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SUMMARY

We apply the Segal process of group simplification to the linear harmonic oscillator.

The result is a finite quantum theory with three quantum constants ~, ~′, ~′′ instead of

the usual one. We compare the classical (CLHO), quantum (QLHO), and finite (FLHO)

linear harmonic oscillators and their canonical or unitary groups. The FLHO is isomorphic

to a dipole rotator with N = l(l + 1) ∼ 1/(~′~′′) states and Hamiltonian H = A(Lx)2 +

B(Ly)2, and the physically interesting case has N À 1. The position and momentum

variables are quantized with uniform finite spectra. For fixed quantum constants and large

N À 1 there are three broad classes of FLHO: soft, medium, and hard, with B/A ¿ 1,

B/A ∼ 1, and B/A À 1 respectively. The field oscillators responsible for infra-red and

ultraviolet divergences are soft and hard respectively. Medium oscillators have B/A ∼ 1

and approximate the QLHO. They have ∼ √
N low-lying states with nearly the same zero-

point energy and level spacing as the QLHO, and nearly obeying the Heisenberg uncertainty

principle and the equipartition principle. The corresponding rotators are nearly polarized

along the z axis with Lz ∼ ±l. The soft and hard FLHO’s have infinitesimal 0-point

energy, grossly violate equipartition and the Heisenberg uncertainty principle. They do

not resemble the QLHO at all. Their low-lying energy states correspond to rotators with

Lx ∼ 0 or Ly ∼ 0 instead of Lz ∼ ±l. Soft oscillators have frozen momentum, because

their maximum potential energy is too small to produce one quantum of momentum. Hard

oscillators have frozen position, because their maximum kinetic energy is too small to excite

one quantum of position.
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CHAPTER 1

INTRODUCTION

Make a string of formlessness
Pierce through the pearls of spacetime

May all join together
May there be no boundary

May there be no name

Sohrab Sepehri [23]

The three main evolutions of physics in the twentieth century have a suggestive family

resemblance. Each of them introduced a certain non-commutativity previously not present

in physics. Special relativity introduces a non-commutativity of boosts. General relativity

and gauge theory introduced a non-commutativity of infinitesimal translations. Quantum

theory introduced a non-commutativity of observations. The seminal works by Segal [24]

and Inönü [18] and Inönü and Wigner [17], which stimulated the present work, suggest more

changes of this kind. The current work is part of a program to develop a finite quantum

theory, especially of space-time. Such a theory has been sought by generations of physicists

from mid twentieth century on.

Here we study a process introduced by Segal that we term group regularization. It

modifies an existing quantum theory in a way that includes the existing quantum theory as

a suitable limiting case and respects the existing group symmetries. Group regularization

seems likely to produce the long-sought quantum theory of space-time. We test it here on

the linear harmonic oscillator, a ubiquitous constituent of all present field theories. The

n-dimensional harmonic oscillator is merely a collection of n linear ones.

Planck introduced his quantum constant h to freeze out oscillators that caused the

cavity thermal spectrum to diverge. The zero-point energy of the resulting quantum theory

still diverged. The new quantum constants h′, h′′ freeze out all but a finite number of the

cavity oscillators without greatly changing the observed ones. The zero-point energies of
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the frozen oscillators are infinitesimal in the finite quantum theory compared to their usual

values. This shows how a finite quantum theory of the cavity will produce a finite zero-point

energy without conflicting with the many finite predictions of the usual quantum theory.

Our major goal in the present work is to develop a regular (finite) quantum theory of the

harmonic oscillator. We focus on the non-relativistic time-independent theory here. We rec-

ognize that the Heisenberg algebra of the quantum theory is a compound (non-semi-simple)

algebra, with the imaginary unit i as an absolute element of the theory. We regularize the

group of quantum theory Heisenberg to a simple orthogonal group, namely, SO(3). As an

example, we focus on the time-independent one-dimensional quantum harmonic oscillator

and derive its new energy levels in the finite quantum theory.

In chapter 2, we study the physical regularization processes of physical theories. We

focus on the group-theoretical structure of physical regularizations. The structure of the

major evolutions of physics in the past is our main guide to develop the finite quantum

theory. We recognize that most radical changes of physics such as quantum theory and

theories of relativity fit in the same group-theoretical process of group regularization.

In chapter 3, we develop a finite (regular) quantum theory for the harmonic oscillator

and compare the classical (CLHO), quantum (QLHO), and finite (FLHO). We expand the

Heisenberg algebra and apply the new algebra to the quantum harmonic oscillator. We will

show that in the the finite theory, a linear harmonic oscillator becomes a rotator with a

sharp total angular momentum l, a finite number of states N = 2l + 1, and a Hamiltonian

of the the special form H = ALx
2 + BLy

2. We will find that for physically interesting

cases for which N , there are three broad classes of FLHO: soft, medium, and hard, with

B/A ¿ 1, B/A ∼ 1, and B/A À 1 respectively. The quantum oscillators of the field theory

that are responsible for infrared and ultraviolet divergencies are soft and hard respectively.

We obtain the energy spectrum for the three classes of FLHO oscillators and derive the

uncertainty principle in all three cases. There two interesting results: first, the energy

spectra for FLHO are bounded and second, low-lying energy states of soft and hard FLHO

oscillators have ∆p∆q far below the Heisenberg uncertainty limit of QLHO.

The results are summarized in chapter 4.
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To make connection with other works in progress [5] where we use the concept of Clifford

algebras, we include an appendix on Clifford algebraic representations of FLHO variables.

In the rest of this introduction, we list principles and concepts we use in this work. We

re-states some of these concepts more rigorously in subsequent chapters.

Operationality. A physical theory should at least lead to statements of the form: “If

we do so-and-so, we will find such-and-such” [12]. This structure is evident

from all physical theories that have passed experimental tests successfully. Perhaps

the most clear example is quantum theory where the system is described maximally

through measurements on its physical variables. In an action-based quantum theory,

bras and kets describe external acts by which we prepare or register the system.

Operators describe actions on the system or actions transforming an experimenter to

another, the relativity transformations.

Finiteness. A physical theory should be finite, The infinities (divergencies) are

not physically observable. So we construct the theory from the beginning with no

infinity.

Simplicity. The group of physical theories must be simple. By simplicity we

mean algebraic simplicity which is defined in the following way: A group is simple if

it does not contain a non-trivial invariant subgroup. A group that is not simple, we

term compound. A semi-simple group is one whose Lie algebra has no solvable

subalgebras, and is then a product of finite number of simple subgroups. We desig-

nate the system under study by S. We designate the rest, including the environment,

experimenter, apparatus and records by S̄ (non S) and call it the exosystem. We

recognize the following group structure:

• The kinematical group GK of all possible reversible physical operation on the

system, modes of passage of time. These are actions by the experimenter on the

system. Also included in the group of GK of a physical system are operations

corresponding to change in reference frames. These are actions on the exosystem.
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• The symmetry group GS ⊆ GK of relativity transformation that respect the

Hamiltonian of the system.

An important concept related to the notion of simplicity is an absolute element or

idol1 of the theory. An idol of a physical theory is an absolute which its group

respects. It is represented in the theory with a central element that enters the theory

in a fundamental way and couples to other elements while nothing couples back to

it. Idols of a group of a physical theory generate invariant subgroups that makes the

group compound.

Generalized Correspondence Principle. The old working physical theory

must be recovered from the replacing new one in the appropriate limit.

Bohr correspondence principle is a specific example where the classical physics is

recovered from quantum theory as ~→ 0. Regularization is the main concept through

out this work. In general, regularization is a method for handling the infinities in a

physical theory. We study one form of regularization in details in the next chapter.

We note that there are two types of regularization, physical and unphysical. Physical

regularizations are new theories with different predictions. Unphysical regularizations

are procedures aimed at removing undesired divergencies in an existing theory without

changing its finite predictions. Lattice gauge theory is an example of an unphysical

regularization method.

Stabilization, Flexing and Flattening. The group of physical theory must

be stable. Segal’s important observation is that concept of stability and simplicity

imply each other. Stability of physical theory roughly means that the algebra of

the theory is unchanged up to isomorphism by small changes in the basic algebraic

relations of the theory. For us, the important algebra is a Lie algebra. A lie algebra

is stable if small changes in its structure constants do not change the algebra up to

an isomorphism. For example, the algebra of the Lorentz group is stable against

corrections to the speed of light. Lorentz group is the stabilized Galilei group where

1The term idol is borrowed from Francis Bacon’s Novum Organum [2].
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the reciprocal speed of light is zero. Once a finite speed for light is introduced into the

Galilei group, it changes dramatically. Galilei group is unstable. The Lie algebra of a

physical theory can be stabilized through a mathematical process we term flexing. We

label the reverse process as flattening. The well-known process of Inönü and Wigner

contraction [17] is a special case of the flattening process. Precise definitions of these

processes are given in the next chapter.

5



CHAPTER 2

SEGAL DOCTRINE AND STRUCTURE OF PHYSICAL

REFORMATIONS

In the present chapter we study in details the mathematical and physical ideas and methods

introduced in the preceding chapter in their relation to the structure of the major past and

perhaps the future evolutions of physics. We show how Segal’s idea of stabilization physical

theory enable us to move toward a next radical change of physics. This will prepare the

background to develop the simplified Heisenberg algebra and the finite quantum theory of

the harmonic oscillator in the next chapter.

2.1 Regularizations and Reformations

All current major theories of physics are field theories based on a continuous classical space-

time. Mathematically, these theories share a common structure. They are all fiber-bundle

theories with the classical space-time as the base and various fields as fibers. The continuum

physical theories are fertile lands for non-physical and unobservable infinities (singularities).

Since the advent of field theories, several regularization methods have been introduced

to remove the unwanted infinities out of physics. These are unphysical in that they are

introduced just to hide the divergencies that enter field theories. There have not been direct

experimental motivations for unphysical regularization. The three major regularization

schemes are Pauli-Villars regularization [21], lattice regularization (lattice gauge theory)

[34] and dimensional regularization [6, 7, 26]. Practical calculations in any field theory

employ a regularization procedure that sets a length scale below which processes have no

influence on the theory. For example, in calculating QED loop diagrams the divergent

integrals could be cut off at some momentum k, rendering them finite. In effect, the cutoff

momentum defines a length scale L ' O(k−1). Recognizing the source for divergencies in

field theories, Snyder formulated a Lorentz invariant quantum space-time [25] but he did
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not succeeded in formulating a field theory on it.

In addition to theoretical motivation for regularization programs, sometimes experi-

ments themselves lead to a more regular theory compared to the preceding one. We term

such a process a physical regularization or reformation; a term to be justified in the following

section. The most famous example of a reformation process is Planck’s, which led quantum

theory. One idol in classical mechanics is the system under study. In a measurement pro-

cess, a classical system acts on the experimenter but not conversely. Consequently, classical

measurements are commutative. Quantum theory is “simpler” than classical physics in that

it does not separate measurements from transformation. A quantum system might changes

as a result of an observation. Quantum observations do not commute in general.

Compared to unphysical regularizations, physical regularizations affect the theories in a

subtler way but their effects are rather dramatic. An unphysical regularization leaves the

idol(s) of the theory untouched. But reformation of a theory results in dethroning one or

more of its idols. The subtlety of a reformation process can be seen by studying its effect

on the group structure of the theory. In fact, a reformation is a group regularization. In the

following section we study reformation processes from the group theoretical point of view.

2.2 Group theoretical structure
of physical regularization

We begin with definition of different types of (physical) groups that appear in the regular-

ization process.

Definition 1 (Simple, semi-simple and compound groups) A group is simple if it

does not contain a non-trivial invariant subgroup. A semi-simple group is one whose Lie al-

gebra has no solvable subalgebras, and is then a product of finite number of simple subgroups.

A group which is not semi-simple, we term compound.

Compound groups are usually called non-semi-simple. Examples: Galilei group is com-

pound. Time translations form its invariant subgroup. The (proper, orthochronous) Lorentz

group is simple.
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Compound groups are unstable with respect to a small change in their structures. To

make this statement precise, we return to the language of group algebra. Consider a Lie

algebra A defined by a Lie product × : A ⊗ A → A—also called structure tensor—on a

vector space V . Following Segal [24] we define a stable group as one whose associated Lie

algebra is stable:

Definition 2 (Stable Lie algebra) A Lie algebra A is stable (regular) if small changes

in × within the manifold of Lie algebras do not change A up to isomorphism.

We use the term stable also for a physical theory it describes. We use the term flattening

for the mathematical process of getting back to an unstable algebra (group) from a more

stable one. We make this statement precise in the following definition [4]:

Definition 3 Group (algebra) flattening and flexing Let Lie product × : A⊗A → A

form a submanifold M of the space of tensors V ⊗ V → V . By a flattening of a Lie

algebra we mean the endpoint ×(0) of a homotopy ×(t) in M with ×(1) = ×,×(t) ∼= × for

0 < t ≤ 1, and ×(0) � ×. The inverse process to flattening is what we term flexing.

To understand this better, consider the submanifold M formed by Lie products × on

a vector space V . If we parameterize maps that live in M by a parameter like t ∈ [0, 1],

then as t varies we get a set of homotopic maps except for when t = 0. There is dramatic

change in the Lie algebra (and in the physical theory it describes) from t = 0 to t > 0.

The contraction process of Inönü and Wigner [17] is a special case of the flattening

process. They accomplish their contraction by “stretching” a coordinate to infinity. This is

done by applying a parameter-dependent singular transformation to the generators of a Lie

algebra. Call the parameter ε and assume that in the limit when ε → 0 the transformation

is non-singular. We expect that we should obtain a Lie algebra generated by the set of

transformed generators in this limit. Inönü and Wigner showed that for this to be the

case, there must exists an abelian invariant subalgebra generated by some of the original

generators. They also showed the converse is true. The original algebra is said to contract

to the new one with respect to the invariant abelian subgroup mentioned above. The inverse

process of contraction is sometimes called expansion [16].
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Segal importantly pointed out that many reformations of the last century physics follow

the same pattern: each new physical theory is a more stable and more physically accurate

of a previously unstable and less accurate one. In other words, reformation is stabiliza-

tion. Segal proposed that physical theories should be stable. He further pointed out that

stability requires semisimplicity. We re-express these fundamental ideas in what we call

Segal doctrine:

Definition 4 Segal doctrine Any compound physical theory is a contraction of a more

stable, more accurate, semi-simple theory, which we call its expansion.

Let us give few examples of unstable physical theories.

Example: Instability of quantum theory

The Heisenberg algebra in one-dimension H(1) is unstable. The defining commutation

relationships are

[px, x] = −i~

[i, px] = 0

[x, i] = 0 (1)

We see that the imaginary unit i generates an invariant subgroup (of phase changes).

The algebra is stable against changes in ~ but not against changes in [i, px] and [x, i].

Example: Instability of differential calculus

The continuum space-time algebra leads to another fundamental instability. Here we

have

[∂ν , x
µ] = δµ

ν

[xµ, xν ] = 0

[∂ν , ∂µ] = 0 (2)
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To give meaning to this algebra, consider the standard single particle spin-1/2 theory

which represents classical space-time coordinates xµ on Minkowski space-time of signature

2, and represents momentum-energy variables by differential operators ∂µ = ∂/∂xµ.

The relations above define a compound Lie algebra, with an invariant proper Lie subalge-

bra generated by 1. Therefore to simplify field theory we first must simplify the differential

calculus. We need to deform xµ and ∂µ so that they generate a simple Lie algebra.

As a mathematical theory, of course, the differential calculus is as valid as the algebra

we use in its stead. What we should change is the Planck-Einstein physical relation E =

i~ω = i~d/dt between time and energy. The time-energy relation that we propose is not

satisfied exactly by differential operators t and i~d/dt. We instead, write these operators

in the appropriate language of Clifford algebra. We do this for the harmonic oscillator

variables in the appendix B.

When we work with the explicit from of Lie products i.e., Lie brackets or commutators,

a non-zero homotopy parameter t apperas as a non-zero term that introduce some new

non-commutativity. So a flexing process is like adding a new “curvature” to the theory. By

group flattening we mean any physical approximation that makes a regular group singular

by switching off some commutators1. We finally arrive at a very important idea which

lies at the core of this work: A reformation of a physical theory is mathematically

equivalent to introducing a fundamental non-commutativity into the Lie group

of the theory.

A natural question to ask here is “how do we recognize which non-commutativities are

signs of instability?” The answer lies in our ability in recognizing the idols of physical

theories. Recall that an idol is an absolute quantity that the group of the theory respects.

It enters as a fundamental quantity in the theory and couples into other variables but

no variable couples into. For example, consider the compound Galilean group in 1 + 1

dimension. Time translations form an invariant subgroup. Time is the idol of the Galilean

1These terms are motivated by general relativity where non-commuting displacements results from a
curved space-time structure.
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group. Time couples into space transformation but not the inverse:

x′ = x− vt

t′ = t (3)

We point out that semisimplicity implies a reciprocity. Reciprocity means a two-way cou-

pling. In the case of Galilei group, which is not semi-simple, the reciprocity is violated:

there is no coupling of space into time in the fundamental transformation. Lack of reci-

procity always implies the existence of an idol in the theory and this in turn, means the

group of the theory is compound. Let us now study the reformation process by focusing

on the Lie algebra structure of one of the three major reformation of physics, namely the

special theory of relativity. This is actually the standard example of the Inönü and Wigner

contraction process. Here we just use it introduce an important concept which is crucial in

our study of reformation processes, namely, the regularization parameter.

Example : Einstein reformation of Galilei

In the Galilean group, we have

[Bx, By] = 0

[Rz, Bx] = By

[Rz, By] = −Bx

... (4)

where Bx be a boost along the x axis and Rz is a rotation about the z axis and so

on. The zero commutator above is the symptom of instability: boosts along different axes

commute. This is a consequence of time being an idol in the theory. We already know the

expansion of this group: the Lorentz group, where

[Bx, By] = c−2Rz

[Rz, Bx] = By

[Rz, By] = −Bx

... (5)
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The effect of expanding group on equations 3 is as follows:

x′ =
x− vt√
1− v2

c2

t′ =
t− v

c2
x√

1− v2

c2

(6)

Notice that how the reciprocity principle is satisfied: not only time couples to space,

space also couples to time. And this is done by introducing a new parameter (speed of light

c) that turns on a non-commutavity in the theory. This parameter is closely related to the

homotopy parameter that was introduced earlier. One may say that the Lorentz group is

an expansion (regularization) of the Galilei group. Or equivalently, special relativity

is a reformation of Galilean relativity. Note that we can recover the Galilean relativity by

taking the limit as 1/c2 → 0. So the Galilei relativity is the singular limit of special

relativity, which is based on the assumption of having finite value for speed of light as the

speed of physical interaction. We point out that the having a finite speed in Einsteinian

relativity is equivalent to relativizing time; an absolute (idol) of Galilean relativity. So once

again, we see that reformation of a physical theory means dethroning its idol(s)2. Special

theory of relativity is a regular theory. Its group is stable against variations in c. Lorentz

group, as mentioned earlier, is semi-simple.

This example reveals the conceptual pattern for every reformation process in physics.

Singular (compound) groups are made regular (semi-simple) by introducing a non-commutavity

in the fundamental Lie commutators of the theory. Through this process, one or more idols

of the singular theory become relativized variables. As a result compound groups become

stable.

We call the new parameters that enters the commutation relations of a singular theory

expansion or reformation parameters. In the limit where the expansion parameters

go to zero, we recover the singular theory. We can write symbolically

lim
expansion parameter→0

Regular theory = Singular theory (7)

2Note that although time is not an idol of special relativity anymore, but a new idol has emerged: the
rigid space-time. General relativity dethrones (relativizes) this one.
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Approximating a circle by a tangent line and a sphere by a tangent plane are well-

known flattenings. The point is that the circle and sphere are finite and their flattened

form is infinite. Finite dimensional representations of the group of the sphere— spherical

harmonic polynomials —form a complete set on the sphere, and all the operators of an

irreducible representation have finite bounded spectra. On the other hand the tangent

plane is not compact and requires infinite-dimensional representations of the translation

group for a complete set, and its group generators have unbounded spectra. This suggests

that flattening is the root of all the infinities of present physics.

Since quantum theory began as a regularization procedure of Planck, it is rather widely

accepted that further regularization of present quantum physics calls for further quanti-

zation, but what to quantize and how to quantize it remains at least a bit unclear. Now

we see that the physics trail is blazed by singular groups. They signal several fragile ideal

elements of present physics that are ripe for relativization and quantization, and they sug-

gest conspicuous first candidates for the stable groups that must replace the unstable ones,

changing the experimental predictions for extreme conditions.

Let us summarize the essence of our work into the following principle that we adopt

heuristically:

Principle 5 (Regularization) To regularize a theory, regularize its group.

An immediate corollary based on our previous discussion on flattening and finiteness is:

Corollary 6 (Simplicity) If the dynamical group of a physical theory is a simple Lie

group, the theory is finite.

We promised earlier to justify the term reformation. We are now at a position to fulfill

our promise. In fact, reformations are usually called revolutions. But as we noticed, during

major changes in physical theories, the change in the group structure is so subtle that the

old (singular) theory remains as a working theory in the appropriate limit. So clearly an

evolution would be a better name than revolution. But we also note that during these

changes, the compound theory becomes more accurate and more physical, as far as the
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experiment is concerned. In other words, these changes are deformations in the algebra of

the theory that repair the theory and thus, we arrive at reformation.

There is an important question we should address here. Group contraction or flattening

is a unique process as it leads unambiguously to a unique singular theory. But the reverse

process is not. So the question is “how do we fix the value of expansion or regularization

parameters?” To answer this, notice that physical reformations are historically results of

operationality and correspondence with experiments (although not always directly). There

has been either direct experimental motivation (in the case of quantum theory) or theoretical

considerations which have been based on consistencies with other theories with experimental

successes (in the case of special relativity). In the former case, the planck constant ~ was

fixed by direct experiments that actually triggered the quantum reformation. In the latter

case though, the expansion parameter of special relativity, turned out to be related to the

speed of light c through consistency with Maxwell’s theory3.

In the present work where we develop the finite quantum theory for the harmonic oscilla-

tor, we already take advantage of the second motivation. But we might not be lucky enough

in the experimental power of present day physics to actually observe direct experimental

failure of the standard model or general relativity. These theories work in very high ener-

gies or very large scale domains and at least by now, we have not passed their experimental

limits. So it might be much harder for us to fix the exact values of new regularization

parameters.

2.3 Physics as Process

It is not meaningful to assume that there will be a final theory. We consider physics as

a continuous evolutionary process of successive reformations, each being a step toward

unification. (Although, we do not see physics to reach a final unified state where the

3Of course the speed of light was measured independently and found to be finite. But the fact that the
same number appears in Lorentz transformation is our point here. With all that said, some believe that
this was a victory for Maxwell’s theory. I believe though, that this was a test for relativity, which it passed.
After all, Maxwell’s theory had already been tested experimentally and found to be correct.
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Table 1: Regularizations of physics-1

Regularization parameter Symbol Regularization
Boltzmann constant k Kinetic theory

Speed of light c Special relativity
Gravitational constant G General relativity
Cosmological constant Λ de Sitter relativity

Planck constant h Quantum theory
Electric charge e Electrodynamics
Strong charge g Chromodynamics

Weak constant f Electroweak gauge
Segal constants h′, h′′ Finite quantum theory

...
...

...

process ends)4. The physical theories will be constantly under reformation process. We will

be having a working theory while we will be looking for a better one. Therefore we turn

our attention to the process of theory-revision itself.

As we mentioned earlier, many of the successive radical changes in the physical theories

are group regularizations (reformations) in the Segal sense, and there are more of the same

to come. Each of the past reformations of physics is recognized with the corresponding

regularization parameter (Table 1) [5].

Each turns on a non-comutativity, in that commutativity is restored when the constant

is set to 0. These innovations have in common that each makes physics more and more

non-commutative, simple (algebraically), processual, relativistic, and often atomisitc. Even

Boltzman’s constant k, regarded as a coefficient in the entropy S = k log Ω of any system,

turns on the non-commutativity of adiabatic and isothermal processes, simplifies thermo-

dynamics by uniting it with mechanics, replaces the material caloric theory of heat by the

processual kinetic theory of heat, and is an atom of ideal-gas heat capacity. The stock

example of group regularization, however, is the c regularization from the Galilei group to

the Poincaré. To be sure, in the classical theory the c regularization seems to involve no

atomization. In the quantum theory, however, the Lorentz group admits finite-dimensional

boost representations where the Galilean flattening does not, and so even the c regulariza-

tion atomizes something. Namely, it atomizes the boost component of space-time angular

4This rhymes with an important belief in Persian Sufism according to which “love” is the everlasting
process of “beloved” getting closer and closer to “The beloved”, who is ultimately unreachable. So physics,
we believe, is our “love” toward unification.
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Table 2: Regularizations of physics-2

Parameter Non-commutativity Unification
k Reversible processes Entropy and probability
c Boosts Time and space

G Translations Energy and curvature
Λ Translations Translations and rotations
h Observables Observables and generators
e Covariant derivatives Momentum and E/M vector potential
g Covariant derivatives Momentum and QCD vector potential
f Covariant derivatives Momentum and Isospin vector potential

h′,h′′ Observables Space-time, energy-momentum,
and complex plane

...
...

...

momentum, with atoms of size h/2.

Each group regularization of a theory relativizes a false absolute of the theory and

introduces a new non-commutavity. As a result a new unification emerges in the regular-

ized theory that was absent before. For example, time, which is an idol of the Galilean

relativity, gets relativized and unified with space in special relativity. The corresponding

non-commutativity is among boost in different direction (Table 2).

To put this program in some perspective we note that regularization would never have led

(say) to the Dirac equation, or to color SU(3), let alone the Standard Model. Group regular-

ization is a prescription for relativizing false absolutes. It is no substitute for experiment.

It remains to see if it leads to more discoveries like the prototype group regularizations,

quantum theory and special and general relativity.

Each group regularization has a continuous inverse process in which the parameter ap-

proaches 0 and the singularities return. The new regularized theory is as close to the older

flattened one as it is possible to be, and the flattened theory is still used after the reg-

ularization in its domain of adequacy. These innovations are not what is usually called

revolution. Some call the process a deformation. This pejorative reveals a prejudice against

the more robust relativization and in favor of the absolutes of the fragile compound. Defor-

mation quantization, for example, retains the absolute despite the relativization. The term

“reform” would better describe our program than “deformation.”

In relation to the paragraph above, we give a more precise definition of what we called

16



earlier the generalized correspondence principle:

Principle 7 Generalized correspondence principle Let σ be an expansion (or regu-

larization) parameter (like ~ and 1/c). We call the limiting value O(0) of any quantity

O(σ) as σ → 0 the correspondent of O(σ). The Segal correspondent principle for σ is the

requirement that σ → 0 is a continuous deformation.

This principle guarantees what we already stated otherwise: the contracted (singular) theory

is the limit of the expanded (regular) theory.

We will see in section 3.1 how we apply this principle in expanding the compound

commutation relations of the Heisenberg algebra.

Why have so many regularizations occurred? Some think that it is because we are all

headed for one final simple theory in the sky. The Segal stability theorem suggests that they

may occur merely because compound theories are fragile and so have a higher mortality rate

than their simpler more robust offspring. Fragile theories are never probable inferences from

experimentation alone, which always have error bars, but incorporate absolutes as items of

faith, and have probability 0 relative to infinitely many, more robust, nearby theories.

Fragile theories are therefore less likely to survive than competitive robust theories. The

evolution of physics may be Darwinian selection, not teleological, and survival of a theory

may depend most immediately on its robustness, not its beauty. The quest for beauty can

lead to successful theories nevertheless, because it can lead to simplicity, which is robust.
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CHAPTER 3

REGULAR QUANTUM THEORY1

In the present chapter, we apply the idea of simplicity to quantum theory. We will observe

that the Heisenberg algebra is compound with the imaginary unit i as its center. The

simplest regularization of this algebra leads to a real simple orthogonal group. As a specific

example, we study the finite quantum theory of the harmonic oscillator.

3.1 Simplifying the Heisenberg Algebra

The fundamental algebra of quantum mechanics of a single particle in R is the Heisenberg

algebra H(1), which is a Lie algebra defined by the following commutation relations:

[p, x] = −i~

[i, x] = 0

[x, i] = 0 (8)

This is the Lie algebra of the Weyl group W(1). Clearly the imaginary unit by itself

forms a center for this algebra. It commutes with all other elements and generates an

invariant abelian subalgebra. Therefore quantum theory is a compound theory and ripe for

regularization. Segal proposed to simplify H(1) by introducing two more quantum constants

~′ and ~′′ constants, in a way that replaced the Heisenberg algebra SO(2, 1). His expanded

commutation relations are [8, 27, 28, 29, 24]

1Parts of material in this chapter have appeared in the following publications:

• Finkelstein, D.R. and Shiri-Garakani, M. Expanded Quantum Linear Harmonic Oscillator, Proceedings
of the 3rd International Symposium on Quantum Theory and Symmetries (QTS3). Cincinnati, Ohio,
2003.

• Baugh, J., Finkelstein, D., Galiautdinov, A. and Shiri-Garakani, M. Foundations of Physics 33,
1267,2003.

• Baugh, J. Finkelstein, D. Galiautdinov, A. Saller, H. and Shiri, M. Transquantum space-time, Proceed-
ings of the 5th International Symposium of Fundamental Physics. Birla Science Center, Hyderabad,
2003.
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[p, x] = −~i

[i, p] = −~′x

[x, i] = ~′′p (9)

The irreducible unitary representations of this group are infinite-dimensional. To avoid

this infinity, which can introduce divergences and other problems, we instead use the SO(3)

regularization [4, 15]

[p, x] = −i~

[i, p] = −x~′

[x, i] = −p~′′ (10)

Regularizing quantum theory at the algebra level means changing the role of i in the

theory from constant central element to quantum variable operator on the same footing as

p and q. We might call this i-activation.

Here we focus on the non-relativistic theory. But if we consider the full theory, one

should add and regularize Snyder’s commutation relations [25]

[xµ, xν ] = λLµν (11)

as well.

In earlier work, Finkelstein used the algebra of quaternions to activate i as the elec-

tromagnetic axis η(x) that resolves the electroweak gauge interaction into electromagnetic

and weak interactions [9]. The η field turned out to exhibit Stückelberg-Higgs effect, giving

mass to the charged partner of the photon. This led to a natural SU(2) that was interpreted

as isospin. The theory was dropped because it did not account for color SU(3). Today we

understand that the theory was still a field theory, violating Segal’s principle of simplicity.

In the present work, we activate i on principled ground, namely the principle of simplicity.

There is now plenty of room for internal groups like color SU(3).
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To proceed, it is more convenient to define the skew-operators (the generators of the Lie

algebra):

q̂ = iq, p̂ = −ip. (12)

The (usual) quantum canonical commutation relations are then

[q̂, p̂] = ~i

[i, q̂] = 0,

[p̂, i] = 0,

i2 = −1. (13)

The regularization correspondence principle (section 2.3), guides us to modify these relations

by replacing the zeros in commutators with polynomial functions of other variables. We

expand these quantum relations [24, 1] so that the three operators q̂, p̂, i become three

symmetrically related infinitesimal orthogonal-transformation generators q̆, p̆, ı̆ obeying

[q̆, p̆] = ~ı̆,

[̆ı, q̆] = ~′p̆,

[p̆, ı̆] = ~′′q̆, (14)

We suppose ~, ~′, ~′′ > 0 so the orthogonal group is SO(3). The quantities with a breve “˘”

are the new expanded quantum operators. In this way the simplification process introduces

a new dynamically variable generator ı̆, somewhat as general-relativization introduced the

new dynamical variable gµν the gravitational metric tensor field. The most primitive theory

with a dynamical variable like ı̆ is quaternion quantum field theory [9]. There ı̆ generates

rotations about the electric (or electromagnetic) axis in isospin space, defining a natural

Higgs field. We suppose that the present generator ı̆ is also a Higgs field.

Except for scale factors the simplified commutation relations are satisfied by the three

components of an SO(3) quantum skew-angular-momentum operator-valued vector L̆ =

L̆ × L̆ for a dipole rotator in three dimensions. We assume an irreducible representation

with

L2 = l(l + 1) (15)
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Then the L̆x, L̆y, L̆z are finite-dimensional linear operators represented by (2l+1)× (2l+1)

matrices obeying

[
L̆1, L̆2

]
= L̆3,[

L̆2, L̆3

]
= L̆1,[

L̆3, L̆1

]
= L̆2,

(L̆1)2 + (L̆2)2 + (L̆3)2 = −l(l + 1). (16)

The canonical operators x̆, p̆, ı̆ are just components of the one operator-valued vector

L̆, re-scaled. This means that in the simplified theory all canonical variables have discrete

spectra and transform under an orthogonal group, like rotator angular momenta. We have

fixed the eigenvalue of the Casimir operator of the orthogonal group to make the algebra

simple. Then the spectra become bounded as well as discrete. The theory is genuinely finite

[1].

To fix the scale factors and determine the spectra we set

q̆ = QL̆1,

p̆ = PL̆2,

ı̆ = JL̆3, (17)

By (14)

J =
√
~′~′′ = 1/l,

Q =
√
~~′,

P =
√
~~′′. (18)

The commutation relations L̆ × L̆ = L̆ and the angular momentum quantum number l,

defined by L̆2 = −l(l + 1), determine a simple (associative) enveloping algebra Alg(L, l)

where l can have any non-negative integer eigenvalue. The spectral spacing of the L̆3 is

1, so the finite quantum constants Q,P, J serve as quanta of position, momentum and ı̆.

Since q, p are supposed to have continuous spectra in quantum theory, the constants Q,P

are very small on the ordinary quantum scale of h ∼ 1. It follows that J = QP/~ is also

very small on that scale and l À 1.
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For
√

l À 1, variations δ(̆ı2) ≤ O(l−1/2) ¿ 1 about (̆ı)2 = −1 can be negligible at the

same time as the spectral intervals δp ≤ P
√

l and δq ≤ Q
√

l for quasicontinuous p, q ≈ 0.

This simulates the usual oscillator.

3.2 Finite Linear Harmonic Oscillator

For given finite-quantum constants P, Q the Finite Linear Harmonic Oscillator (FLHO) has

a Hamiltonian of the form

H =
P 2L2

x

2m
+

kQ2L2
y

2
:=

K

2
(
Lx

2 + κ2Ly
2
)

(19)

where

κ2 =
P 2

mkQ2
=

~′

mk~′′
. (20)

In the following, we find the energy spectrum in three different cases: medium, the case

where kinetic and potential terms in H are of comparable sizes (κ ∼ 1); soft, when the

potential energy term is dominant (κ ¿ 1); and hard, when the kinetic energy term is

dominant (κ À 1).

3.3 Medium FLHO

Let us begin with the very special case κ = 1 where we have the simple and symmetric case

of having two equal terms in the Hamiltonian. Now, since

(L̆1)2 + (L̆2)2 + (L̆3)2 = (L̆2), (21)

H̆ has a particularly simple finite quantum theory form:

H̆ =
K

2

(
l(l + 1) + (L̆3)2

)
(22)

The usual oscillator quantum number n is simply

n = l + m. (23)

The new expanded energy spectrum is

En =
K

2
(
l(l + 1)− (n− l)2

)
= lK

(
n +

1
2
− n2

2l

)
(24)
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For n ¿
√

l this reproduces the usual uniformly-spaced energy spectrum as closely as desired

for sufficiently large l. What quantum theory describes as a linear harmonic oscillator near

the bottom of its n spectrum is actually a dipole rotator near the extremes of its m spectrum,

according to this finite quantum theory.

The ground-state energy for this oscillator is obtained by setting |m| = l or equivalently

n = 0 so

E0 =
1
2
Kl (25)

which matches the usual oscillator ground energy of 1/2~ω with Kl = ~ω.

The new feature is that now there is an upper limit for the energy:

Emax =
1
2
Kl(l + 1) (26)

This is a major effect of applying finite quantum theory to the harmonic oscillator, and of

course, consistent with what we expect from a finite theory.

Now, we consider the more general case of κ ∼ 1. To obtain an upper bound for the

ground energy, we use the Ritz variational method with a trial function |Lz = ±l〉. This

just reproduces our previous result of (25) with the interpretation that it is an upper bound

for the ground energy of a medium FLHO:

E0 ≤ 1
2
Kl. (27)

The medium oscillators all have many states with m-value close to its extremum value i.e.,

states very close to |Lz = ±l〉. The usual QLHO Heisenberg uncertainty principle is

(∆p)2(∆q)2 > 1
4
〈i[p, q]〉2 =

~2

4
. (28)

For a medium FLHO in a low-lying energy level, the uncertainty product becomes

(∆Lx)2(∆Ly)2 > ~2

4
〈Lz〉2|Lz≈±l〉 (29)

which by way of (17) and (18) becomes

(∆p)2(∆y)2 > ~2

4
(30)
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for large l. So medium FLHO are described by states with uncertainties near and above

the limit set by the QLHO uncertainty principle.

The Newtonian and quantum concepts of energy are invariant under a shift in the zero

point of energy, but the angular momentum relations L× L = L are not invariant under a

shift L′ = L+∆L by any constant vector ∆L 6= 0. Therefore the finite quantum relations are

not invariant under a shift in the zero-point energy. Therefore this zero-point energy likely

contributes to the gravitational field. It will be interesting to estimate its contribution to

the missing matter in our cosmos. For a consistent estimate of this effect, we should expand

the space-time variables t, ∂t as well as the field variables q, p, since the quantum theory has

the same instability in both algebras. Here we take up the time-independent finite quantum

theory only.

3.4 Soft FLHO

A simple comparison with the Hamiltonian of a spin-zero scalar field (Klein-Gordon field)

in quantum field theory shows that the possibilities κ ¿ 1 and κ À 1 are also important.

The QLHO oscillators that give rise to infrared divergencies of the field theory correspond

to soft FLHO’s.

Recall our finite quantum oscillator Hamiltonian

H̆ =
K

2

(
L̆2

x + κ2L̆2
y

)
(31)

When κ ¿ 1 we can find the spectrum using time-independent perturbation theory.

The unperturbed Hamiltonian for our problem is

H0 =
K

2
L2

z (32)

so the unperturbed kets are just eigenkets of L2
z with the spectrum m2. To find the first-

order shifts we need to calculate

〈m|L2
y|m〉. (33)

We notice that due to the symmetry we must have

〈m|L2
y|m〉 = 〈m|L2

x|m〉. (34)
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Thus we calculate

〈m|L2
x + L2

y|m〉 = 〈m|L2 − L2
z|m〉 = l(l + 1)−m2 (35)

So the first order energy shifts are

∆Em =
1
4
K κ2

[
l(l + 1)−m2

]
. (36)

The new energy spectrum is then

Em =
K

2
m2 + ∆Em

=
K

2
m2 +

1
4
K κ2

[
l(l + 1)−m2

]
(37)

The estimated upper bound for the energy is

Emax ≈ 1
2
Kl2(1 +

κ2

2l
) (38)

For κ → 0 this reproduces the upper bound for the unperturbed hamiltonian L2
z, as it

should.

The zero-point energy E0 of first-order perturbation theory is

E0 ≈ 1
4
κ2Kl(l + 1) (39)

For κ → 0 this is infinitesimal compared to the usual QLHO. Clearly the energy levels of

a soft FLHO do not exhibit a uniform spacing anymore. A soft FLHO shows no resemblance

to the usual QLHO.

For soft FLHO oscillators, the kinetic energy in the Hamiltonian totally dominates the

potential energy. Soft oscillators have very large masses compared to their spring constants.

Their low energy states are near |Lx = 0〉 instead of |Lz = ±l〉. Their p degree of freedom

is frozen out. They are “too soft” to oscillate: There is not enough energy in the q degree

of freedom, even at maximum excitation, to excite one quantum of p. For soft FLHO, the

uncertainty relation reads

(∆Lx)2(∆Ly)2 > ~2

4
〈Lz〉2|Lx≈0〉 ≈ 0 (40)

Therefore

∆p∆q ¿ ~
2
, (41)

which seems to violate the Heisenberg uncertainty principle.
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3.5 Hard FLHO

Most of the story is just reversed for hard FLHO oscillators. The QLHO oscillators that

give rise to ultraviolet divergencies of the field theory correspond to hard FLHO’s. The

dominant term in the Hamiltonian is now the potential energy. Here the spring constant

is much larger than the mass. The low energy states are now near |Ly = 0〉 instead of

|Lz = ±l〉 and the q degree of freedom is frozen out. These oscillators are “too hard” to

oscillate.There is not enough energy in the p degree of freedom, even at maximum excitation,

to excite one quantum of q.

A hard FLHO can also be treated by perturbation theory. Now the kinetic energy is

the perturbation. We write

H̆ =
K

2

(
λ2L̆2

x + L̆2
y

)
(42)

where

λ :=
1
κ
¿ 1 =

km~′′

~′
. (43)

We may carry all the of the main results in the previous section for soft FLHO oscillators

to the hard ones simply by replacing κ with λ:

The first order energy shifts are

∆Em =
1
4
K λ2

[
l(l + 1)−m2

]
(44)

and the new energy spectrum is then

Em =
K

2
m2 + ∆Em

=
K

2
m2 +

1
4
K λ2

[
l(l + 1)−m2

]
(45)

The estimated upper bound for the energy is

Emax ≈ 1
2
Kl2(1 +

λ2

2l
) (46)

For λ → 0 this reproduces the upper bound for the unperturbed hamiltonian L2
z, as it

should.

The zero-point energy E0 of first-order perturbation theory is

E0 ≈ 1
4
λ2Kl(l + 1) (47)
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For λ → 0 this is infinitesimal compared to the usual QLHO. Clearly the energy levels of

a soft FLHO do not exhibit a uniform spacing anymore. A hard FLHO shows no resemblance

to the usual QLHO.

For hard FLHO, the uncertainty relation reads

(∆Lx)2(∆Ly)2 > ~2

4
〈Lz〉2|Ly≈0〉 ≈ 0 (48)

Therefore

∆p∆q ¿ ~
2
, (49)

which seems to violate the Heisenberg uncertainty principle again.

3.6 Unitary Representations

Variables p and q do not have finite-dimensional unitary representations in classical and

quantum physics. They are continuous variables and generate translations of each other.

But since in the finite quantum theory, all operators become finite and quantized, we expect

all translations to become rotations with simple finite-dimensional unitary representations.

We write the physical representations of the observables of the harmonic oscillator for

the canonical group of a CLHO, the Heisenberg-Weyl group of a QLHO, and canonical

orthogonal group of a FLHO.

CLHO The system is described by the Hamiltonian

H =
1
2
(p2 + q2) (50)

where we have set m = k = 1 for convenience. Here the system variables p and q are points

in the phase space and motion of the system is described by a parameterized path. For

convenience we give the action of the group on functions ψ(q, p) on phase space. We write

the Poisson bracket operator as

[A,B]P = (∆P A) · P (51)

A finite translation of q by the amount a has the form

Ta = ea∆Pp : ψ(q, p) 7→ ψ(q − a) (52)
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Quantum Linear Harmonic Oscillator (QLHO)

The unitary representations of finite translation operators of the Heisenberg-Weyl group

are made by exponentiating the generators of infinitesimal translations of the Heisenberg

Lie algebra:

T (a) = e−ipa/~ (53)

These are unitary operators in the enveloping algebra of the Heisenberg Lie algebra.

Finite Linear Harmonic Oscillator (FLHO)

A q translation of the FLHO by the amount a is a rotation of the corresponding rotator

by an angle θ = Pa/~. The unitary operator is

Uq(a) = e−iθLx (54)

The p translation through a momentum-change b is found by replacing Lx by Ly:

Up(b) = e−iθLy (55)

with θ = Qb/~.

28



CHAPTER 4

CONCLUSION

We have applied the Segal process of group simplification to the linear harmonic oscillator.

The result is a finite quantum theory with three quantum constants ~, ~′, ~′′ instead of

the usual one. We have compared the classical (CLHO), quantum (QLHO), and finite

(FLHO) linear harmonic oscillators and their canonical or unitary groups. The FLHO

is isomorphic to a dipole rotator with N = l(l + 1) ∼ 1/(~′~′′) states and Hamiltonian

H = A(Lx)2 + B(Ly)2, and the physically interesting case has N À 1. The position

and momentum variables are quantized with uniform finite spectra. For fixed quantum

constants and large N À 1 there are three broad classes of FLHO: soft, medium, and hard,

with B/A ¿ 1, B/A ∼ 1, and B/A À 1 respectively. The field oscillators responsible for

infra-red and ultraviolet divergences are soft and hard respectively. Medium oscillators have

B/A ∼ 1 and approximate the QLHO. They have ∼ √
N low-lying states with nearly the

same zero-point energy and level spacing as the QLHO, and nearly obeying the Heisenberg

uncertainty principle and the equipartition principle. The corresponding rotators are nearly

polarized along the z axis with Lz ∼ ±l. The soft and hard FLHO’s have infinitesimal 0-

point energy, and grossly violate both equipartition and the Heisenberg uncertainty relation.

They do not resemble the QLHO at all. Their low-lying energy states correspond to rotators

with Lx ∼ 0 or Ly ∼ 0 instead of Lz ∼ ±l. Soft oscillators have frozen momentum, because

their maximum potential energy is too small to produce one quantum of momentum. Hard

oscillators have frozen position, because their maximum kinetic energy is too small to excite

one quantum of position.
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APPENDIX A

PROCESS PHYSICS

In this appendix, we discuss the concept of operation-based physics.

The quest for unification in physics has its roots in several factors. One reason for it is

that it has led to major improvement in predictive power of physics. Each of the three major

reformations of the last century were steps toward unification: special relativity unifies space

with time, general relativity unified space-time with matter (energy) and finally quantum

mechanics unified observervables with transformation. But each of these reformations were

also a giant step towards an operation-based physics. Each shifted the conceptual ground

of physics from operand (noun, substance, matter, particle, thing, atom, state, ons, . . . )

to operations (verb, process, operations, action, transformation, event, mode, praxis, . . . );

from ontic to practic[12]. Therefore we seek a practic theory, founded on operations alone.

There has been no progress toward stability and practism comparable to the giant

steps of special and general relativity and quantum theory, despite numerous proposals and

attempts ([11, 30, 31] among others). Indeed, experiments has carried us in the opposite

direction. The standard model enlarged the group but made it less simple. Theory also has

not moved toward more simplifications. String theory is another continuum-based bundle

theory, like the field theory. This may be because the next step is a much more fundamental

and bigger, requiring many false steps. Stability requirement alone forces several radical

changes. For example, it eliminates the differential calculus from the basic laws.

Our basic principle here is

Principle 8 Chronon principle of elementary operations (Principle of process

atomism) All physical operations are composed of elementary quantum opera-

tions we call chronons.

Space-time operations, which are regarded as continuous in the standard model and
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general relativity, are now written as finite sum of elementary operations [3]. We do the

same here for operators in the Hesienberg algebra of quantum mechanics and as a specific

example, we study the expanded quantum harmonic oscillator (section 3.2).

We designate an elementary operation by o (omicron) and its duration by χ.

In the early twentieth century, few physicists speculated about a quantum of time (a

natural unit of time) and they called it chronon. Nowadays the suffix “on” is firmly associ-

ated with physical entities like particles, not with natural constants. We therefore reserve

the name “chronon” for hypothetical elementary operations themselves, the least action

that can happen, not the fundamental constant χ and certainly not for any particle in the

sense of particle physics, which occupies a prior space-time.

Flipping an electron spin is the least action we know. This could be a good physical

candidate for a chronon. We take this to be an instance of the elementary operation, and

set about expressing all operations as compositions of spin flip.

It is helpful to construct an operand for these operations. We form a linear space on

which these operators act, and regard the vectors in this space as modes of creation op

preparation of the operand. We present the operand as an aggregate whose elements we

call events, since replace the classical space-time events of the usual quantum field theories.

Let us explain what is the physical effect of introducing chronons into a theory. Quan-

tization is a heuristic procedure that deforms a physical theory from the wrong value ~ = 0

to the physical value of ~. For example, when the harmonic oscillator is quantized, it is

presented as an aggregate of phonons.

In the same spirit, when we introduce the chronon o and its duration χ into a theory that

lacks them, we deform the theory from the wrong continuum value χ = 0 to the physical

value of χ. We present the system history as a quantum combination of chronon instead

of a continuum of events. This is a true second quantization in that we replace classical

space-time variables by non-commuting operators, and bring in a second constant χ that

stabilizes the theory, much like replacing the classical position and momentum with the

non-commuting operators and introducing ~ in quantum theory.
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APPENDIX B

CLIFFORD-ALGEBRAIC REPRESENTATION OF FLHO

In this appendix, we briefly review Clifford algebras and study the finite representations

of the operators of the finite quantum theory of the harmonic oscillator in this algebra.

We use Clifford algebra to satisfy the principle of process atomism that was introduced in

appendix A. We assume that elementary operations are generators of a Clifford algebra.

B.1 Review of Clifford Algebras

Clifford (geometric) algebra is the most efficient (and perhaps necessary) mathematical

language for our work. There are at least two reasons for this. First, it is because of the

type of statistics that we need to use for the elementary operations (chronons). This lies

outside the scope of the present work; we just mention that this is a double-valued statistics

which is the real version of the complex projective statistics ([32, 33, 20]). Finkelstein and

coworkers has developed this statistics and call it Clifford-Wilczek statistics [3, 13].

Second, the groups arising in this work are orthogonal simple groups whose representa-

tions are conveniently constructed with Clifford algebras. Elements of Clifford algebras are

called cliffors. We begin by definition of the more general concept of Clifford ring and then

we specify to the algebra.

Definition 9 Clifford ring A Clifford ring C is a graded (associative linear) ring of the

form

C = C0 ⊕ C1 ⊕ · · ·⊕ CN

= scalars ⊕ vectors ⊕ · · ·⊕ N -vectors
(56)

with the following properties:

C0. The scalars form a subring and commute with every cliffor.

C1. Every cliffor is expressible as a polynomial in the vectors with scalar coefficients.

C2. Clifford’s Law: The square of every vector is a scalar.

32



A Clifford ring is determined by its scalars, its vectors, and the product, and is written

C = Cliff (C1,C0), the product being understood.

We understand that in the Clifford law, the “square” implies the Clifford product of a

vector a by itself. We designate the scalar a2 by ‖a‖ and the Clifford product between two

vectors a and b ∈ C1 by

a t b (57)

The Clifford law implies that ‖a‖ := a2 is a quadratic form on the vectors; So the Clifford

law is

a t a = ‖a‖2 (58)

Let us show the properties of the Clifford law within a simple example; the Clifford

algebra of the plane C(R2). With an orthonormal basis {γ1, γ2}for the Clifford law reads

(xγ1 + yγ2)2 = x2 + y2 (59)

Use distributivity without assuming commutativity to obtain

x2γ2
1 + y2γ2

2 + xy (γ1γ2 + γ2γ1) = x2 + y2 (60)

This is satisfied if γ’s obey

γ2
1 = γ2

2 = 1

γ1γ2 = −γ2γ1

(61)

which corresponds to

‖γ1‖ = ‖γ2‖ = 1

γ1 ⊥ γ2

(62)

Specifying to an algebra is straight forward: A Clifford algebra is a Clifford ring whose

scalars form a field.

The example above was too specific in that a positive definite metric was used. This

is actually not a restriction and we relax it in the following general definition of a Clifford

Algebra of a quadratic space with any signature [19, 22]:
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Definition 10 Clifford algebra An associative algebra of a linear space V over F with

unity 1 is the universal Clifford algebra Cp,q(V ) of a non-degenerate (non-singular) quadratic

form Q on V if it contains V and F = F·1 as distinct subspace so that

1. x2 = Q(x), ∀x ∈ V

2. V generates C(V ) as an algebra over F

3. C(V ) is not generated by any proper subspace of V .

Here Q is a quadratic form Q : V → F on V with an indefinite metric with signature p− q

such that

Q(x) = x2
1 + x2

2 + . . . + x2
p − x2

p+1 − . . .− x2
p+q (63)

For an orthonormal complete basis {γ1, γ2, . . . , γn} for Rp,q, the condition 1 can be expressed

as

γ2
i = 1 , 1 ≤ i ≤ p

γ2
i = −1 , p < i ≤ n

γiγj = −γjγj , i < j

(64)

while condition 3 becomes

γ1γ2 . . . γn 6= ±1 (65)

B.2 Clifford algebraic-representations

Let us first introduce our notation. If C, C ′ are free Clifford algebras over the respective

vector spaces V, V ′ we write

C = 2V = Σ⊗ Σ†,

C ′ = 2V ′ = Σ′ ⊗ Σ′†,

V = 4C, Σ =
√

C,

V ′ = 4C ′, Σ′ =
√

C ′,

CC ′ = 2V⊕V ′ = (Σ⊗ Σ′)⊗ (Σ† ⊗ Σ′†) (66)

4C represents the least difference or atom or bit of C.
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We use 4 for bit much as one uses d for differential. 4 defines a factor in a product,

the differential a term in a sum. If s is a variable in C then 4s is an independent variable

in 4C.

We call 4S the bit (space) of the algebra S = 24S . We write the corresponding systems

as 4S and S. The bit system 4S is the atom, the system S is the quantum aggregate of

atoms.

C = 24C expresses the system with mode space C as a set of atoms. C = Σ ⊗ Σ†

expresses the generic transformation of the same system as a pair of a creation and an

annihilation.

If C is a Clifford algebra we write

C ′ = 2C (67)

for the free Clifford algebra over the quadratic space consisting of the elements of C with

their usual sums and products by scalars, and with the norm

‖x‖ = <x2, (68)

where the operator < takes the grade-0 part of its operand.

For typographical convenience we may write exponentials functionally:

AB = A(B), 2X = 2(X), , . . . (69)

We are ready now to discuss the representation of the oscillator operators in Clifford

algebra. The dynamical operators of the oscillator form the dynamical algebra A of the

oscillator. We represent the finite quantum algebra Ă using a product of many replicas of

the Clifford algebra C(3) appropriate to the orthogonal group of the oscillator.

We describe joint input and output (IO) operations on the oscillator [12] by elements

of the co-algebra A∗ dual to A, composed of the linear maps A → R. Elements of A∗ are

called co-operators.

This means that we represent I and O processes separately by spinors. We might instead

represent I processes by Clifford elements. Then we would have to represent q̆ and p̆ by

linear operators C → C rather than by elements of C.
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Our prototype Clifford algebra C(3) is the linear associative real algebra generated by

the vectors v of the Euclidean vector-space R3 with the positive-definite metric ‖v‖ =

(v1)2 + (v2)2 + (v3)2, subject to the Clifford law in the form

v2 = ‖v‖. (70)

We choose an orthonormal basis γ1, γ2, γ3 for E3, with many orthogonal (anticommuting)

replicas γk(n) (k = 1, 2, 3;n = 1, 2, . . . , N). We associate the axes 1 and 2 with the real and

imaginary axes of the complex plane, and represent ı̆ using N replicas

γ12(n) := γ1(n)γ2(n) (71)

of γ12 := γ1γ2:

ı̆ :=
1
N

N∑

n=1

γ12(n). (72)

We also associate the 2 axis with q and the 1 axis with p, so that

L1 =
N∑

n=1

γ13(n),

L2 =
N∑

n=1

γ23(n). (73)

This illustrates how Clifford algebra serves as the universal algebraic language of finite

quantum theory.
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