 

( ) ( ) ( )2j j
r r

j
rD C
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U

j
r C

                         (J.18) 

 

4. If ACURV≥ADEL, there is non-monotonic behavior of concentration and the cell 

face value is set as: 

 

( ) ( )j
r f

C C=                                                     (J.19) 

 

 and proceed to the next cell face. 

5. Else, a reference concentration is evaluated for each cell face: 
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6. The cell face concentration is evaluated using standard QUICKEST method. 

7. If DEL>0, set: 

 

( ) ( ) ( ) ( )(min ,j
r r r rC f ref

C C C C≤ ≤                                  (J.21) 

 

8. Else, set: 

 

( ) ( )( ) ( ) ( )max , j
r r r rref D f C

C C C C≤ ≤                                  (J.22) 

 

9. Continue to next face and node. 

 

Numerical solution of dispersion, decay and source/sink operators 

The dispersion operator does not pose any numerical problems and hence can be 

accurately discretized by using a central difference scheme as shown in Figure J.1. With 

non-uniform grid spacing, the dispersion operator is discretized as follows: 
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When the dispersion, decay and the source/sink operators are discretized at the unknown 

time level, the final discretized form of the channel transport equation becomes:  
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Treatment of junctions 

Complex channel networks with junctions are not studied extensively within the 

contaminant transport framework except for the work of Zhang (1998) who has 

formulated the contaminant transport phenomena in artificial channel networks. In this 

study, however, the main features of the junction treatment are developed for natural 

channels in a coupled framework. Since the proposed algorithm in this study solves the 

transport equation in two separate steps, treatment of junctions must follow the same 

strategy. Hence, both the explicit advection algorithm and the implicit 

dispersion/decay/source/sink algorithms must properly treat junctions. 

In the advection step, the junction condition must consider the fact that the 

algorithm is explicit in nature. For explicit treatment of junctions, the method of 

characteristics is a viable option. In the method of characteristics, the last reach of each 
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inflowing channel is considered. A forward characteristic is drawn from the unknown 

concentration value (Cr)N
n+1 to the known time line. The concentration value 

corresponding to the point where the characteristic line cuts the known time line is called 

the foot of the characteristics and the concentration at this point is essentially the required 

concentration value. When this is done for all inflowing channels, one would obtain 

temporary junction concentration values. An advective mass balance is then written using 

all inflowing channels to compute the concentration value at the most upstream point of 

the outflowing channel. Then, this concentration is equated to the concentration value at 

the most downstream points of all inflowing channels satisfying the equality of the 

concentrations at the junction. In general, a linear interpolation of the two neighboring 

concentration values at nodes N-1 and N is considered to be sufficiently accurate (Figure 

J.2). If the position of the foot of the characteristic at the known time line is represented 

with xfoot, then the concentration value at this point is given by: 

 

 

N1N −

1Nx −∆  

j

1j +

FLOW 

Foot of the 
characteristics 

Figure J. 2. Method of characteristics at junctions for advection step 
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foot Nx x V= − ∆t                                                   (J.25) 

 

The concentration is then calculated using a linear interpolation function such that: 
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                      (J.26) 

 

It is important to note that higher order interpolators could also be used in this operation 

to increase the accuracy of the solution. However, for practical purposes, a linear 

interpolator is satisfactory. Finally, the concentration at the unknown time line is equated 

to the calculated concentration value at the foot of the characteristic such that: 

 

( ) 1j j
r N

C C+ =                                                     (J.27) 

 

Once this operation is done for all inflowing channels, one can write an advective mass 

balance at the junction to find the concentration at the most upstream point of the 

outflowing channel. For a junction shown in Figure J.3, the junction mass balance is 

written as: 
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Figure J. 3. Treatment of junctions 
 

where the first subscript represents the channel specific local nodal value and the second 

subscript stands for the channel this node belongs. Once this concentration is found from 

the mass balance, it serves as the upstream boundary condition of the outflowing channel. 

Finally, it is equated to the concentration values at the most downstream nodes of all 

inflowing channels to provide the downstream boundary value: 
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The treatment of junctions is slightly different in the dispersion/decay/source/sink 

operator. Since this operator is implicit in nature, the junction condition must also be 

treated implicitly. A total mass balance between inflowing channels and the outflowing 

channel guarantees the satisfaction of mass continuity. A time-weighted mass balance 

could be written as: 
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where the total mass flux term for an inflowing or outflowing channel is given as the 

summation of the dispersive mass flux, decayed mass flux and the mass flux due to 

source/sink terms: 
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After discretizing the mass flux term, one could obtain a junction mass balance for the 

second step of the advection-dispersion equation solution. As an example, the 

discretization for the first channel of Figure J.3 is shown below: 
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(J.32) 

 

This discretization is written for all channels and for both known and unknown time lines 

and substituted in the above junction mass balance equation. It is then solved for the 

upstream node of the outflowing channel. Finally, the equality of concentrations at 

junction nodes is implemented. 
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APPENDIX K 

 

17. DERIVATION OF GALERKIN FORM OF GROUNDWATER 

CONTAMINANT TRANSPORT EQUATION 

 

 

The first step of the derivation of the weak form is to approximate the unknown 

function over the domain using interpolating functions, N ),  of the form: 

)

j(x,y

 

( ) ( ) ( )( ) (
1

ˆ ˆ, , , , ,
N

g g g jjj
C x y t C x y t C t N x y

=

≈ =∑                          (K.1) 

 

where Ĉg(t) is the approximate value of the contaminant concentration and N is the total 

number of nodes in the two-dimensional domain. In essence, the temporal and spatial 

discretizations are separated from each other in the approximate solution. The nodal 

values, (Ĉg(t))j, becomes only a function of time and the shape function, Nj(x,y), is now 

only a function of space. It is also important to note that the shape functions are defined 

only for its corresponding node. They are zero elsewhere in the domain. 

Since the Galerkin method is an approximate technique, the solution given in 

equation (K.1) does not satisfy the differential equation exactly and a residual occurs. 

The method states that the weighted average of this residual over the whole domain 
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becomes zero. If the approximate solution is substituted in the differential equation, one 

can write the total residual, Ř, as:  
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            (K.2) 

 

The Galerkin finite element method is based on the idea of minimizing this residual over 

the solution domain by letting the weighed integral residual tend to zero. In this 

formulation the weighing functions are selected as the interpolating functions used in 

element level:  
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For the sake of clarity, the description of the index i running from 1 to N is not repeated 

in the following equations. When the expression for the residual is substituted in 

Equation (K.3) and the square root expression is written as the norm of the gradient of 

parametric vector equation g = gxi + gyj, the integral simplifies to: 
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The integration by parts is now applied to the second order derivative terms in the above 

integral to reduce them to first order and incorporate the natural boundary conditions: 
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where nx and ny represent the x and y components of unit normal vector. Substituting 

these expressions and rearranging gives: 
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In the above form, the boundary integral can be written as a concentration dependent flux 

boundary condition, Γ3: 

 

( ) ( )
3

3... ...iN d N d
Γ Γ

Γ = Γ∫ ∫ i

3i

                                           (K.8) 

 

where it becomes the natural boundary conditions. In addition to the third type boundary, 

the domain might also have first type boundaries where the known stage is specified. 

Such boundaries form the essential boundary conditions. At the nodes of essential 

boundary conditions, the solution is known and the residual vanishes. The integral can be 

divided into two sections representing influx (source) and outflux (exit) portions such 

that: 
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Γ = Γ + Γ∫ ∫ ∫                            (K.9) 

 

Along the influx portion of Γ3, the variable boundary condition is directly substituted in 

the corresponding integral to give: 
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        (K.10) 
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For the outflux or exit boundary, the integral is left as it is representing a free exit 

boundary condition: 
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Therefore, the total boundary integral can be written as: 
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When each term is written explicitly, one would obtain the following: 
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(K.13) 

 

Finally, writing the scalar forms of the boundary integrals would yield the weak form of 

the equation: 
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When the approximate solution in (K.1) is substituted in the weak form, one would obtain 

the following expression: 
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(K.15) 

Since the nodal values are only a function of time and the shape functions are only a 

function of spatial coordinates, the above expression can be simplified by taking some of 

the terms out of the derivatives: 
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(K.16) 

 

Since Ni is defined such that it is non-zero only over elements adjacent to node i, the 

integrations may be performed piecewise over each element and subsequently summed.  
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The element integrals can be written in matrix form: 

 

ˆ
ˆ d

dt
⋅ + ⋅ =ge e

g

C
S C M Fe                                            (K.18) 

 

and the element matrices and vectors are defined as follows: 
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(K.19) 
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= −∫∫eM Ω                                       (K.20) 
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  (K.21) 

 

Finally, the global assembly of these matrices would yield the following matrix equation: 

 

ˆ
ˆ d

dt
⋅ + ⋅ =g

g

C
S C M F                                                (K.22) 

 

where S, M and F is generally known as stiffness matrix, mass matrix and load vector, 

respectively, from the structural mechanics analogy. 

 

 409 



 

 

 

 

 

 

 

 

 

 

APPENDIX L 

 

DERIVATION OF ELEMENT INTEGRAL EQUATIONS  

FOR GROUNDWATER CONTAMINANT TRANSPORT 

 410 



 

 

 

APPENDIX L 

 

18. DERIVATION OF ELEMENT INTEGRAL EQUATIONS FOR 

GROUNDWATER CONTAMINANT TRANSPORT 

 

 

The key point in finite element analysis is the derivation of element matrices and 

vectors that are obtained as a result of element level integrations. These element level 

matrices and vectors are then later assembled sequentially to obtain their global 

counterparts. In this study, the element matrices and vectors are [4X4] and {4X1} 

systems, respectively, since four-nodal linear quadrilateral elements are used to discretize 

the domain. In what follows first the evaluation of element domain integrals are discussed 

followed by the discussion of element boundary integrals. Each integral given in 

equations (K.19), (K.20) and (K.21) are split and written separately with a bullet. They 

are analyzed such that a procedure for their numerical evaluation is presented.  

 

Derivation of Element Matrices and Vectors within the Domain 

For all elements in the domain, a series of integrals presented in (K.19), (K.20) 

and (K.21) are evaluated to obtain the members of the [4X4] element stiffness and mass 
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matrices and {4X1} element load vector. Hence, in what follows, each integral is 

analyzed individually in which subscripts i and j run from 1 to 4. 

 

• ( )
e

j j j j ei i i i
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∫∫ Ω  

 

This integral is associated with the dispersive flux term in x- and y- directions due 

to the change in contaminant concentration x- and y- directions as shown in equation 

(K.19). The basic assumption is that dispersion coefficients, porosity, and aquifer 

thickness are taken to be constant over an element. Therefore, all of these terms can be 

taken out of the integral and the integral is separated into its components.  
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Ω

             (L.1) 

 

Each integral in (L.1) could then be written in local coordinates using the determinant of 

the Jacobian matrix and the master element concept. At this stage, it is important to 

transform the partial derivatives with respect to the global coordinates to the partial 

derivatives with respect to the local coordinates. For example, the derivatives in the first 

integral could be written as follows as using the chain rule of differentiation and the 

transformation matrix:  
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In these two equations, all the derivatives are simple partials of the shape functions with 

respect to local coordinates and can be computed easily. Substituting these two 

derivatives and writing the integral in terms of local coordinates, one would obtain: 
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  (L.3) 

 

If the whole expression inside the integral is simplified and written as some function f: 
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the first integral simplifies to: 

 

( )∫ ∫∫∫
− −Ω

=Ω
∂

∂
∂

∂ 1

1

1

1

, ηξηξ ddfd
x

N
x

N

e

eij                                    (L.5) 

 

 413 



and evaluated using the Gaussian quadrature: 
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When the above procedure is implemented for all integrals, one could obtain the final 

form of the dispersion flux integral. The difference between the integrals occurs from the 

differentiation with respect to x and y coordinates of the shape functions and their 

corresponding forms in local coordinates. Hence, the function f takes a different form for 

each of the four integrals such that:  
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where f1, f2, f3 and f4 represent the local functional form of each integrand of the original 

element integral. Finally, one could obtain the final integral when the corresponding 

values of the element averaged saturated thickness, porosity and dispersion coefficient 

are substituted in the original integral giving a final outcome of a [4X4] element matrix. 
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This integral is associated with the time rate of change of the contaminant 

concentration over an element as shown in equation (K.20). The basic assumption is that 

the retardation coefficient and aquifer porosity are constant over an element. Therefore, 

all of these terms can be taken out of the integral. Furthermore, the integral is written in 

local coordinates using the determinant of the Jacobian matrix and the master element 

concept. 
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 

corresponding values of aquifer thickness, porosity and retardation coefficient. The final 

outcome of the integral is a [4X4] matrix from each element.  
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This integral is associated with the convective flux term in x- and y- directions as 

shown in equation (K.19). The basic assumption is that the flux term and the aquifer 

thickness are taken to be constant values over the element. Therefore, both of these terms 

can be taken out of the integral and the integral is separated into its components.  
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Each integral in (L.13) could then be written in local coordinates using the determinant of 

the Jacobian matrix and the master element concept. At this stage, it is important to 

transform the partial derivatives with respect to the global coordinates to the partial 

derivatives with respect to the local coordinates. For example, the derivative in the first 
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integral could be written as follows as using the chain rule of differentiation and the 

transformation matrix:  
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In this equation, the derivatives are simple partials of the shape functions with respect to 

local coordinates and can be computed easily. Substituting these derivatives and writing 

the integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as: 
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the integral simplifies to: 
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and evaluated using the Gaussian quadrature: 
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When the above procedure is implemented for the other integral, one could obtain the 

final form of the advective flux integral. The function f takes the following form for the 

second integral:  
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Finally, one could obtain the final integral when the corresponding values of that the flux 

term and the aquifer thickness are substituted in the original integral giving a final 

outcome of a [4X4] element matrix. 

 

• 
e

e
j iIN N d

Ω

Ω∫∫  

 

This integral is associated with the mass flux within the infiltrating water as 

shown in equation (K.19). The basic assumption is that the infiltration rate, I, is taken to 

be constant over the element. Therefore, this term can be taken out of the integral. 

Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. 
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 

corresponding infiltration value. The final outcome of the integral is a [4X4] matrix from 

each element.  
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e

e
d g b j inR h z N N dλ

Ω
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This integral is associated with the radioactive decay of the contaminant mass as 

shown in equation (K.19). The basic assumption is that the aquifer thickness, porosity, 

decay and retardation coefficients are all taken to be constant over the element. 

Therefore, these terms can be taken out of the integral. Furthermore, the integral is 

written in local coordinates using the determinant of the Jacobian matrix and the master 

element concept. 
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 

corresponding values of aquifer thickness, porosity, decay and retardation coefficient. 

The final outcome of the integral is a [4X4] matrix from each element.  
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This integral is associated with the biological decay of the contaminant mass as 

shown in equation (K.19). The basic assumption is that the aquifer thickness, porosity 

and decay coefficient are all taken to be constant over the element. Therefore, these terms 

can be taken out of the integral. Furthermore, the integral is written in local coordinates 

using the determinant of the Jacobian matrix and the master element concept. 
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 

corresponding values of aquifer thickness, porosity and decay coefficient. The final 

outcome of the integral is a [4X4] matrix from each element.  
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This integral is associated with the mass stored within the aquifer as shown in 

equation (K.19). The basic assumption is that the specific yield and the time rate of 

change of the hydraulic head are taken to be constant over the element. Therefore, these 

terms can be taken out of the integral. Furthermore, the integral is written in local 

coordinates using the determinant of the Jacobian matrix and the master element concept. 
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element matrix is written using the above formula and substituting the 

corresponding values for specific yield and time rate of change of hydraulic head. The 

final outcome of the integral is a [4X4] matrix from each element.  
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This integral is associated with the mass flux within the infiltrating water as 

shown in equation (K.21). The basic assumption is that the infiltration rate and the 

contaminant concentration in the infiltrating water are taken to be constant over the 

element. Therefore, these terms can be taken out of the integral. Furthermore, the integral 

is written in local coordinates using the determinant of the Jacobian matrix and the master 

element concept. 
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If the integral is evaluated using the Gaussian quadrature, one would obtain: 
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Finally, the element vector is written using the above formula and substituting the 

corresponding values of infiltration rate and the contaminant concentration in the 

infiltrating water. The final outcome of the integral is a {4X1} vector from each element.  
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This term represents the contribution of discharge/recharge wells in the domain as 

shown in equation (K.19). The basic assumption is that well locations coincide with the 

nodal points. For each well, the corresponding mass flux is included in the stiffness 

matrix. The domain integral of point source term associated with wells can be simplified 

using the sifting property of the Dirac-δ function. After implementing the property for 

each delta function, one would obtain: 
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At the well point, the basis function evaluates to 1 for that point and 0 for all other points. 

Therefore, the volumetric flux associated with the well is added to the diagonal element 

for the particular node: 
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             (L.31) 

 

which is evaluated without any difficulty. 

 

•  ( ) ( )*
, , , ,

1

w

e

n
e

w k w k w k w k i
k

Q C x x y y N dδ δ
=Ω

 − − ∑∫∫

 

This term represents the contribution of discharge/recharge wells in the domain as 

shown in equation (K.21). The basic assumption is that well locations coincide with the 

nodal points. For each well, the corresponding mass flux is included in the load vector. 

The domain integral of point source term associated with wells can be simplified using 

the sifting property of the Dirac-δ function. After implementing the property for each 

delta function, one would obtain: 
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Since the interpolating function takes the value of 1 at the particular node, the expression 

simplifies to: 
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which is evaluated without any difficulty. 
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This integral represents the contribution of flux associated with a line source (i.e, 

river) as shown in equation (K.19). When linear quadrilateral elements are used to 

discretize the domain, the sides of the element are straight lines between two nodal 

points. Therefore, the river (i.e., the line source) becomes a combination of several 

straight line segments. Each of these segments is defined by the two end points such that 

the parametric equation of each line segment is written as: 
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where points A(xA,yA) and B(xB,yB) define the global coordinates of the end points of a 

line segment. For a straight line, the gradient of parametric vector equation g is evaluated 

to be the length of the line segment:  
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dgdg
Bx x y y L

du du
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g                 (L.35) 

 

Furthermore, it is assumed that the lateral flow, porosity, dispersion coefficient, thickness 

and wetted perimeter at the river/groundwater interface are constant along the element 

and hence can also be taken out of the integral. It is important to note that if these terms 

were not constant but were spatially variable such that they would be a function of u, then 

they could not be taken out of the integral and can only be integrated using numerical 

integration techniques. After these simplifications, the expression becomes: 
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Since the shape functions are not a function of the parameter u, they can also be taken out 

of the integral to give: 
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The next step is to perform the integration over the parameter u that can be done using 

the sifting property of Dirac-δ function. The integral with respect to the parameter u can 

be performed with either one of the Dirac-δ expressions using the sifting property of the 

function. After substituting the expressions for gx and gy given in equation (L.34), the 

integral becomes: 
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         (L.38) 

 

If the x-component is selected to perform the integration, the y-component of the Dirac-δ 

function can be written as some function h(u) such that the integral becomes: 
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The expression in the Dirac-δ function can now be rearranged to give: 
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Since the term (xA,e,m-xB,e,m) is a constant, it can be written as: 
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Rewriting the Dirac-δ function gives: 
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Since the derivative of the Dirac-δ function is the Heaviside step function by using the 

sifting property (Harris and Stocker, 1998), the integration over u yields: 
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where H is the Heaviside step function. Evaluating this function at two points gives: 
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           (L.44) 

 

Along the line where xA,e,m≤x≤xB,e,m, the Heaviside function expression above is 

calculated to be 1, and 0 elsewhere. After evaluating the function h(u) and substituting, 

the integral with respect to parameter u yields: 
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This term can now be substituted back in the general line source term to give: 
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Taking the constant terms out of the domain integral and rearranging gives: 
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Focusing on the domain integral, the expression in front of the Dirac-δ function is treated 

as a function and the element integral can be evaluated using the sifting property and the 

Heaviside function: 
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where the parenthesis after the terms (qL1 - nsedDsedwr/mr), Nj and Ni show at which (x,y) 

position they are evaluated. In this equation, all terms are reduced to a single variable 

(i.e., x) that is valid along the line segment. Therefore, the integral with respect to x will 

be performed between the two end points of the line segment. If one assumes that the (qL1 

- nsedDsedwr/mr) term is constant along the line segment and the functional parenthesis is 

dropped out for Nj and Ni for simplicity, one would obtain the following: 
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It is important to note that the shape functions are evaluated along the line segment. The 

integration of the shape functions along the line can be done using global coordinates or 

local coordinates. The result is a [2X2] matrix. Below, a sample integration using global 

coordinates is shown for the (1,1) position such that:  
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The other positions follow the same idea. When the result of the integration is substituted 

in the original term and necessary simplifications are made, one would obtain: 
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The coefficient of the length of the line changes for other positions such that it is 1/3 for 

positions i = j and 1/6 for i ≠ j. 
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This integral represents the contribution of mass flux associated with a line source 

(i.e, river) as shown in equation (K.21). Following the steps shown in the above integral, 

the problem reduces to the evaluation of the following integral: 
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The integration of the shape functions along the line can be done using global coordinates 

or local coordinates. The result is now a {2X1} vector. Below, the integration is shown 

for the (1,1) position such that:  
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When the result of the integration is substituted in the original term, one would obtain: 
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The result is the same for the other position (2,1). 

 

Derivation of Boundary Element Matrices and Vectors 

Elements involving a boundary where a natural boundary condition is specified 

require the computation of boundary integrals. In these integrals, the integration is 

performed over the global boundary coordinate dΓe along the boundary of the element. 

To simplify the integration process, the integrands must be written on the master element 

using the local coordinate system and must also be specified for a particular side of the 

element, which in turn requires that the shape functions are expressed for the particular 

boundary side of the element. As seen in Figure E.1, the boundary of the element can be 

any side of the quadrilateral depending on its position in the analysis domain. In order to 
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write the shape functions along each side, appropriate values of ξ and η are substituted 

for the general shape function formulae. 

The global boundary coordinate Γ is mapped to a local boundary coordinate a (-

1≤a≤1) for each side as shown in Figure E.1. The local coordinates holds the values ξ = 

a, η = -1 for side 1, ξ = 1, η = a for side 2, ξ = -a, η = 1 for side 3 and ξ = -1, η = -a for 

side 4. Using these values, one would obtain the following four shape functions for each 

side of the element: 
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                                   (L.55) 

  

If the values of -1 and +1 are substituted for a in the above formulae, one would indeed 

obtain the fact that shape functions are equal to 1 at the node it is written for and 0 at all 

other nodes of the element. The integral over the element in global coordinates must also 

be transformed to an integral over the master element in local coordinates. This 

transformation introduces the determinant of the Jacobian between global boundary and 

local boundary coordinates.  
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where Ja is the Jacobian of the boundary and the incremental boundary coordinate in 

global coordinate system, dB, can be written as follows according to the Figure E.2: 

 

( ) ( )22 dydxd +=Γ                                               (L.57) 

 

Dividing both sides of this relationship with differential length, da, would give the 

following relationship between the global and local boundary coordinate:  
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Therefore, the Jacobian of the boundary is written as: 
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where da will always take the value of 2 since it is the length of any side on the master 

element. Before we proceed with evaluating the boundary integrals, one must write the 

global derivatives of the shape functions in local boundary coordinate. In order to 

implement this transformation from global to local coordinate, derivatives of these shape 

functions with respect to local coordinates are evaluated using the chain rule of 

differentiation: 
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which can be represented in matrix form as: 
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The derivatives of the shape functions with respect to local coordinates can easily be 

computed as follows: 
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Moreover, one can simplify the transformation between global and local coordinates as: 
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When these expressions are written and simplified for a, one can obtain the derivatives 

with respect to x and y as:  
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It is now possible to complete the transformation of the shape function derivatives by 

using this matrix and the derivatives of the shape functions with respect to local 

coordinates. Using these fundamental concepts, the boundary integrals can be evaluated 

as follows: 

 

•  ( )( )
,

3

,
3

in e

in e
g b x x y y j ih z q n q n N N d

Γ

 − + ∫ Γ

Γ

 

This integral represents the contribution of influx Cauchy boundary condition as 

shown in equation (K.19). The basic assumption is that aquifer thickness and Darcy 

velocity are constant over the boundary side of the element. Therefore, these terms can be 

taken out of the integral.  
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Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 

the shape functions with respect to the global coordinates to the shape function with 

respect to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 

boundary side. 
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It is important to note that this integral is simple and does not need numerical integration. 

It can be integrated exactly using the non-zero shape functions to obtain 2/6 for i = j and 

1/6 for i ≠ j, regardless of the side and the associated nodes of the element. Therefore, the 

final outcome of this boundary integral is a [2X2] vector from each boundary element. 

 

•  ( )
,

3

,
3

in e

in e
g b v v ih z q C N d

Γ

 − Γ ∫

 

This integral represents the contribution of influx Cauchy boundary condition as 

shown in equation (K.21). The basic assumption is that the aquifer thickness, volumetric 
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inflow rate and contaminant concentration in the inflow are constant over the boundary of 

the element. Therefore, they can be taken out of the integral to yield: 
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Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 

the shape functions with respect to the global coordinates to the shape function with 

respect to the local coordinates. 
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and can further be simplified since the Jacobian is simply one half the length of the 

boundary side. 
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As before, this integral is simple and does not need numerical integration. It can be 

integrated exactly to obtain 1 regardless of the side and the associated nodes of the 

element. Therefore, the final outcome of this boundary integral is a {2X1} vector from 

each boundary element. 
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This integral represents the contribution of outflux Cauchy boundary condition as 

shown in equation (K.19). The basic assumption is that the aquifer thickness, porosity 

and dispersion coefficients are constant over the boundary of the element. Therefore, they 

can be taken out of the integral to yield: 
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Furthermore, the integral is written in local coordinates using the determinant of the 

Jacobian matrix and the master element concept. At this stage, it is important to transform 

the partial derivatives with respect to the global coordinates to the partial derivatives with 

respect to the local coordinates. Using the chain rule of differentiation and the 

transformation matrix, the partial derivative of the shape functions is written as:  
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In this equation, the derivatives are simple partials of the shape functions with respect to 

local coordinates as shown above. Substituting this expression and writing the first 

integral in terms of local coordinates, one would obtain: 
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If the whole expression inside the integral is simplified and written as: 
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the integral simplifies to: 
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and evaluated using the Gaussian quadrature: 
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When the above procedure is implemented for other integrals, one could obtain the final 

form of the outflux Cauchy boundary condition integral. The only difference between the 
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integrals occurs from the differentiation with respect to x and y coordinates of the shape 

functions and their corresponding forms in local coordinates. Hence, the function f takes 

one of the following two forms for integrals with shape function derivatives with respect 

to x- and y- directions such that:  
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Finally, the element matrix is written using the above formulae and substituting the 

saturated aquifer thickness, porosity and dispersion coefficients. The final outcome of the 

integral is a [2X2] element matrix. 
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