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CHAPTER I

INTRODUCTION

1.1 Motivation for Superimposed Steering

The research focus both in the industry and in academia has been on steer-by-wire systems

for a long time. In such systems one removes the direct mechanical linkage between the

steering wheel and the actual wheels. The envisaged benefits are reduced weight and com-

plexity, as well as better power management and vehicle stability improvement. Further

research has however indicated that a complete steer-by-wire system is economically infeasi-

ble, at least in the near future [6]. Due to legal and safety concerns, all major components of

the steer-by-wire system would have to be installed redundantly making the cost prohibitive

compared to conventional steering systems. Moreover, in a conventional steering system the

driver gets important information about road friction and vehicle stability through the di-

rect mechanical linkage of the steering wheel with the wheels. Since this linkage does not

exist in a steer-by-wire system, one would have to introduce synthetic feedback. Hence,

although steer-by-wire is technically possible today, it will not be actually implemented in

vehicles for several years to come.

That is why the emerging trend in the automotive industry is to introduce hybrid systems

such as superimposed steering systems. In these systems one maintains the mechanical

linkage between the steering wheel and the wheels, but installs an electric motor in the

steering column. The electric motor is used to increase or decrease the road-wheel angle

imposed by the driver as a function of vehicle velocity, vehicle stability, and the driver’s

steering wheel angle. Most of the advantages of a steer-by-wire system can be obtained

using a superimposed system without the above technical and legal problems. The major

advantages of a superimposed steering system over a conventional steering system can be

broken down into three main categories.

1



1.1.1 Variable Steering Ratio

The steering ratio is defined as the quotient of the angle that the driver imposes on the

steering wheel over the actual angle of the wheels on the road. In a conventional steering

system this ratio is fixed (typically 17). However, this is not the best possible solution.

At low speeds one would rather want a more direct response of the wheels to the driver’s

commands, i.e., a lower steering ratio. The vehicle would thus become more agile and park-

ing could be greatly facilitated. At high speeds, one would want the steering transmission

to be less direct, i.e., higher steering ratio. This would result in greater vehicle stability

due to the compensation for the physically induced increase in steering sensitivity. All this

can be achieved using a superimposed steering system (Figure 1). A variable steering ratio

is implemented by adding a positive steering angle at low speed and a negative steering

angle at high speed. In this thesis we focus on bringing about this first and most important

Figure 1: Steering ratio.

advantage of a superimposed steering system.

1.1.2 Compensation of Lateral Wind Forces

Lateral wind forces affect the vehicle handling and represent a major risk, especially when

passing other vehicles at high velocity. Using superimposed steering, one can automatically

compensate for lateral wind forces. A yaw rate sensor detects the lateral acceleration and

the superimposed steering system compensates without the driver even noticing.

2



1.1.3 Reduction of Braking Distance in Combination with ESP

Traditional electronic stability programs (ESP) maintain the stability of the vehicle through

multiple braking and release cycles of the wheels. The result is a tradeoff between stability

and braking distance. This is particularly critical if the vehicle drives on two surfaces with

highly different friction coefficients, e.g., asphalt and ice. The vehicle will invariably turn

towards one side. Stability can only be regained by releasing the brakes thus increasing

braking distance. Combining ESP with superimposed steering, the vehicle will automati-

cally steer so as to compensate for the turning of the vehicle. As a result more power can

be applied to the brakes and braking distance can be reduced.

1.2 Structure of this Thesis

The structure of this thesis breaks down into eight chapters (Figure 2). In Chapter 1 we

Figure 2: Overview of thesis.

introduce and motivate the concept of a superimposed steering system for more comfortable

and safer driving. In Chapters 2 and 3 we set up the first model of the system. We start

with the basic model comprising the vehicle dynamics and the tire-road interface. The

basic model is then augmented with a simple model of the steering system. This approach

is facilitated by the use of modularity. In Chapter 4 we introduce the first controller.

It is analog and derived under the assumption that the motor is an ideal torque source.

The system model is improved in Chapter 5 by incorporating the internal dynamics of the

electric motor. In Chapter 6 we also take the controller to this level of detail by designing

an analog current controller. In Chapter 7 we motivate and implement direct digital design

of the torque controller. We thus move the analog controller from Chapter 4 to the digital

domain. Finally, we validate our design using the Validation Square technique in Chapter

8.

3



1.3 Nomenclature

In the following we give the symbols used in this thesis and their respective units. We use SI

units. The focus is on symbols that appear in the actual model or controller, i.e., symbols

merely used during derivation are not included.

Global parameters
αf front slip angle [rad]
αr rear slip angle [rad]
β vehicle sideslip angle [rad]
δf road-wheel angle [rad]
Ff front cornering force [N]
Fr rear cornering force [N]
FW lateral wind force [N]
γ vehicle yaw rate [rad/sec]
v vehicle velocity [m/sec]

Table 1: Global parameters.

Vehicle module
JV vehicle mass moment of inertia [kgm2]
lf distance CG to front axle [m]
lr distance CG to rear axle [m]
m vehicle mass [kg]
Friction module
cf front cornering stiffness [kN/rad]
cr rear cornering stiffness [kN/rad]

Table 2: Vehicle and friction modules.
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Steering module
CM Coulomb constant of PMSM [Nm]
CS Coulomb constant of steering system [Nm]
δSW steering wheel angle [rad]
δsup superimposed steering angle [rad]
δsupdes

desired superimposed steering angle [rad]
GS gear ratio of steering system
GH gear ratio of harmonic drive
ia, ib, ic phase currents [A]
iq, id quadrature-/direct-axis current [A]
JLoad total mass moment of inertia of load [kgm2]
JM mass moment of inertia of PMSM rotor [kgm2]
JS mass moment of inertia of steering column [kgm2]
JW mass moment of inertia of front wheels [kgm2]
L PMSM self inductance [H]
L′ PMSM inductance [H]
λm flux magnitude [Wb]
M PMSM mutual inductance [H]
mr mass of steering rack [kg]
N PMSM number of pole pairs
R PMSM resistance [Ω]
rp radius of pinion [m]
TL load torque [Nm]
TM motor torque [Nm]
va, vb, vc phase voltages [V]
vq, vd quadrature-/direct-axis voltage [V]

Table 3: Steering module.

Controller
K1, K2 state feedback gains of torque controller
KI current integral gain
KIS integral state gain of torque controller
KP current proportional gain
Lr estimator feedback gain
ω0 natural frequency of torque controller [sec-1]
ω1 natural frequency of current controller [sec-1]
T sampling period [sec]
TD disturbance torque [Nm]
Tfb digital torque controller feedback torque [Nm]
Tff digital torque controller feedforward torque [Nm]

Table 4: Controller.

5



CHAPTER II

BASIC MODEL - VEHICLE AND FRICTION MODULES

In this chapter we present the structure of the modular simulation model comprising three

main modules. We also describe the two modules that will remain unchanged throughout

this work, i.e. the steering and friction modules. The simulation model will be augmented

and improved in Chapters 3 and 5.

2.1 Modular Modeling Approach

We have divided the entire simulation model for the superimposed steering system into

several modules (Figure 3). There are two reasons for this. First, a modular system is

easier to understand, because it reflects the physical structure of the system. Modules can

also be considered individually. Second, a modular approach provides greater flexibility.

The model can be adapted to specific needs just by modifying individual modules. These

changes can be implemented easily, because there is no need to redesign the model as a

whole. There are two inputs to the simulation model, namely the vehicle velocity v and the

Figure 3: Modular simulation model.

steering wheel angle δSW . δSW and v are both controlled by the driver.

Within the simulation model, there are three main modules, the steering module, the

vehicle module, and the friction module. The steering module comprises the controller, the

6



power electronics submodule, the permanent-magnet synchronous motor (PMSM) submod-

ule, and the mechanical steering system submodule. The modules interact through several

global parameters. In the steering module the road-wheel angle δf is calculated based on

the velocity v and the steering wheel angle δSW . The road-wheel angle δf is input to the

vehicle module where the vehicle yaw rate γ and the sideslip angle β are calculated. In

order to do so, one needs the front and rear cornering forces Ff and Fr. Ff and Fr are the

outputs of the friction module, which requires the front and rear slip angles αf and αr as

inputs.

There are also several internal parameters within each module. These will be introduced

with the individual modules.

2.2 Vehicle Module

The model used for the vehicle module is based on the bicycle or single-track model as first

developed in [20]. In this model both the two front wheels and the two rear wheels are

lumped into one wheel at the center line of the vehicle (Figure 4). The body coordinate

Figure 4: Single-track vehicle model.

system is defined by the longitudinal x-axis and the lateral y-axis of the vehicle.

In addition to the global parameters outlined above the following parameters are needed

for the vehicle module. The distance from the front axle to the center of gravity (CG) is

lf . Similarly lr is the distance from CG to the rear axle. The vehicle has the mass m and

the mass moment of inertia JV .

The following parameters have already been introduced above, but will be explained in
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more detail here. The sideslip angle β is defined as the angle between the direction of the

vehicle velocity and the center line of the vehicle. The road-wheel angle δf is the angle

between the direction of the velocity of the front wheel and the center line of the vehicle.

The front slip angle αf is defined as the angle between the center line of the front wheel

and the direction of the velocity of the front wheel. Similarly αr is the angle between the

center line of the rear wheel and the direction of the velocity of the rear wheel.

It is assumed that the vehicle operates on a flat plane. The only external forces affecting

the vehicle are the cornering forces Ff and Fr. The cornering forces occur at the contact

surface between the wheels and the road. These forces are calculated as part of the friction

module.

2.2.1 First Equation of Single-Track Model

The front and rear cornering forces can be separated into x- and y-components, i.e.,

Fx = − sin δfFf (1)

Fy = cos δfFf + Fr

or  Fx

Fy

 =

 − sin δf 0

cos δf 1


 Ff

Fr

 (2)

The differential equations can be derived from Newton’s second law, which says that

the acceleration times the mass is equal to the sum of all forces. In mathematical terms

this is

ma =
∑

i

Fi (3)

If we apply Newton’s law to the different forces acting in the lateral direction with respect

to the vehicle’s velocity, we obtain

may = − sinβFx + cos βFy =
[
− sinβ cos β

]  Fx

Fy

 (4)

The expression for ay is derived using vector analysis. The acceleration of a rotating and

translating body in space is given by the expression

a = γ × v + v̇ (5)
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which can be found in [21]. By calculating the vector product one gets

a = γez × vex + v̇ = γvey + v̇ey = v(γ + β̇)ey (6)

The results of (2), (4) and (6) are taken together resulting in

mv(β̇ + γ) =
[
− sinβ cos β

]  − sin δf 0

cos δf 1


 Ff

Fr

 (7)

mv(β̇ + γ) =
[

sinβ sin δf + cos β cos δf cos β

]  Ff

Fr


2.2.2 Second Equation of Single-Track Model

The second differential equation is based on the fact that the sum of all torques must be

equal to the mass moment of inertia J times the angular acceleration α̈, i.e.,

∑
i

Mi = Jα̈ (8)

Torque is the product between the torque arm and the component of the force that is

orthogonal to it and therefore

M = rF (9)

As already noted in the derivation of the first equation, the external forces affecting the

vehicle are the cornering forces Ff and Fr on the front and rear wheels. Considering the

distance between the point of application of the forces and the center of gravity as well as

the angles between the vectors, one obtains

JV γ̇ = Ff lf cos δf − Frlr (10)

Equations (7) and (10) can be summarized in the single vector-matrix equation mv(β̇ + γ)

JV γ̇

 =

 sinβ sin δf + cos β cos δf cos β

lf cos δf −lr


 Ff

Fr

 (11)
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2.2.3 Slip Angles

The slip angles were already mentioned in the introduction to the modular simulation model.

The actual calculation is given here. The rear slip angle is defined as the rear wheel lateral

velocity divided by the forward velocity. Hence, the rear slip angle is a function of the

vehicle velocity v, the yaw rate γ, and the sideslip angle β. The two latter parameters are

the state variables of the single-track model. The rear slip angle is

αr =
−βv + lrγ

v
= −β +

lr
v

γ (12)

Similarly the front slip angle is defined as the front wheel lateral velocity divided by the

forward velocity minus the steering angle. It is therefore

αf =
−βv + lfγ

v
− δf = −δf − β +

lf
v

γ (13)

2.3 Friction Module

Many types of friction models can be found in the literature. The most simple approach is

a linear model such as it has been used in [14] and [18]. Some authors ([8], [17], [22]) use a

static nonlinear model commonly referred to as the magic formula or Pacejka model ([1]).

The most complex friction models used are dynamic models such as the one developed in

[5].

We use a linear tire model and assume the cornering forces to be a linear function of

the slip angles αf , αr. Cornering forces and slip angles are thus related by means of the

cornering stiffnesses cf , cr, which are proportionality constants. With this the cornering

forces can be calculated from

Ff = cfαf (14)

Fr = crαr

In order to calculate the cornering forces, one therefore only needs the front and rear slip

angles αf and αr from the vehicle module. The resulting cornering forces Ff and Fr are

returned to the vehicle model (Figure 5).
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Figure 5: Friction module.

2.4 Parameters of Vehicle and Friction Modules

We have chosen to design the superimposed steering model and controller for a small truck.

The vehicle parameters have been chosen to reflect this.

2.4.1 Parameters of Vehicle Module

The parameters of the truck have been based on the assumption that the vehicle is laden

to its maximum permissible weight. This is the worst case scenario from the point of view

of driving dynamics. Hence, the weight of the truck is m = 2940 kg. The wheelbase is

3200 mm. The distance of the center of gravity (CG) to the rear axle is lr = 1513 mm. As

a result the distance from CG to the front axle is lf = 1687 mm. The vehicle mass moment

of inertia is JV = 4300 kgm2.

2.4.2 Parameters of Friction Module

The tire forces for the type of tire to be used for the truck have been measured at the

Technical University of Dresden in February 1998. The tire has been analyzed on a tire test

bench at a speed of 11.1 m/s. The internal pressure of the tire was 2.9 bar.

We will first obtain the cornering stiffness of one individual tire and then calculate the

stiffness for the single-track vehicle model by multiplying the results by two. The weight on

each of the two front wheels is m
2

lr
lf+lr

= 695 kg and on the two rear wheels m
2

lf
lf+lr

= 775 kg.

The resulting wheel loads are 6.818 kN for the front wheels and 7.603 kN for the rear wheels.

The measurements for the cornering forces Ff/r as a function of the front/rear slip angle

αf/r have been executed for a wheel load of 6.0 kN and 9.0 kN. The results can be found

in Figure 6. As one can see from the figure, the behavior of the cornering forces Ff/r is

approximately linear for αf/r ∈ [−0.05, 0.05]. That is why we can use the friction model
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Figure 6: Measurements of cornering forces.

as described in Section 2.3. We define the cornering stiffness as the slope of the curve at

the origin. In this instance the cornering stiffness is 90.457 kNrad-1 for each of the front

tires and 97.886 kNrad-1 for each of the rear tires. Since we use the single-track model, we

have to lump the tires at the front and at the back. Hence, the front cornering stiffness is

cf = 180.914 kNrad-1 and the rear cornering stiffness is cr = 195.772 kNrad-1.

The vehicle and friction parameters of the truck are summarized in Table 5.

Vehicle module
lf distance CG to front axle 1687 mm
lr distance CG to rear axle 1513 mm
m vehicle mass 2940 kg
JV vehicle mass moment of inertia 4300 kgm2

Friction module
cf front cornering stiffness 180.914 kNrad-1

cr rear cornering stiffness 195.772 kNrad-1

Table 5: Vehicle and friction parameters of small truck.
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CHAPTER III

AUGMENTED MODEL - LOW-DETAIL STEERING

MODULE

In this chapter we present the low-detail steering module. Together with the vehicle and

friction modules presented in Chapter 2 this gives us the complete augmented simulation

model of the system. The low-detail steering module presented here differs from the high-

detail steering module presented in Chapter 5 in that the electric motor is assumed to be

an ideal torque source whereas in Chapter 5 we model the internal dynamics of the motor.

3.1 Structure of Low-Detail Steering Module

There are many approaches to modeling the steering system. These differ greatly in accuracy

and level of complexity. In most publications focusing on control, very simple steering

models are employed. The authors assume the additional steering angle to be a direct

output of the controller ([5], [17], [18]). A more realistic approach is used in [8] where the

entire steering system is modeled as a first-order system. The most sophisticated approach

can be found in [15]. In this paper the driver input has been modeled as a torque. The

electric motor for the superimposed steering system adds an additional torque. The system

is damped by the mass moment of inertia of the wheels and the steering system itself. The

wheel torque due to the caster angle offset has been modeled as well.

The model that is used here is a modified version of the model in [15]. The entire

steering system is broken down into the subsystems of the controller, the power electronics,

the permanent-magnet synchronous motor (PMSM), and the mechanical system (Figure 7).

The inputs to the steering module are the steering wheel angle δSW and the vehicle

velocity v. Based on these inputs and the superimposed steering angle δsup, a desired

vector of voltages vdes is calculated in the controller. These voltages are amplified in the
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Figure 7: Steering module.

power electronics and supplied to the permanent-magnet synchronous motor. The output

of the motor is the motor torque TM . In the mechanical system submodule the resulting

superimposed steering angle δsup is calculated from TM and the load torque TL. δsup is added

to δSW and divided by the gear ratio of the steering system GS to obtain the road-wheel

angle δf which is the output of the steering module.

In the low-detail steering model described in this chapter we simplify the steering module

by assuming that the motor torque TM is a direct output of the controller. This can be

seen in Figure 8. That is why we only deal with the mechanical system submodule in this

chapter. The power electronics and PMSM submodules are dealt with in Chapter 5.

Figure 8: Low-detail steering module.

3.2 Mechanical System Submodule

We first derive the equations of the mechanical system and then show how to calculate the

inertia of the load.

3.2.1 Equations of Mechanical System

In the mechanical system submodule we describe the mechanical dynamics of the steering

system. A schematic of the envisaged mechanical system can be seen in Figure 9.
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Figure 9: Schematic of superimposed steering system.

The load torque for the electric motor depends primarily on the location of the motor

in the steering system. If the superimposed steering system is located below the power

steering system, then the required torque is a function of the steering system and the road

conditions. The primary driver in this case is the self-alignment torque. If the superimposed

steering system is located above the power steering system, then the required torque also

depends on the power steering system. The latter approach is chosen for the implementation

of the superimposed steering system in the truck, because this is the only way to keep the

PMSM small and light. If the superimposed steering system were not supported by the

power steering system, one would need a large and heavy PMSM.

Apart from the load torque the system is also slowed down by friction both in the

steering system and in the PMSM itself. We have modeled this using Coulomb friction. The

Coulomb constant of the motor is CM and the Coulomb constant of the steering system is

CS .

Continuing on our intention of keeping the PMSM small and light we use a harmonic

drive with a gear ratio of GH . A harmonic drive is a gear set that is very precise and has

extremely low friction. This is achieved by having two gears with a slightly different number

of teeth, e.g., 100 and 102. The harmonic drive used here has a gear ratio of GH (Figure 10).

By abstracting from Figure 10 to a more generic representation of a gear coupled system we

obtain Figure 11. The motor rotates at a GH times higher speed than the load. As a result

of the gear set, the effect of the load torque TL and the load inertia JLoad can be reduced.

We use this abstracted representation. The Euler equation for the gear coupled system in
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Figure 10: Harmonic drive.

Figure 11: Gear coupled system.

the frame of reference of the motor is

JM
d2δMotor

dt2
+ JLoad

d2δsup

dt2
= TM − 1

GH
TL − CMsgn

(
dδMotor

dt

)
− CS

GH
sgn

(
dδsup

dt

)
(15)

We assume perfect coupling between the motor and the load, i.e.,

dδMotor

dt
= GH

dδsup

dt
(16)

d2δMotor

dt2
= GH

d2δsup

dt2

We plug these results into equation (15) and obtain

(GHJM + JLoad)
d2δsup

dt2
= TM − 1

GH
TL −

(
CM +

CS

GH

)
sgn

(
dδsup

dt

)
(17)

We use this knowledge to create a block diagram of the mechanical system submodule

(Figure 12).

3.2.2 Mass Moment of Inertia of Load

In the previous section we have derived equations for the superimposed steering angle δsup

as a function of the total inertia of the load JLoad. It was however not shown how to

16



Figure 12: Mechanical system submodule.

calculate the actual inertia. This largely depends on the structure of the steering system.

A rack-and-pinion steering system is used here. The pinion gear is attached to the steering

column. Whenever the steering column rotates, the pinion turns as well, thus moving the

rack (Figure 13).

Figure 13: Rack-and-pinion steering system.

We now want to calculate the total inertia of the load. That is why we decompose

the system into the PMSM, the steering column, the steering rack and the wheels (Figure

14). Only the steering column, the steering rack and the wheels are considered part of the

load. Hence there are two inertias, namely the inertia JS of the steering column and the

inertia JW of each of the front wheels. Besides, one has to consider the mass of the steering

rack. JS is already in the rotational frame of reference of the steering column. The other

parameters are not. That is why they need to be transformed into this frame of reference.

We start with the inertia of the wheels JW . Due to the gear ratio of the steering system,

the wheels only have 1/GS times the angular velocity of the steering column. Hence,

according to [4], in order to transform JW into the rotational frame of reference of the

steering column, one has to divide JM by GS .

The steering rack with the mass mr is subject to translatory motion. It needs to be
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Figure 14: Decomposed steering system.

transformed into the rotational frame of reference of the steering column as well. This is

done by multiplying mr with the square of the pinion radius rp. We add up all inertias

transformed into the rotational frame of reference of the steering column. As a result the

total inertia of the load is

JLoad = JS + 2
1

GS
JW + rp

2mr (18)

3.3 Parameters of Low-Detail Steering Module

The parameters of the truck for the mechanical system submodule break down into the

different parameters of the mechanical system submodule and the parameters required to

calculate the inertia of the load.

3.3.1 Parameters of Mechanical System Submodule

As outlined above the load torque TL is determined by the forces at the tire-road interface

and the torque generated by the power steering system. We have measurements of the

load torque TL of a small truck, which will be integrated into the model. The Coulomb

constant of the motor is CM = 0.032 Nm and the Coulomb constant of the steering system

is CS = 1.6 Nm. The gear ratio of the steering system is GS = 14.4 and the gear ratio of
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the harmonic drive is GH = 50. The motor has an inertia of JM = 2.61 ∗ 10-6 kgm2.

3.3.2 Parameters of Inertia of Load

The total inertia of the load system can be calculated using

JLoad = JS + 2
1

GS
JW + rp

2mr (19)

We start with JS . The steering column is modeled as a hollow cylinder with an inner radius

of 14 mm, an outer radius of 24 mm and a moving mass of 2.5 kg (Figure 15). We plug in

Figure 15: Inertia of steering column.

these number and obtain

JS =
1
2
∗ 2.5 kg

[
(24 mm)2 − (14 mm)2

]
= 4.75 ∗ 10−4 kgm2 (20)

We now look at JW . The wheels are also modeled as cylinders. However, unlike the

steering column, the wheels rotate around the the z-axis (compare Figure 14). This makes

the calculation of the inertia more tedious. We derive the equation for the inertia of the

wheels from the generic equation for the inertia of any rotating body. The inertia of a

body rotating around an axis g is defined as the integral of the density ρ times the squared

distance a2(g, x) to the axis g over the entire body, i.e.,

J =
∫∫∫

K
ρa2(g, x) dV (21)

We assume a constant density in the wheel. We can therefore move ρ out of the integral

and obtain

J = ρ

∫∫∫
K

a2(g, x) dV (22)
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In order to make solving the integral easier, we will integrate merely over one eighth of

the actual volume, as shown on the left of Figure 16. That is why the integral needs to

be multiplied by eight in order to obtain the actual inertia. The integral in the x- and

Figure 16: Inertia of wheel.

y-directions is
r(z)∫
0

d
2∫

0

a2(g, x) dxdy =

r(z)∫
0

d
2∫

0

(
x2 + y2

)
dxdy (23)

In the next step we also integrate in z-direction. r is a function of z. The circle which is

shown in Figure 16 on the right has the equation

r2 + z2 = R2 (24)

We also know that r as a function of z is

r(z) =
√

R2 − z2 (25)

Finally, we also integrate in the z-direction. Then the total inertia of the steering system is

JW = 8ρ

R∫
0

√
R2−z2∫
0

d
2∫

0

(
x2 + y2

)
dxdy dz (26)

By solving this integral we obtain

JW = 8ρ

R∫
0

√
R2−z2∫
0

(
1
24

d3 +
1
2
dy2

)
dy dz (27)

= 8ρ

R∫
0

(
1
24

d3
√

R2 − z2 +
1
6
d
(
R2 − z2

) 3
2

)
dz

= 8ρ

[
1
48

d3
(

z
√

R2 − z2 + R2 arcsin
z

R

)]R
0
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+8ρ

[
1
24

d

(
z
(
R2 − z2

) 3
2 +

3R2z

2

√
R2 − z2 +

3R4

2
arcsin

z

R

)]R

0

= 8ρ

[
1
48

d3R2 π

2
+

1
24

d
3R4

2
π

2

]

The density of the wheels is ρ = 3.1825 ∗ 10−7 kg/mm3, the radius is R = 352 mm and the

width is d = 232 mm. Using these numerical values the value of the inertia is

JW = 2.546 ∗ 10−6 kg
mm3

[
1
48

(232 mm)3 (352 mm)2
π

2
+

1
24

232 mm
3 (352 mm)4

2
π

2

]
= 1.0192 kgm2 (28)

Finally, we look at the steering rack. We know that the gear ratio of the steering system

is GS = 14.4. The mass of the steering rack is mr = 3.3 kg and the pinion radius is

rp = 7 mm. We use all these values to calculate

JLoad = 0.1422 kgm2 (29)

The initial steering parameters of the truck are summarized in Table 6.

Initial steering module
GS gear ratio of steering system 14.4
GH gear ratio of harmonic drive 50
JM mass moment of inertia of PMSM rotor 2.61 ∗ 10−6 kgm2

JLoad total mass moment of inertia of load 0.1422 kgm2

CM Coulomb constant of PMSM 0.032 Nm
CS Coulomb constant of steering system 1.6 Nm

Table 6: Parameters of initial steering module.
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CHAPTER IV

ANALOG POSITION CONTROLLER

In this chapter we design an analog position controller to achieve a desired steering ratio

defined as a function of the vehicle velocity. It is based on the model derived in Chapters 2

and 3. In Chapter 5 the analog position controller is augmented with a current controller.

In Chapter 7 the position controller is taken to the digital domain.

4.1 Control Objective

The steering ratio is defined as the ratio of the steering angle δSW to the road-wheel angle

δf . The control objective is to obtain a variable steering ratio as a function of the vehicle

velocity v (Figure 17). Below the velocity vmin = 4.167 m/sec the ratio should be a constant

Figure 17: Desired steering ratio.

of 10 and above vmax = 55.556 m/sec the ratio should be 17.2. In between these two values,

the ratio should increase as shown in Figure 17.
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4.2 Overview of Analog Position Controller

4.2.1 Structure of Analog Position Controller

We use the control approach shown in Figure 18. There are two main parts to the controller.

Figure 18: Structure of analog position controller.

First, one has to calculate the desired superimposed steering angle δsupdes
from the vehicle

velocity v and the steering wheel angle δSW . Second, one needs the actual controller to

drive the actual superimposed steering angle δsup to the desired superimposed steering

angle δsupdes
.

4.2.2 Calculation of Desired Superimposed Steering Angle

In order to obtain a desired steering ratio we first need to calculate the superimposed

steering angle that is required to obtain the steering ratio shown in Figure 17. In Figure 19

we show a simplified representation of the steering module. There is a steering gear with a

Figure 19: Simplified representation of steering module.

gear reduction of GS in the system. That is why the actual road-wheel angle δf is the sum

of the angle δSW imposed by the driver and the additional angle δsup from the superimposed

steering system divided by GS . Hence, the resulting road-wheel angle can be expressed as

δf =
1

GS
(δSW + δsup) (30)
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The steering ratio is the steering wheel angle divided by the road-wheel angle. The

relationship between the desired superimposed steering angle δsupdes
and the desired steering

ratio r is therefore

r =
δSW

δf
=

δSW
1

GS
(δSW + δsupdes

)
(31)

We solve this equation for the desired superimposed steering angle

δsupdes
= δSW

(
GS

r
− 1

)
(32)

4.3 Model Matching Controller

The design approaches used in classical control, e.g., root-locus or frequency-domain meth-

ods, are outward approaches. This implies that one first chooses among different control

approaches and then tries to pick suitable parameters for a given controller to fulfill the

control objectives. Hence, you start by choosing the internal compensators and then design

the overall system such that design requirements are met. The problem with this method

is that it is a trial-and-error approach. The inward approach, which is used here, goes

exactly the other way. You first specify the overall transfer function that you would like to

have and then choose a configuration. This allows you to take much greater influence on

the behavior of the controlled system. One example for an inward approach is the model

matching technique. You first specify the desired overall transfer function and then design

a controller to achieve it. A detailed introduction to the inward approach and the model

matching technique can be found in [2].

4.3.1 Desired Overall Transfer Function

The differential equation of the uncontrolled plant given in (17) is

(GHJM + JLoad)
d2δsup

dt2
= TM − 1

GH
TL −

(
CM +

CS

GH

)
sgn

(
dδsup

dt

)
(33)

This system is nonlinear because of the sgn-function. We do however plan to use model

matching to design the controller. That is why we have to linearize the sgn-function (Figure

20). We have to make a tradeoff. If we choose the slope of the linearized function to be very

large, we will have very high torque requirements for steep inputs. This might drive the

24



Figure 20: Linearization of Coulomb friction.

actuator into saturation. A small slope will result in slower rejection of Coulomb friction.

Our priority here however is not to saturate the actuator. That is why we choose the

linearization coefficient B to be rather small. Through simulation we have found out that

determining the slope such that the error is zero for an angular velocity of δ̇sup = 50 rad/s

is a good choice. We therefore use

TFriction = B
δsup

dt
(34)

with B =
CM + CS

GH

50 rad
s

We apply this to equation (17) and thus linearize it to

(GHJM + JLoad)
d2δsup

dt2
= TM − 1

GH
TL −B

dδsup

dt
(35)

If we set the load torque TL to zero and summarize GHJM + JLoad = C, then the transfer

function of this system from the motor torque TM to the superimposed steering angle δsup

is

G1(s) =
1

Cs2 + Bs
(36)

We model the load torque as a disturbance and choose an appropriate transfer function

of the controlled system from the desired superimposed steering angle δsupdes
to the actual

superimposed steering angle δsup. In choosing the desired transfer function we have to

account for two things. First, we want tracking of the desired superimposed steering angle

δsupdes
. Second, we intend to make use of a model matching approach in designing our

controller. That is why the relative degree of the desired transfer function has to be at least
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as large as the relative degree of the plant’s transfer function. These considerations leave

us with the desired transfer function

G0(s) =
ζω0

2s + ω0
3

s3 + ηω0s2 + ζω0
2s + ω0

3
(37)

The numerical values that one chooses for η and ζ depend on the specific control objectives.

We want to minimize the integral of time multiplied by velocity error (ITAE) as defined by

JITAE :=
∫ ∞

0
t |e(t)| dt (38)

The choice of η and ζ for a ITAE zero-velocity-error optimal system is η = 1.75 and ζ = 3.25.

Furthermore, we have to make a tradeoff at this point. The larger we choose the natural

frequency ω0, the faster the system. On the other hand, the larger ω0, the bigger the control

effort. We are however limited in the maximum torque that can be generated by the motor.

That is why we choose ω0 such that the system just meets the performance requirements

in terms of responsiveness. We want the settling time to within 10% to be ≤ 0.02 sec. This

is the case if ω0 ≤ 162 sec-1. That is why we choose ω0 = 162 sec-1

The step response of the desired transfer function with the performance criteria is shown

in Figure 21.

Figure 21: Step response of desired transfer function.
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4.3.2 Control Design Using Model Matching

Now that we know both the plant transfer function G1(s) and the desired transfer function

G0(s), we want to find compensators such that the transfer function of the resulting system

equals G0(s). This is done using model matching. Unlike traditional outward approaches

model matching allows us to place both poles and zeros, which is important as far as

disturbance rejection and robustness are concerned. Since we have the load torque TL,

which may represent a significant disturbance, this property is highly important.

In order to achieve both pole and zero placement we need two-parameter compensation.

We can assign different compensators to the reference input and the plant output and want

the motor torque to be

TM (s) = C1(s)δsupdes
(s)− C2(s)δsup(s) (39)

C1(s) is called the feedforward compensator and C2(s) is called the feedback compensator.

Both functions can be defined by linear transfer functions, i.e.,

C1(s) =
L(s)
A(s)

C2(s) =
M(s)
A(s)

(40)

Since both C1(s) and C2(s) have the same denominator, we need to implement A(s) only

once. This also eliminates the problem of possible unstable pole-zero cancellation and

reduces the number of integrators to a minimum (Figure 22). The prerequisites for model

Figure 22: Plant with two-parameter model matching controller.

matching are that G1(s) is coprime and that G0(s) is implementable in the following sense.

• #1 Pole-zero excess inequality: The relative degree of the desired transfer function

has to be greater or equal to the relative degree of the plant transfer function.

• #2 Retainment of non-minimum-phase zeros: All closed right hand plane zeros of
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the plant transfer function G1(s) have to be retained in the desired transfer function

G0(s).

• #3 Stability: The denominator of G0(s) is Hurwitz.

G1(s) is coprime and all conditions are met, because

• #1 Pole-zero excess inequality: 2 ≥ 2.

• #2 Retainment of non-minimum-phase zeros: G1(s) does not have any non-minimum-

phase zeros.

• #3 Stability: Using the Routh test one can see that D0(s) is Hurwitz.

In order to calculate L(s), M(s) and A(s) we need to go through several steps. We set up

the general model matching condition. We introduce a Hurwitz polynomial D̄p(s) to ensure

that the resulting compensators are proper and good disturbance rejection is achieved.

Finally, we solve the resulting equations.

We know that

G1(s) =
N(s)
D(s)

=
1

Cs2 + Bs
(41)

G0(s) =
N0(s)
D0(s)

=
ζω0

2s + ω0
3

s3 + ηω0s2 + ζω0
2s + ω0

3

First we compute

G0(s)
N(s)

=
N0(s)

D0(s)N(s)
=

ζω0
2s + ω0

3

s3 + ηω0s2 + ζω0
2s + ω0

3
=:

Np(s)
Dp(s)

(42)

Np(s) and Dp(s) are coprime.

We want the actual transfer function to be identical to the desired transfer function,

i.e.,

G0(s) =
Np(s)N(s)

Dp(s)
=

L(s)N(s)
A(s)D(s) + M(s)N(s)

(43)

We now introduce a Hurwitz polynomial D̄p(s) such that the following inequality

deg Dp(s) deg D̄p(s) ≥ 2n− 1 where n = deg D(s) (44)
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is satisfied. Here n = 2 and deg Dp(s) = 3. That is why it would be sufficient to choose the

degree of D̄p(s) as 0. We do however choose D̄p(s) to be of degree 1, because this allows

for better disturbance rejection as we will see in the following. Hence D̄p(s) is

D̄p(s) = s + α where α > 0 (45)

We rewrite equation (43) using this D̄p(s) and obtain

G0(s) =
Np(s)N(s)

Dp(s)
=

N(s)
[
Np(s)D̄p(s)

]
Dp(s)D̄p(s)

=
N(s)L(s)

A(s)D(s) + M(s)N(s)
(46)

From this we can set up an equation for L(s), which is

L(s) = Np(s)D̄p(s) =
(
ζω0

2s + ω0
3
)

(s + α) (47)

We now also have an equation for A(s) and M(s).

A(s)D(s) + M(s)N(s) = Dp(s)D̄p(s) (48)

=
(
s3 + ηω0s

2 + ζω0
2s + ω0

3
)

(s + α) =: F (s)

F (s) is a polynomial of degree 4 and can therefore be expressed in the form

F (s) := Dp(s)D̄p(s) = F4s
4 + F3s

3 + F2s
2 + F1s + F0 (49)

A(s) and M(s) are polynomials of degree 2 and can be expressed as

A(s) = A2s
2 + A1s + A0 (50)

M(s) = M2s
2 + M1s + M0

This is used to transform equation (48) into the matrix form



D0 N0 0 0 0 0

D1 N1 D0 N0 0 0

D2 N2 D1 N1 D0 N0

0 0 D2 N2 D1 N1

0 0 0 0 D2 N2





A0

M0

A1

M1

A2

M2


=



F0

F1

F2

F3

F4


(51)
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Once we plug in the parameters this becomes



0 1 0 0 0 0

B 0 0 1 0 0

C 0 B 0 0 1

0 0 C 0 B 0

0 0 0 0 C 0





A0

M0

A1

M1

A2

M2


=



ω0
3α

ω0
3 + ζω0

2α

ζω0
2 + ηω0α

ηω0 + α

1


(52)

This system is underdetermined. Still, we want disturbance rejection. We will see later that

step disturbances can only be rejected for t →∞ if A0 = 0. That is why we choose A0 = 0

and solve the linear equation for the remaining Ai and Mi.

A0 = 0 (53)

A1 =
1
C

(
ηω0 + α− B

C

)
A2 =

1
C

M0 = ω0
3α

M1 = ω0
3 + ζω0

2α

M2 = ζω0
2 + ηω0α−

B

C

(
ηω0 + α− B

C

)

We still have to determine the parameter α. We choose α in such a way that we can achieve

disturbance rejection. The transfer function from the disturbance, i.e., load torque TL, to

the plant output δsup is

H(s) :=
δsup(s)
TL(s)

=
N(s)A(s)

Dp(s)D̄p(s)
(54)

=
s2 + (ηω0 + α) s

(s3 + ηω0s2 + ζω0
2s + ω0

3) (s + α)

Now we can see why it was important to choose A0 = 0. It is by doing this that we

could ensure that H(0) = 0, i.e., disturbance rejection. The transfer function H(s) has four

poles: s1 = −59.01, s2 = −112.24 + j243.82, s3 = −112.24 − j243.82 and s4 = −α. We

choose α = 200 so that the disturbance rejection is fast.
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If we plug in all the vehicle parameters and previous results, we obtain the actual

compensators

L(s) = 8.5293 ∗ 104s2 + 2.1310 ∗ 107s + 8.5031 ∗ 108 (55)

M(s) = 1.4199 ∗ 105s2 + 2.1310 ∗ 107s + 8.5031 ∗ 108

A(s) = 7.0259s2 + 3.3970 ∗ 103s

4.4 Evaluation of Analog Position Controller with Aug-
mented Model

There are four major influences on the performance of the superimposed steering system:

• Curve radius

• Vehicle velocity

• Vehicle rate of acceleration/deceleration

• Steering wheel angle rate of acceleration/deceleration

We evaluate the controller by making use of two different scenarios in which we emphasize

specific combinations of these influences. In order to do so we need to track the position of

the vehicle in the x1/x2-plane. The velocity in the vehicle’s coordinate frame is given by

vx1veh
= v cos β (56)

vx2veh
= v sinβ

This is however in the vehicle’s coordinate frame. If we want the velocity in the unmoved

x1/x2-plane we have to add the angle between the vehicle main axis and the x1-axis. If we

assume that the vehicle points in x1-direction at time 0, this angle can be obtained through

integration of the vehicle yaw rate γ over time

vx1 = v cos

 t∫
0

γ dt + β

 (57)

vx2 = v sin

 t∫
0

γ dt + β


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The actual position of the vehicle as a function of time can be obtained from this using

x1 =
t∫

0

v cos

 t∫
0

γ dt + β

 dt (58)

x2 =
t∫

0

v sin

 t∫
0

γ dt + β

 dt

4.4.1 Scenario 1: Highway

When driving at high speed on the highway, the superimposed steering system should pro-

vide a steering ratio that is less direct than a conventional system. The highway environment

is characterized by high speed and high curve radii combined with low accelerations of the

vehicle and the steering wheel (Table 7).

curve radius r high
vehicle velocity v high
vehicle rate of acceleration/deceleration |v̇| low
steering wheel angle rate of acceleration/deceleration

∣∣∣δ̈SW

∣∣∣ low

Table 7: Characteristics of highway scenario.

We assess the behavior of the superimposed steering system by having the vehicle drive

at constant velocity on a highway with two subsequent curves (Figure 23). The driver’s

Figure 23: Road for highway scenario.

steering wheel angle has been selected such that the vehicle follows the given road. The

exact steering wheel angle δSW over time can be seen in Figure 24.

The simulation results for this particular steering input and a vehicle velocity of v =

30 m/s can be seen in Figure 25. It is interesting to note that the shape of the curve of
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Figure 24: Steering input for highway scenario.

superimposed steering angle δsup is a scaled and mirrored version of the curve of the steering

wheel angle δSW . This is no surprise, because the desired steering ratio at v = 30 m/s is

above the mechanical ratio GS = 14.4. Hence, the superimposed steering motor has to work

against the steering wheel angle imposed by the driver in order for the steering system to

be less direct.

In the lower diagram in Figure 25 we show the desired torque output of the electrical

motor. One can see that the absolute value of the torque output of the electric motor

always remains below 0.1 Nm. Hence the torque output is feasible for our choice of motor,

which has a nominal torque of about 0.5 Nm. We also see some small oscillations of the

torque output for t ≥ 38 sec. In these instances the desired superimposed steering angle is

δsup = 0 rad. The oscillations are caused by the Coulomb friction in the steering system.

As one can see from the diagram of the superimposed steering angle δsup, these oscillations

are however so small that they represent no limitation to the performance of the system.

The above mentioned simulation results show that the controller gives satisfying results

that correspond to what one would logically expect. The most important performance

measure for the controller is however its ability to achieve the specific steering ratio as a

function of vehicle velocity. The vehicle drives at 30 m/s. According to our control objective
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Figure 25: Superimposed steering angle and torque output for highway scenario.

(Figure 17) our desired steering ratio at this speed is 15.61.

The actual steering ratio is shown in Figure 26. The ratio is zero for t ≤ 5 sec and

t ≥ 38 sec. Moreover, there is a peak around t ≈ 22 sec. These phenomena are not due

to the controller, but to the definition of the steering ratio. The road-wheel angle crosses

zero at these time instances. Since the steering ratio is defined as the steering wheel angle

divided by the road-wheel angle, the steering ratio becomes either zero or infinite at these

instances. Considering this fact we can conclude that the actual steering ratio corresponds

to the desired ratio of 15.61. The system also is sufficiently fast, as the desired steering

ratio is generally reached within one third of a second.

Based on this first scenario we conclude that the analog position controller is valid for

scenarios involving a high and constant velocity, high curve radii and low rates of accelera-

tion of the steering wheel angle.

4.4.2 Scenario 2: Inner City

In the city the vehicle will drive at lower speeds than on the highway. As a result we will

generally want a more direct steering ratio than the one given by the mechanical ratio G.

As a result the superimposed steering angle δsup should now run in parallel to the steering
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Figure 26: Desired and actual steering ratio for highway scenario.

wheel angle δSW and not in the exactly opposite direction as in the highway scenario.

Moreover, the torque requirements should increase as we now have higher rates of accel-

eration and smaller curve radii resulting in higher and more rapidly changing superimposed

steering angles. The important characteristics of the inner city scenario have been summa-

rized in Table 8.

curve radius r small
vehicle velocity v low
vehicle rate of acceleration/deceleration |v̇| high
steering wheel angle rate of acceleration/deceleration

∣∣∣δ̈SW

∣∣∣ high

Table 8: Characteristics of inner city scenario.

The inner city scenario comprises three straight sections with two curves in between

(Figure 27). Unlike the highway scenario we accelerate and decelerate the vehicle. The

driver decelerates the car when entering the first curve. The car is then accelerated as the

vehicle leaves the curve. The same procedure is repeated for the second curve. Hence, we

now have a variable vehicle velocity v. Since the desired steering ratio is a function of v,

it will now change as a function of time. This is a new challenge that we did not face in

the first scenario. The steering and velocity inputs for the inner city scenario are shown in
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Figure 27: Road for city city scenario.

Figure 28.

Figure 28: Steering and velocity inputs for inner city scenario.

The simulation results for the superimposed steering angle δsup and the torque output

TM are shown in Figure 29. Unlike the highway scenario, the δsup now runs in parallel with

the steering wheel angle δSW . This is because the vehicle drives at relatively low speed

and the superimposed steering system therefore increases the angle chosen by the driver in

order to provide a more direct ratio between δSW and the δf .

The torque output for this scenario is within a feasible range in terms of the actuator
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Figure 29: Superimposed steering angle and torque output for inner city scenario.

performance. Like in the previous example we experience some oscillations if δsup approaches

zero. As mentioned above these are due to Coulomb friction and represent no limitation to

the performance of the system.

The primary performance criterion is the relationship between the desired and the actual

steering ratio (Figure 30). As one can see, the curves run mostly on top of each other. If

they do not, then it is because δsup is very close to or equal to zero. As outlined above, the

actual steering ratio is not defined in these instances. Considering this, we can conclude

that the actual steering ratio follows the desired ratio very well.

Based on this second scenario we conclude that the analog position controller is also valid

for scenarios involving variable velocities, low curve radii and high rates of acceleration of

the steering wheel angle.
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Figure 30: Desired and actual steering ratio for inner city scenario.
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CHAPTER V

FINAL MODEL - HIGH-DETAIL STEERING MODULE

We now increase the level of detail in the steering module that we first described in Chapter

3. We do so by modeling the dynamics of the electric motor.

5.1 Structure of High-Detail Steering Module

The high-detail steering module is different from the low-detail steering module in that we

now model the internal dynamics of the actuator. Hence, we no longer assume torque being

a direct output of the controller. Instead, we now assume that the output of the controller

is voltage, which is fed to the permanent-magnet synchronous motor with sinusoidally dis-

tributed stator windings. We do not model the dynamics of the power electronics here.

Hence, the output of the controller in our model is the voltage v as shown in Figure 31.

Figure 31: High-detail steering module.

5.2 Permanent-Magnet Synchronous Motor Submodule

The physical system has three phases. Due to the fact that these are wye-connected, it is

however sufficient to model currents and voltages along two axes. Hence, the equations for

the three phases are strongly coupled. That is why we start by modeling the three phases

of the physical system in the abc frame of reference of the stator. We then transform these

equations to the qd frame of reference of the rotor allowing easier modeling.
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5.2.1 Equations in abc Frame of Reference

A brushless, permanent-magnet synchronous motor with sinusoidally distributed stator

windings is to be used for the superimposed steering system. Compared to a conven-

tional, brush-commutated motor, the brushless motor offers higher reliability and less fric-

tional loss. Since we use sinusoidally distributed stator windings, we also have sinusoidal

magnetics. This refers to the magnetic flux due to the phase currents. There are also

permanent-magnet synchronous motors with trapezoidal magnetics on the market. Each of

the two approaches has specific advantages and disadvantages. According to [10] trapezoidal

magnetics require less precise control sensors and are simpler to implement. Sinusoidal mag-

netics on the other hand are more complex, but do allow for much more precise positioning

of the motor. Since this aspect is crucial in a superimposed steering system, we choose

sinusoidal magnetics.

The derivation of the equations is adapted from [12]. The voltage equations for all three

phases of the PMSM are
va(t)

vb(t)

vc(t)

 =


R 0 0

0 R 0

0 0 R




ia(t)

ib(t)

ic(t)

+


λ̇a(t)

λ̇b(t)

λ̇c(t)

 (59)

The indices a, b and c represent the three stator phases. va(t), vb(t) and vc(t) are the phase

voltages, ia(t), ib(t) and ic(t) are the phase currents and λa(t), λb(t) and λc(t) are the flux

linkages. R is the resistance which is assumed to be the same in all phases. The flux, which

is shifted by 2π/3 between each of the three phases, is
λa(t)

λb(t)

λc(t)

 =


L −M −M

−M L −M

−M −M L




ia(t)

ib(t)

ic(t)

+ λm


sin (θ(t))

sin
(
θ(t)− 2π

3

)
sin
(
θ(t) + 2π

3

)

 (60)

where θ(t) is the rotor position, L the stator self-inductance, M is the stator-to-stator

mutual inductance, λm is the magnitude of the flux created by the permanent magnets,

and N is the number of poles. We assume an ideal coupling between the superimposed

steering angle δsup, the gear set and the rotor position θ. That is why θ = GHNδsup. We
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plug this into equation (60) and get
λa(t)

λb(t)

λc(t)

 =


L −M −M

−M L −M

−M −M L




ia(t)

ib(t)

ic(t)

+ λm


sin (GHNδsup)

sin
(
GHNδsup − 2π

3

)
sin
(
GHNδsup + 2π

3

)

 (61)

The generated torque can be calculated from

TM (t) = Nλm

[
ia(t) cos (GHNδsup(t)) + ib(t) cos

(
GHNδsup(t)−

2π

3

)
(62)

+ic(t) cos
(

GHNδsup(t) +
2π

3

)]

We wye-connect the three phases. The phase voltages and currents must therefore add up

to zero, i.e.,

va(t) + vb(t) + vc(t) = 0 (63)

ia(t) + ib(t) + ic(t) = 0

We plug this into equation (61) and obtain
λa(t)

λb(t)

λc(t)

 =


L′ 0 0

0 L′ 0

0 0 L′




ia(t)

ib(t)

ic(t)

+ λm


sin (GHNδsup)

sin
(
GHNδsup − 2π

3

)
sin
(
GHNδsup + 2π

3

)

 with L′ = L + M

(64)

5.2.2 Equations in qd Frame of Reference

Equations (62) and (64) depend on the superimposed steering angle δsup. This dependence

can be eliminated by transforming from the stator to the rotor frame. This allows for easier

control of torque output and electrical losses. The change for wye-connected phases, the

so-called Park’s transformation, is given by multiplication with the matrix P . A detailed

analysis of this transformation can be found in [13]. The matrix is

P =
√

2
3

 cos (GHNδsup) cos
(
GHNδsup − 2π

3

)
cos

(
GHNδsup + 2π

3

)
sin (GHNδsup) sin

(
GHNδsup − 2π

3

)
sin
(
GHNδsup + 2π

3

)
 (65)
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The inverse transformation from the qd to the abc frame of reference is given by multi-

plication with

Q =
√

2
3


cos (GHNδsup) sin (GHNδsup)

cos
(
GHNδsup − 2π

3

)
sin
(
GHNδsup − 2π

3

)
cos

(
GHNδsup + 2π

3

)
sin
(
GHNδsup + 2π

3

)

 (66)

We apply Park’s transformation to equations (59), (61) and (64). The resulting set of

equations describing the internal dynamics of the PMSM in the qd frame of reference is

L′i̇q(t) = −N
(
λm

′ + L′id(t)
)
GH δ̇sup(t)−Riq(t) + vq(t) (67)

L′i̇d(t) = NL′iq(t)GH δ̇sup(t)−Rid(t) + vd(t)

TM (t) = Nλm
′iq(t)

with λm
′ =

√
3
2
λm

The above transformation and the set of equations allow calculating the desired quadrature-

axis current iqdes
and the desired direct-axis current iddes

. In the physical system we do

however only have phase currents and voltages. That is why in the actual controller we

have to transform back from the qd frame of reference to the abc frame of reference. This

is done using matrix Q and has not been modeled here.

The resulting PMSM submodule is shown in Figure 32.

5.3 Power Electronics Submodule

In Figure 33 we show how the currents in the individual phases look like in the stationary

case, i.e., for constant torque output. As one can see the phase currents are sinusoidal in the

stationary case. That is why the desired phase voltages vades
, vbdes

and vcdes
are generally

also modified sinusoids. Hence, we need to create sinusoidal voltages in the power elec-

tronics. We do however merely have the constant supply voltage of 12 V from the vehicle’s

battery. That is why we use a pulse-width modulated (PWM) inverter to generate sinu-

soidal curves. The current to the three motor terminals is controlled by six semiconductor

switches (Figure 34).
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Figure 32: PMSM submodule.

Figure 33: Current in individual phases of PMSM.

Since we only have the constant supply voltage, all we can do is switch the voltage in

either phase to −12 V, 0 V or 12 V. However, the PWM is extremely fast compared to the

dynamics of the rest of the system. By rapidly switching between the three possible states

in each phase, we can generate any average voltage between −12 V and 12 V. Since the

PWM is much faster than the rest of the system, the motor will react as if there were no

switching and just a constant voltage.

Since the focus here is on the implementation of a superimposed steering system and not

on the dynamics of power electronics, we do not model the system down to the switching

of the individual semiconductors. Instead we assume that the power electronics have a

transfer function of 1, i.e., the PWM produces exactly the voltages demanded by the inner

controller (Figure 35). A detailed analysis of the PWM can be found in [12].
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Figure 34: Pulse-width modulated inverter.

Figure 35: Power electronics submodule.

5.4 Parameters of High-Detail Steering Module

We use a PMSM with three pole pairs. Therefore N = 3. We determine the resistance R

and the inductance L′ by averaging the line-to-line resistance and inductance respectively

and dividing the results by two. Hence, we obtain that R = 83.67 mΩ and L′ = 42.73 µH.

The flux magnitude is λm = 5.096 mWb.

The steering parameters of the high-detail steering module are summarized in Table 9.

Steering module
N PMSM number of pole pairs 3
L′ PMSM inductance 42.73 µH
R PMSM resistance 83.67 mΩ
λm flux magnitude 5.096 mWb

Table 9: Parameters of high-detail steering module.
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CHAPTER VI

ANALOG CURRENT CONTROLLER

In the last chapters we merely considered a position controller that had torque as a direct

ouput. In this chapter we augment the existing position controller with an inner control

loop for controlling the current iq and id.

6.1 Control Objective

Since we already have an analog position controller, the current controller depends primarily

on the structural integration of the position controller with the current controller. The

structure of the outer position controller and the inner current controller is shown in Figure

36. The input to the current controller is the desired torque output TMdes
and the outputs

Figure 36: Control structure.

are the voltages vq and vd. The control objective therefore consists of determining vq and

vd such that the actual torque output TM reaches the desired torque output TMdes
as fast

as possible. At the same time we want to minimize electrical losses in the motor.

We thus need to control two currents. The quadrature-axis current iq produces actual

torque. Hence, we want to control iq as a function of the desired torque output TMdes
.

The direct-axis current id on the other hand does not produce torque, but merely results

in electrical losses. That is why we always want to drive it to zero. We use feedback

linearization in combination with PI controllers to determine the voltages vq and vd.
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6.2 Feedback Linearization and PI Controllers

This controller is used to drive the actual quadrature-axis current iq to the desired quadrature-

axis current iqdes
. Since we have shown in equation (64) that torque is a linear function

of iq, the desired quadrature-axis current iqdes
can be calculated from the desired torque

output TMdes
using

iqdes
=

TMdes

Nλm
′ (68)

In the literature, e.g., [9], it is mostly suggested using PI compensators for both the

quadrature-axis and the direct-axis currents. We take a different approach here allowing

for better decoupling. We first linearize the plant using feedback linearization and then

apply standard PI control.

6.2.1 Feedback Linearization

The coupled equations for iq and id have been given in equation (67) by

i̇q(t) = −N

L′
(
λm

′ + L′id(t)
)
GH δ̇sup(t)︸ ︷︷ ︸

α1(id)

−R

L′
iq(t) +

1
L′

vq(t) (69)

i̇d(t) = Niq(t)GH δ̇sup(t)︸ ︷︷ ︸
α2(iq)

−R

L′
id(t) +

1
L′

vd(t)

This can be rewritten as i̇q

i̇d

 =

 α1(id)

α2(iq)

+

 − R
L′ 0

0 − R
L′


 iq

id

+
1
L′

 vq

vd

 (70)

The nonlinear terms in equation (70) are α1(x) and α2(x). The nonlinearities and the

control terms vq and vd respectively appear together as a sum. That is why the effect of

the nonlinearities can be easily canceled using the control algorithm

vq = −L′α1(id) + uq (71)

vd = −L′α2(iq) + ud

Hence the control inputs vq and vd comprise two components. First, L′α1(id) and L′α2(iq)

are used to cancel the nonlinearities. Second, uq and ud are used to control the remaining

linearized plant.
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6.2.2 PI Controllers

With the cancellation of the nonlinearities the equations of the plant transform to

i̇q = −R

L′
iq +

1
L′

uq (72)

i̇d = −R

L′
id +

1
L′

ud

PI control is the most common approach here. The transfer function of a PI controller is

GPI = KP + KI
1
s

(73)

We take the s-transform of equation (72) and plug in the transfer function of a PI controller

for uq and ud. With that we obtain the transfer function of the linearized controlled plant,

which is

G2(s) =
KP
L′

(
s + KI

KP

)
s2 + R+KP

L′ s + KI
L′

(74)

We now need to determine the parameters KP and KI . In doing so we must account for

two performance requirements.

• #1 Tracking: We implemented the position controller to track ramp reference inputs.

That is why in order to obtain suitable performance we also need tracking in the

current controller. Perfect tracking is achieved if G′(0) = 1. This cannot be obtained

here. We can however obtain approximate tracking by choosing KP such that KP
L′ ≈

R+KP
L′ . We should therefore choose KP > R.

• #2 No overshoot: In order not to cause oscillations in the system output, we choose

a damping ratio ζ ≥ 1 with a denominator of the form s2 + 2ζω1s + ω1
2.

Obviously the current controller must be faster than the position controller. We chose the

natural frequency ω0 = 162 sec-1 for the outer controller. That is why we now choose ω1 =

400 sec-1 for the current controller. From this we can determine KI = 6.8368. Moreover,

we choose KP = 0.25, which is siginificantly larger than R = 0.08367 Ω. This corresponds

to a damping ratio ζ = 9.761.
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6.3 Evaluation of Analog Current Controller with Final
Model

We use the same scenarios as in Chapter 4 to assess the performance of the inner controller.

By comparing the results from this chapter and Chapter 4 we can thus find out how the

inner controller affects the performance of the overall system, i.e., to what extent the system

is slowed down by the internal dynamics of the PMSM.

6.3.1 Scenario 1: Highway

The steering input, the velocity profile and all other parameters are identical to those used

in Subsection 4.4.1. That is why they are not repeated here. However, we also simulate the

internal dynamics of the PMSM and the inner controller.

The simulated superimposed steering angle δsup and the torque output TM are shown

in Figure 37.

Figure 37: Superimposed steering angle and torque output for highway scenario.

We assess the performance by comparing Figure 37 with Figure 25. As one can see the

inner controller compensates for the internal dynamics of the PMSM such that there are

no apparent differences in the torque output and the superimposed steering angle between

the two simulations.
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In the next step we assess if the inner and outer controller still allow us to maintain

the desired steering ratio (Figure 38). We can once again conclude that the combination of

Figure 38: Desired and actual steering ratio for highway scenario.

the inner and the outer controller gives satisfying results. The curve of the steering ratio is

practically identical to the one from Subsection 4.4.1.

Finally, in considering the internal dynamics of the PMSM it is essential to look at the

phase currents. This is because the linear relationship between torque and the quadrature-

axis current is only valid within a certain region. Moreover, exceedingly high phase currents

will result in large power dissipation ultimately heating up and damaging the motor. That

is why we want the current to remain below 15 A at all times. We show the currents in the

three phases of the PMSM in Figure 39. As one can see the currents in the three phases

are always below the maximum continuous current of 18 A.

6.3.2 Scenario 2: Inner City

Parameters and inputs are the same as in Subsection 4.4.2. As in the previous subsection we

now model the internal dynamics of the PMSM and apply the inner controller to compare

the results to those obtained in Chapter 4.

This results in the superimposed steering angle δsup and torque output TM shown in
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Figure 39: Phase currents for highway scenario.

Figure 40. As one can see both the superimposed steering angle and the torque output are

virtually identical to those calculated in Subsection 4.4.2. Moreover, the actual steering

ratio follows the desired steering ratio very well (Figure 41). Since the phase currents are

also within an acceptable range (Figure 42), the combination of the outer and the inner

controller is a suitable approach for reaching the control objective using continuous-time

controllers. We have shown that the controllers are suitable if applied to a model comprising

the internal dynamics of the PMSM.
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Figure 40: Superimposed steering angle and torque output for inner city scenario.

Figure 41: Desired and actual steering ratio for inner city scenario.
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Figure 42: Phase currents for inner city scenario.
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CHAPTER VII

DIGITAL POSITION CONTROLLER

In this chapter we move from the analog position controller presented in Chapter 4 to a

digital position controller. This is because the position controller is to be implemented on a

microcontroller. We first motivate direct digital design using state feedback. Subsequently

we implement this type of controller and augment it with integral control and an estimator.

7.1 Motivation for Direct Digital Design

7.1.1 Direct and Indirect Digital Design

There are two approaches to designing a digital controller, i.e., direct and indirect design.

The latter approach consists of developing a continuous controller first. Once a good contin-

uous design is available, one strives to create a digital equivalent to the continuous controller

that closely emulates the behavior of the continuous controller. That is why indirect design

is also called emulation. The advantage of indirect design is that you do not have to design a

whole new controller, but can effectively build on a previous continuous design. Emulation

is still widely used today. The disadvantage of indirect design is that the sampling rate of

the controller has to be considerably faster than the dynamics of the system. Even under

this precondition indirect digital controller will generally involve a steady-state error.

In direct design on the other hand, we develop the controller in discrete time right

away. Instead of taking the intermediate step of a continuous controller, one discretizes

the plant and then develops the controller in discrete time. Unlike indirect design, direct

design can also be applied if the controller is not much faster than the system. Moreover,

the steady-state error can be brought to zero.

7.1.2 Application of Pole-Zero Mapping to Torque Controller

In the following we apply one indirect digital control method, namely pole-zero mapping,

to our existing continuous outer controller. Our intention is to show that indirect design is
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not a suitable approach to reach our performance objectives.

In pole-zero mapping all poles and zeros of the transfer function G(s) of the continuous

controller are mapped from the s- to the z-domain through

z = esT (75)

where s is the original pole or zero, T the sampling period and z the new pole or zero.

In Subsection 4.3.2 we have developed a continuous torque controller using model match-

ing with the transfer functions

C1(s) =
L(s)
A(s)

C2(s) =
M(s)
A(s)

(76)

By plugging in all the parameters we obtain the following poles, zeros and gains of C1(s)

and C2(s) (Table 10). If we apply equation (75) to transform from the s- to the z-domain

C1(s) C2(s)
Poles
sp1 0 0
sp2 −483.4055 −483.4055
Zeros
sz1 −200 −75.0635 + j18.8616
sz2 −49.8462 −75.0635− j18.8616
Gain
k 1155.7207 1923.4235

Table 10: Poles, zeros and gains of C1(s) and C2(s).

we obtain Table 11. Hence the transfer functions of the discrete controller are

C1(z) C2(z)
Poles
zp1 1 1
zp2 e−483.4055T e−483.4055T

Zeros
zz1 e−200T e(−75.0635+j18.8616)T

zz2 e−49.8462T e(−75.0635−j18.8616)T

Gain
k 1155.7207 1923.4235

Table 11: Poles, zeros and gains of C1(z) and C2(z).

C1(z) = 1155.7207

(
z − e−200T

) (
z − e−49.8462T

)
(z − 1) (z − e−483.4055T )

(77)
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C2(z) = 1923.4235

(
z − e(−75.0635+j18.8616)T

) (
z − e(−75.0635−j18.8616)T

)
(z − 1) (z − e−483.4055T )

Note that we have not fixed T yet. This allows simulating the discrete controller for different

values of T thus determining the lowest feasible sampling rate.

7.1.3 Evaluation of Discrete Controller

We simulate the discrete outer controller for different values of T to find out the lowest

feasible sampling rate or the highest period length respectively. We use the highway scenario

for this. In Figure 43 we show the simulation results for the steering ratio for T = 1 msec,

Figure 43: Desired and actual steering ratio for different values of T.

T = 2 msec and T = 3 msec. As one can see the steady-state error increases from 0.4%

for T = 1 msec to 1.1% for T = 3 msec. If T is chosen to be larger than T = 5 msec, the

system even becomes unstable. That is why with indirect design one would have to choose

a sampling period around T = 1 msec. The CAN bus however only allows us to obtain

measurements of the different system variables every 20 msec. Hence, we cannot supply

the controller with up-to-date measurements at periods smaller than 20 msec. Moreover,

since the number of operations per second increases linearly with the sampling rate, shorter

sampling periods will result in more expensive microcontrollers. That is why we want the
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controller to work at a sampling period which is a multiple of 20 msec. As we have just

shown this cannot be achieved using a traditional indirect design approach. That is why

we apply direct digital control.

7.2 Digital Feedforward Controller

One of the underlying reasons why we need a high sampling rate with the above approach is

that the level of accuracy in the controller is relatively low. Both load torque and Coulomb

friction are disturbances from the point of view of the controller. Hence, we had to use high

gain integrators to quickly reject these disturbances.

We intend to change this approach in designing the digital controller. We increase the

level of accuracy in the controller by incorporating a feedforward controller to reject load

torque and Coulomb friction upfront. The remaining disturbance TD torque is much smaller

than in the case of the continuous controller. It is

TD = Tff −
1

GH
TL −

(
CM +

CS

GH

)
sgn

(
dδsup

dt

)
(78)

Since our intention is to make the disturbance torque TD as small as possible, we have

to make sure that the feedforward torque Tff is close to the load torque and Coulomb

friction. We therefore have to schedule Tff as a function of the desired velocity of the

superimposed steering angle δ̇sup determining Coulomb friction and the road-wheel angle

δf determining load torque (Figure 44). We decide to use saturation functions for both

Figure 44: Calculation of Tff from δ̇sup and δf .

Coulomb friction and load torque, because this type of function offers three advantages.

First, a saturation function allows approximating the actual behavior of Coulomb friction

and load torque quite well. Second, saturation functions are continuous. Third, saturation

functions are relatively simple and therefore cheap to implement. We saturate the scheduled

approximation of Coulomb friction at CM +CS/GH for δ̇supdes
= 1∗10−4 s-1 and interpolate
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linearly in between. Similarly, we saturate the scheduled approximation of load torque at

5 Nm/GH for δf = 0.05775 rad and interpolate linearly in between.

The graphical representation of Tff as a function of δ̇supdes
and δf is shown in Figure

45.

Figure 45: Visualization of feedforward control.

7.3 Digital Feedback Controller

In this section we develop a digital position controller for determining the torque command

TMdes
. We do so in five steps. First, we derive the transfer function of the plant in the

z-domain. Second, we motivate a state feedback approach rather than the model matching

technique used in analog control. Third, we develop a general feedback compensator with

performance similar to the one provided by the continuous controller developed in Section

4.2. Fourth, we introduce integral control by state augmentation to ensure zero steady-state

error. Lastly, we set up an estimator to save cost on sensors.

7.3.1 Discretization of Plant

In order to apply a direct design approach, we first need to create a discretized model of

the plant. In equation (78) we have introduced the feedforward torque Tff to compensate
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for load torque and frictional losses. With this, the original equation (17) of the mechanical

submodule can be simplified to

(GHJM + JLoad)
d2δsup

dt2
= Tfb + TD (79)

Equation (79) in state-space form is δ̇sup

δ̈sup


︸ ︷︷ ︸

ẋ

=

 0 1

0 0


︸ ︷︷ ︸

F

 δsup

δ̇sup


︸ ︷︷ ︸

x

+

 0

1
GHJM+JLoad


︸ ︷︷ ︸

G

Tfb +

 0

1
GHJM+JLoad


︸ ︷︷ ︸

G

TD (80)

y =
[

1 0
]

︸ ︷︷ ︸
H

 δsup

δ̇sup


︸ ︷︷ ︸

x

It is shown in [7] that the difference equation corresponding to equation (80) is

x(k + 1) = Φx(k) + ΓTfb(k) + ΓTD(k) (81)

y(k) = Hx(k)

where

Φ = I + FT +
F2T 2

2!
+

F3T 3

3!
+ ...

Γ =
∞∑

k=0

FkT k+1

(k + 1)!
G

T is the sampling period. The z-transform of equation (81) is

[zI−Φ]X(z) = ΓTfb(z) + Γ1TD(z) (82)

Y (z) = HX(z)

Hence, if we assume that the disturbance is zero, the transfer function is

Y (z)
Tfb(z)

= H [zI−Φ]−1 Γ (83)

We now plug in the parameters from equation (80) and obtain

Φ = I + FT +
F2T 2

2!
+

F3T 3

3!
+ ... (84)

=

 1 0

0 1

+

 0 1

0 1

T =

 1 T

0 1


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Γ =
∞∑

k=0

FkT k+1

(k + 1)!
G

=


 T 0

0 T

+

 0 1

0 0

 T 2

2


 0

1
GHJM+JLoad

 =

 T 2

2(GHJM+JLoad)

T
GHJM+JLoad


Using (83) we get the discrete transfer function

Y (z)
U(z)

= G(z) =
[

1 0
] z

 1 0

0 1

−
 1 T

0 1



−1  T 2

2(GHJM+JLoad)

T
GHJM+JLoad

 (85)

=
T 2

2 (GHJM + JLoad)
z + 1

(z − 1)2
=

T 2

2C

z + 1
(z − 1)2

7.3.2 Motivation for State Feedback Controller

Digital model matching would be the logical choice for the digital position controller. First,

we used model matching for the analog position controller. Second, only the system output,

i.e., δsup is needed for model matching. No additional measurements, e.g., of δ̇sup are

necessary. This allows saving cost on sensors. Still, several challenges arise that cannot

be overcome using model matching. In the following we describe these obstacles thus

motivating the use of another control technique, i.e., state feedback.

The main obstacle in designing the model matching controller lies not so much in the

derivation of the controller’s transfer function, but rather in the prerequisite step, i.e.,

finding a suitable desired transfer function. The necessary and sufficient conditions to

model matching according to [2] are

• #1 Pole-zero excess inequality: The relative degree of the desired transfer function

has to be greater or equal to the relative degree of the plant transfer function.

• #2 Retainment of non-minimum-phase zeros: All zeros of the plant transfer function

G(z) on and outside the unit circle must be retained in G0(z).

• #3 Stability: All poles of G0(z) must lie inside the unit circle.

We need to fulfill these conditions while keeping with our control objective, i.e., tracking

of a ramp reference input. In discrete time these requirements are fulfilled by a desired

transfer function Gd(z) with the following characteristics.
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• #1 Gd(1) = 1

• #2 d
dz

Gd(1) = 0

We first try using a desired transfer function of relative degree 1. Following the second

condition to model matching mentioned above, we need to retain the non-minimum-phase

zero at z = −1 in the desired plant transfer function. Hence Gd(z) is

Gd(z) =
z + 1

(z − p1) (z − p2)
(1− p1) (1− p2)

2
(86)

where p1 and p2 are the poles of the desired transfer function which we can choose. One can

see immediately that Gd(1) = 1. The first condition of the control objective can therefore

be fulfilled. We now check the second condition. The derivative of Gd(z) at z = 1 is

d
dz

Gd(1) =
1
2
− 2− p1 − p2

(1− p1) (1− p2)
(87)

which must be equal to zero. Hence, we have to ensure that

p1p2 + p1 + p2 = 3 (88)

In order for Gd(z) to be an implementable transfer function p1 and p2 have to be either

both real or conjugate complex. In the former case equation (88) cannot be fulfilled, because

then either p1 or p2 or both would have to be ≥ 1, i.e., be on or outside of the unit circle.

The resulting transfer function would be unstable. Equation (88) cannot be fulfilled in the

latter case either. If there are two conjugate complex poles p1/2 = a ± jb, then equation

(88) becomes

a2 + b2 + 2a = 3 (89)

In order for the transfer function to be implementable, the poles need to be inside the unit

circle, i.e., a2 + b2 < 1 and a, b < 0. Equation (89) cannot be fulfilled while keeping with

these conditions. As a result, digital model matching is not implementable with the given

desired transfer function of relative degree 1.

In many instances problems of the above type can be resolved by choosing a greater

degree of freedom, i.e., by moving from relative degree one to relative degree two. Then the
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desired transfer function is

Gd(z) =
z + 1

(z − p1) (z − p2) (z − p3)
(1− p1) (1− p2) (1− p3)

2
(90)

It is once again obvious that Gd(1) = 1 and the first condition can therefore be easily

fulfilled. The derivative of Gd(z) at z = 1 is

d
dz

Gd(1) =
1
2
− 3− 2p1 − 2p2 − 2p3 + p1p2 + p2p3 + p1p3

(1− p1) (1− p2) (1− p3)
(91)

This should be equal to zero. As a result we know that

3p1 + 3p2 + 3p3 − p1p2 − p2p3 − p1p3 − p1p2p3 = 5 (92)

Once again there are two possibilities for an implementable desired transfer function. There

can either be three real poles inside the unit circle or there can be one real pole and two

conjugate complex poles. We first look at the former case. In order to figure out if there

is actually a solution to equation (92) inside the unit circle, we determine the potential

extrema of the left hand side of this equation by taking the partial derivatives and setting

them to zero. By doing so we obtain the potential extrema (1, 1, 1) and (−3,−3,−3). In

order for the desired transfer function to be stable, the three poles must be
∣∣∣p1/2/3

∣∣∣ < 1 or

in other words the poles must be inside of the cube shown in Figure 46. The two potential

extrema are either on or outside the cube. Hence, there are no extrema inside of the cube

representing the range of poles resulting in a stable desired transfer function. Since there

are no maxima inside of the cube, the maximum value must be on the cube surface. One

can show that the left hand side never becomes greater than five on the cube surface. That

is why there is no solution to equation (92) inside of the cube. We can therefore conclude

that there is no function of relative degree two with three real poles fulfilling the given

requirements.

We now look at the second possibility of one real and two conjugate complex poles. In

this instance the three poles are p1 = a + jb, p2 = a − jb and p3 = c. We plug this into

equation (92) and obtain

6a + 3c− a2 − b2 − 2ac− a2c− b2c = 5 (93)
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Figure 46: Feasible range of p1, p2 and p3.

Once again we take the partial derivatives of the left side of equation (93) and determine

the two potential extrema (1, 0, 1) and (−3, 0,−3). In order for the desired transfer function

to be stable, we have to make sure that
√

a2 + b2 < 1 and |c| < 1. Hence the feasible range

of a, b and c is a cylinder (Figure 47). The two potential extrema are either on or outside

the cylinder. Hence, there are no extrema inside of the cylinder representing the range of

poles resulting in a stable desired transfer function. Since there are no maxima inside of

the cylinder, the maximum value must be on the cylinder surface. One can show that on

the cylinder surface, the left hand side never becomes greater than five. That is why there

is no solution to equation (93) inside of the cylinder. We can therefore conclude that there

is no function of relative degree two with one real pole and two conjugate complex poles

fulfilling the given requirements.

Hence, we now know that there is neither a desired transfer function of degree one nor

one of degree two fulfilling the given requirements. Digital model matching is therefore not

implementable in these instances. We cannot make any definite assertion on whether model

matching might be feasible for higher relative degrees. Based on the results for relative

degrees one and two, we do however assert that there is a high probability that there will

be no solution. Moreover, with the number of degrees increasing further, calculation will
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Figure 47: Feasible range of a, b and c.

become even more tedious than for relative degree two.

7.3.3 State Feedback Controller

As shown in the last subsection, ramp tracking is not achievable using model matching with

desired transfer functions of relative degrees one and two. It can however be achieved using

full-state feedback with a reference input. The underlying reason is that by feeding back

both the angular position and angular velocity we can assign arbitrary root locations for

these two states. The system is controllable. The controllability matrix is

[
Γ
...ΦΓ

]
=

 T 2

2(GHJM+JLoad)
3T 2

2(GHJM+JLoad)

T
GHJM+JLoad

T
GHJM+JLoad

 (94)

The matrix is nonsingular for our choices of T and vehicle parameters.

In order to control the two states of the system we implement the full-state feedback

control structure with reference input as shown in Figure 48. In this figure r is the vector of

Figure 48: Structure of full-state feedback controller.
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the reference inputs, i.e., δsupdes
and δ̇supdes

. We want to control both the angular position

and the angular velocity and therefore Nx =
[

1 1
]T

. H has already been given in

equation (80). Tfb is the control output and is the difference between the reference state

vector xr and the actual state vector x times the negative vector of the feedback gain K.

The state equation in terms of the error vector

xerr = xr − x (95)

is

xerr(k + 1) = Φxerr(k)− ΓKxerr(k) + ΓTD(k) (96)

where Φ and Γ are identical to the symbols already used in equation (81).

As outlined above we want the digital controller to have performance similar to the pre-

viously developed continuous controller. That is why we intend to choose the two feedback

coefficients in such a manner that we obtain an ITAE zero-velocity-error optimal system

with ω0 = 162 sec-1. With feedback of δsup and δ̇sup, we obtain a characteristic equation of

degree two in the s-domain, which is

s2 + 3.2ω0s + ω0
2 (97)

The two roots of equation (97) are

s1/2 =
(
−1.6±

√
1.56

)
ω0 (98)

We transform the roots into the z-domain

z1/2 = es1/2T = e(−1.6±
√

1.56)ω0T (99)

Hence, the characteristic equation in the z-domain is

z2 −
(
e(−1.6+

√
1.56)ω0T + e(−1.6−

√
1.56)ω0T

)
z + e−3.2ω0T = 0 (100)

The characteristic equation of the system with control is

det |zI−Φ + ΓK| = 0 (101)

det

∣∣∣∣∣∣∣z
 1 0

0 1

−
 1 T

0 1

+

 T 2

2(GHJM+JLoad)

T
GHJM+JLoad

 [ K1 K2

]∣∣∣∣∣∣∣ = 0
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Equations (100) and (101) have to be identical. Hence, we have to choose

K1 =
GHJM + JLoad

T 2

(
e−3.2ω0T − e−0.351ω0T − e−2.849ω0T + 1

)
(102)

K2 =
GHJM + JLoad

2T

(
−e−3.2ω0T − e−0.351ω0T − e2.849ω0T + 3

)
If we plug in all the parameters, we obtain the actual numerical values of K

K1 = 38.2322 (103)

K2 = 3.5191

7.3.4 Integral Control by State Augmentation

The underlying assumption behind the digital controller derived in the previous subsection

is that we do not have any disturbance torque TD. This will generally not be the case.

Hence, any non-vanishing disturbance will result in a steady-state error. We do not want

this. That is why we augment the model of the plant with an integrative state. The

integrative state xIS is given by

xIS(k + 1) = xIS(k) + y(k) = xIS(k) + Hxerr(k) (104)

The augmented plant model is therefore xIS(k + 1)

xerr(k + 1)

 =

 1 H

0 Φ


 xIS(k)

xerr(k)

+

 0

Γ

Tfb(k) +

 0

Γ

TD(k) (105)

The control law is also augmented and becomes

Tfb(k) = −
[

KIS K
]  xIS(k)

xerr(k)

 (106)

Once again we want the digital controller to perform like the continuous controller developed

in Chapter 4. However, unlike the continuous controller, we now have improved the level of

accuracy of the controller by compensating the load torque TL and Coulomb friction using

the feedforward controller. That is why it is not necessary to have a disturbance rejection

as fast as in the continuous controller where we chose a pole at s = −α = −200. Moreover,

high-gain feedback of the integrative state will result in higher overshoot and more control

effort. We choose KIS = 0.1 which allows rejecting 60 % of a step disturbance within

around 4 sec. The actual performance however also depends on the sampling period T .
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7.3.5 Reduced-Order Estimator

We want to calculate the velocity of the superimposed steering angle δ̇sup using a reduced-

order estimator rather than measuring it using sensors. The reason behind this is that

you need very precise and costly sensors if you want to measure δ̇sup, because you have to

differentiate the original signal δsup. We intend to save cost by finding a way around this.

We assume that δsup is measurable whereas δ̇sup is not. Hence, the digital system

description is δsup(k + 1)

δ̇sup(k + 1)

 =

 1 T

0 1


 δsup(k)

δ̇sup(k)

 (107)

+

 T 2

2(GHJM+JLoad)

T
GHJM+JLoad

Tfb(k) +

 T 2

2(GHJM+JLoad)

T
GHJM+JLoad

TD(k)

y(k) =
[

1 0
]  δsup(k)

δ̇sup(k)


To simplify the notation we neglect the disturbance torque TD in the derivation of the

estimator. The dynamics of the unmeasured state δ̇sup(k) are

δ̇sup(k + 1) = δ̇sup(k) +
T

GHJM + JLoad
Tfb(k) (108)

We use equation (108) to calculate the estimated state ˆ̇
δsup. The dynamics of the measured

state are given by

δsup(k + 1)− δsup(k)− T 2

2 (GHJM + JLoad)
Tfb(k)︸ ︷︷ ︸

known

= T δ̇sup(k) (109)

Note that equation (109) represents a relationship between the unknown state and known

quantities. We use this to feed back the difference between the left hand side of equation

(109) and T
ˆ̇
δsup calculated in the estimator, i.e.,

ˆ̇
δsup(k + 1) = ˆ̇

δsup(k) +
T

GHJM + JLoad
Tfb(k) (110)

+Lr

[
δsup(k + 1)− δsup(k)− T 2

2 (GHJM + JLoad)
Tfb(k)− T

ˆ̇
δsup(k)

]
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The equation of the estimate error ˜̇
δsup obtained by subtracting (110) from (108) is

˜̇
δsup(k + 1) = [1− LrT ] ˜̇δsup(k) (111)

We now choose Lr such that the root of the characteristic equation

z − 1 + LrT = 0 (112)

corresponds to our desired root location. In determining the desired roots one has to make

a tradeoff between the swiftness of disturbance rejection and the stability of the system.

Due to unmodeled disturbances and sensor errors, excessively fast disturbance rejection can

destabilize the system. We choose the desired root location z = 0.6. According to [7] this

corresponds to a settling time of 0.4 sec within a 1 % tolerance band. With that we know

Lr =
1− 0.6

T
= 6.6667 (113)

By plugging all the parameters into equation (110) we obtain the final reduced-order esti-

mator equation given by

ˆ̇
δsup(k + 1) = 0.6ˆ̇δsup(k) + 0.8856Tfb(k) + 26.6667 [δsup(k + 1)− δsup(k)] (114)

In Subsection 7.2 we required measurements of the velocity of the superimposed steering

angle δ̇sup to cancel nonlinear terms. That is why we also feed the current controller with

the results of the estimator. That way we do not need measurements of δ̇sup anywhere in

the system.

7.4 Evaluation of Digital Position Controller with Final
Model

The scenarios used here are the same as in Chapters 4 and 6. The steering input, the

velocity profile and all other parameters are also identical.

7.4.1 Scenario 1: Highway

We do not give the results for the torque output and the phase currents here as these are

largely identical to those already described in Chapters 4 and 6. The focus here is on how
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far performance degrades due to the digital nature of the controller using an estimator and

operating at a sampling period of 20 msec. We first take a look at the actual steering ratio

as compared to the desired steering ratio in the highway scenario (Figure 49). Unlike the

Figure 49: Desired and actual steering ratio for highway scenario.

previous simulations with the analog position controller we now have overshoot in terms of

the steering ratio at around five seconds. Moreover, it takes longer for the system to reach

the desired steering ratio of 15.61. Although there is some degradation of performance,

the overall results are still satisfactory. This can also be seen if one looks at the actual

superimposed steering angle δsup as compared to the desired superimposed steering angle

δsupd
in Figure 50. As one can see the two angles are so close to each other that the two

curves run on top of each other in the diagram.

7.4.2 Scenario 2: Inner City

Once again we look at the actual steering ratio compared to the desired steering ratio (Figure

51). Now there is a noticeable discrepancy between the curve for the desired steering ratio

and the curve for the actual steering ratio. Considerable discrepancies occur around 8 sec,

16 sec and 20 sec. The primary reason for the degradation in performance is the use of the

estimator rather rather than a sophisticated sensor. This effect is discussed in more detail
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Figure 50: Desired and actual superimposed steering angle for highway scenario.

in Subsection 8.5. The point is however that although discrepancies are now noticeable, the

overall performance of the controller is still satisfactory. One of the reasons for this is that all

of the above mentioned periods where noticeable discrepancies occur are at instances where

the superimposed steering angle δsup is close to zero. Due to the definition of the steering

ratio as the quotient of δSW and δsup, small differences between the desired superimposed

steering angle δsupd
can result in large errors in terms of the steering ratio. This is however

no limitation to the performance of the system, because at small steering angles even large

variations in the steering ratio cannot be noticed by the driver. We underline this using

Figure 52. In this figure we show the desired superimposed steering angle δsupd
as compared

to the actual superimposed steering angle δsup. As one can see the curves for δsupd
and δsup

overlap to such an extent that they can barely be distinguished from each other. Since δsup

is what is ultimately noticed by the driver, performance is sufficient.
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Figure 51: Desired and actual steering ratio for inner city scenario.

Figure 52: Desired and actual superimposed steering angle for inner city scenario.
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CHAPTER VIII

VALIDATION

In this last chapter we validate our design. In doing so we apply the Validation Square. This

is a method to validate design methods and research that has been developed at the System

Realization Laboratory at the Georgia Institute of Technology. An extensive introduction

into the underlying philosophy of the Validation Square is given in [19]. In this chapter

we first introduce the Validation Square and the four principal steps that it comprises. We

then take the work presented as part of this thesis through these four steps thus establishing

confidence in the validity of our work.

8.1 Introduction to the Validation Square

The outstanding strength of the Validation Square is that it offers designers a framework

to address both the quantifiable and the non-quantifiable or open aspects of design. The

principal idea behind it is that establishing the validity of a design is a process in which one

gradually builds confidence in the proposed solution. In the validation process one needs to

analyze both the actual results and the approach that was taken to come up with the design.

This is accounted for by breaking the Validation Square up into four quadrants. In each of

the four quadrants one specific aspect of validation is carried out. The four quadrants are

shown in Figure 53. In the first quadrant one assesses the theoretical structural validity.

This is the internal consistency of the design both in terms of its structure and its deriva-

tion. In the quadrant for empirical structural validity one needs to show that the example

problems used to validate the design are indeed appropriate to test specific aspects. In the

third quadrant one assesses the empirical performance validity. One looks at the results of

the example problems outlined in the second quadrant to establish confidence in the design

for the given example problems. In the last quadrant one needs to reflect on the validity

of the design beyond the example problems discussed in quadrants two and three. Since
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Figure 53: Validation Square.

in most instances it is not possible to actually prove the validity outside of the example

problems, this step requires a leap of faith. The leap of faith must be based on a prior

process of building confidence in the design.

In the following we take our design of the superimposed steering system through all four

quadrants. We particularize each step to this specific example.

8.2 Theoretical Structural Validity

As outlined above we need to show that the design is internally consistent both in terms of

its derivation and the actual controller. That is why theoretical structural validity breaks

down into two main parts.

• Internal consistency of derivation: One needs to raise the question if the design ap-

proach has the structure that can be expected to lead to a valid design solution. The

emphasis here is on the process.

• Internal consistency of results: One needs to determine if the model and control

techniques that the design is built on can be expected to be valid from a scientific

perspective. Moreover, one has to assess if the structure of the controller is logical in

the sense that the functions of the different parts of the controller are well-defined.

The emphasis here is on the result.
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8.2.1 Internal Consistency of Derivation

In designing the system we have aimed at three things. First, we tried to implement a clear

structure. Second, we intended to approach the solution from the general to the specific.

Third, we checked and evaluated our results at several instances in the design process. These

concepts have been illustrated in Figure 54. Except for Chapter 1 and Chapter 8, which

Figure 54: Internal consistency of derivation.

have introductory or closing character respectively, we have divided all chapters into either

modeling or control chapters. The underlying philosophy behind this is that modeling and

control are entirely different things and should be treated as such. Keeping these two things

separated also facilitates the latter use of the controller and the model as separate entities.

Thus the model and the controller can be used independently.

We also proceed from the general to the specific. In Chapter 1 we start by underlining

the usefulness of a superimposed steering system from a comfort and safety perspective. In

Chapter 2 we then set up the model of the vehicle dynamics. This model is still relatively

general in that it can be used for many modeling and control applications in vehicle dy-

namics. In Chapter 3 we narrow down from this more general class of tasks to those tasks

involving control inputs in the steering system. The first evaluation of these preliminary

results takes place in Chapter 4 by designing and simulating a position controller to be

used in this model. We set up two scenarios for this which can be considered typical driving

situations. In Chapter 5 we narrow down the task even further by focusing on superimposed

steering systems with permanent-magnet synchronous motors. In Chapter 6 the controller

is also brought to this level of detail by incorporating current control. Moreover, the second

evaluation takes place at this stage. We assess the results by comparing them to those from

the previous simpler model and controller. Finally, in Chapter 7 we move from analog to
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digital position control. In doing so we make use of the knowledge obtained throughout the

previous chapters. Simulation results are evaluated once again.

Based on these observations we claim that our design approach has a clear structure,

proceeds from the general to the specific and included evaluations at multiple instances.

We therefore conclude that the derivation of results was internally consistent.

8.2.2 Internal Consistency of Results

The results of our work come in the form of a model and a controller. In the model we

have tried to ensure consistency by structuring the model like the real vehicle. There are

three main parts to the real vehicle. The vehicle body, the steering module and the tire-

road interface. We mapped these into three distinct modules, namely the vehicle module,

the steering module and the friction module (Figure 55). By embracing the concept of

Figure 55: Model Structure.

modularity we could ensure that the interaction between different modules is clearly defined.

Each module has inputs and outputs through which it interacts with the other modules.

The controller has also been structured. We divided the overall controller into two

cascaded loops. This is a concept that can be found in several textbooks, notably [16]. In

the outer loop we control the angular position δsup and in the inner loop we control the

currents iq and id.

In implementing the model and the controller we used several concepts. In order to

build up confidence in that these are consistent, we now list the concepts and describe their

origin.

• Single-track model: The model of the vehicle dynamics is based on the single-track

or bicycle model. This is a very old and well-established model for vehicle dynamics.
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It was first published in [20] in 1940. It is however still widely used today, notably in

papers on active steering ([8], [14], [18]) which are very close to what has been done

here.

• qd motor model: We have modeled the dynamics of the motor in the qd frame of

reference by applying Park’s transformation. This is a common approach in motor

control and is used among others in [12] and [13].

• Digital state feedback control: In order to control position we used digital state feed-

back control based on direct digital design. A very similar approach has been taken

in [7].

• Feedback linaerization: We used feedback linearization for the current controllers.

This approach was based on the introduction to feedback linearization in [11].

Based on the above observations we conclude that the work is based on consistent concepts

in the literature that were used in an organized manner to come to well-structured results.

The conclusion is therefore that the controller has theoretical structural validity.

8.3 Empirical Structural Validity

We now need to show that the example problems that we use in the third quadrant of the

Validation Square are appropriate to test specific aspects. In a control context we have to

test the two principal activities of any control task. On the one hand, one has to lay down

the control structure, i.e., the type of controller. On the other hand, the numerical values

of the control parameters for the given type must be determined. We intend to show that

the controller is valid in both these aspects by introducing two different test scenarios.

• Validity of control structure: We intend to demonstrate that the structure of the

controller is appropriate by showing that suitable results can be obtained for a wide

range of control parameters and not only for the specific set given in the previous

chapters. The underlying assumption is that satisfying control performance over a

wide range of control parameters indicates a suitable control structure.
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• Validity of control parameters: We plan to show that the choice of control parameters

was right by demonstrating that control performance remains appropriate despite

changes in the plant. Hence, the underlying assumption is that robustness is an

indication that the control parameters have been chosen appropriately.

8.4 Empirical Performance Validity

In the last section we have pointed out what we intend to show in going through two

examples. In this third quadrant of the Validation Square we now actually set up and go

through the examples thus establishing confidence in the control structure as well as control

parameters. In order to assess performance we need a performance metric. This is what we

introduce performance indices for.

8.4.1 Control Performance Indices

In this subsection we set up indices for measuring control performance and control effort.

Control performance can be characterized by

xerr = xd − x (115)

This is the difference between the actual output x of the controlled parameters and what

you initially went out to achieve, which is xd.

If the performance is evaluated at multiple points in time, then one either has to calculate

the average value or integrate over the error and divide by the length of the integral.

Moreover, in considering xerr at multiple points in time one has to consider either the

absolute value or xerr to an even power so that positive and negative values of xerr cannot

cancel each other. Using xerr squared has the additional effect of punishing large errors

disproportionately compared to smaller errors. This constitutes a reasonable assumption in

many systems, notably in the case of the superimposed steering system. Hence we define

control performance as

CP =
1
T

T∫
0

(xd(t)− x(t))2 dt =
1
T

T∫
0

xerr(t)
2 dt (116)
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In order to completely determine the control performance index for the example of the

superimposed steering system, we still have to decide on one specific parameter in terms

of which we determine performance. There are two possibilities here. We can either define

performance in terms of the steering ratio or we can define it in terms of the superimposed

steering angle δsup. The latter choice is more logical, because the steering ratio is not always

defined. As we already mentioned in Subsection 4.4.1 the steering ratio is not defined if δsup

is equal to zero. That is why the control performance index for the superimposed steering

system is

CP =
1
T

T∫
0

(
δsupdes

(t)− δsup(t)
)2 dt (117)

We now take a similar approach to come up with a performance index for control effort.

There are many ways in which control effort can be defined. One might for instance consider

the torque output of the electric motor. In doing so one would however not consider the

electrical dynamics of the motor and the resulting losses. We consider the total power

consumption of the superimposed steering system to be the most logical choice for describing

the control effort.

In Chapter 5 we transformed the motor dynamics into the qd frame of reference. That

is why we also describe power consumption in the qd frame of reference. Power is defined

by the product of voltage and current. We integrate power over time and divide by the

integral length. Finally, we sum up the results for the q- and the d-axis. This gives us the

control effort index

CE =
1
T

T∫
0

|vq(t)iq(t)| dt +
1
T

T∫
0

|vd(t)id(t)| dt (118)

8.4.2 Validity of Control Structure

As outlined in the section on empirical structural validity, we need to show that we have

a valid control structure. The way to show this is by varying the control parameters and

showing that performance remains acceptable. It is however not feasible to vary all six

control parameters independently of each other. The resulting problem would simply be too

large. The objective therefore consists of exploring the design space with as few parameters
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as possible. This is a very active area of research in the field of design. Numerous methods

have been suggested to do so, notably the Robust Concept Exploration Method (RCEM)

suggested in [3]. Using this method one can explore the design space in a mathematical

manner. What we take over from this method is the concept of response surfaces and

the idea that most designs have dominant and weak design parameters. The weak design

parameters have either little effect on the overall performance of the proposed solution or

are highly dependent on the dominant design factors and can therefore be calculated from

those.

The dominant parameters in the superimposed steering system are the sampling period

T of the digital position controller and its natural frequency ω0. In exploring the design

space we consider these to be independent parameters. All other parameters, i.e., the weak

or dependent parameters are changed as a function of the dominant parameters. In total

there are two independent and four dependent control parameters. These are shown in Table

12 according to the part of the controller in which they occur, i.e., digital position controller,

reduced-order estimator and analog current controller. We evaluate the performance indices

Digital position controller
T sampling period independent
ω0 natural frequency independent
KIS integral state gain dependent
Reduced-order estimator
Lr estimator feedback gain dependent
Current controller
KI current integral gain dependent
KP current proportional gain dependent

Table 12: Independent and dependent control parameters.

for different values of T and ω0. Before we can do so, we need to establish functions for the

four dependent parameters allowing us to map from a combination of T and ω0 to the actual

values of the dependent parameters. It is essential to choose the four dependent parameters

in such a manner that all parameters taken together constitute a sensible combination

for the overall controller. We base the derivation of the four functions for the dependent

parameters on two premises.
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• # 1 Results from previous chapters as a subset: If we choose the sampling rate and the

natural frequency like in the previous chapters, i.e., T = 60 msec and ω0 = 162 sec-1

then the functions should give us the same values for the dependent parameters as

those we already used in the previous chapters. As a result the design from the

previous chapters is a subset of the design variations presented in this chapter.

• #2 Maintain principal characteristics: Each function is selected such that an impor-

tant characteristic of the controller is maintained across all combinations of T and ω0.

There are four characteristics listed in Table 13. Each of these characteristics affects

one dependent parameter.

Dependent parameter Characteristic
KIS integral gain KIS proportional to position error gain K1

Lr estimator root at z = −0.6
KI natural frequency of current controller ω1 proportional to ω0

KP current controller has damping ratio of ζ = 9.761

Table 13: Principal characteristics to be maintained.

We now develop the functions from the two premises. We first look at KIS . We assume

that the ideal choice of KIS is to change KIS linearly with K1, i.e., KIS = kK1 with k

chosen such that the first premise is satisfied. In this instance k = 2.6156 ∗ 10−3. K1 on the

other hand depends on T and ω0 as we have already shown in equation (102), i.e.,

K1 =
GHJM + JLoad

T 2

(
e−3.2ω0T − e−0.351ω0T − e−2.849ω0T + 1

)
(119)

With that we can calculate KIS . We now look at the estimator feedback gain Lr. We want

to maintain the root of the estimator at z = 0.6. From equation (112) we can therefore

conclude that Lr needs to be

Lr =
1− 0.6

T
(120)

We now get to the two parameters of the current controller. First, we look at the current

integral gain KI . The requirement consists of maintaining a proportional relationship be-

tween ω0 and ω1, i.e., ω1 = kω0 with k chosen such that the first premise is satisfied. In

this case k = 2.4691. With that KI should be

KI = L′ (kω0)
2 (121)
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Finally, we have to determine KP . We choose KP to maintain the damping ratio at

ζ = 9.761. From equation (74) we know that

R + KP

L′
= 2ζω1 (122)

From this we can conlude that

KP = 2 ∗ ζ ∗ 2.4691ω0L
′ −R (123)

We have expressed all dependent parameters as functions of the independent parameters

and system constants. This can be summarized by

KIS(T, ω0) = 2.6156 ∗ 10−3 GHJM + JLoad

T 2

(
e−3.2ω0T − e−0.351ω0T − e−2.849ω0T + 1

)
(124)

Lr(T ) =
0.4
T

KI(ω0) = 6.0966L′ω0
2

KP (ω0) = 48.2018L′ω0 −R

We have determined independent parameters and dependent parameters. We now use

these results to obtain knowledge of how the two independent control parameters affect

control performance and control effort. In doing so we use the concept of the response

surface. A response surface is a graphical representation of a performance criterion such as

the control performance index CP and the control effort index CE over the independent

control parameters. We use the inner city scenario, because this scenario requires higher

performance.

We evaluate the control performance index CP by setting the sampling period T to

multiples of 20 msec, which is the sampling rate of the CAN bus. We also vary the natural

frequency ω0 at intervals of 40 sec-1. The original choice of parameters that we used in

the previous chapters, i.e., ω = 162 sec-1 and T = 60 msec, is now located in the center of

the response surface. The results are shown in Figure 56. On the one hand, these results

confirm what one would logically expect, i.e., lower sampling periods and higher natural

frequencies result in better performance. On the other hand, we can conclude from the

response surface on the importance of the individual parameters in determining the control

performance.
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Figure 56: CP response surface for changes in control parameters.

• Changes in T : Changes in the sampling period T have a strong effect on the control

performance index CP . As we reduce the sampling period from 100 msec to 20 msec,

CP decreases to about one percent of its original value. The choice of the sampling

period is the single most important decision in adjusting the performance of the

controller.

• Changes in ω0: Compared to the effect of changes in T , variations in ω0 are negligible.

Increasing the natural frequency by a factor of five cuts the control performance index

by approximately one half across all choices of T . Hence, ω0 is not that crucial in

determining the performance of the system.

We now look at the response surface for the control effort index CE for exactly the same

range of T and ω0 (Figure 57). We analyze the results.

• Negligible variations in CE: The mean of CE for the given range of T and ω0 is

0.0360 W and the standard deviation is merely 0.8148 mW. Hence, the variations in

CE are very small. In fact variations are so small that all solutions can be considered

approximately equivalent in terms of control effort.
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Figure 57: CE response surface for changes in control parameters.

Looking at the response surfaces for the control performance and control effort we ob-

serve that changes in control parameters affect the system in the way that we would expect.

This indicates that the control structure has been understood and can be used over a wide

range of control parameters. We conclude that the control structure is valid.

8.4.3 Validity of Control Parameters

In the last subsection we have assessed the validity of the control structure by changing the

control parameters for an unchanging control structure. We now assess the validity of the

control parameters by observing how the performance indices change for variations in the

plant model and disturbances. In other words we assess the robustness of the controller.

In order to do so we once again use the concept of response surfaces. We modify

two parameters. We vary the load torque in the plant by ± 60%. This corresponds to

modeling errors. We also introduce measurement errors in the sensor for δsup that feeds

the controller. The sensor has a constant offset from the actual value. This corresponds to

effects not considered in the controller. The details of this scenario are given in Table 14.

We now look at the response surface for the control performance index CP (Figure

58). The original choice of plant parameters that were used to calculate the controller is
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Modeling errors
modified load torque TLnew = k ∗ TL with k ∈ {0.4, 0, 6, 1, 1.4, 1.6}
Unmodeled effects
imprecise position sensor δsupSensor

= δsup + e with e ∈
{
± 10−4, ± 2 ∗ 10−4

}
Table 14: Modifications to assess validity of control parameters.

Figure 58: CP response surface for changes in plant parameters.

located in the center of the surface. At this point CP is the lowest, i.e., we have the highest

performance. If we move away from that point by changing the load torque or introducing

a measurement error, the performance deteriorates. It has however been verified by also

looking at the time response of the steering ratio that the performance within the range of

plant parameters shown in Figure 58 is satisfying. We can therefore conclude that control

performance is robust for the given scenario in view of changes in the load torque of up to

60 % and measurement errors in δsup of up to ± 10−4 rad.

The response surface for the control effort index CE is shown in Figure 59. As one can

see measurement errors have no significant effect on the control effort. Hence, the system

cannot fail because of excessive torque requirements due to measurement errors. Changes

in the load torque do however affect the control effort index CE. If the load torque is

much higher than expected, then the motor will go into saturation or even be destroyed.

By looking at the phase currents we can however ensure that this is not the case for the
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Figure 59: CE response surface for changes in plant parameters.

range of plant parameters shown in Figure 59. As a result control effort is also robust for

the given change of parameters.

The criteria for empirical validity described in Section 8.3 have therefore been fulfilled.

We conclude that the system has empirical performance validity.

8.5 Theoretical Performance Validity

We now come to the last quadrant of the Validation Square. We intend to demonstrate

that the system has validity going beyond the previously discussed examples. Hence, we

want to show that the model and controller can be modified and applied to a broader field.

We believe that this can be done due to the following characteristics.

• Modularity: Both the model and the controller have been based on the concept of

modularity. We have made effective use of modularity by modifying the controller and

the plant at multiple instances. This can be carried further if needed. Parts of the

plant or controller can be easily modified without affecting others. Then the analysis

tools developed in this chapter can be applied. We illustrate this concept by replacing

the estimator with a sensor for δ̇sup. Due to modularity the resulting changes in the

controller can be implemented rapidly. We implemented it and show the resulting
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responses for CP and variations in T in Figure 60. Using this figure it is now possible

Figure 60: Comparison of CP for estimator and sensor.

to quantify the benefit of a sensor as compared to an estimator.

• Plant and controller parameterization: The plant and the controller have been devel-

oped in full generality without a specific vehicle in mind. It is only at the end of each

modeling chapter that we introduced vehicle parameters (see Tables 5, 6 and 9). The

vehicle parameters have not been integrated into the Simulink model, but were stored

as separate MATLAB data files. The actual Simulink implementation can be seen in

Appendix A. The advantage of this approach is easy adaptability. If one wants to use

the model for another type of vehicle, all one needs to do is change the parameters

in the MATLAB data file. The same is true of the controller. Control parameters

have not been expressed numerically, but in terms of performance parameters such as

the natural frequency ω0 or the sampling period T . Hence, the performance of the

controller can be adapted easily by changing these parameters.

Based on the above examples we conclude that the given design is sufficiently open to acco-

modate a broad range of changes in terms of plant characteristics and desired performance.

The effect of design changes can be measured using the performance indices and analysis

85



tools used in this chapter. By obtaining more information on the cost of individual compo-

nents, one could also introduce cost as a quantifiable design criterion. If we want to take

our design even closer to its actual implementation in the vehicle, then this should be the

path to be followed.
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APPENDIX A

SIMULINK IMPLEMENTATION

The Simulink model has been structured in exactly the same manner as the model and the

controller described in the previous chapters (Figure 61). On the highest level are the three

Figure 61: Structure of Simulink implementation.

modules, i.e., steering module, vehicle module and friction module. Moreover, there are the

submodules of the steering module, namely the controller, the PMSM and the mechanical

system. The controller has been divided into the torque and the current controller. Finally,

the torque controller comprises the estimator, the feedback and the feedforward controller.

In the following sections we give screenshots of all Simulink modules.

Figure 62: Simulation model.
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Figure 63: Steering module.

Figure 64: PMSM.

A.1 Steering Module

A.1.1 Controller

Figure 65: Mechanical System.
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Figure 66: Controller.

Figure 67: Torque controller.

Figure 68: Current controller.
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Figure 69: Estimator.

Figure 70: Feedback controller.

Figure 71: Feedforward controller.
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A.2 Vehicle Module

Figure 72: Vehicle module.

A.3 Friction Module

Figure 73: Friction module.
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