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SUMMARY 

 

While low intensity long-day (LD) lighting has been shown to enhance the growth of 

young plants under low light levels, the effect on the yield of a long-season 

glasshouse tomato crop has not been previously examined. LD were provided by the 

use of tungsten lamps (2.8 µmol m
-2 

s
-1

 at approx. 0.5 m from the ground) between 

04.00 h to sunrise and from sunset until 20.00 h (GMT). LD lighting increased the 

leaf chlorophyll contents, and the numbers of flowers and fruits set per truss when the 

plants were young. However, this treatment did not affect the total yield of tomatoes. 

Different leaf removal treatments were applied within each glasshouse compartment. 

A previous experiment had shown that reducing the leaf area index (LAI) from 5.2 to 

2.6, by removing old leaves, did not affect yields. It is also thought that the removal of 

young leaves reduces the total vegetative sink-strength and favours assimilate 

partitioning into fruit. Therefore, removal of young leaves could benefit yield. In the 

present experiment a third of the leaves were removed in March (those immediately 

below each truss) and subsequently every third leaf was removed at an early stage. 

This reduced the LAI from 4.1 to 2.9 and resulted in a loss of yield from 3 to 4 weeks 

after leaf removal until the end of the experiment, at which point there was an 8% loss 

of cumulative yield, due to a reduction in the average number of fruits set per truss 

and mean fruit weight. We postulate that light which would have been intercepted by 

young photosynthetically efficient leaves at the top of the canopy was intercepted 

instead by older leaves which were less efficient, reducing the net canopy 

photosynthesis.  
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here have been extensive studies on the effects of photoperiod on flowering, and 

the findings have been implemented commercially over many years (Thomas 

and Vince-Prue, 1997). Adams and Langton (2005) reported numerous studies on the 

positive effects of low intensity long-day (LD) lighting on plant growth; however, the 

effects of photoperiod on vegetative growth and crop yield have not been widely 

exploited. Hurd (1973) found that low intensity day-extension lighting (to give a 16 h 

photoperiod) increased the dry weight (DW) of young tomato plants by 76%, when 

compared with plants grown under an 8 h photoperiod with the same light integral 

(2.7 mol m
-2 

d
-1

). Adams et al. (2008) compared the effects of LD under different light 

levels and confirmed Hurd’s (1973) finding only when light levels were low (c. 2.2 

mol m
-2 

d
-1

). In both studies increased chlorophyll contents were observed when 

growth was enhanced as a result of LD. Based on the response presented by 

Gabrielsen (1948), Hurd (1973) estimated that the observed increase in chlorophyll 

content could account for a 6% increase in photosynthesis under the conditions used 

in his experiment. However, Adams et al. (2008), who measured photosynthesis, did 

not find an effect of LD on photosynthetic efficiency. Instead they suggested that 

growth was enhanced because of the non-linear relationship between photosynthetic 

photon flux density (PPFD) and net photosynthesis at low light levels; low intensity 

LD lighting can be used efficiently for photosynthesis. Furthermore, a small increase 

in photosynthesis would have a greater impact (in percentage terms) when ambient 

light levels were low (Adams et al., 2008). However, there have been no reports on 

the effect of low intensity LD lighting on a long-season tomato crop. 

In a long-season glasshouse tomato crop, it is standard commercial practice to 

remove old leaves up to the picking truss. The main reasons for the removal of these 

T 
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leaves are to prevent disease, to hasten fruit ripening, and to make the harvest easier 

(Heuvelink et al., 2005). Adams et al. (2002) showed that when leaves were removed 

each week, up to two trusses above the ripening truss in a high-wire crop, fruits were 

warmer during the day and slightly cooler at night, and ripened on average 1.2 d 

earlier than fruit on plants on which leaves were removed up to two trusses below the 

ripening truss. These two leaf-removal treatments gave a similar pattern of yield, and 

there was no significant difference in the cumulative yields for the season. This 

occurred despite the fact that those plants subjected to the more severe leaf removal 

treatment had a leaf area index (LAI) of 2.6, compared with an LAI of 5.2 in the less 

severe leaf removal strategy. This lack of response was attributed primarily to poor 

light penetration into the canopy, which meant that the lower leaves contributed little 

to net canopy photosynthesis, confirming the findings of Acock et al. (1978). 

Furthermore, in a tomato canopy, the lower leaves have reduced photosynthetic 

efficiency (Adams et al., 2002; Bolaños and Hsiao, 1991; Xu et al., 1997). Similarly 

in pepper, on an annual basis, it has been found that the lower half of the crop made a 

0.5% negative contribution to net photosynthesis (Dueck et al., 2006). 

 Some tomato growers remove young leaves in order to control vegetative 

vigour. The removal of young leaves reduces the total vegetative sink-strength and 

favours assimilate partitioning into the fruit (Heuvelink et al., 2005). Xiao et al. 

(2004) simulated what might happen if tomato cultivars were to have two instead of 

three leaves between each truss. The vegetative sink-strength was reduced by one-

third, and seven fruits per truss were assumed. They predicted that photoassimilate 

partitioning to fruit would increase from 66% to 74%, but that the yield would 

increase by only 1.5% due to the reduced LAI. However, if the LAI was maintained at 

2.3 by retaining more old leaves, yields were predicted to increase by 12.8%.  
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Simulations by Heuvelink et al. (2005) included the effect of removing one, two, or 

three young leaves out of six, where the sink-strength of the leaves was reduced 

proportionally. Removing one in every three leaves was predicted to reduce yield by 

5%, although, if the removal of old leaves was delayed in order to maintain the LAI, 

the yield increased by 7%.  In a glasshouse experiment, Xiao et al. (2004) found that 

removing one in every three young leaves did not result in any significant loss in yield 

where the LAI was reduced from 2.9 to 2.4. Conversely, a significant (17%) increase 

in yield was found when the LAI was increased using a higher plant density; however, 

in this case the LAI was 24% greater than that of the controls, and there were more 

fruits m
-2

, as all trusses were pruned to six fruits. Similarly, Andriolo et al. (2001) 

compared the effects of leaving one, two, or three leaves between trusses by removing 

young leaves from an indeterminate cultivar in a non-heated polyethylene greenhouse. 

They found no difference in terms of cumulative fruit DW per plant, despite the fact 

that the LAI values were 2.4, 3.0, and 4.3 for treatments with one, two, or three leaves 

between trusses, respectively. 

The aim of this work was to investigate the effects of low intensity LD 

lighting and leaf removal on yields of a long-season tomato crop.  

 

MATERIALS AND METHODS 

General plant culture 

Plants of Lycopersicon esculentum Mill. cv. Espero, sown on 18 November 

2002, were obtained in stonewool cubes from a commercial grower on 17 December 

2002. These were transferred to four compartments (9.9 m x 9.6 m) within an East-to-

West-orientated linear array of glasshouse compartments (Wellesbourne, UK; 52° 

12’N). Each compartment was arranged to provide six double-rows of plants 
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orientated North-to-South. The double-rows on either side of each compartment acted 

as guards. Because of the potential for increased light interception by plants at the 

exposed ends of rows, a Ludvig-Svensson ULS15 screen was positioned on the South 

wall of each glasshouse compartment to minimise within-row variability (Hamer et 

al., 2004). Its height was adjusted to coincide with that of the crop. Each double-row 

was 7.7 m long and consisted of eight stonewool slabs (0.9 m x 0.14 m x 0.07 m). 

Three plants in their stonewool cubes were placed on each slab until 50% of plants 

were flowering, at which point contact between the stonewool cubes and slabs was 

established (21 January 2003). Plants were trained to form a double-row using the V 

system.  

 The plant spacing gave an initial density of two shoots m
-2 

of cropped area. 

Following commercial practice, the shoot density was increased by leaving side 

shoots. Side shoots were left below the second truss on alternate plants and below the 

seventh truss on the remaining plants, giving a final density of four shoots m
-2

. The 

plants were grown as a conventional long-season layered crop, although they were not 

‘stopped’ at the end of the season, so that records of flowering and fruit set could 

continue to be made. Pollination, integrated pest management, mineral nutrition, 

manipulation of EC and irrigation were done as described by Adams et al. (2002). 

 

Environmental set-points 

The aerial environment was controlled via a LCC 1200 Super 4 climate 

computer (DGT-Volmatic, Soendersoe, Denmark). The minimum day and night 

temperature was set initially to 20°C. After 3 d, the day temperature was reduced to 

18°C and the night temperature to 17°C. The day temperature was then elevated to 

20°C when contact was established between the stonewool cube and the slab. In two 
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compartments, the day temperature was lowered to 19°C 2 weeks after the first pick 

(week-14) and to 18°C 4 weeks after the first pick (week-16). The night temperature 

remained at 17°C. In the other two compartments, the day and night temperature set-

points were modified slightly in an attempt to stabilise the pattern of yield. Set-points 

were lowered when crop yields were predicted to increase and they were raised when 

low yields were predicted. However, due to solar gain, lowering the heating and 

venting set-points had little impact on the temperatures achieved in Summer, or on the 

pattern of yield. These treatments did not have any significant impact on total yield, 

and there was no interaction with the other treatments (P > 0.05), so the results are not 

reported here. 

 The humidity control and CO2 management were performed as described by 

Adams et al. (2002). The aerial environment was monitored independently as reported 

by Adams et al. (2002). 

 

Daylength treatment  

The four compartments were blocked into East and West pairs, to which 

different daylength treatments were applied. Two of the four glasshouse 

compartments (one with standard and the other with modified temperatures) were 

given long days through the use of tungsten lamps. Twenty 150 W bulbs were used 

per compartment, four above each of the five pathways, 2.2 m apart, at the height of 

the crop wires. The bulbs provided 2.8 µmol m
-2

 s
-1

 at approx. 0.5 m above the 

ground. This increased to 7.0 µmol m
-2

 s
-1

 closer to the crop wire. Plants were lit from 

04.00 h to sunrise, and from sunset until 22.00  h (GMT) so as to provide a minimum 

16 h day (slightly longer in mid-Summer). To avoid light pollution affecting the 2 

ambient daylength compartments, the two pairs of compartments were separated by 
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an empty compartment. A screen (orientated N-S) was used in the centre of this 

compartment, the height of which was raised as the crop grew.  

 

Leaf removal treatments 

Within each compartment two ‘leaf removal’ treatments were assigned to the 

four inner double-rows. Plants from two alternate rows had one in every three young 

leaves removed (‘leaf removed’). No young leaves were removed from plants from 

the other two rows (‘controls’). So as not to affect crop establishment, all rows were 

treated the same until the crop reached the wire (end of March), at which time a third 

of the leaves (those immediately below each truss) were removed in every ‘leaf 

removed’ row. Subsequently, the leaf below each truss was removed at an early stage 

in these rows (around the time of anthesis of the truss). In all rows, old leaves were 

removed up to the ripening truss, leaving around 22 leaves (each > 10 cm long) on the 

control shoots, and 15 leaves on the ‘leaf removed’ shoots at any one time. 

 

Plant records 

Within each double-row, the dates of flower-opening and fruit-picking were 

recorded for the first flower or fruit of each truss on eight plants spaced evenly down 

the row. The numbers of flowers, fruits set, and marketable fruits per truss were also 

recorded. Fruits were normally picked three-times a week, as they reached the yellow-

orange stage. To assess the degree to which variation in the weekly crop yields was 

due to either variation in fruit number or to fruit size, the combined weight and 

number of Class I fruit in each size grade (i.e., F, 35 - 40 mm fruit diameter; E, 40 - 

47 mm; DS, 47 - 52 mm; DL, 52 - 57 mm; C, 57 - 67 mm; B, 67 - 82 mm and A, > 82 
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mm) was recorded for each double-row on each occasion. The weights and numbers 

of Class II and waste fruits were also recorded.  

Fruit temperatures were recorded at the top (mean fruit diameter = 29 mm), 

middle (mean fruit diameter = 44 mm) and bottom (mean fruit diameter = 49 mm) of 

the canopy on both the East- and West-facing sides of control and ‘leaf removed’ 

double-rows in the natural daylength and standard temperature regime compartment. 

This was done using 24 sensors (10 kΩ Fenwal thermistors; Fenwal Electronics Inc., 

Massachusetts, USA) inserted into the centre of each fruit. Data were recorded using a 

data-logger (DL2, Delta-T Devices Ltd, Cambridge, UK) set to scan every 60 s and 

record the mean value every 10 min. Fruit temperatures were measured continuously 

from 16 June until 19 October 2003 and the sensors were moved to different fruit 

every 2 weeks.  

Leaf greenness (chlorophyll content) was measured with a Minolta SPAD-502 

meter (Minolta Co. Ltd, Osaka, Japan) in the LD and natural daylength compartments 

under the standard temperature regime. Readings were taken on seven occasions from 

the terminal leaflet of each compound leaf for 16 control plants per compartment. 

 

Statistics 

The experiment was a split-plot design with daylength and temperature 

manipulation as main-plot treatments (2 x 2 unreplicated), and leaf removal as a sub-

plot treatment. Truss data (number of flowers and fruits set) and fruit yields (weights 

and numbers) were analysed by ANOVA. Due to the fact that there was no true 

replication of compartments, variability between rows was used as a proxy error for 

ANOVA. The experiment was terminated on 31 October 2003. 
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RESULTS 

Effect of long-day lighting 

  Extending the daylength with tungsten lamps caused an initial increase in the 

chlorophyll content (SPAD) of leaves (Figure 1A). However, this effect had 

disappeared by the end of the experiment. Early in the season, young leaves at the top 

of the canopy had higher SPAD values when compared with older leaves at the 

bottom of the canopy. Towards the end of the season, when light levels were 

decreasing, the SPAD values of older leaves were slightly greater than those of young 

leaves (Figure 1B). LD lighting also produced taller plants as a result of increased 

internode length. Plants in the LD compartments were 32% taller than those under 

ambient light conditions in early January. This difference decreased to 7% by mid-

March.  

 LD lighting resulted in a significant increase in the number of flowers and fruits 

set on trusses two, three and five when compared with those grown under ambient 

light conditions (P < 0.05; Figure 2A). However, these plants were unable to maintain 

the increased fruit load and truss nine experienced poor fruit set (P < 0.01).  

 There was no significant effect of LD lighting on yield over the course of the 

cropping season (P > 0.05). The cumulative yields were 50.4 kg m
-2 

in the 

compartments with a natural daylength compared with 49.7 kg m
-2

 in the LD 

compartments (SED = 0.747; 8 d.f.). The treatment also had little effect on the pattern 

of yield recorded over the course of the year (Figure 3A). The numbers of fruit picked 

in weeks -13, -15 and -17 were greater on plants under LD treatment (P < 0.05). 

However, this treatment caused a slight reduction in fruit number over the full season 

(P < 0.01). The mean fruit weights over the course of the experiment were on average 

77.6 g and 79.4 g from the natural and LD compartments respectively (P < 0.05; SED 
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= 0.559; 8 d.f.). Figure 3B shows that fruits from plants under LD conditions were 

heavier than the fruits from the control ones between weeks -21 and -30 (P < 0.05). 

This was also reflected in the size grades; LD compartments had 2% more yield of DL 

fruits (P < 0.01) while less of E and F fruits (P < 0.05). 

 

Effect of the leaf removal treatments 

The leaf area of ‘leaf removed’ rows was estimated to be reduced by around 

28%, with a LAI of 2.9 compared to 4.1 for the control rows. The leaf removal 

treatment had a significant effect on the cumulative yield (P < 0.001) and showed no 

interaction with daylength (P > 0.05). A mean of 52.2 kg m
-2 

was harvested from 

control rows compared with 47.9 kg m
-2

 from ‘leaf removed’ rows (SED = 0.75; 8 

d.f.), although the pattern of yield was similar (Figure 4A). This yield loss was in part 

due to a significant decrease in total number of fruits picked m
-2

 (P < 0.001). The 

reduced number of fruits was due to fewer fruits setting on each truss, rather than an 

effect on either truss or flower numbers (Figure 2B). All the trusses above truss 14 

(except truss 26) of the ‘leaf removed’ plants had significantly fewer fruits set (P < 

0.05). The mean fruit size was also negatively affected by the deleafing treatment (P < 

0.01); the overall means being 77.4 g and 79.6 g in the ‘leaf removed’ and control 

treatments, respectively (SED = 0.559; 8 d.f.). The negative effect of the ‘leaf 

removal’ treatment started to be significant between weeks -17 and -18, 3 - 4 weeks 

after the deleafing was done for the first time (Figure 4A). The ‘leaf removed’ 

treatment reduced the percentage of Class I fruit by 2% (P < 0.001), since more fruit 

were downgraded due to uneven ripening. The treatment also reduced the percentage 

of grade C fruit by 3% (P < 0.05) and increased the percentage of grade F (P < 0.01). 
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The difference between fruit temperatures recorded in ‘leaf removed’ and 

control rows was negligible. In July the fruits in ‘leaf removed’ rows were on average 

21.8, 21.6 and 21.6°C at the top, middle and bottom of the canopy, respectively, 

compared with 21.6°C at the top, middle and bottom of the canopy in the control 

rows. Consequently, the difference in the fruit development times for the first 26 

trusses was also small; fruits took on average 56.4 d from anthesis to maturity in ‘leaf 

removed’ rows compared with 56.9 d in the controls. 

 

DISCUSSION 

 Plants grown under LD conditions had darker green leaves (higher SPAD 

values) early in the season. It has been found that low intensity LD lighting can 

increase the chlorophyll content and DW of tomatoes grown under low PPFD of 

around 2.2 mol m
-2

 d
-1

. LD lighting at 3.8 mol m
-2

 d
-1

 did not have any significant 

effect (Adams et al., 2008). The average internal PPFD during the first month of the 

present experiment was 2.4 mol m
-2

 d
-1

, although by mid-March the average PPFD 

had increased to 5.2 mol m
-2

 d
-1

.
 
This might explain why differences in SPAD values 

were only detected early on. The fact that initially older leaves at the bottom of the 

canopy had lower SPAD values when compared with younger leaves was probably 

due to the fact that the older leaves had developed some time earlier when light levels 

were lower, rather than an effect of leaf age. Towards the end of the season, when 

light levels were decreasing, the SPAD value of old leaves, which had developed at 

higher light levels was greater than that of young leaves.  

 While low intensity LD lighting has been previously shown to enhance the 

growth of young tomato plants when grown under low light levels, providing LD 

lighting to a long-season tomato crop did not improve yield. The treatment resulted in 
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more flowers and fruits set per truss early in the season. However, this increase in 

fruit load could not be sustained and subsequent setting was affected, notably for truss 

nine. This fruit setting problem may have in turn contributed to the subsequent 

increase in mean fruit size. It would be interesting to investigate whether LD lighting 

could, for example, enable higher initial shoot densities so as to capitalise on the early 

vigour, without causing a subsequent imbalance in fruit load. 

 Heuvelink et al. (2005) predicted that as long as the LAI was maintained at 

approx. 2.9, tomato yield should increase by 7% when one out of three young leaves 

was removed, due to increased assimilate partitioning toward the fruit. However, 

removing one in every three young leaves (after the canopy was established) caused 

an 8% yield loss when the final LAI was reduced from approx. 4.1 to 2.9. Xiao et al. 

(2004) recorded a 4% yield loss when one in every three leaves was removed; 

however, this loss was not significant. Interestingly, removing a third of the leaves 

only reduced their average LAI from 2.9 to 2.4, suggesting that the remaining leaves 

may have been larger as a result. However, the experiment reported by Xiao et al. 

(2004) ended on 20 May and so plants were not grown over the summer months when 

light levels would have been higher and therefore a greater LAI would presumably 

have been desirable. 

 Tomato plants appear to respond differently to the removal of young when 

compared with old leaves. The high deleafing treatment reported by Adams et al. 

(2002) resulted in a lower final LAI (2.6) when compared with that from the current 

‘leaf removed’ treatment (2.9), although the removal of old leaf did not have a 

significant effect on the yield. According to Adams et al. (2002) tomato leaves at the 

bottom of the canopy were around 25% less efficient in terms of net photosynthesis 

when compared with young fully expanded leaves; however, other authors have 
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shown more dramatic losses with canopy height. Bolaños and Hsiao (1991) reported 

>70% losses in photosynthetic efficiency for tomato leaves as they aged from around 

25 to 80 d-old. Xu et al. (1997) estimated that the net photosynthetic capacities of the 

tenth, fifteenth and eighteenth leaves were only 50%, 21% and 7% of that of the fifth 

leaf from the top of the canopy. The loss of photosynthetic efficiency is not often 

taken into account in crop models, and may partially explain why our results differed 

from those predicted by Xiao et al. (2004) and Heuvelink et al. (2005). 

 Hogewoning et al. (2006) showed that the reduction in photosynthetic efficiency 

with canopy height is due to light environment, rather than leaf age. When grown 

horizontally there was no reduction in Pmax with leaf age, and on a conventionally 

trained tomato crop, Pmax increased from 5.6 to 12.4 µmol m
-2

 s
-1

 when the lower 

leaves were lit for 14 days. Therefore, it is possible that the photosynthetic efficiency 

of lower leaves might increase as a result of removing some young leaves.  In our 

experiment, we removed one in three leaves (young and old) at the end of March once 

the crop was established. Consequently, the lower leaves at that time would not have 

been adapted to the new light environment, and this might explain why yields were 

initially lower. However, if the yield loss was only due to the way in which the leaf 

removal treatment was applied in March, yields would have been expected to recover 

once the leaves became light adapted, this proved not to be the case. Even if the 

leaves remaining at the end of March were unable to increase their photosynthetic 

capacity, by week 22 they would have all been removed, so the subsequent leaves 

must have been fully adapted, and yet the yields remained consistently lower. While 

removal of young leaves may favour the partitioning of assimilates to the fruit 

(Heuvelink et al., 2005), the current study has shown that this practice can be 

detrimental to yield, even though the LAI was kept at approximately 2.9.   
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FIG. 1 

The effect of long-day (LD) lighting and leaf age on chlorophyll content (SPAD). 

Each datum point is the mean value from 16 plants recorded in mid-February (Panel 

A) and end of October (Panel B). Vertical bars indicate standard errors of the means. 

For each leaf the SPAD reading was taken three times and averaged. Leaf one was the 

youngest leaf ≥ 10 cm long. 

 

FIG. 2 

The effect of long-day (LD) lighting (Panel A) and leaf removal (Panel B) on the 

numbers of flowers and fruits set per truss. The ambient light and LD data are the 

means for both leaf removal treatments. Control and leaf removal data are the means 

for both daylengths. The arrow shows the truss that was at anthesis when deleafing 

started. For each Panel, the vertical bars (top for number of flowers and bottom for 

number of fruits set) represent the SED between the two means in any given week. 

Values for individual weeks have been pooled to give an overall representative error. 

 

FIG. 3 

The effect of long-day (LD) on total fruit yield (Panel A) and mean fruit weight 

(Panel B). Each datum point represents the mean from both leaf removal treatments. 

Vertical bars represent the SED between the two means in any given week. Values for 

individual weeks have been pooled to give an overall representative error. 
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FIG. 4 

The effect of leaf removal on total fruit yield (Panel A) and mean fruit weight (Panel 

B). Each datum point represents the mean from both daylength treatments. The arrow 

shows when the ‘leaf removal’ treatment was started. For each Panel, the vertical bar 

represents the SED between the two means in any given week. Values for individual 

weeks have been pooled to give an overall representative error. 


