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SUMMARY 

 

 

Today many business enterprises employ capital assets in the form of electronic 

equipment (e.g., personal computers, workstations and peripherals) in large quantities. As a 

result of rapid technological progress, these products have a very short life cycle, typically 

not much more than three or four years. Unfortunately, the disposal of electronic equipment 

(which contains hazardous materials) presents an environmental problem. 

In the face of rapid equipment changes, current tax laws and disposal challenges, 

leasing or procurement contracts with take-back considerations are attractive. For a large 

electronic equipment leasing company, optimal management of assets supported by good 

logistics decisions is crucial and may provide a significant competitive advantage. The 

leasing company tries to maximize operating profits through key decisions associated with 

the length of leases, efficient utilization of logistics facilities for material flow to and from 

customer sites, and equipment reuse, refurbishment and disposal actions. 

In this research, a mixed integer linear programming (MILP) model is developed to 

facilitate better decisions from the perspective of an electronic equipment leasing company. 

The model reduces to a linear program (LP) under certain cost assumptions. A case study 

with representative industry data validates the approach and demonstrates the utility of the 

model in answering key research questions. Since the aforementioned cost assumptions are 

industry representative, all computational results are based on the LP version of the model. 

Next, important problem uncertainties are identified and prioritized. The effects of 

these key uncertainties on optimal lease length and product flow decisions are examined in 
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detail via an extended case study. It is also shown how the leasing company can make near-

robust leasing decisions in the face of these uncertainties. 

The computational research results also have implications for policy formulation on 

electronic waste. The important insights include an understanding of the potential impacts 

and expected effectiveness of alternative environmental legislation in different geographic 

areas, and the imposition of negative externalities on other policy realms as a result of this 

non-uniform approach. Therefore, this research contributes new models and understanding 

to the intersection of the fields of reverse logistics and equipment replacement, and 

provides valuable insights to both business asset managers and environmental policy 

makers. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Problem background 

 

In 2002, the Equipment Leasing Association estimated that of the total investment in 

business equipment by companies, nearly one-third, or $204 billion, would be financed 

through leasing [32]. A key portion of the logistics cost for the leasing industry, the 

transportation costs, is approximately 1.5% of total costs [94], or approximately $3 

billion for 2002. Clearly, logistics decisions greatly impact asset management problems 

faced by equipment leasing companies. 

This research addresses the special asset management problem faced by electronic 

equipment leasing companies. An estimated value of the sales of computers and 

electronic products (excluding semiconductors) in 2002 is $140 billion [95]. Even though 

many of these computers would have been sold to individual consumers, the extension of 

general leasing trends to electronic products makes it clear that electronic equipment 

leasing companies can realize substantial benefits by making efficient logistics decisions. 

Today, business enterprises use capital assets in the form of electronic equipment 

(e.g., personal computers and workstations) in large quantities. The estimate for average 

computers per employee in 2001 was 0.56, with the ratio being as high as 0.99 in certain 

industries [99]. However, as a result of rapid technological progress, these products have 
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a very short lifecycle. Typically, due to ever-increasing computing needs that arise out of 

growing business data, new software and new operating systems, their useful life is not 

much more than three or four years. After this time, some of the equipment can be 

redeployed to other suitable applications within the same organization. Some of it may be 

refurbished or cannibalized for parts and the remainder resold or discarded.  

In light of increasing environmental consciousness and stricter legislation, disposal 

of electronic equipment, which contains hazardous materials, presents another problem. 

Employees in the organization may not have incentives, or even enough relevant 

knowledge, to make economically and ecologically optimal decisions for the overall 

useful lifecycle of these electronic products. Therefore, leasing or procurement contracts 

with take-back considerations become attractive options. 

Introduction of environmental legislation with regard to electronic waste, combined 

with the short lifecycle of electronic equipment like computers, is expected to change the 

business strategies of firms in fundamental ways. The methodology developed in this 

research must therefore take these factors into account. The next section formally defines 

the problem that will be addressed in this dissertation. 

 

1.2 Problem definition 

 

This research considers the problem from the perspective of a leasing company that 

offers operating leases on electronic equipment and may therefore be required to take 

back these products at the end of their useful life. Due to the intense competition, 

overhead costs, and the fact that equipment may be available on the market at very 
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moderate prices, it is quite difficult to sustain profitable business operations just by 

varying the prices offered to customers. Therefore, effective management of these assets, 

supplemented by good logistics decisions, is crucial for such a business enterprise and 

may provide a significant competitive advantage. In fact, there have been reports that by 

turning assets over multiple times and by refurbishing between lease cycles, leasing 

companies are able to offer operating leases that do not recover the initial purchase price 

of the equipment in the first leasing cycle [18]. In order to maximize operating profits, 

the key decisions to be made are: 

 Length of leases on a given set of assets, 

 Efficient utilization of logistics facilities for material flow to and from customer sites, 
and 

 Disposition actions after take-back; e.g., resale (reuse), refurbishment, metal/glass/ 
plastics recycling and landfilling. 

These decisions are clearly interdependent. For example, the time lag between the 

lease and return of the products significantly affects the feasibility and cost of post take-

back options; e.g., the resale value of the latest configuration of a computer (newest 

technology) after five years will be much lower than that after two years. In fact, after 

five years, it may not be possible to resell the computer at all. Similarly, it may be more 

economical to maintain an inventory of older assets (which may be leased to users with 

lower requirements) rather than buying new assets for every order and disposing of all 

used assets that are returned at the end of the lease. In addition, the existence of 

alternative environmental legislation on electronic waste in different geographical regions 

(nationally and internationally) must be taken into account to ensure the legality of post 

take-back disposition actions and to reduce disposal costs. Therefore, in order to improve 
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profitability, it is essential that these decisions be made simultaneously. In summary, the 

problem statement can be written as: 

 

“In the presence of short product life cycles and increasingly strict 
environmental legislation for electronic products, how can efficient reverse 
logistics and equipment replacement (leasing) decisions be made simultaneously 
so as to maximize profitability?” 
 

However, due to the interdisciplinary nature of this problem, a detailed examination 

of the nature of key decisions and how they are affected by changes in problem 

parameters spanning across the various related disciplines has the potential to provide 

novel insight not only to business managers, but also to environmental policy makers. For 

example, by observing the changes in behavior of firms with state-sponsored 

environmental legislation in place, it is possible to obtain insight into the expected 

effectiveness of the formulated legislation. In addition, legislative effects that may not be 

immediately apparent at the time of formulation could be revealed. Therefore, other 

important questions that this research hopes to answer include the following. 

 What effects do state-sponsored environmental initiatives (e.g., landfill bans, advance 
recycling fees (ARFs), recycling disposal fees, etc.) have on the key decisions made 
by the leasing company? 

 Do differences between environmental legislation in different locations (globally and 
nationally - such as between the European Union and the U.S., and even between 
different states within the U.S.) change the key decisions? If they do, what are the 
possible implications of the observed changes? 

This research studies this important practical problem using an analytical approach, 

which is the formulation of a mixed integer linear program (MILP) to model and solve 

the problem. The model reduces to a linear program (LP) under certain realistic cost 

assumptions, and all computational results are derived using the LP version of the model. 
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The research results are expected to provide valuable insights to business asset managers 

and environmental policy makers. The next section briefly discusses the organization of 

this dissertation. 

 

1.3 Organization of the dissertation 

 

 Before a detailed discussion of the research approach, it is essential to review the 

relevant literature published so far, and to show that the problem described in this 

proposal has not been addressed so far in published literature. Chapter 2 presents a 

literature review covering the various aspects of this problem, and shows how this 

research bridges some of the gaps in existing literature. 

As mentioned in Section 1.2, the analytical research approach of this dissertation is 

the formulation of a MILP to model the problem. Chapter 3 describes the mathematical 

model that has been formulated for this problem and discusses its main characteristics, 

including strengths and limitations. Subsequently, a case study with representative 

industry data is presented in order to validate the model and to demonstrate its utility in 

answering the key research questions. 

Chapter 4 considers a more realistic situation, where uncertainty is present in problem 

parameters. Various uncertainties are considered, following which they are prioritized 

and the effects of key uncertainties on optimal decisions made by the leasing company 

are examined in detail. The chapter also includes a discussion about how the leasing 

company can make near-robust decisions in the face of uncertainty. 
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The results obtained in Chapters 3 and 4 also have implications for the formulation of 

environmental policy. Therefore, a discussion of these policy implications and the 

insights provided by this research into aspects of policy formulation on electronic waste 

is the subject of Chapter 5. The chapter also includes short essays on policy issues that 

are indirectly related to this research, but not addressed herein. Finally, Chapter 6 

presents conclusions and the expected contributions of this dissertation. Interesting 

directions for future research are also discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

In this chapter, a review of published literature related to the various aspects of the 

research problem in this dissertation is presented. Section 2.1 discusses literature on 

parallel asset replacement, a popular research area for engineering economists. Section 

2.2 discusses literature on asset replacement literature with uncertainty. The primary 

types of uncertainties examined in existing literature address changes in problem 

parameters (such as cash flows and discount rates) and technological change. Reverse 

logistics and environmental issues are integral parts of this research as well, and 

therefore, quantitative models for reverse logistics are the subject of Section 2.3. The 

status of environmental legislation on electronic waste is the subject of Section 2.4. 

Finally, a summary discussing the trends in published literature and the gaps in existing 

research directions is provided in Section 2.5. 

 

2.1 Literature on parallel asset replacement 

 

The leasing activity by itself (i.e., how long to lease an order) is quite similar to a 

parallel asset replacement problem. Parallel asset replacement concerns the replacement 

of a multitude of economically interdependent assets that operate in parallel [77]. Issues 

such as demand, economies of scale and budget constraints may cause the 
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interdependence. Customers replace assets when the costs of retaining them outweigh the 

benefits; similarly, leasing companies end leases (analogous to customers’ replacement of 

assets) when the costs of leasing outweigh the benefits. 

Vander Veen (1985) [102] provides the first known formulation of a parallel 

replacement problem. The formulation is a mixed integer linear program. Demand is 

considered to be deterministic, but non-stationary. The total number of machines is 

assumed constant over time, and therefore, demand fluctuations are addressed by 

allowing machine utilizations to be decision variables. 

Jones, Zydiak and Hopp (1991) [55] introduce a different parallel machine 

replacement problem, assuming constant demand but including economies of scale (fixed 

asset purchase costs and variable operating costs). They formulate the problem using 

dynamic programming and solve it using linear programming. To facilitate solution, they 

first illustrate the no splitting property, which states that clusters of same aged assets 

would either be kept or replaced as a group in any period. They then prove the older 

cluster replacement rule, under mild cost assumptions, which states that older assets must 

be replaced before younger assets. Tang and Tang (1993) [89] extend the results, under 

slightly milder cost assumptions, to the all-or-none replacement rule, which states that in 

any period, it is optimal to either keep or replace all machines regardless of age. Hopp, 

Jones and Zydiak (1993) [47] relax the cost assumptions a little further and prove that the 

older cluster replacement rule still holds. Chen (1998) [22] and McClurg and Chand 

(2002) [65] provide algorithms for the parallel replacement problem introduced by Jones, 

Zydiak and Hopp. McClurg and Chand also prove the no splitting property and the older 

cluster replacement rule under different cost assumptions. 
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Rajagopalan (1998) [79] expands the problem to include arbitrary demand patterns, 

and provides an alternate formulation of the problem, which allows for more efficient 

dual-based solution procedures. Hartman and Lohmann (1997) [46] formulate an integer 

program to minimize the purchase, operating and maintenance (O&M) and salvage costs 

for a fleet of assets of a large railroad company where multiple replacement options such 

as purchases, leases and rebuilds are allowed. “Salvage” of an asset means that it is 

disposed of at a fixed cost (or revenue). Additional constraints such as meeting the 

demand and not exceeding capital or expense budgets are taken into account. Assets are 

also allowed to vary in their utilization and capacity. Chand, McClurg and Ward (2000) 

[20] present a special case of these two problems, but use a different model and solution 

procedures. Non-declining demand is assumed. 

Karabakal, Lohmann and Bean (1994, 2000) [57][56] address a parallel asset 

replacement problem where economic interdependence between assets is caused by 

capital rationing and budget constraints. The problem is formulated as a 0-1 integer 

program. In their first paper (1994), they use a branch-and-bound algorithm to solve 

moderately sized vehicle fleet replacement problems optimally. Their second paper 

(2000) extends this line of research by developing a heuristic Multiplier Adjustment 

Method (MAM) for solving large, realistically sized problems. Their results suggest that 

the effectiveness of their approach increases with the problem size. 

Hartman (2000) [43] provides an integer programming formulation of the general 

parallel replacement problem, which includes economies of scale in asset purchases, 

fluctuating demand and capital budgeting constraints. It is shown that the problem 
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structure allows for efficient solution procedures. The paper also generalizes the no 

splitting property to cases with demand and budgeting constraints. 

All the papers discussed earlier assume that the assets are homogeneous. Even though 

many of the aforementioned papers mention possible methods of incorporating asset 

heterogeneity in their models, it is not clear whether the proposed algorithms and solution 

procedures would continue to be valid. Only a small body of published literature 

explicitly addresses the parallel asset replacement problem with heterogeneous assets. 

Wu, Hartman and Wilson (2002) [104] formulate and solve a model for fleet sizing 

with heterogeneous assets, in context of the truck rental industry. Operational decisions, 

including demand allocation and empty truck repositioning, and tactical decisions, 

including asset procurements and sales, are examined in a linear programming model in 

order to determine the optimal fleet size and mix. A two-phase solution approach, with 

Benders’ decomposition used in Phase-I, and the initial bounds and dual variables from 

Phase-I are used in Phase-II to improve solution convergence, by using Lagrangian 

relaxation. Computational studies are presented to show the effectiveness of the approach 

for solving large problems within reasonable solution gaps.  

Hartman and Ban (2002) [44] model a series-parallel replacement problem, where the 

(heterogeneous) assets are dependent both serially and parallelly, such as in a parallel 

flow shop environment considered by the authors. An integer programming formulation 

is used to determine optimal purchase, salvage, utilization and storage decisions for each 

asset over a finite horizon. The authors illustrate that this model is difficult to solve, 

provide valid inequalities to improve lower bounds and use a dynamic programming 

approach to provide initial upper bounds. 
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Clearly, replacement analysis is a fundamental problem in engineering economics, 

and active research in this field is on-going, particularly for the solution of large-scale 

real-life problems. Since the leasing aspect of the problem addressed in this research is 

quite similar to parallel replacement with heterogeneous assets, the literature discussed in 

this section is relevant. However, all the papers discussed in this section use deterministic 

models, which are very useful, but cannot address the uncertainty inherently present in all 

real-world problems. Therefore, the next section discusses literature on uncertainty in 

asset replacement problems. 

 

2.2 Literature on uncertainty in asset replacement problems 

 

Existing literature pertaining to uncertainty in asset replacement can be classified 

primarily into two categories. The first category of problems addresses uncertainty in 

important asset replacement parameters such as cash flows, machine utilization, planning 

horizon and interest rates. This literature is discussed in Section 2.2.1. The second 

category of problems is related to the effects of technological change on key asset 

replacement decisions. Although technological change primarily affects cash flows and 

can therefore be regarded as a special case of the category of problems addressing 

uncertainty in asset replacement parameters, it is a sufficiently important issue in asset 

replacement problems so as to warrant a separate discussion. This literature is discussed 

in Section 2.2.2. 
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2.2.1 Uncertainty in asset replacement parameters 

  

The examination of uncertainty in cash flows and discount rates is central to the 

discussion of uncertainty in economic analysis in general, and is not restricted only to 

asset replacement. For example, Quah and Tan (2001) [78] propose a framework for cost-

benefit analyses of public projects in the face of uncertain project life and future cash 

flows. Their work is based on known probabilistic techniques from actuarial literature. 

Chiu and Park (1994) [25] propose a fuzzy number methodology for evaluating and 

comparing the present worth of projects with uncertain cash flows and discount rates. The 

uncertain cash flows and discount rates are modeled as triangular fuzzy numbers, and the 

present worth is also a fuzzy number, but with a non-linear membership function. The 

authors then approximate the present worth with a triangular fuzzy number, examine the 

deviation between the exact present worth and its approximation, and present project 

selection criteria based on different dominance rules. A numerical example is also 

presented. 

The literature on uncertainty in asset replacement problems is not extensive and has, 

until recently, concentrated on serial rather than parallel replacement. Some of the 

relevant literature in the field is discussed below. 

Lohmann (1986) [63] introduces a stochastic single-asset replacement model where 

all cash flows are allowed to be random. The model is solved using Monte Carlo 

simulation and dynamic programming. Smith and Wetzstein (1992) [86] consider a 

stochastic asset replacement model for rejuvenated (or rebuilt) assets. The financial 

returns generated by a productive asset are assumed to be stochastic. The authors also 

consider the covariance among multiple prices and outputs (or revenues) within the life 
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of a current asset and all future assets. Optimal replacement and rejuvenation policies are 

derived over an infinite planning horizon. A numerical example of laying hen 

replacement is presented. Brown (1993) [19] considers a serial replacement problem with 

uncertain rewards, which may be correlated across replacements. The objective is to 

maximize the decision maker’s expected utility. The correlation across replacements 

precludes a dynamic programming approach, but the author’s bound-based heuristic 

procedure is shown to outperform existing solution approaches.  

Esogbue and Hearnes (1998) [33] discuss a fuzzy number approach for calculating 

economic asset life as well as for a finite-horizon single asset replacement problem with 

multiple challengers. Various ranking methods for fuzzy numbers are also mentioned. 

Chang (2003) [21] presents a very comprehensive fuzzy number approach for 

replacement analysis, including both deterioration (due to aging) and market 

obsolescence of equipment. The market share of equipment is considered a function of 

equipment age as well as acquisition time (intended to capture technological change). All 

problem parameters (except the planning horizon) such as cash flows, interest rates, 

market demand and equipment utilization factors are modeled by fuzzy numbers. The 

author then presents methodologies for determining economic asset life and replacement 

strategies for a single asset with multiple challengers. 

Hartman (2001) [41] focuses on variable asset utilization (a concept introduced by 

Bethuyne, 1998 [15]) that occurs due to randomness in operating conditions and market 

demand. The use of an asset is limited by both age and cumulative utilization, and 

periodic usage levels are probabilistic. A single asset (defender) with multiple challengers 

is considered. A stochastic dynamic programming approach is used for solution, and the 
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concept of an “economic life frontier” is introduced in order to simplify the definition of 

economic life. This analysis is extended to parallel asset replacement in Hartman (2004) 

[42]. In this case, the demand is assumed to be stochastic (with a discrete distribution) 

and is met by allocating it amongst a group of assets operating in parallel. Clearly, asset 

utilization is once again a variable. Theoretical results are derived for the two-asset case, 

an efficient solution procedure is developed, and numerical examples are presented. 

Insights are also provided into the general n-asset case. 

 

2.2.2 Equipment replacement under technological change 

 

The rapid pace of technological progress in the area of electronics and computing has 

caused computers and other electronic equipment to have a much shorter useful life as 

compared to railcars or vehicles. This issue is of great interest to both lessors and lessees 

(users of the leased equipment). Lessors need to make sure that they lease out the latest 

product offerings to customers (since the early part of the life cycle of a new product is 

likely to be the most profitable for a lessor) and lessees need to ensure that the equipment 

that they have meets their business requirements. Therefore, in this section, some relevant 

literature that addresses the problem is discussed, even though asset replacement under 

technological change has not been explored in this research. 

Hopp and Nair (1991) [49] formulate the problem of equipment replacement with 

technological change by assuming the costs of currently available and future technologies 

to be known, but the timing of the technological advances to be uncertain. It is also 

assumed that the revenue generated by a technology is constant over time. They use a 

planning horizon approach for incorporating technological forecasts. A “stopping rule” is 
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developed for the case where at most two technological improvements are allowed. Nair 

and Hopp (1992) [70] extend the problem by allowing the costs and revenues associated 

with each available technology to vary over time. “Forecast Horizon” techniques are used 

to convert the infinite horizon problem into a finite horizon problem, and therefore to 

enable appropriate calculations to be performed to solve it. Nair (1995) [69] further 

extends this work and derives analytical results for a problem where any number of new 

technologies may appear sequentially in the future. The author also introduces the 

concept of “converse functions” and gives an efficient algorithm to solve the problem. 

Hopp and Nair (1994) [48] modify a single-asset replacement problem with the 

possibility of a single (but uncertainly timed) breakthrough in the replacement technology 

by considering Markovian deterioration of the equipment condition. They conclude that 

the possibility of a technological change may provide an incentive or disincentive for 

keeping the current asset rather than replacing it. Similarly, Bethuyne (1998) [15] shows 

that for asset replacement under ongoing technological progress, one cannot neglect the 

opportunity cost of foregone technological progress at the time of replacement, and 

therefore rapid technological progress does not always imply a decrease in replacement 

intervals. Cheevaprawatdomrong and Smith (2003) [23] use a simple technological 

change model of a constant factor improvement in equipment costs per period, and show 

(with certain cost assumptions) that the effect is to optimally delay the introduction of 

new technology. 

A more comprehensive paper by Rajagopalan et al. (1998) [80] simultaneously 

considers capacity expansion and replacement under technological change. The authors 

first formulate a model for a deterministic case, derive some structural results and extend 
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the results to the general case with stochastic technological evolution, which is modeled 

as a semi-Markov process. The authors give an efficient solution procedure for their 

model, perform computational studies and explore the impact of key problem parameters 

on the solution. 

Amongst other methods for analyzing equipment replacement under technological 

change, the most prominent is the assumption of a known function of technological 

change. Oakford, Lohmann and Salazar (1984) [76] present a single-asset replacement 

model where technological change affects cash flows via known mathematical functions. 

Regnier et al. (2004) [83] extend Grinyer’s model (1973) [38] of using a known function 

of technological change, and consider a single asset replacement problem with ongoing 

technological progress that affects assets available after multiple future replacements. 

The authors allow for variable non-identical service lives of future replacements, and it is 

shown that a stationary policy is necessarily sub-optimal when capital and O&M costs 

change at different rates. They also find that considering the effect of future assets can 

substantially affect the first replacement decision and resulting total discounted costs.  

The effects of uncertainty on optimal lease length and product flow decisions are 

examined in this dissertation. Since this research addresses more than a simple equipment 

replacement problem, the key uncertainties to be addressed are not the same as those in 

literature cited in this section. However, the issues addressed by the literature discussed 

in this section remain relevant to the research problem. The next two sections discuss 

reverse logistics models and environmental legislation, issues that are also strongly 

related to this research.  
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2.3 Quantitative models for reverse logistics 

 

This research also involves some aspects of reverse logistics because there exists a 

“reverse” flow of products from customers back to the leasing company. However, due to 

the unsuccessful attempt at locating any analytic reverse logistics models for leasing 

company decisions in current literature, this section cites the most closely related reverse 

logistics literature, which includes mathematical models for the design of reverse 

logistics systems. A few details are provided for results concerning electronic products, 

and reverse logistics literature related to other products is cited for further reference by 

the interested reader. 

Fleischmann et al. (1997) [36] present a review of quantitative models for reverse 

logistics. Reverse logistics was a very young field at that time, and they conclude that 

many reuse or recycling activities required new planning methods and more 

comprehensive approaches than those that had been used up to that time. In accordance 

with this philosophy, Fleischmann (2001) [35] proposes a generic recovery network 

model, and tests it on case studies for copier and paper remanufacturing. The mixed 

integer linear programming (MILP) model decides the number of uncapacitated facilities, 

their locations (from among a discrete set of possible locations), and the allocation of 

corresponding goods flows. The objective is to minimize total investment and operational 

costs for a single product. The model is solved using CPLEX, one of the most widely 

used commercial mathematical programming optimization solvers. Variability in product 

returns is addressed by running the model on a set of scenarios with different parameters. 
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By solving the case studies, the authors attempt to determine the sensitivity of the 

solution to problem parameters. Some possible extensions to the model are also proposed. 

Ammons et al. (1999) [4] develop a generic network design model for the carpet 

industry (Realff et al., 1999 [81] and Realff et al., 2004 [82]) and use it on studies for an 

international producer and distributor of high value network routing units. The model is 

solved using the commercial solver AIMMS. Uncertain product take-back volumes are 

studied by solving the model for different quantities of take-back amounts. The authors 

also examine the effects of product redesign on the reduction of noxious wastes generated 

by the recycling process. 

Krikke et al. (1999) [60] discuss a business case for the Dutch copier manufacturer 

Océ. The objective is to redesign the reverse logistics network in order to minimize cost. 

The authors use a MILP model and solve it using LINDO, another commercial software 

available for mathematical programming. Due to company requirements, the authors have 

been forced to design the reverse logistics networks assuming a fixed forward logistics 

network, a method that does not minimize true costs. Another paper by the same authors 

(1999) [61] describes a business case study concerned with the determination of an 

optimal recovery strategy for the recycling of discarded computer monitors. The aim is to 

analyze the economical viability of monitor recycling on the one hand and to validate the 

practical viability of the models developed in earlier research on the other hand. 

A working paper by Krikke et al. [59] discusses logistics network design for a 

production and return network for refrigerators, and the model is applied to the real-life 

data of a Japanese consumer electronics company. The MILP model incorporates both 
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supply chain costs and its environmental impact by including location-allocation 

decisions and product design options as decision variables. 

Shih (2001) [85] formulates a MILP model for design of an optimal collection and 

recycling system plan for end-of-life computers and home appliances. The optimal 

physical flows of end-of-life products flowing through collection points, storage sites, 

recycling plants and final disposition sites are obtained. The objective function consists 

of the fixed cost of new (capacitated) facilities, transportation costs, final treatment costs 

and the revenue obtained from selling reclaimed materials. The model parameters have 

been estimated due to the absence of historical data for Taiwan. 

So far, all papers discussed in this section addressed uncertainty in product returns 

by examining a finite set of scenarios. Ammons et al. (2002) [3] extend this idea by 

developing a solution methodology using an upper and lower-bounding scheme on the 

robust objective function. Assavapokee (2004) [5] extends it further to develop a 

methodology to solve problems where the parameters can take values from a compact 

real interval. The application of these approaches is demonstrated by a case of reverse 

production system planning for the reuse and recycling of electronic equipment (TVs, 

CRTs and CPUs) collected from residential sectors of the state of Georgia, with particular 

emphasis on avoiding the disposal of hazardous materials in landfills.  

Mathematical models have also been proposed for recycling of paper (Bloemhof-

Ruwaard et al., 1996 [16]), steel (Spengler et al., 1997 [87]), sand (Barros et al., 1998 

[8]), and perhaps other materials as well. In recent times, more literature on stochastic 

inventory models for reverse product flows has started to appear. Other literature that 

involves reverse product flows belongs to the fields of warranty and service parts 
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logistics (Cohen et al., 1997 [27], Cohen et al., 1999 [28], and Murthy and Djamaludin, 

2002 [68]). The primary consideration here is to strike a good balance between inventory 

holding costs and good customer service, and therefore, most of this literature focuses on 

stochastic inventory models as well. Formulation of stochastic inventory models is not a 

part of this research, and therefore, such literature will not be discussed here.  

Reverse logistics and related inventory and environmental issues are important for 

this research, even though logistics network design and inventory management are not its 

objectives. The discussion in this section suggests that this research presents the first 

known model to integrate reverse logistics decisions with equipment leasing decisions 

(lease lengths, logistics system utilization and disposition actions after end of lease) from 

the perspective of an electronic equipment leasing company. 

 

2.4 Environmental legislation on electronic waste 

 

The global emergence of increasingly stricter legislation on “Electronic Waste,” or 

Waste Electronic and Electrical Equipment (WEEE), necessitates proper handling and 

disposal of the used equipment at the end of its useful life. Two key concepts related to 

environmental concerns are Sustainable Development and Extended Producer 

Responsibility (EPR). For perspective, a brief overview of current and impending WEEE 

legislation across the globe is given in this section.  

The European Union (EU) Directives on the management of WEEE and the 

restriction on the use of certain hazardous substances in electronic equipment (RoHS) 

issued by the European Parliament and the Council of the European Union were adopted 
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in November 2002. WEEE proposes take-back obligations for electronics manufacturers 

(free of charge for the final user, a visible up-front fee can be added to the new product's 

price until August 13, 2005 to account for “historical” waste), a minimum rate of separate 

collection of WEEE of four kilograms on average per inhabitant and year by 2006, and 

product-type specific recycling targets. Users of electrical and electronic equipment from 

private households should have the possibility of returning WEEE free of charge, but 

member states may make users other than private households partly or fully responsible 

for the financing of recycling operations. Producers are to be responsible for providing 

guarantees that future costs will be covered for all WEEE sold after August 13, 2005 

[34][93]. RoHS proposes a ban on heavy metals (lead, mercury, cadmium and hexavalent 

chromium) in electronic equipment that will commence in July 2006. Member states are 

required to transpose the directive into national legislation by September 2004. Prior to 

the adoption of the WEEE Directives, take-back and recycling legislation for certain 

electronic goods had already been in force in some member states such as Belgium, The 

Netherlands, Norway, Switzerland and Sweden, and these countries will revise their 

legislation in accordance with the EU WEEE Directive. 

However, there is still considerable debate about the effectiveness of the proposed EU 

directives. For example, Stevels (2002) [88] highlights the three environmental aspects of 

“green” (emissions, natural resource utilization  and potential toxicity) and argues that the 

European policies and directives are one-dimensional. He also states that different 

stakeholders (scientists, governments and consumers) possess different perspectives on 

“green,” and therefore contribute to the debate. He proposes a method to balance 

environmental dimensions and stakeholder perspectives, stresses on defining terms 
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clearly in order for operationalization of directives to be effective and highlights the role 

of “Eco-Design.” Huisman (2003) [50] formalizes these ideas by defining a concept 

called QWERTY/EE, an integrated approach that takes into account economic, 

environmental, product redesign and legislative aspects of take-back and recycling 

programs for electronic products. 

The Environmental Protection Administration (EPA) of Taiwan announced a Scrap 

Home Appliances and Computers Recycling Regulation in March 1998 that mandates 

manufacturers and importers to take-back their products [85]. An end-of-life measure, 

which covered selective WEEE items (computers not included), was enacted in Japan in 

April 2001. This legislation requires individual consumers to pay the direct costs of 

transporting and recycling their goods at the point of recycling - as much as ¥4000 

(approximately $40) for a large appliance. However, a Computer Recycling Law has 

been enacted, effective October 2003, whereby it is compulsory for electronics 

manufacturers to collect and recycle PCs. As a result, the recycling costs are included in 

the sales price for most appliances. Consumers can drop off used electronic equipment at 

post offices, or contact the manufacturer for arranging pick-up [53][54][84]. 

Among the countries where legislation is not as strict but awareness about the scale of 

the electronic waste problem is rapidly growing, are Australia, Canada and the United 

States. There is considerable debate about suitable legislation and policy roadmaps for 

dealing with the problem in a fair and effective manner. The Australian Department of 

the Environment and Heritage has recommended the establishment of a National 

Electrical and Electronic Products Recovery Program. The program would cover personal 

computers and peripherals, TVs, VCRs, white goods and other electrical appliances. The 
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proposed initiatives include a voluntary and transparent levy on the sale of new 

computers, peripherals and TVs to fund electronics recycling infrastructure and 

implementation of landfill bans or higher landfill charges for computers and TVs [6].  

In Canada, electronics manufacturers are expected to create, manage and finance an 

E-waste management program targeting both consumer and commercial waste. An 

industry-led non-profit organization called Electronics Product Stewardship Canada (EPS 

Canada) [31] is developing a national electronics end-of-life program in Canada. 

However, provincial priorities are expected to be important in the development of 

solutions, and EPS Canada would like the establishment of a national program that would 

meet or exceed the requirements of provincial governments. In May 2004, the province 

of Alberta announced an electronics recycling program, whereby computers, TVs and 

peripherals would be collected, reused and recycled, effective October 2004. The Alberta 

Recycling Management Authority (ARMA) will manage the program, which would be 

financed by an end-of-life fee ranging from $5 to $45, depending on the item [2]. Laws 

governing electronics product disposal are also likely to come into force in the provinces 

of Ontario, Manitoba and British Columbia in 2004, and ultimately in all provinces. 

There are diverse activities in the U.S. The U.S. Environmental Protection Agency 

(EPA) believes in shared responsibility that places greater, but not sole, responsibility on 

producers [97][98], but has not yet put forth any ideas for comprehensive national 

legislation. The result is a patchwork of alternative state-level legislation. Legislation is 

pending or in force in many states across the country, and is being actively debated in 

many others. The National Caucus of Environmental Legislators [71] tracks the status of 

electronic waste legislation across various states, some of which is summarized below. 
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A landfill ban on the disposal of Cathode Ray Tubes (CRTs) is in effect in 

Massachusetts [64]. A similar ban is scheduled to come into force in Minnesota (July 

2005), Maine (January 2006) and Washington (January 2006). Several states have set up 

(or passed legislation to set up) committees and councils to look into viable options for 

environmentally friendly disposal of electronic waste. Examples include Georgia, 

Oregon, Rhode Island and Washington. A recent California bill establishes an Advance 

Recycling Fee (ARF) of $6-$10 on all electronic products containing CRTs, which would 

be used to fund an electronics recycling system in the state. Maine has mandated a similar 

$6 fee on televisions from 2005 to 2011. Maine has also approved EPR for computer 

manufacturers (starting 2006) and television manufacturers (starting 2012). Washington 

has proposed a similar EPR initiative, but it has not been enacted so far. In addition, 

several states have passed legislation mandating the phase-out of heavy metals from 

electronic products (similar to the EU’s RoHS Directive), with California and Maine 

being the most active [71]. These developments strongly suggest that the legislative 

developments on stricter environmental requirements for electronic products in Europe 

and Asia are certain to have an impact on U.S. firms, especially those that operate in 

these regions. 

An indirectly related, but nevertheless very important, issue is the Basel Convention 

[12], an international treaty to which 134 nations are a party, and which restricts the 

movement of hazardous wastes and their disposal across national borders. A huge amount 

of electronic waste from the U.S. is being exported to third-world countries like India, 

China and Pakistan [10]. A recent report also suggests that Canada is exporting E-waste 

to third-world countries, contrary to its obligations under the Basel Convention [9]. 
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This discussion brings to light the fact that there currently exists great uncertainty and 

considerable debate about environmental legislation throughout the world. A significant 

portion of the debate is about who pays for the system to be “environmentally friendly,” 

which often leads to divergent points of view held by businesses, governments and 

consumers. A fair agreement on the economic aspect of environmental policies allows 

them to be effectively implemented, and it is anticipated that this research will also be 

able to provide insights into the expected effectiveness of formulated environmental 

policies. 

 

2.5 Summary of literature review 

 

Surprisingly, there seem to be very few mathematical models that address business 

operations like asset management and logistics simultaneously. There is a great deal of 

literature in the individual fields of study related to the various aspects of this problem, 

and some of it is briefly overviewed in this chapter.  

Asset replacement has been and continues to be a popular research area. This 

literature examines the problem from the perspective of the user of equipment rather than 

the lessor, but the decision is analogous for leasing companies, and hence Section 2.1 

discusses relevant literature on parallel asset replacement. Most of the research in this 

area has tended to address the problem primarily from an engineering economy or 

finance point of view. Therefore, all characteristics of the assets are captured in terms of 

money. Peculiar characteristics of some assets that significantly distinguish them from 

other types of assets seem to have been taken into account only in limited ways. 
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Since uncertainty is present in all real problems, and this research investigates the 

effect of certain problem uncertainties on lease length and product flow decisions, 

literature on asset replacement under uncertainty is presented in Section 2.2. The key 

uncertainties for this research are different, and issues of technological change are not 

explored here. However, these issues remain very relevant because the rapid pace of 

technological progress in the area of electronics and computing results in computers and 

some other electronic equipment having a much shorter useful life as compared to 

railcars or vehicles.  

Reverse logistics has emerged as an important area of study recently. The earlier 

literature primarily addresses various kinds of real-world problems, and such work 

continues to be published. However, many of the recent papers have also been more 

theoretical in nature, such as the inventory models mentioned at the end of Section 2.3. 

Taking into account the fact that forward logistics and inventory systems have been 

extensively studied by now, it does seem that reverse logistics is the next new frontier. 

Environmental issues have been studied under various fields like civil and 

environmental engineering, chemical engineering and recently, as a part of research on 

reverse logistics. Companies that lease electronic products are expected to be impacted 

by environmental legislation on electronic waste, and hence the status of environmental 

legislation on electronic waste is the subject of Section 2.4. The discussion also 

highlights the three primary reasons for the difficulties faced in the formulation of fair 

and effective environmental policies throughout the world [88]. First, there is yet to 

emerge a universally accepted or understood definition and metric for the term 

“environmentally friendly.” The second reason is economic considerations (policies 
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would not be effective if they did not make economic sense), and the third is that the 

environment is an issue interpreted very differently by various stakeholders (businesses, 

government and consumers) involved in the process. 

It is possible to represent some of these issues, particularly economic issues, 

reasonably well through mathematical models. This makes it possible to obtain insight 

not only into business operations like asset management and logistics, but also into the 

effectiveness of environmental policies. One rare example of the consideration of the 

effect of environmental legislation on asset replacement is a paper by Hartman and 

Dearden (1999) [45], in which they examine a two-period economic model for replacing 

assets causing emissions, where the amount of emissions allowed in each period is equal 

to the number of right-to-pollute permits acquired. Surprisingly though, there seem to be 

very few other mathematical models that attempt to get these insights simultaneously. 

The research focus in this dissertation is an intersection of the fields of reverse logistics, 

equipment replacement and environmental policy formulation. It therefore bridges across 

existing research directions. 

The next chapter presents a mathematical model that allows decision-makers for 

electronics leasing companies to simultaneously make decisions about lease lengths, 

product flows and legal end-of-life product disposal. It also allows the examination of the 

impacts of transportation costs and legislative uncertainties on these key decisions.  
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CHAPTER 3 

MATHEMATICAL MODEL AND A DETERMINISTIC CASE 
STUDY 

 

 

 

The mathematical model developed in this chapter allows decision-makers for 

electronic equipment leasing companies to simultaneously make optimal decisions about 

lease lengths, product flows and end-of-life product disposal. The model is deterministic, 

but the examination of uncertainty in problem parameters (detailed in Chapter 4) is 

possible by solving multiple scenarios (with different parameter values) using this model. 

A description of the problem is outlined in Section 3.1 and the mathematical model, 

which takes the form of a mixed integer linear program (MILP), is then presented in 

Section 3.2. Section 3.3 briefly discusses the characteristics of the model, including 

comments on its structure as well as its strengths and limitations. Section 3.4 presents a 

case study that validates the model, demonstrates its utility in answering the key research 

questions, and provides interesting insights into the problem. Finally, Section 3.5 

comprises a chapter summary and concluding remarks. 

 

3.1 Problem description 

 

Figure 3.1 shows a schematic representation of product flows in the system. During 

the given time horizon, every customer has a demand for a certain number of each type of 

product in each period, which the leasing company must satisfy. An appropriate set of 
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leases that satisfy demand for each order is to be determined. Products are provided from 

an existing inventory of assets. An inventory of assets and their constituent components is 

maintained at one or more “logistics facilities” (warehouses). Asset inventory is bolstered 

through purchasing from outside sources, refurbishing (“rebuilding”) from component 

inventory or component purchases, and products returned at their end-of-lease. Inventory 

is depleted through the disposal of assets, their disassembly to components, and 

fulfillment of demand. Each time any equipment for an order is shipped to a customer 

(from one or multiple sources), assembly, aggregation and/or installation may be 

required. After a certain time lag (end-of-lease), equipment is de-installed, collected from 

the customer and transported back to one or more of the logistics facilities. Subsequently, 

products (assets) may be inventoried for reuse, cannibalized for parts, or disposed of by 

way of landfilling or metal/glass/plastic recycling. Due to legislative constraints, both 

disposal options may not be available at every logistics facility. Repairs are not 

considered within the scope of the problem; it is assumed that any repairs needed on the 

leased equipment will be carried out at the customer site and that the associated costs are 

absorbed in the O&M costs of the lease. 

 

3.2 The mathematical model 

 

This section presents the mathematical model developed for the research problem. 

The model takes the form of a MILP. The indices used as subscripts for decision 

variables and parameters are listed first, followed by definitions of the decision variables  
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Figure 3.1: Schematic representation of product flows 
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and the parameters themselves. The objective function follows, and finally, the model 

constraints are presented. 

 
 
Indices for decision variables and parameters 

 
p: Asset types 
h: Asset forms (new or rebuilt) 
c: Customer orders 
w: Logistics facilities (warehouses) 
j: Time periods; j = 1, 2, …, T, where T is the time horizon for the 

problem 
i: Asset age in time periods; i = 0, 1, 2, …, Np,h, where Np,h is the 

maximum service life for asset type p in form h 
r: An index for time periods, used to denote lease starting periods 
s: Another index for time periods, used to denote lease ending periods 
f: Asset disposal options (landfilling or metal/glass/plastic recycling)*

q: Component types 
 

A listing of the indices facilitates the definition of the model decision variables and 

parameters, which are presented next. 

 

Decision variables 

The model consists of binary variables (Y’s) and continuous variables (X’s and I’s), 

indexed as appropriate. Since this is a multi-period model, it must be clarified that the 

words “in period j” mean the time interval from after the end of the time period j-1 up to 

and including the end of time period j. A list of variables and their corresponding 

definitions is as follows. 

 

                                                 

* Also note that a second-hand market can be readily incorporated into the model by providing a 
third disposal option of “resale,” without any change in the model structure. 
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,
A
c jYA  1      if any assets are put into active use for order  in period 

0     otherwise
c j=⎧

⎨=⎩
 

 
,

A
c jYD  1      if any assets are taken out of active use for order  in period 

0     otherwise
c j=⎧

⎨=⎩
 

 
, , ,

A
p h w jXB   Number of assets of type p in form h purchased at warehouse w in 

period j 
 

, , , , ,
A
p h c i r sXL   Number of i-period old assets of type p in form h, that are leased for 

customer order c at the beginning of period r (start of the lease), and 
that age to i+(s-r+1) periods old at the end of period s (end of the 
lease) 
 

, , , , ,
A
p h w c i jXA  Number of i-period old assets of type p in form h taken out of asset 

inventory in warehouse w and put into active use for customer order c 
in period j 
 

, , , , ,
A
p h c w i jXD  Number of i-period old assets of type p in form h, taken out of active 

use from order c and added to asset inventory in warehouse w in 
period j 
 

, , , 1, 1, ,
A
p h c i j i jXU − −

 

Number of assets of type p in form h, in use for order c from after the 
end of period j-1 (or, the start of period j) up to and including the end 
of period j, which age from i-1 periods to i periods old 
 

, , , , ,
A

p h w f i jXF  Number of i-period old assets of type p in form h, disposed from asset 
inventory at warehouse w, via option f, in or at the end of period j 
 

, , , ,
A
p h w i jXC  Number of i-period old assets of type p in form h, that are 

disassembled to components at warehouse w in period j 
 

, ,
A
p w jXR  Number of assets of type p rebuilt in warehouse w in period j (these 

assets are available as rebuilt assets of age zero immediately 
thereafter)  
 

, , , 1, 1, ,
A
p h w i j i jI − −  Starting inventory of assets of type p in form h in warehouse w, from 

after the end of period j-1 (or, the start of period j) up to and including 
the end of period j, which age from i-1 periods to i periods old 
 

, ,
C
q w jI  Starting inventory of component type q in warehouse w in period j 

 
, ,

C
q w jXB  Number of components of type q purchased at warehouse w in period 

j 
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, ,
C

q w jXF  Number of components of type q disposed at warehouse w in period j 
 

 

Problem complexity and the relatively large number of variable indices can occlude 

notational intuition. Figure 3.2 illustrates how some of the decision variables are related. 

The diagram shows one lease cycle for assets of one particular type p (in form h) at one 

particular customer site c. 

Total number of i-period old assets 
used by this customer in period r 
(over all running leases in period r)

Period r Period s-   -   -   -   -   -   -   -   -    -   -   -   -   -   -

, , , , ,
A
p h c i r sXL   (Number of assets leased from the 

beginning of period r to the end of period s) 

, , , , ,  ;   1A
p h w c i jXA j ≤ −r , , , , ( 1),

A
p h c w i s r sXD + − + 

Number of assets (i periods 
old) installed for this lease 
(from warehouse w) 

Number of aged assets de-
installed at the end of this 
lease (to warehouse w) 

, , , , , 1, 1
A
p h c i r i rXU + +  

Figure 3.2: Representation of selected model variables for one particular leasing cycle 

 

Parameters 

Most of the model parameters are costs (C’s) that are closely associated with variable 

definitions, and are hence named and indexed very similarly to the decision variables. A 

list of parameters and their corresponding definitions is as follows. 

 

, ,p c jD  Demand for asset type p for order c in time period j 
 

T The time horizon for the problem 
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Np,h The maximum service life of asset type p in form h 
 

λ A discount factor = (1 + MARR)-1, for the time value of money; MARR 
≡ Minimum Acceptable Rate of Return 
 

, , ,
A
p h w jCB  Unit purchase cost of assets of type p in form h purchased at warehouse 

w in period j 
 

min,cL  The minimum lease length (in periods) for customer order c 

max,cL  The maximum lease length (in periods) for customer order c 

, , , , ,
A
p h c i r sRL  Unit revenue per period from leased assets of type p in form h, that are 

leased for order c as i-period old assets at the beginning of period r 
(start of the lease), and that age to i+(s-r+1) periods old at the end of 
period s (end of the lease)  
 

, , ,
AO

p w c jCT  Unit cost of transportation and handling for asset type p from warehouse 
w to the site of order c, in period j 
 

,
A
c jCA  “Installation cost” for every instance of asset activation for order c in 

period j 
 

, , ,
AI

p c w jCT  Unit cost of transportation and handling for asset type p from the site of 
order c to warehouse w, in period j 
 

,
A
c jCD  “De-installation cost” for every instance of asset deactivation for order c 

in period j 
 

, , , ,
A
p h c i jCU  Unit operating and maintenance (O&M) cost of leased i-period old 

assets of type p in form h, in use for order c in period j 
 

, , , ,
A

p w f i jCF  Unit cost of disposal via option f (landfill or metal/glass/plastic 
recycling) of i-period old assets of type p at warehouse w, in period j 
 

, , ,
A
p w i jCC  Unit cost of disassembling i-period old assets of type p in warehouse w 

in period j 
 

, , ,
A
p h q iMD  Number of components of type q obtained from disassembly of each i-

period old asset of type p in form h 
 

,
A
p qMA  Number of components of type q needed for rebuilding each asset of 

type p 
 

, ,
A
p w jCR  Unit cost of rebuilding asset type p in warehouse w in period j 
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, ,
A
p w jCH  Unit holding cost of asset type p at warehouse w in period j 

 
, ,

C
q w jCH  Unit holding cost of component type q at warehouse w in period j 

 
, ,

C
q w jCB  Unit purchase cost of component type q at warehouse w in period j 

 
, ,
C

q w jCF  Unit cost of disposal of component type q at warehouse w in period j 
 

 

Objective function 

 The objective is to maximize the discounted net profit of the system. In the current 

version of the model, the only explicit source of revenue is the periodic revenue from 

leasing assets. However, some of the costs, such as asset or component disposal costs, 

can be negative and are thus able to contribute to revenue. The objective can be stated 

verbally and mathematically as follows. 

 

Maximize Total discounted net profit = 

Lease revenue 

- Purchase cost (assets) 

- Transportation cost (warehouses to customers) 

- Transportation cost (customers to warehouses) 

- Asset activation cost - Asset deactivation cost 

- O&M cost 

- Disassembly cost  

- Refurbishment/Rebuilding cost 

- Disposal cost (assets) 

- Holding cost (assets) - Holding cost (components) 

- Purchase cost (components) 

- Disposal cost (components)  
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It must be noted that each of the objective function components above refers to the 

total discounted value of that cost (or revenue), because the objective function is the 

total discounted net profit. The mathematical expression for the objective function is: 

 

Maximize Z =  

,min,

min,
max,
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     (3.1) 

 

Constraints 

In order to facilitate understanding of the mathematical representation of model 

constraints, it would be instructive to begin by briefly describe the constraints in words. 

In this version of the model, the constraints are: 

• Initialization and termination conditions: In this version of the model, it is 
assumed that there are no assets in use or in inventory before the beginning of the 
time horizon, and none at the end of the time horizon. These conditions are not 
presented in mathematical form here, but are incorporated into the computer 
implementation of the model. Also, these conditions could be readily modified to 
incorporate existing physical assets as needed. 
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• Meet demand: In each time period, the demand of each customer order for each asset 
type must be met. 

 
,

, , , 1, 1, , , ,
1

        
p hN

A
p h c i j i j p c j

h i
XU D− −

=

=∑∑   , ,p c j∀  (3.2)

 
 
• Flow conservation: From each time period to the next, there must be a conservation 

of flow of assets and components in inventory at each warehouse, and also a 
conservation of flow of assets in use for each order. These constraints also need to 
ensure that assets are not used or kept in inventory beyond the end of their useful life. 
 
Flow conservation for asset inventory 

Ind(h) is an indicator used to ensure that rebuilt assets are not included in the flow 
conservation for new assets. Therefore, Ind(“New”) = 0 and Ind(“Rebuilt”) = 1. 
 

For assets of age 0, 
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For assets with some life greater than 0, 
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Flow conservation for component inventory 
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Flow conservation for assets with customer orders 

, , , , , , , , 1, 1, ,

, , , , , , , , , , 1, 1                     

A A
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w
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, , , , ,0 p hp h c j i N∀ ≤ ≤   (3.6)
 
 

• Follow logical requirements for relationships between lease periods and asset 
activation, deactivation and use 
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• Logical constraints for setting the values of the binary variables YA’s 
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,          1A
c j

j
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• Logical constraints for setting the values of the binary variables YD’s 
 

,

, , , , , ,
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p hN
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p h c w i j c j
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XD Y
=
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,
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,           1A
c j

j

YD ≥∑     (3.15) c∀

 
 

• Variable requirements: All the continuous decision variables (X’s and I’s) are non-
negative and the Y’s are binary variables. 

 
{ }, 0,1A

c jYA ∈ , { }, 0,1A
c jYD ∈   ,c j∀  (3.16)

, , , 0A
p h w jXB ≥   , , ,p h w j∀      (3.17)

, , , , , 0A
p h c i r sXL ≥   , , , , ,p h c i r s r∀ ≥     (3.18)

, , , 1, 1, , 0A
p h c i j i jXU − − ≥    , , , ,p h c i j∀   (3.19)

, , , , , 0A
p h w c i jXA ≥ ,  , , , , , 0A

p h c w i jXD ≥  , , , , ,p h w c i j∀     (3.20)

, , , , , 0A
p h w f i jXF ≥    , , , , ,p h w f i j∀  (3.21)

, , , , 0A
p h w i jXC ≥    , , , ,p h w i j∀  (3.22)

, , 0A
p w jXR ≥    , ,p w j∀  (3.23)

, , , 1, 1, , 0A
p h w i j i jI − − ≥   , , , ,p h w i j∀       (3.24)

, , 0C
q w jI ≥ , ,  , , 0C

q w jXB ≥ , , 0C
q w jXF ≥    (3.25), ,q w j∀

 
 

Note that it is not necessary to define the variables  for the correctness 

of the model, because constraint set (3.9) provides a direct substitution for them. This 

also implies that constraint set (3.6) is not required. However, definition of these 

variables greatly assists in the understanding of the mathematical model. The next section 

briefly discusses the main characteristics of the model, including some comments on 

model structure. 

, , , 1, 1, ,
A
p h c i j i jXU − −
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3.3 Model structure and characteristics 

 

A few points about the structure of the model are worth noting. First, the constraints 

on the binary variables are not highly restrictive. The constraint sets (3.12) and (3.15) 

only specify that for each customer, asset installation and de-installation should occur at 

least once over the entire time horizon. These constraints are trivially satisfied if the total 

demand at each customer site is non-zero and the time horizon is long enough so that 

more than one leasing cycle can be completed for each customer. Therefore, one would 

not expect extensive branching during the MILP solution, and no significant increase in 

computational time is expected even with the inclusion of binary variables in the model. 

Second, under conditions that do not require the use of the binary variables in the 

model (one such set of conditions is discussed in Section 3.4.1), the model is completely 

separable in asset type p, but for constraint set (3.5). This constraint set creates an 

economic interdependence between assets. However, the interdependence exists only for 

the subset of assets for which the option of disassembling and rebuilding is allowed. For 

other asset types, the model is still separable in asset type. Other common factors causing 

interdependence between assets in typical parallel asset replacement problems are 

demand and budget constraints. Demand does not cause economic interdependence in 

this problem because demand for each asset type at each customer site is considered 

separately – asset types do not contribute to the satisfaction of a “cumulative” demand. A 

budget constraint is not incorporated in this model, but if incorporated, the model would 

no longer be separable in asset type p. 
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Another observation is that except in constraints (3.11) and (3.14) on the binary 

variables, and in constraint set (3.5), all variables have coefficients of –1, 0 or 1 in the 

constraint matrix. Therefore, in the absence of binary variables, the structure of the 

constraint matrix would approach unimodularity. When the constraint matrix has this 

structure, integral values of the right-hand side parameters and of the variable coefficients 

in the constraint matrix guarantee integral optimal values for all variables, with no 

explicit model constraints requiring variables to be integral.  

The strength of this model is that it can be used to make the key decisions faced by a 

company leasing electronic equipment, e.g., length of leases, product flows, inventory, 

and end-of-life disposal options. Although the deterministic MILP model does not 

explicitly incorporate uncertainty, insight into questions like the effects of differences in 

relevant parameters on the optimal decisions can be obtained by changing these 

parameters (e.g., transportation costs, sets of available disposal options at different 

locations, disposal costs, etc.) and solving multiple scenarios. A detailed exercise on the 

examination of uncertainty in problem parameters is undertaken in Chapter 4. These case 

study results provide insights to business asset managers. In addition, a study of the 

differences in product flows between scenarios with varying transportation costs and 

legislative effects can provide case study insight into formulation of environmental 

policies on electronic waste, which is the subject of Chapter 5.  

Implementation issues need to be considered for this model. This research does not 

consider a dynamic multi-stage solution approach that guarantees optimality over a time 

horizon greater than the one used for solving the model. This can be viewed as a 

limitation, even though the model is very useful in its current form. However, a “rolling-
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horizon” approach could be implemented to take advantage of changes in system 

parameters over time. 

Some other important decisions like pricing have not been taken into account in this 

model. Pricing is a strategic decision that is affected by many other factors like market 

competition, sales and marketing strategies, economic and political conditions, etc. 

Taking all these additional factors into account would not only make the model 

mathematically intractable, but would also detract from the main research focus of 

integrating reverse logistics and environmental issues with equipment replacement 

decisions. The next section presents an industrial case study that validates the model, 

demonstrates a few of its strengths and provides insight into the key research questions. 

 

3.4 Industrial case study 

 

In order to validate the MILP model discussed in Section 3.2, and then draw insights 

from application of the model, computational testing has been done with industry 

representative data.  The general problem description and key data have been provided by 

the Vice President for Asset Management of a large technology leasing company. The 

data have been changed in order to respect company confidentiality and scaled down in 

order to facilitate computational requirements.  

The company under study currently operates only one warehouse, but in order to 

enhance the generality and applicability of the model, three warehouses are considered in 

this case study. The time increments in this model are half-years (six months), because it 

is assumed that leases are offered in six-month increments. In addition, discussions with 
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the Asset Manager suggested that it is quite uncommon for leases to be renegotiated by 

either party (the lessor or the lessee), especially in the early part of the lease. Therefore, it 

is assumed that the asset management company that forms the basis for the case study 

makes the most important asset management decisions twice a year. For a slightly 

reduced version of the industrial problem, typical magnitudes of the model indices are 

shown in Table 3.1. 

 

Table 3.1: Magnitudes of model indices for the case study 

p: Asset types 25 
c: Customer orders 100 
w: Logistics facilities (warehouses) 3 
j: Time periods; j = 1, 2, …, T, where T is the 

time horizon for the problem 
T = 14 

i: Asset ages in time periods 6 or 8 periods 
f: Asset disposal options  2 
q: Component types 14 

 

It must be noted that most of the variables and constraints with a large number of 

indices are indexed by asset types (p), customer orders (c), asset age (i), and time periods 

(j). Therefore, the problem size (the number of variables times the number of constraints) 

increases in proportion to the square of:  1) the number of asset types;  2) the number of 

customer orders;  3) the maximum asset age; and  4) the total number of time periods. 

However, a limit on the minimum and maximum lease lengths prevents the problem size 

from growing as fast as suggested by the discussion above. The number of leasing 

decision variables  is particularly prone to a fast increase if the lease length 

limits are expanded. This happens because the variables  have two time 

indexes, r and s. It may be possible to reformulate the model so that problem size does 

, , , , ,
A
p h c i r sXL

, , , , ,
A
p h c i r sXL
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not increase very fast with the number of indexes, but the resulting tradeoff would 

perhaps be the inclusion of more integer or binary variables instead of continuous 

variables, which may result in a large increase in computational time. Examination of 

more efficient modeling approaches is a topic for future research.  

In Section 3.4.1, the key data for the base case of the model are discussed in some 

detail, inclusive of those in Table 3.1. Model validation issues are discussed in Section 

3.4.2. The solution results from the base case and two scenarios are presented and 

compared in Section 3.4.3 in order to demonstrate how the model can be used to examine 

the impacts of various problem parameters on the optimal decisions. Section 3.4.4 is an 

examination of legislative impact on the end-of-life management of CRT monitors. Two 

other scenarios, different from those used in Section 3.4.3, are considered in this section. 

 

3.4.1 Data for the base case of the model 

 

The case study considers 25 asset types that cover a broad range of electronic 

products used by business enterprises. They consist of four configurations of personal 

computers (PCs), four types of monitors (two types of CRT monitors and two types of 

LCD flat panel monitors), four configurations of laptops, three types of printers, two 

types of scanners, four configurations of PC servers and four configurations of midrange 

servers.  The purchase costs of individual assets range from $200 to $2 million. 

The assets are available in two forms: “New” and “Rebuilt.” Rebuilt assets are 

defined as assets that are not new products from an electronics assembly line and have 

instead been remanufactured or assembled from new or used components. These could 

also include assets that are not dismantled completely but only have some of their 
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components replaced by newer ones. However, for the purposes of this research, the first 

definition is used. Discussions with the Asset Manager suggest that it is unprofitable to 

rebuild relatively inexpensive assets like PCs and laptops and that it is very rare for 

companies to buy these types of used assets. Therefore, only two of the 25 assets (two 

high-end midrange servers) are considered in rebuilt form. Additionally, it is assumed 

that every individual asset that is purchased (either brand new or rebuilt) begins service 

with age zero. However, it is possible for new and rebuilt assets of the same type to have 

different useful lifespans. 

For the case study, the 100 customer orders and their respective demands for various 

kinds of assets have been generated randomly using parameters for the demand and 

business mix provided by the Asset Manager. In order to highlight the significance of the 

results obtained from a limited number of model runs, it is also assumed that demand is 

constant throughout the time horizon under consideration. The order size can be 

classified into small, medium and large categories. The total asset demands for these 

three categories of orders average 242 assets, 874 assets and 2,277 assets respectively. 

There is a significant geographic dispersion of the orders, but with a slight bias towards 

the U.S. East coast. 

The three logistics facilities are located in Georgia, Massachusetts and California. 

Due to different sales tax rates in different states, prices of purchased assets vary slightly 

by the warehouse location at which they are purchased. Transportation costs are assumed 

to depend linearly on the distances from logistics facilities to customer sites, and 

approximate distances are used for calculation of transportation costs. 
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The time horizon for the problem has been chosen to be 14 periods (seven years). The 

possibility of end-effects with a finite time horizon must be recognized, but a longer time 

horizon would not provide any additional value because of the difficulty of long-term 

demand forecasting and the rapid technological change in the electronics industry. 

The most common asset lease periods offered by the company are 24, 30 and 36 

months, and therefore the minimum lease duration is assumed to be four periods (24 

months) for all orders. The maximum lease duration is assumed to be eight periods (48 

months). The maximum service lives of individual assets vary from six to eight periods 

(three to four years), and therefore an asset with a life of eight periods can be turned over 

at most twice during the time horizon.  

The residual value of an asset at age i periods is defined as the current value of the 

asset as a fraction of the original value (purchase price). Based on information provided 

by the Asset Manager, a residual value curve of the form exp(-0.2624 * i) is used to 

approximate residual values for all asset types. Prices of rebuilt assets are assumed to be 

80% of the prices for purchased assets [106]. The prices for each different length of lease 

are determined based on the residual value of assets. For a lease of t periods, the lease 

cost every period equals: 

residual value (lease start) - residual value (lease end)Original purchase price * 
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

   (3.26) 

The actual lease price is then obtained by inflating this cost by a constant factor to 

account for discounting and profit margins. It is assumed that profit margins for small 

orders are higher than the profit margins for large orders. This is because a large leasing 

company would like to do business repeatedly with large customers, by offering them 

competitive prices and better service. 
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Landfilling and metal/glass/plastic recycling are the two disposal options for assets. 

In the base case, both options are assumed available at each logistics facility, and the 

disposal costs are the same at every location. The disposal costs are based on landfilling 

fees for hazardous waste and prices offered by a large electronics recycler in Florida. The 

recycler offers money for many types of assets, and therefore recycling costs for these 

assets are negative. Estimates are used for the few values that could not be obtained 

directly from the leasing company or other sources. The model solutions for the base case 

problem and alternative scenarios are presented and discussed in Section 3.4.3. 

Installation, deinstallation and O&M costs are assumed to be zero, mainly because 

these costs are rarely incurred by the actual leasing company. Under this assumption, the 

model is greatly simplified, because the binary variables are no longer required, and 

constraints (3.10) through (3.16) can be eliminated, along with the relevant terms in the 

objective function. With these changes, the model reduces from a MILP to a linear 

program (LP), and larger problems can be solved. 

 

3.4.2 Model validation 

 

Before results from computational runs of the model can be used to draw case study 

conclusions, the model must be validated and verified. There are a few different aspects 

to model validation. This section discusses how each of these aspects has been addressed 

during the course of this research. 

The first task in model validation is to ensure internal model consistency. This 

implies that the computer implementation of the model must match its mathematical 

representation, and the optimal values of the decision variables must satisfy all the 
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constraints. During this research, the match between the computer implementation of the 

model and its mathematical representation has been ensured by exporting the computer-

generated model as a text file and checking the correctness of a number of objective 

function terms comprising each of the cost (or revenue) components, and of a number of 

constraints from each constraint set. In addition, internal consistency can be checked 

again after running the model, by checking that the optimal values of a small subset of 

the decision variables satisfy all the model constraints. This has not been done after every 

model run, but frequently enough during the research duration to justify confidence in the 

model’s correctness. 

The second aspect is to ensure that the model is a reasonable representation of the real 

world. Case study guidance from industry experts and obtaining industry representative 

data for this problem (as discussed in the beginning of Section 3.4) has been very helpful 

in this regard. However, it must also be ensured that the model output resembles the real 

situation faced by a leasing company. For example, it is instructive to look at the overall 

revenues and costs for the optimal solution of the base case, which are as follows. 

 

Revenues 
Lease revenue         $1,567,103,041 

  Asset disposal         $       5,370,031 
  Component disposal        $          191,162
Costs 
 Asset purchase         $1,297,341,180 

  Transportation (warehouses to customers)   $       5,975,069 
 Transportation (customers to warehouses)   $       2,978,801 
 Asset disassembly        $          215,725 
 Asset rebuilding         $          343,022

Net profit           $   265,810,437 
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It is clearly seen that lease revenue is the most significant source of revenue, and 

asset purchase cost is the most significant cost for this leasing company, which is what 

one would expect in reality. In addition, it is observed that transportation costs constitute 

a little less than 1% of the total cost, which is not drastically different from the realistic 

figure of 1.5% (as mentioned in Chapter 1). In addition, characteristics of parallel asset 

replacement, such as replacement in clusters [55][47][43], are observed at optimality. 

The final model validation aspect is to check on an ongoing basis the appropriateness 

of model parameter choices and to perform additional checks if the results obtained from 

the model do not match expected outputs. As an example of checking the appropriateness 

of model parameters, consider the question of whether the 14-period time horizon in the 

model may induce significant end effects (particularly on lease lengths). Bean, Lohmann 

and Smith (1985) [13] point out that in order to avoid end effects, the length of the time 

horizon needs to be approximately twice the maximum asset age. This indicates that a 14-

period time horizon may be suitable for this case. However, in addition, the model is run 

for 15 periods instead of 14 to check this experimentally. The first period asset 

replacement decisions (i.e., the length of the first leasing cycle) are found to vary only for 

four of the 25 asset types, and for only about ten percent of the customer orders for three 

out of these four asset types. In addition, the differences in the optimal objective function 

value (and its major cost/revenue constituents) between 14- and 15-period time horizons 

are less than 5%. This indicates that the chosen 14-period time horizon is not expected to 

induce significant end effects. Additional checks on model correctness can be performed 

as appropriate if the model provides counterintuitive results. The remainder of this 
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chapter focuses on solving alternative scenarios with the model and on obtaining insights 

from these results. 

 

3.4.3 Comparison of model results for the base case and two alternative scenarios 
that prohibit    1) landfilling; and     2) rebuilds 

 

In this section, results from different model scenarios are compared to the results for 

the base case, and insights are developed from the results. Two alternative scenarios are 

considered. In the first alternative scenario, landfilling of assets is not a disposal option 

permitted at any warehouse location.  In the second scenario, landfilling is allowed, but 

none of the asset types can be rebuilt. 

The model for the case study scenarios is solved using the commercial optimization 

solvers CPLEX [51] and Xpress IVE [29] on an IBM computer with a 1.8 GHz Intel® 

Pentium-4® processor and 640 MB of RAM. All of the model runs, including the base 

case and the various scenarios, contain approximately 650,000 continuous variables and 

approximately 200,000 constraints. No computational limitations have been experienced, 

and the solution times range from one minute to two minutes. 

 Figure 3.3a) and Figure 3.3b) are graphical representations of product flow quantity 

percentages in the base case. For the optimal solution of the base case, the percentages of 

activated assets transported from warehouses to customers, by warehouse location, are 

identical to the numbers in Figure 3.3a) after asset rebuilds are taken into account. It can 

also be seen that the total transportation cost from warehouses to customers is 

significantly higher than the total transportation cost from customers to warehouses. 

Since the model does not provide for inter-warehouse transportation, the inference is that 
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there is a tradeoff between the total asset purchase costs (due to the effect of local tariffs 

like sales tax, which leads to slightly different prices at different locations), and the total 

forward transportation costs. The sales tax in Massachusetts is the lowest (5%) of all the 

states, and so the highest proportion of assets is purchased in Massachusetts. 
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Figure 3.3: Percentage quantities (base case), by warehouse location [California (CA), 
Georgia (GA), or Massachusetts (MA)], of: a) assets purchased; and b) deactivated 

assets transported from customer sites 

 

Figure 3.3b) shows the flows of deactivated assets, i.e., product flows from customers 

to warehouses. Adjusting for disassembled and rebuilt assets, these percentages are 

identical to the percentages of assets disposed by warehouse location, i.e., 19.22% of 

assets are disposed in California, 30.32% in Georgia and the rest in Massachusetts. Since 

the input values for disposal costs in the base case are the same for all warehouse 

locations, it can be inferred that transportation costs drive the end-of-life product flow 

decisions for the base case. However, if disposal costs were changed so as to make them 

different at different warehouse locations (e.g., as a result of alternative environmental 
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legislation in different geographic areas), then there would be a tradeoff between the total 

asset disposal costs and the total reverse transportation costs. 

 

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

Base case No rebuilds No landfilling

Va
lu

e 
($

)

Total lease revenue Total asset purchase costs

Figure 3.4: Total lease revenues and asset purchase costs in the optimal solutions for the 
base case and two other scenarios 

 

Figure 3.4 compares lease revenues and asset purchase costs for the optimal solution 

of the base case and the two scenarios described previously. It is clear that rebuilding is a 

profitable activity. Without rebuilding, the lease revenues are slightly lower and the asset 

purchase costs are much larger as well, and the resulting net profit is negative. The 

savings of rebuilding and disassembly costs are insignificant compared to the magnitude 

of increase in asset purchase costs, especially for expensive assets. Therefore, ignoring 

the option of rebuilding has resulted in a $372 million decrease in profit for this case 
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study. When landfilling is disallowed, there is no change in the lease revenues or the 

asset purchase costs (this is also seen in Figure 3.4). However, asset disposal revenues 

become slightly lower than those for the base case, because it is then necessary to recycle 

some assets that it would be more profitable to have disposed in a hazardous waste 

landfill. Asset disposal revenues are higher for the case without rebuilds, because the 

assets that are rebuilt in other scenarios are disposed of to obtain revenue in this scenario. 

This section highlights a few key tradeoffs between various kinds of costs in the 

system and demonstrates how the model can be used to make leasing and logistics 

decisions simultaneously. The next section presents a more specific analysis that 

examines legislative impact on end-of-life management of specific assets, and Cathode 

Ray Tube (CRT) monitors in particular. 

 

3.4.4 Examination of legislative impact on management of CRT monitors 

 

Equipment leasing companies also need to understand the impact of state-sponsored 

environmental initiatives on the end-of-life flows of products. An example with CRT 

monitors is presented in this section to demonstrate the ability of the model to examine 

such questions. The results from the base case are used again as comparisons for the 

results from two other scenarios in this section, with a special focus on the individual 

results for CRT monitors. 

 The first legislative scenario considers legislation in California, whereby an advance 

recycling fee (ARF) of $10 is charged on every CRT sold in the state, and there is no cost 

or revenue for disposal of CRT monitors at end-of-life. Legislation with a potentially 

similar cost impact has been passed by the California legislature and is slated to come 
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into effect later in 2004, but it is still mired in controversy and uncertainty (California 

Senate Bill 20, 2003).  

The second legislation alternative scenario considers the existing landfill ban on 

CRTs in Massachusetts [64]. In order to enforce this selective landfilling ban on CRTs in 

the first legislative scenario, the landfilling costs for CRT monitors in Massachusetts 

have been forced to prohibitively high values in the input data. Additionally, it is 

assumed that an end-of-life recycling cost of $15 is charged in Massachusetts due to the 

landfill ban. For this scenario, the base case disposal values are used at the other two 

warehouse locations, and these values are lower than the value in Massachusetts.  

The model is solved for the first alternative scenario that incorporates potential 

California legislation and for the second scenario that incorporates Massachusetts 

legislation, using the solution approach (with similar execution requirements) described 

earlier. The optimal solution for each scenario differs from the base case, with different 

net revenues associated with the different solutions. In the optimal solution for the first 

scenario, all of the California CRTs remain in California just like in the base case. This 

contrasts what happens in the second scenario, where many of the Massachusetts-based 

CRTs are shipped to Georgia at end of life. Figure 3.5a) shows the disposal quantities of 

CRT monitors at the three warehouse locations and the identical optimal solutions for 

both the base case and first legislative scenario. These results can be contrasted to the 

very different optimal solution results shown in Figure 3.5b) for the second legislative 

scenario incorporating Massachusetts legislation. Figure 3.6 compares the transportation 

costs and asset disposal revenues for CRT monitors in the base case and in the two 

alternative legislative scenarios. 
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Figure 3.5: CRT disposal quantities, by warehouse location: a) for base case and for 
legislative scenario one with California ARF; and b) legislative scenario two with 

Massachusetts CRT landfill ban 
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Figure 3.6: Comparisons between transportation costs and asset disposal revenues for 
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The figures show that for the case study, a CRT landfill ban in Massachusetts leads to 

a significantly higher end-of-life flow of CRT monitors into Georgia, even though the 

transportation costs from customers to warehouses are higher. There is also significant 

net negative revenue from the disposal of CRT monitors as a result of the landfill ban. 

 For the case study problem, an advance recycling fee of $10 in California is not 

found to affect the optimal product flows in the system, even though the optimal solution 

total purchase cost for CRTs increases and the revenue from asset disposal is slightly 

reduced. This is because the transportation costs in this system are high enough to make 

the tradeoff between increased asset purchase costs and transportation costs unprofitable 

for the overall system. 

 One final scenario is examined for the case study problem. A combination of the two 

legislative scenarios (simultaneous ARF in California and landfill ban in Massachusetts) 

yields precisely the same optimal product flows as that for the Massachusetts landfill ban 

alone. This is expected, since the introduction of the California ARF in the case study did 

not affect any optimal product flows by itself.  

In summary, this industrial case study demonstrates the ability of the model to answer 

the key research questions posed in Chapter 1. The case highlights the trade-offs between 

various costs in the system, the desirability of rebuilding and refurbishing activities, and 

the impacts of state-sponsored environmental initiatives on end-of-life flows of specific 

asset types. The chapter is summarized in the next section. 
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3.5 Conclusions and summary 

 

This chapter presents a MILP formulation that would allow an electronic equipment 

leasing company to make simultaneous decisions about lease lengths, product flows and 

end-of-life management of assets. The model becomes a LP under certain conditions, as 

discussed in the deterministic case study. The case study validates the model and 

demonstrates the utility of the model in providing useful insights into the problem. 

It is shown in the case study that for asset purchase decisions and forward product 

flows, there exists a tradeoff between asset purchase costs and transportation costs. On 

the other hand, environmental legislation and transportation costs affect the reverse 

product flows. An increase in asset disposal costs due to a landfill ban in one location can 

lead to a significant increase in the disposal of assets at other locations. In addition, it is 

observed that rebuilding is a profitable activity, especially for high-end assets. Therefore, 

a leasing or asset manager for a large leasing company could apply the model developed 

in this chapter, and the insights obtained thereof, to gain a competitive advantage by 

managing the business more efficiently. 

The next chapter discusses a more realistic situation, by undertaking a detailed 

examination of the effects of uncertainty in problem parameters on the optimal values of 

the objective function and the decision variables. An approach to make near-robust 

decisions under uncertainty is also discussed. 
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CHAPTER 4 

EXAMINATION OF UNCERTAINTY IN PROBLEM PARAMETERS 

 

 

 

Chapter 3 presents an optimization model that allows the leasing company to make 

simultaneous decisions about lease lengths, product flows and end-of-life management of 

assets. The subsequent deterministic case study validates the model and demonstrates its 

potential utility. It also points towards the existence of tradeoffs between various kinds of 

costs in the system. However, a more realistic approach would consider uncertainty in 

parameter values. Although all parameter values may be uncertain, some sources of 

uncertainty are clearly more important than others. Section 4.1 discusses the sources of 

uncertainty in the problem and their relative importance for this research. Section 4.2 

discusses a robust optimization approach to address key uncertainties identified in 

Section 4.1. Section 4.3 illustrates the impact of important uncertainties on the optimal 

decisions and provides further interesting insights into the problem. Section 4.4 

summarizes the chapter and presents concluding remarks. 

 

4.1 Identification of key sources of uncertainty 

 

 The focus of this research is the intersection of the fields of equipment replacement 

and reverse logistics. It has been demonstrated in Chapter 2 that no known analytical 

approaches exist for this problem in current literature, even though there is a great deal of 
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published literature on each of the related fields. Of key interest in this chapter is the 

examination of uncertainty in problem parameters and its effects on decisions that span 

across the individual fields of study related to the problem. 

Important problem parameters that may be uncertain include the demand for assets, 

asset purchase costs, lease revenues, transportation costs, inventory costs and asset 

disposal costs. These parameters may in turn be affected by factors such as market 

conditions, technological change and environmental legislation. In this section, each of 

these factors and uncertainties is discussed in turn. Subsequently, the key uncertainties to 

be addressed in this research are identified and discussed in more detail.  

Uncertainty in demand for electronic equipment leasing is one of the major sources 

of uncertainty because it affects asset purchase and inventory decisions. However, 

uncertainty in demand and the inventory management techniques for it have been 

extensively studied in operations research literature and this research is unlikely to make 

a strong contribution to the study of asset and inventory management under uncertain 

demand.  

The uncertainty associated with technological change is another important aspect of 

this problem due to the short life cycle of electronic equipment. Technological change 

can drastically affect both asset purchase costs and asset lease revenues. Once again 

though, there exists a body of literature for asset replacement with technological change, 

from which a few representative papers have already been cited in Chapter 2. 

The results from the deterministic case study in Chapter 3 (Section 3.4) indicate that 

tradeoffs between transportation costs, asset purchase costs and asset disposal costs can 

potentially cause significant changes in product flows. It is observed that the effects of 
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legislation are not only limited to changes in the optimal value of the objective function, 

but can also result in changes in the optimal solution due to the changes in asset purchase 

and asset disposal costs effected by legislative measures. Therefore, the investigation of 

uncertainty in logistics costs and legislation, and the interactions thereof, provides novel 

insight, and these uncertainties are the key uncertainties in problem parameters to be 

addressed in this research. However, given that fact that asset purchase costs constitute a 

very large proportion of the total costs, it is important to recognize that uncertainties in 

asset purchase costs (caused by reasons other than environmental legislation) and in a 

few other problem parameters are important. These uncertainties, while not examined in 

detail, will be discussed briefly where appropriate during the remainder of this chapter. 

Figure 4.1 depicts the relationships between the key sources of uncertainty in the 

system in the form of a schematic diagram. An arrow leading from one box to another 

indicates that a change in problem parameters at the tail of the arrow effects a change in 

problem parameters or decision variables at the head of the arrow. For example, a change 

in environmental legislation can affect both asset purchase costs and asset disposal costs 

(although not necessarily both at the same time). Advance Recycling Fees (ARFs) affect 

both asset purchase and asset disposal costs, while landfill bans only affect asset disposal 

costs. Similarly, a change in second-hand market conditions can change both asset 

purchase costs and asset disposal costs. The dashed lines associated with second-hand 

markets mean that these effects, while important, are not being considered explicitly in 

this research. 
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Figure 4.1: Relationships between the key sources of uncertainty 

 

Transportation costs interact with both asset purchase and asset disposal costs and 

hence affect forward as well as reverse flows. The two-way interaction between 

transportation costs and asset purchase costs affects asset purchase decisions and hence 

forward product flows. The two-way interaction between transportation costs and asset 

disposal costs affects asset disposal decisions and hence reverse product flows. 

The differently dashed double-ended arrow, which connects forward and reverse 

product flows, represents the three-way interaction between transportation costs, asset 

purchase costs and asset disposal costs, effecting a simultaneous change in forward and 

reverse product flows. This interaction arises as a result of the possibility of multiple 

leasing cycles for assets. For example, an asset could be taken out of service at one 
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customer site and subsequently put back into service at another customer site, in which 

case the choice of logistics facility to use at the end of the first leasing cycle is an 

important link between the forward and reverse flows. 

The results of a detailed investigation to determine the effects of these interactions 

between uncertainty in transportation costs and environmental legislation are presented in 

Section 4.3. However, before presenting the results, the next section discusses a robust 

optimization approach for analyzing these key uncertainties and demonstrates how the 

leasing company can make robust leasing decisions in the face of uncertainty in 

transportation costs and environmental legislation. 

 

4.2 Decision robustness under uncertainty 

 

This section discusses a robust optimization approach for the research problem 

addressed in this dissertation. Robust optimization approaches to address uncertainty 

have been used frequently in recent literature on strategic supply chain design, with some 

key literature cited in Section 4.2.1. Since decisions about the opening and closing of 

logistics facilities often involve large fixed costs and are hence long-term decisions, the 

objective is to achieve a logistics network configuration that performs “well” across 

several potential realizations of uncertainty. However, the definition of “good 

performance” is context-dependent and therefore, there exist several alternative 

definitions of robustness. Section 4.2.1 discusses the meaning of robustness in the context 

of the problem faced by the electronic equipment leasing company. Section 4.2.2 
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discusses methods by which the leasing company can make good decisions in the face of 

uncertainty. 

 

4.2.1 Definitions of robustness 

 

One of the components of a robust optimization problem formulation is a set of 

specific realizations of uncertainty, called scenarios. According to one definition (Bai, 

Carpenter and Mulvey, 1997 [7]), the goal of robust optimization is to find a near-optimal 

solution that is not overly sensitive to a specific realization of uncertainty. Alternatively, 

Mulvey, Vanderbei and Zenios (1995) [67] describe robust optimization as finding a 

solution whose objective value is close to that of the optimal solution for each scenario. 

This latter definition is used for regret models of robust optimization, while the former is 

used for models that include variability measures (such as variance or standard deviation) 

in the objective function. 

Typically, robust optimization formulations also include a set of robust variables, 

i.e., the values of those variables must remain the same across all scenarios being 

considered. For example, in robust formulations of supply chain design problems, facility 

location variables are chosen as the robust variables, i.e., the same set of facilities must 

be open in all scenarios.  

In regret models, the regret of a scenario is measured as the difference between the 

optimal objective function value (cost or profit) for that scenario and the best objective 

value that can be obtained by choosing the fixed values of robust variables for that 

scenario. The difference can be expressed in absolute or relative terms. According to 

robustness criteria defined by Kouvelis and Yu (1997) [58] (both absolute and relative), a 
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robust solution is one that achieves the best worst-case deviation from optimality. 

Another approach, proposed by Gutierrez, Kouvelis and Kurawarwala (1996) [40] require 

a robust solution to be within p percent of the optimal solution for each realizable 

scenario. However, this approach may lead to infeasibility for small values of p, 

especially if there is a huge difference between the best-case and worst-case scenarios. 

On the other hand, variability models attempt to simultaneously minimize expected 

costs (or maximize expected profits) and reduce the variability over all considered 

scenarios. Some examples of these models can be found in literature due to Mulvey, 

Vanderbei and Zenios (1995) [67], Yu and Li (2000) [107] and Goetschalckx et al. 

(2001) [37]. However, the inclusion of variability measures (most typically, variance or 

standard deviation) in the objective function makes it non-linear. Also, these methods 

assume symmetric risk, i.e., it is equally bad for costs to be above or below the mean. 

Asymmetric measures such as those used by Ahmed and Sahinidis (1998) [1] are often 

hard to compute. 

An additional issue arises when the right-hand side coefficients in a model are 

uncertain. In this case, all constraints may not be satisfied in every scenario, and it is 

convenient to introduce additional variables that represent the slack or surplus in the 

constraints. These variables, called recourse variables, are included in the objective 

function as an infeasibility penalty (Mulvey, Vanderbei and Zenios, 1995 [67]; Yu and 

Li, 2000 [107]). 

In light of the preceding discussion, it is now possible to discuss the appropriateness 

of robustness criteria in the context of the problem faced by an electronic equipment 

leasing company. In the face of uncertainty, it would be preferable for the leasing 
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company to use a regret model. This is because a variability minimization criterion would 

tend to push all scenario solutions towards an average value, which implies that the risk 

posed by unfavorable scenarios is reduced, but so is the profit potential in favorable 

scenarios. The leasing company would not want to miss out on an opportunity to make 

high profits, should one present itself in a particular scenario. In other words, they would 

prefer that the optimal profit in any scenario should not be too much lower than that 

which could have been realized had all parameter values been known with certainty. This 

reasoning points to a regret model of robustness. An absolute robustness criterion is 

chosen in this research, which implies that the regret is measured in dollars. 

The next decision to be made is the choice of robust variables. It must be noted that 

robustness is more important for some decisions as compared to others. For example, 

leases are contractual in nature and therefore, more difficult to change than product 

flows. Hence the leasing company would prefer to have leasing decision variables as the 

robust variables, i.e., a fixed set of leases would be chosen across all potential scenarios. 

Given this fixed set of leases, the remaining decisions must be made for each scenario 

such that the deviation from the optimal solution for that scenario is as small as possible. 

Another point to be noted here is that if the leasing company uses third-party 

logistics providers (3PL) to manage logistics activities, it is likely that there would exist 

contracts about the amounts of product flow on various routes and the variability of those 

flows. Therefore, the set of robust variables would now have to be expanded to include 

product flows as well. However, the following discussion assumes that the leasing 

company manages logistics activities itself and therefore, the focus is on making robust 

leasing decisions only. 

 65



 

For extending the mathematical model formulated in Chapter 3 so as to make it a 

robust optimization formulation, one needs to define a set of scenarios Ω, and hold the set 

of variables  to a fixed value for all ω , , , , ,
A
p h c i r sXL ∈  Ω. All other variables are additionally 

indexed by the subscript ω because they can take different values for each scenario. Rω 

denotes the optimal profit obtained for scenario ω with the robust variables held to a 

fixed value across all scenarios, and Oω
* denotes the original optimal profit for that 

scenario. The variable δ denotes the maximum regret, and a robust solution would 

minimize the value of δ. Mathematically, a robust optimization formulation of the 

problem can be expressed as follows. 

 

Problem “Robust” 

Minimize      δ 

subject to: 

*O Rω ωδ ≥ −  ω∀ ∈Ω  ; 

Constraint sets (3.2), (3.9) and (3.18) - (3.19);    and 

Constraint sets (3.3) - (3.8), (3.10) - (3.17) and (3.20) - (3.25), each additionally 
indexed by ω. 

 

Although demand uncertainty is not being considered in this research, addressing 

this kind of uncertainty with a robust optimization approach would require the use of 

recourse variables for constraints (3.2). 

For better exposition, the single scenario deterministic model formulated in Chapter 

3 is henceforth referred to as “Problem Original” and the robust formulation presented 
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above is referred to as “Problem Robust.” The steps involved in solving a formal robust 

optimization problem would be as follows. 

 Define a set of scenarios, Ω. 

 Solve Problem Original for each of the scenarios individually and obtain values for 
Oω

*. 

 Solve Problem Robust. A robust solution is defined as the set of values of decision 
variables in Problem Robust that minimizes the value of δ. Clearly, δ  0. ≥

It must be noted that the robust optimization formulation of a problem can lead to a 

significant increase in the number of variables and constraints, because many of the 

variables and constraints are uniquely defined for each scenario. Since the single scenario 

deterministic model in Chapter 3 contains a large number of variables and constraints, 

computational issues could be encountered in the solution of Problem Robust. Therefore, 

before the actual adoption of a formal robust optimization approach, it is worthwhile to 

examine the practical utility of this detailed theoretical and computational exercise for the 

purposes of this research. Section 4.2.2 extends the deterministic case study, and results 

from twelve scenarios are examined in order to identify the opportunities offered by 

robust optimization. 

 

4.2.2 Robust leasing decisions: An extended case study 

 

This section extends the deterministic case study presented in Chapter 3. First, a set 

of twelve uncertainty scenarios is defined. The scenarios themselves are tabulated in 

Table 4.1. The columns in the table represent four alternatives for environmental 

legislation. “No legislation” implies that both asset purchase and asset disposal costs 

remain the same as those in the base case. As it has already been stated in Chapter 3 
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(Section 3.4.1), asset purchase costs at different warehouse locations are assumed to be 

differentiated by local tariffs like sales tax, and asset disposal costs are assumed to be the 

same at all warehouse locations in the base case. The Advance Recycling Fee (ARF) in 

California is assumed to raise the purchase cost of every asset type by $10, and asset 

disposal is assumed to be cost neutral for those asset types for which the original disposal 

cost was between -$10 (i.e., revenue generation of $10 on disposal) and $10. The net 

effect of this is to increase the average asset disposal costs in California, by 

approximately $3. The landfill ban in Massachusetts not only disallows the landfilling of 

all types of assets, but also raises the recycling costs of assets by an average of 

approximately $15. 

 

Table 4.1: Uncertainty scenarios 

 No legislation ARF in CA Landfill ban in 
MA 

Both ARF and 
landfill ban 

Base case 
transportation 
rates 

Scenario 1 Scenario 4 Scenario 7 Scenario 10 

Transportation 
rates 0.1 times 
base case 

Scenario 2 Scenario 5 Scenario 8 Scenario 11 

Transportation 
rates 10 times 
base case 

Scenario 3 Scenario 6 Scenario 9 Scenario 12 

 

 

The rows in Table 4.1 represent alternatives for transportation rates, which are 

assumed to depend linearly on the distance for which an asset is transported. The 
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alternatives for transportation rates are taken as one-tenth and 10 times the base case 

transportation rates. It is expected that this particular choice of values should provide a 

sufficiently high contrast to distinguish the effect of transportation costs on the optimal 

solutions across scenarios. 

 

4.2.2.1 Intuitive reasoning for the identification of near-robust solutions 

This section presents a few results from the extended case study. These results 

provide some information about the structure of the problem. This information is then 

used to form intuitive reasoning that can be used to obtain near-robust solutions. The 

intuitive reasoning is verified by results from another small extension of the case study. 

A first step to forming intuitive reasoning is to examine high-level results from the 

case study. Clearly, the best high-level results for examination are the optimal objective 

function values (total net discounted system profit) under various scenarios (obtained by 

solving each of the scenarios individually) and the differences in the components of the 

objective function (total revenues and costs) across scenarios. The optimal objective 

function values for various scenarios are shown in Table 4.2. 

The results indicate that uncertainty in transportation costs affects the objective 

function more strongly than the uncertainty in asset purchase and asset disposal costs 

caused by environmental legislation. In other words, for a given level of transportation 

cost rates, the objective function is not affected as much by changes in asset purchase and 

asset disposal costs as it is affected when environmental legislation is given and 

transportation cost rates are varied. For example, for a given level of transportation costs, 

the maximum change in the optimal objective function value with changes in 

environmental legislation is approximately $1.9 million. Whereas, across scenarios with 
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the same environmental legislation but different levels of transportation cost, the 

minimum change in the optimal objective function value is more than $7 million. 

 

Table 4.2: Optimal objective function values ($ million) for the case study problem with 
various scenarios of transportation rates and environmental legislation 

 No legislation ARF in CA Landfill ban in 
MA 

Both ARF and 
landfill ban 

Base case 
transportation 
rates 

265.81 265.32 264.60 264.12 

Transportation 
rates 0.1 times 
base case 

276.59 276.50 276.30 276.20 

Transportation 
rates 10 times 
base case 

194.73 194.14 193.41 192.82 

 

 

It can be argued here that this strong effect of transportation costs on the objective 

function is due to a large range of variation considered in transportation rates (a factor of 

100 between the highest and lowest levels). However, the effect of transportation rates is 

stronger even when the range of variation considered in transportation rates is much 

smaller, i.e., when the highest and lowest transportation rate levels differ only by a factor 

of only 3.0 (or in other words, when transportation rates vary only by 50% on either side 

of the base case rates). 

In addition, a large portion of the change in the objective function value between 

scenarios with different levels of transportation cost rates is a result of the change in total 

transportation costs. For example, the transportation costs increase by approximately $68 

 70



 

million from Scenario 1 to Scenario 3, and by a very similar amount from Scenario 10 to 

Scenario 12. This increase in total transportation costs is almost the same as the decrease 

in total profits (approximately $71 million) between the corresponding scenarios. 

Similarly, the total transportation costs decrease by approximately $7.5 million from 

Scenario 1 to Scenario 2, compared to a profit increase of approximately $10.5 million. 

The only other cost component that changes within the same order of magnitude is the 

total asset purchase cost – the change in other cost components is comparatively very 

small. This result confirms that transportation costs strongly influence total profit, but at 

the same time, it also cautions that changes in asset purchase costs may become 

significant if the considered range of uncertainty in transportation costs is small. Once 

again, uncertainties in asset purchase costs (due to factors other than environmental 

legislation) are not examined in this research, but this aspect is discussed briefly at the 

end of Section 4.2.2.2. 

With the observations made above, it should be possible to identify a solution that is 

close to robust. Even though the robustness of this solution cannot be guaranteed (i.e., it 

is not guaranteed that this solution would yield the minimum possible value of the 

maximum regret), this solution would make the maximum regret low (quite close to zero 

in relative terms, which is a lower bound on robustness). This is formally stated below in 

the form of Hypothesis 1.  

 

Hypothesis 1: Given the particular data for this case study, the optimal values of 

the leasing decision variables from at least one of the twelve scenarios in Table 
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4.1 could be chosen as a set of values for the robust variables , without 

making the maximum regret very large. 

, , , , ,
A
p h c i r sXL

 

In order to verify the correctness of the hypothesis, it would suffice to show that by 

fixing the optimal values of lease variables from one of these 12 scenarios as the values 

of the robust variables  and re-optimizing all the other scenarios, the new 

optimal profit thus obtained for any scenario would not be significantly different from the 

original optimal profit under that scenario (in Table 4.2). 

, , , , ,
A
p h c i r sXL

The immediately obvious next question is: How should one choose a scenario whose 

optimal leasing decision variables provide a near-robust solution? Once again, intuitive 

logic provides an answer. Suppose a scenario with very high transportation rates were 

chosen. All decisions in such a scenario would attempt to keep total transportation costs 

low. This is expected to lead to longer leases on average, because shorter leases imply 

more transportation of assets. Therefore, a decrease in total lease revenues would be 

expected in other scenarios if the optimal values of lease variables from this high 

transportation rate scenario were chosen as the values of the robust variables. However, 

this decrease in total lease revenues should be counterbalanced by a simultaneous 

decrease in total transportation costs (and other costs are not expected to change 

significantly). The converse applies for choosing a scenario with very low transportation 

rates. In this case, the increase in total lease revenues in other scenarios would be 

counterbalanced by a simultaneous increase in total transportation costs. However, given 

that with a large change in transportation rates, the magnitude of the change in total 
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transportation costs is significantly higher as compared to the change in other kinds of 

costs (and revenues), a scenario with high transportation rates is a better intuitive choice. 

Results are compared for the values of robust variables  chosen from a 

scenario with each level of transportation rates, i.e., Scenarios 11, 10, and 12 respectively 

for low, “medium” (base case) and high transportation rates. The results are presented in 

Table 4.3. R

, , , , ,
A
p h c i r sXL

ω(ω0) denotes the optimal net discounted profit for scenario ω when the 

optimal values of lease variables from scenario ω0 are chosen as the values for the robust 

variables. The highlighted cells in the table correspond to results for scenario ω0. 

It can clearly be seen that the results confirm Hypothesis 1 and other intuitive 

reasoning. The maximum regret is $0.82 million (0.30% in relative terms) if one chooses 

the optimal values of leasing decision variables from a scenario with the highest 

transportation rates as the values for the robust variables . This is not a very 

high value in relative terms. The maximum regret is significantly higher ($1.56 million, 

or 0.81% in relative terms) if a scenario with the lowest transportation rates provides the 

values for the robust variables. It must be noted that although such a choice performs 

better than the high transportation rate scenario in eight out of twelve scenarios, it 

performs worse in the other four scenarios (all of these being the ones in which 

transportation rates are very high). 

, , , , ,
A
p h c i r sXL
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Table 4.3: Optimal net discounted profits and the deviation from optimal values (in $ 
million) for all scenarios, with various choices of values for robust variables 

0 11ω =  

Low transportation 
rates 

0 10ω =  

Base case 
transportation rates

0 12ω =  

High transportation 
rates 

Scenario 
(ω) 

*
ωO  

ωR (11) 
* (11)O Rω ω−

 
ωR (10) 

* (10)O Rω ω−

 
ωR (12) 

* (12)O Rω ω−

 

1 265.81 265.81 0.00 265.81 0.00 265.20 0.61 

2 276.59 276.59 0.00 276.59 0.00 275.77 0.82 

3 194.73 193.17 1.56 193.26 1.47 194.73 0.00 

4 265.32 265.32 0.00 265.32 0.00 264.72 0.60 

5 276.50 276.50 0.00 276.49 0.00 275.67 0.83 

6 194.14 192.59 1.55 192.67 1.47 194.14 0.00 

7 264.60 264.60 0.00 264.60 0.00 264.00 0.60 

8 276.30 276.30 0.00 276.29 0.00 275.48 0.82 

9 193.41 191.85 1.56 191.93 1.48 193.41 0.00 

10 264.12 264.11 0.00 264.12 0.00 263.51 0.61 

11 276.20 276.20 0.00 276.20 0.0000 275.38 0.82 

12 192.82 191.26 1.56 191.34 1.48 192.82 0.00 
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4.2.2.2 Simple empirical methods for reducing the maximum regret 

The results from the extended case study confirm the intuitive reasoning presented in 

Section 4.2.2.1. However, it would be more desirable if intuitive reasoning provides a 

more specific method of obtaining low values of maximum regret and can be verified 

without solving a large number of scenarios each time new data is encountered. This 

section presents simple empirical methods for choosing the values of robust leasing 

variables so as to obtain a low value of the maximum regret. 

Given the discussion that supports Hypothesis 1 in Section 4.2.2.1, Hypothesis 1 

should hold for all realistically imaginable transportation cost ranges for this particular 

research problem if it holds for a case where there is a difference of two orders of 

magnitude in the extreme values of the transportation rates. If the extreme values have a 

smaller range, then the maximum regret obtained by using the optimal values of the 

leasing decision variables from any scenario as the robust leasing decisions should be 

even smaller than the one obtained in the extended case study. 

However, the choice of a scenario whose optimal leasing decision variables provide 

a better near-robust solution than others is not as clear. For example, consider a case 

where transportation rate variations of only 50% on either side of the base case need to be 

studied, i.e., the minimum possible transportation rate is 0.5 times the base case rate and 

the maximum possible one is 1.5 times the base case rate. It is now more likely that the 

lowest transportation rate scenario may provide a better balance between the change in 

total lease revenues and the change in total transportation costs, as compared to the 

highest transportation rate scenario. 

Further computational analysis with other values of transportation rates is presented 

below in order to provide more insight into this issue. To make the discussion more 
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coherent, the effects of legislation are not considered in this analysis. However, given the 

strongly dominant effect of transportation costs on the objective function, this exclusion 

of legislative effects should not change any of the insights obtained (In fact, it is formally 

shown in Section 4.3.3 that for this case study, environmental legislation has no 

significant effect on leasing decisions). 

It is helpful to define a few additional terms and notation for a concise expression of 

the ideas that follow. The scenarios being considered for this computational analysis only 

differ in their respective levels of transportation cost rates. The transportation rate level is 

denoted by l, which implies transportation rates l times the base case rates. The minimum 

level is denoted by lmin and the maximum level by lmax (in this extended case study, these 

levels are 0.1 and 10 respectively). A scenario with a transportation rate level l is denoted 

by ω(l). For the remainder of this section, the reference to transportation rates is implicit 

in the word “level(s).” This is done in order to enhance expressional simplicity. 

Similar to the notation in Section 4.2.2.1, Rω(k)(ω(l)) denotes the optimal objective 

function value of a scenario with level k, when the optimal values of leasing decision 

variables from a scenario with level l are used as the robust leasing decisions. Therefore, 

when a scenario with level k is realized, and the optimal values of leasing decision 

variables from a scenario with level l are used as the robust leasing decisions, one can 

define the resulting regret (denoted by Reg(k,l) hereafter) as 

 

 *
( ) ( )( , ) ( ( ))k kReg k l O R lω ω ω= −  (4.1) 
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Regret values for various scenarios with different levels
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Figure 4.2: Observed regret values (in $), when the optimal values of leasing decision 
variables from various scenarios are used as robust leasing decisions 

 

Figure 4.2 shows the regret values obtained in eight scenarios, with levels ranging 

from 0.1 to 10, when the optimal values of leasing decision variables from four of these 

scenarios (with levels 0.1, 1.5, 5 and 10 respectively) are used as the robust leasing 

decisions. Therefore, the graph consists of four data series, each with eight points.  

Before any observations are made about the graph, it is very helpful to cite a 

theoretical result due to Assavapokee (2004) [5], who proves that if an uncertain 

parameter is present only in the objective function of a MILP problem, and a min-max 

regret robust optimization approach is used, the maximum regret always occurs at one of 

the two extreme values of that parameter. 
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This result implies that in order to find the maximum regret when the optimal values 

of leasing decision variables from a scenario with level l provide the robust leasing 

decisions, it should suffice to look only at the regrets for scenarios with levels k = lmin and 

k = lmax, and the greater of these two values provides us the answer. Figure 4.2 agrees 

with this implication of the theoretical result, because it is observed that only either 

endpoint of each data series provides the maximum regret for that scenario level l. 

The observed parabolic shapes of the data series suggest a method of choosing a 

scenario that provides low maximum regret when the optimal values of its leasing 

decision variables are used as the robust leasing decisions. Scenarios with levels l = lmin 

and l = lmax are clearly not the best choices. One would ideally like to find a scenario with 

level l for which the regret value at the extreme levels (k = lmin and k = lmax) is the same. 

Let this level be called the “pseudo-optimal level” l*. This strange nomenclature is due to 

the fact that even if one were to find a scenario with this level and use the optimal values 

of its leasing decision variables as the robust leasing decisions, it is not necessary that the 

maximum regret thus obtained would actually be mathematically optimal (i.e., the 

minimum possible value). 

It can be observed in Figure 4.2 that the scenario with level 5 seems to be close to 

pseudo-optimal. However, it is still not clear how one would actually go about finding a 

pseudo-optimal scenario without guesswork and the expenditure of substantial 

computational effort. An educated guess would point to using the average value of (lmin + 

lmax)/2 as l*, which happens to be 5.05 in this particular case. But it can also be observed 

that the real pseudo-optimal level should be less than 5, because Reg(0.1, 5) > Reg(10, 5). 

So, how is it possible to do better? The parabolic shapes of the data series in Figure 4.2 
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suggest that it might be possible to find patterns in the computational data that generates 

the figure. Data analysis procedures (and the results thereof) are described in the 

remainder of this section. 

Clearly, in light of the theoretical result discussed earlier, it is instructive to look 

only at the regrets for scenarios with levels k = lmin and k = lmax. Four data series imply 

that four “observations” are available for the regret value (in $) at each of these extreme 

levels. However, it is necessary to take into account the fact that the regret value depends 

not only on the “independent” scenario level l (in other words, the scenario level 

providing the robust leasing solutions and generating the observations at levels k = lmin 

and k = lmax), but also the actual values of the extreme levels (Equation (4.1)). Therefore, 

it is helpful to define the concept of a level multiple (denoted by LM from here on). 

During the analysis of a scenario with level l, any other scenario with level k has a level 

multiple of k/l for the scenario with level l. In other words, LM(k,l) = k/l. Using level 

multiples, a subset of the computational data plotted in Figure 4.2 can be presented in the 

form of Table 4.4. 

 

Table 4.4: Observed regret ($) for the extreme level scenarios, with optimal values of 
leasing decision variables from various scenarios used as the robust leasing decisions 

Scenario 
level (l) 

LM(lmin, l) = 
LM(0.1, l) 

Reg(lmin, l) LM(lmax, l) = 
LM(10, l) 

Reg(lmax, l) 

0.1 1 0 100 1,556,942 

1.5 0.067 25,686 6.667 1,301,942 

5 0.02 493,944 2 191,569 

10 0.01 822,358 1 0 
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 Level multiples take into account both levels k and l, and provide a single 

independent variable to work with in the data analysis. Graphs of level multiples versus 

regret values can then be plotted. The data plots of LM(lmin, l) versus Reg(lmin, l) and 

LM(lmax, l) versus Reg(lmax, l) indicate no obvious relationship. However, when the 

natural logarithms of these quantities are plotted (the zero values are dealt with by adding 

a small number like 10-12 to them), a regular relationship is observed. The transformed 

data seem to follow either a quadratic or exponential trend. Analysis using the curve-

fitting software Lab Fit® [62] indicates that an offset exponential trend of the form a + 

becx is a good fit for both Reg(lmin, l) and Reg(lmax, l), with high R2-values. Therefore, the 

following relationships are obtained. 

  (4.2) 
0.8783*ln( (0.1, ))

0.8783

ln( (0.1, )) 14.514 46.751
                       14.514 46.751* (0.1, )

LM lReg l e
LM l

= −

= −

  (4.3) 
4.528*ln( (10, ))

4.528

ln( (10, )) 14.1736 46.408
                      14.1736 46.408* (10, )

LM lReg l e
LM l

−

−

= −

= −

 Using these relationships, it is now possible to predict (for this extended case study) 

the regret values at the extreme level scenarios, and hence the maximum regret, for a 

scenario (with any level) that provides the robust leasing decisions. It is also possible to 

determine the pseudo-optimal level l*, by setting ln(Reg(lmin, l*)) = ln(Reg(lmax, l*)). The 

resulting equation can easily be solved numerically (say, using Microsoft Excel Solver), 

and it is found that l* = 4.539. This value makes more intuitive sense than the “average” 

value of 5.05, due to the observation from Figure 4.2 that the pseudo-optimal level should 

be less than 5 for the extended case study presented in this chapter. 

However, a high R2-value for relationships (4.2) and (4.3) does not necessarily imply 

good prediction, because the small number of data points may lead to over-fitting of the 
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data. Therefore, it is necessary to verify how “good” the predicted values are. Table 4.5 

shows a comparison between the predicted regret values and the actual regret values for 

scenarios with various levels for the extended case study. 

 

Table 4.5: Comparison between predicted and actual values of regret ($) for various 
scenario levels in the extended case study 

Predicted values Actual values 
Scenario 
level (l) Reg(0.1,l) Reg(10, l) Maximum 

regret ($) 
Reg(0.1,l) Reg(10, l) Maximum 

regret ($) 

0.25 0 1,430,594 1,430,594 97 786,100 786,100 

0.5 23 1,430,513 1,430,513 755 726,317 726,317 

1 4,132 1,428,631 1,428,631 3,755 609,113 609,113 

8 742,561 0 742,561 1,081,348 4,917 1,081,348 

4.539 390,560 390,560 390,560 465,528 223,472 465,528 

 

 

It can be observed that for some of the scenario levels, especially the predicted 

pseudo-optimal scenario level, the prediction error for the maximum regret is high, which 

indicates over-fitting of the experimental data. The value of the actual maximum regret 

with scenario level l* is substantially lower ($0.465 million) as compared to the value of 

$0.82 million obtained with l = 10. However, it is clearly not pseudo-optimal, because the 

actual values of Reg(0.1, 4.539) and Reg(10, 4.539) are quite different from each other. 

The value of $465,528 is also not substantially lower than the one that would have been 

obtained ($493,944) by simply using l* = (lmin + lmax)/2. Therefore, it may not always be 
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worthwhile to expend even the small computational effort required to fit functional forms 

for the calculation of l*.  

The parabolic shapes of the data series in Figure 4.2 also arouse curiosity. It is 

interesting to examine whether it is possible to fit a functional form to these Reg(k,l) data 

series per se. Once again, it is convenient to use level multiples LM(k,l) as the 

independent variables for data analysis. Data analysis with both the statistical software 

Minitab® [66] and the curve-fitting software Lab Fit® [62] shows that for a particular 

scenario level l, a quadratic relationship between Reg(k,l) and LM(k,l) is a good fit for the 

observed data. That is, the observed relationships are of the following form. 

 2( , ) ( , ) ( , )l l lReg k l a LM k l b LM k l c= + +  (4.4) 

Once again, the R2-values are high – better than 99.5% for three of the four cases, and 

about 98% for the remaining one. Table 4.6 shows the values of al, bl and cl for the four 

scenarios. 

 

Table 4.6: Value of fitted regression coefficients for Equation (4.4), from case study 
observations of regret values with various scenario levels 

Scenario level (l) la  bl lc  

0.1 138 2204 -19014 

1.5 31058 -9609 9166 

5 345125 -829363 493329 

10 1389392 -2195488 830024 
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It must be cautioned that even though the R2-values are very high, the functional 

relationships cannot be treated as exact fits. This is evident if one considers the properties 

that a truly quadratic relationship would satisfy. The value of Reg(k,l) can be zero only at 

a level multiple LM(k,l) = 1 and nowhere else. Therefore, the quadratic equation (4.4) 

must have a repeated root at l = k. This implies that the coefficients must satisfy the 

relationships  and 2 4 0l l lb a c− = 2lb la= − . However, this is clearly not the case. 

From Table 4.6, it is possible to elicit further functional relationships between the 

scenario level l and the coefficients al, bl and cl, which could be used to predict the 

Reg(k,l) curve for any scenario level l. This way, it is possible to predict (for a particular 

scenario level l) not only the Reg(k,l) values for k = lmin and lmax, but also for any other 

scenario level k. Due to the propagation of prediction errors from one step to the next in 

this two-step method, it would have lower accuracy than the previously described method 

that only predicts Reg(lmin, l) and Reg(lmax, l). 

Although the empirical methods discussed in this section have only been verified for 

the case study, it is possible to argue their applicability to more general cases. Two 

important characteristics drive these empirical methods. The first is the occurrence of 

maximum regret only at the extreme scenario levels, and the second is the parabolic 

shapes of the regret curves in Figure 4.2. Assavapokee’s result, being a theoretical proof, 

ensures that the first criteria would be satisfied if the uncertainties being examined in the 

problem are the coefficients of decision variables only in the objective functions of the 

optimization problems for individual scenarios. The parabolic shapes of the curves follow 

from the intuitive reasoning that leads to Hypothesis 1. The hypothesis is based on the 

effect of one particular type of uncertainty overshadowing the effect of others in the 
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possible scenarios being considered. The uncertainty with a strong effect happens to be 

the uncertainty in transportation rates in this case. Now, if a particular scenario with 

transportation rate level k were realized, and a scenario with level l were used to obtain 

the values of the robust leasing variables, then it is reasonable to expect that the farther 

away level l is from level k, the higher the regret Reg(k,l) should be. 

However, an appropriate note of caution also needs to be added at this point. This 

research addresses uncertainty in transportation costs and uncertainty in asset purchase 

and asset disposal costs due to environmental legislation, but other uncertainties may also 

be important. As discussed in Sections 4.1 and 4.2.2.1, uncertainty in asset purchase costs 

(due to causes other than environmental legislation) could rival or overshadow the 

uncertainty in transportation costs. While these uncertainties in asset purchase costs are 

not explicitly considered in this research, it is appropriate to discuss them briefly before 

concluding this section. 

Consider a situation where the decision maker for the leasing company would like to 

make robust leasing decision in the presence of uncertainty in asset purchase costs 

(instead of uncertainty in transportation costs). Clearly, since asset purchase costs 

constitute almost all of the total costs for the leasing company, the realized profit is 

expected to be sensitive to changes in asset purchase costs. The most obvious means for 

the leasing company to respond to changes in asset purchase costs is to change lease 

prices (and hence lease revenues), but since lease pricing is not a decision variable in this 

model, the decision maker encounters the same situation as the one that is encountered 

when addressing uncertainty in transportation costs. That is, once a level of asset 

purchase costs is realized, the differences in profit across all scenarios with that level of 
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asset purchase costs would not be very large. In other words, it can be assumed that asset 

purchase costs would have a much stronger effect on profit than other types of 

uncertainties. 

Therefore, it seems reasonable to assume that the methodology for making near-

robust decisions in the presence of uncertainty in transportation costs can be extended to 

address uncertainty in asset purchase costs. This is explained as follows. Suppose that 

asset purchase costs were high. Then one would expect the leasing company to lease 

assets for longer periods in order to cover the time horizon with the minimum number of 

leasing cycles. This leads to a decrease in lease revenues (shorter leases are more 

profitable as the computational results in Section 4.3.3 indicate) and in transportation 

costs. In addition, a large increase in rebuilding activities would be observed, but it can 

safely be assumed that sufficient rebuilding capacity would not be available to rebuild all 

types of assets to satisfy all the customer demand. Now, if leasing decisions from this 

high asset purchase cost scenario were used as robust leasing decisions, lease revenues 

would decrease for scenarios with lower asset purchase costs, but this decrease would be 

counterbalanced by a corresponding decrease in transportation costs. One would 

therefore not expect a very high value of maximum regret. However, if the optimal 

leasing decisions from a low asset purchase scenario were used as the robust leasing 

decisions, one would expect a much higher value of maximum regret, because a scenario 

with low asset purchase costs would encourage shorter leasing cycles and hence more 

purchases of new assets. Therefore, one would expect to see the same shapes of regret 

curves as in Figure 4.2, but the curves would have significantly steeper slopes for 

scenario levels higher than the one being used to provide the values of the robust leasing 
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decision variables. This would have the effect of shifting l* to the right (i.e., towards 

scenarios with high asset purchase costs). 

In light of the above discussion, an interesting topic for future research would be the 

simultaneous examination of uncertainties in problem parameters that have comparable 

influences on the objective function value. Moreover, if these uncertainties were strongly 

correlated (i.e., if they exhibited strong interaction effects), the problem of making robust 

decisions would become more challenging and interesting. 

In summary, this section presents simple empirical procedures that can be used by an 

electronic equipment leasing company to obtain near-robust solutions for leasing decision 

variables under the key uncertainties considered in this research. In order to choose a 

scenario level l that provides low maximum regret when the optimal values of its leasing 

decision variables are used as the robust leasing decisions, the simplest method is to 

choose the average of the extreme scenario levels. A more elaborate approach is to 

calculate the regret values at the extreme levels with different “independent” levels l and 

to fit empirical functional forms to these values. These functional forms can then be used 

to predict the maximum regret at any other scenario level and also to calculate an 

approximate value for the pseudo-optimal level l*. If one wants to predict the regret 

values at scenario levels other than the extreme levels, then even more computational 

runs are required to obtain a sufficient number of values to elicit the functional 

(parabolic) forms observed in Figure 4.2 and to avoid large prediction errors. 

 

4.2.2.3 Conclusions on the robustness of leasing decisions 

Since robust optimization approaches have gained popularity in academic literature, 

Section 4.2 discusses as a whole the potential use of a robust optimization approach for 
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the research problem addressed in this dissertation. The concept of robustness is defined 

in the context of this problem and it is argued that the most desirable robust decisions for 

an electronic equipment leasing company would be the lease lengths. 

However, a cursory examination of the problem structure from the extended case 

study data shows the stronger effects of uncertainty in transportation costs as compared to 

uncertainty in other kinds of costs, which leads to Hypothesis 1. The hypothesis argues 

that it is possible to use the optimal values of leasing decision variables from at least one 

scenario as the robust leasing decisions without making the maximum regret too large. 

Admittedly, the hypothesis has been verified only for the particular data of this case 

study, but it is argued at the beginning of Section 4.2.2.2 that it should hold for all 

realistically imaginable transportation cost ranges for this particular research problem. If 

this hypothesis were to hold, then simple empirical methods (also discussed in Section 

4.2.2.2) involving minimal computational effort can be used effectively to obtain low 

values of the maximum regret. A reasonable argument for the applicability of these 

methods to more general cases (along with appropriate notes of caution) is made near the 

end of Section 4.2.2.2. 

The above discussion implies that given the kinds of uncertainty on which this 

research focuses, a standard robust optimization approach would add little additional 

insights into the problem. Hence, the robust optimization model described in Section 

4.2.1 is not solved in this dissertation. The remainder of this chapter is dedicated to a 

more detailed examination of the results from the twelve scenarios in Table 4.1 in order 

to thoroughly investigate important cost tradeoffs and uncertainty effects in this system.  
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The next section first presents intuition-based hypotheses about the expected effects 

of uncertainty in transportation costs and environmental legislation on product flows and 

lease lengths. These hypotheses are then tested computationally and interesting insights 

into the problem are obtained. 

 

4.3 Effects of sources of uncertainty on product flows and lease lengths 

 

The previous section discussed a methodology for the leasing company to make 

robust leasing decisions with respect to their total profit. However, it is also very 

important to examine the effects that the key uncertainties in problem parameters have on 

optimal decisions about product flows and lease lengths. This investigation would help in 

understanding the tradeoffs between various types of costs in the system and the effects 

that interactions between sources of uncertainty can have on the optimal decisions. 

Section 4.3.1 presents intuitive hypotheses about the expected effects of uncertainty on 

the optimal decisions. The remainder of the section analyzes computational results for the 

extended case study described in Section 4.2.2, compares the results to the intuitive 

hypotheses formulated in Section 4.3.1, and discusses the insights thus obtained. 

 

4.3.1 Expected effects of uncertainty 

 

Based on the understanding of uncertainty interactions discussed in Section 4.1, it is 

possible to present intuitive hypotheses about expected changes in optimal decisions for 

product flows and leasing periods as a result of changes in transportation costs and 

environmental legislation. This is done in a tabular form for product flow decisions. 
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Table 4.7 presents hypotheses on expected changes in optimal asset purchase 

decisions in twelve scenarios similar to those in Table 4.1. The possibilities for 

environmental legislation remain the same as in those scenarios and they appear as 

column headings in the table. However, for the purpose of formulating hypotheses on 

expected changes in optimal solutions, the possibilities for transportation rates have been 

slightly modified. Transportation rates are assumed to be zero instead of one-tenth the 

base case rates, and infinity instead of ten times the base case rates. The nature of the 

expected changes in product flows becomes immediately clear if these extreme cases are 

used, hence leading to improved clarity and increased conciseness of presentation. 

 

Table 4.7: Expected changes in optimal asset purchase decisions due to uncertainty in 
transportation rates and environmental legislation 

 No legislation ARF in CA Landfill ban in 
MA 

Both ARF and 
landfill ban 

Base case 
transportation 
rates 

Tradeoff 
between 
transportation 
costs and asset 
purchase costs  

Tradeoff 
between 
transportation 
costs and asset 
purchase costs, 
but purchase less 
in California 

Same as 
scenario with no 
legislation 

Same as 
scenario with 
ARF in 
California 

Very low 
transportation 
rates (zero) 

Purchase all 
assets at the 
cheapest 
warehouse 
location 

Purchase all 
assets at the 
cheapest 
warehouse 
location 

Purchase all 
assets at the 
cheapest 
warehouse 
location 

Purchase all 
assets at the 
cheapest 
warehouse 
location 

Very high 
transportation 
rates (∞) 

Purchase all 
assets at 
warehouse 
location nearest 
to customer 

Purchase all 
assets at 
warehouse 
location nearest 
to customer 

Purchase all 
assets at 
warehouse 
location nearest 
to customer 

Purchase all 
assets at 
warehouse 
location nearest 
to customer 
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In some scenarios, it is not possible to say precisely what the expected optimal 

solutions would be, because the exact values depend on the relative values of the actual 

costs being traded off. However, comparing such scenarios with other scenarios indicates 

the expected changes that would be caused by uncertainty in transportation costs and 

environmental legislation.  

For asset purchase decisions, there is a tradeoff to be made between transportation 

costs and asset purchase costs. However, if transportation rates are very low, it is clear 

that all assets should be purchased at the cheapest warehouse location and if they are very 

high, all assets must be purchased nearest the customer site at which they would be used. 

The solutions for all scenarios with either very low or very high transportation rates are 

expected to be identical to each other. Since a landfill ban does not affect asset purchase 

costs, it is not expected to have any effect on asset purchase decisions. With an ARF in 

place at a particular warehouse location, asset purchase costs at that location increase. 

Therefore, in scenarios with base case transportation rates, asset purchases at that 

warehouse location are expected to decrease due to the tradeoff between asset purchase 

costs and transportation costs. 

Table 4.8 presents hypotheses on expected optimal asset disposal decisions, using the 

same scenarios as those used for asset purchase decisions. It is more difficult to formulate 

hypotheses for asset disposals, because both landfill bans and ARFs affect asset disposal 

costs. An ARF can increase or decrease asset disposal cost for a particular asset type, 

depending on the original disposal cost for that asset type, because it makes disposal for 

some kinds of assets cost neutral. A landfill ban always increases asset disposal costs. For 

asset disposal decisions, there is a tradeoff to be made between transportation costs and 
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asset disposal costs, and the tradeoff that is ultimately made depends on the relative 

changes in asset disposal costs across warehouse locations. In addition, there are two 

possible modes of asset disposal (technically, landfilling is a viable option with a landfill 

ban in place at a particular warehouse location, because the ban makes the costs of 

landfilling infinitely large at that location), but once the location for disposing an asset 

has been determined, the asset will always be disposed via the cheapest disposal option. 

 

Table 4.8: Expected changes in optimal asset disposal decisions due to uncertainty in 
transportation rates and environmental legislation 

 No legislation ARF in CA Landfill ban in 
MA 

Both ARF and 
landfill ban 

Base case 
transportation 
rates 

Tradeoff 
between 
transportation 
costs and asset 
disposal costs  

Tradeoff 
between 
transportation 
costs and asset 
purchase costs, 
but asset 
disposals depend 
on relative 
changes in asset 
disposal costs 
across locations 

Tradeoff 
between 
transportation 
costs and asset 
disposal costs, 
but dispose more 
at other 
locations 
(California and 
Georgia) 

Same reasoning 
as for scenario 
with ARF in 
CA, but lesser 
disposal 
expected in 
Massachusetts 
due to effect of 
landfill ban 

Very low 
transportation 
rates (zero) 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location with 
lowest asset 
disposal costs 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location with 
lowest asset 
disposal costs 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location with 
lowest asset 
disposal costs 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location with 
lowest asset 
disposal costs 

Very high 
transportation 
rates (∞) 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location nearest 
to customer 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location nearest 
to customer 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location nearest 
to customer 

Dispose via 
cheapest 
disposal mode at 
warehouse 
location nearest 
to customer 
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In addition, it must be noted that even though the intuition is identical for scenarios 

with low transportation rates, the actual optimal solutions for these scenarios may not be 

identical. Once again, this is due to the fact that an ARF in a particular location can either 

increase or decrease disposal costs for a particular asset at that location. 

It is more difficult to hypothesize about expected changes in leasing periods as a 

result of uncertainty in transportation costs, and uncertainty in asset purchase and asset 

disposal costs due to environmental legislation. This is because leasing decisions involve 

both forward and reverse flows, whose magnitude and timing may simultaneously be 

affected by the three-way interaction between transportation costs, asset purchase costs 

and asset disposal costs. The only hypothesis that can be formulated intuitively is that 

higher transportation costs should lead to longer leases, so that multiple leasing cycles 

can be avoided and the transportation costs do not have to be paid for each leasing cycle. 

The remainder of Section 4.3 presents computational results that reveal the effects of 

uncertainty in individual parameter sets as well as the effects of the interactions between 

multiple parameters on the leasing and product flow decisions. 

 

4.3.2 Product flows: Observed effects of uncertainty and interaction effects  

 

 This section tests the intuitive hypotheses presented in the Section 4.3.1 using the 

same extended case study as that used in Section 4.2.2. The model presented in Chapter 3 

(Section 3.2) is run individually for each of the twelve scenarios summarized in Table 4.1 

and detailed analyses of the computational results are carried out. The first set of 

analyses, presented in this section, examines asset purchase decisions and forward 

product flows, and in particular the effect of various sources of uncertainty and the 
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interactions between those uncertainties on the decisions. A similar set of analyses 

follows for asset disposal decisions and reverse product flows.  

Table 4.9 shows the percentage of total asset purchases at each warehouse location in 

the optimal solutions for each scenario. It would be instructive to define the term 

“transportation rate multiplier” before proceeding. This term is defined to express 

various transportation rate scenarios more concisely. A transportation rate multiplier of 

1.0 corresponds to the transportation rates in base case scenarios. Therefore, a scenario 

with a transportation rate multiplier of 0.1 has transportation rates one-tenth that of the 

base case rates and one with a multiplier of 10.0 has transportation rates ten times that of 

the base case rates. 

The results exactly match the hypotheses presented in Table 4.7. As expected, the 

results show that the imposition of an Advance Recycling Fee (ARF) in California has 

the effect of reducing the total number of assets purchased in California. A landfill ban in 

Massachusetts has, expectedly, no effect on asset purchases. However, a change in 

transportation rates can dramatically alter product flows, because of the tradeoff that 

exists between asset purchase costs and transportation costs. 

Since the computation results from the twelve scenarios constitute a 2231 factorial 

experimental design [103], a formal statistical analysis in Table 4.10 provides additional 

confirmation for the hypotheses stated in Table 4.7. The statistical software Minitab® [66] 

has been used to perform statistical analyses. In the analysis, “TptRate” denotes the 

experimental factor of transportation rate, which has three levels. “PurchCA,” 

“PurchGA,” and “PurchMA” are respectively the fractions of total assets purchased in 

California, Georgia and Massachusetts. 
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Table 4.9: Percentage of total asset purchases, by warehouse location, in optimal 
solutions under various transportation rates and legislative scenarios 

Legislative 
scenario 

Transportation 
rate multiplier 

% purchased 
in CA 

% purchased 
in GA 

% purchased 
in MA 

No legislation 1.0 15.57 % 26.26 % 58.17 % 

ARF in CA 1.0 14.94 % 26.26 % 58.80 % 

Landfill ban in 
MA 

1.0 15.57 % 26.26 % 58.17 % 

Both ARF and 
landfill ban 

1.0 14.94 % 26.26 % 58.80 % 

No legislation 0.1 3.11 % 5.49 % 91.40 % 

ARF in CA 0.1 0.00 % 6.71 % 93.29 % 

Landfill ban in 
MA 

0.1 3.11 % 5.49 % 91.40 % 

Both ARF and 
landfill ban 

0.1 0.00 % 6.71 % 93.29 % 

No legislation 10.0 19.28 % 29.81 % 50.92 % 

ARF in CA 10.0 19.28 % 29.81 % 50.92 % 

Landfill ban in 
MA 

10.0 19.28 % 29.81 % 50.92 % 

Both ARF and 
landfill ban 

10.0 19.28 % 29.81 % 50.92 % 
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Table 4.10: Statistical output for analysis of asset purchase decisions 

Factor     Type Levels Values  
TptRate   fixed      3 0 1 2 
ARF       fixed      2 0 1 
LF ban    fixed      2 0 1 
 
Analysis of Variance for PurchCA, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
TptRate     2   0.069056   0.069056   0.034528  446.43  0.000 
ARF         1   0.000468   0.000468   0.000468    6.05  0.044 
LF ban      1   0.000000   0.000000   0.000000    0.00  1.000 
Error       7   0.000541   0.000541   0.000077 
Total      11   0.070065   
 
Analysis of Variance for PurchGA, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
TptRate     2   0.130820   0.130820   0.065410 4637.17  0.000 
ARF         1   0.000049   0.000049   0.000049    3.50  0.104 
LF ban      1   0.000000   0.000000   0.000000    0.00  1.000 
Error       7   0.000099   0.000099   0.000014 
Total      11   0.130968   
 
Analysis of Variance for PurchMA, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
TptRate     2   0.389375   0.389375   0.194687 7314.60  0.000 
ARF         1   0.000213   0.000213   0.000213    8.02  0.025 
LF ban      1   0.000000   0.000000   0.000000    0.00  1.000 
Error       7   0.000186   0.000186   0.000027 
Total      11   0.389774   

 

From a combination of the computational results (Table 4.9) and the statistical 

analyses (Table 4.10), the following conclusions can be made about the effects of key 

uncertainties in problem parameters on optimal asset purchase decisions. 
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 Both transportation rates and the ARF legislation are significant factors affecting 
asset purchase decisions, although the effect of transportation rates tends to dominate 
the effect of the ARF.  Figure 4.3 provides further confirmation. The graph is drawn 
only for one response, namely “PurchGA.” Other responses show similar patterns, 
with the only difference being that the sign of the transportation rate effect is reversed 
for Massachusetts. 
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Figure 4.3: Main effects plot for response “PurchGA” 

 

 There are no significant interaction effects between any of the three factors, although 
there is a small interaction effect between transportation rates and the ARF legislation 
at the lowest level of transportation rates (Figure 4.4). 
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Figure 4.4: Interaction plot for response “PurchGA” 

 

Similar analyses can be carried out for asset disposal decisions. Table 4.11 presents 

the number of assets disposed at each of the three warehouse locations, as a percentage of 

total asset disposals, in the optimal solution of each of the twelve scenarios.  

Once again, the intuitive hypotheses presented in Table 4.8 seem to have been 

confirmed. Statistical analyses of the results are presented in Table 4.12. In the statistical 

analyses, “DispCA,” “DispGA,” and “DispMA” are respectively the fractions of total 

assets disposed in California, Georgia and Massachusetts. 
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Table 4.11: Percentage of total asset disposals, by warehouse location, in optimal 
solutions under various transportation rates and legislative scenarios 

Legislative 
scenario 

Transportation 
rate multiplier 

% disposed in 
CA 

% disposed in 
GA 

% disposed in 
MA 

No legislation 1.0 19.43 % 30.21 % 50.36 % 

ARF in CA 1.0 19.47 % 30.17 % 50.36 % 

Landfill ban in 
MA 

1.0 19.43 % 41.83 % 38.75 % 

Both ARF and 
landfill ban 

1.0 19.47 % 41.78 % 38.75 % 

No legislation 0.1 19.43 % 30.21 % 50.36 % 

ARF in CA 0.1 19.94 % 29.55 % 50.50 % 

Landfill ban in 
MA 

0.1 19.43 % 80.08 % 0.50 % 

Both ARF and 
landfill ban 

0.1 20.83 % 79.17 % 0.00 % 

No legislation 10.0 19.43 % 30.21 % 50.36 % 

ARF in CA 10.0 19.43 % 30.21 % 50.36 % 

Landfill ban in 
MA 

10.0 19.43 % 30.21 % 50.36 % 

Both ARF and 
landfill ban 

10.0 19.43 % 30.21 % 50.36 % 
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Table 4.12: Statistical output for analysis of asset disposal decisions 

Factor     Type Levels Values  
TptRate   fixed      3 1 2 3 
ARF       fixed      2 0 1 
LF ban    fixed      2 0 1 
 
Analysis of Variance for DispCA, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
TptRate     2  0.0000585  0.0000585  0.0000292    2.25  0.176 
ARF         1  0.0000337  0.0000337  0.0000337    2.59  0.151 
LF ban      1  0.0000065  0.0000065  0.0000065    0.50  0.502 
Error       7  0.0000910  0.0000910  0.0000130 
Total      11  0.0001897   
 
Analysis of Variance for DispGA, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
TptRate     2    0.13166    0.13166    0.06583    3.40  0.093 
ARF         1    0.00002    0.00002    0.00002    0.00  0.973 
LF ban      1    0.12548    0.12548    0.12548    6.48  0.038 
Error       7    0.13547    0.13547    0.01935 
Total      11    0.39263   
 
Analysis of Variance for DispMA, using Adjusted SS for Tests 
 
Source     DF     Seq SS     Adj SS     Adj MS       F      P 
TptRate     2    0.13717    0.13717    0.06859    3.48  0.089 
ARF         1    0.00000    0.00000    0.00000    0.00  0.994 
LF ban      1    0.12729    0.12729    0.12729    6.45  0.039 
Error       7    0.13805    0.13805    0.01972 
Total      11    0.40251 

 

From the computational results (Table 4.11) and statistical analysis (Table 4.12), the 

following conclusions can be made about the effects of key uncertainties on optimal asset 

disposal decisions. 

 Both transportation rates and the landfill ban legislation are significant factors 
affecting asset disposal decisions in Georgia and Massachusetts, but the ARF 
legislation is not. Figure 4.5 confirms this result. The response for “DispMA” is very 
similar to that for “DispGA,” except that it has opposite signs for the “TptRate” and 
“LF ban” factor coefficients. 

 The landfill ban does not create any significant impact on the fraction of asset 
disposals in California, where the ARF legislation remains more significant. Also, the 
fraction of asset disposals in California is less sensitive to changes in transportation 
rates as compared to that in Georgia or Massachusetts. This is clear from Figure 4.6. 
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Figure 4.5: Main effects plot for response “DispGA” 
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Figure 4.6: Main effects plot for response “DispCA” 
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 There exist very strong interaction effects between transportation rates and the 
landfill ban legislation for asset disposals in Georgia and Massachusetts, as shown in 
Figure 4.7. For California, the interaction effect between transportation rates and the 
ARF legislation remains strong for low transportation rates (Figure 4.8). This 
difference most likely arises because the distance between the warehouse locations in 
Georgia and Massachusetts is much smaller than the distance between either of those 
locations and California. 

 There also appears to be a weak interaction effect between the ARF and the landfill 
ban legislations in the case of asset disposals in California. Once again, this is evident 
from Figure 4.8. 
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Figure 4.7: Interaction effects plot for response “DispGA” 
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Figure 4.8: Interaction effects plot for response “DispCA” 

 

 A few concluding remarks about the effects of uncertainties on product flows are as 

follows. First, the strong effect of transportation costs on product flows would be 

revealed even if the range of considered variations in transportation cost were smaller 

than the one considered here (a factor of 100 between the lowest and highest levels), 

because the identification of significant factors in statistical analyses is scale invariant. 

 Second, it is also important to hypothesize on the expected effects of other 

uncertainties, such as uncertainty in asset purchase costs (due to factors other than 

environmental legislation), on product flows. Clearly, asset purchase costs are not 

expected to have any effect on the geographic distribution of reverse product flows and 
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asset disposal decisions. However, the effects on forward product flows and asset 

purchase decision could be quite significant. Note that the geographic distribution of 

forward product flows and asset purchases is driven by differences in asset purchase 

costs across locations. Therefore, as long as asset purchase costs are the same across all 

warehouse locations, the geographic distribution of flows will not be affected. However, 

if one adds on local tariffs (such as sales tax) to these costs, then the differences between 

asset purchase costs across locations increase as asset purchase costs increase from a 

base-level value. This would significantly affect the geographic distribution of forward 

product flows and asset purchase decisions. In addition, strong interaction effects are 

likely to be observed between asset purchase costs and transportation costs (as opposed to 

the weak interaction effect observed between an ARF and transportation costs). The 

simultaneous examination of these two uncertainties would be an interesting topic for 

future research. 

 

4.3.3 Lease lengths: Observed effects of uncertainty and interaction effects 

 

It is also hypothesized in Section 4.3.1 that higher transportation rates should lead to 

longer leases and that it is difficult to comment intuitively on the effects of uncertainty in 

legislation on lease lengths. Using the same case study data as in the previous sections, 

optimal asset leasing decisions are analyzed in this section. However, a slightly different 

methodology is required to subject lease lengths to the same kind of analyses as those 

performed for optimal asset purchases and asset disposals. 

Analyses of optimal lease lengths in the twelve scenarios reveal that for 15 out of 25 

asset types, there is no change in optimal lease lengths in any of the twelve scenarios. 
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Therefore, statistical analysis needs to be performed for the remaining 10 asset types. A 

response variable must be selected before statistical analysis is possible, and one choice 

of response variable that immediately comes to mind is the average optimal lease length 

for each kind of asset, which needs to be calculated. However, this average value may not 

capture the changing nature of leasing decisions.  

An explanation of this shortcoming is based on some of the problem data described 

in Chapter 3 (Section 3.4.1). The total time horizon is 14 periods, minimum and 

maximum asset lives are six and eight periods respectively, and the minimum and 

maximum lease periods are four and eight periods respectively. Therefore, either two or 

three leasing cycles are possible during the time horizon for every type of asset, and there 

exist multiple options for splitting up the 14-period time horizon into leasing cycles. For 

an asset with a maximum useful life of six periods, the options are 4-4-6, 4-5-5, 4-6-4, 5-

4-5, 5-5-4 and 6-4-4. For an asset with a maximum useful life of eight periods, there are 

three additional options, i.e., 6-8, 7-7 and 8-6. Now, if all assets of a particular type were 

leased with a 5-5-4 option in one scenario and with a 6-4-4 option in another scenario, the 

average lease length would be 14/3 = 4.67 periods for both options. However, these are 

clearly not the same leasing decisions. Therefore, the average lease period is not a good 

indicator of the changes in leasing decisions as a result of uncertainty in problem 

parameters. 

A closer analysis reveals that out of the 10 assets whose lease lengths are to be 

analyzed, four have a maximum life of six periods, and they are only leased with a 5-5-4 

or 6-4-4 option in all scenarios. The other six assets have a maximum life of eight periods 

and are leased only with a 4-4-6 or 8-6 option in all scenarios. An 8-6 option clearly 
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implies “longer” leases than a 4-4-6 option, although the same cannot be said with 

certainty of a comparison between 6-4-4 and 5-5-4. However, it is plausible to claim 6-4-

4 as a “longer” lease than 5-5-4, especially if transportation rates are very high. This is 

because a 6-4-4 lease option (longer first lease) offers the opportunity to defray the 

transportation costs to a later period, and as a result of discounting, this leads to a 

reduction in the total transportation costs over the planning horizon. It is possible that this 

option may offer lower total net revenue as well, but following the reasoning in Section 

4.2, this decrease in revenues may be compensated by a simultaneous decrease in 

transportation costs. 

Based on these results, it is possible to obtain a more accurate indicator of changes in 

leasing periods for the 10 assets in question. The response variable is chosen as the 

fraction of shorter leases in the optimal solution (called “ShLease” in the statistical 

analysis), which is defined for each asset type as the ratio of the number of assets leased 

via shorter leases to the total number of assets leased over the planning horizon. For 

example, the total demand for asset type PC-H1 over the planning horizon is 17525 units. 

Since demand must be met exactly (constraints (3.2)), this is also equal to the total 

number of assets of type PC-H1 leased over the planning horizon. In the optimal solution 

for Scenario 1, 250 out of 17525 units are leased with a 5-5-4 option, and thus “ShLease” 

is calculated as (250 ÷ 17525) = 0.014. 

The 10 asset types provide multiple replicates for given levels of transportation rate, 

ARF legislation and the landfill ban legislation. The asset type is used as a blocking 

factor in the experimental design, and this prevents the effects of differences among asset 

types from being confounded with the actual factor effects that need to be studied. 
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Table 4.13: Statistical output for analysis of lease lengths 

Factor     Type Levels Values  
Asset     fixed     10 PC-H1   PC-L1   PC-L2   PC-LW1  PCS-LE1 P-HVBW1 P-LVBW1 
                       P-MVBW1 S-HC1   S-LC1   
TptRate   fixed      3 0 1 2 
ARF       fixed      2 0 1 
LF ban    fixed      2 0 1 
 
Analysis of Variance for ShLease, using Adjusted SS for Tests 
 
Source               DF     Seq SS     Adj SS     Adj MS       F      P 
Asset                 9    16.2622    16.2622     1.8069   43.84  0.000 
TptRate               2     4.8511     4.8511     2.4255   58.85  0.000 
ARF                   1     0.0000     0.0000     0.0000    0.00  1.000 
LF ban                1     0.0000     0.0000     0.0000    0.00  0.974 
TptRate*ARF           2     0.0000     0.0000     0.0000    0.00  1.000 
TptRate*LF ban        2     0.0001     0.0001     0.0000    0.00  0.999 
ARF*LF ban            1     0.0000     0.0000     0.0000    0.00  1.000 
TptRate*ARF*LF ban    2     0.0000     0.0000     0.0000    0.00  1.000 
Error                99     4.0803     4.0803     0.0412 
Total               119    25.1937   

 

 

 Based on the computational results for the case study and their statistical analysis 

(Table 4.13), the following conclusions can be made about the effects of key 

uncertainties on optimal leasing decisions. 

 Transportation rates significantly affect lease lengths. Environmental legislation is not 
a significant factor affecting optimal lease length decisions. Figure 4.9 supports this 
conclusion. In addition, lease lengths also depend strongly on the particular asset type 
being leased, because asset type is used as a blocking factor in the statistical analysis, 
and it is found to be very significant. 

 There are no interaction effects between transportation rates and either kind of 
legislation (ARF or landfill ban). Figure 4.10 supports this conclusion. 
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Figure 4.10: Interaction effects plot for response “ShLease” 
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Figure 4.9: Main effects plot for response “ShLease” 
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 It is also interesting to try and intuitively answer questions about differences in 

leasing decisions for various types of assets. For example, why does uncertainty in 

transportation costs affect lease lengths for only 10 out of 25 asset types? What are the 

characteristics of leases among the 15 asset types for which optimal lease lengths are not 

affected in any scenario? What possible reasons could be attributed to those lease 

characteristics? 

 Seven out of the 15 asset types for which optimal leases do not change across 

scenarios have an average purchase price of $7,500 or more, which is substantially higher 

than the average purchase price for all other assets. Two out of seven can be rebuilt. The 

assets with rebuild options are purchased at the beginning of the first leasing cycle but 

only rebuilt thereafter. This is not surprising in light of the case study result in Chapter 3 

that rebuilding tial leases (4-

earlier, due to the tradeoff between lease 

 is a profitable activity. For all these seven assets, shorter ini

4-6) are chosen. This indicates that shorter leasing cycles are more profitable than longer 

ones, and in the case of these seven asset types, profitable enough to overcome even very 

high levels of transportation cost. For the 10 assets whose leasing cycles do change with 

transportation costs, a graduation from “short” leases to “longer” ones is seen as 

transportation costs increase, which also indicates the profitability of shorter leases. The 

transition to “longer” leases is, as discussed 

revenues and transportation costs. 

 However, the remaining eight asset types for which optimal leases do not change 

across scenarios have optimal leases in which the initial lease cycle is longer (6-4-4). 

This is quite a puzzling fact, especially in light of the discussion in the previous 

paragraph, which points to the profitability of shorter leases. These eight assets have 
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average purchase prices ranging from approximately $200 to $3,500, with all of them 

having maximum useful lives of 6 periods. Some of the 10 asset types for which lease 

lengths change with transportation costs also share these characteristics. Why then are 4-

4-6 lease options not seen for these eight asset types even in scenarios with very low 

transportation costs? 

Of course, this counterintuitive result raises concerns about the correctness, even 

though the model has been validated in Chapter 3. However, additional runs of the model 

 interactions in the system, as observed from the case study. Many 

inte

with a forced 4-4-6 lease option for these asset types leads to a decrease in the optimal 

net discounted profit. This outcome reaffirms faith in the correctness of the model, but 

points towards the existence of additional factors affecting lease lengths. Some possible 

factors include the particular location of demand for these assets and the differences in 

profit margins between small, medium and large orders. Further investigation of this 

issue and the determination of these unknown factors affecting lease lengths is an 

interesting question for future research. 

 In summary, this section discusses in detail the various kinds of cost tradeoffs and 

parameter uncertainty

resting insights have been obtained, and the discussion poses interesting questions 

that would extend the work done in this dissertation. The next section summarizes and 

concludes this chapter.  
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4.4 Conclusions 

 

 This chapter discusses the uncertainties in problem parameters that are important 

from the point of view of this research, which addresses a problem at the intersection of 

the fields of equipment replacement and reverse logistics. Several sources of uncertainty 

are considered, and the key uncertainties are identified. 

Next, a robust optimization problem formulation is discussed and results from an 

xtended case study with twelve scenarios are examined. Based on the observation that 

e uncertainty in transportation costs has a stronger effect on profit than the uncertainty 

 asset purchase and asset disposal costs due to environmental legislation, it is shown 

 simple empirical methods can be used for making near-robust 

asing decisions. Thus, given the particular problem data, a standard robust optimization 

mal product flow decisions, there 

exis

 broader set of 

e

th

in

how intuitive logic and

le

approach is unlikely to provide additional useful insight into the problem. 

Subsequently, the optimal solutions from the twelve scenarios of the extended case 

study are examined in detail and the tradeoffs and interactions between various kinds of 

costs in the system are revealed. It is found that for opti

t significant interactions between uncertainty in transportation costs and the 

uncertainty in asset purchase and asset disposal costs caused by environmental 

legislation. On the other hand, uncertainty in transportation costs strongly affects optimal 

lease length decisions (higher transportation costs imply longer lease lengths); legislation 

has a miniscule effect on lease lengths, if any. 

 Although the results presented in this chapter are based on one particular case study, 

it can be argued that it is possible to extend these results and insights to a

 110



 

prob

ious sources of uncertainty also helps in 

 assets on net profit has already been 

dem

lems similar to the one addressed in this research. First, the case study data have 

been generated after guidance from industry practitioners, and are hence representative of 

typical situations that electronic equipment leasing companies might face. The wide 

range of transportation costs and realistic legislative effects considered in the uncertainty 

scenarios for the case study are also important and helpful in making the results generally 

applicable to many typical problems. Finally, the use of intuitive reasoning, along with 

computational results and statistical analyses, to explain the expected effects of 

uncertainty and the interactions between var

enhancing the generality of insights obtained during this investigation. Of course, the 

peril of making sweeping general conclusions from case studies has been recognized and 

notes of caution have been added where necessary. 

Given the results obtained in this chapter and the previous one (Chapter 3), it can be 

concluded that incorporating logistics issues and environmental considerations into asset 

management decisions is an important and interesting problem that has not yet been 

addressed in existing literature. Ignoring the strong interaction effects between these 

decisions and treating asset management and logistics as mutually exclusive problems 

can lead to decreases in profitability for an equipment leasing company. The situation can 

be further exacerbated when product lifecycles are short (and as a result lease lengths 

too), refurbishment is an end-of-lease or end-of-life option for assets, and environmental 

legislation affects some costs in the system. 

The large impact of refurbishment of expensive

onstrated in Chapter 3. The impact of ignoring transportation costs and 

environmental legislation on net profit is now demonstrated via an illustrative example 
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from the case study results. Consider a situation where the objective function in the 

model consists only of lease revenues, asset purchase costs and asset disposal costs, 

which are typical cost components considered in asset replacement problems. With base 

case transportation rates and no legislation, the actual profit thus realized is about $5.5 

million lower than that which could have been realized if optimal asset replacement 

(leasing) and logistics decisions had been made simultaneously. With the existence of 

environmental legislation in both California and Massachusetts, this decrease in profit 

becomes close to $11 million. Clearly, this profit reduction due to the failure to consider 

leasing, logistics and end-of-life decisions simultaneously increases further as 

transportation rates increase. 

 Therefore, the results of this research provide valuable insights to leasing company 

managers. However, the results can also inform environmental policy formulation. 

Insights for environmental policy makers are discussed at length in the next chapter and 

broader questions that this research cannot answer, but in whose direction the results 

point, are also raised. 
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CHAPTER 5 

IMPLICATIONS FOR POLICY FORMULATION ON ELECTRONIC 
WASTE 

 

 

 

The previous two chapters of the dissertation focus mainly on insights for business 

managers, but this research also has implications and potential insights for environmental 

policy formulation. Most of these are derived by observing the nature of product flows in 

the system and the changes in the optimal forward and reverse flows under various 

legislative scenarios for the case study. First, this chapter discusses the implications of 

the results of this research for state-level electronic waste (referred to as “E-waste” 

hereafter) legislation in the U.S. (Section 5.1). This discussion is then expanded to the 

broader perspective of national and international-level E-waste issues in Section 5.2. This 

section also looks at some interactions between different realms of public policy. The 

chapter concludes with a brief summary in Section 5.3. 

 

5.1 Implications for state-level E-waste legislation in the U.S. 

 

The discussion in Section 2.4 shows that a wide variety of legislation on electronic 

waste is proposed or is currently in force in the United States. Comprehensive federal 

legislation has not been the driver, resulting in a patchwork of alternative state-level 

legislative activities. The application of the research model to shed light on state-level E-

waste issues is the subject of this section. A few implications follow directly from the 
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results presented in Chapters 3 and he basis of these results, it is also 

 

.1.1 Direct implications:  The impacts of legislative measures 

Expectedly, state-level legislation on electronic waste focuses on meeting various 

poli

ous metals contained in CRTs. If 

 is assumed that the policy is enforced perfectly, then all its objectives have been 

However, due to the Interstate Commerce Act of 1887 [100], transportation of waste 

acro

 4. However, on t

possible to hypothesize about other, more general implications. 

5

 

cy objectives of the state (a more detailed discussion on this appears in Section 5.1.2). 

The intentions of state-level legislators may be good, and the proposed or existing 

policies may even meet state policy objectives, but it is not immediately clear whether 

these policies would collectively be effective and have a significantly beneficial effect 

overall. 

As an example, consider a landfill ban on Cathode Ray Tubes (CRTs), such as the 

one enforced in Massachusetts [64]. The direct objective of this policy is to keep CRTs 

out of landfills in Massachusetts, and hence to reduce the pace at which the state’s 

remaining landfills reach their capacity, to reduce potential public health risks, and to 

promote the reuse and recycling of lead and other preci

it

achieved, and the state of Massachusetts benefits from it. 

ss state boundaries cannot be prohibited directly, and as a result, economic actors 

(mainly businesses) seeking to maximize their profits can circumvent state laws and 

manage their end-of-life product flows in a manner that may overall be environmentally 

“unfriendly.” This hypothesis is supported by the changes in product flows that the 

research results have shown for alternative legislative scenarios. For example, Section 
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3.4.4 reveals that due to a significant increase in asset disposal costs as a result of the 

landfill ban on CRTs in Massachusetts, the leasing company finds it more profitable to 

ansport CRTs to Georgia for disposal. If it were cheaper to dispose CRTs by way of 

g their materials (and 

is is generally the case), then none of these CRTs would be recycled in Georgia. In 

addi

ands) are not insignificant and its viability heavily depends on being able to 

main

rchases in the state. This could 

pote

tr

putting them into a hazardous waste landfill than by way of recyclin

th

tion, as discussed in Section 4.3.2, the problem would be further exacerbated if 

transportation rates were very low. So, has the Massachusetts legislation solved the 

problem, or has the problem simply been transferred from Massachusetts to another 

state? 

 In addition, the costs of running a recycling program (either state-funded or in 

private h

tain a large and steady volume of waste to achieve economies of scale. Therefore, 

this transfer of electronic waste across state boundaries also contributes to the reduced 

viability of recycling programs, which hinders Massachusetts from achieving the policy 

objective of promoting the reuse and recycling of electronic waste. 

 Impacts of the imposition of an Advance Recycling Fee (ARF) in a particular state 

(e.g., California) can be similarly analyzed, but are somewhat harder to predict. An ARF 

increases asset purchase costs and hence reduces asset pu

ntially lead to a loss of sales tax revenues for the state. In addition, the ARF collected 

is intended to fund electronics recycling infrastructure, and if asset purchases in the state 

decrease, so would the collected ARF amount, which leads to detrimental effects on the 

establishment of an electronics recycling infrastructure. Once again, low transportation 

rates can exacerbate the problem. However, since an ARF also affects asset disposal costs 
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by making disposal of some kinds of assets cost neutral, it is possible that this measure 

may encourage recycling of assets that were not profitable to recycle earlier. Hence, it 

may also counterbalance the negative effect of reduced asset purchases on electronics 

recycling infrastructure.  

 

5.1.2 More general implications 

 

 While Section 5.1.1 discusses policy implications that follow directly from research 

results, this section presents hypotheses on more general policy implications that can be 

rm

r states. The primary 

ARFs and Extended Producer Responsibility (EPR). 

 To encourage the resale, reuse and recycling of used electronic equipment, while 

fo ulated based on insights obtained from this research. The focus of the discussion 

remains state-level environmental legislation on electronic waste. 

 To begin the discussion, it is instructive to list some typical objectives that guide the 

formulation of E-waste legislation and policies. The list is based on policy documents 

from the states of Iowa [52], Massachusetts [64] and Washington [75], and can be 

claimed as sufficiently representative to be generalizable to othe

objectives considered during the formulation of policies appear to be as follows. 

 To evaluate the feasibility and impacts of legislative measures such as landfill bans, 

discouraging disposal at the same time. 

 To develop and maintain a strong electronics recycling infrastructure. This includes 
the development of end-of-life markets for electronic equipment and the integration 
of business incentives into formulated policies. 

 To preserve and create local jobs as a result of electronics recycling. 

 To establish education programs that enhance understanding and awareness of 
electronics waste management issues. 
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It must be noted that these objectives are clearly interrelated. Even though this 

research cannot possibly examine all the complex interactions between these objectives, 

it is possible to combine intuition and the research insights to hypothesize about the 

expected effectiveness of formulated policies with regards to the aforementioned 

bjectives.  

s the first point, i.e., the evaluation of expected 

pacts of E-waste legislation measures such as landfill bans and ARFs. The remainder 

ot exist markets for the 

e, given 

fairly low transaction costs that do not negate all of the (small) profits that can be made 

by ers of used electronic equipment are likely to 

be equipment and then upgrade it after 

s are likely to be 

o

 Section 5.1.1 already addresse

im

of this section presents some hypotheses that can be formulated about the additional 

policy objectives, on the basis of results from this research. 

 Encouraging resale/reuse and recycling, and the establishment of a strong electronics 

recycling infrastructure are inextricably linked issues. If there do n

resale/reuse of electronic equipment, or if there does not exist infrastructure with 

sufficient capacity to handle the volume of electronic waste generated, it would not be 

possible to encourage reuse and recycling. 

The value of assets with short life cycles, such as electronic equipment, depreciates 

very quickly (modeled by an exponential decay curve in this research). Therefor

the low residual value of used assets, a market for resale and reuse would need to have 

the resale of an asset. In general, the buy

be individual consumers, schools, charities and small businesses. The sellers are likely to 

large businesses, which buy or lease high-end 

three or four years. However, the relative transaction costs for the seller

quite high, due to the small size of each transaction with individuals or small buyers. 
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ho are a lot more likely to store used electronic equipment or dispose of it 

ition with neighboring states 

 issues to address at the time of state-level E-

was

duct 

Similarly, the successful establishment of infrastructure for recycling depends on 

being able to achieve economies of scale. This requires the collection of a large and 

steady volume of used electronic equipment. The primary targets for collection have 

probably been correctly identified by many states as individual consumers and small 

businesses, w

by other means. States with small populations, or with low use of electronic equipment 

per capita, may not be able to support a profitable state-wide electronics recycling 

infrastructure despite steady collection volumes and high recovery rates. They must 

therefore look to other alternatives, such as forming a coal

for establishing a common infrastructure. However, success is not guaranteed for large 

states either, because the existence of individual recycling infrastructure in many states 

creates competition for obtaining used electronic equipment. In addition, the existing 

legislation in a state may drive E-waste flows out of the state, as discussed in Section 

5.1.1. These are possibly the most complex

te policy formulation. It must be strongly emphasized here that it is impossible for a 

state to formulate locally effective policy without taking into consideration proposed or 

existing policy alternatives in other states. 

Existence or establishment of a strong electronics recycling infrastructure can quite 

possibly lead to job creation in the state. According to the Massachusetts policy 

document on the development of electronics recycling infrastructure [64], repair and 

resale of used electronic equipment creates the most jobs per unit weight of assets 

recycled, followed by recycling and disposal (in that order). This is clearly not surprising, 

given that repair and resale include activities like (non-destructive) disassembly, pro
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testing and software installation. However, repair and resale activities require skilled 

personnel, and thus labor costs can become quite high. In addition, large companies, such 

as the leasing company considered in the case studies in this research, incur significant 

overhead if they carry out repair and resale activities. This is because of the scale of their 

operations, which amounts to the addition of a completely new division or department in 

their workforce. In light of this fact, and the fact that according to the model developed in 

this research, the leasing company would always dispose of assets via the cheapest 

possible option, formulating policies that lean strongly towards encouraging repair and 

resale may actually prove ineffective in job creation. It is of course possible to provide 

subsidies such as tax breaks so as to reduce the costs of resale and repair for leasing 

companies. This is an interesting topic for further research, but once again, since policies 

implemented by other states would result in different disposal costs from those in that 

particular state, it is quite apparent that this issue also requires consideration of policies 

implemented by other states. 

Education programs are clearly important, particularly to encourage households and 

small businesses to recycle their electronic waste instead of storing or disposing it. In 

addition, they have fewer options to manage electronic products at end-of-life than do 

large businesses. Therefore, education programs also make them aware of their options, 

although education programs regarding the applicability of proposed and existing 

legislation are important for large businesses as well. Another impact of education 

programs is to raise awareness of negative environmental impacts of discarded electronic 

products, which may bring into play market forces regarding “green” market images of 

electronics manufacturing and leasing firms. Firms that dispose assets in environmentally 
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unfriendly ways could see their market shares reduced. In the mathematical model 

presented in Chapter 3, increasing the cost of landfilling assets, or introducing a penalty 

term (for landfilling assets) in the objective function is a possible method of capturing 

this phenomenon, at least partially. In any case, investigating the effects of education 

programs and market images of companies are not the primary objectives of this research. 

 

5.2 Extensions to national and international issues 

 

 Many issues discussed in Section 5.1 also apply to the broader perspective of 

national and international policies on electronic waste. Some of these issues are 

analogous to those experienced at the state level, but the complexity of the links between 

various issues increases dramatically. Clearly, since this research does not focus on the 

formulation of national and international policy, it would be able to provide insights on 

only a few of these complex issues. However, failing to mention the other issues would 

leave this discussion incomplete. Therefore, the other issues are discussed briefly, but 

with an implied understanding that further research is required to make additional 

substantive statements about them. 

 Section 5.2.1 illustrates how decentralized (state-level) policy formulation on E-

waste can create inefficiencies and impose negative externalities on other realms of 

policy. Section 5.2.2 generalizes this discussion by discussing “gaming” situations that 

arise as a result of decentralized policy. Section 5.2.3 discusses other closely related 

issues that are important, but which this research is unable to address definitively. 
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5.2.1 Creation of inefficiencies and policy tradeoffs 

 

The discussion in this section starts with a specific demonstration of the creation of 

logistics inefficiencies due to different E-waste legislation in different geographic areas. 

It then moves up to a more general level and discusses policy tradeoffs in general. 

As shown in Section 4.3.2, the strong interactions between changes in transportation 

s due to environmental 

gislation affect product flows greatly in the case study. In a case where transportation 

f legislation. 

led up 

nd added over all similar equipment leasing businesses, the number of additional item-

miles created by legislation could turn out to be very large. Together with the discussion 

costs and changes in asset purchase and asset disposal cost

le

costs are low and environmental legislation is enacted in both Massachusetts and 

California (Scenario 11, Table 4.1), large flows of assets from Massachusetts to Georgia 

and California (for disposal) are observed. Clearly, this transportation would have been 

unnecessary had asset disposal costs been the same in all three locations, as Table 4.11 

shows no change in relative percentage of asset disposals in the three locations under “No 

legislation” scenarios, even with a huge variation in transportation costs. Thus, different 

environmental legislation in different geographic areas is observed to create an artificial 

demand for transportation. For the case study, Table 5.1 shows the potential increase in 

total transportation costs as a result o

Since the costs in the system are assumed to depend only on distance, a relative 

increase in transportation costs implies an identical relative increase in the total item-

miles. The results from various scenarios in Table 5.1 show that if transportation rates are 

low, differences in environmental legislation at the three warehouse locations could result 

in a 25% increase in total item-miles. This is by no means a trivial increase. Sca

a
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in Section 5.1, this implies that having different E-waste legislation across states in the 

.S. would not only have failed to achieve the desired objective of environmentally 

frien

Tab
rates and environmental legislation for the case study 

U

dly disposal of E-waste, but would additionally create logistics efficiencies, which 

imply more pollution and more congestion! 

 

le 5.1: Total transportation costs ($ million) under various scenarios of transportation 

 No 
legislation 

ARF in 
CA 

Landfill 
ban in MA

Both ARF 
and landfill 

ban 

Maximum % 
increase due 
to legislation 

Base case 
transportation 
rates 

8.95 9.04 9.15 9.24 3.17% 

Transportation 
rates 0.1 times 
base case 

1.61 1.74 1.91 2.03 25.48% 

Transportation 

base case 
rates 10 times 77.30 77.30 77.30 77.30 0.00 % 

 

 

This discussion leads to a broader question about formulation of public policy in 

general. Just as interactions between various costs in the system are observed, there are 

also interactions between the various realms of public policy. For example, transportation 

policies have pollution reduction and congestion reduction as some of their primary 

objectives. However, in this case we see that formulation of (potentially inappropriate) 

environmental policy has negated gains made in the transportation realm. Given the huge 

geographic size of the U.S., the increase in item-miles resulting from state-level 
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environmental policies is potentially very large, and hence these negative externalities 

imposed on transportation policy could be quite significant. On a global scale, this 

particular effect could be mitigated due to several factors, such as higher transportation 

costs for international shipping, use of less polluting transportation modes (typically 

hazardous electronic waste would be shipped by sea) and most importantly, the Basel 

issues involved is much higher, which leads to an exponential increase in the number of 

possible policy interactions, and therefore the r t

negative effects of one policy realm on another is ever larger. 

“Gaming” as a result of decentralized policy formulation 

transportation inefficiencies are created 

ntr legisla e creation of ineffici is not o 

transportation alone. This section discusses how decentralized legislation can lead to 

“gaming” behavior by firms and policy makers, thus exacerbating inefficiency. 

 

example, an ARF collected in California may be used to subsidize the setting up of 

convention (discussed in Section 5.2.3). However, on a global scale, the number of policy 

 potential fo the inadverten  imposition of 

 

5.2.2 

 

 While Section 5.2.1 specifically shows how 

as a result of dece alized tion, th encies restricted t

Section 5.1.1 clearly illustrates the gaming behavior of firms when different 

environmental legislation exists in different states. In order to try and maximize their 

profits, firms could circumvent state laws and engage in environmentally unfriendly 

practices. In fact, it is quite possible that many electronic product OEMs and leasing 

companies would actively lobby their respective state governments to try to block any 

moves towards centralized legislation on electronic waste. In addition, it is also possible 

to envisage electronics recycling companies engaging in this kind of behavior. For 
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electronics recycling infrastructure. However, in Massachusetts, individual consumers 

and businesses pay disposal fees to an electronics recycler at end-of-life for proper 

disposal of electronic equipment, and this fee is expected to provide the majority of 

funding for an electronics recycler to set up operations. In such a scenario, it is 

conceivable that the “recycler” could collect assets (and the accompanying fee) in 

Massachusetts, transport all these assets to California and use his ARF-subsidized 

operations to increase profits substantially. In an even worse case, these assets could be 

transported to Georgia for landfilling, and therefore, not recycled at all! The landfilling 

problem could be partially avoided because many large businesses demand proof that 

their assets have actually been recycled. However, the potential for gaming remains very 

 where such gaming 

kes place. 

recycling 

high, and it is possible to think of other actors and other situations

ta

 In fact, why should gaming behavior be restricted to individual actors? Is it not 

possible that state legislators could use the gaming behavior by individual actors to 

further their state policy objectives? For example, California legislators could turn a blind 

eye to malpractices by a recycler located in their state, because a large 

operation in the state creates tax revenues and additional employment. Another situation 

where gaming might take place is one where states that currently have no legislation on 

electronic waste design their electronic waste policies. They could take into account the 

actions of other states and then design their own system so as to make it as efficient as 

possible, but at the same time imposing negative externalities on other states. 
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This discussion leads one to believe that there is a serious need to re-think the 

strategy of leaving the formulation of E-waste legislation up to the states. An alternative 

that imposes some uniformity is strongly needed. 

A recent proposal aimed at increasing legislative uniformity in the United States is a 

bill introduced in the House and referred to the Ways and Means Committee. This is the 

Tax Incentives to Encourage Recycling Act of 2004 (TIER Act of 2004), and proposes to 

give tax credits to electronic equipment manufacturers who recycle their equipment [90]. 

For the model in Chapter 3, this can be viewed as a uniform reduction in the recycling 

costs across all warehouse locations. However, state-level legislative activities on E-

waste will continue even if it is enacted, and it is still possible that there would exist 

significant differences in legislation between different states. Therefore, this tax break 

initiative may encourage more recycling, but is not likely to reduce the aforementioned 

ste issue in 

the National Governors Association (NGA) [73], an organization through which 

governors discuss and resolve issues of public policy related to the states. The NGA is a 

inefficiencies significantly.  

A few other alternatives could increase the uniformity of E-waste legislation in the 

U.S. One alternative is the formulation of regional E-waste legislation, such as one based 

on the U.S. EPA Regions 1 through 10. Some of these regions, such as Regions 1 and 2, 

are geographically too small to provide sufficient uniformity. However, even if states 

across regions form a coalition and reduce the number of effective regions, the larger 

problem would still not be solved. This is because most large U.S. corporations operate 

on a national and international basis, and the possibility of circumventing regional 

legislation remains intact. Another related alternative is the tabling of the E-wa
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pow

ideas and solutions for the growing E-

was

ch shorter transportation distances and higher transportation 

cost

erful lobbying organization in Washington and has the ability to influence major 

policy decisions. The E-waste issue has not been discussed in the NGA so far, but this 

would be a very good forum for states to discuss 

te problem. 

Finally, federal legislation on E-waste could be imposed in the U.S. Perhaps a 

discussion of the E-waste issue in the NGA would ultimately lead to this solution, if the 

governors are unable to reach a consensus, or if they determine that state-level legislation 

without a strong federal guideline would leave open too many opportunities for system 

gaming. In this regard, the U.S. can draw upon the European example, whereby a 

stringent EU-wide E-waste Directive exists and member states are required to formulate 

national legislation that is at least as stringent, or more stringent than the general EU 

Directive (Section 2.4). 

It must be noted that mu

s in the EU make the situation more favorable for avoiding the aforementioned 

inefficiencies that region. In addition, almost all the developed EU member states have 

ratified the Basel Convention [12], so that hazardous waste cannot be transported across 

national boundaries. 

Countries like Taiwan and Japan can also avoid inefficiencies by virtue of their 

uniform national legislation, small geographic size and high transportation costs. 

However, consumers of electronic goods (purchased before October 2003) pay high end-

of-life disposal fees under the Japanese system (Section 2.4), which could encourage 

storage instead of recycling. In addition, Japan has not ratified the Basel Convention and 

Taiwan is not a party to this treaty, so there is a potential for some firms from these 
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countries to export hazardous electronic waste to third-world countries. In fact, there are 

indications that this activity is actually taking place [11]. The export of hazardous waste 

is a very serious international issue, and is discussed in the next section. 

 

5.2.

electronic waste at end-of-life. 

se of toxic materials (e.g., heavy metals) in the design and 
m

nvention (1989) [12], along with the Basel Ban Amendment (1995) 

[12]

combined with large differences in asset disposal costs across geographic locations 

3 Other important E-waste issues 

 

All the state-level issues mentioned in Section 5.1.2 also apply to the formulation of 

national legislation. However, there are also additional considerations that transcend 

national boundaries. Some of these are as follows. 

 To prevent the export of electronic waste to third-world countries. 

 To determine and allocate responsibility for the environmentally friendly disposal of 

 To phase out the u
anufacture of electronic equipment. 

Section 2.4 also mentions the export of electronic waste from the U.S. to third-world 

countries, where the method of handling in general is not only environmentally 

unfriendly, but also presents very serious health hazards to people involved in the 

activity. The Basel Co

 prohibits the transportation of hazardous waste across national borders. However, 

the U.S. has not ratified this treaty (the only developed country not to have done so), and 

it is estimated that approximately 50 to 80 percent of the E-waste received by U.S. 

recycling firms could potentially be exported to third-world countries [10]. This can be 

viewed as a generalization and extension of the impact of different legislative measures 

in different geographic regions. It is shown in Section 4.3.2 that low transportation costs 
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dramatically alter end-of-life product flows, and the existence of these two conditions can 

be shown here. 

Transportation costs are considered first. E-waste is transported to third-world 

ountries by sea, in shipping containers. Ocean freight is the most economical mode of 

o ost for full container-loads is the lowest among 

ll categories of ocean freight (of the order of a few cents per pound [74]). In addition, 

anot

served that the export volume is much 

hat container ships 

cap ed rates on backhauls to Asian countries like 

Ch

c

transp rtation for long distances, and the c

a

her important factor that drives down this cost further is the direction of ocean freight 

flows. If one looks at the volume of containerized cargo at two largest ports on the U.S. 

west coast (Los Angeles and Long Beach), it is ob

lower than the import volume (less than one-third) [96]. This implies t

sail in to the ports fully loaded, but may not be fully loaded on backhauls. Therefore, 

shipping companies would be happy to get any value that they can for this perishable 

acity, and may offer deeply discount

ina, India and Pakistan.  

Second, labor rates in third-world countries are very low, e.g., approximately $1.50 

per day in China [10]. In addition, there might exist demand for used electronic products 

in third-world countries, and a “recycler” in the U.S. could collect revenue from end-of-

life disposal fees in the U.S., and then again by exporting this material. This leads to 

disposal costs being much lower (and perhaps negative) in a third-world country as 

compared to those in the U.S. 

Other related factors that drive the end-of-life flows of electronic equipment to third-

world countries are the demand for raw materials (such as ferrous and non-ferrous 
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metals) from burgeoning manufacturing operations, and loosely enforced or non-existent 

environmental regulation in third-world countries. 

s” for electronic waste [91][101]. However, there are positive 

sign

 managed E-waste recycling plant near Bangalore [101]. 

world countries in focusing on and developing effective environmental policies, not only 

Expanding manufacturing operations in third-world countries have fuelled the 

demand for raw materials used in production processes. For example, there has been a 

sharp increase in copper demand in China, particularly for metal used in power cables 

and wires. Chinese demand for ferrous metal scrap from the U.S. is also expected to 

increase [17]. Recycling of electronic waste is one of the sources that feeds ferrous and 

non-ferrous metals as inputs into production processes. 

Finally, environmental legislation has been weak or non-existent in most third-world 

countries, who have focused primarily on economic growth. The potentially harmful 

effects of E-waste processing on the environment and on human health have not been 

widely recognized. These stark differences in environmental legislation between 

developed countries and third-world countries have resulted in third-world countries 

becoming “dumping ground

s, which indicate that concerns about E-waste have mounted significantly to 

galvanize some third-world countries into action. For example, China has banned the 

imports of scrap electronic goods, effective November 1, 2004 [24]. In India, the Central 

Pollution Control Board has set up a task force to assess the activities of small E-waste 

recycling units. One organized E-waste recycling company in India has also announced 

the setting up of a scientifically

It is understandable that environmental legislation has not been a priority for third-

world countries so far. However, it is important for developed countries to aid third-
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for electronic waste, but also for other environmental issues. This argument is not based 

solely on ethics and morality, but on broader global environmental issues such as 

Environmental Justice (EJ) [26] and the existence of the empirical Environmental 

Kuznets Curve (EKC), which is an inverted U-shaped relationship between national per 

capita income and pollution levels. For obvious reasons, no further discussion is included 

in this dissertation, but the interested reader is referred to Davidson and Anderton (2000) 

[30], Turner and Wu (2002) [92], Grossman and Krueger (1995) [39] and Yandle, 

Bhattarai and Vijayaraghavan (2004) [105]. 

Allocation of responsibility for the environmentally friendly disposal of electronic 

waste at end-of-life is potentially a very difficult issue to handle, because it involves the 

re-distribution of wealth. For example, proposals about the implementation of Extended 

Producer Responsibility (EPR) are vehemently opposed by manufacturers, who are 

consequently held responsible for the management of their equipment through its 

complete life cycle. On the other hand, the collection of visible ARFs from customers 

imply that manufacturers have virtually no responsibility to ensure that their product life 

cycles are as environmentally friendly as possible. Landfill bans accompanied by end-of-

life disposal fees place the entire burden on consumers of electronic products, and once 

again, none of the actors has an economic incentive to be environmentally friendly. This 

issue has been widely debated as a part of the NEPSI initiative [72] and is not discussed 

further. 

Product redesign for elimination of toxics is closely linked to the allocation of 

responsibility. If there exists a separate legislation such as RoHS in the EU (Section 2.4), 

this issue can be handled somewhat independently, but even so, responsibility for the 
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environmentally friendly disposal of electronic equipment does drive product redesign. If 

manufacturers were absolved of all responsibility, they would have little incentive for the 

elimination of toxic substances in their products. Product redesign is also linked to issues 

regarding the resale and reuse of electronic equipment. It has been mentioned in Section 

5.1.2 that resale and reuse activities are likely to be hampered by the high costs of 

disassembly and testing. However, product redesign initiatives, such as modular design, 

Design for Disassembly (DfD) and Design for Environment (DfE) can potentially reduce 

these costs and make it possible to reap the benefits of resale and reuse of electronic 

equipment. In fact, this argument is supported by the research result in Section 3.4.3, 

whereby it is observed that refurbishment is a profitable activity for expensive assets, 

because the benefits from reuse outweigh the costs of disassembly and testing. 

In summary, this section extends the policy discussion in Section 5.1 to national and 

international policy issues in the end-of-life management of electronic products. A few 

interesting and important insights, such as the tradeoffs between various realms of policy 

and the incitement of gaming behavior by individual actors due to differences in 

environmental legislation across states, are provided on the basis of the case study results 

obtained in this research. Other important issues are briefly discussed as well. The next 

section concludes and summarizes this chapter. 
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5.3 Summary and conclusions 

 

This chapter presents insights that this research can provide to environmental policy 

makers, both at state and national levels. Also discussed are other important issues that 

cannot be addressed directly, but provide interesting topics for extended research. 

It is first argued that based on the specific case study results obtained for this 

problem, it is possible to evaluate the expected impacts of alternative state-level 

environmental legislation such as landfill bans and ARFs. For example, the research 

results show a landfill ban in one state may lead to outward end-of-life flows of assets 

from that state, hence defeating the primary policy objective of keeping hazardous waste 

out of landfills and eroding the economies of scale required for the establishment of a 

stro

hieving that objective as well as in job 

creation. Also, establishment of a strong electronics recycling infrastructure is not only 

dependent on the economies of scale achieved by collection of a large and steady volume 

of electronic waste collected in the state, but is also greatly affected by the competition 

for obtaining used electronic equipment by similar existing infrastructure in other states. 

ng electronics recycling infrastructure. An ARF may also lead to the erosion of 

economies of scale, but could also encourage recycling of certain kinds of assets, which 

is a counterbalancing effect. 

The case studies also provide helpful additional insight for an informed discussion of 

other complex state-level policy formulation issues. For example, due to high transaction 

and labor costs, policies focused strongly on encouraging repair, resale and reuse of 

electronic equipment may be ineffective in ac
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The research results are also useful in the discussion of national and international 

issues in the management of electronic waste. For example, it is shown that the 

effe

eate an 

artif

r Disassembly (DfD) and Design for Environment (DfE).  

 

ctiveness of formulation of E-waste legislation at the state level is questionable, 

because it leads to public policy formulated in one realm imposing negative impacts on 

that in other realms. In this case, state-level E-waste legislation is found to cr

icial demand for transportation, hence impacting transportation policies negatively. It 

also incites gaming behavior among individual actors and possibly even legislators, and 

hence exacerbates inefficiencies in the system. 

Finally, for the sake of completeness, other important national and international 

issues in E-waste management, that this research does not address, are also discussed. 

One of the most important ones is the Basel Convention, which prohibits the export of 

hazardous waste across international boundaries. Other important issues are the allocation 

of responsibility for the environmentally friendly disposal of electronic waste and product 

redesign issues like Design fo

For obvious reasons, public policy formulation is not the focus of this dissertation, 

but the insights obtained herein should lead to policy-makers engaging in somewhat more 

critical evaluations of their policies. Admittedly, policy formulation is a very complex 

task, but given the pervasive nature of the repercussions of policy, it is necessary to 

dedicate considerable thought to all possible effects that implemented policies might 

have, including secondary effects that are not always clearly observable. The new 

analytic model formulated in this dissertation provides a tool to develop insights into the 

analysis of E-waste policies. It is hoped that similar research in the future would make
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further contributions to this activity, especially by revealing policy effects that may not 

become immediately apparent from the more conventional approaches to policy analysis. 
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CHAPTER 6 

SUMMARY, CONTRIBUTIONS AND EXTENSIONS 

 

 

 

6.1 Summary and conclusions 

 

 In summary, this dissertation examines the relationships between key logistical and 

environmental issues in electronic equipment leasing. Given the significant portion of 

business assets financed through leasing, short lifecycles of electronic equipment and 

increasingly strict environmental legislation on electronic waste, it is necessary to address 

these issues simultaneously. A majority of the analysis has been carried out from the 

point of view of an electronic equipment leasing company that would like to make 

simultaneous decisions on lease lengths, use of logistics facilities and legally acceptable 

end-of-life management of assets. In addition, the effects of alternative environmental 

legislation in different geographic regions are also highlighted. 

 A literature review (Chapter 2) of the various fields relevant to this problem reveals 

that even though there is an abundance of published literature on each of the individual 

fields, there does not currently exist an analytical framework that simultaneously 

incorporates reverse logistics, parallel asset replacement and environmental legislation. 

 Subsequently, a mathematical model for the problem addressed in the research is 

presented in Chapter 3. The model is a deterministic, multi-period, mixed integer linear 

program (MILP), whose strengths and limitations are also discussed in the chapter. The 
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MILP reduces to a linear program (L cost conditions (and the LP version 

is used to ase study 

ith industry representative data validates the approach and demonstrates the utility of 

e model in answering key research questions. Interesting tradeoffs between various 

osts in the system are revealed, such as those between asset purchase costs and 

p ct flows, and between asset disposal costs and 

ansportation costs for reverse product flows. It is also shown that rebuilding is a 

osts, and uncertainties in 

r 

P) under certain 

 derive all the subsequent computational results). A deterministic c

w

th

c

trans ortation costs for forward produ

tr

profitable activity for high-end assets, because rebuilding costs are typically much 

smaller than asset purchase costs, and thus compensate for the lower revenue yields 

obtained from rebuilt assets. The last part of the case study presented in the chapter 

demonstrates, by using CRT monitors as a specific example, that the presence of 

alternative environmental legislation in different geographic areas can significantly 

change end-of-life flows of assets. 

 Chapter 4 presents a more realistic situation and extends the analysis by conducting a 

detailed examination of the effects of uncertainty in problem parameters. Key research 

uncertainties are identified as uncertainties in transportation c

asset purchase and asset disposal costs because of environmental legislation. The 

interactions between these sources of uncertainty are presented in the form of a schematic 

diagram. 

 The next section of this chapter discusses a robust optimization approach fo

addressing the key research uncertainties. The objective of the leasing company is to 

make robust decisions about lease lengths. It is found that the dominance of the effects of 

uncertainty in transportation costs on the robust objective function value lends itself to 
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the use of intuition and simple empirical methods for making near-robust decisions, 

without the need for a standard robust optimization framework and the associated 

theoretical and computational effort. 

 The remainder of the chapter is devoted to an in-depth examination of the effects of 

key uncertainties, and their interactions thereof, on product flow and lease length 

decisions. Intuitive hypotheses about these effects are first formulated and then verified 

computationally and statistically. Transportation costs significantly affect all these 

decisions. Lease length decisions are not greatly affected by changes in asset purchase 

and asset disposal costs due to environmental legislation. However, changes in asset 

purchase costs are quite significant for asset purchase decisions and forward product 

flows. Changes in asset disposal costs are very significant for asset disposal decisions and 

reverse product flows. In addition, there exist very strong interaction effects between the 

uncertainty in transportation costs and the uncertainty in asset disposal costs. 

effectiveness of the legislation in achieving its other objectives such as the 

 Chapter 5 examines the problem from the perspective of environmental policy-

makers rather than leasing companies. Several interesting policy insights can be obtained 

from the research results. The first set of insights is for state-level legislators. It is argued 

that the existence of different electronic waste legislation in different states is unlikely to 

achieve the primary objective of such legislation. It is also possible to comment on the 

expected 

encouragement of reuse and recycling of electronic equipment, and the creation of jobs in 

the state. 

 The next set of insights concerns national and international policy on electronic 

waste. The research results show that the existence of different E-waste legislation in 
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different states can impose significant negative externalities on other policy realms, such 

as on transportation policies in this particular problem. In addition, differences in 

environmental legislation can invoke gaming behavior in leasing companies, other 

ot currently 

 disregarding the option for refurbishment/rebuilding activities (particularly for 

individual profit-maximizing actors and even in state legislators. This gaming behavior 

leads to further efficiency losses. Therefore, there appears to be a dire need for effective 

uniform E-waste legislation in the U.S. Finally, some other important international E-

waste issues are briefly discussed. 

 

6.2 Research contributions 

 

This dissertation analyzes an interesting real-life problem that lies in the intersection 

of the fields of reverse logistics and equipment replacement. However, even though there 

is plenty of published literature on each of these individual fields, there do n

exist any known analytical approaches for this problem. Asset replacement literature does 

not generally include logistical and environmental issues, and there has been no known 

reverse logistics research that incorporates asset management. Therefore, this dissertation 

bridges a gap in existing literature. 

In addition, this dissertation shows that ignoring logistical and environmental issues 

while making asset management decisions can lead to profitability decreases for a leasing 

company. For example, increases in transportation costs can reduce profits significantly, 

and so can

high-end assets). The use of industry representative data for all case studies ensures that 

these insights would be useful to a leasing company that faces a similar situation. 
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Furthermore, the examination of the effects of key logistical and environmental 

uncertainties provides novel insights. Uncertainty in transportation costs is shown to 

significantly affect forward and reverse product flows as well as lease lengths. Even more 

interestingly, it is shown that there exist interactions between uncertainty in 

transportation costs and uncertainty in asset purchase and asset disposal costs due to 

environmental legislation, and these interactions are sometimes very strong. 

Finally, this dissertation provides insights not only for leasing business managers, 

ut also for environmental policy makers, and therefore, the contributions of this work lie 

as well. The research results allow policy makers to 

resee some of the expected outcomes of E-waste policies and to make comparisons 

with

e of environmental policy formulation. They also 

indi

b

in the realm of environmental policy 

fo

 their intended objectives. The most important policy contribution of this 

dissertation, however, is the insight on potentially deleterious effects of the existence of 

different environmental legislation in different states in the U.S. The resulting imposition 

of negative externalities on other policy realms (transportation policies in this case) and 

the invocation of gaming behavior in businesses, other profit-maximizing individual 

actors and even in state environmental legislators are not trivial effects, and need to be 

taken into consideration at the tim

cate that there is perhaps a dire need for consistent national legislation on E-waste in 

the U.S. 
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6.3 

rtation. The 

poss

3.3), the model in its current form would likely be implemented via a “rolling 

orizon” approach, which does not guarantee optimality over a time horizon greater than 

e one initially used to solve the model, and also has potential “end-effects.” A dynamic 

ulti-stage solution approach could address these limitations, and it would be interesting 

Extensions and future research directions 

 

Results from this dissertation raise new questions for several potential directions for 

further research. Since logistical and environmental issues have not been considered 

simultaneously with asset management in the published literature so far, there is great 

potential for further research based on the groundwork laid by this disse

ible extensions span the realms of both operations research (OR) and public policy. 

The first extension in the OR realm is the development of solution methodologies for 

larger and even more realistic versions of the problem addressed in this dissertation. The 

case study solution of the mathematical model formulated in Chapter 3 is relatively fast 

in terms of solution time, but large in terms of the number of variables and constraints, 

which can lead to memory exhaustion for solution on individual personal computers 

(PCs). The formulation uses continuous variables for almost all decisions, but it is 

perhaps possible to reformulate the problem by using more binary variables. Although 

this would increase the solution time, perhaps the number of variables and constraints 

could be reduced. In any case, once the problem size becomes prohibitively large, it 

would be necessary to develop efficient solution techniques. 

Another extension concerns model implementation. As discussed in Chapter 3 

(Section 

h

th

m
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to see how the solutions differ between the two approaches. This comparison would offer 

ore interesting insights into the problem. 

d 

be l

. Therefore, policy insights 

from

important future research directions can be imagined. 

m

Yet another extension in the OR realm, and this is a very important one, is the 

examination of other kinds of uncertainty along with the ones considered in this 

dissertation. As the results from this dissertation show, there may exist strong interactions 

between various sources of uncertainty, and therefore, it is not necessary that the effects 

of uncertainty in other problem parameters like demand, asset residual values, etc., woul

imited only to decisions expectedly affected by these uncertainties. For example, 

uncertainty in demand may not only affect inventory and asset purchase decisions, but 

also end-of-life decisions. In addition, uncertainty in demand would likely have strong 

interactions with uncertainty in asset prices, which in turn could be affected by market 

forces, environmental legislation, etc. A related research topic concerns the derivation of 

analytical robustness results in the presence of one dominant uncertainty. The 

computational results in Chapter 4, in particular the regular parabolic shapes of the data 

series in Figure 4.2 seem to suggest some interesting research directions.  

This dissertation makes important contributions in providing policy insights, but the 

formulation of public policy is understandably not its focus

 this dissertation are simply hypotheses about expected outcomes of E-waste 

policies, formulated with a limited amount of information about the objectives and exact 

forms of existing or proposed environmental legislation. In reality, policy formulation 

involves more complex issues than those that can be considered in this dissertation. 

Therefore, there is considerable scope for future research in the policy realm. At least two 
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The first is the development of detailed analytical methodologies to evaluate E-waste 

policies more specifically. The mathematical model presented in this dissertation does not 

inco

ter-disciplinary 

rese

rporate sufficient policy detail to provide an objective comparison between different 

E-waste policy alternatives. In order to compare alternatives, a model would need to 

incorporate economic variables (such as supply and demand), other market conditions, 

more specific details of alternative policies, and the policies and electronics recycling 

infrastructure existent in surrounding geographic regions. One could then compare the 

outcomes of E-waste policies against their intended objectives and rank various policy 

alternatives by their expected effectiveness.  

The other research direction is the study of the inadvertent imposition of negative 

externalities from one policy realm to others. The result in Chapter 5 (Section 5.2.1) 

showing that the existence of different environmental legislation in different states 

creates an artificial demand for transportation is happenstance and was not a planned 

outcome for the research. Models that are more explicit are required to examine this issue 

with greater specificity. Both these research directions would involve in

arch, requiring domain knowledge from OR, economics and public policy, at the very 

least. However, they are likely to provide some highly novel and very interesting insights. 
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