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Summary

In many operations the ability of a machine to “see” is what will determine its effec-

tiveness in its particular domain of operation. For example, in a bin picking problem

the ability of the sensing system of a robot to determine the position and orientation

of the individual parts will ultimately determine the system’s success or failure.

Most systems that require this level of sensing, utilize machine vision in which

computers are integrated with image acquisition devices to provide the information

required for guidance; as would be needed in a feedback loop for example. The

development of algorithms that allow these computers to accomplish the image in-

terpretation has turned out to be less than trivial. This is especially true in the area

of natural products such as, meat products, fruit or textile; where, because of their

natural variability the ability to develop machine vision algorithms to automatically

inspect these products reliably has been problematic.

The goal of this thesis is to attempt to determine a methodology for the integration

and streamlining of the process of algorithm development so as to be able to more

efficiently develop effective and robust algorithms for this class of problems. Humans,

are currently still the best available solutions to these problems. This thesis will

examine an approach towards the development of machine vision algorithms using

the primate visual system as a model.

The approach taken in this work defines three levels of processing for the visual

signal these are sensing, ecoding/transfer, and classification. In particular we examine

xvii



the processes of encoding/transfer derived from the results of research in the area

of human/primate biological visual processing and their representations. We focus

on the use of the receptive field mechanisms that are commonly observed in the

human visual system and their processing of contrast in the scenes. We also show

that features derived from the responses of these mechanisms are useful for image

classification.

Algorithms for implementing these operations are developed using the technique

and demonstrated. The other aspect of the approach provides for user guidance by

allowing an expert to teach the system by identifying things that are of interest in a

particular scene. We then demonstrate development of solutions to three inspection

problems using the approach.
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Chapter 1

Introduction

1.1 Background/Motivation

Machine vision has been applied extensively and successfully in many automated

inspection tasks and bring many benefits to the execution of these operations as com-

pared to humans. The major benefits include, consistency along with more accurate

quantitative measures such as size shape and position. Additionally, these systems

do not get tired and suffer performance degradation as a result. Machine vision sys-

tems are more commonly used where the objects of interest are made to definable

tolerances. This is not the case however, with natural products, as variability here is

now the rule rather than the exception.

With many machine vision successes in the manufacturing arena along with the

advancements in the technology (cheaper and more powerful computers, along with

more sensitive and lower cost cameras) more interest is being generated in the inspec-

tion of natural products. The variability here is usually several orders of magnitude

higher than that for manufactured goods [1]. As a result, most solutions today still

have humans in the loop as the typical algorithms are not able to handle the natural

change that occurs in the products of interest. According to Graves and Batchelor

[1]: “ New types of algorithms for image processing are needed.” We would also like

1



to add, that what is also needed, are techniques to support the development of these

algorithms.

The design of machine vision algorithms is a complex task in many manufactur-

ing applications, particularly for the automated handling and inspection of natural

products. Natural products in this context refer to goods and products such as food,

apparel, and textile products [2] where surface texture and reflectance cannot be mod-

ified or controlled, and are highly variable. The design of sensing systems for machine

guidance and quality control inspection of these entities is a significant task in many

industries and attempts to automate these activities have been less than optimal (the

systems might for example require frequent retraining). In industrial applications,

tasks such as quality control (QC), material handling, and machine guidance are still

manually intensive.

The use of machine vision in many of these applications has been stymied because

a unique empirical approach is required for each application, due to the lack of a

systematic approach to guide the development of imaging algorithms. As stated by

Zuech [3]:

“Successful techniques in manufacturing tend to be very specific and

often capitalize on ‘clever tricks’ associated with manipulating the manu-

facturing environment.”

A similar sentiment is expressed by Arathron [4] in his work titled Map-Seeking

Circuits in Visual Cognition where he states:

“General-purpose machine vision remains elusive, and this cannot help

but spark a longing to reverse-engineer biology’s system, which for the

2



foreseeable future will set the standard of performance.”

The challenge is further increased for natural products as the natural variabil-

ity that occurs has to be accounted for in some way. General techniques for the

development of effective solutions have not been forthcoming.

The paucity of solutions have not been only in the area of inspection but also in

its impact on the design of intelligent machinery for conducting operations in these

production environments as the ability to sense and respond to naturally varying

products is of the utmost importance for realizing machines capable of functioning in

these domains. Other areas in which these developments might be off interest include

image guided surgery, robotic surgical assistance [5], and medical image analysis such

as mammograms [6]. Other applications in which these techniques could be useful

is in the interpretation of satellite imagery where it might be possible to develop

techniques to enhance images for the viewer to assist in interpretation of visual data.

The objective of this thesis is to establish an engineering foundation that can

be used by the machine vision algorithm developer to design workable solutions us-

ing a methodology; that is both more efficient and tractable than existing heuristic

techniques for finding defects in natural products, while demonstrating robustness to

the expected natural variations. The hypothesis here is that we can derive useful

approaches from what is currently known about the functioning of the human visual

system (HVS).

3



1.2 Past Research and Related Work

In what follows we provide a review of work in this area. We will begin by covering

some of the earlier activity on the influence of the knowledge of biological vision

on computer vision and then describe some of the developments that have occurred

utilizing these concepts.

In early vision theory and computation, Marr [7] viewed vision as a process that

produces from images of the external world a description that is useful to the viewer

and not cluttered with irrelevant information. The basic question is how does one

go from information to knowledge. What we, in effect have is a mapping from one

representation to another. In the case of humans the first representation is known

(an image on the retina of the eye) the question is what is the output representation?

Marr then proposed a representational framework for deriving shape from images as

illustrated in Figure 1.1.

Using this technique, Marr was able to generate useful explanations for the pro-

cesses involved in generating shape. These included models for using stereopsis, di-

rectional selectivity, apparent motion and color. Marr and his colleagues were thus

able to describe processes to go from an image to a description of an object’s shape

in 3D space.

Grinsom [8] extended Marr’s work by concentrating on the use of only stereo in-

formation in determining the full 21/2 - D sketch but other information could be

used as mentioned before, these include texture, color, shading, focusing, occluding

contours. Marr[7] and Grinsom [8] also identify three levels at which computations

4



Figure 1.1: Model for obtaining 2 1/2 D sketch

on these image representations can be described , they are: a computational the-

ory, an algorithm to implement the theory and, an implementation of the algorithm.

Marr’s theory described a process of information or feature extraction from an im-

age that facilitated the determination of shape. The higher level activity for image

interpretation was not hypothesized.

Motivated by the area of scientific visualization and the presentation of scientific

data, Rogers [9] developed tools to assist the human in the interpretation of visual

data by tying the presentation of the data with the cognitive processes that are

used to interpret the data. An example of Rogers’ applications was that of x-ray

radiography [9]. The result of her work was a prototype system called the VIP (visual

interaction processor) which provided a link between the visual input image and the

problem solving process, the main goal being to handle the functions of hypothesis

management and attention direction. She was also able to show that useful results
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could also be obtained using this technique to assist radiographers. One aspect of

this work which will have direct impact is the development of a process for studying

a visual reasoning task and the development of a model for information flow between

perception and problem solving along with models for the extraction of information

from the people actually doing the task using talk aloud protocols. Specifically this

could assist in determining image features of interest based on an expert’s description.

Another human performance based approach can be found in the work of Doll

et. al. [10] in the development of the Georgia Tech Vision (GTV) model. This

model is used to evaluate the conspicuity or detectability of an object in a particular

type of background for both still and moving images. The model utilizes findings

from computational vision and attention research literature, as well as models based

on psychophysical and neurophysiological research. The GTV model utilizes four

modules in its implementation; these are called the front end module, the preattentive

module, the attentive module and the performance module. The front end module

functions like the cells in the retina along with some low-level processing. Preattentive

processing simulates perception in the peripheral visual field and identifies objects

to be further analyzed in the attentive stage. In the attentive stage close visual

inspection or a foveal view is simulated. The processing in the preattentive and

attentive phase is implemented as spatial filters the outputs of which drive compressive

non-linearity’s. The final stage is what is called the performance module in which the

probability of locating or missing a given target is computed. The major focus of the

work is the prediction of the things that would be conspicuous in a scene as seen by

a human observer. This work is significant in that it might be possible to capitalize

on this learned behavior of the observer to both identify and appropriately weight
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the low-level operations to be performed and also to guide high level interpretation.

The other relevant feature is that all the algorithms were developed based on models

of the primate visual system. Partial validation of this model has been completed by

comparing its performance with that of trained human observers. The results show

that the GTVmodel fairly accurately predicts the probability that objects are located

during search and that they are discriminated from background clutter.

Another related work is the use of biological models for early chromatic visual

processing by Gershon [11] which resulted in the following contributions:

1. Techniques for determining material changes as opposed to shadow boundaries.

2. Transformations of [R,G,B] to form color constant images (an approach to

implement an algorithm for color constancy).

3. The identification of highlights through the use of chromatic information.

Gershon looked at utilizing some of the basic principles from the physiological and

psychological knowledge of color vision utilizing information about the mechanisms in

color vision whose functions have been determined and documented. Gershon’s mod-

els follow the structure of the visual pathways; he transforms the inputs into three

chromatic components and looked at a linear, a logarithmic and a non-linear adapta-

tion of the outputs from early vision processing. Utilizing these transformations he

found reasonable qualitative agreement with responses in human color vision. This

implies that an approach to derive computational techniques from biological models

might be feasible.

For differentiating between material and shadow boundaries Gershon developed a

Relative Amplitude Response (RAR) [11] function as described in Equation (1.1)
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RAR =
|Peak response R+G− /R−G+|p

(Peak response R+ /R−)2 + (Peak response G+ /G−)2 (1.1)

where R and G are the red and green responses; and the ‘+’ and ‘−’ identity the op-
ponent responses. For example, R+ G− represents the signal obtained by taking the
R signal minus the G signal in a region. If RAR > |gR−rG|

R2+G2
is true where g and r are

functions of the ambient illumination and other objects in the scene, then the bound-

ary is due to a material change and not a shadow change. Gershon also identified

techniques for simulating color constancy along with algorithms to detect highlights

based on the correlation of the reflected spectrum with that of the illuminant.

Direct applications of methods for developing non-linear filters have been demon-

strated by Belkacem-Boussaid and Beghdadi [12]. They were able to address the

problem of image smoothing while preserving edges. They developed and tested the

development of filters that were based on models of the human visual system and

showed that they had performance comparable to other established techniques.

Much thought has also been given towards implementing human vision models

in hardware. In this work Shah and Levine [13] [14] developed and tested models

of human visual performance with the goal of implementing them in silicon thereby

imbuing imaging sensors with some of the superior capabilities of the human visual

system. They utilized DOG (Difference of Gaussian) filters as representing some

of the lower level operations conducted in early vision. This work was done using

assuming only achromatic information but they were able to simulate some of the

known behaviors on the human visual system.

In order to conduct image segmentation texture differences are many times of
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interest. One therefore sometimes has the need to evaluate texture. In this work,

Papathomas et. al. [15] develop models for texture segmentation based on human

models They develop what they call first order and second order features. The

first order texture features are edges based on color or luminance while second order

features spatial frequency, binocular disparity and double opponent responses.

Sometimes there is a need to automate the analysis of large quantities of data.

The authors here are concerned with the development of algorithms to assist in the

analysis of large image sets as would be obtained for example from planetary explo-

ration. In this instance Privitera and Stark [16] are interested in detecting the things

humans would detect in analyzing these images. The idea is to develop techniques

that would identify features of interest and to use the human visual system as a

model in developing these techniques. Among the algorithms suggested is the use of

center-surround operators derived from early-stage vision.

In many computer imaging and machine vision tasks the shapes of entities in the

scenes are of significant interest. Sakai and Finkel [17] in their work make the point

that traditional approaches do not match the human biological system as they are

too computationally intensive. They demonstrate approaches using DOG filters in

the first stages along with representations in the primary visual cortex.

There are also many other instances in which we utilize knowledge about the

human biological system in the design of engineering solutions, audio coding, the

telephone system and the television transmission system are common examples. As

further motivation, for the approach proposed, we briefly describe the operation of

these systems.

The first example to be considered is MP3. This stands for MPEG Audio layer-3.
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MPEG stands for Moving Pictures Expert Group and they have guided the develop-

ment of compression techniques for video and audio. MP3 is the MPEG subsystem

to compress sound. It uses a technique called perceptual sound shaping in which it

makes use of some of the features of human hearing, for example

• There are certain sounds that the human ear cannot hear

• There are certain sounds that the human ear hears much better than others

• If there are two sounds playing simultaneously we hear the louder one but cannot
hear the softer one.

Using this knowledge it is possible to shrink the size of digitally recorded music

files by a factor of 10. Thus, the popularity of the MP3 format for the storage and

transmission of music files.

Similar information was used in designing the telephone and television transmis-

sion system. In designing the phone system the designers used the knowledge that

the bandwidth for recognizable speech is about 3kHz. This allows us to design sys-

tems that can efficiently utilize the full bandwidth of the medium for transmission of

audio. The designers of the system for the transmission of television signals on the

other hand utilized the trichromatic theory of color vision in the implementation of

that system. It is known from the biology, that we have four kinds of sensors in the

eye with three being responsible for viewing scenes in relatively bright situations with

the illumination on the order of 102cd/m2. Electrically these signals are represented

as R,G and B (Red, Green and Blue) to correspond to these sensor responses in the

eye. It is known from the biology, however, that we are more sensitive to the green
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response than the blue or the red so that we could get by with a high bandwidth

signal in the green and a lower bandwidth signal to accommodate the red and blue

[18]. This is the approach used in the design of the YIQ signals commonly used in

broadcast television. The 1/30th of a second scanning rate of the typical television

monitor was also chosen to produce the most realistic signal while utilizing the lowest

possible bandwidth for data transmission.

It is clear from these examples that engineering solutions to some specific problems

especially as they relate to interaction with humans can be derived utilizing the

biological principles under which we function. The overall conclusion from this review

is that useful results have been obtained by utilizing human models in many image

processing and other domains and the extension of these approaches in the design of

machine vision algorithms appears feasible.

1.3 General Problem Description

The literature review above was not meant to be exhaustive but rather to highlight

representative work that have a direct bearing on this thesis. While much work has

been done in the general computer vision area not much has been done in migrating

these developments and knowledge to machine vision solutions. It is observed, how-

ever, that many useful techniques have been derived from knowledge of the functions

carried out at different levels of the HVS.

The difficulties associated with the development of automated inspection algo-

rithms for these entities are as follows: (1) Natural products are non-uniform; tech-

niques for analyzing natural products must have the ability to accommodate a good
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bit of naturally occurring variability. (2) There is usually some subjectiveness [19]

involved in the decision making process utilized by the humans who currently con-

duct these operations. (3) Compounding the problem is fact that inspection stan-

dards could also be variable, as in many cases the distribution of the output remains

constant no matter the quality distribution of the input; some methodology for ju-

diciously varying the interpretations of the quality standard is therefore a necessity.

Combine the above problems with the difficulties inherent in implementing machine

vision solutions and many problems quite easily become very challenging.

Solutions are being applied towards several problems in food packaging [20] these

include: bottle closure inspection, label inspection, produce grading and sorting,

internal contaminant detection and thickness and profile gages. While not natural

products directly, they come the closest currently to the solutions that would be of

interest. These specific implementations are for problems that are fairly well defined

with a clear description of the visual attributes to be identified. For manufactured

products the problems are usually more clearly defined and can be specified in terms of

flaws that are measurable, errors in dimensions for example. Procedures for tackling

these kinds of problems have become common practice (structured lighting, back

lighting, subpixel edge detection). Even in this arena, however, the determination of

quality parameters have been problematic.

While a variety of skills are required for the successful implementation of machine

vision solutions, software development has been one of the more difficult issues [21].

Algorithms with an analytic and computational basis provide at least two advan-

tages for the systems developer: (1) a unified approach to tackling new and unique

problems, and (2) the ability to predict performance.
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The benefits of the first are obvious and the benefits of the latter lie mostly in

the fact that QC systems can be more robustly designed if the performance of the

inspector (or inspection system) can be characterized and is consistent. Drury and

Fox [22] state that inspection error exerts a significant influence on quality control

systems and that inspection QC tasks are error prone with error rates of 25% or

higher. It is desirable to be able to accurately measure error rates and to design for

them. This can be accomplished by the use of signal detection theory for example.

With the current system it is difficult to tell what the true error rates are. Most

QC systems, however, assume a perfect inspector and research has shown that it is

difficult to characterize human inspection performance as it has been noted that fault

detection ability deteriorates as a function of time (40% in 30 minutes [22]). These

deficiencies can have a significant economic impact, which manifest themselves in the

form of rework, customer dissatisfaction, and machines that don’t function according

to specifications.

As described before, the standard practice in developing algorithms has been to

utilize ad hoc and heuristic techniques. For these reasons, this thesis focuses on the

development of a more structured approach towards solving these problems, based on

scientific principles, physical measurements, and user guidance.

1.4 Specific Applications

This thesis proposes a more structured and tractable approach towards the solution

of quality-control problems in food processing. As illustrative examples, the devel-

opment and testing of the approach will revolve around two quality control problems
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in vegetable and meat processing. Specifically, this thesis will examine fan bone de-

tection on poultry breast fillets and grapefruit grading as shown in Figure 1.2 and

Figure 1.3 respectively. Mostly the defects to be identified are not life threatening in

nature but rather are visual defects that give the product an undesirable appearance

which can result in marketing difficulties for the producer as the product might not

be purchased by the consumer or in some cases could be returned to the producer.

This could have a significant negative impact on the company bottomline. Currently

most of these operations are conducted by people doing visual checks on the line and

the concern about the availability of labor to do this job in the future as well as

the long term performance of QC inspectors is a driving force for automating these

applications.

These two applications will then serve as the testbed for the approach to be

described. In these two cases we need to find defects on the products. In the case

of the breast fillets we need to find the fan bone located on the middle right of the

screen. In most automated systems this is easily confused with shaded regions or

blood spots on the product. In the case of the grapefruit we need to determine the

amount of discoloration that is present on the surface of the fruit. The severity of the

occurrence is determined from the percentage of the area of the fruit that has this

discoloration. In the case of the fan bone there is zero tolerance while in the case of

the grapefruit there is some acceptable tolerance for the defect.

The human visual system also tends to be more robust than most man-made

systems. Using face recognition systems as an example, the performance of some of

the more advanced systems on the Feret database [23] were as follows: with frontal

images taken on the same day the performance of the systems were 95%. For images
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Figure 1.2: Example of a breast fillet with a fanbone
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Figure 1.3: Example of a grapefruit with defects
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taken with different cameras and lighting the typical performance drops to 80%. With

images taken a year later the recognition performance drops even further to about

50% [23]. The main point here is that a human would not typically exhibit this

deterioration in performance and there is still a great deal we can learn about the

development of practical solutions by studying their biological counterparts.

1.5 Proposed Approach

In this thesis our intention is to extend this paradigm to the design of machine

vision algorithms especially as they relate to the subset of problems where people are

currently still the best sensors of choice. We will attempt to integrate the knowledge

gained from the work in human vision and direct them towards the establishment of

an engineering framework for the design of machine vision algorithms. This thesis

will then attempt to build on this knowledge to formulate such a framework. The

problem domain includes

• imprecise description of defects,

• natural variability in the product, and

• subjectiveness in the interpretation of the data.

The general approach will involve learning from examples, approaches that could

be used in solving the problem. This would follow the way things are currently done.

If a new employee is hired to function as an inspector he is usually apprenticed to an

experienced inspector, this person then usually instructs the apprentice by showing

or describing to her examples of the kinds of defects that need to be identified. This
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person then learns to recognize them and after some practice period is placed on the

production line.

A similar strategy will be employed here where the machine will be shown samples

of defective and non-defective product. We will then attempt to derive features based

on the processing of the HVS which will then be classified to identify the defects. In

this thesis it is planned to develop the approach using two artifacts and to test its

performance on both. In one case poultry will be used and grapefruit products the

other. These are two example domains in which humans are still the main sensors

used for quality and process control. They are, however, representative of a class of

problems that today has gone largely unsolved.

1.6 Outline of this Thesis

In the absence of lapses in vigilance or fatigue, the human visual system displays

the remarkable ability to function very well, when operating in this somewhat fuzzy

domain even in the presence of significant noise. Man-made systems have had much

difficulty achieving the same degree of functionality or robustness. The questions to

be addressed are as follows: can we effectively utilize some of the proposed human

representations and processing techniques along with physical models in man-made

systems to improve their performance? Is there a general framework within which

the design and development of these systems can be conducted?

The thesis is organized as follows: Chapter 2 will describe the human visual system

(HVS) and summarize the state of related knowledge. In Chapter 3 we present a

framework for algorithm development. Chapter 4 will describe the models that are
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utilized in the investigation. Chapter 5 in turn will describe the testing procedures

and the results while the overall results and conclusions will be presented in Chapter

6.
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Chapter 2

The Human Visual System (HVS)

The human visual system (HVS) is an amazing machine when one considers its ability

to sense and interpret the world around us. It is also a very complicated device all

the functions of which are not well understood. One thing that is agreed on, however,

is that it allows us to function extremely well in our natural environment. If we are

able to inculcate machines with some of these abilities it would allow them to perform

in environments that require them to be flexible and to adjust to variability. In this

chapter we will summarize some of what is known about the functioning of the HVS.

2.1 Human Eye Structure and Operation

The human visual system could be described as using three sequential processes; sens-

ing, encoding, and transfer. Sensing relates to the acquisition of photons. Encoding

is a data reduction process to allow for efficient transfer of this information to the

brain, decoding mechanisms exist in the brain to use this data for interpretation of

the scene. A description of the process as currently understood will now be presented

and is derived from [24], [25] and [26].
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Figure 2.1: Diagram of the eye [25]
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2.1.1 Sensing

A diagram of the eye is shown in Figure 2.1, illustrating its principal elements. The

eye is approximately a spherical structure about 17 mm in diameter. At one end is

an opening that allows light to enter through a lens and focused at the back of the

eye on a structure named the retina. In front of the lens is a structure called the iris

which controls how much light is allowed to enter the eye. The focal length of the

lens is adjustable by muscles attached to the periphery of the lens and the process by

which this occurs is called adaptation. The power of a lens is measured in Diopters

and is defined as 1/f where f is the focal length of the lens measured in meters. The

iris can adjust from a diameter of 1.5 to 8.0 mm resulting in f-numbers for the eye

from f2.5 to f13 where the f-number is defined as f/d; and d for a human eye is the

diameter of the opening of the iris.

The retina houses the sensing elements. Because of the morphology of these

sensing elements they are called rods and cones. The rods are long and thin while the

cones are relatively more rotund with a conical tip. The rods are primarily responsible

for low light level or scotopic vision (< 1 lux) while the cones are dominant at higher

light levels or what is called photopic vision. It is said that the rods are capable of

detecting one quanta of light after it has been dark adapted for approximately one

hour. The retina is also backwards from what would be thought intuitively as the light

has to pass through several layers of nervous tissue to get to the sensing elements.

This is necessary so that the rods and cones can be replenished with proteins that

are depleted as the rods and cones sense the incoming radiation.

The vision process is initiated by light stimulating the photopigments in the rods
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and cones in the retina. There are four types of photopigments, one type in the rods,

and three distributed among the cones. The photopigments consists of a protein

molecule called opsin to which is bound a derivative of vitamin A1. The most studied

visual pigment is rhodopsin in the rods and the process to be described is for the

rods. A similar process is thought to exist for the cones. When the rod absorbs

light a process called cis-trans isomerization takes place in which the outer molecules

break away from the opsin, this then generates a small change in electrical potential

across the walls of the cell of about 2µV . This voltage change is then transmitted to

the neurons connected to the rods and cones. Studies have determined the spectral

sensitivity of the four pigments. The rods are centered at 496nm, the blue (B) cones

at 420nm, the green (G) cones at 530nm, and the red (R) cones at 560nm. The

visual system actually responds into what should be more accurately termed the

short, medium and long wavelength ranges of the visible spectrum or SML; these are

typically referred to as RGB. This nomenclature is not accurate, however, and should

more appropriately be described in terms of the probability of absorption of photons

of light at different wavelengths.

Because of the overlapping spectra of the three cone pigments, there is a unique

combination of absorbance probabilities in the visible spectrum; thus, by comparing

the rates of absorption in the different classes of cones the visual system is able to dis-

criminate wavelength. These three wavelengths also provide the basis for trichromacy

as one approach towards describing human color vision.

Another interesting phenomenon is that these three cone types do not appear with

equal frequency, there are 40 red to 20 green to 1 blue and in the foveal area there

are almost no blue cones. This implies that the probability of absorbance not only
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varies with wavelength but also on the relative distribution of cone types.

As mentioned earlier, the electro-chemical reaction in the photopigments in the

rods and cones results in a change in electrical potential of approximately 2µV across

the cell membrane in the outer segment of the rod or cone. This signal arrives at the

base of the rod or cone 2ms after the light is absorbed by the retina. By the principle of

univariance, the cells electrical polarization and hence, its electrical output increases

with the rate at which photons are absorbed. It is interesting to note that there is

no information about the spectral content of the incoming radiation this information

has to be regenerated, and is thought to be a post receptoral activity.

2.1.2 Encoding

This process starts with electromagnetic waves from the environment passing through

the cornea, the anterior chamber, the lens, the vitreous humour, the macular coating,

the ganglion cells, the amacrine cells, the bipolar cells, the horizontal cells, then finally

to the rods and cones that are capable of absorbing this energy. These components

all interact with the incoming energy waves in their own way.

After initial stimulation of the sensing elements in the retina, the resulting signals

are transmitted to the layer of nerve cells in the retina here some pre-processing,

signal conditioning and compression is done on the signals before they are transferred

along the optic nerve to the visual cortex. This is inferred from the fact that their

are approximately 150 million rod and cone receptors while only about 1 million

ganglion cells in the optic nerve. A simplified explanation of this process as currently

understood is now given. After leaving the rods and cones the signals travel to a

layer of cells just in front of the retina which consists of three types of cells these
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are horizontal, amacrine and bipolar cells. These cells are responsible for the initial

coding of the visual stimulus before it is sent to the brain and can be seen in Figure

2.2.

The horizontal cells behave differently than other neurons in the body. The typical

output of a neuron is somewhat digital in nature (even though it is an analog device).

as there is typically a brief electrical activity (called a spike discharge) and the infor-

mation about stimulus intensity is conveyed by the frequency of the discharges. The

horizontal cells, on the other hand, typically do not behave in this manner as their

outputs are not spike discharges but rather graded potential changes consisting of an

increase in its normal resting potential (hyperpolarization) or a decrease in its nor-

mal resting potential (depolarization). These changes in potential are proportional

to the stimulus intensity. These potentials have been demonstrated in primates and

are called S-potentials. There are two types of horizontal cells, L-type and C-type.

The L-type cells are thought to code information about luminosity while the C-type

codes wavelength information. The L-type response originates from all three types

of cone receptors while the C-type responses results from combination of R and G or

R,G and B.

2.1.3 Transfer

In about 50ms after receiving the first photon stimulant this information is passed

from the retina along the optic nerve to the base of the brain. This is where all

the truly wondrous processes begin to happen. First the stimulus leaves the eye and

travels along the optic nerve to the brain. The signals from the left and right side of

the retina go to the left and right side of the brain respectively with some overlap in
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stimulus from the macular region. The images in the two eyes are slightly different

and results in a stereoscopic effect from which we get one cue for depth perception.

Some crossing over of the nerves are necessary to accomplish this and occurs in the

optic chiasma. These fibers terminate in the lateral geniculate nucleus (LGN) a short

distance away from the optic chiasma and forms synapses with the other fibers leading

to the other parts of the brain concerned with vision.

As mentioned earlier, there are also the amacrine and bipolar cells present just

beyond the retina before the ganglion layer; their organization and structure is shown

in Figure 2.2. The ganglion cells could share outputs from several cones but luminance

and color information are thought to remain separate. This process is known as

convergence where there is some coding, integration and feature extraction is done

before the information is passed to the other parts of the brain for processing. This is

inferred from the fact that there is approximately 150 million sensors in the retina but

only about 1 million ganglion cells. This does not indicate receptor redundancy but

appears to be an integral part of the coding process which allows the visual system

to adequately code information about luminance, form, movement and color.

Convergence on a ganglion cell occurs over well defined areas of the retina. These

are called receptive fields and have characteristic spatial distributions. There are also

opponent behavior in these receptive fields where the presence of light in one area

will inhibit the cell response in a surrounding area. This is the reason one perceives

a heightened contrast at a luminance boundary. At higher levels of illumination the

effective field size is reduced therefore the number of functional receptive fields per

unit area is increased allowing for the discrimination of finer detail.

Luminance is not the only information coded as an opponent signal as color is
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Figure 2.2: Detail of retina showing horizontal, bipolar and amacrine cells [25]
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also coded in a similar way by ganglion cells.

2.1.4 Processing in the Brain

The activities related to image interpretation and decision making take place in the

brain. A simplified description will now be given derived from [25]. After the rods and

cones are stimulated the output signals are then processed and sent as electrochemical

signals through the ganglion cells to the lateral geniculate nucleus (LGN) and finally

to the visual cortex where analysis of these signals take place. There are two paths

that have been identified for this signal transfer from the ganglion cells, these are,

the magnocellular and parvocellular streams from what are termed ganglion M and

P cells respectively. Experiments indicate that the magnocellular streams conduct

information that is critical for the analysis of motion while the parvocellular streams

handle information critical for the analysis of shape, size, and color. It has also been

observed that the response of the parvocellular cells are slower than the magnocel-

lular cells [26]. It would thus appear that the problem of current interest would be

addressed through the processing of parvocellular signals.

Anatomical and electrophysical studies in the monkey have lead to the definition

of several functional areas in the brain. The signals leave the retina through the optic

nerve to the LGN (Lateral Geniculate Nucleus) from which they are parcelled out to

other areas of the brain defined as V1, V2, V3, V4, and MT or the middle temporal

area. MT for example,contains neurons that respond selectively to the motion of

edges. V4 on the other hand responds to color without regard to motion.
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2.2 Theories of Color Vision

The three theories that currently govern models of vision are the trichromatic theory,

the opponent theory and the retinex theory. No single theory currently describes all

of the known properties of the human visual system and so a composite theory is

usually assumed.

2.2.1 Trichromacy, Opponency and Retinex

The theoretical basis of trichromacy could be said to have been started with Newton

who first asserted that light itself is not colored but this was rather an interpretation

that the brain placed on the distribution of the incoming radiation. Thomas Young

was the first to propose that there were three types of sensors in the eye. His thesis

was based on the fact that there were seven primary hues (VIGBYOR or violet,

indigo, green, blue, yellow, orange and red) and that it would take at least three

sensors to represent this combination of hues. In 1855 Maxwell was able to show that

the spectral colors could all be obtained by mixing 3 primary colors. Helmholtz was

then able to support this experimental data with a physiologically based hypothesis

of three channels with different but overlapping spectral sensitivities.

The opponent theory was proposed to explain the phenomenon of opponent colors

that is observed in the HVS. Specifically we never seem to observe colors that are

combinations of red and green or yellow and blue. Cells have been found in the

eye that respond to these opponent colors. They are thought to allow for efficient

coding of color information as there is currently significant overlap between the L and

M sensor responses and the opponent responses are less correlated. Other kinds of
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behaviors are also observed in the human cells that respond to light. One of the more

significant is that of wavelength opponency in which the cells respond based on the

actual spectral distribution of the incoming light energy.

Wavelength opponency is exhibited by behavior of the horizontal cells in the

retina. Several researchers have documented Hering’s theory in which he identified a

red/green and a blue/yellow opponent behavior in the human visual system. Hering

also described a light to dark opponent system but a pathway for this signal has not

yet been found. This theory is observed from the fact that one is not able to see

colors that are a mixture of red and green or colors that are mixtures of blue and

yellow, these colors are thus said to be opponent. It should be remembered however,

that the names red, yellow etc. are our descriptions for light reaching our eyes with

particular wavelength distributions. These responses are more accurately described

in terms of the response of sensors in the eye that are sensitive to long, medium and

short (LMS) wavelength radiation.

It is thought that this opponent coding mechanism is an approach to code the

signals travelling from the retina to the brain that helps to reduce the correlation

between the L and M sensors because of their significant spectral overlap. This then

would allow for more efficient coding in the brain. The hue cancellation experiment

produced curves that showed what these spectrally opponent responses looked like.

These are shown in Figure 2.3 denoted as Frg(λ) and Fby(λ), to represent the red-green

and the blue-yellow opponent responses respectively.

Everyone has experienced the phenomena of color constancy. As we move from

the interior of a building to the outside the spectral distribution of the light impinging

on our retinas changes. This should result in a change in the color of objects as we
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Figure 2.3: Wavelength opponent response of ganglion cells in the retina [27]

move from inside to outside. This is not the case under most circumstances and the

ability of the HVS to accommodate these changes is called color constancy. Land

[24] developed a theory called the retinex theory to explain this phenomenon. In it

he proposes that this information is coded in terms of the relative lightnesses of the

objects in the scene as determined from the sensor responses. This in effect allows

the visual system to extract information about the reflectances of the objects in the

scene which is the only property that is not changing.

2.2.2 Relating the theories

Currently there is no equivalent to the unified theory for explaining visual phenom-

ena. As a result models have been developed to explain various observations. The

trichromatic theory while doing a satisfactory job of explaining color matching does

not explain the existence of opponent colors thus the opponent theory. Neither of

these two theories do a satisfactory job of explaining color constancy and appearance

and thus the rise of Land’s retinex theory. It would thus appear that the truth lies
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in some combination of the above theories.

2.3 Models of Visual Information Processing

A receptive field, is a visual area within which light influences a neuron’s response.

This is a ubiqitous apparatus in the human visual system and occurs along all parts

of the visual chain from the cells in the retina to higher level regions of the brain.

It appears that these receptive fields are particularly suited for processing and repre-

senting contrasts in a behavior that is locally linear (i.e. they display the properties

of a linear system around particular levels of illumination). It therefore appears that

much of the representation in the brain relies on contrasts and are therefore significant

features to be utilized by any image processing system.

Receptive fields typically have a center surround geometry as shown in Figure

2.4. There are three types defined in [24], an on center off surround (Type I) and

off center on surround (Type II) and a Type III which responds like the photopic

luminous response of the eye. In addition there are thought to be double opponent

cells in which the center and surround responses are driven by combinations of the

LMS sensors. The receptive fields identified in Figure 2.4 in combination in, effect

behave like band pass filters of varying bandwidths and end up comparing image

responses on different scales. The outputs of these receptive fields could also be

coding lightness contrasts thought to be a key requirement for color constancy.

It is thought at this time that these fairly simple recognition tasks are conducted

at the lower levels of the brain and that there could even be feedback, learning and

memory that affects the process so that the decisions could possibly be made at the
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Figure 2.4: Ganglion receptive field showing spatial opponency with a center surround
relationship identified in the eye [24]
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ganglion or the LGN. Much of the coding of images relies on contrasts and edges

which can be obtained from the outputs of receptive fields. Marr [7] defined the

purpose of vision as that of representing shape. In order to get to that description,

however, we need to describe edges and surfaces. He then goes on to describe filters

that support this process. A filter that is believed to be significant in this process

is the ∇2G operator called the Laplacian of the Gaussian where ∇2 is the laplacian
operator and G is a gaussian kernel as defined in Equation (2.1) and Equation (2.2).

∇2 ≡ ∂2/∂x2 + ∂2/∂y2 (2.1)

G(x, y) = e−(
x2−y2
2πσ2

) (2.2)

These can be used to detect intensity changes at many different scales based on the

choice of σ in Equation (2.2). Marr also went on to show that under certain conditions

the∇2G operator could be approximated as a difference of gaussian (DOG) functions

which would describe the neuron receptive fields.

2.4 Summary

The sensing of color by humans could be characterized in three stages. Stage 1 would

be sensing as occurs in the eye. Stage 2 would be coding and transfer to the brain and

Stage 3 decoding and interpretation of the data. The major activity that forms our

sensing of color is done in the brain. Again, if we knew the forms of these represen-

tations could they be of use in the design of artificial systems. Interpretation of what
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we see is probably the darkest art and probably relies heavily on apriori knowledge

and experience. In the end the parameters needed are coded and sent to the visual

cortex for further processing. These are all coded in the systems described earlier.

The mechanisms for extracting and utilizing this information then seems to reside in

the visual cortex. The science of color must be regarded as a mental science James

Clerk Maxwell 1872 [28]. We are interested in the use of these representations espe-

cially at the early stages of coding and their potential use to guide the development

of algorithms.
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Chapter 3

Biological Operation Based Vision
(BOBV)

In this approach we will describe three stages that correspond to the three stages of

processing identified in the human visual system as described in the previous chapter.

They will be called levels, instead of stages, to differentiate the artificial and approx-

imate process to be developed here from the natural process in the human visual

system.

The motivation stems from the following facts:

1. Humans are very good at vision.

2. Many problems of interest are done very well by humans.

3. We can learn principles that would be applicable to other signal processing

domains.

Specifically, we obtain through user descriptions, biological models, and physical

measurements these salient features which are then used to streamline the formulation

of algorithms; thereby allowing for efficient convergence to effective algorithms.
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Figure 3.1: Formulation Process for BOBV Algorithms

3.1 Overview

What is envisioned here is an operator driven algorithm development process whereby

a combination of operator inputs, and psychophysical models are used to drive the

development of algorithms. The overall process is illustrated in Figure 3.1, where

GEN1, GEN2 and, GEN3 represent the procedures corresponding to the operations

at levels(1,2,3) in the human visual system (HVS); these are described in more detail

below.
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This technique should produce algorithms that would be implemented at the ac-

quisition/preprocessing level, low level vision operations, and higher level vision op-

erations, denoted as levels 1, 2 and 3 in Figure 3.1. The methodology will allow the

user to directly influence the selection of the appropriate algorithms. It is envisioned

that the system would consist of four major functions as follows:

1. Level 1 Operations (GEN1).

2. Level 2 Operations (GEN2).

3. Level 3 Operations (GEN3).

4. Evaluate and Modify above as necessary(Feedback).

We assign to LEVEL 1, operations that would occur in the ganglion cell layer in

conjunction with operations in the LGN (Lateral Geniculate Nucleus) as described

in Section 2.1.4. LEVEL 2 activity, would correspond to the activity in V1 while

LEVEL 3 would cover operations at the higher levels of the brain corresponding to

what is currently defined in areas V4 to MT. Receptive fields have been identified

at all these levels with differing functionality [29]; they respond in general to the

spatio-temporal, chromatic as well as the binocular elements of the signal. We seek,

in this approach, to exploit the representations that result from these operations as

features for classification.

The overall process would function as follows: the paths identified in Figure 3.1

show two parallel processes, a machine process on the left, and the human process

on the right. They both begin with a representation of the scene of interest on an

image sensor and the retina respectively. In the human process, the next stage is

the LEVEL 1 operations which leads to the extraction of low-level features. This

includes the features used for coding of the image data before transfer to other parts
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of the brain. Knowledge of these operations will be used to drive the development of

methods in the box labeled GEN1 on the machine side.

As we continue down the HVS path these low-level features are passed to the parts

of the brain defined as conducting LEVEL 2 operations as would be conducted for

example in V1. At this stage, higher level features are generated, these would include

things such as color, shape, motion, or texture. Like the previous stage, we would

use knowledge of these operations to drive activities in GEN2.

The next stage would be purposive meaning that the operations would be driven

by the goals of the process; so for example, the operations needed for tracking a

moving baseball are different than those for discerning a change in color. These

ideas, however, would drive the operations developed in GEN3.

The situation when dealing with the typical inspection problem is less complicated

than the general vision problem as usually there are only a few items of interest at any

one time. The box labelled operator input is used to identify the elements that are

of interest in the scene. The other salient feature is that of feedback where we iterate

through the combinations of features and operations to get a sequence of operations

to meet the needs of the application.

We have outlined a general approach that can be enhanced as knowledge of the

operations in the human visual system improves.

The general scenario for imaging is shown in Figure 3.2 where you have a light

source, and object(s) to be imaged along with a system for acquiring the image which

could be a camera or the human eye. A model for the development of imaging

algorithms under these general conditions will now be presented.

First we describe the assumptions which follow, these are:
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Figure 3.2: Common configuration for industrial imaging

• Photopic vision (vision driven by the cones or bright light vision)

• Monocular vision (stereo effects are not significant)

• No motion cues (detection of motion in not necessary)

• Depth cues from apriori knowledge and shading (can tell defects by looking at

an image on a monitor)

• No specular reflection (body reflection to represent colors as opposed to the
wavelength distribution of the light)

• Low level image processing (operations are conducted at high rates)

The assumption of low level image processing stems from the fact that for most

of these applications the decision making is done at very high rates which would

lead us to believe that the processing is being done very early in the visual stream.

Much of this processing seems to rely on our ability to detect contrasts between the
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Figure 3.3: Example image to differentiate seeing from perception

normal and abnormal. This appears to be relatively easy for most humans making

decisions on the production line, the main problems stems from their inability to

maintain a consistent level of concentration for extended periods of time for example

over an 8 hour shift. An example of the kinds of operations to be considered can

be gleaned from Figure 3.3 we would be more concerned about detecting the blobs

and their presence as opposed to being able to decipher the words in the blobs. This

should thus be considered more of a Machine Vision as opposed to a Computer Vision

problem [1] driven by more practical and time critical considerations.
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3.2 Contrast and Receptive Fields

Contrast appears to be an important element of human visual processing. We will now

describe the phenomenon of contrast, as well as receptive fields, which are designed

to operate on and enhance contrast.

3.2.1 Importance of Contrast

We will define contrast in this context as a deviation of a signal from some average

or background value. This is different, for example, from another common definition

in which it is defined as the extent of variation in an image or the dynamic range

of the image (this is what is usually adjusted with the contrast adjustment on your

TV or computer monitor). In general, our brains seems to try and increase contrast

between targets and the background. It appears that the HVS continually strives to

enhance localized contrasts.

One way to view this is as a difference operation. This can be accomplished

in several ways and might be problem specific so that usable contrasts are learned

for the specific problem under consideration. For example, in one case the contrast

might be one of texture, while in another it is an edge contrast, while in another

it could be a color contrast. These operations are also considered to be LEVEL 2.

The general effects of these operations is to enhance contrast in the image. Contrast

appears to be one of the major mechanisms used by the human visual system to

conduct fast robust detection and identification. This is inferred from the fact that

contrasts stretch (or expand) the large dynamic range we can see, which spans about

six orders of magnitude in terms of incident energy, from a dim evening to a bright
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Figure 3.4: Effect of contrast on appearance [26]

sunny day. The individual neuron response can only handle about two to three orders

of magnitude change. Contrasts in natural scenes, vary on the order of two to three

orders of magnitude more directly matching the neuronal responses. It is also felt

that the information in images is the contrast [30].

Additionally, contrasts are closely related to the properties of surfaces and is

usually the information of interest. Contrast, however, is not directly related to

appearance but is more concerned with our ability to locate areas of interest in a

scene. Much of this capability is governed by the scene itself as illustrated in the

Figure 3.4 where we are able to discern the quite easily the differences brought about

by the cross even though they appear different (note the x in the image on both sides

have the same radiometric properties).

Let us look initially at simple scene as shown in Figure 3.5(a). For this scene
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Figure 3.5: Contrast in simple scenes [31]

we have an object of uniform color on a uniform background. Figure 3.5(b) shows

the detectable contrasts where ratios above the line are detectable by the HVS and

ratios below are not. This threshold for detectable contrasts is called the Weber

ratio as described by Gonzalez[31]. This implies that for the simple scene luminance

contrasts of 2% or greater are detectable within certain overall illumination limits.

Outside of these limits−which fall outside the range for photopic vision– higher

ratios are required

The situation changes significantly in more complicated scenes, where the back-

ground illumination has a substantial effect on the detection thresholds as shown in

Figure 3.6. It can be seen that the behavior falls within the limits of the detection

thresholds for the simple scene shown in Figure 3.5. These definitions concern lumi-

nance thresholds and do not tell us about color. Color is of importance, however, as

in most natural scenes the ability to discern differences in the scene depends on color.

Using the definition of contrast as defined in Equation (3.1) and shown in Figure

3.5
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Figure 3.6: Contrasts in complicated scenes

C(x, y) =
∆B(x, y)

Bref
(3.1)

where C is defined as the contrast, ∆B is a difference with respect to a reference, and

Bref is a reference value. The choice of the reference value will be discussed further

below but is based on the overall characteristics of the scene. Using Equation (3.1) it

is possible to identify in an image pixels where the contrast threshold is exceeded as

in Equation (3.2) these pixels could then be used to identify areas of interest in the

scene for further analysis.

C(x, y) ≥ Cmin (3.2)

For a color image we would write Equation (3.1) in a more general form as shown

in Equation (3.3) where i defines the contrast in each of the sensing planes. As a
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result there will now be not only a magnitude but also a direction for this contrast.

These additional degrees of freedom will assist in the process of classification.

Ci(x, y) =
Bi(x, y)−Bi ref

Bi ref
(3.3)

Additionally we would also define a more general contrast threshold as in Equation

(3.4) to be used for thresholding as the value of 2% given in [31] is for a luminance

contrast. The weights wi given in [32] (w1 = 0.299; w2 = 0.587; w3 = 0.114)

for example, gives a better correspondence with the perceived brightness of color,

and would allow for the computation of an equivalent luminance contrast Ctot. This

knowledge could be used for example to filter noise in images that approximate simple

scenes; as pixels with these values would not be observed by the graders in many

applications.

Ctot =
3X

i=1

wiCi(x, y) (3.4)

The visual effect of contrasts computed with Equation (3.4) for model generated

sample images are shown in Figure 3.7. The images consists of an elliptical region

in the center on a uniform background. Figure 3.7(a) is above threshold with Ctot =

0.032, Figure 3.7(b) is right at threshold withCtot = 0.025, while Figure 3.7(c) is below

threshold with Ctot = 0.011. This shows reasonable agreement with observations.

3.2.2 Encoding/Processing Contrast with Receptive Fields

It is believed that the receptive fields in the ganglion layer of the retina is a significant

mechanism for encoding luminance contrast. As mentioned earlier however receptive
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Figure 3.7: Images with varing color contrasts (a) 0.032, (b) 0.025, (c) 0.011
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fields occur at many places along the signal paths to the brain and are sensitive to

spatial, temporal, chromatic as well as binocular (things that are seen in either eye).

The receptive field model, assumes that the neural response is due to two separate

mechanisms called the center and the surround with the center being of a smaller

spatial extent than the surround. A general equation to describe this behavior is

given in Equation (3.5) which describes a response Ri, where αc and αs denotes the

weights for the center and surround respectively, x, y indicate spatial position; t time,

and z the disparity for binocular images. Ic and Is identify the inputs for center and

surround processing with ∗ being the convolution operator.

Ri = αcZc(x, y, z, t) ∗ Ici(x, y)− αsZs(x, y, z, t) ∗ Isi(x, y) (3.5)

It has been shown that the responses for some cells are separable [33] so that we

can write Equation (3.5) as shown in Equation (3.6).

Ri = αcZ1c(t)Z2c(x, y, z) ∗ Ici(x, y)− αsZ2s(t)Z2s(x, y, z) ∗ Isi(x, y) (3.6)

Looking only at monocular responses we would then obtain the response output

as in Equation (3.7).

Ri = αcZ1c(t)Z2c(x, y) ∗ Ici(x, y)− αsZ2s(t)Z2s(x, y) ∗ Isi(x, y) (3.7)

Next, assuming no temporal responses we would obtain the response as shown in

Equation (3.8) which describes the responses of the simplest receptive fields.
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Ri = αcZ2c(x, y) ∗ Ici(x, y)− αsZ2s(x, y) ∗ Isi(x, y) (3.8)

Using Equation (3.8) and choosing Z2c and Z2s to be Gaussians we obtain the

Difference of Gaussian (DOG) model. The use of the DOG model for describing the

behavior of the receptive field has been shown to be useful in describing the behavior

of ganglion cells [29] [13]. The curves describing the spatial sensitivities of these two

areas are assumed to be Gaussians as these have been shown to be representative of

the human responses and additionally reduce the effects of ringing and filter ripple

when used in the convolution operations.

The composition of the signals that make up the center and surround input is

still a matter of debate but several scenarios from various anatomical studies have

been presented. Some of these from [7] are shown in Figure 3.8. A summary of many

of the proposed combinations are presented in Table 3.1 where the center input is

defined as Ici and the surround input as Isi. The past research propose many forms

for the Ici and Isi that are typically combinations of the long, medium, and short

(LMS) wavelength sensors in the eye. These are also typically referred to as R,G and

B sensors.

We will define center and surround responses based on a combination of the

trichromatic and opponent theories of vision. The responses based on the trichro-

matic responses will be called Class I and those due to the opponent responses will

be termed Class II. These will be described more completely in Chapter 4. The

main point to note are the simplifying assumptions made to obtain the DOG model,

indicating that we are utilizing a limited spectrum of the behavior of these receptive
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Figure 3.8: Receptive fields as described by Marr [7]

Table 3.1: Classes of Responses
i Ici Isi Source
1 R R [7]
2 G G [7]
3 B B Postulated
4 R G [7]
5 R R [7]
6 R G [7]
7 R G+R [34] [26]
8 G G+R [34] [26]
9 B G+R [34] [26]
10 -(R+G) (R+G) [7]
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field responses and the information they encode.

We have identified here one of the significant characteristics of the human vi-

sual system for exploitation in the development of machine vision algorithms. Many

more general models of the functions of the human visual system has been developed

driven by other motivations such as target recognition [10]. In a more general sense,

another approach to this problem would be to look at simplifying some of these more

complicated models to meet machine vision needs.

3.3 Problems of Interest

Computer Vision algorithms and especially those derived from human visual models

have not typically been applied to machine vision problems. There are many reasons

for this:

1. Typically in many other domains of computer vision applications, there is also

usually a human in the loop for example in applications such as analyzing

satellite or medical images. A radiologist looking at x-rays, for example can,

in most cases, take the required time to make a determination on what’s in an

image. During operation of these systems the human assists in making the final

determinations.

2. Usually, the people using these systems are also fairly experienced in the use

of digital imaging and the common image processing techniques and are able

to choose the sequence of operations that are germane to the problem under

consideration. This is not usually the case in machine vision problems where
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one usually has people that are expert at conducting a particular operation in a

manufacturing environment but are not usually familiar with image processing.

3. Most general image processing algorithms (including those derived from human

models) are typically applied in operations that are usually not time critical.

These algorithms execute on the order of minutes as opposed to seconds or

fractions of a second for most machine vision applications in food processing.

4. Most machine vision solutions today are also still monochrome and those that

use color typically treat the output as a group of gray scale images. This does

not normally meet the requirements of most food processing applications.

For the applications of interest here, techniques that are able to derive useful

solutions with a prescribed approach would be of much help to the machine vision

system designer. In particular, for machine vision applications in food processing the

human involvement would mostly be in training and not in normal operation. We

will present a unified approach for processing color images based on the functions

of the human visual system as currently understood. This approach enables us to

develop routines that conduct fast color segmentation and classification to meet the

above described needs.

Problems with the characteristics typical for natural products are shown in Figure

3.9. In the first two examples shown in Figure 3.9(a) through Figure 3.9(d) we are

interested in detecting the fan bone. In the latter two examples, shown in Figure

3.9(e) and Figure 3.9(h), we are required to categorize the overall surface condition

of the grapefruits; this could be succinctly described as determining the amount of

surface area that is not yellow-green. Additionally, for this latter application it might
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also be required that some absolute color tolerance be observed. In general, for both

problems, the overall goal could be described as transforming several thousand bits

of information to just a few that indicate the status of the part.

The fan bone problem is driven by a need to fuse information from two modalities,

visible and X-ray images. This is necessary because for the X-ray system the energies

needed to detect the hard sub-surface bones are not able to easily detect the softer

surface bones such as the fan bones. A combination of both modalities, however,

could serve to enhance the overall system accuracy. We also show in Figure 3.9 the

original color images on the left with the gray scale versions of the same images on

the right. First, it should be observed from the gray scale version of the images, that

the defects of interest cannot be detected as they would be equivalent to shadows

and shading. For example, with the fan bone images it would be difficult to separate

the bone from the background. This then makes it necessary to process in color

space increasing by a factor of three the data that must be handled. In addition,

there are subtle changes in color that have to be detected so that we do not confuse

the bruised region with the fan bone region as shown for example in Figure 3.9(c).

People currently conduct the fan bone inspection tasks, but they are error prone, as it

is difficult to maintain their attention for extended periods; especially at the current

line rates of about 35 parts per minute. A system that could conduct the fan bone

screening in real time could significantly improve the efficacy of the overall inspection

operation.

Similarly, for the grapefruit sorting, it is necessary to identify problems due to

surface defects and discolorations. This problem is also currently done by people but

at rates of 600 parts per minute, much higher than those for the fan bone problem.

53



Figure 3.9: Characteristic problems when sorting natural products

54



It is also observed that the gray scale images do not accurately reflect the surface

conditions of the fruit as the blush seen in Figure 3.9(g) would easily be confused with

shading and shadow in Figure 3.9(h). Additionally, the guidelines for screening (as

with other natural products) are somewhat subjective in nature so that an automated

solution would provide more consistency in the determinations.

3.4 Summary

In this chapter, the essential elements of the human visual system have been identified

as they relate to the problems under consideration. Specifically we have identified

contrast as a significant mechanism in the process and proposed a technique for

calculating color contrasts. We have also outlined in this chapter the general approach

to be used and framework within which the operations to guide the development of

machine vision algorithms will be conducted. Additionally, we have outlined the

structure and function of the general receptive field and the assumptions to derive

the DOG model. Also, we have presented two problems of interest as motivation for

the development of the approach to be described. The next step will now be to look

into more detail at the mechanics involved in implementing the approach using the

DOG model and to determine its behavior under different conditions.
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Chapter 4

Approach to the Extraction of Features
Using Contrast

In Chapter 3 we proposed approaches for image feature extraction using bio-physiological

descriptions of the human visual system operations as the basis for obtaining features.

In this chapter we will perform an analysis of the approach to identify the significant

characteristics of the approach and to make a determination of expected performance.

Our basic assumption is that contrast is a significant element of the process and that

an approach using this method leads to the generation of more robust features. In

addition a somewhat general approach to the development of vision algorithms is

proposed.

4.1 Procedure Overview

The human visual system is a remarkable engine for the processing of visual informa-

tion. Using the knowledge about the human visual system summarized in Chapter

3, we now look at approaches to use this knowledge for the generation of algorithms.

The specific problems of interest are inspection problems that are currently done most

effectively by humans. For these problems it is common practice to train inspectors

through the use of examples; that is, they will usually be shown both good and
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defective product and then through experience learn what is classified as defective

product. We will follow a similar approach by identifying the significant features that

would be computed by the human visual system (HVS) and how they could be used

in discrimination. Factors or features that appear to be of importance in doing this

evaluation include:

• Edge and boundary detection (transition areas in images identify material or
other changes)

• Detection of colors (most problems of interest cannot be solved satisfactorily
with monochrome images)

• Ability to tolerate noise (some defects can be similar in appearance to normal
areas)

• Some invariance to spectral shifts (slight shifts in intensity or wavelength dis-
tribution are accommodated)

The signals and processes we can infer that are significant in obtaining these

features include:

• Long, Medium and Short (LMS) responses

• Spectral opponent responses

• Receptive fields

The assumptions for the analysis as identified in Chapter 3 are as follows:
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• Photopic vision: most inspection tasks are conducted at levels of light that
would put us in the photopic (vision mediated by cones) regime.

• Monocular vision: while more difficult it is possible to do these tasks with one
eye.

• No motion cues: object does not have to be in motion to observe the defects.

• Depth cues from apriori knowledge and shading: based on monocular assump-

tion above

• No specular reflection (body reflection): we are not able to see defects on spec-
ularly reflecting parts of the scene.

• Low level image processing: the rates at which the typical tasks are conducted
indicate very fast processing as characterized in the previous chapter.

4.2 Mathematical Formulation

In defining the response for a receptive field the general equation could be written as

shown in Equation (4.1)

Ri(m,n) = αcβci(m,n) ∗ Ici(m,n)− αsβsi(m,n) ∗ Isi(m,n) (4.1)

where β is a convolution filter; ∗ denotes the convolution operator; I denotes an input
image; and the subscripts “c” and “s” denote center and surround respectively. The

main task will then be in determining the combination of features that optimizes the
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process of discrimination. This implies determining the combination of outputs (R0is)

and their relevant parameters (α0s and σ0s ) that maximizes the contrast between a

defect to be identified and the surround. We now look at the use of some of these

models for the generation of features that could be used for classifying image regions

for the purpose of identifying defects, specifically through the use of the receptive

field concept.

The problem then is to identify possible responsesRi that are significant for a given

problem, represent the problem in this space and do cluster analysis for segmentation

or object identification. This then becomes an optimization problem:

Max(|Rb −Rt|) (4.2)

whereR(m,n)= f(α1,α2,σ1,σ2) is formulated by rewriting Equation (4.1) in a more

compact form, while b and t represent the background and a target or object of

interest respectively. We then need to choose parameters α1,α2,σ1 and σ2 to satisfy

Equation (4.2) if the problem is one of segmentation.

If the problem is one of edge location then Equation (4.3) where (Rb −→ Ro)

indicates a transition from a background area to a region of interest and ξ an operator

to locate an edge in this transition. Our task then would need to choose parameters

to satisfy Equation (4.3). In some applications, it could also be desirable to utilize a

combination of these two features (regions and edges).

ξ(RB −→ RO) = ξTRUE (4.3)
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The α0s would serve to describe the relative weights of the center surround re-

sponse while the σ0s are the parameters for the Gaussian filters. The algorithms is

then developed based on the principle of BOBV and the detection of contrasts.

The idea here is to utilize the Human Visual System (HVS) as a model for de-

veloping machine vision algorithms to solve problems that are typically addressed by

humans in an acceptable manner. We now look at the behavior of some of the biolog-

ical mechanisms that are in place in the HVS and their influence on these operations.

The problems to be considered are general in nature for people conducting sorting

or other quality control functions. We identify three possible tasks that are of poten-

tial interest for machine vision, and look at developing a set of features/characteristics

from the image that allows for robust segmentation and classification. These tasks

are: (1) Separating a region on an object from the background of that object (this

could be termed a detection problem). (2) Identifying a region or objects from other

regions or objects (this could be termed classification). (3) Enhancing object geome-

try or morphological properties (for example size and shape).

As an example consider a 2D (two dimensional) feature set with features R1 and

R2 representing two output responses as shown in Figure 4.1. Feature1, Feature2

and Background represent the clustering of areas of interest in the original scene in

the response space as defined by R1 and R2. For Task 1 we would like to maximize

the distances between the cluster centers D1 or D3, depending on our interest while

minimizing the cluster overlap. For other problems, such as might be defined by Task

2 we might have more interest in maximizing D2.

We model the response of the receptive fields by using a difference of gaussian

(DOG) formulation as presented in the previous chapter by rewriting Equation (4.1)
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Figure 4.1: 2D depiction of the response space
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in terms of the receptive field response with β = β(σ) to get Equation (4.4) where σ

describes the spread of the gaussian.

R
i
(m,n) = αcβi(σc) ∗ Ici(m,n)− αsβi(σs) ∗ Isi(m,n) (4.4)

The structure of these filters were shown in Figure 3.8 and Figure 2.4, where the

β0s are represented as Gaussians with parameters σc and σs where σs ≥ σc. For

the rest of this chapter we conduct the analysis using a 3x3 kernel. We also set

αc = αs = 1 as they are just scaling factors on the overall responses.

β =

⎡⎢⎢⎢⎢⎣
βm−1,n+1 βm,n+1 βm+1,n+1

βm−1,n βm,n βm+1,n

βm−1,n−1 βm,n−1 βm+1,n−1

⎤⎥⎥⎥⎥⎦ (4.5)

Define the filter kernels β to have the form in Equation (4.5) referenced to the

center kernel. The filters defined by β are derived from the receptive fields. Assume

the receptive fields (RFs) are a linear combination of gaussians, we then begin with

the Bivariate Normal Density function as shown in Equation (4.6).

f(x1, x2) =
1

2πσ1σ2
exp{−1

2
[(
x1 − µ1

σ1
)2 + (

x2 − µ2
σ2

)2]} (4.6)

We then center the kernel such that µ1 = µ2 = 0, this produces a filter with zero

phase as is desirable to maintain the spatial integrity of the outputs. As an example

with a 3x3 kernel and substituting values for kernel positions and assuming gaussians

are circularly symmetric (σ1 = σ2 = σ) we get.
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β =

⎡⎢⎢⎢⎢⎣
β2 β1 β2

β1 β0 β1

β2 β1 β2

⎤⎥⎥⎥⎥⎦ (4.7)

Where

β0(σ) =
1

2πσ2
(4.8)

β1(σ) =
1

2πσ2
exp(− 1

2σ2
) (4.9)

β2(σ) =
1

2πσ2
exp(− 1

σ2
) (4.10)

The general computation for determining the values that make up the general β

is shown in Appendix E

Knowing β it is now possible to compute output responses for various input im-

ages. We will now look at the behavior of these responses.

Define the input image kernel for operations as

I(m,n) =

⎡⎢⎢⎢⎢⎣
I1,1 I1,2 I1,3

I2,1 I2,2 I2,3

I3,1 I3,2 I3,3

⎤⎥⎥⎥⎥⎦ (4.11)
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Where I1,1 = I(n − 1,m + 1); I2,2 = I(n,m) = center pixel; and I3,3 = I(n +

1,m+ 1) etc...describe the relative positions from the center pixels.

With

βT
i = [β2 β1 β2 β1 β0 β1 β2 β1 β2]

and

IvTi = [I1,1 I1,2 I1,3 I2,1 I2,2 I2,3 I3,1 I3,2 I3,3]

we can now write the output response as

Ri(n,m) = αci(β
T
ci · Ivci(n,m))− αsi(β

T
si · Ivsi(n,m)) (4.12)

where · signifies the dot product operation. Equation (4.12) is the form used for

computing the output responses.

4.3 Response Function Characteristics

We have to this point described responses based on the receptive fields. At this point

we will look in more detail at the general behavior of these responses.

4.3.1 Response Types

We define two basic types of responses for consideration here, Class I and Class II.

These have the center surround parameters as shown in Table 4.1 and are chosen
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Table 4.1: Definition of Class I and Class II responses
i Center Surround

Class I 1 R R
2 G G
3 B B

Class II 4 R R−G
5 G R−G
6 B R+G−B

to represent the chromatic (Class I) and the opponent (Class II) responses in the

human visual system (HVS) based on the color vision theories described in Chapter

2. The basic difference between Class I and Class II is that for Class I: Ici = Isi

and for Class II: Ici 6= Isi.

For the Class I response, since Ici = Isi = I, so we can rewrite Equation (4.12)

as

Ri(n,m) = (αciβ
T
ci − αsiβ

T
si) · Ivi(n,m) (4.13)

4.3.2 Sample Image Analysis

In order to gain some general insights into Class I responses we look at a simple

example monochrome image consisting of a target in a background as shown in Figure

4.2. This corresponds to a simple scene that is usually used to describe the contrast

threshold at which objects are distinguishable from the background. This is commonly

known as Weber’s Law [31]. We will examine responses for that would represent

regions and edges as identified from the problems of interest described in Equation

(4.2) and Equation (4.3). First we look at responses for region segmentation.
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Figure 4.2: Monochrome sample picture input, p background value, q the target area
value
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4.3.3 Response for a region

We will first describe the overall output response for any area of interest in the image

as

J =
X
md

X
nd

Ri(n,m) (4.14)

where md and nd identifies the range of m,n that defines the area of interest or we

can write as

J = Ctr − Sur (4.15)

where Ctr and Str are defined in Equation (4.16) and Equation (4.24)

Ctr =
X
md

X
nd

αciβ
T
ci · Ivi(n,m) (4.16)

Sur =
X
md

X
nd

αsiβ
T
si · Ivi(n,m) (4.17)

Where Ctr corresponds to the sum of the response output in the target area due

to center processing and Sur corresponds to the sum of the response outputs in the

target areas due to surround processing.

Using a 3x3 kernel as described in Equation (4.7) we can compute Ctr and Sur

to obtain the results shown in Equation (4.18) and Equation (4.19) thereby enabling

the calculation of the resultant output for the target region given by J in Equation

(4.15).
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Ctr = 4 (βc0 + 2βc1 + βc2) q + 4 (3βc2 + 2βc1) p (4.18)

Sur = 4βs2 (q) + 4 (βs0 + 3βs2 + 4βs1) p+ 8 (βs1 + βs2) q +

8(βs0 + 3βs1 + 3βs2)p+ 4 (β0s + 2β1s + β2s) q + 4 (3β2s + 2β1s) p (4.19)

A few more simplifications are useful for this example, we write Equation (4.18)

and Equation (4.19) as shown in Equation (4.20) and Equation (4.21)

Ctr = Uq + V p (4.20)

Sur = Gq +Hp (4.21)

where:

U = 4 (βc0 + 2βc1 + βc2)

V = 4 (3βc2 + 2βc1)

G = 4βs2 + 8 (βs1 + βs2) + 4 (β0s + 2β1s + β2s)
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H = 4 (βs0 + 3βs2 + 4βs1) + 8(βs0 + 3βs1 + 3βs2) + 4 (3β2s + 2β1s)

We then obtain the form of the response for this example as shown in Equation

(4.22)

J = Uq + V p− (Gq +Hp) (4.22)

Referring back to Figure 4.1 we would like to choose parameters to maximize the

distances between the feature clusters in the response space as would be computed

using Equation (4.22). Using the model shown in Figure 4.3, we look at a transition

going from an area that is just in the background labeled JB to one that includes

the target area labeled JT . We define the responses for these two areas as JT for

the target area and JB which allows us to write the total response for the target and

background area as shown in Equation (4.23)and Equation (4.24)

JT = UqT + V pT − (GqT +HpT ) (4.23)

JB = UqB + V pB − (GqB +HpB) (4.24)

but qB = pB = pT so that we can write JB as in Equation (4.25).

JT = UpT + V pT − (GpT +HpT ) (4.25)
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Figure 4.3: Regions used for the computation of the responses for the target and
background
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With these substitutions we obtain Equation (4.26) for the change in the response

going from a background to a target area as shown in Figure 4.3.

JT − JB = (U −G)(qT − pT ) (4.26)

We would therefore like to maximize the response given in Equation (4.26) by

choosing the parameters in U and G to increase the probability of detection of this

target area. The parameters of interest would be σc and σs.We show the effect of the

changes in these parameters on the output in Figure 4.4. It is observed that we get

the maximum output as we increase σs and decrease σc subject to the constraint that

σs > σc.

4.3.4 Response for an edge

The other problem of interest as described in Equation (4.3) was that of edge location

where might also be interested in increasing our probability of detecting an edge by

maximizing the response at an edge. Again, using Figure 4.3, we look a two pixels

along the edge of the target. We will call the pixel in the background area (a) and

the response at that pixel position Ra, similarly we will call the pixel in the target

(b) and the response at that position Rb. Using a 3x3 center surround matrix we can

obtain expressions for Ra and Rb as shown in Equation (4.27) and Equation (4.28)

respectively. We then look at the descriptor for the edge as the difference between

Ra and Rb as shown in Equation (4.30). The response space is shown in Figure 4.5

it is also noticed that we get the maximum response when σs is large in comparison

to σc subject to the same constraints on σs and σc described earlier.
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Figure 4.4: Response surface showing the effect of the sigmas
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Ra = (βc0 + 3βc2 + 3βc1)p+ (βc1 + βc2)q − (βs0 + 3βs2 + 3βs1)p− (βs1 + βs2)q

(4.27)

Rb = (3βc2 + 2βc1)p+ (βc0 + 2βc1 + βc2)q − (3βs2 + 2βs1)p− (βs0 + 2βs1 + βs2)q

(4.28)

Rb −Ra = [(βc0 − βs0) + (βc1 − βs1)]q − [(βc0 − βs0) + (βc1 − βs1)]p (4.29)

Rb −Ra = [(βc0 − βs0) + (βc1 − βs1)](q − p) (4.30)

We should also look at the behavior of the objective function to see if these results

are reasonable

4.3.5 General Behavior of Response Functions

Given a function z = z(x1, x2) it can be shown based on Lagrange’s conditions [35]

that we can infer the existence of maxima or minima of the function.

First define

Q1 =

¯̄̄̄
∂2z

∂x1∂x2

¯̄̄̄
x1 = x1∗x2 = x∗2 (4.31)

and
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Figure 4.5: Edge descriptor response as a function of sigmas
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Q2 =

¯̄̄̄
¯̄ ∂2z

∂x21
∂2z

∂x2∂x1

∂2z
∂x1∂x2
∂2z
∂x22

¯̄̄̄
¯̄
x1=x1∗x2=x∗2

(4.32)

where x∗1 and x∗2 are points that define maxima or minima. For a local maxima it is

required that Q1 < 0 and Q2 > 0.

We can write the general response function from Equation (4.1) as in Equation

(4.33).

Ri = αczc(σc) + αszs(σs) (4.33)

where Ri is a linear function of αc and αs and thus, have no maximum for these

variables as they could be chosen to produce any desired value. In most models they

are assumed to be unity[13]. Computing Q1 and Q2 defined above we get

Q1 =
∂2Ri

∂σc∂σs
= 0 (4.34)

∂Ri

∂σc
= z0c(σc) (4.35)

∂2Ri

∂σ2c
= z00c (σc) (4.36)

which exists since the functions z are exponentials. Similarly

∂2Ri

∂σ2s
= z00s (σs) (4.37)
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so that

Q2 = z00c (σc) z
00
s (σs) > 0 (4.38)

This would imply that Q1 = 0 and Q2 > 0 which implies that for these functions

maximas would tend to occur on saddle points or on boundaries.

The general behavior of this Class I response and the effect of its parameters for

the monochromatic image model are shown in Figure.4.6 through Figure 4.8. Figure

4.6 shows the general character of the response as we vary σc while Figure 4.7 and

Figure 4.8 shows the effect of σs and q. As expected, the maximas occur on the

boundaries or on saddle points. The relative image values affect the general shape of

the decision surface.

At this point we will now examine the behavior for the response functions for the

Class I and Class II responses for a simple color image as presented in Figure 4.9

where we have a background region with pixel values pr, pg, and pb while the target

area has values qr, qg, and qb. Using Equation (4.1) and Table 4.1 we define the

general Class I responses in Equation (4.39) through Equation (4.41).

R1(m,n) = αcβc1(m,n) ∗ IR(m,n)− αsβs1(m,n) ∗ IR(m,n) (4.39)

R2(m,n) = αcβc2(m,n) ∗ IG(m,n)− αsβ2(m,n) ∗ IG(m,n) (4.40)

R3(m,n) = αcβc3(m,n) ∗ IB(m,n)− αsβs3(m,n) ∗ IB(m,n) (4.41)
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Figure 4.6: General Class I response as it varies with σc
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Figure 4.7: Effects of sigma c and sigma s on response
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Figure 4.8: Class I Response for relative values of q with p=10 from the model image
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The general Class II responses are given in Equations (4.42) through Equations

(4.44).

R4(m,n) = αcβc1(m,n) ∗ IR(m,n)− αsβs1(m,n) ∗ (IR(m,n)− IG(m,n)) (4.42)

R5(m,n) = αcβc1(m,n) ∗ IG(m,n)− αsβs1(m,n) ∗ (IR(m,n)− IG(m,n)) (4.43)

R6(m,n) = αcβc1(m,n) ∗ IB(m,n)− αsβs1(m,n) ∗ (IR(m,n) + IG(m,n)

− IB(m,n)) (4.44)

IR, IG, and IB are the red, green and blue image planes respectively. We then

define the response functions for the responses to the simple color image as J1 through

J6 corresponding to the general responses R1 through R6. The details of the compu-

tations are presented in Appendix A.

The response surfaces for responses J1 through J6 with varying σ with a change

from background to target such that pr = 140, qr = 90 pg = 80, qg = 59, pb =

60, qb = 51 are shown in Figure 4.10 through Figure 4.15. We observe that we

maximize the responses when we have σs large and σc small. We also observe that

the difference as represented by the magnitude of the responses are greater for the

Class II responses than for the Class I responses indicating that they are more

sensitive to changes in color.
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Figure 4.9: Color sample output picture pr, pg, pb are background values, qr, qg and
qb are target values
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Figure 4.10: Response for output J1 as a function of σ
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Figure 4.11: Response of function J2 as a function of σ
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Figure 4.12: Response of function J3 as function of σ
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Figure 4.13: Response of function J4 as a function of σ
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Figure 4.14: Response of function J5 as a function of σ
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Figure 4.15: Response of function J6 as a function of σ
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Table 4.2: Class I output response with parameters as shown
Parameters p J
r = 0.1 10 7.46
σc = 1 20 14.93
σs = 10 30 22.38

40 29.85

4.4 Comparison with Biological Experiments

A relevant question at this point is whether or not these responses are representative

of the human visual response? Since we are extracting the approaches described from

models of the HVS we now compare the results obtained from experiments conducted

on the primate visual system. First, we show in Figure 4.16, experimental data for

the threshold intensity at increasing ambient light levels for an image as in Figure

4.2 from Wandell [26]. We then compute the response using Equation (4.22) for our

model where q = (1 + r)p. The results are and shown in Table 4.2 and Figure 4.17

respectively. These plots both show a linear response as the background intensity is

changed. This implies a similar behavior to the biological system.

Additionally we could look at the response across an edge such as that shown in

Figure 4.18. An image representation of the summed output responses (R1 through

R6) computed using Equation (4.39) to Equation (4.44) is shown in Figure 4.19 as a

pseudo colored image. A profile of the response along the line shown in Figure 4.19 for

the colored edge in Figure 4.18 is shown in Figure 4.21. The response across a similar

edge is shown in Figure 4.20 from work done by Enroth-Cugell et. al. [36]. Here,

they looked at measurements of the firing rate of a ganglion cell as an edge is passed

through its field of view, they are also seen to be similar in form to that illustrated

in Figure 4.21. These two examples illustrate that the receptive field formulation
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Figure 4.16: Experimental data showing threshold intensity as a function of back-
ground intensity [26]

presented here demonstrates some of the of the performance of the primate visual

system at least at the level of the response of the ganglion cells. We also show in

Figure 4.22 the relative characteristics of the Class I and Class II responses. It is

observed that the Class I output is driven mostly by the edge while the Class II

responds more to the change in color (Class I magnitude offset so that the plots have

the same relative magnitude).

4.5 Summary

We have attempted in this chapter to examine the behaviors of the computational

structures proposed for use to extract features that will be useful for classification in

machine vision applications. We have shown that we are able to select σc and σs that
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Figure 4.17: Responses for a constant ratio of target intensity to the background

Figure 4.18: A sample edge image using a blood background
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Figure 4.19: The output response for the blood edge image
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Figure 4.20: Response to a ganlion X cell response to an edge
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Figure 4.21: Sample edge output computed for blood edge image
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Figure 4.22: Individual Class I and Class II responses
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would allow us to maximize the difference between features representing objects of

interest from the background. It is known that the human eye adjusts the relative sizes

of the receptive fields based on the illumination conditions in the image with typical

ratios being 1 to 10. This analysis describes a region within which those adjustments

would take place. Additionally it is observed that the Class I structures do not

respond as strongly to color changes as the Class II structures while the Class I

structures respond more strongly to edges. This implies that for applications requiring

fine color discrimination the Class II responses would provide more utility. We also

showed that the representations described demonstrate some of the characteristics of

the human visual system at the level of the ganglion cell responses. In Chapter 5

we will look at the development of some practical applications using the techniques.

The approach described provides a very straight forward implementation as will be

demonstrated with the example applications.
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Chapter 5

Testing Contrast Feature Approaches

The general approach as described in the previous chapters was to extract and ex-

ploit image features derived from the current state of knowledge about the human

visual system. Specific features were identified in terms of the responses of different

mechanisms in the eye brain system and approaches towards their calculation and

utilization explored. This chapter presents specific applications of these approaches

and their results. We first look at data using simulated images and then using data

from real problems.

5.1 Testing with Simulated and Real Data

5.1.1 Simulated Data

We have developed techniques that can be used for identifying regions of interest in

an image based on proposed biological models. We use these models in simulation

to understand the expected behavior for natural images. The images are shown in

Figure 5.1(a), (b) and (c) and represent simulated breast ‘butterflies’(a particular

cut of meat) with blood, fan bone, and cartilage respectively, which are all features

of interest in this problem area. These images were generated using the techniques
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Figure 5.1: Sample prototype images on a meat background (a) blood, (b) fan bone,
(c) cartilage

and tools presented in Appendix B and Appendix C using irradiance data for the

actual items of interest. It can be observed that the blood and fan bone are similar

in appearance and could be difficult to distinguish if viewed at fast rates.

The results from the analysis in the previous chapter for the Class I responses

indicate that we obtained the maximum separation in the response space by choosing

the minimum σc and the maximum σs. The sample images were processed using

Equation (4.1) with σc = 1 and σs = 10. The intermediate images generated in the

processing steps are shown in Figure 5.2 for the Class I responses for the prototype

blood image where (a) is the original image, (b) the center output, (c) the surround
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Figure 5.2: Sequence of images used in processing (a) Original, (b) Center, (c) Sur-
round, (d) R1, (e) R2, (f) R3

output, (d) response 1 (R1), (e) response 2 (R2), and, (f) response 3 (R3). In Figure

5.3 we show the image representation of the Class II output responses for the same

image.

Looking at the output images presented in Figure 5.2 and Figure 5.3 we are able

to see the larger magnitudes of the color transitions between the Class I and the

Class II responses.

The resulting data for these three cases under Class I and Class II processing are

presented in Table 5.1 and Figure 5.4 and Figure 5.5 respectively. It should be noticed

that even though the background is the same in all three images the responses for

98



Figure 5.3: Intermediate outputs for the Class II responses (a) Original, (b) Center,
(c) Surround, (d) R4, (e) R5, (f) R6
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Table 5.1: Class I and Class II prototype responses
Class I Class II

Feature Background Feature Background
Blood
R1 -13.64 12.21 R4 40.04 87.15
R2 -4.57 6.99 R5 22.67 29.24
R3 -5.99 5.24 R6 35.70 61.93

Fan
R1 -5.19 11.82 R4 55.56 86.94
R2 -1.00 6.82 R5 23.68 29.00
R3 1.812 4.87 R6 64.70 62.14

Cartilage
R1 47.12 9.35 R4 174.04 86.27
R2 32.47 5.25 R5 86.05 28.20
R3 28.13 3.64 R6 157.84 62.70

the background regions are different as the response is also dependent on the feature

of interest (contrast between them). Looking at the outputs in the response spaces

shown in Figure 5.4 and Figure 5.5, it is observed that it would be a fairly simple

affair to develop a classifier for these different kinds of defects.

Again it can be observed that the Class II responses are in general stronger than

those for Class I possibly signifying the ability to more accurately discern finer color

differences than the Class I outputs. We infer this from the fact that the Class II

response difference in going from the background to the feature of interest is almost

double that for the Class I. Using Table 5.1 we find, for blood it is 54.3 versus 30.46,

and for fan bone it is 31.93 versus 18.97. In both cases presented here however, it

would be possible to differentiate the blood from the fan bone even though from the

images they appear close in color.

100



−20
−10

0
10

20
30

40
50

−10
0

10
20

30
40

−10

−5

0

5

10

15

20

25

30

R1R2

R
3

Red Cartilage
Green Blood
Blue Fan
Cyan Background 

Figure 5.4: Distribution of response outputs for blood, fan and cartilage
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Figure 5.5: Responses for Class II type Outputs
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5.1.2 Responses for Real Images

Next we will look at the responses that would be obtained using real artifacts. The

first to be examined will be chicken ‘butterflies’ with fan bone defects. A sample

fan bone is recognized as the fan shaped area in the lower right corner of Figure

5.6. More detail on the application will be given later in Section 5.2.3 Example

Applications. The goal is to develop a representation that allows us to recognize

fan bones but would still be robust in light of the expected natural variability along

with the expected deviations in camera and imaging parameters etc. We will first

look at sample data that illustrates the effects due to changes in imaging parameters.

These changes could simulate the differences that would be seen by different human

observers conducting the same task. One approach to address this would be to try and

adjust the lighting and imaging parameters to obtain the same appearance. This is a

difficult proposition in most practical applications because of the naturally occurring

changes in the environment; it would also be difficult to accommodate these changes

in real time.

A sample fan bone image taken with a 3-CCD camera at f-stop 4.0 is presented

in Figure 5.6. Figure 5.7 shows the same part imaged at f-stop 5.6. We then look

at the ‘raw’(original RGB) and ‘processed’ (after filtering with Class II and Class I

operators) output region values for the feature of interest (fan bone) to determine

which representation would be more beneficial for processing and analysis.

Sample scatter data for these regions are presented in Figure 5.8. We will next look

at measures for comparing the representations using the scatter data. This data is

presented in Table 5.2 and Table 5.3 and the general idea is that smaller variances and
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Figure 5.6: Fanbone image taken with 3-CCD camera at f-stop 4.

consistent means will result in a more stable representation for algorithms that would

be used to classify these entities. Several things can be observed; first, the variances

and the eigenvalues of the processed data are, in general, smaller indicating a more

compact representation. In addition there also appears to be smaller changes in the

means of the feature values indicating a more stable representation for algorithms to

do the classification.

We will now look at what happens when we change cameras. The image shown in

Figure 5.9 is of the same part but taken with a single CCD digital camera. Because

of the Bayer filter on the image sensor we would expect this image in general to

be more noisy in nature. The covariance matrix and mean values for fan bone and

background regions in this image are also presented in Table 5.4. Again we observe

that even though there are significant changes in the raw image representations the
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Figure 5.7: Same part as in the previous image taken at f-stop 5.6

Figure 5.8: Scatter plots for feature and background in Figure 5.6
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Table 5.2: Processed and raw data for image at f4.0
Processed
Covariance Eigenvectors
254.53 178.02 139.79
178.02 229.04 177.73
139.79 177.73 173.85

-0.1040 0.7899 0.6043
0.6952 -0.3768 0.6122
-0.7113 -0.7113 0.5100

Mean Eigenvalues
-11.92 -33.53 -25.60 20.57 84.01 552.84
Raw
Covariance Eigenvectors
442.64 341.40 270.61
341.40 391.92 295.54
270.61 295.54 289.40

-0.1417 0.7686 0.6239
0.7124 -0.3584 0.6033
-0.6873 -0.5299 0.4967

Mean Eigenvalues
171.74 103.28 117.62 38.87 96.83 988.26

Table 5.3: Processed and raw data for image at f5.6
Processed
Covariance Eigenvectors
116.88 85.47 67.20
85.47 134.86 110.52
67.20 110.52 103.97

-0.0944 0.8506 0.5172
0.6873 -0.3202 0.6520
-0.7202 -0.4171 0.5544

Mean Eigenvalues
-9.28 -27.55 -22.63 7.3083 51.76 296.64
Raw
Covariance Eigenvectors
211.83 174.79 131.42
174.79 238.47 164.79
131.42 164.79 174.33

-0.2643 0.7773 0.5709
0.7353 -0.2206 0.6408
-0.6241 -0.5891 0.5133

Mean Eigenvalues
126.27 70.55 69.27 35.80 62.63 526.20
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processed image parameters remain relatively close to those computed before implying

that classifications based on these features would be more likely to be robust. This

conclusion is also supported by a statistical analysis of the changes in the means.

This was done by testing the hypothesis that there was no change in the mean values

of the feature using a MANOVA (Multivariate Analysis of Variance) analysis. The

results are presented in Table 5.5 and indicate that even though there are changes in

the means under the different conditions, the changes of the mean feature values are

much less for the processed than the unprocessed image data. For the means to be

the same the F value computed would have to be less than the test statistic, which

it is not for either case. It is observed that it is significantly higher for the raw case

however implying that the changes in the means are larger here than under Class I

processing. This conclusion is also supported if we look at the Mahalanobis distances

[37] (this takes into account the variance of the data) between the clusters for the raw

and processed data as presented in Table 5.6 where we see that the distances between

the clusters are significantly less for the processed than the raw data.

5.1.3 Real Data Class II Responses

The other outputs that are of interest to us are the Class II outputs. Scatter plots for

the same data presented earlier for the Class I outputs are now presented for the Class

II outputs in Figure 5.10. The corresponding statistics are presented in Table 5.7. It

is observed that the variances here are comparable to that for the raw color data and

that the means have about the same variability as shown by the MANOVA test result

in Table 5.8. The magnitude of the responses are much higher than for the Class I

responses however matching the results of the simulated images presented earlier. In
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Figure 5.9: Same part taken with a single chip digital camera

Table 5.4: Processed and raw data for single chip camera
Processed
Covariance Eigenvectors
213.26 113.20 117.80
113.20 111.68 104.59
117.80 104.59 111.08

0.0440 0.7087 0.7042
0.6807 -0.5372 0.4981
-0.7312 -0.4574 0.5060

Mean Eigenvalues
-7.59 -21.97 -17.30 6.64 51.41 377.97
Raw
Covariance Eigenvectors
477.35 331.71 288.06
331.71 302.83 257.57
288.06 257.57 255.87

-0.1251 0.7202 0.6824
0.7434 -0.3875 0.5452
-0.6571 -0.5754 0.4869

Mean Eigenvalues
89.33 52.55 55.68 19.33 68.76 947.97
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Table 5.5: MANOVA results for raw and processed data
MANOVA Test Test Statistic F
Processed 0.8314 45.42
Raw 0.1276 845.18

Table 5.6: Mahalanobis distances between clusters for f4.0, f5.6 and single chip
Mahalanobis D1 D2 D3
Processed 6.96 8.85 3.84
Raw 23.54 27.72 7.4

order to examine this effect we used the image shown in Figure.5.11 This image is a

possible problem as it has a bruise on the lower left of the butterfly in approximately

the same position as the fan bone on the right side. The visual properties of the

fan bone and bruise are also similar. The algorithms used, utilize the position of

the potential fan bone regions as part of ‘noise filtering’ so that this area could be

falsely classified as a fan bone. It would be desirable for our preprocessing steps to

not present this area as a candidate fan bone region.

The scatter plots of the data for the bruise and fan bone regions in terms of

Class I and Class II responses are shown in Figure 5.12. It is observed that there is

much cleaner separation for the Class II output case compared to the Class I. The

MANOVA results also support this conclusion as shown in Table 5.9 and Table 5.10.

5.2 Implementation of the Technique

5.2.1 Summary of the Process and Implementation

To this point we have described an approach towards the development of machine

vision algorithms utilizing models based on the human visual system (HVS). We
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Figure 5.10: Scatter plots for Class II outputs
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Table 5.7: Processed data for Class II (f4.0, f5.6, SingleChip)
Class II Processed f4.0
Covariance Eigenvectors
484.11 409.53 144.86
409.53 448.22 199.23
144.86 199.23 155.26

-0.437 -0.588 0.681
0.693 0.263 0.672
-0.574 0.765 0.292

Mean Eigenvalues
126.28 58.29 20.77 24.97 112.41 950.21
Class II Processed f5.6
Covariance Eigenvectors
255.16 231.2 66.50
231.2 271.67 120.91
66.50 120.81 98.36

-0.487 -0.584 0.649
0.679 0.213 0.702
-0.549 0.783 0.293

Mean Eigenvalues
90.20 35.00 14.31 7.993 81.653 535.53
Class II Processed Single Chip
Covariance Eigenvectors
397.54 288.44 193.15
288.44 255.12 177.43
193.15 177.43 138.97

-0.180 0.677 0.714
0.703 -0.419 0.574
-0.688 -0.605 0.400

Mean Eigenvalues
68.343 32.185 4.485 7.805 45.92 737.71

Table 5.8: MANOVA Test for Class II
MANOVA Test Test Statistic F
Processed Class II 0.1793 639.373

Table 5.9: Class I test results for bruise and bone
MANOVA Test Test Statistic F
Processed Class I 0.5221 204.4

Table 5.10: Class II test results for bruise and bone
MANOVA Test Test Statistic F
Processed Class II 0.03884 5527.1
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Figure 5.11: Part with both bruise and fanbone
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Figure 5.12: Scatter plots for Class I and Class II bone and bruise
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will now summarize the approach and its implementation as it would be applied to

problems of interest and the steps necessary to implement solutions.

The overall procedure is shown in the flowchart presented in Figure 5.13. The

process assumes that images acquired could adequately depict the scenes of interest.

We assume that the elements of interest in the scene can be identified by people

that normally conduct these tasks. The first step then is for the expert to identify

defect areas and background areas respectively for several sample images. Next,

we a Gaussian filter that minimizes σc and maximizes σs. The next step computes

Class I and Class II outputs for the regions identified (target and background) and

examines their clustering in the Class I and Class II response spaces. We then apply

the spherical conversion operation described in Section 5.1 and determine the cluster

boundaries that could be used for classification. The representation that provides the

desired results are then chosen for implementation and testing.

The processed output space is a convolution with a filter that is a linear com-

bination of Gaussians; but the real effect is the difference between a smoothed (or

averaged version of the image) and the original (or non-filtered image in the limit)

images. Because of processing speed requirements, we implemented this by generat-

ing the output image as the difference between the original and an average value for

the whole image. This average image was generated by computing the mode of the

pixel values in the image for each image plane. This was the approach taken in the

example applications to be described in the upcoming sections.

In the applications that typically revolve around machine vision, speed, (time to

complete the analysis of an image) is usually a significant consideration. The allowable

time for most applications are usually on the order of seconds or fractions of a second.
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Figure 5.13: Flowchart illustrating the process of algorithm development

115



In this approach for example, the low pass version (output due to σs processing) of

the image could be obtained in a variety of ways: an average of the image background

could be used or the camera lens could be defocused thereby eliminating the need to

conduct convolution operations to obtain these results. Additionally, the choice of

σc could be chosen to filter noise or to reduce the effect of small regions that might

not be significant. The system designer thus has the ability to modify the approach

to obtain the results desired while being guided by the general principles outlined

in the development of the approach. This would occur in the operations labelled

IMPLEMENTATION I and IMPLEMENTATION II.

Another significant requirement in some applications, is the measurement of ab-

solute color. The HVS, however, is considered a change detector and is not good at

representing absolute image or scene parameters. The approach described has the

same shortcoming, and, if this is a necessity would have to be addressed through the

use of a reference standard where we would then be able to monitor the variation in

the responses from the reference standard(s).

5.2.2 Space Transformation for Classification

In the process described in Chapter 3 and illustrated in Figure 3.1, we describe oper-

ations at Level 3 for making the final decisions for the problems being considered. At

the rate of processing that is needed, it is considered here to be a simple classification

operation.

Looking at the data for Class I we observe that this can be accomplished more

easily by using a transformation that provides linear decision boundaries. This is

achieved by the use of a spherical transformation of the processed space as given by
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Equation (5.1). This is motivated by the fact that in the processed output space,

the eigenvectors corresponding to the largest eigenvalues for the scatter data in the

response space lie along a radial direction in the Cartesian representation. The data

for Figure 5.8 in the transformed space is shown in Figure 5.14. It is observed that

linear boundaries can be constructed for this data. This representation is used for

conducting the classification hereafter. Similar observations are also made for the

Class II responses.

Radius =
√
R12 +R22 +R32 (5.1)

Theta = Tan−1
∙
abs(R2)

abs(R1)

¸
Phi = Tan−1

∙
abs(R1)√
R12 +R22

¸

5.2.3 Example Applications

Wewill now give a brief description of the applications and the motivation for choosing

them as demonstrations of the application of the approach. The first example is that

of fan bone detection and has been discussed earlier in describing the development

of the approach. The second example is one directed at the inspection of fruit. This

is carried out at a rate an order of magnitude greater than the first example and

also introduces concerns with the measurement of absolute color. The last example

describes an application which is a combination of natural and manufactured products

we are interested in the integrity of a package seal that could be contaminated with

natural product such as juices and fats. Additionally this application is conducted
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Figure 5.14: Scatter data from Figure 5.8 in spherical coordinates
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Figure 5.15: Prototype fan bone detection system online at input to X-Ray imaging
system

at fairly high resolution on the order of 1000 pixels per inch to enable us to locate

defects of very small sizes on the order of 50 microns.

5.2.3.1 Sample Application 1 Fan bone Detection

The detection of surface fan bones is an integral part of the inspection process for

deboned breast butterflies. These parts typically go by at rates of 30 to 60 pieces

per minute. In this application the imaging cell acts as a front end for an x-ray

system. The X-ray system has difficulty identifying fan bones as they are typically

softer and thinner than other bones. This thus presents difficulties for the system to

find the deeper more embedded bones as it is difficult to select X-ray energies to find

all these bone types simultaneously. It was therefore decided to use visible imaging

to find the fan bones as they typically occur on the surface. In Figure 5.15 we show

a picture of the system on-line showing the imaging cell in the foreground with the

X-ray imaging system in the background. The system consists of two 500 MHz PCs

processing images from cameras monitoring each of the two lanes shown.
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The process used on each PC is shown in Figure 5.16. Once the image is acquired

color is analyzed using Class I processing; the goal being the initial identification of

potential fan bone regions. In the next step, potential fan bone regions are filtered

based on position and orientation. Because of the speed requirements, the algorithm

was implemented by computing an average value for the image which was used as

the surround and the original ‘in focus’ image as the center. Using the results of

the initial classification, segmentation is conducted by the use of deformable contours

(snakes) which use as the initial contour for segmentation the boundary of the binary

regions formed as the result of the initial Class I processing. Once these regions

are identified, then other features such as shape and color for the region are used

as features in a second classification operation to improve our confidence in the final

decision.

Sample outputs for this application for a typical butterfly are presented in Figure

5.17 and Figure 5.18 showing the results of the initial Class I classification which

highlights the fan bone in red. This system operates with a detection accuracy of

about 90 percent in this application across a variety of imaging configurations and was

found to be more robust compared to using the raw image data. This is a significant

improvement when compared to the 30 percent accuracy of the X-ray system alone.

Most of the error in detection was attributed to part presentation, where the fan

bones were either not visible (covered by meat or other material) or were in positions

that presented small profiles to the imaging system so they did not match the size or

shape of the typical fan bone.
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Figure 5.16: Flowchart for fanbone detection
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Figure 5.17: Sample fanbone image before processing
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Figure 5.18: Sample fanbone image after processing
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Figure 5.19: Picture showing lab prototype of the grapefruit inspection cell

5.2.3.2 Sample Application 2 - Grapefruit Inspection

Fruit inspection is a high speed labor intensive task that has to be conducted at speeds

of up to 600 pieces of fruit per minute. This is another area where the variability of

the product has made it difficult to implement automated solutions. A picture of the

system used in the implementation is shown in Figure 5.19 and a block diagram of the

system and its components shown in Figure 5.20 [38]. As shown, the system supports

eight cameras looking at eight regions of the fruit. Four 500 MHz pentium computers

process the image data with each computer supporting two cameras apiece. These

machines (called clients) then provide summary data to the server computer that

services the user interface and also the ESOP which controls the kickoff devices on

the conveyor for sorting the defective fruit. A more detailed description of the system

can be found in [38].
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Figure 5.20: Block diagram of the grapefruit inspection cell illustrating its components

This application while similar to the fan bone problem in terms of being a natural

product has several significant differences that demonstrates the robustness and wide

applicability of the proposed approach. The differences include

• An artifact with a somewhat regular shape

• Overall different place in the color space

• Significantly higher speeds

• Different lighting scheme with multiple sources

• Spherical shape leading to non-uniform illumination

A sample defect that occurs on the grapefruit called a scar is shown in Figure

5.21 . The Class I and Class II scatter plots for the scar and background (normal
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Figure 5.21: Sample grapefruit image with a scar defect

surface) are shown in Figure 5.22 and Figure 5.23 respectively. It is observed that we

can fairly easily describe boundaries to separate the clusters.

The practical implementation of the solution required some modifications espe-

cially in light of the speed requirements. In a similar way to the fan bone problem

and realizing that the surround is a low pass filtered version of the original image

we decided to use reference balls as shown in Figure 5.24 to provide the surround

response with the center response provided by the current image. The reference balls

are generated by having them painted to match the color of acceptable fruit; this

way, the reference balls provide a color standard as is required in some implementa-

tions and additionally serves as a template for quantifying shape deviations. Sample

images and the output images in which we detect scarring of the fruit is shown in

Figure 5.25 where the fruit to be graded are shown on the right and the scar areas

are identified in the areas in blue in the images on the left. Tests showed that this
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Figure 5.22: Scatter plots for Class I outputs for the scar sample image
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Figure 5.23: Scatter plots for Class II outputs of grapefruit scar data
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Figure 5.24: Reference balls used to provide the surround response

system matched the performance of human graders at the desired rates in laboratory

tests. In addition, this approach also demonstrated the ability to function under a

variety of lighting configurations without changes in the algorithms.

5.2.3.3 Sample Application 3 Package Inspection

Package inspection of seals have taken on added importance over the past few years.

Concerns about the integrity of package seals are important mainly for food safety

considerations as it is the main protection mechanism for the product once it leaves

the producer and is sent to the consumer. This process is currently done manually
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Figure 5.25: Sample input and output images for detecting scar on the surface of a
grapefruit

130



and there is strong motivation to automate this inspection as it enhances the pos-

sibilities to automate downstream processes making the whole operation safer and

more reliable. This application is a little different than the two described previously

in that it is:

• Done at a moderate rate of speed (30 to 60 packages per minute)

• Combination of natural and manufactured components (food, plastic,foam)

• High resolution imaging to find small defects (on order of 50 microns)

• Occurs at a different place in the color space

A sample seal with a defect is shown in Figure 5.26. The seal is made by using heat

and pressure to bond plastic film to an underlying foam tray. This image is a high

resolution picture of the seal of what is called a lidded MAP (Modified Atmosphere

Package). Defects can occur either due to the formation of a defective seal due to a

malfunction of the machinery or contamination of the seal through the inadvertent

deposition of material in the seal area. The scatter plots for normal and contaminated

areas of the seal are presented in Figure 5.27 and Figure 5.28 for packages with a white

and black tray respectively.

A sample application developed using the approach described above is shown in

Figure 5.29. In a similar vein to the previous example and to reduce processing time

the surround processing is executed on a good seal and saved. The current image is

then used as the center response with Class I classification conducted as before. It

can be seen that we are able to identify the contamination (the reddish area on the

right) as shown in the output image (white area on the right).
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Figure 5.26: Package seal with contamination
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Figure 5.27: Scatter plots for Class I ouputs for defective seal in a white tray
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Figure 5.28: Scatter plots for Class I output for a defective seal on a black tray

Figure 5.29: Detection of a contaminated seam on lidded map package
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Figure 5.30: Distribution of S, M and L wavelength sensors in the eye of three different
people with normal color vision [39]

5.3 Effect of visual deficiencies

Humans do not see color in the same way, as we all have somewhat different responses

to the sensory inputs. The images in Figure 5.30 [39] shows the distribution of LMS

sensors in three people that were tested to have normal color vision. Additionally

some can have significant defects. The image in Figure 5.31 displays how a Deutan

(someone with a poor response in the M cones) might see the prototype fan image in

Figure 5.1(b). The responses for this case are shown in Table 5.11 and it is seen that

discrimination is still possible.

135



Figure 5.31: Fan bone prototype image as would be seen by a Deutan

Table 5.11: Response outputs for Deutan
Fan Prototype Deutan

Feature Background
R1 -5.136 10.82
R2 0 0
R3 1.823 4.695
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5.4 Summary

We have proposed an approach based on models that describe some aspects of the

functioning of the human visual system. From these models we have deduced features

to be extracted from images that are useful for identifying defects in natural products

We have demonstrated the application of the technique on three different problems

with no significant changes in the approach. The resulting solutions have been shown

to be robust to the expected changes in the environment and the variability of the

product. The approach using the Class I computations consists of looking at the

difference in color space between a low pass and high pass version of the image and

carrying out classification in this representation. The Class II representation seems

to allow for better color discrimination but, at higher computational cost.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The thrust of this thesis is to examine approaches using human visual models to

develop effective machine vision solutions. Specifically, we set out in this effort to

develop a method that could provide a technique to assist in the development of

machine vision algorithms for defect detection especially for natural products. The

specifications for many problems are somewhat subjective in nature and require some

training of inspectors. Humans are currently the most effective means of addressing

these quality control and inspection tasks. They therefore seemed a natural model

to use for insights into the development of machine vision solutions to address these

kinds of problems. It has been demonstrated, however, that the approach is also

extensible to other products with significant natural variations as occurs for example

in package seal inspection.

Specific findings of this thesis are summarized below:

• We have shown that starting with the basic descriptions and results from the

areas of biology, physiology and human vision research we have been able to

identify operations on images that are able to extract features that are useful
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for classifying image regions. A major element, is the encoding of contrast and

the mechanism for its computation through the concept of a receptive field.

These results give performance that is robust under many of the changes in

conditions that would occur under the typical industrial installation. We have

extended the earlier research conducted, and models developed mostly in the

analysis of monochromatic imagery to the analysis of color imagery. This was

accomplished by using the concept of the receptive field and its representation

as a difference of Gaussians.

• We have developed a systematic approach towards the choice of system param-
eters that involves posing the problem as one of optimization through the use of

mathematical models describing the response of the receptive fields. This is ac-

complished by choosing parameters to maximize the distances between clusters

of interest in the response space.

• We have defined two combinations of center and surround responses called
Class I and Class II, which were obtained by defining the center surround

using the trichromatic and opponent color theories. The Class I response pro-

vides an efficient way to encode edge information and to categorize larger color

variances. The Class II responses, on the other hand, offer a means to enhance

smaller color differences.

• We have demonstrated that the transformation of the data from the Class I

and Class II response space using a spherical transformation produced a repre-

sentation that allowed for the use of linear decision boundaries for classification.

This helps to simplify the development and implementation.
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• We have demonstrated the applicability of the approaches to three application
problems, meat grading, fruit sorting, and package inspection. Through these

application examples we showed how the technique can be applied to new prob-

lems by acquiring example images that are able to show the difference between

the defective and normal product, and then to design decision boundaries based

on how the defects clustered in the response space.

• Finally, we also have laid a foundation on which to continue to build as we
learn and understand more about the functions of the human visual system. We

anticipate that as we understand more about these other processes, particularly

at the higher levels of the brain, a similar approach could be used to exploit

this new knowledge to develop more sophisticated algorithms to solve machine

vision problems.

In summary, we have developed a systematic approach to guide the process of

algorithm development drawing from the knowledge of the biological principles that

govern the operation of the human visual system. This approach is especially appli-

cable in domains where humans are currently the sensing modes of choice for example

in the inspection and sorting of natural products, but is also shown to be useful in

other applications.

6.2 Future Work

There are many potential avenues to pursue in terms of other mechanisms that could

be useful in guiding the development of algorithms. In particular we have looked
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here mostly at the low level operations and have not ventured into some of the higher

level functions of the brain This is definitely a fertile area to pursue and could

produce the more significant results in the long run; there is still much work to be

done in exploiting the lower level functions however. The approach described here

for the classification of regions could be extended for example to the development of

general color image classification algorithms. This could be a useful approach to the

segmentation of other natural scenes such as might be needed for robotic guidance

in the detection of fruit for picking or automated vehicle control. It might also be

possible to extend the approach to the analysis of hyperspectral imagery. Exploration

of just noticeable contrast thresholds in more complicated scenes that could provide

useful results for noise filtering.

It is also known that there is a temporal aspect to the receptive field responses;

the impact of this behavior and the potential benefits of these extensions should be

explored to determine their usefulness.

The surround responses for the receptive fields was obtained from two of the three

main theories that describe color vision today, the trichromatic theory and the oppo-

nent theory. The opponent process identified earlier is also thought to facilitate the

recovery of spectra. The basic question would then be, can spectra be recovered and

would multispectral analysis enhance our ability to identify defects? It is currently

believed that this is one of the higher level brain functions and helps to explain the

phenomenon of color constancy; the idea being that we are able to encode the re-

flectance properties of the object as opposed to the illumination and that we are able

to extract this information under different illumination schemes.

Stereo vision and correspondence is also a potential area for investigation. Looking
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for example, at the receptive fields that respond to stereo could provide useful results

to assist in the determination of correspondence in stereo images and would address

many problems related to 3D sensing.

The development of imaging sensors with some of the low level color processing

algorithms integrated could also aid in lowering the costs related to implementing

many of these systems.
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Appendix A

Calculation of Responses for Sample
Images

Starting with Equation (4.18) and Equation (4.19) they can be rewritten as shown in

Equation (A.1) and Equation (A.2) with the substitutions below.

C = 4γq (1 + 2ε2c + ε1c) + 4γ2cp (3ε1c + 2ε2c) (A.1)

S = 4γ2sε1sq + 4 (γ2s + 3γ2sε1s + 4γ2sε2s) p (A.2)

+8 (γ2sε2s + γ2sε1s) q + 8(γ2s + 3γ2sε2s + 3γ2sε1s)p

+4γq (1 + 2ε2c + ε1c) + 4γ2cp (3ε1c + 2ε2c) p (A.3)

where:

γ2c =
1

2πσ2c
, ε2c = exp(− 1

2σ2
), ε1c = exp(− 1

σ2
), γ2s =

1
2πσ2s

ε2s =

exp(− 1
2σ2s
), ε1s = exp(− 1

σ2s
)

For a given image Substitute and set q = (1 + r) p, J can be rewritten by sub-

stituting C and S from Equation (A.1) and Equation (A.2) into Equation (4.15) to

obtain the result in Equation (A.4).
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J = 4γ(1 + r)p (1 + 2ε2c + ε1c) + 4γ2cp (3ε1c + 2ε2c)− (4γ2sε1s(1 + r)p

+ 4 (γ2s + 3γ2sε1s + 4γ2sε2s) p+ 8 (γ2sε2s + γ2sε1s) (1 + r)p

+ 8(γ2s + 3γ2sε2s + 3γ2sε1s)p+ 4γ2s(1 + r)p (1 + 2ε2c + ε1c)

+ 4γ2sp (3ε1c + 2ε2c) p) (A.4)

We will identify the three Class I response types as J1, J2, and J3 corresponding

to the RGB or SML sensor types. The choices for σc and σs will determine the

magnitude of the output response.

We can write the color response function for J4 by modifying Equation (A.4) to

get Equation (A.5).

J4 = 4γ2cqr (1 + 2ε2c + ε1c) + 4γ2cpr (3ε1c + 2ε2c)− (4γ2sε1s(qr − qg)

+ (4γ2s + 3γ2sε1s + 4γ2sε2s)(pr − pg) + 8 (γ2sε2s + γ2sε1s) (qr − qg)

+ 8(γ2s + 3γ2sε2s + 3γ2sε1s)(pr − pg) + 4γ2s(qr − qg) (1 + 2ε2s + ε1s)

+ 4γ2s(pr − pg) (3ε1s + 2ε2s)) (A.5)

Similarly we can obtain J5 and J6 as shown in Equation (A.6) and Equation (A.7)

respectively. These are the forms used for computing these responses.
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J5 = 4γ2cqg (1 + 2ε2c + ε1c) + 4γ2cpg (3ε1c + 2ε2c)− (4γ2sε1s(qr − qg)

+ (4γ2s + 3γ2sε1s + 4γ2sε2s)(pr − pg) + 8 (γ2sε2s + γ2sε1s) (qr − qg)

+ 8(γ2s + 3γ2sε2s + 3γ2sε1s)(pr − pg) + 4γ2s(qr − qg) (1 + 2ε2c + ε1c)

+ 4γ2c(pr − pg) (3ε1c + 2ε2c)) (A.6)

J6 = 4γ2cqb (1 + 2ε2c + ε1c) + 4γ2cpb (3ε1c + 2ε2c)− (4γ2sε1s(qb − qr + qg)

+ (4γ2s + 3γ2sε1s + 4γ2sε2s)(pb − pr + pg) + 8 (γ2sε2s + γ2sε1s) (qb − qr + qg)

+ 8(γ2s + 3γ2sε2s + 3γ2sε1s)(pb − pr + pg) + 4γ2s(qb − qr + qg) (1 + 2ε2s + ε1s)

+ 4γ2s(pb − pr + pg) (3ε1s + 2ε2s)) (A.7)

Set

qr = pr + r1pr (A.8)

qg = pr + r2pr (A.9)

pg = pr + r3pr (A.10)

For J5 define

145



pr = pg + r4pg (A.11)

qg = pg + r5pg (A.12)

qr = pg + r6pg (A.13)

Substituting in Equation (A.6) we get

J5 = 4γ2c(1 + r5)pg (1 + 2ε2c + ε1c) + 4γ2cpg (3ε1c + 2ε2c)− (4γ2sε1s(r6 − r5)

+ (4γ2s + 3γ2sε1s + 4γ2sε2s)(r4pg) + 8 (γ2sε2s + γ2sε1s) (r6 − r5)

+ 8(γ2s + 3γ2sε2s + 3γ2sε1s)(r4pg) + 4γ2s(r6 − r5) (1 + 2ε2c + ε1c)

+ 4γ2c(r4pg) (3ε1c + 2ε2c)) (A.14)

Similarly for J6 define

pr = pb + r7pb (A.15)

qb = pb + r8pb (A.16)

pg = pb + r9pb (A.17)
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qr = pb + r10pb (A.18)

qg = pb + r11pb (A.19)

Substituting in Equation (A.7) we get

J6 = (4γ2c(1 + r8) (1 + 2ε2c + ε1c) + 4γ2c (3ε1c + 2ε2c)− (4γ2sε1s(1 + r8 − r10 + r11)

+ (4γ2s + 3γ2sε1s + 4γ2sε2s)(1 + r9 − r7) + 8 (γ2sε2s + γ2sε1s) (1 + r8 − r10 + r11)

+ 8(γ2s + 3γ2sε2s + 3γ2sε1s)(1 + r9 − r7) + 4γ2s(1 + r8 − r10 + r11) (1 + 2ε2c + ε1c)

+ 4γ2c(1 + r9 − r7)pb (3ε1c + 2ε2c)))pb (A.20)
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Appendix B

Camera Model Equations for Gains

Vs = Gc1e

Vwb = Gc1G2e (B.1)

Vg = (Gc1Gc2)
γceγc (B.2)

Vo = Gc3(Gc1Gc2)
γceγc (B.3)

Vo = GcTe
γc (B.4)

log(Vo) = log(GcTe
γc) (B.5)

log(Vo) = log(GcT ) + log(e
γc) (B.6)

log(Vo) = log(GcT ) + γc log(e) (B.7)

We now determine the parameters of the above model using experimental data to

do a least squares curve fit. With this model we are able to predict grey scale output

for particular input energies to the senor.
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Figure B.1: Block diagram illustrating the imaging process
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Appendix C

Camera Model

Light energy from the external world is collected by an optical system and then

imaged on a sensor. The energy absorbed at each point is then used to generate a

digitized representation of the scene imaged on the sensor.

The formulation presented is derived from [40]. The geometry for using the thin

lens imaging formulation is shown in Figure C.1. The apparent area of the image

patch as seen from the center of the lens is given by dIm cosα.

Solid AngleIm =
dIm cosα

r2
(C.1)

cosα =
f

rI
(C.2)

rI =
f

cosα
(C.3)

Substitute for rI and we get

Solid AngleIm =
dIm cos

3 α

f2
(C.4)
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Figure C.1: Imaging geometry using a thin lens
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Similarly for the object patch we get

Solid AngleO =
dO cos3 θ

r2o
(C.5)

rO =
z

cosα
(C.6)

Solid AngleO =
dO cos θ cos2 α

z2
(C.7)

Solid AngleO = Solid AngleIm (C.8)

dIm cos
3 α

f2
=

dO cos θ cos2 α

z2
(C.9)

Rearranging we get

dO

dIm
=

z2 cosα

f2 cos θ
(C.10)

The amount of light that passes through the lens and reaches the sensor is deter-

mined by the F − number of the lens, therefore if the diameter of the lens is d then

its area is:

AL =
πd2

4
(C.11)
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This implies that the projected area to the object patch is

AP =
πd 2 cosα

4
(C.12)

The solid angle subtended by the lens on the patch is therefore

πd2 cosα

4r20
=

πd2 cos3 α

4z2
= Ω (C.13)

Power of light from the object patch passing through the lens is

P = LdOΩ cos θ (C.14)

where Lq is the radiance of the surface (C.15)

This results in the irradiance of the image patch Φ as shown below

Φ =
dP

dIm
(C.16)

This implies that

Φ =
LqdOπd

2 cos3 α cos θ

dI4z2
(C.17)

Substituting for dO
dI
in Equation (C.10)
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Φ =
Lqπd

2 cos4 α

4f2
(C.18)

With the F − number defined as d
f
we get

Φ =
Lqπ cos

4 α

4F 2
(C.19)

But Lq = Lq(λ) and Energy E

E = ΦdtdA (C.20)

This implies that the energy for a sensor with sensitivity Si(λ) we get

Ei =
π cos4 αAdtint

4F 2

Z λ2

λ1

Si(λ)Lq(λ)dλ (C.21)

The basic equation that governs the response of a camera is shown in Equation

C.21 we then adapt this to reflect the three sensors in a color camera; this is then used

to simulate the responses for cameras with the simulation tool described in Appendix

D.
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Appendix D

Simulation Tool

The main screen for the program is shown in Figure D.1 and is used to evaluate and

compare the resulting output representations by modeling the sensor response in the

case of a camera and the retinal response in the case of humans. It also makes it

possible then to also evaluate the effect of deficiencies in the eye and how this might

affect the resulting images. The program allows you to choose the system that you

want to evaluate and then to choose a spectral input for that system. The result

is a color display that shows how that color would be perceived by these different

systems. These outputs of themselves do not tell us how images of real scenes will be

processed and interpreted it only tells us the degree of match that would occur in the

representation from each system.In order that we can reasonably develop algorithms

models of the camera system and the human visual system were developed to evaluate

the differences to be expected in image formation and their effect on the performance

of algorithms. What kinds of contrasts should be expected. In particular for the

same spectra are their significant difference in the features? Or, is there a set of

invariant features that could be utilized. Two systems will be compared in terms

of their representation at Level I. These will be the human system and artificial

systems, in this case cameras. To facilitate these experiments a program was written

to generate output representations under different conditions. The user interface is
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Figure D.1: Program to generate values for artificial images

shown in Figure D.1. We will first look at data for a camera. The inputs to the

model are spectroradiometric data representing areas on interest in a scene. Sample

spectroradiometric data is shown in Figure D.2 and sample camera response curves

in Figure D.3.
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Figure D.2: Spectra of light reflected from meat (red) and bone (blue)
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Figure D.3: Transformation Curves for the Sony 9000 Camera
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Appendix E

General Formula for Gaussian Kernel

We would also like to have a general description for β to accomodate filters of different

sizes, for example with a 5x5 filter we would

have

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β8 β5 β4 β5 β8

β5 β2 β1 β2 β5

β4 β1 β0 β1 β4

β5 β2 β1 β2 β5

β8 β5 β4 β5 β8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(E.1)

Where

βi(σ) =
1

2πσ2
exp(−1

2
(
i

σ2
)) (E.2)

For a general kernel with center pixel (c1, c2) and index (1, 1) in top left, then the

values for β are given by

β(i, j) = β(σ)(i−c1)2+(j−c2)2 (E.3)

with the use of Equation (E.2) the values for these kernels can be computed.
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