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  SUMMARY   . 

This dissertation presents a methodology for detecting incidents on freeways using 

traffic operations data.  The methodology is based on the hypothesis that incidents can be 

detected using operations data by exploiting the difference between the observed traffic 

state and the traffic state predicted by applying a discrete state propagation model of 

traffic flow.  A case study where the proposed methodology is implemented to an 

advanced traffic management system network is presented.  A comparison of the 

operational performance of the methodology vis-à-vis the performance of previously 

developed methodologies is also presented.  The dissertation concludes with a summary 

of the major findings and recommendations for future research. 
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CHAPTER I 
CHAPTER 1.  OVERVIEW, MOTIVATION AND ORGANIZATION 

OVERVIEW, MOTIVATION AND ORGANIZATION 

1.1 Incident Management Overview 

Incidents are defined as random and nonrecurring events such as vehicular crashes, 

disabled vehicles, spilled loads, temporary maintenance and construction activities, and 

other unusual events that disrupt the normal flow of traffic.  Incident-related congestion is 

a common occurrence on busy roadways.  The number of incidents per million-vehicle-

miles has been reported to be between 20 and 200 and lane-blocking incidents lasting 

more than 45 minutes per 100 million-vehicle-miles have been reported to be 1.09.  It has 

been estimated that 52 to 58 percent of the traffic congestion in urban areas is due to 

incidents, amounting to 2 billion vehicle-hours of delay and a cost of $40 billion in terms 

of hours of delay and excess fuel consumption in 2001, as reported in the 2003 Annual 

Urban Mobility Report (Schrank and Lomax, 2003).  By 2005, the impacts of incidents in 

terms of hours of delay, wasted fuel consumption, and excess road user costs are 

expected to increase 5 fold over levels experienced 10 years ago (Carvell et al., 1997).  

Secondary impacts of incident-induced congestion include increased response time of 

emergency services, lost time and reduction in productivity, increased cost of goods and 

services, reduced air quality, increased vehicle maintenance costs and reduced quality of 

life.   
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Incident management programs have been implemented as a component of freeway 

management systems to mitigate such effects.  In the Traffic Incident Management 

Handbook (FHWA, 2000), traffic incident management has been defined as the 

“systematic, planned and coordinated use of human, institutional, mechanical, and 

technical resources to reduce the duration and impact of incidents, and improved the 

safety of motorists, crash victims, and incident responders”.  Incident management 

involves detection and verification of incidents, assessing their magnitude and identifying 

the resources and actions necessary to restore the facility to normal operations and 

provide appropriate response in the form of control, information and aid.  The control 

action plans may include dispatching of emergency services to the incident scene, 

diverting traffic from the affected freeway, and the like. 

1.2 Incident Detection Algorithms 

Implicit to the response to an incident is its detection.  Under medium to heavy traffic 

conditions, the effect of a lane-blocking incident on traffic is an inverse function of the 

time taken to clear it up.  Again, the promptness of the response is a direct function of the 

time taken to detect the incident.  Accurate and early detection of incidents is vital for 

subsequent management action plans that aim to reduce the congestion caused by 

incidents.  This research effort is focused on developing an incident detection algorithm 

that will detect incidents on the roadways in a quick and effective manner.  Use of this 

incident detection algorithm will reduce the overall average time taken to detect incidents 

and thereby help in reducing congestion.   
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The issues that need to be considered for incident detection and verification 

technologies have been identified in module 8 of the Freeway Management Handbook 

(Carvell et al., 1997) as: 

•  Detection Speed 

•  Accuracy 

•  Costs 

•  Maintainability 

•  Personnel requirements 

•  Usefulness of data for other freeway management purposes 

•  Speed with which the technology can be implemented and benefits begin accruing 

 

An incident detection algorithm is capable of providing fast and accurate detection 

with minimal investments on top of the current surveillance systems and has low 

maintenance and personnel requirements.  In a study (Presley and Wyrosdick, 1998) 

conducted in Atlanta, Georgia it was observed that the Georgia Navigator system 

(Georgia’s advanced traffic management system) has reduced the average incident 

duration time from 64 minutes to 41 minutes.  This reduction of 23 minutes translated 

into a cost savings of 44.6 million dollars due to reduced delay time in 1997.  Using a 

simple linear projection, it can be projected (approximately) that a decrease of 1 minute 

in overall incident duration would lead to 1.94 million dollars benefit.  Use of an incident 

detection algorithm, involving a trivial deployment overhead of a few thousand dollars, 
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has the potential to reduce the response time by faster detection of incidents.  This alone 

provides enough motivation to invest in research of incident detection algorithms. 

1.3 Motivation  

Objective: The objective of this research is to develop an algorithm that will facilitate 

efficient real time detection of incidents using Intelligent Transportation Systems (ITS) 

traffic operations data. 

Past research in this area has concentrated on generically extracting the characteristics 

of the traffic operations data to identify the occurrence of incidents.  The traffic flow 

prediction based approaches that have been used are usually spatially limited and 

dependent on single dimensional temporal extrapolation.  The traffic modeling 

approaches have employed complex formulations that have elevated the calibration 

demands of the algorithms and seriously impaired their ease of deployment.  However, 

the modeling approach possesses considerable potential, especially in reducing false 

alarms caused by recurrent congestion.  The need for a traffic flow model based incident 

detection algorithm that would ensure robustness in terms of low rate of detection errors, 

and concurrently allow easy calibration and fast deployment, motivated the development 

of the methodology presented in this research. 

1.4 Organization of the Study 

This work proposes a new approach to operations data based incident detection.  This 

approach builds on the knowledge derived from previous research.  Chapter II presents 
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the findings of previous studies on incident detection algorithms.  These studies provide a 

valuable insight to the developments in operations data based incident detection to date.  

Identification of the problems faced by previous researchers in this area in the 

development and implementation of the algorithms expose the areas of possible 

improvement.  In addition, chapter II includes a review of the methodologies for traffic 

flow prediction and operations data processing, which are vital components of the 

algorithm presented here. 

The review of the literature indicated a gap between the development of incident 

detection algorithms and their implementation.  A survey was undertaken to identify the 

implementation issues of these algorithms and the user needs and expectations for these 

algorithms.  Chapter III presents the objectives, design principles and methodology of the 

survey.  It goes on to present the results of the survey and draw conclusions based on the 

results which are then tied to the design considerations of the algorithm. 

Chapter IV lays down the theoretical foundations of the development of the 

methodology in explicit detail.  The hypothesis and objectives are identified.  Then, an 

overview of the methodology is described.  Identification of the assumptions of the 

methodology follows.  Then the individual components of the models are discussed.  The 

chapter closes with the identification and discussion of the limitations of the 

methodology. 

Chapter V presents a case study that validates the plausibility of the developed 

methodology.  It describes the developed experimental design, site selection and data 
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description, data processing and analysis.  The implementation presented in this chapter 

follows the methodology presented in Chapter IV.  It provides a step by step evaluation 

of the components of the methodology, followed by a comprehensive evaluation of the 

complete methodology.  In addition, it provides the details of a comparative evaluation of 

the methodology with other methodologies developed in the past in similar studies.  

Finally the last chapter (Chapter V) summarizes the results of this research and provides 

recommendations for future research in this area. 
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CHAPTER II 
CHAPTER 2. BACKGROUND 

BACKGROUND 

2.1 Overview  

This research proposes a new approach to real time detection of incidents using 

operations data.  The first step in the realization of this objective is an assessment of the 

current and past methodologies applied towards this purpose.   

2.2 Chapter Structure 

The concept of incident detection and the previous methodologies applied towards 

this purpose are presented in this Chapter.  Section 2.3 gives a summary overview of the 

different technologies applied to incident detection in real time.  Section 2.4 provides 

methodological highlights of several different algorithms developed in the past for 

detection of incidents from operations data.  Section 2.5 presents models that have been 

used in the past for prediction of traffic parameters such as flow, average speed or lane 

occupancy, or have the potential for such a use.  Section 2.6 presents some of the studies 

that provided comparative evaluation of several algorithms.  Section 2.7 presents several 

traffic prediction models.  Section 2.8 presents a review of the several approaches that 

have been used in the past for filtering traffic operations data. 
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Chapter IV provides the methodology that ties up the concepts introduced in Section 

2.3 to 2.7.  Section 5.4 in Chapter V uses the concepts introduced in Section 2.8 and 

extends them for implementation specific to the case study. 

2.3 Approaches in Incident Detection 

The usefulness of incident management as a tool for congestion mitigation has been 

firmly established.  As a corollary it has been realized that faster detection of incidents 

leads to savings of incident-response time and a subsequent reduction in vehicle-hours of 

delay.  Consequently incident detection technology has received significant attention.  

With the advancements of the traffic management systems and widespread deployment of 

Intelligent Transportation Systems (ITS) technologies, several approaches involving a 

wide range of technologies have been investigated and implemented for fast and reliable 

detection of roadway incidents.  Listed below are the some of the most popular among 

these technologies: 

•  Mobile phone calls: Motorists can call a toll free number (like *DOT) to 

report roadway incidents.  There are operators in the TMCs (TMCs) who 

respond to these calls, obtain the relevant information from the callers and 

take incident-response measures as necessary.  With the large market 

penetration of the mobile phone technology, this methodology has become 

quite popular among the TMCs. 

•  Freeway service patrol: Some TMCs co-ordinate with police patrols on 

freeways for information about incidents on roadways.   

•  Peak period motorcycle patrols: Some law enforcement authorities deploy 

extra personnel on the highways during peak period traffic.  The TMCs co-
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ordinate with these authorities to obtain information regarding roadway 

incidents. 

•  Fleet operators: Often TMCs have their own floating vehicles in the traffic 

stream patroling the highways and watching out for incidents.  While the 

primary task of these patrol units is to respond to incidents and ensure a safe 

and efficient clearance of the roadway, they also play an important role in 

detecting incidents. 

•  Closed Circuit TV: Closed Circuit TV (CCTV) has recently become quite 

popular for monitoring highways for detection and verification of incidents as 

well as real time monitoring of the clearance activities.  There are operators 

constantly watching the monitors at the TMC for incidents.  With time, the 

operators develop a sense for the hot-spots as to where to expect the incidents 

and this expertise becomes very useful in fast detection. 

•  Motorist call boxes: Several states have call boxes beside the roadway 

spaced out every few miles or even closer in some regions.  Motorists can call 

the TMC to report incidents or ask for roadside assistance. 

•  Aircraft patrols: Some TMCs like the Minnesota Department of 

Transportation (DOT) and the Indiana DOT use helicopters and other aerial 

means for detection of incidents. 

•  Fixed observers/ volunteers: Some traffic management centres have 

deployed fixed observers along the roadway and recruited volunteers to report 

incidents.   

•  Citizen Band Radio monitoring: Some TMCs have deployed personnel to 

monitor the citizen band (CB) radio conversations between truck operators 

and other users of such devices to find information about occurence of 

incidents if any. 
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It is quite evident that all these technologies have scalability issues.  Patrols, Call 

boxes and CCTV technology are resources and/or manpower intensive.  There is no 

direct control over mobile phone calls from motorists implying that when an incident 

occurs, there is no guarantee when or if someone will call in to report it.  Others 

technologies like the CB Radio monitoring have problems of reliability of the 

information.   

Hence, the concept of incident detection algorithms gained popularity.  These 

algorithms provided an automated technique for detection of incidents.  Also, they solved 

the scalability issue because increase in coverage area implied increased capital 

investment but did not significantly increase the recurring costs of personnel.  The next 

section (Section 2.4) outlines the evolution of incident detection algorithms through time 

in the last three decades. 

2.4 Classification of Incident Detection Algorithms 

The concept of incident detection algorithms is not new.  Algorithms have been 

developed as early as the 1970s and new algorithms are being developed even now.  

Depending on how an algorithm analyzes the operations data in order to detect incidents, 

an algorithm is usually classified into one of five major categories: comparative 

algorithms, statistical algorithms, time-series and filtering based algorithms, traffic theory 

based algorithms, and advanced algorithms.   



 11

2.4.1 Comparative Algorithms 

Comparative algorithms compare the tracking variables against certain thresholds or 

against one another to identify anomalies.  The tracking variable is usually one of the 

traffic parameters or a variable derived from the traffic parameters.  Occupancy is the 

most common tracking variable.  The comparative algorithms are also sometimes referred 

to as the pattern recognition algorithms as the process is analogous to identification of 

patterns of behavior of the variables under incident conditions.  The California algorithm 

(refer to Section 2.5.5 ) is a classic example of this category.   

2.4.2 Statistical Algorithms 

Statistical algorithms use standard statistical techniques to identify sudden changes 

and other unusual behavior in the variable.  Incidents usually result in unusual behavior 

of the traffic variables.  These algorithms are based on the premise that the reverse is also 

true under most circumstances and that such behavior indicates incidents.  The regular 

traffic variables – flow average speed and lane occupancy – as well as variables derived 

from these primary variables have been used as tracking variables.  Examples of the 

statistical approach include the Standard Normal Deviate (refer Section 2.5.5 ) and the 

Bayesian Algorithm (refer Section 2.5.5 ).   

2.4.3 Time Series and Filtering Algorithms 

Time series and filtering algorithms treat the tracking variable as a time-series 

variable.  Deviation of the variable from the modeled time-series behavior is used for 

indication of incidents.  The challenge here is to differentiate random variations from 
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variations due to incidents.  These models include the Auto-Regressive Integrated 

Moving Average (ARIMA) based (refer Section 2.5.5 ), the exponential smoothing based 

(refer Section 2.5.5 ) and the Kalman filtering based (refer Section 2.5.5 ) algorithms. 

2.4.4 Traffic Theory based Algorithms 

The traffic theory based algorithms depend on the relationship between the traffic 

variables for their analysis.  For example, the McMaster algorithm which is based on the 

catastrophe theory determines the state of traffic based on its position in the flow-density 

plot and detects incidents based on the transition of the point from one state to another.  

The GLR algorithm (refer Section 2.5.5 ) and the McMaster algorithm (refer Section 

2.5.5 ) are examples of traffic theory based algorithms.   

2.4.5 Advanced Algorithms 

The latest trend has been the development of algorithms with advanced mathematical 

formulation based techniques and algorithms that incorporate inexact reasoning and 

uncertainty into the detection logic.  These algorithms are based on Artificial Intelligence 

techniques like Fuzzy Adaptive Resonance Theory and Probabilistic Neural Networks.  

For example in the Neural Network algorithm (refer Section 2.5.5 ), the traffic data is 

input into the black box of learning layers and a binary decision is generated. 

2.5 Evolution of Incident Detection Algorithms 

Subsections 2.5.1 through 2.5.23 discuss some of the present algorithms in more 

details.  The algorithms are presented in the temporal chronology of their associated 
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publications.  The emphasis is on providing the outline of those algorithms that are 

methodologically significantly different rather than describing all the available 

algorithms in meticulous detail.  In addition, algorithms developed for urban streets such 

as the Correlation Analysis based algorithm (Takaba and Matsuno, 1985) are considered 

to be outside the purview of this study. 

2.5.1 Standard Normal Deviate Algorithm 

The Standard Normal Deviate (SND) based incident detection algorithm (Dudek et 

al., 1974) was developed at the Texas Transportation Institute (TTI).  The SND of a 

variable is computed as the difference of the given variable from its mean, divided by the 

standard deviation of the data set.  A high value of the SND of a control variable would 

indicate a major change in the operational conditions in the system.  Lane occupancy and 

energy (kinetic energy) were evaluated as control variables in the belief that tracking the 

SND of these variables would allow identification of passage of shockwaves through the 

detection station and in turn identification of incidents.  Tests were performed with 3 and 

5 minute time bases for computation of the mean and standard deviation used in 

calculating the SND.  The TTI researchers tested two strategies – one requiring only one 

SND value to be critical, and another requiring two successive values to be critical.  The 

performance of the occupancy variable was observed to be superior in the first method.  

Effect of the time base on performance was not significant.  The second method gave a 

higher detection ratio with occupancy but a lower detection ratio with the energy variable 

as compared to the first method.  The occupancy variable was not sensitive to the time 

base in the second method either, but the energy variable showed an increase in detection 
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ratio with a larger time base.  Dudek et al. reported a 92 % detection ratio with 1.3 % 

false alarm rate during peak periods was reported.  The time to detect was 1.1 minutes on 

average.  Comparison with the other algorithms developed by Courage and Levin (1968) 

showed the SND algorithm to be as good as the composite model which was supposedly 

the best existing model. 

2.5.2 Double Exponential Smoothing 

The double exponential smoothing algorithm (Cook and Cleveland, 1974) was 

developed using data from the John C. Lodge Freeway in Detroit.  This method used 

double exponential smoothing for generating a forecast variable.  A tracking signal was 

generated as the algebraic sum of all the previous estimate errors to the present minute, 

divided by the current estimate of the standard deviation.  When the tracking signal 

deviated from zero beyond a pre-specified threshold, detection was indicated.  The 

threshold could be computed based either on the variability of the data or likelihood of 

false alarms.   

A set of 13 traffic variables which were derived from the basic traffic variables of 

volume, occupancy, and speed, were tested with this algorithm for performance.  The 

variables were: 

1. Station volume 

2. Station occupancy 

3. Station speed (volume/occupancy) 
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4. Station volume-occupancy (root of squared sum of errors for both was used 

for the error values) 

5. Station speed-occupancy (analogous to volume-occupancy) 

6. Station kinetic energy 

7. Station discontinuity 

8. Subsystem volume 

9. Subsystem occupancy 

10. Subsystem speed 

11. Subsystem kinetic energy 

12. Subsystem volume-occupancy discontinuity 

13. Subsystem speed-occupancy discontinuity 

Station discontinuity is computed in the same manner as Courage and Levin (1968).  

Kinetic energy computations use the surrogate for speed. 

Station occupancy, volume and discontinuity were found to give better performance 

in terms of detection levels at different levels of false-alarms. 

2.5.3 Low Volume 

An algorithm (Dudek et al., 1975) was specifically developed at the TTI for detecting 

vehicles under low volume conditions.  This algorithm uses tracking of individual vehicle 

input-output.  The time of exit of a vehicle from the control section, the edges of which 

are defined by detectors, is projected as the summation of the time of entry with the ratio 

of distance between detectors to speed of vehicle at the time of entry.  The TTI 
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researchers made a preliminary assumption of constant speed of the vehicle over the 

section.  Two different approaches are defined here – a time-scan operation system and 

an event-scan operation system. 

In the time scan operation, fixed sized accounting intervals are considered and the 

number of vehicles entering and exiting during these intervals are balanced.  Projected 

times of exit are computed for each vehicle entering the control section within an 

accounting interval, and if the projected time falls within that interval the vehicle is 

expected to exit within that interval.  If the vehicle fails to do so an alarm is raised.  If 

nothing had happened to the vehicle and it was just a lowering of speed that delayed the 

exit, then the alarm would be a false one.  Waiting for one more accounting period does 

not alleviate the problem because a similar situation may arise in the next interval and the 

accounting will still show one less vehicle exiting than expected. 

This problem is addressed in the event scan approach.  This uses a variable time 

interval for vehicle accounting.  For each vehicle, a set of three computations are 

executed: the shortest possible time the vehicle can take to arrive based on an upper 

speed limit of 100 miles per hour (mph), the expected arrival time of the vehicle based on 

the constant speed assumption, and a late expected exit time based on a speed with a 10% 

factor of safety.  If a second vehicle does not arrive at the beginning of the section before 

the late expected exit time, the accounting interval is closed.  If a vehicle did arrive, the 

process is repeated till such a situation arises when no vehicle arrives at the upstream 

detector before the late expected exit time at the downstream detector.  If a vehicle is not 

accounted for at the close of the accounting period, an alarm is raised. 
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Some results pertaining to detector spacing requirements for event scan operations 

were obtained from simulation runs.  Actual data was used to validate the claim that 

pattern recognition of headway, occupancy and speed has to supplement volume counts, 

for the algorithm to work satisfactorily.  An average of one false alarm per 10 minutes at 

200 vehicles per hour (vph) on a 3 lane directional freeway was observed during use of 

this algorithm. 

2.5.4 Dynamic Model (MM and GLR) 

Chow et al. (Chow et al., 1977a; Chow et al., 1977b; Greene et al., 1977; Kurkijian et 

al., 1977) proposed an incident detection approach based on a dynamic model that would 

“make full use of all information about the dynamic and stochastic evolution of traffic 

variables in time and space.” Two algorithms resulted from this approach – the Multiple 

Model (MM) algorithm and the Generalized Likelihood Ratio (GLR) algorithm.  The 

dynamic model uses the Payne equations (Isaksen and Payne, 1973).   

The MM algorithm models different scenarios with one of them being the occurrence 

of an incident.  Constant gain Kalman filters are used on the output of the model for the 

different scenarios and compared with the observations.  The residuals from these filters 

are fed into a probability calculator that is subsequently used in a set of detection rules to 

isolate incidents.   

In the GLR algorithm only one extended Kalman filter is used corresponding to the 

normal operations scenario.  Using some Incident Innovations Signatures (IIS) that are 

pre-determined from simulations, a correlation is drawn between the residuals of the filter 
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to the corresponding IIS to obtain the likelihoods of different events.  These likelihoods 

are used for the final isolation of incidents. 

Unlike the other algorithms that perform well in heavy traffic, these algorithms were 

found to perform well under light and moderate traffic as well. 

2.5.5 California Algorithm 

The California Algorithms (Payne and Tignor, 1978) are a set of 10 algorithms that 

are based on the same principle.  They use a decision tree based on traffic states for 

incident detection.  In this set, Algorithm # 8 and Algorithm # 7 are the most popular 

ones.  The California algorithms, developed using data from the Los Angeles system, are 

one of the first full-scale incident detection algorithms developed.  They are usually used 

as benchmarks for evaluating the performance of other algorithms.  At present several 

modified forms of the original California algorithms exist and are implemented in several 

TMCs. 

The algorithms use 20 and 30 second occupancies and volumes averaged over all 

lanes at a station.  Several variables are derived based on the occupancy values at the 

concerned station, the station downstream, and occupancy values at these two stations at 

different time points.  Some of the prominent ones are: Downstream Occupancy (DOCC), 

Spatial Difference in Occupancies (OCCD), Relative spatial difference in occupancies 

(OCCRD), and Relative temporal difference in downstream occupancy (DOCCTD).   

Each of these derived variables are evaluated at each time-step at each station in the 

concerned section of roadway, and compared to thresholds at different points in a 
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decision tree to determine whether an incident has occurred in the system.  The 

thresholds are determined during calibration of the algorithm by minimizing the false 

alarm rate for a given level of detection rate.  The algorithms in this set that used derived 

variables based on volume and volume-to-occupancy ratio were found to be inferior to 

algorithms based purely on occupancy based measures.  Algorithm #7 uses a persistence 

requirement and replaces the variable DOCCTD in the last stage of the decision tree with 

the variable DOCC.  This is done in order to account for two observations: 1 – non-

incident-related compression waves traveling upstream cause false alarms; and 2 – drops 

in downstream occupancies are much greater in magnitude in cases of incidents than in 

normal compression waves generated by recurrent congestion.  Algorithm #8, in addition 

to this, turns off incident detection for 5 minutes after the detection of a compression 

wave at the downstream detector.  This is supposed to give better suppression of False 

Alarms.   

2.5.6 Bayesian 

An incident detection algorithm based on Bayesian probability theory was developed 

by the Illinois DOT (Levin and Krause, 1978).  This approach can be used on top of any 

algorithm to decrease the false alarm rate of the algorithm.  The basic idea is the use of 

values of probability of occurrence of an incident for a given tracking signal.  The signal 

can be any traffic variable or a variable derived from a traffic variable such as those used 

by the California algorithms.  The requirement of the variable is its stability during the 

occurrence of the incident.  The frequency distribution functions of the variable during 

incident and non-incident conditions are derived based on historical data during the 
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algorithm calibration.  These frequency distributions are used to derive values of 

Bayesian probability of occurrence of incident for strings of signal from the variable.  

The strings consist of a series of “ones” and “zeros” depending on the presence and 

absence of the signal respectively.  A signal is generated when the value of the variable 

crosses a calibrated threshold.  There can be several thresholds for operation under 

different traffic conditions, and different geometric conditions.  The requirement for 

length of the string (string of consecutive “ones”) is determined from the probability 

values associated with the string of signals.  It was found that a string length of 4 was 

sufficient for the section over which the algorithm was tested.  In other words, a string of 

four consecutive “ones” indicated the occurrence of an incident.   

Determination of proper thresholds for the signal and the frequency distribution of the 

variables are critical to the proper functioning of the algorithm.  The main drawback of 

this algorithm is its increased detection time.  The logic ensures a lowering of false 

alarms and if the base signal variable is stable enough, the detection ratio would not 

depreciate with the use of this logic.  But depending on the length of the string required to 

obtain a high value of probability of occurrence of an incident, the time required to detect 

the incident would increase.  The tests conducted during the validation of the algorithm 

observed an increase of 2 – 2.5 minutes of increase in detection time. 

Many of the other algorithm developers have mentioned the use of persistence tests.  

This algorithm provides a statistical way of creating a persistence test.  The persistence 

test can reduce the false alarm occurrence, but the detection ratio and the time to detect 

values depend primarily on the base signal or the base algorithm that feeds this logic.   
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2.5.7 Committee Decision Logic Units based Algorithm 

Tsai and Case (Tsai and Case, 1979) proposed two techniques designed to operate on 

top of the basic incident detection algorithm to improve detection performance.   

The first technique, Incident Detection Persistence test, proposed in this study is a 

logic for reduction of False Alarms by distinguishing false alarms from true alarms.  The 

logic is developed on top of a modified California Algorithm.  It uses Bayes optimal 

decision rule to determine a duration threshold that maximizes the likelihood that an 

alarm with duration less than the threshold duration is a false alarm.  Alarm duration data 

for both false alarms and true alarms are used to determine this threshold.  The reduction 

of false alarms using this technique was observed to have an adverse effect on detection 

ratio, which decreased (adversely) with a reduction in false alarms by introduction of the 

persistence interval logic. 

The second technique uses a committee-machine approach to determine the lane of 

the multilane freeway on which the incident has occurred.  The output of several 

detection algorithms in the form of the incident lane number is used in the first layer – in 

which the individual decision units are designated as committee decision logic units 

(CLDU)s.  The second layer of the committee machine structure consists of a vote-taking 

logic unit (VTLU) that uses the decision outputs from the first layer and determines the 

lane where the incident has occurred according to the majority decision principle.   
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2.5.8 HIOCC and PATREG 

The High Occupancy (HIOCC) and Pattern Recognition (PATREG) algorithms 

(Collins et al., 1979; Collins, 1983) were developed at the Transport and Road Research 

Laboratory in Berkshire, U.K.   

The HIOCC algorithm is primarily a congestion detection algorithm.  Slow moving or 

stopped vehicles are detected by using the resulting high occupancy values over detectors 

under such conditions.  Instantaneous occupancy values at one tenth of a second sampling 

rate are smoothed using an exponential filter before use in the algorithm.  The threshold 

is so chosen that an alarm will be indicated when the passenger-car speed will be less 

than 6 mph or the long-vehicle speed will be less than 14 mph.  To avoid multiple alarms 

resulting from fluctuations of the observations, the occupancy values are artificially 

raised to a 90% level at the beginning of the congestion so that the high is maintained till 

the occupancy comes back to the level before the congestion.  Also to account for stop 

and go traffic, an 8 second threshold of zero instantaneous occupancy is used to eliminate 

the case of stopped traffic from triggering an end of congestion indication. 

The PATREG algorithm identifies incidents using patterns of significant speed 

changes.  If the speed lies outside the pre-determined lower and upper thresholds specific 

to a lane, for the duration of the pre-set persistence interval, an alarm is indicated.  The 

PATREG algorithm works efficiently under low to medium volume conditions whereas 

the HIOCC algorithm deals with the high volume conditions. 
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2.5.9 ARIMA 

The prediction of freeway traffic variables with an ARIMA(0,1,3) model has been 

successfully used in the development of an incident detection algorithm (Ahmed and 

Cook, 1982).  The 95% confidence intervals for the predictions of occupancy are 

computed and used to classify traffic state as incident condition or non-incident condition 

based on the occurrence of the observed value outside or inside the confidence intervals 

respectively.  Time-to-detect incidents were reported under one minute.  100% detection 

rates were obtained at false alarm rates ranging between 1.4 and 2.6 percent. 

2.5.10 McMaster Algorithm 

The McMaster Algorithm was developed using data from Queen Elizabeth Way, 

Mississauga, Ontario.  The basic McMaster Algorithm (Persaud and Hall, 1989; Persaud 

et al., 1990) (Persaud et al., 1990; Hall et al., 1993) is a congestion detection algorithm.  

It uses a catastrophe theory model for description of the flow-occupancy-speed 

relationship.  Three regions of operation are defined on the flow-occupancy diagram as 

depicted in Figure 2.1 (the three areas are separated by the dashed lines) – Area 1: Free 

flow, Area 2: Congested flow with lane occupancy less than critical occupancy and Area 

3: Congested flow with lane occupancy greater than critical occupancy.  Calibration of 

the algorithm involves distinguishing between the congested and uncongested regions.  

The template for each station is calibrated separately.  The minimum uncongested speed 

is estimated for the station.  This is used to create the boundary between Area 1 and 3.  A 

quadratic equation is estimated to obtain flow as a function of occupancy at the station, 

and a constant flow value is estimated, which is to be subtracted from the function to 
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create the boundary between Area 1 and 2.  Updating of the template – to account for 

various changes in conditions (e.g. weather conditions) – is achieved by using an 

updating factor.  The updating factor is calculated as the smoothed average of recent 

ratios of observed uncongested flows to predicted flows.   

 

 

Figure 2.1: McMaster Template for Congestion Identification 

 

Incident Detection is achieved by using a segregation logic (Gall and Hall, 1989) 

(Hall et al., 1993) that separates incident congestion from recurrent congestion.  This 

logic is primarily designed to be applicable as a wrapper on algorithms which 
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successfully identify congestion in the first step.  This logic makes use of a flow-

occupancy template in a manner quite similar to the basic McMaster Algorithm.  The 

difference is that, this logic defines 4 regions (Figure 2.2) as compared to the 3 regions in 

the McMaster Algorithm.  Area 3 of the McMaster algorithm template is further divided 

into two – Area 3 and Area 4 – by the critical flow.  During calibration of the algorithm 

critical flow is obtained by estimating the minimum discharge volume1.  A decision tree 

is used to identify incident congestion.  If a station is in state 2 or 3 (flow-occupancy data 

pair is in Area 2 or Area 3 of the template), the state of the downstream detector is 

checked.  If the downstream detector state is either 1 or 2, then incident congestion is 

identified at the current detector.  If the downstream detector state is 3, then the state of 

the detector further downstream is checked.  If the state of the downstream detector is 4 

then it is easily categorized as recurrent congestion. 

 

                                                           
1 Discharge volumes are volumes corresponding to traffic flows downstream of bottlenecks like those 
induced by entrance ramps, lane drops etc.  
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Figure 2.2: McMaster Template for Incident Detection 

 

This is primarily a single detector logic algorithm.  Therefore it overcomes the usual 

disadvantages of comparative algorithms which usually run into problems where there 

are changes in occupancy between successive detection stations due to natural changes in 

geometry and grade. 

This algorithm has the capability of identifying congestion even when traffic flow 

occurs below the critical occupancy value.  Most of the other approaches depend on the 

critical occupancy as a threshold value for activation of the detection logic. 
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Since this is a single station algorithm, it does not suppress detection of incidents at 

stations close to an incident. 

2.5.11 Multi-Layer Feed-forward 

Several algorithms (Cheu et al., 1991; Ritchie and Cheu, 1993; Cheu and Ritchie, 

1995; Stephanedes and Liu, 1995; Dia and Rose, 1997) have used a Multi-Layer Feed-

forward (MLF) neural network structure for incident detection.  An artificial neural 

network consists of a network of many very simple processors ("units" or "neurons"), 

each possibly having a small amount of local memory.  The units are connected by 

unidirectional communication channels ("connections"), which carry numeric (as 

opposed to symbolic) data.  The units operate only on their local data and on the inputs 

they receive via the connections.  Mostly these structures have three layers – the input 

layer, the hidden layer and the output layer – with unidirectional connections between 

neurons in adjacent layers.  In the MLF neural network structure the training is performed 

using a back-propagation method.  The neurons in the input layer receive detector data in 

the form of input vectors.  At each hidden neuron, the weighted sum between the input 

vector and the weight vector associated to the hidden neuron is computed.  A bias term 

related to the hidden neuron is added to the weighted sum and the output computed from 

a sigmoid transfer function.  A similar operation is performed between the hidden and 

output layers.  The transfer functions for both the nodes in the hidden and output layers 

are sigmoid functions.  The output from the output layer neuron is a binary value 

indicating an incident or incident-free condition. 



 28

2.5.12 DELOS 

The Detection Logic with Smoothing (DELOS) algorithm (Chassiakos and 

Stephanedes, 1993) was developed at the University of Minnesota.  In this scheme, 

values for spatial occupancy differences across two consecutive stations are compared at 

two time windows.  The values from each of the time windows can be obtained by using 

any one of the three smoothing schemes – moving average, median, exponential 

smoothing.  Algorithm performance is tested for different smoothing schemes: moving 

average in both past and current periods, median in both periods, exponential smoothing 

in both periods and moving average for current period with exponential smoothing for 

past period.  Window sizes from 5 to 20 terms for past and 3 to 10 for current period in 

the moving average method and exponential smoothing factors of 0.03 to 0.10 were 

considered.  The size of the windows for smoothing is limited by excessive delays in 

algorithm response associated with longer windows.  The moving average and 

exponential smoothing schemes provided better performance than the statistical median.  

Comparison with the performance of the Double Exponential algorithm and the 

California algorithms showed better performance results from the DELOS algorithms.   

2.5.13 Image Processing 

Apart from the algorithms that rely on operations data for incident detections, there is 

another class of algorithms that use an analysis of the image data from the cameras used 

for surveillance (and collection of operations data in many cases).  These algorithms 

(Michalopoulos et al., 1993a; Michalopoulos et al., 1993b; Kimachi et al., 1994; 

Michalopoulos et al., 1994; Zifeng, 1997; Trivedi et al., 2000) rely on wide area detection 
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for shockwaves and ancillary information such as detection of traffic on shoulders, 

stopped vehicles, lane changing and speed differential, traffic slow downs in the opposite 

direction etc. for detection of incidents.  These algorithms are usually computationally 

demanding. 

2.5.14 Fuzzy Logic 

Several algorithms have been developed using the fuzzy logic in different forms.  

There are fuzzy set theory based algorithms (Chang, 1994; Chang and Wang, 1994), 

fuzzy expert system based algorithms (Lin and Chang, 1998), and algorithms using fuzzy 

logic in conjunction with neural networks (Hsiao et al., 1994; Ishak and Al-Deek, 1998a; 

Ishak and Al-Deek, 1998b; Srinivasan et al., 2001).  The underlying development steps 

common to all these approaches usually are: traffic pattern evaluation, non-fuzzy traffic 

knowledge extraction, traffic knowledge fuzzification and fuzzy rule base construction.  

The traffic knowledge fuzzification step contains the sub-steps of crisp set identification, 

fuzzy set definition and fuzzification.  In these steps the extracted numerical traffic 

knowledge, i.e. the range and duration of discrepancy patterns are associated with the 

fuzzy linguistic variables - “significance” and “persistence” and transform their values 

into fuzzy numbers through the selected membership functions.  Next, the non-fuzzy 

traffic knowledge is transformed into fuzzy knowledge by defining a set of hierarchical 

fuzzy rules constructed from the training set data.  A Genetic Algorithm (GA) approach 

has been successfully used by Srinivasan et al. (2001) for training the Multiplexer layers 

which are similar to the neural network layers.  Comparison with MLF neural network 
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algorithm has shown comparable performance whereas comparison with the California 

and McMaster algorithm has produced significantly better results. 

2.5.15 Principal Component Analysis 

An incident detection algorithm based on the statistical technique of Novelty 

detection using Principal Component Analysis was developed at the University of Leeds 

(Chen, 1997).  The flow, speed and occupancy at two adjacent detectors form the 6-

dimensional input vector which is subsequently normalized to prevent variables with 

large magnitudes from dominating.  The principal components computed from this input 

data normally have a much lesser dimension than the input data and mask out unwanted 

noise effects and at the same time preserves the generality of the data.  A calibrated 

threshold value is used to distinguish the novel input vectors from normal data.  The 

novel input vectors so identified are indicative of incidents.  Encouraging results were 

obtained by using this detection scheme on a simulated data-set. 

2.5.16 Cumulative Sum of Occupancy 

This detection algorithm (Lin and Daganzo, 1997), developed at the University of 

California, Berkeley, is based on a comparison of cumulative occupancy data for the two 

detectors on both sides of a hypothetical incident.  Thereby this is a two-detector 

algorithm, unlike most of the others that are single detector algorithms.  However this 

scheme still relies on the road being more crowded upstream than downstream for an 

extended period of time – a situation which is also the case in recurrent congestion at 

bottlenecks.  Consequently this algorithm, like most other algorithms, is prone to 
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generating false alarms under recurrent congestion.  Incidents are detected by tracking the 

fluctuation of the difference of the cumulative sum of occupancies at the two detectors.  

If the fluctuation is more than a time-variant threshold, which increases linearly with 

passage of time, then an incident is indicated.  Effects of variations in occupancy induced 

by individual driving patterns and faulty detector reporting can be absorbed by carefully 

choosing an appropriate threshold value.   

2.5.17 Probabilistic Neural Network 

In the Probabilistic Neural Network (PNN) algorithm (Abdulhai and Ritchie, 1999a; 

Abdulhai and Ritchie, 1999b; Jin et al., 2002) the transfer functions of the hidden layer is 

a radial-basis function, and that for the output layer is a competitive-transfer function.  

The PNN consists of four layers – the input layer, the pattern layer, the summation layer 

and the output layer.  The input layer distributes the input vector to the pattern layer.  The 

neurons in the pattern layer are divided into two groups representing incident and 

incident free conditions.  The summation layer consists of two neurons, one for each class 

(incident and non-incident).  Each of the summation neurons computes an average output 

signal of the associated pattern units and scales it.  The output neuron selects the higher 

value between the two and determines the class (incident or non-incident) based on that.  

Compared to MLF, PNN has been shown to have lower Detection Rates (95-100%) and 

higher False Alarm rates (less than 0.33%).  However PNN has a better adaptation 

potential.   
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Postprocessor feature extractors and postprocessor probabilistic output interpreters 

have been used successfully (Abdulhai and Ritchie, 1999b) to improve performance.  Use 

of DWTs (Roy and Abdulhai, 2003) has also been explored for training of the PNN with 

encouraging results. 

2.5.18 Fuzzy Wavelet Radial Basis Function Neural Network Algorithm 

Adeli and Karim (Adeli and Karim, 2000; Karim and Adeli, 2002a) proposed an 

algorithm using a Discrete Wavelet Transform (DWT) for noise reduction and feature 

extraction, followed by a fuzzy c-mean clustering to reduce the dimensionality of the 

input vector and finally using a Radial Basis Function Neural Network (RBFNN) to 

classify the input pattern as incident pattern or non-incident pattern.  Sixteen consecutive 

data-points for occupancy and speed from the immediate past are used to form the input 

signal.  This signal is normalized and the DWT is computed using Daubechies wavelet 

system of length 8.  The wavelet coefficients are filtered using a soft-thresholding 

nonlinearity, followed by an inverse DWT to obtain the de-noised normalizes sequence.  

A fuzzy c-mean clustering is used to reduce the dimensionality of the pattern.  The 

extracted 8 elements (4 for occupancy and 4 for speed) are fed into a trained RBFNN.  

The output is compared against a preset threshold to indicate an incident condition or 

otherwise. 

This algorithm was compared with the California Algorithm #8 and was found to 

produce very low false alarms (on the order of 0.07%) as compared to the California 

algorithm (on the order of 3.82%) under the same detection rate scenarios when tested 
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with simulated data.  Limited tests with real data gave 0% false alarms at 95% detection 

ratio for this algorithm when the California algorithm produced 0.63% false alarms at a 

90% detection ratio. 

2.5.19 Adaptive Conjugate Gradient Neural Network-Wavelet Algorithm 

Another algorithm that was developed based on DWT (Adeli and Samant, 2000; 

Samant and Adeli, 2000; Samant and Adeli, 2001) used an Adaptive Conjugate Gradient 

Neural Network (ACGNN) and a Linear Discriminant Analysis (LDA).  The DWT and 

LDA operations were used to filter and preprocess the data and the ACGNN was used as 

the state classifier (incident or non-incident).  High incident detection rates of 97.8% and 

low false alarm rates of around 1% were obtained based on simulated data. 

2.5.20 Wavelet Energy with Radial Basis Function Neural Network Algorithm 

An algorithm using Wavelet Energy representation of traffic patterns was proposed 

(2002b; 2003) as an enhancement (in terms of the detection time) over the Fuzzy-

Wavelet RBFNN Incident Detection model proposed earlier by the same authors (2000; 

2002a).  The algorithm is based on an advanced energy representation of the time series 

pattern developed using wavelet theory.  The desirable features of the traffic pattern are 

enhanced and at the same time a denoising of the traffic pattern is achieved by 

performing a DWT operation to break the input signal into several time-frequency 

components that enables the extraction of features desirable for signal identification and 

recognition.  A RBFNN is then used to classify the pattern as incident-induced or 

non-incident-induced traffic pattern.  A sixteen data-point series of the occupancy data 
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and another with the flow data is used to provide the input signal.  Each signal is 

normalized to remove the effects of magnitude, followed by padding at both ends to 

extend the series size to 32 data-points.  A two stage low pass filter (Daubechies filter) is 

applied.  Next the sequence is enhanced with the squared scaling coefficients – a measure 

of energy in the wavelet domain which are subsequently extracted.  The extracted 4 

element sequences of the occupancy and flow data are then concatenated to form the 

input vector of the RBFNN with 8 input vectors, 12 hidden nodes with Gaussian transfer 

functions and 1 output node with a linear transfer function.  If the output is greater than a 

pre-selected threshold (such as 0.2) then an incident is indicated.   

The algorithm was tested extensively with simulated data and to some limited extent 

with real data.  The simulated data gave a 0% false alarm rate and the real data performed 

well with false alarms rates going to a maximum of 1.04 % in one of the cases and 

remaining under 0.13% in others. 

2.5.21 Discrete Wavelet Transform 

Another incident detection technique (Teng and Qi, 2003b) using the DWT technique 

proposed a different approach to the problem using the same tool.  Unlike the previous 

algorithms (Adeli and Karim, 2000; Adeli and Samant, 2000; Samant and Adeli, 2000; 

Samant and Adeli, 2001; Karim and Adeli, 2002a; Karim and Adeli, 2002b; Ghosh-

Dastidar and Adeli, 2003; Karim and Adeli, 2003) that used DWT mostly as a tool for 

denoising the dataset, this approach proposed the direct use of the extracted features in 

the detection of changes in traffic flow.  The difference of occupancies between two 
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stations is used as the input signal.  A search for large absolute values in the finest scale 

level (third stage) of the DWT of the signal comprises the first check.  A subsequent 

check of the direction of change using the scale coefficients of the DWT is used to 

confirm the incident.  This algorithm was compared with the MLF Neural Network 

algorithm, PNN algorithm, Fuzzy-wavelet RBFNN algorithm, Low pass filtering 

algorithm, and the California algorithm.  The DWT based algorithm was found to 

perform superiorly to all these algorithms in terms of the detection rate versus false alarm 

rate curve. 

2.5.22 CUSUM 

A detection delay based optimization problem formulation approach to incident 

detection (Teng and Qi, 2003a) was proposed along with a simplified procedure for its 

implementation.  The algorithms developed are based on the Cumulative Sum of 

deviations of subgroups statistic (the CUSUM statistic).  Three algorithms DCUSUM2, 

CUSUM1 and CUSUM2, involving different assumptions and different treatments of 

the problem, were developed in the process.  The DCUSUM uses Difference of 

occupancies.  CUSUM1 assumes that the correlation between individual observations 

(of occupancy) is zero, while CUSUM2 does not make this assumption.  A substantial 

change in the difference between the cumulative sum of the log-likelihood ratio for the 

existing time period and the minimum cumulative sum up to the existing time period is 

used to indicate a change in state of the process and thereby indicate incident 

conditions.  The DCUSUM algorithm was found to provide the best performance.  A 

                                                           
2 The authors (Teng and Qi) did not provide an expansion of the acronyms 
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comparison with the low pass filtering algorithm, the MLF algorithm and California 

algorithm #7 showed that the DCUSUM algorithm outperformed the other algorithms. 

2.5.23 Support Vector Machine 

An algorithm using the Support Vector Machine (SVM) pattern classifier was 

proposed by Yuan and Cheu (2003).  The SVM pattern classifier classifies an input 

vector into one of two classes with a decision boundary developed based on the concept 

of structural risk minimization of classification error using the statistical learning theory.  

Three different SVM models were implemented with different embedded kernel 

functions.  A linear function, a polynomial function and a radial basis function were the 

three kernel functions used for this purpose.  Comparative results of these three 

implementations along with comparisons with the MLF algorithm and the PNN algorithm 

are presented as applied to arterial data and freeway data.  SVMs were shown to produce 

lower Misclassification Rates, higher Detection Ratios, lower False Alarm Rates and in 

some cases smaller Time to Detect compared to the other algorithms. 

2.6 Evaluation of Incident Detection Algorithms 

2.6.1 Overview 

As can be seen from the discussion in the previous section (Section 2.5), there are 

several widely varying approaches to algorithms for incident detection using operations 

data.  Every new algorithm is usually accompanied by a comparison with other 

algorithms.  The choice of the comparison algorithms is at the discretion of the authors.  

The California algorithms are used in most cases and over time they have received the 
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status of a benchmark algorithm.  But even in the California algorithm there are several 

variants (basic, #7and #8 are the most popular ones) and different researchers choose 

different variants.  Moreover the sizes, temporal and spatial coverage of the datasets 

being used also affect the results of such comparisons to a large extent. 

2.6.2 Literature based Comparison 

Even in the face of such odds, a few studies have been directed towards a cross-

cutting comparison of several detection algorithms based on the reported results in the 

literature.  One such study (Balke, 1993) was performed at TTI in co-operation with the 

Texas DOT and the Federal Highway Administration (FHWA).  The study included site 

visits to several of the freeway management systems that were actively using an incident 

detection algorithm or had used one in the past.  The algorithms that were compared 

were: 

•  California  

o Basic 

o Algorithm #7 

o Algorithm #8 

o APID 

•  PATREG 

•  HIOCC 

•  Standard Normal Deviate 

•  Bayesian 

•  Time Series ARIMA 
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•  Exponential Smoothing 

•  Low-Pass Filter 

•  Dynamic Model 

•  McMaster 

The TTI researchers produced comparative charts for the traffic parameters used in 

each algorithm, the intervals and update cycles of the traffic parameters and the perceived 

degree of complexity and ease of integration of the algorithms into a given freeway 

surveillance system.  They also produced a table that listed the reported (in the literature) 

best performances of the different algorithms with detection rate, false alarm rate and 

average detection time as the performance measure parameters. 

A similar study (Mahmassani et al., 1999) was performed at the Center for 

Transportation Research, again in co-operation with the Texas DOT and FHWA.  This 

study too involved site visits of several freeway management systems.  Some Neural 

Network algorithms and Fuzzy logic based techniques, which had been developed since 

the previous referenced study, were added to the set of comparison algorithms.  Unlike 

the previous study, this study produced a detection-ratio versus false-alarm-rate plot for 

all the candidate algorithms.  As in the previous study, the report was based mostly on 

reported results in the literature. 

2.6.3 Implementation based Comparison 

Payne and Thompson (1997) reported an evaluation including the Bayesian, neural 

net and California-type algorithms using a single dataset.  The algorithms were found to 
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perform similarly based on a plot of detection-rate (fraction of incidents detected) versus 

the operational detection rate (fraction of alarms that prove to be incidents).  This study, 

among other observations, recommended the development of macroscopic model based 

incident detection algorithms that would capture gross characteristics of the freeway 

segments and predict recurrent congestion and eliminate the problem of segregating 

recurrent congestion from incident congestion. 

2.7 Traffic Prediction Models 

2.7.1 Overview 

One of the core components of the methodology developed in Chapter IV is a traffic 

prediction model.  A review of the literature was considered essential to understanding 

the advantages and limitations of different traffic prediction approaches that have been 

developed in the past.  As in the case of Section 2.5 the discussion here has been limited 

to the methodological highlights of the different models and generalization has been 

resorted to wherever possible, rather than a discourse on methodological details of 

numerous similar models.  Moreover, in keeping with the essence of the topic, the 

discussion involves traffic flow forecasting techniques based on traffic operations data, 

which includes some macroscopic traffic flow models that lend themselves to easy 

implementation.  Complex theoretical models of traffic flow that do not imply easy 

implementations and other models that rely on O-D matrixes for implementation have 

been precluded from this discussion. 



 40

2.7.2 Payne’s model 

A traffic model was introduced in the 1970s (Isaksen and Payne, 1973; Payne and 

Hurdle, 1979; Payne et al., 1987) that included a momentum equation along with the 

continuity equation characterizing the continuum model (LWR model).  The momentum 

equation is derived from car following theory concepts.  A discretization of the model by 

finite differences method yields the form: 
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Where u, ρ, q, x, t and ue are speed, density, flow, distance, time and equilibrium 

speed respectively.  Superscripts denote time step, subscripts denote space step and fON 

and fOFF indicate on and off ramp flows respectively.  KT is the relaxation coefficient and 

Kv is the anticipation coefficient.  The second term on the right hand side of equation 2-2, 

involving KT , represents the relaxation of equilibrium to incorporate the effect of drivers 
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adjusting their speeds towards the equilibrium speed-density relationship.  The third term 

on the right hand side of equation 2-2, involving Kv and KT , represents the anticipation 

which incorporates the effect of drivers reacting to downstream traffic conditions.  This 

represents a readily implementable form.  The model, attempts to capture shorter term 

dynamic deviations from equilibrium values of traffic flow variables as well as the effects 

of downstream conditions.  However this model has been reported to present several 

instability problems (Rathi et al., 1987). 

2.7.3 Time Series Approaches 

Ahmed (1986) investigated an autoregressive integrated moving average model of the 

form ARIMA(0,1,3) for lane occupancy prediction.  Sets of observations at 1 minute 

intervals at a static detection station were treated as a time-series.  It was observed that 

the fact that the first differences of traffic occupancies can be represented by a third order 

moving average model (characteristic of ARIMA(0,1,3) , was persistent across the time 

series data sets at all the detector stations.  Ahmed found that the performance of the 

ARIMA(0,1,3) model was superior to the Moving Average model and the Exponential 

Smoothing model for prediction purposes on the basis of the Mean Absolute Error and 

the Mean Squared Error values. 

The Box and Jenkins technique was used by Der (1977) to develop an ARIMA (1,0,1) 

model to forecast lane occupancies.  Eldor (1977) used this technique to forecast 5 

minute aggregate volumes.  Ahmed and Cook (1979) used the Box-Jenkins approach to 

construct a predictor model for volume and lane occupancy.  The application of the 
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technique, on data from three different freeway systems with varying detector 

configurations and aggregation intervals, led to the development of a ARIMA (0,1,3) 

model for representing volume as well as lane occupancy data.  The ARIMA(0,1,3) 

model proved to be superior to the Moving Average model and the Exponential 

Smoothing model with adaptive smoothing constants based on Mean Absolute Error and 

Mean Squared Error. 

The Box and Jenkins time series technique was also used by Nihan and Holmesland 

(1980) for traffic forecasting.  Spectral analysis of time series has been used by 

Nicholson and Swann (1974) for short term forecasts of traffic flow in tunnels.  Another 

time series based forecasting method was explored by Moorthy and Ratcliffe (1988).  

Van Der Voort et al. (1996) proposed a methodology whereby Kohonen maps were used 

along with ARIMA models for traffic forecasting.  The Kohonen maps allowed for an 

individual classification of the data and each class had an individually tuned ARIMA 

model associated with it to provide a higher accuracy than a model generically tuned for 

all cases. 

2.7.4 Adaptive Prediction System Approaches 

Lu (1990) investigated An adaptive prediction model for predicting traffic 

parameters.  The objective function – minimizing the mean square error – was the same 

as the Kalman Filtering and time series approach.  However, the adaptive prediction 

model used a simplified least mean square algorithm to obtain the optimal filter weights.  

The model was successfully used to predict traffic flow as 1 hour aggregates, with the 
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simplicity of the optimization process lending efficiency and dynamicity to the process.  

However, the model had stability and convergence issues that needed to be considered 

during the implementation and use of the model.   

A similar adaptive forecasting procedure was also proposed by Polak and Vythoulkas 

(1990) in the context of traffic forecasting for traveler information systems . 

2.7.5 Network Model based Approach 

Hobeika and Kim (1994) investigated an approach to prediction of traffic flow based 

on upstream traffic parameters.  They developed three regression models based on the 

following combination of parameters: (a) Historical average at current station and traffic 

at upstream station; (b) Traffic at current station and traffic at upstream station; and (c) 

Historical average at current station, traffic at current station and traffic at upstream 

station.  The model development was based on 15 minute aggregated data.  The historical 

average component was computed using data at the station for the same time-of-day for 

several previous days.  The upstream station was determined as the station from which 

the traffic took the given interval (15 minutes) to travel down to the current station.  The 

upstream component used data from the stations immediately adjacent to the upstream 

station as well.  Thereby the upstream component had 3 sub-components.  In a similar 

fashion the “current traffic” component had 4 sub-components.  Data at current time t and 

data from 3 previous time-steps (t-1), (t-2) and (t-3) formed the 4 sub-components.  

Hobeika and Kim proposed a heuristic adaptive weighing system for updating the 

coefficients of the models dynamically with change in traffic conditions.  The third model 
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usually proved to be the best model.  However, they recommended the second model for 

use under conditions where the travel time along the network exceeded the monthly 

average travel times by 25 percent.  The model provided results better than the historical 

average model – where the predictions were based simply on the historical average 

component used in this model. 

2.7.6 Stochastic Modeling Approaches 

Sheu (1999) proposed a stochastic modeling approach to prediction.  This approach 

develops a methodology to model inter-lane traffic maneuvers such as lane changing 

behavior, using a discrete-time nonlinear stochastic model.  The traffic state variables 

were assumed to follow homogeneous Gaussian-Markov processes and each state 

variable was assumed to be mutually independent of the other state variables.  An 

estimation algorithm using an extended Kalman filter combined with truncation and 

normalization procedures, for traffic counts and a density updating procedure for lane 

densities was developed for estimating section-wide lane traffic characteristics.  

Comparison of estimated sequential lane-changing fraction to field data was used to 

demonstrate the potential of the proposed approach.  Comparison of estimated time-

varying lane density values to observed values demonstrated the accuracy of the 

predictions.  Distributions of estimation errors in terms of estimated lane-changing 

fractions and lane density values were identified and prediction stability tests based on 

measures of the mean absolute error were performed.  The estimation algorithm was 

demonstrated to be stable for dynamic prediction.   
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Another approach to prediction of traffic volumes using Kalman filtering theory was 

explored by Okutani and Stephanedes (1984).  Shimizu et al. (1995) proposed three 

algorithms for forecasting hourly volumes based on three filters – a fixed interval filter,  a 

basic Kalman filter and a M-Interval Polynomial Approximation (MIPA) Kalman filter.  

The fixed interval filter performed better than the basic Kalman filter.  Estimates of the 

MIPA Kalman filter were found to be the most accurate and robust as compared with the 

estimates from the other filters.  Davis et al (1990) proposed a technique based on 

statistical pattern recognition.  This technique proved useful under heavy congestion 

when the linear time series analysis based algorithms failed to perform satisfactorily. 

2.7.7 Finite Difference Method 

A finite difference method based approach to macroscopic traffic modeling was 

proposed by Mughabghab et al. (1996).  Traffic density and flow were predicted on the 

basis of the solution of a partial differential equation describing the conservation of the 

vehicles by applying initial and boundary conditions.  The finite difference method was 

chosen for solving the partial differential equation.  A Gaussian form of the speed-density 

relation was used along with the fundamental relation that proposes flow as a product of 

average speed and density.  Four methods – the forward differencing method, the Lax 

method, the first upwind differencing method and the second upwind differencing 

method – were investigated for solving the conservation equation in its discrete form.  

The first upwind differencing method provided good predictions under low occupancy 

conditions whereas the Lax method proved to be more stable under high occupancy 

(congested) conditions. 
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2.7.8 Recursive Least Squares with Lattice Filtering 

Kang et al. (1998) proposed a linear model for short term predictions of traffic 

volumes using a recursive least squares algorithm with a lattice filter.  They assumed the 

traffic volume to be a function of the existing and past traffic volumes and hypothesized 

that this functional relationship was linear.  The process used a lattice filtering technique 

that utilizes the characteristics of two independent prediction errors, such as a forward 

prediction error and a backward prediction error and builds an order-updated recursion of 

prediction errors.  The model was compared with a Neural Network model and an 

ARMIA model (ARIMA(1,1,1) under non-incident conditions and ARIMA(4,1,0) and 

ARIMA(3,1,0) under incident conditions for upstream and downstream traffic volumes 

respectively).  The recursive least squares with lattice filtering algorithm were found to 

produce percentage error values less than the ARIMA and Neural Network models in 

almost all the cases. 

2.7.9 Multilayer Neural Network based Approaches 

Cheu (1998) used a standard multilayer network with one hidden layer trained with 

the back-propagation algorithm to predict 30 second volume, lane occupancy and speed 

averaged across all lanes.  Data at the two most recent intervals were used as input.  

Predictions were obtained for a single time-step as well as two steps into the future.  The 

results obtained were evaluated on the basis of Root Mean Square Error and maximum 

error, and were found to be satisfactory.  Similar neural network based models were 

proposed by Smith and Demetsky (1994a; 1994b), Huang and Xu (1996), Vythoulkas 

(1993) and Zhang et al. (1997). 
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2.7.10 Finite Impulse Response and Time-Delayed Recurrent Network 

A performance evaluative comparison between MLF neural network, Finite Impulse 

Response (FIR) neural network and Time-Delayed Recurrent neural network was 

performed by Yun (1998) for several datasets involving state highways, national 

highways, and urban roads.  The feedback mechanism of the error through time-learning 

technique in a time-delayed recurrent network naturally absorbs the dynamic change of 

any underlying nonlinear movement.  The FIR and the MLF models are not as good in 

handling randomly fluctuating events.  The time-delayed recurrent model was found to 

outperform the other models in forecasting very randomly moving data.  The FIR model 

showed better forecasting accuracy than the time-delayed recurrent network for the 

relatively regular periodic data.   

2.7.11 Genetically Optimized Time Delay Neural Network 

A Time Delay Neural Network (TDNN) model optimized using DWTs (GA) was 

proposed for short term traffic flow prediction by Abdulhai et al. (1998; 2002).  The 

model predicted flow and occupancy values based on their immediate past temporal 

profile (few minutes) at a given freeway site as well as the spatial contribution from 

neighboring stations (3 upstream and 3 downstream detection stations).  Abdulhai et al. 

realized that both temporal and spatial effects were essential for proper prediction.  They 

also studied and reported the effects on prediction accuracy of several factors such as the 

extent of look-back interval, the extent of prediction in the future, the effect of the spatial 

contribution, the resolution of the input data, etc.  They found that the model performed 

better than the MLF model. 
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2.8 Operations Data Filtering 

2.8.1 Overview 

Traffic operations data is typically collected at 20 seconds to 1 minute intervals and 

aggregated to 5 minute to 1 hour bins for archiving.  With a well designed and well 

maintained detection equipment deployment, the data at 15 minutes or 1 hour 

aggregations are predictable and follow the Greenshield’s curve pretty closely.  

Unfortunately this is not the case at the finer levels of aggregation.  This is quite apparent 

from Figure 2.3 and Figure 2.4, which represent the plots of flow versus density for a 

typical station over a day at 15 minute aggregation and 20 second aggregation 

respectively.   
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Figure 2.3: Flow Versus Density Plot for a Typical Station for 15 Minute 

Aggregates 
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Figure 2.4: Flow versus Density Plot for a Typical Station for 20 Second 

Aggregates 
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The problem of using operations data for any real time traffic application is usually 

two-fold.  On one hand there is the problem of detector errors.  To complicate the 

situation even further there is some amount of white noise which does not lend itself to 

statistical modeling.  On the other, there are issues of missing data.  There can be several 

kinds of missing data in a traffic dataset.  Mechanical faults in detectors can lead to two 

major types of inconsistencies.  One possibility is that a detector could shut down 

completely.  That would cause zeros, or nothing, or some default values (depending on 

the specifications in the system) in the dataset.  Otherwise, sometimes detectors get 

"stuck." This would cause detectors to report the same value for a period of time even 

though the actual field conditions vary.  Apart from these, observation errors sometimes 

originate from lack of proper calibration of the detectors.  The first kind of error is pretty 

easy to detect.  The second kind, namely, stuck detector related errors, is relatively 

difficult to detect.  While the longer error strings get detected easily, the shorter strings 

usually evade detection.  Of course, the net effect of the shorter strings is usually minimal 

and can be ignored in most cases.  Detection of errors of the third kind requires data from 

alternative sources to check against.  Checking and eliminating these errors are beyond 

the scope of this discussion.  It is assumed that the detectors had been accurately 

calibrated during their deployment.  The following subsections 2.8.2 and 2.8.3 discuss 

some of the approaches that have been explored earlier to alleviate these problems. 

2.8.2 Statistical Approaches 

The problem of missing data is quite common in traffic data.  Several studies have 

proposed different procedures for filling in the gaps in the dataset caused by missing data.  
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Different strategies, ranging from linear interpolation to traffic model based imputation 

were evaluated and the nearest neighbor filter (Chen et al., 2003) was found to be best 

suited for addressing this issue in terms of providing a balance between the reliability of 

the imputation and the rigorousness of the computations and calibration involved.  It 

provides a robust estimate because the computation uses input from several other 

detectors instead of just one and takes the median value so that the estimate is still 

reasonable when one of the neighboring detectors fail.  Also this method can fill gaps that 

are longer in duration without significant deterioration in the accuracy of the estimate.     

There has been a significant amount of work in investigating methods for cleaning up 

and processing of operations data.  Coifman (2001) has presented techniques for 

improving the average length estimation and speed estimation from loop detectors.  

These techniques are based on the recognition of the fact that the estimated values of 

average length and speeds are more accurate under certain traffic flow conditions than 

others.  Unlike most of the approaches that post process the collected data using a time 

domain filter (such as a simple moving average), this technique proposes improvement in 

real time data as the data is being collected.  The procedure is very relevant to traffic 

management systems that use loop detectors for speed measurements.  Gajewski et al. 

(2000) and Qiao et al. (2003) have presented some techniques for determining optimal 

aggregation intervals for ITS data.  The techniques provide methods of aggregating data 

that would minimize the loss of useful information caused by the aggregation.  Gajewski 

et al. has proposed two techniques: the cross-validated mean square error and the F-

statistic algorithm.  These statistical techniques proposed smaller widths (less than 1 

minute) for peak time traffic and longer widths (1 hour) for off peak hours.  It might be 
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worthwhile to note that while the statistical approach is useful for archiving data for most 

statistical applications, some applications like traffic flow model validations might 

require data at more regular intervals than the optimized level.  The wavelet 

decomposition technique presented by Qiao et al. not only optimizes the aggregation 

level, but also eliminates undesired components and noise in the data.  The noise filtering 

can prove useful in data cleaning.  Park et al. (2003) proposed a multivariate-screening 

method at the detector level incorporating ideas from the classical Hotelling's T2 statistic 

and statistical trend removal and blocking.  This method identifies outliers based on 

empirical thresholds generated from archival data using variants of the Mahalanobis 

distance.  This study introduced the idea of using time-of-day blockings to cope with 

non-constant variability of data.  A Locally Weighted Regression for Smoothing 

Scatterplots (LOESS) filter was suggested to fill in for the data identified as outliers.  

This study provides a quality control procedure to control the system-wide error rate.  

This can be quite useful in obtaining summary statistics for the performance of the 

surveillance systems.   

There have also been efforts at identifying and filling in missing values in the data-

set.  Turner et al. (2000) proposed a rule-based screening procedure for identifying 

missing and suspect data.  The rules are mostly based on basic principles of traffic flow 

theory.  Some thresholds are used which can of course be fine tuned to the data-set being 

examined.  An initiative was taken to compare the data obtained through the Advance 

Traffic Management System (ATMS) and the data obtained through the Automatic 

Traffic Recorders (ATR) with the ground truth.  Based on their findings they 

recommended similar studies for any ITS data archiving system to evaluate the accuracy 
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of the data.  Turochy and Smith (2000) have proposed a test based on derivation of the 

average vehicle length from the observed traffic variables.  This technique combines the 

threshold value tests with traffic flow based tests like those proposed by Turner et al. 

(2000).  Chen et al. (2003) proposed a methodology for imputing missing values based on 

neighboring cell values in the time-space lattice.  The method for detecting missing or 

suspect values is a definitive improvement over the previous methods that used single 

samples for decision purposes.  Gold et al. (2001) proposed a methodology for 

diagnosing missing values based on location and time.  They also compared several 

methods for imputing missing values based on the Root Mean Squared Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) generated by the methods over the same 

dataset.  Smith et al. (2003) have provided a survey of imputation techniques.  They 

provided a closer look at metrics for evaluating the quality of data as well as the quality 

of imputations.  Based on the positive results on the feasibility of imputation on ITS data, 

they have suggested a revision of the American Association of State Highway and 

Transportation Officials (AASHTO) recommendation discouraging imputation of data. 

Williams and Hoel (2003) have shown that as a univariate data stream, traffic detector 

data can be considered and modeled as a seasonal ARIMA process.   This finding has not 

yet been applied to data at the non-aggregated level.   However, a simple Auto-

Regressive Moving Average (ARMA) model (likely an ARIMA (1,1) based on the 

Williams and Hoel findings) could be applied to a series of the differences between real-

time traffic observations and continuously updated exponentially smoothed averages for 

each time-of-day and day-of-the-week.  This type of model would provide both an 

additional factor for rule-based data outlier detection and a basis for replacing missing or 
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aberrant data.  In relation to nearest neighbor techniques, the continuously updated 

exponentially smoothed averages replace the neighbor database.  The series of 

differences between the observations and the corresponding averages will be stationary, 

thus allowing a single, simple ARMA model to provide the predictions and imputations 

without the need for specific time-of-day, day-of-the-week or peak/mid-day/off-peak 

models. 

 

2.8.3 Signal Processing Approaches 

There has been a recent trend in the use of digital signal processing concepts in the 

processing of traffic operations data.  The wavelet transformation procedure has been 

used extensively in processing the data before using it in incident detection 

implementations (Adeli and Karim, 2000; Adeli and Samant, 2000; Samant and Adeli, 

2000; Samant and Adeli, 2001; Karim and Adeli, 2002a; Karim and Adeli, 2002b; 

Ghosh-Dastidar and Adeli, 2003; Karim and Adeli, 2003).   

The wavelet transformation technique involves performing a DWT on the data, 

removing the high frequency terms, and performing an Inverse Discrete Wavelet 

Transform (IDWT) on the remaining terms to obtain the filtered data.  To start with, a 

subset of the data series consisting of a series of consecutive data points is selected.  The 

number of the data points in the subset is required to be equal to some power of 2 (4, 6, 8, 

16 etc.).  Usually 16 is chosen for algorithm efficiency.  The subset is normalized and 

then buffered at both ends with 8 data points at each end.  A DWT is performed on the 

extended sequence to obtain 8 fine-resolution coefficients, 4 medium resolution 
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coefficients and 4 coarse resolution coefficients.  The 8 high resolution coefficients are 

discarded to eliminate the traffic fluctuations (white noise).  The signal is regenerated 

using the medium and coarse resolution coefficients by performing an IDWT to obtain 

the de-noised data. 

It is widely believed that observations at less-than-one-minute intervals are quite 

unstable and noisy.  Traditionally the data has been aggregated to longer time intervals 

typically 5 or 15 minutes to stabilize the data.  While this is necessary and sufficient for 

computing aggregate statistics, use of the data in other applications is seriously limited.  

For example the calibration and validation of traffic flow models becomes much coarser 

than can be actually performed with good less-than-one-minute interval data.  Also 

applications such as incident detection algorithms cannot work productively with data 

aggregated to 15 minute intervals.  Filters such as exponential smoothing and moving 

average filters suffer from some inherent limitations as pointed out by Coifman (1996).  

Figure 2.5 shows the frequency response of a medium-pass filter along with the other 

commonly used filters such as the moving average filter, cumulative sum filter, 

exponential smoothing filter, double exponential smoothing filter, and the low pass filter.  

The exponential smoothing filter allows only the lower frequencies of the signal to pass 

through.  This means that the high and middle frequencies are chopped off.  The moving 

average filter, which is very commonly used in several applications, has an irregular 

frequency response (which results in an irregular pattern in passing and blocking of 

middle frequencies of the signal).  However, a well-designed medium-pass filter (Figure 

2.3) can preserve the middle and lower frequencies with variable weights and cutoff 

points.  This allows for a more realistic filtering of the data. 
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Figure 2.5:  Frequency Response of Different Filters 
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2.9 Summary 

This chapter provided an overview of the previous research that has been conducted 

in the area of incident detection from traffic operations data.  The concept of incident 

detection algorithms is not new.  Algorithms have been developed as early as the 1970s 

and new algorithms are being developed even now.  Depending on how an algorithm 

analyzes the operations data in order to detect incidents, an algorithm is usually classified 

into one of five major categories: comparative algorithms, statistical algorithms, time-

series and filtering based algorithms, traffic theory based algorithms, and advanced 

algorithms.  The concentration of the discussion in this chapter was on Incident detection 

algorithms that were developed for freeway operations received.  A review of the 

literature on evaluation of incident detection algorithms indicated the lack for a cross-

cutting study that has decisively and conclusively ranked the different algorithms in their 

order of performance based on tests on a single data platform.   

Since the developed application is quite data intensive and also data sensitive, an 

extensive literature review of the available data filtering techniques was in order.  In 

addition to the literature on incident detection algorithms, the chapter also provided the 

background for the core modules of the methodology including traffic prediction models 

and operations data filtering methods.  Review of the literature on existing traffic 

prediction models indicated their insufficiency in meeting the stringent demands of the 

methodology developed in this research; this lead to the development of a new one-step 

traffic prediction model.  The model development process described in Chapter IV 

successfully assimilated and applied the knowledge derived from the literature on the 



 58

previous traffic prediction models.  Chapter IV and Chapter V revisits and expands upon 

the concepts introduced in this chapter regarding traffic prediction and data filtering.   

Review of the literature indicated that there has been extensive research in this area 

during the last three decades, with many competing methods available for incident 

detection.  However, it was observed that integration of incident detection algorithms in 

the incident detection framework in transportation management centers is pretty limited.  

An extensive nationwide survey was employed to accurately investigate the reasons for 

limited implementation and, the needs and expectations of the user community for 

incident detection algorithms.  The methodology developed in Chapter IV and the 

implementation of the methodology in the case study described in Chapter V, took 

guidance from the results of this survey.  The details of the methodology and the results 

of the survey are provided in Chapter III. 
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CHAPTER III 
CHAPTER 3. DEPLOYMENT STATUS EVALUATION SURVEY 

DEPLOYMENT STATUS EVALUATION SURVEY 

This chapter outlines the context in which TMCs make decisions about whether or 

not to use automatic incident detection algorithms (AIDA) in their advanced freeway 

management system.  The author performed a survey among the system managers, 

operators and end users, as well as the decision makers who set the operational policies 

and the priorities for future system enhancements.  The survey responses point to a 

general consensus that the unacceptably high rates of false alarms generated by available 

incident detection algorithms is the major deterrent to the use of AIDAs in TMCs.  This 

study not only provides an understanding of the causes of the limited implementation of 

incident detection algorithms, but also allows a direct comparison between the 

conventional incident detection technologies and automatic incident detection technology 

on the basis of their performance.  Approximately 90 percent of the survey respondents 

feel that the current methods of incident detection are insufficient either at present (70 

percent) or will be so in the future (20 percent).  This finding alone motivates a need to 

redouble research efforts aimed at developing robust and accurate automatic detection 

methods.   In this regard, the chapter presents promising directions to overcome the past 

AIDA deficiencies. 
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3.1 Problem Statement 

AIDAs have been part of freeway management system software from the beginnings 

of ITS deployment.  However, several studies revealed that in many cases the automatic 

incident alarms have been disabled or are simply ignored (Parkany and Bernstein, 1995).  

The general reason for disabling AIDAs is that the operational performance of AIDAs is 

very poor.  However, the size and scope of the urban transportation networks under direct 

monitoring by transportation management centers are growing faster than are staffing 

levels and center resources.  This trend is motivating renewed interest in the quest for 

reliable and accurate AIDA functionality.  This chapter examines the reasons for limited 

implementation of AIDAs in detail and provides some recommendations regarding the 

possible research thrust in the future for AIDAs. 

The first part of this chapter provides the premise of the study and lays out the 

objective.  It then explains the design and development of the survey.  Next, it presents, 

analyzes and interprets the survey results.  It closes with a summary of the findings and 

some recommendations. 

From time to time, comparative analyses of AIDAs have been performed in order to 

find out the relative advantages of one over the others (Stephanedes et al., 1992; Dia et 

al., 1996; Martin et al., 2001).  Abdulhai and Ritchie (1999) discussed the problems 

arising during implementing an incident detection algorithm and proposed a set of 

characteristics for an operationally successful incident detection algorithm.  But still the 

developments in incident detection algorithms seemed to be mostly at a scholastic level.  
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In spite of the rapid development of numerous algorithms the response of the industry 

seemed to be hesitant.  The author envisioned a nationwide survey to understand the 

lukewarm response by the industry. 

3.2 Objective 

The objective of the survey was to evaluate the current status of existing 

implementation of algorithm based incident detection technology.  The study compared 

the performance of this technology with other concurrent technologies like floating 

vehicle based and mobile phone based technologies.  The study investigated the causes 

for limited implementation of Incident Detection Algorithms. 

3.3 Survey Methodology 

The author designed the survey (Appendix A) specifically to elicit responses from 

professionals, mostly state and federal employees, who are concerned about incident 

detection.  The people who would be in a position to make a decision, or substantially 

influence a decision regarding the integration of algorithm based incident detection 

technology into the local advanced transportation management system were identified 

and chosen as the target population of the survey.   

The author conducted the survey over the internet (http://www.gati.org/projects/AIDA-

BW/survey/) because the internet survey methodology was deemed to produce the quickest 

responses, while it eliminated any interviewer bias.  It also facilitated easy follow-up, 

such as sending reminders or clarifying responses if necessary.  The requests were sent 
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out by email to the target population.   Candidate respondents were invited to visit the 

survey website and fill in a questionnaire.  Each invitee was provided a unique id and the 

IP address of their machine was logged when the completed questionnaire was submitted.  

These steps facilitated the elimination of any duplicate responses.  Also, the target 

population was provided with the option of asking for a paper copy of the questionnaire 

by fax or regular mail if they preferred to fill out a hard copy version.  This helped 

mitigate biases related to internet usage that might otherwise have been introduced in the 

survey. 

As is common in most email based internet surveys, the expected participation rate 

was quite low.  To induce a higher rate of response one of the constraints imposed on the 

survey was its length.  The survey questions were therefore limited to only sixteen 

questions, the bare minimum necessary to establish the key information. 

The survey was also designed to be as objective as possible.  Most of the questions 

were multiple choice or numeric open end type.  While an opportunity to give subjective 

answers was provided at all stages, the questions were designed to be clear and direct and 

yield simple objective answers with little or no room for ambiguity.  This facilitated 

statistical analysis of the responses without introducing any interpretative bias from the 

surveyor.  The questionnaire was pre-tested using a small respondent group.  Adjustments 

were made to the questionnaire based on the responses and feedback from this pilot-

study. 
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The questions were separated into two groups.  The first group consisted of questions 

regarding the operational statistics of the conventional incident detection technologies 

being used and the framework of data collection technology being used.  While the basic 

infrastructure related information was available from sources such as the ITS deployment 

tracking website (USDOT, 2002), these questions were targeted to obtain more specific 

information.  The second group consisted of algorithm based automatic incident detection 

related questions.  While each of these question sets provided information that had 

significant informative value they, together, formed the superset that allowed for a case-

by-case comparison and analysis.   

3.4 Survey Response 

The survey was sent out to key personnel in TMCs all over the United States and the 

Ontario Ministry of Transportation at Ontario, Canada.  Out of the several TMCs, 39 

were specifically chosen as targets for the survey based on their area of coverage and the 

load on the network that they serve.  Out of these 39, 32 Centers responded, resulting in 

an 82 percent effective response (Figure 3.1).  The survey results are based on responses 

from these 32 Centers from 20 States within the United States and Canada.  Fifty two 

percent of the survey respondents were people in a position to make the decisions 

regarding incident detection policies in their respective TMCs.  Another 40 percent were 

in a position to influence such decisions. 
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Figure 3.1: Organizations Targeted for Survey 

 

3.5 Survey Results 

3.5.1 Incident Detection Technologies 

Review of the research and practice literature clearly reveals that previously 

developed automatic incident detection algorithms were designed and evaluated from a 

fully automated, stand-alone perspective.  When the respondents were asked about their 

view on algorithm-based incident detection technology, an overwhelming majority (81 

percent) agreed that if reliable and accurate automatic incident detection algorithms are 

developed, the algorithms will not completely replace other state-of-the-practice methods 

(such as mobile phone calls, operator visual detection, etc.) but rather will serve as a 

complement to these other detection methods in an overall incident detection system. 

        Centers with one or more responses
        Centers with no response 
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Several technologies exist for detection of incidents.  Some TMCs use CCTV for 

monitoring the roadways.  There are operators constantly watching the monitors at the 

TMC for incidents.  With time, the operators develop a sense of the hot-spots as to where 

to expect the incidents and this expertise becomes very useful in fast detection.  Some 

TMCs use floating vehicles in the traffic stream that watch out for incidents.  While some 

TMCs like the Atlanta TMC have their own units (Highway Emergency Response 

Operators), a large number of TMCs work with the local law enforcement authorities� 

patrol cars in this regard.  With the increase in the availability and widespread use of 

mobile phones, several TMCs have operators responding to calls from the travelers 

calling in with reports of incidents.  Several states have call boxes beside the roadway 

spaced every few miles or even closer in some regions.  Motorists can call in to the TMC 

to report an incident or ask for help.  Some TMCs like the Minnesota DOT and the 

Indiana DOT also use helicopters and other aerial means for incident detection.   

Visual detection of incidents by operators, detection by floating vehicles and 

detection by mobile phone operators were found to be the most widely used incident 

detection technologies.  Whereas, visual detection of incidents by operators monitoring 

Closed-Circuit Television (CCTV) cameras was the most popular one, it was followed 

closely by detection by floating vehicles and detection by mobile-phone operators.  

(Figure 3.2) The other incident detection technologies that are used include Aerial 

detection (using helicopters or planes), detection by co-ordination with other agencies 

like emergency centers or the police, detection using call boxes, etc.    
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Figure 3.2: Use of Incident Detection Technology by Different Transportation 
Management Centers (TMCs) 

 

The average time taken to detect an incident varies with the detection technology and 

also from center to center (Figure 3.3).  This time depends on several factors like the size 

of the network being served, number of units/operators deployed, efficiency of the 

operators, design of the center/consoles, etc.  But the most predominant factor is usually 

the detection technology.  The overall average time taken to detect an incident using non-

algorithmic techniques, averaged across all the TMCs, was found to be 8.5 minutes.  Out 

of the several technologies, detection by mobile-phone operators has the lowest average 

time to detect, 4.5 minutes. 
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Figure 3.3: Average Time Taken by Different Incident Detection Technologies to 

Detect an Incident 

 

The pilot study found that detection by mobile-phone users was one of the popular 

technologies.  Nonetheless, only a small proportion (10 percent) of the respondents 

deemed that the current methods are sufficient for their organizations in the present as 

well as in the near future, while 20 percent of the respondents agreed that even if the 

current methods are sufficient at present they would fall short in the imminent future.  

The majority of the respondents (70 percent) considered the current methods of incident 

detection to be insufficient to meet the current demands.  This strongly suggests that the 

need for alternative methods of detection has not been completely mitigated and the need 

for an automated detection technology like incident detection algorithms is more 

pertinent than ever. 
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3.5.2 Presence of Advanced Traffic Management System 

Out of the 32 TMC surveyed only 5 do not have an ATMS whereas the rest have an 

ATMS with real time operations data collection capabilities.  These 27 can easily 

integrate a well designed incident detection algorithm into their system with minimal cost 

and effort investments.   

As shown in Figure 3.4 most of the ATMS systems collect data at 20 second or 30 

second intervals while a few collect data at 1 minute or 5 minute intervals.  With a 

detector spacing of about ⅓ to a ½ mile, and with observations at 20 or 30 seconds 

interval, the surveillance offered by the system is quite sufficient for using an incident 

detection system.  (With a detector spacing of ⅓ mile or ½ mile and assuming a free flow 

speed of 60 mph., the cameras, theoretically, capture the state of the traffic in a piecewise 

continuous fashion.) 

 

 
Figure 3.4: Detection Intervals used by Transportation Management Centers 
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Larger time intervals between observations or widely spaced observation stations 

would negatively impact the accuracy of the algorithms as well as the time to detect an 

incident.  But with 20 or 30 second intervals, which are observed to be more prevalent, a 

well designed incident detection algorithm can provide accurate and fast detection. 

3.5.3 Vehicle Detection Technologies 

While Radio Detection and Ranging (RADAR) and video detection technologies for 

traffic monitoring are being implemented in several transportation management systems, 

magnetic induction loop technology is still predominant (see Figure 3.5).  Generally the 

data that can be obtained directly from this technology consists of three parameters: 

vehicle count, average vehicle speed, and lane occupancy. 

Lane occupancy can be used as a surrogate for traffic density.  Lane occupancy can 

be measured by presence detectors as the percentage of time a detector is occupied by 

vehicles in a given time interval.  Among other factors, occupancy is dependent on the 

length of the detector because of the nature of its measurement � a longer detector will 

require more time to cross and hence would indicate a higher occupancy.  The length of 

detectors is pretty standard for magnetic induction loop detectors but they vary in radar 

and video based detectors.  To estimate the density from the occupancy, the length of 

detector is important and should be obtained from the detector configuration instead of 

assuming any default value.  This difference usually prevents defining definite thresholds 

such as those for detecting congestion using occupancy. 
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Figure 3.5: Vehicle Detection Technologies used by Transportation Management 
Centers (TMCs) 

 

An application built on top of real-time operations data, such as an application for 

algorithm-based incident detection, should ideally be developed to work with these three 

parameters � vehicle count, average vehicle speed and lane occupancy � at a satisfactory 

level.  Otherwise, implementation of the application will require an upgrade of the traffic 

monitoring technologies in many of the current systems.   Such a requirement could 

significantly delay or preclude implementation of the real-time application. 

It could be argued that the need for AIDAs is for larger, more heavily congested 

systems, and that such systems are more likely to have one of the advanced video or radar 

detection systems.  However, it should be noted that some of the larger systems have 

different technologies at various locations within the systems.  
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Table 3.1 shows several examples of organizations that are using different vehicle 

detection technologies within the same system.  Therefore, feasibility at the system-wide 

level requires that real-time applications be designed for the highest-common-factor of 

the data available from these different technologies, which usually boils down to the 

above mentioned three traffic parameters, vehicle count, average vehicle speed, and lane 

occupancy. 

It should be noted, however, that an attempt to find a link between the detection 

technology being used and the satisfaction a TMC has with the incident detection 

technologies could be quite misleading.  There are other factors like the area of coverage, 

the level of congestion etc.  that affect the vehicle detection technology as well as the 

incident detection technology and an attempt to find a relation between these two factors 

should consider the existence of the other factors.  There is a distinct difference between 

vehicle detection technology and incident detection technology and the two terms should 

not be confused.  The vehicle detection technology data was collected in this study 

specifically to estimate the feasibility of using different incident detection technology 

including Incident Detection Algorithms. 
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Table 3.1: Use of Vehicle Detection Technology by Organizations with ATMS 

Organization Induction 
Loops Radar Video Acoustic 

Arizona DOT x   x 
California DOT, Sacramento, 
District 3 x x   

California DOT, Oakland, 
District 4 x x   

California DOT, San Diego, 
District 11 x    

County of Los Angeles x  x  
Florida DOT x  x  
Georgia DOT   x  
Michigan DOT x x   
Minnesota DOT x    
Missouri DOT  x   
North Carolina DOT  x   
New Jersey DOT x x x  
NY State DOT x    
Ontario Ministry of 
Transportation x x   

Oregon DOT x    
Rhode Island DOT   x  
Texas DOT, Dallas district, 
DalTrans x x x  

Texas DOT, San Antonio, 
TransGuide x  x  

Texas DOT, El Paso, TransVista x    
Texas DOT, Austin district x x  x 
Texas DOT, Fort Worth, 
TransVISION x x   

Toll Authority, NY State  x   
Washington State DOT x x   
Wisconsin DOT x x x  

 



 

 73

About 53 percent of the centers have an automatic incident detection algorithm 

integrated into their system (see Figure 3.6).  However, the percentage of the centers 

which had the detection algorithm fully functional was only 12.5 percent as shown in 

Table 3.2.  There are a few things worth noting here.  Firstly, more than a 50 percent 

level of integration shows that there is sufficient interest in algorithm based detection.  

This in turn points towards the need of such methods to address the problem of incident 

detection.  On the other hand, a large percentage of centers have not integrated the 

algorithm into their system.  This shows reservation on the part of the centers, or a 

guarded approach.  This observation is ratified by the low percentage of full functionality 

of the method.  Also, the low percentage of full functionality purports that the experience 

of algorithm integration was not fully satisfactory to the centers that did implement this 

approach. 

 

NoAIDA
46.9%

Disabled
21.9%

Operational
12.5%

Partial
12.5%

Ignored
6.3%

 

Figure 3.6: Use of Automatic Incident Detection Algorithms by Transportation 
Management Centers (TMCs) 
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3.5.4 Reasons for Limited Integration of Incident Detection Algorithms 

When asked for the reasons for the limited integration of incident detection 

algorithms in the system, the users cited three principal reasons � occurrence of false 

alarms, difficulty of algorithm calibration and low detection rates.   

3.5.4.1 False Alarms 

The primary and most commonly cited reason was an unacceptably high rate of false 

alarms (Figure 3.7).  The number of false alarms generated by the AIDA systems 

currently in use is high for operator comfort, and the distraction caused by the false 

alarms usually outweighs the benefits of faster detection.   
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Table 3.2: Use of Incident Detection Technologies by Traffic Management Centers 

Organization 
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Arizona DOT x x  x  x (a) Other Highway Patrol (b) Other 
Maintenance team 

California DOT, Oakland, District 4  x x x  x  

California DOT, Sacramento, District 3  x x x   (a) Maintenance vehicles (b) 
Traffic Management Team 
vehicles 

California DOT, San Diego, District 11  x x x    

Colorado DOT  x x x  x  

County of Los Angeles  x x x  x  

Florida DOT  x x x  x  

Georgia DOT  x x x  x (a) District office phone calls (b) 
Speed detector changes 

Indiana DOT  x  x x x  

Michigan DOT  x  x  x  

Minnesota DOT  x  x x x  

Missouri DOT  x  x x x (a) Police scanners (b) MoDOT 
field crews calls over radio and 
Nextel 

New Jersey DOT    x  x (a) Local and State Police (b) 
Maintenance Forces 

North Carolina DOT x   x  x Communication w/ 911 

NY State DOT    x   Other Wireless 911 calls 

Ontario Ministry of Transportation      x (a) Media calling in to confirm 
incidents reported to them by 
public. (b) Police, fire dept, and 
ambulance calling in to confirm 
incidents reported to them by 
public. 

Oregon DOT  x  x  x (a) Calls from police on our radios 
(b) Calls from police dispatcher 
over their radios 

Rhode Island DOT  x  x  x  

Texas DOT, Austin district x x  x  x (a) Land line phone call (b) Vehicle 
detector occupancy 

Texas DOT, Dallas district, DalTrans x   x  x (a) Direct Police radio (b) Direct 
connection to traffic reporting 
services 

Texas DOT, El Paso, TransVista x x  x  x  

Texas DOT, Fort Worth, TransVISION      x (a) Aircraft from Traffic.com (b) 
Radio in by TxDOT Courtesy 
Patrol personnel 

Texas DOT, San Antonio, TransGuide x x    x  

Toll Authority, NY State   x x  x  

Washington State DOT  X x x  x Monitoring State Patrol 
Communication Dispatch radio 

Wisconsin DOT x      Phone and data links to public 
safety computer aided dispatch 
and 911 call centers 
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Figure 3.7: Ranks Awarded to Deterrents for use of Automatic Incident Detection 
Algorithms by the Transportation Management Centers (TMCs) 

 

However this is not a new finding.  Researchers as well as practitioners are well 

aware of this issue.  The goal here was to verify this observation and at the same time 

identify a common ground where researchers and practitioners can agree about the 

acceptability of the performance of the algorithms.  The survey requested input on the 

tolerance level for false alarms for two time intervals � hourly and daily.  On an average, 

a maximum of three false alarms per hour are considered acceptable.  On a daily basis, 

the average response was ten, i.e., it was purported that on an average, more than ten 

false alarms per day would cause too much distraction and render the automatic system 

unacceptable.  Although in some cases the high occurrence of false alarms is interpreted 

as the failure of an algorithm, the literature supports that in almost all incident detection 

algorithms there is a tradeoff between false alarms and the detection rate.  The algorithms 
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can be tuned to reduce false alarms to a minimum.  The consequence is a reduction in the 

detection rate as well. 

3.5.4.2 Algorithm Calibration 

The survey respondents indicated that the problem of initially calibrating the 

algorithm was second on the list of reasons for dissatisfaction generated by this 

technology.  Unless the algorithm is properly calibrated it cannot be expected to function 

with an acceptable level of efficiency and accuracy.  The calibration process in most of 

the algorithms is complicated and time-consuming and also requires an understanding of 

the details of the algorithm to a degree which is not realistically attainable for the local 

staff. 

The pattern matching, statistical and mathematical modeling based algorithms that are 

currently available rely mostly on heuristic and inductive modeling based approaches for 

calibration.  Such procedures of calibration require data pertinent to a diverse set of 

incidents that represent all possible scenarios.  The accuracy of the available information 

determines the efficiency of the calibration.  Although incidents in traffic streams are 

abundant, information pertaining to these incidents is often insufficient and scarce.  In 

practice therefore, in some cases (artificial neural network based algorithms) it is 

necessary to use simulation generated artificial incident data for calibration.  Not only 

does this limit the accuracy of the calibration, the simulation process involves substantial 

time and effort.  Development of new simulation networks for the specific site of 

implementation is arduous.  Some algorithms are capable of improving with time after 
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implementation, with availability of more data.  But incorporation of such capabilities 

requires manual feedback, which in turn delegates additional tasks for the local staffs. 

There are two ways of addressing this problem.  One way would be to find out ways 

to automate the calibration process as far as possible in the existing algorithms.  If the 

algorithm implementation can be designed to adjust itself automatically to the existing 

and changing conditions of the environments and sites then it can be deployed with some 

initial configuration and minimal calibration.  With the passage of time the accuracy of 

the algorithm would improve.  There have been some efforts in this direction (Abdulhai 

and Ritchie, 1999). 

However there is an alternative approach.  If instead of the usual inductive modeling 

approach, a deductive modeling approach based on traffic flow theory is adopted, the 

algorithm would not suffer from the usual data constraints.  The calibration would mostly 

involve operations data (flow, speed and occupancy).  This data is definitely more 

accessible than incident information data.  Some TMCs already archive this data and 

most of them can archive it, if necessary, at minimal costs.  No elaborate simulations 

would be necessary for incident data generation.   

3.5.4.3 Detection Rate 

The survey respondents, in most cases, considered low detection rate (i.e. the 

percentage of incidents that was actually detected by the incident detection algorithm) a 

tertiary reason for rejecting incorporation of AIDAs in TMCs.  Since a center usually 

employs several technologies which work in tandem to detect incidents, the chances of 
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not detecting an incident that is seriously affecting traffic, are quite low.  Therefore, 

although a high detection rate is very desirable, it is not considered a critically decisive 

factor in accepting or rejecting the use of an algorithm. 

3.6 Conclusion 

The survey shows that a sizeable number of the TMCs have the infrastructure to 

collect operations data over the traffic network at short (less than a minute) and regular 

intervals of time.  These systems are ideal for using algorithms for automatic detection of 

incidents.  It is quite apparent, therefore, that the infrastructure is available for 

implementing these algorithms.  Also, the survey indicates that there is a demand for 

alternative detection procedures and the demand is increasing with the increase in the size 

of the coverage areas of the ATMS.  These observations indicate a need for further 

research in this field.  However, based on the general consensus among the survey 

respondents, it must be acknowledged that this new research thrust should recognize that 

AIDAs will not provide stand-alone incident detection, as was originally envisioned, but 

rather will be one component of an overall incident detection system that includes mobile 

phone call in, operator visual detection, freeway service patrol discovery, etc.   

In addition, since the predominant cause for dissatisfaction of the users is the rate of 

false alarms, incident detection algorithms must be designed to operate with low false 

alarm rates.  The efforts should be directed towards achieving stringent ceiling rates.  

Though detection ratios and time to detect incidents are still important parameters for 

estimating the efficiency of algorithms, a substantial effort should be devoted towards 
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addressing the problem of false alarms which is ranked as the primary deterrent for 

deployment of AIDAs.  The desired outcome of the AIDA research and development 

effort will be readily implementable algorithms that provide the maximum reduction in 

overall detection times without violating acceptable false alarm thresholds.  Automatic 

incident detection built on traffic flow theory-based deductive modeling is a promising, 

yet essentially unexploited approach that should be fully explored in this new AIDA 

research thrust. 

This chapter describes the nationwide survey undertaken to investigate the reasons for 

limited investigation and the needs and expectations of the user community for incident 

detection algorithms.  The design methodology developed in the following chapters 

(Chapter IV) and the implementation thereof (Chapter V) was guided by results of this 

survey and the conclusions derived from it as outlined above. 

 

 



 

 81

CHAPTER IV 
Chapter 4. PROPOSED METHODOLOGY 

PROPOSED METHODOLOGY 

The problem addressed in this dissertation is that of automatic detection of traffic 

incidents using operations data.  Operations data usually consist of flow, occupancy and 

speed data collected continuously over short but regular intervals of time e.g. 20 seconds, 

30 seconds, 1 minute, etc.   

Given that the operations data is collected over such small intervals of time, analysis 

of the data holds the promise of rapidly and accurately revealing fluctuations in traffic 

conditions over time within a spatial boundary.  The operations data, therefore, has a 

potential of supporting the detection of unexpected incidents within a very short time of 

the actual occurrence of the incident.   

4.1 Statement of Problem 

The problem of incident detection has usually been addressed in the past with either a 

pattern recognition approach or a data mining approach.  The former approach tries to 

associate the occurrence of incidents with the occurrence of certain patterns in the traffic 

flow variables.  The latter approach tries to find occurrences of anomalies in the data that 

can be attributed to incidents.  The proposed Discrete State Propagation Model (DSPM) 

algorithm introduces a new approach to this problem.  A discrete form of the popular 

hydrodynamic model of traffic flow (Lighthill-Whitham-Richards model (Lighthill and 
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Whitham, 1955a; Lighthill and Whitham, 1955b; Richards, 1956) or the LWR model) 

provides the foundation for tackling the problem of incident detection. 

4.2 Hypothesis to Be Tested 

The purpose of this work was to create a methodology to detect traffic incidents on 

freeways using operations data that can be used to accomplish the first step in traffic 

incident management � namely detection of an incident.  The research hypothesis can be 

encapsulated by the following:  

Research Hypothesis: Incidents can be detected using operations data by using the 

difference between the observed traffic state and the traffic state predicted using a 

discrete state propagation model of traffic flow. 

This hypothesis will be tested by developing and implementing a methodology that 

integrates real time information at successive stations to provide accurate short term 

predictions that differ substantially from observations during incident influenced traffic 

conditions.  If the developed methodology can successfully distinguish incident 

conditions from free flowing and recurrent congestion conditions, then the hypothesis 

will be demonstrated to be true.  The following section (Section 4.3) provides the design 

objectives of the methodology.   

4.3 Design Objectives 

The constraints in the development of the methodology and the guiding principles 

used in the implementation can be encapsulated in three primary objectives: 
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Objective 1: Incorporate knowledge derived from previous models and technologies 

into the development of this methodology. 

A comprehensive literature review of the existing incident detection algorithms was 

the first step towards this objective.  A survey directed towards the user community of 

detection algorithms provided valuable information in laying out the goals for design of 

the methodology.  The following sections (Sections 4.5 through 4.6) elucidate how this 

objective is accomplished. 

Objective 2: Create a methodology that accurately tracks the shift of traffic regime 

into incident influenced regime. 

This objective summarily defines the principal purpose of the study.  It involves the 

development of a methodology for detecting incidents using operations data that can be 

successfully implemented in real time.  The steps involved in attaining this objective are 

laid out in the following sections (Sections 4.4 through 4.7). 

Objective 3: Demonstrate the applicability of the methodology through its 

implementation in a case study. 

This objective provides a comprehensive implementation of the developed 

methodology and tests the transferability (repeatability) of the methodology and its 

robustness in the presence of adverse real world data.  Chapter V describes the steps 

involved in the implementation of the methodology and achievement of this objective. 
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4.4 Proposed Methodology Overview 

The components of the proposed algorithm are illustrated in Figure 4.1.  The flow of 

information follows the direction of the arrows.   

 

 

Figure 4.1: Components of Detection Algorithm 

 

The development of the proposed algorithm follows the following steps: 

•  Choice of appropriate prediction model 

•  Calibration of error thresholds 

•  Development of filters for elimination of erroneous detection 

•  Calibration of filter thresholds 

Prediction based on 
previous time step 

Comparison with 
observation 

Filtration of results 

Decision regarding 
traffic state

Filtration of data 
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Section 4.5 states the assumptions that are made during different stages of 

development of the methodology.  Sections 4.6 through 4.8 expand on the 

aforementioned steps.  Section 4.9 enumerates the limitations of the methodology.  

Section 4.10 ties up the component steps and provides a synopsis of the same.   

4.5 Assumptions 

There are several assumptions that pertain to the development of the methodology.  

The assumptions are usually specific to a given development step.  Following is a list of 

the assumptions, classified by the concerned step: 

Prediction: 

•  Traffic flow follows the tenets of the LWR model.   

•  Characteristics of traffic flow can be simplified to the form proposed by 

Newell (1993b) 

•  Traffic characteristics at a given location can be forecasted based on the 

characteristics at adjacent locations at earlier points in time. 

Error Threshold Calibration 

•  The difference between the predicted and observed value is significantly 

larger during incident conditions than the differences under non-incident 

conditions. 
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Filter Threshold Calibration 

1. The maximum density per lane value at a given point is equal to the maximum 

number of passenger cars that can be fit into a one mile segment of a lane with no 

headway. 

2. The maximum plausible flow and density change between successive points in 

time can be bounded by a threshold. 

3. The maximum plausible difference between the prediction and observation can be 

bounded by a threshold. 

Incident Detection 

4. Incidents may or may not have a significant effect on the flow of the traffic.   

5. Incidents that do not have a significant effect on the traffic are of lesser concern to 

incident management teams (although they may be graded differently by other 

emergency management authorities). 

6. Incidents that do not have a significant effect on the traffic can not be detected by 

any incident detection algorithm that relies exclusively on traffic operations data. 

7. The effect of an incident on traffic under stop-and-go conditions is not 

discernable. 
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4.6 Choice of Prediction Model 

The desirable features of the prediction model would be: 

•  Accurate predictions 

•  Short term predictions (one step predictions at the base system time interval) 

possible 

•  Predictions should assimilate ambient conditions 

•  Computationally efficient and implementable predictions in real time 

The time-series based models (Williams, 2001) are good for prediction at 5 minute 

levels.  The smoothing and filter based models (Kalman filter (Jiang, 2003), Double 

exponential smoothing (Cook and Cleveland, 1974)  etc.) eliminate the high frequency 

components of the signal.  They too are more suited for prediction at larger intervals and 

are capable of predicting accurately further into the future.  The neural network based 

models (Smith and Demetsky, 1994; Amin et al., 1998; Cheu, 1998; Abdulhai et al., 

2002; Ishak and Alecsandru, 2003; Xiao et al., 2003) are computationally quite intensive.  

Also they require a significant amount of calibration.  A comprehensive literature review 

of traffic prediction models revealed that the lagged cell transmission model (Daganzo, 

1993; Daganzo, 1994a; Daganzo, 1994b; Daganzo, 1995; Daganzo, 1999) satisfies most 

of these requirements.  It can make accurate predictions over short time steps.  Also it 

takes into account the fact that the traffic state at a point not only depends on the history 

of the traffic states at that point but also on the traffic states at the adjacent points.  This 

drawback of the other single station based prediction models was effectively overcome 

by the lagged cell transmission model. 
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In the lagged cell transmission model it is assumed that the roadway can be divided 

into small homogeneous segments (dj) (Figure 4.2).  Time is divided into small intervals 

(ε).  The traffic states within these cells are assumed to be homogeneous, and the state 

measured at the center of the cell represents the state over the entire cell.  The cell 

dimensions are chosen such that the time step is less than or equal to the time required by 

the backward moving traffic characteristics to traverse a cell.  The discontinuity is at the 

edges of the cells.  The difference in the inflow and outflow across the cell boundaries is 

used to adjust the successive traffic states.   

 

 

Figure 4.2: Time-Space Lattice 
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The model can be expressed as: 

 ( )[ ])2/,2/()2/,2/(),(),( iiiiii dxtQdxtQdxtKXtK −+−++−=+ εεεε  (4-1) 

Where K( ti , xi ) denotes the average density for the ith cell at time ti , and Q( ti + ε/2 , xi 

+ di/2 ) denoting the average flow advancing from cell i  to cell i + 1 in the time interval 

[ ti , ti + 1 ].  Q is expressed in terms of the upstream sending function S and downstream 

receiving function R as 

 ))},(()),,((min{)2/,2/( 11 ++−−=++ ii
k

ii
k

ii xltKRxftKSdxtQ ε  (4-2) 

and 

 ))},(()),,((min{)2/,2/( 11 ii
k

ii
k

ii xltKRxftKSdxtQ +− −−=++ ε  (4-3) 

Where fi is the forward lag for the ith cell, constrained as: 

 )]12(|/[| max +≤ i
k

i fSdε  (4-4) 

And li is the lag for the ith cell, defined as: 

 )]12(|/[| max +≤ i
k

i lRdε  (4-5) 

Figure 4.3 shows a diagrammatic representation of Newell�s simplification (Newell, 

1993a; Newell, 1993b; Newell, 1993c; Newell, 1993d) of LWR theory.  The dotted line 

represents the LWR model for the relation between flow and density.  Newell�s 

simplification implies a simplification of this function with a piecewise linear function as 

shown in the figure (bold lines).   
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Figure 4.3: Newell’s Simplified form 

 

The implication of using the piecewise linear function is an assumption that for a 

homogeneous section of highway there are only two possible values of kinematic wave 

velocities (and wave paces, the inverse of wave velocities) � one positive and the other 

negative.  The wave paces are independent of the flow values.  The positive wave pace is 

equal to the vehicle pace under uncongested conditions and can be denoted by 1/Sk where 

Sk is the positive wave speed.  The negative wave pace is equal in magnitude to the 

inverse of the speed of the backward moving kinematic waves and can be denoted as 1/Rk 

where Rk is the backward wave speed.   
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During uncongested conditions, if the speed is assumed to be constant and equal to 

the free flow speed, the flow is directly proportional to the density.  So the flow that can 

exit the cell is proportional to the density.  However, when the conditions becomes 

congested, the flow exiting the cell is limited by a value Qmax , equal to the capacity of the 

section.  In a similar fashion, a cell can receive traffic flow upto the capacity as long as 

the conditions are uncongested.  When the conditions become congested, as the traffic 

becomes denser, lesser vehicles can pass the section.  Therefore the receiving capacity 

reduces with the increase in density.  Accordingly, the sending function uses a linear 

relationship between density and flow in the uncongested region (K < KC) and a constant 

value in the congested region (K ≥ KC).  The receiving function uses a constant value in 

the uncongested region (K < KC) and a linear relationship between density and flow in 

the congested region (K ≥ KC).  Therefore, the sending and receiving functions (as shown 

by the thick gray lines and light gray lines respectively in Figure 4.3) can be defined as: 
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Where KJ is the jam density, KC is the critical density and Qmax is the critical flow 

where traffic breaks down.  The forward (Sk) and backward (Rk) wave speeds are 

expressed as: 
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Using this simplified formulation, the model, as originally represented in Equations 

4-1 through 4-3, can be expressed as a set of two equations based on the regime of traffic. 

In the uncongested regime (K < KC): 
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In the congested regime (K ≥ KC): 
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As is evident from the above equations, for the prediction at the next time-step, this 

simplified form, in effect, involves a smoothing of the upstream or downstream traffic 

states with the previously observed traffic state at the point of interest.   This smoothing 

with a previous state gets increasingly more inaccurate as the number of time steps it 

takes for the kinematic waves to travel between the adjacent station and the station under 

analysis increases. 

Also with reference to Figure 4.2 it is apparent that this model effectively quantifies 

the traffic state at the center of the cell based on measurements at the boundaries.  

However in a typical ATMS�s data collection setup, the measurements at the edge of the 

cells are available but there is no data at the center of the cell.  Because of the temporal 

and spatial disparity, prediction at the center of the cell lags the observation at the 

boundary.  This of course, is not a deficiency of the model.  It just indicates the lack of 
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suitability of the application of the model to this problem.  Consequently, it was 

necessary to develop a prediction model that could address this issue more effectively. 

4.7 Development of Prediction Model 

The developed prediction model, hereafter referred to as the DSPM model, is founded 

on the following assumptions: 

•  Under un-congested traffic conditions, kinematic waves (Newell, 1993a; 

Newell, 1993b; Newell, 1993c; Newell, 1993d) travel in the direction of 

traffic at a characteristic speed (equal to the free flow speed of traffic under 

Newell�s simplified theory). 

•  Under congested conditions, kinematic waves travel in the direction opposite 

to the direction of movement of traffic.   

•  The traffic transitions from the un-congested regime to the congested regime 

at a given level of density (critical density).  The transition is instantaneous as 

per Newell�s simplified theory.  Mathematically, this implies a point of 

discontinuity and does not present any complexity in representation.  

However, in the real world, such an instantaneous change is not possible.  The 

change does involve some time.  Nevertheless, the change is usually so fast 

that this assumption facilitates a reasonable approximation for all practical 

purposes. 

•  The traffic characteristics are unable to cross a standing wave which exists at 

an active bottleneck. 
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•  The traffic characteristics are unable to cross the shock waves that exist at the 

back of congestion queues. 

The following implementation specific assumption is also necessary: 

1. The bottlenecks on the roadway can be identified and the traffic parameters (flow, 

speed, density / occupancy) can be measured successfully at these points. 

In the DSPM model, short term predictions of the traffic states are computed as an 

approximation to the measured states.  The value of a given traffic parameter is computed 

as the weighted average of the adjacent measured traffic states.  A series of possible 

situations are used to illustrate the concept of this model. 

4.7.1 Uncongested Regime 

Figure 4.41 shows the conditions in an uncongested regime.  It shows a section of 

roadway with two consecutive cells (1 and 2) with detectors at the edges of the cells.  

Assuming the forward speed of the traffic characteristics to be Sk and the size of the time 

interval to be ε, the traffic state at a point travels a distance of Sk times ε in one time step.  

So the traffic state that was measured and reported at station i �1 at time t is between 

station i �1 and point A.  The traffic state that was reported at station i �1 at t - ε is 

between A and B.  And the traffic state that was reported at station i is between station i 

and point D.  The dashed rectangle marks the traffic states that would be reported at 

                                                           
1 Figures 4.4 through 4.8 are not to scale and the figures of the cars are used only to illustrate the level of 
congestion at a point 
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station i at time t + ε.  Therefore the traffic state at station i at time t + ε is estimated as 

the weighted average of the traffic states from station i � 1 that overlap with the dashed 

rectangle.   

 

 

Figure 4.4: DSPM Model under Uncongested Regime with Distance between 
Detectors Greater than Distance Covered by Kinematic Wave in one 

Time-step. 
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the equations become: 
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If n is 1, i.e. if the length of the segment is greater than the distance the kinematic 

waves travel in one time-step but less than the distance traveled in two time-steps, i.e.  

2Sk ε >di > Sk ε: 

Model I-A 
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where   K: Density 

  Q: Flow 

  di: Distance of station i from upstream detection station 

However, if n = 0, implying that the length of the segment is less than the distance the 

kinematic waves travel in one time-step (Figure 4.5), i.e. di < Sk ε, then the state at 

station i at time t + ε is estimated as the weighted average of the traffic states that 



 

 97

overlap with the dashed rectangle.  This can be either the states measured at station i 

� 2 at t and t - ε or the states at station i � 2 and station i � 1 at t (with reference to 

Figure 4.5).   

 

 

Figure 4.5: DSPM Model under Uncongested Regime with Distance between 
Detectors Lesser than Distance Covered by Kinematic Wave in one 

Time-step. 
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If the states from station i � 2 are used, the equations become: 

Model I-B 
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If the states at station i � 2 and station i � 1 at t are used: 

Model I C 
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If the states at station i � 1 at t and t + ε is used (use of data from the future timestamp 

is an option specific to the implementation in the incident detection algorithm2) : 

Model I -D 
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In the case of ramps or at the beginning of a section, where there are no data at xi-2 

available, a dummy node is assumed at xi-2 and the data at xi-1 is used for that node. 

4.7.2 Congestion Downstream 

Figure 4.6 shows the conditions in a congested regime.  In this regime the 

characteristics are moving backward.  Assuming the backward speed of the traffic 

characteristics to be Rk and the size of the time interval to be ε, the traffic state at a point 

now travels a distance of Rk times ε in one time step.  Given the slower speeds of 

backward waves as compared to forward waves, the traffic state measured at station i + 1 

at time t is between station i + 1 and point B.  Therefore the traffic state at station i at 

time t + ε is estimated as the weighted average of the traffic states overlapping the dashed 

rectangle as shown in Figure 4.6. 

                                                           
2 While this is not a strictly predictive model in that we are using the upstream state from the same time-
step, we are only concerned with our best estimate to compare to the observation.  We will still be able to 
calculate the error as soon as the next observation is available.  
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Figure 4.6: DSPM Model under Congested Regime  

 
 
 

Model II 

If, 

 εε kik RdR 43 <<  (4-22) 

Model II (for the congested regime) can be expressed as: 
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In the generic case,  

 εε kik nRdRn <<− )1(  (4-25) 

where n is a positive integer, the equations become: 
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4.7.3 Congestion Upstream 

Figure 4.7 illustrates the case when there is congestion at the upstream detector.  The 

shockwaves (backward moving kinematic waves) emanating from station i � 1 are 

moving backward.  However, there is queue discharge flow downstream of station i � 1.  

So there are forward moving characteristics flowing down from this station as well.  The 

shockwaves travel a distance of Rk times ε in one time step while the forward waves 

travel a distance of Sk times ε in one time step.  The traffic state that was measured at 

station i � 1 at time t is between points C and D.  Again, the state that was just 

downstream of the bottleneck at station i � 1 has traveled in the forward direction.  

Strictly speaking the states at station i cannot be estimated from states at station i � 1 

because of the point of discontinuity.  However since traffic volumes are conserved, the 

volume crossing station i � 1 will affect the volume at station i.  Therefore the volumes at 

station i at time t + ε is estimated as the weighted average of the traffic states overlapping 

the dashed rectangle in Figure 4.7.  However, the speed values and the density values 
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cannot be estimated in a similar fashion.  Speeds values will be the free flow speed for 

station i and density values have to be estimated as flow divided by free flow speed.   

 

 

Figure 4.7: DSPM Model under Upstream Congestion  

 

If length of the segment is greater than the distance the kinematic waves travel in one 
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Else, if length of the segment is less than the distance the kinematic waves travel in 

one time-step  i.e.  di < Sk ε : 

Model III-D 
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Models III-B and III-C corresponding to models I-B and I-C (refer discussion in 

Section 4.7.1) cannot be formulated because they use the states from station i � 2, but the 

characteristics from station i � 2 are unable to cross the standing wave at station i - 1. 

Density is not predicted separately as in the other cases but obtained from the predicted 

flow as: 

 
k

i
i S

xtQxtK ),(),( εε +=+  (4-30) 

In the case of ramps or at the beginning of a section, where there are no data at xi-2 

available, a dummy node is assumed at xi-2 and the data at xi-1 is used for that node. 

4.7.4 Bottleneck at Detection Station 

Figure 4.8 illustrates the case when congestion starts from the current station.  A 

typical case will be where there is a station exactly at (or just upstream of) a bottleneck.  

The shockwaves (backward moving kinematic waves) emanating from station i are 

moving backward.  There is a queue discharge flow downstream of station i and there are 
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forward moving characteristics flowing down from this station.  Since all the 

characteristics from this station are outgoing, and there are no incoming characteristics, 

the state at this station cannot be obtained as an approximation of the nearby states.  The 

flow at the station will be equal to the queue discharge flow of the bottleneck.  The 

density and speed will be a factor of each other and cannot be computed reliably.  The 

last observed values for flow, density and speed are chosen as the best estimates for the 

next step under such conditions. 

 

 

Figure 4.8: DSPM Model under Bottleneck Congestion at Detection Station 
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Model IV can therefore be expressed as: 

Model IV 
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4.8 Development of Incident Detection Model 

This algorithm is founded on the assumption that under non-incident conditions, 

traffic states can be predicted accurately based on previous states, the adjacent states and 

the surrounding conditions, whereas under incident conditions the predictions fail to 

match the observations closely.  The DSPM model, described in Section 4.7, is capable of 

modeling uncongested traffic as well as recurrent congestion quite satisfactorily, and is 

thereby used in this algorithm to predict the traffic states.  These predictions are 

compared with the corresponding observations.  A substantial difference between the 

observations and the predictions is used to identify incident congestion. 

4.8.1 Development of Filters 

Keeping in view the nature of fluctuation of traffic conditions reported at one minute 

or less aggregation levels, it can be anticipated that there will be several conditions 
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leading up to erroneous detection.  To eliminate these situations, the following filters are 

envisioned that ensure: 

•  Detection accuracy 

•  Minimal traffic stability 

•  Rational traffic behavior 

•  Rational surveillance behavior 

4.8.1.1 Assumptions 

The filters are based on the following assumptions: 

1. Detection accuracy: Maximum variability of a traffic parameter between two 

consecutive states is bounded by a threshold.  If the difference between the 

traffic parameter values at two consecutive time-steps exceeds a threshold 

value, it is assumed that the data at either of the time-steps is erroneous.  Each 

threshold is understandably dependent on the specific parameter; for example, 

speed is liable to more rapid changes than flow. 

2. Minimal traffic stability: If the traffic speed goes below a certain level, the 

traffic enters a highly unstable regime often referred to as �stop-and-go� 

conditions.  Due to the abundance of small transient shockwaves under these 

conditions, which are a consequence of the heavily increased level of 

interaction between the individual units in the traffic, it is virtually impossible 

to obtain coherent predictions from a macroscopic traffic flow model such as 
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the one used here.  Incident detection efforts are abandoned under such 

conditions. 

3. Rational traffic behavior: If there is incident-induced congestion at a point, 

the observation station downstream of the incident is expected to show a drop 

in flow and density whereas the observation station upstream would show an 

increase in density if and when the shockwave emanating from this point 

reaches the station. 

4. Rational surveillance behavior: It is assumed that if there is an incident 

detected near a station, it would be followed by surveillance for at least a short 

interval (e.g. 5 minutes).  In that case, operation of the detection algorithm at 

that station is redundant.  Therefore, detection is disabled at the station for a 

brief period of time following a detection.  This allows for elimination of 

multiple alarms that could be generated by a single incident.    

4.8.1.2 Assumption Implications 

These assumptions have a significant impact on the performance of the algorithm. 

Discretion must be used while choosing the thresholds in each case.  If the thresholds for 

the detection accuracy filter are set too tightly, some good data-points will potentially be 

thrown away and reduce the possibility of successful detection of incidents occurring in 

the vicinity of the discarded data-point.  Similarly the threshold for traffic stability should 

be used for the purpose it is developed.  It should be set to filter out only stop-and-go 

traffic and not all congested traffic.  Setting a higher threshold will reduce the false 
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alarms at the cost of severely reducing the sensitivity of the algorithm in congested 

traffic.  The rational traffic behavior filter helps in eliminating false alarms that could be 

generated by random traffic fluctuations.  The rational surveillance behavior filter affects 

the capability of the incident to detect secondary incidents within the time-span of the 

threshold.  However, it should be remembered that the occurrence of an incident will be 

followed by verification and surveillance of the location; it is not necessary to detect a 

secondary incident with an incident detection algorithm because there will be other more 

reliable (albeit resource intensive) technologies of detection will be active at that 

location. 

4.9 Limitations 

The proposed methodology is not without limitations.  Firstly, it suffers from the 

limitations that are inherent to any incident detection algorithm based on operations data.  

Unless the traffic is sufficiently affected by an incident the algorithm cannot detect the 

incident.  Most �shoulder stall� and �debris on highway� types of incidents do not affect 

traffic during off peak hours.  These kinds of incidents are very difficult to detect. 

This algorithm is dependent on the detection of shockwaves emanating from the 

incident, for accurate detection of incidents.  Due to the nature of traffic behavior under 

very heavy congestion, this algorithm is incapable of working efficiently under such 

conditions. 

Also this algorithm is highly dependent on the accuracy of the detector data.  If the 

incoming data is of low quality the detection accuracy suffers.  To ensure the quality of 
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the detection indications, suspicious detector data is filtered out.  This could possibly lead 

to non-detection of real incidents. 

The algorithm�s performance depends on the accuracy of the predictions.  The 

prediction model assumes that a true picture of the roadway section has been encoded.  

Failure to code in the presence of a bottleneck at a given location will lead to faulty 

predictions near the bottleneck and false indications of incident occurrences at the 

location. 

Moreover this algorithm is a multiple detector algorithm � which means it requires 

data from multiple detection stations for detection.  While this increases the accuracy of 

the detection process, it reduces the robustness of the algorithm because failure of 

multiple (n ≥ 2) consecutive detectors would lead to missed detection at several (n+2) 

detectors.  Usually the failure of a single detector can be absorbed by the model unless 

that detector is at a bottleneck, but the failure of more than one detector severely 

undermines the accuracy of the predictions and thereby the accuracy of the incident 

indications.  In this respect the single station algorithms like the time-series based 

algorithms prove to be more robust. 

4.10 Summary 

This chapter presented the proposed DSPM based Incident Detection methodology.  

The chapter started with an overview of the process.  It then identified the objectives and 

assumptions of the methodology.  Next it provided a detailed description and explanation 

of the major components of the methodology. 
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The first discussed component was the DSPM model.  This model addressed the 

problem of obtaining accurate short term predictions for traffic parameters.  The 

predictions assimilated the information from the ambient conditions.  The computational 

overhead of the procedure is low enough to allow real time predictions and is scalable for 

larger systems.  Section 4.7 provided the details of the model and discussed the 

development of the model.  The DSPM model implemented the use of several sub-

models depending on the traffic conditions and also on the temporal and spatial 

separation between the stations.  Section 4.7 enumerated several assumptions regarding 

the kinematic waves in the traffic and their implications for the model development 

process. 

The chapter also presented the other major component of the methodology: the 

detection logic.  The detection logic addresses the problem of identifying traffic 

conditions under the influence of incidents, in an efficient manner.  Section 4.8 identified 

the assumptions for the development of the filters over the detection logic. The 

assumptions involve the detection accuracy, minimal traffic stability, rational traffic 

behavior and rational surveillance behavior.  Section 4.8 also discussed their implications 

of the assumptions in improving and limiting the performance and accuracy of the 

detection logic.   

Section 4.9 enumerated the limitations of the proposed methodology in terms of 

algorithm performance.  The major limitations involve the effect of different factors on 

the percentage of incidents accurately detected. The following chapter (chapter V) will 

provide a case study which involves a practical implementation of the proposed 
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methodology.  Chapter V will also present quantitative and statistical methods for 

calibrating and validating the different components of the methodology as well as the 

methodology itself. 
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CHAPTER V 
CHAPTER 5. CASE STUDY 

CASE STUDY 

Evaluation and testing of the methodology presented in Chapter IV involved a full 

scale offline testing of the algorithm in a section of the network of the Georgia Navigator 

� the ATMS of the state of Georgia.    

This chapter introduces the developed experimental design, site selection and data 

description, data processing and analysis.   It then goes on to present the prediction model 

evaluation followed by the standalone evaluation and the comparative evaluation of the 

algorithm.  The implementation presented in this chapter follows the methodology 

presented in Chapter IV.  Section 5.1 restates the hypothesis to be tested that was 

presented in section 4.2.  Section 5.5 corresponds to section 4.7 of the methodology.   

Section 5.6 corresponds to section 4.8.  Section 5.7 presents the implementation of 

several other algorithms that are used as a benchmark for comparing the performance of 

the DSPMID algorithm.  The corresponding results are summarized in sub-sections 5.6.2 

and 5.7.3 respectively.  Finally, section 0 summarizes the results of the test of the 

hypothesis presented in section 5.1. 

5.1 Hypothesis to Be Tested 

The purpose of this work was to create a methodology to detect traffic incidents on 

freeways from operations data that can be used to accomplish the first step in traffic 
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incident management � namely detection of an incident.  The methodology developed in 

chapter IV in sections 4.7 and 4.8 is implemented in this chapter by integrating real time 

information at successive stations to provide accurate short term predictions that differ 

substantially from observations during incident influenced traffic conditions.  The 

research hypothesis tested in this chapter can be restated (originally presented in Section 

4.2) as: 

Research Hypothesis: Incidents can be detected from operations data by using the 

difference between the observed traffic state and the traffic state predicted using a 

discrete state propagation model of traffic flow. 

5.2 Experimental Design 

The experimental design comprised of three distinctive steps � prediction model 

evaluation, incident detection algorithm calibration and evaluation, and comparative 

evaluation of the incident detection algorithm. 

5.2.1 Model Evaluation 

The first step was the evaluation of the one-step prediction algorithm based on the 

DSPM model as developed in section 4.3.  Since the algorithm has to work efficiently at 

the 20 second level of aggregation, data at several detection stations were used for the 

predictions.  The observed data at the next time-point were used as the base data against 

which the veracity of the predictions was evaluated. 
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5.2.2 Algorithm Calibration and Evaluation  

Before the algorithm could be expected to produce satisfactory results, calibration 

was necessary to incorporate the features of the subject dataset.  The robustness of the 

calibration effort depended on the sensitivity of the results to the thresholds.  After the 

calibration, the detection algorithm was rigorously tested on 6 months of data including 

weekdays as well as weekends and round-the-clock data.  Unlike previous algorithm 

testing efforts that used dataset fragments consisting of approximately 15 minutes of data 

before the incident and 15 minutes of data after the occurrence of the incident, this testing 

used data at multiple stations around the station primarily affected by the incident and at 

all times of the day to exhaustively cover all scenarios and give a true picture of the 

expected rate of false alarms produced by the algorithm. 

5.2.3 Comparative Evaluation of Algorithms 

To evaluate the performance of the algorithm as compared to the previously 

developed algorithms, the author selected a representative sample of the available 

algorithms.  This representative sample included two of the most widely accepted and 

implemented algorithms to be used as comparison benchmark algorithms.  These 

algorithms have typically been chosen by other researchers for comparison of their 

algorithms, so comparisons with these two algorithms also open the possibilities of 

performing a virtual comparison with a wide variety of other algorithms.  Since one of 

the goals of this study, as established in Chapter III, is to ensure a low rate of false alarm 

generation in the algorithm, one of the state-of-the-art algorithms was chosen that was 

reported to produce nearly zero percent false alarm rate. 
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5.3 Site Selection and Data Description 

The implementation and testing of the methodology as envisioned in Section 5.2 

required extensive operations data (count, average speed and lane occupancy) at very 

detailed levels over a reasonably long segment and with a supplementary incident 

database.  None of the TMCs archived data at the level of detail required for the study.  

Most TMCs archive operations data as 5-minute aggregates.  To overcome this hurdle, a 

connection between the Georgia DOT�s TMC and a data-server at Georgia Tech was 

established.  The TMC pushed operations data for selected portions of the Georgia 

Navigator network, in near real time (10 minute bundles) to Georgia Tech�s data-server.    

The data collection effort in this case consists of two different phases executed 

synchronously.  One phase consists of collecting traffic count, occupancy and speed data.  

The other phase consists of collecting incident-related data.  The data collected in both 

these phases are described in detail in the following sub-sections.  The collected data had 

gaps arising from a myriad of different causes.  Implementations of filtering techniques 

that are compatible with on-line applications are described in Section 5.4.  The 

integration of the data from the two phases is explained in Sub-section 5.4.2. 

5.3.1 Study Site Description 

A section of state route Georgia 400 north of Atlanta metropolitan area was chosen 

for this study.  This is one of the more heavily traveled and heavily congested sections of 

the Atlanta metro area freeway system.  Commuter traffic predominates during the 

morning and afternoon peaks.  This section regularly witnesses a number of incidents and 



 

 116

is an ideal site for this study.  Also this section is one of the new sections that have been 

brought into the ATMS infrastructure of the TMC of the Georgia DOT.  Exploring 

automatic incident detection opportunities in this section of roadway has significant local 

value in addition to general applicability. 

The section is 7 miles long and extends from I-285 (milepost 7.28) in the south to just 

north of Old Milton Parkway (milepost 19.78) in the north.  Appendix A shows a detailed 

aerial photo of the immediate surroundings of the study site.  Appendix B shows a 

schematic of the study section and gives detailed information of the lane configuration, 

on-ramp and off-ramp information along with the mileposts of the detection stations.  A 

map of the Atlanta region is provided in Figure 5.1 to give an overall view of the location 

of the site.  The gray shade denotes the area monitored by the Georgia Navigator system 

� the ITS system of Georgia.  The study site used for this work is encircled by a bold oval 

in the figure. 
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Figure 5.1: Study site map 

 

5.3.2 Operations Data Description 

Traffic conditions on the study site are monitored by video cameras which are 

deployed approximately every one-third mile of the road for each direction.  One camera 
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usually covers all the lanes in a single direction of the roadway.  An image-processing 

software running in the background extracts traffic data from the videos using virtual 

loops placed over each lane to act as vehicle detectors.  Traffic data is reported (mostly 

for bandwidth concerns) every 20 seconds.  In most cases the names of the fields in the 

record-sets are self explanatory.  However, detailed information regarding the 

computation of the fields in the dataset could be obtained from the equipment 

manufacturer in only a limited number of cases.  Explanations based on the values in the 

fields are provided wherever possible.  There were some fields that were not provided by 

the specific detection system although these fields are part of the overall architecture.  

This is duly noted where applicable in the explanations provided below.  The fields in a 

typical sample are as follows: 

•  Detector ID: The ID associated with a detector at an observation station, e.g., 

400178. 

•  Sample Start Time: Start time of the sample, e.g., 2003/10/01 13:02:00 EDT.  

The data is reported by the start time of sampling and not the end time of the 

sample.  So for data between 13:00:00 and 13:00:20 the start time would be 

13:00:00. 

•  Status: The activation status for a detector.  The typical status codes are: 

o NO_ACT  (No activation) 

o OK 

o SENSOR_FAILURE 
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•  Confidence: The confidence of the current sample as reported by the 

processing software.  The values range between 0 and 10, with 0 for minimum 

confidence and 10 for maximum confidence. 

•  Volume Auto: Count of passenger cars for the 20-second interval. 

•  Volume Van: Count of vans detected for the 20-second interval. 

•  Volume Truck: Count of trucks detected for the 20-second interval. 

•  Volume Other: Not provided by this system.  This field is used for data from 

other systems where the vehicles are not categorized for the volume data. 

•  Time Occupancy: Percent of time, per 20 second interval, the detector has a 

vehicle present. 

•  Space Occupancy: Not provided by this system. 

•  Time Mean Speed: Time mean speed (TMS), in mi/h. 

•  Space Mean Speed: Not provided by this system. 

•  Length: Average length of the vehicles in the 20 second interval in metric 

units.  The values of the variable in this field tend to repeat.  For example, 

about 1000 samples in a day reported the length as exactly 8.2021.  It leads 

the author to believe that this field is computed based on some preset 

thresholds. 

•  Level of Service: Not provided by this system. 

•  Flow: Not provided by this system. 

•  Density: A surrogate for traffic density computed as follows: 

Density in number of cars per km = (1000 * total number of cars in 20 

seconds) / (total headway in meters + total length in decimeters / 10)  
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•  Gap: Average gap between vehicles (in milliseconds). 

•  Headway: Not provided by this system. 

•  Alarms: Congestion alarms generated based on low speeds. 

5.3.3 Data Statistics 

 
 
 

Table 5.1 provides the data availability rates for the data.  About 11 percent data is 

missing from the overall dataset.  The missing rate is higher in the Northbound dataset 

than the Southbound dataset. 

 
 
 

Table 5.1: Operations Data Statistics 

Data Availability (percent) Description 

NB SB 

Mainline data per detector per day 85.36 90.35 

Ramp data per detector per day 89.10 90.36 

Missing days per month 1.4 

 

5.3.4 Incident Database Description 

The incident database maintained by the Georgia DOT�s TMC provides valuable 

information regarding time, location, response and severity of past incidents on the 

freeway network under surveillance.  Following is a description of the fields from this 

database for which data were obtained for this study: 
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•  Incident ID: A unique identifier assigned to each incident.  Every update for 

the incident status is entered in the database as a new record, so there can be 

several records with the same Incident ID. 

•  Incident Type Name: Some pre-defined types of incidents.  The available 

types are: 

o Accident 

o Construction 

o Congestion 

o Debris 

o Stall 

o Other Closure 

o Other 

•  Detection Type Name: Some pre-defined detection types.  The available 

types are: 

o Call Report 

o Operator detected 

o Other 

o Unknown 

•  Primary Route: The primary roadway on which the incident occurred. 

•  Secondary Route: Name of the intersecting roadway closest to the incident 

for the purpose of locating the incident. 

•  Location Type Name: The type of the facility where the incident occurred, 

for example: Freeway, Exit Ramp, Intersection, Arterial etc. 
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•  Location Text: Gives the same information as contained separately in the 

fields Direction, Primary Route and Secondary Route. 

•  Direction: Direction of travel of the primary route in which the incident 

occurred. 

•  Affected Lane Type ID: An ID for the lanes affected by the incident.  The 

mapping of the Affected Lane Type ID to the Affected Lane Type Name is as 

follows: 

o 0 : None 

o 1 : Left lanes 

o 2 : Rights lanes 

o 3 : Center lanes 

o 4 : All lanes 

o 5 : Off road (left) 

o 6 : Off road (right) 

o 7 : Left shoulder 

o 8 : Right shoulder 

o 9 : Gore area (left) 

o 10 : Gore area (right) 

•  Affected Lane Type Name: Explanation of the Affected Lane Type ID. 

•  Num Lanes Affected: Number of lanes affected.  This field can be used to 

assess the severity of an incident to some extent. 

•  Segment ID: An ID for the road-segment nearest to the incident.  A node is 

placed wherever there is a change in road features like lane add/drop, barrier 
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add/drop, ramps, etc.  The connector between the nodes forms a link.  This 

link node system was used for this study.  However, for an incident-response 

operation, the location of an incident is important only with its reference to the 

available entry points into the access controlled freeway � namely the on and 

off ramps.  Therefore a segment is defined as a combination of all the links 

between two successive on-ramps.  The link ID is inconsequential to the 

incident management system � the segment ID is the important location 

parameter.  However, for the current research effort, the segment IDs were too 

coarse for use because of the length of the segments and lane IDs if available 

would have been of more use in verifying the node numbers between which 

the incident had occurred. 

•  Estimated End: An estimate by the operator regarding the time when the 

incident is expected to be cleared. 

•  Impact Type Name: The observed impact of the incident on the traffic.  The 

categories are High, Medium, Low and No Impact.  The information in this 

field is highly subjective, depending largely on operator training and 

experience, and is not useable in drawing definitive conclusions regarding the 

effect of the incident on the traffic in this research. 

•  Number Calls: Total number of calls that are answered for each incident.  

However, since responding to the incident deserves and receives higher 

priority than filling in the logs, this field is rarely populated consistently.  For 

this reason, even this field was not usable in drawing definitive conclusions 

regarding the effect of the incident on the traffic in this research. 
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•  Reported Via Name: This field is applicable only for scheduled closures due 

to construction or otherwise and provides information regarding the method of 

information acquisition.  The only valid entries observed are �Highband� and 

�Phone�. 

•  Scheduled Start: This field is applicable only for scheduled closures due to 

construction or otherwise and provides the time when the closure is scheduled 

to start. 

•  Scheduled End: Similar to the previous field, this field is applicable only for 

scheduled closures due to construction or otherwise.  It provides the time 

when the closure is scheduled to end. 

•  Actual Start: Similar to the �Scheduled Start� field, this field is applicable 

only for scheduled closures due to construction or otherwise.  It provides the 

time when the closure actually goes into effect. 

•  Actual End: Similar to the previous field, this field is applicable only for 

scheduled closures due to construction or otherwise.  It provides the time 

when the closure actually ends. 

•  Confirm Flag: When the incident is confirmed by an operator visually (using 

the closed circuit TV cameras) or otherwise, this field is set to 1.  The default 

value of this binary is 0. 

•  Confirm Time: This field gives the time when the incident was confirmed by 

the operator. 

•  Last Update Time: This field is automatically entered by the system when an 

update is made to the status of an incident.  The last entry for the update time 
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for a given incident ID can be used as a reasonably accurate log of the time of 

termination of the incident. 

•  Action Pending: This field gives an ID for the actions that need to be 

performed � such as �a HERO is needed�, �alarm time has expired� etc. 

•  Plan Flag: This is an indication that the automated response plan generation 

package has something to suggest for the given conditions. 

•  Alarm Interval: This field indicates how often the system will generate an 

alarm indicating an operator should review and update the status of an 

incident. 

•  Incident Level: This field gives an indication of the severity of the incident in 

a scale of 0-4.  This is a GDOT classification scheme based on a number of 

factors defined in the operator training manual. 

•  Comment: This field gives textual description of the exact nature of the 

incident. 

5.3.4.1 Data Limitations 

The incident database is quite extensive and provides valuable information regarding 

the incidents; however, it has a few limitations.   

As can be seen from the metadata description in Section 5.3.4 there is a field called 

Location-Text.  This field is filled by the operators in real time and consists of a 

subjective description of the location.  More often than not, the location description is 

quite ambiguous and can be interpreted in many ways.   
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The other major limitation is the time-stamp for the beginning of the incident.  Every 

time an input is made, a new row is added to the table.  The incident-id is repeated but the 

other information is updated.  The database has a column called incident-start.  This 

column is automatically filled when the data is entered and uses the concurrent time as 

the input value.  There is no data-field that gives the exact time of occurrence of the 

incident. 

The first issue can be dealt with by providing a GIS based input for the location or 

providing several fields that can be optionally filled, e.g. milepost, distance from nearby 

interchange, etc.  The second issue can be dealt with by adding a field for �estimated start 

time� which is to be filled by the operator by using an estimated value at the beginning of 

the incident.  While either of these recommendations cannot ensure perfectly precise 

information, they would reduce the uncertainty regarding location and time of incident to 

a large extent and would facilitate simulation or reconstruction of the incident scenarios 

more accurately. 

5.3.4.2 Assumptions 

Given the limitations of the incident database some assumptions were made in order 

to be able to work with the available data.  The following assumptions addressed the 

spatial and temporal data inadequacies discussed in Section 5.3.4.1: 

1. Each incident is associated with a detector station as can be estimated from the 

textual description of the location.  If an incident is indicated by an algorithm at 
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the associated station or the immediate adjacent stations, the incident is 

assumed to be correctly detected by the algorithm. 

2. Each incident is associated with the time-stamp of its first log.  If an incident is 

detected by an algorithm within a reasonable time before or after the logged 

time-stamp (e.g. 15 minutes before the log and 5 minutes after the log), the 

incident is assumed to be correctly detected by the algorithm. 

3. The average detection time as estimated by the Navigator system in the survey 

is 7 minutes.  Based on this, it is assumed that all incidents occur 7 minutes 

before the logged time, and this assumption is used for computing the detection 

time of an incident for a given algorithm. 

5.4 Data Processing 

As outlined in Section 5.3, the data is in two parts, the operations data that is a time 

series data-set reported every 20 seconds and the incident database data that is an event 

based data-set which is updated only when new information about an incident is 

available.  The following subsections outline the steps involved in processing and 

reduction of the dataset. 
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5.4.1 Operations Data 

5.4.1.1 Preprocessing: Archiving  

The first pre-processing step involved the archival of the incoming data.  The data 

came into the data-server as compressed ASCII files containing individual data for each 

detector for each timestamp.  Each file typically contained 10 minutes of data for all 

detectors at 20 second intervals for the given network.  On a daily basis, the files for a 

day were uncompressed and separated by detectors.  An ASCII file was created for each 

detector for all timestamps in a day.  The data for the different lanes were combined 

(using a station to detector mapping configuration file) to produce the station data that 

reported the aggregate over all lanes.  During the aggregation the vehicle count data was 

not inflated if one of the lanes reported missing data.  However, the information about 

missing data was preserved in the �Status� field in the dataset.  The average speed values 

were aggregated by performing a weighted average over lanes with the vehicle counts as 

the weights.  The occupancy data was simply averaged over lanes.  The text-based fields 

were concatenated with a pipe delimiter.  A zipped archive file was created for all 

detectors for a given day.  Similarly another zipped archive file was created for all 

stations for a given day for archival purposes. 

5.4.1.2 Preprocessing: Extraction  

The second step involved the extraction of the data and preparing the data-sets for 

input into the incident detection algorithm.  The operations data was fed into the 

detection algorithm in batches.  Each batch consisted of a full day of data for a given set 

of stations or detectors.  Data processing scripts were created in Perl (Practical Extraction 
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and Reporting Language) for extracting the data from the compressed archive files by 

using a filter file.  The filter file allowed for specification of the date, time-period, station 

numbers or detector numbers and aggregation levels for extraction of the data.   

Lane-by-lane data as well as aggregate-over-lanes data were used for development of 

the algorithm.  However, the lack of a satisfactory model for accurately modeling lane 

changing behavior of vehicles at a macroscopic level, led to the use of aggregate-over-

lanes model rather than the individual-lane model. 

5.4.1.3 Filtering 

The third step involved filtering the data.  A custom low-cum-medium pass filter, 

based on the Yule-Walker filter, was used for the purpose.  The choice for the filter was 

made based on a theoretical analysis of the frequency response of several filters as 

discussed by Coifman (1992), rather than an empirical analysis.  This filter preserves the 

short term fluctuations of the data, unlike the double exponential smoothing filter, while 

blocking the high frequency fluctuations of the data (see Figure 5.2).  Preserving the short 

term fluctuations is essential for this algorithm which depends on these fluctuations for 

incident detection.  At the same time, elimination of the high frequency fluctuations was 

essential for reducing false alarms produced in the algorithm.  Moreover this filter, unlike 

several other digital signal processing filters, allowed filtering of the data based 

completely on the past values without using any future values.  This was essential since, 

the future values are unknown in a real time application such as this. 
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The filter was designed and developed using the Yule-Walker formulation.  The 

coefficient matrixes for a filter of order 10 are provided in Table 5.2. 
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Figure 5.2:  Comparison of Filtered Data with Raw Data 

 

Table 5.2: Coefficient Matrix Values for Middle Pass Filter 
A 

(Coefficient 
of X(n)) 

B 
(Coefficient 
of Y(n-1)) 

 0.13919  1 
 0.13641 -1.1442 
 0.027146  0.56886 
 0.14102  0.36461 
 0.099818 -0.16553 
-0.00499 -0.2869 
 0.076142  0.59387 
 0.057854 -0.26574 
 0.016263  0.01469 
 0.026533  0.052754 
 0.00645 -0.0105 
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The steps in the application of this filter are as follows: 

1. A series of m consecutive data-points is taken to form a m x 1 matrix Xmx1.  A 

higher value of m involves more computations, whereas a lower value of m gives a less 

accurate filter.  A value of 10 gives a filter that is sufficiently accurate as shown in the 

frequency response diagram in Figure 5.3.  The filtered-data matrix Ymx1 is initialized 

with a zero vector of size m x 1. 
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Figure 5.3: Frequency Response of Custom Middle-Pass Filter 
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2. The filtered data Ymx1 at a given step is obtained using the coefficient matrixes 

A1xm and B1xm and the matrixes Xmx1 from the current step and Ymx1 from the previous 

step with the following matrix manipulation: 

 1x1xx1x11x 1xx mmmmm )Y(nBX(n)AY(n) −−=   5-1 

Figure 5.2 shows the time-series plot of the instantaneous flow values for a raw signal 

overlaid with a filtered signal.  The smoothing effect of the signal is quite evident from 

the plot.  It should be noted that the peaks and troughs in the raw signal are preserved to a 

large extent in the filtered signal because of the design of the filter that allows the 

medium frequency perturbations to pass.  Preserving these features is vital to the 

functioning of the incident detection algorithm.  However, a closer look at the plot and 

comparison of the peaks of the two signals will show that a lag of about 3 time-steps is 

introduced by using the filter.  While this does not affect the accuracy of incident 

detection algorithm, it definitely causes an increase in the detection time.  Figure 5.4 and 

Figure 5.5 show the time series plots of predictions and observations for the raw and 

filtered data respectively.   
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Figure 5.4: Predictions of Volume using Raw Data 
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Figure 5.5: Predictions of Volume using Filtered Data 
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Table 5.3 shows the results from the paired-t test on the Mean Absolute Prediction 

Error (MAPE) for raw data and filtered data.  The actual MAPE values for the two cases 

are available in Table C.1 in Appendix C.  It can be concluded from Table 5.1 that the 

null hypothesis where the difference of the means of the two MAPEs is less than 4.1 can 

be rejected at 95% level of confidence.  It can be safely concluded that the MAPE for 

predictions with the filtered data is significantly less than the MAPE for predictions with 

raw data. 

Table 5.3: Paired-t Test for Mean Absolute Percentage Error of Predictions 
using Raw and Filtered Data with Model-C 

Hypothesized Mean Difference = 0 Hypothesized Mean Difference = 4.1 
  Raw Filtered   
Mean 9.332955 4.50327  
Variance 39.89519 22.83533  
Observations 35 35  
Pearson Correlation 0.942875   
Hypothesized Mean 0   
df 34   
t Stat 11.8512   
P(T<=t) one-tail 6.35E-14   
t Critical one-tail 1.690923   
P(T<=t) two-tail 1.27E-13   
t Critical two-tail 2.032243    

data:   

    x: Raw in ModelC , and  

    y: Filtered in ModelC  

t = 1.7905, df = 34, p-value = 0.0411  

alternative hypothesis: true mean of 
differences is greater than 4.1  

95 percent confidence interval: 

    4.140587       NA  

sample estimates: 

    mean of x - y: 4.829685 
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5.4.2 Incident Database 

5.4.2.1 Location Information 

As explained in section 5.3.4.1 the incident database lacks accurate location and time 

of occurrence information.  The subjective �location text� information was converted to 

programmable objective information by linking the incidents to stations.  A lookup table 

was created that provided the station number for a given cross-road name.  In some cases 

this led to a one-to-many mapping.  For example a station could be North, South or at 

road �x�.  Because of the non-uniformity of the style in which a location was referred to, 

these keywords could not be included in pinpointing the station.  So a search using road 

�x� produced several station numbers.  All these station numbers were assigned to the 

incident.  The cases where multiple station numbers existed required a manual 

confirmation for the assignment.  This increased the data processing time substantially. 

Inclusion of some more specific information regarding the location could have helped 

avoid this scenario. Of course if the subjective data input in the logs was replaced by an 

objective input, involving station numbers rather than road names, the confidence in the 

data could have improved significantly.  

5.4.2.2 Severity of Effect on Traffic 

The database has fields like Incident Type, Affected Lane Type, Affected Lane 

Number, Impact Type, and Incident Level.  These fields give some idea about the 

severity of the incident and the possible effects on the traffic.  However the actual effect 

was not accurately reflected by any combination of these fields.  Sometimes a stall on the 

shoulder had more effect than an incident in the first lane.  Therefore it was necessary to 



 

 136

inspect the actual data for effects.  Time series plots were produced for each station and 

inspected individually or in juxtaposition to identify possible effects.  No severity 

classifications were made.  Depending on whether there were any discernable effects, the 

incidents were associated with a binary value � 1 meaning �possibly had effect� and 0 

meaning �had no effect at all�.  Fifty percent of the total incidents were screened out at 

this stage as having no effects on the traffic at all. 

5.5 Model Evaluation 

5.5.1 LCT Vs DSPM 

Pertaining to the discussion in Chapter IV Section 4.6, the DSPM model is better 

suited to the current application based on a theoretical analysis.  The hypothesis can 

therefore be stated as: 

The DSPM model is better than the LCT model for one step predictions. 

For hypothesis testing the null hypothesis can be stated as: 

The mean absolute percentage error for the LCT model is equal to the mean absolute 

percentage error for the DSPM model. 

For a one sided test, the alternative hypothesis would be: 

The mean absolute percentage error for the LCT model is greater than the mean 

absolute percentage error for the DSPM model. 
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 To verify this hypothesis, the two models were used to produce predictions and their 

MAPEs were computed based on a comparison with the actual observations.  This was 

performed over all the non-incident days in the test dataset.  The MAPE data for the 

individual stations over several days is presented in Table C.2 and Table C.3 in Appendix 

C.  The author used a paired-t test to compare the MAPE values individually for each 

day.  The results of a paired-t test are presented in Table 5.4.  It was observed that the 

MAPE for the DSPM model was significantly smaller than the MAPE for the LCT model 

across all days.  The empirical results, therefore, verified our hypothesis that the DSPM 

model performs better than the LCT model for one step predictions. 

 

Table 5.4: Paired-t Test for MAPE of Predictions using DSPM Model C and the 
LCT Model 

(a) Filtered Data 

 Hypothesized Mean Difference = 0   Hypothesized Mean Difference = 0.28 

  LCT ModelC    
Mean 5.22823 4.50327  
Variance 22.84297 22.83533  
Observations 35 35  
Pearson Correlation 0.947548   
Hypothesized Mean 0   
df 34   
t Stat 2.770842   
P(T<=t) one-tail 0.004499   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.008998   
t Critical two-tail 2.032243    

data:   

   x: LCT in Filtered , and  

   y: ModelC in Filtered  

t = 1.7007, df = 34, p-value = 0.0491  

alternative hypothesis: true mean of 
differences is greater than 0.28  

95 percent confidence interval: 

   0.2825486        NA  

sample estimates: 

   mean of x - y: 0.7249602 
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(b) Raw Data 

Hypothesized Mean Difference = 0 Hypothesized Mean Difference = 0.22

  
LCT 

Model Model C   

Mean 10.05778 9.332955  
Variance 37.78388 39.89519  
Observations 35 35  
Pearson Correlation 0.964734   
Hypothesized Mean 0   
df 34   
t Stat 2.577823   
P(T<=t) one-tail 0.007225   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.014449   
t Critical two-tail 2.032243    

data:   

   x: LCT in Models , and  

   y: ModelC in Models  

t = 1.7243, df = 34, p-value = 0.0469  

alternative hypothesis: true mean of 
differences is greater than 0.24  

95 percent confidence interval: 

   0.2493758        NA  

sample estimates: 

   mean of x - y: 0.7248251 

 

5.5.2 Regime Separator 

Density and Speed were both good indicators of the traffic flow regime at a site.  The 

MAPEs for predictions by using speed and density as regime separators had a significant 

difference between their means as can be seen from the results of the paired-t test (see 

Table 5.5; the data is in Table C.3 in Appendix C).  Although Table 5.5 shows that the 

difference of mean is quite small (0.029) at 95% level of confidence, it implies that there 

exists a small but significant difference between the means of the percentage errors in the 

two cases (speed cutoff giving lesser percentage errors).  Along with the empirical 

evidence to support, the flow versus density plots (Figure 5.6 and Figure 5.7) clearly 

show that speed has a sharper regime separation than density.  The trend of movement 
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from one regime was observed to be steadier for speed than for density.  Hence speed 

was chosen as the regime separator for the DSPM model. 

Table 5.5: Paired-t Test for Mean Absolute Percentage Error of Predictions 
using Different Regime Separators 

Hypothesized Mean Difference = 0  Hypothesized Mean Difference = 0.029 

  
Density 
Cutoff 

Speed 
Cutoff 

  

Mean 4.540403 4.474101  
Variance 22.94294 22.27866  
Observations 35 35  
Pearson Correlation 0.999736   
Hypothesized Mean 0   
df 34   
t Stat 3.026196   
P(T<=t) one-tail 0.002348   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.004695   
t Critical two-tail 2.032243    

data:   

x: DensityCutoff in SpdDen , and  

y: SpeedCutoff in SpdDen  

t = 1.7025, df = 34, p-value = 0.0489  

alternative hypothesis: true mean of 
differences is greater than 0.029  

95 percent confidence interval: 
 0.02925416         NA  

sample estimates: 

 mean of x - y: 0.06630171 
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Figure 5.6: Flow versus Density Plot for a Station that Identifies the Regime 
Separation Density Threshold 

 

Figure 5.7: Speed versus Flow Plot for a Station that Identifies the Regime 
Separation Speed Threshold 
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5.5.3 Dynamic Pace Updating 

The speed of the traffic varies spatially depending on the geometric conditions of the 

road.  A static calibration can be performed at the beginning of deployment to incorporate 

these variations into the model.  However, such a calibration procedure would require 

substantial manual work.  A methodology involving a strategy of dynamic pace updates 

helped eliminate such manual calibration.  The forward wave pace values used in the 

computations (1/Sk.ε) were updated in every time step for each station using the 

concurrent speed at that station.  This of course added to the computational demands but 

the increase in accuracy and the considerable reduction in the manual calibration effort 

amply justified it.  Moreover this methodology has the capability of adapting to long-term 

changes (such as the change induced by geometric changes to the section) as well as short 

term changes (such as night time and day time driving speeds) in traffic behavior.  While 

the improvement in accuracy was marginal in cases where the generically assumed free-

flow speed matched well with the actual free-flow speed at the station, the improvement 

was quite evident for the cases where the actual free-flow speed was different from the 

assumed free flow speed.  Since, the pace updates made a difference only in cases where 

the traffic speed at the station differs from the assumed free-flow speed, it was 

meaningless to compare the overall errors for the two cases.  A paired-t test was not 

deemed appropriate for this case.  Rather a visual comparison is used here to illustrate the 

effect. 

Figure 5.8 shows the time series plot of 20 second volume observations and 

predictions for the two cases.  "Prediction(Static)" represents the predictions with 
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assumed static forward wave-pace values.  "Prediction(Dynamic)"  represents the 

predictions with dynamically updated forward wave-pace values.  It is quite apparent 

from the figure that Prediction(Dynamic) is consistently closer to the observations than 

Prediction(Static) is to the observations.  Figure 5.9 shows the prediction errors from 

Prediction(Static) and Prediction(Dynamic).  Again the Prediction(Dynamic) errors are 

consistently less than the Prediction(Static) errors, thereby clearly showing the 

superiority of the dynamic updating of forward-pace values methodology over the static 

calibration methodology. 
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Figure 5.8: Effect of Dynamic Pace Updates on Predictions 
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Figure 5.9: Effect of Dynamic Pace Updates on Prediction Errors 
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5.5.4 Alternative Models 

The prediction methodology primarily had four models depending on the flow 

conditions at the given station and its adjacent stations.  The conditions of applications 

are as follows: 

Uncongested Regime:   Model I 

Congestion Downstream:   Model II 

Congestion Upstream:   Model III 

Bottleneck at Detector Station:  Model IV 

Model I has four alternative models embedded in them as represented by I-A, I-B, I-

C, I-D respectively.  As discussed in Chapter IV, Section 4.7, all the four alternative 

models are theoretically sound and perfectly viable options.  To choose between the 

alternatives, an empirical approach is adopted. 

A visual comparison of the output from model B, C and D is presented in Figure 5.10 

and Figure 5.11. 

The alternatives are compared based on their MAPEs.  Table C.2 and C.4 in 

Appendix C shows MAPEs obtained from the different alternatives for the different 

stations using data from only the incident free days.  Table 5.6 and Table 5.7 show the 

results of the paired t-test among the different alternatives.  A significant difference 

between the mean of MAPEs of Model B and Model C is observed.  The mean of 

MAPEs for Model B is significantly greater than the mean of MAPEs for Model C.  On 

the other hand, no significant difference was observed between the mean of MAPEs of 
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Models D and C.  However, referring to the discussion in Section 4.7.1, Model C 

eliminates the necessity of waiting for data from the next timestep for the prediction step.  

This provides a marginal temporal advantage for the overall incident detection process 

because with Model C, the prediction step can be completed before the observation for 

comparison comes in.  Model C is therefore chosen wherever possible for rest of the 

algorithm development process. 
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Figure 5.10: Effect of Alternative Models on Predictions 
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Figure 5.11: Effect of Alternative Models on Prediction Errors 
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Table 5.6: Paired-t Test for MAPE of Predictions using Model C and Model D 

(a) Filtered Data 

Hypothesized Mean Difference = 0 Hypothesized Mean Difference = 0 
  Model C Model D   

Mean 4.50327 4.470522  
Variance 22.83533 22.33568  
Observations 35 35  
Pearson Correlation 0.997692   
Hypothesized Mean 0   
df 34   
t Stat 0.592222   
P(T<=t) one-tail 0.27881   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.55762   
t Critical two-tail 2.032243    

data:   

   x: ModelC in Filtered , and  

   y: ModelD in Filtered  

t = 0.5922, df = 34, p-value = 0.5576  

alternative hypothesis: true mean of 
differences is not equal to 0  

95 percent confidence interval: 

   -0.07962918  0.14512560  

sample estimates: 

   mean of x - y: 0.03274821 

 

(b) Raw Data 

Hypothesized Mean Difference = 0 Hypothesized Mean Difference = 0.12 
  Model C Model D   

Mean 9.332955 9.022858  
Variance 39.89519 34.82645  
Observations 35 35  
Pearson Correlation 0.996518   
Hypothesized Mean 0   
df 34   
t Stat 2.792248   
P(T<=t) one-tail 0.004265   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.008529   
t Critical two-tail 2.032243    

data:   

   x: ModelC in Models , and  

   y: ModelD in Models  

t = 1.7117, df = 34, p-value = 0.048  

alternative hypothesis: true mean of 
differences is greater than 0.12  

95 percent confidence interval: 

   0.1223093        NA  

sample estimates: 

   mean of x - y: 0.3100977 
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Table 5.7: Paired-t Test for MAPE of Predictions using Model B and Model C 

(b) Filtered Data 

Hypothesized Mean Difference = 0 Hypothesized Mean Difference = 0.13 
  Model B Model C  

Mean 4.920566 4.50327  
Variance 24.06704 22.83533  
Observations 35 35  
Pearson Correlation 0.979047   
Hypothesized Mean 0   
Df 34   
t Stat 2.470497   
P(T<=t) one-tail 0.009333   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.018666   
t Critical two-tail 2.032243    

data:   

   x: ModelB in Filtered , and  

   y: ModelC in Filtered  

t = 1.7009, df = 34, p-value = 0.049  

alternative hypothesis: true mean of 
differences is greater than 0.13  

95 percent confidence interval: 

   0.131679       NA  

sample estimates: 

   mean of x - y: 0.4172962 

 

(b) Raw Data 

Hypothesized Mean Difference = 0 Hypothesized Mean Difference = 0.2 
  Model B Model C  

Mean 9.869086 9.332955  
Variance 36.07588 39.89519  
Observations 35 35  
Pearson Correlation 0.98353   
Hypothesized Mean 0   
df 34   
t Stat 2.734139   
P(T<=t) one-tail 0.004929   
t Critical one-tail 1.690923   
P(T<=t) two-tail 0.009859   
t Critical two-tail 2.032243    

data:   

   x: ModelB in Models , and  

   y: ModelC in Models  

t = 1.7142, df = 34, p-value = 0.0478  

alternative hypothesis: true mean of 
differences is greater than 0.2  

95 percent confidence interval: 

   0.2045613        NA  

sample estimates: 

   mean of x - y: 0.5361303 
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5.6 Algorithm Evaluation 

The primary purpose of the evaluation of the algorithm was to verify the hypothesis 

stated in section 5.1.  The test was performed using 6 full months of operations data, in 

one direction (Northbound).  Since the algorithm development phase used mostly the 

Southbound data, the Northbound data was used in the testing to avoid effects of over-

fitting the model to the data (in this case over-calibration of the algorithm). 

5.6.1 Implementation of Algorithm 

A brief description of the implementation specific details is provided in this section to 

facilitate the reproducibility of this research.  The algorithm was implemented, using 

MATLAB � a powerful research oriented mathematical programming tool.  The 

implementation was �off-line� meaning that the data fed into the algorithm did not come 

in real time from a detection system but from archived data-files.  The implementation 

had a modular architecture to introduce flexibility in the development and testing process.  

The modules can be identified as follows: 

1. Run Specifier 

2. Parameter Loader 

3. Data Loader 

4. Predictor 

5. Alarm Generator 

6. Result Logger 
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Run Specifier: The algorithm processed data one day at a time.  This helped the off-line 

implementation programmatically by limiting the memory requirements.  From a 

statistical standpoint this allowed for a study of the variability of the results across days 

instead of producing a single mean data-point for the whole period of study.  At the same 

time this fitted into the research goals by creating a piece-wise continuous evaluation 

over the whole period of study.  Statistics were reported on the basis of full day�s worth 

of data in order to eliminate the problem of artificial boosting of results that had been 

faced by other works in this area that used small chunks of dataset around the period of a 

given incident and ignored data at other periods.  Such a procedure of restrictive data use 

resulted in a limited testing of the algorithms whereby the conditions conducive to false 

alarms that could arise at other times of the day at other detection stations, were 

effectively eliminated.  Given a short string of data-points around the incident focuses the 

algorithm of one scenario and it becomes quite easy for the algorithm to detect the 

incident without generating numerous false alarms.  Therefore, data across all time 

periods and the full segment with multiple stations were always evaluated and reported 

concurrently in this research to ensure an accurate estimate of the false alarm rate. 

The run specifier module was used to perform multiple iterations (for threshold 

calibration) when necessary.  The threshold values for use in the alarm generator module 

were declared here. 

Parameter Loader: The implementation used a number of parameters that were used to 

control the data usage, data processing and the models used for the different tasks.  To 

ensure congruity of implementation, the different models were coded into the same 
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module and the flow of the data through different models were controlled by the 

parameters that were declared in two parameter definition files and loaded in the memory 

using the parameter loader module. 

Data Loader: The data loader module imported the ASCII data into the MATLAB 

workspace into a 3 dimensional array (with station number, time and variable name as the 

three dimensions).  In addition, it loaded the station connectivity matrix which provided 

the linking information of the stations and mile-points of the stations from which the 

lengths of the links were computed.  This module also loaded the incident location and 

time information. 

Predictor: The different alternative models for traffic prediction were implemented in 

this module.  The definition of the flow control parameters from the parameter loader 

module determined which model was to be used for prediction purposes.  The predictions 

were appended to the data array for input into the alarm generator module.  The decisions 

regarding which model (I, II, III, IV) is to be applied were based on the traffic conditions 

at the three stations.  The decision tree for the model choice is shown in Figure 5.12. 
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Figure 5.12: DSPM Algorithm Model Choice Decision Tree 
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Alarm Generator: The predictions in the predictor module were used along with the 

observations loaded in the data loader module to identify possible occurrences of 

incidents.  The time and station number of each alarm was stored in an array and verified 

against the incident database information loaded in the data loader module. 

Result Logger: This module was used to log into an ASCII file the results like number of 

alarms generated, number of incidents successfully detected, number of false alarms 

along with the control parameters. 

5.6.2 Results 

Appendix D provides the plots depicting the sensitivity of the detection-ratio to the 

different thresholds. The points in these plots are obtained by varying the values of a 

particular threshold while the other thresholds are restricted to marginal values such that 

their effect on the detection process is trivial.  Table C.5 in Appendix C provides a 

summary of the results of iterations produced by varying the thresholds.  The table 

provides the detection ratio versus false alarm rate data which is plotted in Figure 5.13.  

As can be seen in the plot, a detection ratio of 1, implying 100% detection, is obtained at 

a false alarm rate of 0.069 % as a good-case scenario and 0.11 % as an average-case 

scenario.  These results compare favorably with the best results (using real data as 

opposed to simulated data) reported in the literature. 
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Figure 5.13: Detection Ratio Vs False Alarm Rate for DSPMID Algorithm 
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5.7 Comparative Evaluation 

The evaluation of the algorithm would not be complete without a comparative 

evaluation against other contending algorithms.   

5.7.1 Choice of Algorithms for Comparison 

The following factors were considered while making a choice of algorithms for 

comparison: 

•  Use of algorithm for comparison in previous research 

•  Reported results of algorithm performance 

•  Deployment history of algorithm 

•  Ease of implementation of algorithm 

•  Calibration requirements of algorithm 

The California algorithms, in their original form or in a modified form (All Purpose 

Incident Detection Algorithm), are the most widely implemented and deployed 

algorithms.  Since they are among the oldest algorithms, the California algorithms have 

also been widely used as a benchmark for comparison.  The logic for the California 

algorithms is very well documented and is easy to implement.  California algorithm #8 

was chosen based on the reports of its performance and false alarm suppression 

capabilities. 

The McMaster algorithm is the other algorithm that is comparable to a large extent to 

the California algorithm in terms of use as a benchmark and frequency of deployment.  
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The logic for this algorithm and its implementation is also quite well documented. This 

ensures that the implementation of the algorithm does not involve any misinterpretation 

of the algorithm logic. 

It was found desirable to compare the algorithm's performance against that of more 

recently developed algorithms.  Due to the recentness of their development, none of these 

newer algorithms have a deployment history.  The Fuzzy Wavelet based Radial Basis 

Function Neural Network algorithm was chosen among these algorithms.  Not only did 

this algorithm report very high performance results, the documentation for the 

implementation of the algorithm was detailed enough to ensure a proper implementation, 

unlike the other algorithms that had detailed explanation of their logic but little 

documentation regarding their implementation details.   

5.7.2 Implementation of Algorithms 

All the algorithms were implemented on the same platform using the same test 

datasets to ensure conformity and congruity among them.  As an addendum to the 

descriptions of the algorithms provided in Chapter II Section 2.5, some more 

implemented oriented details are provided in the following sub-sections for ease of 

reference. 

5.7.2.1 California Algorithm # 8 

The California algorithm uses 1-minute lane occupancy values averaged across all 

lanes for its computations.  Four derived variables are used along with the primary 
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variable.  The descriptions and definitions using a set of symbols consistent with Payne 

and Tignor�s usage are provided in Table 5.8.  The definitions of the states used in the 

algorithm logic are provided in Table 5.9.  The decision tree for California algorithm # 8 

is shown in Figure 5.14. 

The California algorithm # 8 employs a compression wave suppression technique for 

elimination of false alarms.  States 1 through 5 as defined in Table 5.9 achieve this 

suppression for 5 minutes by incorporating information from last 5 successive data 

points.  However, the data in the current study was available at 20 second intervals.  This 

presented two options: (a) aggregate the data to 1 minute intervals for a direct 

implementation of the original California Algorithm #8; (b) increase the number of 

compression wave states to 15 so as to cover 5 minutes.  The second option was chosen 

to allow a fair comparison of performance.  The algorithm modified accordingly.  The 

changes are reflected in Table 5.10 and Figure 5.15. 
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Table 5.8: Variable Definitions for California Algorithm # 8 

Feature Description Definition 
OCC( i , t ) Occupancy (percent) at 

station i, for time interval t 
 

DOCC( i , t ) Occupancy (percent) 
downstream of station i, for 
time interval t 

OCC( i + 1 , t ) 

OCCDF( i  , t ) Spatial difference in 
occupancies between station 
i and the downstream 
station 

OCC( i , t ) � OCC( i + 1 , t)

OCCRDF( i , t ) Relative spatial difference 
in occupancies between 
station i and downstream 
station 

OCCDF( i , t ) / OCC( i , t ) 

DOCCTD( i , t ) Relative temporal 
difference in downstream 
occupancy 

( OCC( i + 1 , t � 2 ) - 
 OCC( i + 1 , t )   ) / 

OCC( i + 1 , t � 2 ) 

 

Table 5.9: State definitions for the California algorithm # 8 

State Designates 
0 Incident-free 

1 Compression wave downstream in this minute 

2 Compression wave downstream 2 minutes ago 

3 Compression wave downstream 3 minutes ago 

4 Compression wave downstream 4 minutes ago 

5 Compression wave downstream 5 minutes ago 

6 Tentative incident 

7 Incident confirmed 

8 Incident continuing 
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Figure 5.14: California Algorithm Decision Tree 

Table 5.10: State definitions for the adapted California algorithm # 8 

State Designates 
0 Incident-free 
1 Compression wave downstream in this interval 
1.33 Compression wave downstream in 40 seconds ago 
1.66 Compression wave downstream 60 seconds ago 
2, 2.33, 2.66 Compression wave downstream 80, 100 and 120 seconds ago 

respectively 
3, 3.33, 3.66 Compression wave downstream 140, 160 and 180 seconds ago 

respectively 
4, 4.33, 4.66 Compression wave downstream 200, 220 and 240 seconds ago 

respectively 
5, 5.33, 5.66 Compression wave downstream 260, 280 and 300 seconds ago 

respectively 
6 Tentative incident 
7 Incident confirmed 
8 Incident continuing 
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Figure 5.15: Adapted California Algorithm Decision Tree 
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5.7.2.1.1 Results 

The California algorithm was tested with the same dataset as the DSPMID algorithm.  

The results of several iterations produced by varying the values of the several thresholds 

of the California Algorithm #8 are presented in the Figure 5.16.  The data is pretty 

scattered and cannot as such be represented sufficiently with a curve.  Two possible 

curves (albeit with sub-optimal fitting) are shown in the figure to illustrate the general 

trend of movement of the points in the Detection-Ratio versus False-Alarm-Rate space.  

It is worthwhile to note that the California algorithm succeeds in detecting most of the 

incidents like the DSPMID algorithm.  This is in sharp contrast to the McMaster 

algorithm and the FWRBFNN algorithm as discussed in subsections 5.7.2.2.1 and 

5.7.2.3.1. 
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Figure 5.16: Detection Ratio Vs False Alarm Rate for California Algorithm 

5.7.2.2 McMaster Algorithm 

The McMaster algorithm uses a template such as the one shown in Figure 5.17.  This 

template is calibrated for each station by calibrating the Critical Volume, Critical 

occupancy and k.  The function g(occ), derived from the catastrophe theory of traffic 

flow, represents the  minimum predicted uncongested flow for station i.  The template 

defines four states, state 1 represents uncongested flow, state 2 and 3 represent congested 

flow and state 4 represents bottleneck flow.  The states are determined in the algorithm 

using the decision tree shown in Figure 5.18.  The data is initially screened for missing 

data.  If data is missing, data from the downstream station is used to act as the proxy data 

for the station.  The data is then checked against the g(occ) function values and the 

critical volume (VCRIT) and critical occupancy (OCMAX) values for the given station.  

The decision logic for generating the alarms for an incident is shown in Figure 5.19.  If 

the upstream station is congested and the downstream station is in state 1 or 2 (below 

critical occupancy), then the congestion is attributed to an incident.  However if the 

downstream station is in bottleneck flow conditions, the upstream congestion is 

categorized as recurrent congestion.  If the downstream station is in state 3, the state at 

the station downstream to it is used to determine the presence of an incident. 
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Figure 5.17: McMaster Template 
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Figure 5.18: Decision Tree for Traffic State Classification in McMaster algorithm 
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Figure 5.19: Flow Chart for Distinguishing between Recurrent and Incident 
Congestion in McMaster algorithm 
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5.7.2.2.1 Results 

As can be seen in the detection-ratio versus false-alarm-rate plot in Figure 5.20, the 

McMaster algorithm did not respond actively to the thresholds in terms of the detection-

ratio.  The false-alarm-rate responded quite well to the thresholds.  The algorithm 

produced a maximum detection ratio of 0.6 (which should ideally have been closer to 1.0) 

and failed to detect several of the incidents.1 
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Figure 5.20: Detection Ratio Vs False Alarm Rate for McMaster Algorithm 

 

                                                           
1 Further testing will be performed to investigate the response of this algorithm and the results presented 
during the defense, if not earlier. 
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5.7.2.3 FWRBFNN Algorithm 

The logic of the Fuzzy Wavelet Radial Basis Function Neural Network Model 

algorithm has been explained in Section 2.5.18 of Chapter II.  The algorithm 

implementation follows 5 steps � preprocessing, de-noising, clustering, classification and 

decision-making.  The computations involved in each step, as identified by the author, are 

as follows: 

Preprocessing: The 16 most recent data values for the lane occupancy ( O[n] ) and the 

lane speed ( S[n] ) are obtained.  This is done in every time step by dropping the oldest 

reading in the sequence and adding the new reading to the sequence.  The normalized 

sequences O′[n] and S′[n] are obtained from the data sequences O[n] and S[n] by dividing 

the values by the average of each sequence.   

De-noising: This step involves three sub-steps: 

a. The DWT of the normalized sequences O′[n] and S′[n] are computed using 

Daubechies wavelet system of length 8.  The lowest scale resolved in each case is 2.  For 

each sequence, the final number of scaling coefficients (c2,k) obtained is 4 and the final 

number of wavelet coefficients (dj,k) obtained is 12. 

b. The wavelet coefficients (dj,k) are filtered using the soft thresholding nonlinerarity 

η(d) = sign(d)(|d|-t)+ to remove noise, where (.)+ is equal to (.) when (.) is positive and 

zero otherwise and the function sign(.) returns the sign of its argument.  The threshold t is 

given by t = )log(2 N  where N is the total number of data points. 
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c. If d′j,k is used to denote the filtered wavelet coefficients obtained from the 

previous step, the inverse DWT is computed with c2,k as the scaling coefficients and d′j,k 

as the wavelet coefficients to obtain the de-noised normalized sequences O[n] and S[n]. 

Clustering: The traffic pattern matrix of dimension 16 x 2 is formed by joining the 

sequences O[n] and S[n].  The fuzzy c-mean algorithm is used to reduce the 

dimensionality of the two sequences from 16 x 2 to 4 x 2. 

Classification: The eight data-points obtained from the previous step, which represent 

the de-noised and clustered pattern is used in a feed-forward radial basis function neural 

network.   

Decision-making: The output from the neural network is compared against a preset 

threshold.  If the output is greater than the threshold, an incident is indicated; otherwise 

non-incident conditions are indicated.   

5.7.2.3.1 Results 

The author tested the FWRBFNN algorithm with the same dataset as the DSPMID 

model.  The training of the algorithm involved several incidents from the dataset for the 

Southbound direction.  The testing of the algorithm was conducted over the incidents in 

the Northbound direction.  As can be seen from Figure 5.21 the maximum detection rate 

achieved was generally low in the range studied.  It should be noted that the algorithm 

was calibrated on the Southbound data and used for the Northbound data.  This 

introduces the issues of transferability of algorithm.  Although this would not be an issue 
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for the DSPMID algorithm which usually responds critically to the nature of the data 

rather than the location characteristics, this Neural Network based algorithm, which is 

more calibration intensive can be expected to be more liable to failure with a change in 

location.  Moreover, the algorithm was calibrated with real world data only.  The real 

world data over 6 months cannot be expected to provide a comprehensive set of all 

possible incident scenarios.  Consequently, the low detection rate is attributed to the lack 

of a comprehensive set of cases for calibration of the neural network and the poor spatial 

transferability of the algorithm.  The author acknowledges the fact that the algorithm 

performance has possible room for improvement with more rigorous and site specific 

calibration. 
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Figure 5.21: Detection Ratio Vs False Alarm Rate for FWRBFNN Algorithm 
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5.7.3 Comparison Results 

All the four algorithms were tested over the same dataset to ensure a valid 

comparison.  Figure 5.22 shows the plot of detection-ratio versus time-to-detect for all 

four algorithms.  The x-axis of the McMaster algorithm plot had to be scaled (10:1) in 

order to fit it in the same range as the other algorithms.  The plot shows that the 

McMaster algorithm is the only algorithm that performs superior to the DSPMID 

algorithm in terms of detection time.  

Figure 5.23 shows the summary plot of detection-ratio versus false-alarm-rate for all 

the algorithms (presented earlier in separate plots) on the same graph.  The x-axis of the 

McMaster algorithm plot had to be scaled (1:10) in order to fit it in the same range as the 

other algorithms.  Keeping this in mind, it can be observed that the overall performance 

was best in the DSPMID algorithm, followed by the California algorithm, the 

FWRBFNN algorithm and the McMaster algorithm.   
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Figure 5.22: Detection-Ratio Vs Time-to-Detect for Four Algorithms 
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Figure 5.23: Detection-Ratio Vs False-Alarm-Rate for Four Algorithms 
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5.8 Summary 

This chapter outlined the implementation of the incident detection algorithm 

methodology developed in the previous chapter.  As is common in studies like this, the 

availability of data and the characteristics of the data play a critical role.  Therefore the 

site-selection procedures, the meta-data information and the limitations and assumptions 

regarding the data were clearly laid out in Section 5.3.  The processes involved in 

cleaning up and formatting of the data were also presented to ensure that the study is 

easily replicable. 

Section 5.5 presented the evaluation of the core prediction model.  A comparison of 

the DSPM model with the LCT model demonstrated the superiority of performance of the 

DSPM model in the given scenario.  The different model options presented in Chapter IV 

were all valid theoretically.  An empirical evaluation, however, showed that Model C 

provided the best performance.  This model option was therefore used for the subsequent 

algorithm evaluation.  The implementation of the DSPM model involved some 

implementation specific enhancements.  Since the DSPM model depended on the 

determination of the traffic flow regime, the different strategies of regime separation for 

the model were studied.  Speed was observed to be a more favorable criterion for 

detecting change of traffic conditions from congested to uncongested regime and vice 

versa.  A dynamic pace updating policy for automatic adjustment of the model to the 

surrounding conditions proved to be demonstrably superior to a static calibration policy. 
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The algorithm evaluation results showed the effectiveness of the algorithm in 

successfully identifying incidents.  The high detection rate achieved by this algorithm 

provided the proof of validity of the hypothesis presented in Section 5.1.   

Three algorithms � the California algorithm #8, the McMaster algorithm and the 

FWRBFNN algorithm � were identified for comparison with the developed DSPMID 

algorithm.  Section 5.7.2 presented the design as well as implementation details of these 

algorithms.  The results of testing these algorithms were presented as detection-ratio 

versus false alarm rate plots. 

All three algorithms used for comparison produced more false alarms than the 

DSPMID algorithm for a given detection ratio.  The McMaster algorithm gave a lower 

detection-time, but the false-alarm-rate was very high � thereby severely limiting the 

overall performance of that algorithm. Moreover, all these algorithms gave overall lower 

detection rates than the DSPMID algorithm.  The analysis of the results thus 

demonstrated the superior capabilities of the DSPMID algorithm as compared to these 

existing algorithms. 

In summary, this Chapter successfully applied the methodology developed in Chapter 

IV, and demonstrated its capability for detecting incidents using operations data.  The 

successful implementation proved the research hypothesis presented in Section 5.1 and 

achieved the design objectives identified in Section 4.3.   
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CHAPTER VI 
CHAPTER 6. SUMMARY, FINDINGS AND RECOMMENDATIONS 

SUMMARY, FINDINGS AND RECOMMENDATIONS 

This chapter provides a summary of the research work presented in this thesis, 

highlights its findings and conclusions and delineates recommendations for future 

research. 

6.1 Summary 

This dissertation presented a new methodology for detecting incidents using 

operations data.  In essence, this methodology involves an accurate one step prediction of 

traffic parameters followed by a comparison between the observed and predicted 

parameters to identify incidents. 

The one-step predictions were obtained by using the DSPM macroscopic traffic 

model.  The DSPM model developed in this research employs a methodology whereby it 

integrates spatial as well as temporal changes in road geometry and their influences on 

traffic into the prediction procedure.  This model estimates traffic conditions at a point 

based on the temporally and spatially adjacent measured traffic states.  This approach to 

one-step macroscopic traffic predictions is unique and provides significant conceptual 

enhancement to previously developed models (Daganzo, 1999) by introducing a 

procedure that provides predictions that can be compared directly with future 

observations without making any spatial or temporal adjustments.  The limitation of the 
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model in modeling traffic under incident conditions was effectively used to track the shift 

of traffic conditions into the incident conditions regime.  Therefore, the design objectives 

1 and 2, as presented in Section 4.3 of Chapter IV, were successfully achieved by the 

developed DSPMID methodology. 

Chapter V presented the calibration and validation process of the methodology.  The 

developed DSPMID methodology was applied in a case study involving a portion of the 

network covered under the Georgia Navigator, Georgia DOT's ATMS.  The operations 

data was obtained from the ATMS system.  The incident information data that was 

required for the calibration and validation was obtained from Georgia DOT's TMC in 

Atlanta.  Chapter V outlined the procedures for processing and analysis of the data.  

Calibration of the incident detection algorithm was performed with half of the dataset and 

validation was performed with the other half to ensure that the validation results are not 

inflated by over-calibration.  The successful implementation of the DSPMID 

methodology achieved design objective 3 presented in Section 4.3 of Chapter IV.  The 

results of the validation process proved the research hypothesis stated in Section 4.2 of 

Chapter IV. 

6.2 Findings 

The following is a summary of the main findings of this research: 
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•  The successful development and implementation of the DSPMID 

methodology proved the research hypothesis and achieved its original design 

objectives. 

•  Estimation of traffic parameters from spatially and temporally adjacent traffic 

conditions is a viable means of accurately predicting traffic conditions in the 

short term (less than or equal to a minute). 

•  The use of a comparison between modeled and observed behavior of traffic is 

a viable means of detecting incidents. 

•  A self calibration scheme for a traffic prediction model, based on one of the 

traffic variables (speed is used to update the pace in this case study) can 

provide significant accuracy enhancements to the model.  While it introduces 

some instability in the prediction model in the presence of bad detector data 

(which of course can be filtered out with any simple filtering scheme) it 

provides significant benefit in terms of minimizing the manual calibration 

effort. 

•  The DSPMID methodology for incident detection provides significant 

performance advantages over the existing incident detection algorithms in a 

testing environment with limitations in size of calibration data.  In addition to 

a high overall detection ratio, the detection-ratio versus the false-alarm-rate 

curve is better optimized as compared to the other algorithms. 
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•  Low-cum-medium-pass digital signal processing filters provide a robust 

means of eliminating noise from high-resolution traffic data.  A medium-pass 

filter is capable of eliminating the high-frequency noise, while preserving the 

features of the data that are required for incident detection. 

•  Attempting to relate past incident information with operations data 

observation station location can be challenging, given that the Georgia DOT 

stores location information relative to the interchanges only, and not with 

reference to the observation stations. 

•  Speed was found to be a better choice than density for separating congested 

traffic conditions from uncongested conditions. 

•  The contiguity of a point in the time-space domain was found to have a direct 

effect on the accuracy of predictions as seen from the comparison of different 

model alternatives   

6.3 Recommendations for Future Research 

Future research based on this work has several possibilities.  Apart from the direct use 

of the developed algorithm in traffic operations, the concepts developed during this 

research can be useful in several different fields like traffic data management, work-zone 

management, evacuation planning, congestion hot-spot detection etc.  The research 

presented in this dissertation can be extended in the following directions: 
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•  An online testing of the detection algorithm involving a real time application 

of the algorithm in an ATMS can be performed to test the viability of use of 

the algorithm in traffic operations. 

•  Testing of the algorithm with data from different detection technology (e.g. 

loop detectors) would test the viability of the algorithm for use across 

different technologies and different ATMSs. 

•  Further exploration of the lane model needs to be performed.  Since some 

effects on traffic are expected to be smoothed out when an averaging is 

performed across lanes, the individual lane model is expected to be more 

sensitive to all incidents in general and to shoulder incidents in particular.  

The author abandoned the use of the individual lane model because of the lack 

of a satisfactory lane changing model at the macroscopic level, especially at 

the interchanges.  A combinatorial model using the individual lane model in 

basic freeway sections and the cumulative lane model near interchanges could 

prove to be an improvement over the current model.  

•  A confidence value based output from the rule-based filters that are 

implemented can be used to give an overall confidence value for each incident 

alarm.  This would provide the operators with a handy tool for varying the 

sensitivity of the algorithm in real time without the need for rigorous fine 

tuning of the thresholds.   
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•  The algorithm can be used as a detection tool for identifying malfunctioning 

detectors.  Cumulative statistics such as the mean absolute percentage 

difference of the predictions from the observations, or the percentage of data-

points where the difference of predictions from the observations was over a 

pre-specified threshold, can be used for detecting malfunctions. 

•  The DSPM model can be used for replacing missing or erroneous detector 

data in real time. 

•  The incident detection algorithm can be used as an offline tool for identifying 

un-identified bottlenecks.  Locations which present incident like conditions in 

the absence of real incidents can be identified as problematic sections that 

need some congestion alleviation measures. 

•  Several instances exist where macroscopic traffic flow models have been 

tested with aggregated data because the high-resolution data was considered 

too noisy.  The possibility of applying the data processing techniques used in 

this research for creating high-resolution datasets for such model testing needs 

to be explored. 

•  One of the fallouts of this research effort was the creation of an archive for 

high-resolution traffic operations data at Georgia Tech for a portion of 

Georgia Navigator.  Given the success of implementation of the low-

maintenance archive, the Georgia DOT should be encouraged to provided 
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Georgia Tech the full network wide data for archival.  The possible benefits of 

such an archive are well known to the research community. 

•  Given the uncertainties in time and location information in the incident 

database, the Georgia DOT should be encouraged to record more detailed and 

objective location information (e.g. station numbers instead of road names).  

This would significantly benefit future incident-detection, incident modeling 

and traffic modeling studies. 
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APPENDIX A 

APPENDIX A.    

 
 
 

Aerial Photo of Study Site 
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Figure A.1: Aerial Photo of Study Site (1 of 5) 
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Figure A.2: Aerial Photo of Study Site (2 of 5) 

 
 
 



 

 186

 

 
 

Figure A.3: Aerial Photo of Study Site (3 of 5) 
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Figure A.4: Aerial Photo of Study Site (4 of 5) 
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Figure A.5: Aerial Photo of Study Site (5 of 5) 
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APPENDIX B 

APPENDIX B.    

 
 
 

Schematic of Study Site 
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KEY: 
Detector ID 
Station ID  
Mile Post 
Lane Number 
DetectorClass

    \        / 
  \    / 
    \/ 

\        / 
  \    / 
    \/ 

     /\ 
  /    \ 
/        \  

  

    /\ 
  /    \ 
/        \ 

        

      400500 
4001101 
19.84 
1 
Mainline 
  

400501 
4001101
19.84 
2 
Mainline
  

           GEORGIA 400 
SOUTH NEAR N 
OF OLD 
MILTON PKWY  

    400502 
4006101 
19.780001 
1 
Exit 
  

     400248 
4000063
19.780001
1 
Mainline
  

400249 
4000063
19.780001
2 
Mainline
  

400250 
4005010
19.780001
1 
Entrance
  

    N OF OLD 
MILTON PKWY.  

      400504 
4001102 
19.559999
2 
Mainline 
  

400503 
4001102
19.559999
1 
Mainline
  

 400246 
4000062
19.58 
1 
Mainline
  

400247 
4000062
19.58 
2 
Mainline
  

      N OF OLD 
MILTON PKWY.  

    400505 
4005101 
19.379999 
1 
Entrance 
  

         400245 
4006010
19.379999
1 
Exit 
  

    AT OLD MILTON 
PKWY  

      400507 
4001103 
19.360001
2 
Mainline 
  

400506 
4001103
19.360001
1 
Mainline
  

 400243 
4000061
19.27 
1 
Mainline
  

400244 
4000061
19.27 
2 
Mainline
  

      N OF KIMBALL 
BR RD  

      400509 
4001104 
18.940001
2 
Mainline 
  

400508 
4001104
18.940001
1 
Mainline
  

 400241 
4000060
18.92 
1 
Mainline
  

400242 
4000060
18.92 
2 
Mainline
  

      AT KIMBALL BR 
RD  

      400511 
4001105 
18.629999
2 
Mainline 
  

400510 
4001105
18.629999
1 
Mainline
  

 400237 
4000059
18.59 
1 
Mainline
  

400238 
4000059
18.59 
2 
Mainline
  

400239 
4000059
18.59 
3 
Mainline
  

    N OF HAYNES 
BR RD  

    400514 
4006102 
18.200001 
1 
Exit 
  

400513 
4001106 
18.23 
2 
Mainline 
  

400512 
4001106
18.23 
1 
Mainline
  

 400234 
4000058
18.280001
1 
Mainline
  

400235 
4000058
18.280001
2 
Mainline
  

400236 
4005009
18.290001
1 
Entrance
  

    AT HAYNES BR 
RD  

    400515 
4005102 
17.99 
1 
Entrance 
  

400517 
4001107 
17.98 
2 
Mainline 
  

400516 
4001107
17.98 
1 
Mainline
  

 400230 
4000057
17.950001
1 
Mainline
  

400231 
4000057
17.950001
2 
Mainline
  

400232 
4000057
17.950001
3 
Mainline
  

400233 
4006009 
17.969999 
1 
Exit 
  

  S HAYNES BR 
RD  

    400520 
4001108 
17.65 
3 
Mainline 
  

400519 
4001108 
17.65 
2 
Mainline 
  

400518 
4001108
17.65 
1 
Mainline
  

 400227 
4000056
17.610001
1 
Mainline
  

400228 
4000056
17.610001
2 
Mainline
  

400229 
4000056
17.610001
3 
Mainline
  

    1/2 MILE OF N 
OF MAXWELL 
RD  
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    400523 
4001109 
17.33 
3 
Mainline 
  

400522 
4001109 
17.33 
2 
Mainline 
  

400521 
4001109
17.33 
1 
Mainline
  

 400224 
4000055
17.299999
1 
Mainline
  

400225 
4000055
17.299999
2 
Mainline
  

400226 
4000055
17.299999
3 
Mainline
  

    N OF MAXWELL 
RD  

    400526 
4001110 
17.049999 
3 
Mainline 
  

400525 
4001110 
17.049999
2 
Mainline 
  

400524 
4001110
17.049999
1 
Mainline
  

 400221 
4000054
17.02 
1 
Mainline
  

400222 
4000054
17.02 
2 
Mainline
  

400223 
4000054
17.02 
3 
Mainline
  

    S OF MAXWELL 
RD  

  400530 
4006103 
16.719999 
1 
Exit 
  

400529 
4001111 
16.719999 
3 
Mainline 
  

400528 
4001111 
16.719999
2 
Mainline 
  

400527 
4001111
16.719999
1 
Mainline
  

 400216 
4000053
16.690001
1 
Mainline
  

400217 
4000053
16.690001
2 
Mainline
  

400218 
4000053
16.690001
3 
Mainline
  

400219 
4005008 
16.690001 
1 
Entrance 
  

400220 
4005008 
16.690001
2 
Entrance 
  

N OF MANSELL 
RD  

    400533 
4001112 
16.379999 
3 
Mainline 
  

400532 
4001112 
16.379999
2 
Mainline 
  

400531 
4001112
16.379999
1 
Mainline
  

 400213 
4000052
16.41 
1 
Mainline 

400214 
4000052
16.41 
2 
Mainline
  

400215 
4000052
16.41 
3 
Mainline
  

    AT  MANSELL 
RD  

  400537 
4005103 
16.08 
1 
Entrance 
  

400536 
4001113 
16.08 
3 
Mainline 
  

400535 
4001113 
16.08 
2 
Mainline 
  

400534 
4001113
16.08 
1 
Mainline
  

 400209 
4000051
16.040001
1 
Mainline
  

400210 
4000051
16.040001
2 
Mainline
  

400211 
4000051
16.040001
3 
Mainline
  

400212 
4006008 
16.040001 
1 
Exit 

  S MANSELL RD 

    400540 
4001114 
15.67 
3 
Mainline 
  

400539 
4001114 
15.67 
2 
Mainline 
  

400538 
4001114
15.67 
1 
Mainline
  

 400206 
4000050
15.64 
1 
Mainline
  

400207 
4000050
15.64 
2 
Mainline
  

400208 
4000050
15.64 
3 
Mainline
  

    1/2 MI OF N OF 
HOLCOMB BR 
RD  

  400544 
4006104 
15.2 
1 
Exit 
  

400543 
4001115 
15.25 
3 
Mainline 
  

400542 
4001115 
15.25 
2 
Mainline 
  

400541 
4001115
15.25 
1 
Mainline
  

 400203 
4000049
15.25 
1 
Mainline 

400204 
4000049
15.25 
2 
Mainline
  

400205 
4000049
15.25 
3 
Mainline
  

400202 
4005007 
15.24 
1 
Entrance 
  

  N OF 
HOLCOMB BR 
RD  

                 400200 
4006007 
15.02 
1 
Exit 
  

400201 
4006007 
15.02 
2 
Exit 
  

  

    400547 
4001116 
14.97 
3 
Mainline 
  

400546 
4001116 
14.97 
2 
Mainline 
  

400545 
4001116
14.97 
1 
Mainline 

 400196 
4000048
14.99 
1 
Mainline
  

400197 
4000048
14.99 
2 
Mainline
  

400198 
4000048
14.99 
3 
Mainline
  

400199 
4000048 
14.99 
4 
Mainline 
  

  AT HOLCOMB 
BR RD  

400549 
4005104 
14.75 
2 
Entrance 
  

400548 
4005104 
14.75 
1 
Entrance 
  

400552 
4001117 
14.75 
3 
Mainline 
  

400551 
4001117 
14.75 
2 
Mainline 
  

400550 
4001117
14.75 
1 
Mainline
  

 400190 
4000047
14.71 
1 
Mainline
  

400191 
4000047
14.71 
2 
Mainline
  

400192 
4000047
14.71 
3 
Mainline
  

400193 
4000047 
14.71 
4 
Mainline 
  

400195 
4006006 
14.73 
1 
Exit 
  

S OF 
HOLCOMB BR 
RD  

  400556 
4001118 
14.32 
4 
Mainline 
  

400555 
4001118 
14.32 
3 
Mainline 
  

400554 
4001118 
14.32 
2 
Mainline 
  

400553 
4001118
14.32 
1 
Mainline
  

 400186 
4000046
14.24 
1 
Mainline
  

400187 
4000046
14.24 
2 
Mainline
  

400188 
4000046
14.24 
3 
Mainline
  

400189 
4000046 
14.24 
4 
Mainline 
  

  3/4 MI S OF 
HOLCOMB BR 
RD  
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  400560 
4001119 
13.96 
4 
Mainline 
  

400559 
4001119 
13.96 
3 
Mainline 
  

400558 
4001119 
13.96 
2 
Mainline 
  

400557 
4001119
13.96 
1 
Mainline
  

 400182 
4000045
13.89 
1 
Mainline
  

400183 
4000045
13.89 
2 
Mainline
  

400184 
4000045
13.89 
3 
Mainline
  

400185 
4000045 
13.89 
4 
Mainline 
  

  S OF 
RIVERSIDE RD 

  400564 
4001120 
13.65 
4 
Mainline 
  

400563 
4001120 
13.65 
3 
Mainline 
  

400562 
4001120 
13.65 
2 
Mainline 
  

400561 
4001120
13.65 
1 
Mainline
  

 400178 
4000044
13.62 
1 
Mainline
  

400179 
4000044
13.62 
2 
Mainline
  

400180 
4000044
13.62 
3 
Mainline
  

400181 
4000044 
13.62 
4 
Mainline 
  

  1 MI N OF 
ROBERTS RD  

  400568 
4001121 
13.33 
4 
Mainline 
  

400567 
4001121 
13.33 
3 
Mainline 
  

400566 
4001121 
13.33 
2 
Mainline 
  

400565 
4001121
13.33 
1 
Mainline
  

 400174 
4000043
13.3 
1 
Mainline
  

400175 
4000043
13.3 
2 
Mainline
  

400176 
4000043
13.3 
3 
Mainline
  

400177 
4000043 
13.3 
4 
Mainline 
  

  HALF MILE N 
OF ROBERTS 
DR  

  400572 
4001122 
13.01 
4 
Mainline 
  

400571 
4001122 
13.01 
3 
Mainline 
  

400570 
4001122 
13.01 
2 
Mainline 
  

400569 
4001122
13.01 
1 
Mainline
  

 400170 
4000042
12.97 
1 
Mainline
  

400171 
4000042
12.97 
2 
Mainline
  

400172 
4000042
12.97 
3 
Mainline
  

400173 
4000042 
12.97 
4 
Mainline 
  

  N OF ROBERTS 
DR  

  400576 
4001123 
12.7 
4 
Mainline 
  

400575 
4001123 
12.7 
3 
Mainline 
  

400574 
4001123 
12.7 
2 
Mainline 
  

400573 
4001123
12.7 
1 
Mainline
  

 400166 
4000041
12.69 
1 
Mainline
  

400167 
4000041
12.69 
2 
Mainline
  

400168 
4000041
12.69 
3 
Mainline
  

400169 
4000041 
12.69 
4 
Mainline 
  

  AT ROBERTS 
DR  

  400580 
4001124 
12.37 
4 
Mainline 
  

400579 
4001124 
12.37 
3 
Mainline 
  

400578 
4001124 
12.37 
2 
Mainline 
  

400577 
4001124
12.37 
1 
Mainline
  

 400161 
4000040
12.33 
1 
Mainline
  

400162 
4000040
12.33 
2 
Mainline
  

400163 
4000040
12.33 
3 
Mainline
  

400164 
4000040 
12.33 
4 
Mainline 
  

400165 
4005006 
12.33 
1 
Entrance 
  

N OF 
NORTHRIDGE 
RD  

400585 
4001125 
11.99 
5 
Mainline 
  

400584 
4001125 
11.99 
4 
Mainline 
  

400583 
4001125 
11.99 
3 
Mainline 
  

400582 
4001125 
11.99 
2 
Mainline 
  

400581 
4001125
11.99 
1 
Mainline
  

 400156 
4000039
12.05 
1 
Mainline
  

400157 
4000039
12.05 
2 
Mainline
  

400158 
4000039
12.05 
3 
Mainline
  

400159 
4000039 
12.05 
4 
Mainline 
  

400160 
4006005 
12.1 
1 
Exit 
  

AT 
NORTHRIDGE 
RD  

400586 
4006105 
11.93 
1 
Exit 

                     

400587 
4005105 
11.78 
1 
Entrance 
  

400591 
4001126 
11.77 
4 
Mainline 
  

400590 
4001126 
11.77 
3 
Mainline 
  

400589 
4001126 
11.77 
2 
Mainline 
  

400588 
4001126
11.77 
1 
Mainline
  

 400152 
4000038
11.76 
1 
Mainline
  

400153 
4000038
11.76 
2 
Mainline
  

400154 
4000038
11.76 
3 
Mainline
  

400155 
4000038 
11.76 
4 
Mainline 
  

  S OF 
NORTHRIDGE 
RD  

  400595 
4001127 
11.47 
4 
Mainline 
  

400594 
4001127 
11.47 
3 
Mainline 
  

400593 
4001127 
11.47 
2 
Mainline 
  

400592 
4001127
11.47 
1 
Mainline
  

 400148 
4000037
11.49 
1 
Mainline
  

400149 
4000037
11.49 
2 
Mainline
  

400150 
4000037
11.49 
3 
Mainline
  

400151 
4000037 
11.49 
4 
Mainline 
  

  N OF PITTS RD  

  400599 
4001128 
11.1 
4 
Mainline 
  

400598 
4001128 
11.1 
3 
Mainline 
  

400597 
4001128 
11.1 
2 
Mainline 
  

400596 
4001128
11.1 
1 
Mainline
  

 400144 
4000036
11.08 
1 
Mainline
  

400145 
4000036
11.08 
2 
Mainline
  

400146 
4000036
11.08 
3 
Mainline
  

400147 
4000036 
11.08 
4 
Mainline 
  

  AT PITTS RD  
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  400603 
4001129 
10.77 
4 
Mainline 
  

400602 
4001129 
10.77 
3 
Mainline 
  

400601 
4001129 
10.77 
2 
Mainline 
  

400600 
4001129
10.77 
1 
Mainline
  

 400140 
4000035
10.73 
1 
Mainline
  

400141 
4000035
10.73 
2 
Mainline
  

400142 
4000035
10.73 
3 
Mainline
  

400143 
4000035 
10.73 
4 
Mainline 
  

  S OF PITTS RD  

  400607 
4001130 
10.44 
4 
Mainline 
  

400606 
4001130 
10.44 
3 
Mainline 
  

400605 
4001130 
10.44 
2 
Mainline 
  

400604 
4001130
10.44 
1 
Mainline
  

 400136 
4000034
10.42 
1 
Mainline
  

400137 
4000034
10.42 
2 
Mainline
  

400138 
4000034
10.42 
3 
Mainline
  

400139 
4000034 
10.42 
4 
Mainline 
  

  N OF 
SPALDING DR  

  400611 
4001131 
10.11 
4 
Mainline 
  

400610 
4001131 
10.11 
3 
Mainline 
  

400609 
4001131 
10.11 
2 
Mainline 
  

400608 
4001131
10.11 
1 
Mainline
  

 400132 
4000033
10.12 
1 
Mainline
  

400133 
4000033
10.12 
2 
Mainline
  

400134 
4000033
10.12 
3 
Mainline
  

400135 
4000033 
10.12 
4 
Mainline 
  

  AT SPALDING 
DR  

  400615 
4001132 
9.78 
4 
Mainline 
  

400614 
4001132 
9.78 
3 
Mainline 
  

400613 
4001132 
9.78 
2 
Mainline 
  

400612 
4001132
9.78 
1 
Mainline
  

 400128 
4000032
9.75 
1 
Mainline
  

400129 
4000032
9.75 
2 
Mainline
  

400130 
4000032
9.75 
3 
Mainline
  

400131 
4000032 
9.75 
4 
Mainline 
  

  S OF 
SPALDING DR  

  400619 
4001133 
9.42 
4 
Mainline 
  

400618 
4001133 
9.42 
3 
Mainline 
  

400617 
4001133 
9.42 
2 
Mainline 
  

400616 
4001133
9.42 
1 
Mainline
  

 400124 
4000031
9.39 
1 
Mainline
  

400125 
4000031
9.39 
2 
Mainline
  

400126 
4000031
9.39 
3 
Mainline
  

400127 
4000031 
9.39 
4 
Mainline 
  

  1/2 MI  S OF 
SPALDING DR 

  400623 
4001134 
9.11 
4 
Mainline 
  

400622 
4001134 
9.11 
3 
Mainline 
  

400621 
4001134 
9.11 
2 
Mainline 
  

400620 
4001134
9.11 
1 
Mainline
  

 400120 
4000030
9.07 
1 
Mainline
  

400121 
4000030
9.07 
2 
Mainline
  

400122 
4000030
9.07 
3 
Mainline
  

400123 
4000030 
9.07 
4 
Mainline 
  

  1/2 MI N OF 
ABERNATHY 
ROAD  

  400627 
4001135 
8.78 
4 
Mainline 
  

400626 
4001135 
8.78 
3 
Mainline 
  

400625 
4001135 
8.78 
2 
Mainline 
  

400624 
4001135
8.78 
1 
Mainline
  

 400116 
4000029
8.75 
1 
Mainline
  

400117 
4000029
8.75 
2 
Mainline
  

400118 
4000029
8.75 
3 
Mainline
  

400119 
4000029 
8.75 
4 
Mainline 
  

  NORTH OF 
ABERNATHY 
ROAD  

  400631 
4001136 
8.45 
4 
Mainline 
  

400630 
4001136 
8.45 
3 
Mainline 
  

400629 
4001136 
8.45 
2 
Mainline 
  

400628 
4001136
8.45 
1 
Mainline
  

 400112 
4000028
8.41 
1 
Mainline 

400113 
4000028
8.41 
2 
Mainline 

400114 
4000028
8.41 
3 
Mainline
  

400115 
4000028 
8.41 
4 
Mainline 
  

Exit and 
Entrance 
Ramps 
(No data 
available) 

AT 
ABERNATHY 
ROAD  

  400635 
4001137 
8.12 
4 
Mainline 
  

400634 
4001137 
8.12 
3 
Mainline 
  

400633 
4001137 
8.12 
2 
Mainline 
  

400632 
4001137
8.12 
1 
Mainline
  

 400108 
4000027
8.08 
1 
Mainline 

400109 
4000027
8.08 
2 
Mainline 

400110 
4000027
8.08 
3 
Mainline 

400111 
4000027 
8.08 
4 
Mainline 

  S OF MT 
VERNON HWY  

  400639 
4001138 
7.74 
4 
Mainline  

400638 
4001138 
7.74 
3 
Mainline  

400637 
4001138 
7.74 
2 
Mainline  

400636 
4001138
7.74 
1 
Mainline  

 400104 
4000026
7.7 
1 
Mainline 

400105 
4000026
7.7 
2 
Mainline 

400106 
4000026
7.7 
3 
Mainline 

400107 
4000026 
7.7 
4 
Mainline 

  N OF 
HAMMOND DR  

  400643 
4001139 
7.32 
4 
Mainline  

400642 
4001139 
7.32 
3 
Mainline  

400641 
4001139 
7.32 
2 
Mainline  

400640 
4001139
7.32 
1 
Mainline  

 400100 
4000025
7.28 
1 
Mainline 

400101 
4000025
7.28 
2 
Mainline 

400102 
4000025
7.28 
3 
Mainline 

400103 
4005005 
7.28 
1 
Entrance 

  S OF 
HAMMOND DR  
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Mean Absolute Prediction Error Data 
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Table C.1: Prediction Errors using DSPM Model C on Filtered and Raw Data 

Mean Absolute 
Percentage Error 

Station 
Number

Filtered Raw 
4000027 1.784 4.778 
4000029 8.386 11.539 
4000030 3.755 12.437 
4000031 2.414 5.972 
4000032 3.405 6.976 
4000033 3.841 6.375 
4000034 2.522 9.104 
4000035 1.115 3.672 
4000036 1.122 4.024 
4000037 1.123 3.919 
4000038 1.395 5.158 
4000039 4.504 6.063 
4000040 2.146 6.038 
4000041 2.674 4.863 
4000042 2.359 5.499 
4000043 1.438 4.301 
4000044 1.593 5.399 
4000045 1.614 5.525 
4000046 1.555 4.763 
4000047 3.767 7.046 
4000048 5.506 9.082 
4000049 10.709 15.452 
4000050 5.691 10.850 
4000051 6.900 16.317 
4000052 2.074 6.953 
4000053 2.635 8.063 
4000054 3.627 8.669 
4000055 1.957 7.644 
4000056 3.033 11.232 
4000057 2.384 8.713 
4000058 23.484 29.487 
4000059 4.605 9.172 
4000060 10.245 19.020 
4000061 4.073 12.260 
4000062 18.181 30.289 
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Table C.2: Prediction Errors using Different Models with Raw Data 

Mean Absolute Percentage Error Station 
Number Model 

D 
Model 

B 
Model 

C LCT 
4000027 4.622 4.647 4.778 4.824 
4000029 11.434 11.434 11.539 11.044 
4000030 10.904 11.397 12.437 8.687 
4000031 6.027 7.411 5.972 6.391 
4000032 6.777 6.824 6.976 7.593 
4000033 7.709 7.752 6.375 7.184 
4000034 8.609 8.667 9.104 7.085 
4000035 3.686 5.878 3.672 6.083 
4000036 4.073 4.731 4.024 4.388 
4000037 3.633 3.648 3.919 3.719 
4000038 5.050 5.569 5.158 7.533 
4000039 6.162 6.578 6.063 8.986 
4000040 5.799 8.556 6.038 7.936 
4000041 4.877 5.935 4.863 5.410 
4000042 5.487 5.922 5.499 6.557 
4000043 4.278 6.134 4.301 5.248 
4000044 5.297 6.276 5.399 5.763 
4000045 5.400 5.449 5.525 6.850 
4000046 4.710 6.560 4.763 5.225 
4000047 7.060 7.073 7.046 7.212 
4000048 8.753 8.978 9.082 11.004 
4000049 14.019 18.812 15.452 21.243 
4000050 9.793 9.798 10.850 10.834 
4000051 14.425 14.429 16.317 14.290 
4000052 6.735 8.840 6.953 8.684 
4000053 8.031 9.232 8.063 9.647 
4000054 9.111 9.560 8.669 10.086 
4000055 7.571 9.785 7.644 9.934 
4000056 10.635 11.080 11.232 12.678 
4000057 8.982 9.061 8.713 9.296 
4000058 28.880 29.548 29.487 30.795 
4000059 9.416 10.124 9.172 10.410 
4000060 17.580 17.530 19.020 17.590 
4000061 11.747 12.115 12.260 13.024 
4000062 28.531 30.085 30.289 28.786 
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Table C.3: Prediction Errors using Different Regime Separation Strategies 

Mean Absolute 
Percentage Error 

Station 
Number

Speed 
Cutoff 

Density 
Cutoff 

4000027 1.782 1.678 
4000029 8.412 8.584 
4000030 3.645 3.661 
4000031 2.409 2.330 
4000032 3.404 3.618 
4000033 3.841 3.909 
4000034 2.662 2.769 
4000035 1.031 1.042 
4000036 1.124 1.073 
4000037 1.107 1.132 
4000038 1.438 1.398 
4000039 4.560 4.686 
4000040 1.849 1.910 
4000041 2.687 2.691 
4000042 2.296 2.350 
4000043 1.475 1.471 
4000044 1.561 1.555 
4000045 1.636 1.544 
4000046 1.578 1.649 
4000047 3.770 3.822 
4000048 5.486 5.374 
4000049 9.316 9.752 
4000050 5.636 5.886 
4000051 6.765 6.852 
4000052 2.064 2.052 
4000053 2.732 2.545 
4000054 3.653 3.786 
4000055 1.906 1.893 
4000056 2.996 3.051 
4000057 2.386 2.674 
4000058 23.463 23.730 
4000059 5.670 5.799 
4000060 10.165 10.399 
4000061 4.060 4.086 
4000062 18.030 18.162 
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Table C.4: Prediction Errors using Different Models with Filtered Data 

Mean Absolute Percentage Error Station 
Number ModelD ModelB ModelC LCT 

4000027 1.773 1.773 1.784 2.578 
4000029 8.365 8.365 8.386 6.064 
4000030 3.640 3.668 3.755 3.689 
4000031 2.401 3.241 2.414 2.680 
4000032 3.377 3.377 3.405 4.487 
4000033 4.022 4.022 3.841 4.562 
4000034 2.648 2.474 2.522 2.747 
4000035 1.027 2.527 1.115 3.723 
4000036 1.114 1.291 1.122 1.850 
4000037 1.097 1.097 1.123 1.231 
4000038 1.438 1.496 1.395 3.098 
4000039 4.545 4.411 4.504 7.437 
4000040 1.825 5.617 2.146 2.823 
4000041 2.678 2.984 2.674 3.224 
4000042 2.300 2.926 2.359 1.780 
4000043 1.450 2.352 1.438 2.081 
4000044 1.556 2.282 1.593 2.438 
4000045 1.620 1.578 1.614 1.644 
4000046 1.571 2.032 1.555 2.000 
4000047 3.769 3.769 3.767 3.384 
4000048 5.504 5.649 5.506 2.859 
4000049 9.199 14.502 10.709 14.962 
4000050 5.628 5.628 5.691 7.674 
4000051 6.747 6.747 6.900 6.176 
4000052 2.040 2.463 2.074 4.496 
4000053 2.720 2.767 2.635 3.315 
4000054 3.643 3.664 3.627 7.570 
4000055 1.908 4.041 1.957 2.728 
4000056 2.995 3.100 3.033 3.840 
4000057 2.380 2.385 2.384 4.730 
4000058 23.484 23.083 23.484 23.139 
4000059 5.681 3.108 4.605 6.256 
4000060 10.171 10.169 10.245 7.487 
4000061 4.059 4.068 4.073 5.027 
4000062 18.095 19.565 18.18121 19.209 

 
 
 

 

 
 



 

 199

Table C.5: Detection Ratio and False Alarm Rates for DSPM algorithm 

False 
Alarm 
Rate 

Detection 
Ratio 

0.10836 1.00000 
0.04805 0.71429 
0.07166 0.80952 
0.03389 0.52381 
0.04374 0.66667 
0.02174 0.52381 
0.06931 1.00000 
0.03179 0.61905 
0.04308 0.66667 
0.02158 0.42857 
0.02769 0.42857 
0.01435 0.38095 
0.03541 0.61905 
0.01885 0.42857 
0.02200 0.52381 
0.01251 0.33333 
0.01416 0.19048 
0.00810 0.19048 
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Threshold Sensitivity Plots 
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Figure D.1: Sensitivity of False Alarms to Threshold for Maximum Temporal 
Difference of Flow  
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Figure D.2: Sensitivity of False Alarms to Threshold for Upstream Density 
Difference 
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Figure D.3: Sensitivity of False Alarms to Threshold for Downstream Density 
Difference 
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Figure D.4: Sensitivity of False Alarms to Threshold for Time Difference Between 
Successive Alarms 
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Figure D.5: Sensitivity of False Alarms to Threshold for Maximum Prediction 
Error  
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Figure D.6: Sensitivity of False Alarms to Threshold for Maximum Difference 
of Flow from 5-Minute Moving-Average 
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Figure D.7: Sensitivity of False Alarms to Threshold for Speed Cutoff for Stop-
and-Go Traffic 
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