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SUMMARY

This research augments current Multiple Objective Evolutionary Algorithms with

methods that dramatically reduce the time required to evolve toward a region of interest in

objective space.

Multiple Objective Evolutionary Algorithms (MOEAs) are superior to other optimiza-

tion techniques when the search space is of high dimension and contains many local minima

and maxima. Likewise, MOEAs are most interesting when applied to non-intuitive com-

plex systems. But, these systems are often computationally expensive to calculate. When

these systems require independent computations to evaluate each objective, the computa-

tional expense grows with each additional objective. This method has developed methods

that reduces the time required for evolution by reducing the number of objective evalu-

ations, while still evolving solutions that are Pareto optimal. To date, all other Multiple

Objective Evolutionary Algorithms (MOEAs) require the evaluation of all objectives be-

fore a fitness value can be assigned to an individual.

The original contributions of this thesis are:

1. Development of a hierarchical search space description that allows association of

crossover and mutation settings with elements of the genotypic description.

2. Development of a method for parallel evaluation of individuals that removes the need

for delays for synchronization.

3. Dynamical evolution of thresholds for objectives to allow partial evaluation of objec-

tives for individuals.

4. Dynamic objective orderings to minimize the time required for unnecessary objective

evaluations.

xxvi



5. Application of MOEAs to the computationally expensive flare pattern design domain.

6. Application of MOEAs to the optimization of fielded missile warning receiver algo-

rithms.

7. Development of a new method of using MOEAs for automatic design of pattern

recognition systems.
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CHAPTER I

INTRODUCTION

Automated optimization methods allow exploration of a multi-dimensional search space

of possible decision variables looking for a single set of decision variables that produce

the desired objective. Many of today’s optimization problems do not require optimization

for a single objective, but rather require optimization for many often competing objectives.

For example, in any industry there is a desire to optimize a system such that it is highly

productive, uses minimal power, and is inexpensive. For these multiple objective problems,

a suite of system solutions that provides trade-offs in objectives is desired.

Fortunately, computer simulations are available, or are commonly developed, to under-

stand the performance tradeoffs of a proposed solution in the many diverse environments a

system may be required to operate. But, computer simulations for today’s complex systems

require very detailed modeling, which is often computationally expensive. This computa-

tional expense results in a substantial quantity of time expended for any optimization tech-

nique that uses these simulations. Thus, there is a desire to find the suite of optimal system

solutions in a minimal amount of time, implying a minimal use of simulation. Multiple

Objective Evolutionary Algorithms (MOEAs) provide an automated method for exploring

large search spaces to find optimal solutions, but they require evaluation of many objec-

tives [24]. This research augments MOEAs with methods that reduce the time to explore

the search space for independent, computationally expensive objectives by reducing the

number of simulations required.

The definitions for all symbols and abbreviations used in this thesis are given upon

their first usage. For the convenience of the reader, the definitions for the major symbols

and abbreviations are also given in the "List of Symbols and Abbreviations" section located

1



in the front of this document.

The rest of this chapter is organized as follows: Section 1.1 provides the lexicon for

discussion of optimization of single and multiple objective optimization problems. Section

1.2 provides the basics for single and multiple objective evolutionary algorithms. Section

1.3 provides an introduction to Pareto optimal concepts. These sections provide the foun-

dation for the overview of the research contributions made by this research in Section 1.4.

The final section of the Introduction, Section 1.5, provides an overview of the remaining

chapters.

1.1 Optimization Problems

For single objective optimization problems (SOP), an individual system is defined by a set

of n attributes (or decision variables), x = (x1, x2, · · ·, xn) ∈ Rn. All possible combinations

of attributes may not be feasible. A set of m constraints for the attributes can be defined

such that each constraint must be greater than 0, e(x) = (e1(x), e2(x), · · ·, em(x)) ≤ 0. The

set of all feasible individuals defines the search space, X. The single objective is then the

performance of the system for this objective, y, where all possible objective values define

the objective space, Y ⊂ R. A single objective optimization problem can then be formulated

as:

Maximize y = f (x)

Subject to e(x)= (e1(x), e2(x), · · · , em(x)) ≤ 0

where x = (x1, x2, · · · , xn) ∈ X ⊂ Rn

y ∈ Y ⊂ R.

As discussed above, many real world problems desire the optimization of multiple ob-

jectives rather than a single objective. These multi-objective optimization problems (MOP)

2
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Figure 1: Search Space to Objective Space Mapping

require evaluation of q objectives for each individual system,

y = F(x) = ( f1(x), f2(x), · · · , fq(x)) ∈ Rq. (1)

The set of all possible solutions y, defines the multiple objective space Y. Thus as illustrated

in Figure 1, the fitness function, F, provides a mapping for each individual x in the search

space X ⊂ Rn to a location y in the objective space Y ⊂ Rq. A multi-objective optimization

problem can then be formulated as:

Maximize y = F(x) = ( f1(x), f2(x), · · · , fq(x))

Subject to e(x)= (e1(x), e2(x), · · · , em(x)) ≤ 0

where x = (x1, x2, · · · , xn) ∈ X ⊂ Rn

y ∈ Y ⊂ Rq.

For both multi-objective and single objective optimization problems, minimization prob-

lems are formulated similarly and are often recast as maximization problems by changing

the sign of the desired objective, yk.
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Figure 2: Evolutionary Algorithm Process

1.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) provide optimization techniques that mimic the three major

components of natural evolution and selective breeding: selection, exchange of genetic

material during reproduction (or crossover), and random mutations. Figure 2 illustrates this

process. Although as shown in the No Free Lunch Theorems of Wolpert and Macready [59]

there is a danger of comparing algorithms, EAs have shown themselves to be of increasing

interest for those problems with large search spaces and complex high frequency functions

with many local minima and maxima [57].

The basic concepts for EAs originated in 1859 with Darwin [16]. Over a century later in

1975, Holland [29] is credited as pioneering the application of these evolutionary concepts

to optimization problems. By their definition EAs lend themselves to discussion in terms

of a biological paradigm. For example, a specific instance of a system is referred to as an

individual. An individual contains a genotypic description, which is the list of attributes

(or decision variables) to be optimized, x = (x1, x2, · · · , xn). Likewise, an individual’s

genotypic description is manifested in a phenotypic description, which is the individual’s

realization in the operating environment, y = ( f1(x), f2(x), · · · , fq(x)). A group of individ-

uals make up a population, P. Selection is mimicked by comparing the performances of
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individuals in a population and determining which individuals get to mate. An individual

with more desirable fitness is given a higher probability of mating. Mating is performed by

taking some attributes from one parent and the remaining attributes from another parent.

The attributes of the resulting individual can then be mutated using any method desired,

including normal and uniform distributions. Mutation provides a natural resistance to the

optimization process converging on a local minimum or maximum and allows introduction

of new genetic material into the gene pool.

1.2.1 Multiple Objective Evolutionary Algorithms

As long as a fitness function is available that can associate the performance of any possible

individual’s genotypic description with its phenotypic description, then the processes of

selection, crossover, and mutation can be applied to optimize the performance. But, the

process of selection requires the ability to rank all individuals’ performance in order to

determine which individuals are selected for mating, i.e., selection requires a fitness value.

For SOPs, this rank can be made with the single objective value itself, y. But for MOPs,

the phenotypic description contains multiple objectives. As illustrated in Figure 3, MOEAs

provide methods for mapping individuals from the multiple objective domain to a single

fitness value that can be used by the selection process. The details of state of the art MOEA

techniques as well as the MOEA contributions of this research are presented in Chapter 2.
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1.2.2 Weighted-Sum

The simplest method for mapping from multiple objective space to a single fitness value is

the weighted-sum. The weighted-sum of objectives method combines the objective values

fk(i), of an individual i, by multiplying by a weight wk,

f (i) =
q

∑

k=1

wk fk(i). (2)

The weighted-sum coefficients, wk, define a vector in objective space. Thus, individuals

that have the best fitness are those that are farthest from the hyperplane that is perpendicular

to the defined vector. A simple weighted-sum technique is adequate for many problems

but is less appealing for others. Three limitations for optimization using weighted-sum

techniques are:

1. A simple weighted-sum technique is difficult for problems where the relationships

between the objectives are not well understood; i.e., problems where it is hard to

determine a valid set of weights wk.

2. Since the fitness measure finds those solutions furthest from the hyperplane perpen-

dicular to the vector defined by the weights, a weighted-sum technique can result in

problems finding solutions in concave portions of the optimal surface, as illustrated

in Figure 4.

3. A simple weighted-sum technique only finds a single solution of the many possible

optimal solutions in the objective space. Thus, the single solution does not provide

the ability to understand the various trade-offs in objective space that are possible.

Despite these limitations, a linear combination of objectives is commonly used. In fact,

as reported by Van Veldhuizen [57], weighted-sums are the most common method found in

open literature for determination of a fitness value from multiple objectives.
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Figure 4: Weighted-Sum Optimization with Concave Surfaces

1.3 Pareto Optimality

One of the most desirable products of MOEA techniques is the evolution of a set of solu-

tions that provide the trade-offs in objective space. With single objective optimization an

individual i is better than another solution j if f (i) > f ( j). For multiple objectives this be-

comes slightly more complex and benefits from the definition of Pareto optimality. Assum-

ing the purpose of the optimization is to maximize all objectives, an individual i dominates

individual j, (i � j), if and only if for all k = 1 to q, fk(i) ≥ fk( j) and fk(i) > fk( j) for at

least one k. An individual i weakly dominates individual j, (i � j), if and only if for all

k = 1 to q, fk(i) ≥ fk( j). Weak domination allows individuals to have identical objectives

values. Defining P as a set of individuals, an individual i ∈ P is Pareto optimal if and only

if there exists no j ∈ P such that j � i. Simply put, an individual is Pareto optimal if it is not

outperformed in every dimension by any single individual. The set of Pareto optimal solu-

tions, E, is a subset of the original population, E ∈ P. Figure 5 gives an example of Pareto

optimal solutions in two dimensions. An individual that is not Pareto optimal is said to be

dominated or inferior. Pareto optimal solutions are also referred to as non-dominated. The

resulting Pareto optimal solutions create a Pareto front. Any new solution residing behind

the Pareto front will not be Pareto optimal. Any new solution residing in front of the Pareto
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front will be Pareto optimal. The results of a MOP do not result in a single individual as in

SOP, but rather a population, E, of Pareto optimal solutions.

1.3.1 Hypercubes

Each individual in objective space Rq defines q planes each of dimension q − 1. These

planes define two hypercubes in the Rq space. First, there is a hypercube in front of the

point a such that every point b within the hypercube contains values such that for all k = 1

to q, ak > bk. Likewise, there is a hypercube located behind each point a such that every

point b within the hypercube contains values such that for all k = 1 to q, ak < bk. Given

an individual i and the location in objective space f (i), define the hypercube behind the

individual i in objective space f (i) as hb( f (i)). Likewise, define the hypercube in front of

the individual i in objective space as h f ( f (i)). Figure 6 illustrates these two hypercubes for

a three-dimensional case.

The definition of these hypercubes allows us to discuss Pareto optimality in terms of

these hypercubes. An individual i is Pareto optimal only if there are no individuals that

reside in the hypercube in front of it, h f ( f (i)). Likewise, an individual is dominated by all

individuals whose hypercubes behind them contain the individual.
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1.3.2 Hypervolume

Hypercubes also lead naturally into a discussion of measure for MOEA performance de-

veloped by Zitzler [61] called the hypervolume. The Pareto front encloses a volume of

dimension q in objective space that is the union of the hypercubes behind each Pareto op-

timal individual. Given a population of Pareto optimal individuals, E, then the volume

enclosed by the population S (E) becomes a measure for the Pareto optimal front,

S (E) = v















⋃

i∈E

hb( f (i))















(3)

as illustrated in Figure 7. This implies that the origin of the objective spaces is at (0, · · · , 0).

If this is not desired, the origin can easily be translated.

Throughout the evolutionary process, there are sets of solutions that for an instance in

9



the optimization process are Pareto optimal. Measuring the hypervolume over the opti-

mization process provides a measure of the improvement being made. If no new Pareto

optimal solutions are found, then the hypervolume will remain constant. If the hypervol-

ume is increasing then new areas of the objective space in front of the previous Pareto front

are being explored.

Hypervolume also allows comparison of populations that are the results of multiple

optimizations. In general, resulting populations with large hypervolumes are exploring

more of the objective space. But, the hypervolume can not tell the entire story. For example,

as illustrated in Figure 8, two populations can contain identical hypervolumes and still be

exploring different regions of the objective space.

1.3.3 Coverage Measure of Two Sets

An additional measure for comparison of two populations of solutions, also developed

by Zitzler [61], is the coverage measure. The coverage measure can be used with the

hypervolume measure for additional information. Consider two sets of solutions A, B ∈ Y .

The coverage function C then determines the percentage of solutions in B that are weakly

dominate the solutions in A Let |B| indicate the number of individuals in population B.

Then,

C(A, B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
. (4)

The value C(A, B) = 1 implies that all decision vectors in B are weakly dominated by

A. Conversely, a value of C(A, B) = 0 implies that none of the objective vectors in B are

weakly dominated by A. Note that because sets A and B may cover different regions of

objective space, C(B, A) does not necessarily equal 1 − C(A, B). Therefore as illustrated in

figure 8, both C(A, B) and C(B, A) must be considered.

The cases for relationships between S (A), S (B), C(A, B), and C(B, A) are as follows:

1. A dominates B. If C(A, B) = 1 and C(B, A) = 0 then set A dominates set B, and thus

S (A) > S (B), as illustrated on the left side of Figure 8.
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and C(B, A) = 0, (Middle) S (A) = S (B) and C(A, B) = C(B, A) = 0.25, (Right) S (A) >
0, S (B) > 0 and C(A, B) = C(B, A) = 0.

2. A and B cover two different regions. If S (A) > 0, S (B) > 0, C(A, B) = 0 and

C(B, A) = 0 then A and B must be two different regions of the space, as illustrated on

the right side of Figure 8.

3. A and B overlap, but neither dominates the other. If S (A) > 0, S (B) > 0, 0 <

C(A, B) < 1 and 0 < C(B, A) < 1 then A and B overlap, but neither dominates the

other, as illustrated in the middle of Figure 8.

1.4 Research Contributions

Many MOEA techniques exist as will be detailed in Chapter 2. Most of these methods uti-

lize the concept of Pareto optimality to give better fitness values, and thus better probability

of mating, to those individuals residing near the Pareto front. MOEAs are most interesting

when applied to non-intuitive complex systems. But, these systems are often computation-

ally expensive. When these systems require independent computations to evaluate each

objective, the computational expense grows with each additional objective. This class of

problems will be identified as Independent Computational Expensive Objectives (ICEO)

problems.

Current MOEA techniques have two characteristics that are not required for ICEO prob-

lems, and are exploited by this research:
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1. The entire Pareto front in the multi-dimensional objective space is found.

2. The fitness methods require evaluation of all objectives in order to determine a valid

fitness value.

For many problems the entire Pareto front is not required. Optimization problems are

often specified by a set of requirements or goals for the desired system, and only the Pareto

optimal solutions that meet these requirements are desired. These requirements define min-

imum values of performance for the measured objectives, which in turn specify "regions

of interest” in the objective space, i.e., those regions where the minimum values of perfor-

mance are exceeded.

The region of interest in objective space can be defined most abstractly much as the

constraints are in the search space. The region of interest, G, is the subset of Rq such that a

set of t constraints is greater than 0, r(y) = r1(y), r2(y), · · ·, rt(y) ≥ 0.

For many optimization problems, the problem can easily be recast into a maximization

problem, and the constraints simply become a set of lower bounds on each of the objectives

specified by the requirements. Note that some objectives may not have a requirement for a

minimum performance. For these objectives, a lower bound can be set to the lower bound of

the objective to include the entire span of this objective. In this case, the abstract description

can be reduced to a set of q threshold tests, one for each of the objectives. Letting Lk be the

threshold for the kth objective, the region of interest, G ⊂ Y, is defined as those locations in

y such that for all k = 1 to q, yk ≥ Lk. As illustrated in two dimensions in Figure 9, the q

thresholds, L, define a hypercube of dimension q in objective space, h f (L). This simplified

definition for the region of interest, G = h f (L), will be utilized by this research. Once the

Pareto front has been found in the region of interest, the designer can examine the trade-offs

of the systems that exceed all specifications to select the system that is most desirable.

Another consideration for MOEA methods that exploit the region of interest, ROI, is

that even though requirements for a system can be designed that are within the space Rq,

this does not mean it is within the objective space Y ⊂ Rq. In other words, just because there

12
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Figure 9: Region of Interest

is a set of requirements on a system does not mean that a system exists that can meet these

requirements. For complex functions, Y can not be found without evaluation of all decision

variables in the search space X. If the mapping of all variables from the search space to

the objective space was known a priori, then one would not need a complex method such

as MOEAs to explore the search space. Therefore, the methods must evolve sets of Pareto

fronts that move toward G without knowledge that it can reach G. Figure 9 illustrates

regions of interest that are inside and outside of the objective space.

In the course of research, (see Section 3.4.1), a method has been developed that reduces

the time required for evolution by reducing the number of objective evaluations, while still

evolving solutions that are Pareto optimal. To date, all other MOEAs require the evaluation

of all objectives before a fitness value can be assigned to an individual. By removing

this restriction, individuals that are determined to be less likely to produce children that

reside closer to the region of interest after the evaluation of only a few objectives can

terminate the evaluation of additional objectives. This allows the evolution of Pareto fronts

that push solutions toward the desired region of interest, but degrade gracefully if the region

of interest cannot be reached.

The original contributions of this thesis are:

1. Development of a hierarchical search space description that allows association of

crossover and mutation settings with elements of the genotypic description.

13



2. Development of a method for parallel evaluation of individuals that removes the need

for delays for synchronization.

3. Dynamical evolution of thresholds for objectives to allow partial evaluation of objec-

tives for individuals.

4. Dynamic objective orderings to minimize the time required for unnecessary objective

evaluations.

5. Application of MOEAs to the computationally expensive flare pattern design domain.

6. Application of MOEAs to the optimization of fielded missile warning receiver algo-

rithms.

7. Development of a new method of using MOEAs for automatic design of pattern

recognition systems.

In summary, this research augments current Multiple Objective Evolutionary Algo-

rithms with methods that dramatically reduce the time required to evolve toward a region of

interest in objective space. The research then demonstrates these methods with optimiza-

tion in two complex objective domains as presented in Chapters 5 and 6.

1.5 Organization

Chapter 2 details the common selection mating and mutation methods of most EAs tech-

niques. Also included are discussions of other common MOEA issues including parallel

evaluation, initial population, and elitism. The details of the Strength Pareto Evolution-

ary Algorithm (SPEA) [61], and SPEA2 [62] techniques, of Zitzler, as well as the Niched

Pareto Genetic Algorithm (NPGA) of Horn, Nafpliotis and Goldberg [30] are then ana-

lyzed, allowing the reuse and quantitative analysis of these components in the following

Chapters.
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Chapter 3 details the algorithms developed by this research. Original contributions for

all MOEA domains include: a hierarchical genome description, ability to link mutation

and crossover to specific genome attributes, and enhanced parallel evaluation methods.

Innovations for ICEO specific problems are also presented including: the new concepts of

dynamic thresholding, hypercube distance scaling, hypercube distance ordering, and auto

ordering.

Chapter 4 presents quantitative analysis of these algorithms against the fast-running 0/1

Knapsack problem extended to multiple dimensions of Martello and Toth [42]. This anal-

ysis compares the efficiency for different combinations of the components of the SPEA,

SPEAII, NPGA, and ICEO methods to reach regions of interest in objective space. Be-

cause the 0/1 Knapsack problem does not contain independent objectives, nor is it compu-

tationally expensive, the number of objectives required is minimized instead of minimizing

the time required to evolve. The six MOPs developed by Deb [17] provide a suite of

fast-running problems that are designed to contain many of the most difficult scenarios of

MOPs. The best performing algorithms from the 0/1 Knapsack analysis are also investi-

gated to insure that the resulting algorithms are robust.

Chapter 5 presents the results of the ICEO methods against a truly ICEO problem of

designing flare pattern to defeat threat missiles. The search space for a flare pattern contains

the selection of the timing, type of flare, and flare dispenser location for a set of flares.

The performance of the patterns is evaluated using an energy-weighted centroid tracking

algorithm. Evolution of patterns that cause large errors in the track point is desirable. The

objectives contain the performance of the flare pattern against multiple angles and ranges.

Because this is a true ICEO problem, results can be examined in terms of run-time.

Chapter 6 presents the application of the ICEO MOEA methods in the optimization

of the AAR-44A missile warning receiver performance. The search space for this opti-

mization includes 156 variables selected from the Operational Flight Program (OFP). The

objectives are to maximize the probability of detection Pd of a threat, the negative of the
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number of false alarms, NFAC, the average time to intercept before impact TT IAvg, and the

minimum time to intercept TT IMin. The fitness evaluations were performed using a simu-

lation that contained a rehosted version of the actual OFP. Large quantities of False Alarm

(FA) data, available recorded threat missile shots, and a plethora of simulated missile shots

were used for training and evaluation. Optimization resulted in dramatic improvements,

especially in the Pd and FA performance.

Chapter 7 presents the application of the ICEO MOEA methods to a new form of Evo-

lutionary Programming developed to work directly on block diagrams as opposed to tra-

ditional methods using inverted tree structures [36]. This method allows ICEO MOEA

methods to not only modify the attributes of a system, but to also modify the topology of

the system. Layered on top of the Ptolemy II simulation, high level components can be

tuned and combined in novel ways to design a set of Pareto optimal systems. The appli-

cation of this problem to the design of a filter to predict the income level of an individual

based on attributes such as race, sex, and education level is presented and compared to

other pattern recognition methods. Training and evaluation data originate from the 1994

census.

In conclusion, Chapter 8 offers a summary of the contributions and advancement in

knowledge created in this body of research. This chapter also outlines areas of incomplete

knowledge and offers suggestions for future research.
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CHAPTER II

MULTIPLE OBJECTIVE EVOLUTIONARY

ALGORITHMS

The previous chapter introduced the basics of single objective and multiple objective opti-

mization problems along with the definitions for a search space and objective space. Chap-

ter 1 then introduced the basics of Pareto optimality in a multi-dimensional objective space,

the concept of the region of interest in the objective space.

This chapter expands upon these basics with detailed analysis of current Evolution-

ary Algorithm (EA) and Multiple Objective Evolutionary Algorithm (MOEA) techniques.

The chapter begins with a detailed look at the standard EA concepts in Section 2.1 as a

method for single objective optimization. These basic evolutionary algorithms concepts

are then expanded to multiple objective problems in Section 2.2 with a detailed analysis

of a sampling of current multiple objective evolutionary algorithm (MOEA) methods. The

detailed understanding of the current MOEAs is required to understand the motivation for

the research contributions presented in Chapter 3. Section 2.3 completes the chapter with

a summary of the conclusions reached during this chapter.

2.1 Standard Evolutionary Algorithm Concepts

The three standard processes of EAs are selection, mating, and mutation. Additional con-

siderations include the encoding of the genotypic description of an individual, the ability

of select individuals to be available for selection for longer than a single generation, and

methods for parallelizing evaluation of individuals. The following subsections detail the

basics of each of these processes.
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2.1.1 Genome Encoding

In EAs, an individual’s genotypic description, x, is encoded as a sequence of attributes. At-

tributes can be one of three basic data types that must be considered; sampled, enumerated

or real. Other more complex data types can be created by aggregation of these base data

types.

Many problems such as the 0/1 knapsack and Deb’s T functions only require a single

bit for each attribute (see Chapter 4). In this case, the search space contains 2n possibil-

ities. Other problems, such as the flare pattern design problem, (see Chapter 5), contain

attributes that are sampled. For example, the time of ejection time for a flare may occur

any time between 0.0 and 4.0 seconds, but only on 50 millisecond boundaries. In this

case, there are 4.0/0.050 + 1 = 81 samples, which requires 7 bits to fully encode, (i.e.,

d(log2(range/delta)e + 1, where de is the ceiling function, which rounds values to the next

highest integer). Note that 27 can encode 128 values. Thus, to remain in the feasibility

region, many possible bit values need to map to a single valid attribute value (see Section

1.1 for a definition of the feasibility region).

Similarly, the flare pattern problem also requires encoding of the type of flare ejected,

which is an enumeration of possible names. These too must be encoded in a small sequence

of bits, where each possible value maps to one of the possible flare types.

The AAR-44A OFP optimization (see Chapter 6), requires attributes that are valid over

the entire R1 or at least a range of the R1 values. For these problems, the same approxi-

mation utilized by simulations and software implementations is used; i.e., the encoding of

values as 64-bit double precision numbers.

2.1.2 Selection

The selection operator supports the choice of the individuals from a population that will be

allowed to mate in order to create a new generation of individuals. EA methods attempt to

develop fitness methods and elitism rules that find a set of Pareto optimal values quickly
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and reliably. But, ultimately it is the selection method that is responsible for the choice

of a new generation of parents. Thus, the selection process is responsible for making the

mapping from the fitness values of the input population to a probability of selection, and

thus the probability of an individual’s genetic material being passed to the next generation.

Therefore, to fully understand the probability of selection for fitness values, the following

sub-sections examine two common methods for selection: fitness proportionate and tourna-

ment. These sub-sections provide detailed analysis of the probability of selection for each

of the methods, which has not been found in the literature. The details of the probability

of selection will also be helpful in understanding the results of new algorithms, as will be

required in Chapter 4.

2.1.2.1 Fitness Proportionate Selection

Fitness-proportionate selection, also known as area weighted roulette selection, gives a

probability of selection to an individual in proportion to its fitness value, Ps,FPS (i) and was

proposed by Holland in 1975 [29]. The title, area weighted roulette selection, comes from

the analogy that each individual is given an area of a roulette wheel that is proportionate to

its fitness. The wheel is spun to determine which individual is chosen as a parent. An area

weighted roulette wheel is illustrated in Figure 10.

Some methods desire maximization of the fitness value such as the weighted-sum

method, and others such as the SPEA methods require a minimization of the fitness value.

To transform a minimization problem to a maximization problem, fitness values are set to
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the negative of the current value, F(i) ← −F(i). Second, there must be a mapping of a

desired fitness value to zero area on the roulette wheel [26]. Considering the population, P,

of individuals, each with fitness F(i), the minimum and maximum of the population can be

found as:

FMin = min
i∈P

F(i). (5)

FMax = max
i∈P

F(i) (6)

The area of the roulette wheel for each individual A(i) is

A(i) =
F(i) − FMin

FMax − FMin
.

The total area of the roulette wheel is

Atot =
∑

j∈P

A( j).

Thus, the probability of selection for an individual is

Ps,FPS (i) =
A(i)
Atot

Ps,FPS (i) =
F(i) − FMin

∑

j∈P F( j) − FMin
. (7)

Note that for individuals with F(i) = FMin the probability of selection is zero, Ps,FPS (i) = 0.

2.1.2.2 Tournament Selection

The tournament method allows selection using tournament rules. With this method a num-

ber of individuals, m, are chosen as competitors at random from the input pool [6]. The

competitor with the best fitness becomes the parent. For maximization problems, the in-

dividual with the best fitness is the individual with the highest fitness value. Likewise, for

minimization problems the individual with the smallest fitness value has the best fitness. In

either minimization or maximization problems, if the fitness values of the randomly chosen

individuals are equal, then one is chosen at random as the winner.
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Tournament selection can occur with and without replacement. When using replace-

ment, all individuals are reintroduced into the population of possible parents after the se-

lection of each parent. Thus, the same parent can be chosen multiple times. Without

replacement, those individuals selected as parents are removed from the population of pos-

sible parents as they are chosen. Thus, for each generation a possible parent can only have

one child.

A common instance of tournament selection is binary tournament selection with re-

placement, BTSWR. With binary tournament selection, m = 2, two individuals are chosen

at random from the input pool and the individual with the best fitness is chosen as a par-

ent, as illustrated in Figure 11. For the binary tournament selection method with an input

population of n individuals, the probability of selection for the best individual is 2/n, and

the probability of selection for the poorest individual is 0. The probability of selection for

the remaining individuals, (Ps,BTS WR), can be found by ordering the individuals according

to their fitness values. Let t j be the index of the selected individual on the jth trial. The

probability of selection for the kth individual between the lowest ranked individual 1 and

the highest ranked individual is as follows:

Ps,BTS WR(k) = Ps(k drawn on 1st)Ps(t2 < k|k drawn on 1st)

+Ps(t1 < k)Ps(k drawn on 2nd |t1 < k)

= Ps(t1 = k)Ps(t2 < k|t1 = k) + Ps(t1 < k)Ps(t2 = k|t1 < k)

=

(

1
n

) (

k − 1
n − 1

)

+

(

k − 1
n

) (

1
n − 1

)

Ps,BTS WR(k) =
2(k − 1)
n(n − 1)

(8)

The same methods can be used when more than two competitors are used. For example,

when three competitors are chosen at random from the ranked pool, then the probability of

the selection for the kth individual becomes:
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Figure 11: Binary Tournament Selection with Maximization

Ps,TTS WR(k) = Ps(t1 = k)Ps(t2 < k|t1 = k)Ps(t3 < k|t1 = k, t2 < k)

+Ps(t1 < k)Ps(t2 = k|t1 < k)Ps(t3 < k|t1 < k, t2 = k)

+Ps(t1 < k)Ps(t2 < k|t1 < k)Ps(t3 = k|t1 < k, t2 < k)

=

(

1
n

) (

k − 1
n − 1

) (

k − 2
n − 2

)

+

(

k − 1
n

) (

1
n − 1

) (

k − 2
n − 2

)

+

(

k − 1
n

) (

k − 2
n − 1

) (

1
n − 2

)

= 3

(

(k − 1)(k − 2)
n(n − 1)(n − 2)

)

Ps,TTS WR(k) = 3

(

(k − 1)!(n − 3)!
(k − 3)!n!

)

(9)

Allowing j individuals to be chosen instead of only 2 or 3 results in a mapping from a

maximum probability of j/n for the best fitness individual to 0 for the j−1 individuals with

the worst fitness. Thus the probability selecting of the kth individual, using the tournament

method choosing j competitors for j ≥ 2, from a population of n ordered individuals is

Ps,TS WR(k, j) =
j(n − j)!(k − 1)!

n!(k − j)!
(10)

Figure 12 gives an example plot of the probability of choosing each of the 10 individuals

using 2, 3 and 4 competitors. As illustrated, the more competitors the higher the probability

of selection for individuals with the best fitness.

Without replacement, tournament selection removes all individuals chosen by the tour-

nament from the pool of possible subsequent parents. Therefore, the selection of two par-

ents to create two children results in 2 fewer individuals in the pool of possible parents.
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Figure 12: Probability of Selection for 2, 3, 4 and 5 Competitors Using Binary Tournament
Selection on 10 Ranked Individuals

Thus, if it is desired to use tournament selection without replacement then the size of the

input population for selection must be greater than the number of children to be created. If

only one parent is selected, then probability of selection using binary tournament selection

without replacement, (Ps,BTS NR), is the same as in Equation 8.

Ps,BTS NR(k, 1) =
2(k − 1)
n(n − 1)

(11)

The selection of the second parent becomes slightly more complicated. In this case we

must take into consideration the probability that the rank selected on the first trial is greater

or less than the value of k, (Ps,BTS NR(t1 > k) or Ps,BTS NR(t1 < k) ), and the conditional

probability that the kth value is selected on the second trail given the first is greater than or

less than the k, (Ps,BTS NR(t2 = k|t1 > k) or Ps,BTS NR(t2 = k|t1 < k) ).

Ps,BTS NR(k, 2) = PBTS NR(t1 > k)Ps,BTS NR(t2 = k|t1 > k) + PBTS NR(t1 < k)Ps,BTS NR(t2 = k|t1 < k)

Ps,BTS NR(k, 2) =
n

∑

j=k−1

(

2( j − 1)
(n)(n − 1)

)

2(k − 1)
(n − 1)(n − 2)

+

k−1
∑

j=1

(

2( j − 1)
(n)(n − 1)

)

2(k − 2)
(n − 1)(n − 2)

(12)

The equation for three parent selection requires looking at four possible combinations of
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the previous 2 selections:

Ps,BTS NR(k, 3) = Ps,BTS NR(t1 > k)Ps,BTS NR(t2 > k)Ps,BTS NR(t3 = k|t1 > k, t2 > k)

+Ps,BTS NR(t1 > k)Ps,BTS NR(t2 < k)Ps,BTS NR(t3 = k|t1 > k, t2 < k)

+Ps,BTS NR(t1 < k)Ps,BTS NR(t2 > k)Ps,BTS NR(t3 = k|t1 < k, t2 > k)

+Ps,BTS NR(t1 < k)Ps,BTS NR(t2 < k)Ps,BTS NR(t3 = k|t1 < k, t2 < k)

Ps,BTS NR(k, 3) =

















n
∑
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(13)

Let |C| be the number of individuals in the population C. The creation of |C| children

for a population C requires looking at the 2|C|−1 combinations of selections of less than and

greater than for the previous |C| − 1 selections, (x ∈ [l, g]|C|−1). Define the function LT (x, j)

equal to the number of values of l in the first j dimensions of x.

LT (x, j) =
j

∑

i=1































1 xi = l

0 xi = g

(14)

Then the probability of selection for the kth individual on the |C| selection of a parent using

binary tournament selection without replacement is

Ps,BTS NR(k, |C|) =
∑

x∈[l,g]|C|−1































|C|−1
∏

j=1































∑n− j+1
m=k+1−LT (x, j)

2(m−1)
(n− j+1)(n− j) x j = l

∑k−1−LT (x, j)
m=1

2(m−1)
(n− j+1)(n− j) x j = g































2(k − 1 − LT (x, |C| − 1)
(n − |C| + 1)(n − |C|)

.

(15)

Thus the probability of selection for the kth individual in any of the |C| selections of a parent

using binary tournament selection without replacement is

Ps,BTS NR(k, any|C|) =
|C|
∑

i=1

Ps,BTS NR(k, i).
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Figure 13: Cumulative Probability of Selection for 1, 2, 4, 6, 8 and 9 Parents Using Binary
Tournament Selection Without Replacement on 10 Ranked Individuals

Ps,BTS NR(k, any|C|) =

∑|C|
i=1

∑

x∈[l,g]i−1
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∑n− j+1
m=k+1−LT (x, j)

2(m−1)
(n− j+1)(n− j) x j = l

∑k−1−LT (x, j)
m=1

2(m−1)
(n− j+1)(n− j) x j = g































2(k−1−LT (x,i−1)
(n−i+1)(n−i)

|C|
. (16)

Figure 13 illustrates the results of Equation 16 with 10 ranked individuals for values of

|C| in 1, 2, 4, 6, 8, and 9. Note that for |C| = 1 then the probability of selection is the

same linear function as the binary tournament selection without replacement. At the other

extreme when |C| = 9 or |C| = n−1 then the probability for the 2nd to nth ranked individuals

is 1
n−1 . This implies that all but the poorest individual are given the same probability of

mating, and thus the ranking of these individuals is not important. Without replacement,

the number of children created can never equal the number of individuals in the current

pool, (|C| < n), as the last in selection still requires two individuals for binary tournament

selection, but only one individual remains.
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The response of the probability for the 2nd to nth individual approaches 1
n−1 as |C| ap-

proaches n−1. This results in the loss of the influence on the fitness values on the probabil-

ity of selection. Since the distribution of fitness values are one of two major influences in

MOEA techniques, binary tournament selection without replacement is not recommended.

If a tournament selection method is desired, one should use replacement.

2.1.2.3 Selection Comparisons

The fitness proportionate selection method utilizes the fitness values in order to calculate

the area of the roulette wheel, and is therefore sensitive to the distribution of the fitness

values. Because the tournament selection method makes a comparison, but does not depend

on the relative differences, the tournament method is impervious to any non-linearities that

may exist in the fitness values. For example, as illustrated in Figure 14, take a population

of 3 individuals with fitness values of 0, 100 or 10, 000. Fitness proportionate selection

would give the 0 fitness individual a zero probability of selection. The individual with a

fitness of 10, 000 would have a 100 times larger probability of selection than the individual

with a fitness of 100. The binary tournament method would also give the individual with

the lowest fitness value of 0 a 0 probability of selection. But, the individual with a fitness

of 10, 000 would have a probability of selection of 2/3, and the individual with a fitness of

100 would have a probability of selection of 1/3.

Therefore, the choice of the selection method must take into account the origination of

the fitness values. Weighted-sum techniques are most likely to contain a high variation in

fitness values and should therefore use tournament selection if the range of fitness values

is not well distributed. As will be shown in Section 2.2, algorithms such as SPEA and

NPGA often base fitness on the Pareto rank, which can be more easily mapped into a

desired probability of selection. Therefore, Pareto rank techniques can use either fitness

proportionate or tournament selection.

26



Selection

F(A) = 0
F(B) = 100
F(C) = 10,000

Selection
Binary Tournament

Fitness Proportionate

PS ,FPS (k) = F(k)−FMin
∑

j∈P F( j)−FMin
=

F(k)
10100

PS ,BTS WR(A) = 0

PS ,BTS WR(C) = 2
3

PS ,BTS WR(B) = 1
3

PS ,FPS (A) = 0

PS ,FPS (C) = 100
101

PS ,FPS (B) = 1
101

PS ,BTS WR(k) = 2(k−1)
n(n−1) =

(k−1)
3

Figure 14: Example Comparison of Binary Tournament and Fitness Proportionate Selec-
tion with Large Variations in the Fitness Values

2.1.3 Crossover

Crossover is the feature of EAs that distinguishes it from other optimization techniques. As

with other optimization techniques EAs must calculate a fitness value, select individuals for

permutation for following iterations, and use mutation to prevent convergence on a local

maxima. But, only EAs use crossover to take some attributes from one parent and other

attributes from a second parent.

Unlike sexual reproduction in plants and animals, which is limited to two parents, EAs

allow for input genetic information from two or more parents. As with selection, multiple

crossover methods may be used in a single EA. For example, the SPEA method specifies

ninety percent of individuals to originate from single point crossover and ten percent of

individuals to originate from the clone crossover method.

The specifics of the two common crossover methods, (Clone and N-Point), are dis-

cussed in the following subsections. See Section 3.1.2 for a discussion of the location

crossover method, developed during the course of this research. Other crossover methods

such as a weighted average method [46, 47] also exist.
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2.1.3.1 Clone Crossover

The clone crossover method mimics the creation of an identical copy of the genotypic

description for of one of the parents. In this case, an exact copy of one of the parents is

given to the child. The child will still be subject to the mutation operators described in

the next section and therefore by the time of evaluation may not be the same as the parent.

Use of clone crossover becomes equivalent to asexual reproduction. Selection still allows

the best individuals to have a higher probability of propagating their genetic material into

future generations and the worst individuals to have their genetic material selected out from

future generations. Mutation allows insertion of new genetic possibilities. But, without the

advantages of the exchange of genetic material between two individuals, only mutation can

improve performance.

2.1.3.2 N-Point Crossover

The N-Point crossover method allows for crossover at an arbitrary number of points [8].

The literature often uses single point crossover. Using single point crossover as an example,

the method first calculates a random position in the genome (i.e., sequence of bits encoding

the individual). With the most common implementation, there are only two parents and

a single crossover point, resulting in the creation of two children. The first child genome

contains the first part of the first parent genome and the second part of the second parent

genome. The second child genome contains the first part of the second parent genome and

the second part of the first parent genome. The N-Point crossover method is illustrated in

Figure 15 for single and dual point crossover.

Unfortunately, as given in literature, choosing an arbitrary location in the bit sequence

can result in choosing a location that is in the middle of an attribute for all cases except

a list of boolean values. This can ultimately result in mutating attributes at the point of

crossover. The mutating effect can be seen in Figure 15 by thinking of each 4 bit hex value

as an attribute and observing the appearance of attributes that are not inherited from either
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Figure 15: N-Point Crossover

parent. For sampled data types, the magnitude of the attribute is obtained from the first

parent, (i.e., the upper bits of the attribute). The mutation effects are even worse for double

precision encodings of attributes. If crossover occurs in the exponent of a double precision

attribute then dramatic changes can occur in the magnitude of the attribute, not just the

value of the component.

Let b be the number of bits required to encode a search space, N be the number of

crossover locations, and n be the dimensionality of the search space, (i.e., the number of

attributes). Then the probability of mutation due to N-Point crossover is

Pm,c = N
b − n

b
. (17)

To avoid this mutation behavior, the implementation in this research forces crossover

to only occur on the boundaries of attributes. This is implemented by calculating a random

position in the bit sequence and then moving the position to the nearest attribute boundary.

Nature also performs crossover on attribute values as well. For example, crossover in

humans most often occurs on chromosome values.

2.1.4 Mutation

Unlike the crossover and selection operators, mutation is not necessarily applied to all in-

dividuals. Multiple mutation specifications are available: bit, uniform and normal. Each
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mutation type has an independent probability of being applied to each individual. There-

fore, some individuals may be mutated by several mutation methods, some individuals may

be mutated by a single mutation method, and some individuals may not be mutated at all.

Others [60] have developed and implemented methods that attempt to change the mu-

tation rate over the course of the run. Typically, high mutation rates, e.g., 2 to 5 percent,

are desired early in the run. As the run progresses these mutations rates are decreased, e.g.,

1 to 0.5 percent.

2.1.4.1 Bit Mutation

The bit mutation method allows for the independent flipping of bits within the genome [5]

The mutation method will only be applied to individuals selected with a desired proba-

bility, Pm,b. Once an individual has been selected for flipping, each bit is flipped with an

independent probability, P f . Figure 16 illustrates the bit mutation process.

The default behavior is to simply flip the bits, i.e., if a bit is 0 it becomes 1, and if it is 1

it becomes 0. It is also possible to specify sticky bit mutation, (i.e., that any bit chosen for

mutation will be set to 1 regardless of its previous value, or that any bit chosen for mutation

will be set to 0 regardless of its previous value). Sticky bit mutation is not typically used

and will not be discussed in the following distribution discussions.

Bitwise mutation with flipping provides a uniform distribution for sampled attribute

specifications that are encoded in a power of 2 number of bits. Unfortunately, when at-

tributes are not divisible by a power of 2, then the values distributed outside of the feasibil-

ity region must be mapped back into the feasibility region, (see Section 1.1 for a definition
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of the feasibility region). If clipping is used to map values back to the feasibility region, a

disproportionate number of values will be set to is set to the minimum or maximum values

depending on the clipping implementation utilized.

The same principles apply to enumerated specifications as well, (i.e., it provides a uni-

form distribution when there is a power of 2 number of enumerations). Otherwise, the

method will result in a disproportionate number of values mutated to the last string in the

list of possible values.

Bit mutation is deleterious for type double specifications. Because real attributes are

typically valid over a region of R, (e.g. x ∈ [0.0, 1.0]), bit mutation in the exponent will

likely translate the value to a location outside of the feasibility region. Therefore, clipping

the values to place them back in the feasibility region typically results in clustering near the

limits of the variable. The format for IEEE-754 double precision numbers is 1 sign bit, S ,

11 exponent bits, E, and 52 mantissa bits M. Therefore the probability of a large deviation

(greater than one order of magnitude) is (E + S )/64 = 12/64 = 0.1875.

The length of attributes should also be considered for bit mutation. Single bit attributes

will have a probability of Pm,bP f of being mutated. But, the longer the attribute the larger

the probability of mutation. Attributes requiring b bits for encoding have a probability of

Pm,b

(

1 − (1 − P f )b
)

of being mutated. For example, letting Pm,b = 1, and P f = 0.01, then

the probability of mutation for a single bit attribute is 0.01. Using the same settings, the

probability of mutation for a type double attribute, which requires 64 bits for encoding,

would be 1 − (0.99)64 = 0.47.

2.1.4.2 Uniform Mutation Specification

Uniform mutation methods allow for uniform distribution of attributes [22]. Unlike the bit

mutation method, the uniform mutation method results in a true binomial distribution for all

data types. Also, unlike the normal mutation method discussed below, the uniform mutation

method is not dependent on the order of variables for enumerated data types. Therefore, the
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uniform mutation method has the capabilities of the bitwise mutation operator for attributes

that have an exact power of two encoding, but does not have the deleterious effects for other

data type encodings. Thus, uniform mutation is recommended as a replacement for bitwise

mutation.

This mutation method will only be applied to individuals selected with the desired

probability, Pm,u. Once an individual has been selected for uniform mutation, each attribute

of the genome has an independent probability, Pu, of being mutated. Note that the uniform

mutation has the advantage that, unlike the bit mutation method, the mutation rate for an

attribute is insensitive to the bit length.

2.1.4.3 Normal Mutation

Normal mutation methods allow for normal distribution of attributes. To specify a normal

distribution, also known as a Gaussian distribution, a standard deviation and mean are

required [22]. The mean can be set to the current value of the attribute. The standard

deviation then specifies the width of the Gaussian distribution or "bell curve” around the

mean. Enumerated data types are typically cast into integer values. Thus, normal mutation

is more likely to move values to those names close in the specified list of values. This

mutation method will only be applied to individuals selected with the desired probability,

Pm,n. Once an individual has been selected for normal mutation, each attribute has an

independent probability, Pn, of being mutated.

2.1.5 Elitism

Elitism allows individuals to produce children for more than a single generation. By defini-

tion elite individuals are those that are most likely to produce desirable offspring. When a

new generation is required, the current generation of individuals, C, is added to the previous

elite pool, E, to create the basis for the elite pool (P = E ∪ C).

But, due to the time required to calculate the fitness for individuals that will be discussed

in detail in Section 2.2, there is a limit on the number of elite individuals that should
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be kept. Therefore, a set of rules for removing individuals from the new elite pool is

applied. A simple rule for removal of individuals is to only take the individuals with the

best fitness. This simplistic rule may result in undesired effects when the fitness values

utilize the density of solutions in the objective space to deweight the fitness values. In

this circumstance, the resulting population may not contain the genotypic and phenotypic

diversity desired. Additional methods for elitism are presented in the Section 2.2 discussion

of current MOEA algorithms.

Another method of keeping a geneticly diverse population for selection and thus mating

is the incremental gene pool. With this method, a constant population size is maintained in

the gene pool. After an individual is evaluated it is determined if the individual will replace

another individual in the gene pool. Incremental gene pool methods become a special case

of elitism where elitism rules are applied after the evaluation of each individual. Most often

though, elitism rules are applied between each generation.

2.1.6 Parallel Objective Evaluation

For complex problems, the most time consuming task in EAs and MOEAs is the evalua-

tion of the objective values f (i). Fortunately, EAs can support the parallel evaluation of

f (i) using two general methods. The first is to parallelize the evaluation of lives within a

generation and is referred to as a Single Gene Pool method. The second method supports

evolution of multiple gene pools (typically 1 for each processor) in parallel, and allows mi-

gration of genome between the gene pools. The following sub-sections provide a detailed

look at these two methods. Van Veldhuizen provides a more detailed breakdown [58].

2.1.6.1 Single Gene Pool Parallelism

Parallel evaluation of f (i) is often performed because it requires little modification of the

evolutionary process. As illustrated in Figure 17, this method can be thought of as a master-

slave relation. The master process executes the evolutionary processes and communicates

to slave processes/processors for calculation of f (i).
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Figure 17: Single Gene Pool Parallel Life Evaluation

In 1999, Cantu-Paz and Goldberg [10] investigated the time required for single gene

pool evolution

TG =
|C|T f

P
+ (P − 1)Tc (18)

where P is number of processors, |C| is the number of lives in the current generation, T f is

the time to calculate the fitness value, and Tc is the time for communication between the

master and slave nodes. Taking the ∂TG

∂P = 0 results in number of processors that minimize

the processing time P∗ as:

P∗ =

√

|C|T f

Tc
(19)

The condition ∂TG

∂P = 0 is necessary but not sufficient for a minimum. Over the valid range

of P it must be verified that ∂TG

∂P is negative for P < P∗ and positive for P > P∗.

In 2000, Gwo, Hoffman and Hargrove [27] reported experimentally investigating this

relationship. They found values of P∗ much less that predicted in Equation (19). The results
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Figure 18: Results of Equations 18 and 20 with TF = 10, TC = 1, and |C| = 100

below prove that Equation 18 is too simplified for accurate prediction. For the equation to

be accurate for a set of P machines that can all evaluate each individual in T f , |C| must be

evenly divisible by P and P∗ must be an integer. To remove this assumption, the ceiling

function, de, must be utilized as follows:

TG = d|C|/PeT f + (P − 1)Tc. (20)

Figure 18 illustrates the differences between the predictions of Equation 18 and Equation

20 for an example case with TF = 10, TC = 1, and |C| = 100. From this Figure note the

shift in the number of processors for the minimum total processing time from 31.6 to 34.

Also note that if the optimal value of P of 31 or 32 predicted from Equation 18 is chosen,

the resulting TG from Equation 20 would be highly unoptimal.

The "saw tooth” of Figure 18 is a result of the relationship between TF and TC . But,

for the computationally expensive objective problems that are of concern for this thesis TF

is much larger that TC . Removing this relationship by setting TC to zero results in Figure
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19, where the effects of the ceiling function are evident when then number of processors

is between 50 and 99. The effects are a result of the parallel life evaluation requirement

for completion of all runs within a generation before beginning the creation of the next

generation. Setting TC to zero in Equation 20 results in the best possible processing time of

TG = T f occurring when the number of processors P is equal to the size of the population

C, i.e., each processors evaluates a single individual in parallel. The next best processing

time requiring twice as long TG = 2T f occurs for the number of processors P in the range

[|C|/2, |C| − 1].

From Equation 20, the worst case synchronization time is T f . As EA problems’ com-

plexity increase, several factors create a diversity of T f values, removing the predictability

of TG by either Equation 18 or Equation 20 and resulting in a worst case synchronization

time as the worst case value of T f . First, a disparity of processor speeds and loading on

the processors can dramatically increase T f on the slower and more loaded processors.

Second, even with equivalent processors speeds and loading, with complex objective eval-

uations different genotypic descriptions may result in different values of T f . Third, the

implementation of MOEA ICEO techniques, which will be presented in Section 3.4, does

not require the evaluation of all objectives. In fact, it is desirable to dramatically decrease

T f by identifying the fast evaluating objectives that can identify poor performing individ-

uals quickly and thus remove the need to evaluate any other objectives for that individual.

This results in a maximum T f as the time required to evaluate all objectives and a minimum

T f as the time required to evaluate the fastest running objective.

In conclusion, if all processors do not finish evaluation simultaneously, which is highly

likely for complex processors configurations and complex fitness functions, then many

processors will be waiting at the end of the generation for other processors to complete

evaluation. To remove these limitations, Section 3.2.2 will present new techniques for

removing the need for synchronization.
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Figure 19: Results of Equations 18 and 20 with TF = 10, TC = 0, and |C| = 100

2.1.6.2 Multiple Gene Pool Parallelism

The second method of parallel EA distributes entire gene pools to each of the multiple

computers [43]. This method is often referred to as the island method because each pro-

cessor evolves while maintaining its own gene pool. Interaction with other computer nodes

or islands is allowed via migration, as illustrated in Figure 20. The island method has been

utilized by Andre and Koza (1998) [4] on a cluster of 64 transputers, which achieved super-

linear performance over a single gene pool implementation. This super-linear performance

is likely due to the additional genotypic diversity of the much larger overall gene pool. The

transputer implementation required a system-dependent implementation for quick node-to-

node communication.

One major advantage of the multiple gene pool implementation is its scalability and

fault tolerance. The evolution rate can be increased (at least to a limit described below) by

simply adding more computers. The implementation is fault tolerant as the loss of a single

computing node is equivalent to, say, volcanic annihilation of a single island. The loss of

an island does not stop the evolution of the overall world population.

Another advantage of the multiple gene pool implementation is the reduced number

of calculations required for the fitness evaluation. As will be seen in Section 2.2 the time
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required to calculate the fitness for a population of |C| individuals is often on the order |C|2.

By dividing the population among P processors, then the total time spent calculating the

fitness is on the order of (|C|/P)2 which is much less that |C|2.

The island method introduces two additional parameters for adjustment: connection

topology and migration rate. These parameters, as well as limits on scalability, have also

been investigated by Cantu-Paz and Goldberg [10]. The limit on scalability defines the

optimal number of demes or processors P∗ as:

P∗ =

√

g

√
δ − 1
δ

√

|C|T f

Tc
(21)

where g is the number of generations required for evolution and δ is the degree, which is

the number of connections to neighboring islands.

From Equations 19 and 21, note that both the parallel gene pool and single gene pool

methods have a theoretical optimal number of processors O
(√

|C|T f

Tc

)

. Both |C| and T f

typically increase as an optimization problem becomes more difficult. Therefore, both

methods allow a large number of parallel processors to reduce execution time of difficult

problems.

2.2 Multiple Objective Evolutionary Algorithms

This section discusses the concepts of current MOEA methods. In addition to the typical

process of EAs detailed in the previous section, MOEAs must make a mapping from the

38



multi-dimensional objective space, f (i), to the single dimension fitness value F(i).

To fully examine each algorithm, pseudo-code is given as listings. As a measure of

complexity, the listings are examined for the number of comparisons required. Compar-

isons are used because they are non-trivial operations that require at least two memory

accesses, a comparison, and a conditional branch to implement in software. The condi-

tional branch also prevents parallelization of software in the implementation. Even though

the number of comparisons is not a complete indication of the time required to execute

an algorithm, they are a good indicator of the complexity. Calculation of this complexity

measure allows comparison among the various algorithms presented.

2.2.1 Weighted-Sum Algorithm

As briefly described in Section 1.2.2, the weighted-sum is the simplest method for mapping

from multiple objective space to a single fitness value. The weighted-sum of objectives

method combines the fitness values of each objective fk(i) by multiplying by a weight wk.

F(i) =
q

∑

k=1

wk fk(i) (22)

The following listing details this algorithm and two comparison locations A and B.

1 // Loop through each individual in the population

for (i in P) { // Comparison A

// Initialize Sum to zero

i.F = 0.0;

5 // Loop through each objective

for (k=1; k<=q; k++) { // Comparison B

i.F += ( dWeight[k] * i.f[k] );

} // End of loop through objectives

} // End of loop through individuals , i

Letting NA and NB represent the number of comparisons for each of these locations, q

be the number of objectives, and |P| be the number of individuals in the population, then
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the number of comparisons total, NWS is derived as:

(from line 2) NA = |P|

(from line 6) NB = q|P|

NWS = NA + NB

NWS = (1 + q)|P|. (23)

2.2.2 Vector Evaluated Genetic Algorithms

In 1984, Schaffer [52] published a thesis in which he proposed the Vector Evaluated Genetic

Algorithm (VEGA). This approach calculates fitness by selecting sub-populations based

on each of the objectives. For example, if a population of |C| is needed and there are

q objectives, then q sub-populations with |C|/q individuals for each objective are selected.

The entire population of |C| individuals is then subjected to normal crossover and mutation.

The following listing details this algorithm and two comparison locations A and B.

1 // Initialize counter

iCount = 0;

// Loop through each individual in the population

for (i in P) { // Comparison A

5 iCount ++;

// Find Objective to use

iObjective=ceil(iCount/|P| * q); // Comparison B

i.F = i.f[iObjective];

} // End of loop through individuals , i

From this listing, the total number of comparisons is:

(from line 4) NA = |P|

(from line 8) NB = |P|

NVEGA = NA + NB

NVEGA = 2|P|. (24)

Experiments by Murata and Ishibuchi published in 1995 [44] illustrated the tendency of
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VEGA to create populations that congregate near the sections of the Pareto front that are

near the axes of each objective. As pointed out by Coello in his 1996 thesis [15], this

method may produce individuals with “middling” performance in all dimensions, but not

solutions that represent a good compromise solution. These compromise solutions will

never be chosen by the VEGA selection scheme, and will thus not be improved upon.

2.2.3 Elite Preserve Strategy

In 1995, Murata and Ishibuchi [44] proposed a method of selection in which the multiple

objectives are combined into a single objective using a weighted sum of measures:

F(i) =
q

∑

j=1

w j f j(i). (25)

But, to force solutions to spread across the Pareto front, each time a pair of parents is

selected, the weights are chosen for mapping from multiple objective space of dimension q

to a single measure space F(i) using:

w j =
random j(·)

∑q
k=1 randomk(·)

(26)

where random j(·) is a non-negative random number. The fitness values of the entire gene

pool are transformed to this new measure, and a pair of new parents is chosen using fitness

proportionate selection. This method overcomes the cluster problems of VEGA but still

has the same problem of all weighted-sum methods when dealing with concave portions of

the Pareto front, as illustrated in Figure 4. The algorithm is:

1 // Loop, creating two new individuals at a time

for (j=1; j<|C|; j+=2) { // Comparison A

// Initialize total weighted

dTotalWeight=0;

5 // Loop through each objective

for (k=1;k<q;k++) { // Comparison B

// Assign weight to random number

weight[k] = rand();

// Add to total weight

10 dTotalWeight += weight[k];
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}

// Calculate fitness

// Loop through each individual in the population

14 for (i in P) { // Comparison C

15 i.F = 0;

// Loop through each objective

for (k=1;k<q;k++) { // Comparison D

i.F += (i.f[k] * weight[k] / dTotalWeight);

} // End of loop through objectives

20 } // End of loop through individuals i in P

// Initialize Fitness Proportionate Selection

FPS.init(P); // Comparison E

// Select two parents using FPS

a = FPS(P);

25 b = FPS(P);

// Crossover results in two children

c,d = Crossover(a,b);

// Assign new individuals to new popuation

PNext += c;

30 PNext += d;

} // End of loop through new children

From this listing, allow |C| to be the size of the new population to be created, and al-

low |P| to be the size of the input population, i.e., the current population plus the elite

individuals. Comparison location A is responsible for the creation of the new individuals.

Unlike the previous fitness algorithms, the fitness and selection process can not be sepa-

rated. Therefore, NA is removed from the total calculation, but the effects of the loop on

the execution of other loops can not be neglected. This also causes the execution of the

initialization of the fitness proportionate selection as indicated in line 20, which must ex-

ecute a loop through all |P| individuals once to find the minimum and maximum as given

in Equations 5 and 6, resulting in 3|P| comparisons. It must then loop again another |P|

times to execute the sum given in Equation 7. Normally, the fitness proportionate selection

initialization would be executed once. Instead it is executed NA times, resulting in a total

number of extra comparisons of NE = 4|P|(NA − 1). The total number of comparisons for
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the elite preserve fitness calculations is

(from line 2) NA = |C|/2

(from line 6) NB = qNA

(from line 14) NC = |P|NA

(from line 17) ND = qNC = q|P|NA

(from line 22) NE = 4|P|(NA − 1)

NEPS ,F = NA + NB + NC + ND + NE − NA

NEPS ,F =
|P||C|

2
(q + 5) + q

|C|
2
− 4|P| (27)

The term Elite Preserve for this method comes from the use of the second characteristic of

the Murata/Ishibuchi method, which propagates some of the elite solutions that lie on the

Pareto front of the current solution to the next generation.

The algorithm for finding Pareto individuals follows:

1 // Loop through each individual in the population

for (i in P) { // Comparison A

// Initialize individuals as Pareto optimal

i.bPareto = true;

5 // Loop through all other individuals in the population

for (j in P, j != i) { // Comparison B

// Loop through all objectives to see if i is dominated by j

bool b_J_Dominates_I = true;

for (k=1; k<=q; k++) { // Comparison C

10 // Not dominated if objective value is greater in any dimension

if (i.f[k] > j.f[k]) { // Comparison D

// Set to dominated

b_J_Dominates_I = false;

// Since there is no need to check any other objective values,

15 // break from loop through objectives

break;

}

} // End of loop through objectives

// If j dominates i then i is not Pareto optimal

20 if (b_J_Dominates_I ) { // Comparison E

i.bPareto = false;

break;
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}

24 } // End of loop through other individuals , j

25 } // End of loop through individuals , i

The upper limit on the total number of comparisons occurs when all loops must be

executed a maximum number of times.

(from line 2) NA = |P|

(from line 6) NB = |P|(|P| − 1)

(from line 9) NC = qNB

(from line 11) ND = NC = qNB

(from line 20) NE = NB

NP,max = NA + NB + NC + ND + NE

NP,max = (2 + 2q)|P|2 − (1 + 2q)|P| (28)

The lower limit on the total number of comparisons occurs when all individuals are ordered

as increasing in all objectives.

(from line 2) NA = |P|

(from line 6) NB = |P|

(from line 9) NC = qNB

(from line 11) ND = NC = qNB

(from line 20) NE = NB

NP,min = NA + NB + NC + ND + NE

NP,min = (3 + 2q)|P| (29)

From Equations 28 and 29, the total number of comparisons for Pareto optimality is bounded

by:

(3 + 2q)|P| ≤ NP ≤ (2 + 2q)|P|2 − (1 + 2q)|P| (30)
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Combining the results of Equation 27 and Equation 30 leads to a total number of compar-

isons for the elite preserve strategy as

NEPS = NEPS ,F + NP (31)

|P||C|
2

(q + 5) + q
|C|
2
+ (−1 + 2q)|P| ≤ NEPS

≤ (2 + 2q)|P|2 + |P||C|
2

(q + 5) + q
|C|
2
− (5 + 2q)|P| (32)

2.2.4 Niched Pareto Genetic Algorithms

In 1989, Goldberg [24] suggested use of the Pareto rank as the fitness measure instead of

the single objective values or a weighted-sum of the objectives values. He also suggested

the use of niche and speciation methods to create multiple sub-populations along the Pareto

front.

In 1994 Horn, Nafpliotis, and Goldberg [30] presented a Niched Pareto Genetic Algo-

rithm (NPGA) method. Experimentally, they found that simply using the Pareto rank as the

fitness measure resulted in a population that congregated near the center of the Pareto front.

Therefore, niching was introduced to create a set of solutions distributed more evenly along

the Pareto front. The following subsections detail the Pareto rank and niching algorithms.

2.2.4.1 Pareto Rank

There are two methods for determining the relative importance of the dominated individ-

uals. The first method is the Pareto Rank Method 1 (PR1) and is the method used in the

NPGA. Let P be a population of individuals. Then each individual i in P is dominated

by some number of other points. Pareto optimal points are by definition not dominated by

any points. Pareto rank 1 fitness values are one plus the number of points enclosed by the

hypercube in front of the individual in question.

Fpr1(i) = 1 + |{ j| j ∈ P ∧ f ( j) ∈ h f ( f (i))}| (33)
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Figure 21: Pareto-optimal Ranking

The second method is the Pareto Rank Method 2 (PR2). Although the PR2 method is

not used by the NPGA, it is presented here for completeness. Like the Pareto rank method

1, the Pareto optimal solutions are given a rank of 1. The Pareto optimal individuals are

then removed from the population, and the Pareto optimal individuals of the remaining

population are given the next rank value of 2. This process is iterated until all members of

the population have been assigned a rank. The following provides a recursive equation that

can be used to find the PR2 rank:

Fpr2(i) = 1 + max
j| j∈P∧ f ( j)∈h f ( f (i))

Fpr2( j). (34)

Figure 21 illustrates an example of the two Pareto rank methods. Note that because

Pareto rank method 1 makes a measurement of the number of individuals dominating the

point, it is making a measure of the density of individuals in front of the individual. In

contrast, Pareto rank method 2 is less dependent on the density of elements in front of the

individual.

The time required to calculate each of these methods is heavily dependent on the popu-

lation being examined and the order of those individuals within the population. To examine

the time constraints for PR1 method, let us first detail the algorithm using the pseudo-code

given below.

1 // Loop through each individual in the population
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for (i in P) { // Comparison A

// Initialize rank to one

4 i.F = 1;

5 // Loop through all other individuals in the population

for (j in P, j != i) { // Comparison B

// Loop through all objectives to see if i is dominated by j

bool b_J_Dominates_I = true;

for (k=1; k<=q; k++) { // Comparison C

10 // Not dominated if objective value is greater in any dimension

if (i.f[k] > j.f[k]) { // Comparison D

// Set to dominated

b_J_Dominates_I = false;

// Since there is no need to check any other objective values,

15 // break from loop through objectives

break;

}

} // End of loop through objectives

// If i dominates j then increment i’s rank

20 if (b_J_Dominates_I ) i.F++; // Comparison E

} // End of loop through other individuals , j

} // End of loop through individuals , i

The minimum number of comparisons occurs when the lowest level comparison re-

quires only one comparison of an objective value. In this case,

(from line 2) NA = |P|

(from line 6) NB = NA(|P| − 1) = |P|(|P| − 1)

(from line 9) NC = NB

(from line 11) ND = NC = NB

(from line 20) NE = NB

NPR1,min = NA + NB + NC + ND + NE

NPR1,min = 4|P|2 − 3|P| (35)

The upper limit on the number of comparisons would require a comparison for each of

the objectives for each of the individuals, thus requiring all loops to execute the maximum
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number of times. This requires

(from line 2) NA = |P|

(from line 6) NB = NA(|P| − 1) = |P|(|P| − 1)

(from line 9) NC = qNB

(from line 11) ND = NC = qNB

(from line 20) NE = NB

NPR1,max = NA + NB + NC + ND + NE

NPR1,max = (2 + 2q)|P|2 − (1 + 2q)|P| (36)

From Equation 35 and Equation 36, the number of comparisons required for PR1

method can then be bounded by:

4|P|2 − 3|P| ≤ NPR1 ≤ (2 + 2q)|P|2 − (1 + 2q)|P| (37)

The PR2 algorithm, with nine comparison locations A through I, follows:

1 // Set the remaining population to the input population

R = P; // Comparison A

// Initialize current rank to one

iRank = 1;

5 // Loop until there are no remaining individuals

while (R.size() > 0) { // Comparison B

// Initialize current population to null

C.null();

// Loop through each individual in the population

10 for (i in R) { // Comparison C

b_J_Dominates_I = true;

// Loop through all other individuals in the population

for (j in R, j != i) { // Comparison D

// Loop through all objectives to see if i is dominated by j

15 for (k=1; k<=q; k++) { // Comparison E

// Not dominated if objective value is less in any dimension

if (j.f[k] < i.f[k]) { // Comparison F

// Set to dominated

b_J_Dominates_I = false;

20 // Since there is no need to check any other objective values,
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// break from loop through objectives

break;

23 }

} // End of loop through objectives

25 // Break from this loop if individual i is dominated

if (b_J_Dominates_I) { // Comparison G

break;

}

} // End of loop through all other individuals

30 // If not dominated , then the individual , i, is Pareto optimal in the

// remaining population , R.

if (! b_J_Dominates_I) { // Comparison H

// Assign fitness

i.F = iRank;

35 // Add individual to current population

C.add(i);

}

} // End of loop through individual in the population

// Remove the current population from the remaining population

40 R.remove(C); // Comparison I

// Increment rank

iRank++;

} // End of loop while there is individuals in the current population

From this the lower limit on the number of comparisons for the population occurs when

all individuals are Pareto optimal and thus solved in a single iteration of the outer-most
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loop. In this case, the total number of comparison for all |P| individuals would be:

(from line 2) NA = |P|

(from line 6) NB = 1

(from line 10) NC = |P|

(from line 13) ND = |P|(|P| − 1)

(from line 15) NE = qND

(from line 17) NF = NE = qND

(from line 26) NG = ND

(from line 32) NH = NC

(from line 40) NI = |P| = NC

NPR2,min = NA + NB + NC + ND + NE + NF + NG + NH + NI

NPR2,min = (1 + q)|P|2 + (2 − 2q)|P| + 1 (38)

The calculation for NC requires a different number of iterations for each loop, resulting

in

NC =

|P|
∑

j=1

j

Likewise the calculation for ND requires traversing the loop for all but the current individ-

ual, resulting in

ND =

|P|
∑

j=1

j( j − 1)

Fortunately, the sum of j and j2 can be found using, ([53],[25]),

n
∑

j=1

j =
n(n + 1)

2
(39)

n
∑

j=1

j2 =
n(n + 1)(2n + 1)

6
(40)
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The calculation of the sum for j( j − 1) becomes

n
∑

j=1

j( j − 1) =
n

∑

j=1

j2 −
n

∑

j=1

j

=
n(n + 1)(2n + 1)

6
−

n(n + 1)
2

= n(n + 1)

(

(2n + 1)
6

−
1
2

)

n
∑

j=1

j( j − 1) = n(n + 1)
n − 1

3
(41)

The upper limit on the number of comparisons occurs when all individuals have differ-

ent rank and are ordered in the last objective. This requires traversing all loops a maximum

number of times, resulting in the following:

(from line 2) NA = |P|

(from line 6) NB = |P| = NA

(from line 10) NC =

|P|
∑

j=1

j =
|P|(|P| + 1)

2

(from line 13) ND =

|P|
∑

j=1

j( j − 1) =

=
|P|(|P| + 1)(|P| − 1)

3

(from line 15) NE = qND

(from line 17) NF = NE = qND

(from line 26) NG = ND

(from line 32) NH = NC

(from line 40) NI = |P| = NA

NPR2,max = NA + NB + NC + ND + NE + NF + NG + NH + NI

NPR2,max =
2 + 2q

3
|P|3 + |P|2 + 10 − 2q

3
|P|. (42)

From Equation 38 and Equation 42, the number of comparisons required for PR2
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method can then be bounded by:

(1 + q)|P|2 + (2 − 2q)|P| + 1 ≤ NPR2 ≤
2 + 2q

3
|P|3 + |P|2 +

10 − 2q
3
|P|. (43)

From Equation 37 and Equation 43 then the order of the operations is:

NPR1 = O
(

(2 + 2q)|P|2
)

(44)

NPR2 = O

(

2 + 2q
3
|P|3

)

. (45)

Therefore the PR1 method is much simpler to solve. Taking the ratio of NPR2/NPR1 we find

NPR2

NPR1
=

(

2+2q
3 |P|

3
)

(

(2 + 2q)|P|2
)

= |P|
2 + 2q
6 + 6q

. (46)

As the number of objectives q becomes large, then the ratio becomes

NPR2

NPR1
≈ |P|

3
. (47)

Therefore, without a compelling improvement in the performance of a MOEA with PR2

versus PR1 fitness, PR1 should be selected due to the additional complexity added by the

PR2 method.

2.2.4.2 Fitness Sharing

One method of creating niching pressure is Fitness Sharing (FS) [30]. With FS, the fitness

measure is degraded by the niche count m( f (i)). The niche count for an individual i in a

population of n genome is:

m( f (i)) =
∑

j∈P, j,i

S h(d(i, j)), (48)

where d(i, j) is the distance between two individuals i and j. The Sharing Function S h is

a decreasing function such that S h(0) = 1 and S h(|d| ≥ σshare) = 0. Figure 22 displays the

most commonly used sharing function, the triangular sharing function, which is defined

as:

S h(d) =































1 − |d|/σshare |d| ≤ σshare

0 d > σshare

(49)
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Figure 22: Triangular Sharing Function

Although other windowing functions could be used, a common function for the distance

between two multi-objective fitness vectors f (i) and f ( j) can be calculated using the Holder

metric, which is:

d( f (i), f ( j)) =















q
∑

k=1

(| fk(i) − fk( j)|)p















1
p

(50)

With p = 2, this results in the Euclidean distance. Figure 23 illustrates the effects of p

for two dimensions. By setting p < 2 in the Holder equation, Euclidean distances are

maximized along the objective axes. Niching with p < 2 results in larger niche counts

for individuals along the objective axes than along the diagonal. Since solutions are de-

weighted by the niche count, niching with p < 2 results in a lower fitness value and thus a

lower probability of mating for those solutions clustered along the objective axes than those

clustered diagonal to objective axes. Thus, the resulting population will have a more dense

concentration of solutions diagonal to the objective axes than those parallel to the objective

axes. This is a convenient method of finding solutions that are far from the objective axes.

The following details the fitness sharing algorithm, with four comparison locations A

through D:

1 // Set the remaining population to the input population

R = P; // Comparison A

// Initialize current rank to one

iRank = 1;

5 // Loop until there are no remaining individuals

while (R.size() > 0) { // Comparison B
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Figure 23: Holder Distance of 1.0 with Various Values of Holder Coefficient

// Initialize current population to null

8 C.null();

// Loop through each individual in the population

10 for (i in R) { // Comparison C

b_J_Dominates_I = true;

// Loop through all other individuals in the population

for (j in R, j != i) { // Comparison D

// Loop through all objectives to see if i is dominated by j

15 for (k=1; k<=q; k++) { // Comparison E

// Not dominated if objective value is less in any dimension

if (j.f[k] < i.f[k]) { // Comparison F

// Set to dominated

b_J_Dominates_I = false;

20 // Since there is no need to check any other objective values,

// break from loop through objectives

break;

}

} // End of loop through objectives

25 // Break from this loop if individual i is dominated

if (b_J_Dominates_I) { // Comparison G

break;

}

} // End of loop through all other individuals

30 // If not dominated , then the individual , i, is Pareto optimal in the

// remaining population , R.

if (! b_J_Dominates_I) { // Comparison H

// Assign fitness
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i.F = iRank;

35 // Add individual to current population

C.add(i);

}

} // End of loop through individual in the population

// Remove the current population from the remaining population

40 R.remove(C); // Comparison I

// Increment rank

iRank++;

} // End of loop while there is individuals in the current population

From this the number of comparisons for the population is

(from line 2) NA = |P|

(from line 6) NB = |P|(|P| − 1)

(from line 10) NC = qNB

(from line 15) ND = NB

NFS = NA + NB + NC + ND

NFS = (2 + q)|P|2 − (1 + q)|P| (51)

From Equation 51, evaluation of the niche count using Equation (48) for all |P| individu-

als within the population requires O(|P|2) comparisons. A method of continuously updated

sharing reduces the number of calculations by not calculating niche count m( f (i)) based

on the entire current population, but rather a partially filled next generation. A method of

niche count sampling further reduces the number of calculations by calculating the niche

count only on a sampled subset of the next population. These methods have experimentally

been shown to be effective approximations [30].

When the niche count is high, i.e., the density of solutions is high, the fitness value is

decreased by the niche count, thus resulting in a lower probability of selection. The fitness

then becomes:

F(i) = FPR1
f (i)

m( f (i))
(52)
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As an example, think of two individuals that are co-located in objective space. These

individuals would have a niche count of 2, m(i) = 2. Thus, a maximization problem would

divide the fitness values by 2. If a fitness proportionate selection method were utilized,

the resulting probability of selection would be exactly a factor of two lower. Thus, the

probability of selection would be spread more evenly among the Pareto optimal solutions.

The spread of the resulting solutions on the Pareto front can be controlled by the setting

of the population size n and the niche radius σshare. Assuming the desire to spread results

across the entire Pareto front, then the area created by the Pareto front Areapareto should be

divided into the number of niches N desired. Since the specification of σshare specifies the

niche volume in objective space of dimension q, then the intersection of the Pareto front

with niche volume is a niche area of dimension q − 1. Since the niche area is proportional

to (σshare)q−1, then:

(σshare)
q−1γ

Areapareto

N
(53)

The Areapareto can be limited using knowledge of the limits of the current Pareto surface

on each axis, [(mini∈P f1(i),maxi∈P f1(i)) , · · · ,
(

mini∈P fq(i),maxi∈P fq(i)
)

]. A limit for the

minimum area is the hyperplane containing these extremes. Thus, the lower limit becomes

the Euclidean distance between the minimum and maximum points. For most problems,

the Pareto front will be much more complex than a simple plane. A limit for the maximum

area is the sum of the attribute ranges. Therefore,

Areapareto ≥
















q
∑

j=1

(

max
i∈P

f j(i) −max
i∈P

f j(i)
)2
















1
2

Areapareto <

q
∑

j=1

|max
i∈P

f j(i) −max
i∈P

f j(i)|.

56



Thus, the limits on σshare are:

σshare ≥































(

∑q
j=1

(

maxi∈P f j(i) −maxi∈P f j(i)
)2
)

1
2

N































1
q−1

(54)

σshare <















∑q
j=1 |maxi∈P f j(i) −maxi∈P f j(i)|

N















1
q−1

(55)

In the two-dimensional case, the limits on the niching radius are:

σshare ≥

√

((maxi∈P f1(i) −maxi∈P f1(i))2 + (maxi∈P f2(i) −maxi∈P f2(i))2

N
(56)

σshare <
|maxi∈P f1(i) −maxi∈P f1(i)| + |maxi∈P f2(i) −maxi∈P f2(i)|

N
(57)

The Holder Equation, given by Equation (50), treats each measure equally regardless

of its scale. Utilizing a computer optimization example, imagine the cost is measured in

dollars in the range [1, 1000000] and the performance is measured in billions of floating

point operations per second (GFLOP) in the range [0.1,10]. Thus a σshare that samples

the cost with several niches is not likely to have any distinct niches in the performance

measure. A simple way to overcome this error is to scale each of the axes to a uniform

range, for example [0, 1].

If scaling is performed on each axis, then Equation 54 and 55 reduce to

σshare ≥
( √

q

N

)
1

q−1

(58)

σshare <

( q
N

)
1

q−1

(59)

Figure 24 illustrates the reduction in complexity for the two-dimensional problem of scal-

ing the multiple objectives.

The following listing details the objective scaling algorithm with seven comparison

locations: A through G.

1 // Find min & max in each dimension

// As a start, assign to first individual
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Figure 24: Two-Dimensional Minimum and Maximum Pareto Area with Objective Scal-
ing

i=P[1];

for (k=1; k<=q; k++) { // Comparison A

5 fmin[k] = i.f[k];

6 fmax[k] = i.f[k];

}

for (i in P; i != P[1] ) { // Comparison B

for (k=1; k<=q; k++) { // Comparison C

10 if (i.f[k] < fmin[k]) { // Comparison D

fmin[k] = i.f[k];

}

if (i.f[k] > fmax[k]) { // Comparison E

fmax[k] = i.f[k];

15 }

} // End of loop through objectives

} // End of loop through individuals in P

for (i in P) { // Comparison F

for (k=1; k<=q; k++) { // Comparison G

20 i.f[k] = (i.f[k] - fmin[k]) / (fmax[k] - fmin[k]);

} // End of loop through objectives

} // End of loop through individuals in P
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From this the number of comparisons for the population is

(from line 4) NA = q

(from line 8) NB = (|P| − 1)

(from line 9) NC = qNB

(from line 10) ND = NC = qNB

(from line 13) NE = NC = qNB

(from line 18) NF = |P|

(from line 19) NG = qNF

NOS = NA + NB + NC + ND + NE + NF + NG

NOS = (2 + 4q)|P| − (1 + 2q) (60)

Combining Equations 37, 51 and 60, for the Pareto rank 1, fitness sharing and objective

scaling algorithms respectively, results in

NNPGA = NPR1 + NOS + NFS (61)

(6 + q)|P|2 + (−2 + 3q)|P| − (1 + 2q) ≤ NNPGA ≤ (4 + 3q)|P|2 + q|P| − (1 + 2q) (62)

2.2.5 Strength Pareto Evolutionary Algorithm

In 1999 Zitzler [61, 64] developed the Strength Pareto Evolutionary Algorithm (SPEA),

which contains two important concepts. First, elitism allows those individuals determined

to have the best fitness to propagate their genetic material into multiple future generations.

With SPEA the elite gene pool contains only individuals from the current Pareto front.

The second important concept of SPEA is clustering, which strives to maintain a finite

elite pool size that is distributed on the Pareto front. With many problems the Pareto front

is continuous, and thus the number of possible Pareto front points can become infinite.

Also, as in the NPGA, the desire is to spread the points along the Pareto front. Too many
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points congregated in an area of the Pareto front can result in a disproportionate number of

individuals created in this area.

2.2.5.1 Clustering Algorithm

The purpose of the clustering algorithm is to prevent the number of Pareto optimal indi-

viduals in the elite population from becoming too large. The clustering algorithm operates

by first grouping Pareto optimal individuals into a group of clusters, and then selecting a

representative individual from each cluster. Define E t as the current elite gene pool, or the

current set of all Pareto individuals, and NE as the maximum number of individuals desired

in the new set of Pareto individuals Et+1. Clustering is performed by first initializing a set

of clusters D = {c1, c2, · · ·} using each individual i ∈ Et, thus D =
⋃

i∈Et
{i}. The clusters

with the minimal distance between pairs of clusters are then be amalgamated. Define |c1|

as the number of Pareto individuals in set c1. The distance dc between two clusters c1 and

c2 ∈ D is given as the average distance between pairs of individuals across the two clusters

dc =
1

|c1| · |c2|
·

∑

i1∈c1,i2∈c2

d( f (i1), f (i2)), (63)

where the function d is the distance, defined below, between two individuals i1, and i2 in

objective space.

Although other windowing functions could be used, a common function for the distance

d between two multi-objective fitness vectors f (i) and f ( j) can be calculated using the

Holder metric, given by Equation (50),

If the number of clusters |D| > NE , then two clusters must be amalgamated into a larger

cluster. This is done by choosing the two clusters c1 and c2 with the minimum distance dc

and replacing these clusters with c1 ∪ c2. If |D| is still larger than NE, then the process of

calculating dc and amalgamating clusters is repeated.

Once the |D| ≤ NE , then a representative individual from each cluster is chosen to be

a member of the new Pareto set Et+1. The representative individual is the centroid (the

individual with minimum average distance to all other individuals in the cluster).
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The following listing details the SPEA clustering algorithm with fourteen comparison

locations: A through N.

1 // No need to perform any operations if we already have the desired

// number of individuals

if (|E| <= N_E) { // Comparison A

return ();

5 }

// Initialize |E| clusters to each contain one individual

for (i in E) { // Comparison B

Clusters.init(i);

}

10 // Loop until we have reduced to the desired number of individuals

while (|Clusters| > N_E) { // Comparison C

// Initialize minimum distance as a large number

dMininum = LARGE_NUMBER;

// Loop through all cluster pairs

15 for (iCluster in Clusters) { // Comparison D

for (jCluster in Clusters , // Comparison E

jCluster != iCluster) {

// Calculate distance between clusters by calculating

// the average distance between individuals

20 d = 0;

for (iIndividual in iCluster) { // Comparison F

for (jIndividual in jCluster) { // Comparison G

// Calculate Euclidean distance

dSum = 0.0;

25 for (k=1; k<=q; k++) { // Comparison H

dSum += (iIndividual.f[k] -

jIndividual.f[k])^2;

}

d += sqrt(dSum);

30 } // End of loop through jIndividual

} // End of loop through iIndividual

// Scale distance

d = d / (|iCluster| * |jCluster|);

// Compare to find minimum

35 if (d < dMinimum) { // Comparison I

dMinimum = d;

iMinimum = iCluster;

jMinimum = jCluster;

}

40 } // End of loop through jCluster

} // End of loop through iCluster
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// Join two clusters and remove one from main cluster list

43 iMinimum.add(jMinimum);

Clusters.remove(jMinimum);

45 } // End of loop to reduce number of clusters

// Select representative individual from each cluster

// Clear current elite pool and then add back individuals

E.null();

for (iCluster in Clusters) { // Comparison J

50 // Initialize minimum distance as a large number

dMininum = LARGE_NUMBER;

for (iIndividual in iCluster) { // Comparison K

// Calculate average distance to

d = 0;

55 for (jIndividual in iCluster , // Comparison L

jIndividual!=iIndividual) {

// Calculate Euclidean distance

dSum = 0.0;

for (k=1; k<=q; k++) { // Comparison M

60 dSum += (iIndividual.f[k]

- jIndividual.f[k])^2;

}

d += sqrt(dSum);

} // End of loop through jIndividual

65 if (d < dMinimum) { // Comparison N

dMinimum = d;

iMinimum = iIndividual;

}

} // End of loop through iIndividual

70 // Add minimum individual to elite pool

E.add(iMinimum);

} // End of loop through clusters
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The number of comparisons for A through E are:

(from line 3) NA = 1

(from line 7) NB = |P|

(from line 11) NC = |P| − |E|

(from line 15) ND =

|P|
∑

j=|E|+1

j

=
1
2
|P|2 + 1

2
|P| + 1

2
|E|2 + 3

2
|E| + 1

(from line 16) NE =

|P|
∑

j=|E|+1

j( j − 1) =
|P|(|P| + 1)(|P| − 1) − (|E| + 1)(|E| + 2)(|E|)

3

=
1
3
|P|3 −

1
3
|P| −

1
3
|E|3 − |E|2 −

2
3
|E|

(64)

From the above listing, the calculation of NF results in the following sums:

(from line 21) NF =

|P|
∑

j=|E|+1

j( j − 1)(|P| + 1 − j)

=

|P|
∑

j=|E|+1

− j3 + j2(|P| + 2) − (|P| + 1) j (65)

Equation 65 requires the sum for j3, which is given, ([53],[25]), as:

n
∑

j=1

j3 =

(

n(n + 1)
2

)2

(66)

Equations 40 and 66 for the sum of j2 and j3 can be expanded to a polynomial as:

n
∑

j=1

j2 =
n(n + 1)(2n + 1)

6
=

1
3

n3 +
1
2

n2 +
1
6

n (67)

n
∑

j=1

j3 =

(

n(n + 1)
2

)2

=
1
4

n4 +
1
2

n3 +
1
4

n2 (68)

(69)
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Likewise, the sum for j2 and j3 are needed for n + 1. Equations 40 and 66 result in

n+1
∑

j=1

j2 =
1
3

n3 +
3
2

n2 +
13
6

n + 1 (70)

n+1
∑

j=1

j3 =
1
4

n4 +
3
2

n3 +
13
4

n2 + 3n + 1 (71)

Using Equations 39, 40, 66, 67, 68, 70 and 71 for NF results in the following:

NF =

|P|
∑

j=|E|+1

j( j − 1)(|P| + 1 − j)

=

|P|
∑

j=|E|+1

− j3 + j2(|P| + 2) − (|P| + 1) j

=
1

12
|P|4 + 1

6
|P|3 − 1

12
|P|2 − 1

6
|P| + 1

4
|E|4 + 5

6
|E|3 + 3

4
|E|2 + 1

6
|E|

+|P|
(

−1
3
|E|3 + −1|E|2 − 2

3
|E|

)

(72)

From line 22, the calculation of NG results in the following sums:

NG =

|P|
∑

j=|E|+1

j( j − 1)(|P| + 1 − j)(|P| + 1 − j)

=

|P|
∑

j=|E|+1

j4 + (−2|P| − 3) j3 + (|P|2 + 4|P| + 3) j2 − (|P| + 1)2 j (73)

Equation 73 requires the sum for j4, which is given, ([53],[25]), as:

n
∑

j=1

j4 =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
(74)

Equation 74 can be expanded to a polynomial as:

n
∑

j=1

j4 =
1
5

n5 +
1
2

n4 +
1
3

n3 − 1
30

n (75)

Also needed is the polynomial relation for the sum of (n + 1)4, resulting in the following:

n+1
∑

j=1

j4 =
1
5

n5 +
3
2

n4 +
13
3

n3 + 6n2 +
119
30

n + 1 (76)
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Using Equations 39, 40, 66, 67, 68, 70, 71, 73, 75 and 76 NG result in the following:

NG =

|P|
∑

j=|E|+1

j( j − 1)(|P| + 1 − j)(|P| + 1 − j)

=

|P|
∑

j=|E|+1

j4 + (−2|P| − 3) j3 + (|P|2 + 4|P| + 3) j2 − (|P| + 1)2 j

NG = +
1

30
|P|5 +

1
12
|P|4 −

1
12
|P|2 −

1
30
|P| −

1
5
|E|5 −

3
4
|E|4 −

5
6
|E|3 −

1
4
|E|2 +

1
30
|E|

+|P|2
(

−
1
3
|E|3 − 1|E|2 −

2
3
|E|

)

+ |P|
(

+
1
2
|E|4 +

5
3
|E|3 +

3
2
|E|2 +

1
3
|E|

)

(77)

The Kth comparison must loop through |E| times for each cluster, plus an additional |P|− |E|

times for clusters with multiple individuals. The Lth comparison must loop through |E| − 1

by default and then an additional |P| − |E| − 1 times for the additional individuals. This

results in the number of comparisons for the remaining items as:

(from line 25) NH = qNG

(from line 35) NI = NE

(from line 49) NJ = |E|

(from line 52) NK = |E| + |P| − |E| = |P| = NB

(from line 55) NL = |E| − 1 + |P| − |E| − 1 = |P| − 2

(from line 59) NM = qNL

(from line 65) NN = NK = NB
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Combining the results of the previous equations:

NS PEA,Clustering = NA + 3NB + NC + ND + 2NE + NF + (1 + q)NG + NJ + (1 + q)NL

= 1 + 3|P| + |P| − |E| +
1
2
|P|2 +

1
2
|P| +

1
2
|E|2 +

3
2
|E| + 1

+2

(

1
3
|P|3 −

1
3
|P| −

1
3
|E|3 − |E|2 −

2
3
|E|

)

+
1

12
|P|4 + 1

6
|P|3 − 1

12
|P|2 − 1

6
|P| + 1

4
|E|4 + 5

6
|E|3 + 3

4
|E|2 + 1

6
|E|

+|P|
(

−1
3
|E|3 + −1|E|2 − 2

3
|E|

)

+(1 + q)

(

1
30
|P|5 + 1

12
|P|4 − 1

12
|P|2 − 1

30
|P|

)

+(1 + q)

(

−
1
5
|E|5 −

3
4
|E|4 −

5
6
|E|3 −

1
4
|E|2 +

1
30
|E|

)

+(1 + q)|P|2
(

−1
3
|E|3 − 1|E|2 − 2

3
|E|

)

+(1 + q)|P|
(

+
1
2
|E|4 + 5

3
|E|3 + 3

2
|E|2 + 1

3
|E|

)

+|E| + (1 + q)(|P| − 2)

(78)

Combining like terms the final equation for the number of comparisons for SPEA clustering

becomes:

NS PEA,Clustering =
1

30
(1 + q)|P|5 +

(

1
12

q +
1
6

)

|P|4 +
(

5
6

)

|P|3 +
(

−
1

12
q +

1
3

)

|P|2

+

(

29
30

q + 4
19
30

)

|P| − 2q

+

(

−1
5

(1 + q)

)

|E|5 +
(

−3
4

q − 1
2

)

|E|4 +
(

−5
6

q − 2
3

)

|E|3 +
(

−1
4

q − 1

)

|E|2

+

(

1
30

q +
11
30

)

|E|

+|P|2
(

−
1
3

(1 + q)|E|3 − (1 + q)|E|2 −
2
3

(1 + q)|E|
)

+|P|
(

1
2

(1 + q)|E|4 +
(

5
3

q +
4
3

)

|E|3 +
(

3
2

q +
1
2

)

|E|2 +
(

1
3

q − 1
3

)

|E|
)

(79)
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Figure 25: SPEA Fitness Examples

Equation 79 shows the number of comparisons as order |P|5, which is much larger than

the order |P|3 of any other algorithm.

2.2.5.2 Strength Calculation

Once the new Pareto set Et+1 is selected, the fitness of individuals in Et+1 and C, the current

population, can be assigned. The fitness for each individual i ∈ E t+1, called the strength, is

defined as a real value S (i) ∈ [0, 1), where S (i) is proportional to the number of population

members dominated by i in Pt, the current set of dominated individuals. Letting |C| be the

number of members in C,

S (i) =
|{ j| j ∈ C ∧ f (i) � f ( j)}|

|C| + 1
. (80)

The fitness for an individual j ∈ C is then calculated as the sum of the strengths of all

individuals i ∈ Et+1 that dominate j

F( j) = 1 +
∑

i∈Et , f (i)� f ( j)

S (i). (81)

Note that the fitness, F( j) ∈ [1, |Et|), for the dominated individuals, j ∈ C, is always greater

than the fitness, S (i) ∈ [0, 1), for any non-dominated individuals, i ∈ E t+1, and thus has less

probability of selection. An example of S and F is illustrated in figure 25.

The following listing details the SPEA strength algorithm with five comparison loca-

tions: A through E.
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1 // Loop through each individual in the population

2 for (i in E) { // Comparison A

// Initialize to zero

i.F = 0;

5 // Loop through all other individuals in the population

for (j in C) { // Comparison B

// Loop through all objectives to see if i is dominated by j

bool b_I_Dominates_J = true;

for (k=1; k<=q; k++) { // Comparison C

10 // Does not dominate if objective value is greater in any dimension

if (j.f[k] > i.f[k]) { // Comparison D

// Set to dominated

b_I_Dominates_J = false;

// Since there is no need to check any other objective values,

15 // break from loop through objectives

break;

}

} // End of loop through objectives

// If i dominates j then increment fitness

20 if (b_I_Dominates_J ) i.F++; // Comparison E

} // End of loop through other individuals , j

// Adjust fitness by number of possible individuals

i.F = i.F / |C|;

} // End of loop through individuals , i

This algorithm implements Equation 80 for the calculation of the fitness of the elite

individuals. From this the number of comparisons for the population is

(from line 2) NA = |E|

(from line 6) NB = |E||C|

(from line 9) NC = qNB

(from line 11) ND = NC = qNB

(from line 20) NE = NB

NS PEA,S trength = NA + NB + NC + ND + NE

NS PEA,S trength = −(2 + 2q)|E|2 + |E| + |P|(2 + 2q)|E| (82)

The following listing details the SPEA fitness algorithm with five comparison locations:
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A through E.

1 // Loop through each individual in the population

for (i in C) { // Comparison A

// Initialize fitness to one

i.F = 1.0;

5 // Loop through all individuals in the elite population

for (j in E) { // Comparison B

// Loop through all objectives to see if i is dominated by j

bool b_J_Dominates_I = true;

for (k=1; k<=q; k++) { // Comparison C

10 // Does not dominate if objective value is greater in any dimension

if (i.f[k] > j.f[k]) { // Comparison D

// Set to dominated

b_J_Dominates_I = false;

// Since there is no need to check any other objective values,

15 // break from loop through objectives

break;

}

} // End of loop through objectives

// If i dominates j then add strength of elite individual

20 if (b_J_Dominates_I ) i.F += j.F; // Comparison E

} // End of loop through other individuals , j

} // End of loop through individuals , i

This algorithm implements Equation 81 for the calculation of the fitness of the domi-

nated individuals. From this the number of comparisons for the population is

(from line 2) NA = |C|

(from line 6) NB = |C||E|

(from line 9) NC = qNB

(from line 11) ND = NC = qNB

(from line 20) NE = NB

NS PEA,Fitness = NA + NB + NC + ND + NE

NS PEA,Fitness = |P| − (2 + 2q)|E|2 − |E| + |P|(2 + 2q)|E| (83)

The total number of calculations for the SPEA algorithm is the sum of Equations 30, 79,
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82 and 83

NS PEA = NP + NS PEA,Clustering + NS PEA,S trength + NS PEA,Fitness

NS PEA = +
1

30
(1 + q)|P|5 +

(

1
12

q +
1
6

)

|P|4 +
(

5
6

)

|P|3 +
(

1
11
12

q + 2
1
3

)

|P|2

+

(

1
1
30

q + 4
19
30

)

|P| − 2q

+

(

−1
5

(1 + q)

)

|E|5 +
(

−3
4

q − 1
2

)

|E|4 +
(

−5
6

q − 2
3

)

|E|3 +
(

−4
1
4

q − 5

)

|E|2

+

(

1
30

q +
11
30

)

|E|

+|P|2
(

−
1
3

(1 + q)|E|3 − (1 + q)|E|2 −
2
3

(1 + q)|E|
)

+|P|
(

1
2

(1 + q)|E|4 +
(

5
3

q +
4
3

)

|E|3 +
(

3
2

q +
1
2

)

|E|2 +
(

4
1
3

q + 3
2
3

)

|E|
)

(84)

2.2.6 Strength Pareto Evolutionary Algorithm II

In 2001 Zitzler [63] built upon the SPEA algorithm to improve its performance. This

algorithm contains three important differences. First, the fitness is calculated differently.

Second, the SPEAII algorithm contains an explicit density measurement calculation for

de-weighting individuals near each other. Third, the SPEAII algorithm keeps a fixed elite

pool size with a different method for limiting the size.

2.2.6.1 Raw Fitness Calculation

The fitness is calculated by first finding the strength of each point in the current and elite

(C + Et) pool. The strength for each member of the current and elite pool is the number of

individuals dominated by that individual.

S (i) = |{ j| j ∈ (C ∪ Et) ∧ f (i) � f ( j)}| (85)

Each individual in the current and elite pool is assigned a raw fitness that is the sum of the

strengths of those individuals that dominate it.

R(i) =
∑

j∈(C∪Et ), f ( j)� f (i)

S ( f ( j)) (86)
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The following listing details the SPEAII raw fitness algorithm with ten comparison

locations: A through J.

1 // Loop through each individual calculating the strength , S

for (i in P) { // Comparison A

i.S = 0; // Initialize to zero

// Loop through all other individuals in the population

5 for (j in P, j!=i) { // Comparison B

// Loop through all objectives to see if i is dominated by j

bool b_I_Dominates_J = true;

for (k=1; k<=q; k++) { // Comparison C

// Does not dominate if objective value is greater in any dimension

10 if (j.f[k] > i.f[k]) { // Comparison D

b_I_Dominates_J = false; // Set to not dominated

break; // No need to check any other objective values.

}

} // End of loop through objectives

15 // If i dominates j then increment fitness

if (b_I_Dominates_J ) i.S++; // Comparison E

} // End of loop through other individuals , j

} // End of loop through individuals , i

// Calculate the raw fitness, F, for each individual

20 for (i in P) { // Comparison F

i.F = 0; // Initialize fitness to zero

// Accumulate strengths of those individuals

// that dominate the current individual i

for (j in P, j!=i) { // Comparison G

25 // Loop through all objectives to see if i is dominated by j

bool b_J_Dominates_I = true;

for (k=1; k<=q; k++) { // Comparison H

// Does not dominate if objective value is greater in any dimension

if (i.f[k] > j.f[k]) { // Comparison I

30 b_J_Dominates_I = false; // Set to not dominated

break; // No need to check any other objective values.

}

} // End of loop through objectives

// If i dominates j then increment fitness

35 if (b_J_Dominates_I ) i.F += j.S; // Comparison J

} // End of loop through other individuals , j

} // End of loop through individuals , i

This algorithm implements Equations 85 and 86 for the calculation of the raw fitness.
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From this listing, the ten comparison locations, A through J, result in the number of com-

parisons as:

(from line 3) NA = |P|

(from line 7) NB = |P|(|P| − 1)

(from line 10) NC = qNB

(from line 10) ND = NC = qNB

(from line 12) NE = NB

(from line 21) NF = |P| = NA

(from line 32) NG = |P|(|P| − 1) = NB

(from line 35) NH = qNG = qNB

(from line 47) NI = NH = qNB

(from line 46) NJ = NG = NB

NS PEAII,Raw = NA + NB + NC + ND + NE + NF + NG + NH + NI + NJ

NS PEAII,Raw = (4 + 4q)|P|2 − (2 + 4q)|P| (87)

2.2.6.2 Density Calculation

The SPEAII algorithm then utilizes a density measure to de-weight the raw fitness values.

The density estimation technique is a variation of the kth nearest neighbor method. For

each individual i in the current and elite pool Pt ∪ Et, the distances in objective space to

all individuals j in the current and elite pool are calculated and stored in a list. This list is

then sorted in increasing order. The distance to the kth individual, denoted as σi,k is then

selected, where k is the square root of the total number of individuals

k =
√

|Pt ∪ Et |. (88)

The density is then defined as:

D(i) =
1

σi,k + 2
. (89)
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Figure 26: SPEAII Fitness Examples

Note that the density will always be between 0 and 1/2.

The following listing details the SPEAII density algorithm with six comparison loca-

tions: A through F.

1 // Calculate k (assume P is current and elite population)

k=sqrt(|P|);

// Loop through each individual in the population

for (i in P) { // Comparison A

5 // Loop through all other individuals in the population

// Calculating distance

iCount =0;

for (j in P, j!=i) { // Comparison B

// Initialize elements

10 iCount ++;

d[iCount ] = 0.0;

// Loop through all objectives

for (m=1; m<=q; m++) { // Comparison C

d[iCount ] += (i.f[k] - j.f[k])^2;

15 } // End of loop through objectives

d[iCount ] = sqrt(d[iCount ]);
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} // End of loop through other individuals , j

18 // Sort list based on distance

for (m=1; m<|P|; m++) { // Comparison D

20 dMin = d[m];

iMin = m;

// Search all individual above present for minimum

for (n=m+1; n<=|P|; n++) { // Comparison E

if (d[n] < dMin) { // Comparison F

25 dMin = d[n];

iMin = n;

}

}

// Swap values

30 d[iMin] = d[m];

d[m] = dMin;

}

// Calculate Density

i.D = 1.0 / (d[k] + 2.0);

35 } // End of loop through individuals , i

This algorithm implements Equations 88 and 89 for the calculation of the density. From

this listing, the six comparison locations, A through F, result in the number of comparisons

as:

(from line 4) NA = |P|

(from line 8) NB = |P|(|P| − 1) = |P|2 − |P|

(from line 13) NC = qNB

(from line 19) ND = |P|(|P| − 1| = NB

(from line 23) NE = |P|
|P|−1
∑

j=1

j = |P|
(|P| − 1)|P|

2

(from line 24) NF = NE

NS PEAII,Density = NA + NB + NC + ND + NE + NF

NS PEAII,Density = |P|3 + (1 + q)|P|2 − (1 + q)|P| (90)

The final fitness value is then defined as:

F(i) = R(i) + D(i). (91)
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The number of calculations for Equation 91 becomes the sum of Equations 87 and 90.

NS PEAII = NS PEAII,Raw + NS PEAII,Density

= (4 + 4q)|P|2 − (2 + 4q)|P| + |P|3 + (1 + q)|P|2 − (1 + q)|P|

NS PEAII = |P|3 + (5 + 5q)|P|2 − (3 + 5q)|P| (92)

2.2.7 Complexity Comparisons

Table 1 accumulates the results of the previous six sub-sections into a single location for

comparison purposes. The number of elite individuals is |E|. The number of individuals

in the total population is |P|. The number of individuals in the current population is |C| =

|P| − |E|. The number of objectives is q.

Table 1: Number of Comparisons for Various MOEA Algorithms
Algorithm Number of Comparisons
Weighted Sum (1 + q)|P|
VEGA 2|P|
Elite Preserve (2 + 2q)|P|2 + |P||C|2 (q + 5) + q |C|2 − (5 + 2q)|P|
NPGA (4 + 3q)|P|2 + q|P| − (1 + 2q)
SPEA + 1

30 (1 + q)|P|5 +
(

1
12q + 1

6

)

|P|4 +
(

5
6

)

|P|3 +
(

1 11
12 q + 2 1

3

)

|P|2

+
(

1 1
30q + 4 19

30

)

|P| − 2q

+
(

− 1
5 (1 + q)

)

|E|5 +
(

− 3
4q − 1

2

)

|E|4 +
(

− 5
6 q − 2

3

)

|E|3

+
(

−4 1
4 q − 5

)

|E|2 +
(

1
30 q + 11

30

)

|E|
+|P|2

(

− 1
3 (1 + q)|E|3 − (1 + q)|E|2 − 2

3 (1 + q)|E|
)

+|P|
(

1
2 (1 + q)|E|4 +

(

5
3q + 4

3

)

|E|3 +
(

3
2q + 1

2

)

|E|2 +
(

4 1
3q + 3 2

3

)

|E|
)

SPEAII |P|3 + (5 + 5q)|P|2 − (3 + 5q)|P|

Figure 27 illustrates the dependencies of the equations in Table 1 on the number of

objectives q, by holding the sizes of the populations constant, (E = 100, C = 500, P = 600),

and varying the number of objectives from 1 to 25. Because VEGA simply chooses a single

objective, it does not have a dependence on the number of objectives. Compared to the

remaining algorithms, the SPEAII method illustrates only a slight dependency on q. This

can be seen in the equation as well with the dependency on |P|2 term instead of the |P|3
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Figure 27: Effects of the Number of Objectives on the Number of Comparisons for Various
MOEAs

term.

Also illustrated in Figure 27 is the overall complexity of the algorithms with a represen-

tative population size. The weighted-sum and VEGA methods, with their dependency on

|P|, require 103 to 104 comparisons. The NPGA and elite preserve methods are very close

in complexity with their dependency on |P|2, and thus require 106 to 108 comparisons. The

SPEAII method has a dependency on |P|3 and requires 108 to 109 comparisons. But, the

SPEA algorithm, with its dependency on |P|5, shows the highest complexity, and thus is the

slowest running, requiring 1012 to 1014 comparisons.

To get a feel for these changes in magnitude, let the comparisons of a weighted-sum

or VEGA method, requiring 103 to 104 comparisons, take 1 to 10 milliseconds to evaluate.

Then, the NPGA and elite preserve methods would require 1 to 100 seconds. The SPEAII

method would require 100 to 1, 000 seconds, or approximately 2 to 16 minutes. The SPEA

algorithm would then require 277 to 27, 777 hours.

76



100

10000

1e+006

1e+008

1e+010

1e+012

1e+014

1e+016

1e+018

0 500 1000 1500 2000 2500

N
um

be
r 

of
 C

om
pa

ris
on

s

Number of Individuals in Current Population

100 Elite Individuals

4 Objectives 

Weighted Sum
VEGA

Elite Preserve
NPGA
SPEA

SPEAII

Figure 28: Effects of the Number of Individuals in Current Population on the Number of
Comparisons for Various MOEAs

Figure 28 further illustrates the dependencies on |P| by holding the number of objectives

and number of elite individuals constant, (q = 4 and |E| = 100), and varying the number of

individuals in the current population from 100 to 2, 500 in increments of 100. Note that the

SPEA method suffers the largest increase in complexity as more individuals are added.

Figure 29 illustrates that the size of the elite pool can not be increased without also

increasing the number of comparisons. In this case, the size of the current pool is set to 500

and the number of objectives is set a value of 4. The number of elite individuals is varied

from 100 to 1, 000 in increments of 100.
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Table 2 details the number of comparisons for various components of the MOEA meth-

ods. Because the research in Chapter 4 allows for the mixing of various algorithm compo-

nents, this table allows insight into the complexity trade-offs of these components.

Table 2: Number of the Comparisons for Various MOEA Components
Algorithm Number of Comparisons
Pareto Optimality (2 + 2q)|P|2 − (1 + 2q)|P|
Pareto Rank 1 (2 + 2q)|P|2 − (1 + 2q)|P|
Pareto Rank 2 2+2q

3 |P|
3 + |P|2 + 10−2q

3 |P|
Fitness Sharing (2 + q)|P|2 − (1 + q)|P|
Objective Scaling (2 + 4q)|P| − (1 + 2q)
SPEA Clustering 1

30 (1 + q)|P|5 +
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1
12q + 1

6

)
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)
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(
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30q + 4 19
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)
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(
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4 q − 1

2

)
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(
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3

)

|E|3

+
(
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)

|E|2 +
(
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30q + 11

30

)

|E|
+|P|2

(

− 1
3 (1 + q)|E|3 − (1 + q)|E|2 − 2

3 (1 + q)|E|
)

+|P|
(

1
2 (1 + q)|E|4 +

(

5
3q + 4

3

)

|E|3 +
(

3
2q + 1

2

)

|E|2 +
(

1
3q − 1

3

)

|E|
)

SPEA Strength −(2 + 2q)|E|2 + |E| + |P|(2 + 2q)|E|
SPEA Fitness |P| − (2 + 2q)|E|2 − |E| + |P|(2 + 2q)|E|
SPEAII Raw Fitness (4 + 4q)|P|2 − (2 + 4q)|P|
SPEAII Density |P|3 + (1 + q)|P|2 − (1 + q)|P|

Figure 30 holds the population sizes fixed, (|E| = 100|, and |C| = |500|), and varies

the number of objectives from 1 to 25. Note that the SPEAII density algorithm shows

the least dependency to the number objectives. Also note the banding of the algorithm

components into four groups. First, the objective scaling algorithm is only dependent on

|P|, thus requiring only 103 to 105 comparisons. Second, the Pareto Optimality, Pareto

Rank 1, fitness sharing, SPEA strength, SPEA fitness and SPEAII fitness methods are all

dependent |P|2, requiring 106 to 108 comparisons. Third, the SPEAII density and Pareto

Rank 2 methods are dependent on |P|3, requiring 108 to 1010 comparisons. Finally, the

SPEA clustering method is dependent on |P|5, requiring 1012 to 1014 comparisons.

An obvious question is, "Why does the number of comparisons required for the SPEA

clustering method not render the SPEA method useless?". During the testing performed for
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Figure 30: Effects of the Number of Objectives on the Number of Comparisons for Various
MOEA Components

evaluation, (see Chapter 4), it was noted that the clustering algorithm was rarely required

because the number of Pareto optimal individuals found rarely exceeded the number max-

imum size of the elite pool, |E|. Therefore, only the times required for Pareto optimality,

SPEA fitness and SPEA strength calculations were required, which only require an order

of |P|2 comparisons. Although this observation is true for low dimension problems such

as the 0/1 knapsack problem, it is not true for problems with a large number of objective

dimensions. For these problems, many individuals are Pareto optimal due to the increased

size of the Pareto front.

Figure 31 further illustrates the dependencies on |P| by holding the number of objectives

and number of elite individuals constant, (q = 4 and |E| = 100), and varying the number of

individuals in the current population from 100 to 2, 500 in increments of 100.

Figure 32 illustrates the dependencies on the |E| by holding the size of the current pool

to 500 and the number of objectives to a value of 4. The number of elite individuals is then
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Figure 31: Effects of the Number of Individuals in Current Population on the Number of
Comparisons for Various MOEA Components

varied from 100 to 1, 000 in increments of 100.

2.3 Conclusions

The overall objective of this thesis is to decrease the time required to evolve solutions that

reside within a region of interest in the objective space for independent computationally

expensive objectives. Although this chapter is intended to provide an overview of existing

EA and MOEA methods, this chapter makes several important analyses that will be useful

in the next chapter in design of new algorithms for independent computationally expensive

objectives.

There are four basic components of MOEA algorithms: fitness evaluation, selection,

mating and mutation. MOEA methods can only improve their performance further by

improving the selection of parents from previous generation for creation of the next gen-

eration of children. This selection is effected by two processes: the fitness evaluation, and
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the selection method.

To fully understand the selection process, Section 2.1.2 provided an analysis of the

probability of selection for various selection methods that has not been found in the litera-

ture. From this analysis several important conclusions were reached.

First, Section 2.1.2.2 provided a detailed analysis of the probability of selection for the

tournament selection method. During this section it was shown that for binary tournament

selection without replacement, the probability of selection for the 2nd to |P|th individual

approached 1
n−1 as |C| approached |P| −1, resulting in the loss of the influence on the fitness

values on the probability of selection. Therefore, binary tournament selection without

replacement is not recommended.

Second, the probability of selection is always dependent on the fitness value. But,

different fitness functions provide different distributions of fitness values. Therefore, the

coupling of these distributions with the selection methods can not be ignored. Because the
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tournament selection method is dependent on the ranking of individuals, the tournament

selection method can be used with any fitness function. Fitness proportionate selection is

very dependent on the distribution fitness values. Therefore, as detailed in Section 2.1.2.3,

fitness proportionate selection should not be used with fitness functions that do not provide

a limited range of fitness values. Of the EA fitness methods analyzed, the weighted-sum

is the most likely to contain a high variation in fitness values and should therefore use

tournament selection if the range of fitness values is not well distributed. Pareto rank

techniques can use either fitness proportionate or tournament selection.

Two methods for crossover were described: N-Point and cloning. The important issue

for N-Point crossover is the avoidance of mutation effects by the crossover operator due

to crossover in the middle of an attribute value. The next chapter will address additional

methods to avoid this and other mutation effects.

Three methods for mutation were investigated: bitwise, uniform, and normal. Although

bitwise mutation is commonly discussed in the literature, it is most commonly used with

simple bit attributes. As problems become more complex and attributes must take on more

complex descriptions, such as IEEE float point representations, the mutation methods result

in undesired effects. Therefore, since uniform mutation provides the functionality of bit-

wise mutation for simple bit representations and does not have undesired consequences for

more complex attribute descriptions, uniform mutation is recommended as a replacement

for bitwise mutation.

Section 2.1.6 discussed parallel evaluation of fitness evaluations using either a single

gene pool or multiple gene pool method. Theoretical equations for the optimal number of

processors from Cantu-Paz and Goldberg [10] were examined and challenged. The argu-

ment was made that due to synchronization times, for problems with complex fitness evalu-

ations and complex processor configurations, the optimal number of processors can not be

found in a closed form solution. Although this Chapter discredited the current thoughts on

the optimal number of processors, the next chapter will provide a solution that removes the
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need for synchronization and thus allows a more scalable solution.

Section 2.2 provided an analysis of the weighted-sum, VEGA, elite preserve, NPGA,

SPEA, and SPEAII algorithms. For each of these algorithms two artifacts were created:

a pseudo-code listing, and an evaluation of the number of comparisons required by each

algorithm. Analysis also broke the algorithms apart into smaller components that can and

will be reused and recombined in novel ways in future chapters. From this analysis it was

determined that since the Pareto rank method 2 is of order |P|3 and Pareto rank method 1 is

of order |P|2 without a compelling improvement in the performance of a MOEA with PR2

versus PR1 fitness, PR1 should be selected due to the additional complexity added by the

PR2 method. Also of importance is that the SPEA clustering algorithms has the poorest

performance with an order of |P|5 comparisons. Although clustering is rarely required with

simple problems, SPEA clustering could cause severe run-time problems with complex

problems with many objectives.
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CHAPTER III

RESEARCH CONTRIBUTIONS

Chapter 1 introduced the definitions of single objective optimization, multiple objective

optimization problems, search space, objective space, Pareto optimality, and a region of

interest in the objective space. Chapter 2 then detailed EA operators of fitness evaluation,

selection, mating and mutation, as well as the basics of genome encoding and parallel

evaluation. Chapter 2 also presented several MOEA methods with a particular emphasis

placed on the complexity of each component of the methods.

Given the context of the previous two chapters, this Chapter is able to detail the re-

search contributions of this thesis. The overall thrust of this research is to decrease the time

required to find solutions that reside within a region of interest in the objective space for

independent computationally expensive objectives. Although all changes were made for

this specific class of problems, some of the research contributions are applicable to more

general problems. The research contributions can be divided into four categories.

First, several contributions that are applicable to all EA problems, regardless of whether

the problem is computationally expensive or contains multiple objectives, are outlined in

Section 3.1. These contributions include improvements to genome encoding that allows a

hierarchical description of the genome. The hierarchical description then allows association

of the genome component names with crossover and mutation operators. Also fitting this

category of contributions is a transform scaler that allows transformation of fitness values

to different ranges based on a set of linear interpolated data. The final contribution in

this category is a modular design and implementation that allows both implementation

of existing MOEA methods and reconfiguration of these algorithms for new and novel

combinations.
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The second category of contributions given in Section 3.2 are those applicable to com-

putationally expensive (CE) objectives that may or may not be independent. Included is the

ability to interface to external objective evaluation functions. Interfacing to external objec-

tive evaluators allows existing objective evaluation simulation to quickly interface to the

MOEA software. In practice this has been done by wrapping legacy simulations to trans-

late the search space location into proper inputs for the simulation and extract objective

values from the program output for transmittal back to MOEA software. Also falling into

the category of computationally expensive objective contributions is a hybrid parallel eval-

uation mechanism. This method obviates the timing problems of synchronization outlined

in the previous chapter by not forcing all individuals in a generation to be evaluated before

the next generation is created. This solution also decouples the number of populations from

the number of processors and still allows transfer of genetic material between populations.

The third category of contributions requires knowledge of the region of interest (ROI) in

objective space to improve performance, but does not require objectives to be independent

where independent implies that multiple objectives must be evaluated in separate evalua-

tions. This category of contributions includes the hypercube distance scaling algorithm that

scales fitness values by the distance to the hypercube defined by the region of interest. This

scaling gives a higher probability of mating to those individuals that reside closest to the

region of interest.

The fourth and final category of contributions requires both knowledge of the region

of interest as well as independence of objectives to improve performance. These contribu-

tions, outlined in Section 3.4, include dynamic objective thresholding and dynamic objec-

tive scaling. These two contributions work together to improve performance by identifying

those individuals that are not likely to improve performance after the evaluation of only a

few objectives and by preventing evaluation of the remainder of the objectives.

Section 3.5 completes this chapter with the conclusions reached during this chapter.
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3.1 Research Contributions for All Multiple Objective Evo-
lutionary Algorithms

This section details enhancements that do not require problems to be either computationally

expensive or independent to allow for improvement. A method that allows the hierarchi-

cal description of a genome was developed. This hierarchical description then allows the

association of parts of the genome to the crossover and mutation operators. Additionally,

a method for translating fitness values into different ranges using linear interpolated data

was developed. Finally, the advancements and possibilities of the modular design and im-

plementation are examined.

3.1.1 Genome Encoding

Ultimately, a genome is encoded as a string of attributes. The set of all feasible strings of

attributes defines the search space. Evolutionary operators such as crossover and mutation

then perform operations on these strings of attributes. There are two motivations for the

development of a generic genome description. First, a description of the genome that can

be modified external to the software allows tailoring to new domains without recompilation

of the software. Second, providing a generic system description hides the underlying com-

plexity of the evolutionary operators from the end-user, e.g., the end-user does not need to

worry about how many bits are required to encode various attributes or how they are stored

or communicated.

The most general search-space feasibility region for a MOP is:

x = (x1, x2, · · · , xn) ∈ X ⊂ Rn

Subject to e(x)= (e1(x), e2(x), · · · , em(x)) ≤ 0.

The m constraints e(x) allow the specification of any region within the space Rq. The
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implementation of this thesis does not allow this full flexibility. Instead the abstract de-

scription is reduced to a set of n ranges, one for each attribute in the search space.

x = (x1, x2, · · · , xn) ∈ X ⊂ Rn

Subject to e(x) = (e1(x1), e2(x2), · · · , en(xn)) ≤ 0

Where for k = 1 to n ek(xk)=































1 xk ∈ [xk,min, xk,max]

0 otherwise

The implementation developed for this research provides a generic XML description of

a genome as a hierarchy or inverted tree structure of each of the possible attribute types. The

syntax of an XML file is controlled by the document type description (DTD). Use of a DTD

forces the search space description to be syntactically correct before processing begins.

But as with any language, being syntactically correct does not guarantee communication

of the desired semantics. It is up to the user to be semantically correct. Other methods

such as XML schema that allow the specification of the type and bounds of entries beyond

the parsed character data of the DTD may have obviated the need for developing this

specialized DTD. These other methods were not used due to their lack of maturity when

software development began.

The following listing itemizes the DTD for the search space.

1 <!ELEMENT Genome (Name ,(Define|Instance|Genome|Case|↓

→ Value|Double|Enumerate)+)>

<!ELEMENT Define (Name ,(Define|Instance|Genome|Case|↓

→ Value|Double|Enumerate)+)>

<!ELEMENT Instance (#PCDATA)>

<!ELEMENT Case (Name ,(Define|Instance|Genome|Case|↓

→ Value|Double|Enumerate)+)>

5 <!ELEMENT Value (Name , Start , End, Delta)>

<!ELEMENT Double (Name , Start?, End?)>

<!ELEMENT Enumerate (Name,Map*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Map (#PCDATA)>

10 <!ELEMENT Start (#PCDATA)>

<!ELEMENT End (#PCDATA)>
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<!ELEMENT Delta (#PCDATA)>

The following listing provides an example of a syntactically correct XML search space

description.

1 <?xml version="1.0"?>

<!DOCTYPE Genome SYSTEM "gene.dtd" [ ]>

<!-- This example search space contains 3 attributes -->

<Genome>

5 <Name>SearchSpace </Name>

<Double>

<Name>Attribute1 </Name>

<Start >0.0</Start >

<End >100.0</End>

10 </Double>

<Genome>

<Name>SubComponent </Name>

<Value >

<Name>Attribute2 </Name>

15 <Start >0.0</Start >

<End >10.0</End>

<Delta >0.1</Delta >

</Value >

<Enumerate >

20 <Name>Attribute3 </Name>

<Map>On</Map>

<Map>Off</Map>

<Map>Pause </Map>

<Map>Record </Map>

25 <Map>Play </Map>

</Enumerate >

</Genome>

</Genome>

The software translates the search space description into a hierarchical description for

a specific individual. The following listing provides an example of one of the many indi-

viduals that meets the search space description given above.

1 <SearchSpace >

<Attribute1 >33.4</Attribute1 >

<SubComponent >
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<Attribute2 >9.1</Attribute2 >

5 <Attribute3 >Pause </Attribute3 >

</SubComponent >

</SearchSpace >

Referring to the DTD in listing above, note that the leaves of the inverted tree struc-

ture must be an attribute description. Attribute descriptions of types Value, Double, and

Enumerate are supported. Each attribute description contains a Name value that becomes

the tag used to identify the attribute to the fitness evaluator as seen in the example given

above.

The Value description is used to describe sampled values. To describe sampled values

the Start, End and Delta elements are used to describe the encoding of the value. The

number of bits required to encode a Value attribute is:

b = dlog2

(

Start − End
Delta

+ 1

)

e (93)

A value V can then be converted to the bit encoding Vb in the range [0, 2b − 1] using:

Vb = d
V − Start

Delta
+ 0.5e (94)

Likewise, the value of V can be extracted from the bit encoding using:

V = Vb · Delta + Start (95)

The definition of the Start and End boundaries defines the feasibility region for this at-

tribute. The boundaries also allow the software to verify that attribute values are in the

feasibility region during each EA operation, i.e., genome reading, crossover, and mutation.

The Double leaf node encodes variables in the internal 64 bit IEEE double precision

encoding. Each Double node contains Start and End elements. Note that unlike the

Value node, there is not a Delta element. Thus, encoding of information is only allowed

at the highest resolution provided by the IEEE standard. Also note that the Start and End

elements are optional, allowing, but not forcing the user to define the feasibility region of
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the attribute. If the Start and End boundaries are not specified, the limits are those of

the IEEE double precision encoding. Unlike the Value element, the encoding requires 64

bits regardless of the boundaries. But similar to the Value element, the boundaries for a

Double node allow the software to verify that attribute values are in the feasibility region

after each EA operator.

The Enumerate node allows the mapping of a list of names to an attribute. In addition

to the Name node, the user must specify a list of Map nodes that contains the list of possible

strings to be enumerated. This simple definition allows the specification of several ASCII

strings to be associated as possible values for a search dimension. Let n be the number of

Map entries, then the number of bits required to encode the attribute is b = log2(n). Since

n may not be a power of 2, there are bit instances in the range of the 2b bits, [0, 2b − 1],

that are not in the range of the list of strings, [0, n]. Therefore, like the Value and Double

attributes, the software must verify that attribute values are in the feasibility region after

each EA operator.

As illustrated in genome DTD and the genome example listed above, the Genome node

allows wrapping a set of attributes, or other Genome nodes, to create higher level compo-

nents. Each Genome has an associated Name that is used for the XML system description

and can be referenced by the EA operators. Figure 33 illustrates the hierarchy and bit en-

coding for example genome listed above. The ability to organize a system description in a

hierarchy allows a system description that better matches a system as a set of sub-systems.

For example in the flare pattern cases examined in Chapter 5, a flare pattern is made up

of a set of flares, each with three attributes: the ejection time, ejector location on the air-

craft, and type of flare ejected. The warning receiver optimization examined in Chapter 6

likewise divides up the list of attributes based on the part of the overall warning receiver

affected, e.g., source processing, or track processing. But the best example of use of hier-

archy is in the evolutionary programming techniques found in Chapter 7. In this chapter

a system is developed that allows the modification of the attributes of a sub-system and
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Figure 33: Example Search Space Hierarchy

the sub-system interconnectivity, which is in turn translated into a Ptolemy II hierarchical

description.

In practice, various portions of the hierarchy may need duplicated. To meet this need

the concept of Define and Instance nodes is included to allow multiple instantiation of

components at any level. Again using the flare pattern design problem of Chapter 5 as an

example, a flare can be defined as a sub-system with its three attributes of ejection time,

ejector location and type of flare. The flare is then instantiated as many times as required

by the search space.

The final feature in the search space definition is the need for conditional replacement.

This support is allowed using Case nodes. These nodes allow for different dimensions

of the search space to be conditionally switched in and out. This allows specification of

very complex modal search spaces. An example of the use of this capability is found in

the evolutionary programming problem of Chapter 7, where each sub-system description

in the genome contains descriptions for each of the possible sub-systems. But, only one of

the sub-system descriptions is expressed for each instance of the system.

3.1.2 Location Crossover

The location crossover method was developed to eliminate the mutation effects of the N-

Point crossover method when dealing with attributes that are not a single bit, as detailed in

Equation 17 of Section 2.1.3.2. Automated methods for finding the best crossover locations
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have been developed by Van Veldhuizen [57] in order to find the building blocks of the

underlying genome. Unfortunately, these methods require the initial evaluation of many

individuals to determine these locations. Because this research is especially targeted for

computationally expensive objectives, it was decided to use the domain knowledge of the

user instead.

The location crossover method allows the specification of the exact locations for cross-

over. As described in the previous section, the search space description allows the building

up of a hierarchy of attributes. The search space description also assigns a mnemonic to

each component of the hierarchy, which defines the search space dimensions as well as the

hierarchy components. These names can be supplied to the location crossover as locations

for crossover. This allows the user to allow crossover at any single attribute value or to

limit crossover to higher level components within the gene description.

Just as the argument was made in Section 2.1.3.2 that crossover in the middle of an

attribute results in a mutation of the system, mutation in the middle of a system description

may also be deleterious. For example, a higher level component may combine two double

precision attributes together as a complex number, or as an x, y location. In either case,

combining the real value from one parent and the imaginary value from a second parent,

or the x value from one parent and the y value from a second parent, could and most likely

will result in poor performing children.

The location crossover method allows the user to use domain knowledge to identify the

locations within the genome that should not result in a mutation of the genome if split at

this location. Using the names of the elements in the hierarchical description, the location

crossover method identifies the locations in the genome for crossover. It then fills each

resulting section of the genome by randomly choosing a parent from the list of selected

parents.
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3.1.3 Mutation

Early evolutionary algorithms only discussed the use of the bitwise mutation, which at its

best results in a uniform distribution. Fortunately, others such as Obayashi, Takahashi and

Takeguchi [46, 47] discussed the use of normal and uniform mutation methods. Uniform

distribution is probably best used for enumerated variables, as any possible value should

be equally important. For sampled and double precision variables though, a normal distri-

bution makes more sense as it performs a small transition of the variable. The selection of

normal mutation still requires the selection of the standard deviation. But often, different

variables should have different standard deviations.

This research contribution allows the specification of multiple mutation operators each

with a type of bitwise, normal, or uniform. Also, much as with the location crossover oper-

ator, this implementation allows the association of normal and uniform mutation operator

with a list of mnemonics from the genome hierarchy. Thus, an attribute can be associated

with multiple mutation operators, e.g., a single uniform distribution and multiple normal

distributions with different standard deviations and different mutation rates.

Again, as with the location operator, this allows the use of domain knowledge by the

end user to tailor the operators for a specific problem. The capability was most important

with the tuning of the AAR-44A algorithms, (see Section 6.2), where uniform mutations

were very deleterious, and thus a different normal mutation operator was associated with

each variable.

3.1.4 Transform Scaler

The transform fitness scaler method allows the specification of a set of points for mapping

solutions as desired using linear interpolation. Use of the linear interpolated data (LID)

allows a single implementation for any number of transformation ideas.

The Transform node specification simply contains a list of Point nodes. Each Point

node contains an In element and Out element that contains the input and output values
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respectively. The list of points must contain monotonic increasing values for the input.

As the example in Figure 34 illustrates, the transform can translate a minimizing fitness

function into a maximizing fitness function. Thus the output from a minimizing fitness

function such as SPEA and Pareto fitness functions, where the best solutions have low

fitness values, can be translated into maximizing fitness function. The fitness value can

then be used to determine selection using maximizing techniques, where the individuals

with the highest probability of selection have the highest fitness values.

The following listing details this algorithm and five comparison locations A through E.

1 // Loop through each individual in the population

for (i in P) { // Comparison A

// Start at beginning of list

point1 = pointList[1]

5 point2 = pointList[2]

iPoint = 2;

bFound = false;

// Check for point before input data starts

if (i.F < point1.in) { // Comparison B

10 i.Fnew = point1.out;

bFound = true;

}

// Loop until point is found

while (!bFound) { // Comparison C

15 // Assign fitness if between point1 and point2
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if ( (i.F >= point1.in) && (i.F < point2.in) ) {

17 // Comparison D

i.Fnew = point1.out +

point1.slope * (i.F - point1.in)

20 bFound = true;

// Advance to the next interval if not found

} else {

point1 = point2

iPoint++

25 // Make sure we have not passed the end of data

if (iPoint > iNumPoints) { // Comparison E

i.Fnew = point1.out;

bFound = true;

}

30 point2 = pointList(iPoint);

}

} // End of loop through points

} // End of loop through population

Allowing |LID| to be the number of points in the linear interpolated data transformation

list, the total number of comparisons is:

(from line 2) NA = |P|

(from line 9) NB = |P| = NA

(from line 14) NC = (|LID| − 1) ∗ |P|

(from line 16) ND = NC

(from line 26) NE = NC

NTrans f orm = NA + NB + NC + ND + NE

NTrans f orm = (2 + 3(|LID| − 1)) |P|. (96)

3.1.5 Modular Multiple Objective Evolutionary Algorithm Framework

Much like the DTD for the genome encoding, the software implementation developed for

this research called GTMOEA is also configured by an XML file. Appendix A itemizes

this DTD. A separate users manual details all of the options available with this DTD

[20]. Most importantly for this research, the modular design allows various components
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to be configured separately using either standard or new innovative methods. Only those

methods of interest for this research will be listed here. But as listed in the DTD, other

research methods exist as well.

The modular design allows the base fitness values to be calculated using one of the

following fitness methods: PR1 or PR2 (see Section 2.2.4.1), SPEA (see Section 2.2.5.2),

SPEAII raw fitness (see Section 2.2.6.1), or the weighted-sum (see Section 2.2.1). The

fitness values can then be scaled using any number of the following: hypercube distance

scaling (see Section 3.3), the niching algorithm from NPGA (see Section 2.2.4), the trans-

form scaler (see Section 3.1.4), and the SPEAII density (see Section 2.2.6.2). Note that

fitness scaling methods can be applied multiple times.

Elitism rules are applied to a combination of the current population and the current

elite population to create the next elite population. Elitism rules can be thought of as a set

of pruning routines. The pruning rules include: pruning of individuals with identical fit-

ness values, pruning of individuals with identical objective values, the Pareto Rank, which

can be set to 1 to limit to Pareto optimal individuals (see Section 2.2.4.1), and the SPEA

clustering algorithm (see Section 2.2.5.1). The final elitism rule, which is always applied,

reduces the size of the elite population to the desired size by selecting individuals with the

best fitness values.

Common crossover methods are included: clone crossover (see Section 2.1.3.1), N-

Point crossover (see Section 2.1.3.2), and the newly developed location crossover (see Sec-

tion 3.1.2). Mutation methods include: bitwise mutation (see Section 2.1.4.1), uniform

mutation (see Section 2.1.4.2), and normal mutation (see Section 2.1.4.3).

This modular design and implementation allows not only the implementation of the

existing MOEA methods, but recombinations of the fundamentals of these algorithms to

create new methods. Bosman and Thierens investigated the relationship between density

preservation and selection of non-dominated solutions in objective space [9], and indicate
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the inability of SPEA algorithm to separately control these features. Allowing the com-

binations of the fundamentals of each of these algorithms overcomes these deficiencies.

Various combinations are quantitatively investigated in Chapter 4.

3.2 Research Contributions for Computationally Expensive
Objectives

This section details the contributions made for computationally expensive objectives, i.e.,

those objectives that require a substantial cost to evaluate as compared to the time required

for EA processes. Two important contributions have been made. First, a method has been

developed that allows the attachment to multiple remote processes potentially running on

multiple processors for the evaluation of objective values. Second, a method has been de-

veloped that allows for evolution without large synchronization times between generations.

3.2.1 External Objective Evaluation

The ability to interface to an external evaluator allows the decoupling of the MOEA soft-

ware from the objective evaluation software. As discussed in Section 3.1.1 each individual

is translated into an XML description based on the search space description. For legacy

software, the user then provides a translation layer of software that translates the individual

XML description into the input format expected by the legacy software. After evaluation

of the desired objective, the translation layer then translates the output from the legacy

software into a simple objective name and objective value format for return to the MOEA

software. These methods have been used for flare pattern design, AAR-44A OFP opti-

mization, and evolutionary programming, (see Chapters 5, 6 and 7 respectively). Often the

translation layer can be accomplished using common unix tools such as shell scripts and

awk [7, 3, 18]. If new objective evaluators are required then they can be written to meet the

XML implementation directly using available XML libraries.

The user is able to configure the external evaluator in several ways. The configuration

file, (see Appendix A), allows the user to supply the name of the remote executable to be
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started. Likewise, the user can supply additional strings before and after each individual

objective is requested. In practice, this is often used to supply the names of the input

training data files to be used for evaluation of the desired objective.

The user also supplies a list of machines on which to start the remote executables.

The remote executable is started on each of the machines in the list using the remote shell

command rsh. The user should make sure that rsh connections without a request for a

password are available for each of the remote machines. The first command sent to the

remote machine is a request to change directory to the same directory as the local machine.

The existence of the directory of the same name should also be verified.

As an example, the actual command executed for the evaluator test.sh for the unix

machine albania executed in the directory /home/moea follows:

1 /usr/bin/rsh albania (echo \$\$; cd /home/moea;

2 while test \$? -eq 0; do test.sh; done)

The while loop is included to allow continued execution of the objective evaluator even if

it terminates normally.

Optionally, a temporary directory for running the evaluator may be required for some

legacy executables that create temporary files that produce name conflicts if executed in the

same directory. This is especially important when using several machines on a networked

drive. If a temporary directory is indicated, a directory with the name of the processor

followed by an underscore and an incrementing number is created in current directory, e.g.,

localhost_1.

In practice, it has been found that the use of the local drive in /tmp for evaluator output

files is advantageous. Using the local drive removes the need for cluttering the network

directory with the sub-directories described in the previous paragraph. Likewise, the local

directory can dramatically improve performance when the legacy software creates large

temporary files, which can now be written to the local drive instead of the networked drive.
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3.2.2 Parallel Evaluation

Section 2.1.6 outlined the current methods for single and multiple gene pool parallel ob-

jective evaluations. Also detailed in this section was the effect of the large synchronization

times required at the end of each generation. These synchronization times become most

detrimental for this particular class of problems where the computation time for objective

evaluations is large in comparison to the time required to perform the EA operations, the

evaluation time may be dependent on the genome being evaluated, and processes are run-

ning on many machines which may have various processing speeds due to their processing

speed and loading.

To overcome the synchronization problems, this research contribution has designed and

implemented an approach that obviates the need for synchronization much as the need for

synchronization is eliminated in nature. The ability of an organism to reproduce is not nec-

essarily dependent on the state of all other organisms in the population. There is no rule

in nature that all organisms in the population must finish evaluation before any organism

can begin the selection, mating and mutation processes required to create another individ-

ual. In this implementation, as in nature, an individual’s ability to mate and raise the next

generation is limited by their evaluation resources, not by those of the entire population.

To implement this approach, each processor is given an individual to evaluate. Remain-

ing individuals in the current generation, C, are given to a processor for evaluation as they

finish the evaluation of their current individual. When there are no more individuals in the

current generation that need evaluating, or are not in the process of being evaluated, then

the software creates the next generation based on the current population and the elite popu-

lation. Without generation synchronization, the software also becomes more fault tolerant,

e.g., if a processor goes down for some reason, the individual being evaluated is lost, but

the entire evolutionary process is not halted as it would be with generation synchroniza-

tion. The software can still be configured to run with generation synchronization, which
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can be important for comparisons with published results. In particular, generation synchro-

nization with the same MOEA inputs allows for deterministic behavior, i.e., rerunning the

software will result in identical evolutionary paths, as long as the objective evaluator is

also deterministic. Without generation synchronization, the software can not be guaranteed

to be deterministic. This lack of deterministic behavior stems from the inability to guar-

anty the order that individuals will be returned from the machines performing the objective

evaluations, and thus the inability to guaranty the individuals available for selection.

Figure 35 illustrates the processing flow of this hybrid method. As indicated in the

figure, the processing flow contains three basic loops: objective evaluation, genome eval-

uation, and evolutionary algorithm. The following sub-sections examine each of the pro-

cessing loops.

3.2.2.1 Objective Evaluation Loop

From Figure 35, the innermost loop of processing, the objective evaluation loop, can be

found on the right-hand side of the figure. The processing titled "Listen for Machine”

is responsible for listening to all slave machines and waiting on a reply from one of the

processes that it has completed its evaluation of an objective. The listen operation is im-

plemented using the "select” C function, which allows the process to halt until an input

is received on any of a list of file descriptors [54, 55]. With this implementation one file

descriptor is assigned to each of the remote processes that were started using the methods

discussed in the Section 3.2.1.

Once a reply has been received, the processor must associate the file descriptor with an

individual and extract the objective value into the data structures of the individual. These

processes are indicated in the "Retrieve Objective Information” and "Update Objective

Value” elements of the figure. These processing elements are also responsible for error

detection and accounting for the remote processes. Three special cases may occur, which

are not included on the figure to reduce clutter. First, the connection may be terminated
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due to problems with the remote evaluator or remote processors. Second, the individual

genotypic description sent to the remote process for evaluation may not reside in the true

feasibility region of the objective evaluator. The user does his best to define the feasibility

region using the search space definition as defined in Section 3.1.1. But, due to the com-

plexity of the system, it may not be possible to determine the complete feasibility region

until objective evaluation. If an individual is not feasible, it is identified as a fatal allele to

prevent further propagation of the genetic material. The third special case is an inappropri-

ate reply from the remote objective evaluator. When this case is detected, the individual is

also marked as fatal.

The exit criteria for this loop occurs if all objectives of the current individual have been

evaluated. If all objectives have been evaluated, then the remote process associated with

the individual is flagged as available, and processing control is returned to the genome

processing loop discussed in the next sub-section. If all objectives of the current individual

have not been completed, then a request for the next objective is made from the remote

process, and control is returned to the listen element until the next input from a remote

process is received.

3.2.2.2 Genome Evaluation Loop

From Figure 35, the genome evaluation loop is responsible for the evaluation of all indi-

viduals in the current generation. The support for multiple populations is inherent in the

design, and is indicated in the "Find Next Deme" block. Unlike the single-gene pool par-

allel methods, (see Section 2.1.6.1), that only support one deme, and the island method,

(see Section 2.1.6.2), that supports creation of n populations on n processors, this hybrid

method supports n populations or demes running on m processors. In addition, n can be

greater than, less than, or equal to m.

The equality of n and m requires the scheduling of individuals from each deme to a
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processor in a scheme that provides each deme a roughly equivalent fraction of the proces-

sors, and thus processing time. To implement the scheduling algorithm, when a machine

completes the evaluation of an individual and it is time for another individual, the scheduler

totals the number of machines currently assigned to each deme. The scheduler then pro-

cures an individual from the deme with the least machines currently assigned, and assigns

the individual to the machine. Logic is also included to prevent the selection of the same

deme multiple times in case of a tie.

If there are no remaining individuals in the selected deme, then the evolutionary algo-

rithm loop for the selected deme must be executed as discussed in the next sub-section.

Once an individual is available, then the process sends the XML genotypic description of

the individual, as well as the name of the first objective to be evaluated, to the remote

process.

This entire process is repeated until all available remote processes have received an

individual for processing. Once all remote processes are processing individuals, the master

process enters the "listen” process of the objective evaluation loop discussed in the previous

sub-section.

3.2.2.3 Evolutionary Algorithm Loop

When an individual is required from a deme that does not have any addition individuals

available, the evolutionary algorithm processing is executed for that particular deme. As

indicated in Appendix A, each deme can be configured with separate fitness, selection,

crossover and mutation operators. The first process, the calculation of the fitness for the

current and elite populations of the deme, requires proper comparison of individuals for

selection.

The current population may contain individuals that are not completely evaluated, but
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still may have a fitness value assigned based on the partial evaluation, and thus have a prob-

ability of mating. This is accomplished by setting the objective values for unsolved objec-

tives to their minimum value. By using the minimum value, evaluation of the remaining

objective values cannot decrease the fitness value. Thus, the probability of mating increases

as more objectives are evaluated. Use of individuals that are in progress is most important

for the independent, computationally expensive objective class of problems, where the total

evaluation of an individual may require minutes to hours of time, but the evaluation of a

single objective may only require several minutes.

After the fitness is calculated, the EA operators of selection, crossover and mutation

are repeated until the desired number of individuals is created. The only new concept

added is the transfer of genetic material between demes. This is implemented much as

breeding is performed in domestic animal populations, i.e., a fixed percentage of adults are

retrieved from other populations. Other implementations allow for the migration from other

populations of individuals with their associated objective values. Because for our system

there is not a requirement for multiple populations to be working on the same objectives, if

a good individual of another population is migrated to the current population it may result

in a poor fitness value because the objectives of the current population may not have been

evaluated. Thus, the migrated individual would have a low probability of mating resulting

from the "apples to oranges” comparison between demes.

By changing from a migration to a breeding analogy, selection of the individual can oc-

cur by comparing individuals only to those within the same population. Therefore, when an

individual is desired from a second population, the selection of the individual occurs with

the fitness values of the second population. To prevent recalculation of the fitness values

in other populations, only the elite individuals of the second population are considered for

breeding.

The number of populations, number of individuals in the current population |C|, and the

number of individuals in the elite population |E|, can all be configured by the user. Four
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considerations should be addressed when selecting these values. First, the time required to

calculate the fitness values is related to the number of individuals in the elite and current

population. From Section 2.2.7, the time required for fitness calculations is of order (|E| +

|C|)2 or worse. Second, lowering the number of individuals in the current population allows

incorporation of new individuals with better performance as parents much quicker. Note the

trade-off that lowering the number of individuals allows quicker incorporation of improved

individuals, but it also requires recalculation of fitness values more often. Third, increasing

the number of demes decreases the number of individuals that can be calculated for each

deme since they must be spread across the same number of processors. Fourth, increasing

the number of demes can allow decreasing the number of elite individuals in each deme |E|

while still maintaining a large overall elite population. Assuming the use of n populations

and a constant number of overall elite individuals |E|, then the overall fitness complexity

can be reduced from (|E| + |C|)2 to n( |E|n + |C|)
2.

3.3 Research Contributions for Objective Space Region of
Interest

Section 1.4 first introduced the concept of a region of interest in the objective space. The

region of interest is defined by the lower boundary Lk for each of the q objectives. These

boundaries, derived from the requirements of the optimization problem, define the region

of interest, G ⊂ Y, as those locations in y such that for all k = 1 to q, yk ≥ Lk. Thus the

region of interest is the region enclosed by the hypercube h f (L).

The hypercube distance HCD scaler method is a research contribution that utilizes the

distance to the hypercube to scale fitness values. The basic premise of the HCD scaler

method is that those individuals that reside closest to the region of interest are most likely

to produce children that reside closer to the region of interest. Since the region of interest

is defined by a hypercube in objective space, the closer the individual is to the hypercube

the higher the probability of selection.
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In addition to the region of interest defined by h f (L), the minimum acceptable objective

values for all dimensions are required. A hypercube h f (S) is identified as a region in the

objective space where solutions are known to be possible. The q values of S j identify the

minimum value acceptable for each of the q objectives. Setting of these values requires

domain knowledge of the specific problem being evaluated in order to specify limits that

are known to be obtainable.

Distance is calculated using the Holder measure as defined in Equation 50. The spec-

ification of the HCD scaler, as shown in Appendix A, allows for the specification of the

Holder coefficient p, and an offset α. The offset allows modification the relative impor-

tance of HCD scaling. The distance to the hypercube is then:

HCD(i, L, S) =
α +

(

∑q
j=1(d j(i, L, S))p

)
1
p

1 + α
(97)

where q is the number of dimensions, d j(i, L, S) is the distance of individual i in the jth

dimension to the hypercube h f (L) with a lower limit defined by the hypercube h f (S) and

Holder coefficient p.

The distance to the hypercube h f (L) for a dimension d j is calculated by normalizing

the distance to the hypercube for each objective to a range of [0, 1] using:

d j(i, L, S) =



















































0 f j(i) ≥ L j

L j− f j(i)
L j−S j

S j < f j(i) < L j

1 f j(i) ≤ S j

(98)

Combining Equations 97 and 98 results in the hypercube distance of:

HCD(i, L, S) =
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Normalization of the distances also implies that the HCD scaler is in the range
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Figure 36 illustrates several examples of the HCD calculation with α set to zero.

If maximization of the fitness values is desired then the fitness value is divided by the

HCD. This results in an increase in fitness for those individuals near the region of interest,

and a decrease in the fitness for those individuals far away from the region of interest. For

maximization problems the scale amount or gain becomes

GHCD =
1 + α

α +
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The maximum gain occurs as the solutions approach the region of interest and thus the gain

approaches

GHCD =
1 + α
α
= 1 +

1
α
. (101)

Likewise, if minimization of the fitness value is desired then the fitness value is multi-

plied by the HCD. This results in a decrease in fitness for those individuals near the region
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of interest, and an increase in the fitness for those individuals far away from the region of

interest.

The following listing details the HCD scaler algorithm and four comparison locations

A through D.

1 // Loop through each member of the population

for (i in P) { // Comparison A

dSum = 0.0;

// Loop through each objective

5 for (k=1; k<=q; k++) { // Comparison B

// Set to minimum zero if below minimum

if (i.f[k] <= S[k]) { // Comparison C

fNorm = 0.0;

// Set to minimum zero if above maximum

10 } else if (i.f[k] > L[k]) { // Comparison D

fNorm = 1.0;

// Other, in valid range. Normalize

} else {

fNorm = (i.f[k] - S[k] ) / (L[k] - S[k] );

15 }

// Increment Hypercube

dSum += pow( 1.0 - fNorm , HolderCoefficent )

} // End of loop through objectives

// Update fitness assuming minimize problem

20 i.FNew = i.F * pow( dSum , 1.0 / HolderCoefficent );

} // End of loop through population

Allowing n to be the number of points in the transformation list, the total number of

comparisons is:

(from line 2) NA = |P|

(from line 5) NB = qNA = q|P|

(from line 7) NC = NB = q|P|

(from line 10) ND = NB = q|P|

NHCD−S caler = NA + NB + NC + ND

NHCD−S caler = (1 + 3q) |P|. (102)
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3.4 Research Contributions for Independent Computation-
ally Expensive Objectives

Independent, Computationally Expensive Objectives (ICEO) is the final and most special-

ized category of research contributions. In the previous section, evaluation was defined as

computationally expensive when it required a substantial cost to evaluate as compared to

the time required for EA operations. For objectives to be independent implies that a sep-

arate time-consuming objective evaluation is required for each objective. Two important

contributions for ICEO problems are detailed in the following subsections. First, dynamic

objective thresholding utilizes historical information to eliminate objective evaluations for

individuals that are not expected to produce children closer to the region of interest in

objective space. Second, dynamic objective ordering uses historical information to order

objectives for evaluation such that the dynamic objective thresholding is able to eliminate

poor-performing individuals faster than with the default objective ordering.

3.4.1 Dynamic Objective Thresholding

Dynamic objective thresholding is the core method that allows using the MOEA soft-

ware for independent computationally expensive objectives (ICEO) to increase the speed

at which solutions are found in the region of interest. Dynamic objective thresholding is

used to terminate the evaluation of an individual before all objectives are evaluated if it is

determined based on the evaluated objectives that the individual is not likely to improve

performance. It is only by not evaluating all objectives for every individual that speed im-

provements can be made. Other methods [23] have used human intervention to limit the

size of the objectives space during early evolution. But, no other method automatically

determines when the number of objectives to be solved on an individual basis.

This method creates a dynamic threshold for each objective. If, after the evaluation

of an objective for a specific individual, it is determined that the objective value does not

exceed the threshold, then the remaining objectives for the individual are not evaluated. An
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individual that does not have all objectives evaluated still has a fitness value. The fitness

value is obtained with the remaining objectives values set to the minimum value for the

objective.

The dynamic capability is enabled by keeping a historical population HT of the |HT |

individuals most recently evaluated. The calculation of the dynamic threshold occurs after

the evaluation of each set of DT individuals. In addition, the hypercube definitions for the

region of interest h f (L) and the minimum acceptable values defined by the hypercube h f (S)

are required, (see Sections 1.4 and 3.3 respectively for definitions of these hypercubes). The

final attributes required are a set of q weights W, one for each objective. Each weight W j

specifies the fraction of individuals that fail the objective test.

The dynamic threshold for the jth objective is implemented by sorting into increasing

objective values f j(i) the list of individuals in HT . The kth individual ik in the sorted list of

|HT | individuals in HT is then chosen to set the new threshold where k = W j|HT |. Thus the

threshold becomes

T j(HT ) =



















































S j f j(ik) ≤ S j

f j(ik) S j < f j(ik) < L j

L j f j(ik) ≥ L j

(103)

The dynamic thresholding method must be robust enough to handle the condition that

solutions in the region of interest may not exist; i.e., just because it is desired to find a

solution with a particular performance does not mean that a system with the desired per-

formance is attainable. Therefore, the thresholding methods must find solutions closer and

closer in objective space to the region of interest. But the thresholding methods must de-

grade such that if solutions in the region of interest are not found, then the user has a set of

Pareto optimal solutions near the region of interest from which to choose.

Figure 37 illustrates the desired behavior of the dynamic thresholds over the course of

evolution. Note that during Stage 1 f1(i) is less than S 1, resulting in the evaluation of only
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a single objective. During Stage 2 the objective values f1(i) reach S 1 for some individuals,

allowing evaluation of f2(i) for these individuals. During Stage 3 the population has gained

enough individuals, k = W1|HT |, passing the minimum threshold S 1 that the dynamic ob-

jective threshold T1(HT ) is used. Finally, during Stage 4 the population reaches the region

of interest h f (L).

Figure 38 illustrates the modifications to the parallel processing first illustrated in Fig-

ure 35 required to implement the dynamic objective thresholding. The processing for "Ap-

ply Thresholds” applies the current thresholds to the current individual to determine if eval-

uation of additional objectives is required after the evaluation of each objective. Since the

thresholds may have been recalculated since the start of evaluation for the current objective,

the comparison is required for all solved objectives.

As evolution proceeds, it is anticipated that the threshold values steadily increase. Thus,

if any objective is solved and does not exceed the current thresholds, then the remaining

objectives in the list are marked to be ignored regardless of whether they have been solved

or not. Note that the "Apply Thresholds” processing is also applied to the entire population

of each deme before the creation of the next generation in the "Evolutionary Algorithm

Loop". This recalculation assures application of a common set of thresholds to all individ-

uals to ensure proper comparisons during fitness calculations, e.g., an individual should not

have a better fitness value simply because it had an objective solved before the threshold

for that objective was raised.

There are two situations that could result in a decrease of the threshold values. First,

if little progress is made during the previous DT individual evaluations, then the threshold

value may be slightly less that the current value. Second, if the dynamic objective ordering

described in Section 3.4.2 is used, then the recalculation of the threshold values for objec-

tives which are now earlier in the list may force ignoring of objectives that are now later in

the objective list that were previously not ignored. This circumstance could easily result in

drastically lowering the dynamic threshold for the now later objective.
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The "More Objectives To Solve?” decision is affirmative if there is another objective

for the individual that has not been evaluated and has not been marked to be ignored. In

the affirmative case, the processing advances to send a request for the next objective to the

remote process. Otherwise, the genome is considered solved, and "Update Threshold Pool"

processing is invoked to add the solved genome to the dynamic thresholding population HT .

The "Update Thresholds?" decision is affirmative if DT individuals have been added

to the threshold population since the last recalculation of thresholds. If an update of the

thresholds is not required then the processing is returned to the "Genome Evaluation Loop”

to begin the evaluation of the next individual. If an update of the thresholds T is required

then the "Calculate New Thresholds” processing is invoked to apply calculations of Equa-

tion 103.

The following listing details the calculation of the dynamic thresholds from the historic

population HT .

1 // Loop through each objective

for (k=1; k<=q; k++) { // Comparison A

// Sort list based on kth objective

for (m=1; m<(|H_T|-1); m++) { // Comparison B

5 dMin = H_T[m].f[k]

iMin = m;

// Search all individual above present for minimum

for (n=m+1; n<=|H_T|; n++) { // Comparison C

if (H_T[n].f[k] < dMin) { // Comparison D

10 dMin = H_T[n].f[k];

iMin = n;

}

} // End of loop through remainder of H_T

// Swap values

15 iTmp = H_T[iMin];

H_T[iMin] = H_T[m];

H_T[m] = iTmp;

} // End of loop through population H_T

// Find individual with desired threshold

20 m = W[k] * |H_T|;

// Set threshold to desired value

T[k] = H_T[m].f[k];
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} // End of loop through objectives

Using the four comparison locations A through D, the total number of comparisons is:

(from line 2) NA = q

(from line 4) NB = q(|HT | − 1)

(from line 8) NC = q
|HT |−1
∑

j=1

j = q
|HT |(|HT | − 1)

2

(from line 9) ND = NC

NCalculate
Threshold = NA + NB + NC + ND

NCalculate
Threshold = q|HT |2. (104)

The following listing details the application of the dynamic thresholds to a population

of individuals as is required before the recalculation of fitness values.

1 // Apply thresholds to population

for (i in H_T) { // Comparison A

bIgnoreRemaining = false;

// Loop through each objective

5 for (k=1; k<=q; k++) { // Comparison B

// If below threshold set state of this and remaining

// objectives to INGORE

if ( i.f[k] < T[k] ) { // Comparison C

bIgnoreRemaining = true;

10 }

// If we are to ignore remaining simply set the state

if (bIgnoreRemaining ) { // Comparison D

i.state[k] = IGNORE;

i.f[k] = MinValue[k];

15 }

} // End of loop through objectives

} // End of loop through population
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Using the four comparison locations A through D, the total number of comparisons is:

(from line 2) NA = |HT |

(from line 5) NB = qNA = q|HT |

(from line 8) NC = NB = q|HT |

(from line 12) ND = NB = q|HT |

NApply
Threshold = NA + NB + NC + ND

NApply
Threshold = (1 + 3q) |HT |. (105)

3.4.2 Objective Ordering

Objective ordering allows the user to preset the order and the software to automatically

modify the order in which objectives are evaluated. This capability feeds two purposes.

First, the software can dynamically order the objectives allowing objective orders that fur-

ther improve speed performance beyond that of dynamic objective thresholding with the de-

fault objective ordering alone. Second, the user can force different orderings of objectives

for different demes, allowing the different demes to focus on different desired attributes

of the final individual. Note that either method requires the dynamic objective threshold-

ing algorithm of the previous section to eliminate the evaluation of objectives. Without

dynamic objective thresholding, the objective ordering can not provide any performance

improvement.

There are currently two dynamic objective ordering algorithms: hypercube distance and

auto ordering. The hypercube distance ordering algorithm orders objectives based on their

average distance from the region of interest. This allows concentration on objectives that

are furthest from the region of interest. The auto ordering method takes into account the

time to evaluate each objective, and tries to order objectives in an order that reduces the

time to evaluate a total population.

The determination of when to recalculate the objective orders is the same for both meth-

ods and similar to the determination made for dynamic objective thresholding. The historic
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population for dynamic objective ordering, HO, contains |HO| of the previous individuals

solved. The number of individuals in the historic population should span several genera-

tions. A default value of 1000 has been selected for |HO|. The recalculation of objective

orders is calculated every DO individuals. Due to the complexity of the calculations for

the dynamic objective ordering and the need to remove noise from the measured statis-

tics that drive the objective ordering processes, the number of individuals solved before

recalculation is likewise large with a default value of 1000.

Some objectives may be required to be evaluated, or other times it may be desired to

specify the exact order in which all objectives are evaluated. To allow this non-dynamic

ordering of some objectives, both dynamic methods support the ability to "force” a list of

objectives to be evaluated first. The ordering for the remaining list of objectives is then

subject to algorithms of one of the two ordering methods. By default, the initial order of

the remaining objectives is the order given in the specification of the list of objectives, (see

Appendix A). But, if there is no known advantage to this order, the user can specify the

order of the remaining objectives be initialized in a random order.

Figure 39 indicates the modifications to Figure 38 required to implement either dynamic

objective ordering processing method. The "Update Ordering?" decision is affirmative if

DO individuals have been added to the threshold population since the last recalculation of

objective ordering. If an update of the objective ordering is not required then the processing

is forwarded to the application of the objective thresholds.

If an update of objective order is required then the selected objective ordering algorithm

is invoked. The specifics of the hypercube distance ordering and auto ordering methods are

discussed in the following two subsections. Once objective orders have been recalculated,

then the dynamic objective thresholds must be recalculated to allow the effects of the or-

dering change to affect the thresholds. After recalculation of the objective thresholds, the

processing advances to the application of objective thresholds and then to the fitness calcu-

lation as normal.
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3.4.2.1 Hypercube Distance Cube Ordering

Each time the HCD ordering method is called, the average objective distance to the region

of interest is calculated for those individuals with solved objective values in each objective

dimension. The objective with the largest average distance to the region of interest is then

placed at the front of the objective list. Likewise, the remaining objectives are ordered to

contain successively decreasing average distances to the region of interest.

Similar to the HCD scaler method presented in Section 3.3, the HCD average distance

uses a normalized value of the distance based on the two hypercubes h f (S) and h f (L). By

using the user specified definitions of the minimum value acceptable for each objective

h f (S) and the region of interest h f (L), any disparities in the ranges of objective values can

be removed. The normalized distance for each dimension of objective j for an individual i

is equivalent to the HCD scaler method.

d j(i, L, S) =



















































1 f j(i) ≤ S j

L j− f j(i)
L j−S j

S j < f j(i) < L j

0 f j(i) ≥ L j

(106)

The following listing details the application of the HCD ordering method to a popula-

tion of individuals.

1 // Apply thresholds to population

for (i in H_T) { // Comparison A

bIgnoreRemaining = false;

// Loop through each objective

5 for (k=1; k<=q; k++) { // Comparison B

// If below threshold set state of this and remaining

// objectives to INGORE

if ( i.f[k] < T[k] ) { // Comparison C

bIgnoreRemaining = true;

10 }

// If we are to ignore remaining simply set the state

if (bIgnoreRemaining ) { // Comparison D

i.state[k] = IGNORE;

i.f[k] = MinValue[k];
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15 }

16 } // End of loop through objectives

} // End of loop through population

The maximum number of calculations occurs if there are not any forced objective or-

ders. Using the nine comparison locations A through I, the maximum number of compar-

isons is:

(from line 2) NA = q

(from line 9) NB = |HO|NA = q|HO|

(from line 11) NC = NB = q|HO|

(from line 13) ND = NB = q|HO|

(from line 15) NE = NB = q|HO|

(from line 26) NF = NA = q

(from line 33) NG = q − 1

(from line 37) NH =

q−1
∑

j=1

j =
q(q − 1)

2

(from line 38) NI = NH

NHCD
Ordering = NA + NB + NC + ND + NE + NF + NG + NH + NI

NHCD
Ordering = 4|HO|q + q2 + 2q − 1 (107)

3.4.2.2 Auto Ordering

The auto ordering method attempts to order objectives not just based on the objective val-

ues, but also based on the time required to evaluate each objective. With this method the

evaluation process records a time stamp for the time when the objective was requested

from the external objective evaluator and the time when the resulting objective value was

received. The time required for the objective evaluation is then calculated as the time be-

tween these time stamps. The individuals maintained in the historic population HO are then

"replayed” to determine the objective order that minimizes the time required to evaluate the
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historic population and still result in a population of individuals where the Pareto optimal

solutions are similar to the Pareto optimal solutions of current objective ordering. Relative

to the HCD ordering method, the auto ordering method is much more complex. Figure 40

illustrates the internal processing for recalculating the objective order.

The first step is to establish the possible orders. There are at most q! possible orders

for the q objectives. This number can be reduced in two ways. First, any forced objectives

can be removed from those that can be reordered. Secondly, because of dynamic objec-

tive thresholding, many objectives at the end of the current objective ordering may not

have been solved for any of the individuals in the historic population HO. Thus, there is

not enough information for analysis of the timing effects of reordering for these unsolved

objectives. If after the forced and unsolved objectives are removed there are one or less ob-

jectives in the remaining objective list then the current order must be maintained because

there is not enough timing information to make any comparisons among possible orders.

If the number of objectives in the remaining list, r, is two or more then the r! possible

orderings of these lists are created.

Once the possible objective orderings have been enumerated, the time required to eval-

uate each of the objective orders must be calculated. Auto objective ordering seeks to find

the order that eliminates poor performers with the least objective evaluation time. It is the

effects of dynamic objective thresholding that allow the improvement in performance by

removing the solution of objectives. Since thresholds are applied in the order of the ob-

jectives, the order of the objectives can effect the values of the thresholds, i.e., when an

objective fails to reach the threshold then the objective values for the remainder of the list

are marked to be ignored and interpreted as the minimum value. Thus, for each objective

order the dynamic threshold must be recalculated and applied to the historic population

HO. The time required to evaluate each objective is then summed for each individual in the

population.
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If the time required to evaluate the total populations with the proposed objective or-

dering is less than that of any of the valid orders then a check must be made to check the

validity of the proposed objective order. The assumption of the validity test is that the

"important” individuals of the historic population HO with the current ordering should also

be the "important” individuals when the new objective order is applied. One definition of

"important” would be those individuals with the highest probability of mating. But, due

to mappings such as fitness sharing and clustering that can dramatically reduce the fitness

values for individuals that are close together in objective space, this definition was not se-

lected. Instead, a population of s individuals that are closest to the Pareto front are selected

using the Pareto Rank 2 method as detailed in Section 2.2.4.1.

Note that the validity of orders must be calculated to prevent fast running, but less

meaningful objective ordering selections. For example, if a fast running objective with a

threshold that is not being exceeded by any of the current individuals in HO is placed first

in the objective list then this would be the fastest running order. Unfortunately, this would

result in a trivial Pareto optimal population with a single individual, and would not likely

provide the same set of s "important” individuals.

Once the s individuals are selected from the current objective order to create a popula-

tion A and the proposed objective order to create a population B, then the difference D in

the populations can be solved by totaling the number of individuals that are not in the other

population.

D = |(A ∩ B) ∪ (B ∩ A)|

= |(A ∩ B)| + |(B ∩ A)|

= |{a ∈ A|a < B}| + |{b ∈ B|b < A}| (108)

Therefore, if A and B contain the same individuals D = 0, and if there is no intersection

between A and B then D = |A| + |B| = 2s. It is rarely expected that A and B contain the

same individuals, therefore the user must set a value m the maximum allowable value for
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D.

The value of s should be set to a number larger than the expected number of Pareto

optimal individuals, which varies based on the type of optimization problem. The default

value of s is 10. The maximum number of differences m should be set a number in the

range [0, 2s]. A value of m that is at less than 50 percent of s is recommended. A future

enhancement would be to calculate m from the statistics of the historic population HO

instead of from a user setting, e.g., m could be set to the number of rank 1 and 2 individuals

in HO.

The following listing details the application of the auto objective ordering algorithm.

1 // Find end of non-forced and solved objectives

for (j=iForced+1; j<=q; j++) { // Comparison A

iEnd = j;

bFound = false;

5 // Loop through history to see if solved

for (i in H_O) { // Comparison B

if (i.state[iOrder[j]] == SOLVED) { // Comparison C

bFound = true;

break;

10 }

} // End of loop through history pool

// If not found we are just past the end of the solved objectives

if (! bFound) { // Comparison D

iEnd = j - 1;

15 break;

}

}

// Return if no objectives to reorder

r = iEnd - iForced;

20 if ( r <= 1 ) { // Comparison E

return;

}

// Enumerate possible objectives // Comparison F

ListOfOrders = FindAllOrders(iOrder,q,iForced ,iEnd);

25 // Calculate base s individuals for later comparison

basePool = H_O.BestPareto(s); // Comparison G

basePool.sortID(); // Comparison H

dMinTime=LARGE_NUMBER;

// Loop through all objective orders
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30 for ( p=1; p<r!; p++ ) { // Comparison I

31 for (k=1; k<=q; k++) { // Comparison J

iOrder[k] = ListOfOrders[p][k];

}

CalculateThresholds (H_O) // Comparison K

35 ApplyThresholds(H_O) // Comparison L

// Calculate Processing Time

dCurTime = 0.0

for (i in H_O) { // Comparison M

for (k=1;k<=q;k++) { // Comparison N

40 if (i.state[iOrder[k]] == SOLVED){ // Comparison O

dCurTime += i.time[iOrder[k]];

}

} // End of loop through objecitves

} // End of loop through history pool

45 // Check for new minimum time

if (dCurTime < dMinTime) { // Comparison P

// Check for validity of s Pareto points

comparePool = H_O.BestPareto(s); // Comparison Q

comparePool.sortID(); // Comparison R

50 // Now, compare resulting pools

iDiff = 0;

j = 1;

k = 1;

while( (j <= s) && (k <= s) ) { // Comparison S

55 // If the same simply advance both indicies

// Comparison T

if (basePool[j].ID == comparePool[k].ID) {

j++;

k++;

60 // If different advance counter // Comparison U

} else if (basePool[j].ID < comparePool[k].ID){

j++;

iDiff++;

} else {

65 k++;

iDiff++;

}

} // End of loop through pools

// Add remaining individuals

70 iDiff += (s - j + 1);

iDiff += (s - k + 1);

// Calculate difference

dDiff = iDiff / s;

// If difference is acceptable set time
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75 if (dDiff < m) { // Comparison V

76 dMinTime = dCurTime

for (k=1; k<=q; k++) { // Comparison W

bestOrder[k] = iOrder[k]

}

80 }

} // End of new minimum time

} // End of loop through orders

// Set order

for (k=1; k<=q; k++) { // Comparison X

85 iOrder[k] = bestOrder[k]

}

The maximum number of calculations occurs if there are not any forced objective or-

ders and all individuals dominate the next individual. There are twenty-four comparison

locations A through X. The first five comparisons are:

(from line 2) NA = q

(from line 6) NB = NA|HO| = q|HO|

(from line 7) NC = NB = q|HO|

(from line 13) ND = NA = q

(from line 20) NE = 1

To enumerate all possible orders requires q! comparisons:

(from line 24) NF = q!

The calculation of the best Pareto individuals is equivalent to the calculation of the PR2

method. Therefore, from Equation 42:

(from line 26) NG =
2 + 2q

3
|HO|3 + |HO|2 +

10 − 2q
3
|HO|.

The sorting of the ID list requires:

(from line 27) NH = s +
s−1
∑

j=1

j = s +
s(s − 1)

2
=

1
2

(s2 + s)
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At worst case, the loop through all possible orders requires:

(from line 30) NI = q!

(from line 31) NJ = qNI = q(q!)

The number of calculations from the calculation and applications of thresholds can be found

from Equations 104 and 105 respectively.

(from line 34) NK = NIq|HO|2 = q(q!)|HO|2

(from line 35) NL = NI (1 + 3q) |HO| = (q!) (1 + 3q) |HO|

The remaining number of calculations for NL through NW are:

(from line 38) NM = NI |HO| = (q!)|HO|

(from line 39) NN = qNM = q(q!)|HO|

(from line 40) NO = NN = q(q!)|HO|

(from line 46) NP = NI = q!

(from line 48) NQ = q!

(

2 + 2q
3
|HO|3 + |HO|2 +

10 − 2q
3
|HO|

)

(from line 49) NR = q!

















s +
s−1
∑

j=1

j

















= (q!)
1
2

(s2 + s)

(from line 54) NS = NI2s = 2s(q!)

(from line 57) NT = NS = 2s(q!)

(from line 61) NU = NS = 2s(q!)

(from line 75) NV = NI = q!

(from line 77) NW = qNV = q(q!)

(from line 84) NX = q
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Combining the twenty-three terms:

NAuto
Ordering = NA + NB + NC + ND + NE + NF + NG + NH + NI + NJ + NK + NL + NM

+NN + NO + NP + NQ + NR + NS + NT + NU + NV + NW + NX

NAuto
Ordering = |HO|3

2 (q!(q + 1) + q + 1)
3

+ |HO|2 (q!(q + 1) + 1)

+|HO|
(13q + 16)q! + 4q + 10

3

+s2 q! + 1
2
+ s

13q! + 1
2

+ q!(2q + 4) + q(3) + 1 (109)

The calculation of NAuto
Ordering reveals that there are two main drivers for the complexity

of this calculation: the 2
3 |HO|3(q!)q originating from the Pareto Rank 2 comparisons and

the |HO|2(q!)q terms originating from the recalculation of the dynamic objective thresholds

for each objective ordering. For example, with values of |HO| = 1000 and q = 10 the

complexity of 2
3 |HO|3(q!)q term results in 2.4e1016 comparisons, and the |HO|2(q!)q term

results in 3.6e1013 comparisons. Fortunately, Equation 109 is for the worst case scenario,

and performance is typically much better than the worst case.

3.5 Conclusions

This chapter details a total of eleven research contributions to the standard evolutionary

algorithms processes applicable to four classes of EA optimization problems. The class of

problems in order of increasing specialization are:

1. All Multiple Objective Evolutionary Algorithms (MOEA)

2. Problems that are Computationally Expensive (CE)

3. Problems with a Region of Interest (ROI)

4. Problems with Independent Computationally Expensive Objectives (ICEO)

Table 3 provides a brief summary of the eleven research contributions.
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Table 3: Summary of Research Contributions
EA Class Algorithm Brief Description
MOEA Genome Encoding Hierarchical XML description of search space

Location Crossover Crossover at selected attribute locations
Mutation Association of mutation operators

with selected attributes
Transform Scaler Transformation of fitness values using

Linear Interpolated Data
Modular Multiple Allows recombination of many MOEA

Objective Algorithm components in novel ways

CE External Objective Attachment of MOEA to external objective
Evaluation evaluators

Parallel Removal of synchronization time delay at
Evaluation end of generation

ROI HCD Scaler Use of distance of solutions from ROI to
scale fitness values

ICEO Dynamic Objective Truncates evaluation of individuals before
Thresholding all objectives are evaluated

HCD Dynamic Use of average distance of solutions from
Objective Ordering ROI to order objectives

Auto Dynamic Use of time required to evaluate objectives
Objective Ordering to determine order of objectives

Of the research innovations, the transform scaler, HCD scaler, calculation of thresholds,

application of thresholds, HCD objective ordering, and the auto objective order algorithms

all modify the calculation of the fitness values. Thus, in the respective section of this

chapter there was a calculation of the number of comparisons. Table 4 gives an aggregate

of the complexity calculations for various MOEA components given in Table 2 with the

addition of the complexity calculations for these research innovations. The definitions of

q as the number of objectives, |P| as the number of individuals in the current population,

|E| as the number of individuals in the elite population, the definitions of |LID| as the

number of points in the linear interpolated data transformation list, |HT | as the number of

individuals in historic threshold population, |HO| as the number of individuals in historic

ordering population, and s as the number of "best” individuals to compare between the

current objective ordering and proposed objective orders are used.
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Table 4: Number of the Comparisons for Various MOEA Components
Algorithm Number of Comparisons
Pareto Optimality (2 + 2q)|P|2 − (1 + 2q)|P|
Pareto Rank 1 (2 + 2q)|P|2 − (1 + 2q)|P|
Pareto Rank 2 2+2q

3 |P|
3 + |P|2 + 10−2q

3 |P|
Fitness Sharing (2 + q)|P|2 − (1 + q)|P|
Objective Scaling (2 + 4q)|P| − (1 + 2q)
SPEA Clustering 1

30 (1 + q)|P|5 +
(

1
12q + 1

6

)

|P|4 +
(

5
6

)

|P|3 +
(

− 1
12 q + 1

3

)

|P|2

+
(

29
30 q + 4 19

30

)

|P| − 2q

+
(

− 1
5 (1 + q)

)

|E|5 +
(

− 3
4 q − 1

2

)

|E|4 +
(

− 5
6q − 2

3

)

|E|3

+
(

− 1
4 q − 1

)

|E|2 +
(

1
30q + 11

30

)

|E|
+|P|2

(

− 1
3 (1 + q)|E|3 − (1 + q)|E|2 − 2

3 (1 + q)|E|
)

+|P|
(

1
2 (1 + q)|E|4 +

(

5
3q + 4

3

)

|E|3
)

+|P|
((

3
2q + 1

2

)

|E|2 +
(

1
3 q − 1

3

)

|E|
)

SPEA Strength −(2 + 2q)|E|2 + |E| + |P|(2 + 2q)|E|
SPEA Fitness |P| − (2 + 2q)|E|2 − |E| + |P|(2 + 2q)|E|
SPEAII Raw Fitness (4 + 4q)|P|2 − (2 + 4q)|P|
SPEAII Density |P|3 + (1 + q)|P|2 − (1 + q)|P|
Transform Scaler |P| (2 + 3(|LID| − 1))
HCD Scaler (1 + 3q) |P|
Threshold Calculation q|HT |2
Threshold Application (1 + 3q) |HT |
HCD Objective Ordering 4|HO|q + q2 + 2q − 1
Auto Objective Ordering |HO|3 2(q!(q+1)+q+1)

3 + |HO|2 (q!(q + 1) + 1)
+|HO| (13q+16)q!+4q+10

3

+s2 q!+1
2 + s 13q!+1

2 + q!(2q + 4) + q(3) + 1

With a detailed discussion of the eleven research contributions, the next three chapters

of this thesis explore the use and impact of these contributions on a set of diverse problems:

the 0/1 knapsack problem and Deb’s T functions in Chapter 4, the flare pattern design

problem in Chapter 5, and the warning receiver optimization problem in Chapter 6. Each

of these research innovations is not applicable to all of the problems.

Although the genome encoding is utilized for all problems, it is not required by the 0/1

knapsack and Deb’s T function problems. The genome encoding is utilized by the flare

pattern design and warning receiver optimization problems in order to implement named
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access to crossover and mutation operators. Likewise, the ability to associate mutation

and crossover operators with named attributes of the genome is not required by the 0/1

knapsack problem or the Deb’s T function problems but is used by the flare pattern and

warning receiver optimization problems.

Chapter 4 provides an evaluation of the 0/1 knapsack and Deb’s T functions against a

myriad of the combinations of various MOEA techniques in an effort to find the combi-

nations that have the best performance. This quantitative analysis tests the capabilities of

the transform scaler and modular MOEA design research contributions. The recommended

combinations are then utilized in the flare pattern design and warning receiver optimization

chapters.

The use of the external objective evaluation and parallel evaluation research contribu-

tions is only required for computationally expensive objectives and thus utilized in the flare

pattern design and warning receiver optimization chapters.

The HCD scaler and dynamic objective thresholding algorithm is evaluated with the

0/1 knapsack and Deb’s T functions problems and then extensively utilized by the flare pat-

tern design and warning receiver design problems. The HCD dynamic and Auto ordering

techniques are evaluated with flare pattern design problem. Table 5 provides a summary

of the section where each research contribution is detailed and where each contribution is

evaluated and utilized.
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Table 5: Locations of Evaluation and Utilization of Research Contributions
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MOEA Genome Encoding 3.1.1 Hierarchical XML search space description X X
Location Crossover 3.1.2 Crossover at selected attribute locations X X

Mutation 3.1.3 Association of mutation operators X X
Specification with selected attributes

Transform Scaler 3.1.4 Transformation of fitness using LID X X X X X
Modular Multiple 3.1.5 Allows recombination of many MOEA X X X X X

Objective Algorithm components in novel ways

CE External Objective 3.2.1 Attachment of MOEA to external objective X X
Evaluation evaluators

Parallel Evaluation 3.2.2 Removal of synchronization time delay X X X
at end of generation

ROI HCD Scaler 3.3 Fitness scaled by HCD to ROI X X X X X

ICEO Dynamic Objective 3.4.1 Truncates evaluation of individuals before X X X X X
Thresholding all objectives are evaluated

HCD Dynamic 3.4.2.1 Use of average distance of solutions from X X X X
Objective Ordering ROI to order objectives

Auto Dynamic 3.4.2.2 Use of time required to evaluate objectives X X X
Objective Ordering to determine order of objectives
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CHAPTER IV

ALGORITHM EVALUATION

Chapter 1 introduced the definitions of single objective optimization, multiple objective

optimization, search space, objective space, Pareto optimality, and a region of interest in

the objective space. Chapter 2 added detailed descriptions for the EA operators of fitness

evaluation, selection, mating and mutation, as well as the basics of genome encoding and

parallel evaluation. Chapter 2 also presented the details of several of the existing MOEA

methods. Chapter 3 presented the details of the algorithms contributed by this thesis.

Given the foundation of the previous chapters, this chapter presents quantitative analy-

sis of the performance of various combinations of the existing and new MOEA components

for reaching a region of interest in objective space against a fast running problem before

they are applied to computationally expensive problems in the remaining chapters.

Section 4.1 provides quantitative analysis against the 0/1 Knapsack problem extended

to multiple dimensions of Martello and Toth [42]. Because the 0/1 Knapsack problem

does not contain independent objectives, nor is it computationally expensive, the num-

ber of objectives required is minimized instead of minimizing the time required to evolve.

This section is divided into Subsection 4.1.1 detailing the 0/1 Knapsack problem, Subsec-

tion 4.1.2 itemizing the combinations of algorithm components to be evaluated, Subsection

4.1.3 discussing the evaluation of the ICEO algorithm components, and Subsection 4.1.4,

which summarizes the results of the quantitative analysis.

Section 4.2 then takes those combinations of algorithm components that are found to be

effective in Section 4.1.4 and evaluates them against the six MOPs developed by Deb [17]

to ensure that the combinations are effective against a robust set of problems. This section

is divided into six subsections; one for each of the T functions.
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Section 4.3 provides a summary of the recommended MOEA combinations for ICEO

problems. These recommended MOEA combinations are then further evaluated against the

ICEO flare pattern problem in Chapter 5 and utilized for the optimization of AAR-44A

OFP in Chapter 6.

4.1 0/1 Knapsack Problem

The 0/1 Knapsack problem described by Martello and Toth in 1990 [42] has several desir-

able features. First, it is a non-trivial NP-hard problem, and as such can be configured to

require evaluation of over one hundred thousand individuals to converge. The problem is

repeatable, easy to understand, and easy to formulate. The 0/1 Knapsack problem can also

be scaled to any desired number of search space and objective space dimensions, and pro-

vides a quick-running analysis with published results for some existing MOEA algorithms

[61, 64, 63].

4.1.1 Description of 0/1 Knapsack Problem

In the single objective case of the 0/1 Knapsack problem, there is a single knapsack with

capacity c and a set of n items. Each item j has an associated profit p j and a weight w j. The

problem is then to find the vector x = (x1, x2, · · ·, xn) ∈ {0, 1}n where x j = 1 implies item j

is in the knapsack, and likewise x j = 0 implies item j is not in the knapsack. This vector x

must satisfy the capacity constraint that the total weight of the items in the knapsack does

not exceed the capacity of the knapsack:

e(x) =
n

∑

j=1

w j · x j ≤ c. (110)

The fitness of the individual x for each objective i is then defined as the total profit of the

items in the knapsack:

f (x) =
n

∑

j=1

p j · x j. (111)

Figure 41 illustrates an example of the single objective 0/1 Knapsack with four items.

135



e(x) = w1 + w4 = 0.2

c = 0.9

p1 = 1 p2 = 2 p3 = 3 p4 = 5
w1 = 0.1 w2 = 0.2 w3 = 0.8 w4 = 0.1

x = {1, 0, 0, 1}

f (x) = p1 + p4 = 6

Figure 41: Single Objective Example of 0/1 Knapsack Problem

The 0/1 Knapsack problem is extended to multiple objectives by increasing the number

of knapsacks from one to the number of desired objectives q. Each knapsack has a capacity

ck. Each item is assigned a set of profits pk, j and weights wk, j for item j in knapsack k. In

the multiple objective case when the jth member of the vector x is 1, x j = 1, item j is in all

knapsacks, and likewise x j = 0 implies item j is not in any knapsacks. The vector x must

satisfy the capacity constraint of all knapsacks (1 ≤ k ≤ q).

ek(x) =
n

∑

j=1

wk, j · x j ≤ ck (112)

The fitness of the individual x is then defined as:

fk(x) =
n

∑

j=1

pk, j · x j. (113)

Figure 42 illustrates an example of the two objective 0/1 Knapsack problem with four

items. The size of the search space can be scaled by increasing the number of items.

Likewise the size of the objective space can be increased by increasing the number of

knapsacks.
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e1(x) = w1,1 + w1,4 = 0.2

c2 = 0.8c1 = 0.9

w1,3 = 0.8
w2,3 = 0.7
p1,3 = 3
p2,3 = 2

w1,2 = 0.2
w2,2 = 0.1
p1,2 = 2
p2,2 = 1

w1,4 = 0.1
w2,4 = 0.4
p1,4 = 5
p2,4 = 1

f1(x) = p1,1 + p1,4 = 6 f2(x) = p2,1 + p2,4 = 3
e2(x) = w2,1 + w2,4 = 0.6

w1,1 = 0.1
w2,1 = 0.2
p1,1 = 1
p2,1 = 2

x = {1, 0, 0, 1}

Figure 42: Multi-Objective Example of 0/1 Knapsack Problem

The feasibility region of the search space is limited by the constraints of each knapsack.

One method of handling the condition that an individual violates one of the constraints

would be would be to mark the individual as fatal. Instead the 0/1 Knapsack problem uses

a method of “genome correction”. Genome correction is performed by removing the item

with the minimum profit to weight ratio, pk, j/wk, j for the knapsacks with exceeded capacity

from all knapsacks. This method for removing items is repeated until the capacity of all

knapsacks is no longer exceeded.

The setting for the profits, weights and constraints are performed the same as Zitzler

[61] who followed the suggestions of Martello and Toth [42]. Uncorrelated profits and

weights are selected as random integers in the interval [10, 100]. The knapsack capacities

are then set half of the total possible weight in the knapsack:

ck =
1
2

n
∑

j=1

wk, j. (114)

The actual weights used for the two knapsack 250 item problem and the four knapsack

750 item problem are downloaded from Zitzler’s web-site to maximize correlation with his
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results. The weights, profits and constraints for the ten knapsack 1000 item problems are

derived using the above methods.

4.1.2 Combinations of MOEA Components for 0/1 Knapsack Problem

Chapters 2 and 3 presented currently used and proposed MOEA components. Section

3.1.5 detailed the modular framework that has been developed for components in novel

ways. Four categories of operations effect the probability of mating: the calculations of

the "raw" fitness operation, the scaling of the fitness values, the selection operator, and the

rules for creating the elite population. This section evaluates the characteristics of many

of the possible combinations to identify the combinations that should be further examined

in the following sub-sections using the ICEO dynamic objective thresholding and dynamic

objective ordering.

4.1.2.1 Possible Combinations

Table 6 displays the components examined for each of the four categories of operations

Five "raw" fitness solver functions are analyzed: the PR1, PR2, Weighted-Sum, SPEA,

and SPEA II. Three fitness scaling functions are also analyzed: the transform scaler, the

SPEA II density algorithm, and the fitness sharing algorithm of the Niched Pareto Genetic

Algorithm. Two selection operators are investigated; fitness proportionate selection and

binary tournament selection. Performance with and without elitism is also examined.

Table 6: Categories of MOEA Components Examined
Fitness Fitness Scaler Selection Elitism
Pareto Rank 1 Transform Fitness Proportionate Maximum Rank
Pareto Rank 2 SPEA2 Density Tournament No Elitism
Weighted Sum Fitness Sharing
SPEA
SPEAII

Two transformations of “raw” fitness values using linear interpolated data are sup-

ported. Both transformations invert fitness values so that small values, which indicate the
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best individuals from Pareto rank techniques, are transformed to the largest values and thus

are acceptable for fitness proportionate as well as binary tournament selection. Transfor-

mation 1 contains samples of the function

T1(x) =
1

2(x−1)
. (115)

Transformation 2 contains samples of the function

T2(x) =
1
x
. (116)

Table 7 gives the data used for the LID transformations. Figure 43 illustrates the two LID

transformations.

Table 7: Linear Interpolated Data Transformations
Transform 1 Transform 2

Input Output Input Output
0.0 10.0 0.0 10.0
1.0 1.0 1.0 1.0
2.0 0.5 2.0 0.5
3.0 0.25 3.0 0.3333
4.0 0.125 4.0 0.25
5.0 0.0625 5.0 0.2
6.0 0.03125 6.0 0.16666
7.0 0.015625 8.0 0.125
8.0 0.0078125 9.0 0.11111
21.0 9.53e-7 10.0 0.1
41.0 9.09e-13 20.0 0.05
1000.0 1e-31 100.0 0.01

1000.0 0.001

The fitness sharing algorithm allowed for thirty niches. Runs are executed without

elitism and with elitism based on the maximum rank. If there are still too many individuals

in the elite population after removing those with a larger rank than specified, then those in-

dividuals with the poorest fitness values are removed until the number of individuals in the

elite pool meets the desired maximum number. A maximum rank of one only allows Pareto

optimal individuals in the elite population. Maximum rank values from one to thirteen are

examined.
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Figure 43: Linear Interpolated Data Transformations

4.1.2.2 MOEA Setup

The evaluation of the performance is made using the 0/1 Knapsack problem with two knap-

sacks, i.e., two objectives, and 250 items, i.e., 250 attributes in the search space. For each

run 60, 000 individuals are evaluated for a total of 120, 000 objectives. Results are given

for the number of objectives evaluated as opposed to the number of individuals to allow

comparison with the ICEO methods in later sections.

All runs are executed with 120 individuals per generation and are initialized using 150

random individuals. For this analysis generation synchronization is enabled. A maximum

size for the elite population is set at thirty individuals.

Single point crossover is utilized with a probability of eighty percent. The remaining

twenty percent of individuals are created with the clone crossover, i.e., no crossover. Bit-

wise mutation is utilized with an independent probability of 0.25% per bit. Since each of

the 250 bits corresponds to a separate item in the knapsack, a mutation or flip of the bit

places an item in or out of the knapsack. The probability of mutation for an individual is
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1.0 − (1.0 − 0.0025)250 = 46.5%

A total of thirty runs are made for each MOEA combination being evaluated. By using

a different specification for the random number seed, each of the thirty runs contains a

different initial population.

The evaluation of performance is made by measuring the hypervolume of the resulting

Pareto optimal front. The hypervolume is given after evaluation of each 10, 000 objectives.

Three statistics are gathered for the results of all thirty runs: the maximum hypervolume,

the minimum hypervolume, and the median hypervolume.

4.1.2.3 Pareto Rank 1 and 2 Combinations

Runs with raw fitness values from the Pareto rank 1 and Pareto rank 2 fitness methods

provide the largest number of permutations. Since both of these fitness options give the

best fitness to the smallest fitness values, the fitness values may or may not be scaled using

the SPEAII density transformation. These fitness values are inverted using either inverting

transformation. Once inverted, the fitness values may or may not be modified using the

fitness sharing algorithm of the NPGA. These final fitness values are used by either of the

fitness proportionate or binary tournament selection methods. If elitism is used, the fitness

values are used to find the elite population of the next generation using a maximum rank

of one to thirteen. These possibilities result in a total of 448 combinations. Figure 44

illustrates these combinations.

Figure 45 compares the hypervolume after the evaluation of each set of 10, 000 ob-

jectives for the fourteen different elitism possibilities. Error-bars are used to illustrate the

maximum, minimum and median values at each interval. Because there are thirty runs

for each combination and there are thirty-two variations for the fitness, fitness scalers and

selection types for each possibility, the error-bars aggregate the results of 960 runs. The

most distinct performance is that of the runs without elitism. Without elitism, the minimum

and median performance is noticeably below that of the runs with elitism. Once elitism is
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Figure 44: Pareto Rank 1 and Pareto Rank 2 Fitness Combinations

applied the results are less obvious. But, inspection shows that elitism with Pareto optimal

individuals and elitism with Pareto rank 2 individuals contain a lower median value than

elitism with a maximum Pareto rank of three to fourteen. Elitism with a maximum Pareto

rank of three to fourteen shows very little difference in the median values, and the mini-

mum and maximum values do not seem to be consistently better or worse as the maximum

Pareto rank increases beyond three.

It is possible to use zero, one or two fitness scalers that attempt to adjust the fitness

values based on the density of solutions. The scalers are the SPEA II density scaler and

the NPGA fitness sharing scaler. Since each of these can be utilized separately or together

there are a total of four combinations for these density scaling algorithms. Figure 46 com-

pares the results for each of these combinations. The error-bars indicate the results of the

thirty runs for each of the 112 combinations of the variations of fitness, transform scaler,

selection and elitism. Thus, the error-bars indicate the results of 3360 runs. From the fig-

ure, note that without either density scaling method, the median and maximum values are

consistently lower than with density scaling. The figure also reveals that the NPGA fitness

sharing algorithm performs better for the maximum, minimum and average than the SPEA

II density scaling algorithms for all but the first 20, 000 objectives. When the SPEA II

density scaling algorithm is combined with the NPGA fitness sharing algorithm, there is no
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Figure 45: Comparison of Elitism Methods for Pareto Rank Combinations
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Figure 46: Comparison of Density Methods for Pareto Rank Combinations

appreciable difference in the statistics from those of the NPGA fitness sharing algorithm

alone.

Figure 47 compares the results of all runs using fitness proportionate selection with

those using binary tournament selection. The error-bars indicate the results of the thirty

runs for each of the 224 combinations of the variations of fitness, fitness scalers, and elitism

methods, for a total of 6720 runs. The figure illustrates that the fitness proportionate se-

lection method performs better than the binary tournament selection method for the first

30, 000 objectives, but after that point the median and minimum values of the fitness pro-

portionate selection method are consistently below that of the binary tournament selection

method. But, the maximum value of the fitness proportionate selection method outper-

forms that of the binary tournament selection method for eleven of twelve sets of 10, 000

objectives. The minimum value of the binary tournament selection method significantly
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Figure 47: Comparison of Selection Methods for Pareto Rank Combinations

outperforms that of the fitness proportionate selection method for eleven of twelve sets of

10, 000 objectives, and it contains a much smaller deviation in results.

The purpose of the analysis of the 448 combinations is to determine the combinations

of algorithms that should be further analyzed with ICEO techniques. Because the class

of problems of interest are computationally expensive, there is rarely a chance to make

multiple optimization runs. Thus, the most applicable statistic to use when comparing the

results of the thirty runs is the minimum performance. To select a set of diverse algorithms,

the four combinations of fitness, i.e., Pareto rank 1 and Pareto rank 2, and transformation,

i.e., LID transformation 1 or transformation 2 from equations 115 and 116, are analyzed

for each combination.
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To further insure diversity, combinations that perform best during the beginning of op-

timization as well as those that perform best during the end of the optimization are de-

sired. This diversity is accomplished by selecting the top two performers, i.e., those with

the largest minimum hypervolume, for the samples collected after the first three and last

three sets of 10, 000 objectives. Figures 48, 49, 50, and 51 illustrate the combinations

that provide the largest minimum hypervolume for these four combinations of fitness and

transformation. The key of these figures reduces the verbosity of the description with the

acronyms listed in Table 8. As indicated on the four figures, for each of the combination’s

two representative methods are selected for further investigation with ICEO methods in

Section 4.1.3. For each of the four combinations, one of the two selected methods utilizes

binary tournament selection while the other utilizes fitness proportionate selection.

Table 8: List of Acronyms for Combinations of Algorithms

.

Acronym Description

PR1 Pareto Rank 1 Fitness Method
PR2 Pareto Rank 2 Fitness Method
WS Weighted-Sum Fitness method

SPEA Strength Pareto Evolutionary Algorithm Fitness Method
SPEAII Strength Pareto Evolutionary Algorithm II Fitness Method

SD SPEAII Density Fitness scaler
T1 LID Transform scaler 1 based on Equation 115
T2 LID Transform scaler 2 based on Equation 116
FS NPGA Fitness Sharing

FPS Fitness Proportionate Selection
BTS Binary Tournament Selection
MR1 Pareto optimal Elitism

MR2-MR14 Maximum Rank 2 through Maximum Rank 14 Elitism
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Figure 48: Hypervolume for Pareto Rank 1, Transformation 1 Methods that Provide Largest Minimum Hypervolume
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Figure 49: Hypervolume for Pareto Rank 1, Transformation 2 Methods that Provide Largest Minimum Hypervolume
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Figure 50: Hypervolume for Pareto Rank 2, Transformation 1 Methods that Provide Largest Minimum Hypervolume
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Figure 51: Hypervolume for Pareto Rank 2, Transformation 2 Methods that Provide Largest Minimum Hypervolume
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Figure 52: Weighted-Sum Fitness Combinations

4.1.2.4 Weighted-Sum Combinations

The weighted-sum method is utilized with the weight for each objective set to 1.0. Unlike

the Pareto rank fitness measure that assigns small fitness values to the preferred individuals,

the weighted-sum method assigns large fitness values to the best individuals. The magni-

tude of the raw fitness values from the weighted-sum are also dependent on the magnitude

of the objective values. Therefore, any inversion function that would translate the values

for the SPEA II density scaler would be dependent on the function being evaluated. The

remaining components, i.e., NPGA fitness sharing, selection and elitism options, are the

same as those of the Pareto rank combinations. This results in fifty-six combinations as

illustrated in Figure 52.

Figure 53 illustrates the effects of elitism on the hypervolume after the evaluation of

each 10, 000 objectives. Because there are thirty runs for each combination and there are

eight variations for the fitness, fitness scalers and selection types for each possibility, the

error-bars aggregate the results of 240 runs. The most noticeable effect is the abysmal

minimum and median performance of the runs without elitism. Once elitism is applied

the results show that elitism with up to maximum rank of four further improves the per-

formance. But, after 50, 000 objectives there is a slight decrease in performance for those

runs with a maximum rank above four. A maximum rank of four, resulting in improved

performance, is larger than the maximum rank of two found for the Pareto rank methods in
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Figure 53. These differences must be due to the inherent difference in the raw fitness val-

ues. The Pareto rank method raw fitness values are set to the Pareto rank resulting in a large

deviation between Pareto optimal and non-Pareto optimal individuals. Weighted-sum raw

fitness values are based on the sum of objectives, i.e., the distance from a hyperplane per-

pendicular to the specified weight vector, resulting in very little difference in fitness values

between Pareto optimal and non-Pareto optimal individuals. Therefore, Pareto optimal and

near Pareto optimal individuals can only increase their probability of mating dramatically

through elitism, which does include the concept of Pareto optimality.

There are two options for density scaling: with and without NPGA fitness scaling.

There are a total of twenty-eight combinations of the selection and elitism operators. With

thirty runs for each combination, the error-bars represent a total of 840 runs. Figure 54

displays the results with and without NPGA scaling. In contrast to the Pareto rank meth-

ods, the effect of the NPGA fitness sharing algorithm results in poorer performance for all

three statistics in all but the final four error-bars where the maximum is better with fitness

sharing. Again, this contrasting result must be attributable to the relatively small variations

in the raw-fitness values. With fitness sharing, a cluster of the best two individuals residing

farthest from the perpendicular hyperplane will be reduced to half fitness of their raw fit-

ness values, and thus halve the probability of mating. The probability of mating for these

two individuals is the same as solutions that are only half as far from the perpendicular

hyperplane. With Pareto rank fitness methods, the raw fitness values of those leading indi-

viduals would be reduced to be equivalent to Pareto rank two individuals, which are much

closer to the Pareto optimal front than those half the distance from the hyperplane.

There are two options for selection: fitness proportionate selection and binary tourna-

ment selection. There are a total of twenty-eight combinations of the density scaling and

elitism operators. With thirty runs for each combination, the error-bars represent a total of

840 runs. Figure 55 displays the results for the two selection options. These results are also

different from the Pareto rank methods. The resulting statistics are much closer, with the
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Figure 53: Comparison of Elitism Methods for Weighted-Sum Combinations
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Figure 54: Comparison of Density Methods for Weighted-Sum Combinations
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median value being slightly higher for the fitness proportionate selection than the binary

tournament selection method, for all but the first 10, 000 objectives.

Using the same methods outlined in the previous sub-section for selection of the best

combinations, Figure 56 displays the results of the best two weighted-sum combinations

for the minimum performance of the first and last 30, 000 objectives. Three versions of the

weighted-sum method are selected for further inspection. Two of the methods selected use

contrasting selection methods. The third method selected is the only combination found

that utilizes fitness sharing.
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Figure 55: Comparison of Selection Methods for Weighted-Sum Combinations
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Figure 56: Hypervolume for Weighted-Sum Methods that Provide Largest Minimum Hypervolume
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4.1.2.5 SPEA Combinations

For the SPEA method, two sets of variations are provided: thirteen possibilities of elitism,

and the two possibilities for selection. Therefore, there are only a total of twenty-six com-

binations.

The thirteen elitism possibilities provide Pareto optimal elitism and maximum rank two

to thirteen. Note that it is not possible to use the SPEA algorithm without elitism. Also note

that selection with Pareto optimal solutions is the SPEA algorithm setup utilized by Zitzler

[61]. In addition to the maximum rank methods, the SPEA cluster algorithm is also used for

elitism. Figure 57, which compares the results of elitism, shows that median performance

is increased beyond that of the Pareto optimal elitism when the elitism is expanded to

include individuals with larger Pareto rank values. Maximum ranks of two and three show

improvement for all 120, 000 objectives. A maximum rank of four shows improvement for

all but the first 20, 000 objectives. Use of maximum rank above four shows no appreciable

improvement. Note that the use of individuals that are not Pareto optimal is not included

in Zitzler’s description of the SPEA algorithm (see Section 2.2.5), but is included in his

description of the SPEA II algorithm [63] (see Section 2.2.6). There are a total of two

combinations for each selection method examined. Thus, there is a total of sixty runs for

each error-bar.

The second comparison is for the selection methods, which contains the thirteen pos-

sibilities of elitism for a total of 390 runs for each error-bar illustrated in Figure 58. This

comparison illustrates that the binary tournament selection method outperforms that of the

fitness proportionate selection methods in all three statistics for all 120, 000 objectives.

Note that binary tournament selection is the selection method used by Zitzler in the default

algorithm and is the best choice for selection methods.

Using the same methods outlined in Section 4.1.2.3 of the best combinations, Figure

59 displays the results of the best two SPEA combinations for the minimum performance

for the first and last 30, 000 objectives. From this figure note that the only variations in the

158



 7e+07

 7.5e+07

 8e+07

 8.5e+07

 9e+07

 9.5e+07

 20000  40000  60000  80000  100000  120000

H
yp

er
vo

lu
m

e

Number of Objective Evaluations

Pareto Optimal
Rank 2
Rank 3
Rank 4
Rank 5
Rank 6
Rank 7
Rank 8
Rank 9

Rank 10
Rank 11
Rank 12
Rank 13

Figure 57: Comparison of Elitism Methods for SPEA Combinations
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Figure 58: Comparison of Selection Methods for SPEA Combinations
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maximum Pareto rank provide the variation. The maximum ranks of three and eight are

selected for further investigation. In addition, Pareto optimal elitism is also kept, allowing

comparison to the base SPEA algorithm.
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Figure 59: Hypervolume for SPEA Methods that Provide Largest Minimum Hypervolume
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4.1.2.6 SPEA II Combinations

Like the SPEA analysis of the previous subsection, two sets of variations are provided for

the SPEA II combinations: the thirteen possibilities of elitism, and the two possibilities for

selection. Again, there are only a total of twenty-six combinations.

Figure 60 compares the results for elitism, where each error-bar presents the results

for sixty runs. Interestingly, the SPEA algorithm proposed by Zitzler does not limit the

population based on the Pareto optimal, but rather based on fitness values. Thus the highest

rank of thirteen most closely matches that of Zitzler’s algorithm. There are no clear winners

when comparing minimum and median values, but the Pareto optimal only solutions do

provide a noticeable difference for the maximum hypervolume found.

The second comparison is for the selection methods, which contain the thirteen possi-

bilities of elitism for a total of 390 runs for each error-bar illustrated in Figure 61. Like the

SPEA results of the previous section, the binary tournament selection method outperforms

that of the fitness proportionate selection methods in all three statistics for all 120, 000 ob-

jectives. Like the SPEA method, the binary tournament selection is the selection method

used by Zitzler in the default SPEA II algorithm. Also like the SPEA method, the binary

tournament selection provides the best choice for the selection method.

Using the same methods outlined in Section 4.1.2.3 of the best combinations, Figure 62

displays the results of the best two SPEA combinations for the minimum performance for

the first and last 30, 000 objectives. Two combinations are selected for further analysis: one

with fitness proportionate selection, and one with binary tournament selection. Because the

combination selected with binary tournament selection also contains a large maximum rank

(eleven), it is not considered necessary to run the default SPEA II algorithm, which limits

elite individuals only based on the fitness values.
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Figure 60: Comparison of Elitism Methods for SPEA II Combinations
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Figure 61: Comparison of Selection Methods for SPEA II Combinations
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Figure 62: Hypervolume for SPEA II Methods that Provide Best Minimum Hypervolume
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4.1.2.7 Summary for Combinations of MOEA Components

Table 9 presents the sixteen combinations of methods that are selected for further analysis

with the ICEO methods of the next sub-section. These methods are selected based on the

results of the methods that provide the best minimum hypervolume as presented in the

previous sub-sections as well as selection of methods that provide a diversity of algorithm

combinations. Figure 63 displays the hypervolumes for those combinations selected. Note

that the weighted-sum methods perform poorer than any of the other methods.

SPEA II
Density Transform Fitness

Fitness Scaler Scaler Sharing Selection Elitism

PR1 SD T1 FS FPS MR13
PR1 SD T1 FS BTS MR11
PR1 SD T2 FS FPS MR10
PR1 T2 FS BTS MR6
PR2 SD T1 FS FPS MR2
PR2 SD T1 FS BTS MR8
PR2 SD T2 FS FPS MR12
PR2 T2 FS BTS MR13
WS FS BTS MR4
WS FPS MR1
WS BTS MR5

SPEA BTS MR1
SPEA BTS MR3
SPEA BTS MR8

SPEA II SD FPS MR10
SPEA II SD BTS MR11

Table 9: Table of Combinations Selected for Further Analysis
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Figure 63: Comparison of Combinations Selected For Further Analysis
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4.1.3 Analysis of ICEO Methods for 0/1 Knapsack Problem

The following sub-sections detail the performance of the 0/1 Knapsack problem using

ICEO techniques. The sections investigate the use of dynamic objective thresholding,

hypercube-distance scaler, and the hypercube distance dynamic objective ordering method

against three 0/1 Knapsack problems of increasing complexity.

4.1.3.1 Dynamic Thresholding With Two Objectives

To test the new dynamic objective thresholding algorithm, two reachable regions of interest

are selected from the 250 items and two knapsacks problems of the previous section. As

indicated in Figure 64, the first region of interest is defined by L1 = {8500, 9200}, and

the second region of interest is defined by L2 = {9200, 8500}. Although the regions of

interest are symmetrical due to the selection of L1 and L2, the results are not symmetrical

due to the profits, weights and capacities, which are all dependent on the knapsack. For this

investigation the lower bounds are set to zero, S = {0, 0}. For the cases without dynamic

objective thresholding, thresholding is disabled by setting the weights to zero, W = {0, 0}.

For the cases with dynamic objective thresholding, the weights are W = {0.99, 0.99}. The

size of the historic pool for dynamic objective thresholding is set to the same size as the

number current generation, |HT | = |C| = 120. The number of individuals between updates

is also set to 120 individuals, DT = 120.

The goal of ICEO problems is to reach the region of interest as fast as possible. Because

the 0/1 Knapsack problem is not computationally expensive nor are the objectives indepen-

dent, instead of using time, the measure of performance is the number of objectives required

to reach the region of interest. To measure the effectiveness of each algorithm, thirty runs

are made where the run is truncated as soon as the region of interest is reached. A maximum

of 120, 000 objectives is allowed to be evaluated. Horizontal error-bars are used to display

the minimum, maximum and median number of objectives required. Figure 65 presents the
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Figure 64: Regions of Interest For Two Objective Problems

results of reaching the two regions of interest with and without dynamic thresholding en-

abled. The performance of reaching the first region of interest, L = {8500, 9200}, is worse

with dynamic objective thresholding than without it. The performance of reaching the sec-

ond region of interest, L = {9200, 8500}, is better with dynamic objective thresholding than

without it for all combinations except those including the SPEA algorithm.

The lack of improvement for the SPEA algorithm is likely due to the inability of the

SPEA algorithm to function properly when reduced to a single objective. The raw fitness

value of the Pareto optimal individual, i.e., the individual with the best performance when

reduced to single objective, is given a fitness value as:

S (i) =
|{ j| j ∈ C ∧ f (i) � f ( j)}|

|C| + 1
=
|C|
|C| + 1

≈ 1. (117)

With only a single objective, there is only on Pareto optimal individual, |E t| = 1. Thus, the

fitness of non-Pareto individuals is:

F( j) = 1 +
∑

i∈Et , f (i)� f ( j)

S (i) = 1 +
|C|
|C| + 1

≈ 2. (118)
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Figure 65: Performance in Reaching Regions of Interest With and Without Dynamic Ob-
jective Thresholding for Selected Algorithm Combinations Using 2 Knapsacks and 250
Items

Therefore, there is no difference in the probability of mating for non-Pareto optimal indi-

viduals when the problem is reduced to a single objective dimension.

Figure 65 shows that dynamic objective thresholding performance can be detrimental

when the first objective is not very difficult to reach. Also note that without dynamic

objective thresholding, the first region of interest requires fewer objectives to be evaluated

than does the second. Using thresholding, the decrease in the number of objectives required

to reach the second objective, and also a decrease in the deviation of results, indicates that

dynamic objective thresholding can be very effective if the proper objective is selected

first. Thus, there is a need to exploit the order of objectives, such as the hypercube distance

dynamic objective ordering, which will be analyzed in Section 4.1.3.3.
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4.1.3.2 Hypercube Distance Scaler With Two Objectives

The hypercube distance scaler requires the definition of a region of interest in objective

space, but does not require dynamic objective thresholding to be utilized, (see Section 3.3

for details of the HCD scaling algorithm). The HCD scaler can be applied anywhere in the

chain of fitness scalers that are applied after the raw fitness value is calculated. For this

analysis, the HCD scaler is applied as the last operator in the chain of fitness scalers and

contains an offset of zero, α = 0.0. Figure 66 illustrates the improved performance with

HCD scaling. Note that when dynamic objective thresholding is not applied, all algorithm

combinations dramatically improve their performance with the use of HCD scaling. This

implies HCD scaling has broad applicability to MOEA techniques. When dynamic objec-

tive thresholding is applied to the second region of interest, there are several cases, e.g., the

PR1 with T1 cases, where the minimum performance is increased with HCD scaling. But,

even with these cases, the overall deviation in performance of runs is reduced. All of the

remaining selected algorithm combinations show improvement in performance especially

with the first region of interest. Therefore, the remaining analysis uses the HCD scaling

algorithm.

4.1.3.3 Dynamic Objective Ordering With Two Objectives

As illustrated in Figure 65, dynamic thresholding is most effective when the objectives are

in a desired order. To investigate this relationship, this and the following sections present

results where the combinations of algorithms are evaluated in four ways:

1. Without any dynamic objective thresholding, i.e., all objectives are evaluated for

every individual.

2. Dynamic objective thresholding is applied in the order the objectives are specified,

i.e., objective 1 evaluated first, then objective 2 evaluated second.
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Figure 66: Performance Enhancement of Hypercube Distance Scaler in Reaching Regions of Interest With and Without Dynamic
Objective Thresholding for Selected Algorithm Combinations Using 2 Knapsacks and 250 Items
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3. Dynamic objective thresholding is applied in the reverse of the order in which the

objectives are specified, i.e., objective 2 evaluated first, then objective 1 evaluated

second.

4. Dynamic objective thresholding is applied in the order specified by hypercube dis-

tance dynamic objective ordering.

Again, thirty runs are evaluated for each possibility. For a full description of hypercube

distance dynamic objective ordering see Section 3.4.2. The initial order of objectives when

utilizing hypercube distance dynamic objective ordering is set randomly to remove any bias

from the initial objective ordering. The number of individuals in the historic pool |HO| is

set to 500. The number of individuals evaluated between ordering updates DO is set to 100.

Figure 67 illustrates the performance in reaching region of interest 1 for the four meth-

ods of dynamic objective ordering and thresholding applied to each of the selected com-

binations. Figure 68 illustrates the performance in reaching region of interest 2. Remem-

bering that the desire is to optimize results for ICEO problems where the ability to make

multiple runs is not likely, the most important statistic for comparison is the maximum

number of objectives evaluated. Thus, method 1 outperforms method 2 if the maximum

number of objectives required for method 1 is less than the maximum number of objectives

required for method 2.

Note that for the simpler case, i.e., region of interest 1, running without any dynamic

objective thresholding or ordering still outperforms all other dynamic objective threshold-

ing or ordering cases. It is only for the more difficult case, i.e., region of interest 2, that

the dynamic objective thresholding and ordering begins to outperform the runs without any

dynamic objective thresholding or ordering.

For twenty-five out of the thirty-two total combinations presented, the runs with HCD

dynamic objective ordering perform better than the worst possible objective ordering. This

implies that for a majority of the combinations, dynamic objective ordering is able to im-

prove the performance beyond that of the worst possible ordering. It is also important
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Figure 67: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 1 for Selected Algorithm Combinations Using 2 Knapsacks and 250 Items
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Figure 68: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 2 for Selected Algorithm Combinations Using 2 Knapsacks and 250 Items
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to note that six out of seven of the cases, where the HCD dynamic objective ordering

performed worse than any other method, are cases where binary tournament selection is

utilized.

The poor performance of dynamic objective ordering and binary tournament selection

is likely due to an exacerbation of the problem of the combinations of dynamic objective

thresholding and binary tournament selection in general. With dynamic objective thresh-

olding a number of individuals are assigned a fitness based on a single objective. For Pareto

rank with the inversion transformations and the weighted-sum fitness measures, the single

objective value results in a dramatic decrease in the fitness values. When using fitness pro-

portionate selection, this dramatic decrease in fitness results in a corresponding decrease in

the probability of selection for the poorly performing individuals and increases the proba-

bility of selection for the better performing individuals based on the following equation for

the probability of selection of an individual as:

Ps,FPS (i) =
F(i) − FMin

∑

j∈P (F( j) − FMin)
, (119)

where FMin = mini∈P F(i). With the binary tournament selection method, these dramatic

changes in fitness values may only change the probability of selection by reordering the

fitness values. The probability of the kth individual in the sorted list of fitness values is still:

Ps,BTS NR(k, 1) =
2(k − 1)
n(n − 1)

. (120)

Another note is that for some cases, (specifically PR2-SD-T2-FS-HCD-FPS-MR12 and

SPEAII-SD-HCD-FPS-MR10), the performance with HCD dynamic objective ordering

outperforms either static objective ordering. This implies that the optimal objective or-

dering is not static throughout the run and the HCD dynamic objective ordering is able to

modify the objective ordering through the evolutionary epoch to produce results that are

better than any other possible static ordering.
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4.1.3.4 Dynamic Objective Ordering With Four Objectives

The next experiment with the selected combinations is with an increased search space size

of 750 items and an increased objectives space of four objectives. Three regions of interest

are selected. The first region of interest, L1 = {24000, 21000, 21000, 21000}, is expected

to work well when objectives are solved starting with the first objective. The second re-

gion of interest, L2 = {21000, 21000, 21000, 24000}, is expected to work well when objec-

tives are solved starting with the fourth objective solved first. The third region of interest,

L3 = {21000, 24000, 24000, 21000}, is expected to remove the advantage of solving the ob-

jectives in forward or reverse order. For these investigations, the weights for the dynamic

objective thresholds are set to ninety-five percent, W = {0.95, 0.95, 0.95, 0.95}.

Because of the increased difficulty of this problem, the maximum number of objectives

allowed is increased to 300, 000 objective evaluations, the number of individuals per gen-

eration is increased to 280 individuals, |C| = 280, the maximum number of individuals

in the elite population is increased to seventy, |E| = 70, and the number of individuals in

the initial random population is increased to 350. The settings for the dynamic objective

thresholding, dynamic objective ordering, crossover and mutation are identical to that of

the two knapsack 750 item investigation described in Sections 4.1.2.2 and 4.1.3.3.

Figure 69 displays the results when evaluated for region of interest 1 defined by L1 =

{24000, 21000, 21000, 21000}, where the first objective is the most difficult. Note that dy-

namic objective thresholding, whether evaluated in the forward or reverse order, improves

the performance beyond that achieved without dynamic objective thresholding. Dynamic

objective ordering is able to achieve performance similar to that with the anticipated op-

timal ordering. A slight reduction in performance from the optimal order is expected be-

cause with the randomly initialized order, the process must "learn” the optimal order from

the evaluation of previous individuals.

Figure 70 displays the results when evaluated for region of interest 2 defined by L2 =
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Figure 69: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 1 for Selected Algorithm Combinations Using 4 Knapsacks and 750 Items

{21000, 21000, 21000, 24000}, where the fourth objective is the most difficult. Unlike re-

gion of interest 1, dynamic objective thresholding does not always outperform the worst

possible forward ordering case. But, like region of interest 1, dynamic objective ordering is

able find orders that are only slightly worse than the anticipated optimal reverse objective

ordering.

Figure 71 displays the results when evaluated for region of interest 3 defined by L3 =

{21000, 24000, 24000, 21000}, where neither forward nor reverse objective ordering is ex-

pected to be optimal. Despite these anticipated results, the results without dynamic objec-

tive thresholding are able to outperform the results with dynamic objective thresholding in

seven out of the sixteen results, where outperform implies the smallest maximum number

of objective evaluations required. But, these seven results are all associated with the bi-

nary tournament selection method, and thus the arguments of Section 4.1.3.3 discussing

the problems of the combination of binary tournament selection and dynamic objective
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Figure 70: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 2 for Selected Algorithm Combinations Using 4 Knapsacks and 750 Items

thresholding are applicable. Dynamic objective ordering again illustrates good results at

finding an order that performs with close to the best performance. But, it must be noted

that only two of the sixteen possible objective orderings are investigated.

An unanticipated result of this investigation is the good performance of the SPEA algo-

rithm combinations without dynamic objective thresholding or dynamic objective ordering

for all three regions of interest. These results are not duplicated for the two objective or

ten objective knapsack problems. This may show a superiority of the SPEA algorithm

combinations for problems where relatively few objective evaluations are required.

4.1.3.5 Dynamic Objective Ordering With Ten Objectives

The final experiment with the 0/1 Knapsack problem increases the search space size to 1000

items, and increased objectives space of ten objectives. A total of five regions of interest

are selected for investigation. The first region of interest,

L1 = {29000, 29000, 27000, 27000, 27000, 27000, 27000, 27000, 27000, 27000},
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Figure 71: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 3 for Selected Algorithm Combinations Using 4 Knapsacks and 750 Items

is expected to work well with dynamic objective ordering when objectives are solved in the

order specified. The second region of interest,

L2 = {27000, 27000, 27000, 27000, 27000, 27000, 27000, 27000, 29000, 29000},

is expected to work well with dynamic objective ordering when objectives are solved in a

reverse order. The third region of interest,

L3 = {27000, 29000, 27000, 29000, 27000, 29000, 27000, 29000, 27000, 29000},

is expected not to be favored by either forward or reverse objective ordering. The fourth

and fifth regions of interest,

L4 = {25000, 25000, 25000, 25000, 30000, 30000, 25000, 25000, 25000, 25000}

L5 = {25000, 25000, 25000, 25000, 32000, 32000, 25000, 25000, 25000, 25000}
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Figure 72: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 1 for Selected Algorithm Combinations Using 10 Knapsacks and 1000 Items

specify regions that are successively harder to reach with either objective ordering. The

weights for the all dynamic objective thresholding runs are:

W = {0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95, 0.95}.

The settings for the dynamic objective thresholding, dynamic objective ordering, crossover

and mutation are identical to that of the four knapsack 750 item investigation described in

Sections 4.1.2.2 and 4.1.3.4.

Figure 72 displays the results for the first region of interest, L1. Note that dynamic

objective thresholding consistently reaches the region of interest with fewer objectives than

without objective thresholding, regardless of the order of the objectives or the algorithm

combination. Runs with dynamic objective ordering outperform even the static objective

ordering in the forward direction for thirteen out of sixteen algorithm combinations.

Figure 73 displays the results for the second region of interest, L2. With this region of

interest, the dynamic objective ordering displays superiority to both objectives orderings
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Figure 73: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 2 for Selected Algorithm Combinations Using 10 Knapsacks and 1000 Items

for all algorithm combinations, including the reverse order which was anticipated to be a

good performer. The only surprise with this run is the rather good performance of the WS-

HCD-FPS-MR1, WS-HCD-BTS-MR5, and SPEAII-SD-HCD-BTS-MR11 combinations

without dynamic objective thresholding. Similar results for these combinations are also

found for region of interest 1, implying that these regions of interest are for some reason

easily found by these algorithm combinations.

Figure 74 displays the results for the third region of interest, L3. With this difficult

region of interest, many runs without dynamic objective thresholding and several runs with

dynamic objective thresholding, but without dynamic objective ordering, are unable to

reach the region of interest within 150, 000 objectives. As anticipated, results show the

clear superiority of the dynamic objective ordering over the other orders.

Figure 75 displays the results for the fourth region of interest, L4. This chart clearly

displays several results that have been hinted at in previous charts. First, there is a clear
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Figure 74: Performance Enhancement of Ordering Methods in Reaching Regions of In-
terest 3 for Selected Algorithm Combinations Using 10 Knapsacks and 1000 Items

advantage of dynamic objective thresholding with fitness proportionate selection for all

Pareto rank and weighted-sum combinations. In fact, without this combination of fitness

proportionate selection and dynamic objective thresholding, none of the combinations can

reach the region of interest within 150, 000 objectives without dynamic objective order-

ing. Second, there is a clear advantage of dynamic objective ordering for all algorithm

combinations. Third, five algorithm combinations, which have hinted at superiority in the

past, are becoming clear winners with these difficult problems: PR1-SD-T1-FS-HCD-FPS-

MR13, PR1-SD-T2-FS-HCD-FPS-MR10, PR2-SD-T1-FS-HCD-FPS-MR2, PR2-SD-T2-

FS-HCD-FPS-MR12, and WS-HCD-FPS-MR1.

Figure 76 displays the results for the fifth region of interest, L5, which is the hardest

region of interest examined. In this region of interest, the five algorithmic combinations

itemized in the previous paragraph again display their superiority.

183



SPEAII SD       HCD BTS MR11

SPEAII SD       HCD FPS MR10

  SPEA          HCD BTS  MR8

  SPEA          HCD BTS  MR3

  SPEA          HCD BTS  MR1

    WS          HCD BTS  MR5

    WS          HCD FPS  MR1

    WS       FS HCD BTS  MR4

   PR2    T2 FS HCD BTS MR13

   PR2 SD T2 FS HCD FPS MR12

   PR2 SD T1 FS HCD BTS  MR8

   PR2 SD T1 FS HCD FPS  MR2

   PR1    T2 FS HCD BTS  MR6

   PR1 SD T2 FS HCD FPS MR10

   PR1 SD T1 FS HCD BTS MR11

   PR1 SD T1 FS HCD FPS MR13

 0  20000  40000  60000  80000  100000  120000  140000

Number of Objective Evaluations

ROI-4                 No Thresholding
ROI-4 Thresholding with Forward Order
ROI-4 Thresholding with Reverse Order
ROI-4 Thresholding with Dynamic Order

Figure 75: Performance Enhancement of Ordering Methods in Reaching Regions of In-
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4.1.4 0/1 Knapsack Conclusions

In this section the number of algorithmic combinations examined has been down-selected

from 556 to 16 based on the hypervolume of the resulting Pareto fronts. The remaining

sixteen combinations were then down-selected to five combinations based on their perfor-

mance with ICEO problems. The following are the important conclusions reached during

this section.

Five algorithm combinations are suggested for further investigation: PR1-SD-T1-FS-

HCD-FPS-MR13, PR1-SD-T2-FS-HCD-FPS-MR10, PR2-SD-T1-FS-HCD-FPS-MR2, PR2-

SD-T2-FS-HCD-FPS-MR12, and WS-HCD-FPS-MR1. In order to get a relative view of the

performance of these algorithms, Table 10 displays the performance rank of each of the al-

gorithms when run with and without dynamic objective thresholding. Again, because the

emphasis is on ICEO problems, where multiple optimization runs may not be possible, the

measure of performance is the maximum number of objectives required to reach the region

of interest for the set of thirty runs. These measures are then normalized by assigning the

rank of one to the algorithm combination reaching the region of interest with the fewest

objective evaluations, and a rank of ten to the algorithm combination reaching the region of

interest with the most objective evaluations. A total of the ranks indicates a total score for

the algorithms. Those algorithms with consistently good performance should have the low-

est total score. This table indicates the dramatic improvement of those algorithms run with

dynamic objective thresholding over those run without dynamic objective thresholding.

Hypercube distance scaling reduces the number of objectives required to reach the

region of interest for a wide variety of algorithm combinations. This simple-to-implement

component can be added to many of the existing components to help reach the region of

interest faster.

Dynamic objective thresholding can reduce the total number of objectives required.

This should be caveated that it is most important for problems with many objectives to

be solved, i.e., more than two. Also related is that dynamic objective thresholding is best
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when the hardest objectives are solved first. To place objectives in the order of increasing

difficulty requires either a priori knowledge of the problem domain or the ability to learn

the difficulty of objectives.

Hypercube distance dynamic objective ordering can reduce the total number of objec-

tives required. Many times dynamic objective ordering can not surpass even the poorest

static ordering of objectives. But in several cases, dynamic objective ordering is able to

surpass the optimal static objective ordering.

Dynamic objective thresholding is best when combined with fitness proportionate selec-

tion. Discussions presented in Section 4.1.3.3 show that the fitness proportionate selection

is able to dramatically decrease the probability of mating of individuals without removing

them from the population. Binary tournament selection can only reorder the individuals

and is thus unable to dramatically reduce the probability of mating for the poor performers.
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Table 10: Performance Rank for Five Selected Algorithms With and Without Dynamic Objective Thresholding for Each of the 0/1
Knapsack Problems and Regions of Interest. Lower Scores Are Better.

With Dynamic Objective Thresholding
Number of Objectives 2 4 10

Region of Interest 1 2 1 2 3 1 2 3 4 5 Total
PR1-SD-T1-FS-HCD-FPS-MR13 8 8 3 4 5 1 2 5 4 1 41
PR1-SD-T2-FS-HCD-FPS-MR10 5 5 1 2 4 4 4 4 3 3 35
PR2-SD-T1-FS-HCD-FPS-MR2 6 2 4 1 1 3 5 3 1 2 28
PR2-SD-T2-FS-HCD-FPS-MR12 7 1 5 3 2 5 1 1 2 4 31
WS-HCD-FPS-MR1 9 7 2 5 3 2 3 2 5 5 43

Without Dynamic Objective Thresholding
PR1-SD-T1-FS-HCD-FPS-MR13 2 8 6 7 8 8 10 7 7 7 70
PR1-SD-T2-FS-HCD-FPS-MR10 1 6 7 9 10 9 8 8 8 8 74
PR2-SD-T1-FS-HCD-FPS-MR2 3 4 8 6 9 7 7 9 9 9 71
PR2-SD-T2-FS-HCD-FPS-MR12 4 3 10 8 7 10 9 10 10 10 81
WS-HCD-FPS-MR1 10 10 9 10 6 6 6 6 6 6 75
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4.2 Six Problems of Deb

In 1999 Deb [17] created a set of generic problems for testing MOEAs. Then in 2000

Zitzler, Deb and Thiele [62] created instances of these functions with empirical results for

a variety of EAs. Each function is defined using the following relations:

Find the Pareto front for minimal values T1(x)=( f1(x1), f2(x))

subject to f2(x)=g(x2, · · ·, xn) · h( f1(x1), g(x2, · · ·, xn))

where x =(x1, x2, · · ·, xn)

This section examines the performance of the five selected algorithm combinations

against these algorithms to ensure the wide applicability of the methods. In addition to the

five selected algorithm combinations, the SPEA algorithm is included to provide compari-

son with a standard algorithm. As with the 0/1 Knapsack problem with only two objectives,

the ICEO methods applied to these two objective Deb’s T functions are also not expected

to produce significant improvement. Instead, the Deb’s T functions are used to search for

significant decreases in performance.

For each evaluation, 40, 000 individuals, or 80, 000 objectives, are evaluated. Each

generation contains twenty individuals, and twenty individuals are included in the elite

pool. The HCD scaler is given an offset value of 0.2, resulting in a maximum gain of

6, (see section 3.3 for detail of the HCD scaler). Bitwise mutation is included with a bit

rate of 0.25 percent. Single point crossover is applied to create eighty percent of children,

with clone crossover applied to create the remaining twenty percent of children. The initial

population contains 100 individuals created using a random distribution of individuals.

Again, thirty runs are made to create a diversity of solutions.

For runs involving dynamic objective thresholding, the weights were set to eighty per-

cent, W = {0.8, 0.8}. The number of individuals in the historic pool was set to 120,

|HT | = 120. The number of individuals evaluated between updates of the thresholding

was set to 120, DT = 120. For runs involving dynamic objective ordering, the number
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of individuals in the historic pool was set to 500, |HT | = 500. The number of individuals

evaluated between updates of the objective order was set to 100, DO = 100. The following

sub-sections detail each of the six T functions.

4.2.1 Deb’s T1 Function

The first function, T1, results in a convex Pareto-optimal front. The search space is

defined by n = 30 and xi ∈ [0, 1]. The function is defined as follows:

f1(x1) = x1

g(x2, · · ·, xn) = 1 + 9 ·
∑n

i=2 xi

n − 1
(121)

h( f1, g) = 1 −

√

f1

g

For this case, the Pareto front occurs when g(x) = 1. This results in a Pareto front with

f1 = x1 and f2 = 1 − √x1, as illustrated in Figure 77. This figure also displays best Pareto

front found from the thirty runs as well as the worst Pareto front. The best Pareto front is

defined as the Pareto optimal individuals from the set of all individuals found in all thirty

runs, i.e., the Pareto optimal individuals of the union of the sets of Pareto optimal solutions

found for each of the thirty runs. These are the best solutions that could be found using all

thirty runs. The worst Pareto front is defined as the poorest performing individuals from

the union of the sets of Pareto optimal solutions found for each of the thirty runs, i.e., those

solutions of the union of Pareto optimal solutions that do not dominate any other solutions.

Therefore, the worst Pareto front represents the worst performance that can be expected

from any of the thirty runs, or the best performance that can be guaranteed from any single

run.

The desire of Deb’s T functions is to minimize the objectives. This causes some prob-

lems when using the hypervolume measure directly. It can not be guaranteed that the Pareto

optimal front will result in the minimum hypervolume. For example, a single Pareto point
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Figure 77: Ideal, Best and Worst Pareto Optimal Fronts for Deb’s T1 Function for Six Selected Algorithm Combinations
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Figure 78: Resulting Hypervolume of T1 Function for Six Selected Algorithm Combina-
tions

along the front would have a smaller hypervolume than the entire Pareto front. Therefore

to calculate the hypervolume, objectives are recast into an increasing function with values

greater than zero.

For the T1 function the hypervolume is calculated by transforming the objective values

using:

f1,mod = 10 − f1

f2,mod = 10 − f2.

Using the ideal curve, the hypervolume approaches a value of 99.66. Figure 78 displays the

error-bars after the evaluation for each set of 10, 000 objectives, or 5, 000 individuals. From

this figure note that all Pareto rank algorithms perform well with the weighted-sum method

producing much less acceptable solutions. None of the combinations have the performance

of the SPEA algorithm for the T1 function.

Two regions of interest are selected for the problem: L1 = {0.75, 0.15} and L2 =
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Figure 79: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 1 for Six Selected Algorithm Combinations Using Deb’s T1 Function

{0.30, 0.70}. Figure 77 displayed the locations of these ROIs in objective space along with

the resulting solutions found using the algorithms without HCD scaling or dynamic or static

objective thresholding. Figures 79 and 80 display the results for the four ordering methods

for these two regions of interest. Based on the position of the ROIs in objective space, and

the number of objectives required for evaluation, region of interest 1 appears to be more

difficult. The use of dynamic objective thresholding with HCD dynamic objective ordering

is able to outperform methods without these ICEO methods for a majority of the Pareto

rank methods. Use of the ICEO methods with the weighted sum and SPEA methods is

detrimental.
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Figure 80: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 2 for Six Selected Algorithm Combinations Using Deb’s T1 Function
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4.2.2 Deb’s T2 Function

The second function, T2, results in a concave Pareto-optimal front. The search space is

defined by n = 30 and xi ∈ [0, 1]. The function is defined as follows:

f1(x1) = x1

g(x2, · · ·, xn) = 1 + 9 ·
∑n

i=2 xi

n − 1
(122)

h( f1, g) = 1 −
(

f1

g

)2

Again, the Pareto front occurs when g(x) = 1. This results in a Pareto front with f1 = x1

and f2 = 1 − x2
1, as illustrated in Figure 81. From this figure, note that the weighted-sum

method displays the largest disparity between the best and worst Pareto solutions found.

For the T2 function the hypervolume is calculated by transforming the objective values

using the same calculation as the T1 function:

f1,mod = 10 − f1

f2,mod = 10 − f2.

Using the ideal curve, the hypervolume approaches a value of 99.31. Figure 82 displays

the error-bars after the evaluation for each set of 10, 000 objectives, or 5, 000 individuals.

From this figure note that all Pareto rank algorithms perform well with the weighted-sum

method producing much less acceptable solutions.

Two regions of interest are selected for the problem: L1 = {0.35, 1.10} and L2 =

{0.75, 0.70}. Figures 83 and 84 display the results for the four ordering methods for these

two regions of interest. With the first region of interest, the Pareto rank methods are able to

realize improvements with dynamic objective thresholding when the objectives are evalu-

ated in the forward order, but not when evaluated in the reverse order. Dynamic objective

ordering is able to moderate the results to always improve the performance beyond that of

no objective thresholding regardless of the initial objective order. Unfortunately, none of
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Figure 81: Ideal, Best and Worst Pareto Optimal Fronts for Deb’s T2 Function for Six Selected Algorithm Combinations
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Figure 82: Resulting Hypervolume of T2 Function for Six Selected Algorithm Combina-
tions

the ICEO methods of hypercube distance scaling, dynamic objective thresholding, or dy-

namic objective ordering are helpful with the weighted-sum or SPEA algorithms. For the

second region of interest, the ICEO techniques were only helpful with the PR1-SD-T1-FS-

HCD-FPS-MR13 algorithm.
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Figure 83: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 1 for Six Selected Algorithm Combinations Using Deb’s T2 Function
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Figure 84: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 2 for Six Selected Algorithm Combinations Using Deb’s T2 Function
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4.2.3 Deb’s T3 Function

The third function, T3, is designed to test an EA’s ability to evolve for a Pareto-optimal

front that is not contiguous. The search space is defined by n = 30 and xi ∈ [0, 1]. The

function is defined as follows:

f1(x1) = x1

g(x2, · · ·, xn) = 1 + 9 ·
∑n

i=2 xi

n − 1
(123)

h( f1, g) = 1 −

√

f1

g
− f1g sin(10π f1)

The Pareto front again occurs when g(x) = 1. This results in a Pareto front with f1 = x1

and f2 = 1 − √x1 − x1 sin(10πx1), as illustrated in Figure 85. Note the addition of the

sine function in h, which causes the discontinuity with period of 1/5. The difficulty of

this problem is illustrated in Figure 85 by the large disparity between the best and worst

solutions for all of the optimization techniques. These results imply that regions of the

Pareto optimal front are not found in all thirty runs, and some regions of the Pareto front

are not found in any of the thirty-runs.

For the T3 function the hypervolume is calculated by transforming the objective values

using the same calculation as the T1 function:

f1,mod = 10 − f1

f2,mod = 10 − f2.

Using the ideal curve, the hypervolume approaches a value of 107.00. Figure 86 displays

the error-bars after the evaluation for each set of 10, 000 objectives, or 5, 000 individuals.

From this figure note the much larger deviation in results for all methods implying the

difficulty of assuring convergence.

Two regions of interest are selected for the problem: L1 = {0.2, 0.6} and L2 = {0.7, 0.0}.

Figures 87 and 88 display the results for the four ordering methods for these two regions of
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Figure 85: Ideal, Best and Worst Pareto Optimal Fronts for Deb’s T3 Function for Six Selected Algorithm Combinations
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Figure 86: Resulting Hypervolume of T3 Function for Six Selected Algorithm Combina-
tions

interest. Note that neither region of interest displays better results with dynamic objective

ordering.
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Figure 87: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 1 for Six Selected Algorithm Combinations Using Deb’s T3 Function
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Figure 88: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 2 for Six Selected Algorithm Combinations Using Deb’s T3 Function
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4.2.4 Deb’s T4 Function

The fourth function, T4, is designed to test an EA’s ability to evolve for a multi-modal

system. The function contains 219 local Pareto-optimal fronts. The search space is defined

by n = 10, x1 ∈ [0, 1] and x2, · · ·, xn ∈ [−5, 5]. The function is defined as follows:

f1(x1) = x1

g(x2, · · ·, xn) = 1 + 10(n − 1) +
n

∑

i=2

(

x2
i − 10 cos(4πxi)

)

(124)

h( f1, g) = 1 −

√

f1

g

The Pareto front occurs when g(x) = 1.25. This results in a Pareto front with f1 = x1 and

f2 = 1 −
√

x1/1.25. Figure 89 displays the largest discrepancy between the best and worst

Pareto optimal fronts of any of the T functions.

For the T4 function the hypervolume is calculated by transforming the objective values

using:

f1,mod = 2 − f1

f2,mod = 35 − f2.

Using the ideal curve, the hypervolume approaches a value of 69.49. Figure 90 displays the

error-bars after the evaluation for each set of 10, 000 objectives, or 5, 000 individuals. From

Figure 90, note the much larger disparity between the best and worst hypervolume. Close

examination of Figures 89 and 90 reveals the superiority of the PR2-SD-T2-FS-FPS-MR12

algorithm for the best, worst and average performance.

Two regions of interest are selected for the problem: L1 = {0.2, 12.0} and L2 =

{0.8, 12.0}. Figures 91 and 92 display the results for the four ordering methods for these

two regions of interest. Neither of the regions of interest is predictably found using any

method.
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Figure 89: Ideal, Best and Worst Pareto Optimal Fronts for Deb’s T4 Function for Six Selected Algorithm Combinations
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Figure 91: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 1 for Six Selected Algorithm Combinations Using Deb’s T4 Function
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Figure 92: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 2 for Six Selected Algorithm Combinations Using Deb’s T4 Function
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4.2.5 Deb’s T5 Function

The fifth function, T5, is designed to be deceptive. The search space is defined as a

binary string with n = 11, x1 is a 30 bit string, x1 ∈ {0, 1}30 and x2 through xn are 5 bit

strings, x2, · · ·, xn ∈ {0, 1}5. The function is defined as follows:

f1(x1) = 1 + u(x1)

g(x2, · · ·, xn) =
n

∑

i=2

v(u(xi)) (125)

h( f1, g) =
1
f1

The function u(xi) is the unitation, or number of ones in the binary string xi. The v(u(xi))

function, defined as

v(u(xi)) =































2 + u(xi) if u(xi) < 5

1 if u(xi) = 5

(126)

results in the deceptive nature. Note that v(u(xi)) is minimal with a value v(u(xi)) = 1 when

xi is all ones, and v(u(xi)) is maximum with a value v(u(xi)) = 6 when only one zero is

included in xi. Figure 93 displays the performance of each of the algorithms in finding the

region of interest. Also note that all methods miss sections of the Pareto front sometimes,

but that the PR2-SD-T2-FS-FPS-MR12, weighted-sum and SPEA algorithms always miss

sections of the Pareto front.

For the T5 function the hypervolume is calculated by transforming the objective values

using:

f1,mod = 35 − f1

f2,mod = 11 − f2.

Using the ideal curve, the hypervolume approaches a value of 332.72. Figure 94 displays

the error-bars after the evaluation for each set of 10, 000 objectives, or 5, 000 individuals.
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Figure 93: Ideal, Best and Worst Pareto Optimal Fronts for Deb’s T5 Function for Six Selected Algorithm Combinations
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Figure 94: Resulting Hypervolume of T5 Function for Six Selected Algorithm Combina-
tions

From this figure note that all Pareto rank algorithms perform well with the weighted-sum

method producing much less acceptable solutions. None of the combinations have the

performance of the SPEA algorithm for the T5 function.

Two regions of interest are selected for the problem: L1 = {5.0, 2.1} and L2 = {20.0, 0.51}.

Figures 95 and 96 display the results for the four ordering methods for these two regions of

interest. Both regions of interest display an improved performance with dynamic objective

ordering for all algorithm combinations except the weighted-sum.
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Figure 95: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 1 for Six Selected Algorithm Combinations Using Deb’s T5 Function
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Figure 96: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 2 for Six Selected Algorithm Combinations Using Deb’s T5 Function
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4.2.6 Deb’s T6 Function

The sixth function, T6, is designed to test two difficulties. First, solutions are not dis-

tributed evenly along the Pareto-optimal front. Second, the density of solutions is lowest

near the front and highest away from the front. The search space is defined as n = 10, and

xi ∈ [0, 1], and x2, · · ·, xn ∈ {0, 1}5. The function is defined as follows:

f1(x1) = 1 −
e−4xi

sin6(6πx1)

g(x2, · · ·, xn) = 1 + 9 ·
∑n

i=2 xi

n − 1
(127)

h( f1, g) = 1 −
(

f1

g

)2

The Pareto front occurs when g(x) = 1. Figure 97 displays the results for each of the

optimization methods. From this figure note that a large section of the Pareto front is never

found. Also note the difference between the best and worst Pareto fronts for several of the

methods.

For the T6 function the hypervolume is calculated by transforming the objective values

using:

f1,mod = 10 − f1

f2,mod = 10 − f2.

Using the ideal curve, the hypervolume approaches a value of 69.49. Figure 98 displays

the error-bars after the evaluation for each set of 10, 000 objectives, or 5, 000 individuals.

From this figure note that all Pareto rank algorithms perform well with the weighted-sum

method producing much less predictable solutions.

Two regions of interest are selected for the problem: L1 = {0.2, 2.0} and L2 = {0.8, 1.0}.

Figures 99 and 100 display the results for the four ordering methods for these two regions

of interest. Region of interest two is readily found, but objective thresholding and dynamic
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Figure 97: Ideal and Derived Pareto Optimal Fronts for Deb’s T6 Function for Six Selected Algorithm Combinations
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Figure 98: Resulting Hypervolume of T6 Function for Six Selected Algorithm Combina-
tions

objective ordering only improve the performance for the PR2-SD-T2-FS-FPS-MR12 algo-

rithm combination.
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Figure 99: Performance Enhancement of Ordering Methods in Reaching Region of Inter-
est 1 for Six Selected Algorithm Combinations Using Deb’s T6 Function
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Figure 100: Performance Enhancement of Ordering Methods in Reaching Region of In-
terest 2 for Six Selected Algorithm Combinations Using Deb’s T6 Function
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4.2.7 Results of Deb’s Functions

The use of the Deb’s T functions was twofold. The first purpose was to verify that the base

optimization algorithms proposed, without ICEO enhancements, perform well against a va-

riety of optimization problems. The second purpose was to verify the ICEO enhancements

perform as expected with a variety of optimization problems.

To measure the success of the first purpose, a modified hypervolume was used. Table

11 ranks the poorest performance from each of the thirty runs for each of the six algo-

rithm combinations against each of the six Deb’s T functions at the end of the evaluation of

80, 000 objectives. From this table note that the SPEA algorithm, although the best at the

T1, T2 and T5 problems, performed the poorest on T3, and T4. The other surprising result

was that the PR1-SD-T1-FS-HCD-FPS-MR13 algorithm, which performed well for most

problems, performed the poorest on the deceptive T5 problem. All Pareto rank base al-

gorithm components, without the ICEO enhancements, performed well against the diverse

Deb’s T functions. This implied the weighted-sum algorithm should not be included.

Table 11: Rank of the Performance for Each of the Thirty Runs for Each of the Six Al-
gorithm Combinations the Six Deb’s T Functions (1 has the best performance, 6 has the
poorest performance)

Algorithm T1 T2 T3 T4 T5 T6 Total

PR1-SD-T1-FS-FPS-MR13 3 2 4 2 6 2 19
PR1-SD-T2-FS-FPS-MR10 5 3 2 3 2 4 19
PR2-SD-T1-FS-FPS-MR2 2 5 5 4 3 1 20
PR2-SD-T2-FS-FPS-MR12 4 4 1 1 4 5 19
WS-FPS-MR1 6 6 3 5 5 6 31
SPEA-BTS-MR1 1 1 6 6 1 3 18

To analyze the second purpose of verifying the ICEO enhancements performed as ex-

pected with a variety of optimization problems, Table 12 displays the ranked results of the

evolution with and without dynamic objective thresholding. Those solutions that did not

reach the region of interest in the 80, 000 objective evaluations were given the largest rank
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value; i.e., a value of 12. The 0/1 Knapsack results given in Table 10 indicated improve-

ments in performance when using dynamic objective thresholding with only two objectives

were not expected. But, the results of PR1-SD-T1-FS-HCD-FPS-MR13 and PR2-SD-T1-

FS-HCD-FPS-MR2 show an improvement in reaching the region of interest with dynamic

objective thresholding. Overall, the only dramatic decreases in performance with ICEO

methods were with the WS-HCD-FPS-MR1 and SPEA-HCD-BTS-MR1 algorithms. In

conclusion, all Pareto rank methods are applicable to ICEO improvements. Therefore, all

Pareto rank methods have met the two purposes of the Deb’s T functions and are candidates

for use in ICEO optimization problems.
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Table 12: Rank of the Poorest Performance for Each of the Thirty Runs for Each of the Six Algorithm Combinations of the Six Deb’s
T Functions (1 has the best performance, 6 has poorest performance)

With Dynamic Objective Thresholding
Algorithm T1 T2 T3 T4 T5 T6

Region of Interest 1 2 1 2 1 2 1 2 1 2 1 2 Total
PR1-SD-T1-FS-HCD-FPS-MR13 1 1 1 1 7 9 12 12 1 5 12 3 65
PR1-SD-T2-FS-HCD-FPS-MR10 12 10 5 8 6 10 12 12 4 1 12 4 96
PR2-SD-T1-FS-HCD-FPS-MR2 2 2 3 6 8 5 12 12 2 3 12 11 78
PR2-SD-T2-FS-HCD-FPS-MR12 12 8 8 9 9 7 12 12 3 2 12 9 103
WS-HCD-FPS-MR1 12 12 12 12 11 8 12 12 12 11 12 12 138
SPEA-HCD-BTS-MR1 12 11 10 10 10 11 12 12 5 4 12 7 116

Without Dynamic Objective Thresholding
PR1-SD-T1-FS-HCD-FPS-MR13 3 3 2 3 4 6 12 12 10 7 12 1 75
PR1-SD-T2-FS-HCD-FPS-MR10 12 4 9 5 1 2 12 12 9 6 12 5 89
PR2-SD-T1-FS-HCD-FPS-MR2 12 8 4 2 2 1 12 12 6 10 12 2 83
PR2-SD-T2-FS-HCD-FPS-MR12 12 7 7 7 5 3 12 12 8 8 12 10 103
WS-HCD-FPS-MR1 12 6 11 11 12 12 12 12 7 12 12 8 127
SPEA-HCD-BTS-MR1 4 5 6 4 3 4 12 12 11 9 12 6 88
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4.3 Conclusions

Section 4.1 utilized the 0/1 Knapsack problem to reduce the number of algorithmic combi-

nations examined from 556 to 16 based on the hypervolume of the resulting Pareto fronts.

The 0/1 Knapsack problem then down-selected the remaining sixteen combinations to five

combinations based on their performance with ICEO problems, resulting in the following

five functions to be evaluated: PR1-SD-T1-FS-HCD-FPS-MR13, PR1-SD-T2-FS-HCD-

FPS-MR10, PR2-SD-T1-FS-HCD-FPS-MR2, PR2-SD-T2-FS-HCD-FPS-MR12, and WS-

HCD-FPS-MR1. Table 10 detailed the ranking of these functions for the various 0/1 Knap-

sack problems and regions of interest.

Section 4.2 then utilized the six Deb’s T function problems to test the robustness of the

five selected algorithms to ICEO and non-ICEO optimization. Tables 11 and 12 presented

a summary of these results, which found the weighted-sum to not be a robust algorithm.

Table 13 ranks the performance of the remaining four Pareto combinations. Again, the

rank is based on the largest number of objective evaluations required to reach the region

of interest for the set of thirty runs executed. From this table, there are no clear winners

or losers. Each algorithm performs best and worst on different regions of interest. This

indicates a non-dependence of the fundamental underlying fitness methods. The analysis

of the 0/1 Knapsack problem indicated the advantages of the SPEA II density methods

and NPGA fitness sharing algorithms with all Pareto rank combinations. The robustness

analysis has shown there is little difference between any combinations of the Pareto rank 1

versus Pareto rank 2 and the Transformation 1 versus Transformation 2 methods.

The inconclusiveness of a clear leader based on performance and robustness implies

that the decision can be based on other factors. Chapters 2 and 3 performed a great deal

of complexity analysis, which culminated in the results presented in Table 4. Since most

components are identical and Transformation 1 and Transformation 2 should have the same

complexity, the remaining component is the Pareto rank, which was quite different. Recall
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the complexity for Pareto rank 1 is

(2 + 2q)|P|2 − (1 + 2q)|P|,

whereas the complexity for Pareto rank 2 is

2 + 2q
3
|P|3 + |P|2 + 10 − 2q

3
|P|.

Therefore, there is a reduction of complexity with the Pareto rank 1 methods which should

result in better run-times.

The total complexity of the fitness algorithms for the PR1-SD-T1-FS-HCD-FPS-MR13

and PR1-SD-T2-FS-HCD-FPS-MR10 becomes:

C(PR1 − S D − T − FS − HCD) = C(PR1) + C(S D) + C(T2) + C(FS ) + C(HCD)

= (2 + 2q)|P|2 − (1 + 2q)|P| +

|P|3 + (1 + q)|P|2 − (1 + q)|P| +

|P| (2 + 3(|LID| − 1)) +

(2 + q)|P|2 − (1 + q)|P| +

(1 + 3q) |P|

= |P|3 + (5 + 4q)|P|2 + (1q + 3(|LID| − 1)) |P| (128)

There is still a dependence on |P|3; but it is less than the (2q/3)|P|3 term that would arise

from the use of the Pareto rank 2 method.

The conclusions for this chapter are:

1. Algorithm combinations PR1-SD-T1-FS-HCD-FPS-MR13 and PR1-SD-T2-FS-HCD-

FPS-MR10 are robust ICEO algorithm combinations.

2. Hypercube distance scaling reduces the number of objectives required to reach the

region of interest for a wide variety of algorithm combinations.
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3. Dynamic objective thresholding can reduce the total number of objectives required,

especially when there are more than two objectives to be solved.

4. Dynamic objective thresholding is best when the hardest objectives are solved first.

To place objectives in the order of increasing difficulty requires either a priori knowl-

edge of the problem domain or the ability to learn the difficulty of objectives.

5. Hypercube distance dynamic objective ordering can reduce the total number of ob-

jectives required.

6. Dynamic objective thresholding is best when combined with fitness proportionate

selection.
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Table 13: Performance Rank for Pareto Rank Selected Algorithms for each of the 0/1 Knapsack and Deb’s T Function Problems and
each Region Interest

O/1 Knapsack Results
Number of Objectives 2 4 10

Region of Interest 1 2 1 2 3 1 2 3 4 5 Total
PR1-SD-T1-FS-HCD-FPS-MR13 4 4 2 4 4 1 2 4 4 1 30
PR1-SD-T2-FS-HCD-FPS-MR10 1 3 1 2 3 3 3 3 3 3 25
PR2-SD-T1-FS-HCD-FPS-MR2 2 2 3 1 1 2 4 2 1 2 20
PR2-SD-T2-FS-HCD-FPS-MR12 3 1 4 3 2 4 1 1 2 4 25

Deb’s T Function Results
Algorithm T1 T2 T3 T4 T5 T6

Region of Interest 1 2 1 2 1 2 1 2 1 2 1 2 Total
PR1-SD-T1-FS-HCD-FPS-MR13 1 1 1 1 2 3 4 4 1 4 4 1 27
PR1-SD-T2-FS-HCD-FPS-MR10 4 4 3 3 1 4 4 4 4 1 4 2 38
PR2-SD-T1-FS-HCD-FPS-MR2 2 2 2 2 3 1 4 4 2 3 4 4 33
PR2-SD-T2-FS-HCD-FPS-MR12 4 3 4 4 4 2 4 4 3 2 4 3 41

220



CHAPTER V

FLARE PATTERN OPTIMIZATION

Chapter 1 introduced the basics of MOEA optimization. Chapter 2 provided descriptions of

several of the existing MOEA methods. Chapter 3 presented the details of the ICEO algo-

rithms contributed by this thesis. Chapter 4 presented the evaluation and down-selection of

combinations of methods developed by this research using fast-running 0/1 Knapsack and

Deb’s T functions. All of these chapters now reach a climax in a true ICEO application.

The resulting good performing algorithm combinations from Chapter 4 are now applied

in this chapter to the optimization of flare patterns for aircraft self-protection. Flares are

expendable pyrotechnic or other heat generating devices ejected from aircraft to confuse

missile seekers into losing track of their target, and thus missing the targeted aircraft. Flare

patterns are optimized by traversing the search space of flare pattern attributes in search of

a flare pattern that is effective at multiple aspect angles and ranges.

Unlike the evaluation of the 0/1 Knapsack and Deb’s T functions, flare pattern ob-

jective evaluation contains objectives that are independent and computationally expensive,

i.e., they require a separate, computationally expensive simulation for the evaluation of

each objective. Additionally, objective run-times are dependent on both the objective be-

ing evaluated and the genome being evaluated, i.e., run-times are dependent on the threat

launch position and the effectiveness of the flare pattern. Because of these dependencies,

the problem provides a valid and challenging evaluation of the dynamic objective ordering

methods.

Section 5.1 provides a description of the flare pattern optimization problem. This sec-

tion details the search space of flare attributes, which are flare types, flare dispensers,

and flare timing. The section also describes the Imaging Seeker And Missile Simulation
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ISAMS, which is the function evaluator for this problem. The objectives created by the

function evaluator are the performances of the flare patterns against simulated missiles

launched from various positions.

Section 5.2 details the performance of different sets of the algorithms against the flare

pattern design problem. Use of this truly ICEO problem allows the comparison of the time

required for evolution instead of the less meaningful number of objectives evaluated pre-

sented in Chapter 4. A total of six experiments was performed. These six experiments

provide quantitative data for five comparisons to be made for the effectiveness of dynamic

objective thresholding, HCD objective ordering, auto objective ordering, generation syn-

chronization, and HCD scaling. The conclusions reached during this chapter are then given

in Section 5.3.

5.1 Problem Description

The overall objective of this optimization is to design a flare pattern that can be dispensed

from an aircraft that can defeat an imaging seeker missile from multiple aspect angles

and ranges. The constraints on dispensing the flare pattern define the search space. Flare

patterns are evaluated with the GTRI-developed Imaging Seeker And Missile Simulation,

ISAMS. The objective is to move the aircraft as far as possible from the center of the

field of view of the missile. The region of interest is defined as moving the aircraft outside

the field of view for all aspects and angles. The following subsections discuss each of the

aspects in detail.

5.1.1 Search Space

The search space is defined by the characteristics of the flares ejected. A flare pattern

contains up to twenty flares. Each flare has three associated attributes. First, multiple flare

types are possible, each with different burn profiles, resulting in differing intensity and

radial profiles. For this experiment, eight different flare types were created. The intensity
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and radial profiles do not model any existing flares to remove dependence on potentially

classified information. Second, the flare is ejected from a dispenser on the host aircraft.

For this experiment, 16 ejector locations were specified for the host aircraft. The third and

final attribute controlling the spatial dispersion of the flares is the time of ejection of the

flare. For this experiment, flares can be ejected from 0.0 to 4.095 seconds after the pattern

is initiated, with a minimum resolution of one millisecond.

Three attributes for each of the 20 flares define a 60-dimensional search space. Each

flare has

8 ∗ 16 ∗ 4, 096 = 23+4+12 = 219 = 524, 288 (129)

possibilities, resulting in

219∗20 = 2380 = 2.46 ∗ 10114 (130)

possible flare patterns.

5.1.2 Function Evaluator

The function evaluator for flare pattern evaluation is the ISAMS model [21]. This simula-

tion was developed by GTRI under funding from the Naval Research Labs and Air Force

Wright Laboratories. The simulation provides a model of several possible missile air-

frames. The airframe is controlled using the output of a model of several possible imaging

tracker models. The imaging tracker model is presented with imagery of the view of the

background, target aircraft, and any associated countermeasures, e.g., flare patterns.

For this experiment the ISAMS1 missile frame was utilized. The target aircraft for the

experiment was the A-10 aircraft flying straight and level at a speed of 100 meters per

second at an altitude of 1000 meters.

The background utilized is a clear sky condition. Because there are no other sources of

false signals, this background is considered to be the most difficult condition for counter-

measure. The sensor for experiments is a 256 by 256 focal plane array sensor with a 15 Hz

update rate. The sensor has a 2.0 by 2.0 degree field of view.
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The tracking algorithm has a track gate G with static size of 128 by 128 pixels centered

on the previous track position. The background level B for the algorithm is determined by

taking the average value of the pixels on a single pixel wide band around the track gate G.

The track position is determined using an area-weighted centroid tracking algorithm. The

track point is the centroid of the pixels in the track gate larger than the background level.

Let I(i, j) be a pixel of the resulting image, where i and j are the horizontal and vertical

positions of the pixels respectively. The horizontal track point is

Th =

∑

(i, j)∈G∧I(i, j)>B i
∑

(i, j)∈G∧I(i, j)>B 1
(131)

and the vertical track point is

Tv =

∑

(i, j)∈G∧I(i, j)>B j
∑

(i, j)∈G∧I(i, j)>B 1
(132)

This experiment provides an example of the importance of the selection of a proper

objective value. Although the simple objective is to cause a miss, an objective value that

is continuous is required to allow comparisons of individuals’ performance before break-

lock occurs. Therefore, the measure uses the angle of the aircraft from the center of the

field of view. But, selection of a single value for this angle from the center of the field

of view is not representative during early stages of evolution. For example, a flare pattern

may cause a disturbance in the track point, but the aircraft is re-acquired by the end of the

simulation. Likewise, it is anticipated that a loss of track at the end of the simulation is

more important than a loss of track at the beginning of the simulation. Therefore, the final

objective measure for an individual i is:

f (i) =
end
∑

t=0

t ∗ E(t) (133)

where t is the simulation time in 10 millisecond steps, and E(t) is the error signal, or the

angle of the aircraft from the center of the field of view.

224



X
Launch Position
(3000,−4000,0)

Objective 4
Launch Position
(0,−2000,0)

−3km

5km

Y

Objective 3

Objective 1
Launch Position
(−3000,−4000,0)

Objective 2
Launch Position
(−1000,−4000,0)

Starting Aircraft Position
(1200,0,−1000)
Velocity of 100m/sec

2km 3km 4km1km0km−2km−3km−4km

0km

1km

3km

4km

−1km

−1km

−2km

Figure 101: Launch Positions for the Four Objectives

5.1.3 Objective Space

Each objective is a separate simulation of a missile launch from a different location. Four

launch locations are selected, as illustrated in Figure 101. These launch points result in

viewing the aircraft from multiple aspect angles and multiple ranges.

Differences in launch points result in different amounts of simulation times required

to reach the target. These different amounts of simulation time then result in different

quantities of run-time to complete the simulation. The run-times are further affected by the

individual being evaluated. When an aircraft leaves the field of view of the imaging tracker,

the simulation time is reduced because the simulation is no longer required to render the

aircraft. Table 14 displays example run-times required for each of the objective evaluations

without a flare pattern, with a random flare pattern, and with an optimized flare pattern.
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Table 14: Positions of Objectives, and Comparisons of Simulations With Various Types of
Flare Patterns.

Objective Position Simulation No Random Optimized
(Meters) Time Pattern Pattern Pattern

(sec.) Run-time Run-time Run-time
(sec.) (sec.) (sec.)

1 (-3000,-4000,0) 25.20 348 344 193
2 (-1000,-4000,0) 11.87 164 161 154
3 ( 3000,-4000,0) 8.45 119 120 106
4 ( 0,-2000,0) 5.96 88 87 78

Figure 102 displays the results of an example output from the ISAMS simulation for

each of the four objectives. Note that the aspect angle of the aircraft becomes apparent.

This figure was created with a randomly distributed flare pattern, which does not cause

break-locks in any of the scenarios.

5.1.4 Experiment Design

A series of six experiments were executed, where each experiment contained 10 trials. Each

of the 10 trials contained a different random number resulting in different initial individuals

as well as different objective orderings. The six experiments were:

1. No Objective Thresholding. An experiment with no dynamic objective ordering and

no dynamic objective thresholding serves as a basis for the run with dynamic objec-

tive thresholding.

2. No Objective Ordering. An experiment with dynamic objective thresholding and no

dynamic objective ordering was compared to the previous experiment for the mea-

surement of the effectiveness of dynamic objective thresholding

3. HCD Objective Ordering. An experiment with HCD objective ordering was com-

pared to the previous experiment for measurement of the effectiveness of HCD ob-

jective ordering.
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Figure 103: Relationships of Flare Pattern Experiments

4. Auto Objective Ordering. An experiment with auto objective ordering was compared

to experiment two for measure of the effectiveness of auto objective ordering.

5. No HCD Scaling. An experiment with the HCD scaling disabled was compared to

experiment four for measure of the effectiveness of HCD scaling.

6. Generation Synchronization. An experiment with the generation synchronization

enabled was compared to experiment four for measure of the effectiveness of the

removal of the need for generation synchronization.

These six experiments allow the five comparisons to be made for the effectiveness of dy-

namic objective thresholding, HCD objective ordering, auto objective ordering, generation

synchronization, and HCD scaling. Figure 103 illustrates the relationships of the six exper-

iments resulting in the five comparisons.
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5.1.5 Multiple Objective Evolutionary Algorithm Setup

The fitness function utilizes the Pareto rank 1 "raw fitness” calculation followed by four

fitness scalers. The first fitness scaler was the SPEA2 density scaler. The second fitness

scaler was the Linear Interpolated Data Transformation 1 utilized in Section 4.1.2.1, which

contained samples of the function

T1(x) =
1

2(x−1)
.

Table 7 itemizes and Figure 43 illustrates the data used for the LID transformations. The

third fitness scaler was the fitness-sharing algorithm of the NPGA as described in Section

2.2.4.2. This fitness-sharing algorithm was initialized for 30 niches. The fourth and final

fitness scaler was the HCD Scaler as detailed in Section 3.3. For the HCD scaler, the

Holder coefficient was set to two for Euclidean distance, p = 2, and the offset was set one

fifth, α = 0.2. The HCD scaler was not used for experiment five in order to determine the

effectiveness of runs with and without HCD scaling.

Selection was performed using fitness-proportionate selection. Crossover was per-

formed using the clone operator for twenty percent of the individuals. The remaining eighty

percent of the individuals were created using single point crossover.

Mutation was performed using bitwise mutation with a probability of mutating each bit

of 0.0025. From equation 130, there is a total of 380 bits required to encode the genome,

resulting in a probability of mutation for an individual of

Pm = 100
(

1.0 − (1.0 − 0.0025)380
)

= 61.4% (134)

Dynamic objective threshold was performed with lower limits of

S = {5000, 5000, 5000, 5000}, (135)

and the upper limits, defining the region of interest, of

L = {20000, 20000, 20000, 20000}. (136)
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The weights for each objective are

W = {0.75, 0.75, 0.75, 0.75}. (137)

The value of 5000 was found via experimentation to be obtainable by some random individ-

uals. Likewise, the value of 20000 results break-locks for the experiments. For experiment

1, dynamic objective thresholding was disabled by setting the weights to zero,

W = {0.0, 0.0, 0.0, 0.0}. (138)

Elitism was performed using an elite gene pool with a maximum of 400 individuals.

Elitism was found by removing genome with duplicate objective values, removing genome

with Pareto rank greater than five, and then pruning the individuals with the smallest fitness

value until the elite pool contained only 400 individuals.

Each run was initialized with 500 random individuals. Each generation contained 20

individuals. Generation synchronization was disabled for all but experiment six. Ten 1, 800

MHz Athlon processing nodes were dedicated to the optimization.

Objective ordering was utilized for all cases. The initial order of objectives was set

randomly to remove any bias from the initial objective ordering. A sample of 10 runs,

each with a different random number seed, was performed to sample the various ordering

possibilities. The number of individuals in the historic pool |HO| was set to 500. For most

experiments, the number of individuals evaluated between ordering updates DO was set to

200. For experiments one and two the objective order was disabled by setting DO to a large

number.

5.2 Results

Table 15 presents the results for each of the 10 runs for each of the six experiments. The

times given are wall clock times required for the optimizations to reach the region of interest

defined by L. A total of 30.9 calendar days was required to complete the optimizations,
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reflecting a total of 309 central processing unit (CPU) days. The following subsections

detail each of the five comparisons illustrated in Figure 103 made for the six experiments.

Figure 104 displays the results of an optimized flare pattern. Note the loss of the aircraft

from the field of view by 4.5 seconds for all four objectives.
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Table 15: Results of Flare Pattern Design Experiments

Run Experiment 1 Experiment 2 Experiment 3
# No No HCD

Dynamic Objective Objective
Threshold Ordering

Time # # Time # # Time # #
(min) Obj. Ind. (min) Obj. Ind. (min) Obj. Ind.

1 1,375 4,861 1,211 1,046 4,933 1,832 1,674 6,492 2,332
2 1,097 3,894 964 427 2,063 1,123 335 1,445 886
3 1,319 5,015 1,253 1,038 3,195 1,352 921 3,017 1,257
4 1,275 4,621 1,149 823 3,721 1,675 562 2,430 1,257
5 1,110 3,888 971 516 2,048 1,109 635 2,897 1,909
6 887 3,093 733 655 1,651 872 944 3,153 1,269
7 874 3,016 749 224 1,071 678 243 1,127 688
8 1,216 4,376 1,094 336 1,330 768 573 2,291 1,468
9 771 2,531 630 387 864 590 729 2,054 953

10 696 2,209 550 792 2,189 1,010 1,582 5,357 2,094

Total 10,620 37,504 9,304 6,244 23,065 11,009 8,198 30,263 14,113

Avg/Min N/A 3.53 0.88 N/A 3.69 1.76 N/A 3.69 1.72

Run Experiment 4 Experiment 5 Experiment 6
# Auto No With

Objective HCD Generation
Ordering Scaling Synchronization

Time # # Time # # Time # #
(min) Obj. Ind. (min) Obj. Ind. (min) Obj. Ind.

1 693 2,968 1,288 1,283 5,587 2,070 568 1,916 960
2 310 1,569 992 288 1,405 1,006 193 895 658
3 601 1,792 890 1,795 5,772 2,379 1,422 3,978 1,038
4 660 2,837 1,266 630 2,360 1,191 444 1,655 1,661
5 913 4,177 2,118 939 3,890 1,750 1,102 3,862 895
6 567 1,597 912 1,155 3,855 1,647 919 2,266 1,116
7 157 904 672 169 950 688 304 1,177 739
8 424 2,034 1,184 299 1,225 873 410 1,290 778
9 357 731 547 357 737 550 370 738 558

10 586 1,633 890 806 2,484 1,253 781 1,927 958

Total 5,268 20,242 10,759 7,721 28,265 13,407 6,513 19,704 9,361

Avg/Min N/A 3.84 2.04 N/A 3.66 1.74 N/A 3.02 1.44
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Figure 105: Comparison of Dynamic Objective Thresholding Results

5.2.1 Dynamic Objective Thresholding Comparison

Dynamic objective thresholding is used to terminate the evaluation of an individual before

all objectives are evaluated if it is determined on the basis of the evaluated objectives that

the individual is not likely to improve performance. It is only by not evaluating all objec-

tives for every individual that speed improvements can be made. Details of the dynamic

objective thresholding method can be found in 3.4.1.

Figure 105 illustrates a comparison of the results of experiment one and two from Table

15. Dynamic objective thresholding runs require, on an average, only 58.8 percent of the

time required for those runs made without dynamic objective thresholding. In contrast to

the 0/1 Knapsack runs of Section 4.1.3, these significant improvements were made despite

the low number of individuals required for each evolutionary epoch.

A larger run-time was required with dynamic objective thresholding for only one out

of 10 of the evolutionary runs. Note that this larger time was received on the evolutionary

run that required the least time and fewest individuals to find a solution without dynamic
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objective thresholding. This implies that dynamic objective thresholding should further

improve run-time for problems that require more individuals.

Dynamic objective thresholding does not decrease the number of individuals required.

In fact, an 18.3 percent increase in the number of individuals, from 9, 304 to 11, 004, is

required. But, the number of objectives decreased by 38.5 percent, from 37, 504 to 23, 065,

for runs using dynamic objective thresholding. This decrease in the number of objectives

reduced the average time for an individual from 11.4 minutes for runs without dynamic ob-

jective thresholding to 5.68 minutes per individual for runs with dynamic objective thresh-

olding.
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5.2.2 Hypercube Distance Ordering Comparison

Each time the HCD ordering method is called, the average objective distance to the region

of interest is calculated for those individuals with solved objective values in each objec-

tive dimension. The objective with the largest average distance to the region of interest

is then placed at the front of the objective list. Likewise, the remaining objectives are or-

dered to contain successively decreasing average distances to the region of interest. Further

technical details of the HCD ordering method can be found in Section 3.4.2.1.

Figure 106 displays the time required for evolution for each of the 10 runs for exper-

iments two, three and four. Although this section is only concerned with the hypercube

distance ordering methods, the figure supports the analysis of the hypercube distance or-

dering and auto ordering methods. The figure and Table 15 illustrate that the HCD ordering

method only outperforms the runs without dynamic objective ordering for three out of 10

trials and on average required 31.3 percent longer to run. Interestingly, the number of ob-

jectives individuals evaluated per minute is very close to that required for those without

objective ordering. The HCD ordering method simply requires 28.2 percent more individ-

uals to be evaluated.

Figure 107 displays the transitions in objective order made for each of the 10 evolu-

tionary trials. Analysis of this figure displays the propensity of objective one to evolve

to be executed first or second, regardless of the initial random objective order. Table 16

itemizes the percent of times each objectives were evaluated in each of the four possible

objective orderings during the final two objective orders. The final two objective orders

were selected to weight each run equally, and to remove the initial transition effects during

the first orderings.

From this table, note that the first two objectives were selected first 95 percent of the

time. This implies that these objectives were likely the most difficult objective; i.e. resided

furthest from the region of interest most of the time. Also note that if objective one is

selected first, objective two is rarely selected second. The converse is also true. This
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Table 16: Percent of Final Two Orderings For Each Objective For Ten Trials That Each
Objective Was In A Particular Objective Order for the HCD Objective Ordering Method

Objective Percent
First Second Third Fourth

1 55 5 25 15
2 40 5 20 35
3 5 35 35 25
4 0 55 20 25

implies that objectives one and two, although both difficult, are orthogonal in objective

space.

Contrary to the conjectures in Section 3.4.2.2, even though the slow running objective

number one was selected to be executed first 55 percent of the time, it was actually the in-

creased number of individuals that resulted in the reduced performance and not the increase

in run-time for each individuals.
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5.2.3 Auto Objective Ordering Comparison

The auto objective ordering method attempts to order objectives not just based on the ob-

jective values, but also based on the time required to evaluate each objective. Individuals

maintained in the historic population HO are "replayed” to determine the objective order

that minimizes the time required to evaluate the historic population and still result in a pop-

ulation of individuals where the Pareto optimal solutions are similar to the Pareto optimal

solutions of the current objective ordering. Relative to the HCD ordering method, the auto

ordering method is much more complex. Section 3.4.2.2 further details the algorithmic

operation of the auto objective ordering method.

Table 15 and Figure 106 give the results for the comparison of the auto objective or-

dering method of experiment four with the dynamic objective thresholding only method of

experiment two. These sources illustrate that the auto objective ordering method required

18.5 percent less time to evaluate. The auto ordering methods helped the speed of evolution

in two ways. First, the time required to evaluate individuals was reduced by 13.8 percent

from 5.67 to 4.89 minutes per individual. Second, the number of individuals was reduced

slightly by 2.3 percent to 10, 759.

Figure 108 displays the transitions in objective order made for each of the ten evolu-

tionary trials. Table 17 itemizes the percent of times each objective was evaluated in each

of the four possible objective orderings during the final two objective orders. From this

table, note that 80 percent of these objective orders begin with the third and fourth objec-

tive. Recall from Table 16, that 95 percent of the objective ordering began with objectives

one and two for the HCD objective ordering method. These differences are caused by the

fundamental differences in the objective ordering methods. The HCD objective orderings

were selected based on their relative difficulty in reaching the region of interest, thus the

selection of objectives one and two. In contrast, the auto objective ordering method or-

dered objectives based on the time required to evaluate each objective. Table 14 showed

that objectives three and four were the fastest running objectives. These two objectives
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were selected to be executed first for 80 of percent of the orders.

Table 17: Percent of Final Two Objectives Orders That Each Objective Was In A Particular
Objective Order for the Auto Objective Ordering Method

Objective Percent Evaluated
First Second Third Fourth

1 10 10 40 40
2 10 30 35 25
3 45 25 15 15
4 35 35 10 20

5.2.4 Hypercube Distance Fitness Scaling

The HCD scaling algorithm utilizes the distance to the hypercube to scale fitness values.

The basic premise of the HCD scaling method is that those individuals that reside closest to

the region of interest are most likely to produce children that reside yet closer to the region

of interest. Since the region of interest is defined by a hypercube in objective space, the

closer the individual is to the hypercube the higher the probability of selection. Section 3.3
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provides a detailed description of this algorithm.

Table 15 and Figure 109 support comparison of the auto objective ordering method with

and without HCD distance fitness scaling. Using experiment five, the experiment without

HCD scaling, as the basis for our comparison to experiment number four, the experiment

with HCD scaling, supports the following discussions in terms of the improvements added

by HCD scaling.

Runs with HCD distance scaling reduced the run-time by 31.8 percent from 7, 721

minutes to 5, 268 minutes. From 109, note that six out of ten of the runs with HCD scaling

only performed slightly better or slightly worse than the runs without HCD scaling. But,

the remaining four runs performed much better, resulting in a greatly improved average

performance and reduction in the standard deviation from 480 to 218 minutes. Note that

these four runs contained some of the largest run-times either with or without HCD scaling.

Therefore, HCD scaling most benefits conditions where the initial objective ordering is

poorest, e.g., 4321, 1432 and 1234. Similar reductions in the standard deviation were found
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for the 0/1 Knapsack problem illustrated in Figure 66 and discussed in Section 4.1.3.2.

The improved performance was a result of two factors. First, the total number of indi-

viduals decreased by 19.8 percent from a total of 13, 407 to 10, 759 individuals. Second,

the average time per individual decreased by 15.1 percent from 5.76 to 4.89 minutes per

individual. These two decreases imply there were two sources of improvements. The re-

duction in the number of individuals evaluated was expected by the premise of the HCD

scaling algorithm, which is that by giving individuals nearer the region of interest higher

probability of mating the region of interest will be reached faster.

The reduction in the average time per individual is more difficult to explain. These

reductions must be a result of the dynamic objective thresholding, which is in turn coupled

to the dynamic objective ordering method. Therefore, by focusing selection on individuals

near the region of interest, the HCD scaling method must provide the ordering method with

a more appropriate ordering for those individuals near the region of interest.

5.2.5 Synchronization Effects

Generation synchronization times occur at the end of each generation when processors

must wait for the evaluation of other individuals being evaluated on other processors before

the next generation of individuals is available for evaluation. These synchronization times

become most detrimental for this particular class of problems where:

1. The computation time for objective evaluations is large in comparison to the time

required to perform the EA operations.

2. The evaluation time may be dependent on the genome being evaluated.

3. Disparate numbers of objectives may be evaluated because of dynamic objective

thresholding.
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The only other possible source of synchronization times is that processors may have various

processing speeds due to their processing speed and loading. This source of synchroniza-

tion problems was purposefully obviated by using dedicated, identical processing nodes to

allow for meaningful comparisons.

To overcome the synchronization problems, this research contribution has designed and

implemented an approach that obviates the need for synchronization. To implement this

approach, each processor is given an individual to evaluate. Remaining individuals in the

current generation, C, are given to a processor for evaluation as they finish the evaluation

of their current individual. When there are no more individuals in the current generation

that need evaluating, or are not in the process of being evaluated, then the software creates

the next generation based on the current population and the elite population. Further details

of this method can be found in Section 3.2.2.

Table 15 and Figure 110 support comparison of the generation synchronization method.

Using experiment six, the experiment with generation synchronization, as the basis for the

comparison to experiment number four, the experiment with generation synchronization re-

moved, supports the following discussions in terms of the improvements made by removing

generation synchronization.

Runs without generation synchronization reduced the run-time by 19.2 percent from

6, 513 minutes to 5, 268 minutes. From Figure 110, note that four out of ten of the runs

with generation synchronization performed better than those without generation synchro-

nization. But, the remaining six runs performed better without generation synchronization,

with the largest three run-times all being dramatically reduced. Overall this compression

of run-times resulted in a reduction of the standard deviation from 394 to 218 minutes.

The total number of individuals increased by 14.9 percent from 9, 361 to 10, 759. The

increase in the number of individuals is due to the decrease in the quality of individuals

available at the time of selection. Reviewing the setup, there were 10 processors, n = 10,

20 individuals per generation, |C| = 20, and a maximum of 400 individuals in the elite pool,
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|E| = 400. At the time of creating a new generation the population of individuals used in

selection for runs with generation synchronization is:

PS = E ∪ C (139)

Those runs without generation synchronization will have |C|−n = 20−10 = 10 individuals

from the present current population completely solved, and the previously unsolved ten

individuals from the previous generation. Therefore, the population of individuals for the

selection without generation synchronization does not have all of the information from the

current generation that is available with generation synchronization. In addition, especially

during the early phases of evolution, the current generation contains the best individuals,

i.e., individuals that dominate the current elite individuals.

Despite the increased number of individuals evaluated, the removal of generation syn-

chronization still resulted in improved performance because processors are not idle. The

removal of idle time decreased the average time required per individual by 15.1 percent

from TGS = 6.95 to TNGS = 4.89 minutes per individual.
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This example points out the tradeoffs that can be made with the size of the current

population, |C|. As |C| increases, the percent of the total time required to evaluate the entire

generation spent wait for synchronization is reduced. But as the value of |C| increases, the

average time between when a good performing individual is evaluated and when it creates

children is also increased, which is likely to also increase the number of children required

to be evaluated.

5.3 Conclusions

Five innovations were evaluated for performance improvements: dynamic objective thresh-

olding, HCD objective ordering, auto objective ordering, HCD fitness scaling, and removal

of generation synchronization. All innovations, except the HCD objective ordering method,

were shown to be effective for flare pattern development.

Dynamic objective thresholding is able to reduce the run-time by 41.2 percent for the

flare pattern design problem. When dynamic objective ordering is coupled with auto dy-

namic objective ordering, the run-time is reduced by 50 percent.

The HCD ordering method was shown to be effective for four objective 0/1 Knapsack

problems in Sections 4.1.3.4. Under the stressing conditions of the flare pattern design

problem, the HCD ordering method not only selected the slowest running objective to be

evaluated first, as anticipated could happen, but also increased the total number of objec-

tives required. Therefore, the HCD objective ordering method is only recommended for

those problems with objectives that require nearly identical run-times, and that are also

very similar in their difficulty.

The HCD fitness scaling method reduced the run-time by 31.8 percent. The improved

performance was a result of a decrease in number of individuals evaluated, and a decrease

in the average time per individual. A decrease in the number of individuals evaluated was

expected based on the premise of the HCD scaling routine that giving individuals nearer the

region of interest a higher probability of mating improves the progress toward the region
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of interest. The improvement in the average time per individual was not expected, and is

argued to originate from focusing selection on individuals near the region of interest, which

allows a more appropriate ordering for those individuals near the region of interest to be

found by the auto objective ordering methods.

The removal of the need for generation synchronization reduced the run-time by 19.2

percent. This increase was strictly a result of a dramatic improvement in the average run-

time of individuals by the removal of wait times. There was actually an increase in the

number of individuals required for evolution due to reduced knowledge provided at the time

of creating a new generation due to the evaluation of only half of the current generation at

that time.
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CHAPTER VI

AAR-44A OPERATIONAL FLIGHT PROGRAM

OPTIMIZATION

The AAR-44A is a missile warning receiver utilized on United States Air Force Special

Operation Forces aircraft. It operates by sensing energy over a range of frequencies in the

infrared spectrum, and makes a determination of whether the energy is from a background

source or a missile. If a source is determined to be a missile, then the missile warning

receiver makes a declaration resulting in a counter-measure action by other systems of the

aircraft.

This chapter summarizes the use of MOEAs for optimizing the performance of the

AAR-44A Operational Flight Program (OFP). This effort was performed under contract

number F09603-99-D-0207-0023, identified as Georgia Tech Research Institute, (GTRI),

project number A-6706 with Warner Robins Air Logistics Center Warner Robins GA, WR-

ALC/LNEXS. Unclassified and classified reports were created for this effort [51, 50].

The purpose of this research was to improve the performance of the AAR-44A OFP.

With the aid of government technical input, four measures of performance were selected:

probability of declaration, false alarm performance, time to intercept minimum, and time

to intercept average. These objectives were further divided into threat groups and regions

of performance to create a twenty-two dimensional objective space. By inspection of the

source code, 156 constants within the OFP were identified as having the possibility of

improving system performance. These constants, along with their associated limits, define

a 156-dimensional search space.

To optimize the OFP performance against field collected false alarms data, "live-fire"
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missile data, and simulated missile data, MOEAs were applied to find the set of Pareto opti-

mal individuals in a twenty-two dimensional objective space. The objective space was then

reduced back to a four dimensional objective space mentioned above using a weighted-sum.

The results of this optimization showed dramatic improvements in all four dimensions.

During this study the following improvements and innovations were made:

1. The performance of the AAR-44A was dramatically improved, (see Section 6.3.2).

2. A method for automated extraction of performance measures, and meta-data for ex-

isting data sources were created, (see Sections 6.1.3, and 6.1.4).

3. The important constants for future optimization were identified, (see Section 6.4).

4. Tools for modification of source code to support dynamic setting of constant values

were created, (see Section 6.1.3.2).

5. Techniques for creating genetically diverse initial population were derived, (see Sec-

tion 6.2).

This chapter is divided into four subsections. Section 6.1 describes the infrastructure

required for objective evaluation during optimization and evaluation, including descriptions

of the OFP evaluator, search space, objective space, flight test data, live-fire data, and

simulation data. Section 6.2 presents the purpose, setup and results of asexual reproduction,

which were necessary to create a genotypicly and phenotypicly diverse population. Section

6.3 presents the setup and results of more traditional sexual reproduction. Section 6.4

presents the sensitivity analysis that was able to reduce the number of constants required

to implement the optimization from 156 to 74. Section 6.5 presents the results of the

evaluation of the Pareto optimal individuals from the sexual optimization. Section 6.6

presents the results of a specialized optimization for high-altitude cases only. Section 6.7

then provides the conclusions reached during this chapter.
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6.1 Operational Flight Program Objective Evaluation

Before optimization, a high fidelity simulation of the system had to be improved, tested

and verified. Field test data had to be tested and categorized. Simulation data was created

to supplement the field test data where field test data was unavailable. The search space

and objective space had to be selected. The function evaluator was modified to accept a

description of an individual within the search space. Finally, the function evaluator was

modified to automate the extraction of the objectives. The following sub-sections discuss

many of these details.

6.1.1 Search Space

The search space for this problem was created by a visual inspection of the OFP. The

OFP was written in C++, and thus constants were implemented in one of two ways; as a

"#define” for a macro, or as the setting of constant during initialization. The source code

contained very few "hard-coded" constants listed directly within the calculations. Even

constants such as ninety percent were declared with a "#define” macro. The 156 constant

names, data types, and valid ranges were placed in an XML file that met the syntax of the

GTMOEA search space DTD found in Section 3.1.1.

6.1.2 Objective Space

For the AAR-44A, twenty-two objectives were identified before starting optimization:

eighteen for threats and four for false alarm performance as described below.

6.1.2.1 Threat Objectives

As with most pattern recognition systems, the two basic performance measures are the true

positive and false positive performance. For a missile warning receiver the true positive

performance results in the probability of detection, Pd, defined as the number of valid

declarations for threats that occurred divided by the total number of threat runs.
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Missile warning receivers must not only make a declaration, they must also make the

declaration while there is still enough time to perform a counter-measure reaction. There-

fore, there is a trade-off between increasing the quantity of data analyzed by the algorithms

and making a declaration fast enough to provide an effective counter-measure response.

The time available for counter-measure is the time to intercept, TTI; i.e., the time between

the declaration and the time that the missile will impact the aircraft if a counter-measure

is not employed. To measure this performance, two objectives were selected. First, the

time to intercept minimum, TTIMin, is defined as the minimum time before intercept that

a declaration is received the same set of true positive cases. Second, the time to intercept

average, TTIAvg, is defined as the average time before intercept that a declaration is received

for a set of true positive cases. It is highly desirable to increase both of these measures.

Threat data were divided into six groups. First, the threats were divided into Tier 1, 2

and 3 classes, which allowed application of different weights of importance for different

types of threats. Second, the launch ranges for the threats were divided into short and long.

For each of these six threat groups, three objectives were defined, resulting in a total of

eighteen threat objectives.

6.1.2.2 False Alarm Objectives

With missile warning receivers, a false positive results in a false alarm, FA, which in turn

results in a highly undesirable and unnecessary counter-measure action. False alarm per-

formance can be measured in several ways. For this effort, the desire was to minimize the

number of false alarms. Because the optimization software tries to find maximum values

for all objectives, the measure of performance was selected as the Negative of the False

Alarm Count, NFAC.

After discussions with the government, four NFAC objectives were agreed upon by

dividing the data into four separate categories. First, the data was divided into urban and

rural based on the notations made during data collection. Second, the data was divided into
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low and high altitudes based on the associated platform state extracted from the recorded

navigation data.

6.1.3 Function Evaluator

The function evaluator for the determination of objective values was Version 6.1 of the

AAR-44A OFP modified to support the following: execution on the Linux platform, inser-

tion of input sensor and navigation data from data files, setting of constants from standard

input, and automated extraction of performance measures. The following sub-sections de-

tail the modifications of the simulation to accomplish these requirements.

6.1.3.1 Rehost of Simulation to Linux Platform

Under previous programs, GTRI had developed a simulation of the AAR-44A OFP that

operated on a Windows platform. This capability was ported to the Linux platform so

that a cluster of Linux machines could be used to perform the optimization. During this

porting process, the starting OFP was substituted with version 6.1, and many problems in

the sensor and source simulation were identified and corrected. The performance of the

resulting simulation was compared to results of the hardware, resulting in differences that

were minor and attributable to the differences in the processor and compiler [11].

6.1.3.2 Automated Setting of Constant Values

Given a valid version of the rehosted OFP, then the source code was modified to support

modification of the constant values from an external source. To meet the requirements of

the optimization executable, GTMOEA, the source code must allow setting of constants

interactively via an XML description. This was accomplished by providing support for

the acceptance of an individual’s description via standard input. An individual’s XML

description, defined by the search space description, was standardized into a DTD that

described the AAR44Settings XML node. This description was flexible enough to support

the specification of as many or as few of the possible constants as desired. If a constant was
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not specified, the previous value loaded into the OFP was utilized. This capability allowed

quick pruning of the search space during the training, sensitivity analysis and evaluation

processes. The acceptance of the Default tag via standard input was also added to support

the return of all constants to their default values.

Modification of the OFP source code was accomplished with the development of a

special purpose perl script. Using a list of constants, this perl script modified the OFP

source to change the setting of constants and #defines into variables. It also supplied the

hooks to change these variables via the XML description. The perl script worked well with

the current version 6.1 of the OFP. Requirements analysis, users manual and test reports

were created for this task [14, 12, 13].

6.1.3.3 Automated Measure Extraction

The base AAR-44A OFP was responsible for making declarations. It was not aware of

whether the declarations were valid. To support automated optimization, the simulation

had to be modified to take the declarations of the OFP and compare them with the input

data to determine if the declaration was a valid declaration or a false alarm and to update

the measures of performance appropriately [28].

As will be described in Section 6.1.4, meta-data was added to all input sensor and nav-

igation data to facilitate the calculation of the four basic objectives measures: Pd, TTIMin,

TTIAvg, and NFAC. The modified simulation provided the following capabilities: reinitial-

ization of the objective measures, the input of many different threat or false alarm data sets,

and the report of the objective measures for these sets of data. All of these actions were

performed via standard input and output providing the interface of the MOEA software

with multiple instantiations of the AAR-44A simulation.
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6.1.4 Training and Evaluation Data

The term training data is used to identify the data used during the optimization process.

A separate, slightly larger, set of data was reserved for the evaluation of the resulting so-

lutions after optimization was completed. Three types of data were utilized. First, data

was available for a small number of live-fire missile shots. Second, these live-fire missile

shots were supplemented with simulations of missile shots to provide a significant number

of true positive events. Third, false positive data was available from data recorded during

flights of the system around areas containing many potential false alarm sources.

All data was placed in a Pass-1000 ARC file format to support use by both the simula-

tion and the hardware. For each ARC file, a meta-data description was developed to aid in

the automated extraction of objective values. Specifically for threats, the time of launch and

the time of closest approach were listed. Also for threats, an azimuth and elevation window

were included. This allowed the automated objective solvers to only count declarations in

the valid temporal and spatial windows as true declarations. Other declarations were con-

sidered false alarms. Likewise, if multiple declarations occurred for a single missile, then

only the first declaration was utilized in the calculation of the objective measures.

Some periods of time for ARC files should be ignored. In particular, declarations can

occur from live-fire data when the missile is past the aircraft. By ignoring this time period,

this event was not classified as a declaration or a false alarm. Likewise, invalid declares

can occur in the first few seconds of startup for the system. The warmup period is re-

quired because the OFP must receive valid navigation data, which occurs asynchronously

to the sensor data. The warmup period was ignored in our simulations. The following

sub-sections detail each of these sources of data.

6.1.4.1 Live-Fire Data

Four requirements were determined for live-fire shots:
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1. Only live-fire, free flight data can be used. Track launches or static firings are not

usable.

2. The missile launch and flight is such that the missile is representative of an actual

threat launch.

3. Data from an AAR-44A system was recorded for the specific case.

4. Data was available at GTRI.

Criterion 1 limited the data set to live-fire launches at the White Sands Missile Range

(WSMR) Aerial Cable Facility. Three WSMR data sets were available for consideration:

WSMR 1998, WSMR 2000, and WSMR 2001. No usable data was found from WSMR

1998 because no shots met criteria three and four. Only twenty-eight missile shots were

found from the remaining WSMR 2000 and WSMR 2001 data sets that met all of the

criteria [49].

The live-fire missile shots were perhaps the weakest link in the training and evaluation

of the OFP for two reasons. First, the quantity of live-fire data was not sufficient for statisti-

cally significant performance analysis of the probability of detection. Second, this data was

used to create the signature data files that feed the simulation of threats for the AAR-44A.

Therefore, the simulated data used to increase the statistical significance of true positive

data also may not contain the proper statistical variations in signature.

The twenty-eight shots available were divided into two sets of fourteen shots for train-

ing and evaluation. All shots were also classified into six sub-categories based on the threat

type (tier one, two or three), and the launch distance (short or long). In addition to pro-

viding the 1553 data and meta-data for optimization and evaluation, it was also necessary

to provide recommendations for division of all selected data into training and evaluation

groups. This division was done to ensure threats from each class existed in both the training

and evaluation data sets [48].
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6.1.4.2 Simulated Threat Data

Simulated missile shots were created to mimic shots at an aircraft in various operational

scenarios. Five scenarios were chosen with government input on the requirements [38]:

1. Launch against an aircraft in straight and level flight at 500 feet.

2. Launch against an aircraft in orbit at 6, 000 feet.

3. Launch against an aircraft in orbit at 10, 000 feet.

4. Launch against an aircraft in takeoff.

5. Launch against an aircraft in landing.

Launches were made using the DISAMS missile models. All launches were then used

to create ten different AAR-44A simulation inputs. This was done by varying the sen-

sor initial azimuth angle by thirty-six degree increments. This was intended to capture

the significant differences in sampling of the temporal signature that could be realized in

operation. A total of 4, 440 simulated missile shots were created [39].

These simulated shots were again classified into six sub-categories based on the threat

type (tier one, two or three), and the launch distance (short or long). Three tenths of the data

was used for training (1, 332 shots), and seven tenths of the data was used for evaluation

(3, 108 shots). The division was made by selecting three of the ten possible initial azimuth

angles for training and the remaining seven for evaluation.

6.1.4.3 False Alarm Data

All false alarm data was captured from flight tests, which occurred in late 1996, and early

1997. With the input and concurrence of the government, the data was divided into four

categories based on the conditions of rural or urban, and high or low altitude. The condi-

tions of rural or urban were noted during data collection. The altitude was determined from

navigation data. There were approximately forty hours of false alarm data available [49].
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The data was divided into two groups for training and evaluation. Efforts were made during

this division to create nearly equal divisions in the four categories, and in the number of

tracks within each data set [48].

Note that the data as delivered contained errors in the navigation data. The roll had

been inverted. This data was post-processed by GTRI to correct this error. The corrected

navigation data was used during optimization and evaluation.

6.1.4.4 Binary Formating

Before optimization began, the data was transformed from an ARC format to a binary data

format. This was done by saving the data out of the simulation after it had been read into

the data structures required by the simulation. Also, many messages not used by the OFP

were removed.

This translation was performed for two reasons. First, converting to a binary data format

slightly improved the speed of the simulation by placing the data in a format closer to that

required by the simulation. Second, and more importantly, it reduced the size of the data

files required for training by a factor of two. This was important because the entire 1

gigabyte of data required for training was placed on the local drive of every computer node

used during the optimization process to drastically reduce the quantity of data served by

the NFS file servers.

6.2 Asexual Reproduction

This section details the motivation, setup and results of asexual reproduction.

6.2.1 Motivation

Asexual reproduction was utilized in response to problems found when trying to start evolu-

tion with sexual reproduction. Sexual reproduction is typically initialized with a population

that is uniformly distributed; i.e., each attribute of each genome is randomly selected to lie

within the attribute boundaries. In many optimization problems this is a valid approach,
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because each location in the search space maps to a non-trivial location in objective space.

This is true with most research problems such as Deb’s T functions as well as with other

military application such as flare pattern design. Unfortunately, when a uniform distribution

of values was used with AAR-44A OFP optimization problem, it resulted in a population

in which 99.5 percent of the individuals created mapped to the same location in objective

space. That location contained no declaration for any data; i.e., a system with zero false

alarms, but also zero probability of detection.

The 0/1 Knapsack problem is able to use "genome correction” to correct fatal individ-

uals. A similar approach was dismissed as too costly for the OFP optimization because it

requires computationally expensive objective evaluations to correct the genome. Thus, to

overcome these problems, a method was needed to create an initial non-trivial population.

These problems and the solution represent an important innovation.

To create a population of non-trivial solutions, it was necessary to start with a solution

that was known to be valid. The default settings of the OFP were just such a solution.

Therefore, solutions were needed that contained attribute settings that were close to the

default values. The ability to mutate variables with a normal distribution provided the abil-

ity to create such values. The default settings of the OFP became the starting population

of one. This initial individual was then cloned and modified with a high probability mu-

tation to produce more individuals. The following generations then utilized selection and

mutation only to produce more children. Without crossover, this method of optimization

becomes similar to the asexual reproduction of organisms.

6.2.2 Setup

Evolution then utilized two of the three evolutionary operators: selection, and mutation.

Much of the setup was the result of the recommendations of Chapter 4. The asexual re-

production process was seeded with evaluation of the default instance. Each subsequent

generation contained 200 individuals. Since this was a very computationally expensive
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problem with a total of 30 minutes required for the full evaluation of an individual, a total

of 70 processors with various loadings were utilized. The large evaluation times, and the

disparity of processor loadings made use of the GTMOEA software without generation

synchronization imperative (see Section 3.2.2).

Asexual optimization was performed in a four dimensional space of the following ob-

jective: the probability of declaration, Pd, the negative of false alarm count, NFAC, the time

to intercept minimum, TTIMin, and the time to intercept average, TTIAvg.

The fitness function utilized the Pareto rank 1 "raw fitness” calculation followed by

two fitness scalers. The first fitness scaler was the SPEA2 density scaler. The second

fitness scaler was the Linear Interpolated Data Transformation 2 utilized in Chapter 4,

which contained samples of the function

T2(x) =
1
x
.

Table 7 itemizes and Figure 43 illustrates the data used for the LID transformations.

Fitness proportionate selection was used for the selection of the best individuals. Note

that individuals were not allowed to mate, they were simply cloned for the mutation op-

erator. Because asexual reproduction only creates individuals with mutation and does not

have crossover, there is a non-zero probability that the individual created will be identical

to the parent. To prevent the wasting of processor time for evaluation of identical individ-

uals, children were compared to the parents to insure they were not identical. If they were

identical, the child was removed.

As described in Section 3.1.3, the GTMOEA software supports the assignment of the

type of mutation to any named attribute in the search space. Each attribute was assigned

a normal distribution with a standard deviation equal to ten percent of the default value.

Those attributes with values of zero were given a standard deviation of 0.001. Note that

large deviations can be obtained by the accumulation of smaller changes over many gen-

erations. Each attribute was given an independent ten percent probability of mutation,

resulting in a (1.0 − (1.0 − 0.1)156) ∗ 100 = 99.999993% probability of mutation for each
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individual.

For the asexual optimization, the first objective evaluated was the probability of the dec-

laration, Pd. The minimum value for this objective was set slightly lower than the measured

performance of the default system. Any individual with less than this performance was not

allowed to evaluate the remaining objectives. This harsh threshold provides termination of

evaluation for individuals that do not have better Pd than the default system. The maximum

value for the objective is 1.0, representing a perfect declaration probability. The maximum

weight element was specified as 0.5, thereby failing fifty percent of candidate individuals.

The second objective was the time to intercept minimum, TTIMin. The values of the

minimum and maximum of this objective may be considered sensitive and are thus not

presented here. The weight for the dynamic thresholds was specified as 0.0, allowing any

individual with an objective value above the minimum to be further evaluated.

The third objective was the time to intercept average, TTIAvg. The values for the mini-

mum and maximum of this objective may be considered sensitive and are thus not presented

here. A dynamic threshold between these two values was defined with the maximum weight

of 0.5, thus failing fifty percent of candidate individuals.

The fourth objective was the negative false alarms count, NFAC. Because this was the

final objective, the minimum value and maximum weight elements are not important for

truncation of evaluation. But, the maximum value of zero does help define the region of

interest. A value of zero was assigned indicating the desire to increase the NFAC to have

no false alarms.

Dynamic objective ordering was not utilized during the optimization for several rea-

sons. First, objectives were not independent. The objectives Pd, TTIMin and TTIAvg were all

calculated simultaneously based on a set of threat data. Therefore, there was no advantage

to separating these objectives. Second, knowledge of the problem domain allowed recog-

nition that the threat data was able to run much faster than the false alarm data. Therefore,

the threat data objectives were evaluated first. Then, the false alarm data was evaluated if
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the threat data performed at an acceptable level.

A set of four rules were used to prune the size of the elite pool, E. The first rule provided

genotypic diversity by ensuring that no individuals with identical genome values were in-

cluded. The second rule provided phenotypic diversity by ensuring that no individuals with

identical objectives values were used. The third rule ensured that the individuals were near

Pareto optimal by removing individuals with a Pareto rank greater than five. The fourth and

final rule ensured that only fifty individuals reside in the elite pool, |E| ≤ 50. If over fifty

individuals resided in the elite pool after the application of the previous rules, only the fifty

individuals with the best fitness values were retained in the elite pool.

6.2.3 Results

Two runs of asexual reproduction were made. These two runs evaluated a total of 9, 400

individuals. The genetically diverse, Pareto optimal solutions from these runs were then

used to seed the sexual reproduction as presented in Section 6.3.

Objective values were recalculated by presenting a "quality measure” for each objec-

tive. The quality for each objective is defined as:

Q =
OA − OS

OM − OS
∗ 100.0, (140)

where OA is the objective value achieved, OS is the objective value from the default system,

and OM is the maximum possible objective value. For each objective, Q is the percent

increase of the remaining objective gains that can be made. This removes the ability to

determine the potentially classified value of the starting objective value, OS .

For false alarms, OM is zero. Therefore, the quality measure becomes,

Q =
NFAC − NFACS

−NFACS
∗ 100.0, (141)

which is the percent reduction in false alarms.

For the probability of detection, the OM is 1.0. Thus, the quality measure becomes

Q =
Pd,A − Pd,S

1 − Pd,S
∗ 100.0. (142)
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Figure 111: AAR-44A Asexual Reproduction Unweighted Training Results

For TTIAvg and TTIMin a value was chosen as the OM was chosen as TTIM. Thus, the

quality measure becomes

Q =
TTIA − TTIS

TTIM − TTIS
∗ 100.0. (143)

Figure 111 displays the quality measures for the Pd and NFAC objectives, which are

Pareto optimal in these two dimensions. Note that with the evaluation of only 9, 400 indi-

viduals, asexual reproduction was able to produce a sizeable improvement in the probability

of detection and false alarm performance.

Table 18 itemizes the quality measures for the individuals that were Pareto optimal in

the four dimensional objective space and were in the region that outperformed the default

OFP in all dimensions. These Pareto optimal individuals were used to seed the sexual

reproduction detailed in Section 6.3.
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Table 18: Four-Dimensional Pareto Optimal Individuals from AAR-44A Asexual Repro-
duction

ID % of Remaining % of Remaining % of Remaining % Remaining
Threats Removed FA Removed TTIMin TTIAvg

Removed Removed

3282 33.80 58.58 0.11 0.87
3440 34.61 58.21 0.06 0.80
3499 33.80 53.36 0.11 0.88
3164 20.89 52.24 0.11 0.97
2033 16.04 45.52 0.05 3.32
3973 37.84 43.66 0.01 1.36
1799 11.20 40.30 0.05 3.35
3139 35.42 36.94 0.15 3.14
3624 40.26 36.19 0.10 2.94
3666 39.45 36.19 0.10 3.07
3828 40.26 35.82 0.15 3.22
3567 37.84 35.82 0.15 3.51
3368 41.88 34.70 0.15 3.11
3141 37.84 34.33 0.15 3.53
4106 43.49 32.84 0.15 3.06
3605 41.88 32.84 0.15 3.15
3576 41.07 31.72 0.15 3.34
3209 38.65 30.60 0.20 3.61
4328 45.91 27.61 0.16 1.62
2192 23.31 24.25 0.10 3.93
4788 48.33 23.88 0.15 3.29
3616 36.23 22.76 0.10 4.75
3168 28.15 22.39 0.15 4.45
4655 47.53 22.01 0.24 2.23
4253 44.30 16.42 0.20 4.93
4082 45.11 15.67 0.15 4.84
3604 45.11 14.18 0.15 4.97
4217 44.30 14.18 0.15 4.98
3908 45.11 13.06 0.15 4.98
4173 44.30 12.69 0.15 5.02
4371 45.11 9.70 0.20 5.04
3202 32.19 9.70 1.53 5.42
3157 32.19 8.96 1.53 5.47
3092 33.80 7.84 1.48 5.31
3504 33.80 6.72 1.53 5.39
4821 50.76 3.73 0.23 6.50
5015 50.76 2.99 0.23 6.51
5048 49.95 0.75 0.23 6.53
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6.3 Sexual Evolution

Sexual reproduction was performed using three separate demes, or populations, which pro-

vided transfer of genetic material between the populations. The GTMOEA software was

initialized with the output population from the asexual reproduction. The following sub-

sections detail the various aspects of this optimization, which was more complicated than

the asexual reproduction.

6.3.1 Setup

Because the product of this program was the optimized OFP, and not pure MOEA research,

it was impossible to repeat the optimization multiple times. In fact, the MOEA setup was

modified several times throughout the optimization process in an effort to improve the qual-

ity of the solutions found. A total of five episodes of evolution were performed to optimize

the performance of the OFP using slightly different setups. Subsections 6.3.1.1 through

6.3.1.10 describe the setup of the first episode. Subsections 6.3.1.11 through 6.3.1.14

describe the differences in the setup of each of the subsequent episodes relative to their

predecessor.

To create a very diverse overall population and to encourage progress in many areas,

three demes were created, each with varying objectives. A multiple deme approach was

selected because of the need to evolve a solution as quickly as possible. With the full

evaluation of an individual requiring thirty minutes, there was little possibility of repeating

evolution. Thus, multiple demes allowed evolution with three methods of thresholding

simultaneously. Exchange of genetic material between demes facilitated the sharing of the

characteristics of the best individuals with other demes.

6.3.1.1 Five Objective Deme

The five objective deme extracted four primary objectives, Pd, NFAC, TTIMin, and TTIAvg.

An additional objective, the Pd of live-fire data only, Pd,LF, was added for fast removal of
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poorly performing individuals.

The Pd,LF objective contained all fourteen training live-fire shots, and a threshold was

test for Pd,LF that was equal to that achived by the default OFP from these same live-fire

shots. Because only solutions that outperform the current system in all dimensions were

desired, the elimination of individuals with the evaluation of only this small quantity of

data allowed concentration of computational resources on individuals with the best perfor-

mance.

The second objective was the Pd of all threat scenarios, both live-fire and simulated.

This was accomplished using a weighted-sum of the live-fire and simulation shots, where

the weights for both categories were 0.5. This was slightly different from the evaluation of

evolved individuals in that the weights for the different threat tiers were not included.

The third and fourth objectives were the TTIMin, and TTIAvg of the live-fire and simula-

tion shots respectively. These values also utilized the weighted-sum described above for the

Pd, which were calculated by the underlying wrapping script and AAR-44A simulation at

the same time as the Pd, but were only requested by the GTMOEA software if the previous

objectives passed their associated dynamic thresholds.

The fifth and final objective was the NFAC. To prevent the evaluation of any other

objectives, the minimum threshold for this objective is set to a positive value, which by

definition can never be achieved.

6.3.1.2 Seven Objective Deme

The seven objective deme was designed to contain less training data, but contained data

that was considered the most difficult. It was intended to evaluate more individuals than

could be evaluated by an equal number of processors working on the five and twenty-two

objective demes.

The first three objectives were Pd, TTIMin, and TTIAvg of the live-fire scenarios. Again,
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failure to declare on at least as many live-fire training data cases as the default OFP prohib-

ited evaluation of other objectives.

The fourth objective was the NFAC for the most difficult false alarm sources. Analysis

of the false alarm data revealed that by careful selection of the ten minutes files, 6 out of

the 120 files could be chosen that contained a large percentage of the false alarms. This

reduced evaluation to only one out of twenty hours of the false alarm data.

The fifth, sixth and seventh objective were Pd, TTIMin, and TTIAvg of one of the five

scenarios for the simulated threats listed in Section 6.1.4.2 that was determined to be the

most difficult.

6.3.1.3 Twenty-two Objective Deme

The twenty-two objective deme contained the twenty-two objectives for optimization (see

Section 6.1.2 for details). The first eighteen objectives were divided into six sets of the

three threat objectives: Pd, TTIMin, and TTIAvg. The six sets were divided based on launch

range and threat tier as follows:

• Objectives 1-3. Tier one threats at long range.

• Objectives 4-6. Tier two threats at long range.

• Objectives 7-9. Tier three threats at long range.

• Objectives 10-12. Tier one threats at short range.

• Objectives 13-15. Tier two threats at short range.

• Objectives 16-18. Tier three threats at short range.

The final four objectives, all dealing with false alarm performance, were the NFAC for

the following operating conditions:

• Objective 19. NFAC for urban sources at high altitudes.

265



• Objective 20. NFAC of the rural sources at high altitudes.

• Objective 21. NFAC of the urban sources at low altitudes.

• Objective 22. NFAC of the rural sources at low altitudes.

6.3.1.4 Region of Interest

The region of interest, ROI, was then defined as the upper bound for each objective, which

typically comes from the requirements. For this optimization, the region of interest was

defined as a set of unreachable goals for the system. Specifically, all Pd objectives were

desired to be 1.0, TTIMin and TTIAvg values were desired to be TTIGoal seconds (a value

greater than most missile flight times), and all NFAC values were desired to reach 0.0. This

would result in an OFP that would provide a declaration for every threat possibility at least

TTIGoal seconds before impact and would have no false alarms. These were not realistic

goals, but they were important for the ICEO methods employed to find good individuals.

In particular, the hypercube distance scaler utilizes these methods to scale the fitness values.

6.3.1.5 Dynamic Objective Thresholding

The minimum thresholds for all objectives were set to be slightly lower than the perfor-

mance of the default OFP for these objectives. Thus, only OFPs that outperformed the

default OFP were fully evaluated. The maximum values were determined by the region of

interest described in the previous section. The weights for dynamic objective thresholding

were initially set to zero to disable the dynamic setting of thresholds, implying truncation

of individuals with poorer performance than the current system. But, the Pareto front for

the region of interest in front of the default OFP is explored.

6.3.1.6 Fitness Function

The fitness for all demes was calculated using the same method. The method included the

same Pareto rank fitness solver, followed by the same SPEA2 density scaler, and the same
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inversion transform as used in the asexual reproduction methods. In addition to the SPEA2

density and inversion transform scalers, the hyper-cube distance (HCD) scaler was used.

Each of the four components of the fitness calculation served a unique and distinct

purpose. First, the Pareto rank 1 method determined the "raw” fitness value based on the

relative Pareto optimality of the solutions. Second, the SPEA2 density methods scaled the

fitness value to de-weight individuals that reside close together in objective space. This was

intended to spread the probability of mating more equally along the Pareto front. The third

operation, the inversion transformation, transformed values to a space proportional to the

probability of mating. The fourth operation, the HCD scaler, then increased the probability

of mating for individuals close to the region of interest.

6.3.1.7 Elitism

The elite rules are similar to those for asexual reproduction found in Section 6.2.2, but the

parameters were varied slightly. Specifically, the maximum rank permitted was lowered

from five for asexual reproduction to three for sexual reproduction to force individuals to

be closer to the Pareto front for consideration. Also, the size of the elite pool, |E|, was

increased to 100 individuals to allow for more genetic diversity.

6.3.1.8 Selection Method

Sexual reproduction utilized fitness proportionate selection from multiple populations, as

described in Section 6.2.2. A majority, ninety percent, of parents were chosen from the

current deme. The remaining ten percent were chosen equally from the two remaining

demes. For example, the five objective deme chose ninety percent of parents from the five

objective deme, five percent of objectives from the seven objective deme, and five percent

of objectives from the twenty-two objective deme.

Since two parents were required for crossover, this implied that 0.92 or eighty-one per-

cent of children had both parents from the current deme. Likewise, 0.12 or one percent of

children had neither parent from the current deme, and the remaining eighteen percent of
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children contained one parent from the current deme and one parent from a different deme.

Thus, nineteen percent of children had genetic material from other demes.

6.3.1.9 Crossover Method

The location crossover method, described in Section 3.1.2, was utilized in this optimization

to specify the exact locations for crossover. Crossover was permitted at the boundaries of

all 156 attribute locations by specifying the names of all attributes.

6.3.1.10 Mutation Method

The same mutation method used during asexual reproduction was utilized (see Section

6.2.2). In particular, each of the 156 attributes was assigned a normal distribution with a

standard deviation equal to ten percent of the default value. Those attributes with values of

zero were given a standard deviation of 0.001. Mutation of each attribute occurred with an

independent two percent probability, resulting in a 1.0 − 0.98156 = 95.7% probability of an

individual being mutated.

As noted before, each generation is independently mutated using the values from the

previous generation, so the normal mutation can accumulate into large deviations over

many generations. Uniform distributions were not utilized due to deleterious effects that

were observed when variables were selected randomly.

6.3.1.11 Setup for Episode 2

The setup for the second episode was modified to increase the maximum number of indi-

viduals from 100, 000 to 1, 000, 000. Dynamic thresholding was also enabled by changing

the weights for the Pd objectives from 0.0 to 0.25 for the five and seven objective deme.

The weights for the Pd objectives for the twenty-two objective deme were changed from 0.0

to 0.1. To decrease the time spent in the evolutionary operators, the number of individuals

within each generation was increased from five to ten.
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6.3.1.12 Setup for Episode 3

By the end of the second episode 332, 642 individuals were evaluated. To slow the mutation

rate further, the rate of mutation for each variable was lowered from two percent to one

percent, resulting in a 1.0 − 0.99156 = 79.2% probability of mutation for each individual.

6.3.1.13 Setup for Episode 4

Because the results were only being used from the five objective deme, episode four re-

duced the number of demes from three to one. The five objective deme was kept. In

hindsight, this precluded the capability to weight the results from the twenty-two objective

deme after optimization in order to find the most desirable solutions.

6.3.1.14 Setup for Episode 5

The setup for episode five was identical to episode four. This run was required to restart

evolution after a catastrophic computer system failure.

6.3.2 Results

As indicated by Figure 112, a total of five episodes of evolution were completed, repre-

senting a total of 576, 929 individuals. The individuals in the Figure are the Pareto optimal

individuals in the Pd and NFAC objectives with TTIMin and TTIAvg that are larger than the

default version of the OFP. The individuals were taken from the five objective deme for

each episode. Note that the resulting convex Pareto front from episode 5 results in the

ability to reduce the false alarms by 88.4 percent or to the ability to reduce the number of

threats not declared by 73.4 percent.

Table 19 presents the number of objectives evaluated for each objective of each deme

of each episode of evolution. From this chart note that only 48.8 percent of the 576, 929

individuals had all objectives evaluated. Also note for episodes one, two and three that the

seven objective deme was able to evaluate roughly twice as many individuals as the other

demes. This increase in individuals is a result of the smaller quantity of data required by
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Population    Delta   Total

Asexual       9,400   9,400

Episode 1   100,001 109,401

Episode 2   178,905 288,306

Episode 3   217,222 505,528

Episode 4    21,170 526,698

Episode 5    50,231 576,929
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ASexual

Episode 1
Episode 2
Episode 3
Episode 4
Episode 5

Figure 112: AAR-44A Sexual Reproduction Unweighted Training Results

this deme since it focuses on the difficult data, (see Section 6.3.1.2 for details). Also note

that in general the number of individuals evaluated increases for each episode, indicating an

overall improvement in the quality of individuals created. But even after many generations

there are still some individuals created that can be determined not to be of interest, and can

thus be terminated before objective evaluation is complete.

Figure 113 presents the four dimensional objective results for select individuals. Each

of the four axes contains the response for one of the dimensions. An individual’s objec-

tive response is then indicated by a shape. The innermost shape is the response of the

default Version 6.1. Note that all individuals outperform the default OFP in all dimen-

sions. Those individuals with greatest performance in each objective dimension were also

selected for display. Because there were a total of 580 total Pareto optimal individuals in

the four dimensional objective space, all Pareto optimal individuals could not reasonably

be displayed. Therefore, starting with a list of individuals including the default individual

and the four individuals with the largest value in each objective, individuals that contained

the largest minimum distance in objective space as compared to any other individual in the

list were added to the list. This method is similar to the SPEA clustering algorithm and
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FAC Reduction 0.0 %

FAC Reduction 88.4328 %

TTIMin 0 %

TTIMin 5.4433 %

TTIAvg 11.415  % 0  % Pd 0 % 73.36 %

Default
41285
37038

318
44259
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36254
32427

Figure 113: Four-Dimensional Sexual Reproduction Training Results

attempts to find individuals with the greatest phenotypic diversity.
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Table 19: Number of Objectives and Individuals for Each Deme of Each Episode

Deme/ Objective Total % Fully Total
# Obj. Values Indiv. Solved Obj.

Overall 576,929 48.8 4,048,008

Episode 1 100,001 45.6 711,731
5 24,221 18,836 17,793 16,905 13,361 24,221 55.1 91,116
7 52,603 41,673 41,310 39,743 38,020 52,603 43.2 270,385

34,329 22,707
22 23,177 18,994 18,989 18,938 17,419 23,177 41.3 350,230

17,419 17,418 16,760 16,583 16,583
16,081 16,081 16,076 14,812 14,812
14,812 14,564 14,564 14,436 11,952
10,181 9,579

Episode 2 178,905 47.9 1,320,484
5 41,501 33,466 32,338 30,046 23,287 41,501 56.1 160,638
7 94,032 76,004 75,135 71,569 69,305 94,032 46.4 494,887

65,166 43,676
22 43,372 36,022 36,011 35,993 33,647 43,372 43.2 664,959

33,647 33,643 31,923 31,692 31,692
30,226 30,226 30,208 27,673 27,673
27,673 27,506 27,506 27,380 23,113
19,397 18,736

Episode 3 217,222 56.6 1,707,628
5 49,532 42,334 41,525 38,542 32,390 49,532 65.4 204,323
7 108,226 95,035 93,516 87,243 85,108 108,226 68.2 626,778

83,796 73,854
22 59,464 49,451 49,390 49,249 45,519 59,464 28.3 876,527

45,519 45,404 43,928 43,322 43,322
41,232 41,232 40,757 37,053 37,053
37,031 36,747 36,747 36,716 22,503
18,077 16,811

Episode 4 21,170 82.0 94,273
5 21,170 19,830 18,482 17,430 17,361 21,170 82.0 94,273

Episode 5 50,231 76.6 213,892
5 50,231 45,359 41,022 38,781 38,499 50,231 76.6 213,892
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6.4 Sensitivity Analysis

This section examines the sensitivity of the constants determined after optimization.

6.4.1 Constants With No Effect

After optimization, an effort was made to determine which constants resulted in a change

in the performance of the OFP. The performance of the system was determined for both

the default OFP and the optimized OFP. The sensitivity analysis was accomplished by

performing two tests for each constant. First, all values were set to their optimized values

except the constant under test, which was modified from the optimized value to the default

value. Second, all values were set to their default values except the constant under test,

which was modified from the default value to the optimized value. If the performance of

the system was not modified from the values collected above, the constant was determined

as a candidate to be non-sensitive.

This same analysis was performed for several Pareto-Optimal versions of the OFP to

create several lists of non-sensitive candidates. The set containing the intersection of non-

sensitive candidates was then determined to be non-sensitive. This resulted in a set of

constants reduced from 156 constants to 76 constants.

6.4.2 Constants Resulting In Assertion Errors

During the preparation of software for delivery, it was determined that setting of two con-

stants resulted in assertion errors when modified from the default values. These constants

were removed from the list with minimal impact on OFP performance. Therefore, OFPs

delivered for hardware evaluation did not include modification of these two constants. This

resulted in a set of constants reduced from seventy-six constants to seventy-four constants.

6.4.3 Constants With Large Effect

Many constants appear to produce a small change in the OFP performance. To determine

which constants were strongly coupled to OFP performance, the remaining constants were
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again set back to their default values one at a time, and the performance results were gath-

ered. This resulted in a large number of constants that when considered independently did

not drastically change the performance. These values were removed from consideration,

and the performance of the optimized values for the remaining variables calculated. From

this analysis, only twenty-two of the seventy-four constants produced the majority of the

optimization effect, although, the inclusion of the all seventy-four variables was required

to obtain equivalent TTIMin and TTIAvg performance.

6.5 Evaluation

Approximately fifty individuals that were Pareto optimal in the four dimensional training

objective space were selected for evaluation against the data reserved for evaluation. This

data included fourteen live-fire shots, twenty hours of false alarm data, and 3108 simulated

threats. The data from these runs was then used to find the individuals that were Pareto

optimal in the four dimensional evaluation objective space. When calculating the objective

values for the four dimensional space, a weighting was utilized. For each group of threat

data live-fires were weighted by 1
2 and simulated threats were weighted by 1

2 . Then each

threat tier was also given a weight.

Pd,LF =
4
7

Pd,LF(Tier1) +
2
7

Pd,LF(Tier2) +
1
7

Pd,LF(Tier3) (144)

Pd,Sim =
4
7

Pd,Sim(Tier1) +
2
7

Pd,Sim(Tier2) +
1
7

Pd,Sim(Tier3) (145)

Pd =
1
2

Pd,LF +
1
2

Pd,Sim (146)

Likewise,

TTIMin,LF =
4
7

TTIMin,LF(Tier1) +
2
7

TTIMin,LF(Tier2) +
1
7

TTIMin,LF(Tier3) (147)

TTIMin,Sim =
4
7

TTIMin,Sim(Tier1) +
2
7

TTIMin,Sim(Tier2) +
1
7

TTIMin,Sim(Tier3) (148)

TTIMin =
1
2

TTIMin,LF +
1
2

TTIMin,Sim (149)
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and

TTIAvg,LF =
4
7

TTIAvg,LF(Tier1) +
2
7

TTIAvg,LF(Tier2) +
1
7

TTIAvg,LF(Tier3) (150)

TTIAvg,Sim =
4
7

TTIAvg,Sim(Tier1) +
2
7

TTIAvg,Sim(Tier2) +
1
7

TTIAvg,Sim(Tier3) (151)

TTIAvg =
1
2

TTIAvg,LF +
1
2

TTIAvg,Sim (152)

For the false alarm data, all data was weighted equally.

Figure 114 illustrates the evaluation performance for the resulting Pareto optimal indi-

viduals in two dimensions. Note that the false alarm performance spans the same range for

evaluation that was spanned by the training data. In contrast, the probability of detection

performance is somewhat reduced. This reduction in performance results from two sources.

First, the training results were not weighted, whereas the evaluation results were weighted

by Equations 144, 145 and 146. Second, the small number of live-fire shots coupled with

the threat weights allows a single shot to drastically affect the results. For the training

data all live-fire shots results were declared before and after optimization, removing the

sensitivity to the live-fire data. This was not true for the evaluation live-fire data.

6.6 Use of the Altitude For Specialized Optimization

An additional evolution was performed to test the ability to evolve better solutions against

smaller, more specific sets of data. Specifically, optimization was performed for high alti-

tude shots. This optimization was seeded with the best results of the overall optimization

at the time, i.e., the results of Episode 2. Figure 115 displays the starting population for

the optimization and the results of continued optimization, using all altitudes versus high-

altitudes only. These results are presented in the all-altitude and high-altitude objective

domains. The starting and ending results for the all-altitude optimization were mapped

from the all-altitude domain to the high-altitude domain for comparison. The all-altitude

optimization required an additional 288, 623 individuals. The high-altitude optimization

started with these mapped individuals and was able to produce improvement in Pd over
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Figure 114: AAR-44A Sexual Reproduction Weighted Evaluation Results

that of the all-altitude optimization with only 56, 018 individuals. Unfortunately, when the

individuals optimized for high-altitudes were mapped back to the all-altitude domain, they

performed worse than the default OFP.

The source of the poorer performance for the high-altitude optimization, when mapped

back to the all-altitude domain, was a result of a reduction in the TTIMin performance for

lower altitude shorter shots. Therefore, the optimization had found the ability to utilize the

additional time afforded by the longer range shots to improve performance. This concen-

trated optimization on high-altitude was able to significantly improve the Pd and NFAC per-

formance without affecting the TTIMin and TTIAvg performance for the high-altitude cases.

This improved performance could be realized in the OFP by switching the values of con-

stants based on the altitude of the aircraft.
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Figure 115: AAR-44A Sexual Reproduction Weighted Evaluation Results for High Alti-
tudes

6.7 Conclusions

The research in optimization of the AAR-44A resulted in several conclusions that were

applicable to MOEA optimization in general. First, the combinations of previous MOEA

algorithms coupled with the new ICEO methods of dynamic objective thresholding, hyper-

cube distance scaling, and multiple demes is able to improve the performance of a very

complex system. Even the evaluation of 576, 929 individuals is able to be achieved using

parallel evaluation and objective thresholding within one month of calendar time.

Second, tuning a system is different from designing a new system. As such, the ability

to start from a single known solution is required for tuning a system. In retrospect, asexual

reproduction is not required. What is required is a short period of high mutation using

normal distributions to create a genotypicly and phenotypicly diverse population. This

high mutation period is then followed by a longer period of lower rate mutation to provide

evaluation of different combinations of the new genetic material.

Third, although identification and removal of variables from the search space does dra-

matically reduce the size of the search space, it does not dramatically reduce the time
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required to explore the search space when tuning an existing system. For example, imag-

ine the worst case where a variable would result in a fatal allele if modified to anything

but a known good value. Under this circumstance the variable can only be modified from

the known good value by mutation, i.e. (crossover does not affect the attribute values be-

cause both parents have the same attribute value). Therefore, bad individuals will only be

created by the rate of the mutation Pm for that attribute, which typically is around one to

two percent. Therefore, it is better to add another variable to the search space than to miss

one important variable. As illustrated by this optimization, 156 variables are selected, and

sensitivity analysis at the end show only 74 of the variables are important.
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CHAPTER VII

GENETIC PROGRAMMING

The term Genetic Programming (GP) was coined by John Koza [34, 36]. Examination

of the term programming will help in understanding this term. A simple description of a

computer program is that it receives input from the user via a keyboard, mouse or data file,

performs a set of calculations on the inputs, and presents the results of the calculation to

the user. In an abstract sense, a computer program is a filter that modifies a set of inputs

to create a set of outputs. GP utilizes EAs to optimize a filtering function by using the

genetic operators directly on the filter program. The definition of GP is used not just for

computer filtering programs, but also for other types of signal processing filters and system

descriptions as well.

EAs are used to optimize any multi-input, single output function. Given a computer

program, EAs are able to traverse the search space of possible parameters settings to find

a set of optimized solutions that produce the desired output. GPs not only modify the

parameters associated with the processing components, but are also able to modify to inter-

connections of the components to create new and novel topologies.

This chapter introduces the basics of traditional inverted tree structure GP methods

along with several example applications in Section 7.1. Then, given these basics, a new

block-diagram oriented method is proposed in Section 7.2 that utilizes a linear genome,

the higher level components and simulation capabilities of Ptolemy II [40], and the MOEA

ICEO contributions of Chapters 3 and 4.

Section 7.3 introduces a standard pattern recognition problem based on data from the

1994 census [32]. This problem is then solved using a weighted-sum optimized by MOEA
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Figure 116: Genetic Programming Tree

methods in Section 7.4 to find a Pareto front using a simple static topology. The block-

diagram oriented method is then applied in Section 7.5 to the same census problem to

explore the ability of the proposed block-diagram technique to find more complex and

better performing solutions than can be found with the weighted-sum. This chapter is

concluded with Section 7.6, which summarizes the contributions of this chapter.

7.1 Traditional Genetic Programming Methods
7.1.1 LISP Expressions

Although GP has been implemented in C, C++, Java, and Mathematica, the concepts of

GP are most easy to understand in the LISP programming language. LISP S-expressions

are prefix notations, meaning that functions are followed by their arguments. For example,

the C expression 1 + 2 + 3 is written in an S-expression as (+ 1 2 3). An argument to

a function can be a function evaluation itself. In this case the nested function is enclosed in

parentheses as well. For example, the C expression 1 + (2*3) + 4 has an S-expression

(+ 1 (* 2 3) 4). Most programs support reuse by allowing varied input from the user.

These inputs are denoted as (D0, D1,...). Figure 116 illustrates a GP root tree for an

S-Expression.

7.1.2 Genetic Programming Operators
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GP utilizes the same four concepts of fitness evaluation, selection, crossover, and muta-

tion as the GA process. The majority of GA applications work on a fixed length genome

description. GP, on the other hand, must support the growth of a program.

In order to associate a GP genome with its performance, the program is executed and

the results compared to the desired output. For signal processing applications such as the

circuit design of a bandpass filter, this is the comparison of the circuit output to the desired

output. A typical method is to minimize the sum of the squares of the difference between

the desired and derived output for a number of frequencies. Typically multiple objectives

are combined into a single-objective using a weighted-sum. No literature was found that

used multiple objectives to find a set of Pareto optimal solutions for GP. Fortunately, there

are no expected problems in using Pareto based MOEA techniques, and results may be

improved by the genetic diversity of solutions.

The crossover operation in GP is implemented by combining sub-trees from two par-

ents. In this process a node in the tree structure of each of the two parents is randomly

selected as a crossover location. This node becomes the fragment, and the remaining tree

structure containing the root is defined as the remainder. Two children are then created by

combining the remainder of parent 1 with the fragment of parent 2 and the fragment of

parent 1 with the remainder of parent 2. Figure 117 illustrates this operation as two parent

S-expressions crossover to create two children.

GP mutation is performed on a small percentage of children by selecting a subtree of

the child and deleting this subtree. A new random sub-tree is grown in a manner identical

to the creation of the initial random population. This new sub-tree is attached at the point

of deletion.
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7.1.3 Genetic Programming Components

This section details, in terms of computer programming components, those elements de-

sired in creating a GP. Because GP works in the programming space, the ability to manip-

ulate the same concepts used by human programmers is desirable.

7.1.3.1 Conditional Statements

Conditional statements can be formulated as ordered arguments to a function. For example,

the C-expression

{temp=1; if(TIME > 10) temp+=2; else temp+=3; return(temp+4);}

can be written in an S-expression as

(+ 1 (IF (> TIME 10) 2 3) 4 ).

Figure 118 illustrates the previous S-expressions decomposed into a root point-labeled tree

with ordered branches. Other traditional conditional statements such as case statements

and loops can be supported in a similar way.

7.1.3.2 Automatically Defined Functions

Computer programmers and circuit designers commonly organize components into larger

reusable components. For a computer programmer, the larger component is a subroutine.
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For a circuit designer, the larger element may be an amplifier circuit. These components

may be used multiple times within the program, with varying arguments.

These same concepts are supported in GP with Automatically Defined Functions (ADFs).

Each ADF contains zero or more variables as arguments. ADFs are evolved along with the

main program that references these functions. The root of the program contains two types

of nodes; define functions (defun) nodes define an ADF, and a values node contains the

main program. Figure 119 illustrates a tree that references an ADF. The defun node con-

tains three ordered nodes; the name or index of the function, a list of arguments for the

function, and the ADF processing node. Other ADFs can be added with additional defun

nodes.

7.1.3.3 Automatically Defined Storage

Computer programmers find it convenient, and often necessary, to use variables for the

communication of information to other portions of a computer program. This is typically

done by humans by assigning a descriptive name to the value. There are an infinite number

of possible names that can be assigned to a computer program. An infinite number of
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memory elements is not desirable to encode in a genome. Therefore, GP goes a step below

human encoding of normal computer programs in its implementation of variables through

Automatically Defined Storage (ADS). One method is to use indexed memory with two

new functions. Let the Storage Reading Function (SRF) have one argument, which is the

index into memory. Let the Storage Writing Function (SWF) have two arguments, which

are the index of the element to be written and the values to be written. Figure 120 illustrates

the use of the SRF and SWF to communicate between different branches of the tree. Other

functions can be added to support interfaces with different data types.

7.1.4 Genetic Programming Sets

As have been described above, there are many function types and data types that can be

transferred within the Genetic Program. The decision of the components to use is of-

ten domain specific, and may be implementation dependent. The components allowed

are often specified in terms of various sets. The functions allowed for the Automatically

Defined Function are given by Fad f , e.g., Fad f = {AND,OR,NAND,NOR}. The termi-

nal set of are leaves of the inverted tree structures,i.e., those nodes with no inputs. The

terminal set for the ADF is defined as Tad f , e.g., Tad f = {ARG0, ARG1}. Likewise the Re-

sult Producing Branch may have different function and terminal sets. For example, Frpb

= {AND,OR,NAND,NOR, S RB, S WB, ADF0, ADF1} and Trpb = {D0,D1,D2}. Note

that the ADFs are included in the Frpb.

285



7.1.5 Example Applications

This section supplies a summary of three applications of GP that span several domains.

Knowledge of examples of "traditional" GP techniques helps in the motivation and critique

of the proposed block-diagram method in Section 7.2.

7.1.5.1 Pattern Recognition

In 1999, Howard, Roberts and Brankin [31] utilized GP to find ships in Synthetic Aperture

Radar SAR imagery. Interestingly, they used domain knowledge to break this problem

down into two components. First, a filter was evolved that could detect all target pixels,

even though it had some false positives. Then a second-stage filter was evolved to remove

the false positives from the data. This two-stage process was implemented to reduce the

processing time for the second-stage filter, as it only had to process the target pixels found

in the first stage.

There were no ADFs. The Trpb included integer constants, real constants and the pixel

statistics from 10 variations of centered averages and perimeter averages. Training and

test data was 50 and 100 meter SAR data of the English Channel taken by the European

Remote Sensing (ERS) satellite. The training data contained 59 different targets. Some of

the results evolved included components similar to that of human-designed systems. For

example, the first stage derived a simple yet effective spot detection algorithm:

value = pixel_value − local_mean − local_variance − constant (153)

7.1.5.2 Signal Transforms

In 1996, Koza [37, 35] reported use of GP to create a band-pass filter. The fitness func-

tion evaluator used a weighted-sum of results from SPICE. An embryonic electrical cir-

cuit combined with architecture-altering functions were used to create the circuits. The

genome did not directly contain the circuit, but rather contained a program tree containing

architecture-altering and component-altering functions that when applied to the embryonic
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circuit created a circuit for analysis.

The method also allowed for ADFs. This in effect created small circuits that could

be easily duplicated. The use of ADFs manifested itself in the creation of repetitive, two,

three and four rung ladder topologies, as well as Cauer topologies similar to human de-

rived solutions. Most importantly, the GP finally created a variation of the Cauer filter that

outperforms human-derived solutions.

7.1.5.3 Digital Signal Processing

The design of second-order Infinite Impulse Response IIR filters with low coefficient sensi-

tivity was performed using GP as reported by Uesaka and Kawamata [56] in 2000. In their

implementation,

Tad f = {x, b0, b1, ..., b7} (154)

Fad f = {m, a, d} (155)

Trpb = {x, b0, b1, ..., b7} (156)

Frpb = {m, a, d} (157)

where m is a multiplier, a is an adder, d is a delay, {b0, b1, ..., b7} are the coefficients, and x

is the input. An example S-expression, direct form, and program tree taken from [56] are

given in Figure 121.

The fitness function for their research was a sum of the measures of the sensitivity, size,

physical realizability, and realization of desired transfer function. The method performed

well for the design of both lowpass and bandpass filters.

7.2 Research Contributions

The research contribution of this chapter is a block-diagram oriented method for perform-

ing GP. Signal design is typically communicated by humans using block diagrams. Feed-

back within components is naturally communicated by these block diagrams. GP, on the
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other hand, typically uses embryonic circuits [37, 35], circular connection of branches [56],

or Automatically Defined Storage [36], to allow feedback.

For signal processing design, it may be more useful to allow connections of compo-

nents in a block diagram. Figure 122 illustrates a conceptual design for such a system.

Each processing block is connected to a separate output line. The selection of inputs for

a processing block is controlled by the genome and allows connection to any system in-

put or processing block output. The type of function and the function-specific parameters

are also controlled by the genome. The selection of possible functions is chosen from the

problem domain. For example, image processing systems may include centered averages

and perimeter averages [31]. The ADFs of GP provide another method commonly used

by humans, which is the reuse of large components. By allowing several of the functions

to be other block diagrams, this system also supports the GP power of ADFs. To realize

the method of block-diagram design a software package identified as Pattern Recognition

Evolutionary Synthesis Through Optimization (PRESTO) has been created.

The PRESTO software combines the pre-existing GTMOEA software together with

the Ptolemy II software using a newly developed Modeling Markup Language (MoML)

generator created by the author. Figure 123 illustrates how these software packages are

combined to create the desired results. The following three subsections describe each of
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the software packages starting with the lowest level simulation package Ptolemy II.

7.2.1 Ptolemy II

The Ptolemy II software package is under active development by University of California

Berkeley under the direction of Edward Lee using multiple sources of funding including

the Defense Advanced Research Project Agency (DARPA). Components in Ptolemy II are

based on the concept of actors [41], which are both data polymorphic and domain poly-

morphic. Many modern languages are data polymorphic, e.g., the addition operator works

for integer, double, and string types. Ptolemy II adds the concept of domain polymor-

phism, which is the functioning of the actors in many simulation domains. Ptolemy II con-

tains many simulation domains including: synchronous data flow, discrete event, process

networks, finite state machine, communicating sequential processes and continuous time.

Ptolemy II offers the ability to create hierarchical models [45], where different hierarchical

components can utilize different simulation domains.

The major reason for the selection of Ptolemy II as the system simulation infrastructure
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is the extensible simulation capability for many simulation and application domains [19].

The software offers a toolbox of existing objects such as low-level and and or gates, as well

as higher-level objects such as FFTs and image processing algorithms. If the existing ob-

jects do not supply the desired functionality, additional user defined actors can be supplied

by:

1. Building composite actors from the low-level Ptolemy actors.

2. Creating new actors in JAVA.

3. Import of actors created in Matlab.

4. Import of actors created using Python scripts.

5. Wrapping existing simulations from other languages using Java Native Interface

(JNI).

A visual editor for Ptolemy II simulations called Vergil exists. For the purposes of
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PRESTO, this tool allows visualization of the evolved simulations, as will be demonstrated

in Section 7.5. But for PRESTO, the ability to create Ptolemy II simulations from a stan-

dard text file without the need for a visual editor was imperative. The standard text file for-

mat Ptolemy II utilizes to encode all simulations is a Modeling Markup Language (MoML).

MoML is a dialect of XML which encodes the actors utilized, the attributes of the actors,

and the relations between the actors. Appendix B gives the DTD for the MoML syntax.

7.2.2 Modeling Markup Language Generator

The MoML generator is responsible for translating model descriptions from the genome

format of the MOEA software to the system description MoML format of the Ptolemy II

software. Figure 124 illustrates the processing for the MoML generator. The translation

from a Genome to MoML description requires additional information about the processing

elements that is not available in the MoML description. Therefore, a set of meta-data

associated with each element is kept in an element specification list. The DTD for the

element specification list is given in as follows:

1 <!ELEMENT ElementSpecList (File*,ElementSpec*)>

<!ELEMENT File (#PCDATA)>

<!ELEMENT ElementSpec (Name,Type,

(entity|port|property),MinInputs ,Input*,

5 MinOutputs , Output*,Attribute*, Feedback?)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Type (#PCDATA)>

<!ELEMENT MinInputs (#PCDATA)>

<!ELEMENT Input (Name,Type+,TypeMatch*,Min,Max)>

10 <!ELEMENT TypeMatch (#PCDATA)>

<!ELEMENT Min (#PCDATA)>

<!ELEMENT Max (#PCDATA)>

<!ELEMENT MinOutputs (#PCDATA)>

<!ELEMENT Output (Name,Type+,TypeMatch*,Min,Max)>

15 <!ELEMENT Attribute (Name ,(Enum|Value|Double))>

<!ELEMENT Enum (Map*)>

<!ELEMENT Map (#PCDATA)>

<!ELEMENT Value (Min,Max,Delta)>

<!ELEMENT Delta (#PCDATA)>

20 <!ELEMENT Double (Min?,Max?)>
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<!ELEMENT Feedback (#PCDATA)>

The element specification list contains a set of file names and element specifications.

The file names allow breaking apart the element specifications into multiple files for conve-

nience. An element specification contains the name of the element, the type of the element,

the MoML description of the element, information about the number and types of input

and output ports for the element, information about any attributes, and a flag indicating if

the element supports feedback. The element types supported are as follows:

• INPUT elements only supply inputs to the model, and thus do not need an input

themselves for proper operation. For example, a data file reader is an input element.

• OUTPUT elements only receive outputs from the model, and thus do not need an

output themselves for proper operation. For example, a data file writer is an output

element.

• INPUT_PORT elements are Ptolemy II input port actors used by a composite actor

to receive input from a higher level component.

• OUTPUT_PORT elements are Ptolemy II output port actors used by a composite

actor to send output to a higher level component.

• FILTER elements are actors that requires both inputs and outputs for proper opera-

tion.

• DIRECTOR elements are Ptolemy II model directors used to specify the simulation

domain used by the model or model composite actor. Director elements do not have

input or output ports.

Information about the input and output ports includes the minimum number of inputs

and outputs required for the actor, and a specification for each input and output port. The

port specification for each port, whether input or output, contains the following:
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• Name supplies a mnemonic for the port. It is used for references to Ptolemy II actor

ports.

• Type strings provide a list of the types supported by this port, e.g., double, int, string.

• TypeMatch strings provide a list of names for ports whose types must match this port.

For example, the type for the input and output ports must match for many actors.

• Min specifies the minimum number of connections to this port.

• Max specifies the maximum number of connections to this port.

The following listing provides an example element specification for the AddSubtract

Ptolemy II actor.

1 <ElementSpec >

<Name>AddSubtract </Name>

<Type>FILTER </Type>

<entity name="AddSubtract" class="ptolemy.actor.lib.↓

→ AddSubtract">

5 <port name="plus" class="ptolemy.actor.TypedIOPort">

<property name="input"/>

<property name="multiport"/> </port>

<port name="minus" class="ptolemy.actor.TypedIOPort">

<property name="input"/>

10 <property name="multiport"/> </port>

<port name="output" class="ptolemy.actor.TypedIOPort">

<property name="output"/> </port>

</entity>

<MinInputs >2</MinInputs >

15 <Input >

<Name>plus </Name>

<Type>int </Type><Type>double </Type><Type>string </Type>

<Type>boolean </Type>

<TypeMatch >minus </TypeMatch >

20 <TypeMatch >output </TypeMatch >

<Min >0</Min><Max >100</Max>

</Input >

<Input >

<Name>minus </Name>

25 <Type>int </Type><Type>double </Type><Type>string </Type>
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<Type>boolean </Type>

27 <TypeMatch >plus </TypeMatch >

<TypeMatch >output </TypeMatch >

<Min >0</Min><Max >100</Max>

30 </Input >

<MinOutputs >1</MinOutputs >

<Output>

<Name>output </Name>

<Type>int </Type><Type>double </Type><Type>string </Type>

35 <Type>boolean </Type>

<TypeMatch >plus </TypeMatch >

<TypeMatch >minus </TypeMatch >

<Min >1</Min><Max >100</Max>

</Output>

40 </ElementSpec >

This example provides some simple examples of the need for the information supplied

for port parameters. This element contains two input ports, named plus and minus, and one

output port, named output. The total number of inputs required is set to two, even though

the minimum number of inputs required by the plus and minus ports is set to zero. This

implies that there needs to be at least two input connections; but it does not matter if it is

one from each port or both from only one of the ports. The typing of the ports indicates that

the ports individually support int, double, string and boolean data types. The type match

specifications then indicate that all three of the ports must match in their data types for a

specific instance.

Other actors will of course have attribute values that may also be manipulated by the

genome. The following listing provides an example of the Scale actor that has two at-

tributes: a scale factor of type double, and scaleOnLeft flag with enumerated types of true

and false.

1 <ElementSpec >

<Name>Scale </Name>

<Type>FILTER </Type>

<entity name="Scale" class="ptolemy.actor.lib.Scale">

5 <property name="factor" class="ptolemy.data.expr.↓

→ Parameter" value="1">
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</property >

7 <property name="scaleOnLeft" class="ptolemy.data.expr.↓

→ Parameter" value="true">

</property >

<port name="input" class="ptolemy.actor.TypedIOPort">

10 <property name="input"/> </port>

<port name="output" class="ptolemy.actor.TypedIOPort">

<property name="output"/> </port>

</entity>

<MinInputs >1</MinInputs >

15 <Input >

<Name>input </Name>

<Type>int </Type><Type>double </Type>

<TypeMatch >output </TypeMatch >

<Min >1</Min><Max >1</Max>

20 </Input >

<MinOutputs >1</MinOutputs >

<Output>

<Name>output </Name>

<Type>int </Type><Type>double </Type>

25 <TypeMatch >input </TypeMatch >

<Min >1</Min><Max >100</Max>

</Output>

<Attribute >

<Name>factor </Name>

30 <Double></Double>

</Attribute >

<Attribute >

<Name>scaleOnLeft </Name>

<Enum><Map>true </Map><Map>false </Map></Enum>

35 </Attribute >

</ElementSpec >

The conversion software reads a description of the genome in XML format, and must

build an appropriate MoML model. As indicated in Figure 122 each element is assigned

an output "bus”, which is implemented by assigning a port number to each output port of

the model elements. The elements’ inputs are then linked to these ports by associating an

input element’s port name with an output port number. The following provides an example

of a genome description for an AddSubtract element.
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1 <Element >

2 <Name>AddSubtract </Name>

<InputPort ><Name>plus </Name><Value >8</Value >

</InputPort >

5 <InputPort ><Name>plus </Name><Value >17</Value >

</InputPort >

<InputPort ><Name>plus </Name><Value >30</Value >

</InputPort >

<InputPort ><Name>minus </Name><Value >3</Value >

10 </InputPort >

<InputPort ><Name>minus </Name><Value >7</Value >

</InputPort >

<InputPort ><Name>minus </Name><Value >9</Value >

</InputPort >

15 </Element >

For this example, the plus input port is connected to output ports 8, 17 and 30. The

minus input port is connected to output ports 3,7 and 9. The output port number for this

element is implicit, with the port number determined by the position of the element in the

file.

Once the genome description of the model has been read, all of the port numbers are

translated to links between elements. Not every instance of a MoML description is valid.

Invalid descriptions result in fatal individuals. Much as with the 0/1 Knapsack problem

from Section 4.1.1, use of a genome correction algorithm can greatly reduce or elimi-

nate the number of fatal individuals created, thus improving evolutionary performance. As

indicated in Figure 124, the following sources of errors are iteratively searched for and

corrected until there are no more errors found by any of the five error detection methods:

1. Unused Elements

2. Incorrect number of output ports

3. Incorrect number of input ports

4. Impossible feedback loops
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5. Incorrect data types

All error correction methods are made by traversing recursively backward from the

output of the model through all the elements connected to the input of each element. As an

element is checked, it is marked as processed. Once an element is marked as processed, it

does not have to be checked again. This method prevents rechecking sections of the system

that have already been checked, and prevents an infinite loop in the case of systems that

contain feedback.

Unused elements are determined by recursively marking all elements used by the output

port. Elements that have no influence on the output are then eliminated from the model.

An incorrect number of output ports occurs when more input ports are connected to

the output port than allowed by the element specification list. If too many input ports are

connected to the output of the current element, then links are removed between the output

of the current element and input to the elements until the desired number of connections

is reached by removing the links from the end of the list of links. In practice, this rarely

occurs because output ports can typically be connected to a large number of other actors,

as indicated in Figure 122.

Error correction for the number of input ports is determined by finding the total number

of elements attached to all ports, and checking against the minimum number of inputs

required. If there are not enough input connections to an element it is deleted from the

model. Prevention for connecting too many inputs to a single port is handled during the

creation of the model. Once the specified maximum number of input connections to an

element is reached, no other inputs are allowed to connect to that element.

Error correction for data types is also handled from the output to the input. This ensures

that the output has the desired data type. Where required, this process forces the input

ports to take on the data types of the output port. With the data type of the input set,

then if an element’s output connected to this input does not support the type requested, an

additional type conversion element must be inserted between the input of the element under
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investigation and the output of the element connected to the input. If the type conversion is

not possible, then the link to that input element is removed.

Feedback within a system is only allowed if an element exists that produces outputs not

based on the current inputs. In the case of the synchronous data flow modeling domain,

an element such as delay element must exist within the feedback loop to allow for proper

scheduling of the model. Feedback is checked for each element within the model. For each

element, the model works forward through the outputs to determine if a loop exists back to

the elements input without an element that supports feedback. Once an element that sup-

ports feedback is found, the test is complete and there is no need to recurse further on this

path. Feedback correction can be enabled or disabled. Once feedback is found, the prob-

lem can be automatically corrected through the insertion of a delay element. Inclusion of

the delay element implies the model has some state-saving features. State saving between

input data elements is not appropriate for many problems including the census problem

presented in Section 7.3. Thus if delay is not desired, the problem is corrected by disabling

the link causing feedback.

After the model has been traversed, and none of the error correction techniques find any

more errors, then the MoML description of the model is output. The MoML contains the

elements required and the specified attributes along with Ptolemy II relations, which link

the ports together in the specified topology.

7.2.3 Multiple Objective Evolutionary Algorithm Software

At first, this GP task may appear dissimilar to the MOEA efforts of the remainder of this

thesis. But, GP requires a large quantity of training data to properly train the filter. For

example, recall from Section 7.1.5.1 the 5000 false positive (FP) and 50 true positive (TP)

images required by Howard [31] for the SAR application. By dividing sets of training

data into objectives, the objective ordering system will find those sets of training data that

quickly span the feature space. The remaining training data that provides little additional
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information will be placed at the end of the objective list.

The power of GP is hypothesized to come from its ability to try thousands of ideas that

would be prematurely dismissed by human designers. Thus, this chapter not only creates a

new method for GP, but also utilizes new MOEA methods to treat sets of training data as

objectives to quickly identify and eliminate bad ideas proposed by the evolutionary process.

7.3 Census Pattern Recognition Problem

The data for this problem originates from the 1994 census [32]. The task is to determine

whether a person makes more or less than $50, 000 per year based on a set of other at-

tributes. There are 14 attributes for the data; 6 are continuous values and the remaining 8

are enumerated. Table 20 details the types and values of all attributes.

A total of total 48, 842 instances were extracted from the census data using the follow-

ing conditions:

((AGE > 16)&&(GI > 100)&&(FNLWGT > 1)&&(HRS WK > 0)). (158)

where AGE and FNLWGT are described in Table 20, and GI is the gross income. Of these

instances 45, 222 did not contain unknown values. The remaining values were randomly

split into training and evaluation sets using the package MLC++ [1] where two thirds

were selected randomly for training (30, 162), and one third for evaluation (15, 060). The

training data has 24.78% of individuals earning an income above $50, 000, and 75.22% of

the individuals earning less than or equal to $50, 000. Results, presented in Figure 21, were

created using MLC++ for fifteen machine learning techniques. All training data, evaluation

data and the results are available from Barry Becker[33].

For this problem, define the following:

• A true positive, TP, event is a correct prediction of an individual earning > $50, 000.

• A true negative, TN, event is a correct prediction of an individual earning <= $50, 000.
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• A false positive, FP, event is an incorrect prediction of an individual earning >

$50, 000.

• A false negative, FN, event is an incorrect prediction of an individual earning <=

$50, 000.

The error rates indicated in Table 21 are simply the sum of the FP and FN instances, divided

by the total number of data points. Based on the distribution of data an estimate of always

negative would result in a 24.78% error rate.
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Table 20: Attributes For Census Pattern Recognition Problem
Attribute Type Values
age integer Greater than zero
workclass 8 enum. Private, Self-emp-not-inc, Self-emp-inc, Federal-gov,

Local-gov, State-gov, Without-pay, Never-worked
fnlwgt integer Greater than zero
education 16 enum. Bachelors, Some-college, 11th, HS-grad, Prof-school,

Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters,
1st-4th, 10th, Doctorate, 5th-6th, Preschool

education-num integer non-negative
marital-status 7 enum. Married-civ-spouse, Divorced, Never-married,

Separated, Widowed, Married-spouse-absent,
Married-AF-spouse

occupation 14 enum. Tech-support, Craft-repair, Other-service, Sales
Exec-managerial, Prof-specialty, Handlers-cleaners,
Machine-op-inspct, Adm-clerical, Farming-fishing,
Transport-moving, Priv-house-serv, Protective-serv,
Armed-Forces

relationship 6 enum. Wife, Own-child, Husband, Not-in-family,
Other-relative, Unmarried

race 5 enum. White, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other, Black

sex 2 enum. Female, Male
capital-gain $’s non-negative
capital-loss $’s non-negative
hours-per-week integer non-negative
native-country 41 enum. United-States, Cambodia, England, Puerto-Rico,

Canada, Germany, Outlying-US(Guam-USVI-etc),
India, Japan, Greece, South, China, Cuba, Iran,
Honduras, Philippines, Italy, Poland, Jamaica,
Vietnam, Mexico, Portugal, Ireland, France,
Dominican-Republic, Laos, Ecuador, Taiwan, Haiti,
Columbia, Hungary, Guatemala, Nicaragua, Scotland,
Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago,
Peru, Hong, Holland-Netherlands
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Table 21: Error Rates for Census Pattern Recognition Problem for Various Algorithms
Algorithm Error Rate (%)
FSS Naive Bayes 14.05
NBTree 14.10
IDTM (Decision table) 14.46
C4.5-auto 14.46
HOODG 14.82
C4.5 rules 14.94
OC1 15.04
C4.5 15.54
Voted ID3 (0.6) 15.64
CN2 16.00
Naive-Bayes 16.12
Voted ID3 (0.8) 16.47
T2 16.84
1R 19.54
Nearest-neighbor (3) 20.35
Nearest-neighbor (1) 21.42
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7.4 Weighted-Sum Optimization of Adult Census Pattern Re-
cognition Problem

For the weighted-sum and block-diagram GP method, the census problem is recast into a

multiple objective problem by trying to increase the number of true positives and decrease

the number of false positives. To allow the ICEO techniques to eliminate poor performing

individuals quickly, these objectives are duplicated for two sets of data. The first 5, 000

data points of data are utilized to extract the first two objectives. These 5, 000 data points

define the values for f1 and f2.

f1 =
T P1

T P1 + FN1
(159)

f2 = 1.0 −
FP1

FP1 + T N1
, (160)

where T P1, T N1, FP1, and FN1 results from the first set of objective data.

The remaining 26, 162 items are then utilized if the thresholds are met for the individual

under test. These define the third and fourth objectives defined as:

f3 =
T P2

T P2 + FN2
(161)

f4 = 1.0 −
FP2

FP2 + T N2
, (162)

where T P2, T N2, FP2, and FN2 results from the first set of objective data.

To allow comparison with previous machine learning techniques, the error rate can

also be extracted from these measures of performance by scaling the results based on the

distribution of the input data. Let N1 = 5, 000 and N2 = 25, 162 be the number of data

points in each grouping of data. Let N = N1 + N2 = 30, 162 by the total number of data

points. Let T = 7, 508 and F = 22, 654 be number of true and false points, respectively, in

the total distribution of data. The the error rate is:

E = 1.0 −
(T/N)(N1 f1 + N2 f3)

N
−

(F/N)(N1 f2 + N2 f4)
N

= 1.0 −
T (N1 f1 + N2 f3) − F(N1 f2 + N2 f4)

N2

= 1.0 − 7, 508(5, 000 f1 + 25, 162 f3) + 22, 654(5, 000 f2 + 26, 162 f4)
30, 1622

. (163)
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The four dimensional objective space can also be collapsed to a two dimensional ob-

jective space based on the performance for true positives and false positives and the distri-

bution of each of these in the input data.

Pt p =
(N1 f1 + N2 f3)

N

P f p =
(N1 f2 + N2 f4)

N

The purpose of this section is to provide a comparison of the ability to evolve a solution

with a method that is a subset of the GP topology. To support interfacing to the weighted-

sum, the enumerated attributes defined in Table 20 were recast into a number of binary

attributes equal to the number of enumerations. This recasting expanded the number of

attributes for each data point from 14 to 105.

The search space for the weighted-sum problem is the 105 weights for each of these

attributes. These weights are constrained to a range [−1.0, 1.0]. To support a standard

range for all weights, the values for the data points are also recast from their original input

range to the range [0.0,1.0]. The decision function is:

D =































0 i f
∑105

i=1 WiDi ≤ 0

1 otherwise

(164)

where Wi are the 105 weights of the search space, and Di are the 105 attributes values of

the data point.

7.4.1 Weighted-Sum Census Optimization Setup

The fitness function utilizes the Pareto rank 1 "raw fitness” calculation, as described in

Section 2.2.4.1 followed by four fitness scalers. The first fitness scaler is the SPEA2 density

scaler. The second fitness scaler is the Linear Interpolated Data Transformation 1 utilized

in Section 4.1.2.1, which contained samples of the function

T1(x) =
1

2(x−1)
.
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Table 7 itemizes and Figure 43 illustrates the data used for the LID transformations. The

third fitness scaler is the fitness-sharing algorithm of the NPGA as described in Section

2.2.4.2. This fitness-sharing algorithm is initialized for one-hundred niches. The fourth

and final fitness scaler is the HCD Scaler as detailed in Section 3.3. For the HCD scaler,

the Holder coefficient is set to two for Euclidean distance, p = 2, and the offset is set one

fifth, α = 0.2.

Selection is performed using fitness-proportionate selection. Crossover is performed

using the clone operator for twenty percent of the individuals. The remaining eighty percent

of the individuals use the location crossover, with crossover allowed at any of the weight

boundaries.

As described in Section 3.1.3, the GTMOEA software supports the assignment of the

type of mutation to any named attribute in the search space. Each weight is assigned a

normal distribution with a standard deviation equal to one at a rate of one percent. Each

weight is also mutated with a uniform distribution at a rate of one percent. Therefore, the

total probability of mutation of any part of an individual is:

Pm = 100
(

1.0 −
(

(1.0 − 0.01)2
)105

)

= 100
(

1.0 − (1.0 − 0.01)210
)

= 87.88%. (165)

Dynamic objective threshold is performed with lower limits of S = {0.1, 0.1, 0.2, 0.6},

and the upper limits, defining the region of interest, of L = {0.6, 1.0, 0.6, 1.0}. The weights

for each objective are W = {0.1, 0.1, 0.3, 0.3}. Note the increased difficulty applied from

both the lower limits, and weights for the second set of objectives. Equation 163 reveals

the increased dependence of the final measure of performance on the second and fourth

objectives versus the first and third objectives. Therefore, the region of interest is moved

from the expected {1.0, 1.0, 1.0, 1.0} to L to accentuate these more important objectives.

A set of three rules is used to prune the size of the elite pool, E. The first rule provides

phenotypic diversity by ensuring that only a single individual with identical objectives val-

ues is used. The second rule ensures that the individuals are Pareto optimal by removing

dominated individuals. The final rule ensured that only 750 individuals reside in the elite
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Figure 125: Pareto Fronts During Training of Weighted-Sum for Census Problem

pool, |E| ≤ 750. If over 750 individuals reside in the elite pool after the application of the

previous rules, only the 750 individuals with the best fitness values are retained in the elite

pool. A more detailed description of these elitism rules can be found in Section 2.2.

Optimization is initialized with 1,000 random individuals. To prevent the wasting pro-

cessor time for evaluation of identical individuals, children are compared to the parents to

insure they are not identical. One hundred individuals are generated for each generation,

i.e., |C| = 100.0.

7.4.2 Weighted-Sum Census Results

A total of 450, 000 individuals are evaluated for the optimization with the weighted-sum.

Figure 125 displays the performance of the Pareto Optimal solutions at various points dur-

ing the optimization. This figure also displays the tangential hyperplane, which is defined

by the distribution of true and false instances in the training data, e.g. (0.2478, 0.7522).

Two measures of performance are used to visualize the changes in performance of the
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Figure 126: Measures of Performance During Training of Weighted-Sum for Census Prob-
lem. Hypervolume calculated using Equation 3. Error rate calculated using Equation 163.

resulting population. First, the final measure given in Equation 163 is the error rate to be

reduced. This measure is reduced as individuals move closer to the tangential hyperplane

as illustrated in Figure 125. The error rate is dependent on the performance of a single in-

dividual, and thus does not indicate improvements that may be occurring on other sections

of the Pareto front. The second measure of performance is the hypervolume of solutions

relative to the targeted area defined by the point (0.5, 0.5). This measure gives an indication

of the progress of the population, and is less dependent on a single individual. Figure 126

displays the performance of these two measures over the evaluation of the 450, 000 indi-

viduals. There is very little change in either measure by the end of the 450, 000 individuals.

Figure 127 displays the resulting elite individuals in the two-dimensional objective

space and the value of the resulting final measure for both the training and evaluation

data. Note that the evaluation results are worse than those from training. The best mea-

sure achieved during training is 16.49%. The best measure achieved during evaluation is
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Figure 127: Comparison of Training and Evaluation Pareto Fronts and the Training and
Evaluation Error Rates as defined in Equation 163 After 450, 000 Individuals For The
Weighted-Sum Census Problem

17.21%. From Table 21 the final evaluation performance outperforms only three of sixteen

machine learning algorithms: 1R, Nearest-neighbor (3), and Nearest-neighbor (1).

7.5 Evolutionary Programming Optimization of Adult Cen-
sus Pattern Recognition Problem

Given the prior results of others listed in Table 21 and the results of the weighted-sum

method itemized in the previous section, this section gives an example of an optimization

of the same problem using the block diagram innovations of this chapter. Three runs are

examined.
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1. One that is initialized with individuals with random genome description resulting in

random attribute and topology selections

2. The second that is initialized with descriptions that mimic elite weighted-sum in-

dividuals from the weighted-sum after the evaluation of 50, 000 individuals with a

cascading set of adders.

3. The third that is initialized with individuals that also mimic the weighted-sum results,

but are implemented using a hierarchy of adders.

7.5.1 Search Space

The search space for all three problems is equivalent. As shown in Table 22, five functions

are allowed to evolve. The first function implements a set of math functions that operate on

a single input. The remaining four functions receive multiple inputs and produce a single

output.

A math function has a total of seven attributes set by the genome: the function type, two

parameters values (p1, p2), and four parameters that perform offset and scaling (m1, b1,m2, b2).

The math function first transforms the input value x using m2x + b2. The output of a

function, f , is transformed similarly, resulting in g(x) = m1 f (m2x + b2) + b1. Some

functions require several optional parameters, and thus the generic description becomes

g(x, p1, p2) = m1 f (m2x+b2, p1, p2)+b1. The function f (x) is also specified by the genome,

and allowed to be any of the twenty-five functions listed in Table 22. A constant func-

tion is implemented with f (x) = 0, which results in the constant g(x, p1, p2) = m1b2 + b1.

Likewise a scaler function is implemented with f (x) = x, which results in g(x, p1, p2) =

m1m2x +m1b2 + b1. A clipping function requires both arguments, and is implemented with

f (x) = min(max(x, p1), p2).

The remaining four functions are the Add/Subtract, Multiply, Maximum and Minimum

functions. The Add/Subtract function receives up to five inputs on each of the plus and

minus ports creating a single output value. The Multiply function finds the product of up
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to five inputs on the input port. This actor supports a division port as well, but it is not

enabled in order to prevent division by zero errors. The Maximum and Minimum functions

also accept up to five inputs and output the maximum or minimum value respectively on

the output port.

Table 22: Basis Functions for Evolutionary Programming Optimization
Function Attributes Inputs Output

Math f (x, p1, p2) = {atan(x), x m1 f (m2x + b2, p1, p2) + b1

Function asinh(x), cos(x), cosh(x),
sin(x), sinh(x), tan(x),
tanh(x), abs(x), ceil(x),
compare(x, p1), exp(x),
f loor(x), log(x), log10(x),
log2(x),max(x, p1),
min(x, p1), pow(x, abs(p1)),
sgn(x), sqrt(x), sinc(x), 0.0,
x,min(max(x, p1), p2)},

m1,m2, b1, b2, p1, p2

Add/ None {p1, · · · , p5}
∑5

k=1 pk −
∑5

k=1 mk

Subtract {m1, · · · ,m5}
Multiply None {x1, · · · , x5}

∏5
k=1 xk

Maximum None {x1, · · · , x5} max5
k=1 xk

Minimum None {x1, · · · , x5} min5
k=1 xk

The search space enables each block to be any of the five function blocks described in

Table 22. A maximum of 300 processing blocks are utilized in the processing. The Add/

Subtract function has ten attributes describing the input connectivity. The Multiply, Max-

imum, and Minimum functions require five attributes to describe input connectivity. The

Math Function has one attribute for input connective, one attribute to select the function

and the six attributes m1,m2, b1, b2, p1, p2 for each function. There is also one attribute for

each function block determining which type of function block is expressed. This implies

each block requires 10+3∗5+8+1 = 34 attributes. Therefore, there are 34∗300 = 10, 200

total search space dimensions. At any given time only 300 ∗ (Max(10, 5, 8) + 1) = 3, 300

dimensions are expressed.
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7.5.2 Setup of Runs

Each of the runs is initialized with the same input as the weighted-sum method given in

Section 7.4.1 with the following exceptions, mostly due to differences in the genome de-

scription. The location crossover operator is initialized to allow crossover at the boundaries

of any of the five function description boundaries.

Mutation is applied using three separate mutation operators. First, uniform mutation

is applied to the each of the 300 attributes that define which of the five basis functions

is expressed. Second, uniform mutation is applied to each of the attributes values, i.e.

p1, p2,m1, b1,m2, b2, the type of math function used, and the ports connected to the in-

puts. Third, normal mutation is also applied to this same list of attribute values, i.e.,

p1, p2,m1, b1,m2, b2, the type of math function used, and the ports connected to the inputs.

The rates of mutation are different for each experiment. The random initialized experiment

uses a mutation rate of one percent, the cascade initialized experiment uses a mutation rate

of 0.5 percent, and the hierarchical method uses a mutation rate of 0.05 percent for each of

the three methods. A discussion of the effects of mutation is given in Sections 7.5.5 and

7.5.6 to provide insight into the selection of these values.

7.5.3 Random Initialized Results

The first run is initialized with purely random values for each part of the genome. A total

of 3, 000 random individuals is used to start the optimization. This run is designed to test

the ability to evolve with no "preconceived notions" of what the final system design should

look like.

Figure 128 displays the two measures of performance during training for this run along

with the results for weighted-sum optimization for comparison. From this figure, note that

the method is very slow to evolve when compared with the results of the weighted-sum.

Figure 129 displays the resulting Pareto fronts at several locations through the opti-

mization compared to the results of the weighted-sum optimization. These results also
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Figure 128: Measures of Performance During Training of Random Initialized Evolution-
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calculated using Equation 3. Error rate calculated using Equation 163.
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demonstrate the inability to achieve results similar to the simple topology of the weighted-

sum.

Figure 130 displays a comparison of the training and evaluation Pareto optimal front

for the last available elite individuals, which occurred around 153, 000 individuals. For this

figure individual 152, 777 shows the best performance with an error rate of 17.2 percent for

training data and 16.68 percent for the evaluation data.

Figure 131 displays the topology for individual 152, 777. This individual utilizes a total

of 102 processing blocks. Table 23 gives a summary of the number and types of processing

blocks utilized. From this table, note that none of the Math Functions utilized the linear

x function. Only 79 of the 105 possible input ports are utilized. There are a total of 474

inner-connections between all ports and elements. This large number of inner-connections,

and the lack of regular patterns makes the interpretation of the block diagram very difficult.
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Figure 131: Individual 152, 777 From Random Initialized Evolutionary Programming. Error Rate of 17.15 Percent Training and 16.68
Percent Evaluation.
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In summary, this experiment illustrates the capability of block diagram multiple objec-

tive evolutionary programming to find solutions to a pattern recognition problem. Unfor-

tunately, evolution is much slower than that of a simple weighted-sum. The weighted-sum

requires 6.09 seconds on average to evaluate an individual, compared with the average

of 83.09 seconds for the random-initialized method evolutionary programming method.

These extend run-times are due to the use of Ptolemy II, instead of a simply awk script.

The random-initialized method is able to reach its best error rate of 17.15 percent with the

evaluation of individual 178, 497, implying a total of 171.7 processing days. On the other

hand, the weighted-sum method evaluates the same number of individuals in 12.6 process-

ing days, and reaches the same error rate with individual 27, 905, which required only 2.0

processing days. This implies that block diagram method is 85 times slower than that of a

simple weighted-sum. Section 7.6 will further discuss the run-time issues.
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Table 23: Types of Functions Used for Individual 152, 777 of the Random Initialized
Evolutionary Programming Method

Function Type # Used
Math Function 32

asinh 3
atan 1
exp 1
floor 1
log 3
log2 1
max 2
min 4
sgn 2
sin 3
sinh 2
sqrt 2
tan 3
tanh 2
pow(x, abs(p1)) 1
0.0 1

Add/Subtract N/A 15
Multiply N/A 20

Maximum N/A 21
Minimum N/A 15

Total N/A 102

318



7.5.4 Cascaded Weighted-Sum Initialized Results

To eliminate the problems of the random initialized method in reaching the capabilities

of the weighted-sum, this experiment is initialized with the 750 elite individuals resulting

from the weighted-sum optimization after 50, 000 individuals. This initialization allows the

faster running weighted-sum to be utilized to reach good performance. Then, the block di-

agram evolutionary programming method makes modifications in the topology and utilizes

non-linear functions. The input descriptions are made using the scaling Math Function and

Add/Subtract basis functions. The weights for each input are implemented with the scal-

ing math function g(x) = m1(m2x + b2) + b1, with m2 = 1 and b1 = b2 = 0 resulting in

g(x) = m1x. The sums are implemented with cascaded Add/Subtract basis function. Four

plus and five minus ports are connected to scaling functions. The remaining plus port is

connected to the output of the next Add/Subtract function block.

Figure 132 displays the resulting topology visualized using the Ptolemy II Vergil tool.

This topology requires 12 Add/Subtract components, and 105 linear Math Functions. The

average time for evaluating individuals increases from 84.9 seconds for the random indi-

vidual to 119.8 seconds for this cascade topology.

Figure 133 displays the two measures of performance during training for this run along

with the results for weighted-sum optimization for comparison. Note that the results for

the cascade solution are shifted by 50, 000 individuals to indicate the initialization using

the results from the weighted-sum optimization at this period. Note that even upon termi-

nation, the hypervolume shows a continued positive slope, indicating a population that is

continuing to improve. Also note the rapid initial improvement in the measure as compared

to that of the weighted-sum.

Examination of individual 29, 076 with an error rate of 15.41 percent training and 15.35

percent for evaluation in Figure 134 illustrates an example of the sources of this rapid initial

improvement. From this figure note that the number of processing blocks increases from

117 to 130. The number of Math Function blocks increases from 105 to 112, but all but
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Figure 132: Topology for Individuals Initialized with Cascaded Weighted-Sum
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Figure 133: Measures of Performance During Training of Cascade Weighted-Sum Ini-
tialized Evolutionary Programming for Census Problem. Hypervolume calculated using
Equation 3. Error rate calculated using Equation 163.
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five of these functions are still linear functions. Input ports 45 and 65 are made useless via

mutation to the function 0.0. Also added through mutation are the use of the atan, pow and

sinc non-linear functions.

The overall topology remains much the same. The far left side of the figure displays

some additional complexity connected to the final cascade Add/Subtract Function with the

use of six additional Add/Subtract functions, and seven additional Math Functions. The

complexity is probably attached to the final Add/Subtract Function because it is the only

function block with additional ports available. Therefore, there is no loss in complexity to

add additional elements at this location. In summary, individual 29, 079 illustrates that the

rapid improvements are utilizing the ability to increase the complexity of the overall model

through changes in topology and use of non-linear components.

Figure 135 displays a comparison of the training and evaluation Pareto optimal front

for last available elite individuals, which occurred around 203, 000 individuals. Individual

174,557, with an error rate of 15.20 percent for training and 14.88 percent for evaluation, is

illustrated in Figure 136. This individual reduces the total number of blocks utilized from

117 to 109. Much of the reduction occurs because of the loss of two of the twelve cas-

cading Add/Subtract Functions, which results in the loss of the input ports, and associated

connections for ports 82 to 99.

Of the 92 Math Functions utilized, 84 are linear functions. The non-linear functions

used are floor, sin, sinc, clipping, asinh, tan and the zero function. The genetic dependence

on individual 29, 079 can still be seen through the dependence of port 45 on the zero func-

tion. Also similar to individual 29, 079 is that much of the additional complexity is again

added to the left-hand side of the diagram. Unfortunately, this displays a limitation on the

original topology selected.

The cascade initialized evolutionary programming experiment illustrates two important

features:

1. The ability to seed a block diagram with an existing set of Pareto optimal system
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Figure 134: Individual 29,706 From Cascade Initialized Evolutionary Programming. Error Rate of 15.4 Percent.
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Figure 135: Comparison of Training and Evaluation Pareto Fronts and the Training and
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Figure 136: Individual 174,557 From Cascade Initialized Evolutionary Programming. Error Rate of 14.88 Percent.
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designs.

2. The ability of the system to permute the design through changes in attributes and

topology into a set of Pareto optimal systems with even better performance than the

previous designs.
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7.5.5 Hierarchical Weighted-Sum Initialized Results

The third experiment attempts to remove the dependence on the cascaded weighted-sum

topology in several ways. First, a more hierarchical topology is created to remove the

dependency of the first level of Add/Subtract Functions on the input of every subsequent

input. Second, to allow insertion of additional components, the lowest level Add/Subtract

Functions only receive input from three linear functions. Third, additional complexity

between hierarchical components is seeded by using two cascaded linear functions.

Figure 137 displays a section of the topology. This method increases the number of

components to 105 starting linear elements, 54 hierarchical Add/Subtract Functions and

108 linear elements between hierarchical Add/Subtract Functions. This results in a total

of 267 components, which increases the average evaluation time from 119.8 seconds for

the cascade design to 346.0 seconds. Again, the third run is initialized with 750 elite

individuals resulting from the weighted-sum optimization after 50, 000 individuals.

An initial optimization resulted in very poor rate of performance improvements. This

is hypothesized to originate from the increase in effective mutation due to the increased

number of components. The cascade initialized method has twelve Add/Subtract Functions

each with ten attributes, 105 linear elements each with eight attributes, and each element

also has a function type attribute. With a 0.5 percent mutation rate for uniform and normal

mutation, an individual has a probability of mutation of:

Pm,cascade,individual = 1.0 − (1.0 − 0.005)2(12∗11+105∗9)

Pm,cascade,individual = 0.999998. (166)

But, the probability of mutating the hierarchical components is only dependent on the Ad-

d/Subtract Functions, resulting in:

Pm,cascade,hierarchy = 1.0 − (1.0 − 0.005)2(12∗11)

Pm,cascade,hierarchy = 0.733748. (167)
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Figure 137: Topology for Individuals Initialized with Hierarchical Weighted-Sum
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The hierarchical method uses 54 Add/Subtract Functions, 108 linear elements, resulting

in a probability of mutating the hierarchical components of:

Pm,hierarchical,hierarchy,original = 1.0 − (1.0 − 0.005)2(54∗11+108∗9)

Pm,hierarchical,hierarchy,original = 0.99999999. (168)

To reduce the deleterious effect of this high level of mutation, the probability of muta-

tion for normal and uniform mutation is reduced by a factor of ten from 0.5 percent to 0.05

percent, resulting in:

Pm,hierarchical,hierarchy, f inal = 1.0 − (1.0 − 0.0005)2(54∗11+108∗9)

Pm,hierarchical,hierarchy, f inal = 0.791203. (169)

This does leave a disparity in the mutation rate for the 105 input Math Functions, which

cannot currently be rectified. The mutation rate for the input functions reduces from:

Pm,cascade,input = 1.0 − (1.0 − 0.005)2(105∗9)

Pm,cascade,input = 0.999941 (170)

for the cascade initialized MOEP experiment to

Pm,hierarchical,input = 1.0 − (1.0 − 0.0005)2(105∗9)

Pm,hierarchical,input = 0.621766 (171)

for the hierarchical initialized MOEP experiment.

Figure 139 displays a comparison of the training and evaluation Pareto optimal front

for last available elite individuals, which occurred at 111, 750 individuals.
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Figure 140: Individual 93, 348 From Hierarchy Initialized Evolutionary Programming. Error Rate of 15.37 Percent Training and 15.23
Percent Evaluation.
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Figure 141: Evolution of Measures of Performance for Four Examined Methods for Cen-
sus Problem. Hypervolume calculated using Equation 3. Error rate calculated using Equa-
tion 163.

7.5.6 Comparison of Census Problem Results

This section offers a comparison of the results of the optimization using the weighted sum,

random initialized MOEP, cascade initialized MOEP, and hierarchical initialized MOEP

methods. The two performance measures for the problem are the hypervolume in the de-

sired area of solutions greater than (0.5, 0.5) and the error rate. Figure 141 illustrates these

two performance measures versus the number of individuals evaluated. Note that the cas-

cade initialized MOEP method reaches the best performance measure after the solution of

over 100, 000 individuals beyond the 50, 000 required to seed the execution.

The specifics of implementing each of the four methods affect the complexity of the

solutions, which in turn affect the resulting run time. Figure 142 gives the minimum,

average, and maximum runtime for each of the solution methods for each group of 10, 000

individuals. After the initial transition during the first 30, 000 individuals, there is relatively
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Figure 142: Minimum, Average and Maximum Evaluation Time Over Evolutionary Pe-
riod for Four Examined Methods of Census Problem

little change in the average evaluation time. The best time evaluation performance is by far

for the weighted-sum implementation, which is implemented using awk. The other runs

implemented using the MOEP methods have the improved capability of including changes

in topology, but these did come at a large run-time premium.

Of the three MOEP implementations, the random initialized individual has the lowest

average runtime. But, note that the minimum time required is largest for the random ini-

tialized method. This increase for the minimum reflects an increase in the time required for

the translation from the genome description to the Ptolemy II description. In comparison to

the cascade or hierarchical initialized individuals, the random individuals contained many

more impossible connections requiring more time in the recursive error detection and error

correction procedures of the translation process as outlined in Section 7.2.2.

To allow a comparison of the run time required to reach the desired levels, Figure

143 changes the x-scale of Figure 141 to CPU days. This representation accentuates the
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Figure 143: Measures of Performance versus CPU time for Four Examined Methods for
Census Problem. Hypervolume calculated using Equation 3. Error rate calculated using
Equation 163.

improvements made using the simple EA methods of the weighted-sum. Note that due to

the relatively quick evaluation of the weighted-sum, the overall speed of evolution would

like have been improved by using a later version of the weighted-sum optimization to seed

the cascade and hierarchical optimization.

Also, note that the hypervolume for all three evolutionary programming techniques has

a positive slope at the end of the run indicating that improvements are still being made.

The limiting factor is receiving enough processor time. Other evolutionary programming

techniques, such as that of Koza [37] require up to one million individuals to converge.

Therefore, these methods have not reached their final potential.

Another aspect of this research is the use of dynamic objective thresholding. As detailed

in Section 7.4, an effort was made to run a smaller, 5, 000 data point, set of data for the first

two objectives followed by a larger, 26, 162 data point, set of data for the third and fourth
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objectives. The effects of dynamic objective thresholding can be seen in Figure 142 by the

large difference between the average and maximum run times, indicating the truncation of

the evaluation of individuals after the evaluation of only the smaller set of data. Table 24

details the percent of individuals truncated.

Truncation simply indicates a poor-performing individual. Considering that the indi-

vidual is the product of two good individuals, the poor performance must originate from

either the crossover or mutation operations. To measure the effects of mutations, Table

24 also shows the calculation of the percent of individuals mutated based on the number

of attributes available for mutation with a typical individual. There is a high correlation

between mutation rate and the percentage of poor performing individuals.

Table 24: Effects of Dynamic Objective Thresholding for Census Problem. Percent of
Individuals Truncated After Evaluation of the First Set of Training Data. Percent of Indi-
viduals Mutated.

Optimization Percent Percent Individuals
Method Truncated Mutated

Weighted-Sum MOEA 9.3 1.0 − 0.992(105) = 87.88%
Random Initialized MOEP 33.3 1.0 − 0.992(71∗11+32∗9) = 99.9999%
Cascade Initialized MOEP 48.4 1.0 − (0.995)2(12∗11+105∗9) = 99.998%

Hierarchical Initialized MOEP 16.8 1.0 − (0.9995)2(54∗11+213∗9) = 91.8864%

Table 25 displays the results of the four approaches used in this research in comparison

with the results of other pattern recognition methods. Note, none of the methods were able

to outperform all of the previously designed pattern recognition methods.

Table 26 displays the error rates from each of the four methods for both training and

evaluation. From this table, note each of the MOEP methods performs better in evaluation

than for training. But, more importantly the evaluation of the weighted-sum performs much

worse than for the training data. This is an indication that the weighted-sum method is

over-trained. Therefore, the limits of the weighted-sum method have likely been reached.

In contrast, the MOEP methods have not met these same limits.
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Table 25: Error Rates for Census Pattern Recognition Problem for Various Algorithms,
with Results of This Research Emphasized

Algorithm Error Rate (%)
FSS Naive Bayes 14.05
NBTree 14.10
IDTM (Decision table) 14.46
C4.5-auto 14.46
HOODG 14.82
Cascade Initialized MOEP 14.88
C4.5 rules 14.94
OC1 15.04
Hierarchical Initialized MOEP 15.23
C4.5 15.54
Voted ID3 (0.6) 15.64
CN2 16.00
Naive-Bayes 16.12
Voted ID3 (0.8) 16.47
Random MOEP 16.68
T2 16.84
Weighted-Sum 17.21
1R 19.54
Nearest-neighbor (3) 20.35
Nearest-neighbor (1) 21.42

Table 26: Comparison of Training and Evaluation Error Rates
Optimization Method Training Error Rate Evaluation Error Rate

Weighted-Sum MOEA 16.49 17.21
Random Initialized MOEP 17.15 16.68
Cascade Initialized MOEP 15.20 14.88

Hierarchical Initialized MOEP 15.37 15.23
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7.6 Conclusions

Overall, the results of this research are disappointing. None of the methods developed are

able to outperform the top five pattern recognition methods. There is, however, knowledge

that should not be lost. Two sub-sections are used to organize this knowledge. The first

sub-section details the lessons learned from this research. The second sub-section provides

future directions recommended for this line of research.

7.6.1 Lessons Learned

Several suppositions of this research have been confirmed. First, the block diagram method

is able to use the ability to modify topology to improve performance. This capability is

seen in all three of the MOEP methods investigated. Second, changes in topology should

support improved performance. This capability is seen in both the cascade and hierarchical

initialized MOEP methods, which are able to dramatically improve performance beyond

that of the weighted-sum systems used to seed the evolution. Third, the use of dynamic

objective thresholding can be used to improve performance. This improved performance is

obtained through the truncation of individuals. As illustrated in Table 24, dynamic thresh-

olding was able to eliminate 9 to 48 percent of the individuals after the evaluation of a

smaller set of data.

Another interesting lesson learned is that seeding of solutions with the results of other

system optimization is able to dramatically improve performance. This dramatic improve-

ment is best seen in the comparison of the random initialized methods with those of the

cascade initialized methods.

The downfalls of this research are mostly related to the time required to evolve solu-

tions. The best solution requires over 300 CPU days to evolve. Although there is an obvious

correlation between the complexity of the solutions and the runtime, as indicated in Figure

142, the large difference for implementation in Ptolemy II versus an equivalent solution

in awk is unacceptable. In addition, awk is also known to be an inefficient interpretive
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language as compared to compiled languages such as C++.

Ptolemy II does offer a very flexible simulation infrastructure. But, for many pattern re-

cognition problems the full capabilities of this infrastructure are not needed. Therefore, it is

recommended to eliminate the use the Ptolemy II infrastructure for the MOEP optimization.

7.6.2 Future Directions

The ability to translate a linear genome to a block diagram system already exists with the

capabilities of the MoML generator discussed in Section 7.2.2. But, Ptolemy II in particular

does not seem to be the best system description due to run time constraints. Therefore, it is

recommended to interface the capabilities of the MoML generator to a new evaluator.

Two possible evaluators are worthy of pursuit. First, the freely available Matlab clone

Octave [2] is rapidly maturing. It may be possible to modify the MoML generator to output

an Octave system description for evaluation. Use of a tool such as Octave should provide a

fast running infrastructure with a large number of developed and tested basis functions.

The second possible method is the development and integration of the necessary basis

functions straight into the MoML generator. This has some appeal as the MoML generator

must already create and allow recursion through the topology of a block diagram system.

An obvious first basis function is the expression actor, which provides a configurable inter-

face to a plethora of non-linear math functions. Interestingly with both of these methods,

the existing MoML generator can be used to generate system description that can be visu-

alized using the Vergil tool regardless of the infrastructure used to evaluate the system in

the optimization process.

A final limitation that needs to be removed is the inability to assign different mutation

characteristics to different parts of the system description. Currently, a single mutation

rate is assigned to all attributes of the system description. But, as seen in the hierarchical

optimization in Section 7.5.5 components may have different purposes, thus the need for

different mutation rates. For example, different attributes are used to control the topology,
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function type, and function attributes. Likewise, the mutation setup should be dependent

on the purpose and type of attribute being mutated, e.g., normal mutation is applicable

for most variable types, but it is much less applicable to enumerated attributes. Although

the GTMOEA configuration allows different mutation configurations for different named

components, the PRESTO description assigns the same name to all attributes. This problem

should be easily eliminated through a slight redesign of the genome used to describe the

PRESTO description.
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CHAPTER VIII

CONCLUSIONS

In summary, this research augments current Multiple Objective Evolutionary Algorithms

with methods that dramatically reduce the time required to evolve toward a region of inter-

est in objective space. The research also demonstrates the effectiveness of these methods

with optimization in three complex objective domains of flare pattern design, missile warn-

ing receiver algorithm optimization, and block diagram Multiple Objective Evolutionary

Programming optimization.

The major original contributions of this thesis are:

1. Development of a hierarchical search space description that allows association of

crossover and mutation settings with elements of the genotypic description.

2. Development of a method for parallel evaluation of individuals that removes the need

for synchronization delays at the end of each generation.

3. Dynamic evolution of thresholds for objectives to allow partial evaluation of objec-

tives for individuals.

4. Dynamic objective orderings to minimize the time required for unnecessary objective

evaluations.

5. Application of MOEAs to the computationally expensive flare pattern design domain.

6. Application of MOEAs to the optimization of fielded missile warning receiver algo-

rithms.

7. Development of a new method of using MOEAs for automatic design of pattern

recognition systems.
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This chapter is divided into two sections. The first, Section 8.1, provides a summary of

each of the original contributions. The second, Section 8.2, provides recommendations for

future directions of this research.

8.1 Summary

This section provides subsections that summarizes each of the research contributions item-

ized above.

8.1.1 Hierarchical Search Space Description

Section 3.1.1 detailed the simple description of the genome encoding that is used to define

a hierarchical search space description. The hierarchical search space description supports

the definition of the name, base data type (sampled, double precisions floating point, or

enumerated), and the acceptable range of values for each of the search space dimensions.

In addition, search space dimensions can be combined together into logical groups, which

improves understanding and enables quick duplication of defined search space dimensions.

A description of the genome that is created externally to the software allows tailoring to

new domains without recompilation of the software. Providing a generic system description

also hides the underlying complexity of the evolutionary operators from the end-user, e.g.,

the end-user does not need to worry about how many bits are required to encode various

attributes or how they are stored or communicated. These capabilities were utilized in every

application of this research including:

1. 0/1 Knapsack optimization of Section 4.1.

2. Debs T function optimization of Section 4.2.

3. Flare pattern design optimization of Chapter 5.

4. AAR-44 missile warning receiver algorithm optimization of Chapter 6.

5. MOEA algorithm optimization of the census problem of Section 7.4.
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6. MOEP block diagram optimization of the census problem of Section 7.5.

By providing a name to each attribute, EA operators such as mutation and crossover

can be associated with each attribute. This capability was especially important for as-

signing standard deviations to normal mutation operators during the asexual reproduction

phase required to seed the evolution of the AAR-44 missiles warning receiver algorithms

in Section 6.2.

8.1.2 Removal of Generation Synchronization

Section 2.1.6 outlined the current methods for single and multiple gene pool parallel objec-

tive evaluations. That section also analyzed the effects of the large synchronization times

required at the end of each generation. These synchronization times are most detrimental

for the ICEO class of problems where:

1. The computation time for objective evaluations is large in comparison to the time

required to perform the EA operations.

2. The evaluation time is dependent on the genome being evaluated.

3. Processes are running on many machines which may have various processing speeds

due to their processing speed and loading.

To implement this approach, each processor is given an individual to evaluate. Remain-

ing individuals in the current generation, C, are given to a processor for evaluation as they

finish the evaluation of their current individual. When there are no more individuals in the

current generation that need evaluating, or are not in the process of being evaluated, then

the software creates the next generation based on the current population and the elite popu-

lation. Without generation synchronization, the software also becomes more fault tolerant,

i.e., if a processor goes down for some reason, the individual being evaluated is lost, but

the entire evolutionary process is not halted as it would be with generation synchronization.

Fault tolerance is especially important for ICEO optimization problems, which require long
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optimization times, and thus have a probability of processor or system malfunction that is

not negligible.

The removal of generation synchronization was shown in Section 5.2.5 to reduce the

time required for flare pattern optimization an average of forty-six percent. These meth-

ods were then utilized on the AAR-44 optimization of Chapter 6 and the census problem

optimization of Chapter 7.

8.1.3 Dynamic Objective Thresholding

As described in Section 3.4.1, dynamic objective thresholding is used to terminate the

evaluation of an individual before all objectives are evaluated if it is determined on the basis

of already-evaluated objectives that the individual is not likely to improve performance.

An individual that does not have all objectives evaluated still has a fitness value. The

fitness value is obtained with the remaining objectives values set to the minimum value

for the objective. It is only by not evaluating all objectives for every individual that speed

improvements can be made.

Section 4.1.3 illustrated that dynamic objective thresholding is able to reduce the num-

ber of objectives evaluated, especially for problems with many objectives. Section 5.2.1

showed the capability of dynamic objective thresholding to reduce the time required for

evolution by forty-one percent for the flare pattern design problem. Dynamic objective

thresholding was especially effective with the block diagram method, as detailed in Table

24, which shows the truncation of 9.3 to 48.4 percent of individuals. Dynamic objective

thresholding was also utilized with the AAR-44 missile warning receiver algorithm opti-

mization. As listed in Table 19, up to twenty-three to seventy-two percent of individuals

were truncated, depending on the setup conditions and number of objectives.

8.1.4 Dynamic Objective Ordering

Objective ordering allows the user to preset the order and the software to automatically

modify the order in which objectives are evaluated. This capability feeds two purposes.
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First, the software can dynamically order the objectives creating objective orders that fur-

ther improve speed performance beyond that of dynamic objective thresholding with the de-

fault objective ordering alone. Second, the user can force different orderings of objectives

for different demes, enabling the different demes to focus on different desired attributes

of the final individual. Note that either method requires the dynamic objective threshold-

ing algorithm of the previous section to eliminate the evaluation of objectives. Without

dynamic objective thresholding, the objective ordering can not provide any performance

improvement.

There are currently two dynamic objective ordering algorithms: hypercube distance and

auto ordering. The hypercube distance ordering algorithm orders objectives based on their

average distance from the region of interest. This allows concentration on objectives that

are furthest from the region of interest. The auto ordering method takes into account the

time to evaluate each objective, and tries to order objectives in an order that reduces the

time to evaluate a total population.

The capability of the HCD dynamic ordering method with the 0/1 Knapsack problem

is given in Sections 4.1.3.3, 4.1.3.4 and 4.1.3.5. These results show that dynamic objective

ordering is especially effective for problems with more than two objectives, and is in some

circumstances able to outperform the best static ordering.

The results of HCD dynamic ordering with the flare optimization problem of Section

5.2.2 show that on average it requires thirty-one percent more time with HCD objective

ordering than is required without it. Problems with dissimilar run-times are best served by

the auto ordering method, which showed an average sixteen percent decrease in the time

required for optimization for the flare pattern design problem.

With the optimization of the AAR-44 missile warning receiver, much was known about

the run-times, and relative difficulty of the objectives before optimization began. As de-

scribed in Section 6.3.1, this problem utilizes multiple objective orderings to build multiple

demes that focused on different design criteria.
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8.1.5 Flare Pattern Optimization

Chapter 5 illustrates that flare patterns for the defeat of imaging seekers from multiple

angles and ranges can be found using MOEA methods. In fact, the ICEO methods are

arguably the most important for this particular problem for the following reasons:

1. The run-times for each objective are large, requiring two to six minutes.

2. The run-times are both objective and genome dependent.

3. The solutions are not intuitively obvious.

4. The entire Pareto front is not desired, only those solutions that reside near or inside

the region of interest.

8.1.6 Missile Warning Receiver Algorithm Optimization

The purpose of this research was to improve the performance of the AAR-44A OFP. The

AAR-44A is a missile warning receiver utilized on United States Air Force Special Oper-

ation Forces aircraft. With the aid of government technical input, four measures of perfor-

mance were selected: probability of declaration, false alarm performance, time to intercept

minimum, and time to intercept average. These objectives were further divided into threat

groups and regions of performance to create a 22-dimensional objective space. By in-

spection of the source code, 156 constants within the OFP were identified as having the

possibility of improving system performance. These constants, along with their associated

limits, defined a 156-dimensional search space.

To optimize the OFP performance against false alarms, live-fire data, and simulated

data, MOEAs were applied to find the set of Pareto optimal individuals in the 22-dimensional

objective space consisting of the various threat and region groupings. The objective space

was then reduced back to a four-dimensional objective space mentioned above using a

weighted-sum. The results of this optimization showed dramatic improvements in all four

dimensions.
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The research in optimization of the AAR-44A resulted in several conclusions that were

applicable to MOEA optimization in general. First, the combinations of previous MOEA

algorithms coupled with the new ICEO methods of dynamic objective thresholding, hyper-

cube distance scaling, and multiple demes were able to improve the performance of a very

complex system. Even the evaluation of 576, 929 individuals was achieved using parallel

evaluation and objective thresholding within one month of calendar time.

Second, tuning a system is different from designing a new system. As such, the ability

to start from a single known solution is required for tuning a system. Tuning an existing

system requires a short period of high mutation using normal distributions to create a geno-

typicly and phenotypicly diverse population. This high mutation period is then followed

by a longer period of lower rate mutation to provide evaluation of different combinations

of the new genetic material.

Third, although identification and removal of variables from the search space does dra-

matically reduce the size of the search space, it does not dramatically reduce the time

required to explore the search space when tuning an existing system. Therefore, bad indi-

viduals will only be created by the rate of the mutation Pm for that attribute, which typically

is around one to two percent. Therefore, it is better to add another variable to the search

space than to miss one important variable. As illustrated by this optimization, 156 vari-

ables are selected, and sensitivity analysis at the end shows only 74 of the variables are

important.

8.1.7 Block Diagram Multiple Objective Evolutionary Programming

The block diagram multiple objective evolutionary programming technique was detailed

in Section 7.2. The block diagram method was able to use the ability to modify topology

to improve performance. This capability was seen in both the cascade and hierarchical

initialized MOEP methods, which were able to dramatically improve performance beyond

that of the weighted-sum systems used to seed the evolution.
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Another interesting lesson learned from this research is that seeding of solutions with

the results of other system optimization was able to dramatically improve performance.

This dramatic improvement was best seen in the comparison of the random initialized

methods with those of the cascade initialized methods.

The disappointments of this research were mostly related to the time required to evolve

solutions. With over 300 CPU days required to evolve, the use of Ptolemy II is computa-

tionally prohibitive. Ptolemy II does offer a very flexible simulation infrastructure. But,

for many pattern recognition problems the full capabilities of this infrastructure are not

needed. Therefore, it is recommended to eliminate the use the Ptolemy II infrastructure for

the MOEP optimization.

8.2 Future Directions

This section provides an overview of the many future directions this research can take.

The areas for directions are divided into three subsections. The first subsection discusses

possible improvements in the GTMOEA software application for ICEO problems. The

second subsection proposes improvements to the PRESTO software application for MOEP

problems. The third subsection proposes the application of this research to other domains.

8.2.1 Improvements in Georgia Tech Multiple Objective Evolutionary Algorithm
Software

GTMOEA provides a modular infrastructure for integration, testing, and production use

of new and previously developed MOEA concepts. The following subsections provide

concepts for improvements to this software package that would potentially improve its ap-

plication to ICEO problems. In all cases, promising methods can be evaluated using 0/1

Knapsack, 0/1 Deb’s T function, and Census problems. The results for these problems

given in Chapters 4 and 7 will provide a good basis for comparison to measure the im-

provement in performance.
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8.2.1.1 Software Infrastructure Improvements

As discussed in Section 3.1.1, a DTD exists that defines the hierarchy, name, data type,

and range of all dimensions of the search space. Since the original development of the

software, methods such as the XML schema have matured. These methods should be able

to provide the same information as the existing DTD in a more standard format. It is

therefore proposed to replace the current search space description with a more standard

interface.

In addition, many other concepts have been developed for the standard evolutionary al-

gorithms operators of selection, crossover, mutation, and elitism. Specific concepts include

averaging crossover methods [46, 47], and dynamic mutation rates. These methods should

be examined for applicability to ICEO problems. Those methods with applicability should

be added to the software and then evaluated for performance improvement.

As discussed in Section 2.1.6 and shown to be effective in Section 5.2.5, the innova-

tion for the removal of the need for generation synchronization improves performance by

keeping processors busy evaluating individuals instead of waiting for an individual to be

evaluated. One possible wait condition still exists. This wait condition occurs while the

master process, which is responsible for aggregating the results from many function eval-

uator processors, is busy creating the next generation of individuals, evaluating dynamic

thresholds, or creating dynamic objective orders instead of keeping the external evaluators

busy. This wait condition is most likely to manifest itself when many external processors

are used for function evaluators. Figure 39 illustrated the current processing. Figure 144 il-

lustrates a proposed approach using three threads to remove the major processing elements

from the thread responsible for servicing the function evaluator processors.

8.2.1.2 Historical Information

The concepts of dynamic objective thresholding and dynamic objective ordering both uti-

lize historical information in order to improve the speed of evolution. The idea of using past
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information to improve future performance could be applied to other EA operators as well.

For example, by using information about the crossover locations and mutation operations

that result in improved performing individuals, these operators can be tuned to increase the

likelihood of crossover at specific locations or mutation of specific variables.

The first step of the research would be to implement the recording of the EA operators

utilized to create new individuals. This data should be analyzed to find the "family tree”

of individuals. Any trends in operations that are more common in good performing indi-

viduals than in poor performing individuals become candidates for dynamic setting from

population information. The census problem is an excellent candidate for evaluation of the

technique because it contains non-trivial, real-valued attribute values whose sensitivity to

mutation should be attribute dependent.

8.2.1.3 Distance From Pareto Front as Performance Indicator

This thesis research used dynamic objective thresholds to greatly reduce the number of

objectives required. Division of training data into smaller subsets was also used to allow

dynamic thresholds to eliminate poor performing individuals after the evaluation of only

a few objectives. This division of data should result in sets of objectives that are highly

correlated. If the data sets are highly correlated, then the individuals that are Pareto opti-

mal in the lower dimensional objective space from one set of objectives should be highly

correlated with the Pareto optimal individuals in the objective space defined by the other

set of objectives.

Therefore, in addition to the dynamic thresholds which push solutions toward a region

of interest, the minimum distance of individuals from the Pareto optimal front in the lower

dimension could also be used to provide a means of truncating evaluation of poor perform-

ing individuals. Figure 145 illustrates the concept in two dimensions, where C is the current

population and E is the elite population.

Let EP be the Pareto individuals in the elite population, then the minimum distance to
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EP for an individual i in C is
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where p is the Holder coefficient. Because of the normalization of objective values the

range is

dmin(i, EP) ∈ [0, q
1
p ]. (173)

An individual i would only be allowed to transition to the next set of objectives if it ex-

ceeds the dynamic threshold T, and either dominates the current solutions in E or has a

dmin(i, EP) > β, where β is some constant in the valid range given in Equation 173.

Usefulness of the measurement of the distance from the current Pareto front is predi-

cated on the correlation of the objectives. The correlation between objectives can be mea-

sured from those objectives that are solved. The value of beta can then be increased or

decreased based on the amount of correlation between the sets of objectives.
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8.2.2 Multiple Objective Evolutionary Programming Improvements

The block diagram approach demonstrated the ability to evolve solutions that improved

solutions through changes in topology and use of non-linear components. A problem with

this approach was the ability to evaluate enough individuals to investigate the effects of

changes in input architecture, basis functions, and MOEA settings. This problem was due

to the poor run-time performance of the Ptolemy II simulation. It is anticipated that the

other function evaluators could achieve up to 100 times faster evaluation.

As discussed in Section 7.6.2, two possible evaluators are worthy of pursuit. First, the

freely available Matlab clone Octave is rapidly maturing. It may be possible to modify the

MoML generator to output an Octave system description for evaluation. Use of a tool such

as Octave should provide a fast running infrastructure with a large number of developed

and tested basis functions. The second possible method is the development and integration

of the necessary basis functions directly into the MoML generator. This has some appeal

as the MoML generator must already create and allow recursion through the topology of a

block diagram system.

In addition, a final limitation that requires removal is the inability to assign different

mutation characteristics to different parts of the system description. Currently, a single

mutation rate is assigned to all attributes of the system description. But, as seen in the

hierarchical optimization in Section 7.5.5, components may have different purposes, and

thus need different mutation rates. Although the GTMOEA configuration allows different

mutation configurations for different named components, the PRESTO description assigns

the same name to all attributes. This problem can be easily eliminated through a slight

redesign of the genome used to describe the PRESTO description.

8.2.3 Application of Multiple Objective Evolutionary Algorithms to Additional Do-
mains

This section describes possible applications of the MOEA to additional ICEO domains.
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8.2.3.1 Application to Additional Missile Warning Receiver

The MOEA techniques were successfully applied to the AAR-44 missile warning receiver,

see Section 6, implying these techniques would also be very applicable to similar warning

receiver systems. At the time of this writing, GTRI is already under contract with the Air

Force for optimization of the AAR-47 missile warning receiver algorithms using MOEA

techniques. The results of the AAR-44 optimization have also been presented to BAE

Systems, the developers of the AAR-57 Common Missile Warning System.

8.2.3.2 Application to Erythema Detection

GTRI is also currently under contract with the National Institute of Health to aid in multi-

spectral detection of erythema. The MOEA and MOEP methods will be utilized in opti-

mizing the detection processes.

8.2.3.3 Use of Pareto Optimal solutions for Extended Operation Conditions

As seen during the optimization of the AAR-44 algorithms in Section 6, the operating

scenarios and conditions can be used to multiply the number of objective space dimensions;

e.g., the objectives may be TP, FP and TTI for threat A and the TP, FP and TTI for threat

B. Other operating scenarios and conditions include the state of the sensor platform (e.g.

position and velocity), and the state of the environment (e.g. visibility, ozone concentration,

and sun angle).

If optimization is performed in this large objective space, then a large Pareto-optimal

set of possible algorithms is created. The best possible solution for use is then dictated

from a combination of sensor and operator inputs. Sensor inputs such as weather condition

and sensor platform state can be used to reduce the size of the objective space. Human

operators can then use mission requirements to determine the relative importance of each

of the possible threats, the acceptable FP performance, and the acceptable TTI. This com-

bination of constraints and weights from sensor and operator inputs is then used to find the
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single best algorithm from the set of Pareto optimal solutions that is optimal for the current

conditions. These methods allow the algorithms to adapt to extended operating conditions,

(EOCs), based on the solutions found from a single MOEA/MOEP optimization.

Several EOC events will make continued MOEA optimization advantageous. New

training data of an existing system may become available for a variety of reasons including

additional testing of the system, use of the system in combat conditions, improved mod-

eling of the system, introduction of new targets, and emergence of new countermeasure

methods. Replacement of training data may be required due to drastic changes in sensor

noise, sensitivity, and resolution. Other EOC events such as the introduction of a new tar-

get processor or the development of novel basis algorithms may also provide the ability to

improve performance via continued optimization.
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APPENDIX A

GEORGIA TECH MULTIPLE OBJECTIVE

EVOLUTIONARY SOFTWARE DATA TYPE

DESCRIPTION

<!ELEMENT MOEA ( Seed , E v a l u a t o r , Te rmina te ,
DebugPare to ? , Deme+ )>

<!−−***********************************************−−>
<!−− Seed f o r random number g e n e r a t o r −−>
<!ELEMENT Seed ( # PCDATA ) >
<!−−***********************************************−−>
<!−− E v a l u a t o r d e f i n e s i n t e r f a c e t o remote −−>
<!−− e v o l u t i o n −−>
<!ELEMENT E v a l u a t o r ( Name , TmpDir ? , G e n e D e s c r i p t i o n ,

Header * , T r a i l e r * , O b j e c t i v e L i s t , Mach ineLi s t ,
Debug?)>

<!ELEMENT Name ( #PCDATA ) >
<!ELEMENT TmpDir ( #PCDATA ) >
<!ELEMENT G e n e D e s c r i p t i o n ( #PCDATA ) >
<!ELEMENT Header ( #PCDATA ) >
<!ELEMENT T r a i l e r ( #PCDATA ) >
<!ELEMENT O b j e c t i v e L i s t ( ( Name , MinValue ? ,

Header * , T r a i l e r *)+ ) >
<!ELEMENT M a c h i n e L i s t ( Name+ ) >
<!ELEMENT Debug ( #PCDATA ) >

<!−−***********************************************−−>
<!−− T e r m i n a t e node d e t e r m i n e s when t o s t o p −−>
<!−− e x e c u t a b l e −−>
<!ELEMENT T e r m i n a t e ( MaxFi tnes s ? , MaxObjec t ives ? ,

MaxGenome ? , I n s i d e R e g i o n ? ) >
<!ELEMENT MaxFi tness ( #PCDATA ) >
<!ELEMENT MaxObjec t ives ( #PCDATA ) >
<!ELEMENT MaxGenome ( #PCDATA ) >
<!ELEMENT I n s i d e R e g i o n ( #PCDATA ) >

<!−−***********************************************−−>
<!−− O p t i o n a l DebugPareto i s used t o p r o v i d e −−>
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<!−− Pare to o p t i m a l s o l u t i o n s w h i l e r u n n i n g −−>
<!ELEMENT DebugPare to ( De l t a , Type , Name ) >
<!ELEMENT D e l t a ( #PCDATA ) >
<!ELEMENT Type ( #PCDATA ) >

<!−−***********************************************−−>
<!−− M u l t i p l e Demes are used t o d e f i n e e v o l u t i o n −−>
<!−− o f p a r a l l e l p o p u l a t i o n s −−>
<!ELEMENT Deme ( Name , F i t n e s s , Output , I n i t ,

S e l e c t i o n , Crossove r , M u t a t i o n ) >
<!−−*********************************************−−>
<!−− The F i t n e s s s e c t i o n d e f i n e s t h e mapping −−>
<!−− from m u l t i p l e o b j e c t i v e s t o a s i n g l e −−>
<!−− f i t n e s s v a l u e −−>
<!ELEMENT F i t n e s s ( ( Pa re toRank1 | Pare toRank2 | SPEA1 |

SPEA2 | SPEA3 |WeightedSum ) ,
( HCDScale | Nich ing | Trans fo rm | Normal i ze |

SPEA2Density ) * , T h r e s h o l d i n g ? , O r d e r i n g ? ) >
<!−−*******************************************−−>
<!−− There are s e v e n f i t n e s s c a l c u l a t i o n −−>
<!−− m e t h o d s : ParetoRank1 , ParetoRank2 , SPEA1 , −−>
<!−− SPEA2 , SPEA3 , WeightedSum , HCD −−>
<!ELEMENT Pare toRank1 ( RankLimi t ) >
<!ELEMENT RankLimi t ( #PCDATA ) >

<!ELEMENT Pare toRank2 ( RankLimi t ) >
<!ELEMENT WeightedSum ( Weight * ) >
<!ELEMENT Weight ( Name , Value ) >
<!ELEMENT Value ( #PCDATA ) >

<!ELEMENT SPEA1 ( HolderCoef , MaxNum)>
<!ELEMENT Holde rCoef ( #PCDATA ) >
<!ELEMENT MaxNum ( #PCDATA ) >

<!ELEMENT SPEA2 ( Holde rCoef ) >
<!ELEMENT SPEA3 ( HolderCoef , MaxNum)>
<!−−*******************************************−−>
<!−− There are f i v e f i t n e s s s c a l i n g m e t h o d s : −−>
<!−− HCDScale , Niching , Trans form , Normal ize , −−>
<!−− SPEA2Densi ty −−>
<!ELEMENT HCDScale ( HolderCoef , Minimize ? , O f f s e t ? ) >
<!ELEMENT Nich ing ( NumNiches , HolderCoef ,

Minimize ?)>
<!ELEMENT NumNiches ( #PCDATA ) >
<!ELEMENT Minimize ( #PCDATA ) >

<!ELEMENT Trans fo rm ( P o i n t , P o i n t , P o i n t *)>
<!ELEMENT P o i n t ( In , Out )>
<!ELEMENT In ( #PCDATA ) >
<!ELEMENT Out ( #PCDATA ) >
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<!ELEMENT Normal i ze ( #PCDATA ) >
<!ELEMENT SPEA2Density ( Holde rCoef ) >
<!−−*******************************************−−>
<!−− O b j e c t i v e T h r e s h o l d i n g i s used t o l i m i t −−>
<!−− t h e number o f o b j e c t i v e c a l c u l a t i o n s −−>
<!ELEMENT T h r e s h o l d i n g ( ( G a u n t l e t |

F i t n e s s T h r e s h | F i x e d R a t e ) , NumHistory ? ,
NumDelta ? , T h r e s h o l d + )>
<!ELEMENT G a u n t l e t ( #PCDATA ) >
<!ELEMENT F i t n e s s T h r e s h ( #PCDATA ) >
<!ELEMENT F i x e d R a t e ( #PCDATA ) >
<!ELEMENT NumHistory ( #PCDATA ) >
<!ELEMENT NumDelta ( #PCDATA ) >
<!ELEMENT T h r e s h o l d ( Name , MinValue , MaxValue ,

MaxWeight ) >
<!ELEMENT MinValue ( #PCDATA ) >
<!ELEMENT MaxValue ( #PCDATA ) >
<!ELEMENT MaxWeight ( #PCDATA ) >

<!−−*******************************************−−>
<!−− O b j e c t i v e Order ing i s used t o change t h e −−>
<!−− o r d e r i n which o b j e c t i v e s are c a l c u l a t e d . −−>
<!−− Coupled w i t h o b j e c t i v e t h r e s h o l d i n g , −−>
<!−− t h i s can f u r t h e r r e d u c e t h e t i m e f o r −−>
<!−− o b j e c t i v e e v a l u a t i o n . −−>
<!ELEMENT O r d e r i n g ( Force * , RandomIni t ? ,

C h e c k O b j e c t i v e s ? , NumDelta ? , NumHistory ? ,
MinN ? , Debug ? ,
( C o r r e l a t i o n | HCDOrder | AutoOrder ) ) >

<!ELEMENT Force ( #PCDATA ) >
<!ELEMENT RandomIni t ( #PCDATA ) >
<!ELEMENT C h e c k O b j e c t i v e s ( # PCDATA ) >
<!ELEMENT MinN ( #PCDATA ) >
<!ELEMENT C o r r e l a t i o n ( MinN , MaxR , MinT ) >
<!ELEMENT MaxR ( #PCDATA ) >
<!ELEMENT MinT ( #PCDATA ) >

<!ELEMENT HCDOrder ( Holde rCoef ) >
<!ELEMENT AutoOrder ( MaxDiff ,

( P a r e t o B e s t | F i t n e s s B e s t ) ) >
<!ELEMENT MaxDiff ( #PCDATA ) >
<!ELEMENT P a r e t o B e s t ( #PCDATA ) >
<!ELEMENT F i t n e s s B e s t ( #PCDATA ) >

<!−−*********************************************−−>
<!−− T h i s s e c t i o n a l l o w s o u t p u t o f i n d i v i d u a l −−>
<!−− da ta d u r i n g t h e e v o l u t i o n p r o c e s s −−>
<!ELEMENT Outpu t ( ( C r e a t e d O u t | NewObjec t iveOut |
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CompletedOut )*) >
<!ELEMENT C r e a t e d O u t ( Type , Name ) >
<!ELEMENT NewObjec t iveOut ( Type , Name ) >
<!ELEMENT CompletedOut ( Type , Name ) >

<!−−*********************************************−−>
<!−− The I n i t s e c t i o n d e t a i l s how t h e −−>
<!−− p o p u l a t i o n s are i n i t i a l i z e d −−>
<!ELEMENT I n i t ( GenSync ? , NumPerGen ,

P r e v e n t D u p l i c a t e s ? , E l i t e ? , RandomBits ? ,
RandomValues ? , F i l e * ) >

<!ELEMENT GenSync ( #PCDATA ) >
<!ELEMENT NumPerGen ( #PCDATA ) >
<!ELEMENT P r e v e n t D u p l i c a t e s ( # PCDATA ) >
<!ELEMENT E l i t e ( Num , C h e c k F i t n e s s ? ,

C h e c k O b j e c t i v e s ? , SPEA2Prune ? , M i n F i t n e s s ? ,
MaxRank ? , P a r e t o ? , C l u s t e r i n g ? , T h r e s h o l d s ? ,
Minimize ? , DebugPool ? ) >
<!ELEMENT Num ( #PCDATA ) >
<!ELEMENT C h e c k F i t n e s s ( #PCDATA ) >
<!ELEMENT SPEA2Prune ( Holde rCoef ) >
<!ELEMENT M i n F i t n e s s ( #PCDATA ) >
<!ELEMENT MaxRank ( #PCDATA ) >
<!ELEMENT P a r e t o ( #PCDATA ) >
<!ELEMENT C l u s t e r i n g ( HolderCoef ,

P rese rveTop , TopFitnessNum)>
<!ELEMENT P r e s e r v e T o p ( #PCDATA ) >
<!ELEMENT TopFitnessNum ( # PCDATA ) >

<!ELEMENT T h r e s h o l d s ( #PCDATA ) >
<!ELEMENT DebugPool ( GenDelta , Type ,

Name , Num ) >
<!ELEMENT GenDel ta ( #PCDATA ) >

<!ELEMENT RandomBits ( #PCDATA ) >
<!ELEMENT RandomValues ( #PCDATA ) >
<!ELEMENT F i l e ( Type , Name ) >

<!−−*********************************************−−>
<!−− The s e l e c t i o n method d e t a i l s how n a t u r a l / −−>
<!−− a r t i f i c a l s e l e c t i o n i s modeled −−>
<!ELEMENT S e l e c t i o n ( ( R o u l e t t e | Tournament | Stud )+ ) >
<!ELEMENT R o u l e t t e ( Rate , Gamma , O f f s e t ,

Minimize ? ) >
<!ELEMENT Rate ( #PCDATA ) >
<!ELEMENT Gamma ( #PCDATA ) >
<!ELEMENT O f f s e t ( #PCDATA ) >

<!ELEMENT Tournament ( Rate , Num? , Minimize ? ,
Replacement ? ) >
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<!ELEMENT Replacement ( #PCDATA ) >
<!ELEMENT Stud ( Rate , Name , S e l e c t i o n ) >

<!−−*********************************************−−>
<!−− The c r o s s o v e r method d e t e r m i n e s how genome −−>
<!−− are combined d u r i n g t h e mat ing p r o c e s s −−>
<!ELEMENT C r o s s o v e r ( NumParents ? , RemoveParents ? ,

( NPoin t | L o c a t i o n | Clone )+ ) >
<!ELEMENT NumParents ( #PCDATA ) >
<!ELEMENT RemoveParents ( #PCDATA ) >
<!ELEMENT NPoint ( Rate , Number , B o u n d a r i e s ? ) >
<!ELEMENT Number ( #PCDATA ) >
<!ELEMENT B o u n d a r i e s ( #PCDATA ) >

<!ELEMENT L o c a t i o n ( Rate , ( Name ) * ) >
<!ELEMENT Clone ( Rate ) >

<!−−*********************************************−−>
<!−− M u t a t i o n method −−>
<!ELEMENT M u t a t i o n ( Rate , ( B i t | Normal | Uniform )+ ) >
<!ELEMENT B i t ( Rate , B i t R a t e , ( On | Off ) ? ) >
<!ELEMENT B i t R a t e ( #PCDATA ) >
<!ELEMENT On ( #PCDATA ) >
<!ELEMENT Off ( #PCDATA ) >

<!ELEMENT Normal ( Rate , NameRate , StdDev , ( Name ) * ) >
<!ELEMENT StdDev ( #PCDATA ) >
<!ELEMENT NameRate ( #PCDATA ) >

<!ELEMENT Uniform ( Rate , NameRate , ( Name ) * ) >
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APPENDIX B

MODELING MARKUP LANGUAGE DATA TYPE

DESCRIPTION

<!ELEMENT c l a s s ( c l a s s | c o n f i g u r e | d e l e t e E n t i t y |

d e l e t e P o r t | d e l e t e R e l a t i o n | doc |
e n t i t y | group | l i n k | p o r t |
p r o p e r t y | r e l a t i o n | rename | u n l i n k )*>

<!ATTLIST c l a s s name CDATA #REQUIRED
e x t e n d s CDATA # IMPLIED
s o u r c e CDATA # IMPLIED>

<!ELEMENT c o n f i g u r e ( #PCDATA)>
<!ATTLIST c o n f i g u r e s o u r c e CDATA # IMPLIED>
<!ELEMENT d e l e t e E n t i t y EMPTY>
<!ATTLIST d e l e t e E n t i t y name CDATA #REQUIRED>
<!ELEMENT d e l e t e P o r t EMPTY>
<!ATTLIST d e l e t e P o r t name CDATA #REQUIRED>
<!ELEMENT d e l e t e P r o p e r t y EMPTY>
<!ATTLIST d e l e t e P r o p e r t y name CDATA #REQUIRED>
<!ELEMENT d e l e t e R e l a t i o n EMPTY>
<!ATTLIST d e l e t e R e l a t i o n name CDATA #REQUIRED>
<!ELEMENT doc ( #PCDATA)>
<!ATTLIST doc name CDATA # IMPLIED>
<!ELEMENT e n t i t y ( c l a s s | c o n f i g u r e | d e l e t e E n t i t y |

d e l e t e P o r t | d e l e t e R e l a t i o n | doc |
e n t i t y | group | l i n k | p o r t |
p r o p e r t y | r e l a t i o n | rename | u n l i n k )*>

<!ATTLIST e n t i t y name CDATA #REQUIRED
c l a s s CDATA # IMPLIED
s o u r c e CDATA # IMPLIED>

<!ELEMENT group ANY>
<!ATTLIST group name CDATA # IMPLIED>
<!ELEMENT l i n k EMPTY>
<!ATTLIST l i n k i n s e r t A t CDATA # IMPLIED

p o r t CDATA #REQUIRED
r e l a t i o n CDATA #REQUIRED
v e r t e x CDATA # IMPLIED>

<!ELEMENT p o r t ( c o n f i g u r e | doc | p r o p e r t y | rename )*>
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<!ATTLIST p o r t c l a s s CDATA # IMPLIED
name CDATA #REQUIRED>

<!ELEMENT p r o p e r t y ( c o n f i g u r e | doc | p r o p e r t y |

rename )*>
<!ATTLIST p r o p e r t y c l a s s CDATA # IMPLIED

name CDATA #REQUIRED
v a l u e CDATA # IMPLIED>

<!ELEMENT r e l a t i o n ( c o n f i g u r e | doc | p r o p e r t y |

rename | v e r t e x )*>
<!ATTLIST r e l a t i o n name CDATA #REQUIRED

c l a s s CDATA # IMPLIED>
<!ELEMENT rename EMPTY>
<!ATTLIST rename name CDATA #REQUIRED>
<!ELEMENT u n l i n k EMPTY>
<!ATTLIST u n l i n k i n d e x CDATA # IMPLIED

i n s i d e I n d e x CDATA # IMPLIED
p o r t CDATA #REQUIRED
r e l a t i o n CDATA # IMPLIED>

<!ELEMENT v e r t e x ( c o n f i g u r e | doc | p r o p e r t y | rename )*>
<!ATTLIST v e r t e x name CDATA #REQUIRED

pathTo CDATA # IMPLIED
v a l u e CDATA # IMPLIED>
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