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SUMMARY 
 
 
 

A negative index material (NIM), which possesses simultaneously a negative 

permeability and a negative permittivity, is an emerging material that has caught the 

attention of many scientists and engineers after it was first demonstrated in 2001. It has 

been shown that NIMs have some remarkable properties such as a negative phase 

velocity and negative refraction and hold enormous promise for applications such as 

perfect lens and optical communications. This dissertation is centered on investigating the 

unique aspects of the radiative properties of negative index materials (NIMs). Photon 

tunneling, which relies on evanescent waves to transfer radiation energy, has important 

applications for radiative transfer in thin-film structures, microscale thermophotovoltaic 

devices, and scanning thermal microscopes. With multilayer thin-film structures, photon 

tunneling is shown to be greatly enhanced by using NIM layers. The enhancement is 

attributed to the excitation of surface or bulk polaritons, which depends on the 

thicknesses of the NIM layers according to the phase matching condition. A new kind of 

coherent thermal emission source is proposed by pairing a negative permittivity (but 

positive permeability) layer with a negative permeability (but positive permittivity) layer. 

The merits of such a coherent thermal emission source are that coherent thermal emission 

occurs not only for p-polarization, but also for s-polarization, without the use of grating 

structures. By analyzing the polariton dispersion relation, a method for control of the 

emission frequency and emission angle is provided. The power reflectance from NIM can 

be zero for both polarizations, that is, there exist Brewster angles for both polarizations 

under certain conditions.  The criteria for zero reflectance or the Brewster angle are 



 xvi  

determined analytically and presented in a regime map. The findings on the unique 

radiative properties of NIMs may help develop advanced energy conversion devices. 

Motivated by the recent advancement in scanning probe microscopy, the last part of this 

dissertation focuses on the prediction of the radiation heat transfer between two closely 

spaced semi-infinite media. The objective is to investigate the dopant concentration of 

silicon on the near-field radiation heat transfer. It is found that the radiative energy flux 

can be significantly augmented by using heavily doped silicon for the two media 

separated at nanometric distances. Large enhancement of radiation heat transfer at the 

nanoscale may have an impact on the development of near-field thermal probing and 

nanomanufacturing techniques. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

The experimental demonstration (Shelby et al., 2001) of negative refraction using 

a metamaterial has resulted in a surge of interest in the study of negative index materials 

(NIMs) whose refractive index is negative (n < 0) in certain spectral region. The concept 

of negative refractive index was first postulated by Veselago (1968) for a hypothetical 

material having simultaneously a negative electric permittivity ε and a negative magnetic 

permeability µ. However, the fact that a negative µ  is never found in naturally occurring 

materials hinders any practical considerations of an NIM for some 30 years. Pendry et al. 

(1996 and 1999) suggested the construction of matematerials using periodic unit 

structures, which can be appropriately designed to have desired electric and magnetic 

responses. For example, split-ring resonators can be used to achieve a negative µ  and 

thin metallic wire structures can be used to achieve a negative ε  with a plasma frequency 

much lower than that of a typical metal. By tuning the structure parameters, Shelby et al. 

(2001) first demonstrated experimentally the existence of a negative refractive index at 

X-band microwave frequencies in a metamaterial made of repeated unit cells of 

interlocking copper wires and split-ring resonators. Several alternative approaches have 

been proposed, including the use of photonic crystals (Notomi, 2000; Gralak et al., 2000; 

Luo et al., 2002) and nanowire pairs (Podolskiy et al., 2002), for development of NIMs in 

the infrared or higher frequency regions. A recent study (Yen et al., 2004) scaled down 

the split-ring resonators to observe a negative µ behavior at 0.8 – 1.2 THz (375 – 250 µm 
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wavelength). These studies open the door for potential realization of NIMs in the infrared 

and visible regions someday. 

The main reason of studying NIMs is because these materials possess many 

unique optical properties and, if successfully constructed, will have enormous 

applications in imaging, lithography, and optical communications. The phase velocity of 

an electromagnetic (EM) wave in an NIM medium is opposite to its energy flux, resulting 

in a reversed Doppler effect. Light refracted from a conventional positive index material 

(PIM) into an NIM will bend to the same side of the surface normal as the incident beam 

(a phenomenon called negative refraction) and a flat slab of NIM can focus light 

(Veselago, 1968). Pendry (2000) showed that an NIM slab with  ε = µ = −1 (ε and µ are 

the relative values with respect to those of free space) performs the dual function of 

correcting the phase of the propagating components and amplifying the evanescent 

components, which normally exist only in the near field of the object. The combined 

effects could make a perfect lens that eliminates the limitation on image resolution 

imposed by diffraction for conventional lenses. Other potential applications range from 

novel Bragg reflectors (Gerardin and Lakhtakia, 2002) to phase-compensated cavity 

resonators (Engheta, 2002), forward couplers in transmission lines (Liu et al., 2002), and 

waveguides (Qing and Chen, 2004b).  

As an emerging material, many other important properties and potential 

applications of an NIM remain unexploited. One of the objectives of this dissertation is to 

explore some properties and applications of NIMs related to radiation heat transfer. 

Photon tunneling, which relies on evanescent waves to transfer energy between an 

emitter and a receiver, has important applications in photon scanning tunneling 
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microscopy (Reddick et al., 1989; Shen et al., 2000) and in micro/nanoscale radiation 

heat transfer (Pendry, 1999; Whale and Cravalho, 2002; Narayanaswamy and Chen, 

2003). In order for photon tunneling to be significant, the emitter and the receiver must 

be brought in close proximity to each other because evanescent waves exhibit the 

characteristic of exponential decay. If an NIM slab can amplify evanescent waves as 

shown by Pendry (2000), one may ask whether an NIM slab can be used to enhance 

photon tunneling. A nonmagnetic material that supports surface polaritons can have 

higher spectral, directional emissivity (p-polarized) if a grating is etched on the surface of 

the material (Hesketh et al., 1986 and 1988; Greffet et al., 2002; Kreiter, 1999). This is 

due to the coupling of surface polaritons with thermal radiation by the grating. Thermal 

emission from such a source exhibits coherent properties and may have potential 

applications in “radiative cooling” and in infrared photovoltaic devices (Greffet et al., 

2002). Using negative µ  materials, is it possible to build a coherent thermal emission 

source of both s- and p-polarizations without gratings? The unique property of Brewster’s 

angle has been applied in many devices such as polarizers (Kaplan and Hanssen, 1999; 

Sihvola and Lindell, 1993) and transmission windows (Yang et al., 2003). In an NIM, 

one may wonder what criterion Brewster’s angle obeys. All these questions will be 

extensively addressed in this dissertation. 

A relevant topic studied in this dissertation is on the nanoscale radiation heat 

transfer between closely spaced surfaces, especially with doped silicon. Radiation heat 

transfer at the nanoscale can achieve a much higher energy flux by photon tunneling than 

that predicted from the Stefan-Boltzmann law. Therefore, it has important applications in 

nanoscale energy conversion devices (Whale and Cravalho, 2002; Narayanaswamy and 
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Chen, 2003) and in near-field scanning thermal microscopy (Williams and 

Wickramasinghe, 1986; Xu et al., 1994; Müller-Hirsch et al., 1999; Pendry, 1999). Most 

of the theoretical work has been performed on the prediction of the net heat flux between 

two parallel metallic plates using a DC conductivity in a Drude model for the materials’ 

dielectric function (Polder and Van Hove, 1971; Caren, 1974; Loomis and Maris, 1994; 

Pendry, 1999). Nanoscale radiation heat transfer between non-metallic materials has also 

been studied (Whale and Cravalho, 2002; Mulet et al., 2002; Narayanaswamy and Chen, 

2003). Nevertheless, little work has investigated the problem of nanoscale radiation heat 

transfer when silicon is involved.  

The interest in studying nanoscale radiation heat transfer with silicon emerges 

because silicon is the most extensively used material in MEMS/NEMS and many other 

microelectronic devices. Radiation heat transfer in these devices may be important when 

their characteristic dimensions are on nanoscale levels. More importantly, the 

development of atomic force microscope (AFM) cantilevers with integrated heaters and 

tips with nanoscale sharpness made of silicon (King et al., 2001) can be used to study 

radiative energy exchange between two objects separated by a vacuum gap from 10 nm to 

1 nm. The heated AFM cantilever tip can control the temperature of a highly local source 

in controlled close proximity to a temperature sensor. This allows direct measurements of 

the net heat transfer between the tip and the temperature sensor. Nanoscale radiation heat 

transfer between two objects strongly depends on the optical properties of the materials. 

Because the optical properties of silicon are functions of temperature and dopant 

concentration, it is imperative to study the dependence of the net heat flux of the optical 

properties of silicon at different dopant concentrations and temperatures. Furthermore, an 
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optimized dopant concentration may exist that will yield the largest net heat flux for 

prescribed emitter and receiver temperatures. The theoretical understanding gained from 

this research will facilitate the design of experiments that utilize near-field heat transfer 

to enhance heating or cooling at the nanoscale.  

The organization of this dissertation is as follows. Chapter 2 presents some basic 

theories on which the work in subsequent chapters is based, including the concept and 

basic optical properties of an NIM, the matrix formulation for calculating the radiative 

properties of layered structures, the mechanism of photon tunneling, and the 

fundamentals of the fluctuational electrodynamics. In Chapter 3, enhancement of photon 

tunneling using layers of an NIM is studied, considering different cases such as the 

perfect index matching case, a non-ideal and lossless NIM, and a dispersive and lossy 

NIM in different arrangements of multilayer structures. A coherent thermal emission 

source is proposed in Chapter 4. it is constructed using a layer having a negative 

permittivity but a positive permeability paired with a layer having a positive permittivity 

but a negative permeability. Conditions for coherent thermal emission and a method for 

easy control of the emission wavelength and emission angle are discussed. In Chapter 5, 

the Brewster angle involving NIMs is examined. The criteria for the Brewster angle are 

determined analytically and presented in a regime map. The prediction of the radiation 

heat transfer between two semi-infinite media separated at nanometric distances, at least 

one of which is silicon, is presented in Chapter 6. The effect of dopant concentration in 

silicon on the energy flux is emphasized. Finally, Chapter 7 summarizes the conclusions 

and the recommended future work.  
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CHAPTER 2 
 

BASIC THEORIES 
 
 
 

This chapter presents a summary of the basic theories to be used in subsequent 

chapters. The optical properties of NIMs are described. The modified matrix formulation 

is then provided for the calculation of radiative properties of multilayers, including both 

PIMs and NIMs. The mechanism of photon tunneling and its applications are explained, 

because it is the key to near-field radiation heat transfer. The fundamentals of the 

fluctuational electrodynamics are presented that will be used to compute the nanoscale 

radiation heat transfer in Chapter 6.  

 

2.1. The Concept and Basic Optical Properties of an NIM  

A negative index material (NIM) is a material that has a negative refractive index 

(n < 0). A negative n was first postulated by Veselago (1968) for a hypothetical material 

having a negative electric permittivity ε and negative magnetic permeability µ. It was 

found that electromagnetic (EM) waves can propagate in such a medium, but in a very 

unique way. The phase velocity of an EM wave is opposite to its energy flux. This 

particular behavior can be demonstrated from Maxwell’s equations. For a plane wave 

propagating in an NIM, the following two relations should be satisfied according to the 

two Maxwell’s curl equations (Yeh, 1988)   

  0× = ωµµk E H        (2.1) 

and  0× = −ωεεk H E        (2.2) 
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where E is the electric field, H the magnetic field, k the wavevector, ε and µ the relative 

electric permittivity and relative magnetic permeability of the NIM, and 0ε  and 0µ  the 

absolute electric permittivity and absolute magnetic permeability of vacuum, respectively. 

Because both 0ε  and 0µ  are positive, the vectors E , H  and k  will form a left-handed 

triplet if ε  and µ  are both negative whilst in a conventional positive index material (PIM) 

with both positive ε  and µ , the three vectors form a right-handed triplet. The energy flux 

of the EM wave is given by the time-averaged Poynting vector  

  ( )*Re
2
1 HES ×=        (2.3) 

where Re takes the real part of *×E H , and the asterisk denotes the complex conjugate. 

Because ε  and µ  are not involved in Equation (2.3), E , H , and S  always form a right-

handed triplet regardless of the signs of ε  and µ . Note that the wavevector k represents 

the EM wave’s phase velocity propagation direction. Therefore, the EM wave’s phase 

velocity is opposite to its energy flux in an NIM while the phase velocity is in the same 

direction as the energy flux in a PIM, which is schematically shown in Figure 2.1. The 

opposite phase velocity of an EM wave with respect to its energy flux will result in the 

Doppler Effect and the Cerenkov Effect being reversed (Veselago, 1968). Note that 

Figure 2.1 also provides a simple way to understand the negative n in an NIM. The 

wavevector k with respect to the direction S can be written as 

ssk ˆˆ n
cc
ω

=εµ
ω

±=        (2.4) 

where ω  denotes the angular frequency and c the speed of light in vacuum; ŝ  is a unit 

vector representing the director of S. Because the wavevector  k  in an NIM is opposite to 
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Figure 2.1 Illustration of the directions of the vector k  and energy flux S  of an EM 

wave in (a) an NIM and (b) a PIM. 
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ŝ , the refractive index n must be taken as the negative square root of the product of εµ , 

i.e., εµ−=n . On the contrary, k in a PIM is along with ŝ , the refractive index n must 

be taken as the positive square root of the product of εµ , that is, εµ+=n .      

Another particular behavior of an NIM happens when a beam is incident from a 

PIM onto an NIM (or vice versa). The refracted beam in the second medium will bend to 

the same side of the surface normal as the incident beam, a phenomenon called the 

negative refraction (Veselago, 1968; Shelby et al., 2001). Because the boundary 

conditions at the interface require that the parallel components of E and H, and the 

normal components of Eε  and Hµ be continuous across the interface, the parallel 

component of wavevector k conserves in both media while its normal component 

changes sign when the passage of a beam is from a PIM to an NIM. These differences, as 

compared with the case of a beam incident from a PIM onto a PIM, are clearly illustrated 

in Figure 2.2, where 1θ  and 2θ  are called the incidence angle and the refraction angle, 

respectively (only the case of p-polarization is shown, the same phenomenon holds for s-

polarization). Furthermore, in order for Snell’s law to hold in the same form as 

2211 sinsin θ=θ nn  for both the cases shown in Figures 2.2(a) and 2.2(b), 2θ  in Figure 

2.2(b) has to be taken as a negative value. 

An important application of the negative refraction phenomenon is the imaging 

capability of an NIM slab, which is demonstrated in Figure 2.3. Assume an NIM slab of 

1−=n  and thickness d is placed in vacuum. An object that is located at a distance of l1 in 

front of the first surface of the NIM slab is possible to have an image at a distance l2 

behind the second surface of the NIM as long as l1, l2, and d satisfy the relation l2 = d-l1. 

Therefore, negative refraction makes the NIM slab act as a lens to focus light emitted at  
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Figure 2.2 Schematic of reflection and refraction at the interface of two semi-infinite 
media: (a) from a PIM to a PIM; (b) from a PIM to an NIM. In (b), the 
refracted wavevector points opposite to the direction of energy flux. The 
incidence is for p-polarization and the positive sense for all angles is 
counter-clockwise. 
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Figure 2.3 An NIM slab of n = −1 serving as a lens: the distances l1, l2 and the NIM 
thickness d satisfy l2 = d-l1.    

 
 
 
the object plane to the image plane. Pendry (2000) further showed that such a lens is a 

perfect lens because it eliminates the limitations on image resolution imposed by 

diffraction for conventional lenses. It should be noted that despite doubt cast by some 

researchers on the concept of a “perfect lens” (Garcia and Nieto-Vesperinas, 2002) and 

even on negative refraction (Valanju et al., 2002), both hypotheses of negative refraction 

and the ability to focus light by a slab of NIM have been verified by analytical 

(Ziolkowski and Heyman, 2001; Zhang and Park, 2004), numerical (Smith and Schultz, 

2002; Markoš and Soukoulis, 2002; Pacheco et al., 2002) and experimental methods 

(Houck et al., 2003; Parazzoli et al., 2003; Cubukcu et al., 2003). Other unique 

phenomena that result from negative refraction include multiple images (Pokrovsky and 
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Efros, 2003), a negative beam shift upon reflection (Kong et al., 2002) and a negative 

Goos-Hänchen shift upon total internal reflection (Berman, 2002; Lakhtakia, 2003; Qing 

and Chen, 2004a). 

The basic optical properties discussed above are only for a lossless NIM and the 

frequency-dependence of ε  and µ  was not considered. However, it has been shown that 

ε and µ of an NIM must be inherently dependent on frequency (Veselago, 1968; Smith 

and Kroll, 2000). For a metamaterial of negative refractive index built with metallic 

meshes and split-ring resonators, it is been shown that the relative permittivity and 

permeability of the metamaterial can be expressed as functions of the angular frequency 

ω as follows (Pendry et al., 1996 and 1999): 

  
ωγ+ω

ω
−=ωε

e

p

i2

2

1)(        (2.5) 

and  
ωγ+ω−ω

ω
−=ωµ

mi
F

2
0

2

2
1)(       (2.6) 

where pω  is the effective plasma frequency, 0ω  is the effective resonance frequency, eγ  

and mγ  are the damping terms, and F is the fractional area of the unit cell occupied by 

the split ring. From Equations (2.5) and (2.6), both negative ε  and µ  are realized within 

a frequency range between 0ω  and pω  for an adequately small eγ  and mγ . Here, the 

values of 0ω , pω , eγ , mγ  and F depend on the geometry of the unit cell that constructs 

the metamaterial. Therefore, the metamaterial is both dispersive and dissipative. The 

refractive index will be complex for a dissipative medium, which is generally determined 

from the following relation 
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  [ ] )()()()()(~ 22 ωµωε=ωκ+ω=ω inn      (2.7) 

Here, )(ωn  is the real part of the complex refractive index )(~ ωn , )(ωκ  is called the 

extinction coefficient and must not be less than zero for any passive medium imposed by 

the principle of causality (Born and Wolf, 1999). Equation (2.7) used to calculate )(~ ωn  

of a dissipative NIM will result in a negative )(ωn  and a positive )(ωκ . Such a complex 

refractive index can still be used in Equation (2.4) and explained by Figure 2.1(a). The 

positive )(ωκ  explains energy loss of an EM wave along its energy flux direction ŝ  

while the negative )(ωn  account for the reversed phase velocity with respect to ŝ . 

  

2.2 The Modified Matrix Formulation    

Multilayer thin-film structures will be studied in this thesis and the matrix 

formulation is a standard and convenient tool for calculating the radiative properties of 

multilayer structures (Born and Wolf, 1999; Yeh, 1988; Kong, 1990; Zhang et al., 2003). 

A complete derivation of the matrix formulation needs to be shown in order to clearly see 

the essence of this method. Furthermore, some modifications are necessary for the matrix 

formulation to be applicable to absorbing media and with NIMs. Even in some recent 

publications involving NIMs (Gerardin and Lakhtakia, 2002; Zhang and Fu, 2002; Fu and 

Zhang, 2003; Ramakrishna et al., 2003; Gao and Tang, 2004), the equations were either 

not provided or given under restricted conditions. Therefore, a modified matrix 

formulation that is applicable to more general conditions is described in this section. 

A multilayer structure containing N layers is shown in Figure 2.4. Each layer is 

assumed isotropic and homogeneous and can be fully described by a relative permittivity 

εl and a relative permeability µl (l = 1, 2, … N). For a monochromatic plane wave 
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Figure 2.4 Schematic illustration of an N-layer structure. 
 
 
 

originating from layer 1, which is assumed to be lossless, phase matching condition 

requires that cnkk xlx /sin 11 θω=≡  where ω  is the wave angular frequency, 1n  the 

refractive index of layer 1, 1θ  the incidence angle and c the speed of light in vacuum. 

Starting with the s-polarization case, where the electric field is parallel to the y-axis, the 

electric field in the lth layer can be written as ( )( ) xi k x t
lE z e −ω  with (Yeh, 1988; Zhang et 

al., 2003) 

1 1
1 1 1( ) z zik z ik zE z A e B e−= +  

and  1 1( ) ( )( ) ,  2,  3,  ..., lz l lz lik z z ik z z
l l lE z A e B e l N− −− − −= + =    (2.8) 
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 where lA  and lB  are the amplitudes of the forward and backward waves at the interface, 

respectively, 1  ( 2,  3,  ...,  1)l l lz z d l N−= + = −  with ld  the layer thickness. The magnetic 

field can be obtained from the electric field using Maxwell’s equations. Here the 

expression of the wave component klz is calculated from 2222 / ckk lllzx ωµε=+ with its 

imaginary part not less than zero. Applying boundary conditions at the interface, the field 

amplitudes of adjacent layers relate as  

11
1

1
,   1,  2,  ...,  1l l

l l l
l l

A A
l N

B B
+−

+
+

⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
P D D     (2.9) 

In Equation (2.9), lP  is the propagation matrix given by 

1 0
,     1

0 1l l⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
P I  

and  
0

,   2,  3,  ...,  1
0

lz l

lz l

ik d

l ik d

e
l N

e

−⎛ ⎞
⎜ ⎟= = −
⎜ ⎟
⎝ ⎠

P     (2.10) 

lD  is called the dynamical matrix and 1
l
−D  is its inverse. For s-polarization, lD  is given 

in terms of lzk  and lµ  as follows 

1 1
,  1,  2,  ...,  l lz lz

l l

l Nk k
⎛ ⎞
⎜ ⎟= =⎜ ⎟−⎜ ⎟µ µ⎝ ⎠

D      (2.11) 

By successively applying Equation (2.9) to all the layers, one obtains 

1

1

N

N

AA
BB

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
M        (2.12) 

where  ∏
−

=
+

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

1
1

1

2221

1211
N

l
lllMM

MM
DDPM      (2.13) 
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The electric field transmission and reflection coefficients are obtained by setting 

0NB = , because the last layer is semi-infinite and thus no backward wave. Simple 

algebraic manipulation gives the expressions of the coefficients as     

111 /1/ MAAt N ==        (2.14)  

and   112111 // MMABr ==       (2.15) 

The transmittance T of the multilayer structure is defined as the ratio of the z-component 

of the Poynting vector S for the transmitted wave to that for the incident wave. 

Combining Equations (2.14) and (2.3), and using Equation (2.1) to calculate the magnetic 

field from the electric field Equation (2.8), a general expression of the transmittance is 

given as    

  
2

11
*
1

*
1

**
*

*
1

*
1

** 1
)/Re(
)/Re(

)/Re(
)/Re(

Mk
k

tt
k

k
T

z

NNz

z

NNz

µ

µ
=

µ

µ
=    (2.16) 

Similarly, the reflectance R is defined as the ratio of the z-component of the Poynting 

vector S for the reflected wave to that for the incident wave, which is written as    

 
2

11

21*

M
M

rrR ==        (2.17) 

For p-polarization, the magnetic field is parallel to the y-axis. Equation (2.8) can 

be written in terms of the magnetic field H. The same procedure can be used to derive the 

transmission and reflection coefficients for the magnetic field. Equations (2.9), (2.10), 

(2.12), and (2.13) are the same, but the dynamic matrix lD  given in Equation (2.12) must 

be replaced by  
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1 1
,   1,  2,  ...,  l lz lz

l l

l Nk k
⎛ ⎞
⎜ ⎟= =⎜ ⎟−⎜ ⎟ε ε⎝ ⎠

D      (2.18) 

The transmittance T for p-polarization is  

  
2

1111

*

11

1
)/Re(
)/Re(

)/Re(
)/Re(

Mk
k

tt
k

k
T

z

NNz

z

NNz
ε
ε

=
ε
ε

=     (2.19) 

whereas the expression for the reflectance R is the same as given in Equation (2.17). It 

should be pointed out that the reflectance is ill-defined when the first medium is lossy 

because of the coupling between the reflected and incident waves (Zhang, 1997). 

However, Equations (2.8) to (2.19) are applicable if the last medium is lossy. 

 

2.3 The Mechanism of Photon Tunneling 

The mechanism of photon tunneling is related to total internal reflection. Total 

internal reflection occurs when a beam is incident from an optically denser material to 

another material at incidence angles greater than the critical angle determined by the ratio 

of the refractive indices of the two materials. Under this condition, no energy is transfer 

into the second medium, but there exist electromagnetic fields (evanescent waves) that 

decay exponentially away from the interface. When a third medium with sufficiently 

large refractive index is placed close to the first medium such that the second medium 

becomes a thin layer, photons can tunnel through the second medium into the third. This 

phenomenon is called photon tunneling, or radiation tunneling. The tunneled energy, 

however, is significant only when the thickness of the second medium is comparable or 

smaller than the wavelength of the incident beam. To be illustrative, consider the case 

shown in Figure 2.5(a) where a beam is incident from a semi-infinite medium (medium 
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1) with incidence angle 1θ . The thickness of the second medium is d2 and the third 

medium is another semi-infinite medium. The transmittance of the three-layer structure 

can be calculated using the matrix formulation. Assume that both medium 1 and  
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Figure 2.5 Photon tunneling in a three-layer structure: (a) Schematic of the structure 

and (b) Transmittance by photon tunneling. 
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medium3 are nonmagnetic and with the same refractive index 5.131 == nn  and medium 

2 is a vacuum gap, 1θ  should be greater than the critical angle o
1

1 42)/1(sin ≈=θ − nc  

for photon tunneling to occur. Setting o
1 45=θ , the transmittance of the three-layer 

structure is shown in Figure 2.5(b) as a function of λ/2d , where λ is the wavelength of 

the incident wave, and for both s- and p-polarizations. For a given wavelength λ, the 

strong dependence of the transmittance on the second layer thickness d2 is clearly seen. 

The rapid decrease of T with increasing 2d  is because evanescent waves from the first 

interface decay exponentially with 2d  inside the second medium. The exponential decay 

makes T insignificant for d2 > λ. But under conditions that d2 << λ, energy transfer by 

photon tunneling is tremendously significant and is the key in photon scanning tunneling 

microscopy (Reddick et al., 1990; Shen et al., 2000) and in micro/nanoscale radiation 

heat transfer (Pendry, 1999; Whale and Cravalho, 2002; Narayanaswamy and Chen, 

2003).  

 

2.4 Fundamentals of the Fluctuational Electrodynamics 

The importance of photon tunneling for micro/nanoscale radiation heat transfer 

has been discussed above. Here the question is how to calculate the net heat flux between 

two thermally emitting bodies at different temperatures and separated by small spacing. 

From a classic point of view, thermal emission from a body of temperature T covers all 

the frequencies from zero to infinity and propagates in any directions viewed by the 

emitting surface. The famous Stefan-Boltzmann law has been the standard tool to 

calculate the net heat transfer between two radiating bodies with the separation distance 



 20

 
 

je, jm

E

z

Tje, jm

E

z

T
 

(a)  

 

 

R

ε2,T2

k1

K

k1z

vacuum

ε1,T1

d

z

R

ε2,T2

k1

K

k1z

vacuum

ε1,T1

d

z
 

(b) 

 
Figure 2.6  Illustration of (a) the mechanism of thermal radiation from a body of 

temperature T and (b) Coordinate system used in of the calculation of 
near-field heat transfer between two semi-infinite media separated by a 
vacuum gap of thickness d.   
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much greater than the characteristic emission wavelength given by Wien’s displacement 

law (Siegel and Howell, 2002). The regime in which radiation heat transfer can be 

calculated by the Stefan-Boltzmann law is categorized as the far-field regime. The 

Stefan-Boltzmann law breaks down when the separation distance between two radiating 

bodies become comparable or smaller than the characteristic wavelength, which is in the 

near-field regime, due to wave interfere effect and photon tunneling (Born and Wolf, 

1999).  

The fluctuational electrodynamics is used in this thesis to calculate near-field 

radiation heat transfer. The fundamentals of this method are explained in the following 

paragraphs. 

Thermal radiation from a body of temperature T is schematically illustrated in 

Figure 2.6(a). It is electromagnetic radiation from fluctuating electric and magnetic 

current densities ),( te rj  and ),( tm rj , which is caused by random thermal fluctuation in 

the body. ),( te rj  and ),( tm rj  expressed in the frequency space can be done by Fourier 

transformation, denoted by ),( ωrje  and ),( ωrjm  here. The electric field E and magnetic 

field H of the thermal radiation are related to the sources ),( ωrje  and ),( ωrjm by 

Maxwell’s equations as (Rytov, 1987) 

),(0 ω−µωµ=×∇ rjHE mi       (2.20) 

and  ),(0 ω+εωε−=×∇ rjEH ei       (2.21) 

For nonmagnetic materials, 1=µ  and 0=mj . The rest of the derivation will only for 

nonmagnetic materials for simplicity and for the reason that magnetic materials are not 

considered in this thesis as thermal sources. Therefore, the subscript “e” will be neglected 
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in the current density. From Equations (2.20) and (2.21), the electric field ),( ωrE  and 

magnetic field ),( ωrH can be expressed using the dyadic Green function as 

  ∫ ′ω′⋅ω′ωµ=ω
V

di rrjrrGrE ),(),,(),( 0     (2.22) 

  ∫ ′ω′⋅ω′×∇=ω
V

drrjrrGrH r ),(),,(),(     (2.23) 

where ),,( ω′rrG  is the dyadic Green function of the electric field at point r from a 

source at point ′r  and V denotes the volume of the emitting body.  

The energy density of the emitted electromagnetic field can be calculated from 

(Mandel and Wolf, 1995; Joulain et al., 2000) 

  ),(),(),(),(),( *
0

*
0 ω⋅ωµ+ω⋅ωε=ω rHrHrErEru   (2.24) 

where ><  denotes the average of an ensemble of realizations of the random currents. 

Note that the definition of the energy density above is 4 times the conventional definition 

because the frequencies considered here are only for positive values such that the signals 

are analytic (Mandel and Wolf, 1995; Joulain et al., 2000). Substituting Equations (2.22) 

and (2.23) into Equation (2.24), the ensemble average will be taken on the spatial 

correlation function of the fluctuating currents. This quantity is given by the fluctuation-

dissipation theorem (Rytov, 1987) 

  )(
),()(

),(),( 0* rrrr ′′−′δδ
π

ωΘωε ′′ωε
=ω′′ω′ mnnm

T
jj   (2.25) 

where )(ωε ′′  is the imaginary part of the dielectric function of the emitting body, mnδ  is 

the Kronecker delta function,  )( rr ′′−′δ  is the Dirac delta function, and ),( TωΘ  is given 

by [ ]1)/exp(/ −ωω Tk Bhh . 
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For the emitted energy flux, it is expressed as (Loomis and Maris, 1994; Mulet, et al., 

2002) 

  )],(),(Re[2),( * ω×ω=ω rHrErS      (2.26)  

Again, the ensemble average will be taken on the spatial correlation function of the 

fluctuating currents when Equations (2.22) and (2.23) are substituted into Equation (2.26).  

In the case that thermal emission is from a semi-infinite medium 1 to a semi-

infinite medium 2 with a vacuum gap of thickness d in between and the two interfaces are 

smooth and are parallel to each other, as shown schematically in Figure 2.6(b), the dyadic 

Green function can be taken as (Sipe, 1987; Shchegrov et al., 2000; Mulet et al., 2002) 

  ( ) ( )∫ ×+
π

=ω′ 112212
1

2
ˆˆˆˆ1

8
,, ppssrrG ps

z
tt

k
i  

 ( ) ( )[ ] KRRK dizikzik zz ′−′− expexp 12     (2.27) 

where zRr ˆz+=  with R  parallel to the surfaces, the wavevector zKk ˆˆ
jzj kK += , the 

unit vectors zKs ˆˆˆ ×=  and ( ) jjzj kkK /ˆˆˆ Kzp −= , ck jj /εω= , and 22 Kkk jjz −= , 

and st12  and pt12  are the transmission coefficients from medium 1 to medium 2 for the s- 

and p-polarizations, respectively. Note that if thermal emission is only from medium 1 to 

vacuum, then st12  and pt12  are simply replaced with the Fresnel coefficients of 

transmission from medium 1 to vacuum for the s- and p-polarizations. Inserting Equation 

(2.27) into Equations (2.22) and (2.23) and together with Equations (2.24) and (2.25), the 

energy density emitted from a semi-infinite medium into vacuum can be expressed as 

(Joulain et al., 2000) 



 24

  ),(),(),( ω+ω=ω zuzuzu evanprop  

   
( )

∫
ω −−

π

ωωΘ
=

c
p

v
s

v

vz

rr
k

KdK
c
T /

0

2
1

2
1

22 2
||||2),(  

   
( )

∫
∞

ω

− +

ωπ

ωΘ
+

c

p
v

s
v

vz

zk rr
k

dKKeT vz

/
11

3)Im(2

2 2
)Im()Im(

||
),(   (2.28) 

where vzk  is z-component of the wavevector in vacuum given by 222 )/( Kckvz −ω= , 

s
vr 1  and p

vr 1  are the reflection coefficients from vacuum to medium 1, ),( ωzu prop  and 

),( ωzuevan  are the contributions to the energy density from propagating waves and 

evanescent waves, respectively. ),( ωzu  in Equation (2.28) does not depend on x and y 

because the emitting surface of medium1 is assumed infinite in these two directions. The 

spectral energy flux from medium 1 to medium 2 is calculated from Equation (2.26) as 

  
1

|),(21, Tz dSq ω=′′ +−ω        (2.29) 

Using the dyadic Green function, it has been shown that (Mulet et al., 2002) 
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Note that 21, −ω′′q  in Equation (2.30) includes the contributions from both propagating 

waves and evanescent waves (photon tunneling). A similar expression can be obtained to 

evaluate 12, −ω′′q . The net total energy flux is the integration of 12,21, −ω−ω ′′−′′ qq  over all 

frequencies from 0 to infinity, 

  ω′′−′′=′′ −ω
∞

−ω∫ dqqqnet )( 12,0 21,       (2.31) 

Equation (2.31) will be used to compute the radiation heat transfer in both far-field and 

near-field. It should be noted that angular frequency ω  is chosen for convenience in the 

dielectric function and the fluctuational electrodynamics formulation. Table 2.1 provides 

the conversion of units so that the results can be understood in terms of frequency, wave 

number, or wavelength.  

 

Table 2.1 Conversion of values between angular frequency ( ω) and frequency ( ν ), 
wave number ( η), and wavelength ( λ ) 

 

ω (rad/s) 1012 1013 1014 1015 

ν = ω/2π (Hz) 1.592⋅1011 1.592⋅1012 1.592⋅1013 1.592⋅1014 

η = ω⋅0.01/2πc (cm-1) 5.305 53.05 503.5 5035 

λ = 2πc⋅106/ω (µm) 1885 188.5 18.85 1.885 
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CHAPTER 3 
PHOTON TUNNELING IN MULTILAYER  

STRUCTURES INCLUDING NEGATIVE INDEX MATERIALS 
 
 
 

It has been shown in Chapter 2 that photon tunneling can be important for 

radiation energy transfer between two closely spaced media. But the energy transfer by 

photon tunneling is significant only for the separation distance between the two media 

being comparable or smaller than the characteristic wavelength due to the exponential 

decay of evanescent waves in the spacing between the two media. It has been shown 

(Pendry, 2000) that an NIM slab with  ε = µ = −1 for a lens not only performs the 

function of correcting the phase of the propagating components, but can amplify the 

evanescent components of the signal from an object. The combined effects could make 

the NIM a perfect lens that eliminates the limitations on image resolution imposed by 

diffraction for conventional lenses. Motivated by the idea of a perfect lens, it is easy to 

think that an NIM can be used to improve photon tunneling efficiency. 

In this chapter, the problem of energy transmission by photon tunneling is studied. 

It is assumed that photon tunneling is between two semi-infinite dielectrics with flat 

surfaces and separated by a vacuum gap. In order to see whether the photon tunneling 

efficiency is enhanced by an NIM, an NIM layer is assumed to insert into the vacuum gap 

that separate the two dielectrics. Different values of ε  and µ  of the NIM will be studied 

including the perfect lens case ( 1−=µ=ε ), a non-ideal lossless NIM and frequency- 

dependence and loss of ε  and µ . Different arrangements and number of NIM layers will 

also be investigated. For the purpose of convenience, the modified matrix formulation, 
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which has been described in Chapter 2, will be employed to calculate the transmittance of 

the multilayer structure. 

 

3.1 The Case of Perfect Index Matching  

The perfect lens proposed by Pendry (2000) is an NIM slab of 1−=µ=ε , which 

results in the refractive index 1−=n . In order to see the effect of an NIM slab on photon 

tunneling, consider the following four-layer (N = 4) structure as shown in Figure 3.1(a). 

The first and last media are semi-infinite dielectric with 1 4 2.25ε = ε =  ( 5.141 == nn ). 

There are two intermediate layers: layer 2 is a vacuum gap of thickness 2d  and layer 3 is 

made of an NIM of thickness 3d . In the present study, 133 −=µ=ε . For radiation from 

medium 1, the incidence angle should be greater than the critical angle 

o
1

1 42)/1(sin ≈=θ − nc  in order for photon tunneling to occur. Note that without the 

NIM layer, the structure restores to the case of Figure 2.5(a) and the transmittance for the 

incidence angle o
1 45=θ  has been shown in Figure 2.5(b).  

When the NIM layer is employed, the transmittance of this layered structure is 

recalculated and plotted in Figure 3.1(b). λ  in the figure is assumed the wavelength 

where 111 −=µ=ε . Very different result is found. The transmittance reaches a 

maximum of unity at 23 dd =  and decreases rapidly as the difference between 3d  and 

2d  increases. The maximum transmittance, however, is independent of the incidence 

angle 1θ . This means as long as the condition 23 dd =  is satisfied, the maximum 

transmittance of unity is obtained regardless of the values of 2d ,  3d , and 1θ . Therefore, 

the NIM layer can significantly enhance the transmittance (Zhang and Fu, 2002). 
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Figure 3.1 Photon tunneling enhanced by an NIM layer: (a) Schematic of a four-layer 

structure and (b) The transmittance as a function of λ− /)( 23 dd  of the 
structure with optical parameters indicated. 
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Figure 3.2   The evanescent fields in media 2 and 3 (for TE wave), with ,5.141 == nn  
,141 =µ=µ  and an incidence angle °=θ 451 : (a) 23 dd = ; (b) 23 dd < ; 

(c) 23 dd > . 
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To understand whether the evanescent wave decays or grows in the NIM, the field 

strength )(zE  has been calculated from Equation (2.8) using the coefficients obtained 

from Equation (2.9). The results, normalized to the incident electric field strength iE , 

are shown in Figure 3.2 for λ= 32d  and λλλ= 4 and ,2 ,33d . In Figure 3.2 (a), the field 

strength increases in medium 2 and reaches a peak at the interface between media 2 and 3. 

However, it decreases in the NIM (medium 3). The symmetry with respect to the 

interface makes the field strength at λ= 6z  the same as that at z = 0. The shape is the 

same when the materials of media 2 and 3 are interchanged. Hence, it is the combination 

of the NIM with a matching PIM that causes the amplitude of evanescent waves to first 

increase and then decrease by the same amount. When 23 dd ≠ , the field strength at the 

interface between media 3 and 4 is much lower than that at the interface between media 1 

and 2. Hence, the transmittance decreases as the difference between 3d  and 2d  increases 

(see Figure 3.1). The field strength for a p-polarized wave exhibits the same trend as that 

for an s-polarized wave with somewhat different values. 

 

3.2 A Non-Ideal Lossless NIM  

 In order to better understand the capability of an NIM to enhance photon 

tunneling, a non-ideal lossless NIM has also been studied. For easier discussion, the 

transmission coefficient t calculated from Equation (2.15) for a four-layer structure can 

be expanded and expressed in a compact form as (Fu and Zhang, 2003)   

1 1 2 2
1 2 3 4

8
i i i it

e e e e− ψ ψ − ψ ψ=
ξ + ξ + ξ + ξ

     (3.1)  
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In the above equation, the phase angles 1ψ  and 2ψ  are the same for both s- and p-

polarizations, which can be expressed as 

33221 dkdk zz +=ψ        (3.2a) 

 and  33222 dkdk zz −=ψ        (3.2b) 

For s-polarization, the coefficients in Equation (2.11) are 

3 2 4 32 1
1

1 2 2 3 3 4
1 1 1z zz

z z z

k kk
k k k

⎛ ⎞⎛ ⎞⎛ ⎞ µ µµ
ξ = + + +⎜ ⎟⎜ ⎟⎜ ⎟µ µ µ⎝ ⎠⎝ ⎠⎝ ⎠

    (3.3a) 

3 2 4 32 1
2

1 2 2 3 3 4
1 1 1z zz

z z z

k kk
k k k

⎛ ⎞⎛ ⎞⎛ ⎞ µ µµ
ξ = − + −⎜ ⎟⎜ ⎟⎜ ⎟µ µ µ⎝ ⎠⎝ ⎠⎝ ⎠

                                   (3.3b) 

3 2 4 32 1
3

1 2 2 3 3 4
1 1 1z zz

z z z

k kk
k k k

⎛ ⎞⎛ ⎞⎛ ⎞ µ µµ
ξ = + − −⎜ ⎟⎜ ⎟⎜ ⎟µ µ µ⎝ ⎠⎝ ⎠⎝ ⎠

    (3.3c) 

and  3 2 4 32 1
4

1 2 2 3 3 4
1 1 1z zz

z z z

k kk
k k k

⎛ ⎞⎛ ⎞⎛ ⎞ µ µµ
ξ = − − +⎜ ⎟⎜ ⎟⎜ ⎟µ µ µ⎝ ⎠⎝ ⎠⎝ ⎠

    (3.3d) 

For p-polarization, the coefficients can be obtained by replacing the µ ’s in Equation (3.3) 

with the corresponding ε ’s. Note that Equations (3.1) – (3.3) are derived directly from 

the matrix formulation without any further assumptions so that they are applicable to both 

propagating waves and evanescent waves and the transmittance T is still Equation (2.16) 

for s-polarization and Equation (2.19) for p-polarization. 

The four-layer structure studied in this section is the same as that in section 3.1 

except that the refractive index of the NIM layer (the third layer) is assumed to have a 

small deviation from −1. For convenience, µ3 is assumed equal to –1 and the effect of 

changing 3n  (equivalent to changing 3ε  because 13 −=µ , 2
33 n−=ε ) about –1 on the 
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transmittance is investigated. The effects of 2 /d λ  and 3 2/d d  are also investigated to see 

if there exist optimized combinations that result in maximum tunneling transmittance. 
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Figure 3.3   The polarized transmittance versus the incidence angle 1θ  for       

2 / 1,  2 / 3, and 1/ 2d λ = , where 3 0.99n = −  and 23 dd = . 
 
 
 

When 3 0.99n = − , the transmittance by photon tunneling is shown in Figure 3.3 

as a function of the angle of incidence for different 2 /d λ  values when 3d  is equal to 2d . 

A slight deviation of 3n  from –1 will cause a significant reduction in the transmittance, 

especially at large incidence angles and for short wavelength (as compared to 2d ). The 

reduction of transmittance indicates that part of the energy is reflected back to medium 1. 

It is reasonable to expect that when 3 2n n≠ − , the transmittance may not be maximum 
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when 3 2d d= . To demonstrate this, the transmittance as a function of the ratio 3 2/d d  is 

shown in Figure 3.4 for different 3n  values. Here, the incidence angle is equal to 45o and 

the wavelength is equal to 2d . When 3 0d = , the results approach the corresponding 

cases without the NIM layer, in which case, the transmittance decreases rapidly as 2d  

increases for any given wavelength. Obviously, the use of a NIM can increase the 

transmittance. From Figure 3.4, it can be seen that the peak transmittance occurs at 3d  

values much different from 2d . However, the peak transmittance is much smaller than 

unity when 3 0.95n = − . 
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Figure 3.4 The polarized transmittance versus 3 2/d d  for n3 = −0.99, −0.98, and 
−0.95, where 2 / 1d λ =  and 1 45θ = ° . 
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An intriguing question is how to achieve the maximum tunneling transmittance 

for given 3n  values but there exists no simple relation. To determine max,3d  that yields 

the peak transmittance for given values of 3n  and 1θ , we set the partial derivative of T in 

Equations (2.16) and (2.19) with respect to 3d  equal to zero and obtained the following 

expression for both polarizations: 

1 3
3,max

3 2 4

1 ln
4 z

C Cd
ik C C

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

      (3.4) 

where  ( )2 2 2 2
2

1 1 4Re( ) Re( )z zik d ik dC e e−= ξ + ξ      (3.5a) 

( )2 2 2 2
2

2 4 1Re( ) Re ( )z zik d ik dC e e−= ξ + ξ                                         (3.5b)       

( )2 2 2 2
2

3 1 4Im ( ) Im ( )z zik d ik dC e e−= ξ + ξ      (3.5c) 

and   ( )2 2 2 2
2

4 4 1Im ( ) Im ( )z zik d ik dC e e−= ξ + ξ      (3.5d) 

Here, Re and Im take the real part and the imaginary part of a complex number, 

respectively. Notice that 2zik  and 3zik  are real since both 2zk  and 3zk  are purely 

imaginary, and *
1 2ξ = ξ  and *

3 4ξ = ξ . Figure 3.5 shows 3,maxd  versus n3 for both s- and p-

polarizations at different incidence angles and for different 2 /d λ  ratios. In this figure, n3 

changes from –1.05 to –0.95. If 3 1n = − , 3,max 2d d=  regardless of the other parameters. 

When 3n  is close to –1, 3,maxd  may be greater or less than d2 to obtain the peak 

transmittance. As the deviation of 3n  from 1−  becomes large, however, 3,maxd  is always 

less than 2d . The corresponding peak transmittance is shown in Figure 3.6. The  
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Figure 3.5 3,max 2/d d  versus 3n  for different 2 /d λ  and 1θ : (a) s-polarization; (b) p-
polarization. 
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Figure 3.6 The peak transmittance as a function of 3n  for different 2 /d λ  and 1θ : (a) 
s-polarization; (b) p-polarization. 
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transmittance is always less than unity as long as 32 nn −≠  and decreases rapidly as n3 

deviates further away from –1, especially at large incidence angles. 

 

3.3 The Effect of the NIM Layer on the Hemispherical Transmittance 

The transmittance given in Equations (2.16) and (2.19) is categorized as the 

directional spectral transmittance. The hemispherical spectral transmittance, or simply 

hemispherical transmittance, is defined as (Siegel and Howell, 2002) 

 / 2  2
, 1 1 1 1 1 1 1 0  0

 /2  2
, 1 1 1 1 1 1 0  0

( , ) ( )sin cos

( , ) sin cos

i
h

i

I T d d
T

I d d

π π
λ

π π
λ

θ φ θ θ θ θ φ
=

θ φ θ θ θ φ

∫ ∫
∫ ∫

    (3.6) 

where iI ,λ  is the spectral intensity of the incoming radiation, which is assumed to be 

randomly polarized, 1( )T θ  is the average of the transmittance obtained for s- and p-

polarizations from Equations (2.16) and (2.19), respectively. Because all layers are 

isotropic, 1( )T θ  is independent of the azimuthal angle 1φ . If the radiation is incident 

uniformly from all over the hemisphere, such as in the case of a blackbody, the intensity 

is independent of 11  and φθ . Hence, the hemispherical transmittance is  

 / 2
1 1 1 1 0

2 ( )sin coshT T d
π

= θ θ θ θ∫      (3.7) 

The contribution of propagating waves can be obtained by setting the upper integration 

limit to the critical angle θc, and the contribution of photon tunneling or evanescent waves 

can be obtained by setting the lower integration limit to θc. 

 In the ideal case 3 1n = − , the calculated hemispherical transmittance is shown in 

Figure 3.7 as a function of 3 2/d d , for 2d = λ . Here, λ  is the wavelength corresponding  
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Figure 3.7 The hemispherical transmittance of the layered structure versus 
λ− /)( 23 dd  with an NIM of 3n = –1, where  and prop evanT T  denote the 

transmittance by propagating waves and by photon tunneling, respectively, 
and evanproph TTT +=  is calculated from Equation (3.7). 

 
 
 

to 111 −=µ=ε . When cθ<θ1 , there exist propagating waves in all layers and 

interferences in the intermediate layers cause the oscillation in the transmittance. When 

cθ>θ1 , the transmission of radiative energy is through photon tunneling. In the case 

when 3 2d d= , the phase shifts of propagating waves through layers 2 and 3 cancel each 

other, and no energy is reflected back to medium 1. For cθ>θ1 , all the incident energy 

is transmitted by photon tunneling when 3 2d d= . This is because the amplitude increases 

and decreases by exactly the same amount in layers 2 and 3, respectively. Therefore, the 
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hemispherical transmittance becomes 1 when 3 2d d= . When 3 0d = , the situation is the 

same as that without the NIM. The hemispherical transmittance vs. 2 /d λ  is shown in 

Figure 3.8. The transmittance approaches 1 when 2d << λ . As 2d  increases, the 

contribution of photon tunneling decays rapidly and becomes negligible when 2d ≈ λ . 

By comparing Figures 3.7 and 3.8, it is clear that the insert of a NIM can greatly enhance 

photon tunneling and increase the hemispherical transmittance. 
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Figure 3.8  The hemispherical transmittance of the layered structure, without the NIM 

layer, as a function of 2 /d λ . The contribution of photon tunneling is 

negligible if 2 /d λ  > 1. 
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Figure 3.9 The hemispherical transmittance versus 3 2/d d  for 3n = –0.99: (a) 

2 / 1d λ = ; (b) 2 / 1/ 2d λ = . 



 41

When 3n  is slightly different from –1 (say, 99.03 −=n ), some radiation will be 

reflected back to medium 1. There exist two critical angles, 2,cθ  and 3,cθ . The difference 

between them is very small for a small deviation of 3n  from –1. When 1θ  falls in 

between the two critical angles, the transmitted radiative energy is negligible unless the 

width of the layer, where an evanescent wave exists, is much smaller than the wavelength. 

The calculated hT  is shown in Figure 3.9 (a) for 2d = λ  as a function of 3 2/d d . It can be 

seen that the contribution of photon tunneling to the spectral hemispherical transmittance 

decreases dramatically due to a slight variation of 3n  from –1.  For 2d = λ , the 

transmittance by photon tunneling evanT  reaches its maximum at about 3 20.55d d= , and 

it only accounts for about 10% of the hemispherical transmittance hT . The maximum 

transmittance by propagating waves propT  is obtained at 3 21.05d d=  as a result of the 

wave interference. The phase lags of all propagating waves through layers 2 and 3 cannot 

be completely cancelled out in this case. When 2 0.5d = λ  as shown in Figure 3.9 (b), 

however, the contribution to the transmittance by photon tunneling is comparable to that 

by propagating waves at 3d  near 20.8d , where a peak hemispherical transmittance of 

0.76 can be obtained. 

 

3.4 Considering the Dispersion and Loss of an NIM 

It has been shown that ε and µ of an NIM must be inherently dependent on the 

frequency (Veselago, 1968). Both ε and µ are in general complex, absorption and losses 

can be significant. All the case studied above did not consider the effect of dispersion and 

loss on photon tunneling. Therefore, the frequency-dependent complex ε and µ  are 
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considered in this section, and the physical mechanism for the enhanced photon tunneling 

is analyzed in terms of the excitation of a surface plasmon resonance.  

The frequency-dependent ε  and µ  of the NIM are taken as Equations (2.5) and 

(2.6), respectively. In the present study, the following parameters are chosen as 

pω=ω 5.00 , F = 0.785, and γ=γ=γ me  with γ  allowed to vary from zero to a small 

fraction of pω . Because of the scaling capability of the metamaterial (Yen, 2004), the 

frequency is normalized to pω  in all the calculated results. The complex refractive index 

)(~ ωn of the NIM is then calculated from Equation (2.7) and the calculated n and κ are 

plotted in Figure 3.10 as functions of the dimensionless frequency pωω /  for γ equal to   
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Figure 3.10 Refractive index n  and extinction coefficient κ of an NIM, calculated 
from Equations (2.5) − (2.6) as functions of the dimensionless frequency 
ω/ωp. The dashed line shows the κ values multiplied by 100. 
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Figure 3.11 Spectral transmittance of a four-layer structure at 45° incidence angle: (a) 
s-polarization; (b) p-polarization. The transmittance without an NIM layer 
(d3 = 0) is also shown for comparison. 
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pω0025.0 . It can be seen that in the frequency range from 0ω  to pω , where the real 

parts of ε and µ are negative, n is negative and κ  (for small values of γ) is small at 

frequencies not too close to ω0.  

Still consider the four-layer structure similar to that used in previous sections 

except that 3ε  and 3µ  of the NIM are calculated from Equations (2.5) and (2.6). The 

calculated spectral transmittance at o45  angle of incidence is plotted in Figure 3.11, for 

pω=γ 0025.0  and pω00025.0 , and compared with the case without the NIM layer (d3 = 

0). The vacuum gap width (d2) and the NIM layer thickness (d3) are both set to 0.85λp, 

where pp c ωπ=λ /2  is the wavelength corresponding to the plasma frequency. The 

dimensionless approach allows the results to be scalable toward different electromagnetic 

spectral regions, once suitable negative index materials are available. For both 

polarizations, the transmittance oscillates in the frequency range from 0.5 < ω/ωp < 0.7, 

with a distinct peak between 0.65 and 0.68, and then goes to zero abruptly. The 

oscillation in the transmittance at ω/ωp < 0.65 is due to the interference of propagating 

waves inside the NIM layer, coupled with the photon tunneling transmission through the 

vacuum gap. On the other hand, the peak transmittance is due to the excitation of a 

surface plasmon polariton (SPP) at the interface between the vacuum and NIM. 

A surface plasmon polariton (SPP) is a coupled, localized electromagnetic wave 

that propagates along the interface of two different media. The fields extend into both 

media and decay exponentially away from the interface (Raether, 1988; Wallis, 1985). 

The dispersion relations of SPPs at the interface of vacuum (layer 2) and an NIM (layer 3) 

are given by the following equations if loss in the NIM is negligible (Ruppin, 2000). 
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β

+
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where lβ  is positive and related to the wave vector by ( ) 2/1222 / ck llxl ωµε−=β , l = 2 or 

3. For β to be positive, lzk  must be purely imaginary. Another necessary criterion for 

surface polarition to exist is that 03 <µ  for s-polarization and 03 <ε  for p-polarization.  

0.5

0.55

0.6

0.65

0.7

0.75

0 1 2 3 4 5

ω
/ω

p

k
x
c/ω

p

p-polarization

s-polarization

ω = k
x
c

/ 2pω = ω

0 2 /(2 )Fω = ω −

 

Figure 3.12 Dispersion curves of SPPs excited at the interface of a semi-infinite 
vacuum and a semi-infinite NIM, where ε  and µ  for the NIM are 
calculated from Equations (3.8) and (3.9) with 0γ = . 
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The simultaneous negative ε and µ in an NIM allow SPPs to be excited for both 

polarizations in the same frequency region. The dispersion relations of SPPs at the 

interface of vacuum and an NIM are plotted in Figure 3.12 using Equations (3.8) and 

(3.9). Note that ε and µ for the NIM in Equations (3.8) and (3.9) are calculated from 

Equations (2.5) and (2.6) with neglecting γ . The straight line in Figure 3.12 represents 

the dispersion relation for a propagating electromagnetic wave in vacuum; the s- and p-

polarized SPP dispersion curves lie entirely to the right of this line and approach the 

asymptotical values corresponding to 1−=ε  and 1−=µ of the NIM, respectively. 

Applying Equations (3.8) and (3.9) to the four-layer structure and rewrite the SPP 

dispersion relations in terms of the incidence angle θ1, under the assumption that γ = 0, 

one obtains 

  
2/1

2
3
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2
3

1
1

1
1sin ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−µ

εµ−µ
=θ

n
, for s-polarization   (3.10) 

and  
2/1

2
3

33
2
3

1
1

1
1sin ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−ε

µε−ε
=θ

n
, for p-polarization   (3.11) 

These two equations link the frequency sppω  at which SPPs may be excited with the 

incidence angle. Table 3.1 compares the sppω  calculated from Equations (3.10) and (3.11) 

at different incidence angles with the frequency at which the transmittance is maximum 

for the case with γ = 0.0025ωp. The agreement is very good, especially at larger incidence 

angles. The small deviation at 1θ  close to the critical angle cθ  is caused by the 

disturbance of end layers because the derivation of Equations (3.10) and (3.11) assumes 

that the vacuum gap and the NIM layer extend to infinity. The effect of nonzero γ on 
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sppω  is negligibly small because the small value of γ used. Nevertheless, γ can affect the 

magnitude of the transmittance and reducing γ can increase the transmittance. These 

sharp peaks of transmittance due to SPP excitations suggest a possible way to build new 

optical resonators, similar to the Fabry-Perot resonators (Yeh, 1988; Kumar et al., 2000), 

which have important applications in optoelectronics and optical communications. 

 
 

Table 3.1  Comparison of the SPP resonance frequency ωspp calculated from Equations 
(3.10) and (3.11) to the resonance frequency obtained from the 
transmittance maximum for the four-layer structure. 

 

ωspp /ωp for s-polarization ωspp /ωp for p-polarization Incidence 
angle 

 Equation (3.10) Transmittance 
maximum Equation (3.11) Transmittance 

maximum 

42o 0.66600 0.66350 0.66650 0.66550 

45o 0.66325 0.66175 0.67075 0.67025 

50o 0.65975 0.65925 0.67625 0.67625 

55o 0.65750 0.65725 0.68025 0.68050 

60o 0.65550 0.65550 0.68325 0.68350 

 
 
 

Because both d2 and d3 are finite, the matching of thickness is critical for 

transmittance enhancement. In the lossless case, 3322 dd β=β  has been shown to be a 

phase matching condition (Zhang and Fu, 2002; Fu and Zhang, 2003) because it will 

result in a transmittance of unity. When loss is included, an optimum value of d3 that 

results in maximum transmittance still exists but the optimization condition can no longer  
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Figure 3.13 Peak transmittance of the 4-layer structure versus the thickness of the NIM 
for incidence angle of 45o and when d2 is fixed at 0.85λp: (a) s-polarization; 
(b) p-polarization. The squares correspond to the transmittance calculated 
at ωspp = 0.66175ωp for s-polarization and ωspp = 0.67025ω p for p-
polarization. 
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be expressed by such a simple relation. The maximum transmittance of the four-layer 

structure as a function of d3 is shown in Figure 3.13 for different γ values, where the 

vacuum gap width is fixed to pd λ= 85.02 . The squares denote the transmittance 

calculated at the frequency equal to sppω  = 0.66175ωp for s-polarization and sppω  = 

0.67025ωp for p-polarization. The deviation of the squares from the solid curve is due to 

the disturbance of the end layers that shifts the polariton resonance frequency slightly. 

The value of d3 that results in a maximum transmittance depends on the polarization 

because the SPP frequencies are different. As d3 increases, the transmittance first 

increases, reaches a maximum at a certain d3, and then decreases when d3 is further 

increased. Using 3223 / ββ= dd  and under the lossless condition, the estimated optimal 

thickness pd λ= 02.13  for s-polarization and pλ7.0  for p-polarization, close to values 

for pω=γ 00025.0  as shown in Figure 3.13. As γ is increased to 0.0025ωp, the optimal d3 

decreases, indicating that absorption in the NIM layer shifts the optimal thickness d3 to a 

smaller value. 

 

3.5 Employing NIMs in a Multilayer Structure of More than Four Layers  

Polaritons can be excited at both surfaces of the NIM slab (Ruppin, 2001). Both 

surface and bulk polaritons may play a role to affect the radiative properties (Park et al., 

2004). To explore the effect of double-surface polaritons and bulk polaritons on photon 

tunneling, a five-layer structure can be constructed by subdividing the vacuum gap into 

two layers, each having half of the thickness, that sandwich the NIM layer. The total 

thickness of the vacuum gaps and thickness of the NIM layer remain at 0.85λp, the same  
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Figure 3.14 The transmittance spectra of a 5-layer structure for γ = 0.0025ω p. In (a) 
and (b), the vacuum gap (VG) is equally divided into two layers 
sandwiching the NIM layer. The total thickness of the VGs and the 
thickness of the NIM layer are the same as in Figure 4, i.e., 0.85λ p. In (c) 
and (d), the NIM layer is equally divided into two layers that sandwich the 
VG.  
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as in Figure 3.11. The results for both s- and p-polarizations are plotted in Figure 3.14(a) 

for θ1 = 45o and 3.14(b) for θ1 = 60o. It can be seen from Figure 3.14(a) that the 

transmittance near the SPP frequency is increased remarkably compared with Figure 3.11. 

Furthermore, the full-width-at-half-maximum of the peak is significantly broadened. In 

particular, the peak at the SPP frequency for s-polarization has been split into two peaks. 

This change of the transmittance profile is because SPPs are excited at both surfaces of 

the NIM layer. The fields of the SPPs decay in opposite directions inside the NIM from 

both surfaces and can couple with each other, resulting in split of each polariton mode 

into two new ones (Raether, 1988; Ruppin, 2001). The split of the SPP mode depends on 

the field coupling strength. It follows that the split SPP modes tend to be more separated 

for a thinner NIM layer while they shift to each other for a thicker NIM layer and 

eventually the fields inside the NIM decouple and the split SPP modes restore when the 

NIM thickness approaches infinity. The broadening of the transmittance peak shown in 

Figure 3.14(a) is because the two split SPP modes are very close to each other, especially 

for p-polarization, such that the corresponding two peaks overlap. The field 

reinforcement inside the NIM due to the coupling gives rise to the large enhancement of 

the tunneling transmittance and this enhancement is more remarkable at larger incidence 

angles, such as the case shown in Figure 3.14(b) with the transmittance is over 20 times 

greater than that without an NIM layer.  

An alternative way to construct a five-layer structure is to place the vacuum gap 

in the middle and subdivide the NIM into two layers located between the vacuum gap and 

a dielectric. The transmittance of this five-layer structure is shown in Figures 3.14(c) and 

3.14(d) for an incidence angle equal to 45o and 60o, respectively. The label 
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NIM/VG/NIM indicates that the vacuum gap (VG) is between two subdivided NIM 

layers. In the calculation, the vacuum gap thickness and the total NIM thickness are still 

equal to 0.85λp. The transmittance features due to SPP excitation are similar to those seen 

in Figures 3.14(a) and 3.14(b), except that discernable split of the peak is for p-

polarization instead of s-polarization. On the other hand, when compared the 

transmittance spectra for ω/ωp < 0.6, large oscillation in the transmittance with a series of 

peaks can be seen in Figures 3.14(a) and 3.14(b) but not in Figures 3.14(c) and 3.14(d), 

where the transmittance is smaller and less oscillating. The reason for this difference is 

that the transmittance is enhanced in the case with VG/NIM/VG by the excitation of the 

waveguide modes or bulk polaritons inside the NIM layer, but there are no bulk 

polaritons in Figures 3.14(c) and 3.14(d). A bulk polariton can only be excited in a slab 

and is characterized by the fields decaying exponentially outside the slab but oscillating 

as a standing wave inside the slab. Therefore, a slab should have a larger refractive index 

than its surrounding media in order to sustain bulk polaritons; this is the case in Figures 

3.14(a) and 3.14(b). A detailed discussion of the dispersion relations of bulk polaritons 

can be found in the work of Park et al. (2004). The transmittance peaks for ω/ωp < 0.6 in 

Figures 3.14(a) and 3.14(b) correspond to the modes of bulk polaritons excited in the 

NIM slab. Bulk polaritons have important applications in integrated optical waveguides 

(Buckman, 1992) and for inducing resonant tunneling superlattices (Yeh, 1985). Figure 

3.14 demonstrates that an NIM slab which sustains bulk polaritons can enhance radiative 

energy transmission via photon tunneling.  

The focusing capability of an NIM slab has been the most promising application 

of these metamaterials. Challenges remain to reduce the losses in practical devices.  
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Figure 3.15 The transmittance spectra of multilayer structures with different numbers 
of layers at an incidence angle θ1 = 60o: (a) s-polarization, (b) p-
polarization. In each multilayer structure a VG and an NIM layer of the 
same thickness are alternately placed between the two end layers. The 
total thickness of the VGs is the same as the total thickness of the NIM 
layers and is set to 0.85λ p, the same as in Figures 3.11. 
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Ramakrishna et al. (2003) and Gao and Tang (2004) showed that the image resolution 

could be improved by dividing the NIM slab used in the imaging device into many 

thinner lamellae and it was thought that the subdivision would result in a reduced 

absorption in the NIM. Many thinner NIM layers, when placed alternatively with vacuum 

gaps, can cause stronger field coupling inside the structure when SPPs are excited. 

Therefore better enhancement of photon tunneling may be achieved. For instance, a 6-

layer structure can be made by dividing the vacuum gap and the NIM layer each into two 

sub-layers and placing them alternately between the two end dielectrics. A 10-layer 

structure can be constructed by doubling the number of vacuum gaps and NIM layers 

without increasing the total thicknesses. The transmittance of multilayer structures 

calculated using the matrix formulation is shown in Figures 3.15(a) for s-polarization and 

3.15(b) for p-polarization, at 60o incidence angle. Clearly, the transmittance increases 

after each division and the frequency range over which significant tunneling can be 

observed is greatly broadened by subdividing the layers. The subdividing process results 

in more bulk polaritons or SPPs being excited and coupling inside the structure. The 

dispersion relations of bulk and surface modes are very complicated when the structure 

consists of many layers. Nevertheless, when the layers between the two end dielectrics 

become thinner and thinner, the stronger SPP coupling will result in many splittings of 

the surface modes such that some modes shift to higher frequencies and broaden the 

passband while some other modes shift to lower frequencies and can transform to bulk 

polaritons (Park et al., 2004).  

In order to understand the radiative properties for both propagating modes and 

evanescent modes, the transmittance and absorptance at a single frequency pω=ω 665.0   
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Figure 3.16 The transmittance and absorptance of multilayer structures, with different 
number of layers, versus the incidence angle θ1. (a) s-polarization, (b) p-
polarization. The configurations are the same as corresponding ones in 
Figure 3.15 and the frequency is fixed at pω=ω 665.0 . 

 



 56

is plotted in Figures 3.16(a) for s-polarization and 3.16(b) for p-polarization, as a function 

of the incidence angle. When the incidence angle is smaller than the critical angle (42° in 

this case), the radiative properties are affected by multiple reflections and interferences of 

the propagating waves in the layered structure. Consequently, a decrease in transmittance 

is observed when the layer number is increased from 4 to 10, presumably due to the 

enhancement of reflectance as more boundaries are added. On the other hand, when the 

incidence angle is greater than the critical angle, bulk polaritons and surface polaritons 

may be excited and may interact with each other to enhance the electromagnetic field in 

the structure, resulting in an enhancement in the transmittance as the number of layer is 

increased. Increasing the magnitude of evanescent waves at the image plane is key to the 

improved image quality using NIM multilayer structures (Ramakrishna et al., 2003; Gao 

and Tang, 2004). Contrary to intuition, however, the enhancement in transmission is not 

necessarily due to a reduction of absorption by subdivision of the NIM layers. It can be 

seen from Figure 3.16 that the absorptance increases with the number of layers at large 

incidence angles, where the enhanced transmission of evanescent waves is associated 

with a reduction of reflection.  
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CHAPTER 4 
 

A COHERENT THERMAL EMISSION SOURCE BY PAIRING A LAYER OF 
NEGATIVE ε  WITH A LAYER OF NEGATIVE µ  

 
 
 

A coherent emission source, such as a laser or an antenna, is manifested by its 

emission being highly monochromatic and directional. In contrast, radiation from a 

thermal source, as illustrated in Figure 2.6(a), is produced by the randomly fluctuating 

electric (and magnetic, for magnetic materials) currents inside the thermal source. The 

EM waves emitted from the randomly fluctuating currents have a wide range of 

frequencies and propagate in many directions such that they cannot produce constructive 

interfere in particular directions. Therefore, a thermal source is usually presented as a 

typical example of an incoherent emission source. However, it has been demonstrated 

that by etching a periodic grating on the surface of heavily doped silicon (Hesketh et al., 

1986 and 1988), silicon carbide (SiC) (Greffet et al., 2002), and gold (Kreiter, 1999), 

thermal emission from the material can exhibit coherent properties in the optical or 

infrared region, producing lobes of radiation restricted to small solid angles and in well-

defined directions. Such a thermal source has much higher directional spectral emissivity 

at some particular frequencies and in some particular directions than a thermal source of 

the same material but without the grating, allowing more radiative energy to be emitted. 

Therefore, a coherent thermal emission source may have potential applications in 

“radiative cooling” and in infrared photovoltaic devices (Greffet et al., 2002). 

 The physical mechanism underlying the coherent thermal emission is due to the 

excitation of surface polaritons on the surface of the source material and the coupling of 

surface polaritons with thermal emission when diffracted by the grating. It has been 
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known from Chapter 3 that surface polaritons are evanescent and cannot couple directly 

with propagating waves because surface polaritons have a wavevector magnitude greater 

than that of the propagating waves. By etching a grating on the surface, however, surface 

polaritons can couple with propagating waves. The relation between the emission angle 

1θ  and the wavevector magnitude k  is given by the simple grating equation 

 
d

mkkSP
π

+θ=
2sin 1        (4.1) 

where m is an integer, SPk  is the wavevector magnitude of the surface polaritons and d is 

the periodicity of the grating. The existence of surface polaritons requires the source 

material to have a negative real part of the dielectric function. As a consequence, an EM 

wave incident on the surface of such a material will be highly reflected, denoted by a 

large value of the directional spectral reflectance R. From Kirchhoff’s law (Siegel and 

Howell, 2002), the directional spectral emissivity of the material R−=ε 1  (assuming an 

opaque material such that the transmittance T = 0) is small though surface polaritons are 

excited. With gratings, the excited surface polaritons couple with and enhance the 

thermal radiation in the direction imposed by Eq. (4.1) for a particular wavelength 

(frequency). But in other directions the directional spectral emissivity is kept in low 

values such that the emission spectra exhibit narrow angular emission lobes. The 

experimental results of Greffet et al. (2002) are shown in Figure 4.1 for illustration. 

Coherent thermal emission from a source as shown in Figure 4.1(a) is only for p-

polarization (emission with electric fields normal to the grooves of the grating) because 

normal materials do not support surface polaritons of s-polarization. In this chapter, a 

new type of coherent thermal emission source is proposed. 
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(a) 

 

(b) 

 

Figure 4.1 Coherent thermal emission from a grating: (a) geometry of the grating on 
the surface of a piece of SiC with periodicity d = 6.248 µm and depth h = 
0.284 µm (b) The experimental results of the directional spectral 
emissivity obtained from reflectance measurements at room temperature 
based on Kirchhoff’s law, the wavelengths for the angular emission lobes 
ranging with increasing polar angles are 11.04 µm, 11.36 µm, and 11.86 
µm, respectively (from Greffet et al., 2002).   
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4.1 Gratingless Coherent Thermal Emission Source 

The proposed thermal emission source is constructed with a heterogeneous 

structure that consists of a thin layer made of a material with a negative permittivity ε  

but a positive permeability µ  and a thick substrate with a positive permittivity ε  but 

negative permeability µ, or vice versa. Such a coherent thermal emission source depends 

on the availability of a material with a negative µ . Although a material with a negative µ  

is not found in naturally occurring materials, Pendry et al. (1999) showed that a 

metamaterial that has a negative µ at certain wavelengths or frequency can be constructed 

from a periodic array of nonmagnetic, conducting, split-ring resonators (SRRs). Many 

metals and polar dielectrics have a negative ε in the visible and infrared, and periodic 

structures of thin metal wires can dilute the average concentration of electrons and shift 

the plasma frequency to the far infrared or even GHz bands (Pendry et al., 1996). The 

SRR structure and thin metal wire structure have been used by Shelby et al. (2001) to 

realize an NIM metamaterial at X-band microwave frequencies by carefully tuning the 

geometry of the SRR structure and the thin metal wire structure and embedding them on 

opposite sides of interlocking standard circuit boards. But only the SRR alone, its 

permittivity ε  has been shown to be positive (Smith et al., 2002). A recent experiment 

(Yen et al., 2004) has shown that a negative µ at higher frequencies can be achieved by 

scaling down the dimensions of the SRR structure. Podolskiy et al. (2002) also proposed 

a novel nanowire-pair composite for achieving a negative µ at higher frequencies. 

Therefore, the heterogeneous structure is assumed possible to make using metamaterials 

and may be much easier to make than the NIM prototype of Shelby et al. (2001). It will 

be shown that coherent thermal emission from such a heterogeneous structure is possible 
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for both s- and p-polarizations. The coherent thermal emission is from a smooth surface 

(no grating). The mechanism for the coherent thermal emission is still due to surface 

polariton excitation, but at the interface of the heterogeneous structure. A similar 

structure composed of two lossless thin layers has been studied by Alu and Engheta 

(2003). They found that the structure can act, in some aspects, similar to a negative index 

material, and thus may be used for super-resolution imaging.  

 

4.2 Surface Polariton Dispersion Relations at the Interface of the Bilayer   

Consider a plane wave incident from vacuum onto the heterogeneous bilayer 

structure, shown in Figure 4.2(a). For convenience, the semi-infinite medium (vacuum) in 

which the wave originates is labeled as medium 1 ( 111 =µ=ε ); medium 2 (thickness d2) 

is the layer with a negative ε and medium 3 is the substrate with a negative µ. Assume 

that the plane wave of frequency ω  is incident at angle 1θ . The normal component of the 

wave vector in medium l (l = 1,2,3) reads ( ) 2/1222 / xlllz kck −µεω=  where c  denotes the 

speed of light in vacuum, xk  is the parallel component of the wave vector and is given by 

ckx /sin 1θω= . (This parallel component is the same in all media.). Because ε  and µ  

have opposite signs in the bilayer structure, zk2 and zk3  are purely imaginary when loss 

is neglected. A surface polariton is possible to be excited at the interface of medium2 and 

medium 3 as long as the surface polariton dispersion relations are satisfied, which is the 

same as Equations (3.8) and (3.9). For convenient discussion, these two equations are 

rewritten as 

 0
3

3

2

2 =
µ

+
µ

zz kk , for s-polarization      (4.2) 
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and  0
3

3

2

2 =
ε

+
ε

zz kk , for p-polarization      (4.3) 

Surface polaritons of both polarizations are possible to be excited since 2ε  and 3ε  as 

well as 2µ   and 3µ  are assumed opposite signs in the heterogeneous structure.  

As mentioned earlier, a metal wire structure can be used to achieve a negative ε  

for medium 2 and a split-ring resonator structure can be used to achieve a negative µ  for 

medium 3. In reality, dispersion and losses are inevitable. Following the discussion by 

Pendry et al. (1996, 1999), the following expressions are chosen to describe the electric 

and magnetic behaviors of media 2 and 3: 

 
ωγ+ω

ω
−=ωε

e

p

i2

2

2 1)(      and      1)(2 =ωµ     (4.4) 

 
ωγ+ω−ω

ω
−=ωµ

mi
F

2
0

2

2

3 1)(       and      33 )( ε=ωε    (4.5) 

Here, pω , 0ω , F, and eγ  and mγ  have the same definitions as in Equations (2.5) and 

(2.6). Although 3ε  is in general frequency dependent (Smith et al., 2002), for simplicity, 

it is initially taken to be real, positive, and independent of frequency. Varied values of 3ε  

are used in the subsequent calculations.  

The dispersion relations of surface polaritons at the second interface are 

calculated by substituting Equations (4.4) and (4.5) into the expression for lzk  and 

Equations (4.2) and (4.3) and neglecting the effect of loss. In the calculations the values 

pω=ω 5.00  and 785.0=F  are taken. The result is shown in Figure 4.2(b) for different 

values of 3ε . The dashed curves and solid curves denote s- and p-polarizations,  
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Figure 4.2 A coherent thermal emission source made of a bilayer structure (a) 
Schematic of the bilayer in vacuum. (b) The dispersion relations of surface 
polaritons at the interface of the two layers that make the bilayer. The 
dashed lines are for s-polarization and solid lines are for p-polarization. 
The dotted line represents the dispersion relation in vacuum. Note that 
surface polaritons can be excited by radiation at normal incidence 
( 0=xk ). 
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respectively. It is clear that surface polaritons of both polarizations can be excited for this 

particular bilayer structure. The dotted line represents the dispersion relation of 

electromagnetic waves in vacuum. It delineates the surface polariton dispersion curves 

into two regions. Within the region on the right hand side of the dotted line, an 

evanescent wave is required for the excitation of surface polaritons; within the region on 

the left hand side of the dotted line, however, surface polaritons can be excited by a 

propagating wave. The dispersion curves give a non-zero ω  for 0=xk  ( 01 =θ ), 

indicating that surface polaritons are excited even at normal incidence. This behavior 

leads to unique optical properties, discussed in the following paragraphs.  

 

4.3 Predicted Results 

In order to show that thermal emission from the bilayer can be coherent, the 

directional spectral emissivity ωε of the bilayer needs to be calculated. From Kirchhoff’s 

law (Siegel and Howell, 2002), ωε  is simply equal to 1−R for an opaque material, where 

R is the directional spectral reflectance of the bilayer and is calculated using the matrix 

formulae presented in Chapter 2. But it should be noted that if medium 2 and medium 3 

are completely lossless, R is always unity even though surface polaritons are excited. 

This is because energy dissipation in the heterogeneous structure is zero if both zk2 and 

zk3  are purely imaginary. Therefore, loss is the key to causing large absorption in the 

bilayer when surface polaritons are excited. In the calculation, the following parametric 

values are taken: 43 =ε , medium 2 thickness pd λ= 425.02  where pp c ωπ=λ /2 , and 

pme ω=γ=γ 0025.0 . The calculated ωε  of the bilayer at 30o and 60o emission angles is 
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plotted in Figure 4.3(a) for s-polarization. It can be seen that ωε  exhibits very large 

values only in a narrow frequency band, with the center frequency cω  equal to 0.584ωp 

for 30o emission angle and 0.592ωp for 60o emission angle, respectively. ωε  at 

frequencies beyond the narrow band is almost zero. The two center frequencies above are 

the frequencies of surface polaritons for the two corresponding angles of emission. The 

full width at half maximum (FWFM) of the narrow frequency band ω∆  is equal to 

pω× −310902.6  for 30o emission angle and pω× −310871.4 for 60o emission angle, which 

results in the corresponding Q factor ( cω / ω∆ ) equal to 85 and 122, respectively. This 

particular spectrum of the directional spectral emissivity makes thermal emission from 

the bilayer exhibit somewhat monochromaticity for a given direction. In Figure 4.3(b), 

ωε  is plotted as a function of the angle of emission with the frequency fixed, where the 

solid curve corresponds to pω=ω 584.0  and the dashed curve corresponds to 

pω=ω 592.0 . Angular emission lobes which are similar to those in Figure 4.1(b) are 

observed. The angular emission lobes are relatively broad, which are due to the relatively 

flat dispersion curves shown in Figure 4.2(b) for small wavevector xk . Therefore, 

thermal emission from the bilayer can be coherent. The coherent emission is because 

surface polaritons excited at the interface of the bilayer couple with and thus enhance the 

thermal emission. Similarly, the calculated ωε  of the bilayer at 30o and 60o emission 

angles for p-polarization is plotted in Figure 4.4(a). The center frequency is found to be 

0.576ωp for 30o emission angle and 0.570ωp for 60o emission angle, with a Q factor equal 

to 83 and 113, respectively. Angular distributions of ωε  for pω=ω 576.0 (solid curve)  
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(b)  

Figure 4.3 The directional spectral emissivity ωε of the bilayer structure for s-
polarization:  (a) plotted versus ω  for 30o and 60o emission angles; (b) 
angular distribution for pω=ω 584.0 (solid curve) and pω=ω 592.0  
(dashed curve).              
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(b)  

Figure 4.4 The directional spectral emissivity ωε of the bilayer structure for p-
polarization:  (a) plotted versus ω  for 30o and 60o emission angles; (b) 
angular distribution for pω=ω 576.0 (solid curve) and pω=ω 570.0  
(dashed curve).             
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and pω=ω 570.0 (dashed curve) are shown in Figure 4.4(b). Angular emission lobes are 

also found. Again, the relatively wide angular emission lobes are due to the relatively flat 

dispersion curves in Figure 4.2(b). Narrow angular emission lobes may be obtained if the 

parameters in Equations (4.4) and (4.5) are chosen appropriately. Therefore, the bilayer 

can be used to achieve coherent thermal emission of both s- and p-polarizations but 

without use of gratings. It should be mentioned here that 2d  has important effect on the 

magnitude of  ωε  at the center frequency cω . Tuning the value of  2d  can obtain an 

optimized ωε  for each angle of emission. 

The frequency (wavelength) and direction of coherent thermal emission from a 

grating depend on both the dielectric function and the periodicity of the grating. For the 

proposed heterogeneous structure, shown in Figure 4.2(a), the frequency and direction of 

coherent thermal emission are only determined by the materials since no gratings are 

used. Therefore, it will be difficult to tune the emission frequency and emission angle if 

the materials are fixed. This problem can be solved if the heterogeneous structure is built 

with three layers. For example, if the top layer (medium 2, medium 1 is still assumed 

vacuum as in Figure 4.2(a)) has 02 <ε , 02 >µ  and thickness 2d , the mid-layer 

(medium 3) will have 03 >ε , 03 <µ  and thickness 3d , and the substrate (medium 4) 

will be the same as medium 2 except that its thickness is assumed infinity. In this 

structure, 3d  gives an extra parameter that can be adjusted to control the frequency and 

angle of emission. The reason has been stated in Chapter 3, that is, surface polaritons can 

be excited at both the second and third interfaces. The excited surface polaritons will 

interact with each other if 3d  is small enough that each dispersion curve shown in Figure 
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4.2(a) will split into two curves, with one shifting to higher frequencies and the other to 

lower frequencies, and denoted by two dispersion relations. For p-polarization, the 

dispersion relations can be written as (Ruppin, 2001)  
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The dispersion relations for s-polarization are in the same form except that 2ε  and 3ε  are 

replaced with 2µ  and 3µ . Assuming that the material properties can be expressed with 

Equations (4.4) and (4.5) and 43 =ε , the dispersion curves for p-polarization calculated 

from Equations (4.6) and (4.7) are shown in Figure 4.5 for 3d  equal to 0.1λp (solid 

curves) and 0.07λp (dashed curves). The upper and lower branches of the curves 

correspond to Equations (4.6) and (4.7), respectively. Comparing with Figure 4.2(b), split 

of the dispersion curve by reducing the value of d3 is clearly seen. The upper branch has a 

much larger frequency shift than the lower branch, resulting in a steeper upper branch but 

a flatter lower branch. Therefore, coherent thermal emission should be found at two 

different narrow frequency bands for each angle of emission. The directional spectral 

emissivity of the three-layer heterogeneous structure is shown in Figure 4.6(a) as a 

function of pωω /  for a 30o emission angle. In this figure, the value of d2 is taken as 

0.53λp such that large values of ωε  appear around the higher surface polariton frequency, 

which is equal to 0.706ωp for d3 = 0.1λp and 0.782ωp for d3 = 0.07λp. It can be seen that 

for a given emission direction, tuning the value of d3 can control the center frequency of 

the narrow emission band. The corresponding Q factor is 210 for pc ω=ω 706.0  and 174  
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Figure 4.5 The dispersion curves of a three-layer structure where the negative µ  
layer is sandwiched by two negative ε  layers of the same material. In the 
calculation, Equations (4.4) and (4.5) with 3ε  taken as 4 are used to model 
the electric and magnetic behaviors of media 2 and 3.  
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Figure 4.6 The directional spectral emissivity ωε of the three-layer structure for p-
polarization:  (a) plotted versus ω  for a 30o emission angles; (b) angular 
distribution for pω=ω 706.0 (solid curve) and pω=ω 678.0  (dashed 
curve).              
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for pc ω=ω 782.0 . Finally, because the upper branch of the dispersion curves is so steep 

that very narrow angular emission lobes can be obtained using the three-layer 

heterogeneous structure, which is shown in Figure 5.6(b). In this figure, d3 = 0.1λp, the 

solid curve corresponds to pω=ω 706.0  and the dashed curve corresponds to 

pω=ω 678.0 . The dashed curve   indicates the coherent thermal emission is at a 60o 

emission angle, which is not shown in Figure 4.6(a).   
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CHAPTER 5 
 

THE BREWSTER ANGLE WITH A NEGATIVE INDEX MATERIAL 
 
 
 

The particular phenomenon of the Brewster angle related to a lossless NIM is 

studied in this chapter. A Brewster angle is an incidence angle for which no energy is 

reflected for at least one polarization. There are a number of applications and devices that 

employ the unique property of Brewster’s angle, including polarizers (Kaplan and 

Hanssen, 1999; Sihvola and Lindell, 1993) and transmission windows (Yang et al., 2003). 

It has been shown that the Brewster angle, which exists only for a TM wave (i.e., p-

polarized) upon reflection at the boundary between two conventional dielectric media, 

can occur for both TE (i.e., s-polarized) and TM waves when one of the materials is an 

NIM (Leskova et al., 2001 and 2003). However, the criteria for the occurrence of a 

Brewster angle have not been fully investigated.  

The geometry considered here is illustrated in Figure 2.2, where light is incident 

from a medium of refractive index 1n  to another medium of refractive index 2n . In the 

figure, PIM refers to a conventional dielectric with a positive index of refraction. Note 

that when light is incident from a PIM to an NIM, as shown in Figure 2.2(b), negative 

refraction occurs ( 02 <θ ) and the refracted wavevector points opposite to the direction 

of the energy flux. For conventional nonmagnetic dielectrics, the Brewster angle results 

from the fact that an electric dipole cannot radiate along its own axis. The reflected power 

goes to zero when the electric dipoles induced in the material align with the direction of 

the reflected wave (Kong, 1990). Consequently, a Brewster angle exists only for TM 

waves, when the refracted wave is perpendicular to the reflected wave (i.e., 
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o
21 90=θ+θ ). When this criterion is combined with Snell’s law, the conventional 

expression for the Brewster angle is obtained: )/(tan 12
1

1 nnB
−=θ=θ .  

Given the dramatic change in refraction for plane waves incident on an NIM 

versus a PIM (Figure 2.2), it is interesting to consider whether Brewster’s angle obeys the 

conventional criterion above. In this chapter, the existence of Brewster’s angle at the 

interface between two semi-infinite lossless dielectric-magnetic media (also known as 

general dielectrics), including especially the case of NIMs is investigated. Each medium 

is characterized by a real ε (relative permittivity) and a real µ (relative permeability) of 

the same sign. Consequently, the refractive index εµ±=n  is positive when both ε and 

µ are positive, or negative when both ε and µ are negative (Veselago, 1968). Following 

the Ewald-Oseen extinction theorem (Born and Wolf, 1999), dipole emission from the 

material giving rise to the reflection and refraction characteristics are shown in detail in 

this chapter. 

 

5.1 The Brewster angle of a Lossless NIM 

The starting point to calculate the reflectance is to evaluate the Fresnel 

coefficients between medium 1 and medium 2 (see Figure 2.2). For a TM plane wave, the 

reflection coefficient is the ratio of reflected to incident magnetic field. Following, for 

example, Pendry (2000), it can be shown that  
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where zk1  and zk2  are the z-components of the wave vectors of incidence and refraction, 

respectively, 1θ  and 2θ  are the angles of incidence and refraction and are related by 

Snell’s law 2211 sinsin θ=θ nn . Note that θω= cos)/( cnkz . For a TE plane wave, the 

ratio of reflected to incident electric field defines the reflection coefficient, that is, 
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If medium 2 is an NIM, both 2θ  and zk2  become negative as shown in Figure 2.2(b) but 

2cosθ  remains positive. Because the ratio of permittivity and permeability is positive, 

the reflection coefficients are real and depend only on the magnitudes of the 

permittivities and permeabilities of the two media. If 1/ 21 >nn  (i.e., 2211 µε>µε ), 

however, total internal reflection will occur at incidence angles greater than the critical 

angle defined as 12
1 /sin nnc

−=θ  for both polarizations. At cθ=θ1 , both zk2  and 

2cosθ  are zero, so 1== sp rr . When cθ>θ1 , both zk2  and 2cosθ  become purely 

imaginary, resulting in complex reflection coefficients (with magnitude equal to unity). 

The requirement of the evanescent wave to decay towards positive z in medium 2 

imposes a constraint on the selection of zk2 (Pendry, 2000), that is, 

2222 cos)/( β=θω= icnk z , where 2
21

22
12 sin)/( nnc −θω=β  is a real positive 

number no matter whether medium 2 is a PIM or an NIM. When the sign of 2n  is 

changed from positive (PIM) to negative (NIM), zk2 remains the same but 2cosθ changes 

sign. As a consequence, the reflection coefficient will change to its complex conjugate 
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for any given polarization (Lakhtakia, 2003). Nevertheless, Equations (5.1) and (5.2) are 

general expressions when the signs of 2zk  and 2cos θ  are properly selected.  

The reflectance, however, is given by 2rR =  for either polarization. Despite the 

fact that ε’s and µ’s may be negative, their signs do not have any impact on the 

reflectance. Hence, in the lossless case, 
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    (5.3) 

These equalities greatly simplify the analysis of parameter regimes for which a Brewster 

angle may exist. The Brewster angle corresponds to a reflection coefficient of zero. 

Because the Fresnel coefficient is a continuous function of the incidence angle, the key 

for the occurrence of a Brewster angle is whether the sign of the reflection coefficient 

changes between normal incidence and an incidence angle equal to either the critical 

angle or the grazing angle (90o). 

Consider the case 2211 µε<µε , when there is no total internal reflection. 

Equations (5.1) and (5.2) show that sp rr −=  at normal incidence and 1−== sp rr  at θ1 = 

90ο. If 1 1 2 2µ ε ≠ µ ε , either pr  or sr  will be positive at θ1 = 0, resulting in a Brewster 

angle between 0 and 90o for either p- or s-polarization. A Brewster angle exists for a TM 

wave if 1 1 2 2µ ε > µ ε  and for a TE wave if 1 1 2 2µ ε < µ ε . In the extreme case when 

1 1 2 2µ ε = µ ε , we have 0== ps rr  at normal incidence. That is, a Brewster angle exists 

for both polarizations at normal incidence, and the reflectance (the same for both 

polarizations) will increase monotonically from 0 to 1 as θ1 is increased from 0 to 90o. 
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  The above discussion can be extended to the case 2211 µε>µε , for which a 

critical angle exists. Recall that 0cos 2 =θ  and 1== ps rr  at the critical angle. A 

Brewster angle exists for a TM wave if 1 1 2 2µ ε < µ ε  and for a TE wave if 

1 1 2 2µ ε > µ ε . When 1 1 2 2µ ε = µ ε , the reflectance is the same for both polarizations 

and increases from 0 to 1 when θ1 is increased from 0 to cθ . 

  The various possibilities can be concisely summarized in a map of different 

material parameter regimes, as shown in Figure 5.1. A different regime map containing 

similar information was provided in the work of Henderson et al. (1991), who considered 

reflection/transmission between general dielectrics, but without discussing negative index 

materials. The regime map of Figure 5.1 is established in terms of two new parameters 

2211 / µεµε=X  and 2112 / µεµε=Y  where lε  and lµ  are the permittivity and 

permeability of medium l (l = 1,2). Based on the discussion given above, a Brewster 

angle can be found for a TM wave in the shaded regions (I) and (IV). Similarly, a 

Brewster angle exists for a TE wave in regions (II) and (III). Total internal reflection will 

occur in regions (II) and (IV), where X > 1. The line X = 1 corresponds to the case of |θ1| 

= |θ2|, when the reflectance is independent of the angle of incidence. The line Y = 1 

corresponds to the cases when the reflectance is zero at normal incidence and 

independent of polarization. The normal reflectance increases as Y is either reduced or 

increased, and it becomes unity as Y approaches 0 or infinity. At the crossing point X = Y 

= 1, the reflectance is zero for both polarizations, regardless of the angle of incidence. 

The physical significance of the curves for YX =  and 1=XY  will be discussed below. 
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Figure 5.1 The regime map based on parameters X and Y, which depend on the 
permittivities and permeabilities of the two media (see axis labels). The 
Brewster angle exists for TM waves in the shaded regions and for TE 
waves in the unshaded regions. The curves X = Y and XY = 1 correspond 
to o

21 90=θ+θ  for PIM/PIM or NIM/NIM interfaces, this is the 
condition that reflected and refracted beams lie at right angles. However, 
for a PIM/NIM or NIM/PIM interface the refracted and incident beams are 
perpendicular. 
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Figure 5.2 The reflectance R  at the interface of vacuum and an NIM, with different 

values of the permittivity and permeability, as a function of the incidence 
angle. The Brewster angle can occur for a TE wave, a TM wave, or both 
under conditions discussed in the text. 
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 Figure 5.2 shows the calculated reflectance for light incident from vacuum 

( 111 =µ=ε ) to an NIM. The figures on the left correspond to X = 0.25, while the figures 

on the right correspond to X = 4, when total internal reflection will occur. Each of the 

four panels provides a brief case study of the reflectance for parameters in the four 

different regions. From Figure 5.2(a), one can see that the Brewster angle for a TM wave 

exists when 2 2ε > µ , i.e. in Region I of Figure 5.1. When 2 2ε = µ  (Y = 1), the 

reflectance is zero at normal incidence and it increases as the ratio 2 2/ε µ  deviates from 1. 

Similar trends can be seen in Figures 5.2(b)-5.2(d). For instance, as shown in Figure 5.2 

(b), the Brewster angle for a TE wave exists in Region II where total internal reflection 

also occurs. It can be seen that the reflectance for a TM wave and for a TE wave will 

interchange when the values of 2ε  and 2µ  are switched. Not shown in Figure 5.2 is the 

case 1=X , for which 21 θ=θ  and the reflectance becomes 

( ) ( )2
21

2
21 / ε+εε−ε=R , for any 1θ , independent of polarization.  

 General expressions for the Brewster angle can be obtained by setting 0=r  for 

each polarization; see Equations (5.1) and (5.2). The solutions give:  

   ( )XYYB −−=θ − /1sin 1 ,  for a TM wave    (5.4a) 

and  ( )XYYB −−=θ − 1/1sin 1 ,  for a TE wave    (5.4b) 

These equations uniquely determine the value of the Brewster angle for different material 

parameters except when 1== YX , for which the reflectance is zero at all angles of 

incidence. Figure 5.3 shows a contour plot of the Brewster angle according to Equations 

(5.4). The curves represent constant Brewster angles in the X-Y plane. For both 
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polarizations, the contours approach the Y = 1 line when Bθ  approaches 0, and they 

approach the X = 1 line when Bθ  approaches 90o. 

 

Figure 5.3 Contour plot with curves of constant Brewster angle in the X-Y plane. 
 
 
 

From the result above, it is clear that at Bθ=θ1 , the relation 1 2 90θ + θ = °  does 

not necessarily hold for dielectic-magnetic media. The relation is satisfied only when 

1 2ε = ε  ( YX = ) for a TE wave and 1 2µ = µ  ( 1=XY ) for a TM wave, respectively. 
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Curves with YX =  and 1=XY  are shown in Figure 5.1 to distinguish these special 

cases. It should be noted that if 1 2ε = −ε  for a TE wave or 1 2µ = −µ  for a TM wave, then 

1 2 90θ − θ = °  at the Brewster angle. In this case, the refracted wave is perpendicular to 

the incident wave. 

 

5.2 Physical Explanations Based on the Ewald-Oseen Extinction Theorem 

  The physical mechanisms of reflection and refraction can be explained based on 

the Ewald-Oseen extinction theorem (Born and Wolf, 1999). For simplicity, consider the 

reflection and refraction of a plane wave incident from vacuum ( 111 =µ=ε ) into a 

dielectric-magnetic medium. From the microscopic point of view, electromagnetic wave 

reflection and refraction at the interface is the result of induced re-emission from electric 

and magnetic dipoles in the medium. The dipoles radiate in vacuum and the transmitted 

wave is the superposition of the incident wave and all radiated waves from the induced 

dipoles, while the reflected wave is solely due to the dipole emission. It is well known 

that for a nonmagnetic dielectric and a TM wave incident at the Brewster angle, the axes 

of the induced electric dipoles are aligned with the wavevector of reflection, resulting in 

zero reflectance. In the case that the medium is magnetic, radiation from induced 

magnetic dipoles inside the dielectric also must be included. The radiated fields from the 

induced electric and magnetic dipoles can be calculated, respectively, as (Born and Wolf, 

1999) 
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where e∏  and m∏  are the Hertz vectors, which are expressed in terms of the electric 

polarization P and magnetization M as  
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where ck /ω= . The integration is for the whole volume occupied by the dielectric. 

Following the Ewald-Oseen extinction theorem (Born and Wolf, 1999), if the incident 

field from vacuum is iE  and the transmitted field tE , the total radiated field for r inside 

the dielectric is given by 

   itmerad EEEEE −=+=       (5.9) 

P and M in Equations (5.7) and (5.8) can be related to the electric and magnetic fields in 

the dielectric as 

  tEP χε= 0  and   tmHM χ=      (5.10) 

where χ  is the dielectric susceptibility and is related to ε  as χ+=ε 1 , mχ  is the 

magnetic susceptibility and is related to µ  as mχ+=µ 1 , tH can be calculated from tE  

using Maxwell’s first curl equation.  

In the subsequent derivation, the same coordinates as in Figure 2.2 are used and 

the dielectric is assumed to occupy the half space of 0≥z . Therefore, the evaluation of 

Equations (5.7) and (5.8) for 0≥z should give the transmitted field and for 0<z should 

give the reflected field. For an incident plane wave rkE ⋅1
0

i
i e (omitting the common factor 
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tie ω− here and subsequently), the integration of Equation (5.7) can be evaluated following 

Orfanidis (2004) as  

  

1 2

0 2 2
1 2 1 2 1

0
1 2 1

,  for 0
2 ( ) ( )

                    , for 0
2 ( )

r

i i

t
z z z

e i

t
z z z

e e z
k k k k k

e z
k k k

⎧ ⎡ ⎤
χ − + ≥⎪ ⎢ ⎥

− −⎢ ⎥⎪ ⎣ ⎦∏ = ⎨
⎡ ⎤⎪−χ <⎢ ⎥⎪ +⎢ ⎥⎣ ⎦⎩

k r k r

k r

E

E

   (5.11) 

where 1k , 2k , and rk  are the wave vectors of the incident, transmitted, and reflected 

fields, respectively, lzk  is the z-component of lk  (l = 1,2), and 0tE  denotes the 

amplitude of the transmitted field. The evaluation of Equation (5.8) can be done similarly. 

Inside a general dielectric ( 0≥z ) with relative permittivity 2ε  and relative permeability 

2µ , Equation (5.9) then becomes:  
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Collecting terms of identical phase leads to 
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The reflected field is expressed as 
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where er ,E  is the contribution from electric dipole radiation and mr ,E  the contribution 

from magnetic dipole radiation, er ,0E  and mr ,0E  denote the amplitudes of er ,E  and 

mr ,E , respectively. Using Equation (5.11),  er ,0E  and mr ,0E  can be written as  
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In the special case of 22 µ=ε (corresponding to Y = 1 in Figure 5.1), one has mχ=χ ; it 

can be shown from Equations (5.16) and (5.17) that mrer ,0,0 EE −=  for normal incidence, 

resulting in zero reflectance, as expected from the discussion of the regime map. In the 

case that medium 2 is an NIM, 2ε , 2µ , χ , and mχ  are all negative. For a TM wave 

incident from medium 1 to medium 2, the condition of zero reflectance leads to 
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where xk  is the x-component of the wave vector which is the same in both media. In 

deriving Equation (5.18) the relation 002 =⋅ tEk  has been used. Combining Equation 

(5.18) with 2
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and  zz kk 122 ε=         (5.20)  

It can be seen from Equation (5.19) that 1k  will be perpendicular to 2k  if 12 −=µ  

(unless 2ε  is also 1− , in which case the Brewster angle is not uniquely determined). The 

condition 12 −=µ  corresponds to the curve 1=XY  in the regime map. Equation (5.20) 
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is equivalent to Equation (5.4a). Note that the above two equations are derived under the 

assumptions of zero reflectance and a TM wave incident on an NIM.  

Now look at the amplitudes of er ,0E  and mr ,0E  at different incidence angles. 

Using Equations (5.16) and (5.17), the field amplitudes emitted from induced dipoles 

inside a general dielectric with positive permittivity and permeability are calculated and 

shown in Figure 5.4 as a function of the incidence angle 1θ . Here a TM wave is assumed 

and 42 =ε  and 12 =µ are taken in Figure 5.4(a) while 82 =ε  and 5.02 =µ  are taken in 

Figure 5.4(b), which results in the refractive indices 22 =n for both cases and total 

internal reflection will not happen.  In Figure 5.4(a), only the induced electric dipoles 

contribute to the reflected wave because the material is nonmagnetic. A Brewster angle 

arises from the induced electric dipoles being aligned along the direction of the reflected 

wave and is calculated by the conventional formula )/(tan 12
1 nnB

−=θ . In Figure 5.4(b), 

however, both induced electric and magnetic dipoles make contribution to the reflected 

wave. It can be seen that the contribution from the induced electric dipoles erE ,0  is zero 

at )/(tan 12
1

1 nn−=θ  while the contribution from the induced magnetic dipoles mrE ,0  is 

not zero. Furthermore, erE ,0  and mrE ,0  are in phase if )/(tan 12
1

1 nn−<θ , but are out of 

phase if )/(tan 12
1

1 nn−>θ . As a consequence, a Brewster angle Bθ  appears when erE ,0  

and mrE ,0  cancel out each other.  

The situation is different for an NIM, because induced magnetic dipoles always 

contribute to the reflected wave. For the purpose of comparison, the ε  and µ  of an NIM 

are chosen as the negative values of those used in Figure 5.4 and the amplitudes erE ,0 ,  
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Figure 5.4 The emitted electric field amplitudes vary with incidence angle 1θ  for a 
TM wave incident from vacuum ( 111 =µ=ε ) into a dielectric: (a) 42 =ε  and 

12 =µ , no induced magnetic dipoles; (b) 82 =ε  and 5.02 =µ . Note that the 
field amplitudes have been normalized by the incident electric field amplitude.  
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Figure 5.5 The emitted electric field amplitudes vary with incidence angle 1θ  for a 
TM wave incident from vacuum ( 111 =µ=ε ) into a lossless NIM: (a) 

42 −=ε  and 12 −=µ ; (b) 82 −=ε  and 5.02 −=µ . 
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Figure 5.6 The emitted electric field amplitudes vary with incidence angle 1θ  for a 
TM wave incident from vacuum ( 111 =µ=ε ) into a lossless NIM with 

125.02 −=ε  and 22 −=µ : (a) normalized emitted field amplitudes; (b) 
emitted field amplitude ratio | mrer EE ,0,0 / | and phase difference. 

 



 90

mrE ,0  and the reflected wave 0rE  are calculated. The results are plotted in Figure 5.5(a) 

for 42 −=ε and 12 −=µ , and in Figure 5.5(b) for 82 −=ε  and 5.02 −=µ . Both plots 

show that erE ,0  and mrE ,0  never reach zero and superpose out-of-phase at any angle of 

incidence, resulting in a Brewster angle when the magnitudes are equal. The value of the 

Brewster angle, however, is the same in Figure 5.4 and Figure 5.5, in accordance with 

Equation (4a).  

A situation that corresponds to total internal reflection is also considered, which is 

shown in Figure 5.6 with 125.02 −=ε and 22 −=µ (X = 4 and Y = 0.0625 in the regime 

map). In this case, when cθ>θ1 , the phase difference between erE ,0  and mrE ,0   is not 

simply 0 (in phase) or π±  (out of phase), but varies continuously with 1θ . The 

superposition of erE ,0  and mrE ,0 , when taking this factor into account, results in total 

internal reflection for cθ>θ1 .  

The discussion for a TE wave can be done in the same way. Therefore, we have 

shown, from a microscopic point of view, zero reflectance for a plane wave incident at 

the Brewster angle is due to the superposition of the radiated fields of induced electric 

and magnetic dipoles inside a lossless dielectric-magnetic material including an NIM. 

The cancellation of the emitted fields can only be along a direction that deviates from the 

axes of either the electric dipoles or the magnetic dipoles and the relation 

1 2 90θ + θ = ° ( 1 2 90θ − θ = °  for a PIM/NIM interface) is satisfied only under the 

restricted conditions 21 ε±=ε  (s-polarization) or 21 µ±=µ  (p-polarization). 
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CHAPTER 6 
 

PREDICTION AND OPTIMIZATION OF NANOSCALE RADIATION HEAT 
TRANSFER CONSIDERING DIFFERENT DOPING LEVELS OF SILICON 

 
 
 

This chapter is devoted to investigating the near-field radiation heat transfer 

between two closely spaced semi-infinite media with parallel and smooth surfaces, 

especially with doped silicon. The two media are separated by a vacuum gap of width d 

range from several tens of microns to 1 nm. The motivation of this study has been stated 

in Chapter 1 and the fluctuational electrodynamics method presented in Chapter 2 will be 

used in the calculation. Currently, two kinds of geometric models have been extensively 

used in numerical simulations of near-field radiation heat transfer using the fluctuational 

electrodynamics method. One has been shown schematically in Figure 2.6(b) and 

described above, and has been the basic model for nanoscale thermophotovoltaic devices 

(Whale and Cravalho, 2002; Narayanaswamy and Chen, 2003). The other concerns 

radiation heat transfer between a sphere and the surface of a semi-infinite medium, where 

the sphere mimics the tip in a scanning tunneling microscope (Pendry, 1999; Mulet et al., 

2001). This model, however, assumes that the sphere is positioned at a distance from the 

surface much greater than the radius of the sphere such that the sphere can be treated as a 

point-like dipole. In reality this assumption may not be correct as the tip can be placed at 

a distance from the surface much smaller than the curvature radius of the tip. The model 

in Figure 2.6(b), though cannot quantitatively predict the radiation heat transfer between 

a tip and a surface, has no such constraint on the vacuum gap width. Furthermore, 

predicted results using the model of Figure 2.6(b) can offer insight into the phenomenon 

of near-field radiation heat transfer. The results calculated by Polder and Van Hove (1971) 
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have been used to compare with the measured heat flux between a metallic tip and a 

sample surface (Müller-Hirsch et al., 1999). Therefore, the model of Figure 2.6(b) will be 

used in this work, especially for predicting the effect of dopant concentration of silicon 

on the radiation heat transfer at the nanoscale.  

Equations (2.29)−(2.31) will be used to calculate the near-field radiation heat 

transfer in this work. But before the calculation the dielectric function of silicon needs to 

be determined. Lots of work has been devoted to modeling the optical properties of 

silicon. A Drude model (Hesketh et al., 1988; Auslender and Hava, 1995; Marquier et al., 

2004) has been used for the dielectric function of doped silicon in the infrared region. 

The important parameters in this model are the free carrier concentration and the 

scattering time, which are functions of temperature and dopant concentration. Therefore, 

these parameters obtained at certain temperature and dopant concentration normally 

cannot be used to describe the dielectric function of silicon at other temperatures and 

dopant concentrations. It is desired to have a model that can account for the continuous 

change of the dielectric function of silicon as functions of temperature and dopant 

concentration. Such a model was proposed by Hebb (1997), which will be discussed in 

the next section and will be employed in this work for expressing the dielectric function 

of silicon.   

 

6.1 The Dielectric Function of Silicon 

The model proposed by Hebb (1997) is essentially a Drude model and can 

account for the dielectric function of both intrinsic and doped silicon, which is given in 

the following expression: 



 93

( )
h

hh

e

ee
lib

i
meN

i
meN

in
τω+ω

ε
−

τω+ω

ε
−ε=κ+=ε −

/
/

/
/

2
0

2

2
0

2
2        (6.1)  

where n is the refractive index and κ is the extinction coefficient, eN  and hN  are the 

concentrations, em  and hm  the effective masses, eτ and hτ  the scattering times for free 

electrons and holes, respectively, e is electron charge, and lib−ε  denotes the contribution 

from absorption by transition across the band gap and lattice vibrations. In Equation (6.1), 

the effective masses em  and hm are assumed to be independent of frequency, dopant 

concentration, and temperature, and are taken as 032.0 m  and 037.0 m , respectively, 

where 0m  is the mass of an electron in vacuum. In the term lib−ε , contribution from 

electronic transition across the band gap is evaluated with the empirical formulae 

proposed by Timans (1996). Absorption by lattice vibration occurs for wavelengths 

greater than 6 µm and is weak in silicon and has no significant effect on the refractive 

index. At high temperatures, the effect of absorption by lattice vibrations is negligible 

compared to the absorption by free carriers.  According to Hebb (1997), the contribution 

to the dielectric function from lattice vibrations is assumed independent of temperature, 

and room temperature values of the extinction coefficient (Edwards, 1985) will be used. 

The parameters eτ  and hτ  depend on the collisions of electrons and holes with lattice 

and ionized dopant sites (impurities). The total scattering time, for the case of eτ , is 

calculated by the following formula:  

     1
,

1
,

1 −−− τ+τ=τ delee        (6.2) 
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where le,τ  denotes the scattering time for collision with lattice and de,τ  the scattering 

time for collision with ionized dopant sites. The calculation of hτ  follows the same rule.  

The scattering times for collision with lattice do not depend on dopant 

concentration and have been fitted (Hebb, 1997) from experimental data for lightly doped 

silicon, which are expressed as  

43.111
, 1098.9 −−×=τ Tle           (6.3) 

and  13.112
, 1024.6 −−×=τ Tlh       (6.4) 

where le,τ  and  lh,τ  are in s, T is in K. For silicon with higher dopant concentrations than 

1015 cm-3, the scattering time for collision with ionized dopant sites must be considered in 

order to calculate the total scattering time. The following approximations for the 

temperature dependence of de,τ  and dh,τ  have been proposed (Hebb, 1997)  

5.1
, Tede β=τ         (6.5) 

and      5.1
, Thdh β=τ         (6.6) 

where eβ  and hβ  depend on the dopant concentration but not on temperature, which can 

be extracted from the experimental values of mobility at room temperature. The total 

scattering time is related to the mobility by the following relations (Sze, 1981)  

  emeee /µ=τ         (6.7) 

and  emhhh /µ=τ         (6.8) 
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where eµ  and hµ  represent the electron mobility and hole mobility, respectively. In this 

work, eµ  and hµ  as functions of dopant concentrations at room temperature are given 

the following two expressions (Beadle et al., 1985)  
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where eµ  and hµ  are in cm2/V⋅s, ND and NA denote dopant concentration of n-type 

(donor) and p-type (acceptor) and are in cm-3. Note that eµ  in Equation (6.9) was 

measured versus ND in Phosphorus-doped silicon and hµ  in Equation (6.10) was 

measured versus NA is Boron-doped silicon (Beadle et al., 1985). It is assumed in this 

work that Phosphorus and Boron are the donor and acceptor in silicon. A silicon crystal at 

any values of ND and NA should satisfy electrical neutrality (Sze, 1981). This condition is 

used to evaluate the values of eN  and hN  for given temperature and dopant 

concentration. The calculation of eN  and hN  in this work is performed using a free 

software FERMI2 (Gaylord and Linxwiler, 1976). 

From Equations (6.3) and (6.5), le,τ decreases when increasing temperature while 

de,τ  increases with temperature. The temperature dependence of the total scattering time 

eτ calculated from Equation (6.2) is shown in Figure 6.1 for various dopant 

concentrations. It can be seen that le,τ  dominates the scattering time at high temperatures 

while de,τ  is important at low temperatures. Validation of the model in Equation (6.1) is 
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performed by comparing the absorption coefficient c/2ωκ=α  of intrinsic silicon with 

the results obtained from the empirical formulae given by Timans (1996), which is shown 

in Figure 6.2(a) as a function of ω  for various temperatures. The contribution to α  from 

lattice vibrations is small at the high temperatures that it is neglected in Figure 6.2(a). 

The absorption coefficient α  for doped silicon is shown in Figure 6.2(b) versus 

temperature for the wavelength λ = 1.3 µm and compared with experimental data 

(Timans, 1996). The comparison indicates that Equation (6.1) is appropriate for 

describing the dielectric function of silicon under the prescribed conditions. The model of 

Equation (6.1) has been used by Hebb (1997) in the temperature range from 300 K up to 

1400 K and for dopant concentrations up to greater than 2010  cm-3. 

 

Figure 6.1 The electron scattering time of silicon changes with temperature and 
dopant concentration. 
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Figure 6.2 The absorption coefficient of (a) intrinsic and (b) doped silicon, obtained 

from the Drude model, Equation (7), and the empirical formulae from 
Timans (1996). Note that the same equation is used to evaluate lib−ε  in 
both models. 
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6.2 Energy Density of Thermally Emitted EM Fields from a Flat Surface   

The spectral energy density ),( ωzu  emitted form a flat surface of silicon can be 

calculated with Equations (6.1) and (2.28). The calculated ),( ωzu for the surface 

temperature equal to 1000 K and at various heights above the surface is plotted in Figure 

6.3. The result shows different profiles of ),( ωzu for different z values. From the 

radiation spectra of a blackbody at 1000 K, the maximum of the energy density appears at 

141069.3 ×≈ω  r a d / s .  I n  F i g u r e  6 . 3 ,  a  m a x i m u m  ),( ωzu  a p p e a r i n g  a t 

141069.3 ×≈ω rad/s can be seen for the cases of z = 1 mm and 10 µm. It has been shown 

in Equation (2.28) that ),( ωzu  includes contributions from propagating waves and 

 

Figure. 6.3 The evolution of the energy density emitted from a silicon surface at 1000 
K. The curves are plotted for different heights above the surface. 
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evanescent waves. Because evanescent waves decay exponentially away from the surface, 

their contribution to the energy density is negligible for cz /ω> . But if cz /ω<< , 

evanescent waves will make tremendous contribution to the energy density so that much 

larger energy density can be obtained, as shown in Figure. 6.3 for the cases of z = 10 and 

100 nm.  Note also from Figure. 6.3 that if the silicon is doped ND = 1020 cm-3, ),( ωzu  

for z = 10 nm has significant difference compared to that of an intrinsic silicon. In order 

to see in depth the dependence of ),( ωzu  on z and dopant concentration, rewrite 

Equation (2.28) as 

 ),(),(),( TzNzu ωΘω=ω       (6.11) 

where ),( ωzN  accounts for the density of modes per unit volume. According to Pendry 

(1999), the density of modes for cz /ω<< is dominated by evanescent waves of p-

polarization for nonmagnetic materials. Using Asymptotic expansion, it has been shown 

(Shchegrov et al., 2000; Joulain et al., 2003) that ),( ωzN  for cz /ω<<  can be 

approximated, in large K limit, as 
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The 3−z  dependence of ),( ωzN  on z makes ),( ωzN  decrease much faster than the 

exponential decay, resulting in large ),( ωzN  only localize very close to the surface.   

The dependence of ),( ωzN  on dopant concentration can be seen from the dependence of 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ε
−ε

1
1

Im
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1  on dopant concentration. Substituting 1ε  with the dielectric function of 

silicon at T = 1000 K, ),( ωzN  from Equation (6.12) as a function of ω  is shown in 
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Figure. 6.4 for z = 10 nm. Comparing the curves for z = 10 nm in Figures 6.3 and 6.4, the 

energy density is clearly seen to follow the trend of ),( ωzN . 

 

Figure 6.4 Estimated density of modes for z = 10 nm above the surface of an intrinsic 
silicon and an n-type silicon (dopant concentration ND = 1020 cm-3) at 1000 K. 

 
 
 

6.3 Net Energy Flux between Silicon and Silicon  

 The radiation heat transfer between two semi-infinite media is calculated using 

Equations (2.29) − (2.31). In the case that the two media are both intrinsic silicon and 

medium 1 is maintained at 1000 K while medium 2 is at 300 K. The calculated net 

spectral energy flux between the two media is shown in Figure 6.5(a) for different values 
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of the vacuum gap width d . Although the flux magnitude increases as d decreases, the 

feature looks similar to the Planck blackbody radiation even for d as small as 100 nm. 

Small deviation is observed when d is further reduced to 10 nm, which is only at low 

frequencies. The oscillation for d = 10 µm is due to wave interference in the vacuum gap. 

The net energy flux is obtained by integrating the net spectral energy flux over ω . The 

result is shown in Figure 6.5(b). The dotted line denotes the net energy flux calculated 

with the traditional Stefan-Boltzmann law if both media are assumed blackbodies. Wien’s 

displacement law (Siegel and Howell, 2002) determines that dominant wavelength λmax 

for the 1000 K emitter is around 3 µm. The energy flux is essentially a constant when the 

gap width d is greater than 3 µm, which is the far-field regime. When d < λmax, the net 

energy flux first increases rapidly. This increase of the net energy flux with reducing gap 

width slows down when d < 100 nm. The net energy flux approaches a finite value and 

changes little when d < 10 nm. The saturated net energy flux is 21 times that of the far-

field limit and 11 times that with blackbodies. The case when the emitter is a doped 

silicon with ND = 1020 cm−3 is also calculated. The result in the near-field regime, which 

can be seen in Figure 6.5(b), is slightly smaller than that for the emitter being intrinsic 

silicon. In fact, this result is caused by the intrinsic silicon at 300 K. An intrinsic silicon 

at 300 K is almost lossless (i.e., 0=κ ). According to Cravalho et al. (1967) and Pan 

(2000), the maximum heat flux from an emitter to a lossless dielectric is bounded to the 

Planck radiation of a blackbody at the emitter temperature times the dielectric function of 

the receiver.  

The above problem may be better understood if the heat transfer is treated to be 

through channels proposed by Pendry (1999): each wave vector corresponds to a channel,  



 102

 

 

Figure 6.5 The energy flux between two semi-infinite intrinsic silicon media: (a) 
spectral distribution for different values of d, (b) the net total energy flux 
between the two silicon media as a function of d. The high temperature 
medium at 1000 K is separated from the low temperature medium at 300 
K by a vacuum of width d.  
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Figure 6.6 The effect of doping on the net (a) spectral energy density and (b) total 
energy density between the two silicon media. Doped silicon is only for 
the low temperature medium and (a) is drawn with z = 10 nm. 
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or mode, through which heat can flow. Therefore, large heat transfer is characterized by 

large number of channels available for heat flow. Recall from Equation (6.12) that the 

density of modes outside the surface of medium1 is proportional to [ ])1/()1(Im 11 +ε−ε . 

Similarly, the density of modes outside the surface of medium 2 should also be 

proportional to [ ])1/()1(Im 22 +ε−ε . The number of channels through which heat can 

flow is proportional to the product of [ ])1/()1(Im 11 +ε−ε  and [ ])1/()1(Im 22 +ε−ε . In 

fact, a rough estimate of the net spectral heat flux for small d can has been given by 

Mulet et al. (2002) as 
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From Equation (6.13), it is not surprising that the energy flux in Figure 6.5 is small. 

Because [ ])1/()1(Im 22 +ε−ε  is small for intrinsic silicon at room temperature. Large 

energy flux for small d depends on a large [ ])1/()1(Im 22 +ε−ε . Come back to the case of 

Figure 6.5 and consider that medium 2 is doped silicon. The net spectral energy flux is 

recalculated and the results are shown in Figure 6.6(a) for 20
2 10=DN  cm-3 ( 20

2 10=AN  

cm-3 for p-type) and d fixed at 10 nm, where the subscript 2 means doping is for medium 

2. It can be seen that the net spectral energy flux is greatly improved for the angular 

frequency 1410<ω  rad/s. The corresponding net energy flux is shown in Figure 6.6(b). 

From the figure, the net energy flux follows the same trend as in Figure 6.5 (b) when d 

decreases from 32 µm to 100 nm, indicating that the number of channels for heat flow is 

not improved when d is greater than 100 nm. However, the net energy flux increases 

rapidly when d is reduced to less than 20 nm and this increase does not saturate even for 
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d = 1 nm, where the net energy flux is enhanced by more than one order in magnitude 

compared with Figure 6.5(b).  

Equation (6.13) provides a way for optimizing the near-field radiative heat 

transfer by tuning the optical properties of the emitter and receiver, which can be done in 

silicon by changing the dopant concentration. In order to see clearly how the dielectric 

function of silicon will be affected by dopant concentration, the real part ε′  and the 

imaginary part ε ′′  of the dielectric function of silicon as functions of ω  are plotted in 

Figure 6.7 at temperatures of 1000 K and 300 K and for different dopant concentrations. 

In essence, ε′  decreases while ε ′′  increases with adding dopants. A negative ε′  indicates 

the material is metallic like and ε ′′  is very large. From Equation (6.13), a very large ε ′′  

will result in small density of modes. The optimum net energy flux requires the number 

density of heat flow channels maximizes around where ),( TωΘ  also maximizes for a 

given temperature T. The result of the material parameter ⎟⎟
⎠
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1  as 

a function of ω  for 10001 =T  K and 3002 =T  K is plotted in Figure 6.8. From the figure, 

the peak of Φ will shift to higher frequencies when the dopant concentrations in medium 

1 and medium 2 are increased. But the magnitude of the peak does not always increase 

with dopant concentrations. For example, when the dopant concentrations in medium 1 

and medium 2 are both equal to 1021 cm-3, the peak of Φ has been smaller than the case 

when dopant concentration is equal to 1020 cm-3 in medium 1 but is equal to 1021 cm-3 in 

medium 2. The net energy flux is also calculated under the indicated conditions and 

shown in Figure 6.9. The largest net energy flux is found for 20
1 10=DN cm-3 and 

21
2 10=DN  cm-3, consistent with Figure 6.8. The maximum net energy flux for d = 1 nm  
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Figure 6.7 The change of the (a) real part and (b) imaginary part of the dielectric 
function of silicon with angular frequency at different temperatures and 
dopant concentrations. 
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Figure 6.8 The parameter Φ drawn as a function of angular frequency showing the 
change of the number density of heat flow channels at different dopant 
concentrations. The subscripts 1 and 2 denote medium 1 and medium 2. 
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Figure 6.9 Net energy flux obtained for small d with both media being n-type silicon 

with dopant concentration between 1020 and 1021 cm-3. 
 
 
 

is over three orders in magnitude greater than those in Figure 6.5. 

In the above investigations, the temperatures of medium 1 and medium 2 are set 

at T1 = 1000 K and T2 = 300 K, respectively, and the net radiation energy flux is 

calculated for various doping concentrations of silicon. In order to investigate the effect 

of temperature on the net energy flux, the dopant concentrations of both medium1 and  
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Figure 6.10  The effect of temperature on the radiation energy flux between two doped 
silicon: (a) the net energy flux and (b) the energy flux from medium 1 to 
medium 2 normalized by 4

1Tσ . 
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medium 2 are fixed at 20
21 10== DD NN  cm-3 and the net energy flux is calculated for 

different values of T1. The calculated net energy flux is shown in Figure 6.10(a). It is 

interesting to find that when d is equal to 10 µm, the ratio of the net energy flux for T1 = 

1000 K to that for T1 = 500 K is 15.4; but when d is equal to 1 nm, this ratio is only 3.37. 

The radiation energy flux from medium1 to medium 2 21−′′q  normalized by 4
1Tσ , where 

81067.5 −×=σ  W/m2⋅K4 is the Stefan-Boltzmann constant, is shown in Figure 6.10(b). 

From this figure, the normalized 21−′′q  is almost the same for all the four temperatures at d 

= 10 µm, but very large differences can be seen at d = 1 nm, where the 21−′′q decreases 

with increasing the temperature T1. These two figures show that a smaller T1 may be more 

efficient to achieve large radiation energy flux in the near field.                      

 

6.4 Net Energy Flux between Silicon and Silicon Carbide or Metal 

Silicon carbide (SiC) has been extensively studied for using to enhance radiative 

heat transfer in the near field. It has been shown that the excitation of surface phonon 

polaritons (Surface waves) on SiC surface can significantly enhance the heat transfer 

(Narayanaswamy and Chen, 2003; Mulet et al., 2002). The heat transfer enhancement is 

because excitation of surface phonon polariton provides a large number of additional 

surface modes near the excitation frequency and these surface modes can be coupled to 

the second material (Shchegrov et al., 2000). However, the density of modes is small for 

frequencies not close to the excitation frequency because of the small value of ε ′′  in SiC. 

In other words, SiC cannot provide a large number of heat flow channels without surface 

waves. Replacing the room temperature medium (medium 2) with SiC and setting  
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Figure 6.11 The net (a) spectral energy flux and (b) total energy flux between Si at 
1000K and SiC at 300 K. The sharp peak in (a) is due to excitation of 
surface phonon polaritons on the SiC surface. 
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medium 1 of silicon at 1000 K, the net spectral energy flux of Si-SiC is calculated for 

different values of d and shown in Figure 6.11(a). Note that in the frequency range from 

14105.1 ×  rad/s to 141082.1 ×  rad/s, ε′  of SiC is negative, i.e., small emissivity, the 

emitted spectrum in this range is low for d = 10 µm (far field). When d is decreased to the 

near-field regime such that evanescent waves come into affect the heat exchange, surface 

phonon polaritons are excited on the SiC surface at the frequency where 1−=ε′  (Mulet 

et al., 2002). A large number of surface modes excited facilitate to enhance heat transfer, 

denoted by the sharp peak in Figure 6.11(a). However, the energy flux elsewhere is much 

lower than in the case of Si-Si. Therefore, heat transfer enhancement is totally confined in 

a narrow frequency range. As a result, the net total energy flux, shown in Figure 6.11(b), 

displays a lower value than that in Figure 6.9 for d < 100 nm.  

Most metals exhibit high reflection in the infrared region. For thermal radiative in 

near-field, metals are also bad candidates to have large heat transfer rate due to the small 

density of modes in the infrared region. Consider the case that a semi-infinite medium of 

aluminum at room temperature (300 K), whose dielectric function is taken from the work 

of Smith et al. (1998), is subjected to heat radiation from a 1000 K thermal source of 

doped silicon. The net energy flux change with d from the far field regime to the near 

field regime is shown in Figure 6.12. The enhancement can be up to three orders in 

magnitude when the net energy flux in the near field regime is compared with that in the 

far field regime, but the absolute value is so small that even for d < 100 nm, the net 

energy flux is smaller than the value given by the Stefan-Boltzmann law of two 

blackbodies. Other metals such as silver and copper have also been investigated; the 

results are similar to Figure 6.12 and thus will not be discussed here. 



 113

 

 

                   

 

Figure 6.12  The net total energy flux between Si at 1000 K and Al at300 K. 
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CHAPTER 7 
 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 
 
 
 

This dissertation research has unveiled several spectacular features of NIMs with 

respect to the radiative properties and radiative transfer in multilayer structures. First of 

all, energy transmission through photon tunneling can be greatly enhanced by the 

amplification of evanescent waves associated with the surface plasmon polariton. 

Secondly, the coherence thermal emission has been predicted using a heterogeneous 

structure constructed by pairing layers of a single negative ε and a single negative µ. 

Furthermore, a detailed account of the conditions of occurrence of the Brewster angle, at 

which the reflectance is zero, is theoretically performed. The major conclusions of this 

dissertation regarding NIMs are summarized below.  

Energy transmission in multilayer structures via photon tunneling can be greatly 

enhanced using a layer of an NIM, especially when the NIM is at the perfect index 

matching condition. The enhancement is due to the excitation of surface or bulk 

polaritons, but depends on the thickness of the NIM layer that could be tuned to produce 

optimal performance. Furthermore, it is found that subdividing the NIM layers into many 

thinner layers and placing them alternately with vacuum gaps can have greater 

enhancement, especially at large incidence angles. The enhancement is attributed to the 

coupling of surface and bulk polaritons that reinforce the EM fields in the structure. By 

coupling more photons into the structure, a large increase in the transmission of 

evanescent waves and a reduction of the reflectance are observed using multilayer 
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structures. The result of the present study may benefit future applications of NIMs in 

microscale energy conversion and optical communication. 

 A novel coherent thermal emission source is proposed to construct using a bilayer 

where a thin layer having a negative ε  but a positive µ  is paired with a thick substrate 

having a negativeµ  but a positive ε . It has been shown that surface polaritons can be 

excited at the interface of the two layers. The excited surface polaritons can couple 

directly with thermal emission from the bilayer, resulting in a narrow emission band for a 

given direction and angular emission lobes for a given frequency. Therefore, thermal 

emission for the bilayer can be coherent. The merits of such a coherent thermal emission 

source are that coherent thermal emission of both s- and p-polarizations is possible and 

no grating is needed, while coherent thermal emission from a grating is only possible for 

p-polarization. Furthermore, a three-layer structure was also proposed for constructing a 

coherent thermal emission source, where the top layer and the substrate are made of the 

negative ε  material and the layer in the middle has a negative µ  (or vice versa), the 

advantage of such a three-layer structure over the bilayer is that for a given emission 

direction, changing the thickness of the mid-layer can control the frequencies of the 

coherent thermal emission. Potential applications of a coherent thermal emission source 

may be in radiative cooling and in infrared photovoltaic devices. 

It has been shown that a Brewster angle can exist not only for p-polarization but 

also for s-polarization when a plane wave is incident on an NIM; and that the existence of 

a Brewster angle does not, in general, result in the refracted wave being perpendicular to 

the reflected/incident wave. Only under the condition that 21 ε±=ε  or 21 µ±=µ  will the 

refracted wave be perpendicular to the reflected/incident wave at the Brewster angle. A 
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regime map that is based on the permittivity and permeability of the two media was 

developed to delineate the regions a Brewster angle can exist for incidence of certain 

polarized plane waves. Physical explanations that account for the outcome of the 

Brewster angle for a plane wave incident upon an NIM have also been derived according 

to the Ewald-Oseen extinction theorem and induced dipoles re-emission from inside the 

NIM. The conclusions coming along with the occurrence of a Brewster angle in the case 

of an NIM may be a useful supplement to the understanding of the material’s 

electromagnetic behavior, and may help the development of potential applications of 

negative index materials in advanced technologies. 

This dissertation also investigates the radiation heat transfer at the nanoscale 

related to silicon. The net heat flux between two semi-infinite media separated at 

nanometric distances, of which the high-temperature medium is assumed silicon and the 

low-temperature medium can be silicon, silicon carbide or aluminum, was calculated 

using the fluctuational electrodynamics. A Drude model that considers the effects of 

temperature and dopant concentration on the free carrier concentration and scattering 

times was used for modeling the dielectric function of silicon. The low-temperature 

medium was set at 300 K. It was found that when the two media are both intrinsic silicon, 

the net heat flux will become saturated for the separation distance less than 20 nm and the 

saturated value is only one order greater in magnitude than that calculated from the 

Stefan-Boltzmann law. The net energy flux slightly drops off if the emitter is doped 

silicon. Very large net heat flux appears for both media being doped silicon and the net 

heat flux does not saturate even for the vacuum gap thickness of 1 nm. A maximum 

radiative energy flux from an n-type silicon at 1000 K to another n-type silicon at room 
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temperature was found to exist, with the dopant concentration of both media on the order 

of 1020 cm-3. The net heat flux between silicon and silicon carbide or silicon and 

aluminum is also calculated. But results are smaller than the maximum heat flux between 

silicon and silicon. The enhancement of radiation heat transfer at the nanoscale may have 

an impact on the development of near-field thermal probing and nanomanufacturing 

techniques. 

This dissertation demonstrates some unique radiative properties for applications 

in energy conversion devices. It is important to develop NIMs at higher frequencies in 

order to experimentally demonstrate the enhancement of photon tunneling and coherent 

thermal emission. The effect of anisotropy on the radiative properties should be further 

investigated. Further work is also needed to study the effect of coatings on the net heat 

flux at the nanoscale. For example, both media may be coated with absorbing and 

semitransparent films so that the radiation net heat flux can achieve optimized spectral 

distribution of the transmitted and reflected radiation. This will require the use of a much 

complicated dyadic Green function. The radiation heat transfer between a nanoobject, 

such as an AFM cantilever tip, and a flat surface should also be predicted and 

experimentally determined.   
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