
Hardware/Software Deadlock Avoidance for
Multiprocessor Multiresource System-on-a-Chip

A Thesis
Presented to

The Academic Faculty

by

Jaehwan Lee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

November 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4675095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hardware/Software Deadlock Avoidance for
Multiprocessor Multiresource System-on-a-Chip

Approved by:

Professor Vincent J. Mooney III, Adviser

Professor Douglas M. Blough
(Reading Committee)

Professor Sung Kyu Lim
(Reading Committee)

Professor William D. Hunt

Professor Panagiotis Manolios
(College of Computing)

Date Approved: 12 November 2004

To my wife, Young-Hee Yun,

and

my son, Dongyun James Lee,

for their love, support and sacrifices.

iii

PREFACE

It has been four years and a few more months since I started pursuing my Ph.D. These years

have been my very precious time of experiencing not only new worlds but also state-of-

the-art technology. At the same time, I have suffered a lot from my lack of knowledge and

forgetfulness, lack of fluent language communication ability while learning new concepts

and describing papers well enough to be published. Now, as my time of graduation nears, I

have been wondering if my work is sufficient to uphold the honor of Georgia Tech and also

to enable me to find a good job in the United States. I did not have enough time to make

this thesis perfect according to my criteria because I needed to write it as soon as possible

so that a draft version could be read by proof readers who promised to help me, and so

this work could be timely delivered to committee members who would give me feedback

as well as criticism.

During my defense, I was asked numerous questions and was given many constructive

comments. Feeling the warmth of the committee members, I tried to accommodate all their

questions and concerns and then added almost all answers and comments to them in this

thesis. In fact, I devised another approach to resolving a priority inversion type of problem

in one of our approaches, implemented it in hardware, simulated it and added it to this

thesis.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to everyone who made this

thesis possible. First and foremost, I would like to thank my adviser, Dr. Vincent John

Mooney III, for his patience and guidance during my Ph.D. study at Georgia Tech. With his

knowledge and experience, he has guided me to successfully achieve my research objective.

I truly admire him for all his encouragement throughout this process. He was gracious to

me and always there when I needed him.

Second, I would like to thank my thesis committee members, Dr. Douglas M. Blough,

Dr. William D. Hunt, Dr. Sung Kyu Lim, Dr. Panagiotis Manolios and Dr. Vincent Mooney

for their critical evaluation and valuable suggestions, especially Dr. Blough, Dr. Lim and

Dr. Vincent Mooney for their thorough reading and fine tuning of my thesis.

Third, I would like to thank all members of the Hardware/Software Codesign Group

at Georgia Tech for their friendship, support and feedback, especially, Bilge S. Akgul who

helped me adjust to new research as well as to my adviser during my early period at Georgia

Tech. Ever since becoming coauthors of a conference paper, we have helped each other

with much critical information in the design and simulation of multiprocessor systems.

Fourth, I also thank my family for their love and support throughout my entire Ph.D.

study. Without my beloved wife Young-Hee, I would not have even dreamed of a Ph.D., nor

would I have finished this Ph.D. My wife waited for me at night, prepared everything that

I could not do by myself, endured difficult times with prayer and continually encouraged

me to accomplish my vision. Since I did not have much chance to spend time with my

son James, he missed me numerous days, which made me feel sorry. But, he also has

encouraged me by doing his duty well and growing up well and righteously.

Last, but not least, special thanks to God, who has inspired me to accomplish this

research successfully.

v

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Contributions . 2

1.3 Terminology . 3

1.3.1 Basic Definitions in Deadlock Realm 3

1.3.2 Basic Definitions in Graph Theory 9

1.3.3 Definition of a Cycle . 11

1.3.4 Definition of a Terminal Reduction Step 13

1.4 Target System . 14

1.4.1 Target Multiprocessor System-on-a-Chip 14

1.4.2 Target Real-Time Operating System 15

1.5 Assumptions . 16

1.6 Thesis Organization . 17

II MOTIVATION AND PREVIOUS WORK 19

2.1 Motivation . 19

2.2 Software Deadlock Research . 21

2.2.1 Overview of Prior Deadlock Research 21

2.2.2 Deadlock Detection . 22

2.2.3 Deadlock Prevention . 23

2.2.4 Deadlock Avoidance . 25

vi

2.3 Hardware Deadlock Research . 27

2.3.1 Deadlock Detection . 27

2.3.2 Deadlock Avoidance . 29

2.4 Our Approaches Compared to Prior Work 29

2.5 Summary . 30

III PROOFS OF THE CORRECTNESS AND RUN-TIME COMPLEXITY OF
THE DDU . 31

3.1 Introduction . 31

3.1.1 Deadlock Detection Unit (DDU) Operation in a System 31

3.2 Proofs of the correctness and run-time complexity of the DDU 33

3.2.1 Preliminary Theorems . 33

3.2.2 Matrix Representation of a RAG 40

3.2.3 Parallel Deadlock Detection Algorithm (PDDA) 45

3.2.4 Proof of the Correctness of PDDA 47

3.2.5 Proof of the Run-time Complexity of the DDU 48

3.3 Hardware Implementation of PDDA 52

3.3.1 Step-by-step Operations of the DDU with Mathematical Repre-
sentations . 52

3.3.2 DDU Operation Examples . 58

3.3.3 On the Relationship between the DDU and Two Level Logic Min-
imization . 64

3.3.4 Detailed Description of the DDU Architecture 64

3.3.5 Synthesis Result of the DDU . 70

3.4 Experiments . 70

3.4.1 Experimental Setup . 70

3.4.2 Execution Time Comparison of PDDA 72

3.4.3 Execution Time Comparison of an Application 74

3.5 Summary . 77

IV DEADLOCK AVOIDANCE UNIT . 78

4.1 Introduction . 78

vii

4.2 Methodology . 79

4.2.1 Our Deadlock Avoidance Method 79

4.2.2 Proof of the Correctness of the DAU 85

4.2.3 Run-time Complexity of the DAU 89

4.3 Implementation . 90

4.3.1 Architecture of the DAU . 90

4.3.2 Synthesized Result of the DAU 92

4.4 Experiments . 93

4.4.1 Simulation Environment Setup for the DAU evaluation 93

4.4.2 Application Example I . 94

4.4.3 Experimental Result for Application Example I 95

4.4.4 Application Example II and Its Result 96

4.4.5 Application Example III . 97

4.4.6 Experimental Result for Application Example III 98

4.5 Summary . 99

V PARALLEL BANKER’S ALGORITHM UNIT 100

5.1 Introduction . 100

5.2 Target System Model . 102

5.3 Methodology . 103

5.3.1 Usage Assumption . 103

5.3.2 Our Deadlock Avoidance Method 103

5.3.3 Proof of the Correctness of PBA 110

5.3.4 Proof of the Run-time Complexity of the PBAU 111

5.3.5 Comment on Livelock Avoidance in PBA 112

5.4 Implementation . 112

5.4.1 Architecture of the PBAU . 112

5.4.2 Circuitry and Equations of the PBAU 114

5.4.3 Synthesized Result of the PBAU 123

5.4.4 Run-time Complexity of the PBAU 123

viii

5.5 Experiments . 124

5.5.1 Simulation Environment Setup for PBAU evaluation 124

5.5.2 Experimental System . 124

5.5.3 Application Example . 125

5.5.4 Experimental Result . 127

5.6 Summary . 128

VI INTEGRATING THE DDU, DAU AND PBAU INTO THE
�

HW/SW RTOS
PARTITIONING FRAMEWORK . 130

6.1 Introduction . 130

6.2 Methodology . 131

6.3 Automatic Generation of the DDU, DAU and PBAU 135

6.4 Summary . 137

VII CONCLUSION . 139

REFERENCES . 142

VITA . 147

ix

LIST OF TABLES

Table 1 Synthesized result of the DDU. 70

Table 2 A sequence of requests and grants that leads to deadlock. 75

Table 3 Deadlock detection time and application execution time. 76

Table 4 Synthesized result of the DAU. 93

Table 5 A sequence of requests and grants that would lead to G-dl. 95

Table 6 Execution time comparison (G-dl case 1). 96

Table 7 Execution time comparison (G-dl case 2). 97

Table 8 A sequence of requests and grants that would lead to R-dl. 98

Table 9 Execution time comparison (R-dl). 99

Table 10 Notations for PBA. 104

Table 11 Data structures for PBA. 104

Table 12 A resource allocation state. 107

Table 13 Initial resource allocation state for case i). 107

Table 14 Resource allocation state in case i) after ��� finishes. 108

Table 15 Resource allocation state in case i) after ��� finishes. 108

Table 16 A resource allocation state in case ii). 108

Table 17 A resource allocation state in a special case. 109

Table 18 A resource allocation state after pretense. 109

Table 19 Synthesized result of the PBAU. 123

Table 20 A sequence of requests and releases for PBAU test. 126

Table 21 Initial resource allocation state at time ��� 127

Table 22 Resource allocation state at time ���
	 . 127

Table 23 Resource allocation state at time ���
� . 127

Table 24 Resource allocation state at time ����� . 128

Table 25 Resource allocation state at time ���
 . 128

Table 26 Application execution time comparison for PBAU test. 129

Table 27 Execution time comparison between PBAU vs. PBA in software. 129

x

LIST OF FIGURES

Figure 1 Deadlock example. 4

Figure 2 Grant deadlock (G-dl) example. 7

Figure 3 RAG example. 11

Figure 4 Cycle example. 13

Figure 5 Practical MPSoC realization. 15

Figure 6 Future MPSoC. 20

Figure 7 Relationship between deadlock avoidance and deadlock prevention. . . . 22

Figure 8 DDU architecture. 28

Figure 9 DDU usage example. 33

Figure 10 Matrix representation example. 41

Figure 11 Terminal row example. 42

Figure 12 Terminal column example. 43

Figure 13 Terminal reduction step (�) example. 45

Figure 14 A sample sequence of reduction steps. 48

Figure 15 Simple path example. 50

Figure 16 Dangling path connected to a cycle when �
���� 51

Figure 17 SoC example with two processors and three resources. 58

Figure 18 SoC example with two processors and three resources with a cycle. . . . 58

Figure 19 SoC example with two processors and three resources without a cycle. . . 62

Figure 20 DDU architecture. 65

Figure 21 Matrix Cell ���
	 in matrix array ���� . 66

Figure 22 Logic diagram of a matrix cell. 66

Figure 23 Weight Cells ����� and ����� described in Equations 15 and 16. 67

Figure 24 Logic diagram of a column weight cell. 68

Figure 25 Decide cell � . 69

Figure 26 Logic diagram of a decide cell. 69

Figure 27 MPSoC architecture for the DDU evaluation. 71

xi

Figure 28 Run-time comparison of deadlock detection algorithms. 73

Figure 29 Events RAG for deadlock detection comparison. 76

Figure 30 DAU architecture. 90

Figure 31 DAU command register. 91

Figure 32 DAU status register. 92

Figure 33 MPSoC architecture for the DAU evaluation. 94

Figure 34 Events RAG for grant deadlock avoidance comparison. 95

Figure 35 Events RAG for request deadlock avoidance comparison. 97

Figure 36 MPSoC with multiple-instance resources. 101

Figure 37 PBAU architecture. 113

Figure 38 Logic diagram of a Resource Cell (RC). 115

Figure 39 Logic diagram of a Process Cell (PC). 116

Figure 40 Logic diagram of an Element Cell (EC). 117

Figure 41 Logic diagram of a Safety Cell (SC). 120

Figure 42 Finite state machine of the PBAU. 122

Figure 43 The
�

hardware/software RTOS design framework. 132

Figure 44 GUI of the
�

framework. 133

Figure 45 Bus system configuration. 133

Figure 46 Bus subsystem memory configuration. 133

Figure 47 Bus subsystem configuration. 134

Figure 48 HDL top file generation flow of the
�

framework. 136

Figure 49 GUI for automatic generation of a hardware deadlock solution. 137

Figure 50 Automatic generation flow of a hardware deadlock solution. 137

xii

SUMMARY

The main objective of this thesis is to implement fast and deterministic hard-

ware/software deadlock avoidance by a novel scalable hardware technique that is easily

applicable to real-time multiresource MultiProcessor System-on-a-Chip (MPSoC) design.

Our solutions are provided in the form of Intellectual Property (IP) hardware units

which we call the Deadlock Avoidance Unit (DAU) and the Parallel Banker’s Algorithm

Unit (PBAU).

A novel Parallel Deadlock Detection Algorithm (PDDA) and its hardware implementa-

tion in the Deadlock Detection Unit (DDU) were first proposed by Shui, Tan and Mooney.

The DDU performs very fast deadlock detection since it traces neither cycles nor paths, nor

does it require linked lists.

Our main contributions regarding the DDU are detailed descriptions of PDDA and the

DDU with mathematical representations, software implementations of PDDA, a proof of

the correctness of PDDA, a proof of the run-time complexity of the DDU, and exten-

sive experimentation among the DDU, PDDA in software and a comparable ������� ���

deadlock detection algorithm. Our proof of the correctness of PDDA utilizes five lem-

mas and four theorems; our proof of DDU complexity shows a worst case run-time of
� � �	� � �
��
 ������ � ���
�	� � �
��
 ����� (where � and � are the numbers of resources and

processes, respectively) utilizing two corollaries, one lemma and one theorem. Previous

deadlock detection algorithms in software, by contrast, have an ���
��� ��� run-time com-

plexity. The DDU reduces deadlock detection time by 99%, (i.e., 100X) or more compared

to software implementations of deadlock detection algorithms. An experiment involving a

practical situation that employs the DDU showed that the time measured from application

initialization to deadlock detection was reduced by 46% compared to detecting deadlock in

xiii

software.

The DAU, the second hardware solution, provides very fast and automatic deadlock

avoidance in MPSoC with multiple processors and multiple resources. The DAU avoids

deadlock by not allowing any grant or request that leads to a deadlock. In case of livelock,

the DAU asks one of the processes involved in the livelock to release resource(s) so that

the livelock can also be resolved. We devised four novel deadlock avoidance algorithms,

implemented the algorithms in Verilog Hardware Description Language (HDL) and syn-

thesized them using an automatic synthesis tool. We simulated two synthetic applications

that can benefit from the DAU and demonstrated that the DAU not only avoids deadlock

in a few clock cycles but also achieves in our examples approximately 40% speedup of

application execution time over avoiding deadlock in software. The MPSoC area overhead

due to the DAU is small, under 0.04% in our SoC example.

While the DAU provides automatic deadlock avoidance for single-instance resource

systems, Parallel Banker’s Algorithm Unit (PBAU), a hardware implementation of our

novel Parallel Banker’s Algorithm (PBA), accomplishes fast, automatic deadlock avoid-

ance for multiple-instance resource systems. PBA is a parallelized version of the Banker’s

Algorithm proposed by Habermann for a multiple instance multiple resource system. We

have implemented PBA in Verilog HDL and synthesized it using an automatic synthesis

tool. PBAU provides a system with an ��� ��� run-time complexity deadlock avoidance with

a best case run-time of ����� � . We demonstrate that PBAU not only avoids deadlock in a

few clock cycles (1600X faster than the Banker’s Algorithm implemented in software) but

also achieves in a particular example a 19% speedup of application execution time over

avoiding deadlock in software. The MPSoC area overhead due to PBAU is small, under

0.05% in our candidate MPSoC example.

To automate the design of hardware deadlock solutions, we also provide an automatic

deadlock hardware generation tool that is capable of generating a custom DDU, DAU or

PBAU for a user-specified combination of resources and processes, so that users can easily

xiv

and rapidly implement a particular deadlock hardware solution for their target MPSoCs.

Finally, we have integrated automatic generation of DDU, DAU and PBAU into the
�

hardware/software Real-Time Operating System (RTOS) partitioning framework, the goal

of which is to speed up RTOS/MPSoC codesign. The
�

framework is specifically designed

to help RTOS/MPSoC designers very easily and quickly explore the available design space

with different hardware and software modules so that they can efficiently search and dis-

cover several compact solutions matched to the specifications and requirements of their

design prior to any actual implementation. We also describe an approach to an automatic

deadlock hardware generation tool used to customize a deadlock hardware IP for a partic-

ular target system.

xv

CHAPTER I

INTRODUCTION

1.1 Problem Statement

Current trends show that System-on-a-Chip (SoC) technology has contributed to a signif-

icant evolution in digital chip design. Unlike a Printed-Circuit-Board (PCB) filled with

many digital chips, an SoC is designed as a hardware platform that integrates most of the

functions of the end product in a single chip. An SoC has commonly incorporated at least

one Processing Element (PE) (e.g., a microprocessor or a Digital Signal Processing Pro-

cessor (DSP)) or more that run embedded software. An SoC may include peripherals, re-

configurable logic and interfaces to the outside world, and it typically employs a bus-based

architecture. An SoC may also contain both memory and analog functions. Current and

future SoC technology will facilitate the creation of complex digital systems that are small,

portable, energy efficient and reliable. Some examples of such complex digital systems are

miniature Personal Digital Assistants (PDAs) and digital cameras.

Current trends also pack more and more data streaming applications with many pro-

cesses and resources on a single SoC. Thus, as SoC integration accelerates, many more

interactions among processes and resources occur. Moreover, many applications consist of

processes that require exclusive accesses not just to one hardware resource (e.g., a custom

FFT unit), but to several resources, increasing the likelihood of deadlock. Thus, we predict

that there will be a significant need for deadlock detection as well as avoidance in an SoC.

Furthermore, the users of a Real-Rime Operating System (RTOS) desire predictable re-

sponse time at an affordable cost. To fulfill this, many researchers have investigated various

approaches to ensure RTOS predictability. One active approach is to utilize one or more

hardware mechanism(s) since (i) hardware is typically far more predictable than a software

1

implementation of the same algorithm, and (ii) the cost of hardware decreases dramatically

in accordance with Moore’s law (or, more accurately, Moore’s prediction) [21].

All deadlock detection or avoidance algorithms known to date have a run-time com-

plexity of at least ������� ��� (where � is the number of resources and � is the number

of processes) since they assume an execution paradigm of one instruction or operation at

a time. With a custom hardware implementation of a deadlock algorithm, parallelism can

be exploited, thereby reducing run-time dramatically. The objective of this research is to

implement deadlock avoidance utilizing hardware mechanisms that are easily applicable to

shared-memory multiprocessor SoC design.

Detection of deadlock is extremely important since any request for or grant of a re-

source might result in deadlock. Invoking software deadlock detection on every resource

allocation event would cost too much computational power; thus, using a software imple-

mentation of deadlock detection would perhaps be impractical in terms of the performance

cost. A promising way of enabling deadlock detection with small computational power is

to implement deadlock detection and/or avoidance in hardware. In fact, without the aid

of hardware, deadlock checking and meeting every other deadline would be unthinkable

for most real-time embedded systems that need to detect and avoid deadlock. With hard-

ware support, however, practical systems may potentially initiate deadlock recovery more

quickly and save large investments. A real-life example of a large investment that was

almost lost is the Mars Pathfinder, a real-time robot, which had to reset due to a priority

inversion condition; new code was downloaded over radio [40]. By quickly detecting such

a situation and calling a special “recover” boot code (which was proven by hand to have no

deadlock), accidents can potentially be avoided.

1.2 Contributions

This thesis mainly presents two hardware solutions, and necessary proofs, to deadlock

problems in MultiProcessor Systems-on-a-Chip (MPSoC). The following items are the

2

main contributions of this research:

� Proof of the correctness of the Parallel Deadlock Detection Algorithm (PDDA).

� Proof of the run-time complexity of the Deadlock Detection Unit (DDU).

� Design of a novel Deadlock Avoidance Algorithm and its hardware implementation,

the Deadlock Avoidance Unit (DAU).

� Proof of the correctness of the Deadlock Avoidance Algorithm.

� Design of a novel Parallel Banker’s Algorithm (PBA) and its hardware implementa-

tion, the Parallel Banker’s Algorithm Unit (PBAU).

� Automatic generation of hardware solutions for deadlock and integration of these

solutions into the
�

Hardware/Software RTOS partitioning framework.

1.3 Terminology

In this section, we define terms used in this thesis, give examples of deadlock, explain two

resource types, and introduce basic graph theory.

1.3.1 Basic Definitions in Deadlock Realm

Definitions of deadlock, livelock and deadlock avoidance in our context can be stated as

follows.

Definition 1 A system has a deadlock if and only if the system has a set of processes, each

of which is blocked (e.g., preempted), waiting for requirements that can never be satisfied.

Definition 2 Livelock is a situation where a request for a resource is repeatedly denied and

possibly never accepted because of the unavailability of the resource, resulting in a stalled

process, while the resource is made available for other process(es) which make progress.

3

Definition 3 Deadlock Avoidance is a way of dealing with deadlock where resource usage

is dynamically controlled not to reach deadlock (i.e., on the fly, resource usage is controlled

to ensure that there can never be deadlock) [11, 16].

Example 1 Deadlock

In an MPSoC application, on-chip processors may have to use several resources, for example,

to process streaming data. Figure 1 shows such a system having two processors, a Very-Long

Instruction Word (VLIW) Processor (VP) and a Specialized Processor (SP), and two resources,

a Bluetooth Interface (BI) [56] and a Moving Picture Experts Group (MPEG) [55] decoder. Each

processor (VP or SP) has to use both resources exclusively to complete its processing of the

streaming data. In the case shown in Figure 1(b), VP holds resource MPEG while SP holds re-

source BI. (Please see the event sequence marked on the side of each edge shown in Figure 1(b).)

Furthermore, VP requests BI, and SP requests MPEG. When SP requests MPEG, the system will

have a deadlock since neither VP nor SP gives up or releases the resources they currently hold;

instead, they wait for their requests to be fulfilled.

1 2

4

3

(a) (b)

B
U

S

BI
Bluetooth

(VP)

VLIW
Processor

(BI)
VPInterface

(SP)
SPProcessor

Specialized

EG
MPMPEG

Decoder

Figure 1: Deadlock example.

While all solutions presented in this thesis are applicable to single-instance resource

systems, only one solution (the PBAU introduced in Chapter 5) can be used for multiple-

instance resource systems; in order to make this distinction clear, we now define single-

instance resource and multiple-instance resource.

Definition 4 A single-instance resource is a resource that services no more than one pro-

cess at a time. That is, while the resource is processing a request from a process, all other

processes requesting to use the resource must wait [31].

4

Definition 5 A multiple-instance resource is a resource that can service two or more pro-

cesses at the same time, providing the same or similar functionality to all serviced pro-

cesses [31].

Example 2 An example of a multiple-instance resource

A group of input/output (IO) buffers (e.g., ten IO buffers) can be considered as a multiple-instance

resource. Rather than having each process keep track of each IO buffer, any request for an IO

buffer is made to the group of IO buffers. In this way, not only can the overhead of tracking IO

buffers for each process be reduced, but also interfaces between processes and IO buffers can be

simplified because processes request from one place.

Example 3 Another example of a multiple-instance resource

The SoC Dynamic Memory Management Unit (SoCDMMU) dynamically allocates and deallocates

segment(s) of global level two (L2) memory between PEs with very fast and deterministic time (i.e.,

four clock cycles) [46]. In a system having an SoCDMMU and 16 segments of global L2 memory,

which can be considered as a 16-instance resource, rather than having each PE (or process) keep

track of each segment, PEs request segment(s) from the SoCDMMU (which keeps track of the L2

memory). In this way, not only can the overhead of tracking segments for each PE be reduced

but also interfaces between PEs and segments can be simplified because PEs request segment(s)

from one place (i.e., the SoCDMMU).

Please note that a DSP processor or a co-processor can be categorized as either a master

or a resource, depending on usage in specific applications. However, in our target MPSoC

model (see Section 1.4.1) and our experiments we consider any DSP processor to be a

resource. For the cases where a co-processor is dynamically changing its role back and

forth between a master and a resource, further research is necessary.

The following necessary deadlock conditions have been stated in some form or another

in previous work [8, 20, 31, 49]; nonetheless, for clarity, we state the following five condi-

tions which, if present, indicate that a system has a deadlock.

Condition 1 Mutual exclusion – resources cannot be shared.

5

Please note that Condition 1 applies only for single-instance resource systems. A

multiple-instance resource can be shared by no more than a certain number (i.e., the number

of instances) of processes.

Condition 2 No preemption – a resource can only be released by the process holding it.

Condition 3 Partial allocation – a process holding resource(s) can request additional re-

sources.

Condition 4 Resource waiting – a process must wait for all requested unavailable re-

sources to become available before proceeding.

Condition 5 Circular hold and wait – a closed chain of alternate processes and resources

exists such that each process holds at least one resource needed by the next process in the

chain, and no process can proceed without receiving all its requested resource(s).

If all five of these conditions hold, then such a system has a deadlock. Please note

that some conditions need not be strictly true at all times, but instead must be true only

for the time(s) at which the system is deadlocked. For example, most modern chips have

a “reset” pin that resets the entire chip, causing all the processes running on the chip’s

computational circuitry to release all held resources. Obviously, utilizing such a reset pin

clears any current deadlocks by breaking Condition 2.

In addition, we further differentiate two kinds of deadlock: request deadlock (R-dl) and

grant deadlock (G-dl). This distinction will become important in the deadlock avoidance

algorithms we will propose later in this thesis.

Definition 6 For a given system, if a request from a process directly causes the system to

have a deadlock, then we denote this case as request deadlock or R-dl.

In Example 1, the last request (i.e, SP requesting MPEG) causes a deadlock. We denote

this case, in which a request causes a deadlock, as request deadlock or R-dl.

6

Definition 7 For a given system, if the grant of a resource to a process directly causes the

system to have a deadlock, then we denote this case as grant deadlock or G-dl.

Example 4 Grant deadlock (G-dl)

We show a sequence of requests and grants that leads to a deadlock as shown in Figure 2. It is

assumed that ��� has a priority higher than ��� . At time ��� , process ��� requests both 	
� and 	�� , which

are then granted to ��� . After that, ��� starts working. At time �� , ��� requests 	�� and 	�� . However,

only 	�� is granted to ��� since 	�� is unavailable. At time �� , ��� also requests 	�� and 	�� , which are not

available for ��� yet. When the computation of ��� is done, 	�� and 	�� are released by ��� at time ���

as shown in Figure 2(b). Then 	�� is granted to ��� at time ��� as shown in Figure 2(c) since ��� has

a priority higher than ��� . This last grant will lead to a deadlock in the system, which we denote as

grant deadlock or G-dl.

t2
t3

t2

t3
t1t1

t4

t5

1 2 3q q q

p p p1 2 3

(c)(a)

1 2 3q q q

pp p2 31

(b)

1 2 3q q q

p p p1 2 3

Figure 2: Grant deadlock (G-dl) example.

Please note that we differentiate between R-dl and G-dl because our deadlock avoidance

algorithm in Chapter 4 requires this distinction to be made. The distinction is required

because some actions can only be taken for either R-dl or G-dl; e.g., for grant deadlock (G-

dl) it turns out that deadlock may be avoided by granting the resource to a lower priority

process (see Example 4 where a final step of granting � � to ��� – instead of to � � – could

have avoided the deadlock).

We also introduce the definitions of an H-safe sequence and an H-safe state used to

clarify the Parallel Banker’s Algorithm in Chapter 5. Please note that the notion of “safe”

was first introduced by Dijkstra [11] and was later formalized into “safe sequence,” “safe

state” and “unsafe state” by Habermann [16]. However, it turns out that a so-called “un-

safe state” may in fact terminate normally (i.e., without deadlock); there do exist “unsafe

7

states” for which there exist sequences such that all processes terminate normally without

any deadlock. For instance, in a system in an “unsafe state” (i.e., “unsafe” according to

Habermann), if all processes voluntarily release resources they hold (i.e., not requesting up

to their maximums), there will not be any deadlock. Thus, the implication that only a “safe

state” executing a “safe sequence” can avoid deadlock is not true. As a result, we will refer

to Habermann’s “safe sequence” as an “H-safe sequence,” to Habermann’s “safe state” as

an “H-safe state” and to Habermann’s “unsafe state” as an “H-unsafe state” where the “H”

stands for Habermann.

Definition 8 An H-safe sequence is an enumeration ���
 � �
������
 � � of all the processes in

the system, such that for each � � �
 �
������
 � , the resources that � � may request are a

subset of the union of resources that are currently available and resources currently held

by � �
 � �
������
 � ��� � [11, 16].

Please note the following.

(i) Any H-safe sequence can be proven to never evolve into deadlock.

(ii) We assume that the sequence is followed strictly (e.g., � � does not preempt � � in the

middle of the sequence).

(iii) There are no promises about any timing properties such as periods and worst-case

execution time.

(iv) We assume that processes having already finished do not execute again until the

completion of all later remaining processes in the sequence.

Theorem 1 A system of processes and resources is in an H-safe state if and only if there

exists an H-safe sequence
�
���
 � �
������
 � ��� . If there is no H-safe sequence, the system is in

an H-unsafe state [16].

If a system is in an H-safe state, completion of all the processes can be guaranteed

by restricting resource usage in the system with a strategy – such as the Banker’s Algo-

rithm [11, 16] – which executes one of the H-safe sequences. How a system in an H-safe

8

state cannot be in deadlock is shown in the following example.

Example 5 A strategy enforcing an H-safe sequence

Consider a system in an H-safe state with an H-safe sequence � � , ��� , ����� , � � . Since the H-safe

sequence starts with ��� , let ��� finish by allowing only � � to allocate additional resources (i.e., cur-

rently available resources) (every other process requesting a resource must wait). Then, let ���

finish by allowing only ��� to allocate additional resources (i.e., currently available resources plus

the resources that ��� has released) (every other process including � � requesting a resource must

wait). After that, let ��� finish by allowing only ��� to allocate additional resources (i.e., currently avail-

able resources plus the resources that � � and � � have released) (every other process requesting

a resource must wait). In a similar fashion, let all remaining processes (i.e., � ��� � ��� ����� � � �) finish

until every process has finished. Please note that as stated in the paragraph prior to Theorem 1

we assume that processes having already finished do not execute again until the completion of all

later remaining processes in the sequence.

So far we showed fundamental definitions in the deadlock realm with some associated

examples. In the next section, we will define terms used in graph theory on which our

proofs in Chapters 3 and 4 rely.

1.3.2 Basic Definitions in Graph Theory

Here we introduce a few terms and definitions from graph theory, and examine how to

represent the deadlock problem with a Resource Allocation Graph (RAG).

Definition 9 Let
� � �

� �
 � �
�������
 � � � be a set of � requesters or processes that may

request and/or hold a number of resources at any given time.

Definition 10 Let � � �
� �

� �
�������

��	 � be a set of � resources that provide specific func-

tions usable by processes.

Definition 11 Let the set of nodes
 be
� ��� � � , which is divided into two disjoint subsets

�
and � such that

�� � ��� . We also use another notation for the set of nodes,
 �
���

�
 � �
�������
 ��� � .

9

Definition 12 Let � be a set of grant edges. Let an ordered pair �� �
 � � � be a grant edge

where the first node is a resource � ��� � , the second node is a process � ��� �
and � �

has been granted to � � . Thus, a set of grant edges � can be written as � ����� �� �
 � � ��� ���
�
�
 �
 �
������
 � � , 	
� �

�
 �
 �
������
 � � , and resource � � has been granted to process � ���� � . An

ordered pair �� �
 � � � can also be represented by � �� � � or simply � ��� � , where the harpoon

“ ” represents a grant edge.

Definition 13 Let � be the set of request edges. Let an ordered pair � � �

� � � be a request

edge where the first node is a process � ��� � , the second node is a resource � ����� , and � �

has requested � � but has not yet acquired it. Thus, a set of request edges � can be written

as � � � � � � � �

� � ��� 	�� �
�
 �
 �
������
 � �
 ��� �

�
 �
 �
������
 � � , and process � � is requesting

resource � ��� � � . An ordered pair � � �
�� � � can also be represented by � ��� � � or simply � ��� � ,
where the arrow “ � ” represents a request edge.

Definition 14 Let edge set � be
� � � � � . We also use another notation, � � ���

�
 � �
������ ,
�! � .

Definition 15 A given system with processes and resources can be abstracted by a Re-

source Allocation Graph (RAG). A RAG is a directed graph " � �

#� � , such that
 is a

non-empty set of nodes defined in Definition 11, and � is a set of ordered pairs of edges

defined in Definition 14.

Please note that the edge set � of a particular RAG may be empty at a moment when

processes neither have any outstanding requests nor hold any resources.

Definition 16 Given RAG " , function ���$" � produces the set of edges � of RAG " .

Since set
 has two disjoint subsets
�

and � , a process can only request a resource

(not another process), and similarly a resource can only be granted to a process (but not

to another resource); thus, any RAG " is a bipartite graph, a graph whose vertices can be

10

partitioned into two groups
� � � � � � ��� � , where all edges cross from one group to

the other group.

Definition 17 We denote " � � �

 � � as a particular system. We also define " � �
 " � �
 " � �
������
to be different instances or states of the given system " � (same set
). Please note that the

edge set ���$" ��� � is different for each 	 � �
�
 �
 �
������ � , but the node set
 � � ��� � � is

constant for a given system " � . The system " � changes from one state " ��� to another state

" ��� when handling requests, grants and releases of resources.

Example 6 RAG

Figure 3(a) shows a RAG in state ����� converted to state ���
	 shown in (b) when a pending request�
��� � 	��� is granted. Here state ���
	 consists of a set of processes, ����� ��� � ��� � ����� � ����� , a set of

resources, �����
	
� � 	�� � ����� � 	���� , a set of request edges ����� � ��� � 	 ��� � � ��� � 	���� , � � � � 	���� , � ��� � 	 ��� ,�
��� � 	����� or �� �"! � , ���! � , ��#!$� , ���! � , ���! ��� , and a set of grant edges %&�'� � 	
� � ����� , � 	�� � ����� , � 	�� � ����� ,�
	�� � ����� , � 	�� � ����� , � 	�� � �����#� or ��(�*) � , (��) � , (��) � , (�#) � , (�+) � , (,��) ��� . - � �.�
	,� , defined in Definition 16,

gives ���0/1%2� .

2

5

4

6

5

P3

q

q

q

p
1

q

q

p

q
3

4
p

1

p
6

p2

ijγ(a)
2

5

4

6

5

1

P3

q

q

q

p
1

q

q

p

q
3

4
p

p
2

p
6

ikγ(b)

Figure 3: RAG example.

1.3.3 Definition of a Cycle

Both this subsection and the next subsection further refine various relationships among

nodes and edges.

Definition 18 A node
�43

is a terminal node iff the node
�43

has at least one edge and only

incoming edge(s) or only outgoing edge(s). (A node with no edges is not a terminal node.)

11

Definition 19 An edge connected to a terminal node
��3

is called a terminal edge
�.3

.

Definition 20 Given a RAG in state " ��� , let � �$" ��� � be a function that returns the set
����3 �
 � 3 � ,

������
 � 3 � � of all terminal edges in " ��� .

Definition 21 A link node
���

is a node that has exactly one incoming edge and exactly one

outgoing edge. Clearly, the number of edges of a link node is two.

Definition 22 A branch node
� � has one or more incoming edges and one or more outgo-

ing edges such that the total number of edges is greater than or equal to three.

Please note that while a resource node may have multiple incoming edges (multiple re-

quests for the resource), it may have only one outgoing edge (the resource may be granted

only to one process). A process node, in contrast, may have multiple incoming and outgo-

ing edges.

Definition 23 A node
���

is a connect node if and only if node
���

is either a link node or a

branch node.

Definition 24 A path � � �
 � �
 � �
�������
 � � � �
 � � � , 	�
 �
is a set of nodes connected by a

consecutive ordered sequence of alternating request and grant edges � � �
 � � � , � � �
 � � � , ����� ,
� � � � �
 � � � , where every node in the path is distinct and where every other node belongs to

the same set
�

or � .

Please note that a path may have just one edge as well as many edges.

Definition 25 A simple path is a path � � �
 � �� �
�������
 � � � such that both (i)
�
� and

� � are

terminal nodes and (ii) all other nodes
�
�
 ��� 	���	
 are link nodes.

Definition 26 A dangling path is a path � � �
 � �� �
�������
 � � � such that either (i)
�
� is a termi-

nal node and
�
� is a branch node or (ii)

�
� is a branch node and

�
� is a terminal node.

12

Definition 27 A cycle is a set of nodes � � �
 � �� �
�������
 � �
 � � � consisting of a path � � �
 � �� � ,
������
 � � � and an additional edge between

�
� and

�
� .

Please note that any subset � � �
 � � � �
�������
 ��� � � cycle C with � � � �
 � � � �
�������
 ��� � �
 �

is a path. Please note also that all nodes in a cycle are connect nodes.

Example 7 Cycle

The RAG in Figure 4 contains terminal nodes and edges; link, branch and connect nodes; simple

and dangling paths; and a cycle. ��� ��� � ��� � ��� 	 ��� 	 � � are terminal nodes with corresponding termi-

nal edges � � 	 ��� � � � , � � ��� 	 � � , � � � � 	 � � , � 	 � � � � � , � 	 ��� � � �#� , respectively. Link nodes are �
	 ��� 	 ��� � � � 	 � � ,
branch nodes are ��	�� � ��� � ����� , and connect nodes are all the link and branch nodes, i.e., ��	�� � 	�� � ��� ,
	�� , 	 � � ��� � ����� . An example of a simple path is path ����� 	��	� ��
 . An example of a dangling path is

path ����� 	��� ����� 	�� . Finally, ����� 	���� ���� 	���� ��� forms a cycle. Please note that while

the formal notation for the cycle is
�
��� � 	�� � ��� � 	�� � ����� , we also use ����� 	���� ���� 	���� ��� as an

informal notation for the same cycle.

5

4

6

5

1

P3

q

q

q

p
1

q

q

p

q
3

4
p

ijγ

p
6

p2

2

Figure 4: Cycle example.

Definition 28 The size of a cycle is the number of nodes (both resources and processes)

involved in the cycle.

1.3.4 Definition of a Terminal Reduction Step

Having introduced a RAG and a cycle, we now define a terminal reduction step and its

related properties used to reveal a deadlock quickly and efficiently.

Definition 29 A terminal reduction step is a step in which at least one terminal edge
� 3

is

removed from the RAG under consideration.

13

Definition 30 The application of a terminal reduction step to " ��� , resulting in a distinct

state " ��� � � � , is called the reduction of " ��� to " ��� � � � . Furthermore, we also say that state " ���
has been reduced to " ��� � � � .
Definition 31 If a system state " ��� can be transformed by a terminal reduction step to an-

other state " ��� � � � , resulting in " ��� � � � �� " ��� , then the system state " ��� is said to be reducible.

If a system state " ��� cannot be reduced to another different state " ��� � � � (because there are

no terminal edges to which to apply a terminal reduction step), then system state " ��� is said

to be irreducible.

Definition 32 A system state " ��� � � � is said to be completely reduced if ���$" ��� � � � � � � .

Otherwise, a system state " ��� � � � is said to be incompletely reduced if ��� " ��� � � � � �� � �

1.4 Target System
1.4.1 Target Multiprocessor System-on-a-Chip

To illustrate our target system, let us show an MPSoC example.

Example 8 A future Request-Grant MPSoC

We introduce the device shown in Figure 5 as a particular MPSoC example. This MPSoC consists

of four Processing Elements (PEs) and four resources – a Video and Image capturing Interface (VI),

an MPEG encoder/decoder, a DSP and a Wireless Interface (WI), which we refer to as 	 � , 	�� , 	�� and

	 � , respectively, as shown in Figure 5(b). The MPSoC also contains memory, a memory controller,

a DDU and a DAU. In the figure, we assume that each PE has only one active process; i.e., each

process ��� , ��� , ��� and � � , shown in Figure 5(b), runs on PE1, PE2, PE3 and PE4, respectively. In

the current state, resource 	 � is granted to process � � , which in turn requests 	 � . In the meantime,

	 � is granted to � � , which requests 	 � , while 	 � is granted to process � � ; the resulting system state

is shown in Figure 5(b). The DAU in Figure 5 receives all requests and releases, uses the DDU

to decide whether or not a particular request or grant can cause a deadlock and then permits the

request or grant only if no deadlock results.

Figure 5 shows our primary target MPSoC consisting of multiple processing elements

with L1 caches, a large L2 memory, and multiple hardware IP components with essential

14

p p p p1 2 3 4

PEn: Processing Element n

(a) An SoC functional diagram (b) The corresponding RAG

Wireless Interface (WI)

q2 4

(VI) (DSP) (WI)

q1 3

Memory Controller

(MPEG)

q q

B
U

S

PE3

PE2

PE4

Video Interface (VI)

DSP

MPEG

Memory

PE1

DDU DAU

Figure 5: Practical MPSoC realization.

interfaces such as a memory controller, an arbiter and a bus system. We consider this kind

of request-grant system as our system model in the view of deadlock. For each specific

deadlock solution, there may be minor variations from this model. Based on our system

model, we next introduce a Real-Time Operating System (RTOS) we use for system sim-

ulation and then mention some underlying assumptions related to our deadlock research in

such MPSoCs.

1.4.2 Target Real-Time Operating System

To benefit from an RTOS, we use Atalanta RTOS version 0.3 [51], a small and config-

urable shared-memory multiprocessor RTOS developed at the Georgia Institute of Tech-

nology. Code of Atalanta RTOS version 0.3 resides in shared memory, and all PEs execute

the same RTOS code and share kernel structures as well as the states of all processes and

resources; currently Atalanta RTOS version 0.3 supports only use of all PowerPC pro-

cessors or only all ARM processors. Atalanta supports priority scheduling with priority

inheritance as well as round-robin; task management such as task creation, suspension and

resumption; various Inter Process Communication (IPC) primitives such as semaphores,

mutexes, mailboxes, queues and events; memory management; and interrupts. Please note

that any other operating system can be targeted (instead of using Atalanta) with associated

straightforward engineering effort.

15

1.5 Assumptions

Considering this kind of future MPSoC shown in Figure 5(a) as our system model, we

now introduce some of our assumptions about future MPSoC designs related to analyzing

deadlock in such MPSoCs.

Assumption 1 In our system model, only reusable resources exist.

A reusable resource is characterized as follows: (i) units are neither created nor de-

stroyed (fixed total inventory), and (ii) units are requested and acquired by processes from

a pool of available units. When a process finishes using an acquired reusable resource, the

resource is returned to the resource pool so that other processes can have a chance to use

the resource. In this thesis, all further references to “resource” should be read as “reusable

resource.”

Assumption 2 In our system model, there exists a fixed number of resources.

Please note that the following assumption (Assumption 3) is not applied to PBAU but

is only applied to the DDU and DAU (note that the concept of the PBAU, DDU and DAU

were introduced in Section 1.2 and will be explained in great detail in Chapters 3, 4 and 5).

Assumption 3 Each resource has one unit. Furthermore, each resource can serve only

one process at any given time. As a result, a process must wait for all required unavailable

resources to become available before proceeding.

Assumption 4 A resource can be released only by the process holding it.

Please note that in some situations, Assumption 4 may not hold. For example, if the

system is reset, then all resources will be released, and all processes will be restarted. How-

ever, our analysis is intended to address the normal operation of an SoC. During normal

operation, we assume that once a resource is granted to a process, only the owner pro-

cess can release the resource. In the case that system reset occurs, any deadlock detection

operation in progress will have to be restarted with the new system state after reset.

16

Assumption 5 Resources are preemptible.

Assumption 6 The RTOS or other software provides a mechanism that can ask a process

to release any resource(s) the process currently holds.

Assumption 7 While a process holds some resources, the process can request additional

resources.

Assumption 8 All requests and releases in the system are serialized by some kind of mech-

anism such as bus arbitration among multiprocessors. Thus, at any instant, there exists only

one outstanding activity of a request or release.

Please note that a request or release could involve multiple resources as well as multiple

instances. Handling multiple resources will either be serialized inside the DDU or DAU, or

be successfully processed inside PBAU. Please note also that if there are multiple requests

and/or multiple releases from multiple processes at the same time, the requests and/or re-

leases must be serialized one by one by some kind of mechanism such as a queue and/or

bus arbitration and then fed to deadlock solutions before being processed.

1.6 Thesis Organization

The thesis is organized into seven chapters:

CHAPTER I: INTRODUCTION. This chapter provides a general overview of dead-

lock related problems. The chapter also provides some terminology used in the dead-

lock realm. Finally, this chapter summarizes the contributions of this thesis.

CHAPTER II: MOTIVATION AND PREVIOUS WORK. This chapter first addresses

our motivation for this research, then describes previous work in deadlock research,

and lastly shows notable differences between our solutions and previous work.

17

CHAPTER III: PROOFS OF THE CORRECTNESS AND RUN-TIME COMPLEX-

ITY OF THE DDU. This chapter first introduces Parallel Deadlock Detection Algo-

rithm (PDDA) and then proves the correctness and run-time complexity of the DDU.

After that, the chapter describes the DDU architecture and presents synthesis result.

Lastly, Chapter III shows algorithm run-time as well as application execution time

comparisons among three deadlock detection algorithms (one of which is the DDU).

CHAPTER IV: DEADLOCK AVOIDANCE UNIT. This chapter introduces a novel

deadlock avoidance algorithm and presents a hardware implementation of the algo-

rithm. This chapter also shows execution time comparison as well as application

run-time comparison between the deadlock avoidance algorithm and its hardware

implementation.

CHAPTER V: PARALLEL BANKER’S ALGORITHM UNIT. This chapter describes

a novel Parallel Banker’s Algorithm (PBA) and its hardware implementation, which

we call PBA Unit (PBAU), and shows algorithm run-time as well as application exe-

cution time comparisons between PBAU and the Banker’s Algorithm in software.

CHAPTER VI: INTEGRATION INTO THE
�

HW/SW RTOS PARTITIONING

FRAMEWORK. This chapter expresses the integration of deadlock hardware solu-

tions into the
�

hardware/software RTOS partitioning framework that has been used

to configure and generate simulatable RTOS/MPSoC designs. This chapter also de-

scribes an IP generation tool used to automatically generate a hardware deadlock

solution out of the DDU, DAU and PBAU according to the numbers of processes and

resources that a user specifies.

CHAPTER VII: CONCLUSION. This chapter summarizes the major accomplish-

ments of this thesis.

18

CHAPTER II

MOTIVATION AND PREVIOUS WORK

2.1 Motivation

Recent technology trends show that System-on-a-Chip (SoC) technology enables a multi-

core multithreaded system on a single chip. An example of such an SoC is the Xilinx Ver-

tex II Pro [57], which may contain multiple PowerPC processors and additional Intellectual

Property (IP) cores. Furthermore, due to the ever increasing expansion of the Internet and

wireless communication, a tremendous amount of multimedia related data is being created,

modified and exchanged; this multimedia data is becoming larger with more varied and

complicated encodings, requiring unprecedented processing power. To support such multi-

media communication, numerous algorithms, specialized processors, image/video coding

hardware modules and error detection/correction modules have been implemented and ex-

ploited [12]. Given these trends, we predict that in the near future, MPSoC designs will

have many Processing Elements (PEs) and hardware resources, which is the way MPSoC

will rapidly evolve.

Therefore, we predict that, in future MPSoCs, many processes will concurrently run

and dynamically require and access such available on-chip resources. Accordingly, sys-

tems will handle much more functionality, enabling much higher levels of concurrency and

requiring many more deadlines to be satisfied. Not only that, but ensuring predictability and

reliability in such MPSoCs will be much more difficult. As a result, we predict there will

be resource sharing problems among the many processors desiring the resources, which

may result in some kind of deadlock more often than designers might realize.

In most current embedded systems, deadlock is not a critical issue due to the use of

only a few (e.g., two) processors and a couple of custom hardware resources (e.g., direct

19

memory access hardware plus a video decoder). However, in the coming years future chips

may have five to twenty processors and ten to a hundred resources all in a single chip as

shown in Figure 6. In such systems, we predict that deadlock possibilities will no longer

be ignorable issues, but will, if not properly addressed, become problems in the sharing of

resources.

PE10

Q1

Q2

Q40

MEMORY

PE2

PE1

..

.
PE: Processing Element
Q: Resource

Figure 6: Future MPSoC.

How can we efficiently and timely cope with deadlock problems in such MPSoCs? We

envision that although MPSoC may produce deadlock problems, an MPSoC architecture

can also provide efficient hardware solutions to deadlock. Thus, this thesis describes such

solutions, i.e., operation and proofs of Parallel Deadlock Detection Algorithm (PDDA); a

novel Deadlock Avoidance Algorithm (DAA) and its hardware implementation, the Dead-

lock Avoidance Unit (DAU); and a hardware implementation of a novel Parallel Banker’s

Algorithm. The solutions presented in this thesis can improve the reliability and correct-

ness of applications running on an MPSoC under a Real-Time Operating System (RTOS).

Of course, adding a centralized module on an MPSoC may lead to a bottleneck. How-

ever, since resource allocation and deallocation are preferably managed by an operating

system (which already implies some level of centralized operation), adding hardware can

potentially reduce the burden on software rather than becoming a bottleneck.

20

2.2 Software Deadlock Research
2.2.1 Overview of Prior Deadlock Research

Researchers have put tremendous efforts into deadlock research, three well-known areas of

which are deadlock detection, prevention and avoidance. Among them, deadlock detection

does not limit a system’s freedom in any way since deadlock detection does not typically

restrict the behavior of a system, facilitating full concurrency. Deadlock detection, how-

ever, usually requires a recovery once a deadlock is detected. In contrast, deadlock preven-

tion prevents a system from reaching deadlock typically by constraining request orders to

resources in advance, resulting in the fact that deadlock never occurs (i.e., deadlock preven-

tion is extremely conservative). However, any such strict constraint on requests may limit

concurrency and thus degrade performance. One benefit though is that prevention may not

require invocation of a prevention algorithm on every event of a request or a release; that

is, prevention strategies can be devised which are correct-by-construction (i.e., are guaran-

teed to work due to the restrictions in place but without requiring additional “checking” or

any other code to run dynamically). By contrast, as stated in Definition 3, deadlock avoid-

ance is accomplished by dynamically controlling resource usage (i.e., allowing or denying

requests or grants) whenever a request or a release event occurs. In deadlock avoidance,

resource accesses are allowed as long as the system remains in a safe state (i.e., not result-

ing in deadlock – please note that H-safe states are a subset of safe states, where we define

a safe state to be a state which has an execution sequence not resulting in deadlock). In

other words, deadlock prevention is done statically while deadlock avoidance is done on

the fly. Thus, it is well known that deadlock avoidance typically involves less restrictions

and results in higher resource utilization than deadlock prevention [50].

Figure 7 represents our view of the relationship between deadlock avoidance and dead-

lock prevention. The distinction is primarily made based on whether deadlock is done

statically prevented in advance or deadlock is dynamically avoided on the fly. Please note

that our view of separating deadlock avoidance and prevention may be different from

21

others’ point of view. For instance, Habermann called his Banker’s Algorithm a pre-

vention method [16]. However, our classification agrees to the viewpoint of most au-

thors [8, 17, 31, 50].

Deadlock

Avoidance

Deadlock

Prevention

Figure 7: Relationship between deadlock avoidance and deadlock prevention.

2.2.2 Deadlock Detection

All software deadlock detection algorithms to date have a run-time complexity of at least

����� � ��� or ���
� � � , where � is the number of resources and � is the number of processes

(please note that the number of edges in a RAG is ����� � ���). In 1970, Shoshani et

al. proposed an ����� � � � � run-time complexity detection algorithm [49], and about two

years later, Holt proposed an ���
� � ��� algorithm to detect a knot that tells whether or not

deadlock exists [20]. Holt’s model of multiple processes and resources provides a versatile

representation of resource allocation, and the approach describes a general resource system

that models consumable as well as reusable resource types. Both of the aforementioned

algorithms (of Shoshani et al. and of Holt) are based on a Resource Allocation Graph

(RAG) representation. Leibfried proposed a method of describing a system state using an

adjacency matrix representation and a corresponding scheme that detects deadlock with

matrix multiplications but with a run-time complexity of ���
� � � [29].

In traditional deadlock detection algorithms, each time a request, a grant, or a release

event occurs, the event is reflected on a RAG, and then a search is carried out for a cycle,

which, if found, indicates that the system corresponding to the RAG has a deadlock. Kim

and Koh proposed a new deadlock detection method [22]. The approach of Kim and Koh

22

is somewhat different from traditional ones in that their method considers each separate

subgraph in a RAG as a tree. Hence, each tree has a root node (which corresponds to an

active process), and a RAG may have many trees. The proposed method detects a deadlock

as soon as a root node requests a resource already belonging to the same tree that the root

node belongs to. This can be implemented by associating each resource with the identifier

of a tree to which the resource belongs. Since the authors’ method is based on constructing

trees of a sequence of request and grant events, when multiple requests and grants occur at

a particular instant in the system under consideration, the overhead must be accounted for.

That is, Kim and Koh’s approach has ���
� � ��� run-time for “detection preparation”; thus

an overall run-time for detecting deadlock (starting from a system description that just came

into existence, e.g., due to multiple grants and requests occurring within a particular time

or clock cycle) of at least ����� � ��� [22].1 A disadvantage of the Kim and Koh’s method

is that, as the authors admit, the worst case execution time of their release algorithm takes

����� � ��� , as opposed to ����� � in traditional deadlock detection algorithms.

In deadlock detection, however, once deadlock is detected, there must be some way

of breaking out of the deadlock, which is called “recovery from deadlock” or “deadlock

resolution.” Typical deadlock resolution methods include resetting the system, aborting

process(es), rolling back to a state before deadlock, and releasing resource(s). We do not

address these methods further because the solution of deadlock recovery is not within the

scope of this research.

2.2.3 Deadlock Prevention

Deadlock can be prevented by designing a system such that one of the deadlock conditions

(i.e., Conditions 1–5 in Section 1.3) can never occur; thus, deadlock would be impossible,

1Please note that Kim and Koh claim that their deadlock detection algorithm could be performed in � � ��
run-time. However, the � � ��� run-time can only be achieved if the overhead of detection preparation time can
be ignored. Thus, the run-time complexity (i.e., the worst-case) of their algorithm is � ������� � .

23

hence the name “deadlock prevention” which seems very attractive [8]. In general, how-

ever, designing a system such that one of the deadlock conditions is guaranteed to never

occur will degrade system performance significantly, which we address here.

Since there are five deadlock conditions, breaking these conditions could suggest five

approaches to deadlock prevention. However, due to intrinsic attributes of resources, some

conditions are inevitable. Let us first consider Condition 1, mutual exclusion. There might

be some resources that can be shared such as read-only files or programs. However, it is

typical that resources cannot be shared; that is, Condition 1 is typically unavoidable. In the

consideration of Condition 4, there can be no way to break this condition unless a process

can proceed without a required resource, which is almost never the case. Therefore, there

can be three possible prevention methods remaining.

One method able to break Condition 3 is the collective-request method, in which a

process always makes requests of all its required resources at the same time or is blocked

until all requests can be granted together, meaning that no incremental request is allowed.

Therefore, a process must request all the resources that it will ever require during its lifetime

in the beginning of its execution, or whenever a process requires additional resource(s), the

process must first release all the resources that it currently holds and then issue a new

request that includes all the resources it currently needs, thereby avoiding Condition 3,

partial allocation. However, this method inevitably causes resource underutilization and/or

process starvation in most practical situations.

Another method able to break Condition 5 is the ordered-request method, in which all

resources are numbered in a specific order such as a priority order. Thus, all processes

request resources in that order. For example, all resources are assigned with distinct pri-

oritized numbers. Then, a process can only request a resource with a number (priority)

greater than the number (priority) of any resource that the process currently holds. This

method prevents a system from forming a cycle in the resource graph and thus keeps a

system from having a deadlock at all by permanently avoiding any circular waiting, i.e.,

24

Condition 5. However, similar to the collective-request method, this method may result in

poor utilization of resources due to the restriction of a resource request order.

Another somewhat forcible way of deadlock prevention would be the resource pre-

emption method, breaking Condition 2. However, the method of breaking Condition 2 is

typically categorized not into deadlock prevention but into deadlock avoidance or deadlock

recovery. Thus, we describe this method in the next subsection.

2.2.4 Deadlock Avoidance

A traditional well-known deadlock avoidance algorithm is the Banker’s Algorithm (BA) [11].

BA requires each process to declare the maximum requirement (claim) of each resource the

process will ever need. Then, while requests and releases are being made, the algorithm

allows requests only if the system remains in an H-safe state, resulting in that even in the

worst-case where all processes request their maximum claims, any sequence of process

executions allowed by BA results in all requests eventually being fulfilled. Consequently,

even though some resources may be available for a particular request, due to the possibility

of other processes potentially requesting their maximum claims, some requests are denied

which in fact could have been fulfilled without resulting in deadlock.

In 1999, Lang proposed a variant of BA with an ���
��� ��� run-time complexity [23].

Lang’s approach decomposes trees of a Resource Allocation Graph (RAG) into regions and

computes the associated maximum claims, prior to process execution (note that Lang’s tree

is a subgraph of a RAG where the root of the subgraph is a process which currently holds

all necessary resources). By more accurately calculating an optimal set of maximum claim

estimates in each region, Lang’s algorithm may improve resource utilization as compared

to BA that uses global maximum claims.

However, the requirement of advance knowledge about the maximum necessary re-

source usage for all processes in a system in BA as well as its variants unfortunately makes

the implementation of such a method difficult in real systems with dynamic workloads. In

25

general, although BA and its variants guarantee to the avoidance of deadlock, they may

be impractical in many systems because of the following disadvantages: (i) the avoidance

algorithm must be executed for every request prior to granting a resource; (ii) the dead-

lock avoidance algorithm restricts granting of requests leading to an H-unsafe state, which

may reduce resource utilization (since an H-unsafe state may not necessarily lead to dead-

lock), degrading system performance; (iii) the maximum resource requirements (and thus

requests) might not be known in advance (e.g., with a program with conditional execution);

and (iv) the maximum number of processes must be known [8, 11].

However, since there are states (including some H-unsafe states) that may not evolve to

deadlock, if the concept of an H-safe state can be relaxed to only satisfy our definition of

deadlock avoidance (Definition 3), some of the disadvantages of deadlock avoidance can be

lifted. For instance, if resource preemption is allowed, then one of processes involved in a

potential deadlock can be asked to release the resource(s) involved in the potential deadlock

to break such a potential deadlock (where the process has to wait and later rerequest the

resource(s) it requires). This type of deadlock avoidance method may incur a high penalty,

even requiring checkpointing to rollback in some cases. However, benefits of this are the

following: (i) this method may improve resource utilization by relaxing the concept of

an H-safe state and (ii) resource preemption is better than process preemption, which is a

way to recover from deadlock. This preemption method of deadlock avoidance can also be

categorized into the deadlock detection and recovery scope, mentioned earlier. Using this

method may eliminate the requirement of maximum claim declaration.

These insights were taken by Belik. An approach utilizing benefit (i) in the above

paragraph is Belik’s method [7]. In 1990, Belik proposed a deadlock avoidance technique

in which a path matrix representation is used to detect a potential deadlock before the actual

resource allocation. However, Belik’s method requires ����� � ��� run-time for updating

the path matrix in releasing or allocating a resource and thus an overall complexity for

avoiding deadlock of ����� � ��� . Furthermore, Belik does not mention any solution to

26

livelock although livelock is a possible consequence of his deadlock avoidance algorithm.

Please note that in Section 2.4 we will compare approaches of this thesis with these

prior software approaches.

2.3 Hardware Deadlock Research

Although there have been many innovative ideas and software algorithms introduced to

effectively detect, avoid and/or prevent deadlock [7, 11, 14, 16, 17], for various reasons

most of these approaches have not been exploited in practical systems. Primary reasons

we conjecture are (i) the time-consuming software run-time and (ii) no necessity so far.

In fact, the general deadlock problem has been shown to be NP-complete [15]. In other

words, utilizing a software deadlock algorithm in an MPSoC may incur a fair amount of

loss of computational power, which otherwise could have been used for useful work. Thus,

a better way of overcoming the drawback of using a software deadlock algorithm for an

MPSoC is to implement the deadlock algorithm in hardware so that while deadlock is effi-

ciently, quickly and silently (i.e., unnoticed by the users or programmers) detected and/or

avoided, the applications achieve their designated goals with almost no sacrifice in system

performance. That is, by adding a small amount of hardware to the MPSoC, a deadlock

solution will be able to become worth running since performance will hardly be affected at

all and since deadlock will be detected and/or avoided.

2.3.1 Deadlock Detection

To realize such a possibility of hardware implementation of a deadlock detection algorithm,

Parallel Deadlock Detection Algorithm (PDDA) and its hardware implementation in the

Deadlock Detection Unit (DDU) have been proposed [48]. Figure 8 shows the architecture

of the DDU for three processes and three resources. This architecture will be explained in

great detail in Section 3.3.

27

The DDU takes ��� � � run-time for updating a state matrix in requesting, releasing or al-

locating a resource. Furthermore, the DDU has a complexity of ���
�	� � �
��
 ����� in detecting

deadlock, which we prove in Section 3.2.5. Such low run-time is achieved by (i) utilizing

hardware parallelism and (ii) using a simple two-bit binary representation of the types of

each edge: the request edge of a process requesting a resource, the grant edge of a resource

granted to a process, or no activity (neither a request nor a grant) [27]. PDDA distinguishes

itself from others in that PDDA deals with the edges that are not involved in cycle(s), as

opposed to other algorithms that try to find exact cycles, which typically requires more

computational time. Furthermore, PDDA does not require linked lists. Not only that, but

by implementing PDDA with a small amount of hardware, the designed deadlock detection

unit hardly affects system performance (and potentially has no negative impact whatsoever)

yet provides the basis for enhanced deadlock detection.

��

��

��

��

�	

�

decide
cell

cell

cell
matrix

cell
weight

cell
weight

cell
weight

weight
cell

weight
cell

weight
cell

matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

matrix

cell

Figure 8: DDU architecture.

However, the previous authors neither implemented PDDA in software nor formally

proved the correctness and run-time complexity of the proposed DDU, which we prove

in Sections 3.2.4 and 3.2.5. Moreover, we demonstrate extensive comparisons among the

DDU, PDDA in software and an ���
� � ��� deadlock detection algorithm in Section 3.4.1.

28

Not only that, we describe detailed explanation of PDDA in Section 3.2.3 as well as the

circuitry of the DDU in Section 3.3.4.

2.3.2 Deadlock Avoidance

Although many deadlock avoidance approaches have been introduced so far [7, 8, 11, 13,

14], to the best of our knowledge, there has been no prior work in a hardware implemen-

tation of deadlock avoidance. Thus, this thesis plus associated publications by the author

appear to be the first known work presenting deadlock avoidance in hardware.

2.4 Our Approaches Compared to Prior Work

On the contrary to previous deadlock research, our approach using the Deadlock Avoid-

ance Unit (DAU) not only overcomes some disadvantages, such as (iii) and (iv) mentioned

in the third paragraph of Section 2.2.4, but also resolves the livelock associated with dead-

lock avoidance, which we will explain in detail in Chapter 4. Please note that the DAU

utilizes resource preemption to break such livelock. The DAU reduces the deadlock avoid-

ance time by over 99% (about 300X) and achieves in a particular example approximately

40% speedup of application execution time as compared to the execution time of the same

application using the same algorithm in software.

As opposed to BA and its variants, our Parallel Banker’s Algorithm (PBA) presented in

Chapter 5 implements in parallel Habermann’s variant of the Banker’s Algorithm so that

PBA can achieve an ��� ��� run-time complexity in a hardware implementation as compared

to an ���
� � � � � complexity of Habermann’s BA. In fact, the PBA Unit (a hardware im-

plementation of PBA) achieves about a 1600X speedup of the average algorithm execution

time and gives in a particular example a 19% speedup of application execution time over

avoiding deadlock with BA in software.

We also considered deadlock prevention, but because prevention requires that each pro-

cess conform to the prevention policy implemented in the system in advance, which would

29

impose overhead of necessary operation (e.g., keeping an order of requests) on each pro-

cess (i.e., an application), we decided not to further investigate hardware approaches to

deadlock prevention.

2.5 Summary

In this chapter, we provide motivation for deadlock hardware solutions by addressing recent

technology trends. We further present some prior work in deadlock research and briefly

mention the novelty of our research. In the next few chapters, we will further describe our

approaches in detail. Specifically, in the next chapter, we describe our research regarding

PDDA and the DDU.

30

CHAPTER III

PROOFS OF THE CORRECTNESS AND RUN-TIME

COMPLEXITY OF THE DDU

3.1 Introduction

In this section, we will first show how the Deadlock Detection Unit (DDU), the hardware

implementation of Parallel Deadlock Detection Algorithm (PDDA), can be used in a multi-

processor multiresource SoC such as the MPSoC shown in Figure 5(a). After that, we will

introduce and prove our deadlock theorems and direct consequences under our assumptions

described in Section 1.5 (i.e., our deadlock theorems are modified from general deadlock

theorems [31] – specifically, the modifications accommodate our hardware-centric nota-

tion, thus easing generation of proofs about our hardware operation). Then, we will present

a translation of a system state " ��� from a RAG into a matrix. This matrix representation

forms the basis of PDDA and enables the implementation of simple but very fast parallel

deadlock detection in hardware. Using the matrix representation, we will next define termi-

nal rows and terminal columns to which a novel parallel terminal reduction step (the core

of PDDA) can be applied. After that, we will describe PDDA and then prove that the DDU

has a run-time complexity of ���
�	� � �
��
 ����� , where � and � are the numbers of resources

and processes, respectively, involved in deadlock detection. Finally, we will describe de-

tailed PDDA operation with mathematical representations and detailed DDU architecture

and demonstrate extensive experimentation [27].

3.1.1 Deadlock Detection Unit (DDU) Operation in a System

First let us briefly explain how the DDU operates and how it can be used in a system. Please

note that we assume that the maximum number processes as well as the maximum number

31

resources are fixed in advance. The DDU idles when there is no request or grant. That

is, the DDU becomes active and starts working only when a request or grant event occurs.

Once the DDU is activated, it operates in only a few clock cycles (at most
� � �	� � �
��
 ��� �

cycles, as proven in Section 3.2.5) and then produces a deadlock detection result. After that,

the DDU returns to an idle state and remains idle until another event occurs.

Please note that with PDDA implemented in the DDU hardware, the DDU decides

whether a given system state has a deadlock or not based on the requests and grants that

have occurred, not on any future events.

The DDU can be employed in such a way that while processes request resources ran-

domly and directly from the resources (i.e., without the intervention of the DDU), the DDU

just monitors these requests and grants. As soon as a deadlock is detected, however, the

DDU notifies the RTOS or other application software of the existence of a deadlock, in

which case the RTOS or other application software may release some resources or take

other actions to break the deadlock. While detecting deadlock, the DDU emits a busy sig-

nal, indicating that the DDU is currently working, thus temporarily preventing any further

request or grant events. Since the deadlock detection takes only a few clock cycles, any

further requests or grants during this short amount of time can be temporarily queued in

hardware; then, after the current detection, the next deadlock detection will start with the

update of the queued events. In this way of DDU usage, the DDU does not impede normal

system performance at all or any impact is minimal.

In addition to the one way of DDU usage described here, there may be more ways to

utilize the DDU; we will discuss one such other way in the next chapter which focuses on

deadlock avoidance. However, the focus on this chapter is to prove the correctness and run-

time complexity of the DDU. The following example represents the DDU usage described

in the previous paragraph.

Example 9 DDU usage

From Example 1, if a DDU is employed, the system would look like Figure 9. In this MPSoC, the

32

DDU monitors resource request and grant activities. In the case shown in Figure 9, we assume

both VP and SP each receives a stream to be processed almost at the same time. While VP first

requests and holds resource MPEG, SP requests and holds resource BI. (Please see the event

sequence marked on the side of each edge shown in Figure 9(b).) In the meantime, the DDU

executes PDDA, which checks for deadlock whenever a request or grant event occurs, but the DDU

fails to find a deadlock so far. After that, VP requests and waits for BI, which has already been

granted to the SP. Next, SP requests MPEG, and then the DDU starts to determine if a deadlock

exists. Since the system state has a deadlock at this instant, the DDU will find the deadlock; thus,

the DDU will indicate that a deadlock exists.

1 2

4

3

(a) an SoC (b) a RAG

B
U

S

BI
Bluetooth

(VP)

VLIW
Processor

(BI)
VPInterface

(SP)
SPProcessor

Specialized

EG
MP

Decoder

DDU

MPEG

Figure 9: DDU usage example.

Having introduced a way to use the DDU, in the next section we will prove the deadlock

theorems and run-time complexity of the DDU under the assumptions of our target system

described in Sections 1.4.1 and 1.5.

3.2 Proofs of the correctness and run-time complexity of the
DDU

3.2.1 Preliminary Theorems

Before introducing and proving our deadlock theorems, we first describe one more defini-

tion and two underlying assumptions as they relate to the operations of the DDU in practical

situations as well as to our deadlock theorems.

Definition 33 A process is making progress in a system " � in state " ��� only when one of the

following is true: (i) when a process does not hold resources, the process, if given control of

33

a processor (e.g., by a priority scheduler), could currently perform its computation without

the need of any resources, or (ii) when a process holds some resources, the process, if

given control of a processor, would currently use the resources to perform its computation

without the need of any additional resources.

Assumption 9 In a practical situation, at the instant when the DDU becomes active and

is checking for deadlock, the DDU determines deadlock based on the requests and grants

currently in existence at that instant, not on any future events (i.e., assuming no addi-

tional requests or grants are accepted when the DDU is in operation, which can easily be

implemented by indicating a “busy” signal).

Assumption 10 At the instant when the DDU becomes active (at a particular state " ��� of

a system), if a process is making progress and using some resources, then it is assumed

that the process has all the resources it requires and that it can and will finish using its

resources within a finite time, thus eventually releasing all the resources that the process

has used.

We now introduce and prove our deadlock theorems and their direct consequences.

Corollary 1 In a system state " � � , the number of nodes involved in the smallest possible

cycle is four. Similarly, the number of edges involved in the smallest possible cycle is four.

Proof: Since a RAG " is a bipartite graph (by Definitions 11 and 15), " ��� cannot have any

edge from process ��� to process �

for any two processes ���
 � �
��$" � � � . Similarly, " ���
cannot have any edge from resource ��� to resource �

�
for any two resources � �

� � �
��$" ��� � .

Since we need to find the minimum number of nodes that can form a cycle, let us consider

case (i) where one process and one resource exist. Case (i) can have a path between the

two nodes but cannot form a cycle because according to Assumption 3 there cannot exist

two edges (i.e., a request and a grant edge) between the two nodes (one process and one

resource) that could form a cycle. Now consider case (ii) where two processes and one

34

resource exist. Case (ii) can have a path among them, but they cannot form a cycle because

according to the bipartite property of a RAG there cannot exist an edge between the two

processes. Similarly, case (iii) where one process and two resources exist cannot form a

cycle because there cannot exist an edge between the two resources. Thus, forming a cycle

must require at least two distinct processes and two distinct resources. Therefore, forming

the smallest cycle requires at least four nodes. Furthermore, forming a cycle with four

nodes requires at least four edges since otherwise all four nodes cannot be connect nodes.

Therefore, the number of edges involved in the smallest cycle is also four.

Corollary 2 In a system state " ��� , the number of edges in any path using all nodes in the

smallest possible cycle is three.

Proof: According to Corollary 1, the smallest possible cycle has four nodes, i.e., two

distinct processes and two distinct resources. Let the two processes be � � , � � and the two

resources be � � , � � . According to the bipartite property of a RAG, there cannot exist an

edge between the two processes or between the two resources. Therefore, one longest path

is
�
� �

� �
 � �

� � � since this path uses all nodes in " � � . This path has three edges. There are

three more cases of the longest path, and the number of edges in all three cases is also three.

Thus, the number of edges in any longest path in the smallest possible cycle in a system " �
in state " ��� is three.

Theorem 2 If a system " � in state " ��� contains a cycle
�

, then no nodes in cycle
�

can

be excluded from further consideration through any sequence of terminal reduction steps

(Definition 29). As a result, cycle
�

cannot be removed through any sequence of terminal

reduction steps. That is, the system state " ��� cannot be completely reduced (Definition 32).

Proof: A node can be excluded from further consideration by a terminal reduction step

only if after the terminal reduction step, the node does not have any edges. However, every

node in cycle
�

is a connect node and thus must have an incoming edge from another node

35

in cycle
�

and an outgoing edge to another node in cycle
�

. That is, none of the edges

in cycle
�

are terminal edges since they are all exclusively connected to connect nodes.

Now, according to Definition 29, a terminal reduction step only removes terminal edges;

thus, since none of the edges in cycle
�

are terminal edges, no edge in cycle
�

can be

removed by the first terminal reduction step. Since no edges in cycle
�

are removed by

the first terminal reduction step, all nodes in cycle
�

remain connect nodes. Thus, for the

second terminal reduction step in any sequence, each edge in cycle
�

remains connected

to connect nodes on both ends of the edge. Continuing in this way, we conclude that no

edge in cycle
�

can be removed by any sequence of terminal reduction steps. Hence, since

no edge in cycle
�

can be removed, no node in cycle
�

can be excluded from further

consideration. Furthermore, since neither nodes nor edges in cycle
�

can be removed,

cycle
�

itself cannot be removed. Therefore, according to Definition 32, " ��� cannot be

completely reduced.

Lemma 1 Given system " � in state " ��� with cycle
�

, removing terminal edges (i.e., edges

connected to terminal nodes) will not alter cycle
�

.

Proof: Every node in cycle
�

is a connect node. Furthermore, every node in cycle
�

must

have an edge to another node in cycle
�

and from another node in cycle
�

. Therefore, if

a node in cycle
�

has an edge to or from a terminal node, the terminal node cannot be in

cycle
�

. Thus, the removal of an edge to or from a terminal node leaves cycle
�

intact

since none of the edges from a node in cycle
�

to other nodes in cycle
�

are edges to or

from terminal nodes.

Consider a sequence of terminal reductions steps (Definition 29) applied to a given " � �

resulting in an irreducible system state " ��� � � � . According to the definition of irreducible

(Definition 31), " ��� � � � has no terminal edges, resulting in two cases: (i) " ��� � � � is completely

reduced or (ii) " ��� � � � is incompletely reduced (Definition 32). We will next prove that in

case (i) " ��� does not have a deadlock while in case (ii) " ��� has a deadlock.

36

Lemma 2 If a system state " ��� can be completely reduced, then it does not have a deadlock.

Proof: A complete reduction deletes all edges including all request edges. Since a request

edge can be deleted only if the request could be fulfilled within a finite time (note that we

assume no processes whatsoever take infinite time, i.e., all processes terminate within a

finite time), deleting all the request edges implies that all processes can eventually obtain

the resources that they have requested. As a result, all the processes can make progress

(Definition 33). This fact violates the deadlock definition (Definition 1); hence, " ��� does

not have a deadlock.1

Theorem 3 If a system state " ��� cannot be completely reduced, then the system contains

at least one cycle.

Proof: If " ��� cannot be completely reduced, then a sequence of reduction steps applied to

" ��� results in irreducible state " ��� � � � with the property ���$" ��� � � � � �� � . In other words, " ��� � � �
is irreducible and has some edges.

We next note that all the nodes connected to edges in " ��� � � � must be connect nodes

(since " ��� � � � does not contain any terminal nodes). Consider an arbitrary connect node
� �

in " ��� � � � . Taking
���

’s outgoing edge (there must be at least one outgoing edge from
� �

since
���

is a connect node) we arrive at node
��� � � . Please note that

��� � � �� � �
since

our system does not have any edges from a node back to the same node. Please note also

that the edge we took to arrive at
��� � � is an edge incoming to

��� � � . However, since
��� � �

must also be a connect node, an edge must be outgoing from
� � � � . Taking this outgoing

edge, we arrive at another node. Continuing in this way, every node must be connected to

another node distinct from itself. Eventually, we arrive either (i) at a node
� � � 	 that was

previously visited already, or else (ii) at the last node in the graph. In case (i), we have a

cycle. In case (ii), this last node in the graph must be a connect node. Since all the nodes

have already been visited, the outgoing edge of this last node must lead to a node already

1Lemma 2 is equivalent to Corollary 1 on page 189 of [20].

37

previously visited. Thus, in case (ii) we have a cycle as well. Therefore, if a system state

" ��� is not completely reducible, then the system contains at least one cycle.

Lemma 3 If no cycle exists in a system state " ��� , then " � � can be completely reduced.

Proof: This lemma is the contraposition of Theorem 3, and it is well-known that the con-

traposition of a proposition is always true provided that the given proposition is true. That

is, if a system state " ��� cannot be completely reduced, then " � � contains at least one cycle,

which implies that if no cycle exists in " � � , then the system state " ��� is completely reducible.

Lemma 4 In a system " � in state " ��� , a process � � that is making progress cannot be in-

volved in deadlock.

Proof: Given a system " � in state " ��� , if a process � � is making progress, then according to

Definition 33, one of two cases may result: (i) � � does not need any resources, or (ii) � � has

some resources. In case (i), if � � is making progress, and it does not need any resources,

then according to the definition of deadlock (Definition 1), � � has nothing to do with dead-

lock. In case (ii), if � � holding some resources is making progress, then, according to

Assumption 10, � � has all required resources, will finish using the resources, and will then

release the resources; thus, � � has, at this instant, no unfulfilled resource requests prevent-

ing its progress (and eventual release of the resources it does hold). Therefore, � � does not

fulfill Condition 4 (see Section 1.3); thus, � � cannot be involved in deadlock. As a result,

in both cases (i) and (ii), � � , which is making progress, is not involved in deadlock.

Lemma 5 If system state " ��� in system " � does not have a deadlock, then all processes

in the system state can make progress either now or at some time a finite distance in the

future.

Proof: According to the definition of deadlock (Definition 1), even if one process is

blocked while waiting for requirements that can never be satisfied, the system state has

38

a deadlock. Therefore, unless " ��� has a deadlock, no process exists that is unable to make

progress within a finite time. In other words, if " � � does not have a deadlock, all processes

in " � � must be able to make progress within a finite time.

Please note that when a process in a system " � in state " ��� acquires a resource for which

the process has waited, the corresponding request edge is removed and changed to a grant

edge. Accordingly, as requests are fulfilled, request edges are replaced with grant edges.

After using the granted resources, a process will eventually release the resources that it

has used. Since releasing a resource is expressed as removing a grant edge, a process that

releases all of its resources will lose all of its grant edges.

Theorem 4 Given system " � in state " ��� and under Assumptions 1-10, a cycle is a necessary

and sufficient condition for deadlock.

Proof: We prove this theorem by contradiction. Suppose that " ��� has a cycle but does not

have a deadlock. If " ��� does not have a deadlock, then from Lemma 5 all processes in " ���
can make progress either now or at some time a finite distance in the future. According to

Definition 33 and Assumption 10, a process that requires some resources can only make

progress when the process obtains all the resources for which the process is waiting. Thus,

all the processes being able to make progress within a finite time implies that all processes

will (eventually) obtain all needed resources, finish using them, and release them within

a finite time. In other words, considering the RAG representation, as processes receive

resources, request edges will be changed into corresponding grant edges, and then all the

grant edges will eventually be removed as processes release resources. Thus, after all

computations are finished, there will exist no edges in the final state " ��� � � � . Please note

that, as stated in Assumption 9, we are considering the case in which no new requests come

in during the completion of all computations implied by state " ��� . Since there are no edges

after all computations are finished, and since by Theorem 2 a cycle that once exists cannot

disappear through terminal reduction steps, there cannot exist a cycle in " � � at all. This

39

contradicts our supposition that " ��� has a cycle but does not have a deadlock. Therefore, if

" ��� has a cycle, then " ��� has a deadlock.

Now assume that " ��� has no cycle but has a deadlock. If " ��� has no cycle, then according

to Lemma 3, " � � is completely reducible. This complete reduction indicates no deadlock

according to Lemma 2. Therefore, according to Lemmas 2 and 3, " ��� , which has no cycle,

cannot have any deadlock, which, however, contradicts our assumption that " ��� has a dead-

lock. Thus, if " ��� has a deadlock, then at least one cycle must exist in " ��� . As a result, a

cycle is a necessary and sufficient condition for deadlock.

Although it has already been proven in [8] and [20] that a cycle is a necessary and

sufficient condition for deadlock, none of the proofs were exactly applicable to our system

model with a DDU. Therefore, rather than adapting our system model and notation to prior

proofs, we decided to prove Theorem 4 in the exact context that we wanted for our claims

of correctness for the proposed PDDA and its hardware implementation in the DDU.

3.2.2 Matrix Representation of a RAG

So far, we have covered terms and properties that are applied to PDDA. As PDDA dra-

matically reduces deadlock detection time when implemented in hardware, to easily ac-

commodate such hardware, the RAG corresponding to state " ��� is mapped into a matrix

� ��� that will have exactly the same request and grant edges as the RAG corresponding to

" ��� . However, � ��� will utilize a slightly different notation for each edge. We now define a

RAG matrix � and a terminal reduction step applied to a matrix � before introducing an

algorithm that exploits the matrix representation.

Definition 34 The purpose of this definition is to define matrices that correspond to graph

" , system " � and state " ��� from Definitions 15 and 17. A RAG matrix � � � is a matrix mapped

from a RAG " and represents an arbitrary system with processes and resources. A system

matrix � �� �� � is defined as a matrix representation of a particular system " � , where the rows

(fixed in size) of matrix �� represent the fixed set � of resource nodes of " � , and the columns

40

(fixed in size) of matrix �� represent the fixed set
�

of process nodes of " � . We denote

another notation of this relationship as � ��� " � for the sake of simplicity. A state matrix

� ���� ���� ��� is a matrix that represents a particular system state " ��� , i.e., �� ��� " ��� . Edges in

system state " ��� are mapped into the corresponding array elements using the following

rule:

Given � � � � � � � from " � � ,

� ���� ���� � � =

��������
�

� � � � �
� ����� � � �

� ��� � � � ����� � � �� � ����	 �
� 	 � � 	 � ����� � 	 �

�	�������

,

for all rows ������ � and for all columns ��� ��� � :

� �
	 � � � ��	 (or simply ‘g’), if there exists a grant edge �� �
 � 	 � � �
� �
	 � � 	 � � (or simply ‘r’), if there exists a request edge � � 	

� � � � �
� �
	 ��� ��	 (‘0’ or a blank space), otherwise.

Example 10 State Matrix Representation

The system in state � � � shown in Figure 10(a) can be represented in the matrix form shown in (b).

For the sake of better understanding, we will use the matrix representation shown in Figure 10 (c)

from now on.

5

4

6

5

1

P3

q

q

q

p
1

q

q

p

q
3

4
p

ijγ

p
6

p2

2

(a)

� ���� ���� ��� =

�������
�

� � � � � �� � � � � �� � � � � �
� � � � � �
� � � � � �� � � � � �

�	������

���������

(b)

��� � ��� ��� ��� � � ��! ��"# � $ %# � %# � %# � $ % $# ! % $# " $ % $
(c)

Figure 10: Matrix representation example.

41

Definition 35 A state matrix ���� is said to be reducible if its corresponding system state

" ��� is reducible (Definition 31). Similarly, � ��� is said to be irreducible if its corresponding

" ��� is irreducible.

Definition 36 A system matrix ���� � � � is said to be completely reduced if its corresponding

system state " ��� � � � is completely reduced (Definition 32). Likewise, � ��� � � � is said to be

incompletely reduced if its corresponding " ��� � � � is incompletely reduced.

Definition 37 A terminal row is a row � � (recall that row � � corresponds to resource � �)

of matrix � ��� such that either (i) all non-zero entries
�
� �
	��

�� � , � � � � � � � are request

entries � 	�� � � with at least one request entry (i.e., one or more request entries and no grant

entry in the row) or (ii) one entry � ��	�� , � � � � � � , is a grant � � ��	�� with the rest of the

entries
�
����	 , ��� ��� � , �

�� � � � equal to zero.

Definition 38 � � �� ���� � � represents an evaluation of whether or not a row is a terminal row. That

is, if � � �� ���� � � is true (i.e., ‘1’), the corresponding row � � is a terminal row; otherwise, if � � �� � �� � � is

false (i.e., ‘0’), the corresponding row � � is not a terminal row.

Example 11 Terminal Row

In Figure 11, row 	�� is a terminal row according to case (i) of Definition 37. Also, row 	�� is another

terminal row, this time according to case (ii) of Definition 37.

� � � � � � � ��� � � � � �
� �
� � � �
� �
� � � �
� � �
�

Figure 11: Terminal row example.

Please note that for a terminal row � � , its corresponding resource node � � is a termi-

nal node; thus, all non-zero entries in row � � are terminal edges. Note also the effect of

42

Assumption 3 stated in Section 1.5 that a resource can only be granted to one process.

Specifically, the effect is that in case (ii) in Definition 37, a row (corresponding to a re-

source) may have at most one grant entry in the row.

Definition 39 A terminal column is a column � 	 (recall that column � 	 corresponds to

process �) of matrix � ��� such that either (i) all non-zero entries
�
� �
	

�� � , � � � � �

are request entries with at least one request entry (i.e., one or more request entries and no

grant entry in the column) or (ii) all non-zero entries
�
� �
	

�� � , ��� �� � � are grant

entries with at least one grant entry (i.e., one or more grant entries and no request entry in

the column).

Definition 40 � �
�� � �� ��� represents an evaluation of whether or not a column is a terminal col-

umn. That is, if � ���� � �� ��� is true (i.e., ‘1’), the corresponding column � 	 is a terminal column;

otherwise, if � ���� � �� ��� is false (i.e., ‘0’), the corresponding column � 	 is not a terminal column.

Example 12 Terminal Column

In Figure 12, column ��� is a terminal column according to case (i) of Definition 39. Also, column ���

is another terminal column, this time according to case (ii) of Definition 39.

� � � � � � � ��� � � � � �
� � �
� � �
� �
� � � � �
� � �
�

Figure 12: Terminal column example.

Please note that in a terminal column � 	 , its corresponding process node � 	 is a terminal

node, and all non-zero entries in the terminal column � 	 are terminal edges.

Definition 41 Given state matrix ���� , function
� � ��� ��� � produces the on-set (i.e., true set)

of all terminal rows.

43

Definition 42 Given state matrix ���� , function
� 	 � � ��� � produces the on-set of all terminal

columns.

Example 13 Production of terminal rows and columns

In Figure 11, ��� ��� ��� � � �����
	 � ���
��� , and in Figure 12, �� ��� � � � � ������� � ������ .

Definition 43 A terminal reduction step � � � is a unary operator � � ������� � ��� � � � , where

� calculates the terminal edge set � � ���� � � � � " ��� � defined in Definition 20 and returns

� ��� � � � such that all terminal edges � � ���� � found are removed by setting the terminal

entries found to zero; thus, the next iteration � ��� � � � will start with equal or fewer total

edges as compared to ���� . This terminal reduction step is denoted as � ��� ��� � . The for-

mula for � ��� � � � � � � � ��� � is shown in Equation 1 (see Definition 34 for the meaning of

� ��� � � � � " ��� � � �):
� ��� � � � � � � � ��� � � � � " ��� �

� �

#��� � ��� � � ��� ��� � � � �

#��� " ��� � � �$" ��� � � � " ��� � � � (1)

Please note that the removals of terminal edges in � ��� enable the discovery of new

terminal nodes in � ��� � � � . Any new terminal nodes that appear in � ��� � � � were connect

nodes in ���� that were connected to terminal nodes in � ��� .

Example 14 One Step of Terminal Reduction (�)
Figure 13(b) shows a new matrix

� ��� ��� � after the matrix reduction step � � � defined in Definition 43 is

applied to
� ��� shown in Figure 13 (a). In matrix

� ��� , 	�� and 	�� are terminal nodes by Definition 18

(also terminal rows by Definition 37); thus, all the edges in these rows are terminal edges by

Definition 19. Therefore, all the edges in rows 	�� and 	�� can be removed. Likewise, ��� , � � and ���
are terminal nodes (also terminal columns by Definition 39); hence, all edges in these columns can

be removed, resulting in matrix
� ��� ��� � shown in Figure 13 (b).

Definition 44 A terminal reduction sequence � � � , applicable to a matrix ���� , is a se-

quence of 	 terminal reduction steps � (recall that � is a terminal reduction step) such that

(i) � ������ � ��� � � ���� ������� � � ��� � � � ; (ii) � ��� � � � is irreducible; and (iii)
�
���� � �
 � � � �

44

� ��� � � � � ��� � � � � �
� � � �
� � �
� � �
� � � � �
� � � �
� � � �

(a)

� � �
���� ����

� ��� � � � � � � � � � � � � � �
� � � �
� �
� �
��� � � �
� � �
� �

(b)

Figure 13: Terminal reduction step (�) example.

	 � are all reducible. A terminal reduction sequence is called a complete reduction when

the sequence of terminal reduction steps corresponding to � results in � ��� � � � such that the

irreducible state matrix ���� � � � contains all zero entries (note that this means that " ��� � � �
corresponding to ���� � � � has no edges: ��� " ��� � � � ��� �). A terminal reduction sequence is

called an incomplete reduction when � returns � ��� � � � with at least one non-zero entry (note

that this means that " ��� � � � corresponding to ���� � � � has at least one edge: ���$" ��� � � � � �� �).

Another representation of a terminal reduction sequence is shown in Equation 2.

� ��� � � � � � � � ��� �
� ��� ��� � ����� ��� ��� ����� ��� ��� ��� ��� ����� �
� � � ����� � �
� � � � � ��� ����� �

(2)

3.2.3 Parallel Deadlock Detection Algorithm (PDDA)

In this section, we first introduce a terminal reduction algorithm which implements � � � (Def-

inition 44). We next show PDDA which uses the terminal reduction algorithm. Finally,

we prove the correctness of PDDA and PDDA’s run-time complexity when implemented in

parallel hardware (i.e., the DDU).

Algorithm 1 is an implementation of the terminal reduction sequence � � � shown in Def-

inition 44. We summarize the operation of Algorithm 1. Lines 2 and 3 of Algorithm 1

initialize two variables: iterator 	 and matrix � � 	���� that is initially a copy of input matrix

� ��� . Line 5 finds all terminal rows (Definition 37), and Line 6 finds all terminal columns

45

(Definition 39). Line 7 checks whether or not � � 	���� is reducible further (Definition 35).

Lines 8 and 9 remove all terminal edges found at the current iteration. On the whole, the

terminal reduction step � � ���� � of Definition 43 corresponds to Lines 5-9 of Algorithm 1,

which iterates until the matrix �� 	��
� becomes irreducible; this iteration process implements

the terminal reduction sequence � � � . Please note that, in hardware implementation, Lines 5

and 6 of Algorithm 1 are executed at the same time in parallel, as are Lines 8 and 9.

Algorithm 1 Terminal Reduction Algorithm

1 � (� ���) �
2 k = 0;
3 � � 	��
��� � � � ;
4 while (1) �

/* parallel on */
5 calculate � ��� � � 	��
��� ; /* determine all terminal rows */
6 calculate � 		� � � 	����
� ; /* determine all terminal columns */

/* parallel off */
7 if ((� ��� � � 	���������) and (� 		� � � 	���������)) break; /* if no more terminals */

/* parallel on */
8 for each terminal row ��� ��� � � 	��
��� , set all entries in � � � to zero;
9 for each terminal column ��� 	 � � � 	��
� � , set all entries in � ��� to zero;

/* parallel off */
10 k = k + 1;
11 �
12 � ��� � � � � � � 	���� ;
13 return � ��� � � � ;
14 �

Algorithm 2 Parallel Deadlock Detection Algorithm (PDDA)

1 Deadlock Detect Matrix ��� ����� �
2 ����������� � �� ��	 � , where
3 � �"! �$#$#$#%��& and � �'! �$#$#$#%��(
4 �
	%�*) , if + �-, 	 �/. �0� �21 ��� �����
5 �
	 �43 , if + � . � � , 	 � �51 ��� ��� �
6 �
	%�76 , otherwise.
7 � ��� � � � � � � � ����� ; /* call Algorithm 1 */
8 if (� ��� � � � �8� ��9:�) � /* matrix of all zeros */
9 return 0; /* no deadlock */
10 � else �
11 return 1; /* deadlock detected */
12 �
13 �

46

We now summarize the operation of Algorithm 2 (i.e., PDDA). Lines 2-6, given " ��� ,
construct the corresponding matrix � ��� according to Definition 34. Next, Line 7 calls Al-

gorithm 1 with argument ���� . When Algorithm 1 is completed, Lines 8-12 of Algorithm 2

determine whether " ��� has a deadlock or not by considering returned matrix � ��� � � � : if

� ��� � � � is empty, the corresponding " ��� has no deadlock; otherwise, deadlock(s) exist. Fi-

nally, Algorithm 2 returns ‘1’ if the system state under consideration has deadlock(s), or

‘0’ if no deadlock. Please note that Algorithm 2, which includes Algorithm 1, is referred to

as PDDA. Next, we present a simple example that shows results at each iteration of PDDA.

Example 15 Matrix Reduction Sequence and Deadlock Detection

Consider the system state � ��� shown in Figure 10 again. Figure 14 illustrates how each step of

Algorithm 1 is applied to matrix
� ��� and its RAG representation � ��� . The original � � � and

� ��� are

shown at step 0 in Figure 14(a). After one iteration of lines 5-10 in Algorithm 1, the state becomes

Step 1 (
� ��� ��� �) shown in (b). One more iteration produces step 2 (

� ��� ��� �) shown in (c). After

the third iteration, Algorithm 1 returns an irreducible matrix
� � � ��� � shown in (d); thus, Algorithm 2

detects deadlock by evaluating the returned matrix
� ��� ��� � .

3.2.4 Proof of the Correctness of PDDA

Theorem 5 PDDA detects deadlock if and only if there exists a cycle in state " � � .

Proof: Consider ���� corresponding to " ��� (Definition 34). (a) Algorithm 1 returns, by con-

struction, an irreducible matrix � ��� � � � . (b) By the definition of irreducible (Definition 35),

� ��� � � � has no terminal edges, yielding two cases: (i) � ��� � � � is completely reduced, or

(ii) � ��� � � � is incompletely reduced (Definition 36). In case (i), by Lemma 2, � ��� (i.e., " ���)
has no deadlock. In case (ii), by Theorem 3, � ��� (i.e., " ���) has at least one cycle; thus, by

Theorem 4, " ��� has a deadlock.

47

5

4

6

5

1

P3

q

q

q

p
1

q

q

p

q
3

4
p

ijγ

p
6

p2

2

� � � � � ��� ��� � � ��! ��"# � $ %# � %# � %# � $ % $# ! % $# " $ % $
(a) step 0

6

5

1

P3

q

4pq

q

p
1

q

q

p

q
3

p
6

p2

4

2

5

� ��� � � � ��� ��� ��� � � ��! ��"# � $ %# �# �# � $ % $# ! %# " $
(b) step 1

5

1

P3

q

4pq

q

p
1

q

q

p

q
3

p
6

p2

6

2

5

4

� ��� � � � ��� ��� ��� � � ��! ��"# � $ %# �# �# � $ % $# !# "
(c) step 2

5

1

P3

q

4pq

q

p
1

q

q

p

q
3

p
6

p
2

6

2

5

4

� ��� � � � ��� ��� ��� � � ��! ��"# � $ %# �# �# � % $# !# "
(d) step 3

Figure 14: A sample sequence of reduction steps.

3.2.5 Proof of the Run-time Complexity of the DDU

Lemma 6 In a RAG " � � , an upper bound on the number of edges in a path is
� � �	� � ����
 ��� ,

where � is the number of resources and � is the number of processes.

48

Proof: By Definitions 11 and 15, RAG " ��� is a bipartite graph in which any request edge

spans from a process node to a resource node and any grant edge spans from a resource

node to a process node. That is, " ��� cannot have any edge from process � � to process �

for

any two processes ��� , �
 ��
�� " ��� � . Similarly, " ��� cannot have any edge from resource ��� to

resource �
�

for any two resources �.� , � � �
�� " ��� � . Also recall that every node in each path

of " ��� is distinct by Definition 24.

Let us consider the following three possibilities: (i) � ��� , (ii) � � � , or (iii) � � � .

For case (i), where � equals � , one longest path is
�
���

� �
 � �
�� �
�������
 � 	

��	 � since this

path uses all the nodes in " ��� , and since every node in a path must be distinct (i.e., every

node can only be listed once). In this case, the number of edges involved in the path is
� � � � (or

� � � �). For case (ii), where � is greater than � (i.e., � � � �), one

longest path is
�
� �
 � �

� �
 � �
�������

� �
 � �

� � � � � ; this path cannot be lengthened since every

node in a path must be distinct, and since all � process-nodes are already used in the path.

Therefore, the number of edges in this path is
� � � . Likewise, for case (iii), where � is

greater than � (i.e., � � � �), the number of edges involved in any longest path is
� � � .

As a result, cases (i), (ii) and (iii) show that the number of edges of the maximum

possible longest path in a RAG " ��� is
� � �	� � �
��
 ��� .

Theorem 6 Algorithm 1, when implemented in parallel hardware, completes its compu-

tation in at most
� � �	� � �
��
 ��� � � �����	� � ����
 ��� � steps, where � is the number of

resources and � is the number of processes.

Proof: Given ���� , we consider the corresponding " ��� , which has a one-to-one correspon-

dence with � ��� according to Definition 34. At each iteration in Line 7 of Algorithm 1, if

Line 7 evaluates to false, then there exists at least one terminal row or column; thus, another

iteration needs to continue. Please note that the worst case number of iterations will occur

when " ��� has the longest reducible path. However, the simple longest reducible path cannot

give the worst case because such a simple path (see Definition 25) has a terminal node at

49

each end of the simple path; thus, each � reduction will remove two edges at a time! Thus,

maximizing the number of iterations requires that one end of the longest path be a terminal

node while the other end of the longest path connects to a cycle, preventing this end from

being reduced.

Now consider the case where " � � has the longest possible path that is connected to a

cycle at one end of the path. According to Lemma 6, since the number of edges of the

maximum possible longest path in a bipartite RAG has an upper bound of
� � �	� � �
��
 ��� ,

the number of iterations in the worst case is bound by
� � �	� � �
��
 ��� . Furthermore, since

one end of the path is connected to a cycle, the number of iterations will further be reduced

by the path edges contained in the cycle (Definition 27) since edges in a cycle can never

be terminal edges. Accordingly, the worst case (i.e., the maximum number of iterations)

occurs when the size of the cycle is at its minimum. According to Corollary 2, when all

the nodes in the smallest possible cycle are used, the longest path has three edges in this

smallest possible cycle. Therefore, in the worst case,
� � �	� � ����
 ��� � is an upper bound

on the number of edges in the longest possible path that are not also part of a cycle.

Hence, the number of iterations required to reach an irreducible state becomes at most
� � �	� � �
��
 ��� � � ���
�	� � ����
 ��� � in the worst case.

The next example shows terminal reduction steps (Algorithm 1) and a run-time com-

plexity calculation for a simple path case.

Example 16 Run-time Complexity Calculation in a Simple Path Case

� ��� � � � � ��� � � � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 15: Simple path example.

50

A RAG for the matrix shown in Figure 15 is

����� 	�� � ����� 	�� � ����� 	�� � ����� 	 � � ����� 	�� � �4�
Due to the two terminal nodes at both ends, after the first iteration of Algorithm 1, the RAG becomes

	�� � ����� 	�� � ����� 	�� � ����� 	 � � ����� 	��

After the second iteration of Algorithm 1, the RAG becomes

� � � 	 � � � � � 	 � � � � � 	 � � � �

After the fourth iteration of Algorithm 1, the RAG becomes

����� 	�� � ���

which, after the fifth iteration, leaves no edges.

As shown in this example, in general, the number of iterations required to reach an irreducible

state in a simple path case is
��� � ��� � � � , which, in this case, is .

The next example illustrates one of the worst cases of terminal reduction.

Example 17 Run-time Complexity Calculation in the Worst Case

In the dangling path shown in Figure 16, it takes 7 iterations to remove all reducible terminal edges.

The size of the cycle shown in Figure 16 is four (i.e. the minimum possible). Thus, according to

Theorem 6, the number of iterations to reach an irreducible state for the RAG shown in Figure 16

is
�

� ��� � � � � � ��� �); i.e.,

�

�
�� � � = 7 iterations.

1q

p
1

q
3

2
q p

2

4q4
p

5
q

5
p

6q
p
3

(a) a RAG

� ��� � � � � � � � � � �
� � �
� � � �
� � � �
��� � �
� � � �
� � �

(b) � ���

Figure 16: Dangling path connected to a cycle when �
�� � .

51

Examples 16 and 17 demonstrate for specific cases that Algorithm 1 has a worst-case

run-time complexity of
� � �	� � �
��
 ��� � � �����	� � �
��
 ����� when PDDA is implemented

in hardware and executed in parallel.

In this section we have proven the correctness and run-time complexity of the DDU. We

now aim to describe the operation of the DDU in great detail using matrix representations

and Boolean algebra.

3.3 Hardware Implementation of PDDA

In this section, we will explain the operation of PDDA in great detail, considering that

PDDA is to be implemented in hardware (the DDU). In Section 3.3.1, we will explain a

series of logical operations performed on � ��� more generally in terms of matrix theory.

Next, in Section 3.3.2, we will provide two detailed examples to demonstrate each logical

operation of PDDA using this matrix theory and then describe the architecture of the DDU

in detail. To see the examples before the theoretical descriptions, readers may go directly

to Section 3.3.2.

3.3.1 Step-by-step Operations of the DDU with Mathematical Representations

As described in Section 3.1.1, when the DDU is informed of or notices an event of either

a request or a grant, a series of logic operations occurs: (i) finding terminal nodes, (ii) re-

ducing terminal edges, (iii) iterating (i) and (ii) until no more terminal edges exist, and (iv)

checking for deadlock.

A given system state " ��� is equivalently represented by a system state matrix � ��� so

that, based on ���� , the DDU performs the sequence of operations shown in Algorithms 1

and 2 in Section 3.2.3 and determines whether or not the given state has a deadlock. In the

general case, a system state matrix can be explicitly represented as shown in Equation 3.

52

� ���� ���� ��� �

���������������
�

� � � � �
� ����� � ��	 ����� � � �

� ��� � � � ����� � � 	 ����� � � �� � � � � �
� � � � � � ����� � �
	 ����� � � �� � � � � �
� 	 � � 	 � ����� � 	�	 ����� � 	 �

� ��������������

� � � 	���� (at the first iteration) (3)

where � is the number of resources and � is the number of processes.

We now explain the logical operation of the DDU circuit in detail using Boolean algebra

and matrix computation. Lines 2-6 of Algorithm 2 illustrate the translation from a given

system state " ��� into its matrix form ���� . Each matrix element � ��	 represents one of the

following: � � ��	 (a grant edge), � 	 � � (a request edge) or � �
	 (no edge). That is, � �
	 is ternary-

valued. The hardware implementation of PDDA in digital logic requires that the values of

each element be represented in a binary format with a minimum number of encoding bits,

preferably. Since ���
	 is ternary-valued, ���
	 can be minimally defined as a pair of two bits

� �
	 � ��� ��
	
 � � �
	 � . If an entry ���
	 is a grant edge � , bit � � �
	 is set to 0, and � ��
	 is set to 1;

if an entry ���
	 is a request edge � , bit � � ��	 is set to 1, and � � �
	 is set to 0; otherwise, both

bits � � �
	 and � � ��	 are set to 0. Hence, an entry � ��	 can be only one of the following binary

encodings: 01 (a grant edge), 10 (a request edge) or 00 (no activity). This way of element

representation is a variant of the positional cube notation developed for logic minimization

of digital circuits.2 Please note that ���
	 � ��� ��
	
 � � ��	 � � � � never appears (i.e., is illegal).

Next, Line 7 of Algorithm 2 calls Algorithm 1. Please note that since this process oc-

curs in hardware, an actual call will not occur. Instead of the call in Algorithm 1, the DDU

just starts operation with �� � ; that is, � ��� just becomes � � 	���� during iterations, as shown

in Line 3 of Algorithm 1. However, the original � ��� is not altered; instead each output of

element ����	 may temporarily be suppressed as an emulation of edge reduction (the exact

2[9] and Chapter 2 of [10]

53

hardware technique used to achieve this “suppression” will be explained in Section 3.3.4).

Then, � � 	���� is processed in row-wise and column-wise directions simultaneously, i.e., two-

dimensional operation. The row-wise direction operation corresponds to Lines 5 and 8 of

Algorithm 1, which finds all terminal rows in � � 	��
� and sets to zero all entries in each termi-

nal row. The column-wise direction operation corresponds to Lines 6 and 9 of Algorithm 1,

which finds all terminal columns and sets to zero all entries in each terminal column.

In order to facilitate the two-dimensional operations, we introduce two more matrices,

� �� 	��
� and � �� 	��
� . Even though these two matrices are not actually implemented as sepa-

rate memory locations in hardware (for hardware implementation details, please see Sec-

tion 3.3.4), we nonetheless represent the two-dimensional operation with two-bit binary

encoding column and row representations, � �� 	���� and � �� 	��
� (which are shown in Equation 4

and Equation 5, respectively), so that understanding parallel two-dimensional operations

inside the DDU can become easier.

� �� 	����� �� 	��
�� �� 	���� �

������������
�

��� � � �
 � � � � � ����� ��� � ��	
 � � ��	 � ����� �
� � � �
 � � � � �� � � � �
��� �� �
 � � � � � ����� �
� ���	
 � � �
	 � ����� ��� �� �
 � �� � �� � � � �
��� �	 �
 � �	 � � ����� �
� �	 	
 � �	�	 � ����� ��� �	 �
 � �	 � �

� �����������

(4)

54

� �� 	����� �� 	��
�� �� 	���� �

����������������������
�

� � � � ����� � � ��	
 ����� � � � �

� � � � ����� � � ��	 ����� � � � �� � � � �
� � � � ����� � � �
	 ����� � � � �

� � � � ����� � � �
	 ����� � � � �� � � � �
� �	 � ����� � �	�	 ����� � �	 �
� �	 � ����� � �	�	 ����� � �	 �

�	���������������������

(5)

From matrices � �� 	��
� and � �� 	��
� , finding any terminal edges that exist in the current itera-

tion (which corresponds to Lines 5 and 6 in Algorithm 1) will entail three logical operations

performed in sequence: (i) Bit-Wise-Or (BWO) in Equations 6 and 7, (ii) eXclusive-OR

(XOR) in Equations 8 and 9, and (iii) OR as shown in Equation 10. All these BWO, XOR

and OR logical operations are performed in parallel throughout the matrix. Two parallel

BWO operations are derived as shown in Equations 6 and 7.

��� � �� 	���� �
�
�
� �� �
 � �� � � �
� �� �
 � �� � � ����� �
� �� �
 � �� � � ����� ��� ����
 � ���� ��� (6)

where � � 	
 � � � � � (i.e., for all columns), � �� � �
		
��
 � � � ��	 and � �� � �

		
��
 � � � ��	 (notation

	
means Bit-Wise-Or of elements).

��� � �� 	���� �
�
�
� �� �
 � �� � � ��� �� �
 � �� � � ����� �
� �� �
 � �� � � ����� ��� ���
 � ��� � ��� (7)

where � � �
 ������ � (i.e, for all rows), � ���� �
�	
	�
 � � � ��	 and � �� � �

�	
	�
 � � � �
	 .

The XOR operations are performed as follows.

� ��� �� 	���� �
�
� � � � � � ����� � ��� ����� � � � � (8)

where � � 	
 � � ��� � , � ��� � � ������ � ���� and � denotes eXclusive-OR. As shown in Defini-

tion 40, if the value of � ��� is true (i.e., ‘1’), column � 	 is a terminal column and all non-zero

55

entries in column � 	 are terminal edges.

� ��� �� 	��
� �
�
� � � � � � ����� � ��� ����� � � � � (9)

where � � �
 � � � � , � ��� � � ���� � � �� � . As shown in Definition 38, if the value of � � � is

true (i.e., ‘1’), row � � is a terminal row and all non-zero entries in row � � are terminal edges.

Thus, Equation 8 shows the existence of terminal nodes in any column, and Equation 9, in

any row. As a result, if all entries in both
� ��� �� 	���� and

� � � �� 	��
� are false (i.e., ‘0’), there

exist no terminal nodes. If, however, one or more entries in either
� � � �� 	���� or

� ��� �� 	���� are

true (i.e., ‘1’), there exist terminal node(s) and thus terminal edge(s).

Among the sequence of three logical operations, Equation 10 shows the OR operation

that produces the termination condition (i.e., the further reducibility of matrix � � 	���� , which

corresponds to Line 7 in Algorithm 1) at each iteration. If
� � 	��
� is one, i.e., logically true,

then more terminal edges exist; thus, further iterations must continue. However, if the

current matrix is irreducible (i.e., it has no terminal edges),
� � 	���� � will contain a ‘0’; thus,

further iterations would accomplish nothing.

� � 	��
� � ����� ��� (10)

where ��� �
�	
	�
 � � �
� and ��� �

		
��
 � � ��� . The next iteration � � 	���� �	� � is derived from Equa-

tions 8 and 9 according to the following criterion (which corresponds to Lines 8 and 9 of

Algorithm 1) considering the current iteration to be � � 	��
� � .

�
� ���	
 � � �
	 � � � � �

��� �� �
�
���	
 � ��
	 � �
 if � � � � � and � � � ���

� �
 � �
 if � � � � � or � � � � �
(11)

where 	 refers to 	 th iteration, and 	 � � refers to � 	 � � � th iteration. That is, the next

iteration (if it occurs) will begin with a new matrix � � 	���� �	� � calculated by Equation 11

from � � 	���� � .
Before finishing PDDA, however, one more important process remains: deadlock de-

tection, which requires two more parallel logic operations shown in Equations 12 and 13.

56

These two parallel logic operations are important when carried out after the last iteration

of Equation 10 (i.e., after Equation 10 yields a result of
� � 	���� � �). Equation 12 represents

the existence of connect nodes involved in a cycle in any column, and Equation 13, in any

row. �
� � �� 	��
� �

�
� � � � � � ����� � ��� ����� � � � � (12)

where � � 	
 ��� � � �
 � ��� � � ������ � ���� and � denotes bit-wise-and.�
� � �� 	��
� �

�
� � � � � � ����� � � � ����� � �� � � (13)

where � � �
 � � � ��
 � ��� � � ������ � ���� and � denotes bit-wise-and. If the value of � ��� is

true (i.e., ‘1’), column � 	 is a connect node, and similarly if the value of � � � is true, row � �
is a connect node.

Finally, Equation 14 produces the result of deadlock detection, which corresponds to

lines 8-12 of Algorithm 2.

� � 	��
� � � � � � �
 when
� � 	���� ��� (14)

where � � �
�	
	�
 � � � � and � � �

		
��
 � � � � .

We define two more equations that are used to describe the DDU architecture in Sec-

tion 3.3.4. From Equations 8 and 12, we define a column weight vector as follows:

� �� 	���� �
�
� � � � � � ����� � ��� ����� � � � � (15)

where � � 	
 � � ��� �
 � ��� is a pair � � ���
 � ��� � representing whether the corresponding pro-

cess node is a terminal node, a connect node, or neither.

From Equations 9 and 13, we define a row weight vector as follows:

� �� 	��
� �
�
��� � ��� � ����� ��� � ����� ��� � � (16)

where � is the number of resources, and � � �
 � � � ��
 ��� � is a pair � � � �
 � � � � repre-

senting whether the corresponding resource node is a terminal node, a connect node, or

neither.

57

3.3.2 DDU Operation Examples

We now illustrate a series of logical operations of the DDU with two simple examples. In

one example, the current state of a system consisting of two processes and three resources

has a deadlock. In the second example, the current state of the same system does not have

a deadlock.

Example 18 Two Processes and Three Resources with a Cycle

An SoC shown in Figure 17 has two processes, � � running on DSP and ��� running on VSP, and

three resources, ImC, PCI and WI as 	
� � 	�� and 	�� , respectively. The matrix representation of this

example is shown in Figure 18.

(a) an SoC (b) a RAG

PCI Bus
Interface

Wireless
Interface

Signal
Video

Processor

Processor

Digital
Signal DSP

B
U

S

Coprocessor
Image ImC

VSP

PCI WI

Figure 17: SoC example with two processors and three resources.

P � Q � � (DSP) � � (VSP)

� � (ImC) � �
� � (PCI) � �
� � (WI) � �

Figure 18: SoC example with two processors and three resources with a cycle.

We now show how the parallel operation of the DDU works cycle by cycle. In the beginning,

given � ��� shown informally in Figure 17(b), lines 2-6 of Algorithm 2 construct an initial matrix
� ���

shown in Equation 17. Each element in
� ��� is referred to as � ��� , where ������� � and ��� ��� � .

58

Here, each � ��� can have a value of either (, or � .
� � � �

������
� � � �����
� � � � ���
� � � � ���

������� �
������
(
 (� (

������� � � � �	� ��
 (at the first iteration) (17)

Then, Line 7 of Algorithm 2 calls Algorithm 1. However, instead of the call,
� � � just becomes

� � �	� ��
 by a detection start signal (as stated in Section 3.3.1). Since
� � �	� ��
 needs to be processed

in a two-dimensional operation, we represent
� � �	� ��
 as two-bit binary encoding column and row

representations,
� �� �	� ��
 and

� �� �	� ��
 , respectively, which are shown in Equation 18. Again, note

that these two matrices are the same as
� � �	� �
 and they are only shown for the purpose of the

understanding of the parallel two-dimensional operation inside the DDU.

� �� �	� ��
 �
������
� � ��
���� ������ �

������� � � �� �	� ��
 �
��������
�
�

��
�� �

��� �
�

��������� (18)

Now a Bit-Wise-Or (��� � ���) operation is applied to each column of
� �� �	� �
 , resulting in the��� � �� �	� �
 matrix shown in Equation 19. Similarly, another BWO operation is applied to each row

of
� �� �	� �
 resulting in the ��� � �� �	� �
 matrix shown in Equation 19. These BWO operations are

processed in parallel and the results are fed to the next operation.

��� � �� �	� �
 ��� � � � ��� � ��� � �� �	� �
 �
��������

�
�
�
��
�

��������� (19)

Next, an eXclusive-OR (XOR, �) operation is applied to both bits of each entry of ��� � �� �	� ��

resulting in the � � � �� �	� ��
 matrix shown in Equation 20. For instance, if ��� � � ��� � ��� � � , then� � � � will be � �!� �"�#� ��� �$� � ��� . A similar XOR operation is also applied to both bits of

each entry of ��� � �� �	� �
 resulting in the � � � �� �	� �
 matrix shown in Equation 20.

� � � �� �	� ��
 �%� � �
 � � 	 � �&� �'� � � � � � �� �	� ��
 �(� � �
 � � 	 � � � �*) �(� �+� � �*) (20)

An element ‘1’ in � � � �� �	� �
 represents that the corresponding column (recall a column corre-

sponds to a process) in
� � �	� �
 is a terminal process node; thus, edge(s) in the column are reducible.

59

On the other hand, an element ‘1’ in � � � �� �	� �
 indicates that the corresponding row (recall a row

corresponds to a resource) in
� � �	�
�
 is a terminal resource node; hence, edge(s) in the row are

reducible. Since the element of the third row in � � � �� �	� �
 is ‘1,’ which signifies the third row is a

terminal row in matrix
� � �	� ��
 , the third row can be excluded from further consideration. That is,

more iterations need to continue, which is shown in Equation 21.

� � �	� ��
 � ��� � ��� � � (21)

where ��� �
��
��� � ����� � � and ��� �

	�
�
� � ����� � � . Since � � �	� ��
 in Equation 21 results in ‘1,’ there exists at

least one terminal edge in this iteration; thus, further iteration(s) are necessary. Before continuing

the next iteration, we calculate connect nodes, ���� �� �	� ��
 and ���� �� �	� ��
 , shown in Equation 22.

���� �� �	� �
 �(��� �
 � � 	 � �(� � � � � ���� �� �	� �
 �%��� �
 � � 	 � � � �) �%� � �"� �) (22)

Weight vectors are � �� �	� �
 and � �� �	� �
 , shown in Equation 23.

� �� �	� ��
 � ��� �
 � � 	 � � � � � � ��� � � � �� � �
� �� �	� �
 �&��� ��
 � �
	 � � � �) �(� � � � �� � � � ��� �

� � � � �) (23)

where (0,1) signifies a connect node and (1,0) signifies a terminal node. Thus, row 3 is a terminal

node. After the terminal edge revealed in the first iteration is eliminated by Equation 11, the next

iteration begins with new
� � �	� � 	 shown in Equation 24.

� � �	�
�
	 �
������
� � � �����
� � � � ���
� � � � ���

������� �
������
(
 (�+�

������� (at the second iteration) (24)

� �� �	� �
	 and
� �� �	� �
	 at iteration 2 are shown in Equation 25.

� �� �	� � 	 �
������
� � ��
���� ��������

������� � � �� �	� � 	 �
��������
�
�

��
�� �

��� ��

��������� (25)

Then, ��� � �� �	� � 	 and ��� � �� �	�
� 	 are shown in Equation 26.

��� � �� �	� � 	 ��� � � � ��� � ��� � �� �	� � 	 �
��������

�
�
�
���

� ������� (26)

60

Next, Equation 27 shows � � � �� �	� � 	 and � � � �� �	� � 	 , which represent that no terminal nodes exist

in
� � �	�
� 	 .

� � � �� �	�
� 	 � � �+� � � � � � �� �	� � 	 �
������
���
������� (27)

As a result, � � �	�
�
	 becomes ‘0’ as shown in Equation 28, which means
� � �	� � 	 is irreducible.

� � �	� �
	 � ��� � ��� � � (28)

since � � �
��
��� � � � � � � and � � �

	�
�
� � � � � � � . Therefore, this iteration is the last. At this moment,

we need to find � � �	� �
	 , the deadlock decision result. To do this, we first calculate ���� �� �	�
� 	 and

���� �� �	� �
	 , as shown in Equation 29, which represent the existence of connect nodes in columns

and in rows, respectively.

���� �� �	� � 	 � � � � � and ���� �� �	� � 	 � � � �"� �) (29)

Weight vectors at this iteration are � �� �	� � 	 and � �� �	� � 	 , shown in Equation 30.

� �� �	� �
	 �(� � � � �� � � � ��� � � � �� �	� �
	 �(� � � � ��� � � � ��� � � � � � �*) (30)

where (0,1) signifies a connect node and (0,0) in � �� �	� � 	 signifies no edges in the third row. Next,

the decision of a deadlock is made by Equation 31.

� � �	� �
	 � � � � � � � � � when � � �	�
�
	 � � (31)

where � � �
��
��� � � � �2� � and � � �

	�
�
� � � � � � � . Since (i) � � �	� � 	 � � , which signifies that this new

� ��� ��� � is not reducible any more, and (ii) � � �	�
� 	 � � , which signifies that edges still exist, we finally

conclude that ����� has a deadlock.

Example 19 Two Processes and Three Resources without a Cycle

Consider the same system as shown in Example 18. However, the system currently has a different

set of request and grant edges as shown in Figure 19.

We now show how the parallel operation of the DDU works cycle by cycle in this case, which

has no cycles. First, given ����� shown in Figure 19(a), initial matrix
� � � shown below is constructed

61

DSP

IC

VSP

PCI WI

(a) a RAG

P � Q � � (DSP) � � (VSP)

� � (ImC) � �
� � (PCI) � �
� � (WI) � �

(b) � ���

Figure 19: SoC example with two processors and three resources without a cycle.

by lines 2-6 of Algorithm 2.

� � � �

������
� � � �����
� � � � ���
� � � � ���

������� �
������
(
(�� (

������� � � � �	� ��
 (at the first iteration) (32)

Second, two corresponding binary coded matrices
� �� �	� �
 and

� �� �	� �
 , shown in Equation 33,

are constructed according to the binary encoding scheme, explained in Section 3.3.1.

� �� �	� ��
 �
������
� � ��� ���������� �

� ����� � � �� �	� ��
 �
��������
�
�

���
�

���� �
�

��������� (33)

Third, a Bit-Wise-Or operation is applied to each column of
� �� �	� ��
 , resulting in the ��� � �� �	� ��

matrix shown in Equation 34. At the same time, a similar Bit-Wise-Or operation is applied to each

row of
� �� �	�
��
 , resulting in the ��� � �� �	� ��
 matrix.

��� � �� �	� �
 � � � � � � � � ��� � �� �	� �
 �
��������

�
��
��
�

� ������� (34)

Fourth, an eXclusive-OR(�) operation is applied to the two bits of each entry of ��� � �� �	�
�
 ,
resulting in the � � � �� �	� �
 matrix shown in Equation 35. Likewise, another eXclusive-OR operation

is also applied to the two bits of each entry of ��� � �� �	� �
 , resulting in the � � � �� �	� �
 matrix.

� � � �� �	�
�
 �%� �"� � � � � � �� �	� �
 �
������
�
�

�

������� (35)

62

Now, the termination condition is calculated by Equation 36.

� � �	� �
 � � � � � � � � (36)

where � � �
��
��� � � � � � � and � � �

	�
�
� � � � � � � . Since � � �	� �
 in Equation 36 results in ‘1,’ there exists at

least one more terminal edge at this iteration; thus, at least one more iteration is necessary.

In Equation 35, since the element of the first column in � � � �� �	�
��
 is ‘1,’ which means the first

column is a terminal column in matrix
� � �	� ��
 , the first column can be eliminated from further con-

sideration. Also, since the elements of second and third rows in � � � �� �	�
��
 are ‘1,’ which means the

second and third rows are terminal rows in matrix
� � �	� ��
 , the second and third rows can be elimi-

nated from further consideration. After the terminal edges revealed in iteration one are eliminated

using Equation 11, the next iteration begins with new
� � �	� � 	 , shown in Equation 37.

� � �	� � 	 �
������
��� � � ��
� � � � � �
� � � � � �

� ����� �
������
� �'��'�

� ����� �
������
��� � ����'�*����'�*�

� ����� (37)

��� � �� �	� �
	 , � � � �� �	� �
	 , ��� � �� �	� � 	 and � � � �� �	� � 	 are shown in Equations 38 and 39, respectively.

��� � �� �	� � 	 � � �*� � � � � ��� � �� �	� � 	 �
��������

�� ����

��������� (38)

� � � �� �	� � 	 � � � � � � � � � �� �	� � 	 � �� ���
�� (39)

The termination condition is shown in Equation 40.

� � �	� �
	 � ��� � ��� � � (40)

where � � �
��
��� � � � � � � and � � �

	�
� � � � � � � � . After the terminal edge revealed at the second iteration

is eliminated by Equation 11, the next iteration begins with new
� � �	�
� � , shown in Equation 41.

� � �	� � � �
������
���������

������� (41)

Since this
� � �	� � � has no edges, all the remaining results of the deadlock equations will turn out

to be ‘0’; thus, the DDU identifies that the system state � � � does not have a deadlock.

63

3.3.3 On the Relationship between the DDU and Two Level Logic Minimization

We here briefly mention the similarities between the concept of terminal reduction and two-

level logic minimization, the general concept of which is described in Chapter 2 of [10].

The Quine-McCluskey (QM) method used to find minimum prime implicants (covering

a given function) iteratively reduces “a set of standard sum of products form” to “a set

of prime implicants” by using the concepts of dominance and essentiality [32]. By con-

trast, Coudert et al. propose an efficient algorithm that directly computes a set of essen-

tial elements using Binary Decision Diagrams (BDDs) and metaproducts, which makes its

complexity independent from the numbers of minterms and prime implicants of a function

(instead of computing the dominance relations, whose huge BDDs are the bottleneck of

previous algorithms) [9]. Our approach of parallel terminal reduction based on a matrix is

very similar to the QM method in terms of the representation of the design space by use

of a matrix and in that both methods remove columns and/or rows to come up with their

solutions; however, matrix row and column removal criteria in each differ according to

their purposes. While Quine-McCluskey uses a matrix of minterms and prime implicants,

our method uses a matrix of resources and requesters. Another difference is that while tra-

ditional logic minimization algorithms typically use don’t cares, each element of a matrix

of our method has a ternary value, defined in Definition 34, with no equivalent don’t care

concept in our case. A big difference in terms of run-time complexity lies in that while our

approach is linear, exact (global minimum) logic minimization algorithms (such as QM)

are either polynomial or exponential.

3.3.4 Detailed Description of the DDU Architecture

This subsection describes the architecture of the DDU. The DDU consists of three parts as

shown in Figure 8: matrix cells (part 1), weight cells (part 2) and a decide cell (part 3).

Part 1 of the DDU represents the system state matrix � ��� via use of an array of matrix cells

that represents an array of ��� ���	
 � � �
	 � entries where � � � � and � � � � � . Part 2

64

consists of two weight vectors: (i) a column weight vector
� � (shown in Equation 15)

below the matrix cells and (ii) a row weight vector
� � (shown in Equation 16) on the

right-hand side of the array of matrix cells. Each element � � � , � � � � � , in
� � is called

a column weight cell, and each element ��� � , ��� � � , in
� � is called a row weight

cell. At the bottom right corner of the DDU is one decide cell (part 3) which calculates
� � 	���� in Equation 10 and � � 	��
� in Equation 14 in order to check deadlock. All cells are

interconnected appropriately via buses.

Figure 8, repeated here as Figure 20 for convenience, illustrates the architecture of the

DDU for three processes and three resources. This DDU has nine matrix cells (� � �)
for each edge element �
� ��
	
 � � ��	 � of � ��� , six weight cells (three for column processing and

three for row processing), and one decide cell for deciding whether or not deadlock has

been detected.

��

��

��

��

�	

�

decide
cell

cell

cell
matrix

cell
weight

cell
weight

cell
weight

weight
cell

weight
cell

weight
cell

matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

cell
matrix

matrix

cell

Figure 20: DDU architecture.

Figure 21 shows a matrix cell which corresponds to an entry � �
	 � �
� ���	
 � ��
	 � . The

matrix cell has one 2-bit register (which stores the edge information ��� ���	
 � ��
	 �) with two

input and four output signals. One pair of outputs (
� ��
	
 � �

�
) goes to a column weight cell

� � � while the other pair of outputs (� ��
	
#� � ��) goes to a row weight cell � � � . Please note

that
� ��
	 and � ��
	 are the same, and

� �
�
	 and � ��
	 are the same. Two inputs (� � � and � � �) from

65

weight cells are used to suppress outputs to reflect the terminal reduction when this cell

belongs to a terminal node (i.e., when this matrix cell corresponds to a terminal edge, this

cell must be excluded from further iterations).

stR r

g

stC

st
g

R

st st

τ

τrs

ct

αrC

Figure 21: Matrix Cell ���
	 in matrix array ���� .

Figure 22 depicts a logic diagram of a matrix cell for row one and column one of

Example 18. All outputs are controlled by the OR of � � � and � � � , which indicates whether

or not the corresponding column or row is a terminal node.

R

C

C

11

11

11

11

R

11αr

α11
g

2

1

g

c1

r

2

g

1

r1τ
τ

r

(GRANT)

(REQUEST)

Clock

0

1

O

O

1

0

D

D

S

Figure 22: Logic diagram of a matrix cell.

Example 20 Operation of a matrix cell

Consider the matrix cell shown in Figure 22, which corresponds to a cell � � �0� � � � � � � � � � � � of

Equation 17. Since the cell has a grant edge, currently � ��� � � � � ��� , which has been latched by the

input data � � � � and � �2� � . Hence, outputs will be
��� �� � � � �

��� � � � � � � � � � �
� � � � � � � ��� if both � �

and � �
 are false (i.e., this cell belongs to neither a terminal column nor a terminal row). If, however,

this cell belongs to either a terminal column (i.e, � �
 � �) or a terminal row (i.e., � �
 � �), the output

of the OR-gate connected to the S (select) input of the MUX in Figure 22 is true; thus, the MUX will

66

select input-1’s, which are grounded; therefore, all four outputs of the matrix cell will be zero. This

latter process is called “suppression” as stated in Section 3.3 and emulates edge reduction.

A column weight cell ��� � shown in Figure 23(a) has 2m+1 inputs (where � is the

number of resources) and generates two outputs. All � pairs of inputs � � ���	
 � �
��	 �
 � �� �

� , of � ��� come from matrix cells in column � 	 . � � 	���� is an input from a decide cell. Outputs

are a pair � � ���
 � ��� � . All column weight cells calculate
��� � �� 	��
� in Equation 6,

� ��� �� 	��
� in

Equation 8, and

�
� � �� 	���� in Equation 12; the result of this calculation reveals all terminal

process nodes in the current iteration. Each column weight cell finally produces � � ���
 � ��� � ,
representing whether the corresponding process node is a terminal node, a connect node,

or neither as shown in Equation 23.

Each weight cell has two registers that store the result of each iteration, and
� � 	���� is used

to stop iterations.

A row weight cell ��� � shown in Figure 23(b) has 2n+1 inputs (where � is the number

of processes) and generates two outputs. All � pairs of inputs ��� � ��	
#� � ��	 �
 � � � � � ,

come from matrix cells in row � � . Outputs are a pair � � � �
 � ��� � . All row weight cells

calculate
��� � �� 	��
� in Equation 7,

� ��� �� 	��
� in Equation 9, and

�
� � �� 	��
� in Equation 13; the

result of this calculation reveals all terminal resource nodes. Each row weight cell finally

produces � � � �
 � ��� � , representing whether the corresponding resource node is a terminal

node, a connect node, or neither as shown in Equation 23.

n

ctφ

st st

τct Titer

grC C

(a) a column weight cell

m m

st
gR

st
n

(b) a row weight cell

R r

iter

rs

T

τ

rsφctw rsw

Figure 23: Weight Cells � � � and ��� � described in Equations 15 and 16.

67

Figure 24 depicts a logic diagram of the weight cell for the first column of Example 18.

The weight cell for the second column of Example 18 would be exactly the same but with

inputs
� ��
� ,

� �� � and
� �
� � to the top OR gate, inputs

� �
�
� ,

� �
� � and

� �
� � to the bottom OR gate,

and a pair of outputs � � � �
 � � � � .

21

11

c1

c1φ

31

21

11

τ
C

C

C

C

C

C

Clock

g

g

g

r

r

r

iterΤ

31

QD

D Q

Figure 24: Logic diagram of a column weight cell.

Example 21 Operation of a weight cell

Consider the weight cell shown in Figure 24, which corresponds to the weight cell for the first

column of Example 18. We assume that the DDU is currently at the first iteration of the terminal

reduction sequence. At this moment,
��� �� � � � �

��� � � � � � ��� , � � �� � � � �
� � � � �

� � � � and
� � �� � � � �

� � � � � � � � � ,
as shown in the first column of

� �� �	�
�
 of Equation 18 in Example 18. Thus, outputs � �
 i.e.,
� � �
 � � �
��

will be
�"�*� � �� � � � �� � � � �� � � � � � �

� � � � �
� � � � �

� � �"� � �"��� �� � � � �� � � � �� � � AND
� � �

� � � � �
� � � � �

� � �"�"� � � � � ��
as shown in Equation 23 of Example 18.

The decide cell shown in Figure 25 has
� � � � � inputs and two outputs. All � pairs of

inputs � � � �
 � � � �
 � � � � , are connected to their corresponding row weight cells, while

all � pairs of inputs � � � �
 � � � �
 � � � � � , are connected to their corresponding column

weight cells. The two outputs are
� � 	���� (shown in Equation 10), which indicates whether

or not � � 	��
� is reducible further, and � � 	���� (shown in Equation 14), which, when
� � 	��
� ��� ,

indicates whether or not the system state has a deadlock.

Figure 26 depicts a logic diagram of the decide cell for Example 18. The three inputs

� � � , � � � and � � � come from three row weight cells, and two inputs � � � and � � � come from

68

m m

n

n

iterD

iterT
τ

τrs

ct

φrs

φct

D

Figure 25: Decide cell � .

two column weight cells. Similarly, the three inputs � � � , � � � and � � � come from three row

weight cells, and two inputs � � � and � � � come from two column weight cells. One output

� � 	���� , which indicates the existence of connect nodes, is the result of deadlock detection,

and the other output
� � 	���� indicates the existence of terminal edges.

τr1

τ
τ

r2

r3

τc1

τc2 φ
φc1

c2

φ

φr1

φr2

r3

Titer Diter

Figure 26: Logic diagram of a decide cell.

Example 22 Operation of a decide cell

Consider the decide cell shown in Figure 26, which corresponds to the decide cell of Example 18.

We assume that the DDU is currently at the first iteration of the terminal reduction sequence. The

decide cell inputs which determine output � � �	�
� are � � � �� �	� �
 and � � � �� �	� �
 as shown in Equa-

tion 20 of Example 18. Thus, � � �	� � will also be true (implying further iterations are necessary),

because � � �	�
� � ��� � ��� � � ���
 � ����	�� � � ����
 � ���
	 � ���
��� � � � � � � � � � � � � �� � � � � is true, as

shown in Equation 21. Likewise, the decide cell inputs which determine output � � �	� � are ���� �� �	� ��

and ���� �� �	�
��
 as shown in Equation 22. Thus, � � �	� � � � � � � � � � � �
 � � ��	�� � � � ��
 � � �
	 � � � ��� ��
� � ��� � � � � � � � � � � � � is true; however, this output is meaningless until � � �	� � becomes false.

In this section, we explained the circuitry and operation of the DDU with examples in

detail. In the next section, we will show the synthesis result of various DDU sizes.

69

3.3.5 Synthesis Result of the DDU

We implement the DDU in Verilog using a mixture of Register Transfer Level (RTL) and

behavioral level code. We use the Synopsys Design Compiler to synthesize the DDU with

a � � � � � standard cell library from AMIS [5]. Table 1 shows the synthesis results of five

types of DDUs customized according to the number of processes and resources in an SoC.

The fourth column, denoted “logic delay per iteration,” represents a logic delay per each

iteration for the corresponding DDU. The fifth column, denoted “worst case # iterations,”

represents the number of worst case iterations for the corresponding DDU. The sixth col-

umn, denoted “worst case delay,” results from “logic delay per one iteration” multiplied

by “worst case # iterations.” Table 1 reveals the following. (i) The worst case number of

iterations increases linearly with the smaller number out of the number of processes and the

number of resources. (ii) The logic delay per iteration increases proportional to the larger

number out of the number of processes and the number of resources. (iii) The other num-

bers in Table 1 increase almost quadratically proportional to the total number of processes

plus resources.

Table 1: Synthesized result of the DDU.

processes lines of area in terms logic delay worst case the worst
� Verilog of two-input per # iterations case delay

resources NAND gates iteration (ns) (ns)

2 � 3 49 186 0.91 2 1.82
5 � 5 73 364 2.21 6 13.26
7 � 7 102 455 2.51 10 25.1

10 � 10 162 622 3.66 16 58.56
50 � 50 2682 14142 4.12 96 395.52

3.4 Experiments
3.4.1 Experimental Setup

In the experiments, we implement in Verilog HDL the MPSoC architecture shown in Fig-

ure 5(a) (repeated here as Figure 27) except for the PE cores; for the PowerPC cores in

70

Figure 27, we use an Instruction Set Simulator (ISS) provided by simulation tool vendor

Mentor Graphics – specifically, the ISS is provided as a “processor support package” for

the use in the Seamless Co-Verification Environment (CVE) [33]. The MPSoC has four

Motorola MPC755s as processing elements (PEs). The MPC755 has two separate instruc-

tion and data L1 caches each of size 32KB. The MPSoC has also four resources: a Video

Interface (VI) device, a Fast Fourier Transform (FFT) unit, an Inverse Discrete Cosine

Transform (IDCT) unit and a Wireless Interface (WI) device. These four resources have

timers, interrupt generators and input/output ports that are necessary to support our sim-

ulations. In addition, the MPSoC has a DDU for five processes and five resources, an

arbiter and 16MB of shared memory. The master clock rate of the bus system is 10 ns

(100 MHz). Code for each MPC755 runs on an instruction-accurate (not cycle-accurate)

MPC755 simulator provided by Seamless CVE.

B
U

S

Memory Controller

Memory

DDU

Wireless Interface

Video Interface

MPC755

MPC755

MPC755

MPC755

IDCT

FFT

Figure 27: MPSoC architecture for the DDU evaluation.

We assume the following in our experiments. (i) The MPSoC is capable of capturing

still and motion pictures, processing IDCT, and performing signal and image processing.

(ii) The MPSoC can also support data streaming applications using a standard wireless

LAN card. (iii) Such functionalities described in (i) are implemented partly in hardware in

this MPSoC; thus, each PE will likely request the services of some of the hardware units.

On top of the MPSoC, we use Atalanta RTOS version 0.3 [51] for multiprocessing

71

introduced in Section 1.4.2. The RTOS code resides in the shared memory, and all PEs

execute the same RTOS code and share kernel structures as well as states of all processes

and resources.

With the MPSoC and the Atalanta RTOS, we completed two experiments with three

deadlock detection implementations: (i) the DDU, (ii) a software implementation of PDDA

and (iii) a software implementation of an ���
� � ��� deadlock detection algorithm3. One

was a performance comparison among the three implementations while the other experi-

ment was a comparison of the execution time of an application using DDU hardware (i)

versus using the faster software deadlock detection algorithm (ii). We accomplished the

two experiments through instruction-accurate simulations. The simulations were carried

out using Mentor Graphics Seamless CVE [33], aided by Synopsys VCS [53] for Verilog

HDL simulation and XRAY [34] for software debugging.

For the experimentation, we implemented three versions of PDDA according to the

numbers of resources and processes. One PDDA implementation was for a system hav-

ing four resources and four processes, another implementation was for five resources and

five processes, and the third PDDA implementation was for eight resources and eight pro-

cesses; thus, PDDA code size was fitted to the maximum expected numbers of processes

and resources.

3.4.2 Execution Time Comparison of PDDA

In the first experiment, with the MPSoC described in Section 3.4.1, we have simulated a

large number of deadlock detection cases with various numbers of request and grant edges

(arbitrarily chosen) to measure the execution time difference among the three implementa-

tions. The cases are ten non-deadlocked sets of request and grant edges with the number of

edges spanning from 0 to 9, and thirteen deadlocked sets of request and grant edges with

the number of edges spanning from 4 to 16, as shown in Figure 28.

3Algorithm 4.4 in [31]

72

 1

 10

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 B

us
 C

lo
ck

 C
yc

le
s

Number of Edges

Deadlock Detection: Clock Cycles vs Edges

"NoDeadlock.ddu"
"Deadlock.ddu"

(a)

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 B

us
 C

lo
ck

 C
yc

le
s

Number of Edges

Deadlock Detection: Clock Cycles vs Edges

"NoDeadlock.mxn"
"Deadlock.mxn"

"NoDeadlock.pdda"
"Deadlock.pdda"

(b)

Figure 28: Run-time comparison of deadlock detection algorithms.

All simulations were executed in a system having five resources and five processes. In

the legend of Figure 28, “NoDeadlock.ddu,” “NoDeadlock.pdda” and “NoDeadlock.mxn”

represent non-deadlocked scenarios checked by the DDU, PDDA in software and an �������
�	� deadlock detection algorithm4 in software, respectively. By contrast, “Deadlock.ddu,”

4Algorithm 4.4 in [31]

73

“Deadlock.pdda” and “Deadlock.mxn” represent deadlocked scenarios checked by the three

implementations, respectively. Please note that even though our results demonstrate three

orders of magnitude speedups as compared to other software algorithms (including PDDA

in software) as shown in Figure 28, since the result could be off as much as one order of

magnitude due to instruction accurate (not cycle accurate) simulations for the MPC755,

we only claim two orders of magnitude speedups in the following. In summary, Figure 28

demonstrates, in all cases, (i) two orders of magnitude or greater difference in the number

of cycles between the DDU and the other software implementations, and (ii) about one

order of magnitude difference in average between PDDA and the ���
� � ��� software algo-

rithm. The reason for the latter is that while PDDA in software does bit-wise operations,

the ���
� � ��� software algorithm executes many extra instructions to traverse nodes, search

linked lists and update data structures. Please note that this comparison is only a part of a

bigger picture, which we will show in the next experiment.

3.4.3 Execution Time Comparison of an Application

In the second experiment, we wanted to identify the difference in an application executing

using the DDU versus PDDA in software (note that our software version of PDDA exe-

cutes much faster than the ����� � ��� deadlock detection algorithm5 in software as shown

in Figure 28). We devised an application example inspired by the Jini lookup service sys-

tem [38] in which client applications can request services through intermediate layers (i.e.,

lookup, discovery and admission). Since the SoC, introduced in Section 3.4.1, has multiple

processes and multiple resources, and because Conditions 1 � 5 in Section 1.3 could also

potentially all be satisfied during the normal execution of the application, a deadlock is

possible in such a system. Thus, this is a proper example of a practical application that

can benefit from the DDU. In this experiment, we invoked one process on each PE and

prioritized all processes, � � being the highest and � � being the lowest. The video frame we

5Algorithm 4.4 in [31]

74

use for the experiment is a test frame whose size is 64 by 64 pixels. The IDCT processing

time of the test frame takes approximately 23,600 bus clock cycles.

We show a sequence of requests and grants that finally leads to a deadlock as shown in

Table 2 and Figure 29. Process ��� , running on PE1, requests both the IDCT and the VI at

time � � , which are then granted to ��� . After that, � � starts receiving a video stream through

the VI and does IDCT processing. At time � � , process ��� , running on PE3, needs and

requests the IDCT and the WI to simultaneously convert a frame to an image and send the

image through the WI. However, only the WI is granted to � � since the IDCT is unavailable.

At time � � shown in Table 2 and Figure 29, � � running on PE2 also requests the IDCT and

WI hardware units, which are not available for ��� . When the IDCT is released by � � at time

� � , the IDCT is granted to � � since � � has a higher priority than � � . This last grant will lead

to a deadlock in the SoC.

Table 2: A sequence of requests and grants that leads to deadlock.

Time Events No. Events

� 	
�
	 The application starts.

� �
�
� � � requests IDCT and VI;

IDCT and VI are granted to � � immediately.
� �

�
� ��� requests IDCT and WI;

WI is granted to ��� immediately.
� �

�
� � � requests IDCT and WI.

Both � � and ��� wait for IDCT.
� �

�
� IDCT is released by � � .

� �
�
� IDCT is granted to � � .

since � � has a higher priority than � � .

With the above scenario, we measured both the deadlock detection time
�

and the ap-

plication execution time from the application start (�) until the detection of a deadlock

in two cases: using (i) the DDU and (ii) PDDA in software. Please note that the RTOS

initialization time was excluded (i.e., the RTOS is assumed to be fully operational at time

75

t1 t1 t t t t t22 33 5

t4

(VI) (WI) (VI) (WI)

p p p p p p p p

q q q q q q q q2 3 4

1 2 3 1 2 3 4

4321

4

1

(IDCT) (IDCT)(FFT) (FFT)

Figure 29: Events RAG for deadlock detection comparison.

�). Table 3 shows that (i) on average the DDU achieved a 1408X speedup over the soft-

ware implementation of PDDA and that (ii) the DDU gave a 46% speedup of application

execution time (i.e., from � 	 until deadlock detection after grant event
�
�) over PDDA in

software. The application invoked deadlock detection 10 times since deadlock detection

is checked at every grant as well as request event. Please note that the algorithm run-time

does not include the run-time of application programming interfaces. Please note also that

in the above experimentation the application focuses on an initialization phase setting up a

new set of tasks where interactions of resource requests and grants occur frequently. Thus,

a different case where there exists no such dynamic resource usage and where deadlock

does not occur so early would of course not show a 46% speedup, but instead would show

a potentially far lower percentage speedup. Nonetheless, for critical situations where early

deadlock detection is crucial, our approach can help significantly.

Table 3: Deadlock detection time and application execution time.

Method of Implementation Algorithm Run Time* Application Run Time* Speedup&

DDU(hardware) 1.3 27714 ���������	�
��������
�������� �

�����

PDDA in software 1830 40523

*The time unit is a bus clock (10 ns in this example), and the values are averaged.
&The speedup is calculated according to the formula by Hennessy and Patterson [18].

76

3.5 Summary

This chapter describes a novel Parallel Deadlock Detection Algorithm called PDDA and

illustrates a hardware implementation of PDDA called the Deadlock Detection Unit (DDU).

This chapter provides their detailed descriptions, implementations, operation examples and

synthesis results. Moreover, this chapter proves the correctness of PDDA and the run-time

complexity of the DDU, which is
� � �	� � ����
 ��� � � �����	� � �
��
 ����� .

We carried out two sets of performance comparisons for the evaluation of this research.

Both experiments were carried out through instruction-accurate simulations of a System-

on-a-Chip (SoC) that consists of four Motorola MPC755s (each of which has 32KB sep-

arate instruction and data caches), a DDU, 16MB of shared memory and four types of

resources.

The first experiment demonstrated that the DDU reduced the execution time of dead-

lock detection by 99% (i.e., 100X) or more as compared to two software implementations

of deadlock detection algorithms. The second experiment showed that the DDU provided

an application that exploits the DDU with a 46% speedup in execution time from the ap-

plication start until the detection of a deadlock over the case in which the same application

uses a software implementation of PDDA.

The two experimental results substantiate the following contributions. The DDU can

provide developers with (i) a system that can check for deadlock more frequently (so far,

deadlock detection in a real-time system has not been practical due to the long execution

time of software deadlock detection that inevitably entails performance degradation); (ii) a

system that has more design flexibility due to the time gained from using the DDU instead

of software deadlock detection; and (iii) a system that has deadlock detection capability

with a nearly zero performance penalty, which is significant because all deadlock detection

methods proposed in previous work have much higher performance penalties [31].

In the next chapter, we will describe our novel deadlock avoidance approaches utilizing

the DDU and present their performance evaluation.

77

CHAPTER IV

DEADLOCK AVOIDANCE UNIT

4.1 Introduction

Building on top of the proven properties of the DDU, it would be very helpful if there were

a hardware unit that not only detects deadlock but also avoids potential deadlock within a

few clock cycles and with a small amount of hardware.

In this chapter we present a new approach to deadlock avoidance, seeking to minimize

the disadvantages (i) � (v) mentioned in Section 2.2.4 such as prior declarations of maxi-

mum resource usage for each process (since such declarations may unfortunately not be

practical or even possible in a real system, especially if the application code is updated

often). Our novel approach mixes deadlock detection and avoidance (thus, not requiring

advanced, a priori knowledge of resource requirements), contributing to easier adaptation

of deadlock avoidance in an MPSoC by accommodating maximum freedom (i.e., maximum

concurrency of requests and grants depending on a particular execution trace) with the ad-

vantage of deadlock avoidance. In other words, our new deadlock hardware solution, i.e.,

the Deadlock Avoidance Unit (DAU), requires neither prior knowledge about requirements

of processes nor constraints of resource usage, yet achieves real-time deadlock avoidance;

this constitutes the major novelty in our solution to deadlock avoidance.

The DAU, if employed, tracks all requests and releases of resources. In other words,

the DAU receives, interprets and executes commands from processes; then the DAU returns

command results back to processes. The DAU avoids deadlock by not allowing any grant

or request that leads to a deadlock. In case of livelock resulting from an attempt to avoid

request deadlock, the DAU asks one of the processes involved in the livelock to release

resource(s) so that the livelock can also be resolved (for which we show Algorithm 5 in

78

Section 4.2.1). Likewise, in case of priority inversion resulting from an attempt to avoid

grant deadlock (e.g., in Example 4 in Section 1.3, the grant deadlock could be avoided by

granting � � to ��� instead of to � � , which however allows a lower priority � � to proceed

before a higher priority process � � , resulting in priority inversion), the DAU may take an

option to ask a lower priority process to release a resource involved in the situation so that

the priority inversion may not occur (in Section 4.2.1, we provide Algorithm 6 for this

case).

In this chapter, we use the same system model described by Section 1.4.1, Assump-

tions 1-8 of Section 1.5 and Assumptions 9 and 10 of Section 3.2.

4.2 Methodology
4.2.1 Our Deadlock Avoidance Method

Algorithm 3 shows our first new approach to deadlock avoidance. When a process requests

a resource from the DAU (Line 2), the DAU checks for the availability of the resource re-

quested (Line 3). If the resource is available (i.e., no process has currently been granted

the resource), the resource will be granted to the requester immediately (Line 4; in Sec-

tion 4.2.2 we will prove that no deadlock exists in this case). If the resource is not available,

the DAU checks the possibility of request deadlock (R-dl in Definition 6) (Line 5). If the

request would cause R-dl, the DAU does not accept the request (i.e., the request is denied);

thus R-dl can be avoided (Line 6). On the other hand, if the request does not cause R-dl

(Line 7), the DAU makes the request be pending since the resource is not available (Line 8).

When the DAU receives a resource release command from a process (Line 11), if

no process is waiting for the resource (Line 18), the resource simply becomes available

(Line 19). On the other hand, if a process is waiting for the resource, the DAU checks

for the possibility of grant deadlock (G-dl in Definition 7) (Line 13) and next grants the

resource to the requester only if the grant does not result in G-dl (Line 16). If, however, the

grant would cause G-dl, the resource is not granted (Line 14).

79

Algorithm 3 Deadlock Avoidance Algorithm (DAA)

DAA (event) �
1 case (event) �
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 deny the request
7 else
8 make the request be pending
9 end-if
10 break;

11 a release:
12 if any process is waiting for the released resource
13 if the grant of the resource would cause grant deadlock
14 do not grant the resource
15 else
16 grant the resource to the process waiting
17 end-if
18 else
19 make the resource become available
20 end-if
21 � end-case
�

The above scheme is feasible and will avoid deadlock. Please note that this kind of

scheme is similar to the Belik’s approach [7] (see Section 2.2.4); the main difference is dif-

ferent methods and associated data structures for checking for cycles. Specifically, Belik’s

approach considers the deadlock avoidance problem as the problem of changing a directed

acyclic graph while keeping it acyclic, whereas our approach focuses on iteratively discov-

ering and removing removable edges to detect potential deadlock. Another difference is

that Belik’s approach requires compression (i.e., shrinking an �
� � ��� by ��� � ��� matrix

to an � by � matrix via exploitation of the bipartite property of a resource allocation graph)

to construct a “path matrix” (possibly enabling more efficient detection of a cycle), while

our approach does not need any type of compression.

Algorithm 3, however, involves two drawbacks. One drawback is that, in Line 6 of

80

Algorithm 3, when a request is denied because of potential request deadlock (R-dl), the

situation may introduce starvation of the processes involved in the potential R-dl (i.e., even

though a system does not have a deadlock, no progress can be made by some processes,

which is also known as livelock). In Section 4.2.2, we will prove that avoiding R-dl in this

way can lead to livelock. The other drawback is that, in Line 14 of Algorithm 3, when

a resource becomes available, if it cannot be granted because of grant deadlock (G-dl),

not granting the resource can result in resource underutilization and/or livelock. Thus, the

above scheme shown in Algorithm 3 is a good start yet requires some modification.

We propose three novel approaches to modify Algorithm 3 appropriately. Algorithm 4

implements an approach that avoids not only deadlock but also livelock associated with

deadlock avoidance. When a request would cause R-dl (Line 5 of Algorithm 4), the request

is denied with an error code telling the requester that it is potentially in R-dl (which may

result in livelock as stated in the previous paragraph as the first drawback due to Line 6

of Algorithm 4) by setting the R-dl bit in a status register the requester reads. In this

way, the requester is informed of potential livelock associated with deadlock avoidance;

we assume that the requester voluntarily releases some resource(s) the requester holds in

order to remove the possibility of livelock associated with deadlock avoidance.

In addition, when Algorithm 4 receives a resource release command from a process

(Line 11 of Algorithm 4) and any process is waiting for the resource (Line 12), before

actually granting the released resource to one of the requesters, Algorithm 4 temporar-

ily marks a grant of the resource to the highest priority process (on its internal matrix).

Then, to check potential grant deadlock, Algorithm 4 executes a deadlock detection algo-

rithm. If the temporary grant does not cause grant deadlock (G-dl) (the “else” condition

in Line 15), it becomes a fixed grant; thus the resource is granted to the highest priority

requester (Line 16). On the other hand, if the temporary grant causes G-dl (Line 13), the

temporary grant will be undone; then, because the released resource cannot be granted to

the highest priority requester due to G-dl, Algorithm 4 tries to grant the resource to a lower

81

priority requester (Line 14). Algorithm 4 continues checking all processes to see if the

released resource can be granted to a process without the involvement of deadlock (we

will prove in Theorem 8 of Section 4.2.2 that there exists at least one process to which the

released resource can be granted without G-dl). As a result, resources can be effectively

exploited. Other behaviors are the same as Algorithm 3.

Algorithm 4 DAA (Approach Two)

DAA (event) �
1 case (event) �
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 deny the request and indicate R-dl is possible

(this denial may result in possible livelock)
(let the requester take care of this situation)

7 else
8 make the request be pending
9 end-if
10 break;

11 a release:
12 if any process is waiting for the released resource
13 if the grant of the resource would cause grant deadlock
14 grant the resource to a lower priority process waiting
15 else
16 grant the resource to the highest priority process waiting
17 end-if
18 else
19 make the resource become available
20 end-if
21 � end-case
�

While Algorithm 4 is a good strategy, it is somewhat passive since the resolution of

livelock solely depends on the last requester having caused the potential request deadlock

(R-dl), i.e., not considering the priorities of processes involved in the potential R-dl, the last

requester needs to repeatedly rerequest and then finally may give up after a certain number

of trials. For instance, if Algorithm 4 is employed in Example 1, which is an R-dl case, not

82

considering the priorities of VP and SP, SP needs to take appropriate action to resolve the

potential R-dl since Algorithm 4 will inform SP of the potential R-dl because SP is the last

requester. Additionally, the request case of Algorithm 4 does not consider the importance

(i.e., priorities) of processes competing for resources. Thus, in order to more actively and

efficiently resolve livelock, we propose another approach: Algorithm 5.

Algorithm 5 DAA (Approach Three)

DAA (event) �
1 case (event) �
2 a request:
3 if the resource is available
4 grant the resource to the requester
5 else if the request would cause request deadlock (R-dl)
6 if the priority of the requester greater than that of the owner
7 make the request be pending
8 ask the current owner of the resource to release the resource
9 else
10 ask the requester to give up resource(s)
11 end-if
12 else
13 make the request be pending
14 end-if
15 break

16 a release:
17 the same as Algorithm 4
18 � end-case
�

As shown in Algorithm 5, if a request would cause request deadlock (R-dl) (Line 5 of

Algorithm 5) – note that the DAU tracks all requests and releases – Algorithm 5 compares

the priority of the requester with that of the current owner of the requested resource. If the

priority of the requester is higher than that of the current owner of the resource (Line 6),

Algorithm 5 makes the request be pending for the requester (Line 7), and then Algorithm 5

asks the owner of the resource to give up the resource so that the higher priority process

can proceed (Line 8, the current owner may need time to finish or checkpoint its current

processing). On the other hand, if the priority of the requester is lower than that of the

83

owner of the resource (Line 9), Algorithm 5 asks the requester to give up the resource(s)

that the requester already has but is most likely not using yet (since all needed resources

are not yet granted, Line 10). Other behaviors are the same as Algorithm 4.

Another drawback of Algorithm 4 is a potential priority inversion problem. Here what

we mean by priority inversion may not be the common priority inversion problem due to

critical section competition [44]. Instead, priority inversion in our context occurs due to

resource competition where usage time of a resource may not be deterministic, as shown in

the following example.

Example 23 If Algorithm 4 is employed in Example 4, at time � � , instead of granting 	 � to � � , by

granting 	 � to � � , the possible G-dl can be avoided by Algorithm 4. In this case, however, while � �

proceeds, ��� has to wait for 	�� until ��� finishes using 	�� . Since, in effect, ��� is given priority over ���

in this case, we denote this situation as priority inversion.

In some systems, such priority inversion can be as serious as deadlock. For such a

system, we propose another algorithm, Algorithm 6. In Algorithm 6, in order to avoid

priority inversion, whenever a resource is released and if any process is waiting (Line 5 of

Algorithm 6), then the algorithm first grants the released resource to the highest priority

process waiting (Line 6). Next, the algorithm checks grant deadlock (Line 7). If the grant

has caused G-dl (Line 8), the algorithm asks the owner of a resource (say � �) involved in

the G-dl to release resource � � so that once the owner releases resource � � , then � � will be

granted to the highest priority process, which will be able to proceed, thereby resolving the

G-dl as well as avoiding priority inversion.

Either Algorithm 4, Algorithm 5 or Algorithm 6 can potentially be employed in a sys-

tem. For instance, Algorithm 4 can be used in a system that does not satisfy Assumption 6.

On the other hand, Algorithm 6 is appropriate for a system that requires no priority inver-

sion whatsoever. Nonetheless, we chose to implement Algorithm 5 in hardware because

it resolves livelock more actively and efficiently than Algorithm 4 (in which the resolu-

tion of livelock depends on the last requester without considering priorities of processes

84

as mentioned in the next paragraph of Algorithm 4) and since Algorithm 5 resolves grant

deadlock more quickly than Algorithm 6. As another usage, adoption of one or two flag(s)

as parameter(s) of a user’s choice (e.g., one parameter for a request choice and the other for

a release choice) may enable users to select a most suitable algorithm (i.e., Algorithm 4, 5

or 6) that best fits to their specific target system.

Algorithm 6 DAA (Approach Four)

DAA (event) �
1 case (event) �
2 a request:
3 the same as Algorithm 5

4 a release:
5 if any process is waiting for the released resource
6 grant the resource to the highest priority process waiting
7 if the grant causes grant deadlock (G-dl)
8 ask the current owner of a resource involved in the G-dl

to release the resource involved in the G-dl
9 end-if
10 else
11 make the resource become available
12 end-if
13 � end-case
�

Please note that our algorithms do not resolve all kinds of livelock defined in Defini-

tion 2. In fact, Algorithm 6 deals only with the case of livelock associated with deadlock

avoidance. For example, starvation of a lower priority process due to the frequent execu-

tions of higher priority processes are not addressed by our approach.

4.2.2 Proof of the Correctness of the DAU

Proposition 1 Given system " � , grant deadlock (G-dl in Definition 7) occurs when a re-

quest edge (� � � � �) in state " ��� is changed to a grant edge (� �� � �) in state " ��� , 	 � 	 ,

thereby forming a cycle in " �
� .

Proposition 2 Given system " � , request deadlock (R-dl in Definition 6) occurs when a new

85

request edge (� ��� � �) not in state " ��� forms a cycle in state " ��� � � � , where the request edge

results in altering " ��� into " ��� � � � .

Lemma 7 When a resource is available, an event of a request for the resource causes

neither request deadlock nor grant deadlock if the resource is granted to the requester.

Proof: If a resource � � is currently available (unallocated), then by Assumption 8, � � has

currently neither any incoming edge nor any outgoing edge. Thus, a request from process

� � creates an edge � ��� � � . Since � � has currently only one incoming edge, � � cannot form

part of a cycle; thus, � � cannot be part of a deadlock.

After that, the request edge � � � � � is typically immediately changed to � � � � since

� � is currently available. Now since � � has only one outgoing edge, � � cannot form part of

a cycle; thus, � � cannot be part of a deadlock.

Corollary 3 Given system " � in system state " ��� , when a resource node has two incoming

edges and one outgoing edge, then there must exist at least two distinct paths in state " ��� .

Proof: Let the resource be � � . Also let the two incoming edges be
�
� � � � �

� � � and

�
� � � � �

� � � , and let the one outgoing edge be

�
� � �� �
 ��� � . Since there exist two distinct

incoming edges, all three edges cannot be in one path because a node can appear at most

once in a particular path (i.e., all nodes in a path must be distinct) by Definition 24. Thus,

there exist at least two distinct paths in state " ��� using edges
�
� ,
�
� and

�
� . One such distinct

path is a path with (� �

� �
 ���) and the other is a path with (� �

� �
 ���).

Corollary 4 Given system " � in system state " ��� , when a resource node has two incoming

edges and one outgoing edge, if all these three edges are involved in deadlock, then there

must exist at least two cycles in state " � � .

Proof: Let the resource be � � . Also let the two incoming edges be
�
� � � � �

� � � and

�
� � � � �

� � � , and let the one outgoing edge be

�
� � ��� �
 ��� � . Then, by Corollary 3, there

86

exist at least two paths as shown in the proof of Corollary 3. Also, by Theorem 4, if a

system " � is in deadlock, there exists at least one cycle in state " ��� .
Let us assume that the two paths form only one cycle. Since there exist two paths, for all

three edges to be involved in deadlock, the cycle must include either (i) path (� �

� �
 ���
 ����� ,
� �
�� �
 ���) or (ii) path (� �

� �
 ���
 ������
 � �

� �
 � �). However, both case (i) and case (ii) contra-

dict the definition of path (Definition 24), since both paths include � � twice, a contradiction.

Since there are no possibilities other than case (i) and case (ii), it cannot be true that the

paths form only one cycle.

Thus, in order for two distinct paths to be involved in deadlock, there must exist at least

two cycles. In other words, in order for a resource node with two incoming edges and one

outgoing edge to be involved in deadlock, there must exist at least two cycles.

Theorem 7 At an event of a request that causes request deadlock, denying the request

results in livelock unless a process involved in the specific request deadlock releases a

resource involved in the deadlock, assuming that processes involved in the deadlock re-

peatedly request resources until they acquire the resources.

Proof: Request deadlock (R-dl) occurs when a path � ��� � � � � �� ��� � �� � � ����� � �� � �
� � � � forms a cycle as � � requests one of the resources in the path, i.e., ��� where � � ��� 	 �
� � � . Thus, denying the request � � � � � to avoid deadlock will result in � � requesting � �
again after a certain amount of time; in fact, � � repeatedly requests �.� until � � acquires � �
under the assumption that no process in the path including � � gives up or releases a resource

in the cycle. By Definitions 1 and 2, � � is in livelock and all other processes in the path are

in deadlock.

Theorem 8 For a system " � in state " ��� not currently deadlocked, when a grant of a re-

source may occur either due to a release of the resource for which one or more process

are waiting or due to a new request for the resource currently available, there must exist at

least one process to which the resource can be granted without deadlock.

87

Proof: A grant of a resource (say �
�
) occurs in two cases: (i) resource �

�
is currently

available (unallocated) and the grant results from a new request; (ii) resource �
�

has been

allocated but just released, and the grant results from a pending request. Note here that no

cycle (i.e., deadlock) has already formed; " � � is not currently deadlocked.

Case (i). By Lemma 7, the grant does not cause deadlock.

Case (ii). There are three sub-cases: (ii-1) one process is waiting for resource �
�
, which

has just been released; (ii-2) two processes are waiting for resource �
�
; (ii-3) three or more

processes are waiting for resource �
�
.

In case (ii-1), since only one process (say � � , i.e., � � � �
�
) is waiting for �

�
, which has

just been released from � � , edge � � � �
�
will be changed to �

� � � ; thus, �
�
will have only

one edge. Since �
�
has only one edge, �

�
cannot form part of a cycle; thus, �

�
cannot be part

of a deadlock.

In case (ii-2), let two processes be � � and � � , waiting for resource �
�
, i.e., � ��� �

� � � � .

In this case, if the grant (�
� � �) forms cycle(s), � �
� �

�
must also be part of cycle(s)

because �
�

must be a connect node for there to be a cycle. Please note also that both � �

and � � must also be connect nodes for there to be a cycle. Therefore, � � must have at least

one (possibly more) outgoing edge involved in the cycle(s), and � � must have at least one

(possibly more) incoming edge involved in the cycle(s) (implying that the grant �
� � �

could cause many cycles). Here, rather than focusing on the fact that there can be many

cycles, instead, let us pay more attention to the fact that � � has one or more only incoming

edges involved in cycle(s). In other words, the grant (�
� � �) causing cycle(s) results from

incoming edges of � � (i.e., the direction of � � � �
� � ���). Hence, by granting �

�
to

� � (i.e., � � � �
�
) instead of � � , cycle(s) will not form (i.e., � � � �

� � � � �) because a

cycle can form only one direction at a time and since there exists no cycle already formed.

There can be such a case that two processes and a resource are connected such a way

that � � � �
� � � � � ����� �

 � ����� � � � ����� � �
� ����� � � � . In this case,

however, even though we exclude � �
� � , there has already a cycle formed such that

88

� ��� ����� �
 � ����� � � � ����� � ��� ����� � � � because here � � appears twice in a

path, which is the definition of a cycle (Definition 27). This fact contradicts our assumption

that no cycle has already formed. Thus, this kind of special case is out of consideration.

Next, consider case (ii-3) where three processes (say � � , � � and � �) are waiting for

resource �
�
. In this case, when �

�
is given to � � , �

�
has two incoming edges and one outgoing

edge. If the grant (i.e., �
� � �) causes a cycle

�
� , then either � � or � � or both must be

involved in cycle
�
� because �

�
must be a connect node for �

�
to be involved in a cycle.

Also, since �
�
has two incoming edges, one or both of them must be in a cycle.

Let us consider the case where cycle
�
� is formed with � � such that � � � �

� � � � . In

this case, instead of granting �
�

to � � , but by granting �
�

to � � , cycle
�
� will not be formed

as proven in case (ii-2). However, the grant �
� � � could also form a new cycle

�
� with � �

such that � � � �
� � � � . In this case, as is in the case of (ii-2), by granting �

�
to � � instead

of � � , both potential cycles
�
� and

�
� will not form and no cycles can form because a cycle

can form only one direction at a time and since there exists no cycle already formed.

Let us now consider the grant �
� � � causes both � � and � � to be involved in cycles.

Since there exist only one edge involved in cycle(s) between �
�

and � � (i.e., �
� � �), all

possible cycles must form in the direction of �
� � � unless any cycle has already formed.

Therefore, either by granting �
�
to � � or � � , there will not be any cycle because a cycle can

form only one direction at a time and since no cycle has already formed.

In the same way, in cases where four or more processes are waiting for a released

resource, there must be a process (waiting for the released resource) to which the resource

can be given without deadlock because a cycle can form only one direction at a time and

since there exists no cycle already formed.

4.2.3 Run-time Complexity of the DAU

The DAU becomes active and starts working only when a request or a release event occurs.

Once the DAU is activated, it operates in at most
� � � � �	� � �
��
 ��� � � � � 	 � clock

89

cycles, where � and � are the numbers of resources and processes, respectively, and where

	 is the number of cycles that each trial of unsuccessful grants takes (except each deadlock

check at each trial), stated in Line 14 of Algorithm 4. If it is assumed that �	� � ����
 ��� � 	 ,

then the run-time complexity of the DAU becomes ��� � � �	� � �
��
 ����� . This run-time is

a theoretical lower bound on the complexity and is valid as long as the clock period is

longer enough than the maximum delay of a critical calculation. After finishing operation,

the DAU remains idle until a next event occurs. Processes and the DAU communicate via

specific application programming interfaces (APIs).

4.3 Implementation
4.3.1 Architecture of the DAU

Figure 30 illustrates the DAU architecture. The DAU consists of four parts: a DDU, com-

mand registers (one for each process), status registers (one for each process) and a unit

implementing Algorithm 5 with a finite state machine. The DDU architecture was already

described in Section 3.3.4. The DAA logic mainly controls the DAU behavior, i.e., in-

terprets and executes commands (requests or releases) from PEs, and returns processing

results back to PEs via status registers. Command registers receive commands from each

PE. The command results of the DAU are stored into status registers read by all PEs.

(deadlock avoidance algorithm)
(deadlock detection unit)

decoder

(Algorithm 5)

Logic

DAA

registers

registers
cell access

status

command

address
*DAA

address*DDU

DDU

(matrix)

control
and

data

done

reset

start

deadlock

Figure 30: DAU architecture.

90

As shown in Figure 31, a command register contains fields Release, Request and Re-

source; Resource indicates resources being requested or released (one-hot encoded). If Bit1

is a ‘0’, then Bit0 must be a ‘1’, and the result is a command requesting the resource(s) spec-

ified by Bits16-31. If Bit1 is a ‘1’, then Bit0 must be a ‘0’, and the result is a command

releasing the resource(s) specified by Bits16-31. Please note that Bits16-31 are one-hot

encoded so that, in this specific case, any combination of 16 resources can be released or

requested with a single command.

A status register contains necessary information such as done, busy, successful, pend-

ing, give-up, invalid as well as G-dl and R-dl as shown in Figure 32. Done indicates that

the DAU has just finished processing an event and the status result is valid. Busy indicates

that the DAU is processing an event. Successful signifies that the command has success-

fully processed. Pending notifies a process reading this status register that the process has

pending request(s). Give-up asks a process to give up a resource specified by Bits12-15 of

Figure 32. Invalid means that the command is invalid or unknown. G-dl represents a poten-

tial grant deadlock. R-dl informs a requester of potential request deadlock. A status register

shown in Figure 32 also contains Assigned (Bits16-31) and Resource (Bits12-15). Assigned

indicates which resources have been allocated using a one-hot encoding. Resource in Fig-

ure 32 signifies a binary coded value of a single resource (note that 4 bits interpreted as

an unsigned binary number yield 16 possibilities) that a process is requested to give up.

0 1 2 3 4 ����� 31

Bits Name Description
Bit0: Request The process is requesting a resource specified by

Bit16-31.
Bit1: Release The process is releasing a resource specified by

Bit16-31.
Bit16-31: Resource A resource being requested or released (one-hot en-

coded).

Figure 31: DAU command register.

91

0 1 2 3 4 ����� 31

Bits Name Description
Bit0: G-dl Potential grant deadlock is detected.
Bit1: R-dl Potential request deadlock is detected.
Bit2: Busy Unit is processing an event.
Bit3: Done Unit has just finished the process of an event and the

status result is valid.
Bit4: Grant The request is granted.
Bit5: Successful The command has successfully processed.
Bit6: Invalid The command is invalid or unknown.
Bit7: Pending The process reading this status register has pending

request(s).
Bit8: Give up The process needs to give up a resource specified by

Bit12-15.
Bit12-15: Resource A binary coded value of a resource that a process

needs to give up.
Bit16-31: Assigned Resources already assigned and thus unavailable

(one-hot encoded).

Figure 32: DAU status register.

Furthermore, in Bits0-8 of a DAU status register (Figure 32), a value of a bit = ‘1’ indicates

a command or a status is active.

Note that Bits2-15 of a DAU command register and Bits9-11 of a DAU status register

are reserved for future use; e.g., while currently at most 16 resources can be specified,

these bits reserved for future use could be used, for example, to allow more resources to be

specified. Finally, please note that more than 32 bits could be used for the DAU command

and DAU status registers with a corresponding cost in terms of I/O hardware and software

design.

4.3.2 Synthesized Result of the DAU

We use the Synopsys Design Compiler [52] to synthesize various DAU sizes with the Qual-

Core Logic .25 � m standard cell library [39]. The Synthesis result is shown in Table 4. The

“Total Area” column denotes the area in units equivalent to a minimum-sized two-input

NAND gate in the library. DAU5x5 represents a DAU for five processes and five resources.

92

In case where an MPSoC contains four PowerPC 755 PEs (1.7M gates each) and 16MB

memory (33.5M gates), the resulting MPSoC area, the sum of area of 16MB memory plus

four MPC755’s plus DAU20x20 (i.e., 33.5M + 1.7M � 4 + 15247), is 40315247 gates.

Thus, the area overhead in the MPSoC due to the DAU 20x20, i.e., the area of DAU20x20

divided by the total MPSoC area is approximately .04% (i.e., ��� ��������� � � �	� �����).

Table 4: Synthesized result of the DAU.

Module Name Lines of Verilog Total Area

DAU5x5 523 1597
7x7 552 2429

10x10 612 4309
15x15 753 8868
20x20 943 15247

MPSoC w/ DAU20x20 – 40.32M

4.4 Experiments
4.4.1 Simulation Environment Setup for the DAU evaluation

The experimental simulations evaluating the DAU performance were carried out using

Seamless Co-Verification Environment (CVE) [33] aided by Synopsys VCS [53] for Ver-

ilog HDL simulation and XRAY [34] for software debugging. We use Atalanta RTOS

version 0.3 [51], a shared-memory multiprocessor RTOS. The other simulation setups not

mentioned here such as a bus clock rate and a system memory size are the same in Sec-

tion 3.4.1.

For the DAU experimental simulations, we use the same MPSoC introduced in Sec-

tion 3.4.1 and in Figure 27 but with the DAU instead of the DDU; please see Figure 33.

The MPSoC has a DAU for five processes and five resources. We invoke one process on

each PE and prioritize all processes, ��� being the highest and � � being the lowest.

93

B
U

S

Memory Controller

Memory

Wireless Interface

Video Interface

MPC755

MPC755

MPC755

MPC755

IDCT

FFT

DAU

Figure 33: MPSoC architecture for the DAU evaluation.

4.4.2 Application Example I

For this experiment we utilize the DAU implementing Algorithm 5. We show a sequence

of requests and grants that would lead to grant deadlock (G-dl) as shown in Figure 34 and

Table 5. Recall that there is no constraint on the ordering of resource usage. That is, when

a process requests a resource and the resource is available, it is granted immediately to the

requesting process. At time � � , process � � , running on PE1, requests both Video Interface

(VI) and Inverse Discrete Cosine Transform (IDCT), which are then granted to � � . After

that, � � starts receiving a video stream through VI and performs IDCT processing. At time

� � , process ��� , running on PE3, requests IDCT and Wireless Interface (WI) to convert a

frame to an image and to send the image through WI. However, only WI is granted to � �

since IDCT is unavailable. At time ��� , � � running on PE2 also requests IDCT and WI,

which are not available for � � . When IDCT is released by � � at time � � , IDCT would typ-

ically (assuming the DAU is not used) be granted to � � since � � has a priority higher than

��� ; thus, the system would typically end up in deadlock. However, the DAU checks the po-

tential G-dl and then avoids the G-dl by granting IDCT to � � even though � � has a priority

lower than � � . Then, ��� uses and releases IDCT and WI at time � . After that, IDCT and

WI are granted to � � at time ��� , which finishes its job at time ��� .

94

t1 t1 5t

t4

(VI) (WI)

q q q q1 2 3 4

p p p p1 2 3 4

(IDCT) (FFT)

t t t t22 33

(VI) (WI)

q q q1 2 3 4

p p p p1 2 3 4

q
(IDCT) (FFT)

t4

(VI) (WI)

q q q q1 2 3 4

p p p p1 2 3 4

(IDCT) (FFT)

Figure 34: Events RAG for grant deadlock avoidance comparison.

Table 5: A sequence of requests and grants that would lead to G-dl.

Time Events

� 	 The application starts.
� � , � requests . � and . � , which are granted to , � immediately.
� � , � requests . � and . � ; only . � is granted to , � since . � is not available.
� � , � also requests . � and . � .
� � . � and . � are released by , � .
� � Then, the DAU tries to grant . � to , � since , � has a priority higher than ,�� . How-

ever, the DAU detects potential G-dl. Thus, the DAU grants . � to , � , which does
not lead to a deadlock.

� . � and . � are used and released by , � .
��� . � and . � are granted to , � .
� � , � finishes its job, and the application ends.

With the above scenario, we wanted to measure two figures, the average execution time

of the deadlock avoidance algorithm used and the total execution time of the application in

two cases: (i) using the DAU versus (ii) using DAA (Algorithm 5) in software.

4.4.3 Experimental Result for Application Example I

Table 6 shows that the DAU achieves a 312X speedup of the average algorithm execution

time and gives a 37% speedup of application execution time over avoiding deadlock with

DAA in software. Algorithm 5 in software. Please note that during the run-time, the

application invoked deadlock avoidance 12 times (since every request and every release

invokes the deadlock avoidance algorithm in use).

95

Table 6: Execution time comparison (G-dl case 1).

Method of Algorithm Application
Speedup&

Implementation Run Time* Run Time*

DAU(hardware) 7 34791 ��� � 	 � � � ��� � �
� ��� � � � � ���

DAA in software 2188 47704

*The time unit is a bus clock (10 ns), and the values are averaged.
&The speedup is calculated according to the formula by Hennessy and Patterson [18].

4.4.4 Application Example II and Its Result

For the second experimentation, we utilize the DAU implementing Algorithm 6 with the

same scenario as Application Example I (Section 4.4.2). In case of the grant deadlock

which appears at time � � in Table 5, after granting � � to � � (since � � has a priority higher

than ���), Algorithm 6 avoids deadlock by asking � � to give up resource � � , thereby finishing

the application without deadlock. Specifically, when � � is released by � � , the algorithm first

grants � � to � � since � � has a priority higher than � � although both � � and ��� are waiting for

� � . Then, the algorithm detects grant deadlock and thus asks � � to release � � by sending a

Give-up signal (described in Section 4.3.1). Once � � voluntarily releases � � , the algorithm

receives the release of � � and grants � � to � � since � � is the highest priority process waiting

for � � . Therefore, � � proceeds and ��� will proceed after � � .

Table 7 shows that the DAU provides a 305X speedup of the average algorithm ex-

ecution time and achieves a 38.5% speedup of application execution time over avoiding

deadlock with Algorithm 6 in software. Please note that the time between when � � is asked

to release � � and when � � actually releases � � is 156 clock cycles using the DAU and 724

clock cycles using Algorithm 6 in software. Please note also that the time between when

��� is asked to release � � and when � � is granted to � � took 159 clock cycles using the DAU,

while the same period took 1556 clock cycles using Algorithm 6 in software.

96

Table 7: Execution time comparison (G-dl case 2).

Method of Algorithm Application
Speedup

Implementation Run Time* Run Time*

DAU(hardware) 7.1 34890 � � � � � � � � � � 	
� � � � 	 � ��� � � �

DAA in software 2165 48324

*The time unit is a bus clock, and the values are averaged.

4.4.5 Application Example III

For this experiment we utilize the DAU implementing Algorithm 5. We show a sequence

of requests and grants that would lead to request deadlock (R-dl) as shown in Figure 35.

In this example, we assume the following. (i) Process � � requires resources � � (VI) and

� � (IDCT) to complete its job. (ii) Process ��� requires resources � � (IDCT) and � � (FFT).

(iii) Process � � requires resources � � (FFT) and � � (VI). The detailed sequence is shown in

Table 8.

t1 2t 3t

5t t6t4

(VI) (WI)

p p p p1

1

2 3 4

q q q q2 3 4

(IDCT) (FFT) (VI) (WI)

p p p p1 2 3 4

q q q q1 2 3 4

(IDCT) (FFT) (VI) (WI)

p p p p1 2 3 4

q q q q1 2 3 4

(IDCT) (FFT)

Figure 35: Events RAG for request deadlock avoidance comparison.

Let us now explain the sequence of events in Table 8. At time � � , process � � requests and

acquires � � . At time � � , process � � requests and acquires � � . At time � � , process ��� requests

and acquires � � . After that, at time � � , process � � requests � � ; since � � was already granted

to ��� , and since the request does not cause R-dl, the request becomes pending. At time

� � , process ��� requests � � ; since � � was already granted to � � , and since the request does

97

not cause R-dl, this request also becomes pending. At time �� , when process � � requests

� � , request deadlock (R-dl) would occur. However, the DAU detects the potential R-dl and

then avoids the R-dl by asking ��� to give up resource � � since � � has a priority higher than

� � , which is the current owner of � � . As a result, at time ��� , � � gives up and releases � � ,

which is going to be granted to ��� (of course, � � has to request � � again). After using � � and

� � , � � releases � � and � � at time � � . While � � is going to be granted to � � , � � is going to be

granted to � � . Thus, � � uses � � and � � and then releases � � and � � at time � � ; � � is granted to

� � , which then uses � � and � � and finishes its job at time � �
	 .

Table 8: A sequence of requests and grants that would lead to R-dl.

Time Events

� 	 The application starts.
� � , � requests . � ; . � is granted to ,�� .
� � , � requests . � ; . � is granted to , � .
� � , � requests . � ; . � is granted to , � .
� � , � requests . � , which becomes pending.
� � , � requests . � , which also becomes pending.
� , � requests . � , which is about to lead to R-dl. However, the DAU detects the

possibility of R-dl. Thus, the DAU asks , � to give up resource . � .
��� , � releases . � , which is granted to , � . A moment later, , � requests . � again.
� � , � uses and releases . � and . � . Then, while . � is granted to , � , . � is granted to , � .
� � , � uses and releases . � and . � , which are granted to , � .
� �
	 , � finishes its job, and the application ends.

We similarly measured two figures, the average execution time of deadlock avoidance

algorithms and the total execution time of the application in two cases: (i) exploiting the

DAU and (ii) using Algorithm 5 in software.

4.4.6 Experimental Result for Application Example III

Table 9 demonstrates that the DAU achieves a 294X speedup of the average algorithm exe-

cution time and gives a 44% speedup of application execution time over avoiding deadlock

with Algorithm 5 in software. Please note that during the run-time, the application invoked

deadlock avoidance 14 times.

98

Table 9: Execution time comparison (R-dl).

Method of Algorithm Application
Speedup

Implementation Run Time* Run Time*

DAU(hardware) 7.14 38508 � � � � � � � � 	 �
� � � 	 � � ��� �

DAA in software 2102 55627

*The time unit is a bus clock, and the values are averaged.

Please note also that in systems where events of resource requests and releases occurs

relatively rarely compared to computation and processing time of an actual application,

such dramatic performance improvement shown in our experiment may not be achieved.

4.5 Summary

Several variants of a novel Deadlock Avoidance Algorithm (DAA) and a hardware imple-

mentation in the Deadlock Avoidance Unit (DAU) are described in this chapter. The DAU

provides a very fast and very low area way of avoiding deadlock at run-time, which helps

free programmers from worrying about deadlock.

We demonstrate the following through experimentation: (i) The DAU automatically

avoids deadlocks as well as reduces the deadlock avoidance time by 99% (about 300X)

as compared to DAA in software. (ii) The DAU achieves in a particular example a 44%

speedup of application execution time as compared to the execution time of the same ap-

plication that uses DAA in software. While our examples are not industrial strength full

product code, nevertheless we expect similar results as MPSoC designs become more com-

monplace; we predict that our DAU can potentially help especially in real-time scenarios

where at time-critical moments significant transitions involving many releases, requests

and grants occur.

In the next chapter, a parallelized version of the Habermann’s Banker’s Algorithm and

its hardware implementation (i.e., the Parallel Banker’s Algorithm Unit) will be explained.

99

CHAPTER V

PARALLEL BANKER’S ALGORITHM UNIT

5.1 Introduction

Given the current System-on-a-Chip (SoC) technology trends discussed in Section 2.1, we

predict that in the near future, MultiProcessor System-on-a-Chip (MPSoC) designs will,

as shown in Figure 36, have many Processing Elements (PEs) and hardware resources

including various multiple-instance resources.

A multiple-instance resource typically has multiple hardware blocks of the same or sim-

ilar functionality available to all processors for the purpose of easy management or due to

the natural structure of a resource. Examples of such multiple-instance resources include a

multiple reenterable lock, a counting semaphore (but not binary semaphores) [31], a group

of blocks of memory or input/output buffers, and a group of communication channels, to

just name a few. In addition, one resource would be considered as a multiple-instance

resource if it could process multiple blocks of data for multiple processes at the same

time. Possible examples of this kind of multiple-instance resource are pipelined DSP pro-

cessors [30] and pipelined MPEG encoder/decoders [6]. Furthermore, to increase system

performance when a system has two or more hardware resources that provide the same

functionality, then these resources can also be considered as a multiple-instance resource

such as a TMS320C80 chip (consisting of four DSP processors in a single silicon die from

Texas Instruments [54]). We believe that there will be such resources in an MPSoC in the

future, resulting in resource allocation problems.

We envision that one important way of supporting high levels of concurrency is to

handle deadlock problems in such systems so that programmers and users do not have to

worry about the freezing of their systems because of deadlock. Thus, we propose a novel

100

PE n: Processing Element n
PBAU: Parallel Banker’s

Algorithm Unit

L1

L1

L1

L1

L1

L2 cache

memory

custom
logic

reconfigurable
logic

PE2

PE3

PE4

PE5

pipelined DSP or

multiple DSP’s

hardware
semaphores

I/O buffers RTOS

HW/SW

allocator

arbiter

memory

memory

PBAU
PE1

Figure 36: MPSoC with multiple-instance resources.

Parallel Banker’s Algorithm (PBA), implement PBA in Verilog HDL and demonstrate its

performance evaluation so that MPSoC programmers, who are reluctant to exploit deadlock

avoidance approaches even as such approaches increase in importance, may be willing to

adopt a faster hardware version of a deadlock avoidance approach.

The fundamental deadlock avoidance approach is the well-known Banker’s Algorithm

(BA) in the operating system realm. Dijkstra first introduced BA for single multiple-

instance resource systems [11], and later Habermann improved BA to be able to handle

multiple-instance multiple-resource systems [16]. In BA, each process declares the maxi-

mum possible number of instances for each resource it may need. Given this information,

as each resource request is made, an assignment is authorized provided that there exists

at least one sequence of executions that does not evolve to deadlock. The run-time com-

plexity of Habermann’s BA in software is ���
��� � � � , where � and � are the numbers of

resources and processes, respectively. The efficiency of the algorithm was later improved

to ���
��� ��� by Holt [20]. However, Holt’s algorithm is costly and disadvantageous to

implement in hardware in terms of maintaining ordered lists of all requests.

Even though BA was proposed a few decades ago, minor variations to BA are still being

proposed for critical systems that can greatly benefit from the algorithm. For instance,

101

in 2001, Gebraeel and Lawley applied BA to automated tool sharing systems [14], and,

in 2002, Ezpeleta et al. proposed a banker’s solution for deadlock avoidance in flexible

manufacturing systems [13].

Because the DAU presented in Chapter 4 is implemented based on a Resource Allo-

cation Graph (RAG) approach for single-instance resources, the DAU can only be used

for systems exclusively with single-instance resources. The Parallel Banker’s Algorithm

Unit (PBAU) [25], on the contrary, can be used for not only a system with single-instance

resources but also a system with multiple-instance resources as well.

5.2 Target System Model

To describe our system model for PBAU, we show in the following example a possible

MPSoC target, which is a slightly modified version of the target MPSoC shown in Sec-

tion 1.4.1.

Example 24 A future MPSoC with multiple-instance resources

We refer to the device shown in Figure 36 as a particular MPSoC example. This MPSoC consists

of five Processing Elements (PEs) and three resources – a counting semaphore with a group of I/O

buffers, another counting semaphore with a group of multiple DSP processors, and an SoCDMMU

memory allocator [46] with a large L2 memory. Counting semaphores [11] are used to manage lim-

ited resources (including managing access to the resources). The MPSoC also contains a memory

arbiter and a PBAU. PBAU in Figure 36 receives all requests and releases, decides whether or not

the request can cause a deadlock and then permits the request only if no deadlock results (i.e., the

system remains safe).

We consider this kind of request-grant system with many resources and PEs shown in

Figure 36 as our system model for PBAU.

102

5.3 Methodology
5.3.1 Usage Assumption

If PBAU is employed, all processes have to request or release resources through PBAU;

thereby PBAU tracks all requests and releases of resources. In other words, PBAU receives

and interprets a command from a process; then, after necessary processing, such as execut-

ing PBA when the command is a request, the PBAU returns a command result back to the

process to indicate whether the release or request is successful and/or acceptable.

5.3.2 Our Deadlock Avoidance Method

This section explains the main concept of our novel Parallel Banker’s Algorithm (PBA [25]).

Algorithm 7 shows PBA for multiple-instance multiple-resource systems. PBA executes

whenever a process is requesting resources and returns the status of whether the request

is successfully granted or rejected due to the possibility of deadlock. PBA decides if the

system is still going to be sufficiently safe after the grant, i.e., if there exists at least a se-

quence of process executions without deadlock after some allocation of the resources that

a process requested.

Before explaining the details of PBA, let us first introduce notations used in this chapter

as shown in Table 10 and data structures as shown in Table 11. Request[i][j] is a request

for resource 	 from process � . If resource 	 is a single-instance resource, Request[i][j] is

either ‘0’ or ‘1’; otherwise, if resource 	 is a multiple-instance resource, Request[i][j] can

take on values greater than one. Maximum[i][j] represents the maximum instance demand

of process � for resource 	 . Available[j] indicates the number of available instances of

resource 	 . Allocation[i][j] records the number of instances of resource 	 allocated to pro-

cess � . Need[i][j] contains the number of additional instances of resource 	 that process �
may need. Work[] (i.e., Work[j] for all) is a temporary storage for Available[] (i.e., Avail-

able[j] for all). Finish[i] denotes the potential completeness of process � . Wait count[i] is

a counter for each process that is incremented by one each time a request is denied; proper

103

use of Wait count[i] can enable some known livelock situations to be broken.

All variables containing resource information in our experimentation are 4-bit values,

which means that our implementation supports up to 16 instances for each resource. How-

ever, this can easily be extended. By parameterized generation of the PBAU described in

Section 6.3, any PBAU size and any number of instances can be supported.

Table 10: Notations for PBA.

notation explanation

� � a process
� � a resource

array[][] or array[] all elements of the array
array[i][] all elements of row � of the array
array[][j] all elements of column 	 of the array

Table 11: Data structures for PBA.

name notation explanation

Request[i][j] � ��� request from process � for resource 	
Maximum[i][j]

� � � maximum demand of process � for resource 	
Available[j]
 � current number of unused resource 	

Allocation[i][j] � ��� process � ’s current allocation of 	
Need[i][j]

� ��� process � ’s potential for more 	
(Need[i][j]=Maximum[i][j]-Allocation[i][j])

Work[j]
� � a temporary storage (array) for Available[j]

Finish[i]
� � potential completeness of process �

Wait count[i]
�
� wait count for process � to break livelock

PBA takes as input the maximum requirements of each process and guarantees that

the system always remains in an H-safe state. Tables (data structures or arrays) are main-

tained of available resources, maximum requirements, current allocations of resources and

resources needed, as shown in Table 11. PBA uses these tables/matrices to determine

whether the state of the system is either H-safe or H-unsafe. When resources are requested

by a process, the tables are updated pretending the resources were allocated. If the tables

104

will result in an H-safe state, then the request is actually granted; otherwise, the request is

not granted, and the tables are returned to their previous states.

Algorithm 7 Parallel Banker’s Algorithm (PBA)

PBA (Process � sends Request[i][] for resources) �
1 STEP 0: , � sends Request[i][] for resources
2 STEP 1: if (��� , (Request[i][j] � Need[i][j])) /* � means for all. */
3 goto STEP 2
4 else ERROR
5 STEP 2: if (��� , (Request[i][j] � Available[j]))
6 goto STEP 3
7 else deny , � ’s request, increment Wait count[i] by one and return
8 STEP 3: pretend to allocate requested resources
9 ��� , Available[j] := Available[j] – Request[i][j]
10 ��� , Allocation[i][j] := Allocation[i][j] + Request[i][j]
11 ��� , Need[i][j] := Maximum[i][j] – Allocation[i][j]
12 STEP 4: prepare for the H-safety check
13 ��� , Work[j] := Available[j]
14 ��� , Finish[i] := false

Let able-to-finish(i) be ((Finish[i] == false) and (��� , Need[i][j] � Work[j]))
15 STEP 5: Find all � such that able-to-finish(i)
16 if such � exists,
17 ��� , Work[j] := Work[j] + � � � � such that able-to-finish(i) Allocation[i][j]
18 ��� , if able-to-finish(i) then Finish[i] := true
19 repeat STEP 5
20 else (i.e., no such � exists) goto STEP 6 (end of iteration)
21 STEP 6:
22 if (��� , (Finish[i] == true))
23 then pretended allocations anchor; , � proceeds (i.e., H-safe)
24 else
25 restore the original state and deny , � ’s request (i.e., H-unsafe)
�

Let us explain Algorithm 7 step by step. A process can request multiple resources at

a time as well as multiple instances of each resource. In Step 1 (Line 2), when a process

requests resources, PBA first checks if the request does not exceed Need[i][] for the process.

If the request is within its pre-declared claims, in Step 2 (Line 5) PBA checks if there are

sufficient available resources for this request. If sufficient resources exist, PBA continues

to Step 3; otherwise, the request is denied and the value of the wait counter (in variable

Wait count[i] of Table 11) for the process increases by one to break a possible livelock

105

if necessary (e.g., if a request from a process is denied more than a threshold number of

denial times, a process may release resources the process holds or take appropriate action

assuming that there may exist a possible livelock – please see Section 5.3.5 for an extended

discussion of this case).

In Step 3 (Lines 8-11), it is pretended that the request could be fulfilled, and the tables

are temporarily modified according to the request.

In Step 4 (Lines 12-14), PBA prepares for the H-safety check, i.e., initializes variables

Finish[] and Work[]. Work[] is used to search processes that can finish their jobs by using

both resources currently Available[] and resources which will become available during the

execution of an H-safe sequence (i.e, resources currently held by previous processes in a

H-safe sequence, please see Definition 8).

In Step 5 (Lines 15-20), PBA finds processes that can finish their jobs by acquiring

some or all resources available according to Work[] (please see the previous paragraph).

If one or more such processes exist, PBA adds all resources that these processes hold to

Work[], then declares these processes to be able-to-finish (i.e., Finish[i] := true for each

process �), and finally repeats Step 5 until all processes can finish their jobs. On the other

hand, if no such process exists – meaning either all processes became able-to-finish or no

more processes can satisfy the comparison (i.e., Need[i][j] � Work[j] for all) – PBA

moves to Step 6 to decide whether or not the pretended allocation state is H-safe.

In Step 6 (Lines 21-25), if all processes have been declared to be able-to-finish, then

the pretended allocation state is in an H-safe state (meaning there exists an identifiable H-

safe sequence by which all processes can finish their jobs in the order of processes having

been declared to be able-to-finish in the iterations of Step 5); thus, the requester can safely

proceed. However, in Step 6, if there remain any processes unable to finish, the pretended

allocation state may cause deadlock; thus, PBA denies the request, restores the original

allocation state before the pretended allocation and also increases the wait count for the

requester.

106

The following example illustrates how PBA works in a simple yet general case.

Example 25 An example of resource allocation controlled by PBA

Consider a system with three processes � � , ��� and ��� and two resources 	�� and 	�� , where 	
� has

three instances and 	�� has two instances. Table 12 shows a possible current resource allocation

status in the system as well as maximum resource requirements for each process. Notice that

Need[i][j] = Max[i][j] - Allocation[i][j].

Table 12: A resource allocation state.

Maximum Allocation Need Available
������� ������� ������� �������

�	� 3 2 1 1 2 1 1 1
�
� 2 1 1 0 1 1
�
� 1 2 0 0 1 2

Currently one instance of 	
� and one instance of 	�� are given to ��� , and another instance of 	
�

is given to ��� . Thus, only one instance of 	
� and one instance of 	�� are available. At this moment,

let us consider two cases. i) When ��� requests one instance of 	
� , will it be safely granted? ii) When

��� requests one instance of 	�� , will it be safely granted? In case i), let us pretend to grant 	
� to ��� ;

then the allocation table would be changed as shown in Table 13.

Table 13: Initial resource allocation state for case i).

Maximum Allocation Need Available
������� ������� ������� �������

�	� 3 2 1 1 2 1 0 1
� � 2 1 2 0 0 1
�
� 1 2 0 0 1 2

Now PBA checks if the resulting system stays in an H-safe state (see Theorem 1). That is, there

must exist an H-safe sequence even if all processes were to request their maximum needs after

the pretended grant [11, 16, 20]. The following corresponds to Step 5 of PBA. From Table 13, if ���

requests one more instance of 	�� (i.e., up to ��� ’s maximum claim), since 	�� is available, 	�� is going

to be granted to ��� , which will finally finish its job and release all resources. Then, the available

resources will be two instances of 	
� and one instance of 	�� as shown in Table 14.

Next, ��� can acquire these available resources, finish its job and release all resources; the

available resources will be three instances of 	
� and two instances of 	�� as shown in Table 15.

107

Table 14: Resource allocation state in case i) after ��� finishes.

Maximum Allocation Need Available
� � � � � � � � � � � � � � � �

�	� 3 2 1 1 2 1 2 1
�
� 2 1 0 0 2 1
� � 1 2 0 0 1 2

Similarly, � � can acquire these available resources and finally finish its job. As a result, an

H-safe sequence exists in the order � ��� � � and � � . That is, after the grant of 	 � to � � , the system

remains in an H-safe state.

Table 15: Resource allocation state in case i) after ��� finishes.

Maximum Allocation Need Available
������� ������� ������� �������

�	� 3 2 0 0 3 2 3 2
�
� 2 1 0 0 2 1
� � 1 2 0 0 1 2

Now considering case ii), let us pretend to grant 	 � to � � ; then the allocation table would be

changed as shown in Table 16 (which is appropriately altered from Table 12). From this moment

on, neither processes ��� , ��� nor ��� can acquire up to its declared maximum unless another process

releases resources that the process holds. Thus, the system will not remain in an H-safe state. As

a result, the algorithm will deny the request in case ii).

Table 16: A resource allocation state in case ii).

Maximum Allocation Need Available
������� ������� ������� �������

�	� 3 2 1 2 2 0 1 0
�
� 2 1 1 0 1 1
�
� 1 2 0 0 1 2

The gist of our approach is that because the operations in Step 5 are performed in

parallel, if Need[i][j] � Work[j] for all � and for all 	 are satisfied at the first iteration, PBA

finishes at once, resulting in ����� � run-time. Such an example is described in Example 26.

108

Example 26 An example of resource allocation in a special case

Consider the same system as Example 25 with three processes � � , ��� and ��� and two resources

	�� and 	�� , but in this example 	
� has five instances and 	�� has four instances. Table 17 shows a

possible current resource allocation state in the system as well as maximum resource requirements

for each process.

Table 17: A resource allocation state in a special case.

Maximum Allocation Need Available
������� ������� ������� �������

�	� 3 2 1 1 2 1 3 3
�
� 2 1 1 0 1 1
�
� 1 2 0 0 1 2

Currently one instance of 	
� and one instance of 	�� are given to ��� , and another instance of 	
� is

given to ��� . Thus, three instances of 	
� and three instances of 	�� are available. At this moment, if � �

requests one instance of 	
� and one instance of 	�� , will 	
� and 	�� be safely granted to ��� ? Since the

request is within the need of ��� and the availability of resources (corresponding to Steps 1 and 2 in

Algorithm 7), PBA proceeds to pretend to grant one 	
� and one 	�� to ��� (Step 3); then the allocation

table would be changed as shown in Table 18.

Table 18: A resource allocation state after pretense.

Maximum Allocation Need Available
������� ������� ������� �������

�	� 3 2 2 2 1 0 2 2
�
� 2 1 1 0 1 1
�
� 1 2 0 0 1 2

Now PBA checks if the resulting system stays in an H-safe state. The following corresponds

to Step 5 of PBA. From Table 18, if ��� requests one more instance of 	
� (i.e., up to its maximum

claim), since 	
� is available, 	
� can be given to ��� ; thus, ��� can finish its job. If ��� requests one

instance of 	
� and one instance of 	�� (i.e., up to its maximum claim), since 	 � and 	�� are available,

both can be given to ��� ; thus, ��� can finish its job. In a similar fashion, ��� can also finish its job.

Hence, all processes can finish, implying that the system remains in an H-safe state. As a result,

the request can be safely granted. In conclusion, the following has occurred in this example: (a)

Request[i][j] � Need[i][j] for all � at Step 1, (b) Request[i][j] � Available[j] for all � at Step 2, and (c)

109

Need[i][j] � Work[j] for all
�

and for all � at the first iteration of Step 5, enabling PBA to finish in three

clock cycles, resulting in � � �� run-time.

5.3.3 Proof of the Correctness of PBA

Theorem 9 PBA always finds an H-safe sequence if and only if a system is in an H-safe

state.

Proof: We first consider the case where a system is in an H-safe state. We need to prove

that PBA finds an H-safe sequence.

By Theorem 1 in Chapter 1, if a system is in an H-safe state, there must exist an H-

safe sequence. Let such an H-safe sequence be � �
 � �
 ���
 ������
 � � � �
 � � . That is, in the H-

safe state, there exists a sequence such that Need[1][j] � Available[j] for all 	 , Need[2][j]

� Available[j] + Allocation[1][j] for all 	 , Need[3][j] � Available[j] + Allocation[1][j] +

Allocation[2][j] for all 	 , ����� , and Need[n][j] � Available[j] + � �
 � � ��
 � Allocation[i][j] for

all 	 .

We are considering the case where a system is in such an H-safe state. At the first

step in the corresponding H-safe sequence, we already know that � � can proceed; thus,

at the first iteration of PBA, PBA identifies � � as an able-to-finish process by comparing

and ensuring Need[1][j] � Work[j]0 (i.e., Available[j]) for all 	 where Work[j]k denotes the

value of Work[j] at 	 	

iteration. Thus, Finish[1] is set to true and Work[j]1 (i.e., Work[j]

after the first iteration) becomes Work[j]0 + Allocation[1][j] for all 	 .

At the second iteration of PBA, PBA identifies ��� as an able-to-finish process by com-

paring and ensuring Need[2][j] � Work[j]1 for all 	 ; thus, Finish[2] is set to true and

Work[j]2 becomes Work[j]1 + Allocation[2][j] for all 	 .

In the same way, PBA identifies from � � to � � � � as able-to-finish processes. Finally,

PBA will identify � � as an able-to-finish process by comparing and ensuring Need[n][j] �
Work[j]n-1 for all 	 ; thus, Finish[n] will become true and Work[j]n will become Work[j]n-1

+ Allocation[n][j] for all 	 . That is, PBA will find an H-safe sequence of � �
 �����
 � � .

110

As a result, if a system is in an H-safe state, PBA finds an H-safe sequence.

Conversely, if PBA finds an H-safe sequence, then, by Theorem 1, the system is in an

H-safe state.

5.3.4 Proof of the Run-time Complexity of the PBAU

Theorem 10 PBA, when implemented in parallel hardware, completes its computation in

at most � steps = ��� ��� , where � is the number of processes.

Proof: Let us first consider Steps 1-4 and Step 6 of PBA. Since Steps 1-4 and Step 6 execute

only once in PBA, these are considered to take a constant amount of time, contributing O(1)

in the calculation of run-time complexity.

Let us now consider Step 5 of PBA. At each iteration of Step 5, there are three possible

cases: (i) no process can proceed, (ii) only one process can proceed, and (iii) multiple

processes can proceed. In case (i), PBA stops iterating Step 5. In case (ii), PBA will detect

and declare only one process to be able-to-finish at the current iteration, thereby excluding

one process from further iterations. In case (iii), if multiple processes can proceed, at

one iteration PBA will declare all such processes to be able-to-finish, excluding multiple

processes from further iterations, leaving much fewer processes than case (ii).

Therefore, case (ii) where only one process can proceed at each iteration will be the

worst-case. Thus, we want to construct the maximum sized sequence where each Step 5

iteration results in case (ii). Let such a sequence be � �
 � �
 ���
 ������
 � � � �
 � � . Then, by

construction, at the first iteration PBA identifies ��� as the only process able-to-finish. At

the second iteration, PBA identifies ��� as the only process able-to-finish. In the same way,

PBA identifies from � � to � � as able-to-finish processes at each successive iteration. As a

result, the total number of iterations of finding such a unique sequence becomes � , i.e., an

��� ��� run-time complexity.

111

5.3.5 Comment on Livelock Avoidance in PBA

Let us consider PBA (Algorithm 7). In Line 25 of PBA, when a process requests resource(s)

and the request is denied, the process would probably again request the same resource(s)

some time later. Let such an interval be time ��� . If the same request(s) are repeatedly

denied for a long period of time, the process could be involved in a livelock situation. To

be able to break such potential livelock, PBA prepares a counter and a threshold number of

repeated denials of requests can be set to detect such a potential livelock situation. Such a

situation and a possible solution are given in the following example.

Example 27 Consider a system in a state that is safe but two or more processes compete for the

same type of resource such that they repeat requests but the requests are not granted because

resources are available but are not enough to fulfill either of the requests. In such a situation,

Wait count[i] can be used to break the livelock associated with deadlock avoidance as follows.

Let such competing processes � � and � � and assume that they are competing for resources 	 �

and 	 � . Whenever requests are denied, PBA performs the following. PBA increment Wait count[1]

by one each time � � requests but fails, and PBA increment Wait count[2] by one each time � �

requests but fails. Now, if either Wait count[1] or Wait count[2] passes some threshold that is set

in advance, the corresponding process will be able to be informed of livelock, so that the process

could take appropriate action (such as releasing all held resources) in such a livelock case.

Please note that [19] describes a similar way to resolve livelock associated with dead-

lock avoidance in the use of the Banker’s Algorithm.

5.4 Implementation

Now we describe implementation details including architecture, circuit and equations of

the PBAU.

5.4.1 Architecture of the PBAU

Figure 37 illustrates PBAU’s architecture. PBAU is composed of element cells, process

cells, resource cells and a safety cell in addition to a Finite State Machine (FSM) and a

112

Req

pretend

latch_alloc

req_le_need
need_le_work

work
freed_in

freed_out

latch_compare

cell_reset

emit_alloc

init_avail

latch_alloc

req_le_availlatch_compare

copy_avail

pretendfreed_out_sum

work

clock

cell_reset

Req clock

emit_alloc

Fi

req_le_need

clock

need_le_work

emit_alloc

start_bar

req_le_avail

Fi

Fi

exist_new_finish

Safe

req_le_need

invalid

FSM
processor interface

request requestrequest

process
cell

element
cell

resource
cell

safety
cell

process
cell

process
cell

process
cell

resource
cell

resource
cell

resource
cell

element
cell

element
cell

element
cell

element
cell

element
cell

element
cell

element
cell

element
cell

element
cell

safety
cell

Figure 37: PBAU architecture.

processor interface.

The Processor Interface (PI) consists of command registers and status registers. PI

receives and interprets commands (requests or releases) from processes as well as accom-

plishes simple jobs such as setting up the numbers of maximum claims and available re-

sources as well as adjusting the numbers of allocated and available resources in the response

to a release of resources. PI also returns processing results back to PEs via status registers

as well as activates the FSM in response to a request for resources from a process. In the

next subsection, we will describe in detail each cell in Figure 37.

113

5.4.2 Circuitry and Equations of the PBAU

5.4.2.1 Resource Cell

A Resource Cell (RC) is shown in Figure 38. Inputs of RC are Data in, pretend/ � � � � � � ,
ORed latch compare, ORed latch alloc j, initialize available, freed out sum j, clock and

copy available. Outputs are req le avail j and Work[j].

Each system resource available for allocation has a corresponding hardware RC in the

PBAU. During an initialization phase required prior to execution of PBA, the maximum

number of available resource instances needs to be set in each RC. To accomplish this, for

a particular RC, the total number of resource instances is sent via Data in (in our current

implementation, each resource has at most 16 instances, and thus Data in is a 4-bit wire).

The selection of Data in is controlled by pretend/ � � � � � � for possible writing to the Avail-

able Register in Figure 38. The actual latching of an input into the Available Register is

controlled by either ORed latch alloc j or initialize available; in the specific case where

we are in an initialization phase prior to execution of PBA, the Available Register would

have been reset to zero, pretend/ � � � � � � would be ‘1’ thus selecting Data in plus zero

equals the total number of resource instances, and initialize available would be used to

latch in the total number of resource instances into the Available Register (please note that

ORed latch alloc j remains a zero throughout the initialization phase prior to execution of

PBA). The Work Register is initialized with the value of the Available Register at a rising

clock when copy available is ‘1’.

Outputs of RC are Work[j] and a comparison result req le avail j (i.e., the availability

of a resource, Line 5 of PBA). RC has an Available Register that stores the number of

instances of the resource. RC also has a Work Register[j] that temporarily stores the number

of resources in the Available Register (as shown in Step 4 of PBA) plus resources to be

released (i.e., freed out sum j input) while copy available is ‘0’ by able-to-finish processes

during iterations of Step 5. RC also has a comparator that compares Request[i][j] (assuming

Data in = Request[i][j]) with the Available Register (Step 2 of Algorithm 7, PBA), the

114

+

−

<Request Available S1 S0

S

S

0

1

1

cell_reset

(4 bits)
Available Register

initialize_available

pretend/restore

(4 bits)

1
copy_available

clock

req_le_avail_j

freed_out_sum _j

Work[j]

Data_in

ORed_latch_alloc_j

ORed_latch_compare_i

4

4
4

4

Work Register
QD

CLR

Figure 38: Logic diagram of a Resource Cell (RC).

result of which is stored into a register. A pretend/ � � � � � � signal is also used to increase or

decrease the number in the Available Register when the resource is requested or released.

The following equations represent mathematical expressions being calculated in each

RC. Equation 42 corresponds to Line 5 of PBA.

�����
 ��� � ��� �
 � (42)

where �����
 � denotes req le avail j. Please see Table 11 in Section 5.3.2 for definitions of

� ��� ,
 � , etc. Equation 43 corresponds to Line 9 of PBA, which is the operation of updating

available for each resource cell when some instances of a resource are allocated or released.

 ��� �
	�� �� �

��� ��
 �
� � � �
 if pretend � �

 � � ���
 if restore � �
(43)

Equation 44 corresponds to Line 17 of PBA.

�
� � 	 � �	� � � �

� � 	 � � � � ��� � � ��� ��� � � � � (i.e., ��������� ��� � !"� # $ � (44)

where 	 refers to 	 th iteration, and 	 � � refers to � 	 � � � th iteration.

115

clock

1

clock start_bar

Finish[i]

emit_alloc_i

ANDed_need_le_work_i QD

CLR

QD

CLR

QD

CLR

Figure 39: Logic diagram of a Process Cell (PC).

5.4.2.2 Process Cell

A Process Cell (PC) is shown in Figure 39. Inputs of PC are ANDed need le work i and

start bar, while outputs are Finish[i] and emit alloc i. start bar is a start signal of an H-

safety check. ANDed need le work i is the result of an � -bit AND of the signals of all the

comparison results of Request[i][j] � Work[j] for all 	 from all element cells corresponding

to a process (Line 15 of PBA). PC generates Finish[i] for process � and issues an addition

signal (i.e., emit alloc i) that makes allocated resources to this process available to later

processes in an H-safe sequence.

The following equations represent mathematical expressions being calculated in each

PC. Equation 45 corresponds to Line 15 of PBA.

� ��� � � �

�
� � � � � ��� � ���

(

�
� � � � means AND for all)

(45)

where
� ��� � � denotes ANDed need le work i.

Equations 46 and 47 correspond to Line 18 of PBA.

� � � � ��� � � (� means � � � � 	 �� � � � � � � ��� ���) (46)�
�	�
� �

���
� � � � � � (47)

5.4.2.3 Element Cell

An Element Cell (EC) is shown in Figure 40. Inputs of EC are Work[j], initialize max clk i,

Data in, pretend/ � � � � � � , emit alloc i, latch alloc clk i and freed in ij. Outputs of EC are

116

+

−

Allocation Register
(4 bits)

+
−

<Need WorkRequest Need<

Maximum Register
(4 bits)

Work [j]

cell_reset

S

S

0

1

S

S0

1

1

1

Need
(4 bit wires)

req_le_need_ij

pretend/restore
emit_alloc_i

freed_in_ij

freed_out_ij

need_le_work_ij

4
4

4

latch_compare_clk_i

latch_alloc_clk_i

initialize_max_clk_i

Data_in

QD

CLR

Figure 40: Logic diagram of an Element Cell (EC).

req le need ij, need le work ij and freed out ij.

Each EC stores the number of resource instances (e.g., resource) allocated for a par-

ticular process (e.g., process �) as well as the maximum claim of resource instances for

a specific process. Obviously, the hardware will include an EC array where there is one

EC per resource 	 , process � pair. During an initialization phase required prior to execu-

tion of PBA, the maximum number of resource claims for each specific process needs to

be set in each EC. To perform this operation, for a particular EC, the maximum claim of

resource instances is sent via Data in. The latching of Data in into the Maximum Register

is controlled by initialize max clk i.

In Step 3 of PBA, each allocation amount of resource instances is sent via Data in. The

selection of Data in is controlled by pretend/ � � � � � � for possible writing to the Alloca-

tion Register in Figure 40. The actual latching of an input into the Allocation Register is

controlled by latch alloc clk i; in the specific case where we are in an initialization phase

prior to execution of PBA, the Allocation Register is reset to zero. When there exists a

change in allocation due to a grant event, pretend/ � � � � � � is set to a ‘1’, selecting Data in,

117

which will be added to the value of resource instances currently in the Allocation Register.

However, when some instances are being de-allocated due to a release event, by setting

pretend/ � � � � � � to zero, an amount in Data in will be subtracted from a current amount in

the Allocation Register

EC performs two comparisons: Request[i][j] � Need[i][j] and Need[i][j] � Work[j].

The former comparison result (i.e., Request[i][j] � Need[i][j]) is stored into a one-bit reg-

ister and then sent via req le need ij while the latter comparison result (i.e., Need[i][j] �
Work[j]) is directly sent via need le work ij.

EC emits the value of the Allocation Register to freed out ij, which is controlled by

emit alloc i when EC belongs to an able-to-finish process (i.e., Need[i][j] � Work[j] for

all). However, if EC does not belong to an able-to-finish process, emit alloc i will be

zero; thus freed out ij will just contain the value of input freed in ij.

In addition, there are two muxes, two subtracters and two adders. One adder is used to

increase the number of allocation instances of the requested resource, and one subtracter

is used to restore the temporarily increased number of instances if the safety test fails

(see Example 25 for a sample execution of the safety test). Another subtracter is used

to calculate the equation Need[i][j] = Maximum[i][j] – Allocation[i][j]. The other adder

is used to make allocated instances (to this cell) available to later processes in an H-safe

sequence.

The following equations represent mathematical expressions being calculated in each

EC. Equation 48 corresponds to Line 2 of PBA.

����� � ��� � � ����� � ��� (� means � � � � 	 � � � � � � � � � ���) (48)

where ����� � ��� denotes req le need ij. Please see Table 11 in Section 5.3.2 for definitions

of � ��� , � � , � � � , � ��� and
� � .

118

While Equation 49 corresponds to Lines 10 and 25 of PBA (updating allocation), Equa-

tion 50 corresponds to Line 11 (updating Need[i][j] for each cell), and Equation 51 corre-

sponds to Line 15.

� ����� �

�

��� �� � ���
� � ���
 if pretend � �

� ��� � ���
 if restore � �
(49)

� � � � � ��� � ��� (50)

� ��� � � � = 1, if
� � ��� � � (51)

where
� ��� � ��� denotes need le work ij.

Equation 52 corresponds to Line 17 of PBA, which are the connections and operation

of adding resources in Available[] and to be potentially available.

� � � ��� � � � � � �
� ��	 �

� � � ��� ��� � ��� � � � � ��� � � ��� � � � � � ��� �
���

� � ��� for ������� �

� � � ��� � � ��� � � � � ��� ��� � ��� � � � for
� ����� �

� � � ��� ��� � � � � � � � � ��� ��� � � �

(52)

5.4.2.4 Safety Cell

A Safety Cell (SC) is shown in Figure 41. Inputs are ANDed req le avail, � number of

ANDed req le need signals, emit alloc i and Finish[i]. Outputs are Safe, invalid and ex-

ist new finish. ANDed req le avail is the result of an � -bit AND of the comparisons of

Request[i][j] � Available[j]. Each individual ANDed req le need bit signal is the result

of an � -bit AND of comparisons of Request[i][j] � Need[i][j] for each � for all 	 . SC

inputs comparison results (i.e., ANDed req le avail, � number of ANDed req le need sig-

nals) from all resource cells as well as all element cells and generates the H-safety result

(i.e., Safe). Thus, SC checks if Request[i][] is valid and stores the result into a register,

the output of which is invalid, which is sent out at the rising edge of check valid clk. SC

119

also checks whether or not there exist more able-to-finish rows (i.e, exist new finish). If no

more able-to-finish rows exist, iteration stops, and the safety result is decided by examining

all Finish[] coming from all process cells.

clock

exist_new_finish

clear_new

emit_alloc_1

emit_alloc_n

...

valid

invalid

cell_reset

check_valid_clk

ANDed_req_le_need_1

ANDed_req_le_need_n

ANDed_req_le_avail

...

Finish_1

... Safe

Finish_n

D

CLR

Q

D

CLR

Q

Figure 41: Logic diagram of a Safety Cell (SC).

The following equations represent mathematical expressions being calculated in each

SC. Equation 53 corresponds to Lines 2 and 5 of PBA.

 �
� � � � �

�
� � � � � ���
 � � � � � � � �

�
� � � � ����� � ��� � (53)

Equation 54 corresponds to Line 16 of PBA.

� � � � � � � � � �
�
�	� � �

� �
� � � (54)

Finally, Equation 55 corresponds to Lines 22 and 23 of PBA, producing the safety result.

�� � � �
�
� � � � � � (55)

Now, we will give a specific operation example of the PBAU.

Example 28 Brief operation of cells

Let us reconsider Example 26 and focus on element cells � ��� and � �� (corresponding to ���) and

resource cells ��� (corresponding to 	
�) and ��� (corresponding to 	��). Assuming that the current

allocation state is as shown in Table 17, internal values of � ��� will be Maximum[1][1] = 3, Alloca-

tion[1][1] = 1, and thus Need[1][1] = 2. Internal values of � �� will be Maximum[1][2] = 2, Alloca-

tion[1][2] = 1, and thus Need[1][2] = 1. In addition, Available[1] of �
� will be 3, and Available[2] of ���

120

will also be 3. Now if ��� requests one instance of 	
� and one instance of 	�� , both Request[1][1] and

Request[1][2] become 1. Then, since Request[1][1] � Need[1][1], req le need 11 (see Figure 40)

becomes 1; and since Request[1][2] � Need[1][2], req le need 12 becomes 1; these results indicate

that Step 1 of Algorithm 7 is satisfied.

At Step 2, since Request[1][1] � Available[1] in resource cell � � , req le avail 1 (see Figure 38)

becomes 1; and since Request[1][2] � Available[2] in resource cell � � , req le avail 2 becomes 1;

these results represent that Step 2 is also satisfied.

After this, at Step 3, when grant is pretended as shown in Table 18, � ��� �
� ��� � ����� � in Fig-

ures 40 and 38 becomes 1, and by signal latch alloc clk 1, the internal values are updated as

follows. For � � � , Allocation[1][1] = 2 and Need[1][1] = 1. For ��� , Available[1] = 2. For � ��� , Alloca-

tion[1][2] = 2 and Need[1][2] = 0. For � � , Available[2] = 2.

Then, at Step 4, ��� emits Work[1] (i.e., Available[1]), and ��� emits Work[2] (i.e., Available[2]).

Finally, at Step 5, to find processes able-to-finish, comparisons (i.e., for all � , Need[1][j] � Work[j])

are performed in element cells � � � and � �� . Since Need[1][1] � Work[1] and Need[1][2] � Work[2],

��� becomes able-to-finish, i.e., � � can finish its job.

Similarly for the rest of
�
, Need[i][j] � Work[j] for all � are performed at the same time in paral-

lel. As explained in Example 26, all rows (i.e., processes) become able-to-finish; thus, the system

remains H-safe.

5.4.2.5 Finite State Machine (FSM)

Figure 42 illustrates the transition diagram of the PBAU FSM along with input and output

signals. The FSM sequences PBA execution (i.e., Algorithm 7). If the FSM receives a

start signal to initiate PBA execution, the FSM issues a cell reset signal that resets all

internal registers of all cells at the first clock. At the second clock, the FSM checks if

Request[i][] is valid (corresponding to Steps 1 and 2 in Algorithm 7); i.e., in all resource

cells (all RC hardware units), a set of comparisons between Request[i][j] and Available[j]

for all 	 is carried out, and another set of comparisons between Request[i][j] and Need[i][j]

for all 	 is carried out in all element cells in a specific row corresponding to the requester

(i.e., process �). Please note that the correspondences between rows and columns with

processes and resources differ from the correspondences in the DDU in Chapter 3. If the

121

previous
restore

allocation
update

latch_compare

pretend/restore

cell_reset

copy_avail

latch_alloc

check_valid

start_bar

clear_new

clock

invalid

start_fsm

safety

IDLE

reset cells

start_fsm/cell_reset

valid request
check

valid/pretend=1
latch_alloc

find a safe
sequence

exist newly finished

unsafe/
restore=1
latch_alloc

next/latch_compare

invalid/done

next/done

safe/done

copy_availnext/
start=1 PBAU FSM

Figure 42: Finite state machine of the PBAU.

command is found to be valid, then Request[i][] is assumed to be acceptable, and at the

third clock, the FSM updates Available[] and Allocation[i][] according to the numbers of

instances of all requested resources in parallel. Please note that at this moment Need[i][j]

(i.e., Maximum[i][j] – Allocation[i][j]) is calculated automatically inside each element cell.

Within the third clock cycle, Available[] is also copied to Work[] (corresponding to Step 4).

Please note that all Finish[] are set to false (stated in Step 4) by the reset of cells. At the

fourth clock, the iterations of Step 5 begin. For all cells in rows for which Finish[i] is

false, PBA checks if Need[i][j] � Work[j] for all 	 in parallel throughout the whole matrix,

which helps reduce the run-time complexity. At the fifth clock, if there exists row(s) such

that all element cells in a row satisfy the equation (Need[i][j] � Work[j] for all � and)

(i.e., the process corresponding to the row can finish its job by acquiring some or all of

resources currently available), such row(s) are set to be able-to-finish and their resources

are added to Work[] (Line 17 in Algorithm 7). If such row(s) exist, then after excluding

such row(s), Step 5 repeats until no more such row(s) exist. Please note that in cases where

all rows satisfy Need[i][j] � Work[j] for all � and 	 , PBA finishes at the fifth clock cycle,

resulting in an ����� � run-time. Since each iteration requires one clock cycle, in the worst

122

case where there exists only one unique H-safe sequence, the number of iterations will be

� clock cycles, where � is the number of processes in the system.

Iterations cease to end if no more able-to-finish rows exist. Then, by checking all Fin-

ish[], the safety decision is made, and if it is found to be H-unsafe, the FSM restores pre-

tended Allocation[i][], Need[i][] and Available[] by issuing a restore signal to all resource

cells and element cells in the row corresponding to the requester.

5.4.3 Synthesized Result of the PBAU

We use the Synopsys Design Compiler [52] to synthesize various PBAU sizes with the

QualCore Logic .25 � m standard cell library [39]. We synthesize with a clock period of 4

ns (250 MHz). The synthesis result is shown in Table 19. The “Area” column denotes the

area in units equivalent to a minimum-sized two-input NAND gate in the library. PBAU5x5

represents a PBAU for five processes and five resources (each resource can have up to 16

instances). In a case where an SoC contains five PowerPC 755 PEs (1.7M gates each)

and 16MB memory (33.5M gates), the resulting MPSoC area, the sum of the areas of

16MB of memory plus five MPC755’s plus PBAU20x20 (i.e., 33.5M + 1.7M � 5 + 19753),

is 42019753 gates. Thus, the area overhead in the SoC due to the PBAU 20x20, i.e.,

the area of PBAU20x20 divided by the total MPSoC area is approximately .05% (i.e.,

19753/42019753).

Table 19: Synthesized result of the PBAU.

Synthesis Result PBAU5x5 8x8 10x10 15x15 20x20
Area (w.r.t. 2-input NAND) 1303 3243 5030 11158 19753
Number of lines of Verilog 600 700 770 1000 1350

5.4.4 Run-time Complexity of the PBAU

The run-time complexity of a generic implementation of the traditional BA in software is

����� � � � � , where � and � are the numbers of resources and processes, respectively [31].

123

By implementing PBA in hardware able to exploit full parallelism, we achieve a run-

time of ����� � in the best case (i.e., the cases of system states where for all � and for all 	 ,

Need[i][j] � Available[j]), ��� ��� in the worst case (i.e., the cases where there exists only

one unique H-safe sequence of one by one increment order of able-to-finish processes), and

seems to be n/2 clock cycles on average (in our experiments).

Let us illustrate how we achieve such a run-time complexity from Algorithm 7. Steps 1

and 2 of Algorithm 7 can execute in parallel in one clock cycle, and if Request[i][] is per-

missible, then Step 3 (pretending to allocate the requested resources) and Step 4 (iteration

preparation for the H-safety check) can be done in one clock in parallel. Then, each itera-

tion of Step 5 takes one clock until all rows (i.e., processes) become able-to-finish. Since

in the worst case, only one after one process can finish, the worst case number of iterations

consumes � clock cycles for Step 5, where � is the number of processes in the system.

5.5 Experiments
5.5.1 Simulation Environment Setup for PBAU evaluation

The experimental simulations were carried out using Seamless Co-Verification Environ-

ment (CVE [33]) aided by Synopsys VCS [53] for Verilog HDL simulation and XRAY [34]

for software debugging. We use Atalanta RTOS version 0.3 [51], a shared-memory multi-

processor RTOS. The other simulation setups not mentioned here such as a bus clock rate

and a system memory size are the same in Section 3.4.1.

5.5.2 Experimental System

For the experiment, we simulate an MPSoC with five Motorola MPC755s and resources

similar to Figure 36. Each MPC755 has separate instruction and data L1 caches each

of size 32KB. The MPSoC also has the following three types of resources: an SoCD-

MMU [46] with 10 blocks of allocable memory (� �), a counting semaphore with a group

of five DSP processors (� �) and another counting semaphore with seven I/O buffers (� �).

These three types of resources have timers, interrupt generators and input/output ports as

124

needed to operate properly in the MPSoC. In addition, the MPSoC has a PBAU for five

processes and five resources, an arbiter and 16MB of shared memory including the allo-

cable memory. The master clock rate of the bus system is 10 ns. Code for each MPC755

runs on an instruction-accurate (not cycle-accurate) MPC755 simulator provided by Seam-

less CVE [33]. Everything else other than the MPC755s are described in Verilog HDL

and simulated in Synopsys VCS [53]. We invoke processes � �
 ������
 � � on PE1, ����� , PE5,

respectively.

5.5.3 Application Example

We execute a sample robotic application which performs the following: recognizing ob-

jects, avoiding obstacles and displaying trajectory requiring DSP processing; robot motion

and data recording involving accessing IO buffers; and proper real-time operation (e.g.,

maintaining balance) of the robot demanding fast and deterministic allocation and deallo-

cation of memory blocks. This application invokes a sequence of requests and releases. The

sequence has ten requests, six releases and five claim settings with one request that violates

a pre-declared maximum claim (e.g., Request[i][j] � Need[i][j]) and one additional request

that leads to an H-unsafe state as shown in Table 20. Please note that every command is

processed by an avoidance algorithm (either PBAU or BA in software). Recall that there is

no constraint on the ordering of resource usage.

Detailed sequence explanation is as follows. There are five processes and three re-

sources in the system. Table 21 shows the available resources and maximum claims of

each process in the system at time � � (Maximum equals Need currently).

Table 22 shows the resource allocation state at time ���
	 as processes are using resources.

After two more requests, Table 23 shows the resource allocation state at time � �
� .

So far, all requests result in H-safe states. However, at time ���� , when � � requests one

additional instance of resource � � , the system results in an H-unsafe state if the request is

granted. Thus, PBAU rejects the request; the wait count (please see Table 11) for � � is

125

Table 20: A sequence of requests and releases for PBAU test.

Time Events

� 	 The application starts, and the numbers of available resources in the system
are set.

� � , � sets its maximum claims for each resource.
� � , � sets its maximum claims for each resource.
� � , � sets its maximum claims for each resource.
� � , � sets its maximum claims for each resource.
� � , � sets its maximum claims for each resource (see Table 21).
� , � requests one instance of . � .
��� , � requests two instances of . � .
� � , � requests three instances of . � and two instances of . � .
� � , � requests two instances of . � , one instance of . � and one instance of . � .
� �
	 , � requests two instances of . � (Table 22).
� � � , � requests two instances of . � and one instance of . � .
� �
� , � requests one instance of . � .

So far, all requests make the system remain H-safe. (Table 23).
� �� , � again requests one more instance of . � , which results in H-unsafe.

Thus, this request is denied. The wait count for ,�� is increased.
� ��� , � releases two instances of . � and two instances of . � (Table 24).
� �
� , � initiates a false request (i.e., it requests five instances of . � , . � and . � , re-

spectively), which of course is denied.
� �
 , � again requests one more instance of . � , which now results in H-safe.

Thus, this request is granted (Table 25). The wait count for ,�� is cleared.
� � � , � finishes its job and releases three instances of . � and one instance of . � .
� � � , � releases two instances of . � .
� � � , � releases one instance of . � .
� � 	 , � releases two instances of . � , one instance of . � and one instance of . � .
� ��� , � releases two instances of . � and two instances of . � , the application ends.

increased, and � � needs to rerequest � � later.

At time � ��� , ��� releases two instances of � � and two instances of � � , and the allocation

state is shown in Table 24.

At time � �
 , � � rerequests one additional instance of resource � � , and the request is

granted as shown Table 25. The wait count for ��� is cleared.

After time � �
 , as time progresses, all processes finish their jobs and release allocated

resources.

126

Table 21: Initial resource allocation state at time � � .

Maximum Allocation Need Available
������� ��� ��� ��� ��� ������� ��� ��� ��� ���

�	� 7 5 3 0 0 0 7 5 3 10 5 7
�
� 3 2 2 0 0 0 3 2 2
� � 9 0 2 0 0 0 9 0 2
��� 2 2 2 0 0 0 2 2 2
��� 4 3 3 0 0 0 4 3 3

Table 22: Resource allocation state at time � �
	 .

Allocation Need Available
��� ��� ��� ������� ��� ��� ��� ���

�	� 0 1 0 7 4 3 3 3 2
� � 2 0 0 1 2 2
�
� 3 0 2 6 0 0
��� 2 1 1 0 1 1
� � 0 0 2 4 3 1

Table 23: Resource allocation state at time � �
� .

Allocation Need Available
��� ��� ��� ������� ��� ��� ��� ���

�	� 0 3 1 7 2 2 2 1 1
�
� 2 0 0 1 2 2
�
� 3 0 2 6 0 0
��� 2 1 1 0 1 1
��� 1 0 2 3 3 1

With the above scenario, summarized in Tables 20-25, we measure two figures, the av-

erage execution time of the deadlock avoidance algorithm used and the total execution time

of the application in two cases: (i) using PBAU versus (ii) using the Banker’s Algorithm in

software.

5.5.4 Experimental Result

Table 26 shows that PBAU achieves about a 1600X speedup of the average algorithm exe-

cution time and gives a 19% speedup of application execution time over avoiding deadlock

127

Table 24: Resource allocation state at time � ��� .

Allocation Need Available
��� ��� ��� ������� ��� ��� ��� ���

�	� 0 3 1 7 2 2 4 1 3
�
� 2 0 0 1 2 2
� � 1 0 0 8 0 2
��� 2 1 1 0 1 1
��� 1 0 2 3 3 1

Table 25: Resource allocation state at time � �
 .

Allocation Need Available
��� ��� ��� ������� ��� ��� ��� ���

�	� 0 3 1 7 2 2 3 1 3
� � 2 0 0 1 2 2
�
� 1 0 0 8 0 2
��� 2 1 1 0 1 1
� � 2 0 2 2 3 1

with BA in software (the speedup is calculated according to the formula by Hennessy and

Patterson [18]). Please note that during the run-time of the application, each avoidance

method (PBAU or BA in software) is invoked 22 times in both cases, respectively (since

every request and release invokes a deadlock avoidance calculation). Table 27 represents

the average algorithm execution time distribution in terms of different types of commands.

Thus, while BA in software spends about 5400 clock cycles on average at each invo-

cation in this experiment, PBAU only spends 3.32 clocks on average. Please note that this

comparison is not exact since, as already stated in Section 3.4.2, we use an instruction ac-

curate (not cycle accurate) MPC755 instruction-set simulator, and thus may be off by as

much as an order of magnitude.

5.6 Summary

A novel Parallel Banker’s Algorithm (PBA) for multiple-instance multiple-resource sys-

tems and its hardware implementation, which we call Parallel Banker’s Algorithm Unit

128

Table 26: Application execution time comparison for PBAU test.

Method of Algorithm PBAU Application Application
Implementation Exec. Time Speedup Exec. Time Speedup

PBAU (hardware) 3.32 ��������� ���	�
� ���
��� ���

��������� 185716 ���
�������
�������������
�����������

�����
BA in software 5398.4 221259

*The time unit is a clock cycle, and the values are averaged.

Table 27: Execution time comparison between PBAU vs. PBA in software.

Method of Set Set Request Release Wrong
Implementation Available Max Claim Command Command Command

of commands 1 5 9 6 1
PBAU (hardware) 1 1 6.5 1 2

BA in software 416 427 11337 2270 560

*The time unit is a clock cycle, and the values are averaged if there were multiple
commands of the same type. “#” denotes “the number of”.

(PBAU), are described in this chapter. PBAU gives an ��� ��� run-time complexity with the

best case of ����� � ; the result seems to be an average run-time of approximately n/2 clock

cycles in most cases. PBAU provides a multiprocessor system with a very fast and low area

way of avoiding deadlock at run-time, which helps free programmers from worrying about

deadlock. Whenever a request occurs in a system, PBAU checks for the safety of its grant.

The request is granted provided that the system can remain in an H-safe state.

We demonstrated the following through an experiment: (i) PBAU automatically avoids

deadlocks as well as reduces the deadlock avoidance time by 99% (roughly 1600X) as com-

pared to the Banker’s Algorithm (BA) in software; and (ii) PBAU achieved in a particular

example a 19% speedup of application execution time in an experiment as compared to the

execution time of the same application that uses BA in software.

Finally, the MPSoC area overhead due to PBAU is small, under 0.05% in our candidate

MPSoC example.

129

CHAPTER VI

INTEGRATING THE DDU, DAU AND PBAU INTO THE
�

HW/SW RTOS PARTITIONING FRAMEWORK

6.1 Introduction

In this chapter we will briefly introduce the
�

hardware/software Real-Time Operating Sys-

tem (RTOS) framework and then describe the methodology of the framework as well as the

integration of hardware deadlock solutions discussed previously (i.e., the DDU, DAU and

PBAU) into the framework. At the end, we briefly describe a separate automatic Intellectual

Property (IP) generation tool for the hardware deadlock solutions.

The initial
�

hardware/software RTOS/MPSoC design framework has been proposed

in [26, 28, 35, 36]. As MPSoC designs become more common, hardware/software code-

sign engineers face new challenges involving operating system integration. The
�

hard-

ware/software RTOS/MPSoC codesign framework provides a novel methodology of hard-

ware/software partitioning of operating systems. The
�

framework is used to configure and

generate simulatable RTOS/MPSoC designs having both appropriate hardware and soft-

ware interfaces as well as system architecture. The
�

framework is specifically designed

to help RTOS/MPSoC designers very easily and quickly explore the available design space

with different hardware and software modules so that they can efficiently search and dis-

cover several compact solutions matched to the specifications and requirements of their

design prior to any actual implementation.

The
�

framework shown in Figure 43 generates a configured RTOS/MPSoC design

that is simulatable on a hardware/software cosimulation environment after the generated

130

design is compiled. Hardware designs are described in a Hardware Description Lan-

guage (HDL) such as Verilog. Software designs could be described in any language al-

though we have only used C in our designs. The
�

framework has been developed to help

RTOS/MPSoC designers explore their design space more easily and quickly with available

hardware/software modules so that users can decide their critical decisions earlier in the

design phase of their target product(s). We have integrated the DDU, DAU and PBAU into

the
�

framework [24, 37].

6.2 Methodology

The
�

hardware/software RTOS generation framework for MPSoC (shown in Figure 43)

was proposed to enable automatic generation of different mixes of predesigned hardware/

software RTOS components that fit the target MPSoC the user is designing. Thus, the
�

framework helps a user explore which configuration is most suitable for the user’s target

and application or set of applications. In other words, the
�

framework is specifically

designed to provide a solution to rapid RTOS/MPSoC (both hardware and software) design

space exploration so that the user can easily and quickly find a few optimal RTOS/MPSoC

architectures that are most suitable to his or her design goals.

From the initial implementation [26, 28, 35, 36], we have extended the
�

framework to

include parameterized generators of hardware IP components (i.e., automatically config-

urable to fit a desired target architecture) as well as the generation of various types of bus

systems [24, 37].

Figure 44 shows Graphical User Interface (GUI) for the
�

framework version 2.0, which

integrates all parameterized generators we have and generates an RTOS/MPSoC system.

Here we summarize each generator briefly. For more information, please see specific

references. When a user wants to create his or her own specific bus system, the user clicks

“Bus configuration” (shown at the top right of Figure 44), which brings up a pop-up window

(shown in Figure 45) in which the user specifies address and data bus widths as well as

131

detailed
bus

topology
for

each
subsystem

in
subsequentw

indow
s

(show
n

in
Figures

46
and

47)
for

a
system

w
ith

a
hierarchicalbus

structure.
A

fter
appropriate

inputs
are

entered,the

tool
w

ill
generate

a
user

specified
bus

system
w

ith
a

specified
hierarchy.

Further
details

module top...

#ifdef mutex..

user.h

Application

Top.v

Makefile

gcc ...

SoCDMMU

SoCDDU

SoCLC

Description

VCS or ModelSim

HW IP cores and

Library

HW

Excutable
Compile
Top.v

XRAY

Seamless CVE

SW

Excutable

Results

& Link
Compile
SW

int i,j,k;

#include "api.h"

Configured IP components

Components

(See Figures
GUI

44,45,46 and 47)

Hardware Software

RTOS

Info.

RTOS
Software

Hardware

Info.

Hardware

IP

Compiled
Hardware
Modules

RTOS

Info.

F
igure

43:
T

he
�

hardw
are/softw

are
R

T
O

S
design

fram
ew

ork.

132

about bus system generation is described in [41, 42, 43].

At the bottom of Figure 44, there are several options for “Hardware RTOS Compo-

nents”: multiple deadlock detection/avoidance solutions (i.e., the Deadlock Detection Unit

Figure 44: GUI of the
�

framework.

Figure 45: Bus system configuration. Figure 46: Bus subsystem memory con-
figuration.

133

Figure 47: Bus subsystem configuration.

(DDU), the Deadlock Avoidance Unit (DDU) and the Parallel Banker’s Algorithm Unit

(PBAU)), the SoC Lock Cache (SoCLC [1, 2, 4]) and the SoC Dynamic Memory Manage-

ment Unit (SoCDMMU [45, 46, 47]).

In addition to selecting hardware RTOS components, the
�

framework version 2.0 can

also manipulate the size and type of each RTOS component by use of input parameters.

For instance, when the user wants to include SoCLC, he or she can also specify the number

of small locks and the number of long locks (equivalent to semaphores) according to the

expected requirements for his or her specific target (or goal). The detailed parameterized

SoCLC generation is discussed in [1, 3].

For deadlock hardware components, after a user selects either the Deadlock Detection

Unit (DDU), the Deadlock Avoidance Unit (DAU) for single-instance resource systems or

PBAU for multiple-instance resource systems, the GUI tool generates a deadlock IP com-

ponent with the designated type and an appropriate size according to the number of tasks

and resources specified in the Target Architecture window (see upper left of Figure 44).

For the SoCDMMU IP component, the user can specify the number of memory blocks

(available for dynamic allocation in the system) and other parameters, and then the GUI

tool will generate a user specified SoCDMMU. The detailed parameterized SoCDMMU

generation is addressed in [45, 47].

134

In an earlier version of the
�

framework, we made the GUI generate a Verilog HDL

file that describes a complete hardware system in Verilog, which was a good approach for

the users who describe their hardware design in Verilog. However, since there are many

VHDL users, we decided to support designs described in VHDL. In the enhanced method,

we separate a HDL top file generation from the generation of component modules, and

configurable modules are generated by the method described earlier. Other modules that

have no necessity of configuration may be precompiled and stored in the work directory.

We briefly describe an HDL top file generation process in the following example.

Example 29 As shown in Figure 48, the GUI tool generates a Verilog top file according to the

description of a user specified system with hardware IP components. For instance, a user selects

a system having three PEs and an DDU for 10 tasks and 10 resources. The generation process

starts with the DDU system description in the description library. The DDU system description lists

modules necessary to build the DDU system, such as PEs, L2 memory, a memory controller, a bus

arbiter, an interrupt controller and an DDU. The Verilog top file generator, which we call Archi gen,

writes instantiation code for each module in the list of the DDU description to a file. Archi gen

also includes multiple instantiation code of the same type IP with distinct identification numbers

since some modules such as PEs need to be instantiated multiple times. Then, Archi gen writes

necessary wires described in the DDU description, and then writes initialization routines necessary

to execute simulation. Later by compiling Top.v, a specified target hardware architecture will be

ready for exploration.

So far, we briefly introduced the
�

hardware/software RTOS framework and described

the integration of hardware deadlock solutions discussed previously (i.e., the DDU, DAU

and PBAU) into the framework. In the next section, we will briefly describe a separate

automatic IP generation tool for such deadlock hardware solutions.

6.3 Automatic Generation of the DDU, DAU and PBAU

We believe an automated Intellectual Property (IP) tool can be developed for hardware

deadlock solutions (i.e., the DDU, DAU and PBAU) . We outline the beginning of such a

135

...
wire bg_bar;
wire br_bar;
wire data;
wire addr;

(i) instantiation code generation

...
socddu ddu (addr, data, ...);
arbiter arb (br_bar, bg_bar);
cpu_mpc755 cpu1 (...);
clock clock_gen (SYSCLK);

initial begin ... end;

(iii) compile and instantiations

...arbiter
memory controller
cpu_mpc755,

enddesc

Desc SoCDDU

Library
Description

Clock

Arbiter

SoCDDU

1,2,3
Memory

(ii) add wires and initial states

PEs 1,2,3

Figure 48: HDL top file generation flow of the
�

framework.

tool. Figure 49 shows a GUI tool that generates two files, a makefile and a parameter file. A

parameter file contains parameters used to automatically generate a user specified hardware

deadlock solution out of the DDU, DAU and PBAU. A makefile is used to generate a

user specified hardware deadlock solution by processing modifiable deadlock hardware

IP library with parameters. Figure 50 illustrates the generation flow. We use “Verilog

Pre-Processor (VPP)” to process modules in a modifiable deadlock hardware IP library

according to parameters specified by a user. The GUI tool inputs a type of target processor,

the number of processes in the target MPSoC and the number of resources. After choosing a

deadlock solution, the user clicks the Generate button. Then the GUI generates a makefile

and a file that contains appropriate parameters for the specified deadlock IP component.

After that, by executing the makefile, a target specific deadlock solution (i.e., one of a

136

DDU, DAU or PBAU) is automatically generated.

Figure 49: GUI for automatic generation of a hardware deadlock solution.

Parameter.v

Makefile

vpp dauvpp.v

pbau (inputs)..

ddu (inputs)..

DDU.v

dau (inputs)..

DAU.v

PBAU.v

process=10...

Verilog Pre−

Processing

Library

Modifiable

Hardwaew IP

Figure 50: Automatic generation flow of a hardware deadlock solution.

6.4 Summary

This chapter presented the integration of parameterized generation of the DDU, DAU and

PBAU into the
�

hardware/software RTOS/MPSoC codesign framework that has been used

to configure and generate simulatable RTOS/MPSoC designs having both appropriate hard-

ware and software interfaces as well as system architecture. The
�

framework is specifi-

cally designed to help RTOS/MPSoC designers very easily and quickly explore their design

space with available hardware and software modules so that they can efficiently search and

discover several optimal solutions matched to the specifications and requirements of their

137

design before an actual implementation.

This chapter also describes a separate IP generation tool used to automatically generate

a hardware deadlock solution out of the DDU, DAU and PBAU according to the numbers

of processes and resources that a user specifies.

138

CHAPTER VII

CONCLUSION

This thesis presents fast and deterministic hardware/software deadlock avoidance method-

ologies that are easily applicable to real-time multiresource MultiProcessor System-on-a-

Chip (MPSoC) design. Our solutions are provided in the form of Intellectual Property

(IP) hardware units which we call the Deadlock Avoidance Unit (DAU) and the Parallel

Banker’s Algorithm Unit (PBAU).

Parallel Deadlock Detection Algorithm (PDDA) and its hardware implementation in the

Deadlock Detection Unit (DDU) are proposed by Shui, Tan and Mooney [48]. This thesis

illustrates detailed descriptions of PDDA as well as DDU with mathematical representa-

tions, software implementations of PDDA and extensive experimentation among the DDU,

PDDA in software as well as an ������� ��� deadlock detection algorithm. We proved the

correctness of PDDA with five lemmas and four theorems. We also proved that the DDU

has a worst case run-time of
� � �	� � ����
 ��� � � �����	� � �
��
 ����� (where � and � are

the numbers of resources and processes, respectively) with two corollaries, one lemma and

one theorem. Previous algorithms in software, by contrast, have ����� � ��� run-time com-

plexity. The DDU reduces deadlock detection time by 99%, (i.e., 100X) or more compared

to software implementations of deadlock detection algorithms. An experiment involving a

practical situation that employs the DDU showed that the time measured from application

initialization to deadlock detection was reduced by 46% compared to detecting deadlock in

software.

The DAU provides very fast and automatic deadlock avoidance in MPSoC with multi-

ple processors and multiple resources. The DAU avoids deadlock by not allowing any grant

or request that leads to a deadlock. In case of livelock resulting from an attempt to avoid

139

deadlock, the DAU asks one of the processes involved in the livelock to release resource(s)

so that the livelock can also be resolved. We devised three novel deadlock avoidance al-

gorithms, implemented the algorithms in Verilog Hardware Description Language (HDL),

and synthesized them using an automatic synthesis tool. We simulated two synthetic appli-

cations that can benefit from the DAU and demonstrated that the DAU reduces the deadlock

avoidance time by over 99% (about 300X) and achieves in a particular example approxi-

mately 40% speedup of application execution time as compared to the execution time of

the same application using the same algorithm in software. The MPSoC area overhead due

to the DAU is small, under 0.04% in our SoC example.

While the DAU provides automatic deadlock avoidance for single-instance resource

systems, PBAU, a hardware implementation of our novel Parallel Banker’s Algorithm

(PBA), accomplishes fast, automatic deadlock avoidance for multiple-instance resource

systems. PBA is a parallelized version of the Banker’s Algorithm for a multiple instance

multiple resource system, which was proposed by Habermann. We have implemented PBA

in Verilog HDL and synthesized it using an automatic synthesis tool. PBAU provides a

system with an ��� ��� run-time complexity deadlock avoidance with a best case run-time of

��� � � . We demonstrate that PBAU not only avoids deadlock in a few clock cycles (1600X

faster than the Banker’s Algorithm implemented in software), but also achieves in a par-

ticular example a 19% speedup of application execution time over avoiding deadlock in

software. The MPSoC area overhead due to PBAU is small, under 0.05% in our candidate

MPSoC example.

While our experiments are not industrial strength full product code, nevertheless we

expect similar results as MPSoC designs become more commonplace; we predict that our

hardware deadlock solutions can potentially help especially in real-time scenarios where at

time-critical moments significant transitions involving many releases, requests and grants

occur.

140

To automate the design of hardware deadlock solutions, we also provide an initial ap-

proach to an automatic deadlock hardware generation tool that is capable of generating a

custom DDU, DAU or PBAU for a user specified combination of resources and processes,

so that users can easily and rapidly implement a particular deadlock hardware solution for

their target MPSoCs.

Moreover, we have integrated automatic generation of DDU, DAU and PBAU into

the
�

hardware/software Real-Time Operating System (RTOS) partitioning framework of

which the goal is to speed up RTOS/MPSoC codesign. As MPSoC designs become more

common, hardware/software codesign engineers face new challenges involving operat-

ing system integration. The
�

framework is used to configure and generate simulatable

RTOS/MPSoC designs having both appropriate hardware and software interfaces as well

as system architecture. The
�

framework is specifically designed to help RTOS/MPSoC

designers very easily and quickly explore their design space with available hardware and

software modules so that they can efficiently search and discover several optimal solutions

matched to the specifications and requirements of their design prior to any actual imple-

mentation.

In summary, we believe that our approaches initiate a paradigm shift in the context

of deadlock solutions for multiprocessor multiresource System-on-a-Chip from exclusive

use of software to hardware/software partitioned solutions that enable distribution of part

of the burden imposed on processors to a low cost, fast hardware IP core. By providing

faster and more deterministic deadlock avoidance for such SoCs, our solutions can improve

reliability of systems; thus allowing systems to have the much higher levels of concurrency

to be demanded in the near future. Furthermore, using the automatic deadlock hardware

generation tool, a customized deadlock hardware IP for a particular target system can easily

be generated.

141

REFERENCES

[1] AKGUL, B., The System-on-a-Chip Lock Cache. PhD thesis, School
of ECE, Georgia Institute of Technology, Atlanta, GA, Spring 2004.
http://etd.gatech.edu/theses/available/etd-04122004-165130/.

[2] AKGUL, B., LEE, J., and MOONEY, V. J., “A System-on-a-Chip Lock Cache with
task preemption support,” Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES’01), pp. 149–157, Novem-
ber 2001.

[3] AKGUL, B. and MOONEY, V., “Parlak: Parametrized Lock Cache generator,” Pro-
ceedings of the Design Automation and Test in Europe Conference (DATE’03),
pp. 1138–1139, March 2003.

[4] AKGUL, B. and MOONEY, V. J., “The System-on-a-Chip Lock Cache,” International
Journal of Design Automation for Embedded Systems, vol. 7, no. 1-2, pp. 139–174,
September 2002.

[5] AMI Semiconductor. http://www.amis.com/, 2003.

[6] ASICS World Site. http://www.asics.ws/, 2004.

[7] BELIK, F., “An efficient deadlock avoidance technique,” IEEE Trans. on Computers,
vol. 39, no. 7, pp. 882–888, July 1990.

[8] COFFMAN, E., ELPHICK, M., and SHOSHANI, A., “System deadlocks,” Computing
Surveys, vol. 3, pp. 67–78, June 1971.

[9] COUDERT, O., MADRE, J., and FRAISSE, H., “A new viewpoint on two-level logic
minimization,” Proceedings of 30th Design Automation Conference (DAC), pp. 625–
630, June 1993.

[10] DE MICHELI, G., Synthesis and Optimization of Digital Circuits. New York, NY:
McGraw-Hill, 1994.

[11] DIJKSTRA, E., “Cooperating sequential processes,” Tech. Rep. EWD-123, Techno-
logical University, Eindhoven, The Netherlands, September 1965.

[12] DVT solutions. http://www.xilinx.com/esp/dvt/cdv/dvt solutions/ip/dsp/, 2004.

[13] EZPELETA, J., TRICAS, F., GARCIA-VALLES, and COLOM, J., “A banker’s solution
for deadlock avoidance in FMS with flexible routing and multiresource states,” IEEE
Trans. on Robotics and Automation, vol. 18, no. 4, pp. 621–625, August 2002.

142

[14] GEBRAEEL, N. and LAWLEY, M., “Deadlock detection, prevention, and avoid-
ance for automated tool sharing systems,” IEEE Trans. on Robotics and Automation,
vol. 17, no. 3, pp. 342–356, 2001.

[15] GOLD, E., “Deadlock prediction: Easy and difficult cases,” SIAM Journal of Com-
puting, vol. 7, no. 3, pp. 320–336, 1978.

[16] HABERMANN, A., “Prevention of system deadlocks,” Communications of the ACM,
vol. 12, no. 7, pp. 373–377,385, July 1969.

[17] HAVENDER, J., “Avoiding deadlock in multitasking systems,” IBM System Journal,
vol. 7, no. 2, pp. 74–84, 1968.

[18] HENNESSY, J. and PATTERSON, D., Computer architecture - A quantitative ap-
proach. San Francisco, CA: Morgan Kaufmann Publisher, Inc., 1996.

[19] HOLT, R., “Comments on prevention of system deadlocks,” Communications of the
ACM, vol. 14, no. 1, pp. 36–38, January 1971.

[20] HOLT, R., “Some deadlock properties of computer systems,” ACM Computing sur-
veys, pp. 179–196, September 1972.

[21] ITRS. The International Technology Roadmap for Semiconductors 2003,
http://public.itrs.net/.

[22] KIM, J. and KOH, K., “An O(1) time deadlock detection scheme in single unit and
single request multiprocess system,” IEEE TENCON ’91, pp. 219–223, August 1991.

[23] LANG, S., “An extended banker’s algorithm for deadlock avoidance,” IEEE Trans. on
Software Engineering, vol. 25, no. 3, pp. 428–432, May 1999.

[24] LEE, J. and MOONEY, V., “Hardware-software partitioning of operating systems:
Focus on deadlock detection and avoidance,” IEE Proc. Computers and Digital Tech-
niques, January 2005.

[25] LEE, J. and MOONEY, V., “A novel O(n) Parallel Banker’s Algorithm for system-
on-a-chip,” Proceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC 2005), January 2005.

[26] LEE, J., MOONEY, V., DALEBY, A., INGSTROM, K., KLEVIN, T., and LINDH,
L., “A comparison of the RTU hardware RTOS with a hardware/software RTOS,”
Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC
2003), pp. 683–688, January 2003.

[27] LEE, J. and MOONEY, V. J., “An O(min(m,n)) Parallel Deadlock Detection Algo-
rithm,” Tech. Rep. GIT-CC-03-41, College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA, September 2003.

143

[28] LEE, J., RYU, K., and MOONEY, V., “A framework for automatic generation of
configuration files for a custom RTOS,” Proceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA’02), pp. 31–37,
June 2002.

[29] LEIBFRIED, T., “A deadlock detection and recovery algorithm using the formalism
of a directed graph matrix,” Operation Systems Review, pp. 45–55, April 1989.

[30] LI, C., XIAO, L., YU, Q., VENKATESAN, R., and GILLARD, P., “Design of a
pipelined DSP processor - MUN DSP2000,” Proceedings of Newfoundland Electrical
and Computer Engineering Conference (NECEC 2000), November 2000.

[31] MAEKAWA, M., OLDHOEFT, A., and OLDEHOEFT, R., Operating Systems - Ad-
vanced Concepts. Menlo Park, CA: Benjamin/Cummings Publishing Company, 1987.

[32] MCCLUSKEY, E., “Minimization of boolean functions,” Bell System Technical Jour-
nal, vol. 35, pp. 1417–1444, 1959.

[33] Mentor Graphics, Hardware/Software Co-Verification: Seamless.
http://www.mentor.com/seamless/, 2004.

[34] Mentor Graphics, XRAY Debugger. http://www.mentor.com/xray/, 2004.

[35] MOONEY, V., Hardware/software partitioning of operating systems in the book Em-
bedded Software for SoC edited by A. Jerraya, S. Yoo, D. Verkest and N. Wehn. Boston,
MA: Kluwer Academic Publishers, 2003.

[36] MOONEY, V. and BLOUGH, D., “A hardware-software real-time operating system
framework for SOCs,” IEEE Design and Test of Computers, pp. 44–51, Nov.-Dec.
2002.

[37] MOONEY, V. and LEE, J., Hardware-software partitioning of operating systems: fo-
cus on deadlock detection and avoidance edited by IEE. England: IEE Press, 2005.

[38] MORGAN, S., “Jini to the rescue,” IEEE Spectrum, vol. 37, no. 4, pp. 44–49, April
2000.

[39] QualCore Logic. http://www.qualcorelogic.com/, 2004.

[40] REEVES, G., “What really happened on mars,” RISKS Forum, vol. 19, no. 54, January
1998.

[41] RYU, K., Automatic generation of bus systems. PhD thesis, School
of ECE, Georgia Institute of Technology, Atlanta, GA, Summer 2004.
http://etd.gatech.edu/theses/available/etd-07122004-121258/.

[42] RYU, K. and MOONEY, V., “Automated bus generation for multiprocessor SoC
design,” Proceedings of the Design Automation and Test in Europe Conference
(DATE’03), pp. 282–287, March 2003.

144

[43] RYU, K. and MOONEY, V., “Automated bus generation for multiprocessor SoC de-
sign,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, no. 11, pp. 1531–1549, November 2004.

[44] SHA, L., RAJKUMAR, R., and LEHOCZKY, J., “Priority inheritance protocols: An
approach to real-time synchronization,” IEEE Trans. on Computers, vol. 39, no. 9,
pp. 1175–1185, September 1990.

[45] SHALAN, M., Dynamic memory management for embedded real-time multiproces-
sor system-on-a-chip. PhD thesis, School of ECE, Georgia Institute of Technology,
Atlanta, GA, Fall 2003. http://etd.gatech.edu/theses/available/etd-11252003-131621/.

[46] SHALAN, M. and MOONEY, V., “Hardware support for real-time embedded multi-
processor system-on-a-chip memory management,” Proceedings of the Tenth Inter-
national Symposium on Hardware/Software Codesign (CODES’02), pp. 79–84, May
2002.

[47] SHALAN, M., SHIN, E., and MOONEY, V., “DX-Gt: Memory management and
crossbar switch generator for multiprocessor system-on-a-chip,” Proceedings of the
11th Workshop on Synthesis And System Integration of Mixed Information technolo-
gies (SASIMI’03), pp. 357–364, April 2003.

[48] SHIU, P., TAN, Y., and MOONEY, V. J., “A novel parallel deadlock detection al-
gorithm and architecture,” Proceedings of the 9th International Workshop on Hard-
ware/Software Co-Design (CODES’01), pp. 30–36, April 2001.

[49] SHOSHANI, A. and COFFMAN, E., “Detection, prevention and recovery from dead-
locks in multiprocess, multiple resource systems,” 4th Annual Princeton Conference
on Information Sciences and System, March 1970.

[50] STALLING, W., Operating Systems. Upper Saddle River, New Jersey: Prentice Hall,
2001.

[51] SUN, D., BLOUGH, D., and MOONEY, V. J., “Atalanta: a new multiprocessor
RTOS kernel for system-on-a-chip applications,” Tech. Rep. GIT-CC-02-19, College
of Computing, Georgia Institute of Technology, Atlanta, GA, March 2002.

[52] Synopsys, Design Compiler. http://www.synopsys.com/products/logic/logic.html,
2004.

[53] Synopsys, VCS Verilog Simulator.
http://www.synopsys.com/products/simulation/simulation.html, 2004.

[54] Texas Instruments, TMS320C80.
http://focus.ti.com/docs/prod/folders/print/tms320c80.html., 2004.

[55] The MPEG Home Page. http://www.chiariglione.org/mpeg/, 2004.

[56] The Official Bluetooth Website. http://www.bluetooth.com/, 2004.

145

[57] Xilinx. http://www.xilinx.com/, 2004.

146

VITA

Jaehwan Lee was born in Daegu, South Korea. After obtaining his master’s degree in elec-

trical engineering at Kyeong-book National University, he joined the Agency for Defense

Development where he was involved in the design of firing control systems for guided mis-

sile systems. While he was working as a digital circuit designer and senior researcher in

the industry, a strong desire to teach was growing inside him. Since he deeply respected

the teaching and mentoring of students, he was willing to quit a very good job, making an

extraordinary decision to come to Georgia Tech and learn enough about computer-aided

VLSI system design to hopefully be able to stimulate the curiosity of students and help

them efficiently prepare for a career in the field. Now he wishes to embark on becoming an

excellent professor as well as a mentor.

Entering Georgia Tech, he joined Georgia New Seoul Baptist Church, where he met

many invaluable Christian brothers and sisters, who influenced him tremendously. He be-

lieves that God is helping him and prays for a successful accomplishment of his vision

realizing the goal of teaching and researching at an American university. Therefore, he

now pursues becoming an excellent professor at a university wherever God would direct in

the United States or elsewhere.

147

