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SUMMARY 

 

This research contributes to worldwide efforts to miniaturize one of the most 

powerful and versatile analytical tools, gas chromatography (GC). If a rapid, sensitive 

and selective hand-held GC system is realized, it would have a wide range of applications 

in many industries and research areas. As a part of developing a hand-held GC system, 

this research focuses on the separation column, which is the most important component 

of a GC system. This thesis describes the development of a miniature separation column 

that has low thermal mass and an embedded heating element for rapid thermal cycling. 

The world’s first thin polymer film (parylene) GC column has been successfully 

developed. This thesis includes: first, a study of theoretical column performance of 

rectangular GC column; second, the design optimization of parylene column and 

embedded heating element; third, the development of new processes such as parylene 

micromolding and stationary phase coating technique for parylene column; fourth, the 

fabrication of parylene GC column with an embedded heating element; and lastly, the 

testing and evaluation of parylene GC column through GC analysis. 
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C H A P T E R  1  

INTRODUCTION 

Until recently, a hand-held chemical analytical system has only been a dream. 

Now through current research efforts this is no longer just a science fiction. Nowadays 

many miniature analytic systems, so called ‘Lab-on-a-chip’ are being realized through the 

use of microfabrication technologies. Although not many commercial products exist at 

present, eventually miniature analytical systems will become a part of our daily life.  

This research contributes to worldwide efforts to miniaturize one of the most 

powerful and versatile analytical tools, gas chromatography (GC). This thesis describes 

the development of a miniature separation column that has low thermal mass and an 

embedded heating element for rapid thermal cycling. This work includes new process 

development for parylene microcolumn fabrication, theoretical analysis of column 

performance, design optimization and fabrication of a miniature parylene GC column 

with an embedded heating element, and the evaluation of the GC column.    

1.1 STATEMENT OF THE PROBLEMB 

Gas chromatography is a technique most widely used for the separation and 

analysis of volatile chemicals. A typical GC is a bulky system that contains a sample 

1 



 

injection unit, a separation column, a temperature-programmable oven, an output detector 

and a data processing unit as shown in Figure 1-1. There has been tremendous interest in 

the miniaturization of a GC system because of its potential capabilities: portability, rapid 

analysis time, low dead volume, low power consumption and low cost. If a rapid, 

sensitive, and selective hand-held GC system can be realized, it would have a wide range 

of applications in biomedical and environmental research, food and health industry, and 

anti-terrorism efforts by replacing the conventional bench-top systems. For example, this 

system can be used for the field detection of chemical, biological, and chemical warfare 

agents and explosives.    

 

 

 

HP 6890 

Figure 1-1. A typical gas chromatograph (HP 6890, Agilent Technologies Inc.) and 
its schematic diagram [www.chem.agilent.com].  
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In order to build a feasible hand-held GC system, every part of the system needs 

to be miniaturized without a loss in performance compared to current systems. The most 

important part of a GC system is the separation column because the separation of the 

analytes is achieved via their differential migration through the column. The analysis 

time and resolution of a GC system highly depend on the performance of the separation 

column. Therefore, the separation column is often called ‘the heart of GC.’  

Conventional separation columns are made of fused-silica capillary tubes that are 

fabricated by high temperature drawing method. The fused-silica capillary column 

(Figure 1-2) generally has the polyimide film on the outer surface to provide flexibility 

and a thin layer, a so called ‘stationary phase’, inside the column. During the mobile 

phase, carrier gas containing analytes sweeps the stationary phase, the analytes are 

separated depending on their unique partition coefficients between the two phases. The 

stationary phase can be either liquid or solid and usually coated through a dynamic 

(injection) or static (withdrawal) coating method. Since the separation is based on the 

partitioning of the analytes between two phases, column temperature is a very important 

parameter for column performance. Generally, the fused-silica column is installed in a 

temperature-programmable oven for thermal cycling during the GC analysis. The 

conventional temperature-programmable oven is a bulky convection oven. Therefore, 

when the miniaturization of a GC separation column is considered, the heating device for 

the column must be considered as well.  
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10 cm 

Figure 1-2. Fused-silica gas chromatographic columns [www.chem.agilent.com]. 
 

This work focuses on the development of a miniature separation column for the 

hand-held GC system. The requirements for the miniature separation column of a hand-

held GC system are listed below.  

- Small size  

- Short retention time and good column efficiency  

- Embedded heating element 

- Low thermal mass for a rapid thermal cycling 

- Capability to be coated with various stationary phases 

- Capability to be integrated with other components of the GC system. 

 

The first miniature separation column for GC was a micromachined silicon/glass 

column that was quite revolutionary at that time [1, 2]. Terry et al. etched a spiral 

microchannel on silicon wafer and anodically bonded it to a Pyrex glass substrate. Since 

then, a micromachined silicon/glass column has become standard for miniature GC. No 

other type of miniature GC column has since been developed. What has been done by 

other research groups was basically a modification of the silicon/glass column using new 
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silicon etching techniques, such as deep reactive ion etching (RIE) [3-5]. Figure 1-3 

shows an example of a micromachined silicon/glass column [5].  

However, the micromachined silicon/glass column is not the best solution for a 

hand-held GC system, because it does not satisfy all of the requirements listed above. 

While the silicon/glass column can be built in a small area and also be integrated with 

other components on the same chip, it has several drawbacks: First, the power 

consumption for heating still remains too high to use commercial batteries. Also, the 

cooling time is fairly long unless there is an external cooling device. This is due to 

comparatively large thermal mass of the silicon/glass column and the ineffective heating 

by an external source. Second, the micromachined silicon/glass has considerable surface 

roughness due to the silicon etching process. This roughness causes non-uniformity with 

coating of the stationary phase, and therefore lowers the column performance. Third, it is 

difficult to take advantage of the open structure of the silicon microchannel for stationary 

phase coating because of the requirement of anodic bonding process. Apart from 

conventional silica column, the micromachined silicon/glass column has more options in 

terms of stationary phase coating. For example, stationary phase can be deposited directly 

on silicon microchannel by chemical vapor deposition or plasma coating. However, the 

anodic bonding process following deposition or coating limits this freedom because it 

requires high temperature and specific materials.  
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Figure 1-3. An example of micromachined silicon/glass column (a) cross-sectional 
view, (b) natural view [5]. 

 

Can there be a better separation column for a miniature GC that has lower thermal 

mass, less surface roughness and embedded heating element? Can we make a low-cost 

thin polymer GC column that provides a good performance? Can we take advantage of 

the open structure of the micromachined channel for stationary phase coating? This 

research was motivated by these questions.  

This thesis describes the development of a new miniature separation column that 

has low thermal mass and an embedded heating element for rapid thermal cycling. The 

new column is made of a thin film polymer, parylene (poly paraxylylene). Figure 1-4 

shows parylene columns with and without gold heating element. The miniature parylene 

GC column provides a faster thermal cycling of the column for rapid and frequent GC 
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analysis. Moreover, the embedded heating element maximizes the advantage with lower 

power consumption. In addition, this column has reduced surface roughness and can take 

advantage of the open structure of the micromachined channel for stationary phase 

coating. 

The scope of this work includes: 

(1) Investigation of theoretical column performance for rectangular columns. 

(2) Design of parylene column with embedded heating element considering the 

separation performance, thermal cycling, integration, deformation, and permeation. 

(3) Development of a new fabrication process for long, enclosed parylene columns. 

(4) Investigation of diverse stationary phase coating methods 

(5) Fabrication of parylene columns with stationary phase and embedded heating element. 

(6) Testing and evaluation of the parylene GC columns. 

   

   
 

Figure 1-4. Parylene gas chromatographic columns with (bottom) and without (top) 
heating element. 
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1.2 RESEARCH OBJECTIVES 

(1) Development of a new fabrication method, ‘parylene micromolding’ – The 

conventional fabrication method for parylene devices is not appropriate for fabricating a 

long parylene microcolumn because it is a diffusion-limited process and therefore it takes 

considerable amount of time for the fabrication. A new method using a molding concept 

is proposed in this research. This new method consists of the fabrication of silicon molds, 

parylene deposition, parylene/parylene thermal lamination, and the release of parylene 

columns from the silicon mold. The process parameters especially for parylene/parylene 

bonding are thoroughly examined and the bonding strength is evaluated to investigate the 

feasibility of fabricating parylene GC column. This new fabrication method is further 

explored for other applications such as wafer bonding and the fabrication of diverse 

microchannels.  

(2) Investigation of theoretical column performance for rectangular GC columns – 

Two important things that must be addressed regarding column performance are retention 

time and band broadening. They are the main parameters of the analysis time and 

resolution of a GC. Conventional fused-silica columns with circular cross-section have 

been well researched concerning these issues. In this thesis, the column performance 

analysis is performed for the micromachined columns which have narrow rectangular 

cross-section. The performance of a narrow rectangular column is compared with that of 

a conventional circular column. In addition, the effect of design and operation parameters 

on the column performance will be thoroughly investigated for the micromachined 

columns.  
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(3) Optimization of the design of a parylene GC column – The most important 

thing in GC column design is the performance of the column. The target performance in 

this research is that the retention time should be less than 1 minute and the number of 

theoretical plate should be more than 10,000. Other things that need to be considered in 

designing parylene GC column include the integration with other components, the 

deformation by inner pressure, and the gas permeation through the column wall. The 

design of a parylene GC column is optimized considering the above aspects. 

(3) Investigation of the thermal cycling of parylene microcolumn – Column 

temperature is very important in GC analysis because the separation of the analytes is 

based on their partitioning between stationary and mobile phases. Parylene GC column 

has low thermal mass because it is made of thin polymer film. As a result, it can be 

heated and cooled very fast, enabling rapid and frequent analysis. ANSYS heat transfer 

modeling is performed to investigate the heating and cooling rate, power consumption, 

and temperature distribution of both the parylene column and the silicon/glass column. 

The actual thermal cycling is also measured for the parylene column with an embedded 

heating element. A thin film metal wire is formed for joule heating by evaporating metal 

on the corrugated surface of parylene column. 

(4) Investigation of the stationary phase coating method for parylene GC column 

– A GC column without a stationary phase cannot function. There are more than 200 

stationary phases that are commercially available for conventional packed or open tubular 

columns. The question is ‘can we still use these stationary phases for parylene GC 

column?’ The conventional injection coating method with common stationary phase is 

investigated for this purpose. Another important issue is whether we can take advantage 
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of the open structure of the micromachined channel for stationary phase coating. Dry 

coating methods such as plasma polymerization and chemical vapor deposition are 

investigated for this purpose. 

(5) The complete fabrication of a parylene GC column that has stationary phase 

and embedded heating element – All partially investigated parts are combined together 

and a complete fabrication flow is proposed to build a parylene GC column that contains 

stationary phase and an embedded heating element. The parylene GC column is then 

fabricated according to the proposed fabrication flow. The completed parylene GC 

column includes proper tubing and packaging, and is literally ‘ready for use’.  

(6) Evaluation of parylene GC column – The completed parylene GC column can 

be installed in a conventional GC for evaluation. Retention time and the number of 

theoretical plates are measured for some volatile organic chemicals (VOC) and compared 

with the theoretically calculated values. The separation of some VOC mixture by 

parylene GC column is demonstrated and compared with that by conventional fused-

silica column.  

1.3 STRUCTURE OF THE THESIS 

Chapter 2 provides background information regarding this research. The 

information includes approaches for field chemical detection, fundamentals of gas 

chromatography, previous research on miniature gas chromatography, and the application 

of parylene in MEMS.  
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Chapter 3 describes the theoretical column performance for both circular and 

rectangular columns. This chapter provides analytical tools to deal with gas flow in 

microchannel, retention time, column efficiency, and resolution. The effects of design 

and operation parameters on column performance will be thoroughly investigated. 

Chapter 4 presents the design of parylene GC column. In the first part of this 

chapter, the optimization of column geometry will be discussed considering column 

performance, integration, gas permeation, and mechanical strength. In the second part, 

the design of the heating element and heat spreader will be modeled using finite element 

analysis.  

Chapter 5 describes the development of two processes that are crucial in 

fabricating the parylene GC column. They are parylene micromolding and stationary 

phase coating for parylene column. The parameters and strength of parylene/parylene 

bonding are thoroughly investigated. Diverse technique will be investigated for stationary 

phase coating. 

Chapter 6 describes the fabrication of a parylene GC column with embedded 

heating element. Details of problems encountered in fabrication process will be discussed 

and some prototypes will be presented.  

Chapter 7 presents the evaluation of the parylene GC column. Results from flow 

test, heating element tests and GC tests will be presented and compared with analytical 

results.    

Chapter 8 presents the conclusions from this research and provides suggestions 

for the next generation of parylene GC column. Finally, recommendations for future 

work will be presented. 
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C H A P T E R  2  

BACKGROUND 

Miniature gas chromatography is one of the most versatile approaches for field 

chemical detection. In this chapter, other approaches are reviewed before we take a closer 

look at GC. Then some fundamentals of GC will be provided. Most of all, previous work 

by other research groups in the miniaturization of GC system will be thoroughly 

reviewed. Additionally, in-depth information about parylene, the main material used in 

this research, will be provided for the further discussion in the following chapters.  

2.1 APPROACHES FOR FIELD CHEMICAL DETECTION 

Field chemical detection is crucial in many areas such as environmental and food 

industries, health and biomedical sciences, and anti-terrorism efforts. The requirements 

for field chemical detection system include portability, fast response time, low power 

consumption, robustness, and low cost, as well as the general requirements for chemical 

sensing systems which are good sensitivity, selectivity, and reproducibility. Of course, 

there is no system that meets all requirements. Many chemical sensors and sensing 

systems are commercially available or under development. They can be categorized into 

four general groups based on the principal physics and operating mechanisms; (1) 
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chromatography and spectrometry; (2) mass sensors, (3) electrochemical sensors; and (4) 

optical sensors. Most of the contents in this section are based on a report (SAND2001-

0643) from Sandia National Laboratories [6]. 

2.1.1 CHROMATOGRAPHY AND SPECTROMETRY 

Gas chromatography is a method for the separation and analysis of complex 

mixtures of volatile organic and inorganic compounds. This is a powerful apparatus for 

separating a complex mixture into individual components. A gas chromatograph consists 

of sample injection unit, separation column, detector, and data handling unit. Generally, 

GC is a bench-top system, but there are commercially available portable GC systems. 

Moreover, hand-held GC systems are being developed currently by several different 

groups. Detail information about GC will be given in section 2.2 and 2.3. 

 The ion mobility spectrometer (IMS) can be considered a sub-class of 

chromatographic separators. The principle of every IMS is a time-of-flight measurement. 

After a gaseous sample has entered the spectrometer it will be ionized by a radioactive 

source, the resulting positive and negative charged species will be accelerated over a 

short distance and the time-of-flight will be determined. Commercially available 

detection systems for chemical warfare agents are mostly based on ion mobility 

spectrometry. IMS is often interfaced with GC for better performance, forming GC/IMS. 

Figure 2-1 shows portable IMS systems for chemical agent detection. It is suited for the 

screening of traces in gas and for the detection of toxic industrial compounds and 

chemical warfare agents down to the ppb-range.  
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Some of the mass spectrometers are portable enough to carry into the field. The 

principle of the mass spectrometer is similar to the ion mobility spectrometer, except a 

vacuum is required. Sampled gas mixtures are ionized, and charged molecular fragments 

are produced. These fragments are sorted in a mass filter according to their mass to 

charge ratio. The ions are detected as electrical signals with an electron multiplier or a 

Faraday plate. 

                      
  

Figure 2-1. Portable ion mobility spectrometer for the detection of chemical warfare 
agents (RAID-M and RAID-S, Bruker-Daltonics, Inc.). 

2.1.2 MASS SENSORS 

The most common and sensitive mass sensors is surface acoustic wave (SAW) 

sensors. SAW sensors consist of an input transducer, a chemical adsorbent film, and an 

output transducer on a piezoelectric substrate as shown in Figure 2-2. The input 

transducer launches an acoustic wave which travels through the chemical film and is 

detected by the output transducer. The velocity and attenuation of the signal are sensitive 

to the viscoelasticity as well as the mass of the thin film which can allow for the 

identification of the contaminant.  

14 



 

Sandia National Laboratories has developed and tested a six-SAW device array 

[http://www.sandia.gov/media/factsheets/99_sm_saw.htm]. Using the array, they have 

been able to identify 14 different individual organic compounds over a wide range of 

concentrations with 98% accuracy. Naval Research Laboratory has also developed SAW 

sensor systems to monitor hazardous chemical vapors such as chemical warfare agents 

[http://www.nrl.navy.mil/content.php?P=CHEMVAPORSENSOR]. The detection limits 

of the devices are in the parts per trillion range. In this system, individual devices 

generate SAW in piezoelectric quartz, with frequencies in the MHz range. A selective 

chemical absorbent, coated on the SAW devices, allows gas detection by changes in 

SAW frequency. Arrays of polymer-coated SAW devices detect different gases, and 

pattern-recognition techniques interpret data and identify unknown(s). SAW devices are 

very sensitive but it is difficult to discriminate among unknown mixture of chemicals. In 

addition, some polymer absorbents react strongly to water vapor. 

 

 

Figure 2-2. Schematic of Sandia’s SAW device 
[http://www.sandia.gov/media/factsheets/99_sm_saw.htm]. 
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The other major type of mass sensor is microcantilevers. Theses cantilevers 

respond to changes in mass by bending. Appropriate coatings are applied to the 

cantilevers to absorb chemicals of interest. Active research in this area is being performed 

by Oak Ridge National Laboratory [http://bio.lsd.ornl.gov/highlights/2000mar3.htmlx]. 

2.1.3 ELECTROCHEMICAL SENSORS 

Electrochemical sensors can be classified into three groups: potentiometric 

(measurement of voltage); amperometric (measurement of current); and conductometric 

(measurement of conductivity). Potentiometric and amperometric sensors employ an 

electrochemical cell consisting of a casting that contains a collection of chemical 

reactants in contact with the surroundings through two terminals (an anode and a 

cathode) of identical composition. These are commonly used for water analysis such as 

pH sensing. For gas detection, the top of the casing has a membrane which can be 

permeated by the gas sample. Gases such as oxygen, nitrogen oxide, and chlorine, which 

are electrochemically reducible, are sensed at the cathode while electrochemically 

oxidizable gases such as carbon monoxide, nitrogen dioxide, and hydrogen sulfide are 

sensed at the anode. However, there is no commercial potentiometric cell for volatile 

organic chemicals; most are used for toxic gases and oxygen.  

On the other hand, conductometric sensors are commonly used for the detection 

of volatile organic chemicals. Commercial conductometric sensors can be classified into 

three types: polymer-absorption chemiresistors; catalytic bead sensors; and metal-oxide 

semiconductor sensors.  
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Polymer-Absorption chemiresistors consist of a chemically sensitive absorbent 

deposited on an electrode. When chemical vapors come into contact with the absorbent, 

the chemicals absorb into the polymers, causing them to swell. The swelling changes the 

resistance of the electrode, which can be measured. Often, an array of chemiresistors is 

used to increase analytic discrimination. However, the unit must be “trained” for each 

analyte of interest. Figure 2-3 shows a hand-held chemiresistor system manufactured by 

Cyrano SciencesTM. This device includes an array of 32 chemiresistors, each of which 

consists of a pair of electrical contacts that are bridged by a composite film. This 

composite film is made of non-conducting polymer and conductive carbon black particles. 

Sandia National Laboratories has developed chemiresistors using polymer films 

deposited on microelectrodes [http://www.sandia.gov/media/NewsRel/NR2001/ 

watsniff.htm]. Chemiresistors are small, low power devices and have good sensitivity to 

various chemicals. But they may not be able to discriminate among unknown mixtures of 

chemicals. Some polymer absorbents react strongly to water vapor. Although reversible, 

signal may experience hysteresis and a shift in the baseline when exposed to chemicals.  

Catalytic bead sensors are low-power (50-300mW) devices that have been used 

for many years in the detection of combustible gases, particularly methane in air. They 

are used widely in portable gas detection instruments. This sensor consists of a passive 

and active element, both made from an embedded coiled platinum wire in a porous 

ceramic. The active element is coated with a catalyst such as platinum, and the passive 

element is coated with an inert glass to act as a reference element to compensate for 

environmental conditions. Both elements are heated and when a combustible gas contacts 

the elements, the vapor combusts on the active element and the active element increases 
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in temperature. As a result, the resistance of the platinum coil changes and it is measured 

using a wheatstone bridge. Thermo Electron Corporation has a portable soil vapor 

monitor that uses the catalytic bead sensor for detecting combustible hydrocarbon gases 

(Figure 2-4 left). 

                

 
(a) (b) 

Swelling 

Figure 2-3. Chemiresistor, (a) working principle, (b) commercial product 
(cyranoseTM 320). 

 

                  

Figure 2-4 Commercial catalytic bead sensor (Innova-SV, Thermo Electron 
Corporation) and metal-oxide semiconductor sensor (TGS813, Figaro) 

[https://www.thermo.com and https://www.figarosensor.com]. 
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The metal oxide semiconductor (MOS) sensor is comprised of a tin oxide that is 

sintered on a small ceramic tube. A coiled wire is placed through the center of the 

ceramic tube to act as the sensor heater. Metal wires provide electrical contact between 

the tin oxide and the rest of the electronics. The combination of the sensor operating 

temperature and the composition of the metal oxide yields different responses to various 

combustible gases. When the metal oxide is heated, oxygen is adsorbed on the surface 

with a negative charge. Donor electrons are transferred to the adsorbed oxygen, leaving a 

positive charge in the layer. Inside the sensor, electrical current flows through the grain 

boundary of metal oxide microcrystals. Resistance to this electrical current is caused by 

negatively charged oxygen at grain boundaries. In the presence of a reducing gas, a 

surface catalyzed combustion occurs and the surface density of negatively charged 

oxygen decreases, thereby decreasing the resistance of the sensor. Figaro has developed 

MOS sensors for detection of solvent vapors (Figure 2-4 right). This sensor has high 

sensitivity to combustible gases such as hydrogen and reducing gases such as NO, H2S, 

etc. However the sensitivity to aromatic and halogenated hydrocarbons is questionable.  

2.1.4 OPTICAL SENSORS 

Two types of optical sensors are used for chemical detection: colorimetry and 

fiber-optic sensors. Colorimetry works by analyzing the color of contaminated water that 

has been mixed with a particular chemical reagent. There are commercially available 

pocket colorimeter test kits and strips for the detection of petroleum hydrocarbons and 
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toxic gases [https://www.lamotte.com]. This is very simple to use, but chemical 

sensitivity is limited to individual VOCs and requires actual water samples. 

Fiber-optic sensors are again classified into three groups. The first group involves 

sending a light source directly through the optical fiber and analyzing the light reflected 

or emitted by the contaminants. The second group uses optical fiber with a chemically 

interacting thin film attached to the tip. This film is formulated to bind with certain types 

of chemicals. Contaminant concentration can be found by measuring the color of the thin 

film, the change of refractive index, or by measuring the fluorescing of the film. The third 

group of optical fiber sensors involves injecting a reagent near the sensor. This reagent 

reacts with the contaminant and the reaction products are detected to give an estimate of 

the contaminant concentration. Fiber optic sensors require low power and can detect 

various chemicals at very low concentrations, but some organic pollutants are not easily 

differentiated using UV-visible spectroscopy.  

2.2 FUNDAMENTALS OF GAS CHROMATOGRAPHY 

2.2.1 ELUTION GAS CHROMATOGRAPHY 

Gas chromatography is a method for separating and analyzing components of 

mixtures of volatile compounds [7]. The most common technique for GC is the elution 

technique. A stream of inert gas, the carrier gas, passes continuously through the column, 

and the mixture to be separated is introduced instantaneously at the beginning of the 
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column as a sample either of a gas or a volatile liquid. The sample is transported in a 

mobile phase and the mobile phase is then forced through a stationary phase which is 

fixed in a column. Some solutes are more strongly retained by the stationary phase than 

others and as a result, a mixture sample can be separated as illustrated in Figure 2-5.  

 

Time
t0 t1 t2 t3 t4 

Detector 
signal 

Mobile phase

A 

A

Detector 

Sample  
injection 
(A+B) 

Figure 2-5. Principle of elution chromatography. 
 

The stationary phase can be either liquid or solid. As a result, the retention 

chromatography is categorized into ‘gas-liquid chromatography’ and ‘gas-solid 

chromatography.’ In gas-solid chromatography, the retention of analytes is the 

consequence of the physical adsorption of an analyte on the solid stationary phase. In 

gas-liquid chromatography, the retention of an analyte is based upon the partition of the 
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analyte between a gaseous mobile phase and a liquid phase immobilized on the surface of 

an inert solid in gas-liquid chromatography. Gas-liquid chromatography has greater 

general utility and is more widely used, while gas-solid chromatography is especially 

useful for the separation of highly volatile compounds, including gas samples. 

When the sample is introduced to the inlet end of the column in gas-liquid 

chromatography, each solute in that sample engages in a highly dynamic equilibrated 

partitioning between the stationary phase and the mobile phase in accordance with its 

distribution constant. The distribution constant is defined as 

M

S
C c

c
K =  

Equation 2-1 

where cS and cM are the concentrations of solute in stationary and mobile phase 

respectively. The flow of carrier gas disrupts the equilibrium distribution at the front and 

rear of the band, causing continuous evaporation at the rear and reestablishment at the 

front as the sample passes through the column as shown in Figure 2-6. Because all solutes 

are injected simultaneously, separation is obviously contingent on differences between 

the KC values of the individual solutes.  

Because solute movement can only occur in the mobile phase, the average rate at 

which a solute zone migrates down the column depends on the fraction of time it spends 

in that phase. The proportion of a solute that is in the mobile phase at any given time is a 

function of the “net” vapor pressure of that solute. Therefore, the less volatile solutes or 

those components that are strongly retained by the stationary phase move slowly with the 

flow of mobile phase. Hence, separation is achieved while the solutes are passing through 

the column. Then, the separated solutes are swept toward the detector and a certain 
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physical property change is detected at the detector. The detected signal is then plotted as 

a function of time. This plot is called a ‘chromatogram’. Figure 2-7 shows an example 

chromatogram for a solvent mixture. A thermal conductivity detector was used in this 

example. The position of peaks serves to identify the components, and the area under the 

peaks represents the amount of each component.   

 

  

Mobile phase 

Stationary phase 

Solute concentration  
in mobile phase 

Partitioning from 
stationary phase   
into mobile phase 

Partitioning from  
mobile phase   
into stationary phase 

Solute concentration  
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Figure 2-6. Principle of elution chromatography 
 

Two things must be noted in terms of elution chromatography. First, analytes are 

diluted due to diffusion while they are traveling through the column. In another words, 

the bandwidth of each analyte peak is broadened with time. This is related to column 

efficiency and will be discussed more in Chapter 3. Second, column temperature is 

critical to the analysis because the vapor pressure and consequently the distribution 

constant, KC, highly depends on the temperature as shown in Equation 2-2. If the column 

temperature is too low, KC  becomes too high and as a result the solutes remain largely in 

the stationary phase. They neither separate from each other nor elute from the column. If 
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the column temperature is too high, KC becomes too low and the solute spends most of 

their time in the mobile phase. As a result, the solutes will elute from the column as an 

non-separated mixture.   

 

Figure 2-7. Example chromatogram. 
.    

B
T
AK
C

C +=log  

Equation 2-2 

Therefore, column temperature is an important variable that must be controlled to 

a few tenths of a degree for precise work. The optimum column temperature depends 
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upon the boiling point of the sample and the degree of separation required. Roughly, a 

temperature equal to or slightly above the average boiling point of a sample is ideal to 

obtain a reasonable elution time. For a sample with a broad boiling range, it is often 

desirable to employ temperature programming, where the column temperature is 

increased either continuously or in steps as the separation proceeds. Figure 2-8 shows the 

improvement in a chromatogram brought about by temperature programming.  

 

 

Figure 2-8. Effect of temperature on gas chromatogram: (a) isothermal at 45 oC; (b) 
isothermal at 145 oC; (c) programmed at 30 oC to 180 oC. [8] 

 

25 



 

2.2.2 PACKED COLUMN AND OPEN TUBULAR COLUMN 

In elution gas chromatography, the function of the column is to expose the 

stationary phase to the mobile phase in order to guarantee an optimum separation through 

maximum repeated partition steps between these two phases. GC columns can be 

classified into two big categories – packed columns and open tubular (or “capillary”) 

columns. Packed columns are densely packed with a uniform packing material, which is 

coated with a thin liquid stationary phase. Open tubular columns have a thin stationary 

phase coating on the wall surface. 

The open tubular column is capable of separations that are vastly superior to those 

obtained on packed columns. The short capillary analysis deliver separation equivalent to 

that obtained in the much longer packed column analysis as shown in Figure 2-9. The 

capillary resolution is superior. Integrated peak areas from the packed column analysis 

will include appreciable solvent contributions. The solute peaks are well removed from 

the solvent in the capillary analysis, and quantification will be enhanced.  

  
(a) (b) 

Figure 2-9. Chromatograms of a mixture of methyl benzoates: (a) packed column 
analysis (25 min); (b) 1.7 m x 0.25 mm glass capillary analysis (1.7 min). [7] 
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The striking difference between the two sets of chromatographic results is best 

attributed in the degree of randomness exhibited by identical molecules of each 

individual solute. These behavioral differences between identical molecules can be 

attributed to three factors [7].  

First, the packed column offers solute molecules a multiplicity of flow paths but 

the open tubular column has a single flow path and molecules would be expected to 

exhibit mobile phase residence times that were much more nearly identical.  

Second, there is much more stationary phase in the packed column, and the film 

thickness is not uniform. As a result, the times that identical molecules of a given solute 

spent in the stationary phase would be quite diverse. But in the open tubular column, the 

stationary phase is in a thinner and much more uniform film. Hence, the range of times 

that identical molecules spent in the stationary phase would be expected to be much 

narrower.  

Third, packed column support materials are poor heat conductors and a 

temperature range must exist across any transverse section of the packed column. As a 

result, the solute molecules whose flow path is down the center of the packed column will 

be at a lower temperature, exhibit lower vapor pressures, and spend more of their time in 

the stationary phase than will identical molecules whose flow path are closer to the 

column wall. However in the fused silica column, the stationary phase exists as a thin 

film of very low thermal mass. There should be no temperature variation across any 

transverse section of the column.  
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2.2.3 STATIONARY PHASE 

Clearly, to be useful in gas-liquid chromatography, the stationary phase must 

generate different distribution constants for different solutes. In addition, these constants 

must not be extremely large or extremely small because the former lead to prohibitively 

long retention times and the latter result in such short retention times that separation are 

incomplete. To have a reasonable residence time in the column, a species must show 

some degree of solubility with the stationary phase. Here, the principle of “like dissolves 

like” applies, where “like” refers to the polarities of the solute and the stationary phase. 

Hydrocarbon-type stationary phases and dialkyl siloxanes are nonpolar, whereas 

polyester phases are highly polar. Polar stationary phases contain functional groups such 

as -CN, -CO, and -OH. Polar solutes include alcohols, acids, and amines; solutes of 

medium polarity include ethers, ketones, and aldehydes. Saturated hydrocarbons are 

nonpolar. Generally, the polarity of the stationary phase should match that of the sample 

components. When the match is good, the order of elution is determined by the boiling 

point of eluents.  

Table 2-1 lists the most widely used stationary phases for both packed and open 

tubular column GC in order of increasing polarity. Five of the stationary phases listed in 

Table 2-1 are polydimethyl siloxanes that have the general structure: 

 

R

Si

R

R O Si

n

O Si R

R

R  
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In polydimethyl siloxane, the –R groups are all –CH3, resulting in nonpolar 

stationary phase. In the other polysiloxanes a fraction of methyl groups are replaced by 

functional groups such as phenyl (-C6H5), cyanopropyl (-C3H6CN), and trifluoropropyl (-

C3H6CF3).   The fifth entry in Table 2-1 is a polyethylene glycol that finds widespread 

use for separating polar species. The molecular structure of polyethylene glycol is shown 

below. 

HO CH2 CH2 O CH2 CH2 OH
n  

 

Table 2-1. Some common stationary phases for gas-liquid chromatography. [9] 

Stationary Phase Trade Name Common Application 

Polydimethyl siloxane OV-1, SE-30 Hydrocarbon; polynuclear aromatics; 
drugs; steroids; PCBs 

Poly(phenylmethyldimethyl) 
siloxane (10% phenyl) OV-3, SE-52 Fatty acid methyl esters; alkaloids; 

drugs; halogenated compounds 

Poly(phenylmethyl) siloxane 
(50% phenyl) OV-17 Drugs; steroids; pesticides; glycols 

Poly(trifluoropropyldimethyl) 
siloxane OV-210 Chlorinated aromatics; nitroaromatics; 

alkyl-substituted benzenes 

Polyethylene glycol Carbowax 20M Free acids; alcohols; ethers; essential 
oils; glycols 

Poly(dicyanolallyldimethyl) 
siloxane OV-275 Polyunsaturated fatty acids; rosin 

acids; free acids; alcohols 
 

With use, columns slowly lose their stationary phase due to “bleeding”, in which 

small amount of stationary phase is carried out of the column during the elution process. 

Therefore commercial columns generally have bonded and/or cross-linked stationary 

phases. The purpose of bonding and cross-linking is to provide a longer-lasting stationary 

phase that can be rinsed with a solvent when the film becomes contaminated.  
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Commercial columns are available having stationary phases that vary in thickness 

from 0.1 to 5 µm. Film thickness primarily affects the retentive character and the capacity 

of a column. Thick films are used with highly volatile analytes because such films retain 

solutes for a longer time.  

2.2.4 OTHER COMPONENTS OF GAS CHROMATOGRAPH 

2.2.4.1 INJECTION SYSTEMS 

Column efficiency requires that the sample be of suitable size and be introduced 

as a “plug” of vapor; slow injection of oversized samples causes band spreading and poor 

resolution. The most common method of sample injection involves the use of a 

microsyringe to inject a liquid or gaseous sample through a septum into a flash vaporizer 

port located at the head of the column. For ordinary analytical columns, sample sizes vary 

from a few tenths of a microliter to 20 µL. Capillary columns require much smaller 

samples (~ 10-3 µL); here, a sample splitter system is employed to deliver only a small 

fraction of the injected sample to the column head, with the remainder going to waste. 

For quantitative work, more reproducible sample sizes for both liquids and gases are 

obtained by means of a rotary sample valve which has a sample loop of a certain volume.    
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2.2.4.2 DETECTORS 

The ideal detector for GC has adequate sensitivity, reproducibility, linear response 

to solutes, short response time, reliability, and nondestructive detection. The sensitivity of 

present-day detectors lies in the range of 10-8 to 10-15 g solute/s. The most popular 

detectors are flame ionization detectors, thermal conductivity detectors, and electron 

capture detectors.  

The flame ionization detector (FID) is the most widely used for GC. With a 

burner, the effluent from the column is mixed with hydrogen and air and then ignited 

electrically. Most organic compounds produce ions and electrons when pyrolyzed at the 

flame. A potential of a few hundred volts is applied across the burner tip and a collector 

electrode located above the flame. The number of ions produced is roughly proportional 

to the number of reduced carbon atoms in the flame. Functional groups, such as carbonyl, 

alcohol, halogen, and amine, yield fewer ions or none at all in a flame. In addition, the 

detector is insensitive toward noncombustible gases such as H2O, CO2, SO2, and NOx. 

These properties make the FID a most useful detector for the analysis of most organic 

samples, including those that are contaminated with water and the oxides of nitrogen and 

sulfur. The FID exhibits a high sensitivity (~10-13 g/s), large linear response range (~107) 

and low noise. A disadvantage of the FID is that it destroys the sample. 

A thermal conductivity detector (TCD), sometime called a katharometer, is based 

upon changes in the thermal conductivity of the gas stream brought about by the presence 

of analyte molecules. The sensing element of a TCD is an electrically heated element 

whose temperature depends on the thermal conductivity of the surrounding gas. The 

thermal conductivities of helium and hydrogen are roughly six to ten times greater than 
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those of most organic compounds. Thus, in the presence of even small amount of organic 

materials, a relatively large decrease in the thermal conductivity of the column effluent 

takes place; consequently, the detector undergoes a marked rise in temperature. The 

advantage of the TCD is its simplicity, its large linear response range (~105), its general 

response to both organic and inorganic species, and its nondestructive character. A 

limitation of the TCD is its relatively low sensitivity (~10-8 g solute/mL carrier gas). 

The electron-capture detector (ECD) has become one of the most widely used 

detectors for environmental samples because this detector selectivity detects halogen 

containing compounds, such as pesticides and polychlorinated biphenyls. An electron 

from an emitter causes ionization of the carrier gas and the production of a burst of 

electrons. In the absence of organic species, a constant standing current between a pair of 

electrodes results from this ionization process. The current decreases markedly, however, 

in the presence of those organic molecules that tend to capture electrons. The ECD is 

highly sensitive to molecules containing electronegative functional groups such as 

halogens, peroxides, quinines, and nitro groups. It is insensitive to functional groups such 

as amines, alcohols, and hydrocarbons.  

There are other commercially available detectors such as atomic emission detector 

(AED), sulfur chemiluminescence detector (SCD), thermionic detector (TID), flame 

photometric detector (FPD), and photoionization detector (PID). The SCD is particularly 

useful for the determination of pollutants such as mercaptans and the TID is selective 

toward organic compounds containing phosphorous and nitrogen. GC is often coupled 

with the selective techniques of spectroscopy and electrochemistry, thus giving so-called 

hyphenated methods that provide the chemist with powerful tools for identifying the 
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components of complex mixtures. For example, GC can be directly interfaced with mass 

spectrometer (GC-MS), Fourier transform infrared spectrometers (GC-FTIR), or ion 

mobility spectrometers (GC-IMS).  

2.3 OVERVIEW OF MINIATURE GAS CHROMATOGRAPHY 

2.3.1 HISTORY AND TRENDS 

Table 2-2 shows the history of the miniature GC. The first miniature GC was 

reported by Terry in 1970’s [1, 2].  The first miniature GC system consisted of a sample 

injection valve and a 1.5 m long separation column fabricated on a 2 inch dia silicon 

wafer. The separation column was etched by isotropic wet etching and anodically bonded 

to a pyrex glass plate. The cross section of the column was U-shape, with a width of 200 

µm and a typical depth of 30 µm. The completed silicon/glass column was then lined 

with a commercial stationary phase (OV-101). A thermal conductivity detector (TCD) 

was separately batch fabricated and mechanically clamped to the column wafer. The 

separation of a hydrocarbon mixture with this GC system was reported and the number of 

theoretical plates for the peaks ranged from 385 to 2300.   

33 



 

T
ab

le
 2

-2
. H

is
to

ry
 o

f m
ic

ro
 G

C
. 

A
ut

ho
r 

C
ol

um
n 

D
im

en
si

on
 

St
at

io
na

ry
 

ph
as

e 
In

je
ct

or
/D

et
ec

to
r 

 
Te

st

Te
rr

y,
 1

97
9 

St
an

fo
rd

 U
ni

v.
 

Si
lic

on
/g

la
ss

 
(w

et
 e

tc
hi

ng
) 

20
0 
µm

 x
 3

0 
µm

 x
 1

.5
 m

 
O

V
-1

01
 

So
le

no
id

- a
ct

ua
te

d 
di

ap
hr

ag
m

 
va

lv
e/

 
M

ic
ro

m
ac

hi
ne

d 
TC

D
 

H
yd

ro
ca

rb
on

s  
in

 
10

s 

B
ru

ns
, 1

99
2 

M
ic

ro
se

ns
or

 T
ec

hn
ol

og
y,

 
In

c.
 

Si
lic

a 
co

lu
m

n 
15

0 
µm

 x
 4

 
~1

0 
m

 
O

V
-1

 
D

B
-5

 

Pn
eu

m
at

ic
al

ly
 a

ct
ua

te
d 

di
ap

hr
ag

m
/ 

M
ic

ro
m

ac
hi

ne
d 

TC
D

 

So
lv

en
ts

, p
ol

lu
ta

nt
s 

in
 1

 m
in

 

R
es

to
n 

&
 K

ol
es

ar
, 1

99
4 

A
ir 

Fo
rc

e 
In

st
itu

te
 o

f T
ec

h.
 

Si
lic

on
/g

la
ss

  
(w

et
 e

tc
hi

ng
) 

30
0 
µm

 x
 1

0 
µm

 x
 0

.9
 m

 
C

uP
c 

 
(E

va
po

ra
tio

n)
 

C
om

m
er

ci
al

 g
as

 sa
m

pl
e 

va
lv

e/
 

m
ic

ro
m

ac
hi

ne
d 

th
er

m
or

es
is

to
r &

 
TC

D
 

N
H

3 a
nd

 N
O

2 
in

 3
0 

m
in

 

H
an

no
e 

&
 S

ug
im

ot
o,

 1
99

7 
N

TT
 L

ab
., 

Ja
pa

n 
Si

lic
on

/g
la

ss
 

(w
et

 e
tc

hi
ng

) 
10

0 
µm

 x
 1

0 
µm

 x
 2

 m
 

Fl
uo

ro
ca

rb
on

 
(S

pu
tte

rin
g)

 
M

as
s s

pe
ct

ro
m

et
er

 (G
C

/M
S)

 
N

/A
 

W
ira

nt
o,

 1
99

9 
U

ni
v.

 o
f S

ou
th

 A
us

tra
lia

 
Si

lic
on

/g
la

ss
 

(w
et

 e
tc

hi
ng

) 
10

0 
µm

 x
 2

0 
µm

 x
 1

.2
5m

 
PD

M
S 

FI
D

 (H
P5

89
0)

 
H

yd
ro

ca
rb

on
 

m
ix

tu
re

 in
 1

.2
5 

m
in

 

Fr
is

hm
an

 &
 A

m
ira

v,
 2

00
0 

Te
l A

vi
v 

U
ni

v.
, I

sr
ae

l 
Si

lic
a 

co
lu

m
n 

32
0 
µm

 
x1

2c
m

 
O

V
-1

 
Pu

ls
ed

 fl
am

e 
ph

ot
om

et
ric

 
de

te
ct

or
 (P

FP
D

) 
C

W
A

 si
m

ul
an

ts
 in

 
1.

5 
m

in
 

N
ie

ra
dk

o 
&

 M
al

ec
ki

, 2
00

0 
W

ro
cl

aw
 U

ni
v.

, P
ol

an
d 

Si
lic

on
/g

la
ss

 
(w

et
 e

tc
hi

ng
) 

35
 µ

m
 x

 1
1 

µm
 x

 3
0 

m
 

Sq
ua

la
n 

 
FI

D
 (H

P5
89

0)
 o

r P
ne

um
at

ic
 

in
je

ct
io

n 
va

lv
e/

 c
oi

l k
at

ha
ro

m
et

er
 

H
yd

ro
ca

rb
on

 
m

ix
tu

re
 in

 2
0 

m
in

 

Le
hm

an
n,

 2
00

0 
SL

S 
M

ic
ro

Te
ch

, G
er

m
an

y 
  

Si
lic

on
/g

la
ss

 
(w

et
 e

tc
hi

ng
) 

N
/A

 
0.

86
 m

 
PD

M
S 

(P
EC

V
D

) 
El

ec
tro

m
ag

ne
tic

al
ly

 d
riv

en
 

in
je

ct
or

/ m
ic

ro
m

ac
hi

ne
d 

TC
D

 
N

/A
 

Fr
ye

-M
as

on
, 1

99
8-

20
01

 
Sa

nd
ia

 N
at

io
na

l L
ab

. 
Si

lic
on

/g
la

ss
 

(d
ry

 e
tc

hi
ng

) 
40

 µ
m

 x
 2

50
 

µm
 x

 1
 m

 
O

V
-1

 
Pr

ec
on

ce
nt

ra
to

r 
SA

W
 a

rr
ay

 

H
yd

ro
ca

rb
on

 
m

ix
tu

re
 

D
M

M
P 

in
 1

 m
in

 

N
aj

af
i, 

20
03

 
U

ni
v.

 o
f M

ic
hi

ga
n 

Si
lic

on
/g

la
ss

 
(d

ry
 e

tc
hi

ng
) 

15
0 
µm

 x
 

26
0 
µm

 x
 

3m
 

O
V

-1
 

Pr
ec

on
ce

nt
ra

to
r-

fo
cu

se
r 

C
he

m
ire

si
st

or
 a

rr
ay

 
H

yd
ro

ca
rb

on
 

m
ix

tu
re

 in
 1

.5
 m

in
 

34
 



 

This first miniature GC system has improved on for 20 years [10], creating a new 

family of portable and fast GC. In 1995-96 a series of portable GC’s, manufactured by 

MTI Analytical Instruments was introduced onto the market. The portable GC was 

equipped with micromachined diaphragm valves and thermal conductivity detectors. 

However, narrow-bore fused silica capillary columns were used in these systems instead 

of a micromachined silicon/glass column. The performance was fairly good and they 

demonstrated the separations of solvent mixture, pollutant mixture, permanent gas 

mixture and hydrocarbon mixture by using different narrow-bore fused silica capillary 

columns that had different stationary phases. Although it was not a completely 

micromachined system, this first portable GC enabled innovative applications; for 

example, the analysis of astronomical objects in laboratories on the Earth orbit.  The 

Columbia space shuttle was equipped with very fast micro GC MTI Quad analyzer and 

the data was transmitted to the Earth by microcomputer [11]. MTI Analytical Instruments 

was later merged to HP-Agilent Technologies and still manufactures portable GC 

systems as shown below. However, it must be noted that the commercial portable GC 

systems are still equipped with glass capillary columns.  

 

 

Figure 2-10. Commercial portable GC (3000 Micro GC, Agilent Technologies). 
 

35 



 

Reston and Kolesar [12, 13] reported another micromachined GC system for the 

separation and detection of ammonia and nitrogen dioxide. The 0.9 m long rectangular 

column with a width of 300 µm and a height of 10 µm was fabricated by isotropic wet 

etching and anodic bonding. A 0.2 µm thick copper phthalocyanine (CuPc) was deposited 

from gas phase and it was used as a stationary phase. The advantage of the vapor 

deposited solid stationary phase is its better thickness uniformity. In addition, stationary 

phase deposition can be completed in much more convenient way before anodic bonding. 

However, the solid stationary phase limits the application of the GC system because of its 

high selectivity. A commercial gas sample valve and a dual detector (a CuPc coated 

chemiresistor and a thermal conductivity detector) were employed for nitrogen dioxide 

detection. They demonstrated the separation of ammonia and nitrogen dioxide in less 

than 30 min. 

Hannoe and Sugimoto [14] introduced a micromachined silicon/glass column that 

had a sputtered fluorocarbon film as a stationary phase. The silicon channel was etched 

using a mixture of hydrofluoric, nitric, and acetic acid and had very smooth surface. 

Simple and small dead-volume joint between silica tube and column end was achieved 

using ultrasonic machining. This column was installed in conventional GC-MS and a 

sharp methane peak was obtained.  

Wiranto [4] also reported a micromachined silicon/glass column which is 100 µm 

wide, 20 µm deep and 125 cm long column. A commercial stationary phase was coated 

inside the silicon/glass column by conventional dynamic coating method and then the 

column was installed in a commercial GC system (HP 5890), replacing fused silica 

capillary column.  Performances of the micromachined silicon/glass columns have been 
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demonstrated by their ability to completely separate a series of hydrocarbon mixture (C11 

to C16) in less than 1.25 min under the isothermal condition of 150 oC 

Frishman and Amirav [15] reported a hand-held GC for field analysis of chemical 

warfare agents (CWA) for the first time.  The GC was equipped with a pulsed-flame 

photometric detector (PFPD).  The GC had both fast repetitive analysis mode and 

continuous sampling “sniff” mode.  Fast repetitive analysis was demonstrated with a 

cycle time of 30 seconds, combined with very low detection limits of 20 ng/m3 for 

organophosphorus CWA simulants and 200 ng/m3 for organosulfur compounds.  The 

system inlet was heated and the sample path was inert without any metal, enabling fast 

response time and low detection limits for a low volatility agent such as VX.  They used a 

short (1.5 m) silica capillary column, which was inserted into a metal tube and arranged 

in four circular loops with 13 cm diameter on a structural support. The other components 

were not made by micromachining, either.  

Nieradko and Malecki [5] have been developing a multi-chip, integrated GC 

system.  The multi-chip module consists of isotropically etched silicon/glass column, 

pneumatic injection valve with floating Teflon foil, and thermoelectric katharometric 

detector for microflow analysis. The katharometric detector consists of microchannel and 

platinum wire and the resistance change of the platinum wire is monitored.  The 

prototype of each part was fabricated separately and integrated into a multi-chip module.  

The column was fabricated on 3” wafer with dimensions of minimum 35x11 µm2 to 

maximum 300x150 µm2.  The length ranges from 12 to 30 m. This long micromachined 

column was tested in a conventional GC (HP 5890) and showed the separation of 

aliphatic and aromatic hydrocarbon mixture in 20 min. 
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Lehmann et al. [16, 17] in SLS Micro Technology GmbH, Germany recently 

presented a hand-held GC system which consists of micro TCD detector, 

electromagnetically driven sliding injector, and a micromachined silicon/glass column. 

Their column has a plasma polymerized polydimethylsiloxane (PDMS) like layer as a 

stationary phase. Three major units: detector, injector, and column, were integrated on a 

credit card sized mother board as shown below. However, they have not reported any 

separation results yet.   

 

 

 

 

 

Figure 2-11. A hand held GC system from SLS Micro Technology GmbH. 
 

Sandia National Laboratories has also been developing a miniature, integrated 

chemical laboratory (µChemLab) that can provide faster response, smaller size, and an 

ability to utilize multiple columns for enhanced versatility and chemical discrimination [3, 

18-20] The main application of this system is the trace detection of selected target 

analytes such as CWA and explosives. In this application, rapid analysis can be critical to 

provide early warning.  Therefore the µChemLab program has a goal to develop small 

(palm-top computer-sized), lightweight, and autonomous systems that provides rapid (1 

min), sensitive (1-10 ppb), and selective detection of target analytes. To achieve this goal, 
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they have developed a micromachined sample collector/concentrator, a silicon/glass 

column, and a chemically selective surface acoustic wave (SAW) array detector.  

 
 

 

Figure 2-12. µChemLab of Sandia National Laboratories. 
 

 Their GC columns were fabricated using high aspect ratio silicon etching 

(HARSE) to have narrow and deep cross-section (40 µm wide and 250 µm deep).  With 

only 4 psi of pressure, separation of dimethyl methyl phosphonate (DMMP: a nerve agent 

simulant) from toluene and xylene was demonstrated.  It was also reported that using a 

slightly higher temperature (80 oC), the same separation could be achieved in less than 30 

seconds.  They have developed an analytical tool that models the transport and surface 

interaction process to achieve an optimized design of the GC column.  They also have 

investigated gas flow in long capillary tubes to characterize the flow behavior.   

Another research group developing a miniature GC is the Engineering Research 

Center for Wireless Integrated MicroSystems at the University of Michigan [21]. Their 

goal is developing a microsystem that can monitor temperature, pressure, humidity, and 
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gas composition with part-per-billion sensitivity. The system consists of a pre-

concentrator, separation column, a chemiresistive sensing array, a vacuum pump, and 

integrated microvalves. Figure 2-13 shows the conceptual drawing of the microGC of the 

University of Michigan. The final system is targeted to be able to analyize 30+ VOC’s in 

less than 10 min.  

 

 

Figure 2-13. Conceptual drawing of the 10-yr microGC of the University of 
Michigan [http://www.eng.nsf.gov/eec/erc/directory/erc_r.htm]. 

 

2.3.2 SEPARATION COLUMN 

Although each component is important in a GC system, the efficiency of a GC 

system depends primarily on the separation column efficiency. Conventional bench-top 
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GC systems use fused silica capillary columns, and even some commercial portable GC 

systems have short versions of fused silica capillary columns. However, for a miniature 

GC system, micromachined silicon/glass columns have been used because they can 

provide smaller sizes, lower power consumption for heating, and an ability to integrate 

other components on a single chip.  

The micromachined silicon/glass columns are fabricated by etching microchannel 

on silicon wafer followed by anodic bonding with a Pyrex glass substrate. Silicon 

microchannels can be fabricated by either isotropic wet etching or anisotropic plasma 

etching. Figure 2-14 (a) shows examples of each case. Wet etching generally produces a 

wide and shallow channel but the surface is very smooth. On the contrary, deep RIE 

etched silicon microchannel provides improved ruggedness but worse surface roughness 

as shown in Figure 2-14. Recently, a thin walled silicon/glass column was also reported 

[21]. They diffused boron to the deep RIE etched silicon microchannel to form p++ etch 

stop about 10 µm deep. A pyrex glass was then bonded to the silicon substrate followed 

by ethylene diamine pyrocatechol (EDP) etching.  

Can a micro GC column work better than a conventional GC column? This is an 

important question that needs to be addressed. The classical Golay’s equation can be used 

with some modifications to investigate the separation efficiency of micromachined 

columns. Spangler [22-24] also developed a theory for the height equivalent to a 

theoretical plate (HETP) of a micromachined rectangular GC column. According to this 

theory, rectangular columns can have lower HETPs and higher volumetric flow than 

conventional capillary columns for a given column length. A good rule of thumb is that 

the resolution can be adjusted by selecting the column height (provided it is much less 
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than the column width), and the volumetric flow of carrier gas can be adjusted by 

selecting the column width (or cross-sectional area).  
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(a) (b) 

Figure 2-14. Micromachined silicon microchannel, (a) wet etched channel [12], (b) 
dry etched channel [3]. 

 

Sandia National Laboratories developed an analytical model and a computer 

simulation tool for this purpose [19]. The analytical model consists of a flow module and 

a separation module. The flow module models compressibility and slip flow effects, 

which are significant in gas flow in a long and narrow column. The separation module 

predicts column performance based on the modified Golay equation. Both models have 

performed well against experimental data. Computational simulations have been 

performed to investigate the geometric effect on analyte transport, which the analytical 



 

models fail to capture. Simulation flow could capture the complex flow and transport 

dynamics better than the analytical models. However, if the condition changes, a wider 

column and/or a larger flow velocity, complex flow structure can be generated from the 

curvature of the column, leading to a substantial band spreading, which will degrade the 

chromatographic performance. According to Sandia’s analytic model, the performance of 

GC depends on the ratio of length-to-width of the column. As the size of the column 

decreases, one can achieve a similar performance (same number of theoretical plates) 

with a shorter column [19]. Three characteristics in micromachined GC column are: a 

high-aspect-ratio rectangular channel, to achieve the desired volumetric flow rate and 

also to maximize the surface area-to-volume ratio; a length-to-width ratio of about 20,000 

to obtain an efficient separation; a tight spiral configuration in order to fit the long 

column onto a small area.  

The stationary phase is the key element of GC column. The general methods of 

coating stationary phase in conventional fused silica glass column are pumping or 

withdrawing a solution through the column. The former is called the ‘dynamic method’ 

and the latter ‘static method’. The solution contains certain solutes that can be used as 

stationary phase. While the solution passes through the column, the solute is deposited on 

the column wall, forming the stationary layer. These conventional methods have been 

used in micromachined silicon/glass column. However, the coating quality is not as good 

as in fused silica column. The micromachined silicon/glass columns usually have 

rectangular cross section and rough surface, resulting in non-uniform coating. This issue 

has been addressed and some surface treatment has been investigated to improve the 

coating uniformity [3]. The better solution for coating uniformity is the direct deposition 

43 



 

from a gaseous phase. Kolesar et al. deposited a solid stationary phase, CuPc (Copper 

Phthalocyanine), in silicon microchannel using thermal evaporation [12]. As other solid 

adsorbent phases, CuPc has the inherent selectivity of detecting some gases such as 

nitrogen dioxide and ammonia. Sugimoto et al. reported another solid stationary phase, 

plasma-polymerized fluoropolymer deposited by RF sputtering [25]. This film exhibits 

swelling in VOCs but little response to water vapor. This discriminatory character makes 

it attractive for environmental sensing applications. Lehmann et al. used PECVD to 

deposit PDMS-like film on their micromachined silicon microchannel [17]. This method 

is very promising because the structure of final film resembles that of 

polydimethylsiloxane (PDMS), which is the standard in gas chromatography. Also, good 

step coverage on the side wall was obtained by the PECVD process. 

2.4 PARYLENE IN MICROELECTROMECHANICAL SYSTEMS    

2.4.1 INTRODUCTION TO PARYLENE 

Parylene conformal coating technology, originally developed by Union Carbide, 

has been in commercial use for more than 25 years. Parylene (poly(p-xylylene)) is an 

insulating thermoplastic polymer film that has a high degree of chemical inertness, 

absence of pinholes and perfect conformity to the topography of the surface applied. This 

class of polymer has been used for decades on a variety of applications – especially those 

involving the protection of electronic devices and circuitry.  
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Parylene coating process is best described as a vapor deposition polymerization 

(VDP) (Figure 2-15). The dimer obtained by the direct pyrolysis of p-xylene is very 

stable compound. This dimer can be evaporized into vapor phase at around 170 oC. Then 

the dimers are pyrolyzed into monomers at around 650 ~ 700 oC. The monomer molecule 

is thermally stable, but kinetically very reactive toward polymerization with other 

molecules of its kind. On condensation it polymerizes spontaneously to produce a coating 

of high molecular weight, linear poly(p-xylylene).  

H2C CH2

H2C CH2

H2C CH2 H2C CH2* *

n

Dimer (solid) Monomer Polymer
Pyrolysis Polymerization

Dimer (gas)
Evaporation

~ 170 oC Room temp.
~ 25 mTorr

650 ~ 700 oC

Figure 2-15. Parylene deposition process. 
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Figure 2-16. Molecular structures of parylenes. 
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Substitutes can be attached to the ring positions of the dimer, di-p-xylylene (DPX). 

Although a variety of substituted dimers are known in the literature, at present only, 

DPXN, DPXC, and DPXD are commercially available, which give rise to Parylene N, 

Parylene C, and Parylene D, respectively. Parylene A, Parylene AM, and Parylene F will 

be also commercially available in a near future. Different functional groups produce 

different material properties. Figure 2-16 shows the molecular structures of different 

parylenes. 

The physical processes of condensation and diffusion must be considered along 

with the p-xylylene polymerization chemistry for a proper understanding of what happens 

microscopically during vapor deposition polymerization. A gaseous monomer is 

transported to the location within the coating where it is to be consumed to produce 

polymer by an initial condensation, followed by diffusion. The monomer is consumed by 

initiation and propagation, in which existing polymer molecules are extended to a higher 

molecular weight. In steady-state VDP, both reactions proceed continuously inside 

polymeric coating, in the reaction zone just behind the growth interface. The 

concentration of monomer within the coating decreases approximately exponentially with 

distance from the growth interface. With this decrease in monomer concentration, the 

rates of initiation and propagation reactions also decrease. Under conditions prevailing 

during a typical deposition, the characteristic depth of the reaction zone is a few hundred 

nanometers, and the maximum concentration of monomer, ie., the concentration at the 

growth interface, is of the order of a few tenths percent by weight [26]. During the vapor 

deposition process, the polymer chain ends remain truly alive, ceasing to grow only when 

they are so far from the growth interface that fresh monomer can no longer reach them.  
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2.4.2 MATERIAL PROPERTIES OF PARYLENE 

The engineering properties of commercial parylenes are summarized in Table 2-3. 

As crystalline polymers, the parylenes retain useful physical integrity up to temperatures 

approaching their crystalline melting points. However, their glass transition temperature 

(Tg), the temperature over which the amorphous phase changes from a rigid condition to 

a more flexible, rubbery condition, are known to be 60 ~ 150 oC [27, 28].  

During formation, the motions of the parylene polymer chains in the vitreous 

medium are restricted. The properties of freshly deposited parylenes, therefore, generally 

differ from those that have been aged or annealed. Restricted polymer chain motion 

during VDP severely limits their ability to organize into crystallites, and consequently, 

freshly deposited parylenes are metastable. With the passage of time, and sooner if heated, 

they will reorganize into a thermodynamically more satisfactory configuration, increasing 

crystallinity. Certain physical properties of freshly deposited parylenes therefore can be 

expected to change upon aging or annealing. In general, an increase in crystallinity with 

aging or annealing results in a lowering of elongation to break and an increase in 

modulus and strength.  

The as-deposited stress of parylene C was found to be compressive. The stress is 

about -6 MPa [28, 29]. As it is heated, the stress becomes more compressive initially 

from the as-deposited value of -6 to -15 MPa. Above 100 oC the stress remains practically 

the same at -14 MPa. This is due to the flow above Tg. Upon cooling, the stress becomes 

more tensile and increases to about +21 MPa when the cooling rate is slow. If it is rapidly 

cooled, the polymer does not have enough time to flow and thus higher stress results.  
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Table 2-3. Properties of commercial parylenes [27]. 

Property Parylene N Parylene C Parylene D 

General    
  Density [g/cm3] 1.110 1.289 1.418 
  Refractive index 1.661 1.639 1.669 
Mechanical    
  Tensile modulus [GPa] 2.4 3.2 2.8 
  Tensile strength [MPa] 45 70 75 
  Yield strength [MPa] 42 55 60 
  Elongation to break [%] 30 200 10 
  Coefficient of friction, static/dynamic 0.25/0.25 0.29/0.29 0.35/0.31 
Thermal    
  Melting point [oC] 420 290 380 
  Glass transition point [oC] < 90 < 90 < 90 
  Coefficient of expansion at 25 oC [K-1]  6.9 x 10-5 3.5 x 10-5  
  Heat capacity at 25 oC [J/(g·K)] 1.3 1.0  
  Thermal conductivity at 25 oC [W/(m·K)] 0.12 0.082  
Electrical    
  Dielectric constant at 60 Hz 2.65 3.15 2.84 
                                 at 1 kHz 2.65 3.10 2.82 
                                 at 1 MHz 2.65 2.95 2.80 
  Dissipation factor at 60 Hz 0.0002 0.020 0.004 
                               at 1kHz 0.0002 0.019 0.003 
                               at 1MHz 0.0006 0.013 0.002 
  Dielectric strength at 25 µm [MV/m] 235 – 275 185 - 220 215 
  Volume resistivity at 23 oC, 50% RH [Ω·cm] 1.4 x 1017 8.8 x 1016 2 x 1016 
  Surface resistivity at 23 oC, 50% RH [Ω·cm] 1 x 1013 1 x 1014 5 x 1016 
Barrier    
  Water absorption [%] < 0.1 < 0.1 < 0.1 
  Water vapor transmission at 37 oC    
   [ng/(Pa·s·m)] 0.0012 0.0004 0.0002 

  Gas permeability at 25 oC [amol/(Pa·s·m)] 
                               N2 
                               O2 
                              CO2 

 
15.4 
78.4 
429 

 
2.0 
14.4 
15.4 

 
9.0 
64.0 
26.0 
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Figure 2-17 shows the life-time of parylene N, C, and D as a function of 

temperature both in air and in vacuum. The failure criterion means a 50% loss in tensile 

strength. In the degradation of many polymers, tensile strength is maintained until chain 

scission has reduced molecular weight to the point at which entanglement is no longer a 

factor in determining physical properties. Beyond that point it drops abruptly. The most 

important mode of degradation for parylenes is oxidative chain scission. Oxidative 

degradation limits the use of parylenes at elevated temperatures in many common 

applications. This data suggest that parylene C performs in air without significant loss of 

physical properties for 10 yr at the temperature below 100 oC. For applications where 

oxygen can be excluded, Figure 2-17(b) shows that 10 year use projections exceed 200 

oC.  

  
(a) (b) 

Figure 2-17 Life time of parylene N, C, and D as a function of temperature, (a) in air, 
(b) in vacuum. 
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The bulk electrical properties of the parylenes make them excellent candidates for 

use in electronic construction. The dielectric constants and dielectric losses are low and 

unaffected by absorption of atmostpheric water. The parylenes do not absorb visible light, 

and absorb only at the shorter wavelength, high energy end of the ultraviolet range. Films 

and coatings are colorless in the visible, becoming opaque to sufficiently short 

wavelength UV light. The surface energies of parylene were approximately 45 mJ/m2.  

Plasma treatments using reactive gases (N2, O2) as well as inert gases (Ar, He) generate a 

carbonyl group on the surface and as a result, lower the contact angle for water.  

The bulk barrier properties of parylenes are among the best of organic polymeric 

coatings. One of the most important parameter to decide solvent resistance is crystallinity. 

Because the crystalline domains are much more resistant to permeation than the 

amorphous phase, they retain their reinforcing structural role even in the presence of 

permeants in the amorphous phase. When a parylene film is exposed to a solvent, a slight 

swelling is observed as the solvent invades the amorphous phase. Table 2-4 shows the 

amount of swelling of parylene N, C, and D in various solvents. 

Table 2-4. Swelling on immersion in various solvents for the commercial parylenes 
at room temperature [27]. 

Volume change, % 
Solvent 

Parylene N Parylene C Parylene D 

Dichlorobenzene 0.2 3.0 1.8 
Mixed xylenes 1.4 2.3 1.1 

Monochlorobenzene 1.1 1.5 1.5 
Trichloroethylene 0.5 0.8 0.8 

Acetone 0.3 0.9 0.4 
Pyridine 0.2 0.5 0.5 

Isopropyl alcohol 0.3 0.1 0.1 
Deionized water 0.0 0.0 0.0 
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2.4.3 APPLICATIONS OF PARYLENE IN MEMS 

Traditionally parylene has been used as a coating material for many products such 

as electronics because of its conformal coating and low gas permeability. Also there was 

an effort to investigate parylene as a dielectric material for an interlayer connection [30, 

31] . Yeh and Callahan pioneered patterning parylene using oxygen plasma etching. 

Recently, parylene has been drawing lots of attentions in MEMS because it is 

conformally deposited at room temperature. Parylene can be used as a structural material 

in MEMS as well as coating material. Particularly, it has been used to develop 

microfluidic devices that require thin membranes as a crucial part. Table 2-5 lists some of 

the representative devices made of parylene and the related techniques.   

Y. C. Tai group at Caltech has developed various parylene microfluidic devices 

such as check valves [32, 33], nozzles [34],  heat exchanger [35], a valved-skin for a 

micro-butterfly [36, 37], and neuro-cages [38]. These combine silicon bulk 

micromachining and parylene deposition/patterning to fabricate these devices. For free-

standing structures, they also developed a method using photoresist as a sacrificial 

material. Positive photoresist is patterned on the parylene layer that has been deposited 

onto a substrate, and then another layer of parylene is deposited onto the photoresist 

pattern. The sacrificial photoresist can be removed in acetone leaving free-standing 

parylene structures.   

Other groups also have been utilizing parylene in their MEMS devices. C. P. 

Wong group at Georgia Tech investigated parylene for MEMS device encapsulation [39].  

E. S. Kim group at University of Hawaii applied a parylene membrane to acoustic 

devices. They reported a parylene-diaphragm piezoelectric acoustic transducers [40]. Our 
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group (Hesketh group) at Georgia Tech also has been working with parylene for last 

several years. A parylene/metal/parylene corrugated membrane was developed for 

electrochemical actuation [41] and ultra low pressure sensing [42]. A rapid and low-cost 

parylene micromolding technique was developed and applied to several applications such 

as a micro GC column [43, 44], microfluidic channels [45, 46], and wafer bonding [47, 

48].  

Table 2-5. Parylene in MEMS. 

Authors Application Related Technique 

Wang & Tai, 1999 
Cal. Tech. Micro check valve Sacrificial photoresist 

Grosjean & Tai, 1999 
Cal. Tech. Thermopneumatic valve Silicone on parylene membrane 

heater 
Wang & Tai, 1999 

Cal. Tech. Nozzle for electrospray Overhanging parylene 
microcapillary 

Wu & Tai, 1999 
Cal. Tech. Micro heat exchanger Thermal insulation by parylene 

coating 
Pornsin-Sirirak & Tai, 

2000 Cal. Tech. Flapping wing Ti-alloy wing frame + parylene 
wing membrane 

Wu & Wong, 2000 
Georgia Tech. 

MEMS device 
encapsulation Material property investigation 

Han & Kim, 2000 
Univ. Hawaii 

Piezoelectric acoustic 
transducer 

Parylene diaphragm with 
electrode and piezoelectric film 

Stanczyk & Hesketh, 2000 
Univ. Illinois  Electrochemical actuator Corrugated parylene/Pt/parylene 

membrane 
Noh & Hesketh, 2002 

Georgia Tech. Miniature GC column Parylene/parylene  
thermal bonding  

He & Tai, 2003 
Cal. Tech. Parylene neuro-cages Parylene anchors 

Xie & Tai, 2003 
Cal. Tech. Mass flow controller Electrostatic microvalve + 

thermal flow sensor 
Noh & Hesketh, 2003 

Georgia Tech. 
Diaphragm pressure 

sensor 
Parylene corrugated diaphragm 

with SU-8 rim 
Noh & Hesketh, 2003 

Georgia Tech. 
Electrophoretic/dielectro-

phoretic microchannel Parylene micromolding 

Noh & Hesketh, 2004 
Georgia Tech. 

Wafer bonding, MEMS 
packaging 

Parylene bonding using 
microwave heating 

 

52 



 

 

C H A P T E R  3  

THEORETICAL COLUMN PERFORMANCE 

Column performance is generally quantified by two terms, retention time and 

column efficiency (band broadening). These two terms decide the separation capability 

(resolution) of a GC column. Therefore, understanding the effects of parameters on the 

retention time and column efficiency is very important and must be done before 

designing a GC column. This involves the fluid mechanics of a gas flow in a 

microchannel and diffusion theory. In this chapter, the derivation of the formula for 

retention time and column efficiency for a rectangular GC column will be discussed, 

starting with the investigation of gas flow in a microchannel. Then, the effect of diverse 

parameters will be examined using the derived formula.  

3.1 GAS FLOW IN MICROCHANNELS 

In this section, the exact solutions to the average flow velocity and the flow 

distribution of a gas flow in a rectangular microchannel are sought. The difference 

between the exact solution and the simplified solutions is discussed. Compressibility, slip 

flow, and curvature effect are also discussed for a gas flow in a GC column. 
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3.1.1 POISEULLE FLOW 

The motion for an incompressible Newtonian fluid can be described by ‘Navier-

Stokes equations’ when the viscous effect is considered. For Cartesian coordinates, the 

equations are expressed as below for x, y, and z directions, respectively.  
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Equation 3-1 

where ρ is density, P is pressure, µ is dynamic viscosity, gx, gy, and  gz, are the 

acceleration of gravity, and u, v, and w are the velocity components in the x, y, and z 

directions respectively. 

The left sides of the equations represent the acceleration terms and the right sides 

represent the force terms. These equations provide a complete mathematical description 

of the flow of incompressible Newtonian fluids when combined with the conservation of 

mass equation shown below [49]. 
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Equation 3-2 

It is not easy in many cases to obtain the exact solution of the equations. A 

principal difficulty in solving ‘Navier-Stokes equations’ arises from the nonlinearity of 

the convective acceleration terms such as xuu ∂∂⋅ / . For most practical flow problems, 
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fluid particles do have accelerated motion as they move in the flow field. However, there 

are a few cases for which the convective acceleration vanishes because of the nature of 

the geometry of the flow system. In these cases, exact solutions are possible. The 

geometries that are relevant to this study are parallel plate, circular tube, and rectangular 

tube (Figure 3-1).  

   

(a) (b) (c) 

2h x 

y 

z 

 
2b

2a 

x z 

y ro

Figure 3-1. Three different geometries that are relevant to GC column, (a) parallel 
plate system, (b) circular column, (c) rectangular column.    

 

Solving the Navier-Stokes equations for the fixed parallel plates and circular tube 

is relatively simple. The volumetric flow rate per unit length of width (Q), average flow 

velocity ( u ), flow velocity distribution u of an incompressible, laminar, fully developed 

flow for the two case are shown in Table 3-1. 

Table 3-1. Exact solutions of Navier-Stokes equations for fixed parallel plates and 
for circular tube. 
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where µ is dynamic viscosity, 2h is the gap between the plates, ro is the radius, L is the 

length of the plates, and Pi, Po  are the inlet, outlet pressure.  

The exact solutions for a rectangular tube are more complex. If we assume an 

incompressible, laminar, fully developed flow through a rectangular tube as shown in 

Figure 3-1 (c), the Navier-Stokes equations become 
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Equation 3-3 

By using nondimensional variables and the ‘separation of variable’ method, the 

exact solutions can be obtained as below [50, 51].  
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Equation 3-5 
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Equation 3-6 

In order to quantify the column efficiency, the above equations need to be 

combined with the diffusion equation. If we use the above exact solutions in the column 

efficiency calculation without simplification, the computation will be extremely difficult. 

Therefore, other simplified approaches have been used in GC theory. These include:  

- 
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(1) Use the solution for a circular tube with the hydraulic diameter of the rectangular 

tube. The hydraulic diameter is defined as 
p

Dh =
A4 , where A and p are the area 

and the perimeter of the section, respectively. 

(2) Use the solution for fixed parallel plates. This will be more reasonable for high 

aspect ratio rectangular columns (either a>>b or a<<b). 

(3) Another simplified solution that satisfies the boundary condition of the problem 

was suggested in the literature [22]. The solutions are : 
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It is worth comparing these solutions before advancing further to investigate 

theoretical column performance. Figure 3-2 shows the average velocity as a function of 

the aspect ratio (a/b). At low aspect ratio (a/b<3), the solution using hydraulic diameter 

was closer to the exact solution than other solution. Conversely, the parallel plate solution 

and Spangler solution were closer to the exact solution at a higher aspect ratio (a/b>5). 

Figure 3-3 shows the velocity distributions in a rectangular column (a/b = 4) by different 
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solutions. Figure 3-3 is the velocity distribution along the y-axis and z-axis. The parallel 

plate solution is very close to the exact solution along z-axis. Spangler solution is close to 

the exact solution along both axes; however, the hydraulic diameter solution shows a 

fairly big deviation from the exact solution along both axes.  

 

Figure 3-2. Comparison of different solutions for a gas flow in a rectangular channel 
(a = 1 - 500 µm, b = 50 µm, L = 1 m, T = 20 oC,  ∆P = 10 psi, helium flow).  

 

(a) (b) 

Figure 3-3. Flow velocity distribution in a rectangular channel (a = 200 µm, b = 50 
µm) by different solutions; (a) along y axis, (b) along z axis. 
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3.1.2 COMPRESSIBILITY EFFECT 

In the previous section, an incompressible flow in a rectangular tube was 

investigated. However, can we assume the gas flow in microchannel as an incompressible 

flow? Let’s express the flow density as ρρρ ∆+= o , where ρo is a reference density; and 

∆ρ is the local departure from this reference density. If ∆ρ/ρo << 1, the term ρ can be 

assumed to be ρo and the flow can be considered to be incompressible.  

The conventional criterion to determine whether a flow is compressible or 

incompressible is using Mach number (Ma), which is defined as flow velocity over the 

velocity of sound (a). Generally as the velocity of the fluid element increases, the density 

ρ of the fluid will change according to the following equation in case of isothermal or 

adiabatic gas flow. 
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Equation 3-10 

where γ is cp/cv (=1.4 for air at standard conditions). If Ma is less than 0.3, the value ρ 

deviates from ρo by less than 5%, and for all practical purposes the flow can be treated as 

incompressible. On the other hand, if Ma > 0.3, the density variation becomes more 

pronounced and should be treated as compressible. Therefore the Mach number 0.3 is a 

convenient dividing line [52].  

However, the well-known Ma < 0.3 criterion is only a necessary not a sufficient 

condition to consider the flow as incompressible. There are exceptional situations where 

the Mach number can be exceedingly small while the flow is compressible. One of the 

exceptional situations is a strong wall heating or cooling where the density is changed 
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sufficiently even at low flow velocity. Gas flow in a long and narrow microchannel is 

another example. In this case, viscous effect which was neglected in the derivation of the 

above density equation can become dominant and the pressure may strongly change 

along the channel. Thus as the size of channel decreases, it is necessary to consider the 

pressure term versus the viscous term. Wong et al. [53] performed a dimensional analysis 

considering the viscous effect and they derived the following expression for density 

variation:  
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Equation 3-11 

Therefore, when the viscous effect becomes dominant as in gas flow in a long and 

narrow capillary tube, it is necessary to consider a modified criterion, (L/do)(Ma2/Re) <<1, 

in order to determine whether the fluid can be treated as incompressible. 

Table 3-2 compares the density variations according to the conventional and new 

criteria for microchannels having different dimensions. The fluid properties used in this 

calculation were those of Air at room temperature; the density (ρ) is 1.184 [kg/m3] and 

viscosity (µ) is 1.85X10-5 [Ns/m2]. In all cases Mach number was less than 0.3. In other 

word, all cases can be considered as incompressible by conventional criteria. However, in 

most of the cases, the actual density variation was more than 5% by new criteria. 

Therefore, the gas flow in a long and narrow microchannel cannot be treated as 

incompressible. 
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Table 3-2. Density variation by conventional and new criteria. 

Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Column diameter, d [µm] 100 100 50 50 10 10 

Column length, L [m] 1 1 1 1 1 1 

Fluid velocity, u [m/s] 1 5 1 5 0.1 0.5 

Reynolds number, ρud/µ 6.4 32 3.2 16 0.064 0.32 

Mach number, u/c 0.0029 0.0147 0.0029 0.0147 0.0003 0.0015 

Density variation [%] by 
     - Conventional criteria 

     - New Criteria 

 
< 0.5 
1.35 

 
< 0.5 
6.76 

 
< 0.5 
5.41 

 
< 0.5 
27.03 

 
< 0.5 
13.52 

 
< 0.5 
67.58 

 

Assuming a fully developed laminar flow in a long capillary tube, if only 

considering the global density variation but not the local density variation within the 

infinitely small section, one can integrate the governing momentum equation to obtain 

the average flow rate as a function of pressure drop. Hence the relationship between the 

mass flow rate and the pressure drop across the capillary tube can easily be obtained. As 

a result, the relationships between the volumetric flow rate and the pressure drop for a 

circular and for a rectangular column can be expressed as follows.  
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Equation 3-13 

Clearly these expressions imply a nonlinear relationship between the volumetric 

flow rate and pressure drop across the capillary tube. If the pressure drop is small when 
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compared with the outlet pressure, the expression can be simplified to show a linear 

relationship as in the analytical incompressible flow model. The following figures show 

the deviation between compressible and incompressible flow for circular and rectangular 

columns. 

 
(a)                                      (b) 

Figure 3-4. Comparison of compressible and incompressible flow, (a) circular 
column (diameter = 100 µm, length = 1 m), (b) a rectangular column (width = 80 µm, 

height = 320 µm, length = 1 m).               

3.1.3 SLIP FLOW EFFECT 

As the column size decreases into the micron scale, the effect of slip flow at the 

boundary needs to be considered. From the kinetic theory of gases, if the characteristic 

length of the physical domain (d) is small and compatible with the mean free path of the 

molecules (λ), the continuum hypothesis and no slip boundary condition become invalid. 

At the standard atmospheric conditions, the mean free path of air is about 0.065 µm. The 

deviation of the state of the gas from continuum is measured by the Knudsen number 

(Kn), which is defined as Kn = λ/d.  As the value of Knudsen number increases, non-
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continuum effects become more important. A typical way to determine the continuum 

versus rarefied flow is as follows [54].   

For Kn<0.001,  continuum flow regime 

For 0.001<Kn<0.1,  slip flow regime  

For 0.1<Kn<10,  transition regime  

For 10<Kn,   free molecular flow regime 

If gas compressibility and slip flow effects are considered, the relationship 

between pressure drop and flow rate for a rectangular tube is modified as [19]; 
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Equation 3-14 

If the column diameter is reduced below 65 µm, the gas flow will be in the slip 

flow regime. However, the GC column dimension in this study does not go below 10 µm 

and consequently we can consider that the flow is in the continuum flow regime. 

Therefore Equation 3-13 will be used in this study for the relationship between flow rate 

and pressure drop for the rectangular GC column.  

3.1.4 CURVATURE EFFECT 

So far, the gas flow in a rectangular channel has been discussed with an 

assumption that the channel is straight. This is a reasonable assumption for the 

conventional GC columns which have a curvature radius (≥ 5cm) much bigger than 

column diameter (≤ 0.5 mm). However, micromachined silicon/glass columns have much 
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smaller curvature radius because they generally have a planar spiral design. The smallest 

curvature radius may be less than several hundred micrometers. In this case, the 

assumption of a straight channel is not true any more. How will this curvature affect the 

gas flow and eventually GC column performance? Obviously, the analytes migrating at 

the outer wall will be lagging behind the analyte migrating at the inner wall (Figure 3-5). 

Also, the centrifugal force by the curvature will result in lateral diffusion in the flow. 

This may lead to a broader band spreading. Therefore the curvature effect must be 

considered when miniature column is designed.  

 

R 

d 

Figure 3-5. Curvature effect on analyte migration. 
 

Then how can we quantify this curvature effect and estimate the proper curvature 

radius to prevent considerable band broadening? The curvature effect can be described 

using Dean number, which is the ratio of centrifugal force to viscous force (Equation 

3-15). The higher the Dean number, the more influence the curvature effect will be.  The 

curvature effect becomes more significant as curvature radius (R) decreases or flow rate 

increases or column diameter (d) increases. According to Sandia’s simulation, the effect 
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of curvature becomes negligible when the Dean number as small as 0.2 {Wong, 1999 

#58}.  

R
d

R
dudDe

2
Re

2
⋅=⋅=

µ
ρ

 

Equation 3-15 

3.2 RETENTION TIME 

Figure 3-6 is a typical chromatogram for a two-component mixture. The time it 

takes after a sample injection for the analyte peak to reach the detector is called the 

retention time and is given the symbol tR. The small peak on the left is for a species that 

is not retained by the column. The time tM is the time for the mobile phase and the 

unretained species to reach the detector and is called the dead time. The rate of migration 

of the unretained species is the same as the average velocity of the mobile phase. W is the 

width of the peak and W1/2 is the width of the peak at half its maximum height. 

 

tM 

tR 

Time 

W 

W1/2 

Detector 
signal 

Figure 3-6. A typical chromatogram for two component mixture. 
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When the length of the column is L, the average linear rate of solute migration, v  

and the average linear rate of movement, u of the molecules of the mobile phase are: 

Rt
Lv =  

Equation 3-16 

Mt
Lu =  

Equation 3-17 

In order to relate the retention time of a solute to its distribution constant, we 

express its migration rate as a fraction of the velocity of the mobile phase. Because solute 

movement can only occur in the mobile phase, the average rate at which a solute zone 

migrates down the column depends on the fraction of time it spends in that phase. 

v u fraction of time solute spends in mobile phase= ×  

Average mole of solute in mobile phasev u
Total mole of solute

= ×  

SSMM

MM

VCVC
VC

uv
⋅+⋅

⋅
×=  

MS VVK
uv

/1
1
⋅+

×=  

Equation 3-18 

The retention factor, an important parameter that is widely used to describe the 

migration rates of solutes on columns is defined as  

M

S

V
V

Kk ⋅=  

Equation 3-19 
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Substitution of Equation 3-19 into Equation 3-18 yields: 

k
uv

+
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1
1  

Equation 3-20 

Substitution of Equation 3-16 and Equation 3-17 into Equation 3-20: 
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L

t
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MR +
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1
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Equation 3-21 

This equation rearranges to:  

M
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t
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Equation 3-22 

u
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Equation 3-23 

The retention factor and the average flow velocity for a circular column can be 

expressed as follows. 
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For a rectangular column these formula should be modified as follows. 
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The below graphs show the retention time of a solute (K = 1250) as a function of 

column diameter for different column lengths and pressure drops. When column diameter 

is 100 µm and pressure drop is 10 psi, the retention times are 5 sec for 1 m long column, 

50 sec for 3 m, 500 sec for 10 m, and 5000 sec for 30 m. When column diameter is 200 

µm and column length is 30 m, the retention times are 350 sec at 20 psi, 500 sec at 15 psi, 

700 sec at 10 psi, and 1500 sec at 5 psi.   

 
(a) (b) 

Figure 3-7. Retention time as a function of column diameter (K = 1250, w = 100 nm, 
T = 20 oC, helium gas), (a) ∆P fixed (10 psi), (b) L fixed (30 m).  

3.3 COLUMN EFFICIENCY 

3.3.1 PLATE HEIGHT AND PLATE NUMBER  

If a sample in the form of a small band is injected into a circular column 

uniformly coated with a stationary phase, these injected molecules will be carried along 
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at an average speed, and will diffuse about the center of gravity of the band. 

Consequently, the sample band is broadened while it is traveling along the column. This 

is called ‘band broadening’ and is a measure of the efficiency of GC column [7, 55].  

Two related terms are widely used as quantitative measures of chromatographic 

column efficiency: the height equivalent to theoretical plate (HETP) and the number of 

theoretical plates. These are often called plate height H and plate number N. The two are 

related by the equation 

H
LN =  

Equation 3-24 

where L is the length of the column. The efficiency of chromatographic columns 

increases as the plate number becomes greater and as the plate height becomes smaller. 

The origin of the terms ‘plate height’ and ‘plate number’ is the theoretical study of 

Martin and Synge [56] in which they treated a chromatographic column as if it were 

similar to distillation column that is made up of numerous discrete but continuous layers 

called theoretical plates. This ‘plate theory’ successfully accounts for the Gaussian shape 

of chromatographic peaks and their rate of movement down a column. For example, plate 

height is defined as the variance per unit length and the standard deviation can be 

expressed by the retention time, column length and column width. As a result, plate 

height and plate number can be expressed as follows for Gaussian peaks. 

2

22

16 Rt
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L
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Equation 3-25 
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3.3.2 GOLAY EQUATION AND ITS MODIFICATION 

Although plate theory is a convenient way to quantify column efficiency, it fails 

to account for band broadening in a mechanistic way. The ‘rate theory’ has been 

proposed for this purpose. This theory describes the diffusion of a pulse of sample 

introduced into the carrier gas at the entrance of the column. Two diffusion mechanisms 

that cause band broadening are static and dynamic diffusion. Static diffusion takes place 

whether the gas is moving or not, and it is a function of elapsed time. Dynamic diffusion 

is due to the fluctuations in occupancy of the various portions of the column cross-section 

and of the fixed phase. The diffusion of a sample band is governed by the vectorial 

differential equation: 

fgradu
t
f

dt
dffDM ⋅+

∂
∂

==∇⋅
ρ2  

Equation 3-27 

where DM is the diffusion coefficient of the sample in the mobile phase, carrier gas and f 

is the concentration of the sample and uρ is the velocity vector of the carrier gas.  

Golay performed a ‘moment analysis’ with this equation to arrive at a simplified 

expression of the plate height for both circular and rectangular columns [57]. Let’s first 

consider a circular column (radius = ro) with uniform stationary phase coating thickness = 
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w. If we assume that the gas flow is Poiseulle flow in a circular column, Equation 3-27 

can be expressed as below. 
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Equation 3-28 

If we also assume that the diffusion within the stationary phase is instantaneous, 

the boundary condition at the tube wall is 
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Equation 3-29 

where k is retention factor, the ratio of the sample held in the retentive layer to the sample 

in vapour form when there is equilibrium between these two phases. Because of the 

retentive property of the stationary phase, the average velocity of the sample will be the 

fraction 1/(1+k) of the average velocity u of the carrier gas, and it will be expedient to 

change co-ordinates as: 

t
k

uxx
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11  

Equation 3-30 

Now let the new variables f , ∆f  be defined by ∫=
or

o

frdr
r

f
02

2  and fff ∆+=  

where ∆f  obeys the relation, . If the above diffusion equation is rearranged 

by new variables, we get 

∫ =∆
or frdr

0
0
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Equation 3-31 

The chromatographic peaks can be characterized by their statistical moments. For 

example, the zeroth moment is the area under the peak, the first moment is the peak’s 

center of mass related to the retention time, the second moment is a measure of peak 

width, and the higher central moments are further measures of peak shape. Golay’s 

incremental second moment (du) of a normalized gas packet was 

∫∫∫
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Equation 3-32 

Combining Equation 3-31 and Equation 3-32,  
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Equation 3-33 

The plate height is related to this incremental second moment by dividing it by the 

length of the column. Therefore the quantity within the parenthesis of the above equation, 

which has the dimension of a length, can be termed the plate height (H) of a circular 

column.  
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Equation 3-34 

If the diffusion within the stationary phase is not instantaneous, the boundary 

condition should be changed considering the dynamic diffusion of solute in the stationary 
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phase. Consequently, we obtain more complete expressions for the plate height of 

circular columns. This is called ‘Golay equation.’ 
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Equation 3-35 

where u  is the average carrier gas velocity, ro is tube radius, DM is diffusion coefficient 

of sample in gas phase, DS is diffusion coefficient of sample in stationary phase, K is 

distribution constant, k is retention factor, and F is the effective to actual surface area of 

stationary phase. 

Now let’s consider a rectangular column. Golay derived the incremental second 

moment of a gas packet for a rectangular column in the same way as for a circular 

column [57]. However, this was only for high aspect ratio rectangular columns. In other 

words, he used the equation of a simple parallel plate flow in his derivation with an 

assumption that the width of the column is much bigger than height, 2zo. In that case, the 

governing diffusion equation and the boundary condition becomes 
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where  u  is average carrier gas velocity, zo is half inside height of rectangular column, D 

is diffusion coefficient of sample in gas phase.  
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Rearranging the above equation with new variables as discussed in the case of 

circular column, 
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Equation 3-38 

The incremental second moment can be obtained from this equation as was done 

for the round tube. 
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 Therefore, the plate height for the rectangular column can be expressed as 
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Equation 3-40 

If the diffusion within the stationary phase is not instantaneous, boundary 

condition should be changed considering the dynamic diffusion of solute in the stationary 

phase. Consequently, we obtain more complete expressions for the plate height of 

rectangular columns. 
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Equation 3-41 

where Dl is diffusion coefficient of sample in stationary phase, c is partition coefficient, k 

is retention factor, F is effective to actual surface area of stationary phase. 
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The above derivation was for the flat rectangular column where the column height 

is smaller than column width. The micromachined silicon/glass columns fabricated by 

wet etching technique have this type of cross section. But silicon/glass columns 

fabricated by deep RIE etching generally have a narrow rectangular cross section as 

shown below.  

 
 
 

x 
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d 

Figure 3-8. Schematic of a narrow rectangular column. 
 

For this narrow rectangular column that has a width of d and a height of h, the 

Golay equation can be written as below.  
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Equation 3-42 

Later on, Giddings modified this equation considering varying pressure along the 

column as below [58, 59].  
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analyte in carrier gas, Ds is diffusion coefficient of analyte in stationary layer, F is 

effective to actual surface area of stationary layer, k is Retention factor, L is column 

length, Pi is inlet pressure, Po is outlet pressure, uo is gas velocity at outlet, w is stationary 

phase  thickness.  

3.3.3 SPANGLER EQUATION 

Golay’s fomula for the plate height of a rectangular column is valid for the 

rectangular columns with high aspect ratio cross section because he used the simplified 

flow equation for a fixed plate system in his derivation. Therefore this equation cannot be 

used for low aspect ration rectangular columns. Spangler generated a new formula for the 

plate height of a rectangular column that can be applied to any aspect ratio column. He 

performed the same moment analysis as Golay did but employed different flow equation. 

For a rectangular column with a width of 2b and a height of 2d, the velocity equation and 

average velocity he used in his derivation are  
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Equation 3-45 
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where Ac is the cross-sectional area. The HETP obtained by moment analysis is: 
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Equation 3-46 

The Golay equation and the Spangler equation show common terms arising from 

longitudinal diffusion and resistance to mass transfer in the stationary phase. The 

difference lies in the resistance to mass transfer in the gas phase. The Golay equation for 

rectangular columns accurately responses for high aspect ratio columns but not for low 

aspect ratio columns. However, the Spangler equation does not have an aspect ratio 

limitation in its application, even though the velocity equation is not exact. Spangler 

claimed that his theory successfully predicts the performance of a fast GC, in the form of 

both short microbore and micromachined columns. 

3.3.4 MAXIMUM COLUMN EFFICIENCY 

The Golay equation describes how the plate height can be expressed as a function 

of the average velocity of a carrier gas and it can be simplified as below.  
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Equation 3-47 

This is called ‘van Deemter equation’. The first term in this equation represents 

static diffusion that is a function of elapsed time. The second and the third terms 

represent dynamic diffusion in the mobile phase and stationary phase respectively. In 

both the mobile and stationary phases, resistance (CM and CS) to dynamic diffusion tends 

to reduce chromatographic efficiency in direct proportion to average carrier velocity. The 

solutes dissolved in the bulk of either phase must depend on diffusion rate to reach the 

interface at which their equilibrium concentrations in both phases can be continuously 

reestablished. At a low average carrier velocity, the time it takes solute molecules to 

diffuse to the surface is relatively short in comparison to the rate at which mobile phase is 

being swept down the column. As a result, resistance to mass transport at low carrier 

velocity poses very little impediment to efficient re-equilibration. Conversely, at higher 

carrier velocities the time it takes molecules to diffuse to the interface becomes longer 

and so the efficiency of re-equilibration is impeded.  

Figure 3-9 shows the total effect of carrier gas velocity on plate height (H). As the 

plate height decreases, the band broadening decreases and column efficiency increases. 

Therefore the maximum column efficiency can be obtained at the minimum plate height 

(Hmin). The carrier gas velocity where Hmin is obtained is called optimum carrier velocity, 

uopt. These values can be obtained by differentiating Equation 3-47 with respect to 

average carrier velocity.  
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Figure 3-9 The total effect of carrier gas velocity on plate height (H) and plate 
number (N). 

 

Here, Hmin, uopt can be calculated directly from either known or estimated values 

of B and C. Table 3-3 shows analytical expressions for the coefficients in the modified 

Golay equations for both circular and rectangular columns. 

Table 3-3. Analytical expressions for the coefficients in the modified Golay equation. 
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Hmin value obtained in the above calculation can be readily compared to the values 

measured from chromatogram. From Equation 3-26,  
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Equation 3-50 

Hmin and uopt are very useful concepts, but conditions that provide for maximum 

chromatographic efficiency almost always result in analysis times that are typically 

longer than necessary. Therefore, a new concept for optimum chromatographic efficiency 

needs to be introduced. It is calculating the number of theoretical plates (N) per second 

rather than per meter or total theoretical plates. In this case, the optimum average velocity 

(uopt) no longer yields the best result. Generally the faster than uopt delivers a higher 

number of theoretical plates per second. The best result is achieved at a velocity referred 

to as the ‘optimum practical gas velocity (OPGV)’. The OPGV is found at a velocity for 

which N/tR has been maximized. 

3.4 RESOLUTION 

Separation of a two-component mixture can be improved by altering the relative 

migration rate of the components and/or reducing zone broadening as shown in Figure 

3-10. Zone broadening is decreased by those kinetic variables that decrease the plate 

height of a column. Migration rates are varied by changing those variables that affect 
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relative retention of the species. The selectivity factor α of a column for the two species 

A and B is defined as  

A

B

K
K

=α  

Equation 3-51 

where KB is the distribution constant for the more strongly retained species B and KA is 

the distribution constant for the less strongly held, or more rapidly eluted, species A. By 

this definition α is always greater than unity. Substitution of Equation 3-19 and Equation 

3-22 into Equation 3-51 provides a relationship between the selectivity factor and 

retention factors or retention times.  
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Detector 
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(b) 
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Time 

Figure 3-10. Two methods of improving separation of a two-component mixture; (a) 
original chromatogram with overlapping peaks, (b) improvement by an increase in 

band separation, (c) improvement by a decrease in band spread. 
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The resolution Rs of a column provides a quantitative measure of its ability to 

separate two analytes. Column resolution is defined as 
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Equation 3-53 

where ∆Z is the distance between the centers of two peaks, WA and WB are the peak width 

of species A and B at the bottom, and (tR)A and (tR)B are the retention times of species A 

and B. Figure 3-11 show the separations at three different resolutions (Rs = 0.75, 1.0, and 

1.5). 

 

 

Figure 3-11. Separations at three different resolutions. 
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It is useful to develop a mathematical relationship between the resolution of a 

column and the retention factors, the selectivity factor, and the number of plates. If we 

assume 

WWW BA ≈=  

Equation 3-53 takes the form 
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Equation 3-54 

By substituting Equation 3-22 and Equation 3-52,  
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Often it is desirable to calculate the number of theoretical plates required to 

achieve a desired resolution. An expression for this quantity is obtained by rearranging 

Equation 3-55 to give 

22
2 1

1
16 







 +








−
=

B

B
s k

kRN
α
α  

Equation 3-56 

3.5 EFFECTS OF PARAMETERS 

There are many variables responsible for the chromatographic result. These can 

be classified into ‘design parameters’ and ‘operational parameters’. Operational 
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parameters are under the control of the operator up to the time of sample injection but 

design parameters are no longer under operator control because they precede sample 

injection. The detail contents of both parameter groups can be listed in Table 3-4 [7]. 

Table 3-5 and Table 3-6 are diagrams that explain the effect of each parameter on 

retention time and column efficiency for a circular and a rectangular column, respectively. 

Many parameters are inter-related to each other resulting in the difficulties in 

understanding the effect of each parameter on column performance. For example, a 

change in column temperature results in changes in carrier gas viscosity, retention factor, 

and diffusion coefficients. The effect of each parameter on column efficiency is 

visualized in the following section by fixing all parameters except one interested 

parameter for a circular column. 

 

Table 3-4. Parameters for column performance. 

Design Parameters Operational Parameters 

Column Parameters 
   - Length 
   - Diameter (circular column)     
   - Width and height (rectangular column) 
   - Stationary phase type 
   - Stationary phase thickness 
Non-column parameters 
   - Choice of carrier gas 
   - Choice of injection and detection modes 
   - Design features of the injector and the    
      detector           

 
- Average velocity of the carrier gas 
- Column temperature: isothermal or     
   temperature programming 
- Injection mode: split ratio (split injector),
   purge activation time (splitless injector) 
- Choice of sample solvent 
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Table 3-5. Effects of parameters on column performance in a circular column. 
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Table 3-6. Effects of parameters on column performance in a rectangular column. 
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3.5.1 DESIGN PARAMETERS 

3.5.1.1 COLUMN LENGTH 

Obviously, column length is a decisive parameter of plate number (N = L/H). In 

fact, it also affects plate height via flow velocity, although it is not included in Golay 

equation. Figure 3-12 shows the effect of column length on the number of plate height. 

When column diameter is fixed, the plate number increases as column length increases 

but uopt does not change. If pressure is fixed (∆P = 20 psi), the column diameter required 

for the maximum plate number increases as the column length increase. In this section, 

the parameters are fixed at the following values unless the value is mentioned (L = 30 m, 

d = 300 µm, DM = 10-5 m2/s, DS = 10-5 m2/s, K = 1250, T = 20oC). 

 

(a) (b) 

Figure 3-12. Effect of column length; (a) d = 300 µm, (b) ∆P = 20 psi.  
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3.5.1.2 COLUMN DIAMETER IN A CIRCULAR COLUMN 

Column diameter is another important parameter. Figure 3-13(a) shows that Hmin 

decreases and uopt increases as column diameter decreases (∆P = 0 ~ 40 psi). Therefore, it 

is true that smaller diameter columns have better efficiency (smaller Hmin). However, the 

absolute volume of stationary phase found in smaller ID columns will be considerably 

less. As a result, sample loading capacity will typically suffer and this may reduce 

sensitivity unless more concentrated samples can be used. Figure 3-13(b) shows that 

there is an optimum diameter that gives the best efficiency when pressure drop is fixed. 

As the pressure drop increases the optimum diameter value decreases and the best 

efficiency increases.    

 

(a) (b) 

Figure 3-13. Effect of column diameter when L = 30 m. 
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3.5.1.3 COLUMN WIDTH AND HEIGHT IN A RECTANGULAR 

COLUMN 

Column width and height influence chromatographic efficiency in two regards. 

First, they influence the velocity of the carrier gas that is an important parameter for 

retention time and column efficiency. Though column width and height are equally 

important to decide carrier velocity when the aspect ratio is low, the length of the narrow 

side becomes dominant factor when aspect ratio is high. In other words, column width is 

dominant factor in a narrow rectangular column (h>4d). Second, the column width and 

height affect phase ratio which, in turn, affects retention factor.  

 

 
(a) (b) 

Figure 3-14. Effect of column width and height (L = 1 m, K = 1600). 
 

As shown in Golay equation for a rectangular column, column width is very 

important parameter to determine the second term of the equation, consequently 

influencing Hmin and uopt. As column width decreases, Hmin decreases (N increases) and 

uopt increases as the effect of column diameter in a circular column. Figure 3-14 shows 
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the effect of column width and height on the number of plates. This graph shows us that 

there is an optimum column width to achieve the maximum column efficiency. However, 

column height does not affect the column efficiency much. Recall that column height is 

not included in the second term of Golay equation. 

3.5.1.4 STATIONARY PHASE THICKNESS 

Because the stationary phase thickness influences both the phase ratio and 

resistance to mass transport in the stationary phase (Cs term in Golay equation), thicker 

stationary phase films in otherwise identical columns will typically yield lower 

chromatographic efficiencies at uopt. However the poor stability and sample loading 

capacity of thin stationary phase should be considered, too. 

 

(a) (b) 

Figure 3-15. Effect of stationary phase thickness. 
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3.5.2 OPERATIONAL PARAMETERS 

3.5.2.1 CARRIER GAS VELOCITY 

Carrier gas velocity is the main variable of HETP in the Golay equation and it is a 

function of column diameter, length, inlet pressure, and carrier gas viscosity. Since the 

carrier gas is compressible, the relationship between flow rate and pressure drop is not 

linear as mentioned in the previous section. Pressure and velocity distribution along the 

column length and the average velocity of the carrier gas can be expressed as follows. 
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pressure drop and flow velocity at different column diameters. Figure 3-16(b) shows the 

pressure and flow velocity distribution along the column length.  
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(a) (b) 

Figure 3-16. Pressure and flow velocity in a circular microcolumn.  

3.5.2.2 TEMPERATURE 

Much like column length, temperature never appears directly in either the 

retention time equation or the Golay equation. Nevertheless, temperature plays very 

important roles in determining the retention time and the column efficiency by virtue of 

its effect on carrier gas viscosity, distribution constant (K), and diffusion coefficients, DM, 

and DS. Therefore, during the temperature programmed analysis, the column efficiency 

keeps changing. 

As temperature increases, uopt appears to shift higher values, while Hmin appears to 

shift to lower values. This reflects the fact that, at higher temperatures, k becomes smaller, 

while carrier gas viscosity and coefficients of solute diffusion in both the mobile phase 

and the stationary phase will increase. In general, decisions regarding column 

temperature should be made with the understanding that the effect temperature has on 

solute retention factors far outweighs the impact it has on chromatographic efficiency. 
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The viscosity of gas is a function of temperature as shown below.  

BTAT 





⋅=

15.273
)(µ

  

Equation 3-60 

where A and B are constants that are given empirically as follows. 

 Carrier gas A B 
Hydrogen 8.35 0.68 

Helium 18.6 0.646 
Nitrogen 16.59 0.725 

  

 

 

 

Figure 3-17. Carrier gas viscosity as a function of temperature. 
 

As temperature of a gas system increases, so does the average speed of the 

molecules making up that system. As this occurs, the frequency with which such 

molecules collide increases and so the efficiency with which momentum is transported 

throughout the system increases. This results in an dynamic viscosity. As temperature 

increases, so does the dynamic viscosity of the mobile phase and a greater head pressure 
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is required to maintain the flow that was observed at lower temperatures. If the column 

pressure is held constant while temperature is increased, the average gas velocity will be 

decreased and consequently gas holdup time will be increased and column efficiency may 

be affected as well.   

The temperature dependence of the diffusion coefficient of a solute in carrier gas 

is expressed by Fuller-Schettler-Giddings equation. 
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Equation 3-61 

where MS, MM are molecular masses of the solute and mobile phase respectively. For 

most organic chemicals, the values are 1 ~ 7 x 10-5 [m2/sec] at the temperature range of 

20 ~ 80 oC as shown in Table 3-7 [60].  

The diffusion coefficient of a solute in stationary phase is also a function of 

temperature. Many cases, direct measurement and information of the coefficient are not 

available. It is usually estimated from the viscosity measurement.  






















=

µπ
T

V
NkDs

3/1

2
 

Equation 3-62 

where  Ds is the self diffusion coefficient in cm2/sec, k Boltzman constant, N Avogadro's 

number, V  molar volume in milliliters, T the absolute temperature, µ the viscosity of the 

liquid in poise (g/sec-cm). For large molecule diffusion, use 3π instead of 2π and for 

smaller molecule diffusion, use 1.4π. Value should be about 10-9 ~ 10-10 [m2/sec].  

94 



 

Table 3-7. Diffusion coefficients of solvents in helium. 

Analyte Temp. [oC] DM x 105 [m2/sec] Temp. [oC] DM x 105 [m2/sec] 
Ethanol 20 4.76 70 6.71 

Methanol 20 4.74 60 6.05 
Isopropanol 20 3.14 80 4.76 

Toluene 20 2.50 80 3.69 
p-Xylene 20 2.26 80 3.28 
Benzene 20 3.28 80 4.44 
Pentane 20 2.86   
Hexane 20 2.27 60 2.73 
Heptane 20 2.25 80 2.98 
Octane 20 1.96 80 2.97 

 

(a) (b) 

Figure 3-18. Effect of diffusion coefficients. 
 

It is found from Figure 3-18 that Hmin does not change much as DM and DS 

changes though uopt increases significantly as DM increases. The distribution constant 

(correspondingly retention factor) highly depends on temperature. Distribution constants 

(K) for many of the n-paraffin hydrocarbons on several stationary phases at specific 

temperatures are shown below. As K increases, both CM and CS increase. As a result Hmin 

increases and uopt decreases. Retention time increases as K increase.  
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Table 3-8. Distribution constants of hydrocarbons in commercial stationary phases. 

Stationary Phase 
SE-30 OV-210 OV-225 PEG 20M Solute 

51 C o 100 C  o 48 C  o 97 C  o 97.5 oC  o 148 C  o98 C 
Hexane 96       
Heptane 229  66     
Octane  87 139     
Nonane  302 45    
Decane   671 80 98   

Methanol      32 9 
Etahnol      35 10 
Propanol      64 15 
Butanol      113 24 
Pentanol      231 38 
Benzene 161 37 117  42   

Chloroform 102  64  38   

 

 

 
(a) (b) 

Figure 3-19. Effect of retention factor. 
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C H A P T E R  4  

DESIGN 

The design of the parylene separation column comprises two elements; column 

design and heating element design. Both design elements have several components that 

need to be considered in the design of a GC column. The critical issues are listed in Table 

4-1 with the related parameters and the methodology used in this research. 

Table 4-1. Design strategy. 

Design 
elements Components Related parameters Methodology 

Material 
selection Column wall thickness Manufacturability and 

material properties 
GC performance 

 
 
 

Length, width, height, 
stationary phase type and 
thickness, and operation 

parameters 

Analytic method 
(MatLab)  

Integration Inlet/outlet Manufacturability 

Deformation 
 

Column wall thickness and 
effect of thin metal film 

Finite element method 
(ANSYS) 

Column 
design 

Gas permeation Effect of thin metal film Experiment 

Entrance length Inlet/outlet Finite element method 
(ANSYS) 

Thermal cycling 
 

Heating element location 
and dimension 

Finite element method 
(ANSYS) 

Heating 
element 
design 

Temperature 
distribution Effect of thin metal film Finite element method 

(ANSYS) 
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4.1 COLUMN GEOMETRY 

4.1.1 COLUMN PERFORMANCE 

The advantage of narrow rectangular column and the optimization of the 

parameters are discussed in this section. 

4.1.1.1 ADVANTAGE OF NARROW RECTANGULAR COLUMN 

For the conventional circular column, Hmin decreases and uopt increases as column 

diameter decreases. It is because the second term (CM, dynamic diffusion in carrier gas) 

of the Golay equation becomes smaller as the diameter decreases. However, the trade-off 

for increasing the column efficiency by reducing its diameter is much higher pressure 

drop across the column, which is required to achieve the optimum carrier gas velocity. In 

addition, the volumetric flow rate often becomes too low for the detector.  

When compared with standard capillary columns with radii greater than 200µm, 

the micromachined narrow rectangular columns (width d, height h, h>4d, d<100µm) are 

preferred due to its achievement of a large number of plates in a short column. As the 

channel becomes narrower, more gas is exposed to column walls and the diffusion 

distances become shorter. This increases the interaction with the stationary phase, 

decreases the required column length and leads to a shorter analysis time. In addition, the 
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higher volumetric flow rate can be provided by increasing column height, and this can be 

accomplished without affecting resolution.  

Recall the modified Golay equation for a rectangular columns.  
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where d and h are column width and height, respectively. The first (static diffusion) and 

third (dynamic diffusion in stationary phase) terms of the equation are basically the same 

as those of the original Golay equation for a circular column, although the third term 

slightly depends on the aspect ratio of the column. However, the second term depends 

highly on column width (Note that it depends on column diameter in the case of a round 

column). Therefore, Hmin decreases and uopt increases as column width decreases. 

Conversely, the change in column height does not affect Hmin and uopt much. However, 

volumetric flow rate increases as column height increases. This implies that we can have 

two control variables, column width and height, to control column efficiency and 

volumetric flow rate, respectively.  

This can be clarified when a round column and a narrow rectangular column 

having the same cross-sectional area are compared. For example, a round column with a 

diameter of 190 µm and a rectangular with a width of 80 µm and a height of 350 µm have 

almost the same cross-sectional area. The narrow width of a rectangular column reduces 

the second term (dynamic diffusion in mobile phase) of the Golay equation and therefore 

the rectangular column has lower plate height and higher number of plates (~10,000) 

compared with a circular column (N ~ 6500) as shown in Figure 4-1 (a) and (b). In order 

that the round column may have as large number of theoretical plates as the rectangular 
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column, the diameter of the round column must be decreased to about 120 µm (Figure 

4-1 (c)). In that case, however, the volumetric flow rate will be much less than that of the 

rectangular column. A good rule of thumb is that the efficiency can be adjusted by 

selecting the column width, and the volumetric flow rate can be adjusted by selecting the 

column height.  

 

  
                                 (a)                                    (b) 

    
(c) (d) 

Figure 4-1. Comparison between a circular and a rectangular column having the 
same cross sectional area, (a) plate height of a rectangular column, (b) plate height 
of a circular column, (c) plate number of both columns, (d) volumetric flow rate. 
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4.1.1.2 COLUMN DESIGN OPTIMIZATION 

For GC columns, good performance means short retention time and better 

efficiency (lower plate height or higher number of theoretical plates). However, 

satisfying the two components of good performance at the same time is almost 

impossible because they are contradictory. For example, the number of theoretical plates 

increases with column length but the retention time decreases with it. Therefore, the 

manufacturer’s column design and user’s column choice completely depend on type of 

analytes and demanded analysis time. In this research, our goal is developing a miniature 

GC column that can be used for a rapid, sensitive and selective hand-held GC system 

which could be used for the field detection of chemicals. Therefore, we suppose that the 

desirable retention time is less than 1 minute for the analytes having a retention factor of 

5 at room temperature and the required number of theoretical plates is more than 10,000. 

Since both retention time and column efficiency can be enhanced using temperature 

cycling, these requirements are considered to be good enough for initial column design.   

Even if specific performance requirements are given, the design of GC column is 

still very difficult due to the non-column parameters such as the material properties of 

carrier gas and analytes to be tested. As we discussed in the previous chapter, column 

efficiency and retention time are highly dependent on the distribution constant and 

diffusion coefficients of the analytes. In addition, operational variables such as pressure 

(flow rate) and column temperature play important roles in column efficiency. For 

instance, the distribution constant and diffusion coefficients are the function of 

temperature. Therefore, in order to optimize column design, all the detail information of 

non-column parameters and operational variables must be provided. However, many of 
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the material properties are not well known and usually many different analytes are used 

in GC analysis resulting in broad ranges of material properties. Therefore many previous 

researchers who have developed micro GC columns used general values for material 

properties in order to optimize their column design. The values of non-column 

parameters and operational variables they used are listed in Table 4-2. We also use some 

general values of material properties to optimize our column design. The values are 

retention factor k = 5, diffusion constants DM = 10-6 cm2/sec, DS = 0.1 cm2/sec. These are 

general values for organic samples. The inlet pressure is assumed to be less than 24.7 psi 

(∆P≤10 psi) and column temperature is 20 oC.  

 

Table 4-2. Non-column parameters and operation parameters for column design. 

  K k DM [cm2/sec] DS [cm2/sec] Pi, Po Temp. 

Terry  - - - - ~ 60 psi, 1 atm  
Reston 100 - 10-6  - ~ 60 psi, 1 atm 50 oC 
Wiranto - 10 10-6  0.1  ~ 5, 1 atm 100 oC 
Sandia - 5 10-6  0.1  14.7, 8.7 psi  
Michigan - 10 - - 1, 0.6 atm  
GT 1600 5 10-6  0.1  ~ 24.7 psi, 1atm 20 oC 

 

 Now since material properties and operational variables are chosen, column 

design parameters can be optimized. Column parameters are length, width, height, 

stationary phase type and thickness. Among these, column length and width, stationary 

thickness are dominant parameters for column efficiency and retention time. Column 

height (when h>4d) does not influence column performance much. Therefore, it is fixed 

at 300 µm for the following calculations. But it should be noted that column height can 
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work as a knob to control volumetric flow rate though it does not affect flow velocity 

much. Stationary phase type is another important factor but is not considered here 

because the material constants are already assumed above. 

Figure 4-2 shows how column efficiency changes with column width at different 

pressure drops (a) and column length respectively (b). The other parameters were fixed as 

follows: column height h = 300 µm, stationary phase thickness w = 100 nm, temperature 

T = 293.15 K. For pressure drop between 4–10 psi and column length 1 m, the required 

number of theoretical plates (≥ 10,000) can be obtained when column width is between 

45–55 µm. These were calculated in MatLab using formulas in previous chapter. Of 

course, longer columns give higher number of plates but the cost is longer retention time 

and bigger size.   

 
(a) (b) 

N = 10,000

N = 10,000 

Figure 4-2. Change in column efficiency with column width (a) at different 
pressures, (b) at different lengths. 

 

The retention time for the above conditions is shown below. For column width 

between 45-55 µm and pressure drop 4-10 psi, the retention time is always less than 1 

min when column length is 1m but it ranges 2-8 min when column length is 3 m.   

103 



 

 

Tr = 1 min 

Figure 4-3. Retention time as a function of column width, length and pressure. 
 

Now what will be Hmin and uopt for the above column dimensions? And also can 

uopt be achieved with the given pressure drop? The following two graphs give the answers. 

When column width is 50 µm and length is 1 m, uopt is about 0.6 m/s and maximum 

number of plates is about 14,600. However when column length is 3 m, uopt cannot be 

achieved with pressure drop of 10 psi.  

(a) (b) 

Figure 4-4. Maximum column efficiency and uopt for different column dimension. 
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Lastly, Figure 4-5 show the effects of stationary phase thickness on column 

efficiency and retention time, respectively. The number of theoretical plates ranges 

13,000-16,500 and the retention time ranges 10-30 sec according to stationary phase 

thickness when column width is 50 µm, height is 300 µm, and length is 1 m. Since both 

column efficiency and retention time highly depend on stationary phase thickness, 

uniform coating of stationary phase is very important. The non-uniformity in stationary 

phase thickness may cause significant change in column efficiency and retention time. 

(a) (b) 

Figure 4-5. The effect of stationary phase thickness on column efficiency and 
retention time. 

 

As a conclusion, the column parameters chosen to meet the given performance 

requirement (N ≥ 10,000, Retention time ≤ 1 min) are as follows. 

        Column length  =  1 m 
        Column width   =  50 µm 
        Column height  =  300 µm 
        Stationary phase thickness  =  100 nm 
        Pressure drop   =  6 psi  
        Carrier gas velocity  =  0.5 m/s   
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4.1.2 INTEGRATION 

Micromachined silicon/glass columns generally have a spiral design in order to 

achieve a long column on a small area without creating sharp curvature (Figure 4-6 (a)). 

The most popular tubing methods for silicon/glass columns are top connection via etched 

hole in pyrex glass substrate (Figure 4-6 (b)) and bottom connection via etched hole in 

silicon substrate. However, these techniques cannot be applied to our parylene column 

because of parylene’s nature as a thin film. Side tubing was devised for the parylene 

column as shown in Figure 4-7 (b). In both top and side tubing techniques, the flow path 

cannot remain constant, having some dead volume. However, while top connections have 

an abrupt change in the direction of flow path, side connections do not have such a 

change in flow direction. In order to realize side connections, both ends of the column 

must be located outside the spiral pattern. Therefore, a dual spiral design was selected for 

parylene column as shown in Figure 4-7 (a). Both the inlet and outlet have a bigger width 

(500 µm) than the main spiral part for the easy insertion of silica tubing.   

 

 

(a) (b) 

Figure 4-6. General design of silicon/glass column; (a) top view (spiral column), (b) 
side view of column end and tubing. 

Silicon

Sealing 
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(a) (b) 

2 cm

Silica tubing Parylene 

Figure 4-7. Design of parylene column; (a) top view (dual spiral column), (b) side 
view of column end and tubing. 

 

As discussed in Chapter 3, we need to avoid a very small curvature radius because 

sharp curvature causes lateral diffusion due to centrifugal force, resulting in band 

broadening. Recall that this curvature effect can be quantified using the Dean number, the 

ratio of centrifugal force to viscous force. Sandia National Laboratories developed a 

time-dependent adsorption/desorption model and incorporated this model into a 

computational fluid dynamics (CFD) code to simulate analyte transport and separation 

process in GC columns [19]. According to Sandia, when the Dean number is low around 

0.2, the flow behaves like a 2D flow with a minimal curvature effect. However, when the 

Dean number becomes big, around 13, the curvature effect becomes significant and the 

analyte migrating at the outer wall is lagging behind the analyte migrating at the inner 

wall. This leads to a band broadening. Hence, the curvature effect is more significant 

when flow rate increases or column size increases. 

Now let’s consider a dual spiral design as shown above. Gas goes in toward the 

center and then come out to the side of the die. In this design, the smallest curvature  
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radius exists in the center. For example, if the smallest curvature radius is 160 µm, 

column width is 80 µm, and the carrier gas velocity is 1 m/s, the Dean number becomes 

1.34 but if the smallest curvature radius is increased to 800 µm, the Dean number 

becomes about 0.15, which is very low. So, the smallest curvature radius of 800 µm was 

used in this study. 

The last thing we need to consider is the interchannel distance. The dimension of 

column itself was optimized by analytic tool for theoretical column performance. And a 

dual spiral design was selected considering tubing. However, the distance between 

channels in a dual spiral design has not been discussed. This is an important factor with 

column width and length to decide the chip size. The only limit regarding the 

interchannel distance was that it need to be enough for parylene/parylene bonding process. 

No literature was found regarding this issue nor any experiment was performed to answer 

the question. The interchannel distance was fixed at 100 µm for all designs in this study. 

As a result, the chip size was designed to have 2 cm by 2 cm square.   

4.1.3 DEFORMATION AND GAS PERMEATION 

4.1.3.1 DEFORMATION OF THE COLUMN BY INNER PRESSURE 

Now the inner column dimension and the overall shape of column have been 

optimized. The only thing that was not discussed as to column design is the thickness of 

the column wall. As pointed out in the introduction chapter, the main advantage of the 
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parylene column is its low thermal mass. Therefore, the wall is preferred to be as thin as 

possible. However, if the wall is too thin, the column can be deformed or damaged by the 

high inner pressure required for both GC analysis and stationary phase coating. First, if 

any significant deformation occurs in the cross sectional shape of parylene column during 

GC analysis, it increases the length of dynamic diffusion of analytes, resulting in band 

broadening. As a result, the deformation if ever happens will bring about a big deviation 

between theoretical and empirical efficiency values because the theoretical column 

efficiency of a rectangular parylene column has been calculated based on the assumption 

that its cross-sectional shape does not change with inner pressure. Second, one of the 

most critical steps in GC column fabrication is stationary phase coating which is 

generally accomplished by injecting a solution containing polymeric material. The final 

coating thickness depends on the flow rate of the injected solution which is a function of 

cross-sectional dimensions. Therefore the deformation of the channel will change the 

coating thickness. Also it can affect the coating uniformity.   

Finite element analysis was used to investigate the deformation of parylene 

column. 2D analysis was performed for a narrow rectangular column (80 µm width, 300 

µm height) as shown below. The main parameters for the deflection are definitely the 

length and thickness of the wall. Since the length of the wall (height of the column) is 

fixed in this case, only the effect of wall thickness will be investigated. Another thing to 

be investigated is the effect of thin metal layer. A parylene/Pt/parylene sandwiched layer 

will be compared with a monolayer parylene column in terms of the deformation. The 

two structures of interest are shown in Figure 4-8.  
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There were some assumptions made for ANSYS 2D analysis. First, the top flat 

substrate was assumed to be fixed because it is supported by large bonded area and 

neighbor channels. Second, parylene/parylene bonded interface is assumed to be strong 

enough to remain unbroken for the deformation study. Third, parylene is assumed to have 

isotropic mechanical properties as shown in Table 4-3.  
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When the wall thickness is 5 µm, the maximum deformation of the parylene monolayer 

column is as big as 58 µm (vertical wall) under the pressure difference of 10 psi. But if 

the wall thickness is increased to 10 µm or 20 µm, the maximum deformation is reduced 

to 7.5 µm or 1 µm, respectively. Since the pressure drop required for GC analysis ranges 

up to 10 psi, the wall thickness needs to be at least 10 µm. 

 
(a) (b) 

Figure 4-9. Stress distribution of parylene monolayer column; (a) 10 µm thick and 
60 psi, (b) 20 µm thick and 60 psi. 

 

 
(a) (b) 

Figure 4-10. Maximum deformation of parylene monolayer column as a function of 
pressure difference at different thicknesses (a) vertical wall (b) horizontal wall. 
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What will be the effect of a thin metal layer on the deformation? Figure 4-11 

shows the effect of metal layers on the maximum deflection. Three different thicknesses 

(0.1, 0.2, and 1 µm) were investigated. As the metal thickness increases, the maximum 

deformation decreases. In addition, the stress concentration effect at the corners was 

lowered by the insertion of the metal layer. 

(a) (b) 

Figure 4-11. Effect of metal insertion on the maximum deflection for 10 µm thick 
parylene column (a) vertical wall, (b) horizontal wall. 

4.1.3.2 GAS PERMEABILITY 

Another thing that needs to be considered regarding column wall thickness is gas 

permeation. GC column must not allow gas molecules to permeate through the column 

wall. Especially, the permeation of oxygen should be lowered because it can degenerate 

the  stationary phase of the column. In the previous section, we compared a parylene 

monolayer and a parylene/Pt/parylene sandwiched layer in terms of the deformation 

under inner pressure. The existence of a thin metal can also be a benefit to the permeation 

property of the membrane because the metal layer has lower permeability than polymers.  
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In order to measure the gas permeability of parylene layers, large membrane with 

an area of 100 in2 were prepared. A 20 µm thick parylene monolayer and parylene/Al/ 

parylene (10µm/0.1µm/10µm) sandwiched layer were prepared carefully. The 

measurement of gas permeation was done by Polymer Diagnostics (Minneapolis, MN 

55428) and the average result is shown in Table 4-4.  The triple structure showed much 

less permeation rate for both water vapour and oxygen. Therefore the sandwiched 

structure is desired to prevent gas permeation through the column. 

 

Table 4-4. Gas permeation data of parylene membranes (test temperature was 50 oC 
and the unit of the data is cc/100 in2·day) 

Gas Parylene  (20µm) Pary/Al/pary (10µm/0.1µm/10µm) 

Water vapour 1.05 0.00770 

Oxygen 27.85 Less than 0.0003 

4.2 HEATING ELEMENT 

It was emphasized in the previous chapters that thermal cycling of a GC column is 

very important for an efficient GC analysis. In conventional GC, the column is generally 

housed in a large convection oven for thermal cycling. What will be the alternative 

heating method for a miniature GC column? Joule heating can be the solution. Many 

MEMS devices have a thin metal layer as heating element. Where and how can we build 

the Joule heating element in the parylene column? A long gold film resistor can be 

formed by the evaporation of gold on the corrugated surface of the parylene column as 
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shown below. This method was chosen because we can create a heating element without 

further mask process by using the corrugated geometry of the parylene column. 
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ure 4-12. Formation of Joule heating element on parylene column.  

garding the performance of heating element, there are two main questions that 

wered at the designing stage.  First, how much advantage does low thermal 

ne column have in the thermal cycling of the column and power consumption 

ith silicon/glass column?  Second, can a uniform temperature distribution be 

 a parylene column?  To answer these questions, the heat transfer in parylene 

s investigated using finite element analysis.  

begin with, we need to simplify the geometry. The geometry that is being 

s two main simplifications that can be used on it. The first is in the z-direction.  

xis, we let it run down the center of the column. This means that we have a z-

spiral in reality. We are able to eliminate the z-direction from analysis because 

culations and FEA showed that the length required to achieve fully developed 

 profile was very small compared to the overall length of the channel.  These 

s will be shown in the following section.  The second simplification that can 
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be made is more obvious, and is best demonstrated by Figure 4-13 below. This is the 

SEM image of the cross-section of Si microchannel that is used as mold for parylene 

column. This shows the repeating pattern of the channel in the x-direction.  Since there is 

a repeating pattern, it is possible to cut each channel wall in half and use symmetry (black 

box in the figure).  

x 

zy 

 

Figure 4-13. SEM image of the cross section of a microchannel. 

4.2.1 ENTRANCE LENGTH 

In an internal flow, flow velocity and temperature develops as the flow advance in 

the channel. The length between the entrance and the location where the flow becomes 

fully developed is called entrance length. One of the simplification made for FEA was 

neglecting z-direction and performing 2D analysis. This simplification needs to be 

justified by proving that the entrance length is negligible in this problem.  

Analytic solutions for the entrance length are available. The hydrodynamic entry 

length and the thermal entry length for laminar flow are expressed as below.  
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hhfd DX ⋅⋅≈ Re05.0,  

Equation 4-1 

PrRe05.0, ⋅⋅⋅≈ htfd DX  

Equation 4-2 

When a helium gas flows through a rectangular parylene column (80 µm X 300 µm), the 

entrance length is only a few microns (Table 4-5) according to the above formula that is 

negligible compared with column length (1 m).  

Table 4-5. Calculation for entrance length. 

d h u ρ µ α Re Pr Xfd,h Xfd,t 
[µm] [µm] [m/s] [kg/m3] [kg/m·s] [m2/s]   [µm] [µm]

80 300 1 0.1625 1.99x10-5 1.8x10-4 0.653 0.678 2.6 1.8 
 

 

 

(a) (b) 

Figure 4-14. The geometry of the inlet of a parylene column with a microtube 
inserted; (a) schematic, (b) the meshed flow volume used in this analysis.  
 

3D ANSYS analysis was also performed to find out the entrance length where the 

temperature and velocity of carrier gas are fully developed.  The geometry of the inlet of 
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a parylene column is shown Figure 4-14 (a).  the blue region in this figure shows the flow 

volume for the fluid. To recreate this flow volume for ANSYS the blue area only was 

used in fluidic analysis.  Figure 4-14 (b) shows the volume and mesh used for ANSYS 

computations. When the column temperature and flow rate are 80 oC and 1 ml/min, both 

fluidic and thermal entrance length were less than 1 mm (Figure 4-15, Figure 4-16), 

which is negligible comparing with column length (1m).  

  
(a) (b) 

Figure 4-15. Fluidic entrance length; (a) velocity, (b) velocity vector distribution. 
 

 

Figure 4-16. Thermal entrance length. 
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4.2.2 THERMAL CYCLING 

Parylene Pyrex 

Si  

Since the entrance length is negligible, simplified 2D geometry will be used for 

the further analysis. For the transient analysis for thermal cycling, simplified 2D 

geometries were used for three different columns as shown below. 

 

Heat spreader 

 (a) (b) (c)

Figure 4-17. The 2D geometries of (a) the silicon/glass column, 
parylene column, (c) sandwiched parylene column

 

The material properties used in this analysis are listed in Table 

following analysis, it was assumed that the column is filled with stagna

the heating of column before the introduction of a carrier gas. Tempera

properties of air was considered in this study by assuming that they cha

temperature between 27 oC and 80 oC. However, the materials have tem

independent properties in the temperature below 100 oC.  
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Table 4-6. Material properties used in ANSYS analysis. 

Material Density Specific heat Thermal 
conductivity Resistivity Melting 

point 
 [kg/m3] [J/kg·oC] [W/m·oC] [Ω·m] [oC] 

Pyrex glass 2225 835 1.4   
Silicon 2330 700 131  1412 

Parylene 1289 714 0.084  290 
Cu 8890 390 398 1.72E-8 1083 
Au 19300 129 317 2.44E-8 1063 

Air @ 300 K 1.1614 1007 0.0263   
Air @ 350 K 0.995 1009 0.0300   

 

In order to perform the transient heat transfer analysis with ANSYS, the natural 

heat convection coefficients for the column surfaces must be input as boundary 

conditions. The common method to calculate the free convection coefficients is as 

follows. For the upper, lower and side surfaces of a heated plate, the recommended 

correlations for the average Nusselt number are shown below respectively.  
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Equation 4-3 

where 
α

β
v

LTTg
Ra s

L

3)( ∞−
= , g = 9.81 m/s2, and β = 1/T. The Nusselt numbers calculated 

from these correlation can be used for the heat transfer coefficient calculation using the 

following equation. 
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Equation 4-4 

However, the above general correlation cannot be used for microchannel heat 

transfer because the Rayleigh number of our case is far lower than the valid range. So, 

empirical approach was used to obtain the free convection coefficients for the column 

surfaces. Arbitrary values were used for ANSYS simulation and the steady state 

temperature of the column obtained from the simulation was compared with the measured 

value as shown in Figure 4-18. The steady-state temperatures of a parylene column were 

measured using an infrared camera (thermaCAM PM190, Inframetrics, Portland, OR) 

with different powers applied to the heating element.  
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Figure 4-18. Steady state temperature with applied power for different sets of free 
convection coefficients; (a) h(wall) and h(bottom) are fixed at 1 and 0.1 W/m2K, 

respectively, (b) h(top) and h(bottom) are fixed at 2 and 0.1 W/m2K, respectively.  
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The set of free convection coefficients that shows a good agreement with the 

measured data was h(top) = 2, h(wall) = 0.8 and h(bottom) = 0.1 W/m2C respectively.  

These values were used for the transient analysis.  The transient analysis was based on 

the assumption that there was no gas flow in the column. Figure 4-19 shows the thermal 

cycling of silicon/glass column and parylene columns. Power was applied for the first 60 

sec and then turned off for both columns.  The parylene column is heated and cooled 

down much faster and soon reaches a steady state in a minute but silicon/glass column is 

heated linearly and does not reach a steady state until several minutes have elapsed. The 

time to reach a steady state is not dependent on the applied power for parylene column, 

but it does increase with the applied power for silicon/glass column.  Also, only 50 mW 

is required for parylene column to heat up to 100 oC in 40 seconds while 500 mW is 

required for the silicon/glass column.  These significant differences in the thermal cycling 

of the silicon/glass column and the parylene column can be ascribed to the different 

thermal mass (silcon/glass column ~ 2 g, parylene column ~ 0.4 g).  
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Figure 4-19. The thermal cycling of silicon/glass and parylene columns; (a) 
Silicon/glass column at 500 mW, (b) parylene column at 50 mW (power was applied 

for 60 sec and turned off for both columns). 
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4.2.3 TEMPERATURE DISTRIBUTION 

Uniform temperature distribution is also important for good column performance.  

Non-uniform temperature distribution can result in peak broadening because the partition 

ratio is a function of column temperature.  The temperature distribution is also closely 

related to the thermal conductivity of column material and the location of heating source.  

Figure 4-20 shows the temperature distributions of three different column geometries.  

While silicon/glass column shows a uniform temperature, a significant temperature 

difference (about 3oC) is observed in the parylene column.  To solve this problem, a thin 

metal film can be inserted between parylene layers as a heat diffuser.  The temperature 

difference in the parylene column is reduced to less than 0.1oC when the heat diffuser is 

used.   

 

 
          (a)                                                (b)                                                   (c)               

Figure 4-20. Temperature distribution in column cross sections (a) silicon/glass 
column after 1 min at 500 mW, (b) parylene column after 1 min at 50 mW, (c) 

parylene column that has heat diffuser after 1 min at 50 mW.  
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4.3 FINAL DESIGN 

The goals and the final design parameters for the parylene separation column are 

listed in Table 4-7. Figure 4-21 shows the final design for parylene GC column. 

Table 4-7. The goals and the final design for the parylene separation column. 

Goals Final Design 

- Retention time less than 1 min - Low thermal mass parylene thin film column 

- Plate number greater than 10,000 - Dual spiral design in an area of 2 cm by 2 cm 

- Deflection at 10 psi less than 10 µm - Side tubing via wide inlet/outlet 

- Heating and cooling less than 1 min - Sandwiched layer (parylene/Pt/parylene) 

- Power consumption less than 50 mW - Embedded heating element and heat spreader 

- Temperature gradient less than 0.1 oC 
 
 
 

- Column dimensions and operating parameters  
  (L = 1 m, d = 50 µm, h = 300 µm,  
   wall thickness > 10 µm, stationary phase     
   thickness = 100 nm, ∆p = 6 psi, u = 0.5 m/s) 
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C H A P T E R  5  

PROCESS DEVELOPMENT 

This chapter describes the development of two processes that are crucial in 

fabricating the parylene GC column. The first one is a new fabrication technique, so 

called ‘parylene micromolding.’ This technique was developed to build a long parylene 

microcolumn but can be widely used in many microfluidic devices. The second one is the 

stationary phase coating for parylene GC column. The fundamental investigations on new 

materials and the descriptions about different coating processes for the parylene GC 

column are included in this chapter. 

5.1 PARYLENE MICROMOLDING 

How can we make a long parylene microcolumn? The conventional method to 

fabricate an enclosed parylene microchannel is a surface micromachining technique as 

shown in Figure 5-1. In this technique, reactive ion etching (RIE) is used to pattern 

parylene layer and photoresist (PR) pattern is used as a sacrificial material. The detail 

process steps are first, parylene deposition, and photoresist patterning on parylene layer; 

second, another parylene deposition and oxygen RIE to pattern it; and third, the 
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dissolution of the sacrificial material, photoresist. The main drawback of this fabrication 

technique is that it is a considerably slow process because the dissolution of sacrificial 

photoresist is a diffusion-limited process at the restricted solute-solvent interface. It has 

been reported that the dissolution of sacrificial photoresist take about 30 minutes per 1 

mm dissolution distance in acetone regardless of the cross-sectional dimensions of the 

channel [61]. In addition, post-releasing rinsing is always required to remove the 

photoresist residue remaining in the parylene channel. Consequently it may take several 

days to completely release several centimetre-long microchannels, not to mention a 

meter-long GC column. It must be also noted that this surface micromachining technique 

is relatively high cost process because it involves several lithography and oxygen plasma 

etching steps.   

The new ‘parylene micromolding’ technique employs a molding concept [45, 46]. 

In this technique, Si microchannels fabricated by either wet or dry etching are used as 

molds for parylene deposition. Parylene is deposited both on a silicon microchannel mold 

and a flat substrate. Then these two parylene-deposited substrates are attached together 

and laminated by heat and pressure. After the lamination, the flat substrate is removed 

and the parylene microcolumn is released from the silicon mold. This method is much 

more rapid and less expensive fabrication method for parylene microchannels compared 

to the conventional method. This parylene micromolding technique can be applied for the 

fabrication of many microfluidic devices or disposable Micro Total Analytic Systems 

(µTAS). The information and issues about this technique will be discussed in detail in the 

following sections. 
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Figure 5-1. Conventional surface micromachining method and new ‘parylene 
micromolding’ method for parylene microchannel fabrication (Conventional 

method – A: parylene deposition, B: electrode patterning, C: sacrificial material 
(PR) patterning, D: parylene deposition, E: parylene patterning by oxygen RIE, F: 

dissolution of PR, Parylene micromolding method – A: silicon mold fabrication 
using deep RIE, B: parylene deposition, C: electrode patterning, D: thermal 

bonding, E: flat substrate removal, F: channel release) 

5.1.1 PARYLENE/PARYLENE THERMAL LAMINATION 

Parylene/parylene thermal lamination is the key process in the parylene 

micromolding technique. Parylene is a semi-crystalline thermoplastic polymer formed by 

chemical vapor deposition. After the deposition, the surface of a parylene layer has more 

low-molecular weight chains than the bulk. These polymer chains of parylene surface can 

inter-diffuse when two layers are laminated at high temperature and pressure. Such 

thermal lamination generally occurs at the temperature close to the melting temperature 

of the polymer. 
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Before trying the thermal lamination of two parylene layers, the thermal 

characteristics of parylene must be studied well. Several tools such as differential 

scanning calorimetry (DSC), thermal gravimetry (TGA), and FT-IR were used to 

investigate the thermal characteristics of parylene-C. The first graph of Figure 5-2 shows 

the DSC (DSC Q1000, TA Instrument, New Castle, DE) data of parylene-C. This 

experiment was performed with nitrogen gas purging into the chamber where the sample 

was. According to this graph, the melting temperature (Tm) of parylene-C was exactly 

290 oC as reported in the literature but the glass transition temperature (Tg) was not 

clearly observed. This indicates that parylene-C is highly crystalline polymer. The second 

graph of Figure 5-2 is the TGA data of parylene-C. TGA provides an information about 

how a polymer is decomposed and turned into volatile molecules with temperature. 

Parylene was completely decomposed into volatile molecules at above 700 oC, which is 

higher than those of other insulating polymers (500 ~ 600 oC). However, it is known that 

the mechanical strength of parylene drops greatly at above 150 oC because it is 

oxidatively decomposed at the high temperature [27]. In order to investigate this 

phenomenon, FT-IR analysis (Magna IR560 spectrometer, Thermo Nicolet Corporation, 

Madison, WI) was performed at different temperatures as shown in the third graph of 

Figure 5-2. Two broad peaks appeared approximately at 3400 and 1700 cm-1 when the 

temperature was over 150 oC. These peaks are considered to be O-H and C=O absorption 

peaks respectively due to oxidative degradation. Therefore, parylene-C becomes easily 

decomposed at high temperature when it is exposed to oxygen. However, the degradation 

does not happen if the parylene is not exposed to oxygen. 
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Figure 5-2. Differential scanning calorimetry (DSC), thermal gravimetry analysis 
(TGA) and FT-IR data of parylene C. 
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Knowing the thermal characteristics of parylene-C, the thermal lamination of two 

parylene layers was investigated. Thermal lamination of polymer layers is generally 

achieved by heat and pressure. Two different heating sources were investigated in this 

study: convection oven heating and microwave heating. Pressure was applied by a simple 

compression apparatus which consists of stainless steel blocks and screws as shown in 

Figure 5-3. Two parylene coated substrates are attached together and placed between two 

steel blocks. Screws are used to apply pressure and a torque wrench is used to control the 

applied pressure. The applied pressure can be calculated from the torque using the 

following equation. 

( )ραµ ++
=

tan
2
dr

TF  

Equation 5-1 

                                                                                                     

where F is force, T is torque, r is the average radius of the screw head, µ is the friction 

constant (generally 0.15 ~ 0.25), d is the diameter of screw, α is the pitch angle of the 

screw, and ρ is tan-1µ.. Teflon sheets (0.7 mm thick) were inserted between substrates 

and steel blocks to prevent glass substrates from breaking during the lamination. As a 

result, the applied pressure was not constant due to the viscoelastic behavior of teflon 

sheets. The compression apparatus was then placed in a vacuum oven or a microwave 

oven and heated.  
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Figure 5-3. Compression apparatus for the thermal lamination of parylene. 
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5.1.1.1 CONVECTION OVEN HEATING 

Preliminary bonding experiments were conducted using Pyrex glasses. Pyrex 

glass substrates (thickness: 2 mm, area:1x1 in2 or 2x2 in2) were coated with parylene-C 

using parylene deposition system (Labcoater II, Specialty Coating System, Indianapolis, 

IN). Then, the parylene-coated pyrex substrates were put together in the compression 

apparatus. The compression apparatus was then placed in a vacuum oven for heating. It 

must be noted that a vacuum oven is required to prevent oxidative degradation of 

parylene. Three different temperatures between Tg and Tm of parylene-C, 150, 200, and 

250 oC were selected in this experiments. Temperature was increased from room 

temperature to the set temperature for an hour and then soaked for another hour followed 

by slow cooling.  
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Table 5-1 shows the bonding results. Initially 2x2 in2 glass plates were used in the 

bonding tests but the bonding was not uniform even at high temperatures because the 

force was concentrated near the screws. The force concentration phenomena could be 

overcome by reducing sample area to 1x1 in2. The bonding result was evaluated by visual 

inspection and by inserting a razor blade between two pyrex substrates and tilting it until 

they are separated. If fracture occurs at the interface between parylene and pyrex 

substrate instead of that of two parylene layers, the bonding was considered as a good 

bonding. The good bonding results were obtained at above 200 oC with a pressure more 

than 5 MPa. 

Table 5-1. Bonding results by convection oven heating. 

Area (in2) Temp (oC) Torque (N x m) Pressure (MPa) Result 

2 x 2 150 6 3.86 Not bonded 
2 x 2 150 7 4.51 Not bonded 
2 x 2 150 8 5.15 Not bonded 
2 x 2 200 5 3.22 Partially bonded 
2 x 2 200 6 3.86 Partially bonded 
2 x 2 250 5 3.22 Partially bonded 
2 x 2 250 6 3.86 Partially bonded 
2 x 2 250 7 4.51 Partially bonded 
2 x 2 300 8 5.15 Partially bonded 
1 x 1 250 3 7.71 Well bonded 
1 x 1 250 2 5.14 Well bonded 
1 x 1 200 3 7.71 Well bonded 
1 x 1 200 2 5.14 Well bonded 
1 x 1 150 2 5.14 Not bonded 
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5.1.1.2 MICROWAVE HEATING 

Microwave heating of materials occurs due to dielectric loss mechanisms. The 

principal mechanism of coupling microwave radiation to polymer dielectrics is through 

dipole orientation by the electric field. The amount of microwave energy absorbed by a 

material is a function of the applied electric field and dielectric properties of the material 

as shown below [62]. 

"22 εεπ ormsabsorbed fEP =  

Equation 5-2 

where Pabsorbed is the dissipated or absorbed power per unit volume, Erms is the root mean 

square electric field strength, εo is the permittivity of free space, ε” is the relative loss 

factor and f is the frequency. It is also known that microwaves can accelerate chemical 

reaction rates. For example, the curing time of adhesives can be reduced as much as 10 to 

20 times compared with convection heating [63].  

The variable frequency microwave (VFM) is a modified microwave technology 

that allows uniform and selective heating. By rapidly sweeping through a bandwidth of 

frequencies, VFM not only provides a uniform energy distribution inside the chamber but 

also eliminates the problem of arcing that is usually observed in fixed frequency 

microwaves. This permits processing of samples with metal, electrical circuits, and high 

value semiconductor assemblies without any damage.  

In this study, the VFM was investigated as a new heating technique of 

parylene/parylene thermal lamination. Parylene-C has a dielectric constant of 2.95 and a 

dielectric loss factor of 0.013 at the frequency of 1 MHz. It is noted that the dielectric 

loss factor of parylene is higher than other spin-coated polymers while dielectric 
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constants are similar. This suggests that parylene can be effectively heated by VFM. As a 

preliminary test, silicon chips (2x2 cm2) having thin parylene films (1~10 µm) were 

heated to different set temperatures at different ramping rates. A commercially available 

VFM oven (MicroCure 2100, Lambda Technologies, Morrisville, NC) was used in this 

study. Air was constantly purged into the VFM chamber during the heating.  

The actual temperature of parylene during the VFM heating was monitored using 

an infrared sensor that is a part of the VFM oven. Figure 5-4 shows the heating profiles 

for different set temperatures and ramping rates. When the set temperature was 160 oC, 

parylene could be heated linearly with time at a ramping rate of 1 oC/sec (Figure 5-4 (a)). 

However, when the set temperature was 200 oC, the ramp speed was reduced gradually 

above 170 oC causing the delay in the time required to reach the set temperature. 

Moreover, parylene could not be heated to the higher set temperature (> 230 oC) even 

after 1 hour. This reduction in ramp speed occurred at a lower temperature when the ramp 

speed was lowered (Figure 5-4(b)). Such heating characteristic of parylene is considered 

to be due to its oxidative degradation. As mentioned in the previous section, parylene can 

be oxidatively degraded above 150 oC in air. Once oxidative chain scission occurs, 

material properties change abruptly. This can explain why the reduction of ramp speed 

was observed in the VFM heating of parylene. With the lower ramp speed, parylene can 

be degraded at lower temperatures because it has more reaction time. However it must be 

noted that this heating characteristic is only for the parylene that is exposed to air during 

the heating. In the actual lamination of parylene layers, they are not exposed to air 

because they are sandwiched and compressed during the lamination. As a result, the 

degradation was seldom observed in the parylene layers.  
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Figure 5-4. Variable frequency microwave (VFM) heating profile of parylene C (a) 
heating to different set temperatures at 1 oC/sec, (b) heating to 200 oC at different 

ramping rates.  
 

VFM can provide uniform, fast and selective heating for parylene layers and this 

idea can be applied to the wafer bonding technique [47]. In other words, parylene can be 

used as intermediate layers for wafer-to-wafer bonding. In this bonding technique, the 

substrates are not heated significantly and thus stress due to differences in thermal 

expansion could be drastically decreased. Therefore, this technique will be specifically 

useful for bonding two substrates consisting of dissimilar materials and having different 

coefficients of thermal expansion. In addition, this new heating technique along with a 

new intermediate layer material, parylene, provides a rapid, low-temperature, uniform, 

chemically stable, and biocompatible wafer bonding. This technique can be used for 

bonding structured wafers as well.  

For preliminary bonding tests, silicon wafers with a diameter of 7.5 cm were used. 

All wafers were cleaned with organic solvents and dried completely followed by 

parylene-C deposition. Then the parylene-coated wafers were put together in the 

compression apparatus followed by VFM heating. The bonding temperature and time 
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were programmed using the VFM software. In order to monitor the temperature of 

parylene, a reference parylene film coated on a silicon chip was always placed on top of 

the bonding sample so that the infrared camera might read the temperature. 

The four major bonding parameters investigated in this study were temperature, 

pressure, time, and thickness. Three different bonding temperatures (120, 160, and 200 

oC) were selected between Tg and Tm of parylene-C. Pressure was controlled by a torque 

wrench and the three different torque values used in this study were 1.2, 2.4, and 4.0 N·m, 

which is equivalent to 0.45, 0.9 and 1.5 MPa respectively. Bonding time was varied from 

10 to 120 min and parylene thickness was varied from 1 to 10 µm. Another important 

parameter that needs to be considered is the pre-treatment of the silicon surface because 

fracture may occur at the parylene/silicon interface instead of the parylene/parylene 

interface during bond strength test. An adhesion promoter recommended by the parylene 

manufacturer has been used to see its effect. The adhesion promoter was a mixture 

(50:50:1) of Isopropyl alcohol, DI water, and A-174 (gamma-methacryloxytropyl 

trimethoxy silane, Specialty Coating Systems). The treatment procedure was as follows. 

Silicon wafers were immersed in isopropyl alcohol for 5 min. Then, wafers were 

immersed in the mixed adhesion promoter solution for 30 min. Then, the wafers were air 

dried. The wafers were then immersed in isopropyl alcohol again for 5 min. Finally, the 

wafers were dried with nitrogen gas and baked on a hot plate at 100 oC.  
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5.1.1.3 BOND STRENGTH : SHEAR AND TENSILE TESTS 

The bonding strength was first evaluated qualitatively by a razor blade insertion 

test. For the samples that could not be separated by razor blade insertion, two quantitative 

tests, a die shear test and a tensile pull test, were performed. For the die shear test the 

bonded wafers were diced into 4x4 mm2 pieces and mounted on a glass slide using a 

super glue (specific name of product?). The die shear tester used in this experiment was 

STM 100K (Micro Systems Inc., Anyang, Korea). At least 10 samples were tested for 

each bonding condition, and the bonding strength values were averaged. For the pull test, 

the bonded wafers were diced into 9x9 mm2 pieces and each piece was mounted to a 

cylindrical plastic holder fabricated using rapid prototyping. A strong epoxy resin (Epoxy 

907, Miller-Stephenson, Sylmar, CA) was used for the mounting. Pull tests were 

performed using MicroTester 5548 (Instron Corporation, Canton, MA). At least five 

samples were tested for each bonding condition, and the bonding strength values were 

averaged. Figure 5-5 shows the samples prepared for the die shear test and the tensile pull 

test.  

  
(a) (b) 

Figure 5-5. Samples for (a) die shear test and (b) tensile pull test. 
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Table 5-2 is the summary of the bonding strength test results. All values were 

averaged. For every sample, a razor blade insertion test was performed first just after the 

bonding experiment. The samples bonded at 120 oC were separated by razor blade 

insertion regardless of other bonding parameters. The separated wafers still had parylene 

layers on the surface indicating that parylene layers had not been bonded with those 

bonding parameters. When the bonding temperature was 160 oC, parylene/parylene 

bonding was achieved depending on pressures and time, and the bonded wafers were not 

separated by razor blade. However, the parylene thickness did not make any difference in 

the bonding strength. The shortest process condition for parylene/parylene bonding in our 

experiments was 10 min at 160  oC and 1.5 MPa.  

Table 5-2. Bond strength at different bonding conditions. 

Bonding parameters Bonding strength 

Temperatur
e [oC] 

Pressure 
[MPa] 

Time 
[min] 

Thickness 
[µm] 

Adhesion 
promoter 

Die shear test 
[MPa] 

Pull test 
[MPa] 

120 0.9 60 2 No N/A N/A 
120 1.5 120 2 No N/A N/A 
160 0.9 30 2 No N/A N/A 
160 0.9 120 2 No 7.94 - 
160 0.9 90 1 No 7.07 - 
160 0.9 90 5 No 5.78 - 
160 0.45 60 2 No 7.09 - 
160 1.5 10 2 No 7.75 3.45 
160 1.5 30 2 No 5.97 5.38 
160 1.5 30 1 No 6.76 - 
160 1.5 30 5 No 6.22 - 
160 1.5 30 2 Yes 12.68 9.16 
200 0.9 90 1 No 6.64 - 
200 1.5 30 2 No 5.33 - 
200 1.5 10 2 No 4.92 - 
N/A Wafers were separated with razor blade (parylene layers were not bonded). 
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The bonding strength measurement through the die shear test revealed that the 

bonding strength did not change much with the changes of bonding parameters. The 

bonding strength ranged from 5 to 7 MPa. The tensile pull test result also showed similar 

characteristics. The bonding strength ranged from 3.5 to 5.5 MPa regardless of the 

bonding parameters. However, the adhesion promoter-treated sample showed almost two 

times the strength both in shear (12.68 MPa) and tensile strength (9.16 MPa). All the 

tested samples were inspected visually to see where the fracture had occurred. This 

inspection provided a good interpretation of the above bonding strength result. The 

fracture mechanism in this experiment can be classified into three cases as shown in 

Figure 5-6. First, when the parylene intermediate layers were not bonded, the fracture 

occurred at the parylene/parylene interface. In this case, the samples were usually 

separated during the razor blade test. Second, when the parylene intermediate layers were 

bonded well, the fracture occurred at the parylene/silicon interface during the bonding 

strength test. In this case, the bonded parylene intermediate layers were observed to 

remain only on one wafer after the bonding test. This was because the parylene/parylene 

bond was stronger than the parylene/silicon bond. The adhesion strength of the 

parylene/silicon bond was not influenced much by the bonding parameters. Consequently, 

the bonding strength did not change much as the bonding parameters varied in this case. 

The third case is that the bonded parylene layers were torn during the bonding strength 

test. The adhesion promoter-treated sample belonged to this case. Both parylene/parylene 

bonding and parylene/silicon adhesion were so strong that the fracture generated damage 

in the parylene layers. But still the fracture mainly occurred at the parylene/silicon 

interface. 
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Figure 5-6. Different fracture mechanisms in bonding strength tests. 
 

Another characteristic was that the bonding strength value often showed a large 

deviation (~ 50%) from the average value. This is considered to be mainly due to the 

existence of particles. This issue will be discussed more in the bonding uniformity section. 

However, the adhesion promoter-treated sample was quite different. It showed uniform 

bonding strength in both shear and tensile test. The deviation from the average value was 

less than 20%. 

5.1.1.4 DEBOND ENERGY : BLISTER TEST 

The die shear tests and the tensile pull tests revealed that a parylene/parylene 

bond is stronger than the adhesion between parylene and silicon substrate. Therefore the 

bond strength data obtained by those tests are in fact the adhesion strength between 

parylene and silicon substrate. Then how can we measure the debond energy of the 

parylene/parylene interface? The answer is a blister test. This test was originally devised 

to measure the adhesion strength of polymeric thin films on their substrates [64-66]. The 
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concept is very simple. Polymer film laminated on a substrate that has a through-hole is 

pressurized until debond occurs. By measuring the critical pressure and blister 

dimensions, debond energy can be calculated. The same concept can be applied to 

measure the bonding strength of two parylene layers. The only difference is that the 

substrate is conformally coated with parylene and then it is thermally laminated with flat 

parylene layer as shown below.  

 
 

2r 2r + dr 

h h + dh

P1 P2 

Parylene 

Silicon 

(a) (b) 

Figure 5-7. Schematic of the blister test for the measurement of parylene/parylene 
debond energy (a) before debonding, (b) after debonding. 

 
The hole in a blister test can be square or round. Since the round hole can 

eliminate the stress concentration and is easily modeled to determine the debonding 

energy, it is commonly used. The blister test with a round hole is of interest in this study. 

When the unbounded area is progressively pressurized by the pressurizing medium, the 

top layer will form a blister if it is relatively thin compared with the hole radius. The 

pressure-deflection behavior prior to any debonding can be described as follows. 

h
r

th
r
Etp 2

03
4 456.3 σ

+=  

Equation 5-3 

The blister volume can be estimated as  
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hrCV 2
3π=  

Equation 5-4 

During this phase, the work done by the external pressure is converted into the elastic 

energy of the bulged film. When the pressure inside the hole is continuously increased, 

the interface will fail at a critical pressure and debonding propagates along the interface 

as shown in Figure 5-7 (b). Under this condition, the work done by the external pressure 

is converted into the elastic energy of the bulged film and the interface debonding energy 

at the critical pressure, pcritical. To make the debonding happen, the following relationship 

must be satisfied: 

critical critical critical
external elastic debondingp p p

W W W ∆ ≥ ∆ + ∆  
 

Equation 5-5 

For the sample preparation, silicon wafers are machined to have holes using laser 

ablation. These wafers are then diced into small dies (2x2 cm2) which have a single hole 

in the center. The diameter of the hole was either 1, 2, or 4 mm. Parylene is conformally 

coated on this silicon dies and a flat steel sheet. This is followed by thermal lamination. 

After the lamination, the steel sheet is removed.  

Figure 5-8 shows the experimental setup for the blister test to measure the debond 

energy of parylene/parylene interface. The sample prepared as described above is 

clamped in a holder that was built by stereolithography. This holder has an inner channel 

and its two ends are connected to a syringe pump (SageTM model 362, Filtronic, 

Merrimack, NH) and a pressure sensor (PX302-050GV, Omega Engineering Inc., 

Stamford, CT) respectively using peek tubings. The probe of an optical sensor (MTI 2000 

Fotonic Sensor, MTI Instruments, Latham, NY) is then placed above the hole of silicon 
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substrate to measure the deflection of the membrane. DI water was used as the 

pressurizing medium. Both pressure and membrane deflection data were monitored using 

a data acquisition system (HP 34970A, Hewlett Packard) and appropriate computer 

software (HP Benchlink Data Logger, Hewlett Packard).  

 

 

  

Photonic sensor probe

Steel plate 
Test sample 

SLA holder 

Rubber  
gasket 

1/16” peek tubing 

Steel plate 

(a) 

(b) 

Figure 5-8. Blister test setup for the measurement of parylene/parylene deb
energy (a) schematic of the cross section, (b) bird view of the setup. 

 
It turned out that laser ablation is not a good way of preparing for the samp

Because of the sharp edges of the silicon die, parylene membranes were usually da

during the thermal lamination. Some of the samples that had not been damaged du

the lamination were used for preliminary tests. However, debonding was not obser

within the pressure range for which the Fotonic sensor could be used. The hole dia
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of the sample was 2 mm and the parylene thickness was 10 µm. The maximum pressure 

applied was nearly 20 psi. Until that pressure, the parylene/parylene interface was not 

debonded. It is suggested to use samples that has smaller hole diameter or thicker 

parylene layers to avoid large deflection.  

5.1.1.5 BOND UNIFORMITY AND INTERFACE 

Bonding uniformity across the wafer was investigated using a c-mode scanning 

acoustic microscope, so called c-SAM (series D-9000, Sonoscan.Inc., Elk grove village, 

IL). This enabled the non-destructive visualization of the interface between bonded 

wafers. Figure 5-9 shows the c-SAM image of a bonded sample. The bonding condition 

for this sample was 160 oC, 1.5 MPa for 30 min and the intermediate parylene thickness 

was 2 µm. The bright parts indicate non-bonded areas in this image. The bonding 

uniformity was good in the center of the wafer but the edge was not as good. Although 

the overall bonding uniformity was good, a few local defects were observed. Most local 

defects were found to have tiny dirt particles in them as shown in the magnified image of 

Figure 5-9. Dirt particles can sit on parylene layers either during the venting process of 

the parylene coating procedure or during the preparation of the bonding. This existence of 

particles can also explain why some of the samples showed very weak bonding strength 

during the die shear test. Better bonding quality is expected if the bonding experiment is 

done in a cleanroom environment.      
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Figure 5-9. Scanning acoustic microscope image of a bonded wafer (7.5 cm in 
diameter). 
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Figure 5-10. The bonding of a structured wafer (a) a bird view, (b) a sc
diagram of the cross-section. 

 
A structured wafer that has microchannels was successfully bonded to 

substrate using parylene intermediate layers (Figure 5-10). Again, the bonding

for this sample was 160 oC, 1.5 MPa for 30 min and the intermediate parylene
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was 2 µm. The overall bonding quality was good but still a few local defects due to the 

existence of particles were observed visually.  

 The microscopic bonded interface was also investigated using a scanning electron 

microscope (Hitachi S-800, Hitachi High Technologies, Pleasanton, CA). A bonded 

sample was broken in liquid nitrogen and coated with a thin gold coating for SEM 

imaging. Figure 5-11 shows the SEM image of the bonded interface. The bonding 

condition for this sample was 160 oC, 1.5 MPa for 30 min and the intermediate parylene 

thickness was 2 µm. The magnified view in Figure 5-11 clearly shows the two parylene 

layers (approximately 2 µm thick) and the interface. A uniform interface layer that is less 

than 200 nm was observed between two parylene layers. This thin interface layer is 

considered to be the inter-diffusion layer of the two parylene layers indicating a good 

bond. Many different spots were inspected in the SEM, and  uniform bonding was 

observed between the two parylene layers. 

 

Silicon 

Silicon 

Parylene 

Parylene 

Interface

 

Figure 5-11. Scanning electron microscope image of the bonded interface. 
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5.1.2 RELEASE OF PARYLENE MICROCHANNEL 

After the thermal lamination, the free-standing parylene column can be achieved 

by removing the silicon mold. For example, silicon mold can be dissolved in KOH 

solution because parylene is inert in it. However, if a silicon microchannel mold has to be 

sacrificed whenever we make a parylene column, the fabrication cost still remains high. 

Can we release the parylene column from the silicon mold without damaging the mold?  

In order to release parylene channel from silicon mold, the flat substrate must be removed 

first (Figure 5-1).  If it is not removed easily after the thermal lamination, parylene 

channel cannot be released without any damage. Therefore the choice of the flat substrate 

is very important for a successful channel release. Several requirements for the flat 

substrate are flexibility, low thermal expansion coefficient, and poor adhesion of parylene. 

Four different substrates, pyrex glass plate, teflon sheet, PET (polyethylene-terephtalate) 

film, and stainless steel sheet were suggested for the purpose and tested.  

Once the flat substrate is removed, the next step is releasing the parylene channel from 

the silicon mold. Regarding this release, several questions can arise. How does the aspect 

ratio of silicon microchannel mold affect parylene channel release? Can releasing agents 

help the release? Can Si mold be reused? Silicon molds having different aspect ratios 

were fabricated using deep RIE and used to investigate the effect of the aspect ratio on 

parylene channel release. In terms of the effect of releasing agents, two different type of 

releasing agents, Micro-90 (Specialty Coating Systems) and Camie 1080 (Camie-

Campbell Inc., St. Louis, MO) were used in this study. Since Micro-90 is a solution, the 

silicon mold was dipped in the diluted Micro-90 solution and then dried with nitrogen. 

However, Camie 1080, a spray type releasing agent, was sprayed on silicon mold before 
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parylene deposition. In order to investigate the reusability of the silicon mold, some 

channels were reused after being cleaned by oxygen plasma RIE and compared with 

others that had not cleaned by oxygen plasma RIE. 

 Among four flat substrate candidates (pyrex plate, teflon sheet, PET film, and stainless 

steel sheet), the stainless steel sheet turned out to be better than others for the parylene 

micromolding method. For the thermal laminaiton, a Pyrex plate worked better than 

others because of its uniform thickness and smooth surface. But it was very hard to 

remove the Pyrex plate after bonding. The Teflon sheet also worked well for bonding and 

it could be removed easily after bonding due to parylene’s poor adhesion on Teflon, but a 

significant  indentation (~ 30 µm) was observed on teflon after bonding process due to 

teflon’s viscoelasticity. Consequently, the parylene channel was also deformed by this 

indentation.  PET film did not work well even for the thermal lamination because of its 

high thermal expansion coefficient. The stainless steel sheet worked fine for both 

bonding and channel release, but when the device requires complex electrode patterns 

like in an interdigitated comb drive, parylene tends to stick on the substrate, making the 

release difficult. To address this problem, a thin layer of teflon (Teflon AF, DuPont, 

Wilmington, DE) was coated onto the stainless steel sheet through the dipping technique. 

This Teflon-coated stainless steel sheet was the best substrate for parylene micromolding 

because it had the combination of Teflon’s surface property and stainless steel sheet’s 

mechanical property.    

Regarding the effect of releasing agents, Micro-90 was very effective while 

Camie 1080 was not. However, even with the help of a releasing agent, Micro-90, it was 

difficult to release parylene channel without damage from silicon molds that have an 
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aspect ratio higher than 1:1 (width:depth). Oxygen plasma cleaning of the silicon mold 

was very effective in enhancing the reusability of the silicon mold. When the used silicon 

molds were descummed completely by oxygen plasma etching (200 mTorr, 200 W, 30 

min) and treated with Micro-90, they could be reused many times. Figure 5-12 shows the 

detailed fabrication flow of parylene micromolding. 

PRSilicon Au electrodeParylene Flat substrate (stainless steel sheet)

Figure 5-12. Detail process flow of parylene micromolding. 

5.1.3 OTHER ASPECTS OF PARYLENE MICROMOLDING 

Since parylene deposition copies substrate geometry, final parylene channels have 

the same cross-sectional shape as silicon molds. Therefore round channels can be 

obtained by using isotropically etched (HNA or XeF2 etching) silicon molds and 

triangular or rectangular channel can be obtained by using anisotropically etched (KOH 

or DRIE etching) molds as shown in Figure 5-13 (a). Another very interesting aspect of 

1. Deep RIE to build silicon microchannel mold 
2. Oxygen RIE to descum 
3. Soap solution treatment 
4. Parylene deposition 
 

5. Coat Teflon on stainless steel sheet 
6. Parylene deposition 
7. Electrode patterning if required 
 

8. Thermal lamination 
 

9. Peeling the steel sheet 
 

10. Release the parylene microchannel 
 

11. Go to step 2 for additional fabrication 
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4 
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parylene micromolding is that the inner aspect ratio of the parylene channel can be 

controlled by simply varying the parylene thickness. In other words, parylene channels 

having different inner aspect ratios can be fabricated using the same silicon mold as 

shown in Figure 5-13 (b). Moreover, the channel wall can have multiple layer structures 

as shown in Figure 5-13 (c). If a thin metal layer is deposited between two parylene 

layers, the final form will be a parylene/metal/parylene triple structure and if two 

different parylenes are deposited in series, double parylene structure can be obtained. For 

example, if parylene A (diX A, Daisankasei Co., Ltd ) is deposited on parylene C, the 

inner channel surface will be more hydrophilic and bioactive than parylene C because 

parylene A has amino functional group on its surface. 

 
Parylene 1Silicon

c)

b)

a)

Metal Parylene 2

Figure 5-13. Cross-sectional geometries of parylene channels (a) different of silicon 
mold, (b) aspect ratio control via parylene thickness, (c) multiple layer channel. 
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In this study only deep RIE etched silicon molds have been used because it is 

more difficult and challenging to release parylene channels from rectangular Si mold than 

from round or triangular mold. Rectangular microchannels (both width and depth were 

100µm) were fabricated on silicon wafers using deep reactive ion etching (RIE). The standard 

BOSCH process was used for the fabrication. The photoresist mask used for deep RIE was 

removed completely by both wet treatment and oxygen plasma etching. Figure 5-14 shows the 

SEM images of the silicon microchannels having diverse designs. 

 

a) 

d) c) 

b) 

Figure 5-14. SEM images of silicon microchannel molds fabricated by deep RIE (a) 
and (b) meander type channels, (c) long spiral channel, (d) multiple channel (all 

channels have same width of 100 µm and depth of 50 µm). 
 

Parylene microchannels have been fabricated using the silicon molds. Meandering 

channels, long spiral channels, electrophoretic channels, and dielectrophoretic channels 

are presented in Figure 5-15. All the channels have the same inner channel dimension (80 

µm width, 50 µm height). Different cross-sectional geometries can be fabricated using 
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the same mold for all different types of channels as mentioned above. The fabrication 

time was basically identical regardless of the design and length of the channel.  

Microfluidic components often require embedded electrodes.  In order to investigate the 

feasibility of electrode integration with parylene micromolding, electrophoretic and 

dielectrophoretic channels were designed and fabricated using the parylene micromolding 

technique (Figure 5-15 (c) and (d)). The electrophoretic channel has electrodes defined 

under each reservoir and the dielectrophoretic channel has complex interdigitated 

electrodes (finger width and gap are 20 µm) along the length of the channel. Ti/Au 

(0.03/0.1 µm) was deposited on the parylene-coated stainless steel sheet using an E-beam 

evaporator and then patterned by lift-off process with Futurrex NR5-8000 photoresist 

before bonding process. It must be noted that when a high melting temperature metal 

needs to be deposited, parylene may be degraded, causing cracks because of the high 

temperature during the evaporation process. The electrophoretic channel was single 

channel of 4 cm length and the dielectrophoretic channel was multiple channel of 1 cm 

length. 
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a) b) 

c) d) 

2 cm 

Metal wire Fused silica tube 

Au electrode 

2 cm 

100 µm 3 mm 

2 mm 2 mm 

Figure 5-15. Diverse kinds of parylene microchannels fabricated by parylene 
micromolding technique (all channels have same inner dimension of 80 µm width, 
50 µm depth, and 10 µm wall thickness) (a) meander type channels, (b) 1 m long 

spiral channel, (c) electrophoretic channel, (d) dielectrophoretic channel. 
 

Tubing is not a trivial issue in many microfluidic devices. Since the final free-

standing parylene microchannels is a flexible thin film structure, the conventional method 

of tubing is hard to apply. Therefore, both the inlet and outlet of the channel were 

punched from the side with a needle and then polyimide coated fused silica microtubes 

(OD ~ 250 µm, ID ~ 100 µm, Polymicro, Phoenix, AZ) were inserted and sealed with a 
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small amount of epoxy resin. For this purpose, all the parylene microchannels were 

designed to have wider (500 µm) inlets and outlets than the main channel (100 µm) part. 

After tubing, dyed water was introduced through the channel using syringe pump to see if 

there is any leakage. Figure 5-16 shows the tubing and leakage test for a long spiral 

channel.  No leakage was found in most of the parylene microchannels under the 

volumetric flow rate of 0.2 SCCM. A higher flow rate was not able to be tried because 

soft tubing used in this experiment could not endure the increased flow rate.  

    

Silica microtube 
(OD 250 µm) 

Soft tubes

1 m long parylene          
microchannel 

 

Figure 5-16. Tubing and leakage test of a long spiral parylene channel. 
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5.2 STATIONARY PHASE COATING 

Stationary phase coating is the most important process in developing a GC 

column. The actual column performance can be much worse than the theoretical 

performance if the coating is not good. The most common methods for the stationary 

phase coating of conventional fused-silica GC columns are dynamic (injection) and static 

(withdrawal) coatings which can be classified as a wet coating method. The same coating 

technique can be applied to micromachined GC columns as long as the columns endure 

the high pressure required to inject the coating solution through them. However, unlike 

fused-silica columns, micromachined channels have an open structure before they are 

bonded to flat substrates. Can we take advantage of the open structure of the 

micromachined channel for stationary phase coating?  

Table 5-3. Stationary phase coating methods for micromachined GC columns. 

Method Material  Mechanism/Selectivity References 

Thermal 
evaporation 

Copper 
Phthalocyanine 
(CuPc) 

Good adsorption/ 
NO2, NH3 

Kolesar et al.  
Kurosawa et al. 

Plasma 
polymerization 
(RF sputtering) 

Polychloro-
trifluoethylene 
(PCTFE) 

High concentration of 
interactive sites π-
conjugated systems/ 
Nonpolar species 

Sugimoto et al.  

Plasma 
polymerization 
(RF sputtering) 

Amino acid Hydrophilic structure/ 
Polar solvent gases  Sugimoto et al. 

Plasma 
polymerization 
(PECVD) 

Siliconorganic film 
(PDMS-like polymer)

Nonpolar stationary 
phase Lehmann et al. 

Injection 
coating 

Polydimethylsiloxane 
(PDMS) 

Nonpolar stationary 
phase  
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In order to take advantage of the open structure of the micromachined channel, we 

need to develop a dry coating method through which a uniform stationary phase can be 

achieved. Table 5-3 shows the previously reported stationary phase coating methods for 

micromachined silicon channels. Dry coating can provide a more uniform stationary 

phase and more precise thickness control compared to injection coating. In this study, 

two dry coating techniques and the injection coating technique (wet coating) were 

investigated for parylene GC column.  

5.2.1 DRY COATING 

One of the dry coating techniques used in this study was the plasma 

polymerization of fluorocarbon that is similar to the second method in Table 5-3. The 

other method is chemical vapor deposition of a functionalized parylene. Parylene A 

which has amino functional group was selected for this purpose. Since both materials are 

not commonly used stationary phases, their retention properties needed to be evaluated 

first. Quartz crystal microbalance (QCM) method was used here to investigate the 

absorption and the diffusion of organic chemicals in the materials. The distribution 

constants of representative volatile organic chemicals were also able to be calculated. 
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5.2.1.1 FILM DEPOSITION 

A parallel plate radio frequency (RF) plasma reactor was used to deposit 

fluorocarbon films from precursor/argon mixtures as shown in Figure 5-17. The  

precursor used was pentafluoroethane (C2F5H). The distance between the electrodes was 

fixed at 2.9 cm and RF power at 13.56 MHz was used. The bottom electrode was 

electrically grounded and heated. The substrates were placed on the bottom electrode and 

maintained at a constant temperature of 70 oC. The base pressure in the chamber was < 7 

mTorr, while the operating pressure was maintained at 1 Torr for all the depositions. The 

deposition time was 25 seconds.  A commercial parylene deposition system was used to 

deposit parylene A. The furnace temperature and vaporizer temperature were adjusted to 

690 oC and 190 oC, respectively. The parylene A dimer was provided by Uniglobe Kisco, 

Inc. With 0.5 g and 0.2 g of the dimer, the final coating thicknesses were 560 nm and 228 

nm respectively. The thickness was measured using an ellipsometer.    
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Figure 5-17. Schematic of the plasma reactor system [67].  
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5.2.1.2 QCM TESTS 

The absorption of gas into the films was studied using quartz-crystal 

microbalance (QCM) techniques. QCM crystals vibrate at precise and reproducible 

frequencies in the presence of an electric field. When a rigid load is deposited on a crystal, 

the resonant frequency decreases in response to the added mass. As long as the added 

mass is rigid and small compared to the crystal mass, the decrease in frequency is 

inversely proportional to the mass increase. This is the Sauerbrey relationship and is 

described below.  

f

fm
C
∆

∆ =  

Equation 5-6 

2 q
f

q q

f
C

ρ ν
=  

Equation 5-7 

where m is mass, f is measured frequency, Cf is the constant that is dependent on the 

crystal, fq is the crystal resonant frequency on the unloaded crystal, ρq is the density of 

the quartz and vq is the acoustic velocity. For the system used in these studies, fq is 5.0 

MHz, ρq is 2.65 g/cc and vq is 3340 m/s. With less than 5 wt% absorption of organic 

vapors in the film, it is assumed that the films will remain rigid when becoming saturated, 

validating the Sauerbrey relationship. 

The films investigated by this method were fluorocarbon, parylene-A, parylene-C, 

and PDMS. They were deposited on QCM crystals using PECVD (fluorocarbon), CVD 

(parylenes), and spin coating (PDMS). Parylene-C was investigated because it is the 
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structural material of the column and PDMS because it is the representative conventional 

stationary phase. To measure the absorption of the various organic chemicals, a dual-

chamber system is used. First, the crystal and crystal holder are place in a dry plexiglass 

chamber that is continuously purged with house nitrogen. The frequency is monitored 

until it reaches a constant value for several minutes. A second chamber is purged with a 

saturated organic vapor from a bubbler. The flow rate of nitrogen into the bubbler is 

controlled. The temperature of the bubbler and chamber is also monitored. A minimum 

flow rate of 4.5 scfh into the bubbler ensures a consistent environment in the chamber. At 

this flow rate, an equivalent chamber volume is delivered in 36 seconds. Initially, this 

chamber is purged for 25 minutes prior to testing. The partial pressure of the absorbent in 

the chamber environment is assumed to be at the vapor pressure at the temperature of the 

bubbler. While evaporation causes the temperature in the bubbler to be less than ambient, 

the chamber temperature stays at ambient temperature within ± 2 °C.  

 

 
(a) (b) 

Figure 5-18. (a) QCM and (b) experimental setup. 
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After the frequency is constant in the dry atmosphere, the QCM crystal and holder 

are quickly transferred the second chamber. The QCM is exposed to ambient conditions 

during the transfer, however, the transfer takes less than half of a second which is slower 

than the timescale of the absorption. After the frequency is stable for several minutes in 

the organic atmosphere, the QCM is returned to the dry chamber. This cycle is repeated 

2-3 times to ensure reproducible results and complete desorption of the vapor. A typical 

absorption/desorption cycle is shown in Figure 5-19.  

 

Figure 5-19. Typical absorption/desorption cycles. Shown is hexane/fluorocarbon 
system. 

 
The absorption of seven chemicals representing a range of functional and 

structural groups were tested using the four films. The seven chemicals are water, ethanol, 

diethyl ether, tetrahydrofuran, acetonitrile, hexane, and benzene. The analysis includes 

the equilibrium mass uptake, diffusion coefficient, and distribution constant calculation.  

The total mass uptake is calculated using the frequency decrease upon exposure to the 

organic atmosphere.  The equilibrium mass uptake for the four films is listed in Table 5-4. 
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The fluorocarbon film readily absorbed the non-polar and slightly polar molecules.  

While the carbon-fluorine bond is one of the most polar covalent bonds, the large fluorine 

molecules in CF3 and CF2 moieties shield the carbon backbone from absorbed species 

creating a more non-polar environment. Polar molecules may be able to interact with CF 

centers where the carbon is less shielded. This could explain the moderate absorption of 

the more polar molecules. The amine functional group in the parylene-A film seems to 

strongly interact with ethanol and acetonitrile allowing significant absorption. This can be 

explained by the strong dipole of the O-H and the CN in those respective molecules. It is 

surprising that the water absorption is not comparable. Parylene-c films absorbed vapor 

more than expected. Since the parylene-c is partially crystalline, vapor sorption was 

expected to be low. In areas that are not crystalline, the pi bonds on the benzene ring and 

the polarity of the carbon-chlorine bond will provide some interactions allowing polar 

vapor absorption. In addition the organic nature of the film provides for non-polar 

absorption. Exposure of the PDMS film to THF, hexane, and benzene resulted in a large 

increase in the QCM resonant frequency, implying a decrease of the mass onto the film.  

This is likely due to a large degree of swelling resulting in a significant change of the 

modulus of elasticity. This condition can be likened to the difference between vibrating a 

firm material and a gel-like material. For the same driving force, the more viscous 

material will vibrate at a higher frequency until the resonance matches the vibrations of 

the gel-like medium. The equipment currently used does not allow for independent 

measurement of both mass and modulus of elasticity.  
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Table 5-4. Vapor uptake for different films. 

 Flourocarbon 
(wt%) 

Parylene-A 
(wt%) 

Parylene-C 
(wt%) 

PDMS 
(wt%) 

Water 0.31 0.56 0.31 0.01 

Ethanol 0.80 2.88 1.22 0.45 

Ether 1.90 0.13 1.38 0.73 

Acetonitrile 2.22 5.16 0.99 0.63 
Tetrahydrofuran 

(THF) 3.91 0.17 1.15 -6.70 * 

Hexane 1.43 0.08 0.46 -48.06 * 

Benzene 3.75 0.17 0.76 -20.39 * 
 

About half of the film/absorbate systems exhibited typical Fickian-like diffusion 

behavior. Fickian behavior is illustrated in Figure 5-20. This behavior is obvious when 

the normalized mass uptake is plotted versus the square root of time as shown in Figure 

5-20 (a). During the first 50-60% of mass uptake, the plot is linear if the diffusion is 

Fickian. The slope of this line can be used to determine the diffusion coefficient of the 

system. When this coefficient is used in the analytical model for Fickian diffusion, the 

model fits the experimental data well (Figure 5-20 (b)).  This analysis is a common for 

determination of diffusion coefficients. 

Some systems initially exhibited Fickian type diffusion until 50-60% of mass 

uptake. At that point, a noticeable change in the rate of absorption can be observed. This 

concentration-dependent diffusion behavior (Figure 5-21 (a)) is common in polymer 

absorption and may be explained by clustering. Clustering occurs when all of the 

absorption sites become saturated, molecules continue to absorb into the film and interact 

with already absorbed molecules. Clusters of absorbent molecules form around sites. The 

diffusion rates decreases because this is a slower process. Several systems initially 
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absorbed a higher than equilibrium and became super-saturated before equilibrating to a 

lower concentration.  This type of behavior is shown in Figure 5-21 (b). No good 

explanation has been made for this behavior. 
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Figure 5-20. Fickian behavior with hexane/fluorocarbon system; (a) normalized 
mass uptake versus elapsed time1/2 (diffusion coefficient can be calculated from the 

slope of this graph ), (b) comparison of the measurement and the Fickian model. 
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Figure 5-21. Non-Fickian behaviors ; (a) concentration-dependent diffusion 
behavior (ethanol/parylene A), (b) super-saturation behavior (THF/parylene A). 
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Table 5-5 is a summary of the behaviors observed for each type of system. From the 

equilibrium absorption for each system, a distribution constant can be calculated. The 

distribution constant can be used as a predictor for solvent separation in a column. The 

concentration in both phases is required. The concentration in the vapor phase is 

calculated assuming saturation of the organic phase in the bubbler at the bubbler 

temperature and that the vapor behaves as an ideal gas at the temperature in the chamber. 

The vapor pressure is estimated using the Antoine equation and data from the DIPPR 

online thermodynamic database. The concentration in the solid phase is calculated using 

the molecular weight of the absorbent and the density of the solid polymer.  

There appears little correlation between the behavior of the system and the strength or 

type of film/absorbent or absorbent/absorbent interaction. For the systems which 

exhibited Fickian-like behavior, the estimated diffusion coefficient is listed, although the 

solubility, not the diffusion rate is generally more important for separation in a GC 

column.  

Parylene-C films absorbed vapor more than expected. Since the parylene-C is 

crystalline, vapor sorption was expected to be low. In areas that are not crystalline, the pi 

bonds on the benzene ring and the polarity of the carbon-chlorine bond will provide some 

interactions allowing polar vapor absorption. In addition the organic nature of the film 

provides for non-polar absorption. As expected, the rate of absorption for the PDMS was 

faster than the measurement capability.  With the thickest film possible spun on the QCM 

(1.1 micron), the absorption appears instantaneous with measurement interval of 0.1 

seconds.  This observation agrees with the model and literature values for the diffusion 

coefficient. 
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Table 5-5. Summary of observed behavior for each system. 

Film Absorbent Behavior 
Diffusion 

Coefficient 
[cm2/s] 

Conc. in 
film 

[mmol/l] 

Conc. in 
vapor 

[mmol/l] 

Distribution 
constant, K 

Water Fickian 1 x 10-11 327.2 0.814 402.19 

Ethanol Super-sat. over equil. 1030.4 3.565 288.99 

Ether Fickian 7 x 10-11 487.2 7.945 61.32 

Acetonitrile Super-sat. over equil. 329.7 1.459 226.03 

THF Clustering  912.3 2.337 390.39 

Hexane Fickian 1 x 10-12 1026.3 2.534 404.95 

Fl
uo

ro
ca

rb
on

 

Benzene Super-sat. over equil. 315.2 3.118 101.08 

Water Fickian 8 x 10-10 405.3 0.894 453.30 

Ethanol Clustering  29.8 3.752 7.93 

Ether Fickian 2 x 10-9 22.8 7.945 2.86 

Acetonitrile Fickian 3 x 10-12 813.2 1.765 460.78 

THF Super-sat. over equil. 27.5 2.463 11.15 

Hexane Super-sat. over equil. 1631.1 2.289 712.53 

Pa
ry

le
ne

 - 
A

 

Benzene Super-sat. over equil. 12.4 3.730 3.34 

Water Fickian 3 x 10-9 223.4 0.691 323.51 

Ethanol Clustering  206.0 1.453 141.78 

Ether Clustering  392.6 6.143 63.92 

Acetonitrile Fickian 2 x 10-9 318.0 1.664 191.13 

THF Clustering  203.5 3.373 60.34 

Hexane Fickian 2 x 10-9 70 2.724 25.70 

Pa
ry

le
ne

 - 
C

 

Benzene Clustering  139.5 1.877 74.28 

Water Swelling - -6.4 0.785  

Ethanol  > 1 x 10-8 60.7 1.277 47.55 

Ether  > 1 x 10-8 165.9 6.143 27.00 

Acetonitrile  > 1 x 10-8 160.0 2.028 78.90 

THF Swelling - -949.3 2.734  

Hexane Swelling - -5854.2 3.188  

PD
M

S 

Benzene Swelling - -2969.3 2.149  
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5.2.2 WET COATING 

5.2.2.1 PRELIMINARY TESTS 

In order to see the feasibility of coating conventional stationary phase on a 

parylene surface, some preliminary experiments have been done using spin coating. 

Parylene was deposited on 2 inch dia silicon wafers and its thickness was measured by 

ellipsometry. Parylene had very uniform thickness at about 0.8 µm. One of the most 

common non-polar stationary phase, OV-1 (PDMS, Ohio Valley Specialty Chemical, 

Marietta, OH) was selected for this study. Two different concentrations were prepared 

using toluene as a solvent. Both Si and parylene-coated Si substrates were then spin-

coated with the solutions at 2000 rpm for 20 seconds. After spinning, the wafers were put 

in 120 oC oven for solvent removal. OV-1 coating thickness was measured by 

ellipsometry. Table 5-6 shows the results. The samples coated with solution 1 did not 

show detectable thickness on either substrate. However, the samples coated with solution 

2 showed similar coating thicknesses. Different substrate materials did not make a big 

difference in coating thickness (5% difference). OV-1 coating thickness seems to be able 

to be controlled by solution concentration and coating speed. The coatings on both 

substrates looked uniform like thermally grown SiO2 layer.  

Table 5-6. Spin coating of OV-1 on silicon and parylene surfaces.  

 Solute Solvent Coating on silicon Coating on parylene

Solution 1 0.1 g OV-1   40 mL Toluene - - 
Solution 2 2.0 g OV-1   100 mL Toluene 287 nm 273 nm 
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Another preliminary test was parylene surface modification. The effect of wet 

treatment on the hydrophilicity was investigated. For this purpose, 1x1 cm2 silicon pieces 

were treated with an adhesion promoter (A174:DI water:IPA=1:50:50) and then 

deposited with 1 µm thick parylene C.  

First, the parylene-coated silicon pieces were exposed to 4 different oxidizing 

solutions: Piranha (H2SO4/H2O2, 3:1), Aqua regia (HNO3/HCl, 1:3), RCA SC-1 (NH4OH/ 

H2O2/H2O, 1:1:5, heated to 60 oC), RCA SC-2 (HCl/ H2O2/H2O, 1:1:5, heated to 60 oC). 

The piranha and aqua regia seemed too aggressive and delaminated the film from the 

silicon after several minutes. Exposure to both the SC-1 and SC-2 solution modified the 

surface, however, the SC-2 solution was able to reduce the contact angle much more than 

the SC-1 solution as shown in Table 5-7.  XPS also shows SC-2 oxidize the surface more 

than SC-1.  

Table 5-7. Effect of oxidizing solutions on parylene surface. 

 

Treatment Contact angle XPS – C (%) XPS – Cl (%) XPS – O (%) 

None 90 89.9 10.1 0.0 

SC-1 – 1.5 hrs 79 88.3 10.1 1.6 

SC-2 – 1 min 83 85.0 9.0 6.1 

SC-2 – 5 min 73 87.2 9.9 3.0 

SC-2 – 10 min 54 84.2 10.2 5.7 

Second, reduction and combination methods have been tried. The most common 

reductive method, and the one employed here is a sodium/naphthalene solution in THF. It 

is known that this acts to defluorinate the surface of Teflon to a depth dependent on the 

exposure time and concentration, but can range from tens of angstroms to microns. 

Literature reports indicated that these reductive treatments are not nearly as effective on 

166 



 

chlorine containing polymer films, however, the effective dechlorination in the parylene-

C samples was observed. Samples were exposed to a reductive sodium/naphthalene 

solution for times ranging from 30 seconds to 30 minutes. XPS analysis indicated a 

complete removal of chlorine with the minimum treatment time. In addition, an 

increasing penetration depth is observed over the time range evidenced by the charge 

build-up during XPS analysis. For the minimum time, the dechlorinated film depth 

exceeds the penetration depth of the XPS analysis (~50-75 angstroms). After the 

treatment, aromaticity is still detected in the film, as well as trace amounts of oxygen. 

This treatment, however, did not significantly reduce the contact angle.  

Third, combination treatments gave predictable results.  Reductive treatments 

removed the chlorine and oxidative treatments incorporated a similar amount of oxygen 

as before (3-6%), however, contact angles did not seem to correlate to the addition of 

oxygen.   

5.2.2.2 INJECTION COATING FOR CIRCULAR SILICA COLUMN 

The conventional silica columns were used to find out an appropriate recipe for 

injection coating of parylene column. 1 m long silica columns having the inner diameter 

of 100 µm or 320 µm were used for this purpose. The final coating thickness is a function 

of many parameters and can be expressed by Fair-Brother equation shown below.  

2/1
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⋅=

γ
ηurcd  

Equation 5-8 
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where d is coating thickness, r is radius, c is concentration, u is velocity, η is viscosity, 

and γ  is surface tension.  

Three solutions having different concentrations were prepared. 0.5, 2, and 5 g of 

OV-1 were dissolved in 100ml toluene, respectively. The viscosity of the solutions was 

measured by a rheometer (AR1000-N, TA instruments). The dynamic viscosity data of 

the solutions are shown in Figure 5-22. Compared to 0.5g/100ml solution, 5g/100ml 

solution was much more viscous and showed shear thinning property. The dynamic 

viscosity of the solution (5g/100ml) at the shear rate of 100 [1/sec] was about 0.25 Pa·s. 

The surface tensions of the two solutions were measured by a goniometer (NRL.C.A, 

Rame-Hart, Inc., Mountain Lakes, NJ) and the values were 18.2 and 17 dyne/cm, 

respectively. 
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Figure 5-22. Dynamic viscosity of OV-1 solutions having different concentrations. 
 

Knowing the viscosity and surface tension of the solution, the velocity and 

pressure drop required for a certain coating thickness can be calculated using the Fair-

Brother equation. Table 5-8 shows the calculation results for 100 and 320 µm diameter 

columns (1m long). For 100 µm column, very high velocity and pressure drop are 
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required for the desired coating thickness (50 ~ 100 µm) when 0.5g/100ml solution is 

used. However, the same coating thickness can be obtained by low velocity (< 0.5 mm/s) 

and comparatively low pressure drop (< 3 atm) when 5g/100ml solution is used.  For 320 

µm column, approximately 10 times less velocity and 100 times less pressure drop are 

required for the same coating thickness when the same solution is used.   

Table 5-8. Coating thickness and flow rate.  

 

r A L C η γ d u Q ∆P 
[µm] [m^2] [m] [%] [Pa.s] [N/m] [nm] [m/s] [SCCM] [psi] 

50 7.85E-09 1 0.5 4.90E-03 1.82E-02 100 2.38E+00 1.12E+00 5410 

50 7.85E-09 1 0.5 4.90E-03 1.82E-02 50 5.94E-01 2.80E-01 1352 

50 7.85E-09 1 0.5 4.90E-03 1.82E-02 30 2.14E-01 1.01E-01 487 

50 7.85E-09 1 0.5 4.90E-03 1.82E-02 10 2.38E-02 1.12E-02 54 

50 7.85E-09 1 5 0.25 0.017 100 4.35E-04 2.05E-04 51 

50 7.85E-09 1 5 0.25 0.017 50 1.09E-04 5.12E-05 13 

50 7.85E-09 1 5 0.25 0.017 10 4.35E-06 2.05E-06 0.5 

160 8.04E-08 1 5 0.25 0.017 100 4.25E-05 2.05E-04 0.5 

160 8.04E-08 1 5 0.25 0.017 200 1.70E-04 8.20E-04 1.9 

(r: radius, A: cross sectional area, L: length, C: concentration, η: dynamic viscosity, γ: 
surface energy, d: coating thickness, u: velocity, Q: volumetric flow rate, ∆P: pressure 
drop) 
 

A syringe pump was used to inject the solution through the column and 

volumetric flow rate was controlled. However, the required velocity could not be 

achieved at the calculated volumetric flow rate. When the volumetric flow rate was 

increased to 0.1 SCCM, the reasonable velocity (~ 0.1-1 mm/s) could be achieved. But 

the syringe needed to be held down tightly during the injection because the syringe pump 

could not endure the high pressure. After flowing the solution through the column for 5 

min, the solution filled in the column was pushed out using the injection module of the 

169 



 

conventional GC system. Helium gas was used for this and the inlet pressure was set 50 – 

80 psi. 

Figure 5-23 shows the SEM images of the cross section of OV-1 coated silica 

column. The concentration of the solution was 5 g/100 ml and the volumetric flow rate 

was 0.01 SCCM. However, it was very hard to observe the thin coating lined in the 

column.  

 

Figure 5-23. SEM image of OV-1 coated silica column. 
 

Since the direct measurement of the stationary phase thickness was failed, the 

only means left is calculating the thickness through actual GC analysis. This method is 

very simple. What we need to know from a chromatogram are the dead time (tM) and the 

retention time (tR) of a solute whose distribution constant is known. Then the following 

two equations are used to calculate the stationary phase thickness.  

(1 )R Mt t k= ⋅ +  

r
wK

Lr
LwrK

V
V

Kk
M

S 22
2 ⋅=
⋅⋅
⋅⋅⋅

⋅=⋅=
π
π   

The following graph is the chromatogram for hydrocarbon mixtures obtained with 

a silica column (ID 100µm, 1m, stationary phase: injection coated OV-1 at 0.01 SCCM 
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with 5 g/100 ml solution). The sample was pentane, hexane, and heptane dissolved in 

methanol. The unretained peak and the peak for heptane appeared at 0.190 and 0.255 min 

respectively. The distribution constant of heptane for PDMS was obtained from literature. 

This data was used in the calculation of stationary phase thickness and the calculated 

stationary thickness was 37 nm.   
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Figure 5-24. Chromatogram for hydrocarbon mixture obtained with a silica column 
that has injection-coated OV-1. 

 

5.2.2.3 INJECTION COATING FOR PARYLENE COLUMN 

In order to avoid the high pressure drop in a parylene column and the stationary 

phase coating in side tubings, a clamping method was tried. A parylene-coated silicon 
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microchannel was attached to a glass substrate having holes and tubings as shown in 

Figure 5-25. Then these were clamped together and the solution was injected using 

syringe pump. This method was not successful. There was a leakage observed during the 

injection of the solution. So the conventional injection coating method was tried after 

completing thermal lamination and tubing. Figure 5-26 shows the injection coating setup. 

However, the recipe obtained from the experiments with silica columns did not work well. 

The high concentration solution (5 g OV-1 / 100 ml toluene) used for silica columns built 

up too much pressure in a parylene column and did not advance. So the lower 

concentration (2.0 g OV-1 / 100 ml toluene) and lower volumetric flow rate (0.001 

SCCM) were used for parylene columns. This recipe produced a reasonable speed of the 

solution and the solution was purged out using GC injection module. GC analysis was 

performed using this column and the results will be discussed in Chapter 7.  

 

Figure 5-25. Assembly for injection coating. 
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Figure 5-26. Setup for injection coating of stationary phase. 
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C H A P T E R  6  

FABRICATION 

This chapter describes the fabrication of a parylene GC column. Since the 

development of the key processes used in the fabrication was fully described in the 

previous chapter, this chapter will cover the other aspects related to the fabrication of 

parylene GC column. The detail recipes and the problem shooting of each fabrication 

process will also be provided in this chapter.   

6.1 OVERVIEW 

Figure 6-1 shows the overall fabrication flow for parylene GC column. This is one 

mask process and semi-batch process. Silicon microchannel molds are fabricated using 

deep RIE etching technique. The silicon mold is then deposited with parylene, platinum 

and parylene in series. A pyrex glass substrate is also deposited with parylene. These two 

substrates are then laminated with heat and pressure. After thermal lamination, parylene 

column is released by etching silicon mold away with KOH solution. The free-standing 

parylene column is then deposited with gold to form a heating element. Then, silica 

microtubes are inserted into parylene column and stationary phase is lined in the column 

by injection method. Finally, electrical wiring is made and parylene column is packaged. 
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Figure 6-1. Fabrication process flow (1
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Lithography, deep RIE etching, KOH etching, and metallization were performed 

in cleanroom facilities and the other processes such as parylene deposition, thermal 

lamination, and stationary phase coating were conducted in non-cleanroom facilities. 

6.2 SILICON MICROCHANNEL 

Silicon microchannels were fabricated by deep RIE technique. The standard 

Bosch process that consists of one deposition and two etch steps was used to fabricate 

deep rectangular channels on silicon substrates. An inductively-coupled plasma etching 

system (Plasma-Therm ICP) was used for the Bosch process. Arrays of spiral 

microchannels were etched on 4-inch diameter silicon substrates. Nine 1 m long channels 

or four 3 m long channels were built on one wafer. Figure 6-2 is a part of the mask layout 

for 1 m long channel. 

 

2 cm 32 turns 

Figure 6-2. Mast layout for silicon microchannel (1 m long, 100 µm wide). 
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Four different channels were designed and fabricated. Their dimensions are as 

follows. For each channel design, silicon channel having different channel depth were 

fabricated by controlling the number of Bosch cycles.  

Table 6-1. Four different dimensions of silicon microchannels. 

 Length [m] Width [µm] Inter-channel distance [µm] 

Channel 1 1 60 100 
Channel 2 1 100 100 
Channel 3 3 60 100 
Channel 4 3 100 100 

 
Table 6-2 is the detail description of the fabrication of silicon microchannel. AZ 

4620 was used as the mask material for deep RIE of silicon. An adhesion promoter was 

required because the channel pattern is a long thin line. Hexamethyldisilazane (HMDS) 

was used for the purpose in this process. The existence of HMDS made developing much 

slower, so that higher concentration (AZ 400K:DI water = 1:1) solution was used for 

developing. Also pipetting over the pattern during developing was very effective.  

Figure 6-3 is the SEM images of the cross-section of a silicon microchannel that has a 

dual spiral design. Figure 6-3 (a) is a overall bird view and Figure 6-3 (b) is a magnified 

view. It is observed from Figure 6-3 (b) that the wall angle is slightly bigger than 90 o. 

Most silicon microchannel fabricated in this study by standard Bosch technique showed 

such ‘re-entrant’ shape. Figure 6-3 (c) is a magnified image of the channel bottom. The 

channel bottom did not have flat surface but a curved one. The difference in height 

between the edge and the center of the channel bottom was less than 20 µm for a 300 µm 

deep channel. Figure 6-3 (d) shows one end of the channel. As shown in the mask layout, 

the inlet and outlet of the channel have bigger dimension than the main channel. During 

177 



 

the deep RIE, the larger area is etched slightly faster than the small area because the 

etching species can reach the bottom of the channel more easily. As a result, the inlet and 

outlet have slightly deeper channel than the main channel.   

Table 6-2. Detail description of the fabrication of silicon microchannel. 

 Process step Details 
1 Dehydration bake Hot plate, 120 oC, 5 min 
2 Primer coating HMDS, 3000 rpm – 1000 rpm/s – 10 s  
3 
 

PR coating  
 

AZ 4620 (15 µm) 
1000 rpm – 500 rpm/s – 20 s – 3000 rpm – 10000 rpm/s -3 sec

4 Soft bake Hot plate, 95 oC, 20 min 
5 Exposure 365 nm, 1000 mJ 
6 Develop AZ 400K:DI water = 1:1, pipetting 
7 Hard bake Hot plate, 95 oC, 20 min 
8 
 
 
 
 
 

Deep RIE 
 
 
 
 
 

Standard Bosch process 

 Gas 
(C4F8:SF6:Ar)

Power 
[W] 

Time 
[sec] 

Pressure 
[mTorr] 

Deposition 70:0.5:40 825 4 15 
Etch A 0.5:50:40 825 2 16 
Etch B 0.5:100:40 825 6 16  

9 PR strip AZ 400T, Hot plate, 80 oC, 10 min 
 

As a mold for parylene GC column, silicon microchannel needs to be free of 

defect. The fabrication technique used here was the standard Bosch process that is a 

widely used etching technique. However, it was not easy to fabricate such a clean silicon 

microchannel as the one shown in Figure 6-3. The most common problem was so called 

‘micrograss’ or ‘black silicon’. During deep RIE etching of silicon, tiny particles of 

polymers or oxide can behave as masks, creating tiny needles or grass in a silicon channel 

as shown in Figure 6-4. Since this kind of submicron structure absorbs light, it is often 

called ‘black silicon’. It was observed that the formation of black silicon depended on the 

cleanness of the etcher chamber and the substrate to be etched. Although the amount of 
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black silicon changed wafer to wafer, almost all wafers was observed to have certain 

amount of black silicon. They could be localized or spread out over the wafer. SiO2 mask 

was also tried but black silicon was still formed. In addition to black silicon problem, 

imperfect PR patterning was another common problem that caused defects in silicon 

microchannel. These defects include island shape, peninsular shape, and dam shape as 

shown in Figure 6-5. 

 

  
(a) (b) 

  
(c) (d) 

Figure 6-3. SEM images of a silicon microchannel; (a) overall view, (b) wall angle, 
(c) channel bottom, (d) channel end. 
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(a) (b) 

Figure 6-4. SEM images of black silicon formed in a microchannel (a) dense black 
silicon, (b) sparse black silicon. 

 

   
 

(a) (b) 

Figure 6-5. Defect in silicon microchannels due to imperfect PR patterning; (a) 
microscope image of three different defects, island, peninsula, and dam, (b) SEM 

image of an island-shape defect. 
 

Another very important issue is the surface roughness of silicon microchannels. 

The surface roughness of GC column is very important because it affects the uniformity 

of stationary phase coating. Deep RIE silicon microchannels generally have a 

considerable roughness on the vertical walls while the bottom surface is comparatively 

smooth. There are two kinds of roughness on the wall surface of a deep RIE silicon 
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channel as shown in Figure 6-6. One is regularly repetitive horizontal scallop pattern (~ 

0.5 µm) due to repeating Bosch cycles. The other is irregular vertical groves (1-2 µm) the 

cause of which has not been clearly known yet. These are unavoidable roughness 

resulting from deep RIE process.   

  

Figure 6-6. Surface roughness of a deep RIE silicon channel. 
 

Can we reduce this surface roughness using wet treatment? Generally wet etching 

produces smoother surface than dry etching. So, a short treatment with wet etchant may 

reduce the surface roughness of a deep RIE silicon channel. Two most common wet 

etchants for silicon were used for this purpose. One was 50% KOH solution. This is an 

anisotropic etchant and known to have an etch rate of approximately 0.5 µm/min at 80oC. 

The other was HNA solution (20% HF + 45% HNO3 + 35% CH3COOH). This is an 

isotropic etchant and known to have an etch rate of approximately 4 µm/min at room 

temperature.  

Figure 6-7 shows the effect of a short KOH etching on the surface roughness of a 

deep RIE silicon microchannel. A short KOH etching seemed to make sharp grooves 

smooth initially but soon it started roughening even clean surfaces. The time control was 
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not easy and the smoothening effect was not considerable. HNA solution was no different. 

In addition, wet etching affected top surfaces as well as the channel walls. 

  
(a) (b) 

  
(c) (d) 

Figure 6-7. The effect of a short KOH etching (50% KOH, 80 oC) on the surface 
roughness of a deep RIE silicon microchannel; (a) before etching, (b) after 1 min, (c) 

after 2 min, (d) after 5 min. 

6.3 PARYLENE DEPOSITION 

A 5 µm Parylene-C (Specialty Coating Systems, Indianapolis, IN) was deposited 

on silicon microchannel mold using a commercial system (Labcoater2, Special Coating 

System). One of the samples was diced after the parylene deposition to observe the 

coating uniformity. Figure 6-8 shows SEM images of the cross-section of a parylene-
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coated silicon microchannel. Although the parylene coating at the diced plane was 

delaminated and deformed by the shear force, the overall parylene coating on silicon 

channel was uniform. After the first parylene deposition, a 1 µm thick platinum film was 

sputtered on the parylene layer using CVC DC sputterer (pressure ~ 8.7x10-4 Pa, power ~ 

25% of 1500 W supply max.). Platinum was chosen because it is KOH compatible. 

Finally another 5 µm thick parylene layer is deposited on the platinum layer.   

  

Figure 6-8 SEM images of a parylene-coated silicon microchannel. 
 

Will the parylene coating reduce the surface roughness of a deep RIE silicon 

microchannel? Figure 6-9 shows the surface roughness change by parylene deposition. 

Two different surface patterns (Figure 6-9 (b) and (c)) were observed on the parylene 

surface. According to Figure 6-9 (b), parylene deposition basically copied the roughness 

of its mold but at least the horizontal scallop pattern was not observed anymore. In other 

words, the overall roughness could be reduced because parylene coating (~ 10 µm) was 

much thicker than the roughness of silicon channel. However, according to Figure 6-9 (c), 

parylene does not seem to just copy the silicon surface. The surface pattern was convex 

and smooth while the surface of silicon channel was concave and sharp. The exact reason 

for this change was not investigated thoroughly but the surface roughness seems to affect 
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the polymerization process of parylene. Again, horizontal scallop pattern was not 

observed, either.     

  
(a) (b) (c) 

5 µm5 µm 5 µm

Figure 6-9. Surface roughness change by parylene deposition (a) the roughness of 
deep RIE silicon channel, (b) and (c) two different surface patterns on parylene 

coating. 
  

In order to investigate the planarization effect of parylene deposition, simple grid 

patterns were generated by photoresist as shown below. Surface profile was scanned by a 

profilometer before and after parylene deposition (10 µm). The PR pattern width (d) and 

gap (g) were varied from 10 to 20 µm and the PR thickness (t) was fixed at 

approximately 1 µm.   

 
   (a)                                                   (b)   

d g 

PR 

Profilometer 
stylus 

t t’ Parylene 

Figure 6-10. Test for the planarization effect of parylene deposition; (a) before 
parylene deposition, (b) after parylene deposition. 
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Figure 6-11 shows the results of the planarization test. When the pattern width 

and gap were bigger than 15 µm, the profile of parylene-coated surface was almost same 

as that of PR pattern and t’ was also same as t. But when the pattern width and gap were 

10 µm each, the profile of parylene-coated surface was changed and t’ was smaller than t 

indicating the reduced surface roughness. Since the surface roughness of silicon channel 

is smaller than 10 µm, it is considered that some amount of surface planarization occurs.   

 

 
(a) (b) 

(c) (d) 

Figure 6-11. Surface profile before and after parylene deposition (a) before parylene 
deposition (d = g = 10 µm), (b) before parylene deposition (d = g = 15 µm), (c) after 
parylene deposition (d = g = 10 µm), (d) after parylene deposition (d = g = 15 µm). 
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Another thing that needed to be investigated was the uniformity of platinum layer 

deposited by DC sputtering. A silicon microchannel was deposited with approximately 1 

µm platinum layer using DC sputter. This is then diced to see the cross section of the 

channel. Figure 6-12 is the SEM images of the cross section of a Pt-deposited silicon 

channel. There was a quite big deviation in the Pt thickness. The minimum thickness 

observed at the bottom of the channel was 0.5 µm and the maximum thickness observed 

at the top corner of the channel was about 2.1 µm. 

 

 

 
1.0 µm 

2.1 µm 

1.6 µm 

0.7 µm

0.5 µm 

1.2 µm 

 

Figure 6-12. The uniformity of a sputtered platinum layer on a rectangular silicon 
channel (100 µm wide, 300 µm deep). 
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6.4 THERMAL LAMINATION AND RELEASE 

After parylene deposition, the next step is parylene/parylene thermal lamination. 

The parylene-coated silicon channel was put together with a parylene-coated pyrex glass 

substrate in a compression apparatus as discussed in chapter 5. The torque used for each 

screw was 2.4 N·m and this is equivalent to a pressure of 6.2 MPa. Either vacuum oven 

or microwave oven was used for heating. For both ovens, the samples were heated to 200 

oC for 2 hrs followed by slow cooling. Once the bonding is achieved, the silicon 

microchannel is dissolved in a KOH solution. Since the silicon microchannels used here 

had a high aspect ratio, parylene column could not be released without sacrificing the 

silicon channel. The wet etching condition was 20% KOH, 5 hrs at 80 oC. Parylene 

column was usually released before the silicon channel was completely dissolved. And 

the pyrex substrate was separated during the KOH etching.  Figure 6-13 shows a free-

standing parylene column .   

 

 

Figure 6-13. Silicon microchannel mold and parylene GC columns. 
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6.5 HEATING ELEMENT 

After a parylene column is released from the silicon channel, a thin gold film is 

evaporated on the corrugated surface of the free-standing parylene column using a CVC 

electron beam evaporator. The gold thin film coated on top of a parylene column is the 

heating element of a parylene column. The resistance of the 1 m long gold film depends 

on its thickness. However, it was found that if more than a 0.2 µm thickness of gold is 

deposited, the wall of the parylene column can also be slightly coated with gold, resulting 

in a short circuit. In order to avoid this problem, 0.15 µm of gold was deposited. The 

deposition rate and thickness were measured with a quartz crystal microbalance that is 

installed in the evaporator.  

6.6 STATIONARY PHASE COATING 

Three different methods were tried for stationary phase coating. Two of them 

were dry coating techniques and the other was conventional injection coating technique. 

The first method was depositing fluorocarbon using PECVD technique. The deposition 

technique was described in detail in the previous chapter. The film deposition on parylene 

was good but the problem was with the following thermal lamination. The thermal 

lamination of two fluorocarbon-coated parylene layers was tried with both vacuum oven 

and microwave oven. Vacuum oven heating did not work very well so that the sample 

was delaminated easily. On the contrary the sample laminated by microwave oven 
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heating showed good bonding quality. Three prototypes have been made but 

unfortunately all of them showed leakage when water was injected through them. 

The second method was parylene-A deposition. This was the easiest way of depositing 

stationary phase. Thermal lamination was also successful. Parylene GC columns with 

parylene-A coating (228 nm thick) were successfully fabricated. GC analysis was 

performed with the columns and the results will be discussed in the next chapter.  

The last method was conventional injection coating technique. The solution that consists 

of 2 g OV-1 and 100 ml toluene was used and the injection flow rate was 0.01 SCCM. 

During the injection some leaking points were found around the tubing area. This was 

mended by applying more epoxy resin on them. The solution was purged out using GC 

injection module.    

6.7 TUBING AND PACKAGING 

Both ends of a parylene GC columns are punched by a sharpened metal needle 

and polyimide-coated silica microtubes (OD ~ 350 µm, ID ~ 100 µm square, Polymicro, 

Phoenix, AZ) are inserted into the ends of the parylene column. These areas are then 

sealed with an epoxy adhesive. To supply power to the heating element, gold wires are 

attached to both column ends using conductive epoxy resin (Loctite 3880, Loctite, Rocky 

Hill, CT). A plastic box was used to package the completed parylene columns. 

Polystyrene foams were put in the plastic box and then a parylene column is placed on it 

as shown in Figure 6-14.  
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(a) (b) 

Figure 6-14. Packaged parylene columns (a) parylene column with parylene-A 
stationary phase, (b) parylene column with integrated heater. 
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C H A P T E R  7  

TESTING AND EVALUATION 

This chapter describes testing and evaluation of the parylene GC column 

prototypes. The pressure drop versus flow rate relationship for nitrogen was measured 

and compared with the analytical result. The thermal cycling of a parylene column by an 

embedded heater was investigated and compared with ANSYS lump model. Most of all, 

the GC performance of the parylene columns was thoroughly investigated and compared 

with theoretical performance. The separation of some chemical mixtures is demonstrated.  

7.1 PRESSURE DROP VERSUS FLOW RATE 

The pressure drop versus volumetric flow rate relationship for a rectangular 

channel (width = d, height = h, and length = L) is expressed as below if the flow is 

incompressible.  

3 192 tanh( / 2 )(1 )5 512 1,3,5,...

h d h i d hQ P
L d ii

π
µ π

∞ ⋅
= ⋅ − ⋅∑

=
∆  

Equation 7-1 

If the flow is compressible, the formula can be modified as below. 
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2 23 ( )192 tanh( / 2 )(1 )5 524 1,3,5,...
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π
µ π

−∞ ⋅
= ⋅ − ⋅∑

=
 

Equation 7-2 

The pressure drop across a parylene microcolumn was measured at different flow 

rates using dry nitrogen gas. A differential pressure sensor (max. ~ 133.32 GPa, MKS 

Instruments, MA) and a flow controller (max. ~ 1 SCCM, MKS Instruments, MA) were 

used for this measurement. Insulin syringe needles (ID = 165 µm) were inserted into the 

inlet and outlet of a parylene column and sealed with epoxy as shown in Figure 7-1 (a). 

This sample was connected to a pressure sensor and a flow controller as shown in Figure 

7-1 (b).     

 

(a) (b) 

Figure 7-1. Experimental setup for the flow test of a parylene column (a) prepared 
sample, (b) flow test setup.  

 
Figure 7-2 shows the flow test result for a parylene column (width = 90 µm, heigh  

= 350 µm , length = 1 m). The measured values showed a better agreement with the 

analytical model for a compressible flow. In this experiment, the pressure range was 

comparatively low because of the limitation of the flow controller. If the same 
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experiment is performed for higher pressure range the deviation of the result from the 

incompressible model will become larger.   

 

Figure 7-2. The calculated and measured pressure drop versus volumetric flow rate 
relation. 

 

 

Side view 

Cross-sectional 
view 

d1=165 µm d3=165 µm 

h=350 µm

L2=1 m L1=2 cm L3=2 cm 

d=95 µm 

Figure 7-3. Schematic of a parylene column with side tubing. 
 

Can we neglect the effect of the side tubing on the above result? The sample used 

in the flow test had side tubing as shown in Figure 7-3. While the parylene column was a 

rectangular column, the syringe needles that were inserted into the inlet/outlet of a 
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parylene column were circular. All the dimensions are shown in Figure 7-3. How can we 

express the pressure drop versus flow rate relation for the sample that consists of three 

channels in series? The volumetric flow rate should be constant if the flow is assumed to 

be incompressible. Therefore the volumetric flow rate can be written as below if the local 

pressure drops at each tube is expressed as ∆P1, ∆P2, and ∆P3. If we consider 

compressibility, solving this problem becomes extremely difficult.  

44
31

1 2 3
1 2 3

3 192 tanh( / 2 )(1 )5 5128 12 1281,3,5,...

dd h d h i d hQ P P
L L d Lii

ππ π
µ µ µπ

∞ ⋅
= ⋅∆ = ⋅ − ⋅∆ = ⋅∑

=
P∆  

Equation 7-3 

Since the total pressure drop (∆P) is the sum of the local pressure drops, Equation 7-3 can 

be rearranged as below. 

31 2
4 4

1 3

128128 12
192 tanh( / 2 )3 (1 )5 51,3,5,...

LL LP Q
d dh i d hh d

d ii

µµ µ
π ππ

π

 
 
 

∆ = + + ⋅ ∞ ⋅ ⋅ − ∑ = 

 

Equation 7-4 

For the given dimensions, the first and third term in the right side is about 2% of the 

second term, respectively. Therefore, the pressure drop due to side tubing can be 

neglected in this case.  
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7.2 THERMAL CYCLING 

The steady-state temperatures of a parylene column were measured varying the 

voltage applied to the heating element. A power supply (PS2520G, Tektronics, Beaverton, 

OR) was used to apply voltage to the gold heating element of a parylene column. The 

gold heating element was approximately 110 µm wide, 0.15 µm thick, and 1 m long. An 

infrared (IR) camera (thermaCAM PM190, Inframetrics, Portland, OR) was used to 

measure the surface temperature of a parylene column. Figure 7-4 shows the IR camera 

images of a parylene column with 30 V DC applied. The total hemispherical emissivity 

of parylene C is known as 0.34 (http://www.electro-optical.com/bb_rad/emissivity/ 

matlemisivty.htm). The steady-state temperature with 30 V was 133.9 oC. The measured 

current at 30 V was 3 mA. Therefore, the actual power applied to the heater was about 90 

mW. Figure 7-5 is the temperature profile across the column and Figure 7-6 shows the 

steady-state temperatures with different applied powers measured with IR camera.  

At each voltage, it was observed that parylene column reached the steady-state 

temperature within 30 sec. The cooling time was also within 30 sec when the power was 

turned off. This suggested that the parylene column has a rapid thermal cycling 

characteristic as designed.  

 

195 

http://www.electro-optical.com/bb_rad/emissivity/


 

 

Figure 7-4 IR image of a parylene column with 90 mW applied.  
 
 

 

mm 

Figure 7-5 temperature profile across a parylene column with 90 mW.  
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Figure 7-6 Steady-state temperatures with different applied power. 
 

A lump type analysis was performed for the heating of a parylene column. Figure 

7-7 shows a parylene column with embedded heating element, a cross section of a 

channel, and a lump composite model equivalent to the parylene column. The density and 

specific heat of the composite model were assumed to be same as those of parylene 

because the masses of air and gold were negligible compared to parylene. Conduction 

coefficient was calculated using area ratio. The thickness of the composite was also 

calculated using the given density and mass data. The geometry and material properties 

of the composite model are listed in Table 7-1.  

This lump composite model was used in ANSYS heat transfer analysis. The 

natural convection coefficient for the top surface was assumed to be in the range of 1 ~ 4 

W/m2·K. The convection coefficient for the bottom surface was fixed at 0.1 W/m2·K and 

the convection coefficient for the side was neglected in this analysis. Figure 7-8 compares 

the result of ANSYS lump model with the measured temperature of the parylene column.  
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(a) (b) (c) 

Parylene

Gold 

Air  q · 

htop 

hbottom 

Figure 7-7. A lump composite model for a parylene column, (a) parylene column 
with embedded heater, (b) cross section of the parylene column, (c) a lump 

composite model. 
 

Table 7-1. Geometry and material properties for a lump composite model. 

Dimension Density Specific 
heat 

Cond. 
Coeff. 

Conv. coeff. 
(top) 

Conv. coeff. 
(bottom) 

Conv. coeff. 
(side) 

2 cm x 2 cm 
x 78 µm 

1289 
kg/m3 

714 
J/kg·K 

19.0 
W/m·K 

1 ~ 4 
W/m2·K 0.1 W/m2·K Negligible 
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Figure 7-8. Measured temperature and the result from a lump model for h = 4 
W/m2·K. 
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7.3 GC ANALYSIS 

A conventional GC system (HP6850, Agilent Technologies, Palo Alto, CA) was 

used to investigate the GC performance of parylene columns. The GC system had a 

split/splitless injector and flame ionization detector (FID). Helium was used as a carrier 

gas. Compressed air and hydrogen were used as a fuel gas for FID detector. The GC 

system is shown in Figure 7-9 (a) and (b). Figure 7-9 (c) and (d) show how a fused-silica 

columns and a parylene column were installed in the GC system for analysis. Initially, the 

GC system had a 30 m long fused-silica column (HP-1, Agilent Technologies, Palo Alto, 

CA). The conventional column was cut into short columns (3 m and 1 m) and installed in 

the GC system for GC analysis. The GC data obtained by the short conventional columns 

were later compared to parylene column data.  

Figure 7-10 compares a conventional column and a parylene column. The 

columns tested in this research are listed in Table 7-2. These include conventional 

columns with different lengths (30, 15, 3, 1 m), silica tubes with and without stationary 

phase, and three parylene column prototypes. Three parylene column prototypes have the 

same dimension but different stationary phase. Prototype 1 has no stationary phase. 

Prototype 2 has uniform parylene-A coating in the column. Prototype 3 has OV-1 

(PDMS) coating in the column. OV-1 was coated by injection method.   

The organic chemicals used in this research are listed in Table 7-3. These include 

aliphatic and aromatic chemicals, solvents, and hydrocarbons. Table 7-3 includes the 

structural formula, distribution constant, and boiling point of the chemicals.  
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(a) (b) 

  
(c) (d) 

Figure 7-9. GC setup for column performance test; (a) HP6850, (b) inlet and 
detector, (c) installed fused silica column, (d) installed parylene column. 

 

 

Figure 7-10. Conventional fused-silica column and parylene column. 
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Table 7-3. Chemicals used in GC analysis. 

Name Formula K (@ 50 oC) Bp (oC) 

Pentane CH3 (CH3)3 CH3  36.1 
hexane CH3 (CH3)4 CH3 96 69 
heptane CH3 (CH3)5 CH3 229 98 
octane CH3 (CH3)6 CH3  126 
Nonane CH3 (CH3)7 CH3  150.8 
decane CH3 (CH3)8 CH3  174.1 

dodecane CH3 (CH3)10 CH3  216.3 
Tetradecane CH3 (CH3)12 CH3  253.7 
Pentadecane CH3 (CH3)13 CH3  270.63 
hexadecane CH3 (CH3)14 CH3  287 

benzene  161 80 
toluene CH3  111 

o-xylene 
CH3

CH3  
 144 

m-xylene 
CH3

CH3  
 139 

p-xylene CH3CH3   138 
ethylbenzene CH2 CH3  135 

acetone 
CH3 C

O
CH3 

 57 

Methanol CH3 OH  65 
Ethanol C2H5 OH  79 

2-propanol CH3 CH3OH CH3  82 

2-butanol 
CH3 CH CH2OH

CH3  
 100 

2-methoxy ethanol H3C O CH2CH2OH  124.6 
Benzyl alcohol CH2OH  205 

Dimethylformamide 
(DMF) HC N(CH3)2

O

 
 153 

Acetonitrile CH3 C N  81.6 
Diethyl ether C2H5 O C2H5  34.6 

Tetrahydrofuran (THF) O
  66 
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7.3.1 COMMERCIAL FUSED-SILICA COLUMN 

It is important to know the performance of the commercial GC column before 

testing and evaluating the parylene columns. Figure 7-11 and Figure 7-12 shows the 

chromatograms of hydrocarbon mixture and solvent mixture obtained by 30 m long HP-1 

and 1 m long HP-1 columns, respectively. For 30 m long column, the injected sample 

amount was 1µl and the split ratio was 50:1. The inlet pressure was fixed at 10 psi and 

the analysis temperature was 50 oC isothermal. For 1 m long column, the injected sample 

amount was 0.5µl and the split raio was 50:1. The inlet pressure was fixed at 0.5 psi and 

the analysis temperature was 50 oC isothermal. 

The hydrocarbon mixture (C5-C7) was completely separated with a 30 m long 

column but with a 1 m long column, the peaks for pentane and hexane were not 

completely separated from the methanol peak. Almost all solvents were nicely separated 

with the 30 m long column, but with the 1 m long column, most solvent was not 

separated. This poor separation performance can be quantified by considering retention 

time and column efficiency. In Chapter 3, the formulas to calculate the theoretical 

retention time and column efficiency were introduced. Using the formulas, the theoretical 

performance of the 30 m long and 1 m long HP-1 column was calculated. Also, using the 

chromatogram obtained from GC analysis, the actual retention time and column 

efficiency were calculated (Table 7-4). Heptane peak was used for this calculation.  

Table 7-4. Theoretical and actual performance of commercial columns. 

Column Theoretical Performance Actual Performance 

30 m HP-1 tR = 86.5 sec N = 135,140  tR = 91.0 sec N = 107,000  

1 m HP-1 tR = 3.23 sec N = 4,293  tR = 4.63 sec N = 181  
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40000 

FID1 A,  (COLTEST\PHA00038.D) 
Commercial HP-1 column (30 m) 

Sample amt. = 1 µl, Split ratio = 50:1,  
∆P = 10 psi, Temp. = 50 oC isothermal 
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FID1 A,  (COLTEST\PHA00037.D) 
Commercial HP-1 column (30 m) 

Sample amt. = 1 µl, Split ratio = 50:1,  
∆P = 10 psi, Temp. = 50 oC isothermal 

Figure 7-11. Chromatograms by 30 m long HP-1 column; (a) hydrocarbon mixture 
(C5-C7), (b) solvent mixture (methanol, ethanol, acetone, propanol, butanol, DMF, 

toluene). 
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Figure 7-12. Chromatograms by 1 m long HP-1 column; (a) hydrocarbon mixture 
(C5-C7), (b) solvent mixture (methanol, ethanol, acetone, propanol, butanol, DMF, 

toluene). 
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7.3.2 PARYLENE COLUMN 

7.3.2.1 RETENTION TIME 

In the flow test described in the previous section, syringe needles were used as 

interfacing media and their effect on pressure-drop and flow rate relation was found to be 

negligible. In GC analysis, silica microtubes had to be used instead to interface the 

parylene column with a conventional GC. Because the inner dimension (ID = 100 µm) of 

the side tubing is smaller than parylene column and the length is fairly long (L1 = 15.5 

cm, L3 = 19.5 cm), the pressure drop at the side tubing is not negligible any longer. From 

Equation 7-4, the volumetric flow rate can be expressed as below. 

1

31 2
4 4

1 3

128128 12
192 tanh( / 2 )3 (1 )5 51,3,5,...

LL LQ P
d dh i d hh d

d ii

µµ µ
π ππ

π

−
 
 
 

= + + ∞ ⋅ ⋅ − ∑ = 

⋅∆

3

 

Equation 7-5 

Although the volumetric flow rate is constant at any location if the flow is 

assumed to be incompressible, the flow velocity will change depending on column 

dimension. These local flow velocities can be calculated using the following equation.  

1 1 2 2 3Q V A V A V A= ⋅ = ⋅ = ⋅  

Equation 7-6 

where V1, V2, V3 are local velocities at each tubes (side tubing 1, parylene column, and 

side tubing 2) and A1, A2, A3 are the cross sectional areas of each tubes. Using the local 
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velocities, the retention time (tR) of GC analysis can be calculated according to the 

equation below. 

31 2

1 2

(1 )R
LL Lt k

V V V3

= + ⋅ + +  

Equation 7-7 

where the retention factor (k) is a function of distribution constant (K) and the dimension 

of the column discussed in Chapter 3. This equation is valid when the side tubing does 

not have stationary phase coating. If the side tubing also has stationary phase, this 

equation must be modified into:  

31 2
1 2

1 2 3

(1 ) (1 ) (1 )R
LL Lt k k

V V V
= ⋅ + + ⋅ + + ⋅ + 3k  

Equation 7-8 

where k1, k2, and k3 are the retention factor of an analyte in each tube. If there is no 

stationary phase in the column and side tubing, k value becomes zero and the dead time 

(tM) is obtained using the above equation. This is the time required for a non-retained 

analyte to travel through the column. 

31 2

1 2
M

LL Lt
V V V

= + +
3

 

Equation 7-9 

The retention time of hexane was measured using the three parylene column 

prototypes listed in Table 7-2. Hexane was selected because its distribution constant in 

PDMS stationary phase (K = 69) is known. The sample amount was 0.2 µl and the 

pressure-drop was 5 psi. The split ratio was 1000:1.  
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Figure 7-13 and Figure 7-14 show the chromatogram obtained using the three 

prototypes. The measured retention time was 0.074 min (4.44 sec), 0.077 min (4.62 sec) 

and 0.110 min (6.6 sec). Table 7-5 compares the calculated and measured retention time 

of hexane for the three prototypes. For the parylene column without stationary phase 

(Prototype 1), the calculated retention time was 3.4 sec and the measured retention time 

was 4.44 sec. The difference between these two values may be due to the errors in 

column dimension (especially column height and length) and/or the minor head losses by 

the joint area between the parylene column and silica tube. 
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Figure 7-13 Chromatogram of hexane using (a) parylene column without stationary 
phase, (b) parylene column with parylene-A coating. 
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Table 7-5 Retention time of hexane using parylene columns. 

Parylene Column Stationary Phase Calculated tR Measured tR 

Prototype 1 None 3.40 sec 4.44 sec 

Prototype 2 Parylene A 18.59 sec 4.62 sec 

Prototype 3 PDMS N/A 6.60 sec 
 

For the parylene column with parylene-A stationary phase (prototype 2), there 

was a large difference between the calculated and the measured retention time. Since 

there was no distribution constant (K) found in the literature for parylene-A and hexane 

system, the distribution constant (K = 713) calculated from the QCM test result was used 

for this calculation. According to this calculation, hexane was supposed to have a large 

retention time but the measured value was almost same as the value obtained from 

prototype 1. This means that parylene-A does not retain hexane effectively. In other 

words, the distribution constant for parylene-A and hexane system is very small. Then 

why did we obtain a large distribution constant from the QCM test? This can be 

understood when we consider the difference in experimental conditions between QCM 

and GC analysis. In QCM, we allowed 25 min for the absorption of solute vapors but in 

GC analysis, solute vapors are swiftly swept by carrier gas and does not have enough 

time to be absorbed. Therefore, the transient characteristic of a solute is more important 

than steady-state characteristic. As a result, the distribution constant calculated from 

QCM result cannot predict directly the retention behavior of the analyte. 

For the parylene column with PDMS stationary phase (prototype 3), the retention 

time could not be calculated using the above equations because the exact thickness of the 

stationary phase was not known. Both the thickness and the uniformity of the stationary 

phase were questionable and there was no way to measure them. However, the existence 
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of the stationary phase was verified through the GC test. The measured retention time 

value (6.6 sec) for hexane was larger than the values (4.4 - 4.6 sec) for the other 

prototypes, indicating that hexane was retained by the stationary phase. This difference in 

retention time value became more clear when the chemicals having higher distribution 

constants were used. Although the retention time could not be calculated with the given 

information, inversely, the stationary phase thickness could be calculated using the 

measured retention time value. The difficulty in this calculation is in the fact that silica 

tubing also has the stationary phase whose thickness will be different from that of the 

main parylene column. To solve this problem, the flow velocity at the tube and column 

was investigated because the coating thickness is proportional to the flow velocity of the 

coating solution as explained in Chapter 5. Since the local flow velocity at the side tubing 

was approximately 3 times of the velocity at the parylene column, the stationary phase 

thickness in main parylene column was assumed to have one thirds of the coating 

thickness at the tubes. According to this calculation, the stationary phase thickness in the 

parylene column is about 240 nm. 

Table 7-6 listed the retention times of some chemicals measured by a parylene 

column with OV-1 stationary phase. Most chemicals showed retention times less than 1 

minute while some chemicals such as DMF, dodecane, and benzyl alcohol showed much 

longer retention times and broadened peak. These chemicals that showed long retention 

time and broadened peak were the ones that have higher boiling temperatures. 
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Table 7-6. Measured retention times of chemicals 

Chemical tR [min] Chemical  tR [min] 

Methanol 0.095 Benzene 0.148 
Ethanol 0.100 2-methoxyethanol 0.154 
Propanol 0.105 heptane 0.185 
Acetone 0.105 Octane 0.358 

Ether 0.105 Nonane 0.817 
Acetonitrile 0.107 Decane 1.045 

Hexane 0.123 Dimethylformamide (DMF) 
Butanol 0.132 Dodecane - 

Tetrahydrofuran (THF) 0.138 Benzyl alcohol - 

- 

7.3.2.2 COLUMN EFFICIENCY 

Column efficiency can be expressed by the number of theoretical plates (N) or the 

height equivalent to theoretical plate (H) as explained in chapter 3. Analytical calculation 

of the number of theoretical plates for a circular or a rectangular column was described in 

Chapter 3. The formulas for the number of theoretical plates (N) of a circular and a 

rectangular column are as below:  

2 22 3

2 2
1 6 112

24(1 ) 6(1 )
o oM

2 2
M S

L LN
ur urD k k kH

u k D k F K

= =
+ +

+ ⋅ + ⋅
+ + D

 

Equation 7-10 

2 2
2

2
2 2 2

514(1 9 )( )2 22 2 ( )
105( 1) 3( 1)

M

M s

L LN dH k kD kw h du u
u k D k F D h

= =
+ + ++ ⋅ +

+ +
⋅

 

Equation 7-11 

211 
 



 

However, in reality, the parylene column cannot be considered as a single column 

because silica microtubes are always attached to it for the GC test. How does the side 

tubing affect the column efficiency? When three columns are connected in series, the 

total number of theoretical plates can be expressed as a sum of the plate number of each 

tube and column as shown in Equation 7-12.  

31 2
1 2 3

1 2

LL LN N N N
H H H

= + + = + +
3

 

Equation 7-12 

The number of theoretical plates can also be calculated empirically from GC 

analysis data using the below equation. 

2

5.545 R

h

tN
W
 

=  
 

 

Equation 7-13 

where tR is retention time and Wh is the peak width at the half height of the peak. Again, 

the hexane peak was used for this calculation. Figure 7-14 shows the chromatograms of 

hexane using parylene column with OV-1 stationary phase (prototype 3). The number of 

theoretical plates of the parylene column prototypes was calculated using Equation 7-13 

and the chromatograms. The results are listed in Table 7-7 with the values from the 

analytical model. 
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Figure 7-14 Chromatogram of hexane using parylene column with OV-1 coating (a) 
sample amount ~ 0.2 µl, (b) sample amount ~ 0.02 µl. 

 

Table 7-7 Plate numbers of parylene columns. 

Parylene Column Stationary Phase N  
(Analytic Model) 

N  
(Chromatogram) 

Prototype 1 None 11,599 554.5 

Prototype 2 Parylene A 10,212 335.4 

Prototype 3 PDMS 5,024 109.1 

Prototype 3 PDMS 5,024 145.3 
 

For all prototypes, the plate numbers calculated from actual chromatograms were 

much lower (less than 5%) than the values obtained from the analytic models. It is 

general that the plate number calculated from the actual chromatogram is less than 60% 
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of the value obtained from the analytic model because of imperfect injection skill. 

However, the actual plate numbers of the parylene column prototypes were lower than 

expected. Initially, the existence of side tubing was doubted as the main cause for the 

difference in the plate numbers. However, the contribution of the side tubing for the plate 

number turned out to be less than 5 % of that of parylene column according to calculation. 

In addition, the GC test with conventional silica columns revealed that the column 

efficiency could be enhanced by using smaller size of side tubing. Therefore, the 

existence of the side tubing should be excluded from the causes for the difference in plate 

numbers. The possible causes for the big difference in the plate numbers are as follow: 

(1) The abrupt dimension change at the joint area between parylene column and silica 

tubes may cause considerable band broadening.  

(2) The analytic model was for a high aspect ratio (>1:4) column but the actual 

parylene column had a comparatively low aspect ratio (~ 1:3). As a result, the 

retention effect of the narrower sides could be considerable. In addition, the errors 

in column dimension (especially column height and length) used in analytic 

model can be the cause of the difference.  

(3) For the prototypes with stationary phase coating (especially, prototype 3), non-

uniformity in stationary phase coating could be the cause for the difference. 

Generally, the corners of a rectangular column have thicker stationary phase than 

other parts, resulting in band broadening.  
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7.3.2.3 SEPARATION PERFORMANCE 

Separation of two components (A and B) depends on their retention times and the 

column efficiency. It was explained in Chapter 3 that the resolution of a column could be 

expressed as below when the peak widths (WA = WB = W) are assumed to be equal.  

4)(
)()()()( N

t
tt

W
tt

R
BR

ARBRARBR
s ×

−
=

−
=  

Equation 7-14 

The retention time of each chemicals through parylene column was investigated 

in the previous section and the retention times through prototype 3 are listed in Table 7-6. 

The number of theoretical plates was also investigated in the previous section. Using 

these retention time and plate number values, the resolution can be calculated for any two 

different components. Some example values for the parylene column with OV-1 

stationary phase are listed in Table 7-8. Good separation is achieved when the resolution 

(Rs) is larger than 1. The chemicals whose retention times are close from each other are 

difficult to be separated. On the contrary, the chemicals whose retention times are not 

very close to each other showed a resolution larger than 1.  

Table 7-8. Examples of resolutions of two components in parylene column. 

Components and Retention Times [min] Resolution 

Methanol (tR = 0.095), propanol (tR = 0.105) 0.29 
Methanol (tR = 0.095), hexane (tR = 0.123) 0.69 
Methanol (tR = 0.095), benzene (tR = 0.148) 1.08 
Methanol (tR = 0.095), heptane (tR = 0.185) 1.47 
Methanol (tR = 0.095), octane (tR = 0.358) 2.21 
Methanol (tR = 0.095), nonane (tR = 0.817) 2.66 
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Prototype 1 (no stationary phase) 

Most chemicals were not retained by the parylene column without stationary 

phase. These include pentane, hexane, heptane, methanol, ethanol, propanol, ether, THF, 

benzene, acetone, and acetonitrile. However, some chemicals such as isobutanol, DMF, 

2-methoxyethanol, benzyl alcohol, and dodecane were observed to be retained by the 

column. Two mixtures of chemicals were prepared. One is the mixture of the unretained 

chemicals and the other is the mixture of retained chemicals. Figure 7-15 and Figure 7-16 

are the chromatograms for the mixtures, respectively. The sample amount was 0.2 µl and 

the split ratio was 100:1. The inlet pressure was fixed at 5 psi and temperature condition 

was 50 oC isothermal. Unretained chemicals were not separated and a single peak was 

observed. But retained chemicals showed some separation although the peaks were very 

broad and the resolution was poor. Figure 7-17 shows a chromatogram of a mixture of 

retained chemicals with temperature programming. The analysis temperature was ramped 

from 40 oC to 80 oC at a ramping speed of 120 oC/min. The retention time of dodecane 

was shortened and the resolution was enhanced by using temperature programming.  

In order to see whether these chemicals show any retention in a silica column, a silica 

tube (ID = 320 µm, L = 1 m) without stationary phase was installed in the GC system. 

Figure 7-18 shows the result. Similar retention and band broadening were observed in a 

silica column. Therefore, the retention is not by the reaction between parylene and the 

chemicals but the characteristic of the chemicals. They all have high boiling temperature. 

As a result, they repeat condense and evaporation continually while they are passing 

through low temperature column. This is the cause of the retention and separation that 

occurred even without any stationary phase.  
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Figure 7-15. Chromatogram of a mixture of unretained chemicals.  
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Figure 7-16. Chromatogram of a mixture of retained chemicals. 
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Figure 7-17. Chromatogram of a mixture of retained chemicals with temperature 
programming. 
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Figure 7-18. Chromatogram using silica column without stationary phase. 
 
Prototype 2 (parylene-A stationary phase) 
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Parylene-A stationary phase was not an effective stationary phase for GC column. 

This column behaved like the prototype 1 which had no stationary phase. Figure 7-19 

shows the chromatograms obtained by this column. The chromatograms are very similar 

to those obtained with prototype 1 column. This result reveals that retention process is 

mainly a physical process that highly depends on the solubility characteristics between 

the analytes and the stationary phase. The existence of the amine functional group in 

parylene-A stationary phase did not make significant difference in the GC analysis. 
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Sample amt. = 0.2 µl, Split ratio = 100:1, 
∆P = 5 psi, 40 oC  80 oC @ 120 oC 
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FID1 A,  (COLTEST\PHA00506.D) 
Parylene column with parylene A coating 
Sample amt. = 0.2 µl, Split ratio = 100:1, 
∆P = 5 psi, Temp. = 80 oC isothermal 

Figure 7-19. Chromatograms obtained by parylene column with parylene-A 
stationary phase, (a) a mixture of unretained chemicals, (b) a mixture of retained 

chemicals. 
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Prototype 3 (OV-1 coating) 

Figure 7-20 shows the chromatograms of obtained by parylene column with OV-1 

stationary phase. There was some separation observed for the unretained chemicals. Also, 

the retention times of the retained chemicals were longer than other prototypes. These 

results are very similar to the chromatogram obtained using commercial HP-1 column 

shown in Figure 7-21. 

Some other chemical mixtures were tested using this prototype. The first one was 

hydrocarbon mixture (C7-C10). Figure 7-22 and Figure 7-23 shows the chromatogram of 

the mixture. Figure 7-22 (a) is the chromatogram of the mixture diluted in hexane. The 

concentration was 1%. Injected sample amount was 0.2 µl and the split ratio was 1000:1. 

The inlet pressure was fixed at 5 psi and analysis temperature was 50 oC isothermal. In 

this case, the large solvent peak affected the peaks of other chemicals so that the peaks 

for the analytes were not able to appear clearly. So, another test was performed without 

the solvent. Figure 7-22 (b) is the chromatogram of the mixture of 4 hydrocarbons under 

the same analysis condition. The retention times of the chemicals remained same. But 

four different hydrocarbons were well separated although the peaks for higher number 

hydrocarbons are diminishing and broadened because of band broadening effect.  

Figure 7-23 is the chromatogram of the same mixture when the analysis 

temperature was ramped from 30 oC to 100 oC at a ramp speed of 120 oC/min. An 

excellent separation was achieved in one minute and the peaks for higher number 

hydrocarbons remained as sharp as that of the lower number hydrocarbon. This indicates 

that temperature programming is very efficient tool to achieve a nice separation in a GC 

analysis.  
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FID1 A,  (COLTEST\PHA00545.D) 
Parylene column with OV-1 coating 

Sample amt. = 0.2 µl, Split ratio = 1000:1, 
∆P = 5 psi, Temp. = 50 oC isothermal 
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FID1 A,  (COLTEST\PHA00544.D) 
Parylene column with OV-1 coating 

Sample amt. = 0.2 µl, Split ratio = 1000:1, 
∆P = 5 psi, Temp. = 50 oC isothermal 

Figure 7-20. Chromatograms obtained by parylene column with OV-1 stationary 
phase, (a) a mixture of unretained chemicals, (b) a mixture of retained chemicals.  
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FID1 A,  (COLTEST\PHA00536.D) 
Commercial HP-1 column (1 m long) 

Sample amt. = 0.2 µl, Split ratio = 50:1, 
∆P = 0.5 psi, Temp. = 50 oC isothermal 
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50000 FID1 A,  (COLTEST\PHA00534.D) 
Commercial HP-1 column (1 m long) 

Sample amt. = 0.2 µl, Split ratio = 50:1, 
∆P = 0.5 psi, Temp. = 50 oC isothermal 

Figure 7-21 Chromatograms obtained by commercial HP-1 column (1 m long), (a) a 
mixture of unretained chemicals, (b) a mixture of retained chemicals 
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FID1 A,  (COLTEST\PHA00562.D) 
Parylene column with OV-1 coating 

Sample amt. ~ 0.02 µl, Split ratio = 1000:1, 
∆P = 5 psi, Temp. = 50 oC isothermal 
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FID1 A,  (COLTEST\PHA00563.D) 
Parylene column with OV-1 coating 

Sample amt. ~ 0.02 µl, Split ratio = 1000:1, 
∆P = 5 psi, Temp. = 50 oC isothermal 
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Figure 7-22 Chromatograms of hydrocarbon mixture (C7-C10), (a) diluted mixture 
(1% in hexane), (b) non-diluted mixture. 
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FID1 A,  (COLTEST\PHA00566.D) 
Parylene column with parylene A coating 

Sample amt. ~ 0.02 µl, Split ratio = 1000:1, 
∆P = 5 psi, 30 oC  100 oC @ 120 oC/min 
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Figure 7-23 Chromatograms of hydrocarbon mixture (C7-C10) with temperature 
programming. 

 
How much amount of the solutes produced the peaks in the chromatogram? For 

the chromatogram in Figure 7-23, total 0.02 µl of sample was used. Since the sample was 

a mixture of 4 chemicals, each chemical was about 5 nl. The first peak of the 

chromatogram (area = 190.2) is for heptane. The density of heptane is 0.684 g/cm3. 

Therefore, approximately 3.6 x 10-5 g of heptane was injected from the syringe. This 

solute was evaporated immediately and only a thousandth of the sample was introduced 

to the column. As a result, the sample amount that was transferred to the FID detector 

was about 3.6 x 10-8 g. In other words, 36 ng of heptane resulted in the first sharp peak of 

the chromatogram. Generally, it is said that FID detector requires 5 ng of sample to 

generate nice sharp peak.  
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Another mixture tested was a mixture of 8 chemicals (Methanol, hexane, butanol, 

benzene, C7-C10). The first four chemicals were the ones that could not be separated 

with other prototype columns. However, they were able to be separated with this 

prototype at 30 oC isothermal condition as shown in Figure 7-24 (a). The samples were 

not diluted and the injected sample amount was approximately 0.02 µl. The split ratio 

was 1000:1 and the inlet pressure was fixed at 5 psi. Figure 7-24 (b) shows the effect of 

temperature programming. The analysis temperature was kept at 30 oC for 0.2 min and 

then ramped to 100 oC at a ramp speed of 120 oC/min. A nice separation was obtained 

within 1 min using the temperature programming.  

A mixture of aromatic carbons (benzene, toluene, ethylbenzene, σ-xylene) was 

also tested. Three different analysis temperatures were tried (80, 50, and 30 oC 

isothermal). The mixture was not diluted and the injected sample amount was 0.2 µl. The 

split ratio was 100:1 and the inlet pressure was fixed at 5 psi. The result is shown in 

Figure 7-25. At 80 oC, three peaks were observed. The benzene peak and toluene peak 

were too close from each other and the other four component generated a big single peak. 

However at lower temperature (50 and 30 oC), benzene peak and toluene peak were 

completely separated and the other big peak was also little bit splited. This split is 

considered as the separation between ethylbenzene and xylenes. However, even at 30 oC, 

the 3 different xylenez were not able to be separated. Smaller amount (~ 0.02 µl and split 

ratio of 1000:1) of sample was tried as shown Figure 7-26 but still the xylenes were not 

separated. 

 

226 
 



 

 
(a) 

 
(b) 

min0.2 0.4 0.6 0.8 1 1.2 

pA 

10 

20 

30 

40 

50 

60 

70 

80 

90 

 0.142 

 0.352 
 0.641

 0.930 

FID1 A,  (COLTEST\PHA00585.D) 
Parylene column with parylene A coating 

Sample amt. ~ 0.02 µl, Split ratio = 1000:1, 
∆P = 5 psi, 30 oC  100 oC @ 120 oC/min 
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FID1 A,  (COLTEST\PHA00584.D) 
Parylene column with OV-1 coating 

Sample amt. ~ 0.02 µl, Split ratio = 1000:1, 
∆P = 5 psi, Temp. = 30 oC isothermal 

Figure 7-24 Chromatograms of a mixture of 8 chemicals (methanol, hexane, butanol, 
benzene, C7-C10), (a) isothermal, (b) temperature programming. 
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FID1 A,  (COLTEST\PHA00.D) 
Parylene column with OV-1 coating 

Sample amt. = 0.2 µl, Split ratio = 100:1, 
∆P = 5 psi, Temp. = 30 oC isothermal 

Figure 7-25 Chromatograms of a mixture of aromatic carbons (benzene, toluene, 
ethylbenzene, -xylenes), (a) 80 oC isothermal, (b) 30 oC isothermal. 
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FID1 A,  (COLTEST\PHA00567.D) 
Parylene column with OV-1 coating 

Sample amt. ~ 0.02 µl, Split ratio = 1000:1, 
∆P = 5 psi, Temp. = 30 oC isothermal 

 

Figure 7-26 Chromatograms of a mixture of aromatic carbons (small amount of 
sample).  
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C H A P T E R  8  

CONCLUSIONS AND FUTURE WORK 

In this chapter, the conclusions of the research and the recommendations for 

future work are presented. This include the accomplishments and the contributions made 

by the research. The limitations and shortcomings of the research are also discussed as 

well as topics for future work. 

8.1 CONTRIBUTIONS AND CONCLUSIONS 

The goal of this research was to develop a miniature separation column that has 

low thermal mass and an embedded heating element for rapid thermal cycling. The new 

column material chosen for the goal was thin film polymer, parylene. It was a great 

challenge to build a parylene GC column because it was a completely new approach. The 

goal was successfully accomplished, although there were many hurdles. This work 

included new process development for parylene microcolumn structural fabrication, a 

study of theoretical column performance, design and fabrication of a parylene GC 

column with an embedded heating element, and the evaluation of the GC column. The 

contributions and the achievements of the research are as follows. 
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■ Theoretical Analysis of Column Performance and Design 

(1) Investigated gas flow in a rectangular microchannel. The exact solutions to the 

average flow velocity and the flow distribution of a gas flow in a rectangular 

microchannel were compared with simplified solutions. Compressibility, slip flow, 

and curvature effect were also investigated for a gas flow in a rectangular 

microchannel.   

(2) Performed an analysis of column performance for a micromachined rectangular 

GC column. The formula for column efficiency (Golay equation) has many 

parameters that influence each other. This results in difficulty in predicting the 

effects of parameters on retention time and column efficiency. The effects of 

design and operation parameters on the column performance have been 

thoroughly investigated using Matlab. Based on this information, the design of a 

parylene GC column has been optimized for the recommended column 

performance (the retention time should be less than 1 minute and the number of 

theoretical plates should be more than 10,000). 

(3) Investigated the deformation, gas permeation, and integration of the parylene GC 

column. The effect of wall thickness and structure on the deformation due to inner 

pressure was investigated using ANSYS. For the inner pressure up to 10 psi, a 

parylene layer thicker than 10 µm was recommended. Gas permeation test result 

showed that parylene/metal/parylene triple layer was much less permeable than 

the parylene monolayer. A side tubing method was devised because conventional 

top/bottom connections are not appropriate for the thin film parylene column. The 
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inlet and outlet of the parylene column were designed to have a wider dimension 

for this purpose. 

(4) Investigated the thermal cycling of parylene GC column. A gold thin film 

evaporated on the corrugated surface of parylene column was selected as a 

heating element for parylene column because it can be achieved without 

additional lithography. ANSYS heat transfer modeling has been performed to 

investigate the heating and cooling rate, power consumption, the entrance length 

and temperature distribution of the parylene column with an embedded heating 

element. Parylene column could be heated to 100 oC within 1 min with only 50 

mW while silicon/glass column required almost 500 mW for the same heating. 

Also, the cooling of the column was much faster in parylene column because of 

its lower thermal mass. The temperature gradient existing across the cross section 

of a parylene column was reduced to less than 0.1 oC by adding a thin metal layer 

in the parylene wall as a heat diffuser.  

■ Process Development and Fabrication 

(1) Investigated parylene/parylene thermal bonding. Two heating techniques, 

convection oven heating and microwave heating, were investigated for 

parylene/parylene bonding. The bonding was achieved at above 200 oC by 

convection oven heating and at above 160 oC for microwave heating. The process 

parameters such as temperature, pressure, time, and parylene thickness were 

thoroughly examined and the bonding quality was evaluated through die shear 
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tests, tensile pull tests, blister tests, scanning acoustic microscopy (SAM), and 

scanning electron microscopy (SEM). The SEM image showed approximately 

200 nm thick inter-diffusion layer at the bonded interface and the overall bonding 

uniformity was good according to the SAM image. The maximum shear stress 

and tensile stress were 12.68 MPa and 9.16 MPa, respectively. This technique was 

applied to wafer level bonding and demonstrated a successful bonding result.  

(2) Developed a new fabrication method, ‘parylene micromolding.’ The conventional 

fabrication method for parylene devices, surface micromachining, is not 

appropriate for fabricating a long parylene GC column because it is a diffusion-

limited process. A new concept for using a molding technique was proposed in 

this research. This new method consists of silicon mold fabrication, parylene 

deposition, parylene/parylene thermal bonding, and parylene column release from 

the mold. When the aspect ratio of the channel is lower than 1:1, parylene column 

was able to be released from the mold without any damage. However, the 

columns with high aspect ratio such as GC column could not be released 

successfully. In this case, silicon mold needs to be etched away to obtain parylene 

column. This new fabrication method was further explored to fabricate other 

microfluidic components such as meander type channels, electrophoretic, and 

dielectrophoretic microchannels.  

(3) Investigated the stationary phase coating methods for a parylene GC column. 

Both conventional injection coating method and dry coating method have been 

investigated. A commercial stationary phase, OV-1 was coated using an injection 
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coating method and the average thickness was calculated through GC data 

although it was not be directly measured. For dry coating, PECVD fluorocarbon 

and parylene-A have been investigated. Film deposition was successful, but the 

coating made parylene/parylene bonding difficult. Microwave bonding was more 

effective than convection oven bonding in this case. 

(4) Fabicated parylene GC columns with embedded heating element. The completed 

parylene GC columns include stationary phase, proper tubing and packaging, and 

are literally ‘ready for use’ (Figure 8-1).  

 

Figure 8-1. The final parylene column with an embedded heating element. 

(2) Measured the thermal cycling of a parylene column. The actual temperature of the 

parylene column was monitored during heating and cooling. The steady-state 

temperature of the parylene column was also measured varying the voltage 

■ Testing and Evaluation 

(1) Measured the pressure drop versus flow rate relationship. The measured data 

shows a good agreement with the compressible model.  
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applied to the heating element. This data was compared with the lumped model 

developed in ANSYS.   

(3) Performed GC analysis with parylene columns. Three prototype columns having 

different stationary phases were tested. The parylene columns were installed in a 

conventional GC (HP6850) replacing conventional fused-silica column. Retention 

time and the number of theoretical plates have been measured and compared with 

theoretically calculated values. Separation performance was also demonstrated 

using volatile chemical mixtures.  

(4) Retention time: The measured retention time was compared with theoretically 

calculated value for each prototype. Side tubing was taken into account in the 

theoretical calculation. For the column with parylene-A stationary phase, there 

was a large difference between the calculated and the measured value. The 

retention time was close to the value obtained by the column without stationary 

phase. This indicated that parylene-A does not retain analytes as expected. The 

distribution constant obtained from QCM test cannot predict the retention 

behavior of the analyte in GC column. The column with PDMS stationary phase 

showed longer retention time than the other columns for the same analytes. This 

indicates that the analytes are retained effectively by the stationary phase. The 

retention times of many volatile organic chemicals have been measured. However, 

the theoretical retention time could not be calculated because the stationary phase 

thickness was unknown. Conversely, the stationary phase thickness was 

calculated from the measured retention time.    

235 
 



 

(5) Column efficiency: The actual number of theoretical plates was calculated from 

the GC data and compared with the theoretical value. Again, the side tubing was 

taken into account. For all prototypes, the actual plate numbers were much lower 

(less than 5%) than the values obtained from the analytic models. The possible 

causes for the big difference are: first, the abrupt change in flow path due to 

tubing; second, errors in the analytical model such as the error in column 

dimension and the error due to inappropriate assumption; and third, non-

uniformity in stationary phase coating.  

(6) Separation performance: The column without stationary phase and the column 

with parylene-A stationary phase showed basically similar chromatograms 

because parylene-A was not functioning effectively as a stationary phase. 

However, some chemicals such as isobutanol, DMF, 2-methoxyethanol, benzyl 

alcohol and dodecane were retained in those columns, resulting in some 

separation. The similar retention was observed in silica tubing. The chemicals 

having high boiling points seemed to be retained by the column without stationary 

phase. More GC analysis was performed with the column with PDMS stationary 

phase. The separation of hydrocarbon mixture (C7-C10) was successfully 

demonstrated. The separation was improved greatly through temperature 

programming. The separations of organic solvents and aromatic chemical 

mixtures were also performed, but the separation was not complete because of the 

short retention time and low column efficiency.      
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8.2 RECOMMENDATIONS FOR FUTURE WORK 

The world’s first parylene GC column with an embedded heating element has 

been developed. However, there are many things to be improved. The recommendations 

for future work can be made for several areas such as: process, column performance, 

heating element and integration with other components of a GC system.   

 
■ Process   

Making a defectless silicon microchannel is very critical in the fabrication of parylene 

column. However, the general deep RIE process often produces black silicon in the 

silicon channel. This was why longer columns (3 m long) could not be successfully built. 

Improvement needs to be made in this process to increase the yield.  

Parylene/parylene bonding has been shown successful for a single die. Wafer level 

bonding needs to be accomplished to have the advantage of using batch processes.  

 

■ Column performance 

Column efficiency needs to be improved to provide powerful separation of chemicals. 

Uniform stationary phase coating is crucial to achieve better column efficiency. A dry 

coating technique is preferred for this purpose. PECVD deposition of PEG and PDMS 

needs to be investigated.  

 

■ Heating element:   

A Parylene column requires lower power consumption for heating. However, the current 

heating element is not suitable for the commercial battery because it has high resistance. 
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In order to generate the required power with commercial batteries, the heating element 

needs to have lower resistance. One of the methods to achieve this involves making it 

thicker. Electroplaing seems to be the best choice for this purpose.    

 

■ Integration 

The fabricated parylene columns have been tested in a conventional GC system. In order 

to construct a miniature GC system, the column needs to be integrated with other 

components such as a micropump, microvalve, and sensor. Interfacing components and 

constructing a complete system must be investigated in the future. Multiple columns can 

be used in a single GC system. 

Another interesting approach is building hyphenated system such as GC-MS, GC-IR, and 

GC-IMS. A miniature GC column can be a powerful tool for the separation of analytes in 

many hyphenated systems. 
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