
Multiparadigm programming: Novel devices for

implementing functional and logic programming constructs

in C++

A Thesis

Presented to

The Academic Faculty

by

Brian McNamara

In Partial Ful�llment

of the Requirements for the Degree

Doctor of Philosophy

College of Computing

Georgia Institute of Technology

July 12, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4675212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multiparadigm programming: Novel devices for

implementing functional and logic programming constructs

in C++

Approved by:

Professor Yannis Smaragdakis, Adviser

Professor Mary Jean Harrold

Professor Spencer Rugaber

Professor Olin Shivers

Professor Philip Wadler

(Edinburgh University)

Date Approved: April 27, 2004

ACKNOWLEDGEMENTS

First o�, I thank my mother, who patiently endured her son's seven long years of being a

graduate (\gradual"?) student. She was always there to o�er support and encouragement

and to remind me of what was really important in the grand scheme of things.

I thank my adviser, Professor Yannis Smaragdakis, for all his support. Yannis gave

me the freedom to explore many of my own ideas, yet he was adept at gently steering

me towards the most potentially fruitful ones. His oÆce door was always open, enabling

interesting discussions of research ideas at all hours of the day. I feel very fortunate to have

had an adviser who was such a good �t for me.

I thank the rest of my committee: Professors Mary Jean Harrold, Spencer Rugaber, Olin

Shivers, and Philip Wadler. Both Mary Jean and Spencer have a keen eye and ask probing

questions; their attention has both ensured that this work kept a clear focus and helped

improve the writing in terms of clarity and precision. Olin �elded many of my more esoteric

questions and pointed me at relevent research papers|often with entertaining stories that

helped keep me motivated and reminded me how \cool" it is to be a programming languages

hacker. Philip was supportive throughout; when the work on FC++ was new, he helped

create ties to the functional programming community, and as the work matured, he o�ered

useful feedback, especially with regards to design aesthetics.

I also thank Rich Leblanc, my original research adviser. He has encouraged me to pursue

my interest in programming languages since even before I became a graduate student, and

he has continued to be a participant and supporter of my work even after moving on to new

positions.

Finally, I thank all my friends and family who helped make my whole experience as a

graduate student enjoyable. There are too many people to name, but these people helped

keep me sane during the occasional tough spots, and they shared many happy times with

me during the rest.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

CHAPTER I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Thesis . 2

1.3 Contributions . 2

1.3.1 Comparing FC++ and LC++ to other multiparadigm work 2

1.3.2 Reusable lessons of our work . 4

1.4 Roadmap . 5

CHAPTER II FC++ . 7

2.1 Motivation and overview . 7

2.2 Description of basic library features . 10

2.2.1 Library introduction . 11

2.2.2 Direct functoids . 13

2.2.3 Indirect functoids . 19

2.2.4 Use of direct functoids . 22

2.2.5 Full functoids . 26

2.2.6 In�x syntax . 27

2.2.7 Currying . 28

2.2.8 Subtype polymorphism . 30

2.2.9 C++ interface . 32

2.3 Description of advanced library features 36

2.3.1 Lambda . 36

2.3.2 Monads . 46

2.3.3 Static analysis and error checking 64

2.3.4 Lazy lists: even and odd . 66

iv

2.3.5 Strict lists and a generalized list interface 70

2.4 Applications . 72

2.4.1 Higher-order functions and design patterns 72

2.4.2 Parametric polymorphism and design patterns 78

2.4.3 Other applications . 87

2.5 Performance . 88

2.5.1 Performance experiments . 89

2.5.2 Performance analysis and optimizations 97

2.6 Expressiveness and limitations . 106

2.7 Discussion . 110

CHAPTER III LC++ . 111

3.1 Description of the library . 111

3.1.1 Introductory example and syntax overview 111

3.1.2 Declaring relations and logic variables 112

3.1.3 Calling out to C++ functions . 112

3.1.4 Asserting facts and rules, running basic queries 114

3.1.5 More on queries, environments, and result lists 115

3.1.6 Functors and data structures . 117

3.1.7 Limitations . 119

3.2 Beneath the Surface . 120

3.2.1 Query execution and C++ interfacing 120

3.2.2 Parsing and semantic analysis . 125

3.3 Potential applications . 129

3.4 Performance . 130

3.5 Detailed comparison to related work . 131

3.6 Discussion . 133

CHAPTER IV RELATED WORK . 135

4.1 Work adding functional components to object-oriented languages 135

4.1.1 Representing functions in C++ . 135

4.1.2 Lambda . 136

v

4.1.3 Applications . 138

4.2 Work on multiparadigm languages with logic components 139

4.2.1 Logic programming extensions to OO languages 140

4.2.2 Other languages with a logic-programming component 140

CHAPTER V GENERALIZING FROM C++ 142

5.1 Reusable lessons . 142

5.1.1 Type system for higher-order polymorphic functions (using C++-

style type inference and template computation) 143

5.1.2 Currying . 144

5.1.3 In�x function syntax . 146

5.1.4 Overloaded list interface . 148

5.1.5 List optimizations . 150

5.1.6 Subtyping for functoids . 152

5.1.7 Lazy lists as an interface to logic query results 153

5.1.8 Functoids as mechanism for logic code to \call out" 154

5.1.9 Domain-speci�c static analyses . 155

5.2 Overview of useful language features . 156

5.3 Overall evaluations and discussion on language design 157

5.3.1 Overall evaluation of FC++ and LC++ 158

5.3.2 C++ capabilities and limitations 159

5.3.3 Language design discussion . 162

CHAPTER VI CONCLUSIONS . 167

6.1 Contributions . 167

6.2 Future work . 168

vi

LIST OF TABLES

Table 1 Primes (all times in seconds) . 90

Table 2 Tree (all times in seconds) . 94

Table 3 Hamming (all times in seconds) . 94

Table 4 Comparison of di�erent list structures 100

Table 5 The value of intrusive reference counting 101

Table 6 The value of reusing functoids . 101

Table 7 The value of using global data . 105

Table 8 The value of transforming tail recursion into iteration 105

Table 9 The value of four optimizations combined 106

Table 10 Latest comparison with L�aufer's library 106

Table 11 Syntax mapping between Prolog and LC++ 112

Table 12 Minimum features required for various reusable ideas. 157

vii

LIST OF FIGURES

Figure 1 Some examples of what FC++ can do 12

Figure 2 Polymorphic functions as templates over indirect functoids 23

Figure 3 Polymorphic functions as direct functoids 23

Figure 4 FC++ and native C++ functions . 34

Figure 5 FC++ and STL . 35

Figure 6 Lambda in FC++ . 42

Figure 7 The Maybe datatype in FC++ . 51

Figure 8 Documentation of the monad concept requirements in FC++ 52

Figure 9 De�nition of the Maybe monad (MaybeM) 53

Figure 10 De�nition of the IdentityM monad 55

Figure 11 Primes in Haskell . 90

Figure 12 Primes in FC++ . 91

Figure 13 Tree in Haskell . 92

Figure 14 Tree in FC++ . 93

Figure 15 Hamming in Haskell . 95

Figure 16 Hamming in FC++ . 96

Figure 17 Three possible list implementations 99

Figure 18 Non-intrusive reference counting and intrusive reference counting . . 100

Figure 19 take() without functoid reuse . 101

Figure 20 take() with functoid reuse . 102

Figure 21 take() with reuse via a Reuser . 102

Figure 22 Simpsons family relationships in LC++ 113

viii

SUMMARY

Constructs for functional and logic programming can be smoothly integrated into an

existing object-oriented language. We demonstrate this in the context of C++ (a statically-

typed object-oriented language with e�ects and parametric polymorphism) via two libraries:

FC++ and LC++. FC++ is a library for functional programming in C++; FC++ supports

higher-order polymorphic functions, lazy lists, and a small lambda language; it also contains

a large library of useful functions, datatypes, combinators, and monads. LC++ is a library

for logic programming in C++; LC++ provides the same general functionality as Prolog,

including the ability to return query results lazily (one at a time). Both libraries are

embedded in C++ so that they share C++'s static type system, and the library interfaces

provide straightforward ways for code from within one paradigm to \call out" to another.

Our work describes the techniques used to implement these libraries in C++ and shows

that the resulting multiparadigm language has useful applications in real-world domains.

We also describe how many of the implementation techniques can be generalized from C++

and applied to other programming languages to yield similar results.

ix

CHAPTER I

INTRODUCTION

In this chapter we provide an overview of our research work. We motivate the topic of

multi-paradigm programming, state our thesis, and provide a high-level description of our

contributions to the �eld|in terms of our research artifacts (the FC++ and LC++ libraries)

and the \conceptual contributions" of our work. This chapter closes with a short summary

describing each of the remaining chapters of the dissertation.

1.1 Motivation

Multi-paradigm programming languages have been a topic of research for decades. The

basic appeal is clear: o�ering the programmer a choice of paradigms enables her to choose

the one best suited to the problem domain.

Recently there have been a number of good examples of languages and systems that

combine functional and logic programming (e.g., [17, 22, 29, 57, 68]), as well as mature

implementations that add functional features to object-oriented languages (e.g., [38, 52, 60,

64]), and few examples that extend object-oriented languages with logic programming (e.g.

[12, 11, 21]). But it is rare to see programming systems that combine all three paradigms.

There appear to be two main reasons for the paucity of multiparadigm languages. The

�rst stems from the range of \expression" that must be covered. At one extreme, logic

programming provides a purely declarative speci�cation for computing a result; at the other

extreme, imperative OO code describes an algorithm for implementing a computation, �lled

with details about which variables get side-e�ected when. (Consider, e.g., how di�erent

sort() looks when coded in C versus Prolog.) As a result, the mere task of creating

a language syntax that is capable of representing these di�erent expressive modes (and

everything in between) is a challenge.

The second reason, which seems to be more diÆcult to overcome than the �rst, is that

1

even if a language can cover the range of expression, so that parts of programs can be

written within each paradigm, there is still the issue of communicating between paradigms.

There is an interface mismatch at the borders between paradigms|di�erent paradigms treat

fundamental issues, such as e�ects, calling conventions, data representation, and control ow

di�erently. There is a great challenge in providing smooth interfaces that enable code from

one paradigm to \call out" to code in another, so that the best-match paradigm can be

used by the programmer to solve each individual portion of the problem at hand.

We show that a smooth integration of the paradigms can be achieved in C++. We do so

with two libraries: FC++ for functional programming, and LC++ for logic programming.

1.2 Thesis

Constructs for functional and logic programming can be smoothly integrated into an existing

object-oriented language. We demonstrate this in the context of C++, and show that the

resulting multiparadigm language has useful applications in real-world domains.

1.3 Contributions

The contributions of our work can be divided into two main categories. The �rst is applied

value; this category compares our work in C++ to other work supporting multiparadigm

programming. The second is conceptual value; this category describes the \reusable lessons"

of our work|that is, the ideas which can be reapplied in the context of other OO program-

ming languages to extend them with multiparadigm features.

1.3.1 Comparing FC++ and LC++ to other multiparadigm work

Our libraries compare favorably with prior work in multiparadigm systems. This is true in

terms of both practicality (e.g. run-time performance and proven usefulness) and language

design (e.g. concision). We highlight the important points here, which are explored more

fully in later sections.

� FC++ has an eÆcient implementation thanks to a number of optimizations. The

optimization techniques are described and performance is quanti�ed in Sections 2.5.1

2

& 2.5.2. FC++ is signi�cantly faster than the prior state of the art (L�aufer's C++

framework for functions[49]).

� FC++ has been shown to be a valuable tool for implementing object-oriented de-

signs, as described in Section 2.4. Using FC++, the implementations of some design

patterns[25] are simpler, more eÆcient, or more typesafe than their conventional coun-

terparts.

� FC++ provides a useful infrastructure for building other libraries, as evidenced by our

\customers" [13, 50, 18]. FC++ has also inuenced the development of a number of

Boost libraries|a group of widely-distributed, peer-reviewed, portable C++ source

libraries which are likely to be incorporated into future versions of the C++ standard

library.

� FC++ provides a natural syntax for doing functional programming. Indeed, we have

used C++'s extensibility features to provide various kinds of syntactic sugar for fea-

tures like in�x function call, lambda, and monad comprehensions. This makes pro-

gramming in FC++ look and feel more like programming in a functional language

(e.g. Haskell). When compared to other functional C++ libraries (e.g. [38, 64]),

FC++ is often more concise and expressive.

� Similarly, LC++ provides an interface that looks very similar to that of a logic lan-

guage (e.g. Prolog). The declarative speci�cation of logic programming code is often

cited as one of the key assets of the paradigm, thus preserving this declarative style is

important to providing a smooth integration. In this respect, LC++ compares favor-

ably to other attempts to add logic programming to object-oriented languages (e.g.

[11, 21]).

� Both libraries provide a convenient interface between paradigms. FC++, LC++, and

C++ all share the same type system and object representation, and the interfaces

provide a good way for control to ow across paradigms.

� Finally, the libraries include a number of domain-speci�c static analyses. This enables

3

certain types of errors to be detected at compile-time, and the C++ compiler can emit

useful diagnostics.

To reiterate the last four points above, we have implemented the libraries in a way

that preserves the syntax of the functional and logic programming domains, integrates

their control ow and type systems with the base language (C++), and provides static

analyses speci�c to the domains. Thus, although we have implemented FC++ and LC++

as C++ libraries, it is reasonable to think of them as domain-speci�c embedded languages

for functional and logic programming.

1.3.2 Reusable lessons of our work

In addition to the concrete contributions of our actual library implementation, many of the

ideas in our work also generalize. That is, we describe \novel devices for implementing

functional or logic programming constructs using C++-like mechanisms". Note that there

are two kinds of reusable lessons here: those that are reusable within C++, and those that

are reusable in general. Thus, this information is potentially valuable both to researchers

using C++, who want to be able to replicate aspects of our work, as well as those working

in other OO languages who want to extend them with functional or logic programming

features. Put another way, we answer the question \Where is the magic?" and show how

we have succeeded in adding certain features to C++ where others have previously tried

and failed. Some of the most important of these ideas are briey listed here:

� We show how to implement a type system for higher-order polymorphic functions,

using C++-style type inference and template computation.

� We show a general mechanism by which a language can implement currying, based

on operator overloading and template partial specialization.

� We show a general mechanism to obtain in�x syntax for any arbitrary pre�x function;

this mechanism can be used in any language that supports either ad-hoc overloading

or creating new user-de�nable operators.

4

� We demonstrate a general way to make function objects exhibit subtype polymor-

phism, so they can participate in OO type hierarchies.

� We demonstrate a common list interface for both strict (eager) lists and lazy lists (and

in the case of lazy lists, for both the \even" and \odd" style). This interface, based

on typeclass-like overloading, enables list-processing functions to be polymorphic with

respect to the type of list.

� We show how to do static analyses speci�c to the domains of the added programming

paradigms, utilizing the Turing-complete meta-programming capabilities of C++.

The whole of Chapter 5 is devoted to the topic of reusable lessons.

1.4 Roadmap

The rest of the dissertation is organized as follows.

Chapter 2 describes the FC++ library in great detail. The library's interface is explained

and the major implementation issues are discussed. There is also a discussion of applications

of the library and comparisons to directly related work. FC++ is the largest and most

interesting piece of our work, and this chapter is by far the largest in the dissertation.

Chapter 3 describes the LC++ library. As with FC++, the LC++ chapter describes the

library interface, key implementation issues, applications, and relations to closely related

work.

Chapter 4 discusses related work. Whereas both Chapters 2 & 3 make some comparisons

to closely related work, Chapter 4 shows a \bigger picture" of how our work is related to a

number of multiparadigm languages and systems.

Chapter 5 describes the reusable lessons of our work. Some of these lessons are only

useful in C++, but many of them generalize to other programming languages, and we

give a number of illustrations of how our techniques can be implemented using features

found in other languages. We also provide high-level commentary about multiparadigm

programming and extensible languages in general.

5

Chapter 6 summarizes the contributions of our work and suggests possible avenues of

further exploration.

6

CHAPTER II

FC++

This chapter describes FC++, a library for functional programming in C++. We describe

the multitude of functional programming features supported by the library, both in terms

of their C++ implementations and their interfaces with the rest of the language. We also

demonstrate a number of applications and application domains of the library. Finally we

discuss pragmatic issues, including considerations of run-time eÆciency and the overall

expressiveness of the library.

2.1 Motivation and overview

It is a little known fact that part of the C++ Standard Library consists of code written

in a functional style. Although the C++ Standard Library o�ers rudimentary support

for higher order functions and currying, it stops short of supplying a sophisticated and

reusable module for general-purpose functional programming. This is the gap that our

work on FC++ �lls. The result is a full embedding of a simple pure functional language

in C++, using the extensibility capabilities of the language and the existing compiler and

run-time infrastructure.

At �rst glance it may seem that C++ is antithetical to the functional paradigm. The

language not only supports direct memory manipulation but also only has primitive capabil-

ities for handling functions. Function pointers are �rst class entities, but they are of little use

since new functions cannot be created on the y (e.g., as specializations of existing functions

by �xing some state information). Nevertheless, the elements required to implement a func-

tional programming framework are already in the language. The technique of representing

�rst-class functions using classes is well known in the object-oriented world. Among others,

the Pizza language [60] uses this approach in translating functionally-avored constructs to

7

Java code. The same technique is used in previous implementations of higher-order func-

tions in C++ [46, 49]. C++ also allows users to de�ne a familiar syntax for function-classes,

by overloading the function application operator, \()". Additionally one can declare meth-

ods so that they are prevented from modifying their arguments; this property is enforced

statically by C++ compilers. Finally, using the C++ inheritance capabilities and dynamic

dispatch mechanism, one can de�ne variables that range over all functions with the same

type signature. In this way, a C++ user can \hijack" the underlying language mechanisms

to provide a functional programming model.

All of the above techniques are well-known and have been used before. In fact, several

researchers in the recent past (e.g., [64, 46, 38, 49, 56]) have (re)discovered that C++ can

be used for functional programming. Nevertheless, all of the above approaches, as well as

that of the C++ Standard Library, su�er from one of two drawbacks:

� High complexity when polymorphic functions are used: Polymorphic functions may

need to be explicitly turned into monomorphic instances before they can be used. This

causes the implementation to become very complex. L�aufer observed in [49]: \...the

type information required in more complex applications of the framework is likely to

get out of hand, especially when higher numbers of arguments are involved."

� Lack of expressiveness: In order to represent polymorphic functions, one can use C++

function templates. This approach does not su�er from high complexity of parameter-

ization, because the type parameters do not need to be speci�ed explicitly whenever a

polymorphic function is used. Unfortunately, function templates cannot be passed as

arguments to other function templates. Thus, using C++ function templates, poly-

morphic functions cannot take other polymorphic functions as arguments. This is

evident in the C++ Standard Library, where \higher order" polymorphic operators

like compose1, bind1st, etc. are not \functions" inside the Standard Library frame-

work and, hence, cannot be passed as arguments to themselves or other operators.

Our work addresses both of the above problems. Contrary to prior belief (see L�aufer [49],

who also quotes personal communication with Dami) no modi�cation to the language or

8

the compiler is needed. Instead, we are relying on an innovative use of C++ type inference.

E�ectively, our framework maintains its own type system, in which polymorphic functions

can be speci�ed and other polymorphic functions can recognize them as such.

Since C++ type inference is in the core of our technique, a disclaimer is in order:

C++ type inference is a uni�cation process matching the types of actual arguments of a

function template to the declared polymorphic types (which may contain type variables,

whose value is determined by the inference process). C++ type inference does not solve

a system of type equations and does not relieve the programmer from the obligation to

specify type signatures for functions. Thus, the term \C++ type inference" should not

be confused with \type inference" as employed in functional languages like ML or Haskell.

The overloading is unfortunate but unavoidable as use of both terms is widespread. We will

always use the pre�x \C++" when we refer to \C++ type inference".

The result of our approach is a convenient and powerful parametric polymorphism

scheme that is well integrated in the language: with the FC++ library, C++ o�ers as

much support for higher-order polymorphic functions as it does for native types (e.g., inte-

gers and pointers).

Apart from the above novelty, FC++ also o�ers a few more new elements:

� First, we de�ne a subtyping policy for functions of FC++, thus supporting subtype

polymorphism. The default policy is what one would expect: a function A is a subtype

of function B, i� A and B have the same number of arguments, all arguments of B are

subtypes of the corresponding arguments of A, and the return value of A is a subtype

of the return value of B. (Using OO typing terminology, we say that our policy is

covariant with respect to return types and contravariant with respect to argument

types.) Subtype substitutability is guaranteed; a function Animal* -> Car* can be

used where a function Dog* -> Vehicle* is expected.

� Second, FC++ provides a number of useful syntax sugars. A set of reusable combi-

nators support automatic currying; curryable functions can be called with a subset

of the arguments they expect, binding those values and resulting in a new function

9

that expects the remainder of the arguments. Functions can be called using in�x

syntax, similar to the `function` syntax in Haskell. Anonymous functions can be

created with a library that simulates lambda, and monads can be manipulated using

comprehensions.

� Third, FC++ has a high level of technical maturity. For instance, compared to

L�aufer's approach, we achieve an equally safe but more eÆcient implementation of the

basic framework for higher order functions. We describe a number of optimizations

we have applied to the library, and use experiments to demonstrate quanti�ably that

these optimizations increase performance by almost an order of magnitude.

Additionally, FC++ builds signi�cant functionality on top of the basic framework. We

export two fairly mature reference-counting \pointer" classes to library users, so that use

of C++ pointers can be completely eliminated at the user level. We provide facilities for

lazy evaluation, via both a lazy list data type and a \by need" monad. We de�ne a wealth

of useful functions (a large part of the Haskell Standard Prelude) to enhance the usability

of FC++ and demonstrate the expressiveness of our framework. It should be noted that

de�ning these functions in a convenient, reusable form is possible exactly because of the

support for polymorphic functions o�ered by FC++. It is no accident that such higher-order

library functions are missing from other C++ libraries: supplying explicit types would be

tedious and would render the functions virtually unusable.

2.2 Description of basic library features

In this section we discuss the majority of the features of the library, in terms of both

interface and implementation. In Section 2.3, we delve into some of the more complicated

and subtle features of the library.

We briey de�ne one term here at the outset. In FC++, a functoid is our chosen

representation for function objects. The di�erent kinds of functoids will be described in

detail shortly (Sections 2.2.2, 2.2.3, and 2.2.5); until then, it is �ne to simply equate the

terms \functoid" and \function".

10

2.2.1 Library introduction

We begin with a brief overview of how the FC++ library is used. Figure 1 will serve as a

running example to illustrate many of the main features of the library.

FC++ lists support the usual list interface; cons(), null(), head(), and tail() are

among the basic functions that work on Lists. Lists are parameterized by the data type

they contain; Lists and the associated functions are polymorphic. Part (A) of Figure 1

illustrates some basic list code.

FC++ has a number of higher-order functions, like compose(), which can take poly-

morphic functions as arguments. Part (B) of Figure 1 illustrates that compose(tail,tail)

yields a new (polymorphic) function which discards the �rst two elements of a list. FC++

was the �rst C++ library to enable the user to generally combine higher-order functions

with polymorphic ones; with FC++, polymorphic functions may be passed as arguments

to other functions and returned as results.

FC++ Lists are lazy. Part (C) of Figure 1 demonstrates in�nite lists in FC++; the

elements of the list are produced only as they are needed.

FC++ functoids support currying. For example, in Part (D) of Figure 1, plus() is a

two-argument function, but it can be called with just one argument, yielding a new one-

argument function as a result. In the example, map() applies this new function to each

element of the list, yielding a new lists where all of the values have been incremented by 1.

As seen in the example, map() is also curryable. To bind values to arguments other than

the initial arguments, an underscore can be used as a placeholder for arguments that should

be curried.

The FC++ library contains more than 50 useful functions from the Haskell Standard

Prelude [44]. The prior examples have already used familiar functions like map() and

filter(); FC++ include dozens of such general functions, including take(), which selects

the �rst N elements of a list, and foldl1() which left-accumulates all of the values in a list

using a given function.

FC++ has \indirect functoids", run-time variables which can be bound to any function

with a given monomorphic signature. Part (F) of Figure 1 illustrates an indirect functoid

11

int x=1, y=2, z=3;

string s="foo", t="bar";

// (A) List basics

List<int> li = cons(x,cons(y,cons(z,NIL)));

List<string> ls = cons(s,cons(t,NIL));

assert(head(ls) == "foo");

assert(length(tail(li)) == 1);

// (B) Higher-order polymorphic compose()

li = compose(tail, tail)(li);

assert(head(li) == 3);

// (C) Laziness (infinite lists)

li = enumFrom(1); // [1,2,3,...]

li = filter(even,li); // [2,4,6,...]

// (D) Currying

li = map(plus(1), li);

li = map(plus(1))(li);

li = map(_, li)(plus(1));

// (E) Haskell Standard Prelude

li = take(5, enumFrom(1));

assert(foldr(plus,3,li)==18);

assert(foldl1(plus,ls)=="foobar");

// (F) Indirect functoids

Fun2<int,int,int> f = monomorphize1<int,int,int>(plus);

assert(f(3,2) == 5);

f = minus; // implicit conversion

assert(f(3,2) == 1);

// (G) Infix syntax

assert((3 ^plus^ 2) == 5);

assert((plus ^foldr^ 3)(li)==18);

Figure 1: Some examples of what FC++ can do

12

variable f of type Fun2<int,int,int>|a two-argument function which takes two integer

arguments and returns an integer result. This variable can be bound to di�erent functions

with the right signature, for instance, plus() or minus(). Since plus() is a polymorphic

function, a monomorphic instance must be selected to be bound to the indirect functoid

variable. This monomorphizing conversion may be done either explicitly or implicitly.

FC++ functoids of two or more arguments can be called using a special \in�x syntax".

Part (G) of Figure 1 shows how functoids can be used like in�x operators by surrounding

their names in carets. When functoids of more than two arguments are used in�x, the

remaining arguments are curried.

The example in this subsection gives an overview of the main features of the library.

Two notable features which are not demonstrated in this example are FC++'s \lambda"

(a sub-library for creating anonymous functions on-the-y), and the FC++ facilities for

monads (including syntax sugars like monadic comprehensions). These features will be

described later, in Section 2.3.

2.2.2 Direct functoids

FC++ represents polymorphic functions with \direct functoids". We will begin by describ-

ing the special case of monomorphic direct functoids, because they are simple and serve as

a good introduction for readers not intimately familiar with C++. Then we shall move on

to describe polymorphic direct functoids. Later, in Section 2.2.4, we illustrate how FC++

simpli�es the use of polymorphic functions in C++ as compared to other approaches.

2.2.2.1 Monomorphic direct functoids

C++ is a class-based object-oriented language. Classes are de�ned statically using the

keywords struct or class. C++ provides a way to overload the function call operator

(written as a matching pair of parentheses: \()") for classes. This enables the creation

of objects which look and behave like functions (function objects). For instance, we show

below the creation and use of function objects that (respectively) double and add one to a

number:

struct TwoTimes {

13

int operator()(int x) { return 2*x; }

} twoTimes;

struct Inc {

int operator()(int x) { return x+1; }

} inc;

twoTimes(5) // returns 10

inc(5) // returns 6

The problem with function objects is that their C++ types do not reect their \function"

types. For example, both twoTimes and inc represent functions from integers to integers.

To distinguish from the C++ language type, we say that the signature of these objects is

int -> int

(the usual functional notation is used to represent signatures). As far as the C++ language

is concerned, however, the types of these objects are TwoTimes and Inc. (Note our con-

vention of using an upper-case �rst letter for class names, and a lower-case �rst letter for

object names.) This distinction|the di�erence between the C++ type (e.g. Inc) and the

signature (e.g. int->int)|will be a recurring motif, and henceforth we shall refer to it as

\DBCTAS" (Di�erence Between C++ Type And Signature). Section 5.3.3 discusses the

overall implications of DBCTAS.

Knowing the signature of a function object is valuable for further manipulation (e.g.,

for enabling parametric polymorphism, as will be discussed in Section 2.2.2.2). Thus, we

would like to encapsulate some representation of the type signature of TwoTimes in its

de�nition. The details of this representation will be �lled in Section 2.2.2.2, but for now it

suÆces to say that each direct functoid has a member called Sig (e.g., TwoTimes::Sig) that

represents its type signature. Sig is not de�ned explicitly by the authors of monomorphic

direct functoids|instead it is inherited from classes that hide all the details of the type

representation. For instance, TwoTimes would be de�ned as:

14

struct TwoTimes : public CFunType<int, int> {

int operator()(int x) { return 2*x; }

} twoTimes;

That is, CFunType is a C++ class template whose only purpose is to de�ne signatures.

A class inheriting from CFunType<A,B> is a 1-argument monomorphic direct functoid that

encodes a function from type A to type B. In general, the template CFunType<A1,...,AN,R>

is used to de�ne signatures for monomorphic direct functoids of N arguments.

Note that in the above de�nition of TwoTimes we redundantly specify the type signature

information (int -> int): once in the de�nition of operator() (for compiler use) and

once in CFunType<int,int> (for use by FC++). There seems to be no way to avoid

this duplication with standard C++, but non-standard extensions, like the GNU C++

compiler's typeof operator, address this issue.

Monomorphic direct functoids have a number of advantages over normal C++ functions:

they can be passed as parameters and returned as results, they can capture state, etc. Native

C++ functions can be converted into monomorphic direct functoids using the operator

ptr_to_fun of FC++. It is worth noting that the C++ Standard Template Library (STL)

also represents functions using classes with an operator(). FC++ provides conversion

operations to promote STL function objects into monomorphic direct functoids.

2.2.2.2 Polymorphic direct functoids

Polymorphic direct functoids support parametric polymorphism. Consider the Haskell func-

tion tail, which discards the �rst element of a list. Its type would be described in Haskell

as

tail :: [a] -> [a]

Here \a" denotes any type; tail applied to a list of integers returns a list of integers, for

example.

One way to represent a similar function in C++ is through member templates:

struct Tail {

15

template <class T>

List<T> operator()(const List<T>& l);

} tail;

Note that we still have an operator() but it is now a member function template. This

means that there are multiple such operators|one for each type. C++ type inference is

used to produce concrete instances of operator() for every type inferred by a use of the

Tail functoid. Recall that C++ type inference is a uni�cation process matching the types

of actual arguments of a function template to the declared polymorphic types. In this

example, the type List<T> contains type variable T, whose type value is determined as a

result of the C++ type inference process. For instance, we can refer to tail for both lists of

integers and lists of strings, instead of explicitly referring to tail<int> or tail<string>.

For each use of tail, the language will infer the type of element stored in the list, based

on tail's operand.

As discussed earlier, a major problem with the above idiom is that the C++ type of

the function representation does not reect the function type signature (DBCTAS). For

instance, we will write the type signature of the tail function as:

List<T> -> List<T>

but the C++ type of variable tail is just Tail.

The solution is to de�ne a member, which we call Sig, that represents the type signature

of the polymorphic function. That is, Sig is our way of representing \arrow" types. Sig

is a template class parameterized by the argument types of the polymorphic function. For

example, the actual de�nition of Tail is:

struct Tail {

template <class L>

struct Sig : public FunType<L,L> {};

template <class T>

List<T> operator()(const List<T>& l) const

16

{ return l.tail(); }

} tail;

where FunType is used for convenience, as a reusable mechanism for naming arguments and

results.

In reality, the Sig member of Tail, above, does not have to represent the most speci�c

type signature of function tail. Instead it is used as a compile-time function that computes

the return type of function tail, given its argument type. This is easy to see: the Sig for

Tail just speci�es that if L is the argument type of Tail, then the return type will also

be L. The requirement that L be an instance of the List template does not appear in the

de�nition of Sig (although it could).

The above de�nition of Tail is an example of a polymorphic direct functoid. In general,

a direct functoid is a class with a member operator() (possibly a template operator),

and a template member class Sig that can be used to compute the return type of the

functoid given its argument types. Thus the convention is that the Sig class template takes

the types of the arguments of the operator() as template parameters. As described in

Section 2.2.2.1, for monomorphic direct functoids, the member class Sig is hidden inside

the CFunType classes, but in essence it is just a template computing a constant compile-time

function (i.e., returning the same result for each instantiation).

The presence of Sig in direct functoids is essential for any sophisticated manipulation

of function objects (e.g., most higher-order functoids need it). For example, in Haskell we

can compose functions using \.":

(tail . tail) [1,2,3] -- evaluates to [3]

In C++ we can similarly de�ne the direct functoid compose to act like \.", enabling us to

write expressions like

compose(tail,tail)

The de�nition of compose uses type information from tail as captured in its Sig struc-

ture. Using this information, the type of compose(tail,tail) is inferred and does not need

17

to be speci�ed explicitly. More speci�cally, the result of a composition of two functoids F

and G is a functoid that takes an argument of type T and returns a value of type
1

F::Sig<G::Sig<T>::ResultType>::ResultType

that is, the type that F would yield if its argument had the type that G would yield if its

argument had type T. This example is typical of the kind of type computation performed

at compile-time using the Sig members of direct functoids.

In essence, FC++ de�nes its own type system that is quite independent from C++ types

(FC++'s system represents the \S" in DBCTAS). The Sig member of a direct functoid

de�nes a compile-time function computing the functoid's return type from given argument

types. The compile-time computations de�ned by the Sigmembers of direct functoids allow

us to perform type inference with fully polymorphic functions without special compiler

support. Type errors arise when the Sig member of a functoid attempts to perform an

illegal manipulation of the Sig member of another functoid. All such errors will be detected

statically when the compile-time type computation takes place-that is, when the compiler

tries to instantiate the polymorphic operator().

Polymorphic direct functoids can be converted into monomorphic ones by specifying a

concrete type signature via the operator monomorphizeN. For instance:

monomorphize1<List<int>, int> (head)

produces a monomorphic version of the head list operation for integer lists.

In Section 2.2.4 we demonstrate how using direct functoids greatly simpli�es the task

of programming with polymorphic functions in C++, by drawing a comparison with the

alternatives. One of the alternatives involves indirect functoids, so we discuss them next.

1In actuality, instead of just F::Sig<G::Sig<T>::ResultType>::ResultType, a C++ compiler would

force us to write typename F::template Sig<typename G::template Sig<T>::ResultType>::ResultType.

The keywords typename and template are necessary for the C++ compiler to unambiguously parse nested

template typenames like these. Throughout this chapter we elide these keywords in our Sigs, as the code is

easier for humans to read without them.

18

2.2.3 Indirect functoids

Direct functoids are not �rst class entities in the C++ language. Most notably, one cannot

de�ne a (run-time) variable ranging over all direct functoids with the same signature. We

can overcome this by using a C++ subtype hierarchy with a common root for all functoids

with the same signature and declaring the function application operator, \()", to be virtual

(i.e., dynamically dispatched). In this way, the appropriate code is called based on the run-

time type of the functoid to which a variable refers. (Note that in C++, virtual functions

cannot be templates, thus limiting this strategy to monomorphic functions.) On the other

hand, to enable dynamic dispatch, the user needs to refer to functions indirectly (through

pointers). Because memory management (allocation and deallocation) becomes an issue

when pointers are used, we encapsulate references to function objects using a reference

counting mechanism. This mechanism is completely transparent to users of FC++: from

the perspective of the user, function objects can be passed around by value. It is worth

noting that our encapsulation of these pointers inside indirect functoids prevents the creation

of cyclical data structures,
2
thus avoiding the usual pitfalls of reference-counting garbage

collection.

Indirect functoids are classes that follow the above design. An indirect functoid repre-

senting a function with N arguments of types A1, ..., AN and return type R, is a subtype

of class

FunN<A1,A2...,AN,R>.

For instance, one-argument indirect functoids with signature

A -> R

are subtypes of class Fun1<A,R>. This class is the reference-counting wrapper of class

Fun1Impl<A,R>. Both classes are produced by instantiating the templates shown below:

template <class Arg1, class Result>

2Actually, it is possible to create cyclic data structures within indirect functoids, but not without a

good understanding of the indirect functoid implementation details that are necessary to circumvent the

encapsulation. Users cannot leak memory \by accident".

19

class Fun1 : public CFunType<Arg1,Result> {

Ref<Fun1Impl<Arg1,Result> > ref;

...

public:

typedef Fun1Impl<Arg1,Result>* Impl;

Fun1(Impl i) : ref(i) {}

Result operator()(const Arg1& x) const {

return ref->operator()(x); }

...

};

template <class Arg1, class Result>

struct Fun1Impl : public CFunType<Arg1,Result> {

virtual Result operator()(const Arg1&) const=0;

virtual ~Fun1Impl() {}

};

(Note: The ellipsis (...) symbol in the above code is used to denote that parts of the

implementation have been omitted for brevity. These parts implement our subtype poly-

morphism policy and will be discussed in Section 2.2.8. The Ref class template implements

our reference-counted \pointers" and will be discussed in Section 2.5.2.3. For this internal

use, any simple reference counting mechanism would be suÆcient.)

Concrete indirect functoids can be de�ned by subclassing a class Fun1Impl<A,R> and

using instances of the subclass to construct instances of class Fun1<A,R>. Variables can be

de�ned to range over all functions with signature

A -> R.

For instance, if Inc is de�ned as a subclass of Fun1Impl<int,int>, the following de�nes an

indirect functoid variable f and initializes it to an instance of Inc:

Fun1<int, int> f (new Inc);

20

In practice, however, this de�nition would be rare because it would require that Inc be

de�ned as a monomorphic function. As we have seen in Section 2.2.2.2, the most common

and convenient representation of functions is that of polymorphic direct functoids.

Monomorphic direct functoids can be explicitly converted to indirect functoids, using the

operation makeFunN (provided by FC++). For instance, consider direct functoids TwoTimes

and Inc from Section 2.2.2.1 (the de�nition of Inc was not shown). The following example

is illustrative:

Fun1<int,int> f = makeFun1(twoTimes);

f(5); // returns 10

f = makeFun1(inc);

f(5); // returns 6

In fact, the calls to makeFunN can be elided|we show them here to help explain the trans-

formation, however a carefully designed implicit conversion function template in the FunN

classes makes the library functoids \smart" enough to let the transformation happen im-

plicitly. Polymorphic direct functoids can also be assigned to indirect functoids, by �rst

selecting a monomorphic instance. This conversion was illustrated back in Figure 1 in

Section 2.2.1 as

// recall: "plus" and "minus" are polymorphic

Fun2<int,int,int> f = monomorphize1<int,int,int>(plus);

f = minus; // implicit conversion

Note that just like makeFunN, the call to monomorphize can be elided.

It should be noted here that our indirect functoids are very similar to the functoids

presented in L�aufer's work [49] and the functors presented in Chapter 5 of Alexandrescu's

book [2]. Indeed, the only di�erence is in the wrapper classes, FunN<A1,A2,...,AN,R>.

Whereas we use a reference counting mechanism, both L�aufer's and Alexandrescu's imple-

mentations allowed no aliasing: di�erent instances of FunN<A1,A2...,AN,R> had to refer

to di�erent instances of FunNImpl<A1,A2,...,AN,R>. To maintain this property, objects

had to be copied every time they were about to be aliased. This copying results in an

21

implementation that is signi�cantly slower than ours|in [52], we demonstrated that our

original implementation was four to eight times faster than L�aufer's. (Our most recent im-

plementation, which uses intrusive reference counting for indirect functoids, is even faster,

as we shall see in Section 2.5.2.) Another di�erence from other implementations is that our

indirect functoids will rarely be de�ned explicitly by clients of FC++. Instead, they will

commonly only be produced by �xing the type signature of a direct functoid.

2.2.4 Use of direct functoids

In this section we will demonstrate the use of FC++ direct functoids and try to show how

much they simplify programming with polymorphic functions. The comparison will be to

the two alternatives: templatized indirect functoids, and C++ function templates.

Consider a polymorphic function twoTimes that returns twice the value of its numeric

argument. Its type signature would be

a -> a.

(In Haskell one would say

Num a => a -> a.

It is possible to specify this type bound in C++, albeit in a roundabout way|see the short

discussion on type constraints in Section 2.6 for details.)

Consider also the familiar higher-order polymorphic function map, which applies its �rst

argument (a unary function) to each element of its second argument (a list) and returns a

new list of the results. One can specify both twoTimes and map as collections of indirect func-

toids. Doing so generically would mean de�ning a C++ template over indirect functoids.

This is equivalent to the standard way of imitating polymorphism in L�aufer's framework.

Figure 2 shows the implementations of map and twoTimes using indirect functoids. (For

brevity, the implementation of operator() in Map is omitted. The implementation is similar

in all the alternatives we will examine.)

Alternatively, one can specify both twoTimes and map using direct functoids (Figure 3).

Direct functoids can be converted to indirect functoids for a �xed type signature, hence

there is no loss of expressiveness.

22

// N: Number type

template <class N>

struct TwoTimes : public FunImpl<N, N> {

N operator()(const N &n) const { return 2*n; }

};

// E: element type in original list

// R: element type in returned list

template <class E, class R>

struct Map : public FunImpl<Fun1<E,R>, List<E>, List<R> > {

List<R> operator()(Fun1<E,R> f, List<E> l) const {...}

};

Figure 2: Polymorphic functions as templates over indirect functoids

struct TwoTimes {

template <class N> struct Sig : public Fun1Type<N,N> {};

template <class N>

N operator()(const N &n) const { return 2*n; }

} twoTimes;

// F: function type

// L: list type

struct Map {

template <class F, class L>

struct Sig : public Fun2Type<F,L,

List<F::Sig<L::EleType>::ResultType> > {};

template <class F, class L>

typename Sig<F,L>::ResultType

operator()(F f, L l) const {...}

} map;

Figure 3: Polymorphic functions as direct functoids

23

The direct functoid implementation is only a little more complex than the indirect

functoid implementation. The complexity is due to the de�nition of Sig. Sig encodes the

type signature of the direct functoid in a form that can be utilized by all other higher order

functions in our framework. According to the convention of our framework, Sig has to be

a class template over the types of the arguments of Map. Recall also that FunType is just a

simple template for creating function signatures.

To express the (polymorphic) type signature of Map, we need to recover types from

the Sig structures of its function argument and its list argument. The type computation

F::Sig<L::EleType>::ResultType means \result type of function F, when its argument

type is the element type of list L".

In essence, using Sig we export type information from a functoid so that it can be used

by other functoids. Recall that the Sig members are really compile-time functions: they are

used as type computers by the FC++ type system. The computation performed at compile

time using all the Sig members of direct functoids is essentially the same type computation

that a conventional type inference mechanism in a functional language would perform. Of

course, there is potential for an incorrect signature speci�cation of a polymorphic function

but the same is true in the indirect functoid solution.

To see why the direct functoid speci�cation is bene�cial, consider the uses of map and

twoTimes. In Haskell, we can say

map twoTimes [1..]

to produce a list of even numbers. With direct functoids (Figure 3) we can similarly say

map(twoTimes, enumFrom(1)).

This succinctness is a direct consequence of using C++ type inference. With the indirect

functoid solution (Figure 2) the code would be much more complex, because all intermediate

values would need to be explicitly typed as in

Map<int,int>()(Fun1<int,int>(new TwoTimes<int>()),

enumFrom(1)).

24

Clearly this alternative would have made every expression terribly burdensome, intro-

ducing much redundancy (int appears 5 times in the previous example, when it could be

inferred everywhere from the value 1). Note that this expression has a single function ap-

plication. Using more complex expressions or higher-order functions makes matters even

worse. For instance, using the compose functoid mentioned in Section 2.2.2.2, we can create

a list of multiples of four by writing

map(compose(twoTimes, twoTimes), enumFrom(1)).

The same using indirect functoids would be written as

Fun1<int,int> twoTimes(new TwoTimes<int>());

Map<int,int>()(Compose<int,int,int>()(twoTimes, twoTimes),

enumFrom(1))

We have found even the simplest realistic examples to be very tedious to encode using

templates over indirect functoids (or, equivalently, L�aufer's framework [49]).

In short, direct functoids allow us to simplify the use of polymorphic functions sub-

stantially, with only little extra complexity in the functoid de�nition. The idiom of using

template member functions coordinated with the nested template class Sig to maintain our

own type system is the linchpin in our framework for supporting higher-order parametrically

polymorphic functions.

Finally, note that twoTimes could have been implemented as a C++ function template:

template <class N> N twoTimes (const N &n)

{ return 2*n; }

This is the most widespread C++ idiom for approximating polymorphic functions (e.g.,

[56][63]). C++ type inference is still used in this case. Unfortunately, as noted earlier,

C++ function templates cannot be passed as arguments to other functions (or function

templates). That is, function templates can be used to express polymorphic functions but

these cannot take other function templates as arguments. Thus, this idiom is not expressive

25

enough. For instance, our example where twoTimes is passed as an argument to map is not

realizable if twoTimes is implemented as a function template.

The closest approximation of such functionality before FC++ was with the use of a

hybrid of class templates, like in Figure 2, and function templates[63]. In the hybrid case,

each function has two representations: one using a template class (so that the function can

be passed to other functions) and one using a function template (so that C++ type inference

can be used when arguments are passed to the function). The C++ Standard Library [63]

uses this hybrid approach for some polymorphic, higher-order functions. This alternative

is quite inconvenient because class templates still need to be turned into monomorphic

function instances explicitly (e.g., one would write TwoTimes<int> instead of twoTimes

in the examples above), and because two separate representations need to be maintained

for each function. The user will have to remember which representation to use when the

function is called and which to use when the function is passed as an argument.

What all of the above alternatives to direct functoids lack is the ability to express

polymorphic functions that can accept other polymorphic functions as arguments. As an

example, consider a function foo(f,x,y) whose body is just

return makePair(f(x), f(y));

(makePair is the function to create a 2-tuple of values). With twoTimes de�ned as a

polymorphic direct functoid, we can write the expression

foo(twoTimes, 2, 3.1)

which will resolve to a value of type pair<int,double>. This is rank-2 polymorphism [45];

inside the call to foo(), f is used polymorphically. Neither of the other approaches enable

functions like foo() to be de�ned. That is, FC++ was the �rst C++ library with this

rank-2 polymorphism capability.

2.2.5 Full functoids

The de�nitions of direct functoids given in the previous subsections are actually what we

call \basic direct functoids" in FC++. However, a number of features of functoids (such as

26

currying and in�x syntax, which we discuss in Sections 2.2.6&2.2.7, and lambda-awareness,

which we describe in Section 2.3.1) only work on so-called \full functoids".

Transforming a normal functoid into a full functoid is easy. For example, to de�ne map

as a full functoid, we change the de�nition from

struct Map { /* ... */ } map;

(as we saw in Figure 3) to

struct XMap { /* ... */ };

typedef Full2<XMap> Map;

Map map;

That is, FullN<F> is the type of the full functoid created out of the basic N -argument

functoid F. The FullN template classes serve as a wrapper around basic functoids. They

add all of the FC++ features we are accustomed to (such as currying and in�x syntax) to

the basic functoid.

Any basic functoid can be promoted into a full functoid either by making the minor

modi�cation to the de�nition described above, or within an expression by calling the func-

toid makeFullN(), which takes an N -argument basic functoid as an argument and returns

the corresponding full functoid as a result. Expressing \fullness" as a general combinator

makes it trivial to add a large set of common useful features to every functoid. We describe

two of those speci�c features (in�x syntax and currying) next. Later, in Section 2.3.1, we

describe how full functoids interact with FC++'s lambda.

2.2.6 In�x syntax

The �rst feature provided by full functoids is in�x syntax. Any full functoid of at least two

arguments can be e�ectively used as an in�x operator:

x ^f^ y // Same as f(x,y). Example: 3 ^plus^ 2

Full functoids enable this in�x syntax by overloading operator^. The details of the imple-

mentation of this feature are relatively straightforward, and are described in Section 5.1.3.

27

This syntax was inspired by a similar feature in Haskell. Many function names (like plus)

are more readable as in�x than as pre�x.

There is one notable limitation to this feature. Since FC++ in�x is implemented by

overloading operator^, we cannot change the precedence or associativity of functoids used

as in�x operators. These parsing aspects are �xed by the C++ language, and thus an

expression like

3 ^plus^ 4 ^multiplies^ 5

means

multiplies(plus(3,4), 5)

(because operator^ is left-associative and all in�x functoids have equal precedence). Of

course, the user can always override the defaults by using explicit parentheses, as in

3 ^plus^ (4 ^multiplies^ 5)

2.2.7 Currying

FC++ supports currying of functoid arguments. Currying is another feature implemented

in the FullN combinators. All of the functoids exported by the library are full functoids,

and thus all are curryable.
3
Here is an example:

struct XPlus { ... } xplus;

Full2<XPlus> plus;

...

xplus(2,3); // xplus requires both args,

plus(2,3); // whereas plus is curryable

plus(2); // and can be called in any

plus(2,_); // of these ways.

plus(_,3);

3While all our functoids are curryable, currying only happens when a subset of a function's arguments

are passed. When all of the expected arguments are passed to a curryable functoid, the Full wrapper class

transparently \forwards" the call to its underlying functoid. An optimizing C++ compiler can eliminate

the overhead of the forwarding function, so there is no penalty to adding the currying capability to every

functoid.

28

In the example, xplus is de�ned as a basic direct functoid, whereas plus is an object that

adds the currying functionality to the underlying functoid. The underscore () is a special

value (the unique instance of a type named AutoCurryType) that curryable functoids know

about which serves as a placeholder meaning \this argument will be supplied later".

The FullN classes, which implement the currying functionality, take advantage of two

C++ language features: overloading and partial specialization. In C++, functions can be

overloaded (ad hoc) based on the number and types of their arguments. Similarly, templates

can be specialized (ad hoc) for certain argument types. So class Full2 has four separate

Sig specializations (Sig<X,Y>, Sig<X>, Sig<X,AutoCurryType>, Sig<AutoCurryType,Y>|

where X and Y are template parameters (free type variables)) and four separate overloaded

implementations, which correspond to the four di�erent ways a two-argument functoid may

be called:

f(x,y)

f(x)

f(x,_)

f(_,y)

The FullN classes enable functions to be curried either implicitly (by only supplying

some of the leading arguments) or explicitly (using underscores as placeholders for argu-

ments to be curried). The FC++ library also contains more verbose functions for currying,

named bindMofN. For example plus(_,3) and bind2of2(plus,3) are equivalent: both

bind the second argument (of plus's two arguments) to the value 3, and return a new

function of one argument. These explicit binders have an additional capabilitity: if one

binds all of a function's arguments, a zero-argument functoid (a thunk) is returned. For

example, bind1and2of2(plus,2,3) returns a zero-argument functoid, which yields the

value 5 when called. The thunkN functions can also be used to enact the same behavior:

thunk2(plus,2,3) yields the same result as bind1and2of2(plus,2,3).

There are typically a few di�erent ways to express the same \curried function call" ex-

pression in FC++. The redundancy is a historical accident; the explicit binders (bindMofN)

29

were created �rst, whereas the thunkN functions and FullN classes came later (after we dis-

covered the template specialization tricks needed to enable such functionality). Nowadays,

we typically prefer to use the implicit currying of the Fulls to curry any subset of a func-

tion's arguments, and use the thunkN functions when we want to bind all of the arguments

and create a thunk. The explicit binders are retained for compatibility with legacy code,

and because they are conceptually easier for novice users to understand.

Currying is a useful feature in functional programming, as it enables programmers to

easily specialize and adapt general functions to �t speci�c needs, by �xing some subset

of the functions' arguments. Whereas some functional languages have built-in support

for currying, in C++ it must be supplied via a library. FC++ is the only C++ library

that supports implicit currying, by exploiting the existing features of the C++ language

to make it appear to clients as though currying is a built-in language feature that works

automatically. Other C++ libraries have other levels of support for currying. For example,

the Boost Lambda Library [38] has a mechanism similar to FC++'s placeholder currying,

where explicit placeholders can be used for curried arguments. Both the STL [63] and

Alexandrescu's \functors" [2] do support \binding" one of the arguments of a function to

a speci�c value, however in each of these libraries, the binding must be done explicitly

(with a call to a binding function like FC++'s bindMofN), and the binding only works on

monomorphic functions|a severe limitation.

2.2.8 Subtype polymorphism

Another innovation of our framework is that it implements a policy of subtype polymorphism

for indirect functoids. Our policy is contravariant with respect to argument types and

covariant with respect to result types. Subtype polymorphism is important because it is a

familiar concept in object orientation|it ensures that indirect functoids can be used like

any other C++ object reference in real C++ programs.

A contrived example: Suppose we have two type hierarchies, where Dog is a subtype

of Animal and Car is a subtype of Vehicle. This means that a Dog is an Animal (i.e.,

a reference to Dog can be used where a reference to Animal is expected) and a Car is a

30

Vehicle. If we de�ne a functoid which takes an Animal as a parameter and returns a Car,

then this functoid is a subtype of one that takes a Dog and returns a Vehicle. For instance:

Fun1<Ref<Animal>, Ref<Car> > fa;

Fun1<Ref<Dog>, Ref<Vehicle> > fb = fa;

// legal: fa is a subtype of fb

(Note the use of our Ref class template which implements references|a general purpose

replacement of C++ pointers. The example would work identically with native C++

pointers|e.g. Car* rather than Ref<Car>.)

That is, fa is a subtype of fb since the argument of fb is a subtype of the argument of fa

(contravariance) and the return type of fa is a subtype of the return type of fb (covariance).

We cannot go the other way, though (assign fb to fa). This means that we can substitute

a \speci�c" functoid in the place of a \general" functoid. Since subtyping only matters for

variables ranging over functions, it is implemented only for indirect functoids.

Subtype polymorphism is implemented by de�ning an implicit conversion operator be-

tween functoids that satisfy our subtyping policy. This a�ects the implementation of class

templates FunN of Section 2.2.3. For instance, the de�nition of Fun1 has the form:

template <class Arg1, class Result>

class Fun1 : public CFunType<Arg1,Result> {

... // private members same as before

public:

... // same as before

template <class A1s,class Rs>

Fun1(const Fun1<A1s,Rs>& f) :

ref(convert1<Arg1,Result>(f.ref)) {}

};

Without getting into all the details of the implementation, the key idea is to de�ne a tem-

plate implicit conversion operator from Fun1<A1s,Rs> to Fun1<Arg1,Result>, if and only

31

if A1s is a supertype of Arg1 and Rs is a subtype of Result. The latter check is the responsi-

bility of direct functoid convert1, which instantiates a helper class called Fun1Converter:

template <class Arg1, class Result, class A1s, class Rs>

class Fun1Converter : public Fun1Impl<A1d,Rd> {

...

Ref<Fun1Impl<A1s,Rs> > f;

Result operator()(const Arg1& x) const {

return f->operator()(x); // this line compiles only if

// Arg1->A1s and Rs->Result are legal implicit conversions

}

};

Note that Fun1Converter de�nes code that explicitly tests (at compile time) to ensure that

an Arg1 is a subtype of A1s and that Rs is a subtype of Result. In this way, the implicit

conversion of functoids will fail if and only if either of the above two conversions fails. Since

the operator is templatized, it can be used for any types A1s and Rs.

We should note that, although the above technique is correct and suÆcient for the major-

ity of conversions, there are some slight problems. First, C++ has some unsafe conversions

between native types (e.g., implicit conversions from oating point numbers to integers or

characters are legal). There is no good way to address this problem (which was inherited

from C despite the intentions of the C++ language designer; see [65] p. 710). Second, we

cannot overload (or otherwise extend) the C++ operator dynamic_cast. Instead, we have

provided our own operation that imitates dynamic_cast for indirect functoids. The incom-

patibility is unfortunate, but should hardly matter for actual use: not only do we provide

an alternative, but also down-casting functoid references does not seem to be meaningful,

except in truly contrived examples.

2.2.9 C++ interface

In this section we discuss how FC++ interfaces with the rest of the C++ language and

with C++ libraries, as well as how FC++ can capture \e�ects".

32

FC++ has interfaces to normal C++ functions and to the C++ Standard Library.

We have already encountered ptr_to_fun(), which converts a normal function into an

FC++ functoid. The ptr_to_fun() operator works on member functions as well, creating

a functoid which takes a pointer to the receiver object as an extra �rst parameter. Figure 4

shows ptr_to_fun() applied to both normal and member functions, and demonstrates that

the results are functoids by using the currying ability of FC++ functoids. Note also that

ptr_to_fun()may be applied to both const and non-const member functions. Creating a

functoid from a non-const member function results in a functoid which can have an e�ect.

This is possible since the functoid takes a pointer to the receiver object. Indeed, this is

the usual way to capture e�ects inside functoids: whereas the parameters and results of

the functoids are const as a result of the FC++ library design, there is nothing to stop

a client from passing a (const) pointer to a non-const object into a functoid, which may

then manipulate the object via the pointer.

The FC++ library also de�nes a few e�ect combinators. An e�ect combinator combines

an e�ect (represented as a thunk) with another functoid. Here are some example e�ect

combinators:

// before(thunk,f)(args) == { thunk(); return f(args); }

// after(g,thunk)(args) == { R r = g(args); thunk(); return r; }

An example: suppose a functoid writeLog() is de�ned which takes a string and writes it

to a log �le. Then

before(thunk1(writeLog, "About to call foo()"), foo)

results in a new functoid with the same behavior as foo(), only it writes a message to the

log �le before calling foo().

FC++ functoids are designed to work smoothly with the C++ Standard Template Li-

brary (STL). Monomorphic FC++ functoids conform to the requirements for what the STL

calls \adaptable functions", which enables FC++ functoids to be passed to STL algorithms

like std::transform() (the imperative analog of map()). (Polymorphic functoids can be

33

int f(int x, int y) { return 3*x + y; }

class Foo {

int m_n;

public:

Foo(int nn) : m_n(nn) {}

int bar(int x, int y) const

{ return m_n*x + y; }

int n() const { return m_n; }

void inc_n(int x) { m_n += x; }

};

void example() {

assert(ptr_to_fun(&f)(3)(1) == 10);

Foo foo(3);

assert(ptr_to_fun(&Foo::bar)(&foo,3)(1) == 10);

ptr_to_fun(&Foo::inc_n)(&foo,1); // effect

assert(foo.n() == 4); // updated value

}

Figure 4: FC++ and native C++ functions

suitably adapted simply by �rst monomorphize()ing them.) Indeed, when using STL algo-

rithms, it is often easier to use FC++ functoids rather than use the STL's own support.

For example, to add 3 to each element of a std::vector<int> named v, one must write

std::transform(v.begin(),v.end(),v.begin(),

std::bind1st(std::plus<int>(),3));

using STL, whereas when FC++ is brought to bear, just

std::transform(v.begin(),v.end(),v.begin(),fcpp::plus(3));

is suÆcient. On the other side of the coin, FC++ provides combinators to promote STL

\adaptable functions" into (monomorphic) FC++ functoids so that functions from from

STL can be used inside FC++. Finally, FC++ Lists are designed to �t into the STL

framework for data structures. Figure 5 shows that the List class supports iterators of the

STL style. This makes converting both to and from STL data structures easy, and enables

Lists to be passed to (non-mutating) STL algorithms.

34

List<int> l = take(5, enumFrom(1));

// Make a vector from a List

std::vector<int> v(l.begin(), l.end());

std::reverse(v.begin(), v.end());

// Make a List from a vector

List<int> r(v.begin(), v.end());

assert(r == list_with(5,4,3,2,1));

Figure 5: FC++ and STL

Another interface that is somewhat common in legacy C/C++ code is the use of types

like void (*)(void*) 4
as a sort of generic interface for \callback functions". It is not

possible to automatically convert an FC++ functoid into such a function pointer, but it

is straightforward to hand-code an adapter function: just write a normal C++ function

with the proper signature that forwards the call to the appropriate functoid. In this way,

functoids can be used with such legacy libraries. (On the other hand, if callbacks are desired

but there is no need to interface with a legacy callback library, then FC++ itself can serve

as a complete callback library, with indirect functoids serving as type-safe interfaces to

arbitarary functions. See Section 2.4.1 as well as examples on our web site [23] for more

about using FC++ as a callback library.)

The smoothness of the interfaces between FC++ and STL and also between FC++

and the object-oriented portions of C++ demonstrate an important point. FC++ does not

merely inject into C++ a purely functional sublanguage that should be used exclusively

from the rest of the language. Rather, FC++ embeds this functionality inside the language

in a way that makes it straightforward to utilize the extra functional support on top of the

existing imperative/object-oriented programming platform that C++ provides. Section 2.4

illustrates the value of combining the paradigms within programs by showing how the

implementations of common OO design patterns are improved by adding FC++.

4That is, a pointer to a function which takes as an argument a pointer to an arbitrary data structure.

35

2.3 Description of advanced library features

In this section we discuss FC++ features that require more advanced implementation strat-

gies in C++: lambda, monads, and static analyses. We also discuss the subtleties of our

implementation of lists.

2.3.1 Lambda

Lambda is no stranger to C++. There are a number of existing C++ libraries which

enable clients to create new, anonymous functions on-the-y. As with FC++, libraries like

the Boost Lambda Library[38] and FACT![64] enable the creation of arbitrary lambdas by

using expression templates.

An expression template is a C++ expression which evaluates to a function representing

the expression, rather than to a normal value. This is done by using special placeholder

variables and by overloading C++ operators for those placeholder datatypes. For example,

in the expression

x + 3

if x is an int then the expression clearly evaluates to that value plus three. But if x is a

placeholder variable from an expression-template lambda library (and the + operator has

been suitably overloaded), then the expression will evaluate to a function with the behavior

lambda(x) { x + 3 }

(using a pseudo-C++ notation). Expression templates have been used in a number of C++

libraries; reference [70] is an excellent introduction to the topic.

2.3.1.1 Motivation

We were motivated to implement lambda by our interest in programming with monads.

Experience with previous versions of FC++ made it clear that arbitrary lambdas are a

practical necessity if one wants to program with monads. Older versions of FC++ had a

number of useful combinators which made it possible to express most arbitrary functions,

but lambda makes it practical by making it readable. For example, while implementing a

monad, in the middle of an expression one might discover that a function with this meaning

36

lambda(x) { f(g(x),h(x)) }

is needed. It is possible to implement this function using combinators (without lambda),

but the resulting code is practically unreadable:

duplicate(compose(flip(compose)(h),compose(f,g)))

Alternatively, one can de�ne the new functoid at the top level, give it a name, and then call

it:

struct XFoo {

template <class X> struct Sig : public FunType<X,

RT<F<RT<G,X>::ResultType,RT<H,X>::ResultType>::ResultType> {};

template <class X>

typename Sig<X>::ResultType operator()(const X& x) const {

return f(g(x),h(x));

}

};

typedef Full1<XFoo> Foo;

Foo foo;

// later use "foo"

but clearly this is way too much work, especially when the function in question is a one-

time-use (\throwaway") function. Lambda is the only reasonable solution when you need

to de�ne short, readable, arbitrary functions on-the-y.

2.3.1.2 Problematic issues with expression-template lambda libraries

Despite the advantages to lambda, we have always maintained a degree of wariness when it

comes to C++ lambda libraries (or any expression template library), owing to the intrinsic

limitations and caveats of using expression templates in C++. The worrisome issues with

expression template libraries in general (or lambda libraries in particular) fall into four

major categories:

37

� Accidental/early evaluation. The biggest problem with expression template li-

braries for lambda comes from accidental evaluation of C++ expressions. Consider a

short example using the Boost Lambda Library:

int a[] = { 5, 3, 8, 4 };

for_each(a, a+4, cout << _1 << "\n");

Note the third argument to for_each(), the expression

cout << _1 << "\n"

This expression creates an anonymous function to print a value. The placeholder _1"

serves as a lambda variable; thus the expression e�ectively means

// pseudo-C++

lambda(x) { return cout << x << "\n"; }

As a result, the for_each() call prints each element of the array (one element per

line). The output is what we would expect:

5

3

8

4

If we want to add some leading text to each line of output, it is tempting to change

the code like this:

int a[] = { 5, 3, 8, 4 };

for_each(a, a+4, cout << "Value: " << _1 << "\n");

But (surprise!) the new program prints the added text only once (rather than once

per line):

38

Value: 5

3

8

4

This is because \cout << "Value: "" is a normal C++ expression that the C++

compiler evaluates immediately. Only expressions involving placeholder variables (like

_1)5 get \delayed" from evaluation by the expression templates. These accidents are

easy to make, and hard to identify at a glance.

� Capture semantics (lambda-speci�c). Since C++ is an e�ect-ful language, it

matters whether free variables captured by lambda are captured by-value or by-

reference. The library must choose one way or the other, or provide a mechanism

by which users can choose explicitly.

� Compiler error messages. C++ compilers are notoriously verbose when it comes to

reporting errors in template libraries. Things are even worse with expression template

libraries, both because there tend to be more levels of depth of template instantiations,

and because the expression templates typically expose clients to some new/unfamiliar

syntax, which makes it more likely for clients to make accidental errors. Indecipherable

error messages may make an otherwise useful library be too annoying for clients to

use.

� Performance. Expression template libraries sometimes take orders of magnitude

longer to compile than comparably-sized C++ programs without expression tem-

plates. Also, the generated binary executables are often much larger for programs

with expression templates.

For the most part, these problems are intrinsic to all expression template libraries in C++.

As a result, when we set out to design a lambda library for FC++, we kept in mind these

issues, and tried to design so as to minimize their impact.

5Alternatively, one can use other special constructs de�ned by BLL. In the example above, we could get

the desired behavior by calling the BLL function constant() on the literal string, to delay evaluation.

39

2.3.1.3 Designing for the issues

Here are the design decisions we have made to try to minimize the issues described in the

previous subsection.

� Accidental/early evaluation. Since the problem itself is intrinsic to the domain,

the only way to \attack" this issue is prevention. While it is impossible to prevent

users from making any mistakes, we have designed our lambda to make these mistakes

less common and/or more immediately apparent. To this end, we have designed the

lambda syntax to be minimalist and visually distinct:

{ Minimalism. Rather than overload a large number of operators and include

a large number of primitives, we have chosen a minimalist approach. Thus we

have only overloaded four operators for the lambda language (array brackets for

post�x function application, modulus for in�x function application, comma for

function argument lists, and equality for \let" assignments). Similarly, apart

from lambda, the only primitives we provide are those for let, letrec, and

if-then-else expressions. These provide a minimal core of expressive power for

lambda, without overburdening the user with a wide interface. A narrow interface

seems more likely to be remembered and thus less error-prone.

{ Visual distinctiveness. Rather than trying to make lambda expressions \blend

in" with normal C++ code, we have done the opposite. We have chosen operators

which look big and boxy to make lambda expressions \stand out" from normal

C++ code. By convention, we name lambda variables with capital letters. By

making lambda expressions visually distinct from normal C++ code, we hope to

remind the user which code is \lambda" and which code is \normal C++", so

that the user won't accidentally mix the two in ways which create accidents of

early evaluation.

� Capture semantics (lambda-speci�c). The FC++ library passes arguments by

const& throughout the library. E�ectively this is just another (perhaps eÆcient) way

of saying \by value". As a result, FC++ lambdas capture free variables by value. As

40

with the rest of the FC++ library, the user can explicitly choose reference semantics

by capturing pointers to objects, rather than capturing the objects themselves.

� Compiler error messages. Meta-programming can be used to detect some user

errors and diagnose them \within the library" by injecting custom error messages[54,

61] into the compiler output. Though many kinds of errors cannot be caught early

by the library (lambdas and functoids can often be passed around in potentially legal

contexts, but then �nally used deep within some template in the wrong context), there

are a number of common types of errors that can be nipped in the bud. The FC++

lambda library catches a number of these types of errors and generates custom error

messages for them. Section 2.3.3 discusses this in more detail.

� Performance. There seems to be little that we (as library authors) can do here.

As expression template libraries continue to become more popular, we can only hope

that compilers will become more adept at compiling them quickly. In the meantime,

clients of expression template libraries must put up with longer compile times and

larger executables.

Thus, given the intrinsic problems/limitations of expression template libraries, we have

designed our library to try to minimize those issues whenever possible.

2.3.1.4 Lambda in FC++

We now describe what it looks like to do lambda in FC++. Figure 6 shows some examples

of lambda. There are a few points that deserve further attention.

Lambda variables are simply declared as instances of LambdaVars|no other type infor-

mation needs to be given. FC++ LambdaVars serve as universally-quanti�ed-typed place-

holders in lambda expressions. Thus FC++ lambdas super�cially appear to do automatic

type-inference. In fact, they merely delay typechecking by creating a functoid that will use

the FC++ type system (e.g. Sigs) to typecheck an expression when the functoid is actually

applied to arguments; in this respect, they are similar to direct functoids.

Inside lambda, one uses square brackets instead of round ones for post�x functional call.

41

// declaring lambda variables

LambdaVar<1> X;

LambdaVar<2> Y;

LambdaVar<3> F;

// basic examples

lambda(X,Y)[minus[Y,X]] // flip(minus)

lambda(X)[minus[X,3]] // minus(_,3)

// infix syntax

lambda(X,Y)[negate[3 %multiplies% X] %plus% Y]

// let

lambda(X)[let[Y == X %plus% 3,

F == minus[2]

].in[F[Y]]]

// if-then-else

lambda(X)[if0[X %less% 10, X, 10]] // also if1/if2 (see text)

// letrec

lambda(X)[letrec[F == lambda(Y)[if1[Y %equal% 0,

1,

Y %multiplies% F[Y%minus%1]]

].in[F[X]]] // factorial

Figure 6: Lambda in FC++

42

(This works thanks to the lambda-awareness of full functoids, mentioned in Section 2.2.5.)

Similarly, the percent sign is used instead of the caret for in�x function call. These symbols

make lambda code visually distinct so that the appearance of normal-looking (and thus

potentially erroneous) code inside a lambda will stand out. Since operator[] takes only

one argument in C++, we overload the comma operator to simulate multiple arguments.

Occassionally this can cause an early evaluation problem, as seen in the code here:

// assume f takes 3 integer arguments

lambda(X)[f[1,2,X]] // oops! comma expression "1,2,X" means "2,X"

lambda(X)[f[1][2][X]] // ok; use currying to avoid the issue

Unfortunately, C++ sees the expression \1,2" and evaluates it eagerly as a comma ex-

pression on integers.
6

Fortunately, there is a simple solution: since all full functoids are

curryable, we can use currying to avoid comma. There is another problem, though: how do

we call a zero-argument function inside lambda? We found no pretty solution, and ended

up inventing this syntax:

// assume g takes no arguments and returns an int

// lambda(X)[X %plus% g[]] // illegal: g[] doesn't parse

lambda(X)[X %plus% g[_*_]] // _*_ means "no argument here"

It's better to have an ugly solution than none at all.

The if-then-else construct deserves discussion, as we provide three versions: if0, if1,

and if2. if0 is the typical version, and can be used in most instances. It checks to make

sure that its second and third arguments (the \then" branch and the \else" branch) will

have the same type when evaluated (and issues a helpful custom error message if they

won't). The other two \if"s are used for diÆcult type-inferencing issues that come from

letrec. In the factorial example at the end of Figure 6, for example, the \else" branch is

too diÆcult for FC++ to predict the type of, owing to the recursive call to F (inside the

implementation, the Sig computation gets caught in in�nite regress). This results in if0

6Some C++ compilers, like g++, will provide a useful warning diagnostic (\left-hand-side of comma

expression has no e�ect"), alerting the user to the problem.

43

generating an error. Thus we have if1 and if2 to deal with situations like these: if1 works

like if0, but just assumes the expression's type will be the same as the type of the \then"

part, whereas if2 assumes the type is that of the \else" part. In the factorial example, if1

is used, and thus the \then" branch (the int value 1) is used to predict that the type of

the whole if1 expression will be int.

Having three di�erent \if"s makes the lambda interface a little more complicated, but

the alternatives seemed to be either (1) to dispose of custom error messages diagnosing

if-then-elses whose branches had di�erent types, or (2) to write meta-programs to solve the

recursive type equations created by letrec to �gure out its type within the library. Option

(1) is unattractive because the compiler-generated errors from non-parallel if-then-elses are

hideous, and option (2) would greatly complicate the metaprogramming in the library and

slow down compile-times even more. Thus we think our design choice is justi�ed. Of course,

in the vast majority of cases, if0 is suÆcient and this whole issue is moot; only code which

uses letrec may need if1 or if2.

2.3.1.5 Naming the C++ types of lambda expressions

Expression templates often yield objects with complex type names, and FC++ lambdas are

no di�erent. For example, the C++ type of

// assume: LambdaVar<1> X; LambdaVar<2> Y;

lambda(X,Y)[(3 %multiplies% X) %plus% Y]

is

fcpp::Full2<fcpp::fcpp_lambda::Lambda2<fcpp::fcpp_lambda::exp::

Call<fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda::exp::Value<

fcpp::Full2<fcpp::impl::XPlus> >,fcpp::fcpp_lambda::exp::CONS<

fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda::exp::Call<fcpp::

fcpp_lambda::exp::Value<fcpp::Full2<fcpp::impl::XMultiplies> >,

fcpp::fcpp_lambda::exp::CONS<fcpp::fcpp_lambda::exp::Value<int>,

fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::exp::CONS<fcpp

44

::fcpp_lambda::exp::LambdaVar<1>,fcpp::fcpp_lambda::exp::NIL> >,

fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::exp::CONS<fcpp

::fcpp_lambda::exp::LambdaVar<2>,fcpp::fcpp_lambda::exp::NIL> >,1,2> >

This is another case of DBCTAS (de�ned in Section 2.2.2.1). The C++ type of the lambda

expression encodes the entire structure of the expression, but the result is a functoid with

the expected signature (in that case, T->T, for all types T that de�ne addition and mulit-

plication).

In the vast majority of cases, the user never needs to name the type of a lambda, since

usually the lambda is just being passed o� to another template function. Occasionally,

however, you want to store a lambda in a temporary variable or return it from a function,

and in these cases, you'll need to name its type. For those cases, we have designed the

LEType type computer, which provides a way to name the type of a lambda expression

(LE). In the example above, the type of

lambda(X,Y)[(3 %multiplies% X) %plus% Y]

// desugared: lambda(X,Y)[plus[multiplies[3][X]][Y]]

is

LEType< LAM< LV<1>, LV<2>,

CALL<CALL<Plus,CALL<CALL<Multiplies,int>,LV<1> > >,LV<2> > > >::Type

The general idea is that

LEType< Translated_LambdaExp >::Type

names the type of LambdaExp. Each of our primitive constructs in lambda has a corre-

sponding translated version understood by LEType:

CALL [] (function call)

LV LambdaVar

IF0,IF1,IF2 if0[],if1[],if2[]

LAM lambda()[]

45

LET let[].in[]

LETREC letrec[].in[]

BIND LambdaVar == value

With LEType, the task of naming the type of a lambda expression is still onerous, but

LEType at least makes it possible. Without the LEType type computer, the type of lambda

expressions could only be named by examining the library implementation, which may

change from version to version. LEType guarantees a consistent interface for naming the

types of lambda expressions.

Finally, it should be noted that if the lambda only needs to be used monomorphically,

it is far simpler (though potentially less eÆcient) to just use an indirect functoid:

// Can name the monomorphic "(int,int)->int" functoid type easily:

Fun2<int,int,int> f = lambda(X,Y)[(3 %multiplies% X) %plus% Y];

2.3.2 Monads

Monads provide a useful way to structure programs in a pure functional language. Using

monads, it is relatively straightforward to implement things like global state, exceptions,

I/O, and other concepts common to impure languages that are otherwise diÆcult to imple-

ment in pure functional languages[43, 73].

Supporting monads in FC++ is an interesting task for a number of reasons:

� Many interesting functional programs and libraries use monads; monad support in

FC++ makes it easier to port these libraries to C++.

� Monads in Haskell take advantage of some of that language's most expressively pow-

erful syntax and constructs, including type classes, do-notation, and comprehensions.

Modelling these in C++ helps us better understand the relationship between the

expressive power of these languages.

� Monads provide a way to factor out some cross-cutting concerns, so that local program

changes can have global e�ects. (We discuss a few example applications that illustrate

this.)

46

In the next subsection, we give a short introduction to monadic programming in Haskell.

Next we discuss the relationship between type classes in Haskell and concepts in C++;

understanding this relationship facilitates the discussion in the rest of this section. Then

we discuss how we have implemented monads in FC++. Then we show some example

applications of monads in C++. We �nish with a short summary of monadic programming

in FC++.

2.3.2.1 Introduction to monads in Haskell

Monads have been popularized in part by their inclusion in the Haskell standard library.

The Haskell language has a feature called \type classes" which provide bounded parametric

polymorphism. This feature is essential to the de�nition of monads in Haskell, so we review

it briey to begin our discussion.

Free (unbound) type variables can be bounded by \type classes". For example, a func-

tion to sort a list requires that the type of elements in the list are comparable with the

less-than operator. In Haskell we would say:

sort :: (Ord a) => [a] -> [a]

That is, sort is a function which takes a list of a objects and returns a list of a objects,

subject to the constraint that the type a is a member of the Ord type class. Type class Ord

in Haskell represents those types which support ordering operators like

class Ord a where

== :: a -> a -> Bool

< :: a -> a -> Bool

<= :: a -> a -> Bool

-- etc.

We say that an entity T is an instance of type class C when T supports the methods in

the type class. For example, it is true that

instance Ord Int -- Int is an instance of Ord

47

because the type Int supports all the methods in the Ord type class.

A monad is a type class with two operations:

class Monad m where

bind :: m a -> (a -> m b) -> m b

unit :: a -> m a

In this case, instances of monads are not types, but rather they are \type constructors".

These are like template classes in C++; an example is a list. In C++ std::list is not a

type, but std::list<int> is. The same holds for Haskell; [] is not a type, but [Int] is.

In the code describing the monad type class above, m is a type constructor.

It turns out that lists are instances of monads:

instance Monad [] where ...

-- bind :: [a] -> (a -> [b]) -> [b]

-- unit :: a -> [a]

As another example, consider the Maybe type constructor. The type \Maybe a" represents

a value which is either just an a object, or else nothing. In Haskell we would say:

data Maybe a = Nothing | Just a

-- Examples of variables

x :: Maybe Int

x = Just 3

y :: Maybe Int

y = Nothing

Maybe also forms a monad with this de�nition:

instance Monad Maybe where

bind (Just x) k = k x

bind Nothing k = Nothing

48

unit x = Just x

-- in the Maybe monad

-- bind :: Maybe a -> (a -> Maybe b) -> Maybe b

-- unit :: a -> Maybe a

(We show the de�nitions for the functions bind and unit so that they may be compared

with the corresponding FC++ code in Section 2.3.2.3.)

A re�nement of the Monad type class is MonadWithZero:

class (Monad m) => MonadWithZero m where

zero :: m a

The zero element of a monad is a value which is in the monad regardless of what type

was passed to the monad type constructor. For lists, the empty list ([]) is the zero. For

Maybe, the zero is Nothing. Not all monads have zeroes, which is why MonadWithZero is

a separate type class.

Monads with zeroes can be used in comprehensions with guards. Comprehensions are a

special notation for expressing computations in a monad. Haskell supports comprehensions

for the list monad; an example is

[x+y | x <- [1,2,3], y <- [2,3], x<y]

-- results in [3,4,5]

This list comprehension could be interpreted as \the list of values x plus y, for all x and y

where x is selected from the list [1,2,3] and y is selected from the list [2,3], and where x is

less than y". The desugared version of the Haskell code is:

[1,2,3] `bind` (\x ->

[2,3] `bind` (\y ->

if not (x<y) then zero

else unit (x+y)))

The translation from the comprehension notation to the desugared code is straightfor-

ward. Starting from the vertical bar and going to the right, the expressions of the form

49

\var <- exp" turn into calls to bind and lambdas, and guards (boolean conditions) are

transformed into if-then-else expressions which return the monad zero if the condition fails

to hold. After all expressions to the right of the vertical bar have been processed, the ex-

pression to the left of the vertical bar gets unit called on it to lift the �nal computed value

back into the monad.

2.3.2.2 Haskell's type classes and C++ template concepts

In the C++ literature, we sometimes speak of template concepts. A concept in C++ is

a set of constraints that a type is required to meet in order to be used to instantiate a

template. For example, in the implementation of the template function std::find(), there

will undoubtedly be some code along the lines of

... if(cur_element == target) ...

which compares two elements for equality using the equality operator. Thus, in order

to call std::find() to �nd a particular value in a container, the element type must be

an EqualityComparable type|that is, it must support the equality operator with the

right semantics. We call EqualityComparable a concept, and we say that types (such as

int) which meet the constraints model the concept. Concepts exist only implicitly in the

C++ code (e.g. owing to the call to operator==() in the implementation), and often

exist explicitly in documentation of the library. Some C++ libraries[54, 61] are devoted to

\concept checking"; these libraries check to see that the types used to instantiate a template

do indeed model the required concepts (and issue a useful error message if not).

Haskell type classes are analogous to C++ concepts. However in Haskell type classes are

rei�ed; there are language constructs to de�ne type classes and to declare which types are

instances of those type classes. In C++, when a certain type models a certain concept (by

meeting all of the appropriate constraints), it is merely happenstance (structural confor-

mance); in Haskell, however, in addition to meeting the constraints of a type class interface,

a type must be declared to be an instance of the concept (named conformance). \Con-

cept checking" in Haskell is built into the language: type classes de�ne concepts, instance

declarations say which types model which concepts, and type bounds make explicit the

50

struct AUniqueTypeForNothing {};

AUniqueTypeForNothing NOTHING;

template <class T>

class Maybe {

List<T> rep;

public:

typedef T ElementType;

Maybe(AUniqueTypeForNothing) {}

Maybe() {} // Nothing constructor

Maybe(const T& x) : rep(cons(x,NIL)) {} // Just constructor

bool is_nothing() const { return null(rep); }

T value() const { return head(rep); }

};

struct XJust {

template <class T> struct Sig : public FunType<T,Maybe<T> > {};

template <class T>

typename Sig<T>::ResultType

operator()(const T& x) const {

return Maybe<T>(x);

}

};

typedef Full1<XJust> Just;

Just just;

Figure 7: The Maybe datatype in FC++

constraints on any particular polymorphic function. (For more on the relationship between

C++ concepts and Haskell type classes, see reference [26].)

Understanding this analogy will make the FC++ implementation of monads more trans-

parent. As we shall see, in the FC++ library, we spell out the concept requirements on

monads, in order to make it easier for clients who write monads to ensure that they have

provided all of the necessary functionality in the templates.

2.3.2.3 Comparing monads in FC++ to those in Haskell

Let us now illustrate monad de�nitions in FC++. As a �rst example, we shall look at Maybe.

The Maybe template class and its associated entities are de�ned in Figure 7. NOTHING is the

51

/*

concept Monad {

// full functoid with Sig unit :: a -> m a

typedef Unit;

static Unit unit;

// full functoid with Sig bind :: m a -> (a -> m b) -> m b

typedef Bind;

static Bind bind;

}

concept MonadWithZero models Monad {

// zero :: m a

typedef Zero; // a value type

static Zero zero;

}

*/

Figure 8: Documentation of the monad concept requirements in FC++

constant which represents an \empty" Maybe, and just() is a functoid which turns a value

of type T into a \full" Maybe<T>. (Maybe is implemented using a List which holds either

one or zero elements.)

Next we consider how to make Maybe a monad. Figure 8 describes the general monad

concepts as speci�ed in the FC++ documentation. A monad class must de�ne the methods

unit and bind (with the appropriate signatures); a class representing a monad with a zero

must meet the above requirements as well as de�ning a zero element.

Figure 9 shows how we de�ne the Maybe monad in FC++. Nested in struct MaybeM

we de�ne unit, bind, and zero, as well as typedefs for their types. This FC++ de�nition

e�ectively corresponds to the de�nitions

instance Monad Maybe -- ...

instance MonadWithZero Maybe -- ...

in Haskell.

It should be noted here that the one major di�erence between monads in FC++ and

monads in Haskell is that, in FC++, there is a distinction between the monad type con-

structor (e.g. Maybe) and the monad itself (e.g. MaybeM). We chose to make this distinction

for reasons discussed next.

52

struct MaybeM {

typedef Just Unit;

static Unit unit;

struct XBind {

template <class M, class K> struct Sig : public FunType<M,K,

RT<K,M::ElementType>::ResultType> {};

template <class M, class K>

typename Sig<M,K>::ResultType

operator()(const M& m, const K& k) const {

if(m.is_nothing())

return NOTHING;

else

return k(m.value());

}

};

typedef Full2<XBind> Bind;

static Bind bind;

typedef AUniqueTypeForNothing Zero;

static Zero zero;

};

Figure 9: De�nition of the Maybe monad (MaybeM)

53

One advantage to separating the type constructor (Maybe) from the monad de�nition

(MaybeM) is that, since the monad de�nition is itself a data type, it can be used as a type

parameter to template functions. As a result, rather than supporting just list comprehen-

sions (like Haskell does), in FC++ we support comprehensions in an arbitrary monad, by

passing the monad as a template parameter to the comprehension. For example, the Haskell

list comprehension

[x+y | x <- [1,2,3], y <- [2,3], x<y]

is written in FC++ as

compM<ListM>()[X %plus% Y |

X <= list_with(1,2,3), Y <= list_with(2,3), guard[X %less% Y]]

Note how ListM is passed as an explicit template parameter to the compM function, which

returns a comprehension for that monad. As a result, we can write

compM<MaybeM>()[X %plus% Y | X <= just(2), Y <= just(3)]

and perform a comprehension in the Maybemonad. Having a name apart from the data type

constructor to serve as a handle for the monad de�nition (e.g. ListM, MaybeM) gives us a

convenient way to parameterize monad operations. (The idea of generalizing comprehension

syntax to arbitrary monads was originally discussed by Wadler[74].)

There is another advantage to separating the type constructor from the monad de�nition.

Haskell type classes require algebraic data type constructors (not type aliases) to work. As a

result, we cannot express the identity monad (a monad where m a = a) directly in Haskell.

Instead we have to fake it by de�ning a new data type (which we have chosen to call

Identity):

data Identity a = Ident a

instance Monad Identity where -- m a = Identity a

unit x = Ident x

bind (Ident m) k = k m

54

// Nothing corresponding to Identity data type needed by Haskell

struct IdentityM { // M a = a

typedef Id Unit; // "Id" is the identity functoid in FC++

static Unit unit;

struct XBind {

template <class M, class K> struct Sig : public FunType<M,K,

RT<K,M>::ResultType> {};

template <class M, class K>

typename Sig<M,K>::ResultType

operator()(const M& m, const K& k) const {

return k(m);

}

};

typedef Full2<XBind> Bind;

static Bind bind;

};

Figure 10: De�nition of the IdentityM monad

where values of type a are wrapped/unwrapped with the value constructor Ident to make

them members of the type Identity a. In FC++, however, we can de�ne the monad

without also having to de�ne a new data type to represent identities, as seen in Figure 10.

The reason for the distinction is perhaps obvious. Haskell uses type inference, which means

it must unambiguously be able to �gure out which monad a particular data type is in.

This type inference is not possible unless there is a one-to-one mapping between algebraic

datatype constructors and monads. In FC++, on the other hand, the user passes the monad

explicitly as a template parameter to constructs like compM. By requiring the user to be a

little more explicit about the types, we gain a bit of expressive freedom (e.g. being able to

do comprehensions in arbitrary monads).

2.3.2.4 Monads in FC++

Whereas the previous subsection introduced FC++ monads, here the details are eshed

out. FC++ provides functoids for the main monad operations. Speci�cally, for each monad,

FC++ supports these functions:

unitM<SomeMonad>() bindM<SomeMonad>()

55

which just forward the call to the corresponding (user-de�ned) function for that monad

(e.g. MaybeM::unit). FC++ also de�nes these common monad operations:

bindM_<SomeMonad>() mapM<SomeMonad>()

joinM<SomeMonad>() liftM<SomeMonad>()

liftM2<SomeMonad>() liftM3<SomeMonad>()

which are de�ned in terms of unitM and bindM (and thus are available for every monad).

Finally, for monads which support a zero or a plus, FC++ provides

zeroM<SomeMonad>() plusM<SomeMonad>()

which, like unitM and bindM, just call the corresponding functions from the monad.

FC++ supports comprehensions in arbitrary monads, using the general syntax:

compM<SomeMonad>()[lambdaExp | thing, thing, ... thing]

where thing is one of

� a \gets" expression|that is, an experssion of the form \LV <= lambdaExp" (which

translates into a call to bindM)

� a lambda expression (which translates into a call to bindM_)

� a guard expression of the form \guard[boolLambdaExp]" (which translates into an

if-then-else with zeroM if the test fails)

This is similar to the syntax used by Haskell's list comprehensions. FC++ also supports a

construct similar to Haskell's do-notation:

doM[thing, thing, ... thing]

where each thing is as before, only guards are no longer allowed. (The lack of a monad

parameter to doM is discussed in a moment.)

Clients can de�ne monads by creating monad classes which model the monad con-

cepts described in the previous subsection (Monad and MonadWithZero). There is also

a MonadWithPlus concept for monads that support plus. Additionally there is another

56

concept called InferrableMonad, which may be modelled when there is a one-to-one cor-

respondence between a datatype and a monad. In the case of InferrableMonads, FC++

(like Haskell) can automatically infer the monad based on the datatype; the doM construct

requires InferrableMonads, and thus it does not need to have a monad passed as an explicit

parameter.

The monad syntax is part of FC++'s lambda sublanguage. As with lambda, we strived

for minimalismwhen implementing monads. The only new operator overloads are operator|

and operator<=, and the only new syntax primitives are compM, guard, and doM. As with

the rest of lambda, we provide LEType translations so that clients can name the result type

of lambda expressions which use monads:

DOM doM[]

GETS LambdaVar <= value

GUARD guard[]

COMP compM<SomeMonad>()[]

As with the other portions of lambda, FC++ provides some custom error messages for

common abuses of the monad constructs. We followed the same design principles discussed

in Section 2.3.1 when implementing monads in FC++.

2.3.2.5 Monad examples

There are many example applications which use monads; here we discuss a small sample

to give a feel for what monads are useful for. Note that a few of the examples here simply

describe general strategies for programming with monads, but two examples (speci�cally

parsing combinators and lazy evaluation) illustrate actual sub-libraries that come with

FC++.

Using MaybeM for exceptions

One classic example of the utility of monads comes from the domain of exception han-

dling. Suppose we have written some code which computes some values using some func-

tions:

x = f(3);

57

y = g(x);

z = h(x,y);

return z;

(For the sake of argument, let's say that the functions f, g, and h take positive integers as

arguments and return positive integers as results.) Now suppose that each of the functions

above may fail for some reason. In a language with exceptions, we could throw exceptions

in the case of failure. However in a language without an exception mechanism (like C or

Haskell), we would typically be forced to represent failure using some sentinel value (-1,

say), and then change the client code to

x = f(3);

if(x == -1) {

return -1;

} else {

y = g(x);

if(y == -1) {

return -1;

} else {

z = h(x,y);

return z;

}

}

This is painful because the \exception handling" part of the code clutters up the main line

code. However, we can solve the problem much more simply by using the Maybe monad.

Let the functions return values of type Maybe<int>, and let NOTHING represent failure. Now

the client code can be written as just

compM<MaybeM>()[Z | X <= f[3],

Y <= g[X],

Z <= h[X,Y]]

58

The de�nitions of unit and bind in the MaybeM monad make the problem trivial; NOTHING

values immediately propagate up through the end of the comprehension, whereas integers

continue on through the computation as desired.

Using ListM for non-determinism

Now imagine changing the problem above slightly; instead of the functions f, g, and h

having the possibility of failure, suppose instead that they are non-deterministic. That is,

suppose each function returns not a single integer, but rather a list of all possible integer

results. Changing the original client code to deal with this change would likely be even

uglier than the original change (which required all the tests for -1). However the change to

the monadic version is trivial:

compM<ListM>()[Z | X <= f[3], -- Note: ListM instead of MaybeM

Y <= g[X],

Z <= h[X,Y]]

The result is a list of all the possible integer values for Z which satistfy the formulae.

A monadic evaluator

Wadler [74] demonstrates the utility of monads in the context of writing an expression

evaluator. Wadler gives an example of an interpreter for a tiny expression language, and

shows how adding various kinds of functionality, such as error handling, counting the number

of reduction operations performed, keeping an execution trace, etc. takes a bit of work. The

evaluator is then rewritten using monads, and the various additions are revisited. In the

monadic version, the changes necessary to e�ect each of the additions are much smaller

and more local than the changes to the original (non-monadic) program. This example

demonstrates the value of using monads to structure programs in order to localize the

changes necessary to make a wide variety of additions throughout a program.

Monadic parser combinators

Parsing is a domain which is especially well-suited to monads. In the Haskell community,

\monadic parser combinators" are becoming the standard way to structure parsing libraries.

As it turns out, parsers can be expressed as a monad: a good introductory paper on the topic

59

of monadic parser combinators in Haskell is reference [36]. We implement the examples in

that paper in one of the example �les that come with the FC++ library. Here we just give

a brief overview of how monadic parsing works.

A typical representation type for parser monads is

Parser a = String -> Maybe (a, String) -- the monad "Parser"

That is, a parser is a function which takes a String and returns

� (if the parse succeeds) a pair containing the result of the parse and the remaining (yet

unparsed) String, or

� (if the parse fails) Nothing.

Monadic parser combinators are functions which combine parsers to yield new parsers,

typically in ways commonly found in the domain of parsing and grammars. For example,

the parser combinator many:

many :: Parser a -> Parser [a]

implements Kleene star|for example, given a parser which parses a single digit called

\digit", the parser \many digit" parses any number of digits. Monadic parser combinator

libraries typically provide a number of basic parsers (e.g. charP, which parses any character

and returns that character) and combinators (e.g. plusP, which takes two parsers and

returns a new parser which tries to parse a string with the �rst parser, but if that fails, uses

the second) to clients. The beauty of the monadic parser combinator approach is that it is

easy for clients to de�ne their own parsers and combinators for their speci�c needs.

As we have seen in the previous examples, using monads often makes it easy to change

some fundamental aspect of the behavior of the program. For example, if we have an

ambiguous grammar (one for which some strings admit multiple parses), we can simply

change the representation type for the parser like so:

Parser a = String -> [(a, String)] -- uses List instead of Maybe

60

thus rede�ning the monad operations (unit, bind, zero, and plus), and then parsers will

return a list of every possible parse of the string. This is all possible without making any

changes to existing client code.

One alternative approach to writing parsing libraries in C++ is that taken by the Boost

Spirit Library[31]. Spirit uses expression templates to turn C++ into a yacc-like tool, where

parsers can be expressed using syntax similar to the language grammar. For example, given

the expression language

factor ::= integer | group // BNF

term ::= factor (mulOp factor)*

expression ::= term (addOp term)*

group ::= '(' expression ')'

one can write a parser using Spirit as

factor = integer | group; // Spirit (C++)

term = factor >> *(mulOp >> factor);

expression = term >> *(addOp >> term);

group = '(' >> expression >> ')';

which is almost just as readable as the grammar. Like yacc, Spirit has a way to associate

semantic actions with each rule.

The results are similar with monadic parser combinators. Using an FC++ monadic

parser combinator library, we can write

factor = lambda(S)[(integer %plusP% dereference[&group])[S]];

term = factor ^chainl1^ mulOp;

expression = term ^chainl1^ addOp;

group = bracket(charP('('), expression, charP(')'));

to express the same parser. The above FC++ code creates parser functoids by using more

primitive parsers and combining them with appropriate parser combinators like chainl1.

(Note that, whereas Spirit's parser rules are e�ectively \by reference", FC++ functoids

61

are \by value", which means we need to explicitly create indirection to break the recursion

among these functoids. Hence the use of lambda, dereference, and the address-of operator

in the de�nition of factor.) This FC++ parser not only parses the string, but it also

evaluates the arithmetic expression parsed. The semantics are built into the user-de�ned

combinators like addOp and chainl1. For example,

addOp :: Parser (Int -> Int -> Int)

parses a symbol like '-' and returns the corresponding functoid (minus). Then,

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

-- e.g. p `chainl1` op

parses repeated applications of parser p , separated by applications of parser op (whose result

is a left-assocative function, which is used to combine the results from the p parsers). Thus

monadic parser combinator libraries allow one to express parsers at a level of abstraction

comparable to tools like yacc or the Spirit library, but in a way in which users can de�ne

their own abstractions (like chainl1) for parsing and semantics, rather than just using the

builtin ones (like Kleene star) supplied by the tool/library.

Lazy evaluation

Early versions of FC++ supported lazy evaluation in two main ways: �rst, via the lazy

List class and the functions (like map) that use Lists, and second, via \thunks" (zero

argument functoids, like Fun0<T>). Monads provide a new, more general mechanism to

lazify computations. The datatype ByNeed<T> and its associated monad ByNeedM can be

used to make a computation lazy. Additionally, the functoid bLift lazi�es a functoid by

lifting its result into the ByNeedM monad. For example, we can lazify

x = f(3);

y = g(x);

z = h(x,y);

by writing

62

compM<ByNeedM>()[Z | X <= bLift[f] [3],

Y <= bLift[g] [X],

Z <= bLift[h] [X,Y]]

The result is a ByNeed<int> value, which is a computation that will result in an int

when \forced" by calling bForce. (Conversely, a constant can be turned into a by-need

computation by calling bDelay.) Using values of type ByNeed<T> in lieu of type T ensures

that lazy evaluation occurs: a computation is not performed until the value is demanded,

and once a computation has been run to produce a value, the value is cached so that further

applications of bForce get the cached value rather than re-running the computation.

In short, the datatype ByNeed<T> combines \thunks" with caching, and the ByNeedM

monad makes syntax sugar like comprehensions available so that client code working with

ByNeed<T> objects need not be concerned with all the \forcing" and \delaying" in the midst

of the computation (the monad plumbing handles this).

2.3.2.6 Monad summary

Monads in FC++ are similar to monads in Haskell. Both rely on bounded parametric

polymorphism; this is done explicitly via type classes in Haskell, and implicitly via template

concepts in C++. In both Haskell and FC++, there is syntactic sugar for do-notation and

comprehensions. The major di�erence is that in FC++, monads do not rely on datatypes

with unique algebraic datatype constructors. As a result, FC++ comprehension syntax

generalizes to arbitrary monads via a trade-o�: the user must provide an explicit annotation

on the comprehension to denote \which monad".

Monads are often seen merely as a way to provide \impure" features (like state and I/O)

to pure functional languages. FC++ demonstrates that monads have useful applications

in impure languages as well. The parser example shows how monads provide a way to

structure programs so that some cross-cutting concerns can be easily factored out, and the

FC++ ByNeed monad is a convenient reusable way to incorporate lazy evaluation into a

C++ program.

63

2.3.3 Static analysis and error checking

In FC++, lambda and monads e�ectively \embed a sublanguage" into C++. Our use

of expression templates, LambdaVars, and operator overloading provides special-purpose

syntactic constructs which look almost as though they were a part of the language. Since

this is all done as a library, though, there are challenges with regards to static analysis and

error checking.

To begin, consider this example of an FC++ lambda expression:

lambda(X,X)[X](1,2)

If the lambda expression here were written in a functional language, we would expect

the language compiler/interpreter to detect the repeated variable X in the list of lambda

arguments and issue an error message. Of course, the C++ compiler is not automatically so

kind|as far as it is concerned, lambda() is just another function call, and thus no special

analysis is merited. As a result, in the FC++ library, we write small meta-programs within

the C++ type system (which is Turing-complete) to perform various static analyses and

issue various kinds of error messages that are related to the new \sublanguages" provided

by the libraries.

Consider again this expression:

lambda(X,X)[X](1,2)

To detect duplicated lambda variables in the argument list to lambda, we write a meta-

program which is invoked when trying to compute the result type of the call to lambda().

Recall that lambda variables in FC++ are declared like so,

LambdaVar<1> X; LambdaVar<2> Y;

with variables declared as instances of the LambdaVar template class, each with a di�erent

integer template parameter. This enables the C++ type system to distinguinsh among

lambda variables, as each lambda variable has a di�erent C++ type. Thus we write the

meta-program (encoded in the type of lambda()) to walk the list of arguments passed

to lambda() and inspect the types for duplicates. If any duplicates are found, we issue

64

a \custom error message" describing the error. The C++ language/compiler provide no

special support for customing error messages, but we can simulate them reasonably well

by referring to non-existent variables or functions with long identi�ers that describe the

problem. For instance, in the case of

lambda(X,X)[X](1,2) // on line 94 of example.cpp

the g++ compiler emits a (somewhat long) error message which ends with

example.cpp:94: instantiated from here

./FC++/lambda.hpp:1137: no method `

YouCannotPassTheSameLambdaVarTo_lambda_MoreThanOnce<true>::go'

This message is not ideal, but it does contain both of the essential elements: the location

where the error occurred (example.cpp, line 94), and the nature of the error (described in

the long identi�er YouCannotPass...).

We can use this same strategy to detect a wide variety of errors. Here are a couple

more examples of common errors that clients of the library might make, and the identi�ers

displayed in the error messages issued by the library's internal meta-programs:

lambda(X)[Y](1)

// issues an error containing

// YouCannotInvokeALambdaContainingFreeVars

lambda(X,F)[if0[F[X,0],0,plus]](1,equal)

// issues an error containing

// TrueAndFalseBranchOfIfMustHaveSameType

Unfortunately, these useful identi�ers can only be injected into the compiler's error messages

as part of the compiler's normal templates for displaying errors (e.g. \no method named

Foo" or \no match for call to Foo(Bar)"), which often hinders their visibility.

Furthermore, many compilers will dump the entire \template instantiation stack" (which

e�ectively represents the entire state of the metaprogram) as part of the error message. As

65

a result, a single error message may be literally millions of characters long. Fortunately,

the \useful" portion of the message (the injected identi�er) always appears right near the

beginning or right at the end of the error message (depending on the particular type of

error and on which compiler is used). As a result, huge compiler diagnostic messages can

be managed with only minor sleuthing work by the user.

Overall, the special static analyses and error reporting done by the library are not ideal,

but they are adequate. Many types of errors are automatically detected and reported.

Though it may take users a little extra e�ort to �nd and interpret these messages within

the context of a super-verbose compiler diagnostic, this is far preferable to the alternative:

a non-working program with no useful information about either the location or the nature

of the error.

2.3.4 Lazy lists: even and odd

In this section we discuss FC++ lazy lists in more depth. We focus on the unusual dual

representation we have for lists|one that exploits C++ implicit conversions to allow lazy

lists that are both eÆcient and easy to use.

As we saw in Section 2.2.1, FC++ lazy lists can be cons()ed up in the usual way:

List<int> l = cons(1,cons(2,NIL));

However, we could also create \in�nite" lists with functions like enumFrom(); for example,

enumFrom(1) returns the list of integers 1, 2, 3, The implementation of enumFrom()

reveals how this is done:

struct EnumFrom:public CFunType<int,List<int> > {

List<int> operator()(int x) const {

return cons(x, thunk1(EnumFrom(), x+1));

}

} enumFrom;

Though short, the function body nevertheless requires explanation because of the apparent

inconsistency in the use of cons(): does cons() accept as its second argument a list, or a

thunk (like the above thunk1 expression) returning a list?

66

The answer is that cons() is overloaded to accept either a list or a list thunk. As will

be described in Section 2.5.2.2, a List is represented as a kind of variant record, whose tail

portion may either be a reference to the rest of the list, or an unevaluated thunk which will

produce the remainder list on demand.

In reference [72], it is pointed out that there are di�erent \degrees of laziness". Depend-

ing upon implementation choices, we may consider a lazy stream of values to be \even"

or \odd", where even streams are completely lazy, whereas odd streams sometimes exhibit

a little too much eagerness. For example, in this code (adapted from the main running

example in reference [72]):

List<double> l = cons(1.0,cons(0.0,cons(-1.0,NIL)));

l = take(2, map(sqrt, l));

we would expect l to have the �nal value [1.0,0.0]. However this will only work for

\even" lists; an \odd" list will evaluate one element too far, and end up trying to compute

sqrt(-1.0) and fail. The details of the di�erences between the even and odd styles are

explicated in reference [72]. (As we shall see, FC++ code does not fail in this example; our

lists are not over-eager.)

FC++'s lazy lists are neither even nor odd. We have instead chosen a hybrid approach

that works well in C++. There are two kinds of lists exposed to users in FC++: List and

OddList. The former is \even", whereas the latter is \odd". An important feature is that

the two kinds of lists are implicitly convertible to one another. That is, an odd list can be

used where an even list is expected (it will be automatically wrapped into a thunk) and an

even list can be used where an odd list is expected (it will be automatically unwrapped).

The two list types have exactly the same interface; the only di�erence between the

two is that OddLists are always eager in their �rst element, whereas Lists are not. It is

noteworthy that the eagerness of OddLists is e�ectively limited to the �rst element; taking

the tail() of an OddList returns an (even) List as a result. Most functions other than

tail() that produce list values (e.g. cons(), enumFrom(), and map()) actually return

OddLists, and not Lists.

67

This may seem an awkward state of a�airs, at �rst. However, this peculiar implementa-

tion o�ers an interesting bene�t: by exposing the fact that some list elements are already

evaluated (OddLists) to the type system, we can overload certain core functions like head()

to take advantage of this information|to take the head() of a List, we must evaluate a

thunk to produce a value (after checking to see if the value has previously been cached,

as discussed in Section 2.5.2.1), whereas to take the head() of an OddList, we can simply

access a stored value directly, which is much more eÆcient. Hence the separation of lists

into two data types can improve the run-time performance of list code.

This performance bene�t comes with two potential costs. First, the overall complexity

of the FC++ library is increased by having two list types. Second, since OddLists are not

completely lazy, there is danger of over-eager computation. We address each concern in

turn:

� Complexity. While the internal complexity of the library is undoubtedly increased

due to the list duality, this extra complexity need not be exposed to library users.

Clients of the FC++ library can be oblivious of the existence of OddLists and get

along just �ne. The overloading and implicit conversions with Lists enable users to

write working code that appears to deal solely in Lists. Lists e�ectively provide a

facade that shields casual users from the extra complexity. Nevertheless, for users who

understand the details of OddLists, the datatype is there, ready to be exploited by

clients who want to hand-tune some of their code to improve the run-time performance.

� Eagerness. Allowing implicit conversions between OddLists and Lists sacri�ces some

of the safety of even lists. Nevertheless, while the danger of over-eagerness exists, it

lives only in \edge cases". The examples from [72], like

List<double> l = cons(1.0,cons(0.0,cons(-1.0,NIL)));

l = take(2, map(sqrt, l));

work as expected, even though map returns an OddList. The reason is that our

OddLists have \even" tails and tail is the only way to deconstruct a list in FC++.

Only direct calls on boundary cases like

68

List<double> l = cons(-1.0,NIL);

l = take(0, map(sqrt, l));

will cause a failure (map() tries to take the square root of -1 before take() has the

opportunity to mention that it is not interested in evaluating any elements). Note

that it is only when the original call in the client begins with the \edge case" that

the problem occurs|in the �rst of the two previous examples, the same boundary

case (which fails in the second example) is reached after two recursive calls, but since

we have already moved past the �rst element of the list, we are safely in the \even"

domain. As a result, the edge cases are unlikely to occur in practice. When necessary,

the client can always resort to explicitly forcing the �rst element to be lazy: rather

than evaluating

map(sqrt, l)

(the o�ending expression in the boundary case), which has type OddList, the user

can evaluate

thunk2(map, sqrt, l)

The latter expression evaluates to a thunk that returns an OddList, which is implicitly

convertible to an (even) List. Indeed, this strategy seems well within the spirit

of C++; C++ is an eager language, and calling a function is an eager language

mechanism, which typically produces a value (or an e�ect). In those cases where the

programmer desires extra laziness, she codes it explicitly using thunkN(). This is, after

all, how lazy functions like enumFrom() are implemented (with calls to thunkN()).

To summarize, the list implementation in FC++ uses a novel \hybrid" approach to

laziness. While we consider the details of this approach to be interesting and important

from an implementation perspective, we emphasize that these details are almost never forced

upon clients. We have dozens of example programs that use FC++ lists with no knowledge

of any of the details of OddLists or edge cases. The goal of this section is simply to describe

69

our implementation as an interesting alternative to the possibilities considered in reference

[72].

2.3.5 Strict lists and a generalized list interface

In addition to supporting lazy lists, FC++ also supports eager lists via the StrictList

data structure. Both strict lists and lazy lists have a common interface, which means that

it is possible to write FC++ functoids which are polymorphic with respect to the eagerness

of the lists they manipulate.

As an example, consider the functoid Map. In FC++, when map() is applied to a lazy list

(List), the result is a lazy list, whereas when map() is applied to a strict list (StrictList),

the result is a strict list. Here is the code for the body of the Map functoid:

template <class F, class L>

typename Sig<F,L>::result_type

operator()(const F& f, const L& l) const {

if(null(l))

return NIL;

else

return cons(f(head(l)), thunk2(Map(), f, tail(l)));

}

Note that the second parameter to operator() is just a template argument (L). As a result,

any data type which supports the functions used in the body of Map (null(), head(), etc.)

can be passed as the second argument to Map.

All list data types need to support a common set of operations; we call this set the

ListLike interface. Any datatype which supports the ListLike interface (that is, a type

that models the ListLike concept, using the terminology of Section 2.3.2.2) can be used

with FC++ list functoids like Map, which are written so as to be polymorphic with respect

to any ListLike data type. FC++ provides three data types which support the ListLike

interface: List and OddList (the even and odd versions of lazy lists), and StrictList

70

(eager lists). (Section 5.1.4 describes some of the details of the ListLike interface in more

detail.)

Though these three data types have the same interface, they have slightly di�erent be-

haviors for each operation. For example, taking the head() of an OddList or a StrictList

just fetches a �eld from an already-evaluated data structure, whereas taking the head() of a

List requires �rst evaluating a thunk. As a more interesting example of di�ering behavior,

consider the last line of the Map functoid:

return cons(f(head(l)), thunk2(Map(), f, tail(l)));

When the two arguments to cons() are a value and a thunk, and cons() is used in a lazy list

context (that is, l is a List or and OddList), the thunk gets stored as the yet-unevaluated

\tail" portion of the list (as described in Section 2.3.4). But when this same expression is

evaluated in a strict list context (l is a StrictList), cons() behaves di�erently, evaluating

the thunk immediately. As a result, the code

map(some_func, some_strict_list)

results in a new StrictList where some_func has been (eagerly) applied to each element

of some_strict_list.

To sum up: FC++ contains data types for both lazy lists and strict lists. These types

support a common ListLike interface, so that list-manipulating functions (like map()) can

be written so they are polymorphic with respect to the eagerness of the list. Thus, FC++

list functoids can behave either lazily of eagerly, depending on the data type arguments

they are passed. As a result, clients of the FC++ library may choose to use either lazy or

eager evaluation, depending on their particular needs.

Finally, note that FC++ StrictLists di�er from the lists in the C++ STL. Whereas

std::lists are e�ect-ful, ours are e�ect-free. As a result, StrictLists o�er constant-time

cons() and tail() operations, whereas std::lists do not (only the mutating versions

of these operations|push_front() and pop_front()|are constant-time for std::lists).

Thus FC++ StrictLists are a complement to (rather than a replacement for) the lists in

the C++ standard library.

71

2.4 Applications

In this section we describe a number of useful applications of FC++. First we describe

how higher-order functions can be applied to a number of object-oriented design patterns.

Next we discuss how parametric polymorphism a�ects a number of other design patterns.

Finally we mention examples of the utility of the library both \in the small" (where FC++

simpli�es expressions of just one or two lines of code) and \in the large" (other entire

libraries built atop the FC++ infrastructure).

2.4.1 Higher-order functions and design patterns

Functional programming promotes identifying pieces of functionality as just \functions"

and manipulating them using higher-order operations on functions. These higher-order

functions may be speci�c to the domain of the application or they may be quite general,

like the currying and function composition operations are. Several design patterns [25]

follow a similar approach through the use of subtype polymorphism. Subtype polymorphism

allows code that operates on a certain class or interface to also work with specializations of

the class or interface. This is analogous to higher-order functions: the holder of an object

reference may express a generic algorithm which is specialized dynamically based on the

value of the reference. Encapsulating functionality and data as an object is analogous to

direct function manipulation. Other code can operate abstractly on the object's interface

(e.g., to adapt it by creating a wrapper object).

It has long been identi�ed that functional techniques can be used in the implementation

of design patterns. For instance, the Visitor pattern is often considered a way to program

functionally in OO languages. (The interested reader should see Reference [47] and its

references for a discussion of Visitor.) The Smalltalk class MessageSend (and its variants,

see Reference [3], p.254), the C++ Standard Library functors, Alexandrescu's framework

(Reference [2], Ch. 5), etc., are all trying to capture the generic concept of a \function"

and use it in the implementation of the Command or Observer pattern. In this section

we will briey review some of these well-known techniques, from the FC++ standpoint, by

using indirect functoids. In Section 2.4.2 we will consider how the unique features of FC++

72

enable some novel implementations of other patterns.

2.4.1.1 Command

The Command pattern turns requests into objects, so that the requests can be passed,

stored, queued, and processed by an object which knows nothing of either the action or the

receiver of the action. An example application of the pattern is a menu widget. A pull-down

menu, for instance, must \do something" when an option is clicked; Command embodies

the \something". Command objects support a single method, usually called execute. Any

state on which the method operates needs to be captured inside a command object.

The motivation for using the Command pattern is twofold. First, holders of command

objects (e.g., menu widgets) are oblivious to the exact functionality of these objects. This

decoupling makes the widgets reusable and con�gurable dynamically (e.g., to create context-

sensitive graphical menus). Second, the commands themselves are decoupled from the

application interface and can be reused in di�erent situations (e.g., the same command can

be executed from both a pull-down menu and a toolbar).

Here is a brief example which illustrates how Command might be employed in a word-

processing application:

class Command {

public:

virtual void execute()=0;

};

class CutCommand : public Command {

Document* d;

public:

CutCommand(Document* dd) : d(dd) {}

void execute() { d->cut(); }

};

73

class PasteCommand : public Command {

Document* d;

public:

PasteCommand(Document* dd) : d(dd) {}

void execute() { d->paste(); }

};

Document d;

...

Command* menu_actions[] = {

new CutCommand(&d),

new PasteCommand(&d),

...

};

...

menu_actions[choice]->execute();

The abstract Command class exists only to de�ne the interface for executing commands.

Furthermore, the execute() interface is just a call with no arguments or results. In other

words, the whole command pattern simply represents a \function object". From a functional

programmer's perspective, Command is just a class wrapper for a \lambda" or \thunk"|an

object-oriented counterpart of a functional idiom. Indirect functoids in FC++ represent

such function-objects naturally: a Fun0<void> can be used to obviate the need for both the

abstract Command class and its concrete subclasses:

Document d;

...

Fun0<void> menu_actions[] = {

thunk1(ptr_to_fun(&Document::cut), &d),

thunk1(ptr_to_fun(&Document::paste), &d),

74

...

};

...

menu_actions[choice]();

In this last code fragment, all of the classes that comprised the original design pattern

implementation have disappeared! Fun0<void> de�nes a natural interface for commands,

and the concrete instances can be created on-the-y by making indirect functoids out of

the appropriate functionality, currying arguments when necessary.

The previous example takes advantage of the fact that ptr_to_fun can be used to create

functoids out of all kinds of function-like C++ entities. This includes C++ functions,

instance methods (which are transformed into normal functions that take a pointer to the

receiver object
7
as an extra �rst argument|as in the example), class (static) methods, C++

Standard Library <functional> objects, etc. This is an example of design inspired by the

functional paradigm: multiple distinct entities are uni�ed as functions. The advantage of

the uni�cation is that all such entities can be manipulated using the same techniques, both

application-speci�c and generic.

2.4.1.2 Observer

The Observer pattern is used to register related objects dynamically so that they can be

noti�ed when another object's state changes. The main participants of the pattern are a

Subject and multiple Observers. Observers register with the subject by calling one of its

methods (with the conventional name attach) and un-register similarly (via detach). The

subject noti�es observers of changes in its state, by calling an observer method (update).

The implementation of the observer pattern contains an abstract Observer class that

all concrete observer classes inherit. This interface has only the update method, making

it similar to just a single function, used as a callback. In fact, the implementation of the

Observer pattern can be viewed as a special case of the Command pattern. Calling the

7Or a pointer to a const receiver object, if the method itself was const. The FC++ library strives to be

const-correct.

75

execute method of the command object is analogous to calling the update method of an

observer object.

The FC++ solution strategy for the Observer pattern is exactly the same as in Com-

mand. The Subject no longer cares about the type of its receivers (i.e., whether they are

subtypes of an abstract Observer class). Instead, the interesting aspect of the receivers|

their ability to receive updates|is encapsulated as a Fun0<void>. The abstract Observer

class disappears. The concrete observers simply register themselves with the subject. We

will not show the complete code skeletons for the Observer pattern, as they are just special-

izations of the code for Command. Nevertheless, one aspect is worth emphasizing. Consider

the code below for a concrete observer:

class ConcreteObserver {

ConcreteSubject& subject;

public:

ConcreteObserver(ConcreteSubject& s) : subject(s) {

s.attach(

thunk1(ptr_to_fun(&ConcreteObserver::be_notified),this));

}

void be_notified() {

cout << "new state is" << subject.get_state() << endl;

}

};

Note again how ptr_to_fun is used to create a direct functoid out of an instance method.

The resulting functoid takes the receiver as its �rst parameter. curry is then used to bind

this parameter. This approach frees observers from needing to conform to a particular

interface. For instance, the above concrete observer implements be_notified instead of

the standard update method, but it still works. Indeed, we can turn an arbitrary object

into an observer simply by making a functoid out of one of its method calls|the object

need not even be aware that it is participating in the pattern. This decoupling is achieved

76

by capturing the natural abstraction of the domain: the function object.

Summarizing, the reason that Fun0<void> can replace the abstract Observer and

Command classes is because these classes serve no purpose other than to create a common

inteface to a function call. In Command, the method is named execute(), and in Observer,

it is called update(), but the names of the methods and classes are really immaterial to

the pattern. Indirect functoids in FC++ remove the need for these classes, methods, and

names, by instead representing the core of the interface: a function call which takes no

argument and returns nothing.

C++'s parameterization mechanism lets us extend this notion to functions which take

arguments and return values. For example, consider an observer-like scenario, where the

noti�er passes a value (for instance, a string) to the observer's update method, and the

update returns a value (say, an integer). This can be solved using the same strategy as

before, but using a Fun1<string,int> instead of a Fun0<void>. Again, the key is that

the interface between the participants in the patterns is adequately represented by a single

function signature
8
; extra classes and methods (with �xed names) are unnecessary to realize

a solution.

2.4.1.3 Virtual Proxy

The Virtual Proxy pattern seeks to put o� expensive operations until they are actually

needed. For example, a word-processor may load a document which contains a number of

images. Since many of these images will reside on pages of the document that are o�-screen,

it is not necessary to actually load the entire image from disk and render it unless the user of

the application actually scrolls to one of those pages. In [25], an ImageProxy class supports

the same interface as an Image class, but postpones the work of loading the image data

until someone actually requests it.

In many functional programming languages, the Virtual Proxy pattern is unnecessary.

This is because many functional languages employ lazy evaluation. This means that values

8A tuple of indirect functoids can be used if multiple function signatures are de�ned in an in-

terface; the example in [25] of Command used for do/undo could be realized in FC++ with a

std::pair<Fun0<void>,Fun0<void>>, for instance.

77

are never computed until they are actually used. This is in contrast to strict languages

(like all mainstream OO languages), where values are automatically computed when they

are created, regardless of whether or not they are used.

Since C++ is strict, FC++ is also strict by default. Nevertheless, a value of type T can

be made lazy by wrapping the computation of that value in a Fun0<T>. This is a common

technique in strict functional languages. It encapsulates a computation as a function and

causes the computation to occur only when the function is actually called (i.e., when the

result is needed). For instance, in FC++ a call foo(a,b) can be delayed by writing it

as thunk2(foo,a,b). The latter expression will return a 0-argument functoid that will

perform the original computation, but only when it is called. Thus, passing this functoid

around enables the composition to be evaluated lazily.

We should reiterate that FC++ de�nes speci�c tools for conveniently expressing lazy

computations. First, the ByNeed monad described in Section 2.3.2.5 can be used to provide

a simple implementation of the ImageProxy mentioned earlier. Second, FC++'s lazy list

data structure enables interesting solutions to some problems. For example, to compute the

�rst N prime numbers, we might create an in�nite (lazy) list of all the primes, and then

select just the �rst N elements of that list.

2.4.2 Parametric polymorphism and design patterns

In the previous section, we saw how several common design patterns are related to functional

programming patterns. All of our examples relied on the use of higher order functions. An-

other trait of modern functional languages (e.g., ML and Haskell) is support for parametric

polymorphism with type inference. Type inference was discussed in Section 2.2.2: it is the

process of deducing the return type of a function, given speci�c arguments. In this section,

we will examine how some design pattern implementations can be improved if they employ

parametric polymorphism with type inference and how they can further bene�t from the

entire arsenal of FC++ techniques for manipulating these polymorphic functions.(The dis-

cussion of this section is only relevant for statically typed OO languages, like Java, Ei�el,

or C++. The novelties of FC++ are in its type system|it has nothing new to o�er to a

78

dynamically typed language, like Smalltalk.)

2.4.2.1 Parametric vs. Subtype Polymorphism

Design patterns are based on subtype polymorphism|the cornerstone of OO programming.

Parametric polymorphism, on the other hand, is not yet commonly available in OO lan-

guages, and even when it is, its power is typically limited|e.g., there is no type inference

capability. FC++ adds this capability to C++. It is interesting to ask when parametric

polymorphism can be used in place of subtype polymorphism and what the bene�ts will be,

especially in the context of design pattern implementations.

Parametric polymorphism is a static concept: it occurs entirely at compile time. Thus,

to use a parametrically polymorphic operation, we need to know the types of its arguments

at each invocation site of the operation (although the same operation can be used with

many di�erent types of arguments). In contrast, subtype polymorphism supports dynamic

dispatch: the exact version of the executed operation depends on the run-time type of the

object, which can be a subtype of its statically known type.

Therefore a necessary condition for employing parametric polymorphism is to statically

know the type of operands of the polymorphic operation at each invocation site. When

combined with type inference, parametric polymorphism can be as convenient to use as

subtype polymorphism and can be advantageous for the following reasons:

� No common supertype is required. The issue of having an actual common superclass or

just supporting the right method signature is similar to the named/structural subtyp-

ing dilemma. All mainstream OO languages except Smalltalk use named subtyping: a

type A needs to declare that it is a subtype of B. In contrast, in structural subtyping,

a type A can be a subtype of type B if it just implements the right method signa-

tures. The advantage of requiring a common superclass is that accidental conformance

is avoided. The disadvantage is that sometimes it is not easy (or even possible) to

change the source code of a class to make it declare that it is a subtype of another. For

instance, it may be impossible to modify pre-compiled code, or it may be tedious to

manipulate existing inheritance hierarchies, or the commonalities cannot be isolated

79

due to language restrictions (e.g., no multiple inheritance, no common interface sig-

nature). Even in languages like Java where a supertype of all types exists (the Object

type), problems arise with higher-order polymorphic functions, like our curry oper-

ator. The problem is that an Object reference may be used to point to any object,

but it cannot be passed to a function that expects a reference of a speci�c (but un-

known) type. Thus, implementing a fully generic curry with subtype polymorphism

is impossible.

� Type checking is static. With subtype polymorphism, errors can remain undetected

until run-time. Such errors arise when an object is assumed to be of a certain dynamic

type but is not. Since the compiler can only check the static types of objects, the

error cannot be detected at compile-time. In fact, for many of the most powerful

and general polymorphic operations, subtype polymorphism is impossible to use with

any kind of type information. For instance, it would be impossible to implement a

generic compose operator with subtype polymorphism, unless all functions composed

are very weakly typed (e.g., functions from Objects to Objects). The same is true

with most other higher-order polymorphic operations (i.e., functions that manipulate

other functions).

� Method dispatch is static. Despite the many techniques developed for making dynamic

dispatch more eÆcient, there is commonly a run-time performance cost, especially for

hard-to-analyze languages like C++. Apart from the direct cost of dynamic dispatch

itself, there is also an indirect cost due to lost optimization opportunities (such as

inlining). Therefore, when parametric polymorphism can be used in place of subtype

polymorphism, the implementation typically becomes more eÆcient.

The examples that follow illustrate the advantages of using parametric polymorphism in

the implementations of some design patterns.

80

2.4.2.2 Adapter

The Adapter pattern converts the interface of one class to that of another. The pattern

is often useful when two separately developed class hierarchies follow the same design, but

use di�erent names for methods. For example, one window toolkit might display objects by

calling paint(), while another calls draw(). Adapter provides a way to adapt the interface

of one to meet the constraints of the other.

Adaptation is remarkably simple when a functional design is followed. Most useful kinds

of method adaptation can be implemented using the currying and functoid composition op-

erators of FC++, without needing any special adapter classes. These adaptation operators

are very general and reusable.

Consider the Command or Observer pattern. As we saw, in an FC++ implementation

there is no need for abstract Observer or Command classes. More interestingly, the concrete

observer or commands do not even need to support a common interface|their existing

methods can be converted into functoids. Nevertheless, this requires that the existing

methods have the right type signature. For instance, in our ConcreteObserver example,

above, the be_notified method was used in place of a conventional update method, but

both methods have the same signature: they take no arguments and return no results. What

if an existing method has almost the right signature, or if methods need to be combined to

produce the right signature?

For an example, consider a class, AnObserver, that de�nes a more general interface than

what is expected. AnObserver may de�ne a method:

void update(Time timestamp) { ... }

We would like to use this method to subscribe to some other object's service that will issue

periodic updates. As shown in the Observer pattern implementation, the publisher expects

a functoid object that takes no arguments. This is easy to e�ect by adapting the observer's

interface:

thunk2(ptr_to_fun(&AnObserver::update), this, current_time())

81

In the above, we used a constant value (the current time) to specialize the update method

so that it conforms to the required interface. That is, all update events will get the same

timestamp|one that indicates the subscription time instead of the update time. A better

approach is:

compose(ptr_to_fun(&AnObserver::update)(this),

ptr_to_fun(current_time))

In this example we combined currying with function composition in order to specialize the

interface. The resulting function takes no arguments but uses global state (returned by the

current_time() routine) as the value of the argument of the update method. In this way,

each update will be correctly timestamped with the value of the system clock at the time

of the update!

Other parametric polymorphism approaches (e.g., the functional part of the C++ Stan-

dard Library [63], or Alexandrescu's framework for functions [2], Ch.5) support currying and

composition for monomorphic functions. The previous examples demonstrate the value of

C++ type inference, which is not unique to FC++. Nevertheless, FC++ also extends C++

type inference to polymorphic functions. We will see examples of currying and composition

of polymorphic operations in the implementations of the next few patterns.

2.4.2.3 Decorator

The Decorator pattern is used to attach additional responsibilities to an object. Although

this can happen dynamically, most of the common uses of the Decorator pattern can be

handled statically. Consider, for instance, a generic library for the manipulation of win-

dowing objects. This library may contain adapters, wrappers, and combinators of graphical

objects. For example, one of its operations could take a window and annotate it with ver-

tical scrollbars. The problem is that the generic library has no way of creating new objects

for applications that may happen to use it. The generic code does not share an inheritance

hierarchy with any particular application, so it is impossible to pass it concrete factory

objects (as it cannot declare references to an abstract factory class).

82

This problem can be solved by making the generic operations be parametrically poly-

morphic and enabling C++ type inference. For instance, we can write a generic FC++

functoid that will annotate a window with a scrollbar:

struct AddScrollbar {

template <class W>

struct Sig : public FunType<W,ScrollWindow<W> *> {};

template <class W>

typename Sig<W>::ResultType operator() (const W& window) const {

return new ScrollWindow<W>(window);

}

} add_scrollbar;

The above decorator functoid can be used with several di�erent types of windows. For a

window type W, the functoid's return type will be a pointer to a decorated window type:

ScrollWindow<W>. (In fact, ScrollWindow can be a mixin, inheriting from its parameter,

W.)

Since the functoid conforms to the FC++ conventions, it can be manipulated using the

standard FC++ operators (e.g., composed with other functoids, curried, etc.). Composition

is particularly useful, as it enables creating more complex generic manipulators from simple

ones. For instance, a function to add both a scrollbar and a title bar to a window can be

expressed as a composition:

compose(add_titlebar, add_scrollbar)

instead of adding a new function to the interface of a generic library. Similarly, if the

add_titlebar operation accepts one more argument (the window title), the currying oper-

ation can be used (implicitly in the example below):

add_titlebar("Window Title")

The previous examples showed how classes can be statically decorated, possibly with

new abilities added to them. Nevertheless, a common kind of decoration is pure wrapping,

83

where the interface of the class does not change, but old operations are extended with extra

functionality. Using parametric polymorphism one can write special-purpose polymorphic

wrappers that are quite general. These could also be written as C++ function templates,

but if they are written as FC++ functoids, they can be applied to polymorphic functoids

and they can themselves be manipulated by other functoids (like compose). Consider, for

instance, an instrumentation functoid that calls a one-argument operation, prints the result

of the invocation (regardless of its type) and returns that same result:

struct GenericInstrumentor {

template <class C, class A> struct Sig

: public FunType<C, A, C::Sig<A>::ResultType> {};

template <class C, class A>

typename C::template Sig<A>::ResultType

operator() (const C& operation, const A& argument) const {

typename C::template Sig<A>::ResultType r = operation(argument);

std::cerr << "Result is: " << r << std::endl;

return r;

}

} generic_instrumentor;

GenericInstrumentor exempli�es a special-purpose functoid (it logs the results of calls to

an error stream) that can be generally applied (it can wrap any one-argument function).

Note that the before() and after() combinators (described in Section 2.2.9) are other

examples of generally useful method decorators.

2.4.2.4 Builder

The Builder design pattern generalizes the construction process of conceptually similar

composite objects so that a generic process can be used to create the composite objects

by repeatedly creating their parts. More concretely, the main roles in a Builder pattern

are those of a Director and a Builder. The Director object holds a reference to an abstract

84

Builder class and, thus, can be used with multiple concrete Builders. Whenever the Director

needs to create a part of the composite object, it calls the Builder. The Builder is responsible

for aggregating the parts to form the entire object.

A common application domain for the Builder pattern is that of data interpretation. For

instance, consider an interpreter for HTML data. The main structure of such an interpreter

is the same, regardless of whether it is used to display web pages, to convert the HTML

data into some other markup language or word-processing format, to extract the ASCII

text from the data, etc. Thus, the interpreter can be the Director in a Builder pattern.

Then it can call the appropriate builders for each kind of document element it encounters

in the HTML data (e.g., font change, paragraph end, text strings, etc.).

In the Builder pattern, the Director object often implements a method of the form:

void construct(ObjCollection objs) {

for all objects in objs { // "for all" is pseudocode

if (object is_a A) // "is_a" is pseudocode

builder->build_part_A(object);

else if (object is_a B)

builder->build_part_B(object);

...

}

}

Note that the build_part method of the builder objects returns no result. Instead,

the Builder object aggregates the results of each build_part operation and returns them

through a method (we will call it get_result). This method is called by a client object

(i.e., not the Director!).

A more natural organization would have the Director collect the products of building

and return them to the client as a result of the construct call. In an extreme case,

the get_result method could be unnecessary: the Director could keep all the state (i.e.,

the accumulated results of previous build_part calls) and the Builder could be stateless.

85

Nevertheless, this is impossible in the original implementation of the pattern. The reason

for keeping the state in the Builders is that Directors have no idea what the type of the

result of the build_part method might be. Thus, Directors cannot declare any variables,

containers, etc. based on the type of data returned by a Builder. Gamma et al. [25] write:

\In the common case, the products produced by the concrete builders di�er so greatly in

their representation that there is little to gain from giving di�erent products a common

parent class."

This scenario (no common interface) is exactly one where parametric polymorphism

is appropriate instead of subtype polymorphism. Using parametric polymorphism, the

Director class could infer the result types of individual Builders and de�ne state to keep

their products. Of course, this requires that the kind of Builder object used (e.g., an

HTML to PDF converter, an on-screen HTML browser, etc.) be �xed for each iteration of

the construct loop, shown earlier. This is, however, exactly how the Builder pattern is

used: the interpretation engine does not change in the middle of the interpretation. Thus,

the pattern is static|another reason to prefer parametric polymorphism to subtyping. This

may result in improved performance because the costs of dynamic dispatch are eliminated.

The new organization also has other bene�ts. First, the control ow of the pattern is

simpler: the client never calls the Builder object directly. Instead of the get_result call,

the results are returned by the construct call made to the Director. Second, Directors can

now be more sophisticated: they can, for instance, declare temporary variables of the same

type as the type of the Builder's product. These can be useful for caching previous products,

without cooperation from the Builder classes. Additionally, Directors can now decide when

the data should be consumed by the client. For instance, the Observer pattern could be

used: clients of an HTML interpreter could register a callback object. The Director object

(i.e., the interpreter) can then invoke the callback whenever data are to be consumed. Thus,

the construct method may only be called once for an entire document, but the client could

be getting data after each paragraph has been interpreted.

Another observation is that the Director class can be replaced by a functoid so that it

can be manipulated using general tools. Note that the Director class in the Builder pattern

86

only supports a single method call. Thus, it can easily be made into a functoid. Calling the

functoid will be equivalent to calling construct in the original pattern. The return type of

the functoid depends on the type of builder passed to it as an argument (instead of being

void). An example functoid which integrates these ideas is shown here:

struct DoBuild {

template <class B, class OC>

struct Sig: public FunType<B,OC,Container<B::ResultType> > {};

template<class B, class OC>

Container<B::ResultType> operator()(B b, OC objs) const {

Container<B::ResultType> c;

for all objects in objs { // "for all" is pseudocode

if (object is_a A) // "is_a" is pseudocode

c.add(b.build_part_A(object));

else if (object is_a B)

c.add(b.build_part_B(object));

...

}

return c;

}

} do_build;

With this approach, the \director" functoid is in full control of the data production and

consumption. The Director can be specialized via currying to be applied to speci�c objects

or to use a speci�c Builder. Two di�erent Directors can even be composed|the �rst building

process can assemble a builder object for the second!

2.4.3 Other applications

FC++ has applications outside the area of OO design patterns, as well. Here we describe

other application domains for FC++, and other entire libraries which have been built atop

the FC++ infrastructure.

87

As described in Section 2.3.2.5, FC++'s support for functional programming and mon-

ads makes it possible to implement monadic parser combinators in FC++. We have imple-

mented a small parser combinator library, using the same elegant design found in reference

[36] (which describes such a library written in Haskell).

FC++ is also useful on a very small scale for creating new anonymous functions for use

with standard algorithms. A good example of this is illustrated in Section 2.2.9 (the example

which adds 3 to each element of a std::vector). The currying and lambda facilities of

FC++ make it much easier to write tiny anonymous functions.

On a much larger scale, FC++ is useful for functional programmers because it provides

an alternative, commonly available platform for implementing familiar designs. An example

of this approach is the XR (Exact Real) library [13]. XR uses the FC++ infrastructure to

provide exact (or constructive) real-number arithmetic, using lazy evaluation.

Another third-party library built atop FC++ is BSFC++ [18]. The BSFC++ Library is

a library for Functional Bulk Synchronous Parallel Programming which utilizes a functional

design. And �nally, the LC++ library for logic programming (described in the next chapter)

is another entire library built on top of the FC++ infrastructure.

To sum up, the FC++ library supports functional programming in C++, by enabling

users to write and manipulate polymorphic and higher-order functions. The library has

a smooth interface to the rest of C++, so that functional code and OO code can blend

well. Overall, FC++ has many useful applications, involving a number of di�erent domains

(such as parsing and parallel programming) and spanning the gamut of size (FC++ has

utility for tiny one-liners, for design pattern implementations, and as an entire functional

infrastructure on which to build other libraries).

2.5 Performance

In this section we focus on the eÆciency of the library. We describe experiments we have

done to measure the performance of FC++ and the optimizations we have applied to achieve

it.

88

2.5.1 Performance experiments

FC++ is quite eÆcient in its implementation of functional concepts. For common program-

ming tasks that use the FC++ conventions, the overhead is either zero or negligible (i.e., just

a dynamic dispatch indirection for indirect functoids). The only case where performance

is a legitimate concern is if one attempts to copy functional idioms directly to C++ using

FC++. FC++ is not an optimizing compiler for a functional language, so it misses several

common optimizations; for example: no special runtime support for specialized functions

exists; tail-recursion elimination is not automatically performed; no runtime support for

lazy evaluation exists. Additionally, FC++ o�ers a simple reference counting mechanism

(used internally for indirect functoids and lazy lists), which is not directly comparable to an

optimized garbage collector. Nevertheless, the implementation of FC++ carefully tries to

avoid unnecessary overhead and a number of optimizations are employed. In the following

section (Section 2.5.2), we will describe the optimizations in detail.

In this section we show some simple performance measurements comparing FC++ to

Hugs (a well-known Haskell interpreter [35]) and ghc (an optimizing Haskell compiler [28]).

The benchmarks are programs that C++ programmers are unlikely to write in this form, but

they show common functional programming idioms, involving heavy use of lazy (in�nite)

lists. Therefore, these benchmarks serve as stress tests of FC++'s lazy lists.

For each benchmark, we wrote two programs: one in Haskell, and one in C++ using

the FC++ library. The programs are faithful translations of each other, in that they each

represent the same solution to the given problem. The programs were run on a Sun Sparc

Ultra-30 with 128M of RAM. We used g++2.95.2, ghc5.00.1, and the February 2001 version

of Hugs. In the case of both g++ and ghc, we used -O2 and static linking.

The next three subsections illustrate our benchmark programs and the performance

results. The �nal subsection in this section notes the many caveats of a cross-language

performance comparison, and draws only a very basic conclusion from our data.

89

divisible t n = t `rem` n == 0

factors x = filter (divisible x) [1..x]

prime x = factors x == [1,x]

primes n = take n (filter prime [1..])

l = primes 600

main =do print (l !! 599)

Figure 11: Primes in Haskell

Table 1: Primes (all times in seconds)

N FC++ ghc Hugs

200 0.26 0.27 13

400 1.17 1.21 60

600 2.64 3.46 146

800 4.89 5.37 271

1000 7.77 8.56 424

2.5.1.1 Primes

Primes is a simple program that computes a (lazy) list of the �rst N prime numbers and

then prints the N th prime. It does so simply by �ltering all the primes from the (in�nite)

list of integers, and then taking the �rst N of them. Figure 11 shows the code for primes

in Haskell. Figure 12 shows the code for primes in FC++.

Table 2.5.1.1 shows the performance results for primes for various values of N. FC++

is about 55 times as fast as Hugs for this program, and also consistently faster than ghc.

While Haskell uses the arbitrary precision type Integer by default, explicitly requesting

32-bit Ints had no measurable e�ect on the ghc-compiled program's performance. On the

other hand, using Ints did speed up the Hugs times by about 15% for each run (the numbers

in the table for Hugs are without the speedup).

90

#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Divisible : public CFunType<int,int,bool> {

bool operator()(int x, int y) const

{ return x%y==0; }

} divisible;

struct Factors : public CFunType<int,OddList<int> > {

OddList<int> operator()(int x) const {

return filter(thunk2(divisible,x),

enumFromTo(1,x));

}

} factors;

struct Prime : public CFunType<int,bool> {

bool operator()(int x) const {

return factors(x)==cons(1,cons(x,NIL));

}

} prime;

struct Primes : public CFunType<int,OddList<int> > {

OddList<int> operator()(int n) const {

return take(n, filter(prime, enumFrom(1)));

}

} primes;

int main() {

OddList<int> l = primes(NUM);

cout << at(l, NUM-1) << endl;

}

Figure 12: Primes in FC++

91

data Tree a = Node !a !(Tree a) !(Tree a)

| Nil

leaf (Node _ Nil Nil) = True

leaf (Node _ _ _) = False

fringe Nil = []

fringe n@(Node d l r)

| leaf n = [d]

| otherwise = fringe l ++ fringe r

main =do --// code to make a random tree "t"

print (filter (== 13) (fringe t))

Figure 13: Tree in Haskell

2.5.1.2 Tree

Tree is a program that generates a random binary search tree of integers and then (lazily)

computes the \fringe" of the tree. The fringe of a tree is a list of all of the leaves of the tree,

in the order they are encountered during an inorder traversal. The main program prints all

of the nodes in the fringe that match an arbitrary value (13 in the listings); this is merely

a convenient way to force the evaluation of the lazy list.

Figure 13 shows the Haskell code for tree; Figure 14 shows tree in FC++. For both the

Haskell and C++ programs, the code that actually builds the random binary trees is elided

from the listings.

Table 2.5.1.2 shows the performance results for tree. N is the number of nodes in the

tree. No results are reported for Hugs for more than 30,000 nodes because the system

memory was exhausted. For this benchmark, FC++ is consistently faster than Hugs, but

about three times slower than ghc. Investigating the disparity between the FC++ and ghc

performance, we found that ghc performs lazy list concatenation much faster than FC++

does. We plan to search further for a generally applicable optimization that will speed up

list concatenation. Note that for Tree, using Ints instead of Integers had no measurable

e�ect on the times for either ghc or Hugs.

92

#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Tree {

int data;

Tree *left;

Tree *right;

Tree(int x) : data(x), left(0), right(0) {}

Tree(int x, Tree* l, Tree* r) : data(x), left(l), right(r) {}

bool leaf() const { return (left==0) && (right==0); }

};

struct Fringe : public CFunType<Tree*,OddList<int> > {

OddList<int> operator()(Tree* t) const {

if(t==0)

return NIL;

else if(t->leaf())

return cons(t->data,NIL);

else

return cat(Fringe()(t->left), thunk1(Fringe(),t->right));

}

};

Fringe fringe;

int main() {

// code to build tree "t"

List<int> l = fringe(t);

l = filter(fcpp::equal(13), l);

while(!null(l)) {

cout << head(l) << endl;

l = tail(l);

}

}

Figure 14: Tree in FC++

93

Table 2: Tree (all times in seconds)

N FC++ ghc Hugs

10000 0.08 0.03 0.24

20000 0.19 0.06 0.56

30000 0.29 0.10 0.89

40000 0.41 0.12 -

80000 0.87 0.26 -

160000 1.69 0.56 -

Table 3: Hamming (all times in seconds)

N FC++ ghc Hugs

1000 0.02 0.01 0.17

1500 0.03 0.02 0.24

2000 0.03 0.02 0.34

4000 0.07 0.05 0.68

8000 0.14 0.13 1.42

12000 0.21 0.19 2.21

2.5.1.3 Hamming

The �nal program computes Hamming numbers. Hamming numbers are all the integers

which are products of powers of 2, 3, and 5. An elegant way to compute the (in�nite) list

of all Hamming numbers is to say that the �rst number in the list is 1, and that the rest

of the list is computed by merging three other lists: twice, three times, and �ve times the

list of Hamming numbers itself. The solution is very easy to express recursively in Haskell;

it is given in Figure 15. Notice how the de�nition of hamming refers to hamming itself. To

construct the same solution in C++, we need to be a little more verbose, but the structure

is exactly the same. The FC++ code is shown in Figure 16.

Table 2.5.1.3 shows the relative performance of the programs to print the N th Hamming

number. Again, FC++ outperforms Hugs, this time by a factor of about 10; the times for

FC++ and ghc are nearly equal. For this program, we could not use the 32-bit Int in place

of Integer, as Int is not wide enough|our C++ Hamming code needs the g++-speci�c

long long int (64 bits) to handle the large numbers involved in this example.

94

merge a@(x:xs) b@(y:ys) =

if x < y then x : (merge xs b)

else if x > y then y : (merge a ys)

else x : (merge xs ys)

hamming =

1 : (merge (merge (map (*2) hamming)

(map (*3) hamming))

(map (*5) hamming))

main =do putStr "Hamming number: "

print 2000

putStr "is "

print (hamming !! 2000)

Figure 15: Hamming in Haskell

2.5.1.4 Disclaimers and conclusions

In this section, we have compared the performance of C++ programs with Haskell programs.

It is important to note that no direct comparison can really be made. All cross-language

experiments are fraught with factors that make a direct apples-to-apples comparison im-

possible, and our experiments are no di�erent. There are many confounding factors, a few

of which were mentioned at the beginning of this section. Here we list a handful of obvious

di�erences between FC++ and Haskell which we have not attempted to account for.

� Strictness. Haskell is lazy (non-strict) throughout, whereas C++ is strict except in

FC++ lazy lists, which are explicitly coded to be lazy.

� Memory management. FC++ manages memory with reference-counted pointers and

uses the default allocator provided by our implementation. Haskell uses garbage

collection, and a sophisticated allocator designed for optimal performance for a lazy

functional language.

� Exception handling. Haskell has more exception-handling by default; for example,

taking the head() of an empty list raises an exception in Haskell, whereas it simply

leads to unde�ned behavior in FC++ (though we do have a compiler ag that enables

95

#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Merge {

template <class L, class M>

struct Sig : public FunType<L,M,OddList<L::ElementType> > {};

template <class T>

OddList<T> operator()(const List<T>& a, const List<T>& b) const {

T x = head(a);

T y = head(b);

if(x < y)

return cons(x, thunk2(Merge(), tail(a), b));

else if(x > y)

return cons(y, thunk2(Merge(), a, tail(b)));

else

return cons(x, thunk2(Merge(), tail(a), tail(b)));

}

} merge;

typedef long long int FOO; // g++ has "long long"

struct Hamming : public CFunType< List<FOO> > {

List<FOO> operator () () const {

using fcpp::multiplies;

static List<FOO> h = Hamming();

static List<FOO> x = thunk2(map, multiplies((FOO)2), h);

static List<FOO> y = thunk2(map, multiplies((FOO)3), h);

static List<FOO> z = thunk2(map, multiplies((FOO)5), h);

static List<FOO> m1= thunk2(merge, x, y);

static List<FOO> m2= thunk2(merge, m1, z);

return cons((FOO)1, m2);

}

} hamming;

int main() {

cout << "The "<<NUM<<"th hamming number is: ";

cout << at(hamming(), NUM) << endl;

}

Figure 16: Hamming in FC++

96

exceptions for this kind of misuse).

� Runtime. Haskell has a run-time system which supports a mix of compiled and inter-

preted code, manages storage allocation, and supports concurrent threads of execu-

tion. C++ has no comparable run-time system.

� Optimizations. Many FC++ optimizations must be done \by hand"; the Haskell

compiler performs similar optimizations automatically.

By listing these confounding factors, it is not our intention to invalidate the results of

the experiments of this section. Rather, we simply wish to make explicit the context in

which the results must be interpreted. It is meaningless to make general statements like

\FC++ is faster than Haskell" or vice-versa. Our goal is merely to demonstrate that, even

for benchmarks which make heavy use of lists and lazy evaluation, FC++ can perform

roughly comparably to an optimized functional implementation.

2.5.2 Performance analysis and optimizations

The current FC++ implementation is more than an order or magnitude faster than the

previous release of the library. In this section, we discuss six major optimizations we have

applied to our implementation, quantifying the individual bene�ts whenever possible. For

each optimization, we picked an appropriate benchmark that clearly demonstrates the di�er-

ence in performance. (The di�erence for the other programs is typically less dramatic.) At

the end of the section, we also repeat an experiment from [52], comparing the performance

of FC++ with L�aufer's library.

2.5.2.1 Caching

The �rst optimization is caching (memoization) in lazy lists. A lazy list is represented by an

unevaluated function, or \thunk". When the value of the list is requested (head(), tail(),

or null() is called), the thunk is called in order to produce the value. Rather than re-call

the thunk each time the list's value is needed, the thunk should be called only once, and its

value remembered. This optimization is imperative for programs like Hamming; without

97

caching, Hamming grows exponentially (rather than linearly). In an older version of FC++

where caching was not available to lists, Hamming(300) took over 30 seconds to compute!

Caching is implemented as a kind of variant record. Conceptually, a \memoized thunk"

or \cache" is

class Cache {

bool value_is_valid;

Fun0<Value> function;

Value value;

public:

Value val() {

if(!value_is_valid)

{ value=function(); value_is_valid=true; }

return value;

}

};

In the actual implementation, we eliminate the space overhead of the boolean variable by

using a distinguished Value (named XBAD) to represent the !value_is_valid state.

2.5.2.2 Structure of list implementation

When we reimplemented FC++ lazy lists to use caching, we experimented with three dif-

ferent structures for the underlying implementation of lazy lists. We arbitrarily named the

three versions TOP, MIDDLE, and BOTTOM (the names reect the order that we wrote

them on a white board). These structures are represented both as skeleton C++ code and

pictorially in Figure 17. (To simplify the exposition, the code assumes that lists hold only

ints (rather than being template <class T>s), and also uses raw pointers rather than

reference-counted pointers.)

We tested all three list implementations on Primes(1000); the results are shown in

Table 2.5.2.2. It should be no surprise that MIDDLE was the winner; MIDDLE contains

fewer indirections than the other two solutions. TOP and BOTTOM are both slower due

98

21

21

21

fxnfxn

fxnfxn

MIDDLE

BOTTOM

TOP

 Cache* c;
class List {
MIDDLE

 typedef pair<int,List> Value;

};

};

BOTTOM

 Value value;
 Fun0<Value> function;
 typedef pair<int*,List> Value
class Cache {

 Cache* c;
class List {

};
 Value value;
 Fun0<Value> function;

class Cache {
};
 Cache* c;
class List {
TOP

 typedef pair<int,List>* Value

};

fxnfxn

};
 Value value;
 Fun0<Value> function;

class Cache {

Figure 17: Three possible list implementations

to the extra indirection and poorer locality. Additionally, BOTTOM (and MIDDLE too,

actually) su�ers another hit because it needs a special value to represent the empty list

(called XNIL, which is like XBAD mentioned in Section 2.5.2.1), and every evaluation of a list

requires an extra test to determine which member of the variant record is active.

The challenge is implementing MIDDLE for List<T>s where T has no default construc-

tor. C++ requires that constructors be called for all members of an object, but in the case

of MIDDLE, when the value in the Cache isn't valid, we have no constructor to call. As a

result, the �rst �eld of the pair is actually an unsigned char array whose size and align-

ment are appropriate for Ts. Placement new and explicit destructor invocations are used to

explicitly manage the lifetime of the T created in the raw storage when the Cache value

becomes valid. It should be noted that the C++ language standard provides no mechanism

to ensure that the unsigned char array is properly aligned to hold data of type T. Never-

theless, there is a relatively portable \hack": creating a union of all kinds of C++ objects

(primitive data types, structures, pointers, pointers to functions, pointers to members, etc.)

99

Table 4: Comparison of di�erent list structures

Primes(1000) Time (s)

TOP 12.43

MIDDLE 7.77

BOTTOM 26.36

refref

obj data

 object

 count

refref

 object

 count

Figure 18: Non-intrusive reference counting (left) and intrusive reference counting (right)

ensures that the alignment of the union is wide enough to hold any kind of object on almost

any system. Life would be a lot simpler if C++ were extended to have either a mechanism

to specify alignments (a system-level solution) or a way to explicitly ask to have a particular

structure member's constructor not called when the structure is created (a language-level

solution); in the meantime, the hack works well enough on most systems. (A system for

which the hack does not work can always revert to an alternative implementation of lists,

e.g. TOP.)

2.5.2.3 Intrusive reference counting

The FC++ library contains two reference-counted pointer classes: one that uses an intrusive

reference count, and one that is non-intrusive. The two schemes are depicted in Figure 18.

The advantage of non-intrusive reference counts is that the object being counted does not

need to support any particular interface; it is ignorant of the reference counting. Intrusive

reference counts, on the other hand, require that the objects they count supply the counting

mechanism. The bene�ts of intrusive reference counts are increased locality and fewer

separate calls to new. (For a more thorough introduction to the topic of intrusive reference

counts, see reference [2], Chapter 7.)

We tested Hamming both with and without intrusive reference counts. Since the \reuse

functoids" optimization (discussed in the following subsection) requires intrusive reference

counts, we turned o� that optimization for both of these runs, in order to have a fair

100

Table 5: The value of intrusive reference counting

Hamming(12000) (no functoid reuse) Time (s)

FC++, non-intrusive (-IRC -REUSE) 0.451

FC++, intrusive (+IRC -REUSE) 0.280

struct Take {

template <class T>

OddList<T> operator()(size_t n, const List<T>& l) const {

if(n==0 || null(l))

return NIL;

else

return cons(head(l), thunk2(Take(), n-1, tail(l)));

}

} take;

Figure 19: take() without functoid reuse

comparison. As seen in Table 2.5.2.3, the lack of intrusive reference counts makes Hamming

slow down by a factor of about 1.6.

2.5.2.4 Reusing functoids during recursive calls

The typical implementation of a functoid which operates on lazy lists contains a curried

recursive call as its last line. For example, consider the Take functoid shown in Figure 19

(with Sig member elided). (Recall that take selects the �rst N elements of a list and

discards the rest.) The call to thunk2() that is passed to cons() in the last line of the

functoid creates a new object on the heap that represents the recursive call (the \thunk"

that makes functoids lazy). The only thing that di�ers between the newly created functoid

and the current functoid itself are the values of l and n. Instead of discarding the called

functoid and creating a similar new functoid, we can recode take so that it reuses the

functoid. Figure 20 shows the code with this reuse (again, with Sig members elided).

Table 6: The value of reusing functoids

Primes(1000) Time (s)

FC++, no functoid reuse (-REUSE) 26.36

FC++, reusing functoids (+REUSE) 7.77

101

struct TakeHelp : public Fun0Impl<OddList<T> > {

mutable size_t n;

mutable List<T> l;

TakeHelp(size_t nn, const List<T>& ll) : n(nn), l(ll) {}

OddList<T> operator()() const {

if(n==0 || null(l))

return NIL;

else {

T x = head(l);

l = tail(l);

--n;

return cons(x, Fun0<OddList<T> >(this));

}

}

};

struct Take {

template <class T>

List<T> operator()(size_t n, const List<T>& l) const {

return Fun0<OddList<T> >(new TakeHelp<T>(n,l));

}

} take;

Figure 20: take() with functoid reuse

struct Take {

template <class T>

OddList<T> operator()(size_t n, const List<T>& l,

Reuser2<Inv,Var,Var,Take,size_t,List<T> >

r = REUSE_INIT) const {

if(n==0 || null(l))

return NIL;

else

return cons(head(l), r(Take(), n-1, tail(l)));

}

} take;

Figure 21: take() with reuse via a Reuser

102

We tested Primes both with and without \reuse" versions of filter(), take(), at(),

enumFrom(), and enumFromTo(). The results are shown in Table 2.5.2.4. Clearly, reusing

functoids is a big win. When there is no reuse, each call to take() has a functoid destructed,

deallocated, and has a new functoid allocated and constructed. With reuse, there is only

mutation; no heap allocation/deallocation occurs.

Comparing Figures 19 and 20, one can see that hand-coding a \reuse" version of a

functoid takes a bit more code than the non-reuse version. In order to simplify the task of

applying this valuable optimization, we have added Reusers to the library. Reusers enable

us to capture the essence of functoid reuse with signi�cantly less coding e�ort. Figure 21

shows Take written with a Reuser. A ReuserN is similar to a call to thunkN(). The

Reuser appears as an extra parameter to the functoid. This parameter has a default value

(thus making the interface change e�ectively \invisible" to clients) which is used to create

a new thunk on the heap. As a result, the initial call to a functoid that employs a Reuser

allocates space for a thunk. Subsequent recursive calls are then channelled through the

Reuser (rather than via a call to thunkN()); the Reuser's heap thunk, when invoked,

explicitly passes itself along to the next call as the extra parameter. This enables reuse of

the existing heap thunk. Reusers take template parameters specifying the argument types

of the to-be-curried call, as well as extra template parameters that specify whether those

parameters are invariant (Inv) or variant (Var) between calls (knowing this information

prevents needless overwriting of duplicate values). Though the internal mechanism is quite

complicated, Reusers are relatively easy to apply (compare the code in Figures 19 and 21),

and perform nearly as well as the \hand-written" code to perform the optimization (there

is only a small \abstraction penalty").

2.5.2.5 Avoiding functions with static data

The Cache implementation (Figure 17, MIDDLE) uses two distinguished values for its

pointer �eld. The value XNIL represents an empty list, and the value XBAD represents an

\uncached" value (the function is valid, the value is not). These were originally encoded as

template <class T> class Cache { ...

103

static Ref<Cache<T> >& XNIL() {

static Ref<Cache<T> > dummy(new Cache);

return dummy;

} // XBAD similarly

};

However for many compilers, it is far better to say

template <class T> class Cache { ...

static Ref<Cache<T> > XNIL;

};

Ref<Cache<T> > Cache<T>::XNIL(new Cache);

In the former, each time XNIL() is called, a boolean ag (inserted by the compiler) must be

checked (to see if initialization of the static variable has already occurred
9
). In the latter,

initialization happens at the start of the program, and XNIL is just a value. We tested both

versions on Primes; the results are shown in Table 2.5.2.5.

Using global data with static initializations that require constructors to be called can be

perilous; there are order-of-initialization and order-of-destruction issues for global objects in

C++ that are often hard to solve. Fortunately, all of these global objects (which sometimes

refer to one another) are de�ned in the same translation unit. This greatly simpli�es

the issue, and enables us to ensure the correct order of initialization for these objects

(section 3.6.2, paragraph 1 of the C++ standard [37], prescribes the order of initialization

for such objects). As for order-of-destruction issues, we circumvent the potential problems

by arti�cally incrementing the reference counts of the global objects during initialization.

Then, even when the reference-counted pointers are destructed after the end of main(),

the ref counts do not go to zero, and so the objects to which they refer are left alive; they

dangle in the heap until the system collects them when the program exits.

Note also that having XNIL() return a reference in the former version is quite important;

return by value may degrade the performance even more severely. This is because returning

9Some compilers may employ clever optimizations to avoid the boolean check each time the function is

called, however g++2.95.2 does not appear to be one of them.

104

Table 7: The value of using global data

Primes(1000) Time (s)

FC++, static data in functions (-GL) 11.63

FC++, global data (+GL) 7.77

Table 8: The value of transforming tail recursion into iteration

Primes(1000) Time (s)

FC++ with tail recursion (-TRO) 10.69

FC++ with iteration (+TRO) 7.77

a Ref object by value may create (needless) work, incrementing and decrementing the

reference count as the temporary object lives its short life.

2.5.2.6 Using iteration instead of tail recursion

g++ does not transform tail recursion into iteration. As a result, we have done the trans-

formation by hand in library functions like filter() and at(), and call this the \tail

recursion optimization". We ran Primes both with and without this optimization; the re-

sults are shown in Table 2.5.2.6. Transforming tail recursion to iteration has a signi�cant

impact on the performance.

2.5.2.7 Summary of optimizations

The results of these optimizations accumulate. We ran Primes both in its optimal con�g-

uration, and also with all four of the previous optimizations turned o� (intrusive reference

counting (IRC), reusing functoids (REUSE), global data (GL), and tail recursion optimiza-

tion (TRO)). The results are shown in Table 2.5.2.7; note that without any of these opti-

mizations, Primes is eight times slower. Keep in mind also that the unoptimized program

still includes the best caching and list implementation; our original naive implementation

was even slower.

2.5.2.8 A �nal comparison

In reference [52], we ran an experiment comparing the performance of the FC++ library with

L�aufer's functoid library. That experiment used a program similar to the \tree" program in

105

Table 9: The value of four optimizations combined

Primes(1000) Time (s)

FC++ (-IRC -REUSE -GL -TRO) 62.05

FC++ (+IRC +REUSE +GL +TRO) 7.77

Table 10: Latest comparison with L�aufer's library

Tree(100000) Time (s)

FC++ (+IRC +REUSE +GL +TRO) 1.62

L�aufer's library 23.00

Section 2.5.1.2. The experiment showed that the (previous) FC++ implementation was 4 to

8 times as fast as L�aufer's library, thanks to the reference-counting in our implementation.

We re-ran the experiment with the new FC++ implementation with all of the optimizations

enabled. The results are shown in Table 2.5.2.8; FC++ is now more than 14 times as fast

for this benchmark.

2.6 Expressiveness and limitations

We now summarize the level of support for functional programming that FC++ o�ers, as

well as its limitations. For a detailed comparison to other libraries that similarly \sugarize"

C++, see Section 4.1.2.

� Complexity of type signature speci�cations: FC++ allows higher-order polymorphic

function types to be expressed and used. Type signatures are explicitly declared in our

framework, unlike in ML or Haskell, where types can be inferred. Furthermore, our

language for specifying type computations (i.e., our building blocks for Sig template

classes) is a little awkward. Nevertheless we have used our framework to de�ne a

large number (over 100) functoids and have not found our type language to be a

problem|learning to use it required only minimal e�ort.

The real advantage of FC++ is that, although function de�nitions need to be explicitly

typed, function uses do not (even for polymorphic functions). In short, with our

framework, C++ has as good support for higher-order and polymorphic functions as

106

it does for any other �rst-class C++ type.

� Polymorphic variables: While FC++ has a great deal of support for polymorphic

functions, we still cannot create run-time variables with polymorphic types, because

these types cannot be expressed directly in C++. For example, even though tail

and init (the dual of tail, which discards the last element of a list) both have the

signature

[a] -> [a]

we cannot create a variable \f" which can be bound to both functions during the

course of its lifetime:

f = tail;

...

f = init;

because we have no C++ type to declare \f" to be an instance of. (Again, this relates

back to DBCTAS.) Similarly, we cannot create a List which contains both tail and

init, as these two objects have di�erent C++ types (namely Tail and Init) and

therefore cannot be put into the same (homogeneously-typed) list. This limitation is

fundamental, common to all approaches to functional programming in C++.

� Limitations in the number of functoid arguments: There is a bound in the number of

arguments that our functoids can support. This bound can be made arbitrarily high

(templates with more parameters can be added to the framework) but it will always

be �nite. This has not proven to be a signi�cant problem in practice.

A closely related issue is that of naming. We saw base classes like Fun1 and Fun1Impl

in FC++, as well as operators like makeFun1 and monomorphize1. These entities

encode in their names the number of arguments of the functions they manipulate.

Using C++ template specialization, this can be avoided, at least in the case of class

templates. Thus, we can have templates Fun and FunImpl with a variable number of

107

arguments. If template Fun is used with two arguments, then it is assumed to refer

to a one-argument function (the second template argument is the return type). We

experimented with this idea, and elected to use it only in the CFunType and FunType

classes (which help implement Sig type signatures in class de�nitions). In client code,

where indirect functoid variables are declared and used, the redundant N in the FunN

names seems valuable to the human reader.

� Automatic currying: all of the library functoids support automatic currying via the

FullN combinators. This enables a functoid to be called with fewer arguments than it

expects, resulting in a new functoid which expects the remainder of the arguments. It

is also possible to enable functoids to accept more arguments than they expect. For

example, imagine a one-argument function named foo which returns another one-

argument function. We could imagine writing foo(x,y) to mean the same thing as

foo(x)(y). FC++ only supports the latter form by default. In the rare cases where

this form of \uncurrying" is desirable, the split_args() functoid can be applied; its

general behavior is described here:

split_args(f)(x,y,z) means f(x)(y)(z)

� Compiler error messages: C++ compilers are notoriously verbose when it comes

to errors in template code. Indeed, our experience is that when a user of FC++

makes a type error, the compiler typically reports the full template instantiation

stack, resulting in many lines of error messages. In some cases this information is

useful, but in others it is not. We can distinguish two kinds of type errors: errors in

the Sig de�nition of a new functoid and errors in the use of functoids. Both kinds

of errors are usually diagnosed well and reported as \wrong number of parameters",

\type mismatch in the set of parameters", etc. In the case of Sig errors, however,

inspection of the template instantiation stack is necessary to pinpoint the location of

the problem. Fortunately, the casual user of the library is likely to only encounter

errors in the use of functoids.

108

Reporting of type errors is further hindered by non-local instantiations of FC++

functoids. Polymorphic functoids can be passed around in contexts that do not make

sense, but the error will not be discovered until their subsequent invocation. In that

case, it is not immediately clear whether the problem is in the �nal invocation site or

the point where the polymorphic functoid was passed as a parameter. Fundamentally,

this problem cannot be addressed without type constraints in template instantiations,

something that C++ does not o�er.

As described in Section 2.3.3, when using expression-template techniques, it is pos-

sible to apply C++ metaprogramming to analyze code for certain classes of errors.

The kinds of errors detected using this mechanism are limited to those the library im-

plementor (meta-)programmed a priori. Nevertheless, experience with, e.g. FC++'s

lambda, has shown us the most common types of errors, and we have written meta-

programs to detect these errors and issue a suitable diagnostic.

Despite these issues, overall type error reporting in FC++ is adequate, and, with

some experience, users have little diÆculty with it.

� Pure functional code vs. code with side-e�ects: In C++, any method is allowed to

make system calls (e.g., to perform I/O, access a random number generator, etc.)

or to change the state of global variables. Thus, there is no way to fully prevent

side-e�ects in user code. Nevertheless, by declaring a method to be const, we can

prevent it from modifying the state of the enclosing object (this property is enforced

by the compiler). This is the kind of \side-e�ect freedom" that we try to enforce in

FC++. Our indirect functoids (as shown in Section 2.2.3) are explicitly side-e�ect

free|any class inheriting from our FunNImpl classes has to have a const operator().

Nevertheless, users of the library could decide to add other methods with side-e�ects

to a subclass of FunNImpl. We strongly discourage this practice but cannot prevent it.

It is a good convention to always declare methods of indirect functoids to be const.

For direct functoids, the guarantees are even weaker. We cannot even ensure that

operator() will be const, although this is, again, a good practice. While functoids

109

with side e�ects can be implemented in our framework (as described in Section 2.2.9),

such functoids should be used with care. Other opportunities for code with side

e�ects abound in C++. Our recommendation is that most code with side e�ects

should be implemented outside the FC++ framework. For instance, such code could

be expressed through native C++ functions. The purist can even use a state monad

(which is one of the example monads supplied with the library) as an alternative to

side-e�ects.

2.7 Discussion

FC++ demonstrates that functional programming can be smoothly integrated into C++.

The library supports major features found in modern functional programming languages,

including �rst-class functions, laziness, in�x syntax and currying, lambda, and syntax sup-

port for monadic programming. These features have been added to the host language in a

way that is more complete and seamless than prior attempts to add functional programming

to existing object-oriented languages.

FC++ adds these functional abstractions to C++ in an eÆcient and useful manner.

By utilizing features of C++ (especially templates), most of the features have been added

with little or no abstraction penalty; even those features with the most potential run-

time expenses (lists and laziness) are eÆcient when compared with similar code produced

by modern functional language compilers. Furthermore, we have demonstrated a number

of applications of the library, including design pattern implementations and third-party

libraries built atop FC++.

In short, FC++ e�ectively behaves as a domain-speci�c embedded language for func-

tional programming in C++. But functional programming is only part of the story|our

thesis also states that logic programming can be similarly integrated into C++. Logic pro-

gramming, by virtue of its more unusual way of representing control ow and data, creates

a number of new challenges for a seamless integration. Thus the next chapter describes how

we met those challenges with LC++, our logic programming library.

110

CHAPTER III

LC++

This chapter describes LC++, a library for logic programming in C++. We start by

describing the interface to the library and how it supports the major features of logic pro-

gramming, including queries, uni�cation, backtracking, and functors. Next we discuss the

LC++ implementation, which uses many of the same general techniques used in the FC++

implementation. The main challenges are di�erent from FC++, however; whereas with

functional programming, representing functions was paramount, with logic programming

the control and data representations require the most ingenuity. We continue by describing

applications and performance of the library, and conclude with a comparison of the most

directly related work.

3.1 Description of the library

The LC++ library makes it possible to do logic programming in C++. The overall structure

and syntax used are very similar to logic languages such as Prolog (the main di�erence being

the addition of a static type system). Facts and rules are asserted into the database, and

queries are run to unify free logic variables with values that solve the queries. The solutions

can be accessed programmatically by C++ code, and they are only computed one-by-one

(on demand), just as with Prolog.

3.1.1 Introductory example and syntax overview

Figure 22 shows an actual part of an LC++ program describing the Simpsons family rela-

tionships. The lassert() function is used to add facts and implications to the database,

and the query() function is used to run queries. The syntax for functors, values, and logic

variables is very similar to that of Prolog; Table 3.1.1 summarizes the di�erences between

LC++ syntax and Prolog syntax. As with Prolog, LC++ uses functors both for de�ning

relations (Section 3.1.2) for use with predicates (the facts and rules of the relation), as well

111

Table 11: Syntax mapping between Prolog and LC++

Description Prolog LC++

uni�cation = ==

conjunction , &&

disjunction | ||

implication :- -=

not provable not() not_provable()

evaluation is is()

dummy logic var _ _

as for creating uni�able composite data structures (Section 3.1.6).

3.1.2 Declaring relations and logic variables

LC++ uses the C++ type system and templates to enforce static typing of logic program-

ming code. To declare a functor, we use the form FUNn (n denoting the arity of the functor)

and specify the functor's name as well as the types of its arguments. For example, parent

in the preceding example is declared like this:

FUN2(parent,string,string);

In fact, the declared functor is a singleton instance of a class with an overloaded operator()

method; the example above declares parent as an instance of class parent_TYPE (which is

the name of the class created by the FUN2 macro).

Similarly, logic variables must be declared in order to statically typecheck them. In our

example, to declare logic variable X of type int, we say:

DECLARE(X, int, 10);

(The surprising integer constant parameter is explained in Section 3.2.2.) As in Prolog, we

use the convention of having a logic variable's name begin with a capital letter. Just as

with the macro for functors, the DECLARE macro also declares a new typename; the C++

type of logic variable X is called X_TYPE.

3.1.3 Calling out to C++ functions

Like Prolog, LC++ uses \is" to bind logic variables to results of a computation. In the

Simpsons example, the ancestor relation computes the number of generations between

112

FUN2(parent,string,string); FUN1(female,string);

FUN2(father,string,string); FUN2(sibling,string,string);

FUN2(mother,string,string); FUN2(brother,string,string);

FUN2(child,string,string); FUN2(sister,string,string);

FUN1(male,string); FUN3(ancestor,string,string,int);

DECLARE(Mom, string,0); DECLARE(Sib, string,6);

DECLARE(Dad, string,1); DECLARE(Sib2,string,7);

DECLARE(Kid, string,2); DECLARE(Anc, string,8);

DECLARE(Par, string,3); DECLARE(Tmp, string,9);

DECLARE(Bro, string,4); DECLARE(X ,int, 10);

DECLARE(Sis, string,5); DECLARE(Y ,int, 11);

string bart="bart", lisa="lisa", maggie="maggie",

marge="marge", homer="homer", abraham="abraham";

lassert(male(bart)); lassert(female(lisa));

lassert(male(homer)); lassert(female(maggie));

lassert(male(abraham)); lassert(female(marge));

lassert(parent(marge,bart));

lassert(parent(marge,lisa));

lassert(parent(marge,maggie));

lassert(parent(homer,bart));

lassert(parent(homer,lisa));

lassert(parent(homer,maggie));

lassert(parent(abraham,homer));

lassert(mother(Mom,Kid) -= parent(Mom,Kid) && female(Mom));

lassert(father(Dad,Kid) -= parent(Dad,Kid) && male(Dad));

lassert(child(Kid,Par) -= parent(Par,Kid));

lassert(sibling(Sib,Sib2) -= father(Dad,Sib) && father(Dad,Sib2)

&& mother(Mom,Sib) && mother(Mom,Sib2)

&& not_provable(Sib==Sib2));

lassert(brother(Bro,Sib) -= sibling(Bro,Sib) && male(Bro));

lassert(sister(Sis,Sib) -= sibling(Sis,Sib) && female(Sis));

lassert(ancestor(Par,Kid,1) -= parent(Par,Kid));

lassert(ancestor(Anc,Kid,X) -= parent(Anc,Tmp) &&

ancestor(Tmp,Kid,Y) && X.is(plus,Y,1));

query(father(Dad,Kid));

query(sibling(maggie,Sib2));

query(ancestor(Anc,bart,X));

Figure 22: Simpsons family relationships in LC++

113

direct relatives like so:

lassert(ancestor(Par,Kid,1) -= parent(Par,Kid));

lassert(ancestor(Anc,Kid,X) -= parent(Anc,Tmp) &&

ancestor(Tmp,Kid,Y) && X.is(plus,Y,1));

The code X.is(plus,Y,1) adds 1 to the current value of Y and binds the resulting value to

X. Note that plus is a functoid from FC++. The general mechanism to call out to arbitrary

C++ code in LC++ is

SomeLogicVar.is(some_functoid, arg1, ..., argN)

Thus, via is(), LC++ has a general mechanism to call functions or to have e�ects; just

create a functoid that describes the desired computation, and pass it as the �rst argument

to is().

3.1.4 Asserting facts and rules, running basic queries

In the example, lassert() was used to populate the database with facts and implications,

and query() was used to perform queries. But what does query() do with its results? In

fact there are three di�erent query functions. We postpone until Section 3.2.1 discussion

of the main query() function. The simplest of the other two is iquery(): it prints out its

results. So if the �nal query from the Simpsons example were

iquery(ancestor(Anc,bart,X));

then the results

Result #1

- Anc = marge

- X = 1

Result #2

- Anc = homer

- X = 1

Result #3

114

- Anc = abraham

- X = 2

would be printed to the screen.

3.1.5 More on queries, environments, and result lists

Whereas iquery() prints its results, the lquery() function returns an FC++ List of re-

sults. List is a lazy list data type|the elements are not computed until actually requested.

Each query result is represented by an environment object (actually, a smart pointer (IRef)

to an environment object; more details to come in Section 3.2.1), which contains all the

information about the logic variable bindings. The type of the environment object is a func-

tion of which (types of) logic variables appear in a particular query. Naming Environment

types can be diÆcult; the result type of the call

lquery(ancestor(Anc,bart,X));

is an FC++ List of

IRef<Environment<TL::CONS<X_TYPE,TL::CONS<Anc_TYPE,TL::NIL> > > >

objects. That is, it is a lazy list of references to a binding environment holding values for

logic variables X and Anc. (More about the TL namespace and representing compile-time

type-lists in Section 3.2.2.2.)

Such long and ugly type names are a common occurrence in C++ template libraries,

especially those using expression templates. Fortunately we can shield the client from these

names by providing a \type computer" which provides a managable alias for the type:

the type QRT<Foo_TYPE,Bar_TYPE>::IE describes the type of results of a query involving

the logic variables Foo and Bar. (QRT stands for \Query Return Type" and IE stands for

IRef<Environment>.) As a result, we can just say

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;

List<IE> l = lquery(ancestor(Anc,bart,X));

115

to get our list of results. We can then use the FC++ functions null(), head(), and tail()

to traverse the list of references to environment objects.

The environment object itself responds to the method at(SomeLogicVar), returning an

object representing the binding for that logic variable. Assuming the variable is bound, the

*" operator returns the value it is bound to. This way the client can print the results using

its own choice of formatting. For example

while(!null(l)) {

IE env = head(l);

std::cout << "X is " << *env->at(X) << " and Anc is "

<< *env->at(Anc) << std::endl;

l = tail(l);

}

will print to the screen:

X is 1 and Anc is marge

X is 1 and Anc is homer

X is 2 and Anc is abraham

The implementation of the LC++ query functions exploits the laziness of FC++ Lists

in an important way. For instance, a query computation may not terminate. The query

may yield a few results and then get \stuck" in an in�nite loop, or the query may return

an in�nite number of results, such as in this simple example involving the natural numbers:

FUN1(nat, int);

DECLARE(X, int, 10);

DECLARE(Y, int, 11);

lassert(nat(0));

lassert(nat(X) -= nat(Y) && X.is(plus,Y,1));

Running the query nat(X) produces an in�nite list of results. This doesn't present a

problem, though; if we are only interested in the �rst 3 results, we just ask for those. That

is, we can say

116

typedef QRT<X_TYPE>::IE IE;

List<IE> l = lquery(nat(X));

for(int i=0; i<3; ++i) {

IE env = head(l);

std::cout << "X is " << *env->at(X) << std::endl;

l = tail(l);

}

and that code prints

X is 0

X is 1

X is 2

The implementation of this feature (laziness of query results) is described at length in

Section 3.2.1.

3.1.6 Functors and data structures

The examples of the previous subsections illustrate some of the most important features of

the library. In this subsection we discuss some of the deeper details of the library interface

that are not covered by the simple example.

3.1.6.1 User-de�ned C++ types as LC++ atoms

User-de�ned types can be used as \atoms" for LC++, provided these types provide both

a copy constructor and an equality operator. The copy constructor is required so that the

object can be copied into an LC++ data structure, and the equality operator is required

for uni�cation. Here is an example of a user-de�ned type which can be used as an LC++

atom:

struct Point {

int x;

int y;

117

bool operator==(const Point& p) const

{ return this->x == p.x && this->y == p.y; }

};

Depending upon how the application is structured, it might be better to represent Points

using functors, instead (discussed next).

3.1.6.2 LC++ functors as data structures

Just as in Prolog, LC++ functors can be used as data structures as well as for predicates.

For example, we could de�ne

FUN2(point,int,int);

DECLARE(P, point_TYPE, 0);

DECLARE(X, int, 1);

and then use point() to create data structures where we can perform uni�cation on various

subparts:

iquery(P == point(X,3) && X == 4);

// yields result:

// - P = point(4,3)

// - X = 4

It should be noted that we must say

DECLARE(P, point_TYPE, 0);

instead of just

DECLARE(P, point, 0);

as a consequence of DBCTAS (de�ned in Section 2.2.2.1); point_TYPE is the \C++ type"

of the arity-2 functor de�ned by the FUN2 call.

Indeed, a logic variable with \functor shape" can play both the role of a term and a

data structure within one query. For example, consider the variable A in this query:

118

iquery(A==ancestor(Anc,bart,X) && A);

The query results in

Result #1

- Anc = marge

- X = 1

- A = ancestor(marge,bart,1)

Result #2

- Anc = homer

- X = 1

- A = ancestor(homer,bart,1)

Result #3

- Anc = abraham

- X = 2

- A = ancestor(abraham,bart,2)

where the variable A (with type ancestor_TYPE) is both uni�ed with an ancestor data

structure and used as a query term.

3.1.7 Limitations

The current implementation of LC++ has a few important limitations and omissions, which

we briey discuss here.

Omissions. The current LC++ implementation omits a couple notable Prolog entities,

namely the cut (!) operator and a retract() function.

Parametric polymorphism. One major restriction with LC++ is that functors are

monomorphic. For example, we can de�ne append() to work on lists of integers, but cannot

use the same append() for lists of other types (e.g. string, double, etc.). This restriction

is rooted in C++|in C++, a virtual function may not be a template, and our imple-

mentation makes essential use of virtual methods. An alternative implementation stategy

might enable this restriction to be lifted. (Regardless, the applications we have encountered

119

thus far do not require parametric polymorphism|see Section 3.3. Note also that this re-

striction and the monomorphic restrictions of FC++ indirect functoids (Section 2.2.3) and

variables (Section 2.6) all have the same root cause.)

Static analyses and transforms. At the end of Section 3.2.2, we gave an example of one

type of specialized semantic analysis that LC++ can perform at compile-time. It would be

interesting to investigate if we can use static type information to enable some compile-time

optimizations, such as re-structuring query trees, but we have not done this.

Parameter modes. Some logic programming languages, such as Mercury[57] and HAL[20],

enable the programmer to annotate functors with mode and determinism declarations.

These declarations enable more static checking and can help provide better run-time per-

formance. It would be interesting to extend LC++'s static type system so that parameter

modes could be expressed.

3.2 Beneath the Surface

In this section we describe two of the most interesting aspects of the LC++ implementation.

First, we discuss how LC++ implements its control ow, using FC++ lazy lists as a natural

way to return query results one-at-a-time on demand. Second, we discuss the use of C++

\expression templates" to perform compile-time computation, enabling LC++ clients to use

Prolog-like syntax but have the C++ compiler parse, type-check, and semantically analyze

this code.

3.2.1 Query execution and C++ interfacing

LC++ represents query results as an Environment object, which maps each logic variable

to its binding information. Since this is C++, we use e�ects to obtain a more eÆcient

implementation. That is, we use destructive update to modify the environment: uni�cation

causes bindings to be added; backtracking causes bindings to be removed.

One common way to implement Prolog queries is to mimic continuation passing style

(CPS). A continuation is a function which embodies \what to do next" (after the current

action is completed). Using CPS makes it easy to implement Prolog's unusual control

ow; any particular term can either continue forward through the query (by calling the

120

next continuation when this portion of the query succeeds) or backtrack (by returning to

its caller when this portion of the query fails). The activation stack holds the \undo"

information used for backtracking, and the continuation parameter holds the \future" (the

rest of the query to be evaluated). Other logic programming approaches, like MPC++[21]

and J/MP[11], use explicit CPS to express the logical control ow in an imperative language.

The problem with this approach is that the action describing \what to do with the query

results" must itself be passed into the query as the �nal continuation. In speci�c cases, this

is not a problem: for example, if printing out all the results is desired, then it would be easy

to create a continuation function which just prints the contents of the Environment, and

to pass this continuation into query(). In the general case, however, a client of query()

may want to use the results in some arbitrary way using arbitrary C++ code, and there is

no general mechanism for creating a continuation out of \the rest of a C++ program".

Put another way, the problem is the impedence mismatch between normal C++ control

ow (which uses an activiation stack) and LC++ control ow (which is e�ectively CPS).

In simple cases where we are prepared to process all of the results at once, we can treat

the query() function as a \stop the world" process, which uses CPS to run the query and

process all the results (query() would not return until all of the results are processed).

However in the general case, a client may not be prepared to process all the results at

once; the client needs query() to return the results (lazily) in a data structure which can

be processed later. FC++ lazy lists solve the problem; representing the results as a lazy

list e�ectively enables arbitrary C++ code to call query() and then continue on its way,

co-routining with the CPS query functionality whenever the next result is demanded by

the client. FC++ plays a role with dual signi�cance here: FC++ lazy lists provide a

smooth way to create the interface to LC++ queries, and the FC++ library makes the

implementation much easier.

We now describe the actual implementation. At the lowest level, the main query()

function returns a std::pair (standard C++ 2-tuple) whose �rst element is a reference

to an Environment object and whose second element is a List<Empty>. Empty is a \noth-

ing" data type|a struct with no members. List<Empty> signi�es that the lazy list does

121

not contain real values|it is only useful because traversing it produces side-e�ects on the

Environment.

The purpose of the List is to give clients control over query evaluation. As each element

of the List is demanded, the LC++ query runs to produce the next result by side-e�ecting

the Environment object. When the List �nally becomes NIL this means there are no more

query results. Thus a client calls query() like this:

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;

std::pair<IE,List<Empty> > p = query(ancestor(Anc,bart,X));

IE env = p.first;

List<Empty> l = p.second;

while(!null(l)) {

std::cout << "X is " << *env->at(X) << " and Anc is "

<< *env->at(Anc) << std::endl;

l = tail(l);

}

The lquery() and iquery() functions (presented back in Section 3.1.5) are built atop this

interface.

We now illustrate how query() is implemented with some code. A query is represented

as a Term object. Terms can be conjunction terms, disjunction terms, uni�cation terms, etc.

All of them support a run method with the following interface:

struct Term {

virtual List<Empty> run(IRef<Term> future) = 0;

};

CPS is evident; in order to run a portion of a query, we must pass the remainder of the

query (the continuation) as the future parameter. (Recall that IRef<Term> is like a Term

pointer; FC++ provides the IRef class as a reference-counted smart pointer.) The run()

method in Term returns a List<Empty>.

The body of the query() function ends with this code:

122

// "t" is a reference to the current Term

// "env" is a reference to the current Environment

List<Empty> l = thunk2(ptr_to_fun(&Term::run), t, end_of_query);

return std::make_pair(env, l);

The end_of_query object is just an instance of a Term whose run() body says

return cons(Empty(), NIL);

In other words, when we reach the end of the query, we should indicate one result by

returning a one-element List.

Further examples help illuminate what is going on. Consider DisjunctImpls (the \or"

terms created with ||). Here is the implementation, which just uses the FC++ cat()

function to concatenate two lists:

struct DisjunctImpl : public Term {

IRef<Term> lhs, rhs;

List<Empty> run(IRef<Term> future) {

return cat(lhs->run(future),

thunk2(ptr_to_fun(&Term::run), rhs, future));

}

};

and here is the code for conjuncts (&&):

struct ConjunctImpl : public Term {

IRef<Term> lhs, rhs;

List<Empty> run(IRef<Term> future) {

IRef<Term> newfuture = new ConjunctImpl(rhs, future);

return lhs->run(newfuture);

}

};

123

That is, given term1&&term2 and a future, we run term1 with term2&&future as its future.

Finally, consider uni�cation. LC++ values can be uni�ed using the unify() function,

which returns a result of type UnRes. This is a two-element structure:

struct UnRes { // UnRes means "Unification Result"

bool ok;

Fun0<void> undo;

};

If a uni�cation fails, the ok �eld is set to false and the undo �eld is unused. If a uni�cation

succeeds, the environment is side-e�ected with the new binding, the ok �eld is set to true,

and the undo �eld is set to a thunk which, when executed, will remove the newly-created

binding from the environment. This is important to the run()method in UnificationImpl,

which looks like this:

UnRes ur = lhs->unify(rhs);

if(!ur.ok)

return NIL;

else

return cat(future->run(dummy_term),

before(ur.undo, lambda()[NIL]));

The logic of UnificationImpl::run() reads as follows. First, try to unify the left-hand-

side with the right-hand-side. If this fails, return the empty list (there are no results).

Otherwise, the result is the catentation of (1) the results from running the future (the rest

of the query)
1
and (2) an empty list with the undo thunk prepended. This results in the

e�ects happening at the right time. Since uni�cation succeeded, we have added a binding to

the environment. We run the rest of the query with that binding intact. After all of those

results have been processed (that is, when the client demands the next result after those

results created downstream from this portion of the query), we undo the binding created

1The dummy term passed to future's run() method is a just a meaningless placeholder; query() ensures

that all Terms end with an end of query object, which never uses its future parameter.

124

by this uni�cation (to e�ect backtracking).

3.2.2 Parsing and semantic analysis

In this subsection, we discuss the C++-speci�c implementation techniques that LC++ uses

to enable clients to express logic programs in C++ using the simple declarative syntax of

the library interface. Expression templates[70] are used to parse LC++ rules and queries

as C++ expressions, and template meta-programming[16] techniques are used to do basic

analysis of LC++ expressions so that LC++ code works within C++'s static type system.

3.2.2.1 Parsing and Representation

The syntax of LC++ is implemented by overloading the C++ language operators that

appear in Table 3.1.1 (Section 3.1.1). These overloaded operators return values of types

that reect the syntax tree of the expression. For instance, C++ operators like -= and

&& are overloaded to create values of type ImplicationRep and ConjunctRep, respectively.

All the di�erent \Rep" types serve to represent di�erent entities of the syntax tree. Logic

variables correspond to C++ values of type LogicVariable<T>, where T is the type of

the logic variable (e.g., integer, string, etc.). For example, code like

X == 3 && Y == 4

creates a value whose type is a tree with a ConjunctRep at the top and two UnificationReps

below it, each of which has a LogicVariable<int> child and an int child.

3.2.2.2 Type-Checking and Semantic Checking

The C++ type system is Turing-complete, and C++ templates can be used for meta-

programming in the type system. (The C++ template system is an untyped, pure functional

programming language, where the atomic values are C++ types.) Using this feature of C++

we can perform arbitrary (but very cumbersome) computations at compile-time.

There are three main high-level results of the compile-time computation performed by

LC++, listed here with an example of each:

� Type checking: ensuring that in the expression X==1, X is a logic variable of type int

(and not, say, one of type string).

125

� General semantic checking: ensuring that a client cannot ask for env->at(X) from

the result of a query not involving X.

� Specialized semantic checking: ensure that the named logic variables appearing in an

lassert() statement always appear in more than one location.

We achieve these results by using metaprogramming on \type lists" in the Rep classes; this

is explained next.

Recall that client code to run a query looks like

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;

List<IE> l = lquery(ancestor(Anc,bart,X));

The QRT type computer computes the type of an environment that has bindings for each of

the logic variables
2
named by its template parameters.

The complication is that lquery()must compute a value whose type is compatible with

the type computed by QRT. To do this, the implementation of lquery() must (at compile-

time) traverse the parse tree of the logic expression passed to it and compute the set of all

logic variables that appear in the term. The type representing this set should be the same

as that computed by QRT. Discovering all of the logic variables used in a logic expression

is done using the Rep classes. For each Rep type (representing an LC++ program term),

we keep a list of all the logic variables that appear in the term. This compile-time list

is maintained as a �eld of each Rep class called \LVs". Rather than discussing here the

details of manipulating compile-time lists of types in C++, we refer the interested reader

to Chapter 10 of [16]. It suÆces to accept as given the list primitives: TL::NIL, TL::CONS,

and TL::AppendList. (The namespace TL stands for \type list".)

As an example, consider the de�nition of the ConjunctRep class (instances of which are

created by the overloaded && operator):

template <class LHS, class RHS> struct ConjunctRep : public HasLV {

2More precisely, for each of the logic variable types. The library interface is speci�cally designed to try

to ensure that logic variables are declared in such a way that there is a one-to-one correspondence between

logic variables and logic variable types. Thus the results of compile-time computations (types) can be

meaningfully mapped back into the program (variables).

126

typedef typename TL::AppendList<typename LV<LHS>::LVs,

typename LV<RHS>::LVs>::Result LVs;

LHS lhs;

RHS rhs;

ConjunctRep(const LHS& l, const RHS& r) : lhs(l), rhs(r) {}

};

Each ConjunctRep is just an expression tree node with a left-hand side and a right-hand

side; a ConjunctRep computes its list of logic variables as the result of appending the logic

variable lists of its two children.

The type expression LV<Something>::LVs is a compile-time function used to compute

the list of logic variables appearing in Something. If Something is a Rep (which is deter-

mined by seeing if it is a subtype of HasLV) then the expression just means Something::LVs.

Otherwise, if Something is a non-Rep|like int (which might appear in a Rep tree as the

right hand side of the UnificationRep created by the LC++ expression X==1)|the ex-

pression LV<Something>::LVs reduces to TL::NIL which represents the empty list of logic

variable types.

The type lists of logic variables which comprise an Environment for a particular query

require a canonical representation. To see why, consider again this example client code:

typedef QRT<Anc_TYPE,X_TYPE>::IE IE;

List<IE> l = lquery(ancestor(Anc,bart,X));

It would be a shame if the client were required to list the logic variable types passed to QRT

in the same order that they appear in the query|we would like

typedef QRT<X_TYPE,Anc_TYPE>::IE IE; // Note reversal of arguments

List<IE> l = lquery(ancestor(Anc,bart,X));

to also compile. In order to enable this, QRT and lquery() need to agree on a canonical

representation for type lists. It would do us no good if QRT created an environment with

C++ type

127

Environment<TL::CONS<X_TYPE,TL::CONS<Anc_TYPE,TL::NIL> > > >

whereas lquery() had

Environment<TL::CONS<Anc_TYPE,TL::CONS<X_TYPE,TL::NIL> > > >

as its resulting environment type. These two types are conceptually compatible,
3
but the

C++ type system sees them as two distinct types which are not interconvertible. With this

issue in mind, we can now appreciate one reason
4
for the \unique integer" associated with

each logic variable. Recall that logic variables are declared using code like

DECLARE(X, int, 10);

The unique integer constant that appears in the type (10 in the example above) provides a

way to order the logic variable types. This enables us to create a canonical representation of

a set of logic variables as a list: the canonical list always has the types appear in increasing

order of their unique integer constants.

The canonicalization process also �lters out duplicates, so that queries like

lquery(ancestor(Anc,bart,X) && X==1);

do not go mistakenly creating environments with type

Environment<TL::CONS<Anc_TYPE,TL::CONS<X_TYPE, // X_TYPE mistakenly

TL::CONS<X_TYPE,TL::NIL> > > > // duplicated

The end result of the above computation is the general semantic checking performed by

LC++. The type computers inside QRT, the query() functions, and the Rep classes all

work to make the C++ type system ensure that LC++ code is statically checked. The

type computers ensure that the environment types match, so that a client cannot ask

for, e.g., env->at(X) from the result of a query not involving X. The type information

maintained by LC++ lets the normal C++ type rules check more basic requirements,

3That is, though we are using type lists as a representation type in our meta-program, we actually only

care about type sets in this case.
4The other reason for the \unique integers" is to create the one-to-one type-to-variable mapping men-

tioned in a previous footnote.

128

such as ensuring that in the expression X==1, X is a LogicVariable<int> (and not, say, a

LogicVariable<string>).

In addition to basic typechecking that QRT facilitates, LC++ supports more sophisti-

cated analyses which are speci�c to the domain of logic programming. One example of such

a specialized semantic analysis is detecting one-time-use variables in calls to lassert().

Suppose that when the client wrote the code for the family relationship example, instead

of writing

lassert(child(Kid,Par) -= parent(Par,Kid)); // correct

she accidentally wrote

lassert(child(Kid,Par) -= parent(Mom,Kid)); // oops, used Mom

where Mom had inadvertantly been used in place of Par on the right-hand side. The resulting

code is legal and typechecks, but it does not describe the intended child() relation.

This type of error is automatically statically detectable because it violates the rule that

logic variables appearing in an lassert() statement should always appear in more than one

location. A logic variable that is used only once can be uni�ed with anything; if the client

does actually intend to use a \don't care" logic variable, they should do so explicitly using

the special variable _". We use meta-programming to write an algorithm which analyzes

lassert() calls and forces the compiler to emit a warning when one-time-use variables are

detected|the same general technique described in Section 2.3.3. (Using meta-programs to

statically analyze code and emit domain-speci�c compiler diagnostics is a technique that

has been used by other recent C++ libraries[7, 54, 61].) Domain-speci�c static analyses like

the one described here set LC++ apart from all other OO libraries for logic programming.

3.3 Potential applications

LC++ can be used in the same application domains for which logic programming languages

in general are useful. One of the most common application domains is that of encoding

\business rules". Business rules describe the logical constraints that must hold in a particu-

lar business domain. For example, in a college course registration system, there are business

129

rules describing course prerequisites, limitations on the maximum number of course hours

per term that a student may enroll in, and so on. As another example, a company that

builds and sells personal computers may have business rules that describe which pieces of

hardware and software are compatible with one another. By encoding the business logic as

facts and rules asserted into the LC++ database, it is straightforward to query the system,

both to ensure that business constraints have been met (e.g., that a student has taken the

necessary prerequisites to enroll in this course) and to discover all possible solutions to more

open-ended queries (e.g., given that the customer wants a PC with this operating system

and this particular processor, which video cards do we have in stock that are compatible

with this system?). Many di�erent applications depend heavily on such business logic, and

logic programming provides a direct and succinct way to encode business rules so they are

amenable to programmatic queries.

The main potential advantage that the LC++ library has over other logic programming

languages is that it is embedded in C++. As a result, the capabilities of logic languages like

Prolog are available to encode the core business logic|all within a larger C++ application,

which may include a graphical user interface, networking, interfacing with other C/C++

libraries, etc. With LC++, an application program can exhibit all the usual versatility of

a C++ application|plus the ability to do logic programming|without having to sacri�ce

static type safety or resort to foreign function interfaces in order to gain access to a logic

programming component.

3.4 Performance

LC++ allows clients to update the database of facts and implications with calls to lassert()

at any time|even during the execution of a query. This freedom allows for much dynam-

icity (e.g. the facts and rules can be read in at run-time from a �le), but it e�ectively

limits LC++ to executing queries like an interpreter, with all the associated performance

limitations of that approach.

Logic queries in LC++ tend to run a number of times slower than a Prolog interpreter

on comparable code. This is because our current implementation of LC++ is quite naive.

130

Each time a predicate is invoked, the work to convert the Rep objects to the corresponding

Impl objects (Section 3.2 describes the Rep and Impl objects in the implementation) is re-

done; with a slightly di�erent architecture, the Impl objects for each rule could be cached

and reused. Also, all predicates and functors are internally represented as ternary functors

(perhaps with some slots �lled with \dummy" objects) even if the actual predicate or functor

has a lower arity; this wastes some memory and causes some extra work to be done during

uni�cation of functors with low arities.

The weaknesses discussed in the previous paragraph are speci�c to our implementation,

which was written to be simplistic, straightforward code. The main contribution of the

library is its interface; the smooth integration of logic programming in an OO language.

Since the evaluation engine is written as normal C++ code (not a template meta-program),

this back-end can always be swapped out with a more eÆcient implementation (such as one

based on the Warren Abstract Machine), without having to change the interface.

3.5 Detailed comparison to related work

Whereas there are a number of multiparadigm languages that have logic components, there

are relatively few projects that extend existing object-oriented languages with support for

logic programming. LC++ is unique compared to those because LC++ cleanly integrates

the control ow of the imperative and the logic programming language constructs. These

alternative approaches include SOUL [12] (which extends Smalltalk), J/MP [11] (which

extends Java), and MPC++ [21] (which extends C++). We �rst describe some common

aspects of those three, and then discuss details of each in turn. (Note that Section 4.2

describes other related work.)

All three approaches (SOUL, J/MP, MPC++) su�er the same key drawback with respect

to query results: they do not leave the client in control. In SOUL, the results of a query are

returned as a Smalltalk OrderedCollection object; this means that examples that involve

in�nite objects, like nat from Section 3.1.5, cannot be realized. The problem is similar in

J/MP and MPC++: the client passes in a block of code to be executed for each result

produced by the query, and the query executes the client code on each and every result.

131

In contrast, LC++ gives the client control of the query by returning the results as a lazy

list; the client can demand a few results, continue on with some other computation, and

demand more results later as needed. A second di�erence between these approaches and

LC++ is that none of the other three approaches can duplicate the specialized semantic

analyses that LC++ can do (as described in Section 3.2.2).

SOUL, the Smalltalk Open Uni�cation Language adds logic programming features to

Smalltalk. The original SOUL system was just an interpreter; clients would specify asser-

tions and queries as strings, using code like

rep := SOULRepository new.

rep assert: 'father(homer,bart). father(homer,lisa).'

results := SOULEvaluator eval: 'if father(?dad,?kid)' in: rep.

However newer work[12] integrates SOUL into Smalltalk so that predicates work like ordi-

nary message-sends and Smalltalk objects can participate in uni�cation, creating a truer

embedding. Like LC++, SOUL preserves the declarative syntax that languages like Pro-

log provide. SOUL provides no static guarantees, however, since Smalltalk is dynamically

typed and the SOUL implementation works with the reection facilities of Smalltalk.

The J/MP language[11] is a Java extension supporting multi-paradigm programming,

including logic programming. Logic programming in J/MP is enabled by using the Relation

class and pass-by-name parameters. The && and || operators are overloaded (as in LC++),

and the method unify() performs uni�cation. J/MP has a weak logic programming model:

uni�cation can only be performed on a variable with a value|two unbound logic variables

cannot be uni�ed. Also, J/MP de�nes relations using notation that is more operational

than declarative; for example in J/MP one might write

public static Relation father(+String Dad, +String Kid) {

return parent(Dad,Kid) && male(Dad);

}

to de�ne the father() relation described in our original LC++ example.

132

The MPC++ library[21] adds support for logic programming in C++. Like LC++,

MPC++ is build atop FC++[52, 53]. MPC++ has been used in a graduate programming

languages course to teach students about di�erent programming paradigms. Perhaps as a

result of this use-context, MPC++ exposes more implementation details to clients, resulting

in verbose code. When declaring an MPC++ predicate, all known facts about the predicate

need to be expressed in a closed de�nition. (This is also true of J/MP.) For example, male()

would be de�ned like this in MPC++:

class Male : public Logic_Rule {

Logic_Variable<string> person;

public:

Male(const Logic_Variable<string>& p) : person(p) {}

Logic_Relation Rule_Definition() {

return (person |= "bart") || (person |="homer")

|| (person |= "abraham");

}

};

Thus, MPC++ has a static point of de�nition of all facts pertaining to a predicate, while

LC++ allows more facts to be added with lassert() dynamically, based on the control

ow of the program. A static approach is more amenable to optimizations, but MPC++

does not attempt to optimize queries in any way (nor does J/MP).

Finally, we note that the Logic_Rule and Logic_Relation classes of MPC++ serve

a similar purpose as the Relation class in J/MP, and operators are overloaded (MPC++

uses |= for uni�cation). Indeed, the implementation strategies of J/MP and MPC++ are

quite similar.

3.6 Discussion

LC++ demonstrates that logic programming can be smoothly integrated into C++. The

library provides the main features of the logic paradigm and preserves the declarative syntax

found in logic languages. The C++ type system provides \atomic" logic data types, and

133

functors can be used to represent uni�able composite structures, just as in logic languages.

The library shares C++'s static type checking and supplies its own domain-speci�c checks

via template metaprogramming. FC++ lazy lists are used to mediate the control mismatch

between backtracking query logic and normal C++ function calls, enabling paradigms with

di�erent views of control ow to peacefully coexist.

We utilized a number of advanced features of C++ to implement both LC++ and FC++

in a way that enables a smooth integration of multiple paradigms. Whereas this chapter

and the previous one described a number of the nitty-gritty details of our implementation in

C++, in Chapter 5 we shall take a step back, generalizing our main strategies and looking

at which programming language features are most useful for multi-paradigm extensibility.

134

CHAPTER IV

RELATED WORK

Much has been written about multi-paradigm programming within a single language. Here

we summarize some of the most relevant related work, broken into subsections by topic.

Note that the end of the next chapter contains a broader discussion about programming

languages in general.

4.1 Work adding functional components to object-oriented

languages

Many researchers have worked on adding functional paradigm components to object-oriented

languages, especially C++. Their work can be roughly divided into three categories: rep-

resenting functions, lambda, and applications of functional techniques.

4.1.1 Representing functions in C++

Representing functions as �rst-class objects in C++ has been a popular research topic.

L�aufer's paper [49] contains a good survey of the 1995 state of the art regarding functionally-

inspired C++ constructs. Here we will only review more recent or closely related pieces of

work.

Dami [19] implements currying in C/C++/Objective-C and shows the utility in applica-

tions. His implementation requires modi�cation of the compiler, though. The utility comes

mostly in C; in C++, more sophisticated approaches (such as ours) can achieve the same

goals and more.

Kiselyov [46] implements some macros that allow for the creation of simple mock-

closures in C++. These merely provide syntactic sugar for C++'s intrinsic support for

basic function-objects. FC++'s lambda uses expression templates to provide such sugar

without resorting to macros.

The C++ Standard Template Library (STL) [63] includes a library called <functional>.

135

It supports a very limited set of operations for creating and composing functoids that are

usable (in monomorphic form) with algorithms from the <algorithm> library. While it

serves a useful purpose for a number of C++ tasks, it is inadequate as a basis for building

higher-order polymorphic functoids.

L�aufer [49] presents a framework for supporting functional programming in C++. His

approach supports lazy evaluation, higher-order functions, and binding variables to di�erent

function values. His implementation does not include polymorphic functions, though, and

also uses an ineÆcient means for representing function objects. In many ways, our work on

FC++ can be viewed as an extension to L�aufer's; our framework improves on his by adding

both parametric and subtype polymorphism, improving eÆciency, and contributing a large

functional library. L�aufer also examines topics that we did not touch upon in this paper,

like architecture-speci�c mechanisms for converting higher-order functions into regular C++

functions.

Alexandrescu's book [2] contains a chapter on \generalized functors". These functors are

similar to our indirect functoids, except that they do not support implicit currying or sub-

type polymorphism. In another chapter, Alexandrescu also describes reference-counting

mechanisms, including intrusive ref-counts, like the ones we use with FC++'s internal

reference-counted pointers.

The Boost function library [30] provides function objects similar to FC++ indirect

functoids. These function objects support subtype polymorphism and reference parameters,

and are the basis for a proposed extension to the C++ standard library.

4.1.2 Lambda

Here we briey compare our approach to implementing lambda to that of the other major

lambda libraries for C++: the Boost Lambda Library (BLL)[38] and FACT![64].
1
(Note

that Section 4.1.3 mentions how Java's anonymous inner classes e�ectively provide \lambda"

for Java.)

1The FACT! library, like FC++, includes features other than lambda, e.g. functions like map() and

foldl() as well as data structures for lazy evaluation. BLL, on the other hand, is concerned only with

lambda.

136

4.1.2.1 Boost Lambda Library

Whereas FC++ takes the minimalist approach, BLL takes the maximal approach. Practi-

cally every overloadable operator is supported within lambda expressions, and the library

has special lambda-expression constructs which mimic the control constructs of C++ (like

while loops, switches, exception handling, etc). Lambda is implicit rather than explicit; a

reference to a placeholder variables (like _1) turns an expression into a lambda on-the-y.

This makes it impossible to represent some anonymous functions (involving nested lambda)

using BLL. Custom error message which diagnose common statically-detectable errors are

also absent from BLL.

Apart from special support for function composition and explicit currying (binding) of

function arguments, BLL lacks syntactic support for other useful functional constructs like

letrec or monadic comprehensions. There is also no support for naming the type of lambda

expressions (like our LEType). On the other hand, when e�ects are desired, BLL can be

used to describe functions with side-e�ects more gracefully than FC++. Whereas FC++

lambda expressions can only have e�ects by dereferencing pointers, BLL lambda expressions

can directly manipulate object references and create lambdas which take mutable reference

parameters.

BLL's approach makes sense given the \target audience"; the Boost libraries are designed

for everyday C++ programmers. These are people who are familiar with C++ constructs,

and who are hopefully C++-savvy enough to avoid most of the pitfalls of an e�ect-ful

expression-template lambda library. In contrast, FC++ is designed to support functional

programming in the style of languages like Haskell. A number of our users come from other-

language backgrounds, and aren't too familiar with the intricacies of C++. Thus FC++'s

lambda is designed to present a simple interface with syntax and constructs familiar to

functional programmers, and to shield users from C++-complexities as much as possible.

4.1.2.2 FACT!

Like FC++, FACT! is designed to support pure functional programming constructs. Lambda

expressions always perform capture \by value" and the resulting functions are typically

137

e�ect-free. Like FC++, FACT! has an explicit lambda construct; the user can de�ne his

own names for placeholder variables, but conventionally names like x and y are used. FACT!

de�nes just one primitive control construct in its lambda sublanguage (\where" for if-then-

else). Like BLL, however, FACT! overloads many C++ operators (like +) for use in lambda

expressions. Thus FACT!'s interface is relatively simple and minimal, but lambda expres-

sions are not as visually distinctive as they are in FC++.

Like BLL, FACT! contains no facilities for manipulating monads, naming the types of

lambdas, or doing static analyses and issuing custom error messages.

4.1.3 Applications

Certainly a lot has been written about language support for implementing design patterns

(e.g., [4, 14]), functional techniques in OO programming, etc. Some of the approaches in

the literature are even very close in philosophy to our work. For instance:

� Alexandrescu [2] demonstrates how the meta-programming capabilities of the C++

language can be used to yield elegant pattern implementations.

� K�uhne's dissertation proposes several patterns inspired by functional programming

[48].

� Using functional techniques (higher-order functions) to implement the Observer and

Command patterns is common|in fact, even standard practice in Java and Smalltalk.

� The bene�ts of polymorphic and higher-order functions have often been discussed in

the functional programming literature [66].

Alexandrescu [2] o�ers a mature C++ implementation of the Abstract Factory pattern.

His approach consists of a generic (i.e., polymorphic) Abstract Factory class that gets pa-

rameterized statically by all the possible products. It is worth noting that this is the exact

scenario that Baumgartner et al. [4] studied. Their conclusion was that meta-object pro-

tocols should be added to OO languages for better pattern support. Thus, Alexandrescu's

implementation is a great demonstration of the meta-programming capabilities of C++|

the language's ability to perform template computation on static properties can often be

138

used instead of meta-object protocols.

G�eraud and Duret-Lutz [27] o�er some arguments for redesigning patterns to employ

parametric polymorphism. Thus, they propose that parametric polymorphism be part of

the \language" used to specify patterns. In contrast, our approach is to use parametric

polymorphism with type inference in the implementation of patterns. From an implemen-

tation standpoint, the G�eraud and Duret-Lutz suggestions are not novel: they have long

been used in C++ design pattern implementations. Furthermore, the examples we o�er in

Section 2.4 are more advanced, employing type inference and manipulation of polymorphic

functions.

The Pizza language [60] integrates functional-like support to Java. This support includes

higher-order functions, parametric polymorphism, datatype de�nition through patterns,

and more. Pizza operates as a language extension and requires a pre-compiler. Support for

parametric polymorphism in Java has been a very active research topic (e.g., [1, 9, 59, 67]),

and a solution based on GJ [9] has been recently adopted [8]. Type inference is used in

GJ. Nevertheless, due to the GJ translation technique (erasure) it is not possible to extract

static type information nested inside template parameters.

It should be noted that Java inner classes [40] are excellent for implementing higher-order

functions. Inner classes can access the state of their enclosing class, and, thus, can be used

to express closures|automatic encapsulations of a function together with the data it acts

on. Java inner classes can be anonymous, allowing them to express anonymous functions|a

capability that is not straightforward to emulate in C++. Many of our observations from

Sections 2.4.1 and 2.4.2 also apply to Java. In fact, the most common Java implementations

of the Command and Observer design patterns use inner classes for the commands/callbacks.

4.2 Work on multiparadigm languages with logic compo-

nents

There has also been a bit of work on multiparadigm languages containing a logic pro-

gramming component (that is, languages which support both object-oriented and logic

programming (\OO-Log"), or both functional and logic programming (\Fun-Log"), or all

139

three paradigms). Here we compare our work with other work that extends OO languages

with a logic component, as well as survey other multiparadigm work with logic components.

4.2.1 Logic programming extensions to OO languages

Section 3.5 provides a detailed description of how LC++ compares to other projects which

add support for logic programming to existing object-oriented languages. Here we summa-

rize that comparison.

The three most-related approaches are SOUL (Smalltalk), J/MP (Java), and MPC++

(C++). LC++ is unique compared to such work because it integrates cleanly the control

ow of the imperative and the logic programming language constructs. All three of the

other approaches do not leave the client in control after a query: either all the results are

returned as a collection, or a block of code is executed once on each result. In contrast,

LC++ returns the query results as a lazy list, leaving the client in control of consuming

and processing the results.

There are two other notable di�erences between our work and these other three. The

�rst is that the other approaches have a more \operational" syntax for de�ning facts and

rules and performing queries, whereas LC++ preserves the declarative syntax found in logic

languages like Prolog. A second di�erence between these approaches and LC++ is that none

of the other three approaches can duplicate the specialized semantic analyses that LC++

can do.

4.2.2 Other languages with a logic-programming component

There are quite a few recent examples of languages combining functional and logic program-

ming. G�odel[29], Escher[22], Curry[17], and Toy[68] are a few examples of languages in this

area. Each of these languages features static typing, polymorphism, and a pure (e�ect-free)

style of programming. Mercury[57] �ts into this group, but it also supports parameter mode

and determinism declarations.

These Fun-Log languages tend to di�er from LC++ with regards to operational seman-

tics: whereas LC++ requires that functions be applied only to bound logic variables, these

languages are lazy, and simply suspend computations until the variables get bound. Some

140

of these Fun-Log languages, like Curry, also encapsulate the search strategy, so that in ad-

dition to the depth-�rst (Prolog-style) search that LC++ supports, other strategies (such

as breadth-�rst) can be used as drop-in replacements for the logic search engine.

Unlike LC++, which combines logic and object-oriented programming by adding logic

programming features to an existing OO language, some approaches start with a logic

programming language and extend it with object-oriented features. One example in this

area is Jinni[41]. Jinni is an interpreter for an extended version of Prolog (which includes

features like classes and inheritance) that is written in Java. Jinni uses Java's reection

capabilities to provide a mechanism for the logic code to \call out" to Java, but the interface

is heavy and there is a clear deliniation between logic code and object-oriented code.

A few languages are designed to support all three (logic, functional, and OO) paradigms.

The language Oz[58] combines all three paradigms in a dynamically typed, concurrent

programming language. Oz does have a strong object model, but logic is the dominant

paradigm and programming with Oz looks and feels more like logic programming than OO

programming. The Leda[10] language was speci�cally designed as a language for teaching

the three paradigms; Leda is statically typed. Both J/MP[11] and Leda were created by

the same man, and they share many of the same strengths and weaknesses.

141

CHAPTER V

GENERALIZING FROM C++

Chapters 2 and 3 describe how we added functional and logic programming features to

C++. Whereas C++ is a rich language with a variety of extensibility mechanisms, it

is nonetheless not an obvious ideal candidate as a base language to support these kinds

of extensions. Nevertheless, by \hijacking" a number of the language's more interesting

features, we have added functional and logic programming support to C++, with varying

degrees of seamlessness.

Whereas our work in the previous chapters may be described as \novel devices for

implementing functional and logic programming constructs in C++", in this chapter we

try to remove the quali�cation \in C++". We discuss our key implementation ideas in

more general terms, making explicit what language features (e.g. \overloading") each idea

depends on. We also describe some strategies in terms of language features that C++

lacks (such as algebraic datatypes, typeclasses, or call/cc). We conclude with an overall

evaluation of our libraries, a summary of the main limitations that C++ imposes, and some

general thoughts about programming language design.

5.1 Reusable lessons

Here we describe our key techniques from a more language-independent point of view,

paying special attention to particular language features which make some of these techniques

feasible.

Throughout this section we will assume a language that supports parametric polymor-

phism, as practically every one of our devices depends on this language feature. We will

also assume a language that has some kind of way to represent �rst-class functions. Regard-

less of whether �rst-class functions are built-in to a particular programming language or

merely representable using other mechanisms (e.g. as classes with overloaded operator()

142

in C++), we shall refer to them as \functoids" throughout this section, so as to simplify

the exposition.

A note about the novelty of these techniques is in order. Whereas the devices we

have described are all novelly applied in the context of C++, a few of these ideas are not

novel when considered in a more general context. Some portions of the ideas we discuss in

this section are either established techniques or applied ideas from programming language

folklore. For those reusable lessons for which this is true (those lessons which are not novel),

we note it explicitly in the beginning of the subsection.

5.1.1 Type system for higher-order polymorphic functions (using C++-style

type inference and template computation)

This is easily the most C++-speci�c aspect of our work. Given that C++ supports poly-

morphism only indirectly (via templates, which are not themselves �rst-class entities), we

represent polymorphic functions via functoids. Functoids are �rst-class objects with tem-

plates as members, and our Sigs are type-computers which enable the description of entities

such as \the result type when function F is called with an argument of type X". The de-

scription of how this is implemented has already been described in Section 2.2.2, where

we also de�ned \DBCTAS". Any language that does not intrinsically support parametric

polymorphism|but does have a programmable template/macro system similar to C++'s|

can use our strategy for encoding higher-order polymorphic functions as functoids, giving

each functoid a dual meaning (one in the native type system, and one in the programmed

type system|DBCTAS). Of course, C++ is the only language we know of which contains

this unusual set of features, necessitating this approach.

We mention this aspect here only because so many of the other techniques rely on the

ability to describe the types of composing polymorphic functoids. Whereas C++ makes

this complicated (by virtue of being unable to represent polymorphic functions directly in

the type system, and the lack of a typeof operator or other general type-inferencing mech-

anism), most other languages with parametric polymorphism either support polymorphic

types directly in the type system or provide type inference (or both).

143

5.1.2 Currying

Currying can be simulated in any language which allows the function call syntax to be

overloaded. \Implicit currying", where a functoid can be called with fewer than the expected

number of arguments, only requires that function call be overloaded for di�erent numbers of

arguments. \Explicit currying", where a functoid can be called with \dummy" placeholders

in the place of real arguments requires ad-hoc overloading based on the types of arguments.

Implicit currying is best expressed as a reusable combinator which can be applied to

a normal (uncurryable) function. Given an N-argument function f, applying the implicit

currying combinator (icc) to f results in a new functoid which contains a reference to f and

has N di�erent function call overloads, each of which dispatches to a di�erent, specialized

function for binding that many arguments. For example, if f takes 3 arguments, then the

implicitly curryable version of f (icf = icc(f)) de�nes overloads for multiple numbers of

arguments, so that

icf(x)

icf(x, y)

icf(x, y, z)

are all legal calls, resulting in

bind1of3(f, x)

bind1and2of3(f, x, y)

f(x, y, z)

respectively. The various bindMofN functions must be de�ned \by hand", but their imple-

mentations are straighforward. (Indeed, in a language with lambda, the implementations

are trivial.)

Explicit currying is also best expressed as a reusable combinator. For example, given a

two-argument function f, the result of applying the explicit currying combinator (ecc) is a

functoid ecf which has these overloads:

ecf(PlaceholderType x, Any2 y) // ecf(_,y)

144

ecf(Any1 x, PlaceholderType y) // ecf(x,_)

ecf(Any1 x, Any2 y) // ecf(x,y) (normal call)

The types Any1 and Any2 represent the types of the actual arguments to f (which can be

generalized into universal types for simplicity), whereas PlaceholderType is a distinguished

type which just has one instance named _". Just as with implicit currying, each of these

overloads dispatches to the appropriate implementation; in the cases above, they would be

bind2of2(f, y)

bind1of2(f, x)

f(x, y)

respectively.

In a language like C++, where return-type-deduction for user-de�ned polymorphic func-

toids must be speci�ed \by hand", we must also \overload" the return type computation

mechanism. In FC++, both \implicit currying" and \explicit currying" are de�ned in the

same combinator class (FullN). The Sig template in this class has default parameters:

template <class F> struct Full3 { ...

template <class X,

class Y = PlaceholderType,

class Z = PlaceholderType>

struct Sig ...

so that we can use it in type expressions with di�ering arities (e.g. Sig<int,int,int>,

Sig<int,int>, Sig<int>). The Sig is partially specialized for all di�erent combinations of

PlaceholderType arguments, so for example

template <class X, class Z>

struct Sig<X,PlaceholderType,Z> ...

has a result_type that is representative of the call

f(x,_,z)

145

|that is, the type of the expression

bind1and3of3(f, x, z)

Note that partial specialization of a class template in C++ is directly analogous to ad-hoc

overloading of a function based on argument types.

5.1.3 In�x function syntax

In�x function syntax can be simulated in any language which has an ad-hoc overloadable

in�x binary operator. In�x can also be simulated with two user-de�ned in�x operators,

without having to resort to ad-hoc-ery.

Recall that in FC++, the expression

x ^f^ y

means the same as

f(x,y)

when f is a full functoid. The ^ operator has been overloaded in two di�erent ways. The

expression

x ^f^ y

actually parses as

(x ^ f) ^ y

in C++. The �rst operator^ overload accepts any type as a left-hand argument and

a functoid as a right-hand argument, and returns a new object of some temporary type

Tmp which stores these two objects in a temporary data structure. The second operator^

overload accepts a Tmp as a left-hand argument and anything as a right-hand argument,

fetches the functoid and �rst argument stored inside the Tmp object, and applies the functoid

to both of its arguments. (Note that in C++, by de�ning the operator^ overloads as inline

functions and having the Tmp type store references rather than copies, this syntax sugar does

not imply any extra cost at runtime.)

146

The reader may have noticed a potential ambiguity between the two overloads in the

previous paragraph. What if the right-hand argument is a functoid? For example, consider

this example:

negate ^compose^ inc // f(x) = -(x+1)

The expression negate^compose matches the �rst overload, resulting in some temporary

object. But then tmp^inc matches both overloads: the right-hand argument is a functoid

(�rst overload), and the left-hand argument is a Tmp object (second overload). Indeed, this

ambiguity must be dealt with; in our original implementation, this expression would cause

a compile-time ambiguity error. The desired behavior is to have the second overload take

precedence; if the left-hand argument is a Tmp object, then we should prefer the second

overload, even when the right-hand argument is a functoid. In C++ the ambiguity between

the two overloads can be broken in a number of ways; we use boost::enable_if to disable

the �rst overload if the left-hand argument is a Tmp object.

It is worth noting that, if two suitable user-de�ned in�x operators are available, the ad-

hoc-ed-ness and potential ambiguity can be avoided entirely. For example, we can imagine

using two di�erent single quotes or two di�erent slashes as the in�x operators:

x `f' y or x \f/ y

This also yields the desired facade of in�x functions without any appeal to exotic overloading

mechanisms; to enable the x \f/ y syntax, we can just de�ne the / and \ operators with

the appropriate signatures. This is summarized here using Haskell (since Haskell's notation

describes things most succinctly):

-- using Haskell notation

data Tmp x f = Tmp x f

(\) :: x -> (x->y->r) -> Tmp x (x->y->r)

x \ f = Tmp x f

147

(/) :: Tmp x (x->y->r) -> y -> r

(Tmp x f) / y = f x y

Finally, also note that (despite the title of this subsection) the implementations described

in this section yield an in�x expression syntax. In FC++, in addition to being able to write:

x ^f^ y

one may also write, for example:

x ^g(z)^ y

where g(z) is an expression that reduces to a two-argument function. The entity between

the operator^s need not be just a function name; any expression with the right type will

work there. Though a number of languages provide in�x function syntax, few also provide

in�x expression syntax. Our technique can be used (e.g., in Haskell) to �ll this hole.

5.1.4 Overloaded list interface

As described in Sections 2.3.4 & 2.3.5, FC++ supports three di�erent list datatypes: List,

OddList, and StrictList. All three support the same kind of interface, which means that

list functions (like map and filter) can be applied to any kind of list.

In FC++, the common interface to all of the list types is supported via templates and

ad-hoc overloading. However the general list interface can actually be expressed using non-

ad-hoc methods. Here is a summary of what the interface to ListLike entities looks like

when expressed via Haskell typeclasses:

-- list, even, odd type constructors; v=value type

class ListLike l e o | l -> e o where

nil :: l v

make1 :: (()->e v) -> l v

make2 :: (()->o v) -> l v

cons1 :: v -> e v -> o v

cons2 :: v -> o v -> o v

148

cons3 :: v -> (()->e v) -> o v

cons4 :: v -> (()->o v) -> o v

head :: l v -> v

tail :: l v -> e v

null :: l v -> Bool

force :: l v -> o v

delay :: l v -> e v

instance ListLike List List OddList List where ...

instance ListLike OddList List OddList List where ...

instance ListLike StrictList StrictList StrictList StrictList where ...

Each ListLike type constructor (l) has two associated type constructors which represent

the \even" and \odd" versions of the list (e and o). Note that both Lists and OddLists

have \even" tails. StrictLists play both the \even" and \odd" roles; since StrictLists

do not do lazy evaluation, there is no need for a distinction. The make functions correspond

to C++ constructors. In the cases of both the make and cons functions, ad-hoc overloading

in C++ allows all of the related functions to have the same name, despite having slightly

di�erent signatures. (That is, in C++ we don't have four functoids named cons1 through

cons4|we just have one functoid named cons which is overloaded with all four behaviors.)

Note that we are using the notation \()->a" to represent the type \thunk returning a value

of type a", a notion that is only necessary in eager languages (like C++). In the case

of List and OddList, the implementations of {make1,make2,cons3,cons4} store the thunk

argument to be later evaluated by-need, whereas the StrictList implementation evaluates

the thunk immediately.

Given such a de�nition, it is easy to write functions like map that work on any ListLike

type:

-- using Haskell notation, but imagine a strict evaluation semantics

map :: (ListLike l e o)=> (a -> b) -> l a -> o b

map f l = if null l

149

then nil

else cons4 (f (head l))

(thunk2 map f (tail l))

If map is passed a List or an OddList, the result is an OddList (where only the �rst element

has been evaluated). If map is passed a StrictList, the result is a StrictList where the

entire list is evaluated.

5.1.5 List optimizations

Section 2.5.2 discusses a number of optimizations we have applied to the implementation

of lists and the functions that manipulate them. Here we discuss how a number of these

optimizations can be applied in other languages.

5.1.5.1 Caching

(Note: This is not a novel technique; memoization is a well-established concept.)

We use \caching" to store lazy list tails so that they may be evaluated \by need". This

technique is easy to use in any language with mutable variables. For example, in ML, we

would describe the type of Caches as

datatype 'a Cache = Value of 'a | Thunk of unit->'a

and the main operation available on references to this data is

fun get cr =

case !cr of

Value x => x

| Thunk f => let val y = f () in

cr := Value y; y end

That is, if we have a reference to a value, just return the value. If we have a reference to

a thunk, call the thunk, update the reference so that it stores the value returned by the

thunk, and return the value.

150

This technique (caching values so they are computed by-need) is useful outside the

context of lists, so was have encapsulated it in its own ByNeed datatype in FC++, as

described in Section 2.3.2.5.

5.1.5.2 Reusing functoids' heap thunks

For languages that provide update access to the representation of those thunks that are

created by binding all of the arguments of a functoid, the \reuser" optimization described

in Section 2.5.2.4 is likely to be valuable. Our implementation in C++ uses an extra

parameter with a default value as syntactic sugar, but for languages without a default

parameter mechanism, it is easy to rewrite the recursive function as two functions: the

main function which creates and initializes the mutable thunk and then calls the helper,

and the helper function which takes the extra \reuser" parameter and does the work (making

recursive calls to itself).

For languages with builtin function types that do not provide access to the represen-

tation of thunks, it might be worthwhile to create a (mutable) user-de�ned datatype for

representing thunks. Then the reuser strategy can be used to mutate the user-de�ned

thunks, thus avoiding creating new (builtin) function objects during every recursive call.

Since this optimization avoids repeatedly allocating and freeing small objects, it is espe-

cially important for C++. The improvement is likely to be less impressive in languages with

sophisticated runtimes that have garbage collection and fast small-object allocators. But

this optimization will still probably be a win on most systems, as it takes very sophisticated

lifetime analysis for compilers to automatically deduce that it is safe to recycle the thunks

in the manner done by the reusers.

5.1.5.3 Miscellaneous

There are a couple other non-novel techniques which are nonetheless noteworthy optimiza-

tions. For systems without automatic memory management, using intrusive reference-

counting (rather than non-intrusive) will almost certainly be a win. And for languages

that are not good at recursion (e.g. do not optimize tail calls), rewriting recursive functions

to use iteration instead is likely to be a win.

151

5.1.6 Subtyping for functoids

A number of languages with primitive support for both �rst-class functions and subtyping

have function-subtyping built in. For languages with functoids that don't have built-in

support for subtyping, this support can often be simulated via coercion functions/operators.

Thus coerce can serve as an \upcast" operation, which enables more speci�c objects to be

used in place of more general ones.

For example, if one can overload a function named coerce() like so:

coerce<Base>(a_derived_obj) // legal iff a_derived_obj <: Base

then, for example, given some representation of a function from Animals to Cars, e.g.

Fun1<Animal,Car>, we can provide a general de�nition for coerce on functoids, so that

the original functoid may be coerced into a Fun1<Dog,Vehicle> (assuming that Dogs can

be coerced into Animals and Cars into Vehicles).

This can be achieved in any language with just a typeclass-like overloading mechanism.

For instance, in Haskell, we might write

data Car = ...

data Vehicle = ...

data Animal = ...

data Dog = ...

class Coercable from to where

coerce :: from -> to

-- coercion

instance (Coercable d a, Coercable c v)=> Coercable (a->c) (d->v) where

coerce f = \x -> coerce (f (coerce x))

-- explicitly define the subtype hierarchies of interest

instance Coercable Car Vehicle where ...

152

instance Coercable Dog Animal where ...

ac :: Animal -> Car

ac = ...

dv :: Dog -> Vehicle

dv = coerce ac -- demonstration of "upcasting" a function

v :: Vehicle

v = dv Dog -- calls "ac"

The instance declaration Coercable Foo Bar can be used to explicitly specify that Foo is

a subtype of Bar; the instance declaration involving function types generalizes this notion

to functions.

5.1.7 Lazy lists as an interface to logic query results

(Note: whereas some applications of using �rst-class functions to mimic continuations|

thereby yielding laziness for logic query results|have been established in the literature, we

think that our utilization of an existing lazy list interface as a facade for CPS is novel, as

are some of the observations we make in this subsection.)

As described in Section 3.2.1, lazy lists are useful as the interface to results of a logic

query. The lazy list interface leaves the client algorithm in control, both of the evaluation

of the query (e.g. the client may just ask for two results, and then stop) and of how the

results are used (e.g. the client may print them, store them in a data structure, whatever).

From an implementation point-of-view, lazy lists nicely encapsulate the fact that a

natural implementation of logic queries uses continuation-passing style (CPS). Logic query

terms all take a future parameter describing \the rest of the query" to run, but lazy lists

enable these computations to actually return. When a query succeeds in �nding a result,

a one-element lazy list is returned; when a query fails, an empty lazy list is returned; at the

\choice points" (disjunct terms), the results of all possible futures for the query are lazily

153

concatenated|thus each future will only be run as the next solution is demanded by the

client. The implementation strategy described in Section 3.2.1 can be used in any language

which supports an implementation of lazy lists.

It should be noted that for languages which provide a call/cc primitive, an alternative

implementation is straightforward to provide. A query result can just be represented as a

Maybe< pair< Answer, Continuation > >

When query() is called by some client, the client's current continuation is passed as a

the original future parameter to the query object. Each time the query �nds a result, it

invokes the client continuation with a pair containing the result and the query's own current

continuation. This passes control back to the client, who uses the answer however it sees �t.

When the client wants the next result, the client passes its own current continuation to the

second element of the pair; this transfers control back to the query, which proceeds where

it left o�. When the query has no results left to produce, it calls the client's continuation

with Nothing, to signify that it is done.

The analogy between the lazy list implementation and the call/cc implementation is

striking. Both implementations provide a way for the client and the query to coroutine with

one another. When the two datatype implementations:

Maybe< pair< Answer, Continuation > > // call/cc implementation

List<Answer> // lazy list implementation

are expanded one level into their algebraic equivalents:

Just pair< Answer, Continuation > | Nothing

Cons Answer Thunk | Nil

the similarity is more obvious. The main di�erence is that in the call/cc implementation,

the query \calls" back to the client, whereas in the lazy list implementation, the query

\returns" to the client.

5.1.8 Functoids as mechanism for logic code to \call out"

(Note that this technique is not novel; it's a rather obvious application of existing ideas.)

154

Any language which supports functoids can provide a natural mechanism for logic pro-

gramming code to make function calls back out to the host language. In LC++,

SomeLogVar.is(SomeFunctoid, Arg1, ..., ArgN)

creates a logic term which, when run, calls

SomeFunctoid(Arg1, ..., ArgN)

(using the values of the current query environment for any arguments involving logic vari-

ables) and uni�es the result with SomeLogVar.

5.1.9 Domain-speci�c static analyses

Both FC++'s \lambda" and LC++ use the C++ technique known as \expression tem-

plates" to create a domain-speci�c embedded language. Supporting domain-speci�c static

analyses helps fortify both FC++ and LC++ as \embedded languages" rather than mere

\libraries".

Creating domain-speci�c static analyses typically requires the ability to do arbitrary

computation at compile-time. As a result, mechanisms like C++ templates or Scheme

macros are probably a necessity to do this well. For example, warning about one-time-use

variables in lassert()s (Section 3.2.2) requires the ability to walk an expression tree at

compile-time and count the number of occurances of each logic variable. We do this in

C++ by representing the entire structure of the expression within the type system, and

inspecting and doing computations on this type at compile-time.

In addition to a programmable macro system of some sort, a language supporting

domain-speci�c static analyses would ideally have a nice mechanism for reporting errors

or warnings when they are detected. C++ has no such mechanism|to report information

at compile-time, one must hijack the existing compiler diagnostic mechanisms. Often this

takes the form of instantiating a \broken" template with a type named by a really long

identi�er which describes the error: the compiler then reports an error in the template, and

hopefully includes the long identi�er in part of its diagnostic message as the only clue to

the user as to what really went wrong. This mechanism is adequate, and variations of the

155

basic theme can probably be used in any language with a programmable macro system.

The wise language designer would do well to provide a special mechanism by which macros

can create well-formatted warning/error messages that can refer to type information and

�le/line numbers.

5.2 Overview of useful language features

Our work shows that C++ is an expressive and extensible language. We have taken advan-

tage of a number of features that are relatively unique to C++ in our libraries. Notably, we

have utilized C++'s unusual (and Turing-complete) type system to do meta-programming,

enabling both return-type deduction and various kinds of static analyses. We have also taken

advantage of the overloading capabilities of the language, using ad-hoc function overload-

ing to implement features like currying, and using operator overloading to create expression

template syntax for lambda and monads. Utilizing these powerful features has enabled us to

overcome many weaknesses of \vanilla C++" when it comes to multiparadigm programming

support.

Though we rely upon many of the most powerful features of C++|features which

aren't typically found in other languages|throughout our implementation of the libraries,

Section 5.1 describes how many of our ideas can be implemented using more commonly

available language features. For instance, in many cases where we have utilized \ad-hoc

overloading" in C++, in fact the similar (but more constrained) feature of \type classes"

is suÆciently powerful.

Table 12 summarizes some of the information in Section 5.1. Speci�cally, the table il-

lustrates the \minimum language feature set" required to implement the various reusable

ideas. Note that the language features listed across the top of the table are not all or-

thogonal: ad-hoc overloading based on argument types (OT) is strictly more powerful than

typeclasses (TC), and there is no value in access to the representation of thunks (RT)

without side-e�ects (SE).

Note also that we think some of the ideas are implemented most conveniently as a

native programming language feature; when true, this is noted in the �nal column of the

156

Reusable idea PP 1F ON OT TC EF RT TT SE LF

Implicit currying x x x x

Explicit currying x x x x

In�x (one-op) x x x x

In�x (two-op) x x x x

Common list interface x x x

Function subtyping x x x x

List cache optimization x

Reuser optimization x x x x

Iteration optimization x

Ref-count optimization x

Logic results as lazy list x x

Calling out from logic code x

Static analyses x x

Table 12: Minimum features required for various reusable ideas.

Legend:

PP - Parametric Polymorphism

1F - 1st-class Functions

ON - Overloading based on Number of arguments

OT - Overloading based on Type of arguments

TC - Type Classes

EF - E�ects

RT - Access to Representation of Thunks

TT - Turing-complete Type system

SE - Ability to Statically report Errors

LF - Implementable as a native Language Feature

table as well. Speci�cally, subtyping for function types can be built into a language's type

system, and both currying and in�x syntax can be straightforwardly transformed into other

constructs by a compiler. Section 5.3.3 discusses the merits of native support for some

features in more depth.

5.3 Overall evaluations and discussion on language design

Despite what we have achieved with the FC++ and LC++ libraries, the C++ language

has many limitations that hindered our work in various ways. Indeed, when considering the

overview of our work, one may be reminded of that old saying about the dancing bear:

It's not how well the bear can dance... it's that the bear can dance at all!

157

At times, C++ has been quite a bear.
1
Indeed, the initial reaction to our work is often

surprise (that such things are possible within C++).

In this section we will discuss limitations imposed by C++ and their implications for

extensibility and multiparadigm programming. We also o�er some general advice to design-

ers of future languages, in the hope that new languages will exhibit the expressive power

and extensible capabilities of C++, without all of its associated baggage.

We begin, however, with a high-level evaluation of our libraries. A look at the \big

picture" helps highlight which C++ limitations actually caused problems and which go

relatively unnoticed.

5.3.1 Overall evaluation of FC++ and LC++

Though C++ has a number of limitations that manifest themselves in our libraries, we

nevertheless think the libraries are �t for \real world" use under certain conditions. Here we

briey summarize those conditions and point out the biggest shortcomings of the libraries.

FC++ is a good choice for most programming projects that require both functional and

object-oriented programming support. Though the syntax of FC++ (and C++ in general)

is more heavyweight than that of most functional languages (mostly due to the need for

explicit type annotations), the library is quite expressive, and the interface between the two

paradigms is practically seamless. Furthermore, FC++ has an eÆcient implementation,

which means it can succeed even on projects for which run-time performance is a major

consideration. As we discussed in Section 2.4.3, FC++ has been used successfully on a few

(third-party) projects, which lends support to our evaluation.

A few drawbacks of the FC++ library do stand out, though. The �rst is verbosity: the

lack of type inference (or of builtin polymorphic function types) forces extra annotations

when de�ning Sigs. Next, C++ lacks a builtin lambda, and though our lambda library

is expressive, it is a little awkward and verbose. Finally, error diagnostics issued by the

compiler are sometimes quite poor. We discuss a number of limitations in Section 2.6, but

only those few mentioned here are particularly noticeable to clients.

1Or perhaps \quite a bear to bear".

158

LC++ is useful for some programming projects that require both logic and object-

oriented programming support. Owing to our naive implementation, LC++ is not well-

suited for projects that require good run-time performance from logic queries. Furthermore,

the restriction that LC++ functors be monomorphic prevents the implementation of certain

designs. As with FC++, error diagnostics from the compiler may be poor. Nevertheless,

for many projects where performance of logic queries is not a high priority, LC++ is a good

choice. The syntax is natural and concise, and the interface with other paradigms is smooth.

The only noticeable limitations stemming from C++ are the poor error diagnostics and

the monomorphism restriction for functors (polymorphic functors would require virtual

template functions, a feature notably absent in C++).

Finally, we note that both FC++ and LC++ support their paradigms in such a way

that those paradigms are not \subservient" to C++ and the imperative/OO paradigm.

That is, it is perfectly reasonable to use these libraries for projects where either functional

or logic programming is the dominant paradigm in the design and implementation. Each

paradigm is capable of being the \leader" of the overall application; the library interfaces

enable alternate-paradigm code to be called selectively, just in those situations that merit

it.

5.3.2 C++ capabilities and limitations

Though only a few C++ limitations caused our libraries to have visible warts, there are a

number of limitations which a�ect the overall extensibility of the language. We now discuss

those limitations in more depth, based on our experience developing our libraries. Along

the way, we also point out a few notable capabilities of the language.

The C++ type system has been both a blessing and a curse. Though templates pro-

vide both Turing-completeness (enabling meta-programming) and arbitrary-rank paramet-

ric polymorphism, the design of templates in C++ creates many limitations.

First among the limitations with templates is the fact that they exist \outside" the

type system of the language. The C++ type system is e�ectively monomorphic; templates

behave like macros to create multiple instances of monomorphic functions and classes based

159

on a single piece of cookie-cutter code. This fact, coupled with the inability to create

virtual template functions in C++, forced functoids to be represented with DBCTAS,

and as a result, one cannot create run-time variables with polymorphic types. As described

in Section 2.6, this means that some very simple examples involving polymorphic data types,

such as

-- Haskell code: a list of polymorphic functions

some_list_fxns :: [[a] -> [a]]

some_list_fxns = [tail, init]

cannot be realized in C++. It is both surprising and noteworthy that this limitation|which

on its face appears to be crippling|has been only a minor annoyance. For the vast majority

of programs we have encountered, the \macro approach" to representing polymorphism has

been suÆcient.

A related limitation in the C++ type system is the lack of return-type deduction or

type inference. This lack necessitates our Sigs in FC++; though Sigs accomplish what is

necessary, it is annoying and potentially error-prone to have to add those (often redundant)

type annotations manually. Fortunately, this limitation of C++ is well-acknowledged. As

a result, the Boost C++ library community has created an \ad-hoc standard" version of

our Sigs, called result_of, to deal with this issue in the short term [69]. Future versions

of C++ will undoubtedly have some kind of typeof operator, so that one may just say

typeof(an_expression) to have the type deduced automatically, but for now this limita-

tion does not go unnoticed.

One minor limitation that also relates to the type system deals with the arity of func-

tions and templates. C++, like many languages, allows functions (and templates) to have

multiple arguments. (Compare this to languages like Haskell, where every function has

exactly one argument, and a \two-argument function" is actually a one-argument function

that returns another one-argument function.) As a result, one must explicitly write separate

classes or function overloads to deal with multiple arities. Witnesses to this abound in our

libraries; see for example the FunN indirect functoids in FC++ or the FUNN functors in

160

LC++. Since a di�erent function (or class, or template) must be written for each desired

N, this creates a �xed bound on the number of arguments supported by the library. In both

FC++ and LC++ we have provided each such entity up to arity 3, which is large enough

for most programs, but creates major practical problems for programs that need to deal

with higher-arity entities.

It should be noted that there is no way to use template meta-programming to generate

functions with arbitrary arities. It is possible to use a combination of the C++ preprocessor

and template meta-programming, so that one can change the upper limit just by saying:

#define MAX_ARITY 10

Indeed, this approach is used by some of the Boost libraries. However this strategy has

weaknesses as well: it requires maintaining some truly awful-looking code in the library,

and it can also signi�cantly lengthen compile-times.

The lack of a true lambda in C++ is an obvious impediment to functional programming.

Various lambda libraries address this weakness, but as described in Section 2.3.1, all C++

lambda libraries have important limitations. A language that seamlessly supports functional

programming needs to have a native lambda mechanism.

C++ has a great many operators, most of which are overloadable. Nonetheless, it would

be nice if C++ supported user-de�ned operators. When creating our lambda and monad

syntax extensions, only a limited number of choices were available based on the overloadable

operators. Despite the limitations C++ has on overloading operators, we note that the non-

in�x binary operators, namely operator() and operator[], were very useful. A number of

languages support the de�nition of arbitrary in�x operators, but \bracketing" operators are

also useful to have at one's disposal when designing syntactic extensions within a library.

C++ lacks automatic memory management; memory must be allocated and freed using

the operators new and delete. Though manual memory management has been eschewed by

almost every modern language, C++ demonstrates that it is still a tenable design choice.

Memory issues are absent from the interfaces to our libraries, and new and delete are only

called in a handful of locations inside the library implementation. A few features|stack

161

allocation, constructor/destructor pairs, and good reference-counting pointer libraries for

managing non-cyclical data structures|make it reasonable to manage memory \by hand"

in C++. Furthermore, the lack of a garbage collector (and associated runtime components)

improves performance; reference [34] demonstrates that even modern approaches to garbage

collection su�er signi�cant performance penalties under modest memory pressure.

Though the C++ type system is Turing-complete (thanks to templates), C++ is nev-

ertheless a poor language for meta-programming. C++ meta-programs are diÆcult to

write, more diÆcult to read, and often slow down compile-times considerably. The ability

to do meta-programming has been indispensable for various aspects of our work, but the

meta-programming facility provided by C++ discourages programmers from using it unless

absolutely necessary.

A related problem is that of diagnosing errors in template meta-programs. There are no

good tools to help debug C++ template meta-programs. Furthermore, even after a template

meta-program is debugged and made available within a library, it is hard to get reasonable

diagnostic error messages when clients try to instantiate templates with the wrong types.

Though poor diagnostic messages in the face of type errors are common to many languages

with complicated type systems, in C++ the only way to (meta-)programmatically generate

error messages at compile-time is to hijack the existing compiler diagnostics. As a result,

when it comes to error messages, library clients often cannot be shielded from the details

going on \under the hood". Both this problem and the one described in the previous

paragraph stem from the fact that template meta-programming in C++ was largely a

historical accident. Many problems could be solved were C++ templates redesigned from

scratch, but given the existing design enshrined in the language standard, it is unlikely that

meta-programming facilities will signi�cantly improve in the foreseeable future.

5.3.3 Language design discussion

Our experience extending C++ to support functional and logic programming has provided

some insights into the design of extensible languages. We summarize some of what we have

learned and make suggestions for how an ideal extensible language should be designed.

162

For statically-typed languages, an expressive native type system provides a foundation

on which to build. Bounded polymorphism|both parametric and existential|is necessary

to realize a variety of exible designs for various applications. Polymorphic types should be

expressible directly within the type system (as opposed to C++, where templates e�ectively

behave as macros for de�ning sets of monomorphic types) to obtain the most exibility. Nev-

ertheless, as we mentioned in the previous subsection, we have found C++-style parametric

polymorphism to be suÆciently expressive to implement most designs. Variables ranging

over polymorphic functions are not as indispensable as they �rst appear.

Furthermore, though a type system with direct support for polymorphic functions is

more expressive and convenient (note that such a type system eliminates DBCTAS), there

are performance trade-o�s. Polymorphic variables must be indirectly bound to functions;

as with FC++ indirect functoids, this means that call must be virtual. Though the

overhead of a virtual (indirect) function call is not too great, there are more subtle per-

formance penalties as well. If polymorphic functions undergo a uniform translation, where

each polymorphic method is translated into a single piece of machine code containing in-

direct calls (the commonest implementation), then a uniform data representation must be

chosen (typically by passing all arguments via pointers, which eliminates the possibility

of call-by-value and stack allocation) and other optimizations, like inlining, are also ruled

out. In contrast, C++ templates compile into multiple bits of machine code|one for each

set of types a template is instantiated with. This potentially increases the overall code

size (if a single template has many instantiations), but the increased specialization leads

to better performance, due to fewer indirections, stack allocation, and more optimization

opportunities.

An extensible language should provide a native lambda facility. Lambda is essential to

functional programming, and it has great utility in a variety of other contexts as well. Our

experience shows that lambda is extremely diÆcult to mimic well via a library. However,

just as with the type system issues previously discussed, lambda itself can have a substantial

negative impact on performance. Since a lambda potentially captures its whole environment,

a compiler needs good escape analysis ([5, 15, 75]) to determine what data can be allocated

163

on the stack. Alternatively, an e�ect-ful language may decide to do lambda capture \by

value", using a technique similar to FC++'s lambda; such an approach easily enables stack-

allocated data. Section 2.3.1.2 discusses the design trade-o�s of di�erent lambda capture

semantics.

Currying is useful, both in its implicit and explicit forms (as de�ned in Section 5.1.2).

Some languages do provide implicit currying \for free" (by virtue of all functions taking

a single argument). We think that an extensible language should provide both forms as

a native feature. Though we have demonstrated how currying can be implemented within

libraries, providing it as a native language feature is relatively low-cost for the language

implementer (curried function calls can easily be rewritten as lambdas) and may provide

more opportunities for optimizations within the native language compiler. As with lambda,

the choice of \by value" versus \by reference" for curried arguments has an impact on

both the semantics and the performance of the feature; reference [39] discusses these design

choices as well as the interaction of currying and side-e�ects.

Though we have utilized ad-hoc overloading throughout our libraries, we hesitate to rec-

ommend this feature for extensible languages. Ad-hoc overloading provides great power for

library implementers, but it comes with a trade-o�. Ad-hoc overloading tends to interact

with other language features; most notably it complicates a language's name-lookup rules

and it can easily lead to subtle ambiguities. We think that a combination of more con-

strained mechanisms, such as type classes (which enable a single function to be applied to

di�erent types of arguments) and namespaces (which enable a function name to be reused

with a di�erent meaning in another module/context), is likely to provide suÆcient exibility

to library designers, all with far less complexity.

A related topic involves operators. Though the previous paragraph does not condone ad-

hoc overloading, we do think that user-de�nable operators are extremely useful. Operators

enable library authors to export functionality with syntactic concision, and concision is an

important design goal for creators of both languages and libraries. Built-in operators should

be able to be rede�ned (in other modules/namespaces of course, to avoid conicts), and

new operators should be de�nable just as new function names are.

164

In�x function syntax can be provided in a library (given suitable other features, al-

ready described), but we think that in�x is best implemented natively. As with currying,

transforming in�x syntax into the corresponding pre�x function call is a trivial transforma-

tion for a compiler, and doing the transformation natively may create more optimization

opportunities.

Though call/cc and uni�able logic variables would be useful features for implementing

logic programming, we do not see them as required native features in an ideal extensible

language. Other researchers experience suggests that call/cc cannot easily be \grafted on"

to an existing language in an eÆcient manner. In light of our demonstration that lazy lists

provide a good alternative for processing logic query results, we don't think it merits being

labelled an indisposable feature for supporting logic programming. Similarly, uni�able logic

variables can be provided adequately by a library.

An eÆcient meta-programming facility of some sort is essential. For a language to

be truly extensible, it should be possible to programmatically analyze and manipulate

code at compile-time, and to issue diagnostics based on programmed analyses. Typically

meta-programming is provided via a macro system; C++ is relatively unique in that the

type system itself is a pure-functional Turing-complete language, with types as compile-

time values and templates as compile-time functions. Despite many shortcomings with

C++'s (lack of) design for meta-programming, we do think that \computing within the type

system" is an interesting and tenable approach. It would be interesting to see an extensible

language that provided a well-designed Turing-complete type system, where meta-programs

were more straightforward to read and write, and where there was a native facility to issue

compile-time error diagnostics from within a meta-program.

(A closer look at Table 12 helps summarizes some of our advice. While we recommend

that a number of the more \syntactic" features be implemented natively, one can see that

three native features|parametric polymorphism, �rst class functions, and side-e�ects|are

suÆcient to implement most of our other reusable ideas.)

Language design is an exercise in trade-o�s, and language designers must exercise a

good engineering aesthetic to succeed. We have outlined our recommendations for an ideal

165

extensible language based on our experience extending C++, so that this work might inform

future language designers.

166

CHAPTER VI

CONCLUSIONS

Here we summarize our research contributions and suggest interesting directions for further

research.

6.1 Contributions

In Chapter 1, we stated our thesis:

Constructs for functional and logic programming can be smoothly integrated

into an existing object-oriented language. We demonstrate this in the context

of C++, and show that the resulting multiparadigm language has useful appli-

cations in real-world domains.

Chapters 2 and 3 supported that thesis by describing the FC++ and LC++ libraries.

These libraries demonstrated a smooth integration of the functional and logic paradigms

into C++:

� Both FC++ and LC++ support the major features of their respective paradigms,

� Each library preserves the concision and natural syntax found in languages speci�c to

that paradigm,

� The interfaces between the paradigms utilize the same static type system and data

representations, so that code from di�erent paradigms can be smoothly integrated,

� The libraries support static analyses and error-checking speci�c to the respective

paradigms, and

� The libraries have practical applications in real-world domains (in the case of FC++,

the applications are numerous and our implementation is very eÆcient).

167

Furthermore, Chapter 5 demonstrates that many of our ideas can be applied outside

of C++. A number of our major ideas are re-cast in terms of more commonly-available

language constructs. Restating things in these more general terms clari�es the conceptual

contributions of our work.

6.2 Future work

Our work suggests a number of interesting possibilities for future work in a few areas,

including multiparadigm programming and extensible languages.

At a high level, our work demonstrates the value of combining paradigms. The object-

oriented and functional paradigms are especially synergistic. Whereas we have demon-

strated how functional programming can improve a number of object-oriented design pat-

terns, we believe there are even more yet-undiscovered applications|examples where a

functional approach simpli�es the structure or optimizes the implementation of a tradi-

tional object-oriented design.

With regards to C++, our work has demonstrated the limits of the extensibility capa-

bilities of the language. This work has already helped inspire some other domain-speci�c

embedded libraries in C++, and we expect more such libraries will be developed as the

C++ language becomes more well-understood. Furthermore, a clear understanding of the

most pressing current limitations of C++ is helping to pave the way for the next version of

the language. Whereas some future extensions (such as a typeof operator) are already be-

coming standardized, others (such as language support for \concepts") still require a great

deal more research.

With regards to LC++ in particular, some clear avenues remain, including adding sup-

port for a few more common logic programming features (like Prolog's cut operator) and

providing a more eÆcient implementation. It also remains to be seen if a library like LC++

can be usefully applied in application domains that are not traditionally considered the

domain of logic programming (in a way similar to how FC++ was applied to OO design

patterns).

Our experience developing libraries in C++ has suggested which native language features

168

are most useful in an extensible language. Section 5.3.3 discussed this in detail. Our work

can inform the designs of future extensible languages|those with a small, well-chosen set

of native features that enable many new capabilities to be smoothly added as libraries.

Replicating the work we have done (extending C++ with FC++ and LC++) might be a

useful benchmark to test the extensibility of other languages.

Finally, it should be noted that aethetics are important to both language designers

and library designers. In addition to having a deep understanding of various paradigms,

performance issues, potential feature interactions and such, a good designer has the ability

to come up with concise and precise syntax for expressing programmers' intentions. Perhaps

future investigations will lead to a better understanding of this oft-overlooked aspect of the

design of languages and libraries, giving future designers a better chance at success.

169

REFERENCES

[1] O. Agesen, S. Freund, and J. Mitchell, \Adding type parameterization to the java

language", Proc. Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA) 1997, 49-65.

[2] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied, Addison-Wesley Professional, 2001.

[3] S.R. Alpert, K. Brown, B. Woolf, The Design Patterns Smalltalk Companion, Addison-

Wesley, 1998.

[4] G. Baumgartner, K. L�aufer, V.F. Russo, \On the interaction of object-oriented design

patterns and programming languages", Tech. Report CSD-TR-96-020, Dept. of Comp.

Sci., Purdue University, February 1996.

[5] B. Blanchet, \Escape Analysis for Object-Oriented Languages, Applications to Java",

Proc. Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)

1999.

[6] Boehm-Demers-Weiser conservative garbage collector.

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

[7] The Boost website: http://boost.org/

[8] G. Bracha, \Add generic types to the Java programming language", Java Speci�cation

Request (JSR) 14, Sun Microsystems, 1999.

[9] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, \Making the future safe for the

past: Adding genericity to the Java programming language", Proc. Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA) 1998.

[10] T. Budd. Multiparadigm programming in Leda. Addison-Wesley, Reading, Mas-

sachusetts, 1995.

[11] T. Budd. \The Return of Jensen's Device", Multiparadigm Programming with Object-

Oriented Languages (MPOOL), Malaga, Spain, June 2002.

[12] J. Brichau, K. Gybels, and R. Wuyt. \Towards Linguistic Symbiosis of an Object-

Oriented and a Logic Programming Language", Multiparadigm Programming with

Object-Oriented Languages (MPOOL), Malaga, Spain, June 2002.

[13] K. Briggs, The XR Exact Real Home Page.

http://www.btexact.com/people/briggsk2/XR.html

[14] C. Chambers, B. Harrison, and J. Vlissides, \A debate on language and tool support

for design patterns", ACM Symposium on Principles of Programming Languages, 2000

(PoPL 00).

170

[15] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midki�, \Escape Analysis

for Java", Proc. Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA) 1999.

[16] K. Czarnecki, and U. Eisenecker, Generative Programming. Addison-Wesley, 2000.

[17] Curry: A Truly Integrated Functional Logic Language

http://www.informatik.uni-kiel.de/�mh/curry/

[18] F. Dabrowksi, and F. Loulergue. \Functional Bulk Synchronous Parallel Programming

in C++."Applied Informatics 2003, Symposium on Parallel and Distributed Computing

and Networks (PDCN 2003).

[19] L. Dami, "More Functional Reusability in C/C++/Objective-C with Curried Func-

tions", Object Composition, Centre Universitaire d'Informatique, University of

Geneva, pp. 85-98, June 1991.

[20] B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey. \An

overview of HAL." Proceedings of Principles and Practice of Constraint Programming,

pages 174{188, October 1999.

http://www.csse.monash.edu.au/�mbanda/hal/index.html

[21] S. Edwards. \MPC++ Resources", class web page, available at

http://courses.cs.vt.edu/�cs5314/Spring02/mpcpp.php

[22] The Escher programming language

http://www.cs.bris.ac.uk/�jwl/escher.html

[23] The FC++ web page:

http://www.cc.gatech.edu/~yannis/fc++/

[24] J. Fokker, Functional Programming, http://

haskell.org/bookshelf/functional-programming.dvi

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

[26] R. Garcia, J. J�arvi, A. Lumsdaine, J. Siek, and J. Willcock. A comparative study of lan-

guage support for generic programming. Proceedings of the 18th ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications (OOP-

SLA'03), pp.115-134. ACM Press, Oct. 2003.

[27] T. G�eraud and A. Duret-Lutz, \Generic programming redesign of patterns", in Proc.

European Conf. on Pattern Languages of Programs, 2000 (EuroPLoP'2000).

[28] The Glasgow Haskell Compiler homepage:

http://www.haskell.org/ghc/

[29] The G�odel Programming Language

http://www.cs.bris.ac.uk/�bowers/goedel.html

[30] D. Gregor. The Boost function library.

http://www.boost.org/doc/html/function.html

171

[31] J. de Guzman, et al. The Boost Spirit Library. Available at

http://www.boost.org/libs/spirit/index.html

[32] Haskell 98 Language Report. Available online at

http://www.haskell.org/onlinereport/

[33] J. Hamilton, "Montana Smart Pointers: They're Smart, and They're Pointers", Proc.

Conf. Object-Oriented Technologies and Systems (COOTS), Portland, June 1997.

[34] M. Hertz and E. Berger, \Automatic vs. Explicit Memory Management: Settling the

Performance Debate". Technical Report TR-04-17, Dept. of Computer Science, Uni-

versity of Massachusetts, 2004.

[35] The Hugs homepage:

http://www.haskell.org/hugs/

[36] G. Hutton, and E. Meijer. \Monadic parsing in Haskell" Journal of Functional Pro-

gramming, 8(4):437-444, Cambridge University Press, July 1998.

[37] ISO/IEC 14882: Programming Languages { C++. ANSI, 1998.

[38] J. J�arvi and G. Powell. The Boost Lambda Library. Available at

http://boost.org/libs/lambda/doc/index.html

[39] J. J�arvi and G. Powell \Side e�ects and partial function application in C++". Mul-

tiparadigm Programming with Object-Oriented Languages (MPOOL), Budapest, Hun-

gary, June 2001.

[40] Javasoft, Java Inner Classes Speci�cation, 1997. In

http://java.sun.com/products/jdk/1.1/docs/ .

[41] Jinni: Java INference Engine and Networked Interactor.

http://www.binnetcorp.com/Jinni/

[42] R. Johnson and B. Foote, "Designing Reusable Classes", Journal of Object-Oriented

Programming, 1(2): June/July 1988, 22-35.

[43] S. P. Jones and P. Wadler. \Imperative functional programming," 20th Symposium on

Principles of Programming Languages, ACM Press, Charlotte, North Carolina, January

1993.

[44] S. P. Jones and J. Hughes (eds.), Report on the Programming Language Haskell 98,

available from www.haskell.org, February 1999.

[45] A. J. Kfoury and J. Tiuryn, "Type reconstruction in �nite rank fragments of the second-

order lambda-calculus", Information and Computation, 98(2):228-257, June 1992.

[46] O. Kiselyov, "Functional Style in C++: Closures, Late Binding, and Lambda Abstrac-

tions", poster presentation, Int. Conf. on Functional Programming, 1998. See also:

http://www.lh.com/~oleg/ftp/ .

[47] S. Krishnamurthi, M. Felleisen, D. P. Friedman, \Synthesizing object-oriented and

functional design to promote re-use", European Conference on Object-Oriented Pro-

gramming (ECOOP), Brussels, Belgium, July 1998.

172

[48] T. K�uhne, A Functional Pattern System for Object-Oriented Design, Verlag Dr. Kovac,

Hamburg, 1999.

[49] K. L�aufer, \A Framework for Higher-Order Functions in C++", Proc. Conf. Object-

Oriented Technologies (COOTS), Monterey, CA, June 1995.

[50] The LC++ web page:

http://www.cc.gatech.edu/~yannis/lc++/

[51] J. Maddock. Boost library: static assertions. Available at

http://boost.org/libs/static_assert/static_assert.htm

[52] B. McNamara and Y. Smaragdakis, \FC++: Functional Programming in C++", Proc.

International Conference on Functional Programming (ICFP), Montreal, Canada,

September 2000.

[53] B. McNamara, and Y. Smaragdakis. \Functional Programming with the FC++ li-

brary" Journal of Functional Programming, to appear.

[54] B. McNamara, and Y. Smaragdakis. \Static Interfaces in C++" Workshop

on C++ Template Programming October 2000, Erfurt, Germany. Available at

http://www.oonumerics.org/tmpw00/

[55] B. McNamara, and Y. Smaragdakis. \Syntax sugar for FC++: lambda, in�x, monads,

and more" DPCOOL'03 Uppsala, Sweden. Available at

http://www.cc.gatech.edu/~yannis/fc++/

[56] E. Meijer and L. Kettner, "C++ as a Functional Language", discussion in Dagstuhl

Seminar 99081. See:

http://www.cs.unc.edu/~kettner/pieces/flatten.html .

[57] The Mercury Project. http://www.cs.mu.oz.au/research/mercury/

[58] The Mozart Programming System. http://www.mozart-oz.org/

[59] A. Myers, J. Bank and B. Liskov, \Parameterized types for Java", ACM Symposium

on Principles of Programming Languages, 1997 (PoPL 97).

[60] M. Odersky and P. Wadler, "Pizza into Java: Translating theory into practice", ACM

Symposium on Principles of Programming Languages, 1997 (PoPL 97).

[61] J. Siek and A. Lumsdaine. \Concept Checking: Binding Parametric Polymorphism in

C++" Workshop on C++ Template Programming October 2000, Erfurt, Germany.

Available at http://www.oonumerics.org/tmpw00/

[62] Y. Smaragdakis and B. McNamara, \FC++: Functional Tools for Object-Oriented

Tasks" Software Practice and Experience, August 2002.

[63] A. Stepanov and M. Lee, "The Standard Template Library", 1995. Incorporated in

ANSI/ISO Committee C++ Standard.

[64] J. Striegnitz, FACT! The Functional Side of C++,

http://www.fz-juelich.de/zam/FACT.

173

[65] B. Stroustrup, "A History of C++: 1979-1991", in T. Bergin, and R. Gibson (eds),

Proc. 2nd ACM History of Programming Languages Conference, pp. 699-752. ACM

Press, New York, 1996.

[66] S. Thompson, \Higher-order + polymorphic = reusable", unpublished, May 1997. Avail-

able at: http://www.cs.ukc.ac.uk/pubs/1997/224 .

[67] K. Thorup, \Genericity in Java with virtual types", European Conference on Object-

Oriented Programming (ECOOP) 1997, 444-471.

[68] The Toy System. http://titan.sip.ucm.es/toy/

[69] \A uniform method for computing function object return types"

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1454.html

[70] T. Veldhuizen. \Expression Templates," C++ Report, Vol. 7 No. 5 June 1995, pp. 26-

31. See also

http://osl.iu.edu/�tveldhui/papers/Expression-Templates/exprtmpl.html

[71] P. Wadler, "Comprehending Monads", Proc. ACM Conf. on Lisp and Functional Pro-

gramming, p. 61-78, 1990.

[72] P. Wadler, W. Taha, and D. MacQueen, \How to add laziness to a strict language,

without even being odd", Workshop on Standard ML, Baltimore, September 1998.

[73] P. Wadler. \Comprehending monads," Mathematical Structures in Computer Science,

Special issue of selected papers from 6th Conference on Lisp and Functional Program-

ming, 2:461-493, 1992.

[74] P. Wadler. \Monads for functional programming." J. Jeuring and E. Meijer, editors,

Advanced Functional Programming, Springer Verlag, LNCS 925, 1995.

[75] J. Whaley and M. Rinard, \Compositional Pointer and Escape Analysis for Java Pro-

grams", Proc. Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA) 1999.

174

