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SUMMARY 

This dissertation aims at developing and testing a new method that can better 

capture preferences for multistate health profiles. The motivation arose from the failure 

of the QALY (Quality-Adjusted Life Year) model in adequately capturing preferences in 

multistate health profiles. The current QALY-based technique captures preferences for 

multistate health profiles by evaluating each health state in the profile independently of 

other states. As the past literature showed, this additive independence condition does not 

hold in practice and hence such approach is inadequate. To address this issue, this study 

proposes a novel approach to measure preferences for multistate health profiles by 

looking at two consecutive health states at a time. It hypothesizes that an evaluation of 

the future health state is dependent or "conditioned" on the level of the preceding, or 

current, health state. Characteristics of the current health state that are suspected to 

impact the resulting “conditional preference scores” for future health state are 

systematically explored in a carefully designed empirical study. The interested factors 

include duration of the current health state, direction of change and amplitude of change 

between the current and future health states. A 23 full factorial design with three 

replications is used to explore main effects and their interactions. In a subsequent 

experiment, this study tests whether the proposed technique, which assesses "conditional 

preference scores" for discrete health states, can better predict preference scores for an 

 xv



entire health profile than the current unconditional QALY-based technique. In this 

subsequent study, duration-weighted conditional preference scores, duration-weighted 

unconditional preference scores, and duration-weighted holistic preference scores are 

compared for 10 hypothetical health profiles. Visual analog scale is used as an elicitation 

technique throughout the experiment. The ultimate goal of this study is to enable more 

accurate cost-effectiveness analyses, which sequentially will lead to better healthcare 

resource allocation decisions.  

This dissertation concludes with the results and discussions of the effects of the 

current health state characteristics on the preference evaluation of future health state as 

well as the potential of the proposed technique in capturing preferences for multistate 

health profiles. Implications for other related fields and future research are also discussed.  
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CHAPTER 1                                                              

INTRODUCTION 

Today, measuring health outcomes is a crucial matter in medical decision making. 

When clinicians and patients make clinical decisions such as choosing medical 

treatments, they have to base their judgment on a quantifiable gain or loss in health. The 

ultimate goal of medical treatment is not to increase particular clinical parameters or to 

cut costs but to increase life expectancy and/or the quality of life of patients. Clinical 

outcomes defined in terms of mortality or physiological measures such as blood pressure 

or diagnostic test results are generally insufficient for formulating a judgment and/or 

making a decision. Patients’ preferences for outcomes and risks of treatment need to be 

captured and explicitly included when contrasting alternative treatments for making 

medical decisions.  At the population level, capturing and aggregating preferences is also 

often deemed necessary for evaluating new treatments, health services or medical 

technology. Lack of including such information may result in suboptimal decisions that 

do not conform to individual or societal preferences.  

The concept and techniques of utility theory have been applied for health outcome 

measurement in order to incorporate patients’ preferences and risk attitudes. Such utility 

measurement techniques have been developed and applied, to a large degree within the 

context of “chronic health states”. A chronic health state is generally defined as a health 
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state that stays constant over a relatively long period of time. Most real-life situations, 

however, challenge the assumption of a constant health state. Chronic diseases, even 

when treated, are generally not stable but lead to health status deterioration over time. 

Health states do not remain at the same level over lengthy periods of time even in healthy 

individuals. 

The most widely applied model for health outcome measurement in medical 

decision analysis is the quality-adjusted life year (QALY) approach. The QALY model 

has emerged as the gold standard for health outcome measurement (Russell, Gold, Siegel, 

Daniels, and Weinstein, 1996). QALYs are extensively used in cost effectiveness 

analysis, an economic analysis technique widely used in health policy. Both life 

expectancy and quality of life are taken into account in a QALYs measure. The number 

of QALYs is typically obtained by multiplying life expectancy by a numerical weight 

associated with a constant health state experienced during the remaining life expectancy. 

The weight is a number between 0 and 1 where 0 is defined as “death” and 1 as “perfect 

health”.  On this scale, the weight associated with a health state represents the health-

related quality of life (HRQOL) of such health state.  The product of the HRQOL weight 

and the life expectancy is a measure of the desirability of the health state experienced 

during the life expectancy.  For example, as shown in Figure 1.1, an individual who has a 

life expectancy of 20 years with a disease that has a HRQOL weight of 0.7 is valued at  

20 x 0.7 = 14 QALYs  

Extending the approach to sequences of chronic health states such as the sequence 

shown in Figure 1.2, one typically calculates the desirability of such a sequence by taking 

the sum of all products of duration and health weight corresponding to the health states in 
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that sequence. For example, an individual with a health profile shown in Figure 1.2 

would value that sequence at  [(1x8) + (0.7x5) + (0.4x7)] = 14.3 QALYs.  

 

Health State Weight

0
(death)

                1
(perfect health)

Life Expectancy
(Years)20

0.7

14 QALYs

 

Figure 1.1: Illustration of QALYs in the case of constant health state 
 

 

 

Health State Weight

0
(death)

                1
(perfect health)

Life Expectancy
(Years)20

0.7

8 13

8 QALYs
3.5

QALYs
2.8

QALYs

0.4

 

Figure 1.2: Illustration of QALYs in the case of non-constant health profile 
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Since the theoretical construct of QALY was developed from utility theory, the 

QALY model has been accepted as one of the health outcome measurements that can 

represent patient’s preference.  However, especially when health states vary, equal 

numbers of QALY between health profiles do not necessarily indicate that the health 

profiles are equally preferred. For example, consider the two profiles of health states over 

time depicted in Figure 1.3. Both Health Profile 1 and Health Profile 2 have been 

designed to produce the same amount of QALYs (the area under each curve). Yet, the 

two profiles are clearly different with profile 1 being very “steady” over time while 

profile 2 jumps up and down.  Following the QALY calculations however, Health Profile 

1 and Health Profile 2 would be determined to be equally preferred. However, it is 

plausible that the variation in health states, as shown in Health Profile 2, could have an 

effect on one individual’s preference. The QALY framework fails to capture this.   

 

1

0
Death

QALYs

Health State
Weight

1

0
Death

QALYs

Health Profile 1

Health State
Weight

Life
Expectancy

(Years)

Life
Expectancy

(Years)Health Profile 2  

Figure 1.3: An example of potential failure of QALY in capturing preference due to 
variation in health states  

 

 

The example above illustrates the potential effect of “steadiness” of health profile 

over time on patients’ preference. Obviously, health profiles in reality do not stay steady 
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over time. Thus, health profiles similar to Health Profile 1 in Figure 1.3 are unlikely to 

occur. Besides the steadiness of health profile, other factors defining the “pattern,” or 

overall shape, of the health profile might have an effect on patients’ preference. Consider 

another example in Figure 1.4, both health profiles are unsteady but they have different 

patterns. They have been designed to have equal amount of QALYs. Thus, based on an 

implication by QALYs, Health Profile 1 and Health Profile 2 in Figure 1.4 would be 

judged as equally preferred. However, this is not necessarily true. People may prefer one 

pattern over another even though they both produce the same amount of QALYs. There 

are many potential factors defining the pattern of health profiles that might affect 

patients’ preference.  The QALY framework fails to account for these factors. 

Calculating QALY for health profiles with multiple health states by simply adding up 

QALYs corresponding to each constituent constant health state may lead to inaccurate 

values that misrepresent people’s preference. 

 

1

0
Death

QALYs

Health State
Weight

1

0
Death

QALYs

Health Profile 1

Health State
Weight

Life
Expectancy

(Years)

Life
Expectancy

(Years)Health Profile 2  

Figure 1.4: An example of potential failure of QALY in capturing preference due to the 
patterns of the health profiles 

 

 

 5



In order for the QALY model to represent individual’s preference regarding a 

constant health state of interest, three conditions are required: mutual utility 

independence of life years and health state quality, constant proportional tradeoff 

property, and risk neutrality over life years (Pliskin, Shepard, and Weinstein, 1980). 

Moreover, to simply add QALY’s representing each constant health state in a health 

profile comprising multiple health states, the additive utility independence requirement 

needs to be added to those three conditions (Bleichrodt, 1995). Additive independence 

requires that the preference for one health state is independent of preference for other 

health states in the sequence of the health profile. Thus, if additive utility independence 

holds, Health Profile 1 and Health Profile 2 in Figure 1.4 would be equally preferred.  

However, results from several studies found a violation of the additive 

independence assumption in the calculation of QALYs (Richardson, Hall, and Salkeld, 

1996; Kupperman, Shiboski, Feeny, Elkin, and Washington, 1997; Spencer, 2003). 

Hence, in the case of multistate health profiles, calculating QALYs by decomposing the 

health profiles into several constituent health states and adding up QALYs will most 

likely not be a valid technique. In this study, specific factors which are believed to 

influence preference assessment for multistate profiles are identified and will be 

empirically studied.  In addition, a novel approach for combining assessments will be 

derived and studied to permit overall assessment of multistate profiles.  Chapter 2 

provides an extensive literature review of these findings and other relevant topics.
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CHAPTER 2                                                              

REVIEW OF LITERATURE 

2.1 QALY Framework – Theoretical Background  

The quality-adjusted life year (QALY) model is a measurement technique for 

health outcomes that takes into accounts both quality and quantity of life. It is the 

arithmetic product of life expectancy and a utility-based measure of quality of life of the 

remaining years of life. QALY has been developed in the 1970’s (Fanshel and Bush, 

1970). The original theoretical properties of QALY are summarized in a paper by Pliskin 

et al. (1980). They show that QALY is a valid utility function, which represent individual 

preferences, if three conditions hold. These conditions are the followings: 

1. Mutual utility independence (MUI) of life years (T) and health state (Q) 

This assumption means that preferences for gambles over either one of the two 

attributes, with the other attribute held at a fixed level, do not depend on the particular 

level of that other attribute. For example, an arthritis patient does not judge his own 

health state differently because he has five or twenty years remaining in his life. If MUI 

holds, one can construct a multiattribute utility model for the health profiles (Q,T) as the 

followings: 

U(Q,T) = a·U(Q) + b·U(T) + (1-a-b)·U(Q)·U(T)  
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where U(Q,T) is utility of health profile (Q,T) , U(Q) is utility of health state Q, U(T) is 

utility of life years T, a and b are scaling constants. 

2. Constant-proportional tradeoff property 

The proportion of remaining life that one would trade-off for a specified quality 

improvement is independent of the amount of remaining life. For instance, consider the 

situation where one asks an individual to trade off an amount of time of his/her remaining 

years of life in order to have a perfect health versus the poorer one. If he/she gives up 10 

years out of 20 remaining life years, he/she would equally give up 5 out of 10, 2.5 out of 

5, and so on.  Thus, the proportional trade-off is constant, in this case always half of 

his/her remaining life years.   

3. Risk neutrality over life years 

This assumption means that the utility function for life years is linear. If risk-

neutrality over life years holds in all health states, MUI and constant proportional trade-

off will also hold (Johannesson, 1994).  

The above three assumptions are the requirements for the standard QALY model 

which assumes risk neutrality with respect to life duration. However, the assumption of 

risk linearity is not empirically realistic. For example, McNeil, Weichselbaum, and 

Pauker (1978) found that patients with bronchogenic carcinoma had moderate risk 

aversion over life years. Stiggelbout, Kiebert, Kievit, Leer, Stoter, and de Haes (1994) 

found mild risk aversion in male patients with testicular cancer. Additionally, Verhoef, de 

Haan, and van Daal (1994) conducted a study with healthy women and found risk 

aversion over life years, but risk-seeking preferences over gambles involving short 

durations. On the contrary, Mehrez and Gafni (1987) found risk aversion when the length 
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of the durations increased. Thus, the violation of risk neutrality in the standard QALY 

model would lead to an invalidity of QALY as a representation of individual’s 

preference. 

However, QALYs can be defined in either a risk-neutral (standard QALY model) 

or a more general risk-adjusted form (generalized QALY model) as developed by Pliskin 

et al. (1980), depending on whether the decision maker is risk neutral or not with respect 

to uncertainty regarding life years. If the decision maker is risk neutral, QALYs will be in 

the form as follows: Risk-neutral QALYs = U(Q,T) = H(Q) x T. However, by relaxing 

the assumption of risk neutrality, they define the more general risk-adjusted QALYs as 

follows: Risk-adjusted QALYs = U(Q,T) = H(Q) x [T]r   

H(Q) is the quality weight, measured on a scale between 0 (death) and 1 (full 

health), and r is the risk parameter that defines the shape of the utility function for 

quantity of life. Obviously, if the subject is risk neutral, r = 1. The number of QALYs is 

the multiplication of the quality weight and the number of years in the health state. If 

mutual utility independence and constant proportional trade-off holds, then risk-adjusted 

QALYs as defined by Pliskin et al. (1980) are a valid utility function representing 

preferences over constant health states (Johanesson, 1994). 

Moreover, Johanesson (1994) further classifies risk-neutral QALYs and risk-

adjusted QALYs into 2 sub-types, each category being defined by the specific technique 

used in assessing the quality weight. They are the followings: 
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1. Risk-neutral QALYs 

• If using the time-trade-off (TTO) method in assessing the quality weight, risk-

neutral QALYs is defined by the following equation: Risk-neutral QALYs = 

U(Q,T) = V(Q) x T, where V(Q) is the value function of health state Q. 

• If the standard gamble techniques are used in assessing the quality weight, risk-

neutral QALYs is defined by the following equation: Risk-neutral QALYs = 

U(Q,T) = U(Q) x T 

If risk neutrality over quality of life holds, V(Q) is equal to U(Q) and both the 

quality weight and the number of QALYs will be the same for both the standard gamble 

method and the time-trade-off method.  

2. Risk-adjusted QALYs 

By relaxing the assumption of risk neutrality over life years, risk-adjusted QALYs 

can be defined in the QALY framework as follows: U(Q,T) = U(Q)·U(T). Johanesson 

(1994) classifies risk-adjusted QALYs into 2 types regarding the techniques used in 

assessing the quality weight as follows: 

• If using the TTO method in assessing the quality weight, risk-adjusted QALYs is 

defined by the following equation: Risk-adjusted QALYs = U(Q,T) = [V(Q)·T] r 

• If the standard gamble techniques are used in assessing the quality weight, risk-

adjusted QALYs is defined by the following equation: Risk-adjusted QALYs: 

U(Q,T) = U(Q) ·T r, where r is the risk parameter. If the subject is risk neutral, r = 

1. 

More specifically, U(Q) is equal to V(Q) rand V(Q) is equal to U(Q)1/r, if the constant-

proportional tradeoff property holds (Johannesson, 1994). 
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Besides challenging the risk neutrality assumption, several studies on the validity 

of the other assumptions have been preformed. For example, Miyamoto and Eraker 

(1988) tested the mutual utility independence assumption and found empirical support for 

this assumption. Bleichrodt and Johannesson (1996) performed empirical tests on utility 

independence and constant proportional tradeoff. They found that without adjustment for 

imprecision of preference (imprecision adjustment was suggested because of the 

unfamiliarity of the subjects regarding both the health states and elicitation methods), 

22.8% of the subjects satisfied constant proportional tradeoff, 13.4% satisfied utility 

independence, and 5.8% satisfied both assumptions. However, with the imprecision 

adjustment, 90.1%, 75.8% and 88.8% of the subjects satisfied constant proportional 

tradeoff only, utility independence only, and both assumptions, respectively. The authors 

concluded that the constant proportional tradeoff holds roughly and utility independence 

holds, but in a much weaker way. Pliskin et al. (1980) reported 25 pairs of time-tradeoff 

responses from 10 subjects in hypothetical questions concerning the relief of different 

levels of angina pain. They found that only four out of 25 pairs were consistent with the 

constant proportional tradeoff assumption.  

 

2.1.1 Zero-Condition 

Instead of the three assumptions established by Pliskin et al. (1980), which require 

knowledge of concepts from utility theory, Bleichrodt, Wakker, and Johannesson (1997) 

suggested a more elementary and fundamental characterization of QALYs that can relax 

Pliskin et al. (1980)’s assumptions. They found that risk neutrality together with the 

“zero-condition” are sufficient to imply the existence and validity of the QALY model. 
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The “zero-condition” indicates that all health state levels are equivalent, from a quality of 

life perspective, for a zero duration of life years. Zero condition is a condition that seems 

unavoidable in the medical context. Thus, the only assumption that is needed to imply 

QALYs is the risk neutrality for all health states.  

However, there is ample empirical evidence showing a violation of risk neutrality 

as previously described. A generalized QALY model that can relax the assumption of risk 

neutrality was established to solve risk neutrality issue. A generalized QALY model has 

the following form: U(Q,T) = V(Q)W(T), where U(Q,T) is the utility of the health profile 

(Q,T), V(Q) is the value function of health state Q, and W(T) is the function that values 

life duration and can be nonlinear, with W(0) = 0. Instead of the risk neutrality condition, 

Miyamoto, Wakker, Bleichrodt, and Peters (1998) suggested another condition, “standard 

gamble invariance (SG invariance)”, in order to relax the risk neutrality condition. SG 

invariance basically says that, if Q and Q’ are unequal to death and p is the probability 

equivalent of (Q, T) with respect to (Q, Y) and (Q, Z), then p is also the probability 

equivalent of (Q’,T) with respect to (Q’, Y) and (Q’, Z) (Miyamoto et al., 1998). Without 

risk neutrality, a generalized QALY model holds if and only if the zero-condition and SG 

invariance hold.   

 

2.1.2 Violation of Expected Utility Theory Assumption when Death is Considered as 

an Outcome 

Expected utility theory or the von Neumann-Morgenstern expected utility theory 

is the foundation for health outcome assessment and measurement. A utility function 

actually exists when axioms of rationality hold for the preference relations being studied. 
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Three axioms of expected utility theory  (von Neumann and Morgenstern, 1947) which 

have been known to be normatively compelling rules for rational decisions under 

uncertainty are as follows (Note: “f” denotes an individual’s “is preferred to” relation, 

and “~” denotes the indifference relation, X is the set of outcomes, and ∆ (X) is the set of 

probability distributions over X): 

1. Weak order 

f is asymmetric (p f q => not [q f p]) and both f and ~ are transitive (if p f (or 

~) q and q f (or ~) r then p f (or ~) r for all p, q, r ∈ ∆ (X). 

2. Independence 

For all p, q, r ∈ ∆ (X) and any α ∈ ]0, 1[, then p f q if and only if α p + (1-α )r f 

α q + (1-α )r.  

3. Continuity Axiom 

If p, q, r ∈ ∆ (X) such that p f q f r, then there exist  α and β ∈ ]0, 1[ such that α 

p + (1-α )r f q f β p + (1-β )r. 

Thus, in addition to the three required assumptions of QALYs described 

previously, how adequately QALYs represent preference over health states also depends 

on whether they are consistent with von Neumann and Morgenstern’s expected utility 

theory. If the axioms of von Neumann and Morgenstern’s expected utility theory hold 

true, decision makers should be able to make decisions that are consistent with their 

underlying preferences for each possible health outcome. However, in medical decision 

making, when death is considered as an outcome, a violation of the continuity axiom may 

arise. For example, consider three health outcomes: perfect health, having a cold, and 

death. Perfect health is preferred to having a cold, which is preferred to death. In order to 
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satisfy the continuity axiom, one should be able to find α and β (between 0 and 1) for the 

gamble in Figure 2.1. However, for most individuals, death would be considered as an 

infinitely undesirable outcome, and it would seem impossible to find α strictly greater 

than 0 such that an individual would be willing to risk death in order to avoid the state of 

having a cold. Therefore, this would be a violation of the continuity axiom.  

 

 

Perfect Health

Death

α

1− α

Perfect Health

Death

β

1− β

Having a cold

 

Figure 2.1: Illustration for a possible violation of the continuity axiom when death is part 
of the outcome set 

 

 

In the case of multistate health profiles, QALYs are calculated as the sum of all 

products of time and health preference weight for all health states representing the health 

profile. Bleichrodt (1995) has shown that in order to obtain a valid measure of QALY 

under expected utility theory for multistate health profiles by adding up QALYs 

calculated from constituent states, it is necessary that the assumption of additive 

independence holds. As mentioned above, additive independence requires that the 

preference for one health state is independent of preference for other health states in the 

sequence of the health profile (Bleichrodt, 1995).  
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Regarding the additive independence assumption, there have been several 

empirical research studies that explored the validity of the additive independence 

assumption. The review of these studies is described in the next section.  

 

2.2 Testing the Additive Independence Assumption 

Richardson et al. (1996) examined the validity of the additive QALY model in a 

16-year post-mastectomy health profile represented by a gradual deterioration composed 

of three health states: moderate side effects during the first five years, mild side effects 

for the next 10 years, but then breast cancer would recur and the patient would experience 

severe side effects during the last one year. Sixty-three female respondents participated in 

the study. Rating scale, time-tradeoff and standard gamble techniques were used to assess 

utility for each health state and the holistic utilities for the health profiles. Preference 

scores from constituent states were combined to estimate scores for the health profile 

using a discount rate of 3% and 9%. They found that holistic preferences for the 

multiphase health profile (whether assessed with a rating scale, time-tradeoff, or standard 

gamble) were significantly different from composite preferences derived from the 

constituent health states, irrespective of the discount rate applied. 

Kupperman et al. (1997) also investigated whether preferences for multiphase 

health states can be approximated by preferences from constituent health states. A 

hundred and twenty-one female subjects were asked to assess their preferences on eight 

health profiles, each composed of three to four health states, in the context of prenatal 

diagnosis choices: chorionic villus sampling and amniocentesis, by using visual analog 

scaling and standard gamble techniques. They explored if a different statistical 
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formulation could be derived to predict preference scores for health profiles from their 

constituent health states preference scores. They found that a duration-weighted additive 

model, in which the preference scores are duration-weighted and summing up, as the 

conventional QALY model does, was not predictive. A multiple regression model that 

derived from statistically inferred weights could predict the preferences for the profiles 

better than the duration-weighted model.  

MacKeigan, O’Brien, and Oh (1999) used the time-tradeoff technique to compare 

preference scores for the same lifetime paths between holistic and composite assessment. 

A hundred and one participants with type 2 diabetes assessed their preferences regarding 

four hyperglycemic treatment profiles lasting 30 years, composed of 8 discrete treatment 

states. They failed to find any significant differences between holistic and composite 

scores, which conflicted with the results from the studies by Richardson et al. (1996) and 

Kupperman et al. (1997). However, the health profiles used in MacKeigan et al. (1999) 

were different in that they consisted of progressive minor deteriorations in states while 

the health profiles in the other studies consisted of critically different health states. 

Moreover, the authors concluded that another reason would be because the profiles in the 

study were too similar. They recommended that future research should be repeated with 

profiles that are more distinct and where sequencing effects are likely to be larger.  

In Spencer (2003)’s study, three health states defined with the EuroQol 

classification system were used in each health profile. Each health profile in the study 

had 10 years duration and composed of up to three different health states with the 

duration of three years, three years, and four years. Two tests were conducted: test of 

additive independence and test of the additive model. Twenty-nine subjects participated 
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in the study. The violation of additive independence was found in the first test. However, 

in the additive model test, only one of the two versions resulted in a rejection of the 

additive model. Thus, Spencer could not conclusively reject the additive model. The 

author suggested that a larger sample size might allow the test to be able to detect 

significant differences in the results. Also, comparisons of utilities based on holistic 

elicitation procedures and constituent states elicitation were performed. The results 

showed that two out of the seven profiles exhibited a significant difference between 

holistic and constituent states elicitation, which implied that additive independence 

assumption was violated.  

The studies previously described clearly show the violation of the additive 

independence assumption. When there are multiple outcomes in the profile, people’s 

preference scores of the outcome profile cannot be evaluated by simply adding scores 

assessed from segmented outcome assessments. There are a number of studies that 

explored influential factors on people’s preferences, which could lead to the violation of 

additive independence assumption. The review of the studies for each potential factor is 

described below. 

 

2.3 Potential Influential Factors 

 
2.3.1 Rate of Change 

Hsee and Abelson (1991) performed experiments to find a relationship between 

satisfaction and rate of change of the outcomes or what they called “velocity”. Contexts 

of the outcome that were used in the study are gambling (probability that subjects would 

win the game), class rank (the percentile standing in a hypothetical class), and stock (a 
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stock price that the subjects were hypothesized to invest into). They found that 

satisfaction is positively related to not only the actual outcome position but also the rate 

of change (or velocity) of the outcomes over time. The more positive (negative) the rate 

of change is, the greater (less) the satisfaction will be. This implies that for an improving 

sequence of outcomes, a more rapidly improving rate is preferred. On the other hand, for 

a deteriorated sequence of outcomes, slower deteriorated pace (less negative rate of 

change) is preferred. For example, in the context of health, people would look forward to 

recovering rapidly from having a poor health state after receiving a treatment. Moreover, 

when they have a sickness, they would not desire to have a disease that worsens their 

health state hastily. Those results are certainly sensible in a medical context.  

Additionally, Hsee, Abelson, and Salovey (1991) investigated factors that 

influence the relative weighting of position and velocity in satisfaction. They found that 

the framing of the outcome, the perceived purpose of the behavior associated with the 

outcome (motive), and the control of the outcome had an effect on the relative 

importance of the actual value (position) and the change in the value (velocity). The 

relative importance of the velocity was larger than that of the position when the outcome 

was framed in terms of change rather than in terms of an overall position, and vice versa. 

Moreover, if the activity is intrinsically motivated (e.g. performed because it is 

enjoyable), the satisfaction will be more influenced by the change in the outcomes. On 

the other hand, if the activity is extrinsically motivated (e.g. performed to achieve some 

external outcomes), people are more concerned with the final outcome of the activity. 

Furthermore, if the outcome is perceived as internally controlled, the relative importance 

of velocity will be larger since it indicates the performance of the person who performs 
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the activity. In contrast, if the outcome is perceived as out of control, the final outcome 

will be more important.   

 Chapman (1996a) also found a significant effect of rate of change or “slope” on 

the preference in both health and money domains. Forty undergraduate students evaluated 

16 different patterns of sequences of health and money by using a 0 to 100 scale. Five of 

the 16 sequences showed health or money decreasing at constant rates that varied over 

the sequences. Another five sequences showed health or money increasing at constant 

rates, with the different rates over the five sequences. Thus, these 10 sequences had five 

different slopes or rate of change for each direction of change over time (increasing or 

decreasing). One of the 16 sequences had constant money or health over time. Another 

one had money or health at a maximum for the first half duration and at a minimum for 

the last half duration. Another four sequences represented more realistic sequences. Two 

of them decreased gradually at the early part of duration and more steeply at the later 

part. Another two sequences increased steadily until two-third of the duration and then 

dropped to a low and constant level. Rating scores from the 10 sequences that had 

constant rates of change varied over the sequences (five are increasing sequences and 

another five are decreasing sequences) were analyzed to study the main effect of slope. It 

was found that slope or rate of change is one of the significant factors that impact their 

rating scores. It indicated that subjects preferred gradually increasing or decreasing 

sequences to those with steep slopes. These results were conflicted with the findings by 

Hsee and Abelson (1991), which suggested that the more positive (negative) the rate of 

change is, the greater (less) the satisfaction will be. Or in other words, for an increasing 

sequence, the steeper the slope is, the greater the satisfaction will be. For a decreasing 
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sequence, the gradually decreasing sequence is preferred to the decreasing sequence with 

steep slope. However, these two studies were different in that the study by Hsee and 

Abelson (1991) did not controlled for the total number of units of outcome over a specific 

period of time while the study by Chapman (1996a) did. Thus, preference for higher rate 

of change in positive outcome in the findings by Hsee and Abelson might be a result of 

higher amount of the outcomes received within the specific period of time.  

 Ariely (1998) also found a significant effect of rate of change in a study of 

retrospective pain evaluation. Sixty-four different patterns of heat stimuli with two 

different slopes (gradual and steep) varied among the patterns were experienced by 20 

subjects through the probe of Thermode (a device that controlled level of heat) on their 

forearms. The subjects gave an overall pain evaluation of each pattern at the end of 

experience with each stimulus. The results showed that the intensity slope or rate of 

change of the final part of the experience had positive impact on the evaluations. The 

subjects rated the experience as having higher pain when the intensity steeply increased 

than when it gradually increased. 

 

2.3.2 Peak, Final Outcome, and Duration of the Profiles 

When making global evaluation of the experience, the most logically compelling 

rule is a rule of temporal monotonicity: adding aversive experience to the episode 

worsens the global evaluation and adding pleasant experience enhances the evaluation 

(Kahneman, Fredrickson, Schreibner, and Redelmeier, 1993). However, there were 

several studies showing the violation of this rule. Adding aversive moment to the episode 

was found to increase the evaluation positively if the moment added is less aversive than 
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the previous moment even though it makes the total duration of discomfort longer (Varey 

and Kahneman, 1992; Kahneman et al., 1993, Fredrickson and Kahneman, 1993; 

Redelmeier and Kahneman, 1996; Baumgartner, Sujan, and Padgett, 1997; Langer, Sarin, 

and Weber, 2000; Ariely and Loewenstein, 2000; Diener, Wirtz, and Oishi, 2001; 

Schreiber and Kahneman, 2000). A number of empirical works have demonstrated that 

retrospective pain evaluation is influenced essentially by the peak and final moment of 

the experience and not significantly impacted by the duration of the painful experience 

itself.  In medical decision making, retrospective pain evaluation is an important matter 

since it reflects patient’s memories of how painful the treatment was and could impact 

their decisions regarding future treatments.  

Varey and Kahneman (1992) examined intuitions relating to outcomes extended 

over time and found that extended aversive experiences were not evaluated with the 

utility integration rule (the duration and the trend of the experience should jointly 

determine the global evaluation). In one experiment, when the duration of experience was 

emphasized, intuitions about the global evaluation of extended aversive experiences were 

influenced by duration rather than the intensity of the experience. Forty-eight subjects 

were asked to evaluate series of unpleasant experiences (carrying a suitcase for 200, 550 

or 990 yards; standing within a knee-high metal ring 18-inch-diameter for 5, 9, or 13 

minutes; wearing a helmet and breathing apparatus for 5, 9 or 13 minutes; reading while 

exposed to a sound for 20, 35, or 50 minutes). Duration was found to have an effect on 

the disutility evaluation as a concave function, even for experiences that intensified over 

time. In another experiment, when the trend was made explicit, the global evaluations 

were primarily influenced by the trend of the experience and were insensitive to duration. 
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In this experiment, 46 subjects were asked to assess their own global evaluation of 

another person’s experience of different discomfort rating series using a 0 to10 scale. The 

series varied in the intensity and trend and ranged from 15 to 35 minutes long. It was 

found that discomfort rating series that had better ending were judged much less aversive 

than those with worse ending moment even though those series were shorter in total 

duration. The authors hypothesized that in the evaluation of extended experiences, the 

subjects simplified the task by focusing on some dimension(s) as representative of the 

whole experience. The dimension(s) that was(were) selected depended on how the 

information was presented. Another finding was that when the trend of experience 

influenced the global evaluation, the peak discomfort had a large impact on the 

evaluation while the duration was neglected. This implies that adding pain to the end of 

the sequence can lower the evaluation if the added duration has lower pain than the 

preceding level. This finding was consistent with the finding by Ross and Simonson 

(1991), which stated that the preference of the decision makers was affected by the final 

moment of the sequence.  

In a study by Kahneman et al. (1993), 32 subjects were asked to experience two 

trials: one is to immerse one hand in 14°C water for 60 seconds and the other one is to 

immerse the other hand at 14°C for 60 seconds and then the temperature was gradually 

increased to 15°C in another 30 seconds (total duration was 90 seconds). Sixty-nine 

percent of the subjects when asked to repeat one of the two trials chose to repeat the 

longer one. Moreover, most subjects indicated that the long trial had less overall 

discomfort, was less cold at its extreme moment, and was less tough to cope with. The 

correlation of 0.16 between trial durations and choice selected confirmed the neglect of 
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duration. Furthermore, results from Fredrickson and Kahneman (1993)’s study confirmed 

the influence of peak and final moment and the negligence of duration on on-line and 

retrospective evaluation. Thirty-two subjects viewed a total of 16 film clips, varying in 

content from pleasant to aversive, ranging in length from 29 to 125 seconds. Subjects 

provided on-line rating during watching each clip and retrospective rating after watching 

each clip. The results were similar to the previous studies that the global evaluations of 

were impacted by the peak and final moment of the episodes and very little by the 

duration. Similar results were also found in Redelmeier and Kahneman (1996)’s study. 

They assessed on-line and retrospective experience evaluations from 154 patients who 

underwent colonoscopy and 133 patients who underwent lithotripsy and found that the 

patient’s memories of painful medical treatments were mainly affected by the peak and 

final intensity of the procedures. The duration of the treatments did not significantly 

impact the retrospective evaluation. 

Ariely and Zauberman (2000)’s study also provided evidence for a significance of 

trend and a preference for happy ending. Fifty-four students were exposed to different 

intensity patterns of annoying sounds and asked to give the retrospective rating on the 

overall annoyance. It was found that subjects rated patterns that had final increasing 

trends as more annoying than those that had final decreasing trends. Moreover, this study 

investigated the effect of segmentation on the evaluation of the experience. They found 

that when the experience was segmented into discrete parts such that it will be more like 

multiple experiences, the evaluation would be based more heavily on the intensity of the 

parts themselves and less on the pattern. Additionally on-line measurement was found to 

reduce the impact of the pattern on the overall evaluation as was also found by Ariely 
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(1998). Ariely and Zauberman (2000) suggested that subjects segmented their experience 

while they were doing on-line rating. Thus, both on-line measurement and segmentation 

of the experience can reduce the impact of the pattern on the overall evaluation. 

Ariely and Carmon (2000) performed a study on patients with bone marrow 

transplant. The patients were asked to rate the level of pain on a scale of 0 (no pain) to 

100 (the worst pain) on every hour from 8am to 6pm on the experiment day. Also, at the 

end of the day, they were asked to give an overall evaluation of the pain on that day. It 

was found that based on the hourly rating that they reported, the final pain intensity and 

the slope were the significant predictors for the overall evaluation. However, in contrast 

to other studies (Varey and Kahneman, 1992; Fredrickson and Kahneman, 1993; 

Redelmeier and Kahneman, 1996; Baumgartner et al., 1997; Schreiber and Kahneman, 

2000; Langer et al., 2002), peak intensity was not found to be significant. The author 

explained the conflict by advancing that since the subjects were long-term patients in the 

hospital, the peak intensity that they had on the experiment day may not be clearly 

differentiated from the peak intensity they had on the days prior to the experiment. The 

small effect of peak intensity was also found in the study by Ariely (1998) where the 

peak intensity was found to have a significant effect but much smaller than the slope and 

the final intensity. The author explained that the subjects were exposed to too many trials 

(a total of 110 trials in two experiments) and hence, the salience of the peak intensity, or 

lack thereof, may have moderated its impact on the overall evaluation. 
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2.3.3 Sequence of Outcomes 

Sequence effect denotes a change in preference that is influenced by different 

patterns of outcomes. This includes the difference of the preference when assessing 

health outcome that is presented as an individual outcome versus a sequence of outcomes. 

One of the factors that play an important role in sequence effect is time. People may have 

different preferences regarding the same outcome for different points in time. A number 

of research studies have shown that people, when faced with single outcome choices, 

exhibit positive time preference (Benzion, Rapport and Yagil, 1989; Chapman 1996a, 

Chapman and Elstein, 1995; Thaler, 1981). They prefer to have positive outcomes sooner 

than later, and prefer to delay negative outcomes to later.  

Lipscomb (1989) investigated time preferences over 96 different hypothetical 

health profiles. Each health profile began at age 25, started with excellent health, 

followed by one of two poor health states (either condition X or Z) with four different 

durations (one month, one year, three years, and five years), starting after one of six 

different delays (no delay, three years, five years, seven years, 15 years, and 25 years). 

Following condition X or Z would come either excellent health until age 75 or immediate 

death. Fifty-two undergraduate students were asked to assess their preferences for these 

health scenarios by using categorical rating as well as standard gamble techniques. 

Regression analysis was used to explain these scores with delay of onset, health 

condition, duration, exit state, respondent characteristics (e.g. own health status, smoking 

behavior), and assessment technique. The results showed that the impact of the state of 

poor health on the evaluation of the health scenario was reduced as the poor health was 
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delayed further into the future, implying a positive time preference. Preference scores 

increased as the length of delay increased.  

However, when the outcomes are presented in sequence, people tend to display 

negative time preference in which improving sequences of outcomes are preferred to 

declining sequences (for example, Loewenstein and Sicherman, 1991; Loewenstein and 

Prelec, 1991, 1993; Varey and Kahneman, 1992; Ross and Simonson, 1991).  

A study by Loewenstein and Sicherman (1991) showed that a majority of the 

subjects exhibited negative time preference in the context of wage profiles over a 5-year 

period. They preferred to have increasing wage profiles rather than a declining or a 

constant one even though the net present value of improving wage profiles were smaller 

than that of declining or constant wage profiles. Moreover, Loewenstein and Prelec 

(1991) performed experiments on choices of restaurant and time preference. A majority 

of the subjects who reported as having preference for a French restaurant over a Greek 

restaurant preferred to have dinner at French restaurant sooner rather than later when the 

choices were presented as a single outcome. However, when the outcomes were 

presented in sequence (e.g. dinner at a Greek restaurant followed with dinner at a French 

restaurant, on different days of course), more than half of the subjects preferred to have 

dinner at a Greek restaurant first and at a French restaurant later. This also shows an 

empirical evidence of negative time preference for the sequence of outcomes. 

Furthermore, a study by Loewenstein & Prelec (1993) found that a majority of the 

subjects exhibited negative time preference when the decision frame emphasizes the 

sequential nature of the outcomes. However, when single outcomes are emphasized, 

positive time preference was displayed instead.  
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Chapman (1996a) explored preferences for both sequences of health and 

monetary outcomes. Forty students were asked to give preference scores (score 1 (least 

preferred) to 10 (most preferred)) for 32 sequences: 16 in the health domain and 16 in the 

money domain. The sequence length for the health domain was 60 years, and 5 years for 

the money domain. It was found that decreasing sequences of health were preferred to 

increasing sequences. However, the preferences for the decreasing sequences were 

weaker in the money domain. In the money domain, increasing sequences were not found 

to be preferred to decreasing sequences, which was inconsistent with the result from 

Loewenstein and Sicherman (1991)’s study. Chapman explained that Loewenstein and 

Sicherman (1991) used relatively short sequences (5 years) whereas a lifetime sequence 

was used in her study. As shown in another experiment by Chapman (1996a), one year 

and lifetime sequences were used in both health and money domains. Subjects reported to 

have preferences for improving sequences over the decreasing ones for both health and 

money in the one-year sequence whereas in the lifetime sequence, the decreasing 

sequences were preferred in health and the improving sequences were preferred in 

money. The results indicated that preferences for sequences are influenced not only by 

domain but also by the sequence length. Chapman suggested that the preferences for 

improvement exhibited were driven by their expectations. When considering a long time 

horizon such as lifetime, they expect a perfect health early and gradually declining health 

as they are getting older. Also, they expect an income that increases over their lifetime. 

The subjects used their expectation as a reference point and judged their preference by 

considering how close the profile in question was to their reference point.  
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Later, Chapman (2000) further investigated the idea that expectations drive 

preferences in three experiments. A hundred subjects in the first experiment were asked 

to make choices between improving and declining sequences of six questions of headache 

pain. The six questions were differed in sequences lengths: one hour, one day, one month, 

one year, five years, and 20 years. Ninety subjects in the second experiment were asked 

three choice questions of athletic ability. Each question asked the subjects to make 

selections between improving and declining sequences. The three questions were differed 

in sequence lengths: one week, one year, and 20 years. A hundred and fifteen subjects in 

the last experiment were asked the choice questions between improving and declining 

sequences of three questions about facial acne and three questions about facial wrinkles. 

The questions differed in length of sequence: one week, one year, and 20 years. Another 

group of subjects gave expectation ratings for each of the 15 sequence pairs (six pairs for 

headache pain, three pairs for athletic ability, three pairs for facial acne, and three pairs 

for facial wrinkle). It was found that in each experiment, preferences generally followed 

the expectation pattern. The expectation ratings were significantly correlated with the 

percentage of subjects who preferred improving sequences. For the headache pain, the 

percentage of the subjects who chose the improving sequence slightly increased with 

longer sequences. However, the expectation rating across the sequence lengths did not 

follow this pattern. In the athletic ability and the facial complexion, the percentage 

decreased with longer sequences. The author concluded that expectation influences 

preferences for some specific health outcomes, rather than by decision domains (e.g. 

health versus money).  
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Krabbe and Bonsel (1998)’s study also showed evidence for a sequence effect in 

health. A hundred and four subjects evaluated 13 different EuroQol-defined health states 

using each of two variations of the TTO technique (ordinary TTO and reverse TTO). 

With the ordinary TTO, assessments were made starting with the “best imaginable state” 

first and ending with the “worse imaginable state” last. With the reverse TTO, the reverse 

order was used. The values for “best imaginable state” from both TTOs should be the 

same for each health state if the sequence effect did not exist. However, after applying a 

5% discount rate, they found that values for the “best imaginable state” in the reverse 

TTO questions were lower than those in the ordinary TTO. Thus, this study provided 

additional evidence for a sequence effect in health state measurement. 

Possible explanations for preference for improving sequence (negative time 

preference) 

Loewenstein and Prelec (1993) suggested three reasons that explained preference 

for improvement or negative time preference of the sequence. First, the belief of savoring 

and dread (Loewenstein, 1987), people prefer to have negative outcome sooner to 

eliminate dread which allow them to savor the best outcome until the end of the 

sequence. The second one was adaptation (Helson, 1964) and loss aversion (Kahneman 

and Tversky, 1979). People tend to adapt to changes in situation over time and they try to 

avoid confronting loss. Improving sequence allows them to positively adapt and always 

face gains when they evaluate the new outcome by comparing to the existing one. A 

decreasing sequence, on the other hand, implies a sequence of relative losses. The third 

reason was the recency effect (Miller and Campbell, 1959), when a person doing 

retrospective evaluation, the last moment tends to be the easiest one to be retrieved from 
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the memory. Thus, when asking people to evaluate their preference with respect to a 

series of outcomes, improving sequences which put the best outcome last leads people to 

have a more favorable perception of the sequence as was evidenced by Varey and 

Kahneman (1992)’s study. Subjects showed preferences for sequences that had a happy 

ending. Besides, the recency effect also appeared in Ross and Simonson (1991)’s study. 

They investigated the effect of chronological order of positive and negative events on 

people’s overall evaluations of their experiences. It was found that in the given 

occurrence of two events, the subjects demonstrated a preference for happy endings, 

having the positive event occurred last. 

Loewenstein and Sicherman (1991) suggested that people make choices by using 

a rule of reference point. They compare the outcome they have with their reference point 

and make judgments accordingly. A preference for an improving sequence can be 

explained by the fact that people interpret an improving sequence as a series of gains and 

a declining sequence as a series of losses. They might use the previous outcome as a 

reference point and use it to assess and evaluate the current outcome. Chapman (1996a) 

also pointed out that expectation is another candidate reference point that people might 

use. Thus, people tend to prefer the sequence that is closer to their expectations. 

 

2.3.4 Spreading of Outcomes 

 Loewenstein and Prelec (1993) found that decision makers prefer outcomes that 

spread across the time interval. In their study, 84% of the subjects preferred to have 

dinner at a Fancy restaurant on the second weekend in the total spread of three weekends, 

while the other two weekends would be dinner at home. However, when they were 
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offered a fancy lobster dinner on the third weekend, 54% of the subjects preferred to have 

fancy dinner at French restaurant on the first weekend rather than the second weekend. In 

their next experiment, the time interval was then expanded to five weekends instead of 

three weekends. When a dinner at a French restaurant on one weekend was offered 

among dinners at home on the rest of the weekends, 88% of the subjects preferred to have 

the dinner at a French restaurant on the third weekend rather than the first. However, 

when a fancy lobster dinner was put at the fifth weekend, 51% of the subjects chose to 

have dinner at French restaurant on the first weekend rather than on the third. The results 

from both experiments showed that subjects tended to distribute outcomes across the time 

interval in decision. 

Chapman (1998) performed a study of preferences to examine the effect of 

spreading with scenarios including both gain and loss in the context of monetary 

outcomes  (win a prize or pay a fine), dinner (pleasant dinner or unpleasant dinner), and 

health-related events (a painful trip to the dentist or a pain-relieving trip to the 

chiropractor) in a four-week interval. In all scenarios, the majority of the subjects (range 

from 70% to 92%) preferred to have the event on the first and the third weekends rather 

than on the first and the second weekends. About 65% to 91% of the subjects preferred to 

have the event happen on the second and the fourth weekends rather on the third and the 

fourth weekends. The results were very similar to the results from Loewenstein and 

Prelec (1993)’s study, which supported the preferences for spreading outcomes. 
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2.3.5 Study of More than One Factor 

Ariely (1998) explored the joint effect of factors that influenced and determined 

global pain evaluation. The factors that were included in the experiment were physical 

intensity at the end and at the peak of the experience, rate of change, the trend, and the 

duration of the experience. Twenty subjects were experienced 64 different heat stimuli 

that passed through contact of a Thermode (a device that controlled level of heat) on the 

inner part of their forearms. At the end of each trial, the subjects gave evaluation of the 

experience by using a visual analog scale. It was found that the retrospective pain 

evaluation was primarily influenced by the pain intensity at the end and the rate of 

change during the latter half of the experience. Both of the factors positively impacted the 

global evaluation. Longer duration of the experience increased the evaluation only when 

the intensity of the pain during the extended episode changed over time, but not when the 

intensity was constant.   

 

2.4 Time Discounting of Health Outcomes 

Another matter that plays a substantial role in medical decision making is timing 

of the events. Intertemporal choice is a decision that involves outcomes that occur at 

different points in time. People value the same event differently when it happens at 

different timing. However, in the conventional QALY approach, each year in the lifetime 

is weighed equally. Thus, if the health state stays constant over time, then the valuation of 

health state based on the QALY approach will be constant over time, which is not 

realistic. In cost-effectiveness analysis, discount rates are typically applied in order to 

deal with this time preference issue.  
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Intertemporal choice usually involves trade-offs between current and future 

consumption. For example, a decision to stop smoking cigarette involves trade-offs 

between immediate gratification of cigarette smoking and a healthier life in the future. 

The study of time discounting of health outcomes also allows understanding people’s 

preventive health behaviors, which involves a choice between a (small) enjoyable 

immediate outcome (for example, eating a high-calorie dessert now) and a (larger) 

delayed outcome (for example, being healthier at an older age). People who choose a 

small immediate reward over a larger delayed outcome are thought of as having a large 

time discount rate. They value the larger outcome in the future to be smaller than the 

smaller outcome now. Thus, time discounting might be a possible explanation for people 

who fail to take preventive health behaviors.  

An additional rationale for time discounting is that immediate outcomes can be 

expected to lead to additional positive outcomes in the near future. For example, as soon 

as the patient gets a treatment that will bring her from an ill state to full health, she can 

start enjoy life, work and earn some money sooner. Another rationale for discounting is 

that risks also compound over time. For example, the patient may want to have the 

treatment as soon as possible since there is a risk that her health may get worse or a risk 

of death might arise while waiting for the treatment. 

Discounted utility theory, a theory by Paul Samuelson (1937), is a normative 

model designed to accommodate intertemporal choices. Basically, the discounted utility 

theory says that all of the time effect in intertemporal choice can be condensed into a 

single discount rate and this discount rate is constant over time. Moreover, when the 

outcomes are exchangeable, all domains should use the same discount rates. However, 
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the descriptive validity of the discounted utility theory is still being debated. Research on 

time discounting has focused almost entirely on the validity of the discounted utility 

model by challenging the two main assumptions: constant discount rate over time and 

single discount rate for all domains. Several studies found evidence of domain 

independence which implies a violation of single discount rate for all domains 

assumption (for example, Chapman and Elstein, 1995; Chapman, 1996a, 1996b, 2002; 

Ganiats, Carson, Hamm, Cantor, Sumner, Spann, Hagen and Miller, 2000; Redelmeier 

and Heller, 1993; Cairns, 1992; Chapman, Nelson, and Heir, 1999). Moreover, a 

violation of the constant discount rate has been evidenced by several studies (for 

example, Christensen-Szalanski, 1984; Cropper, Aydede, and Portney, 1992; Dolan and 

Gudex, 1995). 

Time preference studies have focused on various domains such as monetary 

outcomes or health outcomes. However, for the scope of this dissertation, this review 

focuses on health outcomes time preferences.  

 

2.4.1 Health Discounting Behavior 

Variable discount rates 

Time discount rates in health outcomes have a high degree of variability. Some 

studies found discount rates to be very high (for example, Ganiats et al., 2000 (up to 

116%); Chapman and Elstein, 1995 (up to 263%); Chapman, 1996b (up to 300%); 

Chapman et al., 1999 (up to 19,000%)). On the other hand, some studies found zero 

discount rates. For example, in Cairns (1992)’s study, 29 students were asked to self-

assess the number of days in delayed severe depression that they would be indifferent 
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between two scenarios: one had severe depression immediately for 90 days, and the other 

one delayed the severe depression to later (2 years, 20 years, or 30 years). It was found 

that overall, the time preference rates for health in this study were zero or small but 

positive, in the range of 0.4% to 3%. Redelmeier and Heller (1993), Dolan and Gudex 

(1995) also found zero discount rate in their study.  

Moreover, time preferences for health outcomes were found to vary among 

disease conditions as shown by Ganiats et al. (2000). They studied time preferences with 

five different disease conditions: chicken pox, Parkinson’s disease, tropical disease, 

migraine headache, and sterilization. Chicken pox and tropical disease were framed as 

losses, e.g. expose the child to chicken pox now or later, having a poor health due to 

tropical disease for three months now or later (six months, one year, two years, five 

years, 10 years, or 20 years). The migraine headache and Parkinson’s disease were 

framed as gains, e.g. taking medication to relief now or later. While the sterilization 

context involved the time-risk tradeoff between two procedures. One was safe in the short 

run but presented a risk for cancer in the next 20 years, another one was risky in short run 

and did not present long-term cancer risk. Negative time preference was found in the 

chicken pox context, while positive time preference was found in the Parkinson’s disease. 

However, some duration in the tropical disease showed positive time preference and 

some showed negative time preference. The responses to the migraine headache context 

showed a large discount rate (116%) while a small discount rate (3%) was found in the 

sterilization context.  
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Delay effect  

Numerous researches on time discounting found that people tend to discount 

outcomes that occur in short delays higher than those that occur in long delays. The 

existence of delay effect provides support for the invalidation of the constant rate 

discounted utility model. Bleichrodt and Johannesson (2001) studied time preference of 

health outcomes with the condition of back pain. A hundred and seventy-two subjects 

assessed two scenarios of sequences of outcomes at a time and chose the scenario that 

was most preferred. The scenarios were different in delay and the duration of back pain. 

The results showed that time discounting rates decreased as the delays were getting 

longer. Another evidence for the delay effect was found in a study by Redelmeier and 

Heller (1993), 121 subjects were asked to assess their time preferences on three 

hypothetical health states: colostomy, blindness, and depression that will occur in the 

future (one day, six months, one year, five years, and 10 years) using standard gamble 

and categorical scaling techniques. They found that discount rates for all three health 

states were smaller for time intervals that were relatively more distant (e.g. 5 years to 10 

years in this study), conflicting with the constant discount rate assumption in discounting 

utility theory.  

Chapman and Elstein (1995) also found evidence of delay effect in both of their 

experiments. In the experiments, time discounting for health and money domains were 

studied. In the first experiment, the lengths of delay used were six months, one year, two 

years, and four years, while in the second experiment, one year, three years, six years, 

and 12 years were used. Subjects were asked to find the magnitude of delayed outcomes 

that would make the two options equally attractive. The results from both experiments 
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showed that the discount rates for both health and money domains decreased as the length 

of delay increased.  Moreover, Chapman (1996b) performed three additional experiments 

on time discounting in health and money. All of the results from the three experiments 

suggested delay effects for both health and money domains. The discount rates decreased 

as the length of the delay increased. In her first experiment, gains in health and money 

with delays of one year, three years, six years, and 12 years were employed. While in the 

second and third experiments, both gains and losses in health and money domains were 

used. The delay effects existed in all experiments for both gains and losses and for both 

health and money. 

Delay effect may cause preference reversal as Chapman (2003) suggested with 

the example of a person who may prefer a large headache relief 8 years from now to a 

small relief six years from now. However, six years later that person may prefer a small 

headache relief right away to a large headache relief in the next two years. This indicates 

that the person discounts the outcome in the first question, which has a longer delay (8 

years) less than the outcome in the second question, which has a shorter delay (two years) 

although both questions involve a two-year delay in order to receive the larger relief. 

Christensen-Szalanski (1984) also identified a preference reversal in women during 

childbirth. One month before the labor and during early labor, 18 pregnant women who 

were interviewed preferred to avoid anesthesia during the labor. Anesthesia had been 

known as an immediate pain relief but also presenting a risk of long-term side effects. 

However, during active labor, they shifted their preference to using anesthesia to avoid 

pain. Thus, in the long delay (one month before labor), the women discounted the long-
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term side effects of anesthesia less than in the short delay (during active labor). This 

showed an evidence of a preference reversal as a result of delay effect.  

Magnitude effect 

Another factor that affects how people discount future outcomes is magnitude of 

the outcomes. Smaller outcomes were found to be discounted at a higher rate than larger 

outcomes. Chapman and Elstein (1995) found an evidence of magnitude effect in their 

time discounting experiments for both health and money domains. The magnitudes of 

monetary outcomes were $200, $100, $5000, or $25000 gain in the first experiment, and 

$500, $1000, $2000, $4000 gain in the second experiment. For the health domain, the 

magnitudes used were six months, one year, two years, or four years in full health in the 

first experiment, and one year, two years, four years, or 8 years in full health in the 

second experiment. The results from both experiments showed that the discount rates for 

both health and money domains were higher when the magnitude of outcome was 

smaller. 

The findings from another study by Chapman (1996b) also support the magnitude 

effect. All of the results from her three experiments showed that the discount rates for 

health and money were smaller when the magnitudes of the outcomes were larger. This 

finding applied to both gains and losses. The magnitudes of outcomes used in her study 

were $500, $1000, $2000, or $4000 for the money domain, and full health for one year, 

two years, four years, or eight years for the health domain in the first experiment. In the 

second and third experiments, the outcomes used were gains or losses for $500, $1500, or 

$4500, full health or poor health for one year, three years, or nine years. Results showed a 
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magnitude effect in which subjects discounted the outcomes in the future more for 

smaller outcomes than larger outcomes.  

Sign Effect 

Discount rates for losses are found to be lower than discount rates for gains. 

MacKeigan, Larson, Draugalis, Bootman, and Burns (1993) investigated whether people 

discount future health gains differently from future health losses. A hundred and eight 

subjects were asked to rate their preference for a hypothetical health gain or loss in 12 

health profiles involving the condition of arthritis. The health gains were framed as an 

arthritis condition followed by excellent health and vice versa for the health losses. Those 

12 profiles differed form each other in terms of duration (two days, two months or three 

years) and delay (one week, two months, or one year). They found that delayed gains 

were discounted more than delayed losses and the discounting of a delayed loss depended 

on the duration of the loss. Health losses with long duration showed positive discount 

rates, but health losses with short duration showed negative discount rate.  The fleeting 

loss was perceived to be worse when delayed. The overall results showed that discount 

rates were lower for losses than for gains, offering evidence for a “sign” effect. Another 

support for the sign effect is the finding from a study by Chapman (1996b): she employed 

gains and losses in both health and money domains and showed that health discount rates 

in losses were higher than those in gains. However, the results from the money domain 

were reversed with the money discount rates in gains found to be higher than those in 

losses. This finding supports the domain dependence in time discounting. 
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Time Preference and Preventive Health Behavior 

Chapman, Brewer, Coups, Brownlee, Leventhal, and Leventhal (2001) explored 

the relationship between time preferences measured with hypothetical scenarios and 

actual preventive health behaviors in order to understand whether assessments of time 

preference with hypothetical scenarios are representative of individuals’ real behavior. 

Three preventive health behaviors that were studied included getting an influenza 

vaccination, taking medication to control high blood pressure, and taking medication to 

control high cholesterol. Basically, this study examined whether people who reported a 

lower discount rate in the hypothetical scenarios would be more likely to engage in the 

preventive health behavior. The results from all of the three studies showed that there was 

no relationship between time preferences measured from hypothetical health scenarios 

and their real-world preventive health behaviors, contrary to the authors’ expectations. 

However, the findings were consistent with those from past studies (Fuchs, 1982; 

Chapman and Coups, 1999; Chapman, 1998).  

Chapman and Coups (1999) examined the relationship between time preference 

responses in health domain and acceptance of an influenza vaccine. The responses were 

from 412 corporate employees who were offered free influenza vaccinations at their 

workplace. Time preferences were assessed for both single outcome (having a flu for two 

days now or having it start three months from now but stays longer) and sequence of 

outcomes (having a cough with increased or decreased severity over time for 3 months). 

For the time preference of the flu, 85% of the responses showed zero time preference. In 

the sequence of outcomes question, decreasing severity sequences were preferred to 

increasing severity sequences, indicating a negative time preference for sequence of 
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outcomes. Moreover, the study of the relationship between vaccine acceptance and time 

preference for the flu vaccination suggested that there was no association between 

hypothetical health choice-time preference measures and actual preventive health 

behaviors.  

Berndsen and van der Pligt (2001) investigated the role of optimism on time 

preferences for health gains and losses. Optimism in their study referred to two beliefs 

about gains and losses: belief that losses will be followed by future opportunities to make 

up for or avoid these losses (Shelley, 1994) and gains are expected to be followed by 

additional gains in the future (Chapman and Elstein, 1995). Eighty-one subjects were 

participated in the study. Each of them was presented with a hypothetical scenario of 

health gain or health loss in different duration (one year, two years, or four years) and 

delay (one year, two years, or four years). Health gain was presented as a state with 

headache followed by a treatment that would lead to perfect health for some duration; 

whereas health loss was framed as being in a perfect health and followed by headache for 

some duration. Degree of optimism in the scenario was arranged in two levels: low and 

high. It was found that low optimism resulted in reduced discount rates compared to 

discount rates for high optimism for both gains and losses. 

 

2.4.2 Issues in the Studies of Health Time Preference 

In the studies of health time preferences, a key challenge is to isolate pure time 

preferences from other effects. As argued by Gafni (1995), when measuring time 

preference, effects other than attitude toward timing of the events such as sequence 

effects are usually confounded with the timing effect. Gafni suggested that when 
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evaluating lifetime health profiles, timing of the event and the sequence of the events are 

two discrete concepts. For example, when a subject is asked to assess time preference by 

finding a number of years in a better health state in the future that would make the health 

profile equivalent to having a specified number of years in that health state now, the 

response to the assessment does not only measure time preference as intended but instead 

it incorporates two attitudes: attitude toward the timing of the event (time preference) and 

attitude toward the sequence of the events (whether he would have good health followed 

by poor health or poor health followed by good health).  

Another issue of time discounting appears in the time-tradeoff (TTO) 

methodology (Spencer, 2003; Chapman, 2003). Time plays a crucial role in this 

assessment technique. Thus, timing effect might be confounded with the health outcome 

preference score as assessed by the TTO technique. The TTO technique elicits the 

preference for the health outcome by asking individuals to consider two health profiles: 

poorer health with longer life expectancy and better health with shorter life expectancy. 

The life expectancy will be adjusted until the individuals are indifferent between the two 

health profiles. Thus, the two profiles involve two different timings: for example, an 

individual is indifferent between five years in full health and ten years in poor health. 

Additional years of life expectancy in the poor health are added to the end of life, which 

should be considered as a delayed outcome. Later years might be valued less than the 

earlier ones because of time discounting. The assessment score thus may not be a good 

indicator of the individual’s preference to that particular health state since the time in 

year 6 to 10 might be discounted. 
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2.5 Summary 

In summary, Figure 2.2 represents the framework of the factors that potentially 

influence preference for health profiles together with the existing literature that 

investigated those factors. Factors that drive the preference for the profiles are definitely 

the health profiles themselves and potentially individual characteristics such as age, 

gender, etc. Within the scope of this dissertation, effect of individual characteristics will 

be disregarded. I classify the approach to look at the factors of the health profiles into two 

categories: when the health profiles are constant (only one health state in the profile) and 

when the health profiles are non-constant (more than one health state in the profile). In 

the case of constant health profiles, factors that certainly impact preference are duration 

and the quality level of the health, identical to the concept of the conventional QALY 

model. Regarding non-constant health profiles, factors that might impact the preference 

can be factors from the overall pattern of the profile or factors from specific elements in 

the profile. Suggested factors from the overall pattern of the profile are trend (increasing 

or decreasing pattern), rate of change (change of outcome over time), starting intensity, 

peak intensity, final intensity, total duration of the profile, spreading of the outcomes over 

time, timing of the outcomes, and number of sign changes (number of times that the 

profile changes from getting increased to getting decreased and vice versa). When 

looking at specific elements of the non-constant health profiles, I suggested two 

approaches: looking at each health state in the profile independently and looking at the 

two consecutive health states at a time. The first approach is the same as the case of the 

constant health profile. While in the second approach, the relationship between two 

consecutive health states is of interest. Factors that might impact this relationship are 
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direction (increasing or decreasing), amplitude (degree of change from one health state to 

the next one), and duration.  

 By looking at the list of studies that are corresponding to each factor in Figure 

2.2, it is clear that one of the areas that has not yet been explored by any existing study is 

to look at factors of the relationship between two consecutive health states that might 

impact the preference of the health profile. Thus, this dissertation will aim at exploring 

those factors. 

 Additionally, Table 2.1 provides a summary of the literature discussed in this 

chapter that addresses all factors that potentially affect preferences for health profiles. 
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Potential factors
that influence

preference

Constant Health
Profile (n=1)

Non-Constant Health
Profile (n>1)

Health Profile

Individual
Characteristics

(e.g. age, gender,
current health)

Specific Element in
the Pattern Overall Pattern

Duration

Quality
level

Independent
State 2 Consecutive

states

Direction

Duration

Trend

Spreading

Duration
(Total)

Rate of
Change

Peak
Intensity

Final
Intensity

Timing

Starting
Intensity

# of Sign
Changes

Ariely (1998)

Ariely&Zauberman (2000)

Ariely&Carmon (2000)

Chapman (1996a)
Chapman (2000)

-

MacKiegan et al. (1993)

Varey&Kahneman (1992)

Chapman (1996a)

Chapman (2000)

Chapman&Elstein (1995)

Chapman (1996b)

Kahneman et al (1993)

Ganiats et al (2000)

Bleichrodt&Johannesson (2001)
Redelmeier&Heller (1993)
Chapman&Elstein (1995)

Chapman (1996b)
MacKiegan et al. (1993)

Berndsen and van der Pligt (2001)

Varey&Kahneman (1992)

Fredrickson&Kahneman (1993)
Redelmeier&Kahneman (1996)

Baumgartner et al. (1997)
Langer at al. (1997)

Ariely&Loewenstein (2000)

Diener et al. (2001)

Schreiber&Kahneman (2000)
Ross&Simonson (1991)

Loewenstein&Prelec (1993)

Chapman (1998)

Hsee&Abelson (1991)
Hsee et al.(1991)
Chapman (1996a)

Ariely (1998)Chapman (1996a)
Chapman (2000)

Krabbe&Bonsel (1998)

Loewenstein&Sicherman (1991)
Loewenstein&Prelec (1991)
Loewenstein&Prelec (1993)

Dolan&Gudex (1995)

Amplitude

*The dark grey highlights indicate that the domains in the studies were in the health contexts. The light 
grey highlights indicate the domains in the studies were related to pain or discomfort (e.g. annoying sound, 
watching unpleasant video clips). 
 
Figure 2.2: Overall picture of the factors that potentially influence preference for health 

profiles  
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Table 2.1: Summary of the review of literature 

Authors Domain 
Real or 

Hypothetical 
Experiment

Findings 

Testing the additive independence assumption 
Richardson et al. 
(1996) 

Post mastectomy 
health profile Hypothetical Additive independence assumption was 

violated. 
Kupperman et 
al. (1997) 

Prenatal diagnosis 
choices Hypothetical Additive independence assumption was 

violated. 

Mackeigan et al. 
(1999) 

Treatment profiles 
for Type 2 diabetes Hypothetical

Additive independence assumption held. 
The author explained that the health 
states in the experiment were too similar.

Spencer (2003) EQ-5D health 
scenarios  Hypothetical Additive independence assumption was 

violated. 
Rate of change (velocity) 
Hsee at al. 
(1991) 

Class rank, stock 
price, gamble Hypothetical Velocity and position of outcome 

significantly impacted satisfaction. 

Hsee and 
Abelson (1991) 

Salary profile, Class 
grade profile Hypothetical

Relative importance of position and 
velocity varied, depending on the 
condition and nature of the outcome. 

Chapman (1996) Health and money 
profiles Hypothetical

Gradually increasing or decreasing 
sequences were preferred to those that 
changed steeply. 

Ariely (1998) Pain from heat or 
mechanical pressure Real 

Rate of change was found as one of the 
factors that impacted the overall pain 
evaluation. 

Peak, final intensity and duration 
Varey and 
Kahneman 
(1992) 

Pain, discomfort Hypothetical
Peak and final intensity significantly 
impacted the experience evaluation while 
duration is relatively neglected. 

Kahneman et al. 
(1993) 

Discomfort from 
cold water Real 

Peak and final intensity significantly 
impacted the experience evaluation while 
duration is relatively neglected. 

Fredrickson and 
Kahneman 
(1993) 

Watching pleasant 
and unpleasant video 
clips 

Real 
Peak and final intensity significantly 
impacted the experience evaluation with 
little effect from duration. 

Redelmeier and 
Kahneman 
(1996) 

Pain in colonoscopy 
and lithotripsy Real 

Peak and final intensity significantly 
impacted the experience evaluation with 
no effect from duration. 

Ariely and 
Zauberman 
(2000) 

Annoying sound Real Final intensity significantly impacted the 
subjects' ratings. 

Ariely (1998) Pain from heat or 
mechanical pressure Real 

Peak intensity was found to have 
significant effect but much smaller than 
the slope and the final intensity. 

Ariely and 
Carmon (2000) 

Pain from bone 
marrow transplant Real Final intensity and trend were significant 

predictors for overall evaluation. 
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Table 2.1 (continued): Summary of the review of literature 

Authors Domain 
Real or 

Hypothetical 
Experiment

Findings 

Spreading of outcome 
Loewenstein and 
Prelec (1993) Two free dinners Hypothetical Subject preferred to distribute two free 

dinners across the time interval. 

Chapman (1998) Money, dinner, 
health-related events Hypothetical

Subjects preferred to distribute two 
events to the 1st and 3rd weekends over 
a four-week period.  

Health Discounting 
Bleichrodt and 
Johannesson 
(2001) 

Back pain Hypothetical Time discounting rates were decreased 
when the delays were getting longer. 

Ganiats et al. 
(2000) 

Five different 
diseases: 
chickenpox, 
Parkinson's disease, 
tropical disease, 
migraine headache, 
and sterilization 

Hypothetical
Time discount rates were very high (up 
to 116%) and they varied among disease 
conditions. 

Redelmeier and 
Heller (1993) Health states Hypothetical Time discounting rates were decreased 

when the delays were getting longer. 

Chapman and 
Elstein (1995) 

Health and money 
profiles Hypothetical

Discount rates for both health and money 
were decreased as the length of delay 
increased, and they were higher when the 
magnitude of outcome was smaller. 

Chapman 
(1996b) 

Health and money 
profiles Hypothetical

Discount rates for both health and money 
were decreased as the length of delay 
increased, and they were higher when the 
magnitude of outcome was smaller. 
Moreover, in health, the discount rates in 
losses were higher than those in gains. 
However, in money, the discount rates in 
gains were higher than those in losses. 

Mackeigan et al. 
(1993) Arthritis condition Hypothetical Delayed gains were discounted more 

than delayed losses. 

Chapman et al. 
(2001) 

Preventive health 
behavior Hypothetical

There was no relationship between time 
discount rates measured from 
hypothetical health scenarios and their 
real-world preventive health behaviors. 

Chapman and 
Coups (1999) 

Preventive health 
behavior Hypothetical

There was no relationship between 
hypothetical health choice-time 
preference measures and preventive 
health behaviors. 

Berndsen and 
van der Pligt 
(2001) 

Health gains or 
losses Hypothetical

Low optimism resulted in reduced 
discount rates compared to high 
optimism for both gains and losses.  
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Table 2.1 (continued): Summary of the review of literature 

Authors Domain 
Real or 

Hypothetical 
Experiment

Findings 

Trend 
Loewenstein and 
Prelec (1991) 

Dinner at a French or 
Greek restaurant Hypothetical Subject preferred improving sequences. 

Loewenstein and 
Sicherman 
(1991) 

Wage profiles Hypothetical Subject preferred improving sequences 
of wages. 

Loewenstein and 
Prelec (1993) Free dinner Hypothetical Subject preferred to distribute two free 

dinners across the time interval. 

Chapman 
(1996a) 

Health and money 
profiles Hypothetical

Subjects preferred improving sequences 
for both health and money for short 
sequences. For long sequences, subjects 
preferred decreasing sequence for health 
but increasing sequence of money. 

Chapman (2000) 
Headache pain, 
athletic ability, facial 
acne, wrinkles 

Hypothetical Subjects strongly preferred improving 
sequences. 

Ariely and 
Zauberman 
(2000) 

Annoying sound Real 
Subjects rated pattern that had final 
increasing trends as more annoying than 
those that had final decreasing trends. 

Ariely and 
Carmon (2000) 

Pain from bone 
marrow transplant Real Final intensity and trend were significant 

predictors for overall evaluation. 
Krabbe and 
Bonsel (1998) 

EQ-5D health 
scenarios  Hypothetical The results evidenced for sequence 

effect. 
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CHAPTER 3                                                              

RESEARCH DESIGN  

3.1 Problem Statement 

In preference assessment for multistate health profiles, the existing literature has 

shown that preferences for entire health profiles are potentially impacted by many factors 

such as trend (Krabbe and Bonsel, 1998; Chapman, 1996a, 2000), rate of change 

(Chapman, 1996a; Ariely, 1998), peak and final intensity (Ariely, 1998; Ariely and 

Carmon, 2000; Varey and Kahneman, 1992; Redelmeier and Kahneman, 1996; Ross and 

Simonson, 1991), spreading of outcomes (Chapman, 1998), and timing of events 

(Bleichrodt and Joahnnesson, 2001; Redelmeier and Heller, 1993; Chapman and Elstein, 

1995; Chapman, 1996b; MacKeigan et al., 1993). Thus, as the number of health states in 

the profile becomes large, the preference assessment of the entire health profile becomes 

highly complex. If those factors are not taken explicitly into account, the preference 

scores derived might not accurately represent the subjects’ preferences.  

In order to simplify the task, decomposition of the assessments may be employed. 

One decomposition method that has been used is to decompose the multistate health 

profile into a series of independent health states. Each health state is then evaluated 

independently and all are combined to produce the overall evaluation of the profile. 

However, as the past literature showed, decomposing by evaluating each constituent state 

 49



independently cannot accurately predict the overall evaluation of the profile since the 

preference for health states are not independent to each other (Spencer, 2003; Richardson 

et al., 1996; Kupperman et al., 1997). Moreover, different patterns of the health profiles 

have been found to impact individuals’ preferences. 

In this dissertation, I propose a novel approach to decompose the preference 

assessment task for the entire multistate health profile. The concept is based on the 

findings that preference from each health state is not independent of other health states in 

the profile and that health profile patterns have been found to be a major factor. By 

looking at key characteristics of the health profile patterns, say, looking at two 

consecutive health states at a time, the nature and extent of the interdependence between 

consecutive health states is expected to be revealed and used in assessing the overall 

profile. The rationale in looking at the interdependence between two consecutive health 

states is based upon the suggestion that people use reference points in evaluating the 

attractiveness of choices. For example, Loewenstien and Sicherman (1991) stated that 

people prefer an improving sequence as opposed to a declining one since they use their 

current consumption as a reference point. The future outcomes in the improving sequence 

are perceived as gains when compared with the previous (or current) state. Moreover, in 

medical decision making, people need to make decision for future (uncertain) outcomes, 

for example, making a decision regarding alternative drugs that will improve health states 

in the near future. In this example, individuals might guide their drug choice by 

comparing the future health outcome they expect as a result of taking the drug with the 

current health state they are experiencing. Thus, it is plausible that the current health state 

constitutes a reference point for evaluating future health outcomes.  This example also 
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illustrates that there is a potential tendency for the interdependence between two 

consecutive health states. Another rationale is that human beings obviously experience 

health states in a chronological order. In their lives, health states change over time, with 

different states following one another. As a result, it is feasible that there is an 

interdependent relationship between consecutive health states. Thus, I hypothesize that 

current health state will have an effect on the preference of the following health state, 

which will have an effect on the preference of the next following state, and so on. For 

example, a subject may evaluate the next health state, say health state X, as pleasant if 

his/her current health state is worse than health state X. On the other hand, the same 

subject may evaluate the same health state X as an unpleasant state if his/her current 

health state is better than health state X. Thus, decomposing the assessment of the entire 

health profile into several “conditional preference score” assessments by looking at two 

consecutive states at a time is expected to better predict the preference score for the entire 

health profile than looking at each health state independently since the interdependent 

relationships between health states would be taken into account. 

Definitions:  

1. A “conditional preference score” of the future health state is the term that I use 

for a preference score that is assessed by considering the relationship of the 

current health state to the following health state. For example, a conditional 

preference score for health state B in Figure 3.1 is obtained by assessing a 

preference score of health state B given that one is currently in health state A. A 

conditional preference score for health state C is obtained by assessing a 

preference score of health state C given that one is currently in health state B. 
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Note that it is an evaluation of the later health state and not the evaluation of the 

transition from one state to the next state.   

2. A “future” health state in the context of this study refers to a future health state 

that immediately follows the current health state. If the current health state is at 

time “n”, the “future” health state in this context means the health state in time 

“n+1” only, not including the states beyond state “n+1”. 

 
 
 

Health
State B
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Low

Health
State A

Time

Health
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Figure 3.1: A health profile composed of three health states, health state A, B, and C, 
sequentially 

 

 

3.2 Significance of the Study 

A major contribution I am looking forward to obtaining from this study is an 

improved health outcome measurement system for multistate health profiles. The existing 

method in which each constituent health state is assessed independently cannot predict 

the preference for entire health profile as the literature has shown (Spencer, 2003; 

Richardson et al, 1996; Kupperman et al., 1997). In cost effectiveness analysis, an 
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economic analysis technique used in health policy, health outcome measurement plays a 

critical role that impacts the medical decision making process. Whether scarce resources 

in healthcare are distributed appropriately depends on how accurate health outcome 

measurements are. I hope that this study will result in a better health outcome 

measurement system, which consequently will result in more accurate cost effectiveness 

analyses, which in turn will contribute to better healthcare resource allocations.  

Moreover, at a more specific level, exploring the interdependent relationship 

between two consecutive health states will assist in understanding how different factors 

influence overall health profile preference assessment.  Those factors include peak 

intensity, final intensity, trend, rate of change, etc. Furthermore, this study will shed some 

light on how combinations of factors jointly influence preferences for health profiles.  For 

example, the amplitude between two consecutive states in the health profile also 

contributes to the rate of change or “velocity” (as defined by Hsee and Abelson, 1991). 

High amplitude between two consecutive states would contribute to an increase in the 

velocity. If it is a gain, high amplitude will contribute to a more positive velocity. If it is a 

loss, high amplitude will contribute to a more negative velocity. Lastly, in the research 

perspective, I hope that this study will inspire further studies in exploring the relationship 

between consecutive health states. For example, further studies can explore the 

interdependence among three consecutive health states.  
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3.3 Research Questions 

The following two main research questions have been formulated: 

1. Is a preference score for future health state dependent upon level of current 

health state? 

2. Can “conditional preference scores” for discrete health states better predict 

preference scores for an entire health profile than unconditional health states 

assessments? 

The methods section, which will be described later, is divided into two phases. 

The design in Phase 1 aims at answering the first research question while Phase 2 aims at 

answering the second research question.  

 

3.4 Methods - Phase 1 

In order to ensure that the conditional preference assessment technique that I 

propose will yield different result from the existing decomposition technique in which 

each health state is evaluated independently, the initial step is to explore if the 

relationship between two consecutive health states really exists, or explicitly, if a 

preference score for a future health state is dependent upon the level of the current health 

state and if so, what factors related to the current health state affect the “conditional 

preference score” for the future health state. As a result of the literature review, three 

potential factors are investigated in this study: direction of change from current health 

state (whether it is considered as gain or loss), amplitude of change from current to future 

health state, duration that an individual has been in the current health state, and two- and 

three-way interactions among the three factors.   
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3.4.1 Study Factors 

Factor#1: Direction of change from current health state  

People might evaluate the same health state differently depending on whether that 

health state is perceived as gain or loss. Direction of change from current health state to 

future health state contributes to the perceived appearance of the future health state. If the 

future health state is increased from the current one, it will be perceived as a gain, and 

vice versa. People might overvalue the preference score when the future health state is 

perceived as a gain and undervalue the preference score when it is perceived as a loss. 

For example, see Figure 3.2, health state X is an individual’s future health state. Health 

state A and B are current health states. Health states X in A) and B) are at the same level, 

however, in A), the current health state (health state A) is higher than health state X, 

while in B), the current health state (health state B) is lower than health state X. Thus, 

health state X in A) is considered as a loss while health state X in B) is considered as a 

gain. The question is if an individual’s future health state is health state X and he/she is 

asked to assess his/her preference score for health state X, will he/she give the same score 

for health state X if health state X is considered as a loss (A) or as a gain (B)? 
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Figure 3.2: Illustration of potential effect from direction of change from current health 
state 

 

 

Note that this concept is slightly different from the direction effect reviewed in 

the existing literature since the direction effect related to whether people prefer 

improving or declining profiles. However, in this one, I refer to the effect of direction 

from one current health state on an evaluation of a future health state (not the entire 

health profile). 

   

Factor #2: Amplitude of change from current health state to future health state 

Amplitude of change from the current health state to the future health state is 

suspected to affect the conditional preference score of the future health state since when 

people are asked to assess their preference scores for their future health states, they might 

make an evaluation by comparing their future health states with the health state they 

currently are in and make an evaluation based on the difference. Amplitude indicates the 

absolute change between two health states (e.g. current health state and future health 
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state, in this case). Different amplitudes may yield different preference scores for the 

same health state. For example, see Figure 3.3, health state X is an individual’s future 

health state. Health state A and B are current health states. Health states X in A) and B) 

are at the same level, however, the amplitude of change from health state A to health state 

X is lower than the amplitude of change from health state B to health state X. The 

question is if an individual is asked to value a future health state, which is health state X 

in Figure 3.3, will he/she give the same score for health state X if the health state that 

he/she is currently in is different (health state A or health state B)?  
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Figure 3.3: Illustration of potential effect from amplitude of change from current health 
state to future health state 

 

 

Factor#3: Current health state duration  

Duration that an individual has been in his/her current health state might impact 

the degree of interdependence between the two consecutive health states, which 
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consequently impact the conditional evaluation of the future health state. For example, 

see Figure 3.4, health state X is an individual’s future health state. Health state A and B 

are current health states. Health states X in A) and B) are at the same level. However, the 

current health state, health state A in A) has shorter duration than the current health state, 

health state B in B). The question is if an individual is asked to value his/her future health 

state, health state X in Figure 3.4, will he/she give the same score for health state X if 

he/she has been staying in his/her current health state in 1 year (health state A) or in 10 

years (health state B)?  
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Figure 3.4: Illustration of potential effect from current health state duration 
 

 

Duration in current health state is considered as one of the factors since I suspect 

that duration may relate to how people value their current health state. If people value 

their current health state differently as a result of duration, then that would affect the 

relative difference between current health state and future health state which might 
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consequently affect the conditional preference evaluation of the future health state if the 

interdependence between two consecutive health states actually exists. Moreover, 

duration in the current health state may relate to how well people remember and use the 

experience in the current health state as their reference point when evaluating their future 

health state. 

 

3.4.2 Responses 

 Responses for the study in Phase 1 are conditional preference scores for future 

health states in different hypothetical health scenarios. The hypothetical health scenarios 

will be described later in the experimental design section. 

 

3.4.3 Hypotheses 

Since the three potential factors (direction, amplitude, and duration) above may 

interact with each other, I thus start the hypotheses by first looking at the interactions, 

then the main effects. 

Hypothesis 1: There is no significant three-way interaction effect between direction, 

amplitude and duration on the conditional preference score of the future health state.  

Hypothesis 2: There is a significant effect of interaction between direction and amplitude. 

See Figure 3.5, health state X is an individual’s future health state. Health state A, B, C 

and D in each graph is his/her current health state. Health states X in A) and B) are at the 

same level. Health states X in A and B are perceived as losses; however, A has lower 

amplitude of change from current health state than in B. Health states X in C and D are 

perceived as gains; however, C has lower amplitude of change from current health state 
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than D. If future health state is perceived as a gain (increased from current health state), 

people will prefer the future health state more (overvalue conditional preference score) if 

the amplitude of change from the current health state is larger (Figure 3.5: C and D). On 

the other hand, if the future health state is perceived as a loss (decreased from current 

health state), people will prefer the future health state less (undervalue conditional 

preference score) when the amplitude of change from the current health state is larger 

(Figure 3.5: A and B). 
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Figure 3.5: Illustration of potential effect of 2-way interaction between direction and 
amplitude 

 

 

Hypothesis 3: There is no significant interaction effect between direction and duration on 

the conditional preference score of the future health state. 

Hypothesis 4: There is no significant interaction effect between amplitude and duration 

on the conditional preference score of the future health state. 
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Hypothesis 5: A main effect of duration will result in the interdependence between the 

future health state and the current health state. The effect will be less significant on 

preference when the current health state has shorter duration. One may argue that if 

people stay in the poor health state longer, they may be able to accommodate to the state 

and thus may not value their current health state as poorly as the people who stay in that 

health state in a shorter duration would. If this argument is true, then the perceived 

amplitude of change may vary as the duration in current health state varies thus making it 

hard to control the amplitude factor. However, a study by Myers, McPherson, Taylor, 

Weatherall and McNaughton (2003) found no evidence that the duration of health state 

was related to health-state valuation on the EQ-5D self-evaluation instruments.  As will 

be explained later, the EQ-5D system will be used to construct scenarios thus minimizing 

the risk of the inability to control amplitude change. 

Note: Main effects of direction and amplitude can be ignored since in Hypothesis 2, I 

hypothesize that there is a significant interaction effect between direction and amplitude 

on conditional preference score of current health state.  

 

3.4.4 Experimental Design 

In Phase I, the three factors of interest are direction, amplitude, and duration of 

current health state. Those factors are varied in order to explore the effect of each factor 

on the conditional preference score of the future health state as well as interaction effects. 

Two levels of each factor are used in the experiment, which are as follows: 
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1. Direction of change from the current health state to the future health state: 

increase or decrease 

• Increase: when the future health state is perceived as gain 

• Decrease: the future health state is perceived as loss 

2. Amplitude of change: large or small 

• Large: The size of amplitude of change is fairly a relative concept. From a 

health weight scale of 0 (death) to 1 (perfect health). The smallest “large” 

amplitude that I can use has to be smaller than 0.50 since when using “large” 

amplitude for increase and decrease directions, the current health states used 

in the scenarios will be at levels 1.00 and 0.00. Using level 0.00 as a current 

health state is unreasonable since level 0.00 is equal to death. Thus, I consider 

a change of 0.30 on the health weight scale to be the “large” amplitude, so that 

replications of the experiment with different levels of future health states are 

possible.  

• Small: I consider a change of 0.15 on the health weight scale to be the “small” 

amplitude. 

3. Duration of prior health state: long or short 

• Long: 10 years 

• Short: 1 year 

 

 A 23 full factorial design (three factors with two levels each) for a total of 8 

scenarios are used for each future health state assessed. The response is the conditional 

preference score for the future health state. The design is shown in Table 3.1. Each 
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scenario consists of two health states: current and future health states. The level of future 

health state is fixed for all 8 scenarios. However, the current health state is varied 

between each scenario (four different levels with two different durations: 4 x 2 = 8). 

Figure 3.6 shows the 8 scenarios corresponding to the design in Table 3.1.  

 

 

Table 3.1: A 23 factorial design layout of three factors: direction, amplitude, and duration. 
Order of run will be randomized for each subject. 
Scenarios Direction Amplitude Duration 

1 Decrease 0.30 1 year 
2 Decrease 0.30 10 years 
3 Decrease 0.15 1 year 
4 Decrease 0.15 10 years 
5 Increase 0.30 1 year 
6 Increase 0.30 10 years 
7 Increase 0.15 1 year 
8 Increase 0.15 10 years 

 

 

 64



Current Health
state

Future Health
state

Time

Health State
Weight

1 yr

0.15

1

0

Health State
Weight

Current Health state
Time

10 yrs

Future Health
state

0.15

1

0

Current Health
state

Future Health
state

Time

Health State
Weight

1 yr

1

0

Health State
Weight

Current Health state
Time

10 yrs

Future Health
state

0.30

1

0

Current Health
state

Future Health
state

Time

Health State
Weight

1 yr

0.15

1

0

Health State
Weight

Current Health state
Time

10 yrs

Future Health
state0.15

1

0

0.30

Current Health
state

Future Health
state

Time

Health State
Weight

1 yr

0.30

1

0

Health State
Weight

Current Health state
Time

10 yrs

Future Health
state

0.30

1

0

Scenario#1 Scenario#2

Scenario#4Scenario#3

Scenario#5 Scenario#6

Scenario#7 Scenario#8

 

Figure 3.6: Graphical representation of the 8 scenarios from the 23 factorial design in 
Table 3.1 
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 The design in Table 3.1 and Figure 3.6 shows that for each level of future health 

state examined, 8 scenarios are required. Replications of the experiment with different 

level of future health states are recommended in order to get the better and more reliable 

results. Thus, more than one set of the design in Table 3.1 is recommended to test at other 

levels of future health state. With the limitation of health state weight range of 0 and 1 

and the required amplitude range (up to 0.30 for large amplitude) in the experiment, the 

highest level of future health state that can be examined is 0.70 (1-0.30 = 0.70, the 0.30 

tolerance is required so that the current health state does not go beyond 1.00 in the 

scenario of large amplitude with the decrease direction). In addition, with the same 

rationale, the lowest level of current health state that can be examined have to be greater 

than 0.30 (cannot be 0.30 since the current health state cannot be 0 (death)). With these 

restrictions, a total of three levels of future health state are proposed with levels set at 

0.70, 0.55, and 0.40. Figure 3.7 shows the levels of current and future health states that 

are required in the experiments (different durations are not shown in the Figure). Thus, 

the design in Table 3.1 is repeated with three different levels of future health states. A 

total of 24 scenarios will be used to assess three levels of future health states. Hereafter, I 

will refer to these three sets of the design as Design A, Design B, and Design C for the 

following levels of the future health state: 0.70, 0.55, and 0.40, respectively. Figure 3.8, 

Figure 3.9, and Figure 3.10 show the 8 scenarios corresponding to Design A, B, and C in 

Figure 3.7, correspondingly. 
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Figure 3.7: Graphical illustrations of the Design A, B, and C 
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Figure 3.8: Graphical representation of the 8 scenarios for Design A in Figure 3.7 
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Figure 3.9: Graphical representation of the 8 scenarios for Design B in Figure 3.7 
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Figure 3.10: Graphical representation of the 8 scenarios for Design C in Figure 3.7 
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3.5 Methods - Phase 2 

 The design of experiment in Phase 2 aims at answering the second research 

question: Can “conditional preference scores” for discrete health states better predict 

preference scores for an entire health profile than unconditional health states 

assessments? If the interdependent relationship between two consecutive health states 

exists, I believe that the proposed decomposition method can better predict the preference 

score of the entire health profile than the existing decomposition method in which each 

constituent health state is assessed independently, since the effects of transition between 

health states on preferences are taken into account. 

 

3.5.1 Study Factor 

The only factor of interest in the second research question is the health profile 

evaluation techniques. Evaluation techniques are employed as a within-subject factor. 

Three types of evaluation techniques are as follows: 

1. Holistic preference score assessment 

 The holistic assessment can be obtained by presenting the subjects the entire 

multistate health profile and asking them to evaluate the entire profile. For example, 

health profile A in Figure 3.11, which consists of four health states: health state 1 in 

duration a, health state 2 in duration b, health state 3 in duration c, and health state 4 in 

duration d, will be presented to each subject. Each subject will assign a score that 

represents how they feel about the health profile.  
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Figure 3.11: Health profile A  
 

 

2. Unconditional preference score assessment 

 The unconditional preference score assessment can be obtained by presenting the 

subjects each health state in the multistate health profile and asking them to evaluate each 

health state independently. For example, Figure 3.12 conceptually illustrates how the 

unconditional preference scores for health profile A in Figure 3.11 can be assessed. Note 

that in unconditional preference assessment for each health state, time does not matter.  
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Figure 3.12: Conceptual illustration of unconditional preference score assessment for 
health profile A in Figure 3.11 

 
 

 

3. Conditional preference score assessment 

 The conditional preference score assessment is the method that is proposed in this 

dissertation. The conditional preference assessment will be done at each two consecutive 

health states in the multistate health profile by assessing the conditional preference score 

for the later health state. For example, health state n+1 can be assessed by presenting 

state n and state n+1, health state n+2 can be assessed by presenting state n+1 and state 

n+2, and so on. However, the first state in the health profile will be assessed 

independently. Thus, the first health state score from the conditional preference 

assessment and the unconditional preference assessment are identical. Figure 3.13 

conceptually illustrates how the conditional preference scores for health profile A in 

Figure 3.11 can be assessed. Figure 3.13 A, B, C and D represent how to obtain 

preference scores for health state 1, 2, 3, and 4, respectively. 
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Figure 3.13: Conceptual illustration of conditional preference score assessment for health 
profile A in Figure 3.11 

 

 
 
3.5.2 Responses 

 Thus, responses in Phase 2 study provide scores from the three assessment 

techniques described above (e.g. holistic, conditional, and unconditional). After obtaining 

the scores from the assessments, the scores are duration-weighted in order to generate a 

single score for the health profile from each technique and these scores then are 

compared across the assessment techniques. An example of the process in calculating the 

duration-weighted scores for the health profile A in Figure 3.11 is described as follows:  

1. Duration-Weighted Holistic Preference Score = (a+b+c+d) × Score (Profile A) 
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2. Duration-Weighted Unconditional Preference Score  

= [a × Score(1)] + [b × Score(2)] + [c × Score(3)] + [d × Score(4)] 

 3.   Duration-Weighted Conditional Preference Score 

 = [a × Score(1)] + [b × Score(2|1)] + [c × Score(3|2)] + [d × Score(4|3)] 

Notations:  

Score(Profile A) = Holistic preference score for health profile A 

Score(1) = Unconditional preference score for health state 1 

Score(2) = Unconditional preference score for health state 2 

Score(3) = Unconditional preference score for health state 3 

Score(4) = Unconditional preference score for health state 4 

Score(2|1) = Conditional preference score for health state 2 (future state) given that the 

current health state is health state 1 

Score(3|2) = Conditional preference score for health state 3 (future state) given that the 

current health state is health state 2 

Score(4|3) = Conditional preference score for health state 4 (future state) given that the 

current health state is health state 3 

 

3.5.3 Hypothesis 

Hypothesis 6: The proposed decomposition method in which several conditional 

preference score assessments are executed and integrated to produce a preference score 

for the entire health profile will predict the preference of the entire health profile better 

than the decomposition technique that uses unconditional preference score assessments 

(the conventional QALY model). 
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3.5.4 Experimental Design 

The experiment in Phase 2 aims at comparing the holistic preference assessments 

with the conditional preference score assessments and the unconditional preference score 

assessments for the same health profiles. In order to minimize the additional evaluation 

tasks for subjects, health profiles that are used in the Phase 2 experiment are composed of 

health states that are used in Phase 1. Thus, the health profiles used are composed of 

health states at levels 0.10, 0.25, 0.40, 0.55, 0.70, 0.85, and 1.00. Moreover, different 

levels of the three factors interested in Phase 1 (direction, amplitude, and duration) are 

varied among the health profiles. Notice that when several health states are integrated 

into a health profile, amplitude of change between each consecutive health states plays a 

role as another new factor, “rate of change” or “slope”. Larger amplitude between 

consecutive health states contributes to higher rate of change (or steep slope) of the health 

profile, and vice versa. Thus, patterns of the health profiles in Phase 2 are constructed 

from a factorial design by varying three factors: direction (2 levels: increase and 

decrease), duration of the health profile (2 levels: 4 years and lifetime), and slope (2 

levels: gradual and steep). A 23 factorial design yields a total of 8 different health 

profiles. Moreover, two additional health profiles, which have no systematic pattern, one 

has 4-year duration and another one has lifetime duration, are included. Followings are 

10 health profiles that are constructed for Phase 2 experiment. Table 3.2 summarizes key 

characteristics of each health profile. Additionally, Figure 3.14 to Figure 3.23 

demonstrate graphical representations of the 10 health profiles.  
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Table 3.2: Summary of key components of each health profile used in Phase 2 
experiment 

Health Profiles# Duration Slope Direction 
1 4 Years Gradual Decrease 
2 4 Years Gradual Increase 
3 4 Years Steep Decrease 
4 4 Years Steep Increase 
5 4 Years No systematic pattern 
6 Lifetime (40 years) Gradual Decrease 
7 Lifetime (40 years) Gradual Increase 
8 Lifetime (40 years) Steep Decrease 
9 Lifetime (40 years) Steep Increase 

10 Lifetime (40 years) No systematic pattern 
 

 

Health profile 1 is composed of four health states with one-year duration for each health 

state. The changes between each two consecutive health states have low amplitude 

(gradual slope) with decreasing direction.  
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Figure 3.14: Health profile 1 for Phase 2 experiment 
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Health profile 2 is composed of four health states with one-year duration for each health 

state. The changes between each two consecutive health states have low amplitude 

(gradual slope) with increasing direction. 
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Figure 3.15: Health profile 2 for Phase 2 experiment 
 
 

Health profile 3 is composed of four health states with one-year duration for each health 

state. The changes between each two consecutive health states have high amplitude (steep 

slope) with decreasing direction. 
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Figure 3.16: Health profile 3 for Phase 2 experiment 
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Health profile 4 is composed of four health states with one-year duration for each health 

state. The changes between each two consecutive health states have high amplitude (steep 

slope) with increasing direction. 
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Figure 3.17: Health profile 4 for Phase 2 experiment 
 

 
Health profile 5 is composed of four health states with one-year duration for each health 

state. The profile has no systematic pattern. The changes between each two consecutive 

health states compose of a gain with high amplitude and two losses with high and low 

amplitudes, respectively. 
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Figure 3.18: Health profile 5 for Phase 2 experiment 
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Health profile 6 is composed of four health states with 10-year duration for each health 

state. The changes between each two consecutive health states have low amplitude 

(gradual slope) with decreasing direction. 
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Figure 3.19: Health profile 6 for Phase 2 experiment 
 

 

Health profile 7 is composed of four health states with 10-year duration for each health 

state. The changes between each two consecutive health states have low amplitude 

(gradual slope) with increasing direction. 
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Figure 3.20: Health profile 7 for Phase 2 experiment 
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Health profile 8 is composed of four health states with 10-year duration for each health 

state. The changes between each two consecutive health states have high amplitude (steep 

slope) with decreasing direction. 
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Figure 3.21: Health profile 8 for Phase 2 experiment 
 

 

Health profile 9 is composed of four health states with 10-year duration for each health 

state. The changes between each two consecutive health states have high amplitude (steep 

slope) with increasing direction. 
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Figure 3.22: Health profile 9 for Phase 2 experiment 
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Health profile 10 is composed of four health states with 10-year duration for each health 

state. The profile has no systematic pattern. The changes between each two consecutive 

health states compose of a loss with high amplitude and gains with both low and high 

amplitudes. 
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Figure 3.23: Health profile 10 for Phase 2 experiment 
 

 

 The holistic preference scores for the 10 health profiles are assessed by presenting 

each of the 10 health profiles and asking the subjects to evaluate each health profile. 

Thus, for each subject, 10 holistic scores for the 10 profiles are obtained. The 

unconditional preference scores for the 10 health profiles above are calculated from 

individual assessments of each individual component health state obtained in Phase 1. 

Then, the duration-weighted scores for each of the 10 health profiles are calculated from 

Phase 1 data. Regarding the conditional preference scores, most of the conditional 

preference scores for each pair of two consecutive health states in 10 health profile are 

obtained from Phase1 experiment. Scenarios that are needed for Phase 2 but are not 
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obtained in Phase 1 are added in the experiment. Table 3.3 lists the additional health 

scenarios required by each health profile for Phase 2 experiment.  

 

 

Table 3.3: List of the additional health scenarios required by each health profile for Phase 
2 experiment 

Health 
Profiles Additional Scenarios 

Profile#1 NONE 
Profile#2 

Time

Health State
Weight

1yr
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0

0.85
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Profile#4 

Time
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Health state

Future
Health state
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Table 3.3 (continued): List of the additional health scenarios required by each health 
profile for Phase 2 experiment 

Health 
Profiles Additional Scenarios 

Profile#5 

 
Profile#6 NONE 
Profile#7 Health State

Weight

Time

10
yrs

1

0

0.85

0.70

Current Health state

Future
Health state

 
Profile#8 Health State

Weight

Time

10
yrs

1

0

0.40

0.10

Current Health state

Future
Health state

 
Profile#9 Health State

Weight

Time

10
yrs

1

0

0.70

Current Health state

Future
Health state

 

Time

Health State
Weight

1 yr

1

0

0.40

0.25

Current
Health state

Future
Health state
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Table 3.3 (continued): List of the additional health scenarios required by each health 
profile for Phase 2 experiment 

Profiles 
Health Additional Scenarios 

Profile#10 Health State
Weight

Time

10
yrs

1

0

0.55

0.25

Current Health state

Future
Health state

 
 

From Table 3.3, there are two health scenarios that could be eliminated. Those are 

al 

.6 Elicitation Technique 

e used in the experiment is the visual analog scale (VAS). 

lth 

s of 

 

 

health scenarios that change from level 0.70 (current health state) to level 1.00 (future 

health state) for the health profile 4 and 9 since the conditional evaluations for these 

scenarios are for health state at level 1.00 which is perfect health. Thus, the condition

preference scores for these two health scenarios are assumed to be 1.00. Therefore, 

another 7 health scenarios are added to the experiment.  

 

3

 The elicitation techniqu

In the VAS assessment, the subjects are instructed to indicate how they feel about the 

health states in questions by marking a 100-scale with 2 extremes: best imaginable hea

state (score 100) and worst imaginable health state (score 0). The VAS is based on a 

concept that the valuations of health are continuous. It thus can measure the valuation

health state more adequately than categorical scales.  
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3.7 Development of the Experiment 

ning the experimental scenarios that are 

g the 

xis to 

cially 

’ 

ill 

ore 

f 

e 

 

 The experiment starts with desig

presented to the subjects. Two alternative techniques are considered for presentin

scenarios: graphical representation and descriptive representation. The graphical 

representation uses a graph as a tool to show the health scenarios by using the y-a

indicate the level of quality of life or health state weight. The descriptive representation 

uses a short description of the health scenarios with the intention that the subjects can 

imagine themselves being in those health scenarios while assessing the conditional 

preference scores. The graphical representation is easy to design and visualize. Espe

regarding the amplitude, the amount of amplitude perceived tends to be consistent across 

subjects when presented in graphs since the levels of health that the subjects perceived 

are put on the same scale (from 0 to 1 on y-axis). However, when assessing the subjects

preference scores, subjects may tempted to perform calculations based on the position of 

the health states on the graphs rather than thinking about how they actually feel. Thus, 

using graphical representation has a high chance that the responses from the subjects w

not necessarily represent their actual feelings and preferences. Thus, a descriptive 

representation may be more appealing. The descriptive representation however is m

difficult to design since subjects may value the same health state differently. Selection o

health states to be used in the experiment needs to be done in a thoughtful process to 

ensure that factors to be explored (direction, amplitude, and duration) correspond to th

health states selected and can be correctly perceived across all subjects, as designed. For

example, while a particular subject perceive that a change from health state A to health 
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state B is of  “large” amplitude, as intended by design, a different subject may perceive 

the same change as “small”, and defeats the design.  

 To ensure that proper descriptive health states are used in the experiment, I 

decided to use health states as described in the EQ-5D system, a system developed by the 

EuroQol Group (1990), an international research network established in 1987 by 

researchers from Finland, the Netherlands, Sweden, and the United Kingdom, for self-

health assessment. The EQ-5D presents health state in terms of five dimensions: mobility, 

self-care, usual activities (work, study, housework, family, or leisure), pain or discomfort, 

and anxiety or depression. Each dimension is subdivided into three categories, which 

indicate whether the subject has no problem, a moderate problem, or an extreme problem. 

For example, health state 21133 indicates that an individual have some problems in 

walking about, no problems with self-care, no problems with performing usual activities, 

extreme pain or discomfort, and is extremely anxious or depressed. Valuations of health 

states in the EQ-5D system have been obtained from several European general population 

studies including studies of population health status in the United Kingdom (Kind, Dolan, 

Gudex, and Williams, 1998; Dolan, 1997), the Netherlands (Essink-Bot, Stouthard, and 

Bonsel, 1993; Busschbach, McDonnell, Essink-Bot, and van Hout, 1999; Busschbach, 

McDonnell, and van Hout, 1997), Finland (Ohinmaa, Eija, and Sintonen, 1996), and 

Spain (Rué and Badia, 1996). An example of mean values of 25 health states in EQ-5D 

system from the EuroQol Rotterdam 1991 survey is shown in Table 3.4 (Busschbach et 

al., 1999). The values are based on a scale ranging from 0 (worst imaginable health state) 

to 100 (best imaginable health state). 
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Table 3.4: Empirical mean values of the EQ-5D health states from the EuroQol 
Rotterdam 1991 survey (from Busschbach et al., 1999) 

EQ-5D Health States Mean SD
11111 92.25 13.63
11211 80.47 14.38
11121 73.58 18.48
11112 73.44 18.69
12111 67.93 23.68
21111 62.93 23.18
11221 65.48 18.09
11122 59.95 20.65
21211 52.90 23.51
12212 52.71 20.13
21212 48.50 20.25
32211 45.17 23.33
21232 35.11 23.87
23223 29.89 22.56
22233 27.06 23.15
33321 26.31 23.01
22323 25.96 22.98
32233 24.87 23.44
22333 24.81 22.71
23332 21.24 21.31
32333 20.79 22.65
33332 20.65 21.93
33233 19.80 21.46
23333 15.67 20.80
33333 13.33 23.08

  

 

 The EQ-5D system is selected for the experiment since the description of health 

state in the five dimensions is easy to understand and previous studies have been 

performed to assist in the selection of appropriate health states for this study. Moreover, 

the subjects are not required to have particular knowledge regarding diseases or any 

specific disease-related health conditions.  

 Because different people may have different judgment regarding the same health 

states, designing the experiment by using the same set of health states across the subjects 

may result in uncontrollable perceived amplitude, one of the factors that are investigated 
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and thus needs to be controlled. For example, a change from health state A to health state 

B may be perceived as large amplitude by one subject but as small amplitude by another. 

Similarly, subjects typically make use of the VAS scale ranging from 0 to 100 in very 

different ways. For example a difference of 15 points on the scale may be perceived as 

“large” by some subjects but “small” by others. Hence a within-subject standardization 

process is used to choose appropriate scenarios for each subject. A set of health states that 

is used in the experiment has to be selected for each particular subject. In the experiment, 

each subject thus is presented with his/her customized experimental scenarios. 

 Therefore, at the beginning of the experiment, each subject is presented with 20 

descriptions written on 20 index cards, each representing an individual health state. The 

subject first ranks-order the cards and then evaluates each of them using VAS. The same 

set of 20 health states are used for all subjects. Scores are linearly normalized using 

mapping best health state (perfect health) and worst health state (death) to 1.00 and 0.00 

respectively. Then, using normalized scores for each subject, health states that have 

normalized scores that are closest to the scores needed for the experiment (1.00, 0.85, 

0.70, 0.55, 0.40, 0.25, and 0.10) are selected for use in the remainder of the experiment 

for that particular subject. Thus, while all subjects start with the same 20 states, the final 

subset of states chosen for the rest of the experiment may differ from subject to subject 

but corresponds to the health states and profiles demanded by the designs described 

earlier.  

In selecting health states for the experiment, using the selection rule by choosing 

health states that have the normalized scores that are closest to the scores needed for the 

experiment (1.00, 0.85, 0.70, 0.55, 0.40, 0.25 and 0.10) may be found inappropriate in 
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some cases. For example, this could be the case when the 20 normalized rating scores are 

not spreading out over the 0-100 range. Figure 3.24 below helps explain the possible 

inappropriateness of this selection rule. Each “X” on the left hand sided-scale represents 

the rating score for each of the 20 health states. “Xs” that are circled belong to health 

states that will be selected for the experiment at levels 0.85, 0.70, 0.55 and 0.40. Scale on 

the right hand side shows the reference points that are used as guides to select health 

states based on the scores needed for the experiment. In this example, none of the health 

states are eligible to be selected at levels 0.10 and 0.25.  
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Figure 3.24: An example of a problem of non-scattered rating scores 
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 In order to handle the problem of not sufficiently scattered rating scores, the 

selection rule is modified as delineated in the following steps: 

1. Calculate the range of the 20 normalized rating scores obtained for each 

subject  (the highest score (always be1.00 for perfect health) minus the lowest 

normalized score that is greater than 0),  

2. Divide the range into six portions (since there are six intervals between levels 

1.00, 0.85, 0.70, 0.55, 0.40, 0.25 and 0.10), which creates 7 reference points 

including 1.00.   

3. Health states that have the closest scores to the reference points are selected 

for the experiment. 

 Table 3.5 shows the formulas to calculate reference points for each health state 

level required by the design of experiment by using the modified rule. 

 

Table 3.5: Formulas used to calculate reference points using the modified rule 
Health State 

Required Levels Reference levels (Modified Rule) 

1.00 1.00 
0.85 1.00 – (1.00 – (lowest normalized score > 0))/6 
0.70 1.00 – 2*(1.00 – (lowest normalized score > 0))/6 
0.55 1.00 – 3*(1.00 – (lowest normalized score > 0))/6 
0.40 1.00 – 4*(1.00 – (lowest normalized score > 0))/6 
0.25 1.00 – 5*(1.00 – (lowest normalized score > 0))/6 
0.10 Lowest normalized score > 0 

 
 

 One may argue that selecting the health states for the experiment by using this 

modified rule cannot control the amount of amplitude across the subjects. However, what 

is more important in this study is the relative amplitude that each subject perceives. Each 

subject uses a different scale but captures “differences” between health states in a 
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different way. By using the modified rule, “large” and “small” amplitude for each subject 

equals one-third and one-sixth of his/her own scale respectively.  

A computer program is developed to use in data collection employs the Visual 

Basic programming language. All data is recorded in Microsoft Access database. Visual 

analog scale is represented by a sliding bar on a 0 to 100 scale that allows the subjects to 

slide the bar to the point that best represents their valuations regarding the health 

scenarios in questions. Screenshots of the program are attached in the Appendix A. The 

program is self-explanatory so that the subjects can perform the tasks by themselves.  

 To summarize, three major parts of the experiment are as follows: 

1. Unconditional preference assessments with 20 health states 

First, as mentioned above, the subjects are asked to rank order the 20 health states 

from the best to the worst health states. This part is done manually by using cards such 

that the subjects are able to manipulate the cards according to their preferences. Then, 

unconditional preference assessments are obtained for each of the 20 health states. The 

scores from the assessments are then entered into the computer program for 

normalization and selection of health states to be used in the later parts. In this first part, 

basic demographic information is also collected from each subject (gender, ethnicity, age, 

major field of study, degree worked on, experience with major health issue, general 

health). 
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2. Conditional preference assessments with 31 pairs of health states (24 pairs 

necessary for Phase 1 plus an additional 7 scenarios necessary for profiles 

introduced in Phase 2) 

Based on the 20 unconditional preference scores from the previous assessments, 

the computer program devised for this study then selects the required health states and 

generates health scenarios for conditional preference assessments. The 31 health 

scenarios are presented in a random order. Each scenario displays the hypothetical 

current health state along with the current health state duration followed by a future 

health state. The subject is asked to assess the future health state in the scenario given the 

current scenario and rate it using VAS.  

3. Holistic preference assessments with 10 health profiles 

The 10 health profiles are generated by the computer program based on the 20 

unconditional preference scores in the first part. The 10 health profiles are divided into 

two groups based on the profiles duration: five 4-year profiles, and five 40-year profiles. 

The scenarios of the 4-year profiles are framed in terms of the conditions during an 

illness lasting 4 years, while the 40-year profiles are framed as lifetime profiles. Before 

the holistic preference assessment starts, the subjects perform paired-comparisons for all 

possible combinations of the five profiles within each group with the aim of generating 

the ranking among the five profiles. Then, the subjects are asked to assess each health 

profile.  
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3.8 Study Subjects 

 The subjects in this study are undergraduate or graduate students of the School of 

Industrial and Systems Engineering at the Georgia Institute of Technology. This subject 

pool represents a young and relatively healthy population. One rationale behind using a 

healthy population in the study is that in economic evaluation of health care, the 

valuations of health used in cost effectiveness analysis are societal and thus include 

healthy subjects as opposed to only patients with actual experience with diseased or 

morbid states. The values of health determined by a general population are more valid 

than those determined by patients in the context of decisions on the alternative allocation 

of resources (Hadorn, 1991). While the sample to be used in this study is certainly not 

representative of the general population, it represents one segment of the general 

population. More importantly, the purpose of this exploratory study is to investigate, 

develop, and test a new assessment approach, not to generate utility assessments that can 

be used in actual cost-effectiveness studies. Thus a student population is deemed 

appropriate for this study. 

 The sample size needed in the study is determined by power analysis. Three 

values that need to be determined in order to estimate the sample size are power value 

(the probability of correctly rejecting the null hypothesis when it is false), minimum 

effect size, and standard deviation. Table 3.6 below shows the estimated sample size at 

each power level (0.80, 0.85, 0.90, 0.95) and at each minimum effect size (0.025, 0.050, 

0.075, and 0.100), calculated at standard deviation equals 0.20 with alpha at 0.05. The 

standard deviation was estimated from the descriptive statistics of raw VAS scores in the 

study by Busschbach et al. (1999) as shown previously in Table 3.4. Also, Figure 3.25 
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graphs the estimated sample size for each power level and effect size corresponding to 

Table 3.6. From Table 3.6 and Figure 3.25, it appears that a sample size of 70 gives at 

least 80% probability of detecting an effect size as small as 0.05. A sample size of 80 to 

100 is therefore targeted for this study.  

 
 

Table 3.6: Estimated sample size calculated at alpha = 0.05 and standard deviation = 0.20 
for each power level and minimum effect size 

Power level Effect size Estimated 
Sample Size 

0.025 417 
0.050 105 
0.075 47 

0.95 

0.100 27 
0.025 337 
0.050 85 
0.075 38 

0.90 

0.100 22 
0.025 288 
0.050 73 
0.075 33 

0.85 

0.100 19 
0.025 252 
0.050 64 
0.075 29 

0.80 

0.100 16 
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Figure 3.25: Graph represents estimated sample size calculated at alpha = 0.05 and 

standard deviation = 0.20 
 
 
 
 
3.9 Study Protocol 

 The study is advertised through electronic mail by targeting undergraduate and 

graduate students of the School of Industrial and Systems Engineering at the Georgia 

Institute of Technology. Those interested in participating in the study make an 

appointment with the investigator of the study and come to perform the study at the 

Laboratory for Human-Computer Interaction and Health Care Informatics in the School 

of Industrial and Systems Engineering. The experiment procedure starts by giving a short 

explanation of the study and asking if the student agrees in participating in the study. A 

signed consent form approved by the Georgia Institute of Technology’s Institutional 

Review Board is obtained for each participant. Each subject sits at a personal computer 

station in the Laboratory for Human-Computer Interaction and Health Care Informatics 
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and completes the tasks. Each subject who completes the entire experiment procedure 

receives $20 as compensation.
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CHAPTER 4                                                              

ANALYSIS AND RESULTS 

4.1 Data Description 

Data were collected from 100 undergraduate and graduate students mainly from 

the School of Industrial and Systems Engineering at the Georgia Institute of Technology. 

Data for each subject consisted of the followings: 

• Background information (gender, ethnicity, age, major field of study, 

degree worked on, experience with major health issue, and general health) 

• 20 unconditional preference scores for the 20 EQ-5D health states 

• 31 conditional preference scores for 31 pairs of health states (24 pairs 

necessary for Phase 1 experiment and an additional 7 pairs for health 

profiles introduced in Phase 2) 

• 10 holistic preference scores for 10 health profiles in Phase 2 experiment 

• 10 rankings from paired-comparisons for the 10 health profiles in Phase 2 

Data from one of the 100 subjects was removed prior to the analysis due to an 

experimental error, leaving a potential 99 usable cases.  
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4.2 Analysis and Results for Phase 1 Experiment 

Phase 1 experiment involves exploring the relationship between two consecutive 

health states, determining whether a preference score for a future health state is 

dependent upon the level of the current health state and if so, what factors affect the 

preference and in what ways. Factors of interest that are included in the experiment are 

duration of current health state (2 levels: 1 year and 10 years), direction of change from 

current health state (2 levels: decrease and increase), and amplitude of change from 

current to future health state (2 levels: small and large). Three replications of the 23 

factorial design at three different levels of future health states (high (level 0.70), medium 

(level 0.55), and low (level 0.40)) are performed. Those three sets of the 23 factorial 

design are referred to as Design A, B, and C, respectively. 

 

4.2.1 Data Preparation 

 Data used in the analysis for Phase 1 consist of the 24 conditional preference 

scores obtained per subject from the three sets of the 23 factorial design at three different 

levels of future health states. To compare scores across subjects, conditional preference 

scores were linearly normalized for each subject by mapping best health state (perfect 

health) and worst health state (death), specified in the stage of unconditional preference 

assessments, to 1.00 and 0.00 respectively. Seven cases, for which normalized scores 

were higher than 1.00 or lower than 0.00, were removed. After normalization, outlier 

analysis was performed using box plot. Responses identified as extreme outliers (values 

exceed three box lengths (interquartile range) from the lower and upper edge of the box) 

were removed. Box plots and descriptive statistics of the subjects whose data were 

 99



removed for Phase 1 analysis are provided in Appendix B. As a result, data used in Phase 

1 analysis correspond to 92 subjects. 

 

4.2.2 Data Description 

Background Variables 

 Phase 1 analysis uses a total of 92 subjects, 36 (39%) female students and 56 

(61%) male students. Age ranges from 18 to 33 years, with an average of 22.36 years. 

Among the 92 students, 44 (48%) are white, 28 (30%) are Asian or Pacific Islander, 10 

(11%) are Hispanic, and 6 (7%) are black. The majority (83 (90%)) of them major in 

Industrial Engineering and 72 (78%) are undergraduate students. Concerning major 

health issues, 13 (14%) experienced a major health issue themselves, 48 (52%) 

experienced one in their families, and 40 (43%) experienced one in someone else close to 

them. Regarding the students health status, none of them indicates having poor health. A 

summary of the background variables of the 92 subjects is shown in Table 4.1. Figure 4.1 

shows the distribution of age, the only continuous variable.  
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Table 4.1: Summary of Background Variables for Phase 1 Analysis 
Variable Counts Percent Mean S.D. Range 
Gender      
     Female 36 39.13    
     Male 56 60.87    
Ethnic Background           
     White, not of Hispanic origin 44 47.83    
     Black, not of Hispanic origin 6 6.52    
     Hispanic 10 10.87    
     Asian or Pacific Islander 28 30.43    
     Others 4 4.35    
         
Age (years)   22.36 2.51 18.00 - 33.00 
Major field of study           
     Industrial Engineering 83 90.22    
     Other – non-engineering 6 6.52    
     Other – Engineering 3 3.26       
Degree of study      
     B.S. 72 78.26    
     M.S. 8 8.70    
     Ph.D. 11 11.96    
     Other 1 1.08    
Health problem in yourself      
     Yes, major issue(s) 13 14.13    
     Yes, minor issue(s) 42 45.65    
     No 37 40.22    
Health problem in your family      
     Yes, major issue(s) 48 52.17    
     Yes, minor issue(s) 30 32.61    
     No 14 15.22    
Health problem in someone else 
close to you           
     Yes, major issue(s) 40 43.48    
     Yes, minor issue(s) 25 27.17    
     No 27 29.35       
General health condition      
     Excellent 26 28.26    
     Very good 49 53.26    
     Good 16 17.39    
     Fair 1 1.09    
     Poor 0 0.00    
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Figure 4.1: Age distribution of subjects in Phase 1 analysis 
 

 

Unconditional Preference Score 

 At the beginning of the experiment, each subject was presented with 20 

descriptions on 20 index cards, each representing an individual health state in EQ-5D 

system, as shown in Table 4.2. The subject first rank-ordered the cards and then rated 

each of them using a visual analog scale (VAS). Thus, each subject generated 20 

unconditional preference scores.  

  

Table 4.2: Descriptions of the 20 health states used in the experiment 
Health State# EQ-5D Coding Description 

No problems in walking about. 
No problems with self-care. 
No problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
No pain or discomfort. 

1 11111 

Not anxious or depressed. 
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Table 4.2 (continued): Descriptions of the 20 health states used in the experiment 
Health State# EQ-5D Coding Description 

No problems in walking about. 
No problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
No pain or discomfort. 

2 11211 

Not anxious or depressed. 
No problems in walking about. 
No problems with self-care. 
No problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

3 11121 

Not anxious or depressed. 
No problems in walking about. 
Some problems with self-care. 
No problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
No pain or discomfort. 

4 12111 

Not anxious or depressed. 
No problems in walking about. 
No problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

5 11221 

Not anxious or depressed. 
No problems in walking about. 
No problems with self-care. 
No problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

6 11122 

Moderately anxious or depressed. 
No problems in walking about. 
Some problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

7 12222 

Moderately anxious or depressed. 
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Table 4.2 (continued): Descriptions of the 20 health states used in the experiment 
Health State# EQ-5D Coding Description 

No problems in walking about. 
Some problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
No pain or discomfort. 

8 12212 

Moderately anxious or depressed. 
Some problems in walking about. 
Some problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

9 22222 

Moderately anxious or depressed. 
No problems in walking about. 
Unable to wash and dress yourself. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
No pain or discomfort. 

10 13212 

Moderately anxious or depressed. 
No problems in walking about. 
Unable to wash and dress yourself. 
Unable to perform your usual activities 
(e.g.work, study, leisure activities, family, housework).
No pain or discomfort. 

11 13311 

Not anxious or depressed. 
No problems in walking about. 
Some problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

12 12223 

Extremely anxious or depressed. 
Some problems in walking about. 
No problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Extreme pain or discomfort. 

13 21232 

Moderately anxious or depressed. 
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Table 4.2 (continued): Descriptions of the 20 health states used in the experiment 
Health State# EQ-5D Coding Description 

Some problems in walking about. 
Unable to wash and dress yourself. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Moderate pain or discomfort. 

14 23223 

Extremely anxious or depressed. 
Some problems in walking about. 
Some problems with self-care. 
Some problems with performing your usual activities 
(e.g.work, study, leisure activities, family, housework).
Extreme pain or discomfort. 

15 22233 

Extremely anxious or depressed. 
Some problems in walking about. 
Unable to wash and dress yourself. 
Unable to perform your usual activities 
(e.g.work, study, leisure activities, family, housework).
Extreme pain or discomfort. 

16 23332 

Moderately anxious or depressed. 
Confined to bed. 
Unable to wash and dress yourself. 
Unable to perform your usual activities 
(e.g.work, study, leisure activities, family, housework).
Extreme pain or discomfort. 

17 33332 

Moderately anxious or depressed. 
Some problems in walking about. 
Unable to wash and dress yourself. 
Unable to perform your usual activities 
(e.g.work, study, leisure activities, family, housework).
Extreme pain or discomfort. 

18 23333 

Extremely anxious or depressed. 
Confined to bed. 
Unable to wash and dress yourself. 
Unable to perform your usual activities 
(e.g.work, study, leisure activities, family, housework).
Extreme pain or discomfort. 

19 33333 

Extremely anxious or depressed. 
20 Death Death 
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After obtaining the 20 unconditional preference scores, scores were linearly 

normalized for each subject by mapping best health state (health state #1 - perfect health) 

and worst health state (health state #20 - death) to 1.00 and 0.00 respectively. Descriptive 

statistics of the normalized unconditional preference score for each health state from 92 

subjects are summarized in Table 4.3. Means of normalized unconditional preference 

scores of the 20 health states are distributed approximately evenly over the scale as can 

be seen in Figure 4.2. From Table 4.3, one can notice that the maximum standard 

deviation obtained is 0.18, which is less than the standard deviation of 0.20 which was 

used in determining power and sample size for this experiment at the earlier stage. In 

recalculating power for this experiment with a sample size of 92 and a standard deviation 

of 0.18, this experiment provides at least 96.43% probability of detecting an effect size as 

small as 0.05.   
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Figure 4.2: Means of normalized unconditional preference scores for the 20 health states 
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Table 4.3: Descriptive statistics for normalized unconditional preference scores 
Health State N Min Max Mean S.D. 

Health State#1 - 11111 (perfect health) 92 1.00 1.00 1.00 0.00 
Health State#2 – 11211 92 0.38 0.98 0.88 0.09 
Health State#3 – 11121 92 0.65 0.99 0.89 0.08 
Health State#4 – 12111 92 0.50 0.98 0.83 0.10 
Health State#5 – 11221 92 0.33 0.99 0.76 0.11 
Health State#6 – 11122 92 0.38 0.98 0.78 0.11 
Health State#7 – 12222 92 0.29 0.84 0.60 0.10 
Health State#8 – 12212 92 0.30 0.91 0.69 0.10 
Health State#9 – 22222 92 -0.40 0.77 0.47 0.15 
Health State#10 – 13212 92 0.09 0.80 0.45 0.15 
Health State#11 – 13311 92 -0.13 0.76 0.38 0.18 
Health State#12 – 12223 92 0.13 0.74 0.45 0.14 
Health State#13 – 21232 92 -0.20 0.76 0.42 0.18 
Health State#14 – 23223 92 -0.60 0.53 0.23 0.14 
Health State#15 – 22233 92 -0.60 0.70 0.25 0.17 
Health State#16 – 23332 92 -0.80 0.50 0.15 0.15 
Health State#17 – 33332 92 -1.00 0.30 0.05 0.14 
Health State#18 – 23333 92 -0.80 0.30 0.09 0.13 
Health State#19 – 33333 92 -1.00 0.11 0.01 0.12 
Health State#20 – Death 92 0.00 0.00 0.00 0.00 
 

 

 Based on the 20 normalized unconditional preference scores, the computer 

program created for this study then selected the required health states in order to generate 

health scenarios for conditional and holistic preference assessments. For each subject, 7 

out of 20 health states were selected. While all subjects started with the same 20 health 

states, the subset of health states chosen for the rest of the experiment differed from 

subject to subject but corresponded to the health states required by the design of the 

experiment explained in Chapter 3. The required health states were for levels 1.00, 0.85, 

0.70, 0.55, 0.40, 0.25, and 0.10. Table 4.4 shows the frequencies at which each health 

state was selected as one of the required health states. By design, health state #1 (perfect 
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health) was used as the level 1.00 health state for all subjects. However, for health state 

level 0.85, health states #2 (11211) and 3 (11121) while most frequently chosen (23% of 

the time for each health state) were not always picked. For health state level 0.70, health 

state #8 (12212) was the most frequently used health state (26%). Health state #9 (22222) 

was the most frequent selection (22%) for health state level 0.55. Health state #12 

(12223) was selected 20% of the time to represent health state level 0.40. Finally, for 

health state level 0.25, and 0.10, health states #14 (23223) and 19 (33333) were the most 

frequently selected health states with the frequencies of 25% and 64%, respectively.  

 

Table 4.4: Frequencies of health states that are selected to generate health scenarios in the 
experiment 

Level 1.00 
Level 
0.85 

Level 
0.70 

Level 
0.55 

Level 
0.40 

Level 
0.25 

Level 
0.10 Health 

State# 
Freq. % Freq. % Freq. % Freq. % Freq. % Freq. % Freq. %

1 92 100                         
2     21 23 2 2 2 2             
3     21 23 1 1                 
4     14 15 5 5     1 1         
5     16 17 16 17 2 2             
6     14 15 9 10     1 1         
7     1 1 20 22 13 14 5 5         
8     5 5 24 26 5 5             
9         2 2 20 22 9 10 1 1     

10         1 1 13 14 14 15 6 7     
11         5 5 10 11 9 10 8 9 1 1
12         4 4 12 13 18 20 4 4     
13         2 2 14 15 10 11 7 8 1 1
14                 12 13 23 25 5 5
15         1 1 1 1 9 10 15 16 5 5
16                 4 4 18 20 4 4
17                     2 2 7 8
18                     8 9 10 11
19                         59 64
20                             
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  Additionally, Table 4.5 summarizes the descriptive statistics for unconditional 

preference scores for health states that were selected for the experiment across all the 92 

subjects. It can be seen that the average scores of the health states that were selected are 

very close to the scores required by the design of experiment.  

 

Table 4.5: Unconditional preference score for each level of health state selected for the 
experiment 

Health State N Min Max Mean S.D. 
Health State Level 1.00 92 1.000 1.000 1.000 0.000 
Health State Level 0.85 92 0.750 0.904 0.842 0.029 
Health State Level 0.70 92 0.610 0.785 0.686 0.032 
Health State Level 0.55 92 0.375 0.620 0.522 0.035 
Health State Level 0.40 92 0.268 0.522 0.365 0.047 
Health State Level 0.25 92 0.100 0.300 0.208 0.042 
Health State Level 0.10 92 0.010 0.200 0.057 0.036 

 

 

Conditional Preference Score (CPS) 

 Conditional preference scores were obtained by presenting each subject with a set 

of health scenarios. A health scenario consisted of a description of a current health state 

along with the duration that the subject was asked to imagine himself/herself currently 

experiencing, followed by a description of a future health state that the subject would 

experience starting the next day. Each subject was asked to give a CPS for the future 

health state on a visual analog scale (VAS).  

 Table 4.7, Table 4.9, and Table 4.11 show descriptive statistics of CPS obtained 

from all subjects for Design A, B, and C for all scenarios (8 scenarios per design), along 

with the results from Kolmogorov-Smirnov normality tests. Detailed scenarios of Design 

A, B, and C are shown in Table 4.6, Table 4.8, and Table 4.10, respectively. Means of 
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CPS are ranging from 0.410 to 0.674 for Design A, from 0.480 to 0.545 for Design B, 

and from 0.394 to 0.442 for Design C. The results from Kolmogorov-Smirnov normality 

tests show that all but two scenarios in Design A are normally distributed. However, one 

of the two scenarios that are not normally distributed is close to being normal (scenario 3-

A, p-value = 0.049). Another non-normally distributed scenario is scenario 4-A (p-value 

= 0.011). Figure 4.3, Figure 4.4, and Figure 4.5 illustrate the distributions of CPS for 

Design A, B, and C, for each scenario, respectively.  

 

Table 4.6: Design A scenarios 
Design A 
Scenarios  

Current Health 
State Duration 

Current Health 
State Level 

Future Health 
State Level 

1-A 1 year 1.00 0.70 
2-A 10 years 1.00 0.70 
3-A 1 year 0.85 0.70 
4-A 10 years 0.85 0.70 
5-A 1 year 0.40 0.70 
6-A 10 years 0.40 0.70 
7-A 1 year 0.55 0.70 
8-A 10 years 0.55 0.70 
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Table 4.7: Conditional Preference Score for Each Scenario in Design A 
Test of Normality 

(Kolmogorov-
Smirnov) N Min Max Mean S.D. 

Statistics p-value
1-A 92 0.021 0.857 0.410 0.179 0.075 0.200 
2-A 92 0.225 0.958 0.663 0.168 0.066 0.200 
3-A 92 0.288 0.121 0.093 0.049 
4-A 92 0.256 0.914 0.670 0.137 0.107 
5-A 92 0.298 0.985 0.645 0.147 0.046 0.200 
6-A 92 0.644 0.162 0.043 0.200 
7-A 

Design A 
Scenarios 
(Future 

Health State 
Level = 0.70) 

0.919 0.674 
0.011 

0.284 1.000 
92 0.267 0.929 0.644 0.127 0.055 0.200 

8-A 92 0.328 0.983 0.644 0.144 0.061 0.200 
 
 

Table 4.8: Design B scenarios 
Design B 
Scenarios  

Current Health 
State Duration 

Current Health 
State Level 

Future Health 
State Level 

1 year 0.85 0.55 
2-B 10 years 0.85 0.55 
3-B 1 year 0.70 0.55 
4-B 10 years 0.70 0.55 
5-B 1 year 0.25 0.55 
6-B 10 years 0.25 0.55 
7-B 1 year 0.40 0.55 
8-B 10 years 0.40 0.55 

1-B 

 

Table 4.9: Conditional Preference Score for Each Scenario in Design B 
Test of Normality 

(Kolmogorov-
Smirnov) 

Design B 
Scenarios* 

(Future 
Health State 
Level = 0.55) 

N Min Max Mean S.D. 

Statistics p-value

1-B 92 0.099 0.840 0.545 0.130 0.068 0.200 
2-B 92 0.147 0.870 0.539 0.138 0.080 0.185 
3-B 92 0.270 0.910 0.535 0.128 0.077 0.200 
4-B 92 0.181 0.868 0.534 0.131 0.080 0.188 
5-B 92 0.122 0.924 0.480 0.157 0.056 0.200 
6-B 92 0.152 0.948 0.518 0.160 0.071 0.200 
7-B 92 0.280 0.910 0.534 0.122 0.057 0.200 
8-B 92 0.282 0.914 0.538 0.130 0.091 0.056 
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Table 4.10: Design C scenarios 
Design C 
Scenarios  

Current Health 
State Duration 

Current Health 
State Level 

Future Health State 
Level 

1-C 1 year 0.70 0.40 
2-C 10 years 0.70 0.40 
3-C 1 year 0.55 0.40 
4-C 10 years 0.55 0.40 
5-C 1 year 0.10 0.40 
6-C 10 years 0.10 0.40 
7-C 1 year 0.25 0.40 
8-C 10 years 0.25 0.40 

 

 

 

Table 4.11: Conditional Preference Score for Each Scenario in Design C 
Test of Normality 

(Kolmogorov-
Smirnov) 

Design C 
Scenarios* 

(Future 
Health State 
Level = 0.40) 

N Min Max Mean S.D. 

Statistics p-value

1-C 92 0.133 0.713 0.404 0.133 0.069 0.200 
2-C 92 0.113 0.809 0.422 0.142 0.041 0.200 
3-C 92 0.050 0.815 0.412 0.124 0.077 0.200 
4-C 92 0.042 0.770 0.414 0.136 0.084 0.115 
5-C 92 0.092 0.935 0.442 0.210 0.065 0.200 
6-C 92 0.069 0.983 0.492 0.206 0.092 0.054 
7-C 92 0.130 0.857 0.394 0.144 0.081 0.176 
8-C 92 0.074 0.807 0.408 0.153 0.071 0.200 
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Figure 4.3: Distribution of conditional preference score in each scenario in Design A 
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Figure 4.4: Distribution of conditional preference score in each scenario in Design B 
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Figure 4.5: Distribution of conditional preference score in each scenario in Design C 
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4.2.3 Data Analysis 

 General Linear Model – Repeated Measures (GLM-RM) was used for data 

analysis in Phase 1. This technique was used as opposed to between-groups analysis of 

variance (ANOVA) since the same subjects participated in all conditions of the 

experiment. ANOVA depends on the assumption that scores in different conditions are 

independent. However, when the same subjects participate in all conditions, this 

assumption is violated. GLM-RM, however, does not require this assumption but instead, 

it requires that the level of dependence between experimental conditions has to be 

roughly equal. This assumption is called sphericity. The sphericity assumption was 

checked throughout the analysis. SPSS 11.5 for Windows was used as the analysis tool 

for running GLM-RM.  

 GLM-RM was performed by treating duration, direction, and amplitude as 

repeated factors, while conditional preference score is a dependent variable. Three sets of 

GLM-RM were executed separately for each design (Design A, B, and C). Summary of 

the main effects, 2-way interaction, and 3-way interaction effects are summarized in 

Table 4.12. This approach allows testing the hypotheses presented in Chapter 3. In the 

following sections, results are presented for each hypothesis. 

 
Table 4.12: Results from GLM-RM for each design  

  Design A Design B Design C
  Statistics p-value Statistics p-value Statistics p-value

Duration F = 47.24 <0.001 F = 1.34 0.250 F = 6.42 0.013
Direction F = 8.11 0.005 F = 2.87 0.094 F = 2.65 0.107
Amplitude F = 58.31 <0.001 F = 2.96 0.089 F = 14.48 <0.001
Duration x Direction F = 62.04 <0.001 F = 3.04 0.085 F = 1.58 0.212
Duration x Amplitude F = 75.38 <0.001 F = 1.23 0.271 F = 2.72 0.102
Direction x Amplitude F = 46.91 <0.001 F = 4.21 0.043 F = 9.47 0.003
Duration x Direction x 
Amplitude F = 68.63 <0.001 F = 2.06 0.155 F = 0.43 0.511 

*The grey highlight indicates significant effect at alpha = 0.05 
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Hypothesis 1: There is no significant three-way interaction effect between direction, 

amplitude and duration on the conditional preference score of the future health 

state.  

Table 4.13 shows the summary of mean of CPS at each combination of the three 

factors. The results from GLM-RM (see Table 4.14) show that the three-way interaction 

effect between direction, amplitude and duration on the CPS of the future health state is 

not significant at medium (level 0.55, Design B) and low levels (level 0.40, Design C) of 

future health state. At the high level (level 0.70, Design A) the results reveal a significant 

three-way interaction effect with p-value less than 0.001. In order to explain the 

significant three-way interaction effect of Design A, Figure 4.6, Figure 4.7, and Figure 

4.8 depict means of CPS from Design A for each combination of the three factors.  

 

 

Table 4.13: Mean of CPS for each combination of direction, amplitude, and duration, for 
each design 

Direction Amplitude Duration Mean 
(Design A)

Mean  
(Design B) 

Mean  
(Design C)

1 Year 0.674 0.535 0.412 
Small 

10 Years 0.670 0.534 0.414 
1 Year 0.410 0.545 0.404 

Decrease 
Large 

10 Years 0.663 0.539 0.422 
1 Year 0.644 0.534 0.394 

Small 
10 Years 0.644 0.538 0.408 
1 Year 0.645 0.480 0.442 

Increase 
Large 

10 Years 0.644 0.518 0.492 
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Table 4.14: Summary of the results from GLM-RM for 3-way interaction effect between 
duration, direction, and amplitude  

GLM-RM 3-Way Interaction Effect 
(duration x direction x amplitude) Test statistic p-value 

Design A (Future health state level = 0.70) F = 68.63 <0.001 
Design B (Future health state level = 0.55) F = 2.06 0.155 
Design C (Future health state level = 0.40) F = 0.43 0.511 
*The grey highlight indicates significant effect at alpha = 0.05 
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Figure 4.6: Graphs represent three-way interaction effect on CPS for Design A (future 

health state level = 0.70) for each level of current health state duration 
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By examining the three-way interaction by level of current health state duration 

when future health state is at level 0.70 as shown in Figure 4.6, it can be seen that 

direction and amplitude effects interact only when current health state has a 1-year 

duration (Figure 4.6A and Figure 4.6B as opposed to Figure 4.6C and Figure 4.6D). 

Consider Figure 4.6A, when current health state has 1-year duration and future health 

state has small amplitude of change from current health state, the mean of CPS for a 

decreased future health state is slightly higher than the mean CPS for an increased future 

health state (0.674 versus 0.644). However, when current health state has 1-year duration 

and future health state has large amplitude of change from current health state, changing 

the direction of change from decreasing to increasing significantly increases CPS by an 

average of 0.235.  

Considering another aspect (Figure 4.6B), when future health state is decreased 

from current health state that has 1-year duration, varying amplitude of change from 

small to large significantly decreases CPS by an average of 0.264. However, when future 

health state is increased from current health state that has 1-year duration, CPS for future 

health state that has small amplitude of change and CPS for current health state that has 

large amplitude of change are approximately equal (0.644 and 0.645, respectively).  
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Figure 4.7: Graphs represent three-way interaction effect on CPS for Design A (future 
health state level = 0.70) for each level of direction of change from current health state to 

future health state 
 

 

By examining the three-way interaction by level of direction of change from 

current health state to future health state when future health state is at level 0.70 (as in 

Figure 4.7), it can obviously be seen that duration and amplitude interact only when 

direction of change from current health state to future health state is decrease (Figure 

4.7A and Figure 4.7B as opposed to Figure 4.7C and Figure 4.7D). Consider Figure 4.7A, 

when future health state is decreased from current health state with a small amplitude 

change, having current health state duration of 1-year or 10-year do not significantly 
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affect CPS. They lead to approximately equal CPS (0.674 and 0.670, respectively). On 

the other hand, when future health state is decreased from current health state with a large 

amplitude change, current health state duration does matter. Current health state that has 

1-year duration leads to significantly smaller CPS than current health state that has 10-

year duration by an average of 0.253 differences.  

By interpreting from another perspective (Figure 4.7B), when future health state 

is decreased from current health state, a change in CPS when amplitude of change 

between current health state and future health state is varied from small to large when 

current health state has 1-year duration is significantly different from the change that 

occurs when current health state has 10-year duration. When future health state is 

decreased from current health state that has 1-year duration, varying amplitude of change 

from small to large significantly decreases CPS by an average of 0.264. However, when 

future health state is decreased from current health state that has 10-year duration, CPS 

for future health state that has small amplitude of change from current health state and 

CPS for future health state that has large amplitude of change from current health state 

are approximately equal (0.670 and 0.663, respectively). 
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Figure 4.8: Graphs represent three-way interaction effect on CPS for Design A (future 
health state level = 0.70) for each level of amplitude of change between current health 

state and future health state 
 

 

By examining the three-way interaction by level of amplitude of change between 

current health state and future health state when future health state is at level 0.70 (as in 

Figure 4.8), it can obviously be seen that direction and duration interact only when 

amplitude of change between current health state and future health state is large (Figure 

4.8C and Figure 4.8D as opposed to Figure 4.8A and Figure 4.8B). Consider Figure 4.8C, 

when amplitude of change between current health state and future health state is large, a 

change in CPS when direction of change is varied from decreasing to increasing when 
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current health state has 1-year duration is significantly different from the change when 

current health state has 10-year duration. When current health state has 1-year duration 

and amplitude of change between current health state and future health state is large, CPS 

for a future health state that is decreased from current health state is significantly lower 

than CPS for an increased future health state, with an average of 0.235 score lower. 

However, when current health state has 10-year duration and amplitude of change 

between current health state and future health state is large, CPS for a decreased future 

health state is slightly higher, by an average of 0.019, than CPS for an increased future 

health state.  

From another perspective (Figure 4.8D), when amplitude of change between 

current health state and future health state is large, a change in CPS, when current health 

state duration is varied from 1 year to 10 years for decreased future health state, is 

significantly different from the change that occurs when future health state is increased 

from current health state. When a future health state is decreased with large amplitude of 

change, CPS for future health state when current health state has 1-year duration is 

significantly smaller than CPS for future health state when current health state has 10-

year duration by an average of 0.253. However, when future health state is increased 

from current health state with large amplitude, CPS for future health state when current 

health state has 1-year duration and when current health state has 10-year duration are 

approximately equal (0.644 and 0.645, respectively).  
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Hypothesis 2: There is a significant effect of interaction between direction and 

amplitude. 

 Table 4.15 shows the summary of mean CPS for each combination of levels of 

direction and amplitude. Additionally, Table 4.16 summarizes the results from GLM-RM 

for testing the interaction effect between direction and amplitude. The results show that 

2-way interaction effect between direction and amplitude is significant in all three 

designs with p-values less than 0.05. Figure 4.9, Figure 4.10, and Figure 4.11 depict 

interaction plots between direction and amplitude for Design A, B, and C respectively. 

 

 

Table 4.15: Mean of CPS for each combination of direction and amplitude for each 
design 

Direction Amplitude Mean 
(Design A)

Mean  
(Design B)

Mean  
(Design C) 

Small  0.672 0.535 0.413 Decrease 
Large 0.537 0.542 0.413 
Small  0.644 0.536 0.401 Increase 
Large 0.645 0.499 0.467 

 

 

 

Table 4.16: Summary of the results from GLM-RM for 2-way interaction effect between 
direction and amplitude  

GLM-RM 2-Way Interaction Effect 
(direction x amplitude) Test statistic p-value 

Design A (Future health state level = 0.70) F = 46.91 <0.001 
Design B (Future health state level = 0.55) F = 4.21 0.043 
Design C (Future health state level = 0.40) F = 9.47 0.003 
*The grey highlight indicates significant effect at alpha = 0.05 
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Figure 4.9: Interaction plots represent 2-way interaction effect between direction and 

amplitude on CPS for Design A (future health state level = 0.70) 
 

 

From Figure 4.9A, when future health state is at level 0.70, the difference in CPS 

when the amplitude of change from current health state to future health state is varied 

from small to large for a decreased future health state is significantly different from that 

for an increased future health state. For future health state that is decreased from current 

health state, varying the amplitude of change from small to large significantly decreases 

CPS for future health state by an average of 0.135 score. However, when future health 

state is increased from current health state, CPS for future health state that has small 

amplitude of change from current health state and CPS for future health state that has 

large amplitude of change from current health state are approximately equal (0.644 and 

0.645, respectively). 

 As shown in Figure 4.9B, change in CPS, when the direction of change from 

current health state to future health state is varied between decreasing and increasing and 

when the amplitude of change between current health state and future health state is 

small, is significantly different from the change when amplitude of change is large. When 

future health state has small amplitude of change from current health state, varying 
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direction of change from decreasing to increasing slightly decreases CPS by an average 

of 0.028. On the other hand, when future health state has large amplitude of change from 

current health state, CPS for a decreased future health state is significantly lower than 

CPS for an increased future health state, with an average of 0.107 score of difference. 

 Based on the result of the significant 3-way interaction between duration, 

direction, and amplitude, the 2-way interaction between direction and amplitude, 

described above in terms of tendency of changes in CPS when different levels of 

direction and amplitude are varied, is present only when current health state has 1-year 

duration. 
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Figure 4.10: Interaction plots represent 2-way interaction effect between direction and 

amplitude on CPS for Design B (future health state level = 0.55) 
 

 

As shown in Figure 4.10A, when future health state is at level 0.55, the difference 

in CPS when the amplitude of change from current health state to future health state is 

varied from small to large for a decreased future health state is significantly different 

from that of an increased future health state. When future health state is decreased from 
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current health state, the CPS for the future health state that has large amplitude of change 

from current health state is slightly higher, with an average of 0.007, than the CPS for the 

future health state that has small amplitude of change. On the other hand, when future 

health state is increased from current health state, CPS for future health state that has 

large amplitude is lower than the CPS for future health state that has small amplitude of 

change from current health state by an average of 0.037 score.  

 Looking at Figure 4.10B, change in CPS, when the direction of change from 

current health state to future health state is varied between decreasing and increasing and 

when the amplitude of change between current health state and future health state is 

small, is significantly different from the change when amplitude of change is large. When 

future health state has small amplitude of change from current health state, CPS for a 

decreased future health state is approximately equal to CPS from an increased future 

health state (0.535 and 0.536, respectively).  However, when future health state 

corresponds to a large amplitude change from current health state, CPS for a decreased 

future health state is higher than CPS for an increased future health state, with an average 

of 0.043 score of difference. 
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Figure 4.11: Interaction plots represent 2-way interaction effect between direction and 
amplitude on CPS for Design C (future health state level = 0.40)

 
 

From Figure 4.11A, when future health state is at level 0.40, the difference in 

CPS, when the amplitude of change from current health state to future health state is 

varied from small to large for a decreased future health state, is significantly different 

from that for an increased future health state. For a future health state that is decreased 

from current health state, CPS for future health state that corresponds to a large amplitude 

change from current health state is approximately equal to CPS for future health state that 

has small amplitude of change from current health state. However, for a future health 

state that is increased from current health state, varying the amplitude of change from 

small to large significantly increases CPS for future health state by an average of 0.066 

score. 

 By looking at the issue from another perspective (Figure 4.11B), change in CPS, 

when the direction of change from current health state to future health state is varied 

between decreasing and increasing and when the amplitude of change between current 

health state and future health state is small, is significantly different from change when 
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amplitude of change is large. When future health state corresponds to a small amplitude 

change from current health state, varying direction of change from decreasing to 

increasing slightly decreases CPS by an average of 0.012 score. On the other hand, when 

future health state corresponds to a large amplitude change from current health state, CPS 

for a decreased future health state is lower than CPS for an increased future health state, 

with an average of 0.054 score of difference. 

 

Hypothesis 3: There is no significant interaction effect between direction and 

duration on the conditional preference score of the future health state. 

Table 4.17 shows the summary of the mean CPS for each combination of levels 

between direction and duration. Furthermore, Table 4.18 summarizes the results from 

GLM-RM for testing the interaction effect between direction and duration. The results 

show that 2-way interaction effect between direction and amplitude is significant only in 

Design A with p-value of less than 0.001. Figure 4.12 depicts interaction plots between 

direction and duration for Design A. 

 

Table 4.17: Mean of CPS for each combination of direction and duration for each design 

Duration Direction Mean 
(Design A)

Mean  
(Design B)

Mean  
(Design C) 

Decrease 0.542 0.540 0.408 
1 Year 

Increase 0.645 0.507 0.418 
Decrease 0.666 0.537 0.418 

10 Years 
Increase 0.644 0.528 0.450 
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Table 4.18: Summary of the results from GLM-RM and FDA for 2-way interaction effect 
between direction and duration  

GLM-RM 2-Way Interaction Effect 
(direction x duration) Test statistic p-value 

Design A (Future health state level = 0.70) F = 62.04 <0.001 
Design B (Future health state level = 0.55) F = 3.04 0.085 
Design C (Future health state level = 0.40) F = 1.58 0.212 
*The grey highlight indicates significant effect at alpha = 0.05 
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Figure 4.12: Interaction plots represent 2-way interaction effect between direction and 
duration on CPS for Design A (future health state level = 0.70) 

 

 

From Figure 4.12A, it can be seen that, when future health state is at level 0.70, a 

change in CPS when direction of change from current health state to future health state is 

varied from decreasing to increasing and when current health state has 1-year duration, is 

significantly different from the corresponding change when current health state has 10-

year duration. When current health state has 1-year duration, CPS for a future health state 

that is decreased from current health state is significantly lower than CPS for an increased 

future health state, by an average of 0.103. On the other hand, when current health state 
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has 10-year duration, CPS for a decreased future health state tends to be higher by an 

average of 0.022 score, not significantly, than CPS for an increased future health state.  

 As seen in Figure 4.12B, a change in CPS, when current health state duration is 

varied from 1 year to 10 years for decreased future health state, is significantly different 

from the change when future health state is increased from current health state. When a 

future health state is decreased from the current health state, CPS for future health state 

when current health state has a 1-year duration is significantly smaller than CPS for 

future health state when current health state has a 10-year duration by an average of 0.124 

score. However, when future health state is increased from current health state, means of 

CPS for future health state when current health state has a 1-year duration and when 

current health state has a 10-year duration are approximately equal (0.645 and 0.644, 

respectively). 

 Based on the results of the significant 3-way interaction between duration, 

direction, and amplitude, the 2-way interaction between duration and direction described 

previously (in terms of tendency of changes in CPS when different levels of duration and 

direction are varied) is present only when the amplitude of change from current health 

state to future health state is large.  
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Hypothesis 4: There is no significant interaction effect between amplitude and 

duration on the conditional preference score of the future health state. 

Table 4.19 shows the summary of the mean CPS for each combination of levels 

between amplitude and duration. Furthermore, Table 4.20 summarizes the results from 

GLM-RM for testing the interaction effect between amplitude and duration. The results 

show that the 2-way interaction effect between amplitude and duration is significant only 

in Design A with p-value less than 0.001. Figure 4.13 depicts interaction plots between 

amplitude and duration for Design A. 

 
 
Table 4.19: Mean of CPS for each combination of amplitude and duration for each design 

Duration Amplitude Mean 
(Design A)

Mean  
(Design B)

Mean  
(Design C) 

Small  0.659 0.535 0.403 1 Year 
Large 0.528 0.512 0.423 
Small  0.657 0.536 0.411 10 Years 
Large 0.653 0.528 0.457 

 
 
 
 
Table 4.20: Summary of the results from GLM-RM for 2-way interaction effect between 

amplitude and duration  
GLM-RM 2-Way Interaction Effect 

(amplitude x duration) Test statistic p-value 
Design A (Future health state level = 0.70) F = 75.38 <0.001 
Design B (Future health state level = 0.55) F = 1.23 0.271 
Design C (Future health state level = 0.40) F = 2.72 0.102 
*The grey highlight indicates significant effect at alpha = 0.05 
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Figure 4.13: Interaction plots represent 2-way interaction effect between amplitude and 

duration on CPS for Design A (future health state level = 0.70) 
 

 

As seen in Figure 4.13A, when future health state is at level 0.70, a change in CPS 

when the amplitude of change from current health state to future health state is varied 

from small to large and when current health state has a 1-year duration, is significantly 

different from the change when current health state has a 10-year duration. When current 

health state has a 1-year duration, varying amplitude of change from small to large 

significantly decreases CPS by an average score of 0.131. However, when current health 

state has a 10-year duration, mean of CPS for a future health state that has large 

amplitude of change from current health state and mean of CPS for a future health state 

that has small amplitude of change from current health state are approximately equal 

(0.657 and 0.653, respectively). 

 As shown in Figure 4.13B, a change in CPS when current health state duration is 

varied from 1 year to 10 years for future health state that has small amplitude of change is 

significantly different from the change when future health state has large amplitude of 

change. When future health state corresponds to a small amplitude change from current 
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health state, the mean CPS for future health state when current health state has a 1-year 

duration is approximately equal to the mean CPS for future health state when current 

health state has a 10-year duration (0.659 and 0.657, respectively). Nonetheless, when 

future health state corresponds to a large amplitude change from current health state, CPS 

for future health state when current health state has a 1-year duration is significantly 

lower, by an average of 0.125, than CPS for future health state when current health state 

has 10-year duration. 

 Based on the result of the significant 3-way interaction between duration, 

direction, and amplitude, the 2-way interaction between duration and amplitude described 

above (in terms of tendency of changes in CPS when different levels of duration and 

amplitude are varied) is present only when future health state is decreased from current 

health state. 

 

Hypothesis 5: A main effect of duration will result in the interdependence between 

the future health state and the current health state. The effect will be less significant 

on preference when the current health state has shorter duration.  

 This hypothesis states that current health state will have a stronger effect on future 

health state when current health state has longer duration than when it has shorter 

duration. One way to investigate this hypothesis is to look at the effects of other factors 

of current health state (direction and amplitude) on different levels of duration and 

analyze how each factor affects the conditional preference score. In this analysis, GLM-

RM was performed for each design for each duration. Direction and amplitude are 
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independent variables with conditional preference score as a dependent variable. Table 

4.21 shows the results from GLM-RM.    

 

Table 4.21: Results from GLM-RM by duration for each Design 
1-Year Duration 10-Year Duration 

Design Factors 
Statistic p-value Statistic p-value

Direction F = 37.41 <0.001 F = 2.09 0.152 
Amplitude F = 111.18 <0.001 F = 0.11 0.737 

Design A 
 (Future health 

state level = 0.70) DirectionxAmplitude F = 101.23 <0.001 F = 0.08 0.775 
Direction F = 5.71 0.019 F = 0.37 0.547 

Amplitude F = 4.07 0.047 F = 046 0.499 
Design B  

(Future health state 
level = 0.55) DirectionxAmplitude F = 6.69 0.011 F = 0.89 0.347 

Direction F = 0.35 0.554 F = 4.83 0.030 
Amplitude F = 2.98 0.088 F = 16.00 <0.001 

Design C  
(Future health state 

level = 0.40) DirectionxAmplitude F = 5.25 0.024 F = 7.61 0.007 
*The grey highlight indicates significant effect at alpha = 0.05 

 

 

Table 4.21 shows that direction, amplitude, and their interaction have all 

significant effects for scenarios with a 1-year current health state duration but not for 

those with a 10-year current health state duration for both Design A and B (p-values from 

less than 0.001 to 0.047). On the other hand, for Design C, all effects are significant for 

scenarios with the 10-year current health state duration (p-values from less than 0.001 to 

0.030). However, for Design C, for scenarios with 1-year current health state duration, 

only the interaction effect is significant (p-value = 0.024). 

The results thus lead to rejecting hypothesis#5 for Design A and B since they 

shows that effects of two different characteristics of the current health state (direction and 

amplitude) are more significant when the current health state duration is shorter. 
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However, the results for Design C are consistent with hypothesis#5 in that the effects are 

more significant when the current health state duration is longer.  

An alternative approach for exploring and testing this hypothesis is to look at the 

deviation of the conditional preference score from the actual future health state level 

(unconditional preference score) for each current health state duration. For each subject, 

absolute values of the difference between the unconditional preference score of the future 

health state (e.g. at level 0.70, 0.55, or 0.40) and the conditional preference score for that 

future health state were calculated. Those values for scenarios that have a 1-year current 

health state duration were then compared to those that have 10-year current health state 

duration. Since the normality tests showed that the data is not normality distributed, non-

parametric test (Wilcoxon signed ranks) was used for the statistical comparison. 

Descriptive statistics and test results are shown in Table 4.22. 

  

Table 4.22: Descriptive statistics of deviation between the unconditional preference 
scores and the unconditional preference scores for each future health state level in each 

design and the results from Wilcoxon-Signed Ranks tests 

Design 
Current 

Health State 
Duration 

Min Max Mean S.D. Median Wilcoxon Signed 
Ranks Tests 

1 year 0.000 0.679 0.150 0.133 0.110 
A 

10 years 0.000 0.475 0.121 0.093 0.097 
Z = -3.173 

p-value = 0.002 
1 year 0.000 0.424 0.105 0.087 0.084 

B 10 years 0.000 0.418 0.108 0.088 0.094 
Z = -0.438 

p-value = 0.661 
1 year 0.001 0.593 0.127 0.107 0.102 

C 
10 years 0.001 0.652 0.136 0.121 0.109 

Z = -1.298 
p-value = 0.194 

*The grey highlight indicates significant effect at alpha = 0.05 
 

 

 Table 4.22 shows that only Design A leads to a significant result in comparing the 

deviation between when the scenarios has 1-year current health state duration and when 

 136



they have 10-year current health state duration. It shows that when current health state 

has a 1-year duration, the deviation from the actual future health state unconditional score 

is significantly higher than when current health state has a 10-year duration, indicating 

that current health state has a significantly larger effect on conditional preference score 

for future health state when the subjects have been experiencing current health state in 

shorter duration. This finding leads to rejecting hypothesis #5 for Design A. For Design B 

and C, the results are not significant.   

 

Analysis of Main Effects 

Besides testing the hypotheses, main effects of the factors were also further 

analyzed. Table 4.23 shows the summary of mean CPS for each level of duration. Table 

4.24 summarizes the results from GLM-RM for testing the main effect of duration. The 

results show that the main effect of duration is significant in Design A (p-value < 0.001) 

and Design C (p-value = 0.013). Figure 4.14 and Figure 4.15 depict plots of duration for 

Design A and C, respectively.  

 
 

Table 4.23: Mean of CPS for each level of duration for each design 

Duration Mean 
(Design A)

Mean  
(Design B)

Mean  
(Design C) 

1 Year 0.593 0.523 0.413 
10 Years 0.655 0.532 0.434 
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Table 4.24: Summary of the results from GLM-RM for main effect of duration 
GLM-RM 

Duration Main Effect 
Test statistic p-value 

Design A (Future health state level = 0.70) F = 47.24 <0.001 
Design B (Future health state level = 0.55) F = 1.34 0.250 
Design C (Future health state level = 0.40) F = 6.42 0.013 
*The grey highlight indicates significant effect at alpha = 0.05 
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Figure 4.14: A plot represents main effect of duration on CPS for Design A (future health 
state level = 0.70) 

 

 

 From Figure 4.14, it can be seen that for future health state at level 0.70, CPS for 

future health state when current health state has a 1-year duration is significantly lower 

than CPS for future health state when current health state has a 10-year duration; with an 

average of 0.062 score of difference. However, duration effect also interacts with 

direction and amplitude. Thus, interpretation by considering an effect of duration solely is 

not appropriate. 
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Figure 4.15: A plot represents main effect of duration on CPS for Design C (future health 

state level = 0.40) 
 

  

From Figure 4.15, for future health state at level 0.40, CPS for future health state 

when current health state has a 1-year duration is significantly lower than CPS for future 

health state when current health state has a 10-year duration; with an average of 0.021 

score of difference. However, duration effect also interacts with direction and amplitude. 

Thus, interpretation by considering an effect of duration solely is not appropriate. 

 Main effects of direction and amplitude were also analyzed, although it has been 

hypothesized that direction and amplitude interacts with each other and thus the main 

effects can be ignored. Table 4.25 shows the summary of mean CPS for each level of 

direction. Table 4.26 summarizes the results from GLM-RM for testing the main effect of 

direction. The results show that the main effect of direction is significant only in Design 

A with p-value of 0.005. Figure 4.16 illustrates a plot of direction for Design A.  
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Table 4.25: Mean of CPS for each level of direction for each design 

Direction Mean 
(Design A)

Mean  
(Design B)

Mean  
(Design C) 

Decrease 0.604 0.538 0.413 
Increase 0.644 0.517 0.434 

 

 
 

Table 4.26: Summary of the results from GLM-RM for main effect of direction  
GLM-RM 

Direction Main Effect 
Test statistic p-value 

Design A (Future health state level = 0.70) F = 8.11 0.005 
Design B (Future health state level = 0.55) F = 2.87 0.094 
Design C (Future health state level = 0.40) F = 2.65 0.107 
*The grey highlight indicates significant effect at alpha = 0.05 

 

 

DURATION

10 Years1 Year

M
ea

ns
 o

f C
PS

.70

.60

.50

.40

.30

AMPLITUDE

LargeSmall

M
ea

ns
 o

f C
PS

.70

.60

.50

.40

.30

DIRECTION

IncreaseDecrease

M
ea

ns
 o

f C
PS

.70

.60

.50

.40

.30

 

Figure 4.16: A plot represents main effect of direction on CPS for Design A (future 
health state level = 0.70) 
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From Figure 4.16, it can be seen that for future health state at level 0.70, CPS for 

a decreased future health state is significantly lower than CPS for an increased future 

health state; with an average score difference of 0.040. However, direction also interacts 

with duration and amplitude. Thus, interpretation by considering an effect of direction 

solely is not appropriate. 

Regarding the amplitude main effect, Table 4.27 shows the summary of mean 

CPS for each level of amplitude. Table 4.28 summarizes the results from GLM-RM for 

testing a main effect of amplitude. The results show that the main effect of amplitude is 

significant in Design A and C with p-values less than 0.001. Figure 4.17 and Figure 4.18 

depict plots of amplitude for Design A and C, respectively.  

 
 

Table 4.27: Mean of CPS for each level of amplitude for each design 

Amplitude Mean 
(Design A)

Mean  
(Design B)

Mean  
(Design C) 

Small 0.658 0.535 0.407 
Large 0.591 0.520 0.440 

 

 

Table 4.28: Summary of the results from GLM-RM and FDA for main effect of 
amplitude  

GLM-RM 
Amplitude Main Effect 

Test statistic p-value 
Design A (Future health state level = 0.70) F = 58.31 <0.001 
Design B (Future health state level = 0.55) F = 2.96 0.089 
Design C (Future health state level = 0.40) F = 14.48 <0.001 
*The grey highlight indicates significant effect at alpha = 0.05 
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Figure 4.17: A plot represents main effect of amplitude on CPS for Design A (future 
health state level = 0.70) 

 

 

From Figure 4.17, it can be seen that for future health state at level 0.70, CPS for 

a future health state that has small amplitude of change from current health state is 

significantly higher than CPS for a future health state that has large amplitude of change 

from current health state; with an average difference of 0.067. However, amplitude also 

interacts with duration and direction. Thus, interpretation by considering an effect of 

amplitude solely is not appropriate. 
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Figure 4.18: A plot represents main effect of amplitude on CPS for Design C (future 
health state level = 0.40) 

 

 

From Figure 4.18, it can be seen that for future health state at level 0.40, CPS for 

a future health state that has small amplitude of change from current health state is 

significantly lower than CPS for a future health state that has large amplitude of change 

from current health state; with an average difference of 0.033. However, amplitude also 

interacts with duration and direction. Thus, interpretation by considering an effect of 

amplitude solely is not appropriate. 

 

Summary of the Results 

Table 4.29 summarizes the results of the analyses performed for each design to 

test each hypothesis. By looking at each hypothesis one by one, it appears that only 

hypothesis #2 (which indicates a significant 2-way interaction effect for direction and 

amplitude) has been confirmed for all three designs. Hypotheses #1, 3, and 4 are rejected 

by the results for Design A (future health state at 0.70 level). Regarding hypothesis #5, 
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the first approach showed that only the results for Design C support the hypothesis. 

However, another approach showed that the results for all three designs lead to rejecting 

the hypothesis. 

By looking at the results for each design, it is clearly seen that four of the five 

hypotheses are rejected by the results in Design A (future health state at 0.70 level); while 

for Design B (future health state at 0.55 level) and C (future health state at 0.40 level), the 

results generally confirm the hypotheses. Further discussion of those results will be 

provided in Chapter 5. 
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Table 4.29: Hypotheses and summary of the results in Phase 1 
 

Hypotheses Design A Design B Design C Conclusions 

1. There is NO significant 
three-way interaction effect 
between direction, 
amplitude and duration on 
the conditional preference 
score of the future health 
state.  

±  9 9 

The hypothesis is rejected 
only in Design A which is at 
level 0.70 of future health 
state. 

2. There is a significant 
effect of interaction 
between direction and 
amplitude. 

9 9 9 
The hypothesis is confirmed 
by the results from all three 
designs. 

3. There is NO significant 
interaction effect between 
direction and duration on 
the conditional preference 
score of the future health 
state. 

± 9 9 

The hypothesis is rejected 
only in Design A which is at 
level 0.70 of future health 
state. 

4. There is no significant 
interaction effect between 
amplitude and duration on 
the conditional preference 
score of the future health 
state. 

± 9 9 

The hypothesis is rejected 
only in Design A which is at 
level 0.70 of future health 
state. 

± ± 9 
 The hypothesis is rejected 
by the results in Design A 
and B. 

*Hypothesis 5 used two 
approaches  
5. A main effect of duration 
will result in the 
interdependence between 
the future health state and 
the current health state. The 
effect of duration will be 
less significant on 
preference when the current 
health state has shorter 
duration.  

± ± ± 
The hypothesis is rejected by 
the results from all three 
designs. 

 
 

  

 

 145



4.3 Analysis and Results for Phase 2 Experiment 

Phase 2 experiment aims at examining whether the conditional preference scores 

for discrete health state can better predict preferences scores for an entire multistate 

health profile than unconditional health state preference assessments. A total of ten health 

profiles were constructed, each composed of four consecutive health states. Eight of the 

10 health profiles were assembled by varying three factors in a 23 factorial design. Those 

three factors are direction (2 levels: improvement or deterioration over time), duration (2 

levels: 4year total duration versus 40-year or lifetime duration), and rate of change in 

health status over time (2 levels: gradual and steep). Another two health profiles were 

created and display no systematic pattern, one for each duration level. Table 4.30 

summarizes key characteristics of each health profile. The graphical representations of 

the profiles are shown in Figures 3.14 to 3.23 in Chapter 3. As explained in Chapter 3, 

the three assessment techniques, conditional, unconditional, and holistic assessments are 

compared after duration-weighted scores are calculated from scores obtained from each 

assessment technique for each subject for each health profile.  

 

Table 4.30: Summary of characterization of each health profile used in Phase 2 
experiment 

Health Profiles# Duration Slope Direction 
1 4 Years Gradual Decrease 
2 4 Years Gradual Increase 
3 4 Years Steep Decrease 
4 4 Years Steep Increase 
5 4 Years No systematic pattern 
6 Lifetime (40 years) Gradual Decrease 
7 Lifetime (40 years) Gradual Increase 
8 Lifetime (40 years) Steep Decrease 
9 Lifetime (40 years) Steep Increase 

10 Lifetime (40 years) No systematic pattern 
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4.3.2 Data Preparation 

 Data that was used for Phase 2 analysis consisted of the 31 conditional preference 

scores, 6 unconditional preference scores, and 10 holistic preference scores. Conditional 

and unconditional preference scores were linearly normalized using mapping best health 

state (perfect health) and worse health state (death), as indicated previously in the stage 

of unconditional preference assessments, to 1.00 and 0.00, respectively. Eleven cases, 

which contained normalized scores that were higher than 1.00 or lower than 0.00, were 

removed. Subsequently, an outlier analysis was performed using box plot analysis. As a 

result, one response, identified as an extreme outlier, was removed. Box plots and 

descriptive statistics of the subjects whose data were removed for Phase 2 analysis are 

provided in Appendix C. Thus, data that was used in Phase 2 analysis correspond to 87 

subjects.  

  

4.3.3 Data Description 

Background Variables 

 Phase 2 analysis used a total of 87 subjects, 32 (37%) female students and 55 

(63%) male students. Age ranges from 18 to 33 years, with an average of 22.29 years. 

Among the 92 students, 43 (49%) are white, 24 (36%) are Asian or Pacific Islander, 10 

(11%) are Hispanic, and 6 (7%) are black. The majority (79 (91%)) of them major in 

Industrial Engineering and 69 (79%) are undergraduate students. Concerning major 

health issues, 12 (14%) experienced one themselves, 46 (53%) experienced major health 

issues in their families, and 39 (45%) experienced health issues in significant others. 

Regarding the students health status, none of them indicates having poor health at the 
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time of the experiment. A summary of the background variables of the 87 subjects is 

shown in Table 4.31. Figure 4.19 shows the distribution of age, the only continuous 

variable.  

 

Table 4.31: Summary of Background Variables for Phase 2 Analysis 
Variable Counts Percent  Mean S.D. Range 

Gender      
     Female 32 36.78    
     Male 55 63.22    
Ethnic Background           
     White, not of Hispanic origin 43 49.42    
     Black, not of Hispanic origin 6 6.90    
     Hispanic 10 11.49    
     Asian or Pacific Islander 24 27.59    
     Others 4 4.60    
Age (years)   22.29 2.46 18.00 - 33.00 
Major field of study           
     Industrial Engineering 79 90.80    
     Other – non-engineering 6 6.90    
     Other – Engineering 2 2.30       
Degree of study      
     B.S. 69 79.31    
     M.S. 7 8.05    
     Ph.D. 10 11.49    
     Other 1 1.15    
Health problem in yourself      
     Yes, major issue(s) 12 13.79    
     Yes, minor issue(s) 40 45.98    
     No 35 40.23    
Health problem in your family      
     Yes, major issue(s) 46 52.87    
     Yes, minor issue(s) 28 32.18    
     No 13 14.95    
Health problem in someone else close 
to you           
     Yes, major issue(s) 39 44.83    
     Yes, minor issue(s) 23 26.44    
     No 36 28.73       
General health condition      
     Excellent 25 28.74    
     Very good 47 54.02    
     Good 14 16.09    
     Fair 1 1.15    
     Poor 0 0.00    
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Figure 4.19: Age distribution of subjects in Phase 2 analysis 
 
 

Holistic Preference Score 

 For each subject, a holistic preference score was obtained for each health profile 

by asking a subject to rate each health profile on a visual analog scale (VAS). Thus, each 

subject generated 10 holistic preference scores for a total of 10 health profiles. Table 4.32 

shows descriptive statistics of holistic preference scores for each health profile obtained 

from 87 subjects. Notice that for the 4-year health profiles (profiles#1 to 5), increasing 

profiles have higher average scores than decreasing profiles. Health profile #2, which has 

a gradually increasing pattern, has an average score of 0.778 as opposed to 0.591 for 

health profile #1, which has a gradually decreasing pattern. Additionally, health profile 

#4, which has steeply increasing pattern has an average score of 0.572 as opposed to 

0.206 for health profile #3, which has a steeply decreasing pattern. On the other hand, for 

the lifetime health profiles (profiles #6 to 10), decreasing profiles have higher average 

scores than increasing profiles. Health profile #6, which has a gradually decreasing 
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pattern has an average score of 0.756 as opposed to 0.655 for health profile #7, which has 

a gradually increasing pattern. Additionally, health profile #8, which has a steeply 

decreasing pattern has an average score of 0.466 as opposed to 0.271 for health profile 

#8, which has a steeply increasing pattern. 

 

Table 4.32: Holistic Preference Scores for Each Health Profile 
Holistic Preference Scores N Min Max Mean S.D. 

Health Profile#1 (gradually decrease, 4 yr) 87 0.048 0.901 0.591 0.188 
Health Profile#2 (gradually increase, 4 yr) 87 0.395 1.000 0.778 0.136 
Health Profile#3 (steeply decrease, 4 yr) 87 0.000 0.937 0.206 0.174 
Health Profile#4 (steeply increase, 4 yr) 87 0.053 1.000 0.572 0.249 
Health Profile#5 (no pattern, 4 yr) 87 0.013 0.950 0.421 0.194 
Health Profile#6 (gradually decrease, lifetime) 87 0.286 0.956 0.756 0.157 
Health Profile#7 (gradually increase, lifetime) 87 0.227 0.958 0.655 0.172 
Health Profile#8 (steeply decrease, lifetime) 87 0.017 0.956 0.466 0.238 
Health Profile#9 (steeply increase, lifetime) 87 0.004 0.807 0.271 0.193 
Health Profile#10 (no pattern, lifetime) 87 0.139 0.962 0.481 0.211 
 

 

Duration-Weighted Scores (DWS) 

As mentioned earlier in Chapter 3, final data that are used for the comparisons 

between the three assessment techniques (unconditional, conditional and holistic 

preference assessments) are duration-weighted. An example of duration-weighted scores 

(DWS) calculation for each assessment technique is shown in Chapter 3 (section 3.5.2). 

 Table 4.33 shows descriptive statistics of DWS obtained from 87 subjects from 

unconditional, conditional, and holistic preference assessment techniques for each health 

profile, along with the results from Kolmogorov-Smirnov normality tests. For 4-year 

health profiles (Profiles 1 to 5), means of DWS are ranging from 2.113 to 2.421 for 

unconditional preference assessment, from 1.910 to 2.618 for conditional preference 
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assessment, and from 0.823 to 3.110 for holistic preference assessment. For lifetime 

health profiles (Profiles 6 to 10), means DWS are ranging from 17.866 to 24.214 for 

unconditional preference assessment, from 18.496 to 24.716 for conditional preference 

assessment, and from 10.884 to 30.240 for holistic preference assessment. The results 

from Kolmogorov-Smirnov normality tests show that for unconditional DWS, only the 

score for health profile #10 violates the normality assumption (p-value = 0.028). For 

conditional DWS, only the score for health profile #5 violates the normality assumption 

(p-value = 0.003). For holistic DWS, scores for health profiles #1, 2, 3, 6, and 9 do not 

exhibit normality (p-values from less than 0.001 to 0.003). Thus, for the analyses 

comparing DWS across techniques, non-parametric tests are used for profiles #1, 2, 3, 5, 

6, 9, and 10, while parametric tests are used for profiles #4, 7, and 8. Figure 4.20 to 

Figure 4.29 illustrate the distributions of DWS from unconditional, conditional, and 

holistic preference assessment techniques for each health profile.  

 

Table 4.33: DWS for each health profile for each assessment technique 
Test of Normality 

(Kolmogorov-Smirnov) Assessment 
Technique N Min Max Mean S.D. 

Statistics p-value 
Health Profile#1 

Conditional 87 1.799 3.010 2.465 0.227 0.063 0.200 
Unconditional 87 2.237 2.635 2.421 0.085 0.086 0.159 
Holistic 87 0.193 3.605 2.364 0.750 0.110 0.011 

Health Profile#2 
Conditional 87 1.882 2.950 2.338 0.219 0.052 0.200 
Unconditional 87 2.237 2.635 2.421 0.085 0.086 0.159 
Holistic 87 1.580 4.000 3.110 0.543 0.160 0.000 

Health Profile#3 
Conditional 87 1.275 2.737 1.910 0.301 0.090 0.081 
Unconditional 87 1.938 2.333 2.113 0.086 0.076 0.200 
Holistic 87 0.000 3.748 0.823 0.696 0.182 0.000 
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Table 4.33 (continued): DWS for each health profile for each assessment technique 
Test of Normality 

(Kolmogorov-Smirnov) Assessment 
Technique N Min Max Mean S.D. 

Statistics p-value 
Health Profile#4 

Conditional 87 1.470 2.884 2.143 0.264 0.081 0.200 
Unconditional 87 1.938 2.333 2.113 0.086 0.076 0.200 
Holistic 87 0.210 4.000 2.286 0.995 0.092 0.064 

Health Profile#5 
Conditional 87 1.944 3.131 2.618 0.224 0.121 0.003 
Unconditional 87 2.060 2.482 2.263 0.093 0.094 0.055 
Holistic 87 0.050 3.798 1.683 0.775 0.061 0.200 

Health Profile#6 
Conditional 87 18.631 30.770 24.716 2.120 0.064 0.200 
Unconditional 87 22.371 26.354 24.214 0.855 0.086 0.159 
Holistic 87 11.428 38.236 30.240 6.273 0.150 0.000 

Health Profile#7 
Conditional 87 17.428 30.630 23.537 2.438 0.063 0.200 
Unconditional 87 22.371 26.354 24.214 0.855 0.086 0.159 
Holistic 87 9.076 38.320 26.214 6.875 0.071 0.200 

Health Profile#8 
Conditional 87 13.487 27.135 21.738 2.404 0.061 0.200 
Unconditional 87 19.381 23.333 21.127 0.859 0.076 0.200 
Holistic 87 0.672 38.236 18.643 9.509 0.073 0.200 

Health Profile#9 
Conditional 87 15.578 29.287 22.051 2.576 0.056 0.200 
Unconditional 87 19.381 23.333 21.127 0.859 0.076 0.200 
Holistic 87 0.168 32.268 10.844 7.708 0.122 0.003 

Health Profile#10 
Conditional 87 12.416 28.109 18.496 2.476 0.065 0.200 
Unconditional 87 15.773 20.444 17.866 1.087 0.101 0.028 
Holistic 87 5.548 38.488 19.226 8.446 0.076 0.200 
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Figure 4.20: Distribution of DWS for health profile#1 
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Figure 4.21: Distribution of DWS for health profile#2 
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Figure 4.22: Distribution of DWS for health profile#3 
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Figure 4.23: Distribution of DWS for health profile#4 
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Figure 4.24: Distribution of DWS for health profile#5 
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Figure 4.25: Distribution of DWS for health profile#6 
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Figure 4.26: Distribution of DWS for health profile#7 
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Figure 4.27: Distribution of DWS for health profile#8 
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Figure 4.28: Distribution of DWS for health profile#9 
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Figure 4.29: Distribution of DWS for health profile#10 
 

 
 
4.3.4 Data Analysis 

Data analysis mainly involved comparisons of duration-weighted scores across 

conditional, unconditional, and holistic preference assessment. However, normality tests 

revealed that normality assumption was not met in some health profiles. Thus, both non-

parametric and parametric analyses had been used in this stage. Nonparametric analysis 

used Friedman tests with Wilcoxon Signed Rank tests for post-hoc tests, whereas 

parametric analysis employed GLM-RM with Bonferroni adjustment for post-hoc tests.  

 

Hypothesis 6: The proposed decomposition method in which several conditional 

preference score assessments are executed and integrated to produce a preference 

score for the entire health profile will predict the preference of the entire health 

profile better than the decomposition technique that uses unconditional preference 

score assessments. 

Figure 4.30 and Figure 4.31 depict mean duration-weighted scores across subjects 

for each preference assessment technique for 4-year health profiles (profiles #1 to 5) and 

for lifetime health profiles (profiles #6 to 10), respectively. Both figures show that DWS-
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conditional and DWS-unconditional are similar to each other; however, they both are 

quite different from DWS-holistic especially in some health profiles (profiles #2, 3, 6 and 

9).  
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Figure 4.30: Graphs illustrate means of DWS from each assessment technique for health 
profiles 1 to 5 
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Figure 4.31: Graphs illustrate means of DWS from each assessment technique for health 
profiles 6 to 10 

 

 

Exploring relationship between DWS from each technique (Correlation Analysis) 

Pearson correlation (parametric) and Spearman’s Rho (non-parametric) were 

calculated in order to explore linear relationships between DWS-conditional and DWS-

holistic, and between DWS-unconditional and DWS-holistic, for each health profile. 

Table 4.34 shows the coefficients for both Pearson correlation and Spearman’s Rho. The 

results show that in 5 of the 10 health profiles, profiles #1, 2, 5, 6, and 7, DWS-

conditional has higher correlation coefficient with DWS-holistic than DWS-

unconditional, indicating that DWS-conditional has stronger association with DWS-

holistic for those profiles.  
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Table 4.34: Pearson correlation and Spearman’s Rho coefficients between DWS-
conditional and DWS-holistic, and between DWS-unconditional and DWS-holistic  

 Pearson Correlation Spearman's Rho 

 
Conditional vs 

Holistic  
Unconditional 

vs Holistic  
Conditional vs 

Holistic  
Unconditional 

vs Holistic  
Profile#1 0.134 0.053 0.195 0.103 
Profile#2 0.114 0.032 0.104 0.031 
Profile#3 0.355 0.332 0.257 0.283 
Profile#4 -0.106 0.141 -0.098 0.122 
Profile#5 0.242 0.031 0.247 0.094 
Profile#6 0.104 0.042 0.105 0.074 
Profile#7 0.13 0.027 0.156 0.08 
Profile#8 0.108 0.202 0.117 0.216 
Profile#9 -0.13 0.264 -0.144 0.27 
Profile#10 0.005 0.085 -0.032 0.106 
*The grey highlight indicates profiles that have higher coefficients in DWS-
conditional than in DWS-unconditional 

  

 

Comparison of DWSs Across the Three Assessment Techniques 

 Friedman tests (non-parametric) and GLM-RM (parametric) to test significant 

differences of DWS across assessment techniques were performed. Results from 

Friedman tests and GLM-RM are shown in Table 4.35. Note that for all health profiles 

but profiles 4, 7, and 8, normality assumption for parametric test was not met. Thus, 

results for those health profiles should refer to the results from non-parametric tests. 

From Table 4.35, it can be seen that there is no significant difference in DWS among the 

three assessment techniques for health profiles 1, 4, and 10. For health profiles 2, 6, and 

7, DWS-holistic is found to be significantly higher than DWS-conditional and DWS-

unconditional. The opposite finding is found for health profiles 3, 5, 8, and 9, in which 

DWS-holistic is found to be significantly lower than DWS-conditional and DWS-

unconditional. Regarding the comparison between DWS-conditional and DWS-
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unconditional, profiles 2, 3, and 7 have significantly higher DWS-unconditional than 

DWS-conditional, while for profiles 5, 6, and 9, DWS-unconditional is significantly 

lower than DWS-conditional. Figure 4.32 and Figure 4.33 present bar graphs for mean 

DWS for each assessment technique by each profile along with the test results.  

 

Table 4.35: Results from Friedman Tests and GLM-RM for testing significant difference 
of DWS among the three techniques by each health profile (H = DWS-holistic, UC = 

DWS-unconditional, and C = DWS-conditional) 
Friedman Tests (Non-parametric) GLM-RM (Parametric) 

Health 
Profiles 

Test 
Statistic 

(χ2) 
p-value 

Post Hoc Tests (by 
Wilcoxon Signed 

Rank Tests) 

Test 
Statistic 

(F) 
p-value 

Post Hoc Tests 
(by Bonferroni 
adjustments) 

Profile 1 0.161 0.923   1.14 0.296   
H > UC H > UC 
H > C H > C Profile 2 80.276 <0.001 

UC > C 
143.483 <0.001 

UC > C 
H < UC H < UC 
H < C H < C Profile 3 113.954 <0.001 

UC > C 
261.031 <0.001 

UC > C 
Profile 4 1.103 0.576   2.078 0.151   

H < UC H < UC 
H < C H < C Profile 5 108.621 <0.001 

UC < C 
95.58 <0.001 

UC < C 
H > UC H > UC 
H > C H > C Profile 6 57.379 <0.001 

UC < C 
68.605 <0.001 

  
H > UC H > UC 
H > C H > C Profile 7 11.793 0.003 

UC > C 
9.906 0.001 

UC > C 
H < UC H < UC 
H < C H < C Profile 8 8.759 0.013 

UC < C 
7.578 0.006 

  
H < UC H < UC 
H < C H < C Profile 9 79.966 <0.001 

UC < C 
149.143 <0.001 

UC < C 
Profile 10 1.402 0.496   1.559 0.217   
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Figure 4.32: Means of DWS across the assessment techniques for each health profile 
(Profiles 1 to 5) 
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Figure 4.33: Means of DWS across the assessment techniques for each health profile 
(Profiles 6 to 10)  

 

 

Comparison of order of preference between health profiles captured by each 

assessment technique 

 The results from GLM-RM, Friedman tests, and correlation analysis do not show 

a great promise that conditional preference assessment predicts holistic preference scores 

for health profiles better than unconditional preference assessment. However, another 

approach, which looks at the pattern of the preferences across the health profiles and then 

compares the significant pattern between each assessment technique was pursued. Since 9 

of the 10 DWS for conditional and unconditional assessments are normally distributed, 

significant differences of DWS across health profiles are identified by running GLM-RM, 

which also generates pairwise comparisons across health profiles by using a Bonferroni 

 162



adjustment. However, only DWS-holistic from 5 health profiles are normally distributed. 

Thus, non-parametric analysis (Wilcoxon Signed Rank test) is also used for pairwise 

comparisons of DWS-holistic across health profiles. Table 4.36 and Table 4.37 

summarize pairwise comparisons along with absolute mean difference of DWS across 

health profiles #1 to 5 and health profiles #6 to 10, respectively. Figure 4.34 and Figure 

4.35 present bar graphs for mean DWS across health profiles for each assessment 

technique along with the test results for profiles #1 to 5, and profiles #6 to 10, 

respectively. The following section interprets and explains the results for each assessment 

technique.  

  

Table 4.36: Pairwise comparison and absolute mean difference of DWS between health 
profiles (Profiles#1 to 5) 

   Pairwise Comparison Between Health Profiles 
   1 vs 3 1 vs 4 1 vs 5 2 vs 3 2 vs 4 2 vs 5 3 vs 4 3 vs 5 4 vs 5

Std. Error 0.032 0.030 0.035 0.042 0.029 0.032 0.042 0.034 0.038
p-value 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Significance 1 > 2 1 > 3 1 > 4 1 < 5 2 > 3 2 > 4 2 < 5 3 < 4 3 < 5 

C
on

di
tio

na
l 

Absolute 
mean 

difference 
0.127 0.555 0.322 0.153 0.429 0.196 0.280 0.233 0.708 0.475

0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.004 0.004
p-value . <0.001 <0.001 <0.001 <0.001 <0.001 . <0.001 <0.001

Significance 1 = 2 1 > 3 1 > 4 1 > 5 2 > 3 

U
nc

on
di

tio
na

l 

1 vs 2 
0.032

<0.001 
4 < 5 

Std. Error 
<0.001

2 > 4 2 > 5 3 =4 3 < 5 4 < 5 

Absolute 
mean 

difference 
0.000 0.309 0.309 0.309 0.309 0.159 0.000 0.150 0.150

Z -6.133 -8.050 -0.571 -6.160 -5.993 -7.688 -7.140 -6.742 -3.591
p-value <0.001 <0.001 0.568 <0.001 <0.001 <0.001 <0.001 <0.001 0.002

1 < 2 1 > 3   1 > 5 2 > 3 2 > 4 3 < 4 3 < 5 4 > 5 

H
ol

is
tic

 

Absolute 
mean 

difference 

0.159

-8.008
<0.001

Significance 2 > 5 

0.746 1.541 0.078 0.681 2.287 0.824 1.427 1.463 0.860 0.603
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Figure 4.34: Means of DWS and the significant results across health profiles (Profiles #1 
to 5) for each assessment technique 

 

 

 

 

 164



Table 4.37: Pairwise comparison and absolute mean difference of DWS between health 
profiles (Profiles#6 to 10) 

  Pairwise Comparison Between Health Profiles 
  6 vs 7 6 vs 8 6 vs 9 6 vs 10 7 vs 8 7 vs 9 7 vs 10 8 vs 9 8 vs 10 9 vs 10

Std. Error 0.325 0.239 0.327 0.318 0.358 0.271 0.281 0.396 0.345 0.241
p-value 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1.000 <0.001 <0.001

Significance 6 > 7 6 > 8 6 > 9 6 > 10 7 > 8 7 > 9 7 > 10   8 > 10 9 > 10

C
on

di
tio

na
l 

Absolute 
mean 

difference 
1.179 2.978 2.665 6.220 1.799 1.486 5.041 0.313 3.242 3.555

Std. Error 0.000 0.049 0.049 0.052 0.049 0.049 0.052 0.000 0.052 0.052
p-value . <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 . <0.001 <0.001

Significance 6 = 7 6 > 8 6 > 9 6 > 10 7 > 8 7 > 9 7 > 10 8 = 9 8 > 10 9 > 10

U
nc

on
di

tio
na

l 

Absolute 
mean 

difference 
0.000 3.087 3.087 6.348 3.087 3.087 6.348 0.000 3.261 3.261

Z -3.875 -6.947 -7.974 -6.784 -4.573 -8.058 -5.635 -5.769 -0.552 -6.004
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.581

Significance 6 > 7 6 > 8 6 > 9 6 > 10 7 > 8 7 > 9 7 > 10 8 > 9   9 > 10

H
ol

is
tic

 

Absolute 
mean 

difference 
4.026 11.597 19.396 11.014 7.571 15.370 6.988 7.799 0.583 8.383

<0.001
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Figure 4.35: Means of DWS and the significant results across health profiles (Profiles#6 
to 10) for each assessment technique 

 

 

Conditional Preference Assessment Technique 

 For 4-year health profiles (profiles #1 to 5), Table 4.36 and Figure 4.34 

demonstrate that DWS for health profile #1 is significantly higher than DWS for 

health profiles #2, 3, and 4 by 0.127, 0.555, and 0.322, respectively. DWS for 

health profile #2 is significantly higher than DWS for health profiles #3 and 4 by 

0.429 and 0.196. Health profile #5 has significantly larger DWS than health 

profiles #1, 2, 3 and 4 with mean differences of 0.153, 0.280, 0.708, and 0.475, 
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correspondingly. Furthermore, DWS for health profile #4 is significantly larger 

than DWS for health profile #3 by 0.233.  

 Regarding lifetime health profiles (profiles #6 to 10), Table 4.37 and 

Figure 4.35 show that DWS for health profile #6 is significantly higher than DWS 

for health profiles #7, 8, 9, and 10 by 1.179, 2.978, 2.665, and 6.220, respectively. 

DWS for health profile #7 is significantly larger than DWS for health profiles #8, 

9, and 10 by 1.799, 1.486, and 5.041, respectively. Additionally, DWS for health 

profile #10 is significantly smaller than DWS for health profiles #8 and 9 by 

3.242 and 3.555, correspondingly.  

Unconditional Preference Assessment Technique 

 For 4-year health profiles (profiles #1 to 5), Table 4.36 and Figure 4.34 

show that DWS for health profile #1 is equal to DWS for health profile#2 which 

is significantly higher than DWS for health profiles #3, 4, and 5 by 0.309, 0.309, 

and 0.159, respectively. Furthermore, DWS for health profile #3 is equal to DWS 

for health profile #4, which is significantly less than DWS for health profile #5 by 

0.150. 

 Regarding lifetime health profiles (profiles #6 to 10), Table 4.37 and 

Figure 4.35 show that DWS for health profile #6 is equal to DWS for health 

profile #7 which is significantly higher than DWS for health profiles #8, 9, and 10 

by 3.087, 3.087, and 6.348, respectively. Additionally, DWS for health profile #8 

is equal to DWS for health profile #9, which is significantly larger than DWS for 

health profile #10 by 3.261.  
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 By design, the similarity of DWS for health profiles #1 and 2, health 

profiles #3 and 4, health profiles #6 and 7, and health profiles #8 and 9 

corresponds to the fact that each pair consists of exactly the same four health 

states but in different patterns. With the unconditional preference assessment 

method, those pairs of profiles are assigned the same DWS since the pattern of the 

health profile does not influence the unconditional assessment.  

Holistic Preference Assessment Technique 

 For 4-year health profiles (profiles #1 to 5), Table 4.36 and Figure 4.34 

show that DWS for health profile #2 is significantly higher than DWS for health 

profiles #1, 3, 4 and 5 by 0.746, 2.287, 0.824, and 1.427, respectively. DWS for 

health profile #1 is significantly larger than DWS for health profiles #3 and 5 by 

1.541 and 0.681. Health profile #3 has significantly smaller DWS than health 

profiles #4 and 5 with mean difference of 1.463, and 0.860, correspondingly. 

Furthermore, DWS for health profile #4 is significantly larger than DWS for 

health profile #5 by 0.603.  

 Regarding lifetime health profiles (profiles #6 to 10), Table 4.37 and 

Figure 4.35 show that DWS for health profile #6 is significantly higher than DWS 

for health profiles #7, 8, 9, and 10 by 4.026, 11.597, 19.396, and 11.014, 

respectively. DWS for health profile #7 is significantly larger than DWS for 

health profiles #8, 9, and 10 by 7.571, 15.370, and 6.988, respectively. 

Additionally, DWS for health profile #9 is significantly smaller than DWS for 

health profiles #8 and 10 by 7.799 and 8.383, correspondingly.  
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 From the results described above, it can be seen that there are similarities and 

differences among the three techniques in paired comparisons of profiles. Table 4.38 

summarizes the inconsistent findings across assessment techniques. Conditional 

preference assessment shows a closer similarity to holistic preference assessment than 

unconditional preference assessment in predicting order of preference between health 

profiles #3 and 4, and between health profiles #6 and 7. On the other hand, unconditional 

preference assessment shows a better prediction in predicting order of preference (as 

compared to order of preference predicted by holistic preference assessment) between 

health profiles #1 and 5, and between health profiles #2 and 5. Notice that DWS-

unconditional between health profiles #1 and 2, profiles #3 and 4, profiles #6 and 7, 

profiles #8 and 9, are equal for each pair since the two profiles in each pair contain the 

exact same health states but different in sequences. Unconditional preference assessment 

assumes additive independence and thus the sequence of health states does not affect the 

DWS-unconditional preference score. Violation of the additive independence assumption 

has been shown  (Spencer, 2003; Mackeigan et al., 1999; Kupperman et al., 1997; 

Richardson et al., 1996). Thus, unconditional preference assessment fails to capture order 

of preference between health profiles that consist of the same health states but are 

different in sequences. Further analyses in these health profiles were performed in order 

to explore if the conditional preference assessment can capture  preference between pairs 

of health profiles that the unconditional preference assessment cannot capture.  
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Table 4.38: Summary of the differences in significant trends of preference between 
assessment techniques (NS = Not significant) 

Comparison between 
health profiles# Holistic Conditional Unconditional 

1 and 2 2 > 1 1 > 2 1 = 2 
1 and 4 NS 1 > 4 1 > 4 
1 and 5 1 > 5 1 < 5 1 > 5 
2 and 5 2 > 5 2 < 5 2 > 5 
3 and 4 3 < 4 3 < 4 3 = 4 
4 and 5 4 > 5 4 < 5 4 < 5 
6 and 7 6 > 7 6 > 7 6 =7 
8 and 9  8 > 9 NS 8 = 9 
8 and 10 NS 8 > 10 8 > 10 
9 and 10 9 < 10 9 > 10 9 > 10 

 

  

Analysis of preference between pairs of health profiles (health profiles # 1-2, 3-4, 

6-7, and 8-9) 

Analyses at this stage were performed in order to explore if conditional preference 

assessment can capture the preferences between pairs of health profiles that unconditional 

preference assessment fails to capture. Two approaches were taken: 

Compare the choice predicted from conditional preference score 

assessment with the actual choice from paired comparison 

As described earlier, in Phase 2 experiment, the subjects performed 

paired-comparisons for all possible combinations of the five profiles within each 

group (4-year profiles group and lifetime profiles group) with the aim of 

generating the ranking among the five profiles. In this analysis, for each subject, 

the preferred profiles assessed from conditional preference assessment were 

identified by the higher DWS-conditional between each health profile pairs of 

interest. Then the preferred profiles identified were compared to the preferred 

profiles obtained from the paired comparisons. Table 4.39 shows the number and 
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the percentage of subjects in which the preferred profiles from conditional 

preference assessment match those from the paired comparisons. 

 

Table 4.39: Numbers and percentage of subjects in which the preferred profiles from 
conditional preference assessment match those from the paired comparisons 

Comparison between 
health profiles# 

Number of matched cases 
(Total N = 87) Percentage of matched cases 

1 and 2 31 36% 
3 and 4 61 70% 
6 and 7 49 56% 
8 and 9  38 44% 
 

 

From Table 4.39, the highest percentage of matched cases occurs at the 

comparison between health profiles #3 (steeply decreasing 4-year profile) and 4 

(steeply increasing 4-year profile). For 70% of the 87 subjects, the preferred 

profile between health profiles #3 and 4 assessed by conditional preference 

assessment is consistent with the preferred profile selected by the subjects as a 

result of a paired comparison. On the other hand, 56% of matched cases are found 

for comparison between health profiles #6 (gradually decreasing lifetime profile) 

and 7 (gradually increasing lifetime profile), 44% for comparison between health 

profiles #8 (steeply decreasing lifetime profile) and 9 (steeply increasing lifetime 

profile), and 36% for comparison between health profiles #1 (gradually 

decreasing 4-year profile) and 2 (gradually increasing 4-year profile).  

Compare the choice predicted from conditional preference score 

assessment with the choice predicted from holistic preference scores 

For each subject, the preferred profiles assessed from conditional 

preference assessment were identified by the higher DWS-conditional between 
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each health profile pairs of interest. Moreover, the preferred profiles assessed 

from holistic preference assessment were identified by the higher DWS-holistic 

between each pair of health profile. Then the preferred profiles identified from 

conditional preference assessment were compared to those identified from holistic 

preference assessment. Table 4.40 shows the number of subjects and the 

percentage in which the preferred profiles from conditional preference assessment 

match those from the holistic preference assessment. 

 

Table 4.40: Numbers and percentage of subjects in which the preferred profiles from 
conditional preference assessment match those from holistic preference assessment 
Comparison between 

health profiles# 
Number of matched cases 

(Total N = 87) Percentage of matched cases 

1 and 2 39 45% 
3 and 4 62 71% 
6 and 7 44 51% 
8 and 9  36 41% 

 

 

From Table 4.40, the highest percentage of matched cases occurs at the 

comparison between health profiles #3 (steeply decreasing 4-year profile) and 4 

(steeply increasing 4-year profile). For 71% of the 87 subjects, the preferred 

profile between health profiles #3 and 4 assessed by conditional preference 

assessment is consistent with a preferred profile assessed by holistic preference 

assessment. On the other hand, the number drops to 51% of matched cases for 

comparison between health profiles #6 (gradually decreasing lifetime profile) and 

7 (gradually increasing lifetime profile), 45% for comparison between health 

profiles #1 (gradually decreasing 4-year profile) and 2 (gradually increasing 4-
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year profile), and 41% for comparison between health profiles #8 (steeply 

decreasing lifetime profile) and 9 (steeply increasing lifetime profile). 

  

Compare the significant effects of the three factors (duration, slope, direction) 

across techniques 

 As described earlier, 8 of the 10 health profiles in Phase 2 experiment were 

constructed by varying three factors in a 23 factorial design. Those three factors are 

direction (2 levels: improvement or deterioration over time), duration (2 levels: 4 years 

and lifetime), and rate of change in health status over time (2 levels: gradual and steep). 

Another two health profiles have no systematic pattern, one for each duration level. Thus, 

it is worthy to investigate the effects of the three factors that are captured by each 

assessment technique. Analyses in this step were carried out by GLM-RM by treating 

duration, slope, and direction as independent variables with DWS for each assessment 

technique as a dependent variable. The results are shown in Table 4.41.  

 

Table 4.41: Results from GLM-RM for testing effects of duration, slope, direction, and 
their interactions on DWS from each assessment technique 

Conditional Unconditional Holistic 
Factors 

F-Statistic p-value F-Statistic p-value F-Statistic p-value
Duration 18482.53 <0.001 65658.24 <0.001 2206.096 <0.001

Slope 237.017 <0.001 3894.01 <0.001 251.957 <0.001
Direction 1.383 0.243   25.396 <0.001

Duration x Slope <0.001 3894.01 <0.001 214.898 <0.001
Duration x Direction 2.897 0.092   54.504 <0.001

Slope x Direction 19.963 <0.001   7.283 0.008 
Duration x Slope x Direction 8.726 0.004   15.942 <0.001

145.628 

*The grey highlight indicates significant effect at alpha = 0.05 
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 The results from Table 4.41 show that, as expected, all the main and interaction 

effects of duration, slope, and direction are significant for DWS-holistic, with p-values up 

to 0.008. For DWS-conditional, all effects but the direction main effect and the 2-way 

interaction effect between duration and direction are significant, with p-values ranged 

from less than 0.001 to 0.004. However, at alpha = 0.10, the 2-way interaction effect 

between duration and direction will be significant (p-value = 0.092). For DWS-

unconditional, direction or any interaction effect of direction with other factors are not 

applicable since direction or sequence of health states has no effect on DWS-

unconditional due to the additive independence assumption. Duration, slope, and their 

interaction are significant with p-values less than 0.001. This also provides some support 

to the fact that the DWS-conditional method performs better than DWS-unconditional. 

 

Summary of the Results 

In Phase 2 experiment, different analyses were run with the aim of testing whether 

the conditional preference score assessment can better predict the preference for the 

entire health profile than the unconditional preference score assessment. Table 4.42 

summarizes the analyses that have been carried out and their results. 

 

 

 174



Table 4.42 Summary of the results in Phase 2 
Types of Analyses Conclusions 

Correlation analysis 
DWS-conditional is more highly correlated with DWS-holistic than 
DWS-unconditional in 5 of the 10 health profiles. 

Comparison of DWS 
across the three 
assessment techniques 
for each health profile 

There are no significant differences across DWS from the three 
assessment techniques in three of the 10 health profiles. For the 
remaining 7 profiles, both DWS-conditional and DWS-unconditional 
are significantly different from DWS-holistic. The results do not clearly 
demonstrate that conditional preference score assessment can better 
predict holistic preference score than unconditional preference score 
assessment in any health profile.  

Comparison of order 
of preference between 
health profiles 
captured by each 
assessment technique 

Eight of the 20 possible paired comparisons of preference between 
DWS-conditional across health profiles are not consistent with the order 
of preference predicted by DWS-holistic and 7 of the 20 possible 
comparisons of order of preference between DWS-unconditional are not 
consistent with the order of preference from DWS-holistic. The results 
do not clearly demonstrate that conditional preference score assessment 
can better predict holistic preference score than unconditional 
preference score assessment. 

Analysis of preference 
between pairs of health 
profiles (health 
profiles #1-2, 3-4, 6-7, 
and 8-9) 

While unconditional preference score assessment cannot predict the 
preferred choice between these pairs of health profiles due to additive 
independence assumption, conditional preference score assessment can 
predict the preferred choice correctly in approximately 70% of cases. 
The results suggest that conditional preference score assessment 
performs well when unconditional preference assessment fails by 
design due to violation of the additive independence.  

Comparison of the 
significant effects of 
the three factors 
(duration, slope, 
direction) across 
assessment techniques 

Conditional preference score assessment performs better than the 
unconditional preference score assessment in that the significant results 
of the three factors are more similar to the results from the holistic 
preference score assessment. This is due to the fact that the 
unconditional preference score assessment cannot predict the significant 
effect of “direction” because of its additive independence assumption.  
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CHAPTER 5                                                              

CONCLUSION AND DISCUSSION 

5.1 Conclusion and Discussion 

In this study, a conditional preference assessment technique, a new method to 

capture preferences for multistate health profiles was developed and tested. The 

experiments were designed and conducted to investigate its validity. A total of six 

hypotheses were formulated and examined in two phases of the study.  

In the first phase of the study, the potential effect of the relationship between 

current health state and future health state on preference judgments of the future health 

state was explored. Subjects were presented with different hypothetical health scenarios. 

Each scenario was composed of two different health states: a current health state and a 

future health state. Various scenarios were created by varying direction of change 

between health states, amplitude of change, duration of the current health state, and level 

of the future health state. For each scenario, a conditional preference score for future 

health state was elicited using a direct rating through a visual analog scale. Five of the 

total of six hypotheses were investigated in this phase of the study. The hypotheses 

involved the significance of the main effects and interactions of the factors of interest: 

direction of change between health states, amplitude of change, and duration of the 
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current health state. The results were analyzed separately for each level of the future 

health state.  

As shown in Table 4.29, the testing of all hypotheses in Phase 1 resulted in the 

following findings: 

• The three-way interaction effect between direction of change, amplitude 

and current health state duration on the conditional preference score of the 

future health state is significant only in the design with a higher level of 

future health state (Design A), but not in the other two lower levels of 

future health state (Design B and C). 

• The two-way interaction effect between direction and amplitude of change 

from current health state to future health state is significant in all three 

designs. 

• The two-way interaction effect between direction of change and current 

health state duration is significant only in Design A, but not in Design B 

and C. 

• The two-way interaction effect between amplitude of change from current 

health state to future health state and current health state duration is 

significant only in Design A, but not in Design B and C. 

• An effect of current health state duration resulted in different relative 

impact of direction of change and amplitude of change across the designs.  

 
As expected, it was found that characteristics of the current health state have an 

effect on preference judgments for future health states. However, unexpectedly, the 

nature of the effects varied across different levels of the future health state, indicating that 
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in addition to the fact that preference for a future health state depends on current health 

state, the nature and extent of the impact of the current health state characteristics in 

assessing preference for a future health state (i.e. direction of change, amplitude of 

change, and current health state duration) also depend on the level of the future health 

state itself. 

For health scenarios at a higher level of future health state (Design A – future 

health state level at 0.70), all main effects of direction, amplitude, and duration, and all 

the combinations of their interactions are significant. Regarding health scenarios at a 

lower level of future health state (Design C – future health state level at 0.40), only the 

main effects of direction and amplitude, and their interaction are significant. For health 

scenarios at a medium level of future health state (Design B – future health state level at 

0.55), only the interaction effect between direction and amplitude is significant. These 

results imply that preferences for future health state are more sensitive to the current 

health state as the future health state is better.  

In order to better explain and understand the findings regarding the 

interdependence between current health state and future health state on the preference 

scores, Figure 5.1, Figure 5.2, and Figure 5.3 graphically illustrate the average 

conditional preference scores across the subjects for scenarios in Design A, B, and C (the 

average scores were presented numerically in Tables 4.5, 4.7, 4.9, and 4.11 in Chapter 4). 

Additional analysis, the Wilcoxon Signed Ranks test, was performed in order to test the 

difference between the mean conditional preference score and the mean actual future 

health state score assigned by the subjects, for each scenario. Table 5.1 summarizes the 

discrepancies and the test results. (Note that the positive value of discrepancy indicates 
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that the actual future health state score is higher than its conditional preference score, and 

vice versa).  

 

 
Table 5.1: Descriptive statistics of the discrepancy between the actual future health state 
score and the conditional preference score along with the results from Wilcoxon Signed 

Ranks test 
Wilcoxon Signed 

Ranks Test Scenario Mean of the 
Discrepancy S.D. 

Z p-value 
Scenario 1-A 0.276 0.184 -0.627 0.531 
Scenario 2-A 0.023 0.167 -7.982 <0.001 
Scenario 3-A 0.013 0.115 -3.08 0.002 
Scenario 4-A 0.016 0.133 -2.786 0.005 
Scenario 5-A 0.041 0.143 -0.263 0.793 
Scenario 6-A 0.042 0.158 -0.938 0.348 
Scenario 7-A 0.042 0.122 -2.917 0.004 
Scenario 8-A 0.042 0.139 -2.461 0.014 
Scenario 1-B -0.023 0.128 -0.906 0.365 
Scenario 2-B -0.017 0.138 -1.822 0.068 
Scenario 3-B -0.013 0.128 -0.863 0.388 
Scenario 4-B -0.012 -2.743 0.006 
Scenario 5-B 0.042 0.157 -1.239 0.215 
Scenario 6-B 0.004 0.158 -1.265 0.206 
Scenario 7-B -0.012 0.123 -0.783 0.433 

-0.016 0.133 -0.565 0.572 
Scenario 1-C -0.039 0.131 -3.649 <0.001 
Scenario 2-C -0.057 0.140 -2.601 0.009 
Scenario 3-C -0.047 0.129 -1.141 0.254 
Scenario 4-C -0.049 0.142 -2.975 0.003 
Scenario 5-C -0.077 0.216 -3.263 0.001 

-0.127 0.215 -3.255 0.001 
Scenario 7-C -0.029 0.145 -2.087 0.037 
Scenario 8-C -0.043 0.153 -4.846 <0.001 

0.127 

Scenario 8-B 

Scenario 6-C 

* The grey highlight indicates significant difference at alpha = 0.05 
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By looking at Table 5.1 along with Figure 5.1, Figure 5.2, and Figure 5.3, it can 

be clearly seen that conditional preference scores are significantly different from the 

actual future health state scores, indicating that current health state affects the judgment 

of the future health state, almost in every scenario in Design A and Design C, but not in 

Design B. Another interesting finding is that the mean conditional preference score in 

Design A is always lower than the actual future health state score (positive values of the 

discrepancies). On the other hand, in Design C, conditional preference score is always 

higher than the actual future health state score (negative values of the discrepancies). In 

Design B, there is virtually no significant difference between conditional preference score 

and actual future state score. Indeed, in Design B, the conditional preference score is 

approximately equal to the actual future health state score, as shown by the results from 

the analysis. This overall finding is important: independently of direction of change, 

amplitude of change and duration of current health state, scoring a future health state with 

information about the current health state affects the future health state score downward 

if the future health state is high and upward if the future health state is low. These 

findings signify that the pattern of the relationship between current health state and the 

future health state on the judgment of the future health state depends upon the level of the 

future health state itself.  
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Figure 5.1: Graphical illustration of means of conditional preference scores for Design A 
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Figure 5.2: Graphical illustration of means of conditional preference scores for Design B 
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Figure 5.3: Graphical illustration of means of conditional preference scores for Design C 
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The hypotheses set in this phase anticipated a significant effect of 2-way 

interaction between duration and amplitude and a smaller effect of current health state on 

the preference score of future health state when current health state duration is short (1 

year) as compared to when the current health state duration is long (10 years).  

Regarding the expected significant effect of the 2-way interaction between 

duration and amplitude, larger differences between conditional preference scores and the 

actual future health state scores were expected for scenarios that have high amplitude of 

change from current health state to future health state (scenarios 1, 2, 5, and 6) than for 

scenarios that have low amplitude (scenarios 3, 4, 7, and 8). This is only found for the 

decreasing scenarios in Design A (scenarios 1-A and 2-A versus scenarios 3-A and 4-A) 

and the increasing scenarios in Design C (scenarios 5-C and 6-C versus scenarios 7-C and 

8-C). However, the magnitude of difference is not substantial. Additionally, lower 

conditional preference scores as compared to the actual future health state level are 

expected for decreasing scenarios (scenarios 1 to 4) and higher conditional preference 

scores as compared to the actual future health state level are expected for increasing 

scenarios (scenarios 6 to 8). For Design A (see Figure 5.1), decreasing scenarios 

(scenarios 1-A to 4-A) have lower conditional preference scores than the actual future 

health state scores as expected; however, none of the increasing scenarios (scenarios 5-A 

to 8-A) have higher conditional preference scores than the actual future health state 

scores, conflicting to the expectation. For Design B and Design C (see Figure 5.2 and 

Figure 5.3, respectively), none of the decreasing scenarios (scenarios 1-B to 4-B and 

scenarios 1-C to 4-C) have lower conditional preference scores than the actual future 

health state scores, inconsistent to the expectation. However, increasing scenarios in 
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Design C (scenarios 6-C to 8-C) have higher conditional preference scores than the actual 

future health state scores which are as expected. 

The findings described above demonstrate that the results behave in a way similar 

to what was expected regarding the interaction effect between direction and amplitude 

but only for decreasing scenarios in Design A and increasing scenarios in Design C. A 

plausible explanation is that individuals experiencing a high level of health state (up to 

perfect health) as in scenarios 1-A to 4-A, tend to be more sensitive when they anticipate 

losing their perfect (or close to perfect) health, as markedly shown by the results in 

scenario 1-A. Thus, such individuals tend to undervalue the scores for their future health 

state when comparing to a high reference point, a close to perfect current health state. 

However, when considering medium levels of current health states, individuals who have 

been staying in poorer health may not see additional deterioration of their health as a 

significant issue due to, potentially, being psychologically adjusted to a poorer health 

state to start with. On the other hand, when they are in health state that is very low (close 

to death), as in scenario 6-C to 8-C, individuals, realizing that their health is going to be 

improved, seem to over-evaluate the future (improved) health state. As a result, they are 

likely to score their future improved health state higher than what they would have done 

in the absence of knowledge of a very poor current health state. However, when 

individuals are not being in very poor health, the improvement in their health may not be 

seen as a significant change for them. As can be seen in Design B, starting at a medium 

health state level, changing their health state in either direction does not seem to make 

any difference in individuals’ perceptions and scoring regarding their future health. Thus 

the results strongly support that preferences for future health states strongly and 
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systematically depend on where the current health state is. Moreover, the pattern of the 

interdependence also depends upon the level of future health state itself. 

Concerning the effect of duration, larger differences between conditional 

preference scores and actual future health states were expected for scenarios with longer 

current health state duration (scenarios 2, 4, 6, and 8) as compared to scenarios with 

shorter current health state duration (scenarios 1, 3, 5, and 9). In examining Figure 5.1, 

Figure 5.2, and Figure 5.3, none of the designs overall shows any such trend. However, 

when looking at the analysis for each duration separately, interesting factors of the 

current health state (direction and amplitude) play a more significant role when the 

current health state duration is short than when the current health state duration is long 

(but only for Design A and B, high and medium future health state levels respectively). 

While this finding lends support to rejecting the hypotheses, a plausible explanation is 

that individuals, when staying in the current health state in a short period of time, do not 

psychologically adjust to the health state and thus, judgments for any changes in their 

health state in the future is affected by the current health state. On the other hand, when 

individuals have been staying in their current health state for a long period of time, they 

tend to adjust themselves and do not necessarily relate their judgment on their current 

health state. However, this does not hold for Design C (low level of future health state), 

since the results in Design C show that all characteristics of current health state are 

significant independently of current health state duration. No matter what duration in 

Design C, conditional preference scores for future health states are higher than the 

unconditional future health state scores. It only appears that the discrepancy between 
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conditional and unconditional score is slightly higher as the duration of the current health 

state is shorter. 

In the second phase of the study, the aim was to investigate whether the proposed 

decomposition technique (conditional preference assessment) can better predict 

preference score for a full health profile than the conventional decomposition technique 

(unconditional preference assessment). Thus, in addition to the experiment in the first 

phase, subjects were presented with different hypothetical health profiles and were asked 

to assess holistic preference scores for each health profile by providing a direct rating 

through visual analog scale. Different health profiles were created by varying direction of 

the profiles, rate of change and duration of the profiles. Each health profile was 

composed of four different health states. Duration-weighted scores were calculated for 

scores obtained from conditional, and unconditional preference assessments and were 

compared to holistic scores and to each other.  

Unfortunately, the results from the analyses do not show great promise that the 

new proposed decomposition technique in which several conditional preference score 

assessments are carried out and integrated to produce a preference score for the entire 

health profile predicts holistic preference scores for health profiles significantly better 

than the decomposition technique that uses unconditional preference score assessments. 

Duration-weighted scores from conditional and unconditional preference score 

assessments were similar to each other while the holistic preference scores were different 

from them especially in some health profiles. However, when looking at the holistic 

preference assessment itself, it should be recognized that the assessment tasks themselves 

can be problematic. Several studies as well as this study have proposed other 

 187



decomposition techniques in order to aid with the difficulties that arise in formulating 

holistic preference score assessment. 

When making judgment on the entire multistate health profile, holistic preference 

assessment can be difficult and complicated to individuals, especially when individuals 

are making judgment on hypothetical health scenarios that are far away from their current 

health experience. In this and other studies, young healthy subjects asked to make 

judgment of their hypothetical future health scenarios may have difficulties, especially 

with health scenarios that are very distant from their current (generally) healthy state. 

Take, for example, health profile# 9 which started with a health state that was slightly 

better than death (e.g. state 33333 – confined to bed, unable to wash and dress yourself, 

unable to perform your usual activities, extreme pain or discomfort, and extremely 

anxious or depressed) and therefore is extremely different from what their current health 

state is.  For that scenario, the average holistic preference score obtained is remarkably 

low (as compared to the average score obtained from health profile #8 which is composed 

of the exact same four health states but started with perfect health) although health profile 

#9 has a rapid improvement to perfect health in the last 10 years of their life expectancy. 

Another important element to consider in interpreting holistic judgments is that 

individuals tend to use their expectations as a tool in making holistic preference 

assessment, as suggested by Chapman (1996a). People judge their preference for the 

health profile by examining how close it is to their expectations. The closer the profile is 

to their expectation, the higher the preference for that health profile tends to be. For 

example, the relatively low score obtained from health profile #9 as previously pointed 

out can be explained by the fact that this health profile, which has an improvement over 
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time when individuals are getting older, is not consistent with potential expectations. As 

can be seen in the results for lifetime health profiles, decreasing sequences tend to be 

preferred to increasing sequences. On the other hand, regarding the 4-year health profiles, 

the results show that increasing sequences are preferred to decreasing sequences. These 

findings are again consistent with the findings from Chapman (1996a). However, it is still 

questionable if holistic preference scores assessed, regardless of whichever strategies 

individuals use, are fully reliable in terms of representing their preferences regarding the 

hypothetical health profiles.  

As previously mentioned regarding the results in Phase 2 experiment, duration-

weighted scores from conditional and unconditional preference assessments are similar to 

each other; nonetheless, they both are quite different from holistic preference scores. One 

explanation of the deviation of holistic scores from both conditional and unconditional 

duration-weighted scores can be identified as the use of the entire scale versus the 

integration of component scores. When the subjects make holistic judgment, if they 

perceive that the health profile is extremely good or bad, they can give the score for that 

health profile at the very high or low end on the scale. However, with the conditional and 

unconditional preference score assessment methods, it is less likely to obtain extreme 

scores on either end of the scale since the scores for the entire health profile come from 

the integration of several component scores through a weighted additive calculation. In 

order to obtain extreme scores for the health profile in the case of conditional and 

unconditional preference score assessment, all or most of the component scores that come 

from individual health state assessments have to be consistently high or low, which is not 

possible for the profiles constructed in this study. The health profiles used in this study 
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are composed of several health states that ranged from very poor health to perfect health; 

thus, it is less likely that the subjects would assign extremely low score for a perfect 

health or extremely high score for a very poor health state. Thus, as shown in Figure 4.30 

and Figure 4.31, conditional and unconditional scores across all profiles display a more 

horizontal and flatter profiles than the holistic scores do. 

Although the analyses do not show that conditional preference scores predict 

holistic preference scores better than unconditional preference scores, some of the results 

indicate that conditional preference assessment can predict preferred choices between 

pairs of health profiles better than unconditional preference assessment. This is important 

since, while individuals have difficulties in rating health profiles (i.e., producing a 

holistic score), they fare much better in selecting preferred profiles in forced paired 

comparisons, as designed in this study. In the case that unconditional preference 

assessment cannot predict trend of preference due to the additive independence 

assumption, for example, profiles that are composed of the exact same components of 

health states but different in sequences, unconditional preference assessment would 

automatically produce identical duration weighted scores across the profiles, indicating 

that those profiles are equally preferred. In contrast, conditional preference assessments 

in which the interdependence relationship between a pair of health states is taken into 

account, were generally, although not all the time, indicative of the actual direction of 

preference in this case. Thus, from the perspective of paired comparisons across health 

profiles, the conditional method performed better than the unconditional method. 

Moreover, the results from Phase 1 experiment strongly support the fact that an 

interdependence relationship between current health state and future health state exists 
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and matters in making preference assessments. Thus, it is essential for further research to 

perform future studies in order to develop a method that is able to integrate the 

interdependence relationship between health states into the preference assessment 

technique in the case of multistate health profiles. The simple method proposed here, 

while a good first step did not completely live up to expectations in terms of solving the 

problem. 

Regarding the experiment performed in this study, it should be noted that it was 

very extensive and demanding from a cognitive processing perspective, especially 

because of the use of EQ-5D. In particular, this is the case of the health profiles in the 

study composed of four EQ-5D health states. In the paired comparisons, it was not easy 

to compare a profile with four consecutive EQ-5D health states with another profile that 

had another four consecutive EQ-5D health states. Moreover, the number of assessments 

in this study was quite large: 20 unconditional preference score assessments, 31 

conditional preference score assessment, 20 paired comparisons between health profiles, 

and 10 holistic preference score assessments. The subject population for this study 

consisted mostly of students from the School of Industrial and Systems Engineering at 

the Georgia Institute of Technology. Dealing with a high-cognitive demand task as in this 

experiment might not be an issue for this group of subjects. However, implementing the 

same experimental design with other segments of the population, especially in terms of 

their educational levels, will be difficult and changes to the experimental settings should 

be made. The number of assessments should be greatly reduced by using fewer 

replications or a fractional design. The experimental protocol may require a walkthrough 

and a face-to-face interview instead of having the subjects complete the tasks through the 
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experimental computer program on their own. Regarding the health state representation, 

use of multimedia techniques for health state representation, which allows subjects to 

visualize or experience the hypothetical health scenarios, will make the experiment easier 

and feasible with a more diverse population. 

Another interesting point to be discussed is the representation of the current health 

state duration, one of the investigated factors in the experiment. One may argue that it 

was difficult for the subjects to imagine and take the duration factor into account when 

assessing the hypothetical health scenarios. Thus, for future research, the use of 

multimedia health state representation, or other techniques, is suggested.  

Regarding the design of the experiment, the selection of the 7 health states 

required in order to construct the health scenarios and the health profiles was based on 

the 20 unconditional preference scores each subject assigned at the beginning of the 

experiment. One may question the use of different health states across the subjects to 

create the final health scenarios in the design of experiment. However, using the same 

health states in the health scenarios and the health profiles for all subjects almost 

certainly would have created an issue with respect to differences in the perception 

regarding each health state and in the ordering of the health states across subjects, which 

in turn result in the inability to control the amplitude size and the direction of change 

between current health state and future health state, which were the investigated factors. 

Moreover, one may wonder whether starting the current health state at perfect 

health as opposed to some other health state that would be perceived as relatively high on 

the judgment scale but lower than perfect health may affect the results. However, there 

were only two scenarios from the total of 24 scenarios that started current health state at 
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perfect health and moreover only one of them produced significantly lower conditional 

preference score for the future health state as compared to the actual future health state 

score when assessed independently. Thus, by replacing the current health state with some 

other health state that would be perceived as relatively high on the scale (but less than 

perfect health) instead of using the perfect health, the effect of the current health state 

factors explored might have been smaller. However, the difference in the findings would 

not greatly affect the results.  

Concerning the implications for other related fields, the results from this study 

show that current health state and its characteristics have an effect on individuals’ 

judgments regarding their future health states. Thus, practitioners and clinicians, who 

want to capture patients’ preferences regarding their health states in order to make use of 

them in medical decision making, should definitely ensure that every future health state 

considered is conditioned on the patients’ current health state. Regarding the implications 

from a societal perspective, specifically cost effectiveness analyses, this study suggests 

that the effectiveness of interventions designed to improve health for people with very 

low current health state might be underestimated. The results from this study show that 

people with very low current health state value their future health state at a higher level. 

Thus, with the assessment from the existing decomposition technique, the effectiveness 

of the interventions may be undervalued. This implies that some interventions that are not 

currently seen as cost effective might in fact be cost effective.  
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5.2 Limitations of the study 

One of the limitations in this study concerns the assessment technique used to 

capture preferences. A direct rating method, the visual analog scale (VAS), was the 

assessment technique used throughout this study. While the VAS is attractive because it 

is simple, easy to administer, and the subjects can perform the task by themselves, the 

validity of the VAS approach is still questionable. VAS scores represent the strength of 

the preference under certainty. Thus, VAS is not a utility measurement technique and 

thus cannot fully represent individuals’ preferences under risk and uncertainty. Moreover, 

some biases may be associated with the use of VAS. For example, the VAS score for a 

health state also depends on the number of better or worse health states presented 

previously or at the same time. If many better health states are shown before or 

simultaneously with the health state assessed, then the score assigned might be 

undervalued. On the other hand, if several worse health states are shown before or at the 

same time with the health state assessed, its score might be overvalued. However, even 

with known issues, VAS has been acceptable and is widely used in similar research and 

studies for health outcome measurement and health economics. Using the VAS 

technique, while not a gold standard of utility measurement, allowed us to perform the 

study and revealed important relationships. 

Another limitation involves the use of EQ-5D system to describe health states in 

the study. Although the description of the health states in five dimensions is easy to 

understand and does not require the subjects to have knowledge regarding diseases or any 

specific disease-related health conditions, the description of the five dimensions may not 

be specific enough and thus the subjects may have difficulty in imagining themselves in 
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those health states and thus may have made additional unknown assumptions regarding 

the health states being considered and evaluated. Take, for example, the fourth dimension 

concerning pain or discomfort, subjects need to make an assumption about the types of 

pain or discomfort or specific symptoms that are the results of that pain or discomfort. 

Other examples are the second and the third dimensions, which involve ability to wash 

and dress themselves and ability to perform their usual activities, respectively. These two 

elements are seen as components that may relate to each other. Thus, it is hard for the 

subjects to imagine having severe (or some) problem with one dimension but some 

problem (or no problem) with the other dimension. However, the EQ-5D system remains 

an acceptable and widely used tool in health outcome measurement today.   

 

5.3 Directions for Future Research 

The results from this study confirm that there is a relationship between two 

consecutive health states that has an effect on the judgment of the future health state. 

However, this study does not successfully develop a new measurement method that is 

able to integrate all the significant relationships uncovered into a new calculation of 

preference scores for evaluating complex health profiles. Thus, future research would be 

important to be performed in at least three general directions, as described below. 

First, future research is in need to further explore the nature and extent of the 

relationship between health states such as exploring complex relationships between more 

than two consecutive health states.  

Second, since the visual analog scale may suffer from limitations as described 

above, the use of other assessment techniques such as time-tradeoff and standard gamble 
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in replicating and expanding the same experiments would also be important to 

investigate.  

Finally, performing similar experimental studies with different subject 

populations, such as using actual patients (with experienced health states) instead of 

young healthy subjects (with hypothetical health scenarios) would be another important 

direction for future research in multistate health profile preference assessment. 
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APPENDIX A 

SCREENSHOTS OF THE COMPUTER PROGRAM USED IN THE 

EXPERIMENT 
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APPENDIX B  

OUTLIER ANALYSIS (PHASE 1) 
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Data from the subjects was stored in the computer when the subjects performed 

the tasks. Outlier needed to be identified before performing any analyses. After scores 

were linearly normalized for each subject by mapping best health state (perfect health) 

and worse health state (death), specified in the stage of unconditional preference 

assessments, to 1.00 and 0.00, respectively. Box plots were used as a tool in identifying 

outliers. Responses with values more than three box lengths (interquartile range) from the 

upper or lower edge of the box were identified as extremes and the entire rows of the data 

were removed. Moreover, cases that contained normalized scores that were higher than 

1.00 or lower than 0.00 were removed. Table B.1 summarizes demographics 

characteristics of the subjects that were removed from the analyses. Figures B.1, B.2, and 

B.3 illustrate boxplots for conditional preference scores for Design A, B, and C.  
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Table B.1: Demographics of outliers 
Subject # 7 14 21 30 32 81 97 
Gender        
     Female  X X 

X 
 

X X   
     Male     X X 
Ethnic Background       

 X X X   
     Black, not of Hispanic origin   X     
     Hispanic       
     Asian or Pacific Islander X     X X 
     American Indian or Alaskan Native        
     Others        
Age (years) 22 21 21 22 19 26 
Major field of study        
     Industrial Engineering X X X X X X X 
     Other - Non-Engineering   

 

     
     Other - Engineering        
Degree of study       
     B.S. X X X X  X  
     M.S.    

 X 
 

       

 X   
     Ph.D.      
     Other       
Health problem in yourself 
     Yes, major issue(s)   

     No 

  X   
     Yes, minor issue(s)    X  X X 

X X X     
Health problem in your family        
     Yes, major issue(s)   

X 
  X X  

     Yes, minor issue(s)  X X X   
     No X       
Health problem in someone else close to you        

    X   
     Yes, minor issue(s)   X X   
     No X X    X  
General health condition        
     Excellent     

X 

 

X   
     Very Good X X X   X 
     Good      X  
     Fair        
     Poor       

     White, not of Hispanic origin  

 

21 

     Yes, major issue(s) 
X 
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 Figure B.1: Boxplots for conditional preference scores in Design A (* indicates an 
extreme; c indicates an outlier) 

  
 
 From Figure B.1, subject #97 was removed due to lower score than 0.00 in 

scenario 1-A (-0.113) and subject #81 were removed due to higher than 1.00 score in 

scenario 8-A (1.116). Moreover, subject #7 and subject#30 were removed since they 

were identified as extremes in scenarios 3-A and 4-A.  
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Figure B.2: Boxplots for conditional preference scores in Design B (* indicates an 

extreme; c indicates an outlier) 
 
 
 
 From Figure B.2, subject #14 was removed due to lower score than 0.00 in 

scenario 6-B (-0.105) and subject #81 were removed due to higher than 1.00 score in 

scenario 6-B (1.053).  

 

 234



9999999999999999N =
Scenario 8-C

Scenario 7-C

Scenario 6-C

Scenario 5-C

Scenario 4-C

Scenario 3-C

Scenario 2-C

Scenario 1-C

N
or

m
al

iz
ed

 C
on

di
tio

na
l P

re
fe

re
nc

e 
S

co
re

s

1.2

1.0

.8

.6

.4

.2

0.0

-.2

3214

44

81

57
35

91884281

203078
11

88142275

784816

32

19228117

32

 
Figure B.3: Boxplots for conditional preference scores in Design C (* indicates an 

extreme; c indicates an outlier) 
 
 
 
 From Figure B.3, subject #32 was removed due to lower score than 0.00 in 

scenario 1-C (-0.079), scenario 3-C (-0.059), and scenario 8-C (-0.020). Subject #81 was 

removed due to higher than 1.00 score in scenario 5-C (1.011). Subject #14 was removed 

due to the lower than 0.00 score in scenario 8-C (-0.055). Additionally, subject #21 was 

removed due to the lower than 0.00 score in scenario 5-C (-0.001).  

 235



APPENDIX C 

OUTLIER ANALYSIS (PHASE 2) 
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In addition to the outlier analysis in Phase 1, data that was used in Phase 2 

included conditional preference scores from an additional 7 scenarios, unconditional 

preference scores for 7 health states that were selected for the experiment, and holistic 

preference scores for the health profiles. After scores were linearly normalized for each 

subject by mapping best health state (perfect health) and worse health state (death), 

specified in the stage of unconditional preference assessments, to 1.00 and 0.00, 

respectively. Box plots were used as a tool in identifying outliers. Responses with values 

more than three box lengths (interquartile range) from the upper or lower edge of the box 

were identified as extremes and the entire rows of the data were removed. Moreover, 

cases that contained normalized scores that were higher than 1.00 or lower than 0.00 were 

removed. Table C.1 summarizes demographics characteristics of the subjects that were 

removed from the analyses in addition to those in Phase 1. Figures C.1, C.2, and C.3 

illustrate boxplots that were used in outlier analysis in Phase 2 
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Table C.1: Demographics of outliers in addition to those identified in Phase 1 

Subject # 11 53 67 70 87 
Gender      
     Female X  X  X 
     Male  X  X  
Ethnic Background      
     White, not of Hispanic origin X     
     Black, not of Hispanic origin      
     Hispanic  X   

 
  

 
Age (years) 25 

 
     Asian or Pacific Islander  X X X 
     American Indian or Alaskan Native    
     Others     

20 20 20 26 
Major field of study      
     Industrial Engineering X  X  X 
     Other - Non-Engineering  

 X  
    

     Other - Engineering   
Degree of study      
     B.S. X X X X  
     M.S. 
     Ph.D. 

  
 

     
    X 

     Other    
Health problem in yourself     
     Yes, major issue(s)    X  
     Yes, minor issue(s) X  X   
     No  X   X 
Health problem in your family      

  X X  
X   X 
    

Health problem in someone else close to you      
     Yes, major issue(s)  X X 

X 

     

  
     Yes, minor issue(s)    X 
     No    X  
General health condition 
     Excellent X X    
     Very Good   X X  
     Good 

 

    X 
     Fair      
     Poor     

     Yes, major issue(s) 
     Yes, minor issue(s) X 
     No  

 238



 

99999999999999N =

score level 0.10

score level 0.25

score level 0.40

score level 0.55

score level 0.70

score level 0.85

score level 1.00

N
or

m
al

iz
ed

 u
nc

on
di

tio
na

l p
re

fe
re

nc
e 

sc
or

es

1.2

1.0

.8

.6

.4

.2

0.0

-.2

53
593

805385

3287

7

3233988587

 Figure C.1: Boxplots for unconditional preference scores for health states that were 
selected for the experiment (* indicates an extreme; c indicates an outlier) 

 

  
 
  

From Figure C.1, none of the data was identified as extremes and removed. 
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Figure C.2: Boxplots for conditional preference scores in the additional 7 scenarios (* 

indicates an extreme; c indicates an outlier) 
 
 

 From Figure C.2, subject #67 was removed since it was identified as an extreme 

in scenario 7. Note that subject #97 was also identified as an extreme (scenario 2) but was 

already removed in Phase 1. Subject #53 was removed since it had scores lower than 0.00 

in scenario 3 (-0.218), scenario 6 (-0.227) and scenario 8 (-0.155). Subject # 87 was 

removed due to a score lower than 0.00 in scenario 8 (-0.003). Subject # 70 was removed 

due to a score higher than 1.00 in scenario 2 (1.061). Lastly, Subject #11 was removed 

due to a score higher than 1.00 in scenario 5 (1.062). 
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Figure C.3: Boxplots for holistic preference scores (* indicates an extreme; c indicates 

an outlier) 
 
 
 
 From Figure C.3, none of the data was identified as extremes and removed. 
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