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SUMMARY 
 
 
 

Bidirectional reflectance is a fundamental radiative property of rough surfaces. 

Knowledge of the bidirectional reflectance is crucial to the emissivity modeling and heat 

transfer analysis. This thesis concentrates on the modeling and measurements of the 

bidirectional reflectance for microrough silicon surfaces and on the validity of a hybrid 

method in the modeling of the bidirectional reflectance for thin-film coated rough 

surfaces.  

The surface topography and the bidirectional reflectance distribution function 

(BRDF) of the rough side of several silicon wafers have been extensively characterized 

using an atomic force microscope and a laser scatterometer, respectively. The slope 

distribution calculated from the surface topographic data deviates from the Gaussian 

distribution. Both nearly isotropic and strongly anisotropic features are observed in the 

two-dimensional (2-D) slope distributions and in the measured BRDF for more than one 

sample. The 2-D slope distribution is used in a geometric-optics based model to predict 

the BRDF, which agrees reasonably well with the measured values. The side peaks in the 

slope distribution and the subsidiary peaks in the BRDF for two anisotropic samples are 

attributed to the formation of {311} planes during chemical etching. The correlation 

between the 2-D slope distribution and the BRDF has been developed. 

A boundary integral method is applied to simulate the bidirectional reflectance of 

thin-film coatings on rough substrates. The roughness of the substrate is one dimensional 

for simplification.  The result is compared to that from a hybrid method which uses the 

geometric optics approximation to model the roughness effect and the thin-film optics to 
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consider the interference due to the coating. The effects of the film thickness and the 

substrate roughness on the validity of the hybrid method have been investigated. The 

validity regime of the hybrid method is established for silicon dioxide films on silicon 

substrates in the visible wavelength range.  

The proposed method to characterize the microfacet orientation and to predict the 

BRDF may be applied to other anisotropic or non-Gaussian rough surfaces. The 

measured BRDF may be used to model the apparent emissivity of silicon wafers to 

improve the temperature measurement accuracy in semiconductor manufacturing 

processes. The developed validity regime for the hybrid method can be beneficial to 

future research related to the modeling for thin-film coated rough surfaces. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

 
The bidirectional reflectance distribution function (BRDF) is a fundamental 

property of rough surfaces, and knowledge of the BRDF is crucial to the emissivity 

modeling and heat transfer analysis (Siegel and Howell, 2002). The study of the BRDF is 

also important to optical engineering (Bennett and Mattsson, 1999) and object rendering 

(He et al., 1991). The BRDF of a surface can be predicted by solving the Maxwell 

equations if the surface roughness is fully characterized. Since the rigorous 

electromagnetic-wave solution generally requires a huge memory and a high-speed CPU, 

this approach is practically applicable to one-dimensional (1-D) rough surfaces only, 

though in some cases, solutions for two-dimensional (2-D) rough surfaces have been 

obtained  (Saillard and Sentenac, 2001). Thus, it is common to use approximation 

methods, such as the Rayleigh-Rice perturbation theory, the Kirchhoff approximation, 

and the geometric optics approximation (Beckmann and Spizzichino, 1987; Tang et al., 

1997). These approximations are only applicable within certain ranges of roughness and 

wavelength.  

The Rayleigh-Rice perturbation theory can be used for relatively smooth surfaces. 

The Kirchhoff approximation is applicable when the surface profile is slightly undulating 

(i.e., without sharp crests and deep valleys). The geometric optics approximation is 

appropriate to surfaces whose root-mean-square (rms) roughness and autocorrelation 

length are greater than the wavelength of the incident radiation. Recent research has 

found that the geometric optics approximation can also be used for rough surfaces whose 
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rms roughness and autocorrelation length are comparable to the incidence wavelength 

(Tang et al., 1997). The geometric optics approximation can be easily incorporated into a 

statistical and Monte-Carlo method (Tang and Buckius, 2001; Zhou and Zhang, 2003). 

There exists good agreement between the simulation results employing the geometric 

optics approximation and the rigorous electromagnetic-wave solution (Tang and Buckius, 

1998). However, the simulation based on the geometric optics approximation requires 

much less computational resources and takes much less time than that based on the 

rigorous solution (Tang and Buckius, 1998).  

Since the BRDF is intrinsically dependent on the surface statistics, several 

analytical expressions are available to approximately correlate the surface statistics to the 

BRDF (Torrance and Sparrow, 1967; Bennett and Mattsson, 1999; Caron et al., 2003). 

The slope distribution function is a key input in the analytical models based on the 

geometric optics approximation. Before the invention of the atomic force microscope 

(AFM), the surface profile was usually measured with a mechanical profiler that scans 

the surface line-by-line. Therefore, the estimated 1-D slope distribution function may 

miss important information of the surface isotropy. Although some mechanical profilers 

can measure rough surfaces with a vertical resolution of a few nanometers, the lateral 

resolution is usually on the order of a micrometer due to the large radius of the stylus 

probe (Bennett and Mattsson, 1999; Thomas, 1999).  On the other hand, the radius of 

curvature of an AFM probe tip is in the range of 20 - 60 nm; thus, the AFM can provide 

detailed information of the topography of a small area on the microrough surfaces with a 

vertical resolution of sub-nanometers and a lateral resolution around 10 nm 

(Wiesendanger, 1994). Consequently, it is possible to evaluate the area statistics from the 
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AFM topography measurement. Although attention has been paid to compare the surface 

statistics determined from the topography measurements to those obtained from the light 

scattering experiments (Cao et al., 1991; Bawolek et al., 1993; Stover et al., 1998; Nee et 

al., 2000), little has been done to correlate the area statistics evaluated from the AFM 

topographic data to the measured BRDF for relatively rough surfaces.  

In general, surface roughness is assumed to satisfy the Gaussian statistics in the 

derivation of the BRDF model and for the surface generation in the Monte Carlo 

simulation (Beckmann and Spizzichino, 1987; Tang et al., 1998). Furthermore, the 

surface statistics of the 2-D rough surface are mostly assumed to be isotropic so that the 

autocorrelation function is independent of the direction. However, the Gaussian 

distribution may miss important features of natural surfaces because this function does 

not allow any abrupt event in the rapidly decreasing tails (Guérin, 2002). Very few papers 

have been devoted to the BRDF of non-Gaussian and anisotropic 2-D rough surfaces. 

Shen et al. (2001) found that the BRDF models could not predict the subsidiary peak in 

the measured BRDF of the rough side of a silicon wafer, although reasonable agreement 

existed between the measurement results and the model predictions within a large angular 

region around the specular direction. This disagreement could be caused by the Gaussian 

distribution applied in the BRDF model. Therefore, it is important to examine the actual 

surface statistics of the rough side of silicon wafers so that a reasonable explanation may 

be provided for the occurrence of the subsidiary peak.  

Besides the surface roughness, thin-film coatings on the rough side of silicon 

wafers can also greatly change the BRDF. Researchers have applied a hybrid method in 

the modeling of thin-film coatings on rough substrates (Tang et al, 1999a). In the hybrid 
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method, thin-film optics is applied to model the interference effect due to the coating, and 

the ray-tracing algorithm based on the geometric optics approximation is used to model 

the scattering due to the surface roughness. The hybrid method is computationally 

effective since its formulation is very similar to that for a rough surface without thin-film 

coatings. Some agreement has been observed between the predictions using the hybrid 

method and the measurement results (Tang et al, 1999a). However, there is a dilemma 

between the two theories in the hybrid method. The geometric optics approximation is 

applicable to rough surfaces while thin-film optics is appropriate for a layer of coating 

with perfectly smooth interfaces. Therefore, it is very important to study the validity of 

the hybrid method so that the advantages of the hybrid method may be exploited in the 

BRDF modeling of thin-film coated rough surfaces.  

The motivations of this thesis are to model the BRDF of the rough side of silicon 

wafers from the actual surface statistics and to investigate the validity of the hybrid 

method. The topographic data measured with an AFM are analyzed to obtain the surface 

statistics. The measured surface statistics may be linked to the key parameters in the 

wafer manufacturing processes. The predicted BRDF from the measured surface statistics 

is compared with the measured BRDF to find the correlation between the surface 

statistics and the BRDF. The established correlation will help the application of the light 

scattering measurement in the surface roughness characterization. A reasonable 

explanation for the subsidiary peak observed for the silicon wafer may be provided. 

Furthermore, for the modeling of thin-film coated rough surfaces, the rigorous 

electromagnetic-wave solution is performed to study whether the hybrid method is valid. 



 5

The comparisons of simulation results from different methods will show the capability 

and the limitation of the hybrid method.  

The organization of this thesis is as follows. Chapter 2 provides a review of the 

silicon wafer manufacturing, roughness characterization instruments, and theoretical and 

experimental studies on the BRDF. Chapter 3 presents the roughness measurement and 

the statistical analysis on the topographic data. The 1-D slope distribution and the 2-D 

slope distribution are investigated in detail. Chapter 4 describes the three-axis automated 

scatterometer (TAAS) developed by Shen (2002) and the systematical characterization 

and further improvements on the TAAS. Chapter 5 applies a geometric optics model to 

predict the BRDF from the 1-D and the 2-D slope distribution functions. The predicted 

results are compared with the experimental findings. The correlations between the slope 

distribution and the BRDF are explained. The instrument effects and the inverse 

procedure are discussed. Chapter 6 compares the numerical simulation results using the 

rigorous electromagnetic-wave solution and the hybrid method. The effect of film 

thickness on the validity of the hybrid method is discussed. A validity regime is presented 

for a layer of silicon dioxide on a silicon substrate in the visible wavelength region. 

Finally, Chapter 7 summarizes the conclusions and the suggested future work.  
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
 

2.1 Silicon Wafer Manufacturing and Rapid Thermal Processing 

Silicon is the primary crystalline material in semiconductor manufacturing 

industry. A smooth silicon wafer can be produced by the following procedure. First, 

polysilicon is produced from sand by means of a complex reduction and purification 

process. High purity polycrystalline silicon is melted in a crucible. A seed of single 

crystal silicon is dipped into the melt and pulled out from the melt gradually.  The liquid 

rises with the seed due to surface tension and cools into a single crystalline ingot. Ends of 

the ingot are cropped, and the ingot is ground to a uniform diameter with a flat indicating 

the crystal orientation. Then the ingot is sliced into many silicon wafers. The sliced wafer 

is mechanically lapped to reduce surface roughness due to the saw cut. The lapped wafer 

is etched by a chemical solution to remove any remaining microcracks and surface 

damages. The etched wafer is polished to a mirror surface. Normally only one side of the 

silicon wafer is polished while the other side remains rough. Finally, the wafer is cleaned 

by deionized water and dried. 

It is common to deposit other materials on a silicon wafer for various applications. 

For example, the rough silicon wafer can have polysilicon coatings for protection and 

insulation. Some coatings on the rough side are beneficial to attract defects within the 

silicon wafer during annealing. 

Many steps in semiconductor manufacturing require thermal processing, such as 

the growth of films, annealing and so on (Timans, et al., 2000). For example, ion 
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implantation is a good method to tune the conductivity of silicon because of its inherent 

doping controls. The doped wafer has to be thermally annealed to restore the crystal 

structure and reduce the stress due to the implanting of heteroatoms (Timans, et al., 

2000). The general trend of thermal processing is to reduce the process temperature and 

duration time as much as possible in order to restrict the motion of atoms through 

diffusion (Timans, et al., 2000). Traditionally, the annealing process is performed within 

a batch furnace. Wafers in the batch furnace cannot be heated up uniformly because their 

edges heat up faster than their centers (Fan and Qiu, 1998). Furthermore, the temperature 

difference of the wall can affect the quality of the whole batch. Rapid thermal processing 

(RTP) is a promising way to replace the traditional batch furnace method since it 

provides flexibility to the temperature control. A RTP furnace can heat one individual 

wafer to a specified temperature in a short period of time mainly through radiation heat 

transfer. It can make all the points on the wafer experience the same temperature-time 

cycle as defined in the process recipe (Timans, et al., 2000).  

In many RTP furnaces, the temperature of the silicon wafer is monitored by a 

radiation thermometer viewing the rough side of the wafer. However, the determination 

of the spectral emissivity of a rough surface is very difficult.  Some research has been 

devoted to the modeling of the spectral hemispherical emissivity for a rough surface 

(Demont et al., 1982, Vandenabeele and Maex, 1992; Xu and Sturm, 1995; Bhushan et 

al., 1998; Zhou and Zhang, 2003). Besides the surface roughness, the thin-film coating 

can significantly change the emissivity. Bidirectional reflectance of coated surfaces can 

be very different from that of the substrate (Yeh, 1988; Sorrell and Gyurcsik, 1993). 

Furthermore, since the rough side of the wafer and the lower chamber of the RTP furnace 
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compose an enclosure, the apparent emissivity should be used to determine the 

temperature of the wafer (DeWitt el al., 1997; Zhang, 2000). In order to model the 

effective emissivity of the wafer, a thorough understanding of the bidirectional 

reflectance of the wafer surface is necessary.  

 

2.2 Roughness Measurement  

Real surfaces all show some extent of roughness. Roughness can be imagined as 

asperities (microfacets) on the surface from a microscopic view. The summation of the 

altitudes of the asperities with respect to the mean plane is zero. The lateral and vertical 

scales of the asperities can be very large, as peaks and valleys in a mountain, or can be 

very small, such as a small particle on a mirror. In this thesis, the roughness refers to the 

microroughness. The lateral and vertical dimensions of asperities on a microrough 

surface are in the order of micrometers.  

The pattern of light scattering can be greatly changed by surface roughness. If a 

surface is very smooth, like a mirror, most of the incidence light is reflected to the 

specular direction. If a surface is rough, the scattered radiation usually exists in the whole 

hemisphere above the surface. The surface profile of a deterministic rough surface can be 

described by a function. One of the specific groups of the deterministic surface is the 

periodic surface. The scattered radiation on a periodic surface can exist only in a finite 

number of directions instead of the whole hemisphere due to diffraction. However, in 

general, the precise definition equation of the surface profile is unknown or of little 

interest, the shape of the rough surface is described by a random function of space 

coordinates (Saillard and Sentenac, 2001). Only the random rough surface is studied in 
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this thesis. Since light scattering is strongly dependent on the surface roughness, it is 

crucial to study the statistics of real surfaces.  

We can roughly sense the surface roughness using the thumbnail and the eye. 

Both methods are completely subjective. Various types of instruments can be used to map 

the surface topography. Some instruments are following the tactile example of the nail, 

i.e., using a stylus probe. Some are mimicking the eye, i.e., using an optical method. The 

detailed information about the roughness instrumentation can be found in references 

(Whitehouse, 1997; Bennett and Mattsson, 1999; Thomas, 1999).  A short review is 

provided in the following for some commonly used instruments in the microelectronics 

industry and optical engineering.  

 

2.2.1 Mechanical Profiler 

As a stylus is dragged over a rough surface, it moves up and down when it rides 

over peaks and valleys on the surface. The deviation of the stylus from a reference (a 

skid) can be transformed to an electrical signal and the surface profile can be determined 

from the signal. The vertical resolution of the stylus profiler is around 1 nm. The lateral 

resolution is limited by the radius of the tip. The radius of curvature of a tip can be 2 µm, 

5 µm, and 10 µm according to the ISO standard (Thomas, 1999). The smallest radius of 

curvature of the tip can reach 0.2 µm (Bennett and Mattsson, 1999). Consequently, the 

shortest surface roughness wavelength that can be measured by the mechanical profiler is   

around 0.2 µm. One issue for the mechanical profiler is the load of the stylus. The force 

exerted by the stylus may be greater than 1 µN so that it may scratch or even damage the 

scanned surface. Another issue is that most mechanical profilers can only perform the 
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line scan, although a very limited number of models can perform the area scan. If area 

profiling is required, the scan time will be very long since the stylus has to raster the 

whole area.  

 

2.2.2 Scanning Probe Microscope 

The atomic force microscope (AFM) and the scanning tunneling microscope 

(STM) belong to the family of the scanning probe microscope (SPM) (Wiesendanger, 

1994). The name of the SPM comes from the probe, like a stylus in phonograph, rastering 

a sample. The birth of the SPM gives a marvelous way for scientists and engineers to 

view the fine feature in atomic scale.  

The first member of the SPM family is the STM. Although the STM can map the 

surface feature in marvelous vertical and lateral resolutions, the underlying physics 

determine that the STM can work only for conductive surfaces. Binning et al. (1996) 

introduced the first atomic force microscope. Figure 2.1 shows the principle of an AFM. 

When a sharp tip is very close to a sample, there is a repulsive force between the tip and 

the sample. This force can cause the bending of a cantilever where the tip is attached. In 

the first AFM, a technique similar to the STM was used to detect the deflection of the 

cantilever. In the current AFMs, an optical method is popular to detect the bending of the 

cantilever because it induces little noise into the microscope. Generally, the tip and the 

cantilever are made of silicon, silicon dioxide, or silicon nitride. The radius of the tip can 

be as small as 10 nm so that the AFM can map the fine features with an excellent lateral 

resolution. The vertical resolution of the AFM can achieve 0.1 nm. Because the tip has to 

raster scan a selected area, the scan rate of the AFM is usually slow. 
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Figure 2.1 Schematic drawing of an AFM. 

 

2.2.3 Optical Interferometric Microscope 

The optical interferometric microscope (OIM) exploits the wave behavior of light. 

The main part of the OIM is an interferometer. Light from a source is split into two parts 

by a beamsplitter in the interferometer. A part of the light is reflected back by the rough 

surface, and the other part is reflected by a reference surface. Because two lights are from 

the same coherent source and the optical paths are different, they can generate an 

interferogram, which represents the topography of the surface. The interferogram is 

pictured by a charged couple device (CCD) camera. Sophisticated hardware and software 

are necessary to extract the surface height information from the interferogram.  

The most popular interferometric techniques are the phase shift interferometry 

(PSI) and the scanning white light interferometry (SWLI) (Wyant et al., 1986). The light 

source in the PSI is a monochromatic source, and the PSI is applicable for slightly rough 

surfaces. The vertical resolution of the PSI is in the sub-nanometer range. If the surface is 

moderately rough (the height difference between the adjacent peak and valley is greater 

than a quarter of the selected wavelength), the PSI cannot result in a correct topographic 
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image for the surface. For relatively rough surfaces, the SWLI is a better way for 

roughness measurement. In the SWLI, the light source is a wide-band source instead of a 

monochromatic source. The basic principle of the SWLI is that the maximum intensity 

for white-light fringes occurs when the optical path difference is zero. When the optical 

path difference is varied, an intensity envelope is recorded for each point on the surface. 

The height information is deduced from the maximum in the intensity envelope. The 

vertical resolution of the SWLI is about 1-2 nm, larger than that of the PSI. The OIM has 

a large field of view and the image can be obtained in a few seconds. Since the 

interferogram is dependent on the phase or the intensity of the reflected light, the surface 

condition may deteriorate the measurement result if the reflectivity is not uniform over 

the scan area. Furthermore, the OIM may not be applicable to surfaces with steep 

asperities since the reflected light may be not collected by the optical system.  

 

2.2.4 Other Probe Techniques  

The instruments mentioned in Sec. 2.2.1-2.2.3 can provide the topographic data 

for the measured surface. Some other instruments do not provide the topographic data, 

but provide the statistical information of the roughness (Stover, 1995; Bennett and 

Mattsson, 1999). Total integrated scattering (TIS) and angle-resolved scattering are two 

examples of techniques using the light scattering method. A reverse procedure is 

necessary to obtain the roughness parameters from the available models. A detailed 

discussion of the regime of surface roughness parameters measurable with the light 

scattering method can be found in Vorburger et al. (1993). 
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2.3 Theoretical Study of the Bidirectional Reflectance 

When radiation is reflected by a rough surface, the reflected energy will be 

distributed in the hemisphere, and furthermore, the distribution of energy is generally 

dependent on the incoming direction. Therefore, it is necessary to use two directions to 

describe the reflection by a rough surface (Nicodemus, 1970; Barnes et al., 1998). 

Bidirectional reflectance is a fundamental radiative property of rough surfaces in thermal 

science (Brewster, 1992; Modest, 1993; Siegel and Howell, 2002). The study of the 

bidirectional reflectance is also important to other subjects. In optical engineering, the 

bidirectional reflectance is used as a tool to characterize the surface roughness. In object 

rendering, efficient bidirectional reflectance models are sought to achieve fast and vivid 

object rendering (Phong, 1975; He et al., 1991). The theories on the scattering from rough 

surfaces can be found in several books and review papers (Tang et al., 1999b; Saillard 

and Sentenac, 2001; Tsang et al., 2001; Warnick and Chew, 2001; Zhang et al., 2003). 

For an ideally smooth surface, there is no scattering and all the radiation is 

reflected to the specular direction. For an ideally diffuse surface, the reflected radiation in 

any direction is the same. However, the scattering on a real random surface is neither the 

specular reflection nor the ideal diffuse reflection. Roughly speaking, the bidirectional 

reflection may be divided into three components, a specular spike at the specular 

direction, a specular lobe around the specular direction, and a diffuse term covering all 

the reflection angles. In order to quantitatively describe the energy distribution of the 

scattered radiation, it is necessary to define the bidirectional reflectance distribution 

function (BRDF). The geometry to illustrate the definition is shown in Figure 2.2. The x- 

and y-axes are located in the mean plane of the rough surface, and the z-axis is normal to 
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the mean plane. The BRDF, also called the bidirectional reflectance, is the ratio of the 

reflected radiance (or intensity in most heat transfer textbooks) to the incident irradiance 

(Nicodemus, 1970; Barnes et al., 1998; Siegel and Howell, 2002), 

][sr  
cos),(

),,,(),;,( 1-

iiiii

rriir
rriir dL

Lf
ωθφθ

φθφθ
=φθφθ    (2.1) 

 

 

Figure 2.2 Geometry for the definition of BRDF. 

 

In the above equation, (θi, φi) and (θr, φr) denote the incoming and scattering directions, 

respectively, Li is the incoming radiance, Li cosθi dωi represents the incident irradiance 

(power per unit projected area), the reflected radiance Lr is a function of both the 

incoming and scattered directions. Since radiance is a spectral property, BRDF is also a 

spectral property. The dependence on the wavelength of the incident radiation λ is not 

shown in Eq. (2.1) for the sake of simple notation. Both the theoretical analysis and the 

experimental measurement are mainly devoted to finding the variation of the reflected 

radiance (or reflected power) with the reflection angle (θr, φr) when the incidence is fixed 

at the direction of (θi, φi).  
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2.3.1 Rigorous Electromagnetic-Wave Solution  

There are two main categories in the rigorous EM-wave solution: integral 

equation methods and differential equation methods. The boundary integral method is 

one example of the integral equation methods. Differential equation methods include the 

finite-difference time domain (FDTD) method, the volume finite-element method, and 

the differential method. The integral equation method can deal with homogeneous media 

surrounded by a boundary. The differential method can deal with inhomogeneous media 

as well (Saillard and Sentenac, 2001). The differential method requires volumetric 

meshes; therefore, the number of unknowns may be larger than that required by a surface 

mesh (Warnick and Chew, 2001).  

The boundary integral method is the most common method of the numerical 

simulation of light scattering. This method is based on the extinction theorem (Wolf, 

1973) and Green’s theorem (Kreyszig, 1993). Maradudin et al. (1990) and Sánchez-Gil 

and Nieto-Vesperinas (1991) applied this method to study the scattering by one-

dimensional dielectric rough surfaces. Assuming that light of p-polarization is incident on 

a one-dimensional rough surface from vacuum, with the magnetic field H in the y 

direction, the formulas governing the light scattering are 
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where r = (x, z), z = ξ(x) at the boundary Σ, G is the Green function, and n is the normal 

at the position r′ on the boundary. In Eq. (2.2), r and r′ are in vacuum, while in Eq. (2.3), 
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r is in vacuum and r′ is in the medium. The subscripts 0 and s stand for vacuum and the 

medium, respectively. H0 are Hs are linked by the boundary conditions:  

 )()(0 rr sHH =        (2.4a) 
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The coupled equations (2.2) and (2.3) should be solved simultaneously.  The 

intensity in far field can be calculated from the magnetic field H and its normal derivative 

nH ∂∂ /  at the boundary (Maradudin et al., 1990; Sánchez-Gil and Nieto-Vesperinas, 

1991) 

The boundary integral method has been extensively used to explain the 

backscattering on rough surfaces. Maradudin et al. (1990) found that there exists a critical 

refractive index for the occurrence of backscattering, and furthermore, the critical value 

becomes smaller with the increase of roughness. This method can also be applied to 

verify the simulation results using the Kirchhoff approximation (Chen and Fung, 1988; 

Thorsos, 1988; Sánchez-Gil and Nieto-Vesperinas, 1991) and the geometric optics 

approximation (Tang and Buckius, 1997).  

A lot of work has been done on scattering from the one-dimensional rough 

surface using the rigorous numerical simulation. The simulation for the two-dimensional 

rough surfaces based on the rigorous approach is very computationally intensive, and 

only a few cases for perfect conductors and metals are available (Pak et al., 1995; 

Johnson et al., 1996). Because of the large number of unknowns in the formulation for 

two-dimensional surfaces, directly solving the matrix equation is not feasible. 

Consequently, an iterative method should be applied (Warnick and Chew, 2001). In 

general, the rigorous approach requires a large memory and a long computation time. 
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Therefore, several approximation methods have been developed to facilitate a fast 

simulation of light scattering by rough surfaces. 

 

2.3.2 Kirchhoff’s Approximation  

In the rigorous electromagnetic-wave (EM-wave) approach, the electromagnetic 

field at the boundary is unknown. In the Kirchhoff approximation, the field at a certain 

point at the boundary is the same as that on a tangential plane passing through the point 

(Beckmann and Spizzichino, 1987). The total electric field E is the summation of the 

incidence field Ei and the reflected field, i.e.,  

  ir EE )1( +=         (2.5) 

where the local Fresnel reflection coefficient r is dependent on the slope at each point.  

The Kirchhoff approximation is also called the tangent plane approximation. In general, 

the Kirchhoff approximation is valid for a rough surface with a radius of curvature much 

larger than the wavelength of the incident radiation λ (Beckmann and Spizzichino, 1987). 

In other words, the Kirchhoff approximation is only applicable to gently undulating 

surfaces. Unlike the rigorous approach, there is no need to solve the coupled equations.  

The applicable region of the Kirchhoff approximation has been established for 

perfectly conducting surfaces (Chen and Fung, 1988; Thorsos, 1988; Sánchez-Gil and 

Nieto-Vesperinas, 1991). It is commonly believed that the Kirchhoff approximation can 

still give the reliable result when the rms roughness σ and the autocorrelation length τ are 

less than or comparable to λ and the ratio of σ to τ is less than 0.3 (Tang and Buckius, 

1998). Chen and Fung (1988) claimed that the Kirchhoff approximation is reliable at 
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small angles of incidence when the ratio of τ to λ is less than 0.3 and the ratio of  σ to λ 

is less than 0.03.  

 

 

Figure 2.3 Shadowing (a) and Masking (b) effects. 

 

Figure 2.3 shows the shadowing and masking effects. Some of surface asperities 

are not illuminated since the incident radiation is blocked. This is referred to shadowing 

effect. Similarly, when the radiation is reflected by surface asperities, it may be not able 

to leave the rough surface if the reflected radiation is directed to other surface asperities. 

This is referred to masking effect, or outgoing shadowing. The intercepted beam can 

bounce back and forth on the rough surface until it finally leaves the rough surface. This 

is referred to multiple scattering. The original Kirchhoff approximation takes into account 

only the single scattering (the first-order scattering). Bruce and Dainty (1991) 

incorporated multiple scattering into the Kirchhoff approximation to model light 

scattering by relatively rough surfaces. Sánchez-Gil and Nieto-Vesperinas (1991) 

demonstrated that the valid region of the Kirchhoff approximation can be even larger for 

dielectric surfaces than for metal surfaces since multiple scattering on dielectric surfaces 

is not as significant as that on metal surfaces.  

 

(a) Shadowing (b) Masking 
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2.3.3 Geometric Optics Approximation  

In the geometric optics approximation, the rough surface is imaged as a 

combination of numerous microfacets which are randomly oriented on the mean plane 

(Torrance and Sparrow, 1967; Tang and Buckius, 1998 and 2001). The dimension of the 

microfacet is much larger than λ.  The surface of the microfacet is assumed to be ideally 

smooth, and the reflection of the radiation on the microfacet obeys Snell’s law. Figure 2.4 

shows the angular relationships between the incident beam and the reflected beam when 

the specular reflection takes place on the surface of a microfacet m. The microfacet 

normal n bisects the incident beam and the reflected beam. The reflectivity of the 

microfacet is dependent on the local incidence angle ψ, which is defined by the incident 

beam and the microfacet normal. The orientation of the microfacet, i.e., the direction of 

n, can be defined by an inclination angle α and an azimuthal angle (not shown in Figure 

2.4). The orientation of the microfacet can be presented by its slopes as well. The slopes 

are related to the incoming and scattering directions by  

 

 

Figure 2.4 Illustration of the specular reflection on a microfacet. 
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The diffraction and interference are ignored in the geometric optics 

approximation. From a statistical point of view, the radiation reflected into a finite solid 

angle is proportional to the reflectivity of the microfacet and the probability to find the 

microfacets with corresponding slopes. The shadowing and masking effect may become 

significant at large incidence angles and large reflection angles. The effect due to 

multiple scattering may become significant for very rough surfaces, and it needs to be 

included in the modeling.  

Generally speaking, the applicable roughness region of the geometric optics 

approximation is σ > λ and τ > λ. Tang et al. (1997) established a validity region for one-

dimensional perfectly conducting rough surfaces. They found that the valid region can be 

extended to σcos(θi)/λ > 0.2 and σ/τ < 2 with reasonable accuracy. Although the validity 

region for two-dimensional rough surfaces has not been systematically investigated, Tang 

et al. (1997) believed that the validity region for one-dimensional rough surfaces may 

apply to two-dimensional rough surfaces.  In the simulations using the ray-tracing 

algorithm based on the geometric optics approximation, the surface generation method 

(Tang et al., 1997; Tang and Buckius, 1998) is very common.  In addition, the microfacet 

slope method has also been explored by Zhou et al. (2002) and Prokhorov and Hanssen 

(2003). The microfacet slope method requires less computation time than the surface 

generation method. 
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2.3.4 BRDF Models 

Specular model describes the bidirectional reflection on an ideally smooth 

surface. The BRDF is zero everywhere except for at the specular direction (θi, φi +180°), 

( ) ( ) ( )[ ]°+φ−φδθ−θδ
θ
θκρ

=φθφθ 180
cos

,,),,,( irir
r

i
rriir

nf   (2.7) 

where ( )in θκρ ,,  is the reflectivity of the smooth surface, and δ is the Kronecker delta 

function.  

Diffuse model describes the bidirectional reflection from an ideally diffuse 

surface. The BRDF is independent of the reflection angle, 

( )
π

θκρ
=φθφθ − ihd

rriir
nf ,,),,,(      (2.8) 

where ( )ihd n θκρ − ,,  is the directional-hemisphere reflectance of the diffuse surface. 

The surface power spectral density (PSD) function is popular to present the 

roughness statistics. In the “golden rule” derived based on the Rayleigh-Rice perturbation 

theory, the BRDF is related to the PSD function (Stover, 1995; Bennett and Mattsson, 

1999), 

PSDcoscos16),,,( 4

2

rirriir Qf θθ
λ
π

=φθφθ     (2.9) 

where Q is a factor considering the reflectance of the surface.  

One model is derived based on the Kirchhoff approximation and Gaussian 

roughness statistics (Beckmann and Spizzichino, 1987). The specular component and the 

off-specular component of the BRDF for an illuminated surface with a rectangle area lx × 

ly are   
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where sinc(x) = sin(x)/x, and the optical smoothness is 

[ ]2/)cos(cos2 λθ+θπσ= rig      (2.11) 

Torrance and Sparrow (1967) assumed that the distribution function of the 

inclination angle α of the microfacets is Gaussian and derived a semi-empirical BRDF 

model,  
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where constants b and c define the distribution function of the inclination angle. G is the 

geometrical attenuation factor to include the effect of shadowing. The diffuse term in the 

BRDF is represented by a. All constants have to be fitted by the experimental results. 

Caron et al. (2003) derived the ratio of the scattered radiance to the incident 

power flux following the static-phase formulation (Tsang and Kong, 1980; Kong, 1990). 

For in-plane scattering,  
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where p is the probability density function with respect to slopes (ζx , ζy) of microfacets. 

In the plane of incidence, φi − φr = 0° or 180°, α = |θr − θi|/2, and ψ = (θi + θr)/2. The y-
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component of the slope has to be zero so that the reflected beam can fall to the plane of 

incidence. 

Tang and Buckius (2001) developed a comprehensive statistical model based on 

the geometric optics approximation. This model includes contributions from both first-

order scattering and multiple scattering. The BRDF for the first-order scattering (i.e., the 

radiation is reflected once by a microfacet before leaving the surface) can be presented as 
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where S(θi) and S(θr) are the shadowing functions (Smith, 1967) for shadowing and 

masking effect, respectively.  

The slope distribution is most commonly modeled as a Gaussian function 

(Torrance and Sparrow, 1967; Tang and Buckius, 2001; Caron et al., 2003). The two-

dimensional probability density function (PDF) of slopes for an isotropic surface can be 

written as  
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where ζrms stands for the rms slope, which is the same in all directions. A simple relation 

exists for rough surfaces that satisfy the Gaussian statistics (Beckmann and Spizzichino, 

1987): τσ=ζ /2rms . 

Specular model and diffuse model are for ideal surfaces, and they have little use 

in modeling the BRDF for real surfaces. The “golden rule” is based on Rayleigh-Rice’s 

perturbation theory, and therefore it is only applicable to a surface whose rms roughness 

is much smaller than λ. Equations (2.10), and (2.13) through (2.15) are derived either 
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from the Kirchhoff approximation or from the geometric optics approximation. 

Therefore, the validity region for these analytical models is constrained by the validity 

region of the corresponding approximation methods.  Eqs. (2.13) through (2.15) are all 

based on the geometric optics approximation, the only difference in the derivations is 

whether the distribution function is related to the inclination angle or to the slopes. 

Therefore, it might be possible to unify these equations to one identical formulation.  

 

2.3.5 Modeling the Scattering from Coated Surfaces 

The study of scattering from thin-film coated surfaces is very important in optical, 

materials, and thermal engineering. Many optical components and semiconductor wafers 

are coated with thin films according to different applications. The BRDF and the 

emissivity of thin-film coated surfaces can be very different from those of the substrate. 

The theory on the reflection from a multilayer system with ideally smooth interfaces is 

well developed (Yeh, 1988). According to thin-film optics, the amplitude of the reflected 

wave from a three-layer system with ideally smooth interfaces is (Brewster, 1991; Siegel 

and Howell, 2002) 
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where r0,f and rf,s are the Fresnel reflection coefficients between air and film and between 

film and substrate, respectively. The phase shift of wave traveling through the thin film is 

λ

θπ
=β

)cos(2 hn f        (2.17) 

where nf is the refractive index of the film, h is the film thickness, and θ is the refraction 

angle within the film.  
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On the contrary, the scattering of radiation by thin-film coatings on a rough 

surface is extremely difficult to analyze. A correction factor can be added to the Fresnel 

reflection coefficients to calculate the partially coherent reflectance and transmittance of 

a multilayer structure with rough interfaces (Filinski, 1972; Mitsas and Siapkas, 1995). 

The first-order vector perturbation theory (Elson, 1977; Bruno et al., 1995) and the 

Kirchhoff approximation (Lettieri et al., 1991; Icart and Arques, 2000; McKnight, 2001) 

can be applied to simulate the scattering from multilayer systems. However, these 

methods are only applicable to either very smooth surfaces or gently undulating surfaces 

(Elson, 1977; Beckmann and Spizzichino, 1987).   

The geometric optics approximation is extensively used in analytical models and 

Monte Carlo simulation. Good agreement has been observed between the simulation 

results employing the geometric optics approximation and the rigorous electromagnetic-

wave solution for a rough surface without thin-film coatings (Tang et al., 1998), and the 

simulation is very computationally effective. Since the simulation based on the rigorous 

electromagnetic-wave solution becomes formidable if there are thin-film coatings on a 

rough substrate, it is worthwhile to explore other alternative methods. Some previous 

works (Tang et al., 1999a) assumed that the reflection on the thin-film coating could be 

well described by thin-film optics considering interference effects whereas the roughness 

effect can be modeled using the geometric optics approximation through the ray-tracing 

method. After the reflectivity of the microfacet without thin-film coatings is replaced by 

that with thin-film coatings, the analytical models and the developed programs applying 

the Monte Carlo simulation can be used for modeling of the BRDF for coated rough 

surfaces. The reflectivity of each coated microfacet is determined from Eqs. (2.16) and 
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(2.17). Figure 2.5 shows the schematic of reflection from thin-film coatings on a smooth 

substrate and a rough substrate. Equation (2.16) is derived for a thin film on an ideally 

smooth plane; therefore, each wave reflected by the air-film interface and the one 

reflected by the film-substrate interface can be accounted for. However, the microfacet on 

the rough surface has a finite (usually very small) area although the surface of the 

microfacet is smooth. Because of the small area of a microfacet, an incident ray on the 

microfacet can emerge from the nearby microfacet after it travels in the film, first 

towards the substrate and then towards the air. Hereafter, this will be referred as the 

corner effect. Because of the corner effect, the application of Eq. (2.16) for the coated 

microfacet may not well describe the interference of a thin film on a rough substrate. 

 

 

Figure 2.5 Schematic drawing of reflection from thin-film coatings on 
a smooth substrate (a) and a rough substrate (b). 

 

Tang et al. (1999a) applied the surface generation method (SGM) to evaluate the 

BRDF for thin-film coated surfaces. Zhou and Zhang (2003) and Lee et al. (2004) used 

the microfacet slope method (MSM) to model the radiative properties of thin-film coated 

opaque or semi-transparent surfaces. Some agreement has been demonstrated between 

the modeling results and the experimental measurement (Tang et al., 1999a). It indicates 

…

…

(a) a smooth substrate (b) a rough substrate 
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that the hybrid method may be applicable for some rough surfaces. Therefore, it is 

necessary to study the validity of the hybrid method so that the advantages of the hybrid 

method may be exploited in the BRDF modeling of thin-film coated rough surfaces. 

 

2.4 Experimental Study of the Bidirectional Reflectance 

2.4.1 BRDF Instrumentation  

Experimental studies are necessary to verify the predicted results from various 

models and numerical simulations. The instrument used to measure the bidirectional 

reflectance is called a bidirectional reflectometer or scatterometer. Some scatterometers 

can also measure the bidirectional transmittance (Proctor and Barnes, 1996; Barnes et al., 

1998). Different types of bidirectional reflectometers are available for research and 

industrial applications (Zipin, 1966; Anderson et al., 1988; Drolen, 1992; Feng et al., 

1993; Roy et al., 1993; Zaworski et al., 1996a; White et al., 1998). Although the 

sophistication varies from instrument to instrument, the essential components of a 

scatterometer are the same: namely, an optical source, a goniometric table, and a 

detection and data acquisition system. The wavelengths of the measurements are usually 

in the visible and near-infrared regions due to the difficulty encountered for shorter or 

longer wavelengths. A grating monochromator or a coherent laser source can provide a 

narrow band optical radiation, which is nearly collimated. A spectrometer in the detector 

assembly could perform the same function as the monochromator (Feng et al., 1993).  

There is a variety of designs of the goniometric table, which manipulates the 

movements of the detector, sample, and/or optical source. If only in-plane measurements 

(i.e., the reflected light is confined to the plane of incidence) are needed, two coaxial 
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rotary stages are sufficient to vary the incidence and reflection angles. Therefore, the 

scatterometer is relatively easy to construct (Zipin 1966; Roy et al., 1993). The Spectral 

Tri-function Automated Reference Reflectometer (STARR) at NIST is a high-accuracy 

reference instrument for the in-plane BRDF measurement in the visible and near-infrared 

regions (Proctor and Barnes, 1996; Barnes et al., 1998). A few designs have been realized 

for out-of-plane measurements (Anderson et al., 1988; Drolen, 1992; Feng et al., 1993; 

Zaworski et al., 1996a; White et al., 1998; Shen et al., 2003). Usually, a flexible hardware 

design for the goniometric table is desired so that it can move the source, sample, and 

detector to different combinations of incidence and viewing angles. In some systems, the 

source is stationary while the detector and the sample holder are movable (Anderson et 

al., 1988; Drolen, 1992; Zaworski et al., 1996a; Shen, 2002). The advantage of a fixed 

source is that virtually there is no limit on the size and weight of the source (Zaworski et 

al., 1996a). The circular-track design is another way to rotate the source and detector 

around the sample; however, the long-term stability and eccentricity requirements may be 

difficult to meet (White et al., 1998). In order to measure the scattering and its associated 

polarization states, an out-of-plane ellipsometry scatterometer has been developed by 

Germer and Asmail (1999). In this design, the sample can be rotated in both its vertical 

and horizontal axes. 

 

2.4.2 BRDF Measurements and Modeling 

Several researchers measured samples by applying different microscopic probe 

techniques and analyzed the PSD function for these surfaces. Polished silicon wafers and 

wafers with polysilicon coatings were measured, and the surface statistics were presented 
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in the form of the PSD function. Vatel et al. (1993) and Muller et al. (2001) studied the 

PSDs of polished silicon wafers and polysilicon coated wafers. Dumas et al. (1993) 

calculated the PSD function of optical-glass surfaces using the AFM topographic data 

and reported that the result was satisfactorily comparable to the optical scattering data 

over a large range of spatial frequencies. Jahanmir and Wyant (1992) measured various 

samples using an optical profilometer and a scanning probe microscope. They compared 

the rms roughness and the average roughness for those samples. Marx et al. (1998) 

measured silicon wafers with various ranges of roughness using different instruments 

including the AFM and the interferometric profilometer. However, they did not measure 

the roughness of wafers whose last processing stage was lapping. Most of the surfaces 

studied in the published literature have low levels of roughness. Rare research has been 

carried out to study the surface statistics of the backside of silicon wafers, whose rms 

roughnesses may be as large as several hundred nanometers.  

The slope distribution function is a key input in the analytical models based on the 

geometric optics approximation (Torrance and Sparrow, 1967; Bennett and Mattsson, 

1999; Caron et al., 2003). Before the invention of the atomic force microscope (AFM), 

the surface profile was usually measured with a mechanical profiler that scans the surface 

line-by-line. Therefore, the estimated one-dimensional slope distribution function may 

miss important information of the surface isotropy. On the other hand, the AFM can 

provide detailed information of the topography of a small area on the microrough 

surfaces with a vertical resolution of sub-nanometers and a lateral resolution around 10 

nm (Wiesendanger, 1994). Consequently, it is possible to evaluate the area statistics from 

the AFM topography measurement. Although attention has been paid to compare the 
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surface statistics determined from the topography measurements to those obtained from 

the light scattering experiments (Cao et al., 1991; Bawolek et al., 1993; Stover et al., 

1998; Nee et al., 2000), little has been done to correlate the area statistics evaluated from 

the AFM topographic data to the measured BRDF for relatively rough surfaces.  

In general, surface roughness is assumed to satisfy the Gaussian statistics in the 

derivation of the BRDF model and for the surface generation in the Monte Carlo 

simulation (Beckmann and Spizzichino, 1987; Tang et al., 1999). Furthermore, the 

surface statistics of the two-dimensional rough surface are mostly assumed to be isotropic 

so that the autocorrelation function is independent of the direction. Very few papers have 

been devoted to the BRDF of non-Gaussian and anisotropic two-dimensional rough 

surfaces. Shen et al. (2001) found that the BRDF models could not predict the subsidiary 

peak in the measured BRDF of the rough side of a silicon wafer, although reasonable 

agreement existed between the measurement results and the model predictions within a 

large angular region around the specular direction. This disagreement could be caused by 

the Gaussian distribution applied in the BRDF model. Therefore, it is important to 

examine the actual surface statistics of the rough side of silicon wafers so that a 

reasonable explanation may be provided for the occurrence of the subsidiary peak.  

The BRDFs of both metal and dielectric surfaces at various wavelengths and 

temperatures have been reported.  Drolen (1992) investigated the wavelength effect and 

directional dependence of radiative properties for spacecraft thermal control materials. 

Ford et al. (1995) used a Fourier transform infrared spectrometer to measure BRDF in the 

near-infrared and infrared wavelength ranges. Their results cover a broad spectral range 

from 2.5 to 15 µm with a low angular resolution, which is due to the large solid angle of 
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the instrument. Roy et al. (1993) measured the directional reflectance of several dielectric 

materials at temperatures up to 1100°C.  

The measured BRDF can be inputted into the Monte Carlo simulation to improve 

the accuracy of the modeling. Zaworski et al. (1996b) incorporated the measured BRDF 

data for paints in the simulation of the spatial distribution of light through a gap made of 

two painted plates. A number of techniques had to be introduced to interpolate or 

extrapolate the experimental data due to the resolution and limitation of the measured 

BRDF. Reasonable agreement was found between the measured BRDF and the predicted 

result. Zhou et al. (2002) studied the BRDF of a rough silicon wafer and the apparent 

emissivity of the wafer in a RTP furnace. They found that the predicted BRDFs show 

similar magnitudes and trends to the measured BRDF.  



 32

CHAPTER 3 
 

 SURFACE ROUGHNESS CHARACTERIZATION 
 
 
 

In most of the published literature, the height distribution function and the slope 

distribution function of random rough surfaces are modeled as the Gaussian function. 

However, the Gaussian distribution may miss important features of natural surfaces 

because this function does not allow any abrupt event in the rapidly decreasing tails 

(Guérin, 2002). Another assumption for the two-dimensional rough surface is that the 

statistics are independent of the direction, i.e., the surface is isotropic. Nevertheless, the 

statistics of real surfaces can show some extent of anisotropy (Ward, 1992). Since light 

scattering is strongly dependent on the surface roughness statistics, it is crucial to 

understand the true statistics of a rough surface. 

 

3.1 Roughness Parameters and Functions 

Many parameters and functions are available to describe the surface roughness 

quantitatively. The following shows the definition of roughness parameters and functions 

that will be used in this thesis.  Note that these definitions are applicable for the one-

dimensional rough surface. Nevertheless, they may be still valid if the two-dimensional 

rough surface is considered as a combination of line sections.  

The surface topography can be represented as the variation of height with 

displacement along the sampling direction, z(x). The mean surface is determined by  

dxxz
l

z
l

l
 )(1lim

 

0 ∫∞→
=        (3.1) 

where l is the total sampling length. The arithmetic average roughness Ra is defined by  
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The root-mean-square (rms) roughness σ is defined by 
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Ra and σ are the most commonly used roughness parameters.  However, they only 

provide information on the roughness amplitude. The steepness of surface asperities on 

two surfaces may be very different although Ra or σ can be the same (Stover, 1995). The 

rms slope ζrms can tell the steepness of surface asperities. The definition of ζrms is  

[ ] dxx
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where ζ(x) is the slope (dz/dx) and ζ  is the mean slope.  

The height distribution function is applied to describe the fraction of surface 

heights from a given height to a small increment. The definition of the slope distribution 

is very similar to that of the height distribution function. The height distribution function 

is related to the bearing area ratio in machine science (Thomas, 1999). The two-

dimensional slope distribution has been used to describe the orientation of objects on 

nano/micrometer scales (Inoue et al., 1996; Schleef et al., 1997; Hegeman et al., 1999).  

The surface profile can be considered as a summation of many surface roughness 

components. Each component is the sine (or cosine) wave with regard to the space 

coordinate, and the period of the wave is defined as the spatial wavelength. The power 

spectral density (PSD) function can delineate both the vertical and the spatial extent of 

the surface roughness components. The definition of the PSD function is given as (Stover, 

1995) 
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where fx is the reciprocal of the spatial wavelength. The autocorrelation function 

correlates the deviation from the mean value with a translated version by a distance τ 

(Stover, 1995), 
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The autocorrelation length is defined as the value of τ when ACF(τ) is equal to 1/e. The 

PSD function and the autocorrelation function are a Fourier transform pair. The rms 

roughness can be determined from the PSD function, 

∫=σ max

min
)PSD(22 f

f xx dff       (3.7) 

Since no instruments can capture surface roughness waves from zero frequency to infinite 

frequency, the integral has to be calculated from the minimum frequency fmin = 1/l to the 

maximum frequency fmax = 1/(2d), where d is the sampling interval.   

 

3.2 Roughness Measurement and Data Analysis 

Several silicon wafers have been studied in this thesis. The surface topography of 

the rough side of these wafers was characterized using the state-of-art techniques. We 

used the Digital Instruments NanoScope scanning probe microscope (Multimode and 

Dimension 3100). The measurements with the AFM were conducted in the contact mode. 

The optical interferometric microscope (OIM) was also used for complimentary 

measurements. We measured some samples with the Veeco WYKO optical profiler (NT 

1000 and NT 3300). Measurements were taken in the vertically scanning mode.  
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The surface topographic data is mapped into a data array of size M × N, in the two 

orthogonal directions, x and y, respectively. First, the mean surface is determined for the 

data array, and then the rms roughness can be easily calculated. The topographic data in 

the same row or column in the data array can be treated as one individual scan. The PSD 

function and the ACF function can be calculated along either the x-direction or the y-

direction. The procedure described in the reference (Stover et al., 1998) is followed to 

calculate the PSD function from the profile data, with the exception that filters and 

window functions are not implemented in our calculations. There are either M or N line 

scans in one data array, depending on the direction. The calculated functions are averaged 

among these line scans.  

The height distribution function is produced next. First, the maximum and 

minimum heights are determined from the topographic data. Then, a finite number of 

bins with equal interval are assigned and each data point is checked to find the 

corresponding bin. The number of data points within each bin is divided by the total 

number of data points to obtain the relative frequency. Finally, the relative frequency is 

normalized to the probability density function.  

The slope distribution function can be produced similarly. Since both the AFM 

and the OIM measure the surface topography, surface slope has to be estimated from the 

heights of neighboring points. Figure 3.1 shows the schematic of the nodal network for 

the slope calculation. The one-dimensional slope can be calculated along different 

directions with respect to the row direction of the data array. For example, the slope 

along the x-direction can be calculated from the data in the same row,   

  
d

zz
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Figure 3.1 Schematic of the nodal network for slope calculation. 

 

The slope can also be evaluated along the diagonal, for instance, 

  
d
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However, if one assumes that four neighboring nodes in the data array form a 

surface element, then the orientation of the surface element needs to be presented as the 

two-dimensional slopes in the x and y directions, ζx = dz/dx, ζy = dz/dy. The four-node 

facet may be thought of as two triangular surfaces with a common side (shown as the 

dashed line in Figure 3.1). The surface normals of the two triangular surfaces can be 

averaged to give the mean slope of the four-node element such that 
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3.3 Roughness Statistics of Silicon Wafers 

In order to test the uniformity of surfaces and inspect the effect of the scan area on 

the measured roughness parameters, we picked up several spots on Samples 1 and 2 and 

(m, n+1) 

(m, n) (m+1, n) 

(m+1, n+1) 

y 

x
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measured their surface topographies at different scan areas with the AFM and under 

different magnifications with the OIM. Sample 1 is a phosphorous-doped wafer (525 µm 

thick) and there is no coating on its backside. Sample 2 has a thermal oxide coating on 

the backside. The thickness of the coating is 140 nm and the thickness of the wafer is 725 

µm. 

The measurement results for Samples 1 and 2 are shown in Figure 3.2. The 

dashed line denotes the averaged rms roughness for the AFM measurements with the 

same scan area (Md × Nd) and the solid line denotes the averaged rms roughness for the 

OIM measurements at the same magnification. In Figure 3.2a, from left to right, for each 

group of data with the same sampling interval, scan sizes for the AFM increase from 5 

µm to 40 µm and magnifications for the OIM decrease from 100X to 10X. When the 

sampling interval is less than 200 nm (scan size 150 µm), the deviation of the rms 

roughness from the average value ranges from 50 nm to 100 nm. When the sampling 

interval exceeds 200 nm, the deviation reduces to only 30 nm. The degree of deviation 

relative to the sampling interval suggests that Sample 1 cannot be statistically analyzed as 

a uniform surface unless the scan size is greater than 150 µm. For the AFM 

measurements, the rms roughness σ increases prominently as the scan area is enlarged. 

Figure 3.2a illustrates that the rate of increase is significant when the scan size increases 

from 5 µm to 20 µm. Since the number of sampling points is fixed in these scans, the 

surface wavelength of the measurable roughness component becomes longer as the 

sampling interval increases. Consequently, the surface frequency of the measurable 

roughness component becomes lower. Therefore, it can be inferred that the high-

frequency roughness components are smoother than the low-frequency roughness 
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components for this sample in the specific region. When the sampling size approaches 40 

µm, the rms roughness is saturated to a limiting value. At the sampling interval of 80 nm, 

which is close to the maximum interval for the AFM and the minimum interval for the 

OIM in this measurement, the averaged σ is 460 nm and 610 nm for the AFM and the 

OIM measurements, respectively. Consequently the relative difference is about 30%.  
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Figure 3.2 Comparison of σ measured with the AFM and the OIM:  
(a) Sample 1; (b) Sample 2. 

AFM: M = N = 512; OIM: M = 736, N = 480. 

 

In Figure 3.2b, from left to right, scan sizes for the AFM increase from 5 µm to 

50 µm, and magnifications for the OIM decrease from 100X to 10X. The deviation of the 

AFM measurement is less than 20 nm, and the one for the OIM measurement is less than 

16 nm. Therefore, Sample 2 is more uniform compared to Sample 1. The averaged σ of 

the AFM measurement also increases with the scan size for Sample 2. Nevertheless, the 

rate of increase is smaller. From Figure 3.2b, it is clear that roughness measured with the 

OIM is much higher than that with AFM. If the sampling interval is set at 100 nm in the 

AFM, the averaged σ is 148 nm. If the sampling interval is set at 80 nm in the OIM, the 
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averaged σ is 297 nm. The latter is almost twice as much as the former. This deviation 

may be attributed to the influence of the reflection from the coating and the substrate on 

the topography measurement. Further studies may be needed to systematically investigate 

the dependence of the roughness parameters on the instruments.  

The roughness statistics of Samples 3-6 have been systematically characterized. 

Table 3.1 lists the properties of these wafers. The surface roughness was measured using 

the AFM in scan areas of 40 × 40 µm2 and 100 × 100 µm2. Figure 3.3 shows the surface 

images of Samples 3-6. There is no obvious difference between the surface images for 

these samples. It can be seen that there are a lot of microfacets on these surfaces and that 

the lateral dimension of these microfacets is around a few micrometers.  

 

Table 3.1 Wafer properties of studied samples. 

 
 
 
 
 
 
 
 
 
 

a. floating-zone method 
b. Czochralski method 

 

Table 3.2 lists the roughness parameters calculated from the topographic data 

within an area of 100 × 100 µm2. The listed values are the average values and the 

standard deviations of three measurements at different positions on each wafer. The rms 

roughnesses are between 0.51 µm and 0.61 µm, which are comparable to the wavelength  

Sample Number 3 4 5 6 

Growth Method FZa CZb FZ CZ 

Doping Type N P N P 
Resistivity Range 

Ω⋅cm 
1500 -
2700 

10 -      
40 

7850 - 
9750 

4310 - 
6970 

Thickness, µm 525 500 330 525 
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Figure 3.3 AFM surface images: 
(a) Sample 3; (b) Sample 4; (c) Sample 5; (d) Sample 6. 

(a) Sample 3  (b) Sample 4 

(c) Sample 5  (d) Sample 6 
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of the incident laser beam. Sample 6 is slightly smoother than the rest. The differences in 

the rms roughnesses for Samples 3, 4, and 5 are within the standard deviation of the 

measured σ. The slope is calculated along different directions in the measured data array. 

The rms slope ζrms averaged along the row and column directions is very close to that 

averaged along the two diagonals. Therefore, it is insufficient to determine whether or not 

the surface is isotropic based on the rms slopes. Note that for a surface that follows the 

Gaussian statistics, rms 2 /ζ = σ τ , which is not the case for the measured samples. 

Among the measured samples, rmsζ  of Sample 6 is the smallest while rmsζ  of Sample 4 is 

the largest. The average inclination angle ( )rms
1tan ζ−  is 15° for Sample 6 and 22° for 

Sample 4.  

 

Table 3.2 Roughness parameters of studied samples. 

Sample Number 3 4 5 6 

σ, µm 0.578±0.030 0.608±0.039 0.611±0.021 0.508±0.027

ζrms (along row/column) 0.334±0.003 0.402±0.011 0.317±0.007 0.260±0.007

ζrms (along diagonals) 0.326±0.005 0.390±0.009 0.313±0.008 0.255±0.007

τ, µm (along row/column) 3.219±0.282 3.191±0.355 3.845±0.174 4.248±0.683
 
 

Figure 3.4 displays the power spectral density function (PSD) and the 

autocorrelation function (ACF) for Sample 3, calculated from two different scan sizes. 

The first data point in the PSD plot is not shown. When the surface frequency fx is higher 

than 0.05 µm-1, the PSD function calculated from a scan area of 40 × 40 µm2 is larger 

than that from a scan area of 100 × 100 µm2. However, the minimum fx is 0.02 µm-1 for 
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the scan area of 100 × 100 µm2. According to Eq. (3.7), the rms roughnesses are 0.579 

µm and 0.566 µm, respectively. The relative difference between these values is only 3%. 

As shown in Figure 3.4b, the difference between the ACFs for different scan sizes is 

insignificant. The autocorrelation lengths are approximately 3.1 µm for the scan area of 

40 × 40 µm2 and 3.2 µm for the scan area of 100 × 100 µm2, respectively.  
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Figure 3.4 PSD (a) and ACF (b) functions for Sample 3. 
The dotted line in (b) represents ACF = 1/e.  

 

Figure 3.5 shows histograms of height distribution for Samples 3 and 5. The 

height distributions for Samples 4 and 6 show the same trend with those in Figure 3.5, 

and therefore, they are not shown to avoid the redundancy. The height of the mean 

surface is zero and the area under each curve, i.e., the cumulative probability, is equal to 

unity. The solid curve represents the height distribution (i.e., probability density) 

obtained from the topographic data while the dashed curve is the Gaussian function 

calculated with a standard deviation equal to the rms roughness σ for each sample. Some 

common deviations exist between the measured distribution and the Gaussian. The most 
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Figure 3.5 Height distribution functions: (a) Sample 3; (b) Sample 5.  
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Figure 3.6 1-D slope distributions of Sample 3 (a) and Sample 5 (b).  
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probable height is shifted towards right from the standard Gaussian function that is 

symmetric at z = 0. The (experimentally obtained) probability density is higher than the 

Gaussian function for z < −1.2, suggesting that there are more deep valleys in the actual 

surfaces. A crossover occurs within −1.2 < z < 1.0, and then the probability density is 

lower than the Gaussian function until z ≈ 0. Afterwards, the probability density 

continues to go up and reaches a maximum around z = 0.2 before it goes down and 

eventually falls below the Gaussian function. According to Bennett and Mattsson (1999), 

the measured surfaces are said to be negatively skewed with more deep valleys and less 

high peaks than a perfect Gaussian surface. 

Figure 3.6 shows the one-dimensional (1-D) slope distributions for Samples 3 and 

5. For Sample 3, the calculation shows that the slope distributions along the row and the 

column directions are very close to each other, as are the slope distributions along the two 

diagonals. However, there is significant difference between the former category and the 

latter category. The slope distributions averaged within each category are plotted in 

Figure 3.6a, where ζx is used in a broad sense to indicate the slope along the specified 

directions. The solid line represents the average slope distribution over the diagonals and 

the dashed line represents that over the row and column. The slope distributions show 

some extent of symmetry about ζx = 0 and the mean slope is almost zero. The rms slope 

of the rough surface is approximately 0.334 for both categories. A Gaussian distribution 

with a standard deviation of 0.334 is shown as the dash-dot line. Although the height 

distribution of this rough surface is close to the Gaussian, the measured slope 

distributions deviate significantly from the Gaussian distribution. The peak at ζx = 0 in 

the diagonal slope distribution (solid line) is much higher than that in the Gaussian. 
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Furthermore, instead of decreasing monotonically, there are two side peaks at ζx ≈ ±0.47 

in the solid line, and the magnitude of these peaks is about one-fourth of that at ζx = 0. 

The slope distribution calculated along the row and column (dashed line) has a lower 

peak than that calculated along the diagonals, and the side peaks appear at ζx ≈ ±0.33, 

closer to the center than those in the solid line. On the other hand, the slope distribution 

functions for Sample 5 are almost the same no matter whether the slope is calculated 

along the row and column, or along the diagonals. Therefore, they are not distinguished 

in Figure 3.6b. In addition, some deviation can be observed between the calculated slope 

distribution and the corresponding Gaussian function.  

Figure 3.7 plots the two-dimensional (2-D) slope distributions for the measured 

surfaces in the ζx-ζy coordinate system. It can be observed that the slope distribution 

functions of Samples 3 and 4 are significantly different from those of Samples 5 and 6. 

The slope distributions for Samples 3 and 4 are clearly anisotropic; however, the slope 

distributions for Samples 5 and 6 are nearly isotropic. Because the height distribution of 

Samples 3 and 4 is close to the Gaussian, it is surprising to notice that there are side 

peaks in the slope distribution. As shown in Figure 3.7a and Figure 3.7b, there are four 

side peaks located at 35.0≈ζ≈ζ yx besides the dominant peak located at the center (ζx 

= ζy = 0). The side peaks have similar magnitudes. The magnitude of the side peaks is 

about one-sixth that of the main peak in Figure 3.7a, and about one-fourth in Figure 3.7b. 

The side peaks are located symmetrically around the central peak, and the cross-sections 

passing through the planes of ζx ± ζy = 0 can nearly bisect these side peaks. A ridge along 

ζx ≈ 0.8 and another one along ζy ≈ −0.8 can be observed for some samples. These ridges 

are independent of the rotation and measurement spot on the sample. Therefore, it is 
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believed that the ridges are artifacts associated with the geometry of the AFM tip, which 

is usually a reverse pyramid but may not necessarily be symmetric. If the microfacet has 

a very large inclination angle, the AFM tip may not touch the surface of the microfacet, 

and instead, the AFM may image the shape of the tip. Therefore, even though there exist 

microfacets with slopes ζx > 0.8 or ζy < −0.8, they will not contribute to the slope 

distribution. The effect of the ridges in the slope distribution on the predicted BRDF will 

be discussed in Chapter 5. The slope distribution functions shown in Figure 3.7c and 

Figure 3.7d are very similar, except that the value at the center is higher in the latter. 

There is only one dominant peak at the center in the slope distributions. The deviation in 

the cross-sections of the two-dimensional slope distribution at different azimuthal angles 

is insignificant.  

The features shown in the slope distributions for Samples 3 and 4 can be related 

to the crystal structure of silicon. In the cross-section of the 2-D slope distributions 

passing through the planes of ζx ± ζy = 0 and ζx + ζy = 0, the side peaks are located at 

50.0235.0 ±=±≈ζ ′x . If the slope of a microfacet is 0.50, then the corresponding 

inclination angle is 27°. This implies that there are a number of microfacets that are tilted 

around 27° with respect to the mean surface. By examining the crystalline structure of 

silicon, the side peaks should be associated with the {311} planes, since the angles 

between any of the four {311} planes and the (100) plane is 25.2° (Resnik et al., 2000). 

The projections of the surface normals of the {311} planes to the (100) plane is in the 

direction of <011> and the projections are orthogonal, corresponding well to the 

symmetric features shown in the cross-sections at ζx ± ζy = 0. Therefore, the occurrence 

of the side peaks may be attributed to the last processing of the rough side of the silicon 
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wafers. If a smooth single-crystal surface is etched by chemicals, the formed facet should 

have defined orientations along the crystalline planes. The position of the formed facet 

can be random or well controlled (Zhao et al., 1996; Resnik et al., 2000). For the rough 

side of the silicon wafers, usually the wet chemical etching is applied to remove 

microscopic cracks and surface damages caused by the mechanical processes. Various 

chemicals such as hydrofluoric, nitric, and acetic acids, and sodium hydroxide are 

generally used. It is not clear how the slope distribution function would look like before 

the chemical etching. The “residual” roughness statistics due to the processes such as saw 

cutting and mechanical lapping/grounding might be random. The chemical etching might 

have modified some microfacets with a preference to the {311} plane, leaving randomly 

distributed microfacets with predominant orientations other than the (100) plane 

(corresponding to ζx = ζy = 0). On the other hand, the slope distribution functions for 

Samples 5 and 6 do not have side peaks. The reason may be attributed to the different 

processing conditions such as chemical solution, temperature, duration, and so on.      
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Figure 3.7 2-D slope distribution functions: 
(a) Sample 3; (b) Sample 4; (c) Sample 5; (d) Sample 6. 

   

  (b) Sample 4  (a) Sample 3 

 (c) Sample 5   (d) Sample 6 
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CHAPTER 4  
 

BIDIRECTIONAL REFLECTANCE MEASUREMENTS 
 
 
 

4.1 Three Axis Automated Scatterometer 

The three axis automated scatterometer (TAAS) was developed by Shen (2002) to 

measure the bidirectional reflectance distribution function (BRDF) of rough silicon 

wafers for accurate temperature measurement and control in rapid thermal processing 

(RTP) and for semiconductor surface metrology. In this thesis, the TAAS is fully 

characterized again for all the BRDF measurement results shown in the followings.  

 As shown by Eq. (2.1), the BRDF depends on four angles; therefore, in order to 

measure both in-plane and out-of-plane BRDFs, the instrument should have four degrees 

of axis. Nevertheless, if a rough surface is isotropic, the dependence on the two azimuthal 

angles can be replaced by the difference between them. Consequently, a three-axis 

scatterometer is sufficient to perform the out-of-plane measurement.  

Figure 4.1 shows the experimental setup of the TAAS. The scatterometer consists 

of three major components: a goniometric table, a light source, and a detection and data 

acquisition system. The goniometric table and the detection subsystem are controlled by a 

computer while the light source is controlled manually. Figure 4.2 is a schematic drawing 

of the rotary stages. Stage 1 (Huber 410) and stage 3 (Huber 420) are coaxial. Their axes 

are intentionally displaced in Figure 4.2 to emphasize that the rotations of stages 1 and 3 

are independent. The point O, where the axis of stage 1 and that of stage2 (Huber 420) 

meet, is the center point of the scatterometer. The characteristics of the goniometric table 

can be found in Shen et al. (2003). 
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Figure 4.1 Experimental setup of the TAAS. 

 

 

 
Figure 4.2 Schematic drawing of the rotary stages in the TAAS.  

The rotation angles about their axes are denoted by α, β, and γ, respectively. 
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The light source is stationary in the TAAS; hence, stage 1 varies the incidence 

polar angle of the sample, which is mounted in a vertically-standing sample holder.  The 

movement of the detector is completed by only two rotary stages (stages 2 and 3), with 

arm components and balance blocks without complicated parts. The detector can move in 

the hemisphere above the horizontal plane and in a portion of the hemisphere below the 

horizontal plane. In order to avoid the collision between the rotary arm and the base of 

the goniometric table, the position of detector A is limited in the upper hemisphere. A 

coordinate transformation between the sample system (Figure 2.1) and the stage system 

(Figure 4.2) is necessary to set the positions of three rotary stages from the incidence and 

viewing angles, or vice versa (Shen et al., 2003). Due to the thickness of the sample 

holder frame, an incidence angle up to 88° from the sample normal can be achieved. The 

polar angle of the reflection ranges from 0° to 88°, and the azimuthal angle ranges from 

0° to 180° as long as the detector tube does not block the incident beam. In the plane of 

incidence the occultation of the light source by the detector tube is approximately ±3°.  

Due to the sufficient height between the center point O and stage 1, a sample holder for 

12-inch wafers can be connected to stage 1. A dial and an x-y translation stage has been 

added to the sample holder so that the TAAS can measure an anisotropic surface and scan 

a surface with difference features (Chen et al., 2004; Zhu and Zhang, 2004).   

A compact fiber-coupled diode laser system is used to provide a coherent light 

source. The maximum output power coming out the fiber is approximately 5 mW. The 

laser diode controller (Thorlabs LDC500) with a modulation function is operated in the 

constant-power mode. A thermoelectric temperature controller (Thorlabs LEC2000) 

provides temperature stabilization, which is crucial to the wavelength stability and the 
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lifetime of the laser. A 24-hour drift test shows that the root-mean-square fluctuation of 

the output power is within 0.2%. In this thesis, two diode lasers with wavelengths at 635 

nm and 785 nm are used in the BRDF measurement. The spectral width of these lasers is 

less than 2 nm. The diode lasers can be conveniently interchanged by decoupling the 

fiber from the collimation lens tube, which is fixed after the alignment is completed. Only 

nominal effort is needed to realign the source. This gives great convenience especially for 

aligning the infrared laser. Additional wavelengths can be added using different diode 

lasers. A monochromator is in process of being built for the broadband spectral 

measurements. The collimation lens gives a Gaussian beam profile with the 1/e2 beam 

diameter of 5 mm. The beam divergence is less than 0.22 mrad (≈ 0.0126°), which meets 

the ASTM requirement of collimated or slightly converging light source (ASTM, 1997). 

An aperture next to the collimation lens can vary the beam diameter from 2 to 5 mm. A 

linear polarizer is used to change the polarization state of the incident beam. The BRDF 

measurement results are performed for p- and s-polarizations separately. 

Silicon photodiode detectors are selected to cover the spectral ranges 350 - 1100 

nm. Two highly linear photodiode detectors of the same type are used. Detector A, 

contained in a rigid tube mounted in the rotating arm, measures the radiant power 

reflected by the sample. Detector B monitors the incident power through a cubic beam 

splitter next to the polarizer. The advantage of using two detectors is to simultaneously 

measure the incident and the scattered powers so that a slight drift of the laser output 

power does not affect the measurement result. A precision aperture of 8 mm diameter is 

set in front of detector A, and the distance D between the beam spot and the detector is 

522.5 mm. Consequently, the solid angle ∆ωr of the scatterometer is 1.84 × 10-4 sr and 
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the half-cone angle θhc is approximately 0.45°. Two transimpedance preamplifiers with a 

large dynamic ranging from 10 to 109 Ω are used to maintain a near zero bias across the 

photodiodes. A lock-in amplifier (EG&G 7265DSP) sends an oscillating signal to the 

laser diode controller so that output signals of two detectors are automatically phase-

locked to the internal reference of the lock-in amplifier, thereby eliminates the effect of 

background radiation in the results. A computer with the LabVIEW environment 

performs the data acquisition and the automatic rotary-stage control. Since the output 

signal of the detector is proportional to the received power, the measurement equation is 

derived as 

( )
rrBI

A
rriir VC

Vf
ω∆θ

=φθφθ
cos

1,,,      (4.1) 

where VA and VB are the voltages of the transimpedance amplifiers connected to the 

movable detector and the reference detector, respectively, and CI is the instrument 

constant that depends on the beamsplitter ratio and the detector responsivities. The value 

of CI can vary for different polarizations and wavelengths of the sources. 

 

4.2 Characterization of TAAS 

 
The measurement uncertainty is estimated from the law of propagation of 

uncertainty (Taylor and Kuyatt, 1994; Taylor, 1997) 

22222

cos
sin

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ

θ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω∆

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= θω∆

r

r

rI

C

B

V

A

V

r

f rrIBAr
UU

C
U

V
U

V
U

f
U

 (4.2) 

Table 4.1 lists the uncertainties for each component and the combined uncertainty. The 

systematic uncertainties of the detectors and amplifiers cancel out when the ratio of 
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outputs from the two detectors is divided by the instrument constant CI. The standard 

deviation of CI for 60 measurements is 0.03%, due to electronic noise in the data 

acquisition subsystem. The uncertainty in the solid angle is estimated to be 0.4%. The 

uncertainty in the reflection angle is less than 0.2°, and therefore, the relative uncertainty 

related to the reflection angle is 0.4% at θr = 45° and 2% at θr = 80°, respectively. Hence, 

the combined uncertainty of the measurement is estimated to be 0.5% at θr = 45° and 2% 

at θr = 80°. The main contribution of the uncertainly comes from the uncertainty in the 

reflection angle; therefore, the alignment is very important to reduce the uncertainty in 

the measurements. The effect of stray light on the uncertainty is not considered in the 

uncertainty analysis. Stray light and misalignment may introduce additional uncertainties. 

 

Table 4.1 Components in the combined uncertainty. 

Name Expected value Uncertainty Relative 
uncertainty, % 

Distance, D   522.5 mm 1 mm 0.19 

Aperture diameter 8 mm 2.54 µm 0.03 

Solid angle, ∆ω 1.84×10-4 sr  0.39 

Instrument constant, CI 0.666 0.0002 0.03 

0.35 at θr = 45° 
rrr

U θθθ cos/sin   °=θ 2.0
r

U  
1.98 at θr = 80° 

0.5 at θr = 45° 
Combined uncertainty   

2.0 at θr = 80° 

 

The procedure for the alignment is summarized next. A ruler with both horizontal 

and vertical scales is applied to assist the adjustment. First, the laser beam is adjusted to 
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be parallel to the optical table. The ruler is positioned right before the laser source, which 

is located in one end of the optical table. The position of the beam spot on the ruler is 

recorded. Then the ruler is moved to the other end of the table. With the help of the 

gridline on the optical table, the ruler can be secured in the same horizontal position as it 

is before the laser source. If the laser is in the horizontal plane and parallel to the gridline 

on the optical table, the laser should hit on the same position in the ruler. By adjusting the 

direction of the laser beam with a kinematic mount, the laser beam can be aligned with an 

error less than 1 mm along horizontal and vertical axes. Second, the beam must pass 

through the center point of the system. A pinhole is mounted coaxially with stage 1. The 

rotary arm is rotated by 180° so that detector A faces the laser beam. The laser beam 

should hit the center of detector A after it passes through the pinhole. The horizontal and 

vertical positions of the laser beam can be changed by an x-y stage with micrometers. The 

pinhole can be lifted vertically if necessary. The last step of the alignment is completed 

when the front surface of the sample is normal to the laser beam and meanwhile passes 

the axis of stage 1.  

The polarizer can be calibrated by two methods. In the first method, a calibrated 

polarizer and a polarization-maintaining fiber are used. The polarization axis can be 

found when the output of the laser passing through two polarizers in series achieves the 

maximum or minimum value. The second method explores the Brewster angle for p-

polarization. The smooth side of a silicon wafer is put in the sample holder. The 

refractive index of pure silicon is used to calculate the Brewster angle since a very low 

level of doping has little influence in the refractive index. The incidence angle is set to 
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the Brewster angle, and the movable detector is rotated to the specular direction. The axis 

for p-polarization can be determined when the output of the detector is minimal.  

After the alignment of the scatterometer and the calibration of the polarizer are 

completed, the instrument constant CI is measured as the ratio of the outputs of detectors 

A and B. Detector A is rotated to face the laser beam and any samples in the sample 

holder should be extracted. CI is calibrated for both p- and s-polarizations at the condition 

that two detectors both are underfilled by the laser beams. Once the instrument constant 

is obtained, the LabVIEW routine takes over and starts the measurement according to the 

assigned combinations of incident and receiving angles.  

The reflectivity of the smooth side of a silicon wafer was measured by the TAAS 

at the wavelengths of 635 nm and 785 nm. Figure 4.3 shows the comparisons of the 

measured reflectivity with the calculated reflectivity using Fresnel’s equations. For the 

prediction, n = 3.878 and κ = 0.019 at λ = 635 nm and n = 3.705 and κ = 0.007 at λ = 785 

nm are taken from the handbook (Edwards, 1985). The average differences are 1% and 

0.5% at λ = 635 nm for p- and s-polarizations, respectively. The average differences are 

3% and 1% at λ = 785 nm for p- and s-polarizations, respectively. The relative difference 

around the Brewster angle is not included in the average difference because the 

magnitude of the reflectivity is very small. The larger value of the average difference for 

p-polarization at λ = 785 is attributed to the imperfection of the polarizer and to the 

misalignment of the optical axes for both polarizations. The deviation of the optical 

constants of the sample from the handbook values may also contribute to the deviation. 

Overall, the relative difference is in the same level as that from the uncertainty analysis.  
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Figure 4.3 Reflectivity of the smooth side of a silicon wafer: 
(a) λ = 635 nm; (b) λ = 785 nm. 

 

The TAAS has been characterized by a reference spectral tri-function automated 

reference reflectometer (STARR) at NIST (Barnes et al., 1998). One silicon wafer in the 

same batch as Sample 3 was measured using the TAAS and the STARR at the same 

wavelength, and the average difference between the two instruments for all three 

incidence angles is approximately 5% including those at the specular direction (Shen et 

al., 2003). The difference may have been caused by stray light effects since this sample 

scatters the incident radiation diffusely. Other factors such as the differences in the light 

sources and the detectors may also affect the comparison of measurement results. 

A wafer in the same batch as Sample 5 was repeatedly measured by the TAAS. 

The measurements were performed right after the RCA cleaning process, after one week, 

after two weeks, and after three weeks. During that period of time, no realignment was 

required. Before each measurement, pressurized air was blasted over the wafer to remove 

any particulates which might rest on the surface. Figure 4.4 displays the average value 

and the standard deviation for the measured values. Because the term cosθr in the 

measurement equation is very small when θr gets close to 90°, frcosθr is used as the 
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vertical axis in the following. The relative standard deviations are around 2% for the 

measurement at θi = 0°, and 1% for the measurement at θi = 30°. Therefore, the stability 

of the TAAS is very good over a period of time of three weeks. It can be inferred that the 

measurement is very repeatable as long as the surface is free of particulates and 

contaminants.   
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Figure 4.4 Repeatability of measured BRDFs. 
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CHAPTER 5 
 

BRDF MODELING AND MEASUREMENT FOR SILICON WAFERS 
 
 
 

5.1 Unification of Slope Models 

Several geometric optics based BRDF models have been reviewed in Chapter 2. 

Here, a comparison is made to check the consistency and to help develop an appropriate 

expression for the present study. Some BRDF models may include the contribution from 

the first-order scattering and the high-order scattering while the other models may only 

consider the first-order scattering. Therefore, only the contribution due to the first-order 

scattering is considered in the unification. The shadowing effect is excluded at this 

moment. If the diffuse term and the geometrical attenuation factor are ignored, the model 

developed by Torrance and Sparrow (1967) can be written as 

),,(
coscos4

)exp(),,,(
22

ψκρ
θθ

α−
=φθφθ ncbf

ri
rriir     (5.1) 

Constants b and c are related to the Gaussian distribution of the inclination angle α and 

may be determined by fitting the measurement results (Shen et al., 2001).  

The in-plane BRDF model based on Kong (1990) and Caron et al. (2003) can be 

written as follows, 

),,(
coscoscos4

),(
),,,( 4 ψκρ

αθθ

ζζ
=φθφθ n

p
f
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where p(ζx, ζy) is the joint probability density function of the two-dimensional (2-D) 

slope distribution. Notice that in writing Eq. (5.2), it is assumed that φi = 0° and φr = 0° or 

180°; thus, according to Eq. (2.6) the y-slope ζy has to be zero for the in-plane scattering. 
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When φi is not zero, Eq. (5.2) can be used after the rotation of the x-y coordinate with 

respect to the z-axis. 

Tang and Buckius (2001) developed a comprehensive statistical model that deals 

separately with the first order scattering and the higher order scattering. The BRDF 

model for the first-order scattering not including the shadowing function is 
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f
rrrr

yxixyx
rriir   (5.3) 

 There are two common terms in Eqs. (5.1) - (5.3). One term is related to the slope 

distribution, and the other is the reflectivity of the microfacet. However, other factors in 

the formulations are very different although both Eq. (5.2) and Eq. (5.3) incorporate the 

2-D slope distribution. In the following, effort will be devoted to the unification of these 

models for the in-plane BRDF.  

The relation between the specular reflection on the microfacet and the orientation 

of the microfacet is given in Eq. (2.6). The derivatives of ζx, ζy with respect to θr, φr are  
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In the plane of incidence (φr = 0°), 0sin =φr  and 0cos =φr . The above equatoins can be 

simplified as 
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Therefore, the term dζxdζy/dθrdφr cancels out for the in-plane scattering,  
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Furthermore,  
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After Eqs. (5.6) and (5.7) are substituted into Eq. (5.3), Eq. (5.3) is shown to be identical 

to Eq. (5.2). 

The distribution with regard to the inclination angle in Eq. (5.1) is not normalized. 

Nevertheless, the original Torrance-Sparrow model has been improved, and one variant is 

(Priest and Germer, 2000) 
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Assume the 2-D slope distribution is Gaussian and isotropic,  
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For the in-plane scattering, α=ζ tanx  and 0=ζ y ; therefore, Eq. (5.8) can also be 

reformed to an identical formulation as Eq. (5.2). Consequently, it can be concluded that, 

when multiple scattering is negligible, the BRDF models obtained by different 

researchers are essentially the same for the in-plane scattering. Therefore, the expression 

given in Eq. (5.2) is adapted by adding the shadowing functions to address the shadowing 

and masking effects. The modified BRDF model is given as 
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Equation (5.10) will be used in this thesis to predict the BRDF from the measured slope 

distribution ( , )x yp ζ ζ .  

For light coming from the incidence direction (θi, φi), the reflected intensity at a 

certain direction (θr, φr) includes contributions from both p- and s-polarizations. 

Nevertheless, in the plane of incidence the polarization state will be maintained, and no 

depolarization will take place. For example, if the polarization of the electric field of the 

incidence is perpendicular to the plane of incidence (s-polarized), the reflected light will 

also be s-polarized. Only microfacets whose surface normal is parallel to the plane of 

incidence can contribute to the in-plane scattering. The slope along the direction 

perpendicular to the plane of incidence must equal zero.  

The joint probability density function p(ζx, ζy) in Eq. (5.10) is a function of both 

ζx and ζy. If the events concerning ζx and ζy are independent, p(ζx, ζy) = p1(ζx) × p2(ζy), 

where p1(ζx) and p2(ζy) are the marginal probability density functions, which are the one-

dimensional (1-D) slope distribution functions along two orthogonal directions (Flury, 

1997). To use the 1-D slope distribution, it is assumed that the two functions p1(ζx) and 

p2(ζy) are the same. Since ζy has to be zero for the in-plane scattering, the joint 

probability density function p(ζx, ζy) can be written as p1(ζx) × p1(0). The in-plane BRDF 

model using the 1-D slope distribution is  
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The assumption of independence of ζx and ζy may be problematic for some 

surfaces. Therefore, the 2-D slope distribution function will also be applied in the BRDF 

modeling. Take 0iφ = °  as an example: the plane of incidence is the x z−  plane and the 

probability of microfacets that contribute to the in-plane scattering is )0,( xp ζ  with ζy = 

0. When 0iφ ≠ ° , the coordinates ( , )x y  can be rotated by iφ  to ( )yx ′′,  so that the zx −′  

plane represents the plane of incidence. The following equations transform the slope 

distribution from the ( , )x yζ ζ  coordinates to the ( , )x y′ ′ζ ζ  coordinates: 

iyixx φζ+φζ=ζ ′ sincos       (5.12a) 

ixiyy φζ−φζ=ζ ′ sincos       (5.12b) 

After the transformation, ),( yxp ζζ  becomes ),( yxp ′′ ζζ . y′ζ  is equal to zero when the 

in-plane BRDF at the incidence azimuthal angle φi is evaluated. One can consider the 

probability of surface microfacets that contribute to the in-plane scattering as a cross-

section of the 2-D slope distribution with respect to x′ζ . A new function is defined as 

),()( yxx pp ′′′ ζζ=ζ . The in-plane BRDF can be calculated from 
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The dependence of fr on the azimuthal angle iφ  is implicitly included in '( )xp ζ .  

 

5.2 Predicting BRDF Using the 1-D Slope Distribution 

The BRDF of silicon wafers is measured at the wavelengths of 635 and 785 nm. 

The penetration depth is from 3 µm to 9 µm, much smaller than the thickness of the 

wafer. Therefore, the silicon wafer can be considered as an opaque surface. As shown in 
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Figure 3.3, the lateral size of the microfacet is about a few micrometers. The data listed in 

Table 3.2 also show that rms roughness is comparable to the incidence wavelength and 

the autocorrelation length is a few times larger than the wavelength. Therefore, the 

geometric optics approximation can be applied. The thickness of the native oxide on the 

surface is around 1 nm (Tsunoda et al., 2003) so that the influence of the oxide layer on 

the scattering can be ignored. The silicon wafer is handed free of particles and 

contaminants. Consequently, light scattering on the wafer surface can be assumed to be 

caused by surface roughness only. 

The ratio of σ/τ ranges from 0.12 to 0.19 for Samples 3-6. For a perfect 

conducting surface with σ/τ = 0.2 at θi = 30°, it has been shown that the reflected energy 

due to multiple scattering is only 2% (Tang and Buckius, 1998). Therefore, the neglecting 

of multiple scattering in Eq. (5.10) will not cause significant error for the studied surface 

at most angles. For convenience, an observation angle θobs is defined as θobs = θr when φr 

= φi + 180°, and θobs = −θr when φr = φi. 

Figure 5.1 compares the predicted BRDFs using the 1-D slope distribution with 

the BRDFs measured at λ = 635 nm for θi = 15° and 45°. The 1-D slope distribution, 

shown as the solid line in Figure 3.6a, is calculated along the diagonals from the AFM 

topographic data over an area of 40 × 40 µm2 (Zhu and Zhang, 2004a). The peak in 

frcosθr is located at the specular reflection direction. The predicted and measured BRDFs 

at θi = 15° agree well for both p- and s-polarizations, except for the region around the 

specular direction, at which the predicted value is 28% lower. At θi = 45°, however, the 

predicted BRDF in the specular direction (θr = 45°) is 7% higher than the measured. The 

discrepancy at the specular direction might be due to the interference effect, not included 
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in the geometric optics framework. The magnitude of the specular peak is given by 

frcosθr ∝ 2
1 (0) ( , , ) / cos ip nρ κ ψ θ , which is only a function of the reflectivity that is 

dependent on the polarization and the local incidence angle. This explains the high 

specular peaks at θi = 45° for s-polarization as seen in Figure 5.1b.  
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Figure 5.1 Comparisons of measured BRDFs and predicted values using 1-D 
slope along the diagonals: (a) p-polarization; (b) s-polarization. 

 

In the BRDF curve at θi = 15°, subsidiary peaks can be seen on both sides of the 

specular direction at θobs ≈ −35° and 62°. These peaks are not sharp but with a plateau 

region. The excellent agreement between the measured and predicted BRDFs at the 

subsidiary peaks suggests that the occurrence of the subsidiary peak in the BRDF is 

related to the distribution of the microfacet orientation. The side peaks in the slope 

distribution is at ζ ≈ 0.47, which corresponds to α ≈ 25°. When the incident beam hits a 

microfacet with an inclination angle α = 25° (in the plane of incidence), the scattering 

angle will be at θobs = θi ± 2α. For θi = 15°, the corresponding reflection angles are θobs = 

−35° and 65°, which are close to the angular positions at −35° and 62 in the measured 
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BRDF. For θi = 45°, one of the predicted subsidiary peak is observed at θobs = −5° in 

Figure 5.1. The other subsidiary peak at θobs = 95° is not physical. Nevertheless, it might 

be expected that frcosθr would increase toward 90° due to the side peak in the slope 

distribution. However, the situation is more complicated when θobs is close to 90° since 

frcosθr is also dependent on the reflectivity of the microfacet. For p-polarization, the 

reflectivity ρ decreases to almost zero at the Brewster angle (Siegel and Howell, 2002), 

which is approximately 75° for silicon at λ = 635 nm. The local incidence angle ψ is 

close to 70° when θobs = 90°. Therefore, both the predicted and measured values of 

frcosθr decrease monotonically from the specular direction towards 90° as shown in 

Figure 5.1a.  

On the other hand, the reflectivity for s-polarization increases with the angle of 

incidence. However, the masking effect will reduce the scattered radiation towards 90°. 

Both the predicted and measured values of frcosθr exhibit a shoulder between θobs = 60° 

and 90°; however, their magnitudes are quite different. The measured values are much 

higher than the predicted. Repeated measurements gave the same BRDF when a 

significant stray light was intentionally introduced or carefully removed during the 

experiment. Hence, the observed feature is the actual behavior of the surface rather than 

an instrument artifact. The discrepancy for s-polarization may be attributed to multiple 

scattering, which can be significant at large reflection angles, and the breakdown of 

Smith’s shadowing function at large reflection angles, since the surface statistics is not 

Gaussian. The local incidence angle ψ, which reflects the incidence at θi = 45° to the 

observation direction of θobs = 75°, is 60°, and the corresponding reflectivity for the 

microfacet at s-polarization is 0.59. Therefore, the incidence on the microfacet has a high 
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probability to be reflected and hits other microfacets positioned on the rough surface. 

This part of incidence can be redirected to directions other than 60° when it leaves the 

surface. Consequently, the angular distribution can be greatly changed when the local 

incidence angle ψ is large. The corresponding reflectivity of the microfacet for p-

polarization is 0.11, much smaller than that for s-polarization. Therefore, multiple 

scattering is not significant in the case of p-polarization. Because the multiple scattering 

is not included in Eq. (5.10), the prediction agrees reasonably with the measurement 

result within the region of θobs > 60° for p-polarization; but it is much lower than the 

measurement results for s-polarization. 

Although the predicted BRDF using the slope distribution along the diagonals is 

in good agreement with the measurement at φi = 45°, the same cannot be said when the 

predicted BRDF using the slope distribution along the row and column is compared with 

the measurement result at φi = 0°. This is clearly demonstrated in Figure 5.2, in which the 

predicted and measured BRDFs at φi = 0° are plotted with λ = 635 nm and θi = 0°. The 

solid line represents the predicted BRDF using the 1-D slope distribution and has three 

prominent peaks. On the contrary, the measurement data, represented by the triangular 

marks, show only one but much higher specular peak. In this case, the BRDF at the 

specular direction cannot be measured due to the beam blocking. The measured BRDF at 

φi = 90° is very similar to that measured at φi = 0°. It is clear that the 1-D slope 

distribution calculated along the row and column does not correlate with the measured 

BRDF along the same directions. Nevertheless, the 2-D slope distribution can be used to 

obtain a much better matching with the measurement results. This will be discussed in the 

next session. 
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Figure 5.2 Comparisons of measured BRDFs and predicted values 
using 1-D slope along the row and column. 

 

5.3 Predicting BRDF Using the 2-D Slope Distribution 

According to Eq. (5.13), the cross-sections of the 2-D slope distribution are 

related to the in-plane BRDFs at different azimuthal angles. The cross-section p(ζx, 0) is 

substituted into Eq. (5.13) to predict the in-plane BRDF at φi = 0° for Sample 3, and this 

result is represented by the dashed line in Figure 5.2. The prediction agrees well with the 

measured result except near the specular region. There is no subsidiary peak in the 

measured BRDF and in the predicted BRDF using the cross-section of the 2-D slope 

distribution. Hence, the side peaks presented in the slope distribution along the row and 

column do not correlate with the in-plane BRDF at φi = 0°. This can be understood by 

examining the cross-section of p(ζx, 0) (see Figure 3.7a), which shows no side peak in the 

x-z plane with an α = 18° (ζx = 0.33, ζy = 0). These side peaks in the 1-D slope 

distribution along the row (or column) are the artifact resulting from the microfacets, 

whose normal is in the ζx ± ζy = 0 plane with α = 25°, as they are projected to the x-z 

plane. On the contrary, the predicted BRDF using the cross-section of ζx ± ζy = 0 is very 
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close to that using the 1-D slope distribution along the diagonals. The reason is that the 

way in which the 1-D slope is calculated happens to result in the correct distribution, 

since the normal of most microfacets that contribute to the side peaks is close to the plane 

x ± y = 0. Therefore, care must be taken in using the 1-D slope distribution to predict the 

BRDF for anisotropic surfaces. 

Further measurements are performed for Sample 3 at several azimuthal angles, 

and the results are compared to the predicted BRDFs using the corresponding cross-

sections of the 2-D slope distribution. The 2-D slope distribution is calculated from the 

AFM topographic data over an area of 100 × 100 µm2. The comparisons are shown in 

Figures 5.3 and 5.4. The solid line is the averaged result at φi = 0° and φi = 90°. The 

dashed line is the averaged result at φi = 45° and φi = 135°. The dash-dot line is the result 

at φi = 30°. The variation of the predicted BRDF with the azimuthal angle agrees well 

with that in the measured BRDF. It should be noted that the sampling area to calculate 

the slope distribution is only 100 × 100 µm2, whereas in the light scattering measurement 

the beam spot on the sample is near 5 mm in diameter, which might better represent the 

average behavior of the surface.  

Figure 5.3 compares the results at θi = 0° for Sample 3. The BRDF within |θobs| < 

3° cannot be measured since the detector will block the laser beam in the retroreflection 

direction. This sample shows a narrow isotropic specular peak around the specular 

direction within |θobs| < 10°. The separation of measured BRDFs beyond this region is 

significant, and two prominent subsidiary peaks can be observed in the curves for φi = 

45°, corresponding well to the slope distribution in Figure 3.7a. The difference in the 

BRDFs at different azimuthal angles can be explained by the features in the slope 
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distribution. There are two prominent side peaks in  the cross-section  linked to  the in-

plane BRDF for φi = 45°. In other words, the probability to find microfacets with the 

inclination angle of 27° is significant. When a normal incidence hits on these microfacets, 

the reflected light will be directed to the direction of |θobs| = 54°. Consequently, the 

intensity and thus the BRDF at this direction will be high. Therefore, there are subsidiary 

peaks in the BRDF curve. The cross-section linked to the in-plane BRDF for φi = 0° is 

monotonic. Therefore, there are no subsidiary peaks in the BRDF curve for φi = 0°. When 

the plane of incidence is in the position of φi = 30°, the incidence can see part of the side 

peaks in the slope distribution. Therefore, the BRDF curve for φi = 30° is between the 

curves for φi = 0° and φi = 45°.  

As shown in Figure 5.3, the subsidiary peaks occurs at |θobs| = 50° in the 

measurement results for φi = 45°. It can be inferred from the positions of the subsidiary 

peaks in the measured BRDFs that there are a lot of microfacets with an inclination angle 

of 25°, which agrees well with the angle between the {311} plane and the (100) plane.  

However, the angular position for the subsidiary peaks in the prediction is approximately 

54°, shifted by a few degrees towards the large observation angle, and the calculated 

slope distribution shows the angle linked to the side peaks is 27°. The reason for this shift 

of the side peaks may be related to noise and the convolution of the tip with the surface 

topography in the AFM measurement. Generally speaking, the agreement between the 

measured and predicted BRDFs is reasonable in both trend and magnitude. In the region 

of |θobs| < 10°, the predicted values are less than the measured values. The relative 

difference at θobs = 5° is 8% and 10% for p-polarization and s-polarization, respectively. 
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Figure 5.3 Comparison of measured and predicted BRDFs at θi = 0° for Sample 3: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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The measured and predicted values at the subsidiary peak are 0.177 and 0.187 for p-

polarization, respectively. The latter is only 6% higher than the former. Within the 

anisotropic region where the separation of the BRDFs occurs, the curves for the 

measurement results at φi = 30° is midway between the curves for φi = 0° and φi = 45°. 

However, in the predicted results the values at φi = 30° is closer to those at φi = 0° than 

those at φi = 45°.  

Figure 5.4 presents the comparison of results at θi = 45° for Sample 3. When the 

incidence is at 45°, the BRDF data within the angular region −48° < θobs < −42° cannot 

be measured because the detector is close to the retroreflection direction. This 

comparison shows that the predicted results are in good agreement with the measured 

results. The specular value at θobs = 45° is about 22% higher according to the prediction 

than according to the measurement. There is no separation in the BRDFs at different 

azimuthal angles within the region 35° < θobs < 55°. The separation of BRDFs in the 

measured results beyond this region is well repeated in the predicted results. One 

subsidiary peak can be observed at θobs = −5° in the measured BRDF at φi = 45°. The 

same argument to explain the occurrence of the subsidiary peak at |θobs| = 50° with the 

incidence normal to the surface can be applied. If the microfacets are tilted by 27° to the 

left, the incidence at θi = 45° will be reflected to the direction of θobs = −9°. One 

subsidiary peak can be observed at θobs = −8° in the predicted BRDF. The predicted value 

is 22% higher than the measured. It may be anticipated that there exist another subsidiary 

peak on the right side of the specular peak if the microfacets are tilted 27° to the right. 

However, since the reflection angle is greater than 90°, this peak is not plausible. Similar 

conclusions can be drawn for s-polarization. Nevertheless, the difference between the 
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measured BRDFs and  the predicted BRDF is obvious at θobs > 60° for s-polarization,  but 

insignificant for p-polarization. The reason may be attributed to the effect of multiple 

scattering and the breakdown of Smith’s shadowing functions. 

Another smaller subsidiary peak occurs around θobs = −60° in the results with φi = 

45°. This suggests that there are other side peaks in the slope distribution besides those at 

35.0≈ζ≈ζ yx . The microfacets which can direct the incidence at θi = 45° to the 

direction of θobs = −60° should have an inclination angle of 52.5°. Note that the {111} 

planes are very common if the silicon surface is treated by anisotropic etching. The 

inclination angle α of a microfacet with a surface in {111} plane is 54.7°. Therefore, it 

can be inferred that there are some microfacets whose surfaces are close to the {111} 

planes because of the chemical etching. These microfacets can introduce four side peaks 

at the positions |ζx| = 0.92 and |ζy| = 0.92 in the slope distribution. If one looks at the 

slope distribution of Sample 3 carefully, there are some obscure bumps around ζx ≈ −0.92 

and ζy ≈ 0.92. However, peaks in other positions are either influenced or totally blocked 

by the ridges along ζx ≈ 0.8 and ζy ≈ −0.8. Since the inclination angle of {111} planes is 

large, the interaction between the tip and the microfacets may influence the AFM 

topography measurement significantly. Therefore, the position and magnitude of these 

bumps in the slope distribution may be not accurate enough. In the predicted BRDF from 

the slope distribution, the second subsidiary peak is centered on θobs = −58°. It may be 

concluded that, the angle-resolved light scattering can have advantages over the AFM 

topography measurement for the characterization of microfacets with large slopes since 

the light scattering method is noncontact.  
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Figure 5.4 Comparison of measured and predicted BRDFs at θi = 45° for Sample 3: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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Subsidiary peaks were also observed by Shen et al. (2001) for a different silicon 

wafer with σ = 0.94 µm and λ = 0.95 µm. The difference between the specular direction 

and the angular direction where the subsidiary peak occurs is about 50°, which 

corresponds to an inclination angle α = 25°. This angle is also the angle observed for 

Sample 3, indicating that the unique peaks in the slope distribution may also exist in other 

silicon wafers. In order to investigate whether the feature in the slope distribution is a 

general property, and furthermore, whether a good agreement between the predicted and 

the measured BRDFs can also be observed, a comprehensive study on the 2-D slope 

distribution and the BRDF is performed for Samples 4-6 (Zhu and Zhang, 2004b). The 

predicted BRDFs for Sample 4-6 are based on the slope distribution (See Figure 3.7) 

calculated from the AFM topography measurement over an area of 100 × 100 µm2. 

Figure 5.5 and Figure 5.6 present the comparisons for Sample 4. Sample 4 shows 

very similar features as Sample 3, although their properties, such as growth method and 

doping type, are different. Figure 5.5 shows the comparison for θi = 0°. The BRDFs are 

independent of φi in the region |θobs| < 10°. Subsidiary peaks occurs at the angular 

position |θobs| = 50° in the measured BRDF curve for φi = 45°. Nevertheless, in the 

predicted BRDF for φi = 45° the subsidiary peaks shift a few degrees towards the angular 

position |θobs| = 54°. In general, the BRDFs of Sample 4 is lower than those of Sample 3 

at the same φi and θobs. For p-polarization, the measured value at θobs = 5° is 0.372 for 

Sample 4 and 0.672 for Sample 3. This is due to a higher central peak in the slope 

distribution of Sample 3. Figure 5.6 presents the comparison of measurement results and 

predictions for θi = 45°. Although the predicted value is much higher than the measured 

value at a narrow angular region around the specular direction, the agreement between 
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the measured and predicted BRDFs is reasonably good except for the specular region, 

excluding the difference at the large observation angle for s-polarization discussed 

previously.  

Two prominent subsidiary peaks occur in the results for φi = 45°. In the measured 

result for p-polarization, the first subsidiary peak is at θobs = −7°, with a value of 0.220. 

The corresponding peak in the prediction is at θobs = −11°, with a value of 0.232. The 

second subsidiary peak occurs around θobs = −60° in the measured BRDF curve. The 

corresponding peak is insignificant for Sample 3; however, for Sample 4 the second 

subsidiary peak becomes more prominent. Since the second subsidiary peak is related to 

the microfacets with large slopes, this suggests that the probability of microfacets with 

{111} planes is higher for Sample 4. In the prediction for Sample 4, the second 

subsidiary peak is centered on θobs = −58°, displaced by a few degrees from the direction 

of θobs = −60°. The magnitude of the peak is lower in the prediction than in the 

measurement. This may indicate that influence of the tip convolution in the surface 

topography measurement is important since the inclination angle of {111} is over 50°. In 

addition, according to Eq. (5.13) a small probability may result in a prominent BRDF 

value because the term of cos4α is also small. For example, the inclination angle for 

{111} planes is 54.7°, resulting in cos4α = 0.11. Therefore, the obscure feature in the 

microfacet orientation may be amplified by the light scattering method.  In Figure 5.6, a 

bump can be observed around θobs = −30° in the predicted BRDF for 0iφ = ° . Similarly, 

as shown in Figure 5.5, a bump also show up around θobs = −75° in the predicted BRDF 

for the same φi. In both cases, the angular differences between the specular peak and the 
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Figure 5.5 Comparison of measured and predicted BRDFs at θi = 0° for Sample 4: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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Figure 5.6 Comparison of measured and predicted BRDFs at θi = 45° for Sample 4: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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bump are 75°. Therefore, these features are linked to the ridge in the slope distribution 

at 0.8xζ ≈ . However, no bumps can be seen in the measured BRDFs. It confirms that the 

ridges in the slope distribution are artifacts in the topography measurement.  

Figure 5.7 compares the measured and predicted BRDFs at θi = 0° for Sample 5. 

The measured BRDF curve is very symmetric about the specular direction of θr = 0°. The 

BRDF is not dependent on the incidence azimuthal angle in the angular region |θobs| < 24° 

because the slope distribution is nearly isotropic in this region. In addition, a slight 

separation between the measured BRDF curves can be observed when the observation 

angle θobs > 24°. Symmetry of the predicted BRDF curve is also good. The predicted 

BRDFs agree well with the measured BRDFs. The difference between the maximum and 

minimum in both groups is close to 0.018 at θobs = 50° for p-polarization. The measured 

and predicted BRDFs both show that the value at φi = 0° is the largest in the region 24° < 

|θobs| < 65°. In addition, it is clearly shown in the measurement results for s-polarization 

that the BRDF at φi = 45° is the highest after θobs > 66°. This suggests that there are more 

microfacets with inclination angles larger than 33° along the diagonals than along the row 

and column directions. Although the measured BRDF within the narrow specular region 

is not available, the measured BRDF will be higher than the predicted BRDF if the 

current tendency is also maintained in the specular region. The relative differences are 

19% at θobs = 10° and 12% at θobs = 20° for p-polarization. 

Figure 5.8 compares the measured and predicted BRDFs at θi = 45° for Sample 5. 

The measured and predicted BRDFs depends weakly on φi when θobs > 20°. The BRDF 

curve for φi = 0° is the highest in the region −22° < θobs < 20° for both p- and s- 
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Figure 5.7 Comparison of measured and predicted BRDFs at θi = 0° for Sample 5: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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Figure 5.8 Comparison of measured and predicted BRDFs at θi = 45° for Sample 5: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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polarizations. When θobs < −22°, however, the BRDF at φi = 45° is the highest. This is in 

agreement with the crossover discussed in Figure 5.7 because both transitions happen at 

an angle around 66° from the specular direction. The agreement between the measured 

and predicted BRDFs is good in most observation angles. For example, the predicted 

value at θobs = 45° is 0.307 for p-polarization, only 1% higher than the measured value. 

The predicted value at θobs = 45° is 0.597 for s-polarization, 8% lower than the measured 

value. However, the shape of the specular peak does not agree very well. The peak in the 

measured curve has a smooth and flat top despite some small oscillations. However, the 

peak in the predicted curve is much sharper and narrower. One reason for this 

disagreement may be attributed to the limitation of the geometric optics model. Although 

interference effect is not included in the geometric optics modeling, it may influence the 

angle-resolved light scattering around the specular direction. Another reason is that the 

slope distribution from the topography measurement might not have been accurate 

enough. Besides the disagreement at the specular peak, the predicted value is lower than 

the measured value at large observation angles. The relative differences at θobs = 75° are 

20% and 31% for p-polarization and s-polarization, respectively. It may also be related to 

the difficult in achieving an accurate slope distribution function.  

Figure 5.9 and Figure 5.10 present the comparison of the measured and predicted 

BRDFs for Sample 6. The agreement in the comparison for Sample 6 is very similar to 

that for Sample 5. The BRDF is independent of φi within the region of |θobs| < 20°. 

However, separation between the BRDFs at different incidence azimuthal angles is more 

obvious in Sample 6 than in Sample 5. This separation is attributed to the slight 

anisotropy in the slope distribution when |ζx′| > 0.18. The agreement between the  
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Figure 5.9 Comparison of measured and predicted BRDFs at θi = 0° for Sample 6: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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Figure 5.10 Comparison of measured and predicted BRDFs at θi = 45° for Sample 6: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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measured and predicted BRDFs is very good. The predicted value at θobs = 10° is 0.31 for 

p-polarization, about 14% lower than the measured value. The separation in the measured 

BRDFs is well resolved in the predicted BRDFs, except that the separation is more 

significant in the predicted BRDFs. For example, at θobs = 50° for p-polarization, the 

difference in the measured results is 0.038 while the difference in the predicted results is 

0.055. Similar conclusions can be drawn for s-polarization. As shown in Figure 5.10, the 

prediction is also in good agreement with the measurement results for θi = 45°. Both the 

prediction and measurement shows that the BRDF for φi = 0° is the highest in the region 

−20° < θobs < 25°. At the specular direction, the predicted value is slightly higher than the 

measured value. The relative differences are 9% and 1% for p-polarization and s-

polarization, respectively. The peak around the specular direction in the prediction is 

narrower than in the measurement result.  

The measured results shown in Figures 5.1-5.10 are obtained at the wavelength of 

635 nm. The BRDF of some samples is also measured at the wavelength of 785 nm. 

Figure 5.11 compares the measured and the predicted BRDFs at λ = 785 nm and θi = 30° 

for Sample 3. The predicted BRDFs show a reasonable agreement with the measured 

BRDFs. The separation of the BRDFs with the incidence azimuthal angles can be clearly 

observed. Subsidiary peaks can be seen around θobs = −20° in the predicted and measured 

BRDFs with φi = 45. As discussed previously, there is a significant deviation between the 

measured and the predicted BRDFs at large positive observation angles for s-polarization. 

In addition, there is a shoulder around θobs = 78° in the predicted BRDF curve with φi = 

45°. This shoulder is also caused by the side peaks in the slope distribution. In the 

measured BRDF curve with φi = 45°, there is a subsidiary peak around θobs = 68°. 
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Figure 5.11 BRDFs at near-infrared incidence at θi = 30° for Sample 3: 
(a) and (b): p-polarization; (c) and (d): s-polarization. 
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To study the effect of wavelength on the BRDF modeling, the BRDFs at θi = 30° 

and φi = 45° are shown in Figure 5.12 for both λ = 635 nm and λ = 785 nm. At λ = 635 

nm, the predicted and measure BRDF peaks are close to each other, while at λ = 785 nm, 

the predicted BRDF peak is 13% higher than the measured. According to the geometric 

optics model, the effect of wavelength is introduced through the reflectivity that depends 

on the optical constants. The reflectivity for a smooth surface is slightly higher at λ = 635 

nm when the local incidence angle ψ is less than 70°. According to Eq. (5.13), the BRDF 

in the specular direction should be about 5% higher at λ = 635 nm than at λ = 785 nm due 

to the difference in the refractive index. However, for both polarizations the measured 

BRDF at λ = 635 nm around the specular direction is more than 18% higher than that at 

785 nm. This suggests that the effect of wavelength requires further investigation and that 

models based on wave optics may be required to take into account the diffraction effect. 
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Figure 5.12 Effect of wavelength on BRDF modeling: 

(a) p-polarization; (b) s-polarization. 

 

 



 88

5.4 Surface Uniformity and Batch Repeatability 

The consistency of the BRDF measurements over different positions on one wafer 

and the repeatability of the BRDF measurements for different wafers in one batch were 

examined. Four spots in a square of 3 × 3 cm2 around the center of the wafer were 

chosen, and BRDFs for each spot were measured. Figure 5.13 shows the average BRDF 

and the standard deviation for Samples 3 and 6. The average relative standard deviation 

for Sample 3 is around 3%. In most of the observation angles, the relative standard 

deviation is less than 5%. Similar conclusions can be drawn for Sample 6. Therefore, it is 

clear that the surface is very uniform when a spot size of 3-5 mm diameter is studied. The 

BRDF measurement result has little dependence on the relative location of the spot on the 

whole surface.  
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Figure 5.13 Surface uniformity test for Sample 3 (a) and Sample 6 (b). 

 

In order to test whether the silicon wafers manufactured in one batch have good 

repeatability, two wafers were chosen in the batch and the BRDF measurements were 

performed for each wafer. Figure 5.14 presents the comparison of BRDF measurement  
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Figure 5.14 Repeatability test for wafers in the same batch as Sample 3: 
(a) θi = 0°; (b) θi = 45°. 

 
 
 
 
 
 

θobs (deg)

-90 -60 -30 0 30 60 90

f rc
os

θ r
 (s

r-1
)

0.0

0.1

0.2

0.3

0.4

0.5

λ = 635 nm
p-polarization

(a) θi = 0°

θobs (deg)

-90 -60 -30 0 30 60 90

f rc
os

θ r
 (s

r-1
)

0.0

0.1

0.2

0.3

0.4
Wafer A, φi = 0° 
Wafer B, φi = 0° 
Wafer A, φi = 45° 

Wafer B, φi = 45° 

(b) θi = 45°

 
 
 
 
 

Figure 5.15 Repeatability test for wafers in the same batch as Sample 4: 
(a) θi = 0°; (b) θi = 45°. 
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results for two wafers in the same batch as Sample 3. The measurement results show 

good agreement at different incidence polar angles and azimuthal angles. A slight 

deviation can be seen in the subsidiary peaks. Figure 5.15 presents the comparison for 

two wafers in the same batch as Sample 4. As shown in Figure 5.15a, the agreement 

between the measurement results is very good at θi = 0°. The BRDFs of both wafers 

show side peaks, except that the wafer A has a slightly higher BRDF at the side peak. 

The measurement results at θi = 45° are shown in Figure 5.15b.  Reasonable agreement 

can be observed in the BRDFs. Two side peaks occur in the measured BRDF for both 

wafers. The positions of the side peaks are in the same angular direction. However, the 

magnitude of the side peak is higher for wafer A than wafer B, consistent with the results 

shown in Figure 5.15a. Generally speaking, Figure 5.14 and Figure 5.15 demonstrate that 

wafers in both batches have good repeatability. Therefore, the measured BRDF for one 

sample may be considered as a representative for all the wafers in the same batch. The 

side peaks in the measured BRDF is related to the process parameters for these batches.  

 

5.5 Instrument Effects and Reverse Procedure 

In the first stage of this thesis, the surface topography of Sample 3 was measured 

with a scan area of 40 × 40 µm2 with an AFM about two year ago. Figure 5.16 shows the 

predicted BRDFs from the 2-D slope distribution calculated from that topography 

measurement (Zhu and Zhang, 2004a). The experimental results are represented by the 

marks in the figure. The predicted BRDF showed a good agreement with the measured 

BRDF. First, the magnitudes of the specular peak are very close. Second, the positions 

and magnitudes of subsidiary peaks agree well with those in the measurement results. 
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The angular difference between the specular position and the subsidiary peak is 50°, 

indicating that the subsidiary peak is related to an inclination angle of 25°. However, the 

results shown in Figures 5.3 and 5.4 imply that the subsidiary peak in the predicted 

BRDF is linked to an inclination angle of 27°. Therefore, it is necessary to study the 

reason for the discrepancy.  
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Figure 5.16 Predicted BRDFs using data within an area of 40 × 40 µm2: 
(a) p-polarization; (b) s-polarization. 

 

The surface topography of Sample 3 has been reexamined using an AFM of the 

same model (Dimension 3100) at George Institute of Technology. Two scan areas have 

been imaged, 40 × 40 µm2 and 100 × 100 µm2. The cross-sections of the 2-D slope 

distributions are represented by the dashed line and the dotted line in Figure 5.17. The 

result from the measurement performed two years ago is represented by the solid line. 

Among the cross-sections linked to the in-plane scattering at φi = 0°, the deviation is 

insignificant, except that the difference around the central peak is obvious. The peak from 

the 100 µm measurement (dotted line) is slightly higher than that from the 40 µm 
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measurement (dashed line) even though the surface topographies are measured using the 

same instrument. This may be due to the dependence of the slope evaluation on the 

sampling interval. 

 

ζx

-1.0 -0.5 0.0 0.5 1.0

p(
ζ x

)

0

2

4

6

8

10
40 µm
40 µm
100 µm

(a) Cross-section ζy = 0

Sample 3

ζx

-1.0 -0.5 0.0 0.5 1.0
p(

ζ x
)

0

2

4

6

8

10
(b) Cross-section ζx − ζy = 0

 
Figure 5.17 Effect of scan area and instrument on the cross-sections: 

(a) cross-section ζy = 0; (b) cross-section ζx = ζy . 

 

Figure 5.17b shows the comparison of cross-sections of ζx − ζy = 0. Excluding the 

difference at the central peak, a good agreement can be observed when |ζx| < 0.15. 

However, the deviation among the cross-sections is obvious when |ζx| > 0.15, especially 

in the region around the side peaks. The position and magnitude of the side peaks in the 

cross-sections are different. The valley around |ζx| = 0.25 is lower in the 40 µm 

measurement than in the 100 µm measurement. This may be also due to the dependence 

of the slope evaluation on the sampling interval. One reason for the difference between 

two 40 µm measurements may be the non-uniformity of the surface. It could also be 

caused by the instrument effect as well because the shape of the AFM probe tips in the 

two instruments might be not identical. A systematic study may be needed to investigate 

the optimal scan area and the instrument effect.  
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  Figures 5.1 - 5.17 demonstrate that the agreement between the predicted BRDF 

and the measured BRDF is reasonable; it is natural to calculate the cross-sections of the 

2-D slope distribution from the measured BRDFs through a reverse procedure, and to 

compare them with those obtained from the AFM surface topography measurement. The 

cross-sections of the 2D slope distribution is calculated from the measured in-plane 

BRDFs at corresponding azimuthal angles by  

( ) ( ) ),(
),,(

coscoscos4)(
4

rir
ri

ri
x f

SSn
p θθ

θθψκρ
αθθ

=ζ ′     (5.14) 

For the in-place scattering, α and ψ can be easily calculated from θi and θr. Since 

Shadowing is significant when the reflection angle is large, Smith’s shadowing function 

should remain in the model. The rms slope is an input of Smith shadowing function; 

however, its value is unknown until the slope distribution is fully calculated. Some 

iteration is required in the reverse procedure. In this thesis, the value is simply set to that 

from the slope distribution obtained from the AFM measurement.  

Figure 5.18 displays the comparisons of the cross-sections of 2-D slope 

distributions for Samples 4 and 5. The central peak is narrower and higher for Sample 4 

than for Sample 5. As shown in Figure 5.18a, the difference between the cross-sections is 

very small when |ζx| < 0.1. The agreement between the cross-sections linked to the in-

plane BRDF at φi = 0° is satisfactory. The cross-section calculated from the BRDF at φi = 

45° shows reasonable agreement with the cross-section of the 2-D slope distribution cut 

by the plane of ζx − ζy = 0. Some deviations are noticeable around the side peaks. Figure 

5.18b plots only one cross-section since Sample 5 is nearly isotropic. The agreement is 

good in the region |ζx| > 0.26. The deviation within the region |ζx| < 0.25 may be due to 
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the limitation of the geometrical optics model and the difficulty in obtaining an accurate 

slope distribution from the topographic data.  
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Figure 5.18 Comparison of the cross-sections of the 2-D slope distribution:  
(a) Sample 4; (b) Sample 5. 

 

5.6 Out-of-plane BRDF and Normal Emissivity 

At normal incidence, the out-of-plane BRDF can be written as (Kong, 1990; 

Caron et al., 2003) 
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where  

]cos,0,[sin iii k θ−θ=k  

]cos,sinsin,cos[sin rrrrrr k θφθφθ=k     (5.16) 

]coscos,sinsin,cossin[sin rirrrririd k θ−θ−φθ−φθ−θ=−= kkk  

ki and kr are the wave vectors of the incident bam and the reflected beam, respectively, 

and a is the polarization vector for the incidence radiation. p and s represent the vectors 

of p- and s-polarizations with respect to the plane defined by the surface normal and the 
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wave vector for the reflected wave. The magnitude of the component of the electric field 

in the direction of s is )( sa ⋅sr , and that in the direction of p is )( pa ⋅pr . The intensity of 

the reflected wave should be equal to the summation of the squares of two magnitudes. 

The expression in Eq. (5.15) can be simplified at the normal incidence, 
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Furthermore, if the vector a stands for p-polarization with regard to the x-z plane, then 

rprsps rrrr φ+φ=⋅+⋅ 222222 cossin)()( pasa    (5.18) 

Therefore, the out-of-plane BRDF at normal incidence for p-polarization is 
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Similarly, the out-of-plane BRDF at normal incidence for s-polarization is 
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The measured 2-D slope distribution can be substituted into Eqs. (5.19) and (5.20) 

to predict the out-of-plane BRDF at normal incidence. Furthermore, the predicted BRDFs 

can be used to calculate the normal-hemispherical reflectance, 

( )∫ ∫
π π

− θθθφθφ=ρ
2

0

2/

0
cossin,,0,0 )0,0( rrrrrrrhd dfd   (5.21)  

As discussed in Sections 5.2 and 5.3, some deviation exists between the predicted and the 

measured in-plane BRDFs. However, the difference in the BRDFs around the specular 

peak, due to the interference effect and the inaccurate slope distribution, may be not a 

problem because of the factor of rrdθθsin . In addition, at normal incidence the effects of 

masking and multiple scattering on the BRDF are insignificant. For Sample 3, the 
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normal-hemispherical reflectance is 0.323 at λ = 635 nm for unpolarized incidence while 

the measured value using an integrating sphere at θi = 6° is 0.321.  The difference 

between these two values is very small. Consequently, it may be expected that the 

spectral normal emissivity can be predicted from the measured slope distribution 

function. Further studies are needed to investigate the out-of-plane BRDF and the 

spectral emissivity at different angles and difference wavelengths.  
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CHAPTER 6 
 

VALIDITY OF HYBRID METHOD FOR COATED ROUGH SURFACES 
 
 
 

The hybrid method is computationally effective since its formulation is very 

similar to that for a rough surface without thin-film coatings. Some agreement has been 

demonstrated between the modeling results and the experimental measurement (Tang et 

al., 1999a). It indicates that the hybrid method may be applicable for some rough surfaces. 

However, there is little knowledge of the validity of the hybrid method in the literature. 

In this chapter, a rigorous electromagnetic wave solution is used to investigate validity of 

the hybrid method.  

 

6.1 Hybrid Method 

The three-layer system studied in this thesis is illustrated in Figure 6.1. The 

surface is assumed to be of one-dimensional roughness, and the roughness is invariant in 

the y-direction. The air-film interface Σ1 is z = ξ1(x) whereas the film-substrate interface 

Σ2 is z = −h + ξ2(x). h is the distance between the mean planes of two interfaces, i.e., 

thickness of the film. Region I, z > ξ1(x), is the air with a refractive index n = 1. Region II, 

−h + ξ2(x) < z < ξ1(x), represents the thin-film coating with a refractive index nf. Region 

III, z < −h + ξ2(x), represents the substrate with a refractive index ns. One assumption 

states that the profile of the air-film interface is identical to the film-substrate interface, 

i.e., ξ1(x) = ξ2(x). Although the profiles of two interfaces may have some extent of 

deviation from the identical profiles, the effect of interface correlation is not the focus of 

this thesis. 
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Figure 6.1 Schematic drawing of light scattering on a three-layer system. 

 

Monte Carlo simulation is a powerful method to handle the ray tracing effectively. 

This method has been successfully applied to simulate the scattering of radiation on 

opaque surfaces and semi-transparent surfaces (Tang et al., 1997; Tang and Buckius, 

1998; Zhou and Zhang, 2003; Lee et al, 2004). Basically, a large number of bundles of 

rays are illuminated on the rough surface, and each ray is traced until it leaves the rough 

surface or absorbed by the thin film and the substrate. These bundles can be reflected to 

different directions by the microfacets on the rough surface. The ratio of the reflected 

power within a small angular region ∆θr to the incident power can be determined  from 

the ratio of the number of rays reflected to the small angular region ∆N(θr) to the number 

of total bundles illuminated on the rough surface N(θi). The bidirectional reflectance 

distribution function (BRDF) can be calculated by 
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determine the reflectivity of the microfacet. For an uncoated rough surface, the 

reflectivity of the microfacet is calculated from the Fresnel reflection coefficient. 

However, the interference effect has to be considered for thin-film coated rough surface. 

The reflectivity of the coated microfacet is (Brewster, 1992; Siegel and Howell, 2002) 
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where r0,f and rf,s are the Fresnel reflection coefficients between the air and the film and 

between the film and the substrate. The phase shift of wave traveling through the film is  

 λθπ=β /cos2 dn f        (6.3)  

where θ is the angle between the refracted light and the microfacet normal, and λ is the 

wavelength in vacuum. Since the microfacet is tilted by an inclination angle of α, a local 

thickness d should be used, d = hcosα.  

In this thesis, two ray-tracing methods, the surface generation method (SGM) 

(Tang et al., 1997; Tang and Buckius, 1998) and the microfacet slope method (MSM) 

(Prokhorov and Hanssen, 2003; Zhou and Zhang, 2003; Lee et al, 2004) are used to 

model the scattering on rough surfaces with coatings. In the SGM, a lot of random rough 

surfaces with the same statistics are generated using the spectral method (Thorsos, 1988). 

These rough surfaces have a Gaussian height distribution and a Gaussian autocorrelation 

function. Although statistics of real surfaces may deviate from the Gaussian, Gaussian 

statistics are used since the goal of this thesis is to investigate the validity of the hybrid 

method. For each realization of random rough surface, a large number of bundles of rays 

are illuminated on the selected nodes on the surface, and each ray is traced. The 

dimension and orientation of the microfacet related to the surface nodes can be easily 
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calculated from the surface profile. The BRDFs for each generated surface are calculated, 

and then the simulation results are averaged to ensure statistically reliable results.  On the 

other hand, in the MSM the rough surface does not have any physical dimension and the 

surface is represented by a randomly orientated microfacet. The bundles always hit on the 

same position as if the surface is shrunk to one point.  One randomly oriented microfacet 

is generated for each incoming bundle. The slope distribution of the microfacet is 

assumed to be a Gaussian distribution whose standard deviation is determined by the 

root-mean-square roughness σ and the autocorrelation length τ. However, because there 

is no determined surface, a weight function should be included in the generation of 

microfacets to consider the ratio of two projected areas of the microfacet (Lee et al., 

2004).  

The most remarkable difference between the SGM and the MSM lies in the way 

how the shadowing and the masking are handled. In the SGM, the shadowing and the 

masking can be fully determined from the known geometry of the generated surface. 

However, since there is no physical surface in the MSM, the lateral distance between two 

microfacets is unknown. Therefore, Smith shadowing function is applied in the MSM to 

handle both the shadowing and the masking (Smith, 1967). The inputs of the Smith 

shadowing function are the incidence direction (or the reflection direction) and the root-

mean-square slope of the rough surface. For given roughness statistics, the shadowing 

function produces an equal probability of shadowing regardless of the orientation of the 

generated microfacet due to a fixed incidence angle whereas the probability of masking 

indeed depends on the orientation of the generated microfacet. Consequently, the 

shadowing is not accurately addressed in the MSM.  
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6.2 Rigorous EM-Wave Solution 

As shown in Figure 6.1, the surface roughness is invariant in the y-direction. 

Therefore, the electromagnetic field is only a function of x and z.  If the incidence is of p-

polarization, the magnetic field vector has only y component H(r), where r is defined as 

(x, z). Only some of the equations governing the light scattering are shown in the 

following, and more detailed derivation can be found in Gu et al. (1993) and Lu et al. 

(1998). 

The following four equations are derived from Green’s theorem and the extinction 

theorem, depending on the regions where r and r′ are located. The subscripts 0, f, and s 

represent the air, film, and substrate, respectively. If r ∈ region I and r′ ∈ region I, 
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If r ∈ region I and r′ ∈ region II, 
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If r ∈ region II and r′ ∈ region II, 
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If r ∈ region II and r′ ∈ region III, 
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where )(riH  stands for the incident magnetic field, and n∂∂ / stands for the normal 

directive at the boundary. The Green function G is defined as  

 ( )rrrr ′−επ=′ 0
)1(

0),( kHjG      (6.8) 

where )()1(
0 νH  is the zeroth-order Hankel function of the first kind with dummy variable 

ν (Kreyszig, 1993), ε is the relative permittivity of the corresponding medium, and k0 =  

2π/λ is the magnitude of the wave vector in vacuum. 

The boundary conditions at the air-film interface Σ1 are 
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and the boundary conditions at the film-substrate interface Σ2 are 

 )()( rr sf HH =        (6.10a) 

 
n

H
n

H s

s

f

f ∂
∂

ε
=

∂

∂

ε
)(1)(1 rr

      (6.10b) 

Equations (6.4)-(6.7) are coupled by the boundary conditions. Necessary 

transformation is required so that the boundary conditions can be substituted. For 

example, one can set r = [x, ξ1(x)+δ] in Eqs. (6.4) and (6.5), and r = [x, −h+ξ1(x)+δ] in 

Eqs. (6.6) and (6.7), where δ is a positive infinitesimal. Therefore, only the magnetic 

fields at the boundaries and their derivatives are involved in the equations. In the 

numerical simulation, a finite length l has to be truncated from the infinite integral length 
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and divided into N sections with equal interval ∆x = l/N. The unknowns are the magnetic 

fields at two boundaries, H(1)(xn)  and H(2)(xn), and their normal derivatives at the 

boundaries, L(1)(xn)  and L(2)(xn), where xn = (n − N/2)∆x, n = 1, …, N. Accordingly, the 

integral equations are converted into a matrix equation, 

 

where I is the identity matrix with a dimension of N. The expressions for the matrix 

elements can be found in Gu et al. (1993). Although the Green function becomes singular 

as xm − xn approaches to zero, Hmn and Lmn can be obtained by neglecting the high-order 

terms in the Green function and its derivative (Maradudin et al, 1990; Tsang et al., 2001). 

These elements are dependent on the interface profiles, relative permittivities of three 

media, and the magnitude of the wave vector. Each sub-matrix, Hmn and Lmn, has a 

dimension of N × N. The dimension of the matrix is 4N × 4N, and the matrix is not a 

sparse matrix. The memory requirement and the computation time for solving the matrix 

equation are formidable if the number of nodes on the rough surface is very large. After 

the matrix equation has been solved, the reflection amplitude r(θr) can be calculated from 

the magnetic field and its normal derivative at the boundary Σ1, H(1)(xn)  and L(1)(xn) 

(Maradudin et al, 1990; Sánchez-Gil and Nieto-Vesperinas, 1991), 
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The derivation of equations for s-polarization is similar to that for p-polarization. 

For s-polarization, the magnetic field H and its normal derivative L in Eqs. (6.11) and 

(6.12) are replaced by the electric field E and its normal derivative F, respectively. The 

matrix elements are independent of polarizations except that factors related to the relative 

permittivity do not exist in the case of s-polarization because the boundary conditions 

have different forms.  

The BRDF for one-dimensional rough surfaces at a plane-wave incidence is 

(Sánchez-Gil and Nieto-Vesperinas, 1991; Tang and Buckius, 1998) 
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At the edge of the beam, the intensity of the field changes abrupt to zero for the plane-

wave incidence. This can introduce so-called edge effect into the simulation results. In 

order to decrease the edge effect, it is common to use a taped-intensity incidence 

(Thorsos; 1988; Maradudin et al, 1990; Tsang et al., 2001). The expression of the 

corresponding BRDF can be found in Maradudin et al. (1990) and Tsang et al. (2001).  

 

6.3 Numerical Implementation and Validity Criteria 

A program has been developed to simulate the scattering from rough surfaces, 

based on the EM-wave approach. The taped-intensity incidence is applied in the program. 

Figure 6.2 shows the comparisons of the simulation results from the in-house developed 

computer program with the experimental results or theoretical values. In Figure 6.2a, the 

simulation result for scattering on a perfect conducting surface is compared to the 

experimentally measured value from Kim et al (1990). The roughness parameters are σ = 
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1.2 µm and τ = 2.9 µm. The specular peak around 30° due to the coherent reflection is 

not shown. The agreement between the simulation results and the measured values are 

reasonable. The relative difference is around 10% within −54° < θr < −24°, and 20% 

within 36° < θr < 56°.  In order to validate the program for thin-film coated rough surface, 

the reflectance of a thin silicon dioxide layer on a smooth silicon substrate is obtained 

from the program. Figure 6.2b compares the result with that calculated from Eq. (6.2). 

The incidence wavelength is 632 nm, and the refractive indexes for silicon dioxide and 

silicon are 1.457 and 3.872, respectively (Edwards, 1985). The theoretical solution, which 

is the solid line in the Figure 6.2b, is the same for p- and s-polarizations at the normal 

incidence. For the numerical simulation, l = 40λ, N = 800. It can be observed that the 

simulation results show excellent agreement with the theoretical solution. The average 

relative error for p-polarization is less than 3%, and that for s-polarization is about 1%. 

Therefore, the numerical error introduced by the finite integral length and finite number 

of surface nodes is assumed to be around 3%.  

 

θr (deg)

-90 -60 -30 0 30 60 90

f rc
os

θ r
 , 

sr
-1

0.0

0.2

0.4

0.6

0.8
EM
Kim et al.

(a) perfect conductor
     σ = 1.2 µm, τ = 2.9 µm
     λ = 10.6 µm
     θi = 30°

Normalized thickness, hnf /λ

0.0 0.2 0.4 0.6 0.8 1.0

R
ef

le
ct

an
ce

, ρ
f

0.0

0.1

0.2

0.3

0.4
p polarization
s polarization
Eq. (6.2)

(b) thin-film coating
λ = 632 nm, θi = 0°
nf = 1.457, ns = 3.872

 

Figure 6.2 Validation of the EM-wave solution for 
(a) a perfect conductor and (b) a thin-film coating. 
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In the numerical implementation for both ray-tracing methods, the angular 

resolution ∆θr is set to 1°. To ensure a relative standard deviation of 5% for any averaged 

BRDF value greater than 0.01, the MSM uses ten million rays (N = 107). Meanwhile, in 

the SGM, the length of the truncated surface ranges from 200λ to 250λ, depending on the 

rms surface roughness. The surface is divided into 2,048 surface nodes. Among these 

nodes, only the central part of the surface (around 1,000 nodes) is illuminated to 

minimize the edge effect. Two hundred surfaces are needed to achieve the same relative 

standard deviation as the MSM. In the EM-wave solution, usually the length of the 

surface is 40λ, and this surface is divided into 800 nodes. The relative standard deviation 

is 10% from the simulation results of 200 surfaces. The simulation uses a computer with 

a 3.2 GHz Pentium 4 processor and 2 GB memory. For a perfectly conducting surface, it 

takes the computer about one minute for the MSM, six minutes for the SGM, and 30 

minutes for the EM-wave solution. However, for a dielectric surface with a thin film, it 

takes one minute for the MSM, four minutes for the SGM, and nine hours for the EM-

wave solution. Because a complicated iterative algorithm is used in the SGM to treat the 

shadowing and the masking, the SGM requires more computation time. Since a matrix 

equation needs to be solved, the EM-wave solution takes much longer time than the 

hybrid methods.  In the SGM, the energy of each reflected ray is the same for a perfectly 

conducting surface while it is reduced on each reflection for a dielectric surface or a thin-

film coated surface. Therefore, the simulation for a thin-film coated surface converges 

faster than that for a perfectly conduction surface. In the EM-wave approach, the size of 

the matrix is N × N for a perfectly conducting surface while it is 4N × 4N for a thin-film 

coated surface. Consequently, the EM-wave solution takes much longer time for the latter. 
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Two criteria are defined for the comparison of results from different methods:  
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where the subscripts h and s represent “hemispherical” and “specular”, respectively, and 

θhc is the half-cone angle. Subscripts EM and HB in fr stand for the result from the 

rigorous EM-wave approach and that from the hybrid methods (either SG or MS), 

respectively. In the definition of ηh, the numerator is the summation of the absolute value 

of the difference over the angular region from −π/2 to π/2. The difference between 

simulation results on each reflection angle is emphasized. Hence, ηh is not equal to the 

relative difference of the directional hemispherical reflectance. On the other hand, ηs is 

the relative difference of the total scattered radiation in an angular region around the 

specular direction. Therefore, it can be considered as a criterion based on the difference 

in the directional-conical reflectance. In this thesis, the critical value of η is 20% for both 

ηh and ηs, and a half-cone angle of θhc = 5° is used in the specular criterion. 

 

6.4 Scattering on Perfectly Conducting Surfaces 

The scattering on a perfectly conducting surface without coating is investigated to 

examine the difference between the SGM and the MSM. The wavelength has little effect 

on the modeling using the geometric optics approximation (GOA) as long as the 
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refractive index is invariant. The ratio of σ/τ, related to the average inclination angle of 

microfacets, is an important parameter in the modeling. The simulation results for two 

surfaces having the same value of σ/τ will be the same in the MSM because the 

generation of the microfacets is only dependent on the ratio of σ/τ. In the SGM, the 

influence of different roughness parameters with the same ratio of σ/τ is insignificant. 

Usually the difference is smaller than the relative standard deviation of the simulation 

results.  
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Figure 6.3 Comparison of simulation results for scattering on a perfectly  
surface: (a) σ = λ, τ = 5λ; (b) σ = 3λ, τ = 6λ; (c) σ = 2λ, τ = 2λ. 

 

Figure 6.3 shows the comparisons of the simulation results from different 

methods (Zhu et al., 2004). The results from the SGM display a good agreement with 
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those from the EM-wave solution. As shown in Figure 6.3c, the SGM can predict the 

retro-reflection peak for a surface with the ratio of σ/τ equal to one although the predicted 

value from the SGM is 10% lower than the EM-wave solution. Both the numerical 

simulation (Maradudin et al., 1990) and the experimental measurement (O’Donnell and 

Mendez, 1987) found that multiple scattering with the coherent interference contributes 

to the enhanced retro-reflection peak. Figure 6.3 confirms that the ray-tracing approach 

by the SGM can be an appropriate alternative to the EM-wave solution. A validity region 

of the SGM has been proposed by Tang et al. (1997) for perfectly conducting surfaces, 

and the validity region for dielectric surfaces may be broader. The validity of the MSM 

will be discussed in details.  

The surface shown in Figure 6.3a has a value of σ/τ = 0.2, corresponding to an 

average inclination angle of 16°. The microfacets on this rough surface are not so steep 

that both the shadowing and the masking are insignificant. Therefore, the result from the 

MSM agrees well with that from the SGM and the EM-wave solution. However, Figure 

6.3b shows that the result from the MSM deviates obviously from that from the EM-wave 

solution for a surface with σ/τ equal to 0.5, corresponding to an average inclination angle 

of 35°. It can be imagined that the microfacets on this surface are much steeper than those 

on the surface in Figure 6.3a.  Hence, both the shadowing and the masking will have 

significant influence because the microfacets are steeper and the incidence angle is 

oblique. For the MSM, ηh is 19 %, indicating that the MSM cannot accurately deal with 

the shadowing and the masking effect.  

In Figure 6.3c, the incidence is intentionally set to the normal direction in order to 

remove the shadowing effect. The MSM can result in a reasonable agreement with the 
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EM-wave solution, except that the value from the MSM is much lower in the angular 

spanning from −10° to 10°. When σ/τ is equal to 1, the average inclination angle is 55°. 

Therefore, the microfacets on this surface are very steep. Both the SGM and MSM can 

separate the first order and the second order contributions from the total scattering. The 

second-order contribution refers to those rays reflected by two microfacets before they 

leave the rough surface. The second-order contribution is lower in the MSM than in the 

SGM although the first-order contributions are very close. For the MSM, ηs is 26 %, 

larger than the critical value. It can be concluded that the MSM cannot be used for a 

surface with a large value of σ/τ because of its limited ability to model the multiple 

scattering, which is a consequence of the masking effect. One reason for the limitation 

may come from the shadowing function since the correlation between height and slope is 

ignored in the Smith shadowing function (Smith, 1967). Another reason may be 

attributed to the algorithm of the MSM. The generation of the second microfacet, which 

may intercept the reflected bundle by the first microfacet, is independent of the 

orientation of the first microfacet. This may affect the prediction of the second order or 

higher order scattering.  

A large number of roughness parameters have been investigated in the present 

work. From the comparison of the results from the MSM and the EM-wave solution, it 

can be concluded that the MSM can result in a reasonable agreement with the EM-wave 

solution when σ/τ is less than one if the incidence is at the normal direction. However, 

the validity regime will be smaller when the incidence comes to the surface at the oblique 

angle.   
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6.5 Simulation on Thin-film Coated Surfaces 

In Figure 6.4-Figure 6.6 (Zhu et al., 2004), the thin-film coated surface is a layer 

of silicon dioxide on a rough silicon substrate, and the incidence wavelength λ is 632 nm.  

This kind of surface can be approximated by the three-layer system in Figure 6.1 since 

silicon is opaque at room temperature when the incidence wavelength is less than 1.1 µm. 

In addition, the thin film is non-absorbing at λ = 632 nm. The BRDF is the averaged 

value from p-and s-polarizations. Figure 6.4 shows the effect of film thickness on the 

comparison of simulation results from the EM-wave solution and the hybrid methods. As 

shown in Figure 6.4a, the two hybrid methods basically give the same results because the 

value of σ/τ is 0.1.  Furthermore, the results from the EM-wave approach and the hybrid 

methods agree well when the film thickness is up to one wavelength. Both ηh and ηs are 

less than 8% for the SGM. However, large deviation can be observed when h = 2λ. For 

this case, ηh is 22% and ηs is 19% for the SGM. Both are close to the critical value of 

20%. The reason for the large deviation will be explained later. It can be observed from 

Figure 6.4a that the profile of the BRDF changes as the film thickness increases. The 

peak in the BRDF is nearly in the specular direction when h = 0.1λ. When h = 0.2λ and h 

= λ, these peaks are shifted by a few degrees toward smaller reflection angles. For these 

three cases, the BRDF curve still has a Gaussian shape. However, the BRDF curve for the 

case of h = 2λ is far away from the Gaussian shape. The maximum BRDF value occurs at 

θr = 46° instead of θr = 30°; furthermore, a shoulder shows up around θr = 15°. The 

change of the shape of the BRDF curve is attributed to the variation of the reflectivity 

with respect to the local film thickness and local incidence angle.  
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Figure 6.4 Effects of film thickness on the validity of the hybrid method: 
(a) σ = 0.2λ, τ = 2λ; (b) σ = 0.5λ, τ = 2λ. 

 

In Figure 6.4b, the rms roughness is increased to half of the wavelength while the 

autocorrelation length is the same as that in Figure 6.4a. Since the value of σ/τ is equal to 

0.25, there is no obvious deviation between the results from the hybrid methods. The 

agreement between the results from the EM-wave solution and the hybrid methods is 

good, except that a small deviation can be observed at 60° < |θr| < 80° in the BRDF curve 

with h = λ. The shapes of the BRDF curves are very different as the film thickness 

increases. The BRDF curves for h = 0.1λ and h = 0.2λ look similar. The highest BRDF 

value occurs around the specular direction (normal direction), and then the BRDF value 

gradually goes down as the reflection angle departs from the specular direction.  However, 

two satellite peaks can be observed around |θr| = 50° in the BRDF curve for h = 0.5λ. The 

BRDF at the satellite peak is higher than that at the specular direction. For this surface, 

the major contribution to the BRDF is from the first-order scattering. Therefore, the 
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occurrence of the satellite peaks should be explained by the variation of the reflectivity 

with the local incidence angle. At the specular direction, the local film thickness is half of 

the wavelength in vacuum, not half of the wavelength in the film; therefore, the 

reflectivity of the coated microfacet is not the maximum. As the local film thickness and 

the refraction angle change with the local incidence angle, the reflectivity of the 

microfacet at some angular positions can be higher than that at the specular reflection. 

Therefore, satellite peaks can appear in the BRDF curve. In addition, a Gaussian-shaped 

peak around the specular direction and two small satellite peaks can be seen in the BRDF 

curve with h = λ. According to the hybrid methods the side peaks are located at |θr| = 70°. 

However, this feature is not obvious in the BRDF curve from the EM-wave solution, 

although two shoulders can be observed at |θr| = 65°. Based on the comparisons presented 

in Figure 6.4, it can be concluded that the hybrid method is valid when h ≤ λ for the 

studied surfaces. 

As mentioned earlier, the hemispherical criterion is 22% for the coated surface 

shown in Figure 6.4a with h = 2λ. Similarly, the hemispherical criterion is 25% for a 

coated surface with σ = 0.5λ, τ = 2λ and h = 2λ. Therefore, it can be inferred that the 

hybrid methods are invalid when the film thickness is larger then the incidence 

wavelength. The failure of the hybrid methods may be attributed to the corner effect. In 

the ray-tracing algorithm using the GOA, the reflection on each microfacet is 

independent. In other words, the reflection on one microfacet has no influence on the 

reflection on nearby microfacets. It is a reasonable approximation for uncoated rough 

surface. However, for thin-film coated rough surfaces, the reflection on one microfacet 

can interact with the reflection on nearby microfacets. Therefore, scattering on the coated 
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rough surface cannot be simply treated as a summation of reflections from individual 

microfacets; the coated surface has to be considered as one object if the corner effect is 

significant. It can be imaged that the corner effect will be more significant if the film 

thickness is larger and the average inclination angle of the microfacets is larger, i.e., the 

ratio of σ/τ is larger. Consequently, care must be taken when the hybrid methods are used 

for surfaces with a large value of σ/τ and a large film thickness.  

To investigate how the validity region of the GOA for a perfectly conducting 

surface changes when a coated rough surface is studied, two surfaces whose roughness 

parameters are close to the boundary of the validity region proposed by Tang et al. (1997) 

are chosen to be the substrate surface. Figure 6.5 presents the comparison of the 

simulation results for these two surfaces with a film thickness of 0.1λ. The roughness 

parameters in Figure 6.5a are σ = λ and τ = λ. As shown in the upper plot in Figure 6.5a, 

the simulation results for the normal incidence are in reasonable agreement. However, 

some deviations are noticeable between the results from the hybrid methods. Although 

the SGM can nearly resolve the specular peak, the value predicted from the MSM is 

slightly lower than that from the EM-wave solution. The hemispherical criteria ηs are 8% 

for the SGM and 12% for MSM, respectively. Therefore, this surface can be positioned 

within the validity regime for the hybrid method. However, when the incidence is at 30°, 

significant deviations can be observed among the results from different methods. The 

agreement between the EM-wave solution and SGM is reasonable at most angular 

regions, except for the region around the retro-reflection angle. On the contrary, the 

MSM fails to predict the BRDF for this surface. The BRDF curve from the MSM at θi = 

30° look similar to that at θi = 0°. The failure of the MSM is attributed to its incapability 
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to model the shadowing and multiple scattering when σ/τ = 1 and θi = 30°. In the low plot 

of Figure 6.5a, the MSM overestimates the BRDF in the region −20° < θr < 20° while it 

underestimates the BRDF in the region −80° < θr < −20°. The hemisphere criteria are 

13% for the SGM and 24% for the MSM. As a consequence, this surface is in the validity 

region for the SGM, but it is out of the validity region for the MSM. 
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Figure 6.5 Comparisons of simulation results for surfaces with h = 0.1λ: 
(a) σ = λ, τ = λ; (b) σ = 0.1λ, τ = 4λ. 

 

Figure 6.5b displays the comparison for a surface with σ = 0.1λ and τ = 4λ. 

Although τ is a few times larger than λ,  σ is much smaller than λ. Therefore, it is 

difficult to ascertain whether or not the hybrid method is valid. The MSM and the SGM 

basically give the same results due to the small value of σ/τ. When the incidence is at the 

normal direction, the results from the EM-wave solution and the hybrid method do not 

show large deviation. However, the peak value from the hybrid method is lower than that 

from the EM-wave solution. The hemispherical criterion is 8% for the SGM; therefore, 
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this surface is in the valid region of the hybrid method. According to Tang et al. (1997), 

the GOA would be invalid for a perfectly conducting surface with the same roughness. 

The disagreement may be explained by that the validity region can be different for 

dielectric surfaces and thin-film coated surfaces since their reflectivity is lower than unity. 

On the other hand, when the incidence is at 30°, the peak value from the hybrid method is 

much lower than that from the EM-wave solution as shown in the low plot in Figure 6.5b. 

The hemispherical criterion increases to 19%, close to the critical value. The reason for 

the large difference is that the surface may appear smoother to the oblique incidence 

since σcosθi becomes smaller; therefore, the diffraction effect may become important.   

Since there are too many variables, such as rms roughness and autocorrelation 

length, refractive indices of substrates and coatings, film thickness, and so on, 

constructing a complete regime map for scattering on coated rough surfaces is not 

feasible. In this thesis, a regime map for the validity of the hybrid method has been 

constructed for a layer of silicon dioxide coating on a silicon substrate in the visible 

wavelength with a fixed film thickness. The hemispherical criterion with a critical value 

of 20% is used to construct the validity regime. A wide range of roughness parameters 

has been examined. The autocorrelation lengths are λ, 2λ, and 4λ, respectively. The rms 

roughnesses are 0.1λ, 0.2λ, 0.5λ, and λ, respectively. These roughness parameters are 

chosen since they are reasonable for real surfaces in the microelectronics industry. For 

each combination of the autocorrelation length and the rms roughness, both the normal 

incidence (θi = 0°) and the oblique incidence (θi = 30°) have been tested.  

Figure 6.6a illustrates the validity region for rough surfaces with a coating 

thickness of 0.1λ. Generally speaking, the validity region of the MSM is similar to that of 
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the SGM. Both methods are valid when 2λ ≤ τ ≤ 4λ and 0.2λ ≤ σ ≤ λ. One exception is at 

σ = λ, τ = λ, and θi = 30°, which was explained in Figure 6.5a. It can be seen that the 

hybrid method fails for a rough surface with σ = 0.1λ and τ = λ or 2λ; however, it 

becomes valid for a surface with σ = 0.2λ and the same value of τ. This infers that in the 

hybrid method the rms roughness σ cannot be too small, compared to the incidence 

wavelength. In addition, if the rms roughness σ is fixed at 0.1λ while the autocorrelation 

length τ increases from 2λ to 4λ, the hybrid method becomes valid. It might be expected 

that the hybrid method remains invalid because σ is much smaller than λ. Nevertheless, 

the results indicate that a large value of the autocorrelation length may be essential to the 

validity of the GOA, and hence, to the validity of the hybrid method.   
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Figure 6.6 Validity region of the hybrid method: (a) h = 0.1λ; (b) h = 0.5λ. 
ο: SGM and MSM valid; x: SGM and MSM invalid; ∆: SGM invalid; ∇: MSM invalid. 

 

The validity of the hybrid method for rough surfaces with a coating thickness of 

0.5λ is shown in Figure 6.6b. Similar to the comparison shown in Figure 6.6a, both 

methods are valid when 2λ ≤ τ ≤ 4λ and 0.2λ ≤ σ ≤ λ. However, the agreement between 
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the hybrid methods and the EM-wave solution becomes worse when τ = λ. The poor 

agreement is caused by the deviation around the satellite peak at the normal incidence 

and around the off-specular peak at the oblique incidence. No general conclusion can be 

made on which hybrid method is better. In some cases, the MSM can result in better 

agreement with the EM-wave solution than the SGM. For example, For a surface with σ 

= 0.5λ, τ = λ, and θi = 30°, ηh is 29% for the SGM and 14% for the MSM. As expected, 

the validity region of the hybrid method become smaller since the corner effect is more 

significant when the film thickness increases. The corner effect strongly affects the 

validity for surfaces with τ = λ because the average inclination angle is large and the 

mean lateral dimension of asperities is small. Nevertheless, the influence is not strong 

enough to obviously change the validity region when  τ = 2λ or 4λ.  

Figure 6.6 demonstrates the hybrid method is valid for rough surfaces with 0.2λ ≤ 

σ ≤ λ and 2λ ≤ τ ≤ 4λ when h < 0.5λ.  Generally speaking, the GOA can be applicable 

for a rough surface with a large rms roughness and a long autocorrelation length, 

compared to the incidence wavelength. Therefore, the hybrid method may be valid for 

this kind of surface if the corner effect is not significant. Since a large number of surface 

nodes are needed in the simulation, the EM-wave solution for this kind of surface is not 

performed.  From the comparisons presented in Figure 6.4, the hybrid method may still 

work for a surface with a large value of τ. Other constraints include that the ratio of σ/τ is 

small and the film thickness is less than one wavelength.  
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CHAPTER 7 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 

A comprehensive investigation has been carried out on the surface statistics and 

the BRDF of the rough side of several silicon wafers. The surface statistics are 

determined from the topographic data obtained with an AFM. The scatterometer used in 

the BRDF measurement has been fully characterized and further improved. The 

correlation between the surface roughness statistics and the BRDF has been established. 

The major findings of this thesis are as follows. 

• Prominent differences have been shown in the 2-D slope distribution 

functions for the studied samples. Strong anisotropic features with angular-correlated side 

peaks have been observed for some samples while nearly isotropic features have been 

observed for the others. The striking features in the slope distribution of the anisotropic 

samples are possibly related to the formation of {311} planes during the chemical 

etching. It has been demonstrated that the 2-D slope distribution can successfully 

represent the orientation of the microfacets on a random rough surface. Therefore, close 

collaboration with semiconductor wafer manufacturers is suggested so that the proposed 

method for the determination of the 2-D slope distribution may be used in industry to 

monitor the evolution of the surface morphology.  

• Both the 1-D slope distribution and the cross-sections of the 2-D slope 

distribution have been incorporated into the unified geometric optics model to predict the 

in-plane BRDF. Although partial agreement exists between the predicted BRDFs using 

the 1-D slope distribution for one of the anisotropic samples, the predicted BRDFs using 
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the cross-sections of the 2-D slope distribution agree with the measured values at most 

observation angles for all the studied samples. Therefore, it is suggested that the 2-D 

slope distribution should be used in the prediction of the BRDF.  

• The subsidiary peaks in the BRDFs for the anisotropic samples can be 

quantitatively correlated to the side peaks in the 2-D slope distribution. Furthermore, the 

variation of the BRDF with the azimuthal angle for the anisotropic samples can be 

explained well by the variation of the cross-sections of the 2-D slope distribution. The 

discrepancy in the specular direction may be attributed to the limitation of the geometric 

optics approximation. The deviations at large positive observation angles for s-

polarization may be attributed to multiple scattering and the breakdown of the shadowing 

function at large reflection angles for the anisotropic samples. Future studies are needed 

to include the interference and multiple scattering in the BRDF modeling. In addition, the 

agreement between the cross-sections of the 2-D slope distribution obtained from the 

measured BRDFs through a reverse procedure and those obtained from the topographic 

data suggests that the angle-resolved light scattering can also be used to characterize the 

orientation of the microfacets on the rough surface.  

• The comparison of the simulation results from the EM-wave solution and 

the hybrid method has been made for a silicon dioxide layer on a rough silicon substrate 

in the visible wavelength region. The film thickness can significantly influence the 

validity of the hybrid method. It has been established that the hybrid method can be 

applied in a wide roughness range. The validity regime is 0.2λ ≤ σ ≤  λ and 2λ ≤ τ ≤ 4λ 

when h = 0.1λ or h = 0.5λ. The proposed validity regime will benefit future research 
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related to simulations for thin-film coated rough surfaces. Further studies are needed to 

develop a complete regime map and to assess its generality.  
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