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CHAPTER I 

INTRODUCTION 

 

 Zirconium carbide (ZrC) is among the hardest known compounds with micro-

hardness value of ~ 2600 kg/mm2.[1,2,3] This property has been utilized in producing 

cutting tools and in wear-resistant coatings. ZrC is a candidate material for ultrahigh 

temperature applications because of its high melting point ~3550ºC, solid-state phase 

stability, and good thermomechanical and thermochemical properties.[4,5] Besides high 

hardness and high melting temperature ZrC exhibits high emissivity and high current 

capacity at elevated temperatures. Thus, zirconium carbide is a promising material for use 

in thermophotovoltaic radiators and field emitter tips and arrays.[3-8] ZrC also has low 

neutron cross-section and thus can be used as a nuclear reactor core material.[9]

 Generally, powder mixtures of carbon (C) and zirconium metal (Zr), zirconium 

hydride (ZrH2) or zirconium oxide ZrO2) are reacted to synthesize zirconium carbide 

powders.[1,10-12] Because of relatively coarse-scale mixing of starting materials (starting 

materials are in micrometer range) high temperatures are required for carbide formation 

during carbothermal reduction reaction. This also leads to zirconium carbide powders with 

relatively large particle sizes.  Hence, hot pressing is usually necessary to produce dense 

bulk ZrC parts.   

 Recent studies have shown that zirconium carbide can be synthesized at lower 

temperatures by using precursors that have been prepared by solution-based processing 

methods.[13-21] Solution-based processing also has the advantage of fine-scale 

(molecular-level) mixing of carbon-rich and zirconia-rich precursors that can be used to 
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produce thin films, powders and fibers. Fine-scale mixing of the reactants helps in 

reducing the carbothermal reduction temperature to produce zirconium carbide and it also 

helps in restricting the crystallite size of zirconium carbide.   

The studies reported so far have concentrated on producing ZrC fibers and 

powders with varying chemical composition and have determined their stoichiometry but 

the characteristics of powders/fibers produced have not been discussed in detail. The 

effects of solution-based variables on the final composition of ZrC-based powders/fibers 

have also not been discussed in detail. No attempt has been made to understand the 

pressureless sintering behavior of ZrC-based powders produced by solution-based 

processing. 

The objective of this research study was to use solution-based processing and 

carbothermal reduction heat treatments to produce fine-sized ZrC-based powders that 

would be suitable for fabrication of bulk samples via pressureless sintering. 

The solution-based processing method consisted of using soluble metal-organic 

(zirconium-bearing) precursors and organic carbon-bearing precursors in order to 

produce fine-scale zirconia/carbon mixtures.  The processing steps used to produce these 

mixtures included:  (i) modifying the starting organozirconium compound, (ii) mixing the 

soluble precursors, (iii) carrying out controlled hydrolysis/condensation reactions, (iv) 

removing solvent from the processed solutions, and (v) carrying out pyrolytic 

decomposition of the dried products that were prepared by the solution-processing steps.  

The resulting fine-scale zirconia/carbon mixtures were used to produce ZrC by carrying 

out carbothermal reduction reactions at elevated temperature in an inert atmosphere. 
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A variety of processing variables were investigated in order to produce ZrC-based 

powders with fine particle size and controlled chemical and phase composition.   The 

solution-processing variables that were investigated included the:  concentrations of 

starting materials, conditions used to modify the metal-organic precursor (e.g., 

concentration of the modifying compound used and refluxing temperature), 

concentrations of water and acid used in hydrolysis/condensation reactions, etc.  The heat 

treatment processing variables included:  temperature, time, gas flow rate, etc. 

ZrC-based powders were characterized to determine particle/aggregate size, 

crystallite size, specific surface area, phases present, compositional information (carbon 

and/or oxygen content), and lattice parameter.   

 Powder compacts were prepared from ZrC powders using uniaxial dry pressing.  

The compacts were pressureless sintered and the densification behavior was investigated.   
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CHAPTER II 

LITERATURE REVIEW 

 
2.1 Zirconium Carbide Properties and Applications 
 

Zirconium carbide, chemical formula of ZrC, has a cubic close packed NaCl-type 

structure (fcc B1).[1,2,3,23] The properties of ZrC depends on a number of factors like 

chemical composition, defect structure, sample homogeneity, grain size, porosity, 

etc.[23] Thus, variations in the reported values of various properties have been observed 

in the literature. Zirconium carbide is readily produced with a wide range of 

stoichiometries (i.e., from carbon-deficient ZrC1-x to stoichiometric ZrC). Therefore, in 

reporting the properties and characteristics, the zirconium carbide stoichiometry was 

specified whenever this information was evaluated. Table 2.1 lists some characteristics 

and properties of zirconium carbide as reported in the literature. 

Many studies have been done to determine the feasibility of using ZrC for various 

applications. Mackieet al.[11]  and Charbonnier et al.[7] studied ZrC as a possible 

material to be used in field-emission cathodes. Single crystal ZrC wire was grown using 

floating-zone technique[24] and was subsequently used to deposit coatings of ZrC on 

molybdenum (Mo) and tungsten (W) substrates by physical vapor deposition. Mo field-

emission arrays (FEAs) had random sharp micro- or nano-protrusions on the surface that 

limited the emission, as the total array emission was limited by the current limit of the 

sharpest tip. The threshold temperature for surface migration, that eventually destroyed 

the emitter, was 927oC and 677oC for W and Mo, respectively. The threshold temperature 

for  surface  migration  in ZrC was  not  measured, but  was  expected  to  exceed 1227oC.  
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Structure Cubic close pack (fcc, B1) [1,2,3,23] 
 

Color Silver gray [1], Gray [23] 

 
Space group Fm3m [1] 

 
Lattice parameter (nm) 0.4698 [1], 0.47017a [2], 0.4689[3], 0.4698 [23] 

 
Density (g/cm3) 6.59 [1,2,23], 6.9 [3] 

 
Melting temperature (oC) 3420 [1,23], 3530 [3] 

 
Hardness  25.5 Gpa Vickers hardness [1], 2600-2900 

kg/mm2 [2], 2600 kg/mm2 (50g load) [3] 
 

Thermal conductivity 0.049 cal/cm.secoC [3], 20.5 W/moC [1] 
 

Thermal expansion (x 10-6/oC) 6.7 [1,23] 
 

Electrical resistivity (microohm-cm) 45 ± 10 [1], 63-75 [3] 

 
Modulus of elasticity 350-440 GPa [1] 

 
Magnetic susceptibility  -23 x 10-6 emu/mol [1] 

 
 

Reference [1]: The ZrC composition was close to stoichiometric and the reported 
properties were determined at 20oC. The values for lattice parameter, density, melting 
temperature, hardness, thermal conductivity, electrical resistivity, thermal expansion and 
magnetic susceptibility were averages of the values reported by other authors. 
 
Reference [2]: The lattice parameter and density values were reported for zirconium 
carbide with composition of ZrC0.83. The range of hardness value was cited from several 
references. 
 
Reference [3]:  The values reported were from several references. The composition of 
zirconium carbide was not specified. 
 
Reference [23]:  The values reported were for zirconium carbide of composition ZrC0.97. 
    

Table 2.1 Characteristics and properties of ZrC as reported in literature. 
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FEAs with ZrC coatings were more resistant to surface migration and had smoother 

surfaces (no micro- or nano-protrusions). Thus, it could be used for stable high current 

emissions. 

Minato et al.[10] studied the use of a ZrC coating layer as a replacement for 

silicon carbide (SiC) coatings for nuclear fuel particles. SiC coating layers lost their 

mechanical integrity at temperatures >1700oC and were chemically attacked by the 

fission product palladium (Pd). In contrast, ZrC coating layers had much higher 

temperature stability[25,26] and were more resistant to the chemical attack by the Pd 

fission product.[27,28]  

Reynolds et al.[5] also tested zirconium carbide coatings under high-temperature 

irradiation for various fuel particle designs in order to replace SiC. ZrC was selected 

because of its high melting point of ~3540oC (versus 2700oC for SiC), reduced affinity to 

form eutectic phases with metallic fission products, and its relatively low neutron-

absorption cross sectional area. ZrC was found to have excellent resistance to the fission 

products generated in the carbide fuel system. There was no irradiation-induced coating 

failure in the material system that was tested which indicated that the ZrC had excellent 

mechanical integrity.  

He et al.[4] studied the corrosion resistance of ZrC films synthesized by ion-

beam-assisted deposition on A3 steel substrates. The hardness of ZrC films was 2200 kgf 

mm-2. A3 steel with ZrC coatings showed greatly enhanced corrosion resistance 

compared to uncoated A3 steel and compared to A3 steel with ZrN or TeflonTM coatings. 

The results of electrochemical measurements performed on various coatings and 

uncoated A3 steel substrate are reproduced in Table 2.2. 
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Material Film Thickness 
(nm) 

Corrosion 
current 

(µA cm-2) 

Polarization 
resistance 
(KΩ cm2) 

Corrosion 
potential 

(mV/SCE) 

A3 steel - -22.5 1.60 -610 
Teflon 190 -11.1 4.27 -540 
ZrN 190 -10.5 3.14 -465 

ZrC 190           - 1.0     33.4 -430 
 

  

 

Cockeram et al.[8] evaluated the vacuum plasma spray coatings of ZrC as a 

means to increase the emissivity of molybdenum, niobium, and Haynes 230 (nickel-base 

alloy) that were candidate materials for a thermophotovoltaic (TPV) radiator. As-

deposited coatings and coatings annealed for 500 h in vacuum at 1100oC had emittance 

values that were ≥0.8. The coatings exhibited acceptable stability during vacuum 

annealing at 1100oC and excellent resistance to thermal cycling. ZrC coating could 

potentially be used to improve the surface emittance of molybdenum, niobium, or nickel 

base metals for at least 500 h at 1100oC. 

ZrC has high hardness in the range of 2700 – 2900 kg/mm2 for ZrC1.0[2] and can 

potentially be used in cutting tool applications.[23] Kyocera Inc. currently manufactures 

hot-pressed ZrC knives (see Figure 2.1) with sharp edges that are extremely hard (8.2 

Mohs scale vs. 5-6 for steel and 10 for diamond), wear resistant, and chemically 

inert[29].  

 

Table 2.2 Corrosion resistant properties of A3 steel and coated A3 steel samples. 
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2.2  Synthesis 

2.2.1 Carbothermal Reduction 

2.2.1.1   Powder Mixtures 

The most common industrial process for the synthesis of zirconium carbide is by 

carbothermal reduction in which the reactants are zirconium dioxide (ZrO2) and carbon 

(C) powders.[2,3,23] These powders are mixed and subsequently reduced carbothermally 

by reactions as shown below: 

 

ZrO2 (s)  + 3C (s)   =    ZrC (s)  +  2CO (g)   (2-1) 

 

Ruff et al.[30] produced ZrC powders by carbothermal reduction reaction 

between ZrO2 and C at temperatures in the range of 1900 to 2100oC. Friederich et al.[31] 

produced ZrC by carbothermal reduction of ZrO2 and C under hydrogen at 1900oC. 

Sarkar et al.[13] thoroughly mixed reactor-grade ZrO2 and spectrographic-grade 

natural graphite and then heat treated the mixture in a graphite tube resistance furnace 

 
Figure 2.1    Hot pressed ZrC knife manufactured by Kyocera Inc. (This figure is 

reproduced exactly from reference 29.) 
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which allowed the CO pressure to be varied. The carbothermal reduction reaction 

between ZrO2 and carbon was carried out at temperatures in the range of 1400oC to 

1800oC under CO pressures from 100 to 760 torr with a hold at maximum temperature 

from 4 to 75 h. The carbothermally reduced powders contained zirconium oxycarbide 

(ZrCxOy) phase with varying amounts of unreacted ZrO2 and C. The lattice parameters 

calculated for the ZrCxOy phase are reproduced in Table 2.3 along with the various heat 

treatment temperatures and hold times. 

Maitre et al.[11] synthesized ZrC powder by solid-state reaction between ZrO2 

(particle size of 3.1 µm; BET surface area of 2 m2/g) and C (particle size of 0.2-0.3 µm; 

BET surface area of 35 m2/g) powders. 77.4 wt% ZrO2 and 22.6 wt% C, corresponding to 

a C/Zr molar ratio of 3, were mixed with a mortar and pestle. The mixtures were placed 

in carbon crucibles that were heat treated in flowing argon in a graphite furnace at 

temperatures in the range of 1350oC to 1550oC. The samples were held at temperature for 

times in the range of 0.5 to 24h. The reaction was nearly complete in samples heat treated 

at 1550oC for 4h or 1530oC for 12 h.  The extent of reaction was monitored by weight 

loss and lattice parameter measurements.  The samples heat treated under the conditions 

indicated had weight losses consistent with the theoretical yield expected from the CTR 

reaction in equation 2-1 and had lattice parameters similar to those reported for near-

stoichiometric ZrC. 

Dong et al.[32] synthesized ZrC which was encapsulated with graphite layers. 

Natural graphite was milled with ZrO2 media in a high-energy planetary mill for 24 h. 

The milled powder was heat treated at 1800oC. XRD showed sharp peaks of ZrC. The 

crystallite size was reported to be “several hundred nanometers.” 
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Initial comp. 
(wt%) 

Temp. 
(oC) 

Time 
(h) 

ZrO2 Carbon 

CO 
pressure 

(torr) 

Amount of 
ZrCxOy formed 

(wt%)* 

Lattice 
parameter of 
ZrCxOy (nm) 

Chemical 
formula of 
ZrCxOy

** 

1400 24 79.0 21.0 100             0 - - 
1500 20 79.0 21.0 100 30 0.4676 - 
1600   7 79.0 21.0 100 35 0.4674 - 
1600 12 79.0 21.0 100 60 0.4673 - 
1700   7 77.5 22.5 100 97 0.4683 - 
1700   8 79.0 21.0 100 97 0.4675 - 
1800   7 79.0 21.0 100 98 0.4676 - 
1800 18 79.0 21.0 100 - 0.4678 - 
1800   6 80.0 20.0 100 97 0.4674 - 
1800   6 80.0 21.0 100 97 0.4675 - 
1800 18 80.0 20.0 100 - 0.4674 - 
1800   4 84.0 16.0 100 85 0.4673 - 
1800   8 77.5 22.5 120 - 0.4688 ZrC0.831O0.039 
1800   8 77.5 22.5 120 - 0.4688 ZrC0.856O0.041 
1800 12 79.0 21.0 120 - 0.4678 ZrC0.754O0.108 
1800 12 79.0 21.0 120 - 0.4679 ZrC0.825O0.098 
1800 16 80.0 20.0 120 - 0.4674 ZrC0.707O0.134 
1800 16 80.0 20.0 120 - 0.4674 ZrC0.696O0.144 
1800 17 81.0 19.0 120 - 0.4674 ZrC0.697O0.149 
1800 17 82.0 18.0 120 - 0.4673 ZrC0.695O0.148 
1800 18 79.0 21.0 400 - 0.4681 - 
1800 18 80.0 20.0 400 - 0.4677 - 
1800 18 79.0 21.0 700 - 0.4684 - 
1800 75 79.0 21.0 700 - 0.4686 - 
1800 18 80.0 20.0 700 - 0.4681 - 
1800   8 79.0 21.0 760 - 0.4683 ZrC0.775O0.085 
1800   8 79.0 21.0 760 - 0.4681 ZrC0.750O0.099 

 
* Determined by quantitative X-ray diffraction techniques. 
** Determined by elemental analysis. 

 

The use of powder mixtures for forming ZrC generally has the following 

advantages: (1) The processing method is relatively simple. (2) The cost of the raw 

materials may be relatively low. (3) It is relatively easy to control the composition, i.e., 

the Zr/C ratio in the final product.   

Table 2.3    Chemical and lattice parameter data for ZrCxOy specimens. 
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  However, these methods generally require relatively high reaction temperatures 

for ZrC formation, i.e., typically in the range of 1800-2200oC with hold times of several 

hours or more[23]. This is because the reactants are not mixed on a fine scale (e.g., 

molecular-scale mixing), so diffusion distances are relatively long. The product particle 

sizes tend to be relatively large due to the large starting particle sizes and the high 

temperatures that are required for the reaction. In addition, there may be a need for 

extensive grinding/milling to reduce the particle sizes of the relatively coarse product.  

The latter step tends to be expensive (energy-intensive) and may lead to contamination 

problems.  Even with milling, the powders still tend to be in a size range that may be 

unsuitable for preparing bulk objects by pressureless sintering. (Pressureless sintering is 

the preferred method to produce dense objects because it is considerably less expensive 

than hot pressing.)  

 

2.2.1.2 Solution-based processing 

The most common methods of solution-based synthesis involve preparing 

solutions with Zr-containing and C-containing precursors. The precursors are often 

metal(Zr)-organic Zr compounds and organic C-containing compounds which are 

solubilized in a commom solvent in order to achieve molecular-scale solution mixing. 

This is often followed by hydrolysis/condensation reactions. The solutions are dried to 

remove the solvent and the solid product (usually a gel, powder, or fiber) is pyrolyzed to 

form a fine-scale mixture of C and ZrO2. These mixtures are subsequently carbothermally 

reduced to form ZrC. 
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Sham et al.[18] synthesized ZrC using mixed solutions of zirconium n-propoxide 

(as a zirconia source) and either ethylene glycol or 1,4 benzenediol (as a carbon source). 

The reactants were mixed with a wide range of ratios in order to produce products wih 

varying C/Zr molar ratios. Homogeneous gels were formed when an ethylene glycol or 

1,4 benzendiol solution was added to a zirconium n-propoxide solution of 40 wt% in n-

propanol. The gel was heated and refluxed at the boiling temperature for 24 h to continue 

the reaction. After the refluxing step, the solid was separated from the solvent by 

centrifugation and the product was washed several times with acetone. Fine white 

powders (henceforth referred to as “ZrOEG” powders) were obtained after drying the 

solid at 60oC when ethylene glycol was used. Dark brown, very fine powders (henceforth 

referred to as “ZrOBD” powders) were obtained after drying at 60oC when 1,4 

benzendiol was used.  

The carbon content of the ZrOEG samples after 60oC drying increased from       

19 wt% to 30 wt% as the C/Zr molar ratio in starting material increased from 1 to 3. The 

ZrOBD samples had carbon contents ≈ 30 wt% for samples with an initial C/Zr molar 

ratio of 3. Dried powders were X-ray amorphous. Thermogravimetric analysis of a 

ZrOEG revealed a two-step decomposition process, while a multi-step decomposition 

process was observed for ZrOBD. The pyrolytic decomposition was mostly complete at 

~650oC for a ZrOEG sample and at ~700oC for a ZrOBD sample. XRD showed the 

presence of tetragonal zirconia (t-ZrO2) in a ZrOEG sample heat treated at 600oC for 

30min. XRD showed t-ZrO2 in a ZrOBD sample heat treated at 800oC for 90 min. 

The powder samples were heat treated under vacuum at 1200oC with varying 

heating rates (0.5oC, 1oC, and 2oC per minute) and varying hold times (up to 360 
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minutes). It was assumed that slow heating rate (0.5oC) was best suited for formation of 

the ZrC phase. XRD showed that ZrOEG samples (with different initial C/Zr molar 

ratios) had ZrC contents in the range of ~7 – 26 wt% after heat treatments at 1200oC for 

0.05 to 6 h. The authors claimed that full conversion to ZrC was observed for a ZrOBD 

sample (initial C/Zr molar ratio of 4) that was heat treated at 1200oC for 6 h.  

Preiss et al.[17] used chelated derivatives of zirconium n-propoxide and various 

soluble carbon-bearing compounds having two or more reactive OH groups, such as 

ethylene glycol, saccharose, tartaric acid or dihydroxybenzenes, to form ZrC fibers, films, 

and powders. These organic groups were believed to act as bridging ligands for 

transesterification and condensation polymerization reactions. 

0.01 mole of zirconium n-propoxide was dissolved in 5 ml of butanol and heated 

to 50oC for 30 min. 0.022 mole of acetylacetone or ethyl acetoacetate was then drop-wise 

added at 50oC under constant stirring for 30 min. The sensitivity to hydrolysis of the 

starting alkoxides was reduced and further operations were done in open atmosphere. 

Solutions were then heated to 80oC and the carbon-bearing compounds with reactive OH 

groups were added. (The amounts were adjusted in order to vary the C/Zr molar ratio.) 

The solutions were heated at temperatures up to 130oC and then they were concentrated 

to remove solvent. 

Thermal gravimetric analysis (TGA) of the precursors could be roughly divided 

into three stages. There was a large weight loss (~50 wt%) in the range ~100oC – 550oC 

due to decomposition of the precursors. This was followed by a small weight loss (~2 

wt%) in the range of ~550oC – 1100oC. The rest of the weight loss (mostly >1300oC) was 

due to the carbothermal reduction reaction. XRD showed the presence of cubic ZrO2 after 
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heat treatment at 700oC (1 h). Raman spectroscopy for the latter sample showed a broad 

band centered at ~620 cm-1 that was assigned to cubic ZrO2. The metastable zirconia 

phase transformed into monoclinic ZrO2 at temperatures in the range of 1000 - 1100oC. 

The formation of ZrC phase was observed only at temperatures >1300oC. The carbon 

contents for samples heated at 1550oC (1 h) were in the range of 13 - 16 wt%. The carbon 

content for stoichiometric ZrC is 11.6 wt%. Hence, the samples contained unreacted 

(“free”) carbon. 

Hasegawa et al.[16] used mixtures of zirconium 2,4,-pentanedionate (ZTP) and 

phenolic resins to produce ZrC fibers with diameter  ≥ 60 µm. ZTP and phenolic resins 

were dissolved in a mixture of ethanol (10 ml) and 2,4 pentanedione (10 ml), followed by 

the addition of distilled water and H2SO4. The initial C/Zr molar ratio was 4.0, where the 

carbon content indicated in this ratio was derived only from the phenolic resin. The 

solutions were stirred at room temperature for 30 min and then “aged” at 65oC. The 

viscosity of the solutions increased with time and fibers were hand drawn. They were left 

to dry at room temperature overnight. The spinnability of the solutions varied with 

amount of water and H2SO4 that were added. The optimum concentrations for drawing 

long fibers were an H2O/Zr molar ratio of 0.45 and an H2SO4/Zr ratio of 0.66.  The dried 

fibers were heat treated at 1100 – 1500oC for 4 h in argon. A sample heat treated at 

1500oC showed only ZrC in the XRD pattern. 

Kurokawa et al.[14,15] produced large-diameter (~100 µm) ZrC fibers by feeding 

cellulose acetate-based solutions into zirconium n-butoxide. Dehydrated acetone was 

used as a solvent. A 10wt% cellulose acetate (acetyl content 38.8 wt%) was slowly 

injected (using a syringe) into a 10 wt% zirconium n-butoxide solution. The fibers were 
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allowed to stand for 30 min before ethanol and water were used to wash away the 

entrapped acetone. Gel fibers were then dried at room temperature and pyrolyzed at 

various temperatures in argon. A sample pyrolyzed at 700oC (1 h) was X-ray amorphous. 

The XRD pattern for a sample heat treated at 800oC (1 h) showed tetragonal zirconia (t-

ZrO2). A sample heat treated at 1000oC (1 h) showed both t-ZrO2 and monoclinic ZrO2 

(m-ZrO2) in the XRD pattern. The XRD pattern for a sample heat treated at 1600oC (1 h) 

showed only ZrC. However, this sample still contained free carbon (XRD-amorphous) 

and residual oxygen, as indicated from the elemental analysis in Table 2.4. (Note that a 

pure stoichiometric ZrC would have a Zr content of 88.4 wt% and a C content of 11.6 

wt%.) 

The above studies indicate that “ZrC” can be formed at moderate temperatures by 

using precursors that have been prepared by solution-based processing methods. Some of 

the precursors (e.g., carbon-bearing compounds) are relatively inexpensive. However, the 

metal (Zr)-organic compounds are relatively expensive. The processing methods are 

relatively simple. Environmental and safety concerns are usually not too significant for 

the materials used during processing. Although not indicated in the above review, small 

crystallite sizes can be produced by these methods. 

 

 

Heat Treatment 
Temperature (oC) 

Zr (wt%) C (wt%) O2 (wt%) 

800 42.2 36.8 20.2 

1200 45.7 33.3 20.6 

1600 61.4 30.0   8.0 

Table 2.4  Elemental analysis of ZrC fibers heat-treated at various temperatures. 
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2.2.2 Direct Reaction of Zr Metal or Zr Hydride (ZrH2) with Carbon 

“The direct reaction of Zr and ZrH2 with C is often the most common laboratory 

method for the formation of ZrC.”[23] The overall reaction to produce ZrC can be given 

by the following equations: 

 

Zr  +  C  =  ZrC     (2-2) 

ZrH2  +  C  =  ZrC  +  H2     (2-3) 

 

Ando and Uyeda[33] synthesized fine ZrC particles using a block of zirconium 

and a carbon rod which were in contact and which were heated (under vacuum 

conditions) by passing a large electric current ("a few hundred amperes") through the 

materials.  After the materials reached red-heat, Ar or He was introduced into the 

chamber and the electric current was increased.  (The current was not specified, but it 

was indicated that the carbon rod became white hot.)  The zirconium melted and, after a 

few minutes, a smoke was observed to develop surrounding the carbon rod.  Most of the 

smoke was amorphous carbon particles, but some ZrC particles were present.  It was 

unclear if the mechanism for forming ZrC involved the direct exothermic reaction 

between molten Zr metal and sputtered carbon particulates or if the reactants (one or 

both) were molecular vapor species. 

Norton and Lewis[34] formed ZrC by reacting ZrH2 with C at temperatures as 

high as 2200oC for 3 h. 

Many refractory ceramics (including some carbides, borides, nitrides, etc.) can be 

synthesized by a method known as self-propagating synthesis, or combustion 
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synthesis.[35] The method makes use of highly exothermic reactions. The exothermic 

reactions can be initiated by conventionally heating a powder mixture in a furnace, but 

the reactions can also be initiated by locally heating one part of the sample (such as by 

using an electrically heated wire coil). Once the reaction is initiated, a combustion (or 

synthesis) wave propagates through the material.  In other words, the reaction continues 

spontaneously once initiated and heat is released during the reaction. The reaction 

between Zr and C is exothermic, but preparation of ZrC using coarse powder mixtures 

usually requires relatively high temperatures for the reaction to be initiated. However, the 

reaction can be accelerated by several methods, such as using fine-sized Zr particles, 

adding "accelerant" additions, and applying mechanical energy (e.g., through 

milling/grinding processes). 

Tsuchida et al.[12] used mechanical activation or “mechanosynthesis” to produce 

ZrC from Zr-C powder mixtures. Zr metal (<150 µm) and natural graphite (5 µm) were 

first mixed in various atomic fractions (5-75 at% of C) using an agate mortar and pestle. 

The mixture was loaded in a planetary ball mill and ground for 30 min with tungsten 

carbide (WC) media. The ground mixtures were transferred to a graphite crucible and 

briefly exposed to air at room temperature. This initiated an exothermic oxidation 

reaction which was believed to be the oxidation of disordered carbon. (The other 

possibility was oxidation of some of the Zr.) This reaction was exothermic and was 

accompanied by the emission of red light. The sample was covered as soon as the 

reaction was initiated to prevent further of oxidation of the sample.  The heat generated 

from this reaction then initiated a second exothermic reaction which was believed to be 

the self-propagating synthesis of ZrC via the reaction of Zr and C.  This reaction was 
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accompanied by the emission of white light, thus indicating that the local temperature 

reached during the second reaction was much higher. 

 The phases present in the final products are listed in Table 2.5. A trace of ZrO2 

was also observed in samples with initial C contents of 25 at% or less. The lattice 

parameter of the zirconium carbide increased from 0.4637 to 0.4693 nm with increasing 

C content as shown in the Figure 2.2. The amounts of the different phases formed were 

not determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2    Plot of lattice parameter vs. graphite content in Zr-C mixture. (The figure 

is reproduced exactly from reference 12.) 



 19 

 

 

Graphite content (at.%) Grinding time (min) Phase* 
75 30 α-Zr 
67 30 ZrC 
50 25 ZrC 
45 25 ZrC 
40 25 ZrC 
35 25 ZrC, α-Zr 
30 25 ZrC, α-Zr 
25 25 ZrC, α-Zr, ZrN 
20 25 ZrC, α-Zr, ZrN 
15 25 ZrC, α-Zr, ZrN 
10 25 ZrC, α-Zr, ZrN 
  5 35 ZrC, α-Zr, ZrN 

 
* Traces of ZrO2 were present in some samples. The amount of ZrO2 was not determined. 
 
 
 
2.2.3 Methods Involving Alkali Metal or Alkaline Earth Metal Reduction of ZrCl4 

or ZrO2 

Li et al.[36] synthesized ZrC by a method that was referred to as a “co-reduction-

carburization” route. ZrCl4 (zirconium source) and CCl4 (carbon source) were heated in 

autoclave at temperatures in the range of 500-650oC (12 h) along with sodium (Na) metal 

that acted as a reducing agent. The pressure in the autoclave was estimated to be 4 MPa. 

The overall reaction to produce ZrC is given by the following equation: 

 

ZrCl4  +  CCl4  +  8Na  =  ZrC  +  8NaCl      (2-4) 

 

 However, the sodium metal reduces the ZrCl4 to Zr and the CCl4 to C, so the 

reaction to produce ZrC is presumably between Zr and C. The product was washed with 

Table 2.5   Phases of the final product obtained in Zr-C powder mixtures with different 
C amount.  
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0.1 M hydrochloric acid and water in order to remove NaCl and other impurities. XRD of 

the washed product showed ZrC phase with very weak peaks of ZrO2 phase. The 

measured lattice parameter value was 0.4686 nm and the average crystallite size was 18 

nm. High-resolution electron microscopy  (HREM) images showed that ZrC particles 

were covered with graphite. The presence of graphite was also confirmed by Raman 

spectroscopy. 

Shen et al.[37] synthesized hollow nanospheres of ZrC by a very similar method. 

ZrCl4, C6Cl6, and Na were mixed together and heated in an autoclave at 600oC (20 h). 

The solid product was washed several times with ethanol and water to remove sodium 

chloride (NaCl) and other impurities. XRD of the washed and dried sample showed ZrC 

with a measured lattice parameter of 0.4861 nm. The crystallite size was 6 nm. 

Chang et al.[38] reduced ZrCl4 by adding it to an n-butyllithium (C4H9Li)/hexane 

solution at 273K. The product consisted of colloidal particles that were air-sensitive, so 

drying and heat treatment of the colloids was done under vacuum conditions. Samples 

were given heat treatments at 973-1273K for 2-12 h in order to crystallize the product to 

ZrC and to remove (by sublimation) the LiCl by-product formed when the ZrCl4 was 

reduced by the n-butyllithium. XRD results showed the formation of ZrC with lattice 

parameter of 0.4688 nm and crystallite of 7 nm. (The specific heat treatment conditions 

associated with these values were not given.) 

Kobayashi et al.[39] synthesized ZrC by the following overall reaction: 

 

ZrO2(s)  +  2Mg(s)  +  CH4(g)  =  ZrC(s)  +  2MgO(s)  +  2H2(g)  (2-5) 
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ZrO2 and Mg powder mixtures (Mg/ZrO2 molar ratios 2-5) were placed in a 

graphite boat that was placed in quartz reaction tube. Samples were heated at 750oC (0.5 

h) under a flowing CH4 (100 cm3/min) atmosphere. The authors proposed that Mg acted 

as the carbon source through the Mg-Mg2C3-Mg cyclic reactions shown in equations 2-6 

and 2-7. Mg also reduced ZrO2 to form α-Zr, as shown in equation 2-8. Subsequently, α-

Zr reacted with C to form ZrC as shown in equation 2.9. 

 

3CH4  +  2Mg  =  Mg2C3  +  6H2       (2-6) 

Mg2C3  =  2Mg  +  3C      (2-7) 

ZrO2  +  2Mg  =  α-Zr  +  2MgO      (2-8) 

α-Zr  +  C  =  ZrC       (2-9) 

  

The MgO in the product was removed by repeated washing with 1 M hydrochloric acid 

(HCl) solution. SEM indicated that the ZrC primary particle sizes were on the order of 50 

nm. BET specific surface areas were in the range of 44 – 63 m2/g. The measured lattice 

parameter was 0.4699 nm. 

 

2.2.4 Vapor Phase Methods 

Motojima et al.[40] synthesized micro-coiled ZrC fibers by a gas-solid reaction 

with micro-coiled carbon fibers. Zr sponge was chlorinated at 700oC to form ZrCl4. The 

ZrCl4 was carried by argon to a reaction chamber. The micro-coiled carbon coils were 

heated at temperatures in the range 1100-1250oC (for 0.25 – 2 h) in an atmosphere 

containing ZrCl4, H2, and Ar. No ZrC peaks were observed in the XRD pattern of a 
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sample heat treated at 1100oC (1 h). XRD of samples heat treated at 1200-1250oC (1 h) 

showed the presence of ZrC and ZrCl2 phases. Very weak peaks of ZrCl2 were observed 

in the XRD pattern for a sample heat treated at 1250oC for 2 h. 

Baklanova et al.[41] synthesized ZrC coatings on silicon carbide fibers by gas-

phase transport reactions. Zirconium metal, iodine crystals, and carbon tetrafluoride were 

heated to temperatures in the range of 927-1027oC for 1 - 40 h. XRD of the coatings 

showed ZrC as the only crystalline phase present. No further characterizations of the 

coatings were reported. 

Chemical vapor deposition (CVD) of ZrC can be carried out by the reaction 

between zirconium halide (as the Zr source) and a hydrocarbon (as the C source) in a H2-

containing atmosphere at temperatures ≥1000oC. The zirconium halide vapor was 

obtained either by a reaction between a halide vapor and zirconium metal[58] or by 

sublimation of ZrCl4. 

 Reynolds[42] coated nuclear fuel particles with CVD ZrC coatings. Argon (Ar) 

gas was initially bubbled through reagent grade dichloromethane (CH2Cl2) that was 

maintained at 0oC. The Ar- CH2Cl2 gas mixture was then passed over heated (600oC) 

zirconium (Zr) “sponge” to produce ZrCl4 vapors. Methane (CH4) and hydrogen (H2) 

gases, preheated to 600oC, were then mixed with the ZrCl4 vapors inside a graphite tube 

and heated to 1100oC (3 h) to produce ZrC coatings. Chemical analysis of the coating 

gave a C/Zr ratio of 1.01 which indicated that some free carbon was present in the 

coatings. 

 Wagner et al.[43] and Hollabaugh et al.[44] studied the effect of varying the 

composition of gas mixtures on the properties of ZrC coatings. Chemical vapor 
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deposition of ZrC coatings was achieved by reacting gaseous mixtures of CH4, H2, ZrCl4, 

and Ar (used as carrier gas). The overall reaction is given by: 

 

xCH4  +  ZrCl4  +  2(1-x)H2  =  ZrCx  +  4HCl  (2-10) 

 

where x ≤ 1. Increasing the amount of CH4 in the coating gas mixture (i.e., increasing 

C/Zr molar ratio) resulted in ZrC coatings with increased amounts of carbon as shown in 

Table 2.6. The chemical analysis of the coating showed the presence of free carbon when 

the C/Zr molar ratio in the coating gas mixture was > 0.21. 

Hanko et al.[45] prepared CVD ZrC coatings using an organometallic precursor. 

(Cyclopentadienyl)zirconium was used to deposit ZrC coatings at temperatures in the 

range of 300-600oC. The chemical composition of the films synthesized at 600oC, as 

determined by x-ray photoemission spectroscopy (XPS) and electron probe microanalysis 

methods (EPMA), showed presence of zirconium carbide. 

Healy et al.[46] used the complex organometallic precursor, Zr[CH2C(CH3)3]4, to 

deposit ZrC films on silicon (Si) substrates. The substrate was maintained at 560-570oC 

in a reaction chamber with a pressure of ~10-6 torr. XRD showed the presence of ZrC 

phase in the coated films. The ZrC coatings contained excess of carbon and hydrogen (15 

wt%) as determined by x-ray photoemission spectroscopy (XPS) for carbon and elastic 

recoil detection (ERD) for hydrogen. 
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Mol fraction Carbon analysis 
Ar H2 CH4 ZrCl4 

Coating 
gas C/Zr Ccombined* Ctotal** 

0.82 0.14 0.007 0.034 0.21 0.87 0.87 
0.81 0.14 0.016 0.034 0.47 0.84 0.89 
0.80 0.14 0.034 0.033 1.00 0.89 1.18 
0.78 0.13 0.049 0.032 1.50 0.63 1.88 
0.77 0.13 0.060 0.032 1.90 0.45 2.40 

 
* Ccombined is the amount of C in zirconium carbide lattice. 
** Ctotal is the sum of Ccombined and “free” C in the sample. 

 

2.2.5 Solid State Metathesis Method 

Nartowski et al.[47] produced ZrC by solid-state metathesis reactions between 

zirconium chloride (ZrCl4) and either CaC2 or Al4C3. ZrCl4 and CaC2 or Al4C3 were 

ground together and heated in an evacuated ampoule to initiate the reaction. The 

temperatures were increased to 500oC in case of CaC2 and to 1000oC for Al4C3. The 

reactions that were used to synthesize ZrC are shown below: 

 

ZrCl4  +  2CaC2  =  ZrC  +  2CaCl2  +  3C    (2-11) 

3ZrCl4  +  Al4C3  =  3ZrC  + 4AlCl3     (2-12) 

 

The AlCl3 by-product was removed by sublimation. The CaCl2 by-product was 

removed by dissolution in methanol and water. (The excess carbon apparently remained 

with the ZrC product.) XRD of the final product showed a single crystalline phase of 

ZrC. The lattice parameter value was reported as 0.4690 nm. 

Table 2.6    Effect of coating gas composition on chemical vapor deposited ZrC coatings. 
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2.3 Lattice Parameter, ZrC Stoichiometry and Oxygen Solubility 

 A wide range of lattice parameters have been reported for “ZrC.” There are two 

primary reasons for this observation: (1) The cubic zirconium carbide phase can be 

produced with a wide range of C/Zr molar ratios, ranging from stoichiometric ZrC to 

highly carbon-deficient ZrC1-x.[48,49,50] (2) Many studies have shown that there is 

considerable solid solubility of ZrO2 in the ZrC lattice.[11,13,48,51] The amount of 

oxygen (y) dissolved and the amount of combined carbon (x) in the ZrC lattice affects the 

lattice parameter of the resulting zirconium oxycarbide (ZrCxOy). 

 Sarkar et al.[13] studied the effect of oxygen content on the lattice parameters of 

zirconium oxycarbide. Figure 2.3 shows that the lattice parameter of ZrCxOy decreased 

with increased amount of oxygen dissolved in ZrC lattice.[13]. (It should be noted that 

the lattice parameters were “normalized” to a fixed C/Zr molar ratio of 0.75. The actual 

C/Zr molar ratios of the samples varied in the range of ~0.695 to ~0.856.) Table 2.3 lists 

the composition of the various ZrCxOy samples along with their lattice parameters.  

Alyamovskii et al.[48] also studied the variation of lattice parameter of ZrCxOy 

with varying amounts of oxygen (y) and carbon (x). Table 2.7 lists the composition of 

various ZrCxOy samples and their measured lattice parameters. The data in Table 2.7 for 

“x + y” = 0.99-1.00 and “x + y” = 0.92-0.93 were used to understand the effects of the 

amounts of oxygen and carbon on the lattice parameter. Line 3 (“x + y” = 0.92-0.93) and 

line 4 (“x + y” = 0.99-1.00) in Figure 2.4 shows plots of the measured lattice parameter 

vs. the carbon content x. The lattice parameter decreases with decreasing amount of 

carbon in the ZrCxOy. Line 1  (“x + y” = 0.99-1.00) and line 2 (“x + y” = 0.92-0.93) in  
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Figure 2.4 shows plots of the measured lattice parameter vs. the oxygen content y. The 

lattice parameter decreases with increasing amount of oxygen in ZrCxOy. 

Figure 2.5 shows that the lattice parameter decreases with decreasing carbon 

content for ZrC1-x samples.  The data for three independent studies are shown in the 

figure.[48,49,50]  Figure 2.6 combines the lattice parameter data from four different 

studies of ZrCxOy samples.[13,48,49,50]  As previously indicated, the lattice parameter 

decreases with increasing oxygen content for ZrCxOy samples. Figure 2.7 shows a 

compilation of lattice parameter data (similar to the ones shown in Figs. 2.5 and 2.6).[11] 

Figure 2.3    Plot of lattice parameter vs. oxygen content in ZrC (This figure is 
reproduced exactly from reference 13). 
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Composition of ZrCxOy Number 
x y 

x + y a (nm) Density (ρ) 
g/cm3 

1 0.83 0.18 1.01 0.4680 6.62 
2 0.79 0.21 1.00 0.4676 6.60 
3 0.74 0.26 1.00 0.4671 6.55 
4 0.84 0.16 1.00 0.4681 6.62 
5 0.85 0.15 1.00 0.4692 6.62 
6 0.75 0.24 0.99 0.4672 6.56 
7 0.75 0.24 0.99 0.4673 6.54 
8 0.69 0.30 0.99 0.4667 6.52 
9 0.64 0.30 0.94 0.4660 6.46 
10 0.69 0.25 0.94 0.4666 6.52 
11 0.70 0.24 0.94 0.4667 6.54 
12 0.68 0.25 0.93 0.4664 6.52 
13 0.59 0.34 0.93 0.4655 6.40 
14 0.60 0.33 0.93 0.4655 6.40 
15 0.65 0.28 0.93 0.4661 6.50 
16 0.73 0.19 0.92 0.4667 6.56 
17 0.79 0.13 0.92 0.4672 6.53 
18 0.79 0.19 0.98 0.4674 6.58 
19 0.62 0.36 0.98 0.4661 6.42 
20 0.72 0.24 0.96 0.4669 6.56 
21 0.63 0.33 0.96 0.4661 6.45 
22 0.64 0.31 0.95 0.4661 6.46 
23 0.50 0.21 0.71 0.4643 6.18 

 

 

 

 

 

 

 

Table 2.7. Chemical composition, lattice parameter and densities for ZrCxOy of 
various compositions. (This table is reproduced from reference 48). 
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Figure 2.4    Plot of lattice parameter vs. oxygen (y) and carbon (x) contents in ZrC. 
Variation of the lattice parameter with oxygen content is shown by lines 
1 and 2. Variation of the lattice parameter with carbon content is shown 
by lines 3 and 4. (This figure is reproduced exactly from reference 48). 
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Figure 2.5 Plot of lattice parameter vs. carbon/zirconium molar ratio 
from previous studies. 
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Figure 2.6 Plot of lattice parameter vs. oxygen/zirconium molar ratio from 
previous studies. 
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2.4 Mechanism of carbothermal reduction reaction 

Maitre et al.[11] studied the reaction mechanism of carbothermal reduction of 

ZrO2 and carbon. ZrO2 and carbon (C/Zr molar ratio = 3) were carbothermally reduced at 

various temperatures in the range of 1350 to 1550oC with hold times of 0.5 to 24 h under 

flowing argon. The percentage relative weight loss defined as (∆m/mo) x 100, where  mo 

was the initial weight and ∆m was the change in weight for the reaction at a given 

temperature and time. The maximum weight loss observed in the study did not exceed the 

Figure 2.7    Plot of lattice parameter vs. oxygen and carbon contents in ZrC. (This 
figure is reproduced exactly from reference 11). 
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theoretical maximum of 35.17 wt% that would be expected for the ideal reaction 

(equation 2-1). This result suggested that no Zr-containing volatile formed during CTR 

and that only the removal of CO was responsible for the observed weight losses.  

Scanning electron microscopy (SEM) micrographs of the powders before and 

after CTR showed that the carbon particles disappeared as the reaction proceeded and 

that the reaction product retained the morphology of the original zirconia particles. The 

lattice parameters of the zirconium carbide product were essentially constant (see Figure 

2.7) with values of ~0.4688 nm, for relative weight losses (∆m/mo) up to ~ 32%. These 

lattice parameter values indicated that the reaction product was zirconium oxycarbide. 

The composition of oxycarbide was ZrC0.84O0.06 as determined by comparing the 0.4688 

nm lattice parameter value with values reported by previous investigators.[48,49,50,51] 

Hence, the reaction thus far could be represented by the following equation: 

 

ZrO2 + 2.78C = ZrC0.84O0.06 + 1.94CO   (2-13) 

 

Figure 2.8 shows that the lattice parameter increased sharply during the late stages 

of the reaction, i.e., ∆m/mo > 32%. This increase in lattice parameter value was assumed 

to be related to the transformation of the oxycarbide into a near stoichiometric ZrC, as 

represented by the following equation: 

 

ZrC0.84O0.06 + 0.22C = ZrC + 0.06CO  (2-14) 
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2.5 Sintering Study 

 Nezhevenko et al.[52] studied the sintering behavior of ZrC (near-stoichiometric 

composition) and ZrC-C composites. The specific surface area of the ZrC powder was 

2.7 m2/g, the calculated particle diameter was 5 µm, and the lattice parameter was 0.4697 

nm. Cylindrical powder compacts (10 mm diameter, 20 mm height) were prepared with 

relative densities in the range of 47.5 – 57%. A ZrC powder compact with 56% green 

density was sintered at 10oC/min in argon to 2500oC.  The relative density after sintering 

was 97%. Densification was significantly inhibited in samples containing carbon 

Figure 2.8    Plot of lattice parameter vs. relative weight loss in the reaction. (This 
figure is reproduced exactly from reference 11). 
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(graphite or diamond) particles.  The sintered densities tended to decrease as the            

(i) volume fraction of the carbon particle increased (for a fixed carbon particle size) and 

(ii) the size of the carbon particles decreased (for a fixed volume fraction of carbon 

particles). 

 Bulychev et al.[53] studied the sintering behavior of a ZrC powder produced by 

carbothermal reduction reaction carried out at 2100oC. The lattice parameter of the ZrC 

powder was 0.4700 nm and its elemental analysis is shown in Table 2.8. The ZrC powder 

was ground using a mill lined with ZrC plates in order to reduce the contamination. The 

BET specific surface area of the milled powder was 4.35 m2/g. Specimens were produced 

by extrusion and sintered for 0, 15, 30, 60, and 120 min in a furnace with graphite heating 

elements under various atmospheres (vacuum, H2, and Ar) using temperatures in the 

range of 1400 - 2800oC. Samples sintered at 2600oC reached relative densities as high as 

98%. Samples sintered at 2000oC for 100 min only reached relative densities of ~85%, 

~92%, and ~94% in sintering atmospheres of vacuum, argon, and hydrogen, respectively.  

 

 

 

Element Wt% 
Zr 87.80 

C (total) 11.40 
C (free)                      0.15 

N                      0.02 
O                      0.62 

 

  

Table 2.8 Elemental analysis of ZrC powder produced by carbothermal reduction 
reaction. 
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 Min-haga et al.[54] studied the sintering behavior of ZrC-ZrO2 powder compacts. 

Two types of ZrO2 powders were used. “Type A” powder was a pre-reacted yttria-

stabilized (3 mol% Y2O3) ZrO2 with specific surface area of 17 m2/g and particle size of 

24 nm. “Type B” powder was a physical mixture of ZrO2 and Y2O3 with specific surface 

area of 13.6 m2/g and particle size of 75 nm. The as-received zirconium carbide had 

average particle size of 3.5 µm and a near-stoichiometric composition (ZrC0.97). Powder 

mixtures were prepared using up to 40 wt% of the yttria-containing ZrO2.  Two types of 

powder mixtures were used to prepare samples.  In one case (Type B samples), Type B 

ZrO2 and as-received ZrC were initially balled milled for 16 h to reduce the particle size 

to <2 µm. Green bodies were prepared by slip casting followed by isostatic pressing.  A 

relative packing density of 58% was obtained.  In the other case (Type A samples), the 

as-received ZrC was first fractionated by sedimentation and the portion of powder <1 µm 

was used. The submicrometer ZrC and Type A ZrO2 were mixed and green bodies were 

prepared by slip casting. The green density was 45%. One factor responsible for the 

higher green density of the Type B samples was a broader size distribution for particle 

mixture.  Another possible factor may have been the application of isostatic pressing after 

slip casting. Also, there may have been better particulate dispersion of the suspensions 

during slip casting. In general, it usually becomes more difficult to achieve high packing 

densities in green bodies as the particle size is reduced (especially in the submicrometer 

range) because of more difficulties with agglomeration and/or flocculation of the 

particles. The Type A samples were prepared with smaller particles for both the ZrC and 

the ZrO2. 



 36 

 Figure 2.9 shows a plot of bulk density vs. sintering temperature (1 h hold time) 

for 80 wt% ZrC - 20 wt% ZrO2 samples which were heated at 30oC/min in an argon 

atmosphere using a graphite tube furnace. The following observations are noted:  (i) A 

small amount of densification occurred at 1200oC. This presumably reflects some 

sintering that was primarily associated with the fine zirconia particles. (ii) The Type A 

samples sintered to a maximum relative density (~95%) at 2000oC, while the Type B 

samples reached a similar relative density at 2100oC.  Although the green relative density 

was lower, it is presumed that the Type A samples had more rapid densification because 

of the finer particle size.  

 Figure 2.10 shows a plot of lattice parameter vs. sintering temperature for Type A 

samples with 30 wt% ZrO2.  (Some of the samples were sintered in an atmosphere with 

CO.) The figure shows that the lattice parameter decreased at temperatures above 

~1450oC. This observation is consistent with the occurrence of dissolution of some ZrO2 

in the ZrC lattice, i.e., the formation of ZrCxOy. The lowest value of the lattice parameter 

(~0.4655 nm) corresponded to a composition of ZrC0.75O0.21 (as determined by using 

Sarkar's data in reference 13). This composition also indicates that the samples must have 

been losing "oxide" during the heat treatments. Indeed, a significant weight loss was 

observed in samples sintered at and above 1600oC.  Figure 2.11 shows plots of weight 

loss vs. sintering temperature and bulk density vs. sintering temperature (1 h hold time) 

for Type A samples with 30 wt% ZrO2. The authors attributed the weight loss to the 

reaction of ZrO2 with ZrC, the evaporation of ZrO2, or both.  At least for the lower 

temperatures, however, evaporation of ZrO2 seems unlikely.  Instead, carbothermal 

reduction reactions would be expected.  
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 Figure 2.12 shows a comparison of the bulk densities obtained for both ZrC and 

70 wt% ZrC - 30 wt% ZrO2 samples sintered at 2000oC and 2200oC in different 

atmospheres. (The method for preparing the ZrC green compacts was not described by 

the authors.) The ZrC samples had lower sintered densities in each case.  The maximum 

relative density achieved for the ZrC samples was only ~87%.  Figure 2.13 shows the 

lattice parameters for the same samples shown in Figure 2.12. As expected, lower lattice 

parameters were observed for the ZrC/ZrO2 samples, presumably due to dissolution of 

ZrO2 in the ZrC lattice. The authors attributed the higher densities in the ZrC/ZrO2 

samples to enhanced diffusion in the zirconium oxycarbide samples. Although this is a 

plausible explanation, the authors did not isolate and study all the factors that may have 

been responsible for the higher densities. (The differences in particle size and green 

density were not reported for these samples. In addition, it was not possible to separate 

the effect on densification of the ZrO2 phase alone vs. the effect of the ZrCxOy phase.) 

 Lanin et al.[55] studied the ZrC sintering process under non-isothermal 

conditions. The ZrC powder was obtained by carbothermal reduction of zirconium 

dioxide and carbon at 2027oC, followed by ball milling to reduce the particle size. The 

milled powder had BET specific surface area of 4.9 m2/g and a “calculated diameter” of 

2.6 µm. Cylindrical compacts (2.4 mm in diameter and 60-80 mm in length) were 

prepared by extrusion and the binder was removed at 307oC in vacuum. The samples 

were then initially sintered at 1027, 1527, 1827, and 2527oC (1 h hold) by heating and 

cooling at 0.2oC/sec. The densities achieved after initial sintering are listed in Table 2.9. 

The  chemical   formula   of  the   zirconium  carbide  was  ZrC0.95,  as   determined  from 
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Figure 2.9   Plot of bulk density vs. sintering temperature for ZrC samples (1) with 
Type B ZrO2 and (2) with Type A ZrO2. (This figure is reproduced 
exactly from reference 54). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10   Plot of lattice parameter vs. sintering temperature of ZrC/ZrO2 
samples. (x) sintering in Ar atmosphere, (□) sintering in CO 
atmosphere. (This figure is reproduced exactly from reference 
54). 
39 

 

 

 

 

 

 

 

 



 40 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.12   A comparison of fired density obtained for pure ZrC and ZrC + 30% 

Type A ZrO2 at different temperatures and firing atmospheres. (This 
figure is reproduced exactly from reference 54). 

 

Figure 2.11    Plot of weight loss and bulk density vs. sintering temperature for 
30 wt% Type A ZrO2 samples. (This figure is reproduced exactly 
from reference 54). 
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elemental analysis (Cfree 0.04%, N 0.03%, O 0.33%). Pre-sintered samples with different 

initial densities (Table 2.9) were then used to study the sintering process under non-

isothermal conditions in the temperature range of 2327 to 2927oC. The samples were 

placed and withdrawn from a pre-heated furnace at a rate such that heating and cooling 

rates of 600oC/s were achieved. The number of heating cycles to which the specimens 

were exposed was in the range of 1 to 20. The non-isothermal densification data for 

samples with relative density of 71% (initially heat treated at 1527oC) are listed in Table 

2.10. 

 

ZrC + ZrO2 

Figure 2.13    The lattice parameter of pure ZrC and ZrC with 30% Type A 
ZrO2 sintered samples. (This figure is reproduced exactly from 
reference 54.) 
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Temperature (oC) Relative density 
(%) 

1027 59 
1527 71 
1827 87 
2527 96 

 

 

 

   

Temperature (oC) Number of cycles Relative density (%) 

2327 10 86 
2527 10 92 
2727 10 94 
2927 10 96 

 

 

Barnier et al.[49] studied the hot-pressing kinetics of ZrC powder formed by 

carbothermal reduction reaction between zirconium dioxide and carbon. The chemical 

formula for the zirconium carbide was ZrC0.963 as determined from elemental analysis (by 

weight: 88.16% Zr, 11.47% C (total), 0.28% C (free), 0.25% N, 0.11% O, 0.01% Fe). 

The measured lattice parameter was 0.4698 nm which corresponds to a calculated solid 

density of 6.58 g/cm3. SEM indicated that the particles had sizes in the range of 3 to 5 

µm. The BET specific surface area was 0.5 m2/g.    

The powders were hot pressed using graphite die and punches. Samples were 

heated in vacuum up to 1000oC and in argon at higher temperatures, under a constant 

Table 2.9 Relative densities of ZrC samples after initial sintering. 

Table 2.10 Relative densities of ZrC samples after non-isothermal sintering. 
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load of 8 MPa. At maximum temperatures in the range of 1700 to 2400oC, a pressure of 

40 MPa was applied and held for 1 to 2 h. Table 2.11 lists the density values for ZrC 

samples prepared under various hot pressing conditions. The relative density reached 

~95% and ~98% after hot pressing at 1900oC and 2300oC, respectively. 

 

 

Temperature  
(oC) 

Time  
(min) 

Bulk Density 
(g/cm3) 

Relative density  
(6.58 g/cm3) 

1700 120 4.92 74.7 
1800   60 5.26 79.9 
1800 120 5.47 83.2 
1900   60 6.07 92.2 
1900 120 6.29 95.5 
2000   60 6.35 96.5 
2000 120 6.40 97.2 
2100   60 6.38 96.9 
2200   60 6.40 97.3 
2300   60 6.45 98.1 
2400   60 6.43 97.8 

 

 

 

 

 

Table 2.11   Density results for hot-pressed ZrC bulk ceramics. 
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CHAPTER III 

Research Approach 

 

 This section describes the research approach used to synthesize nanocrystalline 

ZrC-based powders and the rationale behind the approach. 

 Solution-based processing was chosen for this study because of its advantages 

mentioned in Chapter II:  (i) Starting materials can be mixed on a molecular-scale using 

solution methods.  Under appropriate processing conditions, this can produce fine-scale 

mixtures of the reactants that are used for carbothermal reduction (CTR) reactions.  In turn, 

the CTR reactions can be carried out at lower temperatures and the resulting ZrC product 

can have finer crystallite sizes.  In addition, there may be less need for grinding (milling) of 

the reacted powders.  (ii) The processing methods are relatively simple and do not require 

expensive equipment.  (iii) The starting materials have moderate costs.    

 The research approach for this study involved using soluble Zr-bearing and C-

bearing compounds as starting materials in order to first form fine-scale mixtures of 

zirconia and carbon.  These mixtures were subsequently used to carry out carbothermal 

reduction reactions to form the ZrC-based powders.  The specific approach used for most 

of the synthesis experiments is illustrated in the flow chart in Figure 3.1.  A metal alkoxide 

(i.e., zirconium n-propoxide, ZP) was used as an alcohol-soluble precursor for the 

formation of the metal oxide reactant (i.e., zirconia, ZrO2) needed for the carbothermal 

reduction reaction.  (The precursor is also a source for some of the carbon that develops 

upon pyrolysis.)  This precursor was selected for the following reasons:  (i) There is 

substantial knowledge in the literature concerning the processing of metal oxides from 
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metal alkoxides precursors.  (ii) The potential yield of ZrO2 from ZP is reasonable.  (iii) ZP 

is soluble in relatively benign and inexpensive solvents.  (iv) ZP is neither extremely 

sensitive nor extremely resistant to hydrolysis.  In addition, ZP can be modified readily in 

order to alter its hydrolysis resistance.  (v) ZP is readily available from commercial sources 

and it has a relatively moderate cost. 

 Zirconium n-propoxide was refluxed with 2,4-pentanedione (also known as 

acetylacetone and often referred to as "acacH") in order to partially or fully convert the 

metal alkoxy groups to a chelated metal diketonate structure (i.e., zirconium pentandionate, 

Zr(O2C5H7)4). Replacement of one propoxy group is shown in Figure 3.2. The primary 

reason for carrying out the replacement reaction was to produce a soluble metal-organic 

precursor that allowed for greater control over the hydrolysis and condensation reactions 

that were carried out in a subsequent processing step.  In general, zirconium alkoxides 

would be expected to undergo more rapid hydrolysis/condensation reactions compared to 

chelated zirconium diketonates.[56] Rapid hydrolysis/condensation reactions may 

sometimes result in uncontrolled precipitation of relatively large precursor particles.  The 

replacement reaction also allowed for more control over the C/ZrO2 molar ratio in the 

pyrolyzed powders that were subsequently produced and used for carbothermal reduction 

(CTR) reactions.  For example, pyrolyzed material with higher carbon content can be 

obtained by using precursors with a higher degree of replacement of the alkoxide groups.  

(The acac-modifed ZP is the source for some or all of the carbon that develops upon 

pyrolysis.)  The extent of the replacement of the propoxide groups can be varied by factors 

such as the acacH/ZP molar ratio and the heating conditions (temperature/time) used during 

refluxing. 
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 The next solution-processing step was to hydrolyze the acac-modified ZP precursor 

through the addition of water.  Hydrolysis was required to initiate condensation reactions 

which, in turn, resulted in the build-up of sol species with three-dimensional structure.  The 

latter development was important in order to obtain a reasonable ceramic yield upon 

subsequent pyrolytic decomposition.  Hydrolysis and condensation reactions are illustrated 

in Figure 3.3.  The extent of the hydrolysis/condensation reactions depended on variables 

such as the water/ZP ratio and the solution pH.  

 The flow chart in Figure 3.1 also shows that the C/Zr ratio in the pyrolyzed product 

can be varied by combining the Zr-bearing precursor with a soluble carbon-bearing source 

in a mutually compatible solvent.  The carbon-bearing source can be introduced at different 

stages of the process.  Phenolic resin and glycerol were used as carbon-bearing source in 

this study.  These precursors were selected for the following reasons:  (i) They have low 

molecular weight which is useful for achieving intimate mixing with the Zr-bearing 

precursor.  (ii) They are soluble in the solvents of interest in this study (i.e., alcohols and 

water).  (iii) They have relatively low cost.  (iv)  They are polyhydroxy compounds and, 

thus, there is potential for these compounds to participate in condensation reactions with 

the hydroxyl groups from the hydrolyzed organozirconium precursors. (This possibility has 

been suggested by previous researchers.[17]  Such reactions might be beneficial in 

maintaining an intimate mixing of the Zr-bearing source and the external C-bearing source 

during subsequent processing when the solvent is evaporated.) 

 The next processing step was to remove solvent from the solution by rotary 

evaporation.  The solution became increasingly concentrated and eventually transformed to 

a powder or a gel as solvent was removed.  Rotary evaporation allows for more control 
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over the solvent removal process and helps to reduce segregation of the Zr-bearing and 

carbon-bearing precursors as drying occur.  The powder/gel material was then dried at 

higher temperature in an oven to remove the residual solvent.  This was followed by a 

pyrolysis heat treatment in order to decompose the Zr-bearing and C-bearing precursors 

and to form the fine-scale ZrO2/C mixture desired for the CTR reaction.  The CTR heat 

treatment resulted in the formation of a ZrC-based powder.  The characteristics of the CTR 

powders (e.g., crystallite size, particle/aggregate size, phase composition, etc.) were 

dependent on factors such as the heat treatment temperature/time schedule, gas flow rate, 

batch size, etc. 

 As discussed in Chapter II, solution-based processing has been used in several 

previous studies to prepare ZrC-based powders and fibers.[14,15,16,17,18]  The present 

investigation differs from those earlier studies in several ways:  (1) A more extensive 

investigation was carried out concerning the effects of selected processing variables on 

powder characteristics.  This included studies of selected variables for the solution-

processing steps that produced the ZrO2/C powder precursors used for the CTR reactions 

and studies of selected variables for the CTR heat treatments used to produce the ZrC-

based powders.  (2) The synthesized materials were characterized more extensively 

compared to previous studies.  A variety of powder characteristics were evaluated for 

selected samples (e.g., phases present, crystallite size, particle size, specific surface area, 

carbon content, weight loss, etc.).  In addition, these characteristics were determined in 

selected samples that had been heat treated over a fairly broad range of temperatures.       

(3) Processing behavior (i.e., milling, dry pressing, and pressureless sintering) was also 
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investigated for selected powders.  This type of study has not been reported previously for 

other powders produced by solution-based synthesis methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

Zirconia Source 
(e.g. Zr propoxide) 

Solution Concentration 

AcacH Modified 
Zr Propoxide 

Pyrolysis 
(~800 - 1100oC) 

Carbothermal Reduction 
(~1200 - 1475oC) 

Drying 
(< 200oC) 

Hydrolysis/Condensation 
( ~50oC) 

Carbon Source 
(e.g. Phenolic Resin, 

Glycerol) 

 

Figure 3.1    Flowchart showing various steps involved in the synthesis of ZrC-
based powders. 
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CHAPTER IV 

EXPERIMENTAL PROCEDURES 

4.1 Synthesis of Nanocrystalline Zirconium Carbide Powder 

4.1.1 Starting Materials 

 This section will describe the starting materials used in this study and their 

characteristics. 

 

4.1.1.1 Zirconium Source 

 The zirconium precursor used in this study for most experiments was a zirconium 

n-propoxide/n-propanol solution (i.e., 70 wt% Zr(OC3H7)4 in n-propanol, Alfa Aesar, 

Ward Hill, MA). The chemical structure of zirconium n-propoxide is shown in Figure 

4.1. Zirconium n-propoxide is a moisture-sensitive solid. This means that hydrolysis 

reactions occur when the propoxide is exposed to water (see Figure 3.3). The propoxide 

was dissolved in propanol to reduce its tendency for hydrolysis to occur as a result of 

exposure to atmospheric water vapor. The choice of this precursor was based on 

moderate cost, relatively low molecular weight (327.62 g/mol), and solubility in various 

solvents considered. Zirconium n-propoxide will be abbreviated as ZP in this thesis. 

 In some experiments, zirconium 2,4-pentanedionate (Fisher Scientific, Fair Lawn, 

NJ) (also known as zirconium tetra-pentanedionate (ZTP) or zirconium acetylacetone (Zr 

acac) was used as the zirconium precursor. The choice of this precursor was based on its 

low molecular weight (487.66 g/mol), relatively low cost, and solubility in various 

solvents considered. ZTP is a less moisture-sensitive solid material when compared to 

ZP. The chemical structure of ZTP is shown in Figure 4.1. 
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Figure 4.1.   Chemical structures of zirconium n-propoxide (top) and zirconium 2,4 
pentanedinate (bottom). 

Zirconium 2,4-pentanedionate (ZTP) 

Zr 

O 
C 

C 
O 

CH3 

CH3 

CH 

CH3 
O 

C 

C 

O 

CH3 

CH 
O 

C 

C HC 

H3C 

H3C 

O 

C 

C HC 

H3C 

H3C 
O 

O 



 53 

4.1.1.2  External Carbon Sources 

Glycerol (C3H8O3, Fisher Scientific, Fair Lawn, NJ) was used as an additional 

source of carbon to synthesize some ZrC-based powders batches. Glycerol has low 

molecular weight and, thus, “intimate mixing” (i.e., molecular-scale) with ZP (and 

modified ZP) was obtained in solutions. The chemical structure of glycerol is shown in 

Figure 4.2. 

 Phenol-formaldehyde resin (GP 775D69 "novolac" type, Georgia Pacific, 

Atlanta, GA) was also used as additional source of carbon to synthesize some ZrC-based 

powder batches. Information concerning this resin is provided in Table 4.1. The phenolic 

resin is comprised of oligomers with low molecular weight. Figure 4.2 shows an 

idealized structure of an oligomer with four phenol units. 

 

 

 

 

Resin Name Form Solubility Free 
Phenol 

Free 
Aldehyde 

Softening 
Point (oC) 

Water 
Absorption 

 
GP 775D69 
(Ga. Pac.) 

Pellet 
solid 

alcohols, ketones, 
20 wt% water/EtOH 

0.3 wt% < 0.1 wt% 102-105 2.0 wt% 
 
 

 

 

 

 

 

 

Table 4.1 Details of phenolic resin. 
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CH2 
OH OH 

CH2 CH2 
OH HO 

Oligomer of 4 phenol units 

Glycerol 

OH H2C 

HC 

OH

OH 

H2C 

Figure 4.2.  Chemical structures of phenolic resin (top) and glycerol (bottom). 
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4.1.1.3 Solvents 

 The primary solvent used in the study was ethanol (absolute, Chemical Stock 

Room, Georgia Institute of Technology). The density of ethanol is 0.789 g/cm3 and its 

boiling point is 78.3oC.[57] The vapor pressures of ethanol are ~44 and ~134 mm Hg at 

20 and 40oC, respectively.[57,58] Ethanol was first distilled to remove any water 

absorbed. Ethanol was poured into a 1 liter round bottom flask (Flask A), which was then 

placed on a heating mantle as shown in Figure 4.3. A few boileezers (Fisher Scientific, 

Fair Lawn, NJ) were added to the flask to prevent violent boiling of the ethanol. Flask A 

was connected to a distillation column, which was in turn attached to another 1 liter 

round-bottom flask (Flask B) via a condenser (to collect the condensed ethanol vapors). 

The temperature of the mantle was adjusted to obtain ~1-2 drops per second of distilled 

ethanol. (The temperature of the mantle was not recorded.) The distillation was stopped 

when ~100 ml of ethanol was left in flask “A”. Flask “B” with distilled ethanol was then 

sealed with a glass stopper. Thermoplastic tape (Parafilm®, Pechiney Plastic Packaging, 

Chicago, IL) was used as a secondary sealant to make sure that no water was absorbed 

during storage. 

 Two other solvents, 1-butanol (Fisher Scientific, Fair Lawn, NJ) and n-propanol 

(Fisher Scientific, Fair Lawn, NJ), were used as received without any further treatment. 

The densities of 1-butanol and n-propanol are 0.81 g/cm3 and 0.8 g/cm3, respectively,[57] 

and their boiling points are 118oC and 97oC, respectively.[57] The vapor pressures of 1-

butanol are ~6 and ~20 mm Hg at 20 and 40oC, respectively.[59] The vapor pressure of 

n-propanol is 21 mm Hg at 25oC.[57] 
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Figure 4.3   Schematic of set-up for ethanol distillation. 
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Vapor pressure 
(mm Hg) 

 Boiling point 
(oC) 

Density 
(g/cm3) 

at 20oC at 40oC 
ethanol 78.3 0.789 44 134 

1-butanol 118 0.81 6 20 
n-propanol 97 0.80 21 (at 25oC) - 

acacH 138 0.97 7.5 (at 25oC) - 
 

 

The boiling points, vapor pressures, and densities of the various solvents used in 

this study are summarized in Table 4.2 for comparison. Properties for 2,4-pentanedione 

(“acacH”) are also listed. 

 

4.1.1.4  Other materials 

2,4-pentanedione (molecular weight of 100.3 g/mol, Alfa Aesar, Ward Hill, MA), 

also known as acetylacetone and abbreviated as “acacH” was used to modify zirconium 

n-propoxide. The density of acacH is 0.97 g/cm3 and its boiling point is 138oC.[57] The 

vapor pressure value is 7.5 mm Hg at 25oC.[57] The chemical structure of acacH is 

shown in Figure 4.4.  

De-ionized (DI) water and nitric acid (HNO3, 69 - 70 wt% in water, J. T. Baker, 

Philipsburg, NJ)) were used in the hydrolysis/condensation step (section 4.1.2.3). Tap 

water was passed through carbon filter cartridges (CF-300, Pureflow Ultraviolet Inc., 

Lawrenceville, GA) and ion exchange cartridges (HP-100, Pureflow Ultraviolet Inc., 

Lawrenceville, GA) in order to obtain DI water. The conductivity of DI water varied in 

the range of 0.29 - 0.36 µS/cm. 

Table 4.2 Physical properties of various solvents and acacH. 
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4.1.2 Solution-Based Processing 

4.1.2.1 General Considerations 

 The primary objective of this study was to produce fine-sized ZrC-based powders 

that would be suitable for fabrication of bulk samples via pressureless sintering.  As 

described in Chapter III, this objective was pursued using solution-based processing in 

order to produce fine-scale precursors containing Zr and C; the solution-derived 

precursors were given heat treatments (pyrolytic decomposition and carbothermal 

reduction reactions) that ultimately resulted in the formation of ZrC.  The solution-

processing steps were important for controlling the (i) C/Zr ratio, (ii) crystallite size, and 

(iii) homogeneity of the final powder. 

 The C/Zr ratio was varied using three solution-processing steps illustrated in 

Figure 3.1:   modification of the zirconium n-propoxide, hydrolysis/condensation, and 

addition of "external" carbon sources (glycerol or phenolic resin).  For each of these 

Figure 4.4 Chemical structure of 2,4-pentandione (acetylacetone, “acacH”). 

O 

C 

C 
CH3 

CH3 

CH2 
O 
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steps, there were specific processing variables that affected the C/Zr ratio:  (i) The 

concentration of acacH (i.e., acacH/Zr propoxide ratio) and the solution heat treatment 

(refluxing) conditions (i.e., temperature/time) were used to vary the extent of the 

conversion of the zirconium n-propoxide (ZP) to zirconium 2,4-pentanedionate (ZTP).  

This, in turn, affected the C/Zr ratio.  (ii) The concentrations of water (i.e., H2O/Zr 

propoxide ratio) and acid (i.e., HNO3/Zr propoxide ratio) were used to vary the extent of 

the hydrolysis and condensation reactions.  This, in turn, affected the C/Zr ratio.  (iii) The 

concentration of the external carbon source (glycerol or phenolic resin) was used to 

directly vary the C/Zr ratio in the precursor.  

 The effects of solution-processing variables on the particle or crystallite sizes in 

the pyrolyzed or carbothermally-reduced powders were not systematically investigated in 

this study.  Instead, conditions were pre-selected which were expected to avoid or 

minimize extensive precipitation of large particles during solution processing (i.e., prior 

to solvent removal).  As described in Chapter III, the approach used in this study 

involved the preparation of relatively hydrolysis-resistant chelated organozirconium 

derivatives in order to avoid rapid hydrolysis and condensation reactions.  (Such rapid 

reactions might lead to the formation of relatively large precipitate particles.)  In addition, 

pH adjustments were made using only acid additions for the same reason. 

 Batch "homogeneity" was assessed only qualitatively in this study and this was 

based on visual observations that were made during solution-processing studies that were 

focused primarily on varying the C/Zr ratio.  Specific observations concerning the effect 

of solution processing variables on "homogeneity" of the dried material will be discussed 

in Chapter V.  



 60 

The assessment of batch "homogeneity" was based on several considerations:    

(1) Solutions were inspected for the occurrence of precipitation, either during processing 

in the dilute state or during concentration to remove solvent.  The occurrence of 

precipitation was distinguished from cases in which the solution is concentrated to form a 

gel-like material. (2) Powders were inspected for uniformity in texture and color after 

they were oven-dried and, in some cases, after they were crushed up.  (3) Some 

organozirconium precursors did not undergo direct pyrolytic decomposition of the solid 

product, but instead melted (or partially melted) at some stage in the heat treatment (i.e., 

either during drying or pyrolysis).  Hence, the product after heat treatment was not a 

homogeneous powder.  (4) Batches would be considered inhomogeneous if the "external" 

carbon source (glycerol or phenolic resin) segregated from the organozirconium 

precursor during concentration and drying.  This type of problem was observed in a 

previous study involving the preparation of SiC-based powders using phenolic resin as a 

carbon source and silicon tetra-ethoxide as a silica source.[60]  The problem was 

associated with carrying out the concentration and drying steps too rapidly.  Hence, 

precautions were taken from the initial batch of this study by using low-temperature 

rotary evaporation to concentrate and to partially dry the batches. 

The detailed procedures used to prepare most of the batches are described in 

sections 4.1.2.2 and 4.1.2.3.  There were some batches in which there were some minor 

deviations from the procedures described in these sections.  The differences in those 

batches are described in section 4.1.2.4. 

Some batches were prepared with more significant differences.  In particular, 

some batches were prepared with zirconium 2,4-pentatanedionate (ZTP) as the starting 
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material (instead of zirconium n-propoxide).  In these batches, there was no need to carry 

out a refluxing step with acacH.  However, acid and water addition steps were carried out 

for most of the batches.  The detailed procedures are described in section 4.1.2.5.   

 

4.1.2.2   Modification of Zirconium n-Propoxide (Including Method Using "External" 

Carbon Precursor) 

4.1.2.2.1 Introduction 

 As indicated in section 4.1.1.1, the source of zirconium for most synthesis 

experiments was a zirconium n-propoxide (ZP) solution (70 wt% propoxide in 1-proponol). 

Based on previous work in the literature, it was hypothesized that the extent of the 

conversion from the zirconium alkoxide (i.e., zirconium n-propoxide in this case) to the 

zirconium diketonate (i.e., zirconium 2,4-pentanedionate in this case) could be controlled 

by varying the acacH/Zr molar ratio and the temperature/time schedule for the reflux 

operation.[56]  The specific ranges used in this investigation were as follows:   

(i) AcacH/Zr molar ratios were varied over the range of 2-50. 

(ii) Reflux temperatures and times were varied in the range of 80 - 300oC and 1- 3 h, 

respectively. 

 

4.1.2.2.2  Detailed Procedure 

 ZP solution was transferred to a flask in a glove box (Labmaster 130, M. Braun, 

Stratham, NH) under an inert atmosphere (argon, 99.999% purity).  The transfer was done 

in an inert atmosphere because ZP is moisture-sensitive.  (Precautions were taken because 

of the concern that atmospheric water vapor would be absorbed into the concentrated 

propanol-based solution.  This could initiate uncontrolled hydrolysis/condensation 
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reactions.)  The amount of solution transferred was in the range of 0.469 - 75 g.  These 

amounts were equivalent to 0.001 – 0.1602 mol of ZP (i.e., based on a molecular weight of 

327.62 g/mol for the zirconium n-propoxide and an assumed concentration of 70 wt% in 

the propanol solution.)   Smaller amounts (i.e., usually 0.001 - 0.032 mol) were used mostly 

to investigate the effects of some solution-synthesis processing variables on the dried 

and/or pyrolyzed powder characteristics (e.g., the C/Zr ratio of pyrolyzed material and the 

"powder homogeneity" of dried and/or pyrolyzed material).  Larger amounts (i.e., usually 

0.156 - 0.1602 mol) were used mostly to produce batch of sufficient size to carry out more 

detailed investigations of either the CTR (carbothermal reduction) reaction and/or the 

sintering behavior.  The flask sizes used for smaller batches were in the range of 100 - 250 

ml, while the flask sizes for larger batches were in the range of 2000 – 3000 ml. Table 4.3 

lists the amount of ZP used in 100 different batches that were produced.  The earliest-

produced batches (identified with asterisks) were prepared by Greg Staab of the Georgia 

Institute of Technology.   

 The ZP solution was diluted by adding alcohol to the flask in the glove box.  The 

reasons for diluting the ZP solutions with alcohol were as follows:  (1) Dilution would 

reduce the moisture sensitivity of the ZP when the solutions were subsequently handled 

outside the glove box.  (2) Dilution would result in more gradual mixing when acacH was 

subsequently added to the ZP solution.  

 The amount of alcohol diluent that was added to the ZP solution was in the range of 

5.9 – 675 g (see Table 4.3). Most of earlier experiments (batch numbers ZrPM-1 - 44, 

ZrPM-46 - 57) were carried out using 92.5 - 95 wt% diluent. The amount of diluent was 

reduced when some of the first larger-size batches (e.g., batch numbers ZrPM-45, 58, 59) 
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were prepared. This was done because there were limitations in the available flask sizes 

and heating mantle sizes. It was then decided that the lower amount of diluent could be 

used for the rest of the batches (i.e., ZrPM-60 – ZrPM-100) because the solutions (and the 

dried powders eventually produced) were visually homogeneous. The weight percent of 

diluent was calculated on the basis of ZP weight as shown in the equation below: 

 

100% x
ZPofweightdiluentoftweigh

diluentofweight
diluentofwt

+
=     (4-1) 

  

 The alcohol used for dilution for most experiments was ethanol.  In some of the 

earlier batches (see Table 4.3), propanol or butanol was used as the diluent.  The reasons 

for selecting the latter solvents in the initial experiments were as follows:  (1) It was 

thought that the ZP and the acacH (which was added later to the solution) might have 

higher solubility in propanol or butanol, i.e., compared to the solubility in ethanol.  The 

actual solubilities of ZP and acacH in the various alcohols were never determined.  

However, subsequent qualitative observations indicated that both ZP and acaH were 

"highly soluble" in ethanol.  (2) There was some concern that ethanol additions would 

cause the ZP solutions to be more moisture sensitive.  However, there were no obvious 

visual observations during synthesis experiments that suggested this was a problem.  

(Specifically, it was observed that solutions remained transparent during the early stages of 

synthesis.  If the solutions had developed any haziness or if the formation of precipitates 

had been observed, then the occurrence of uncontrolled hydrolysis/condensation reactions 

might have been suspected.) The reasons for ultimately selecting ethanol as the diluent for 

most of the experiments were:  (1) The removal of this solvent (via evaporation) during 
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subsequent concentration and drying operations could be carried out more quickly at lower 

temperatures.  (2) It had been previously determined that the grade of phenolic resin that 

was to be used in this study (as an externally added source of carbon) had good solubility in 

ethanol.  (3) Ethanol had lower cost than propanol and butanol. 

 After adding the alcohol diluent, the flask was then sealed inside the glove box 

using a glass stopper and then the flask was removed from the glove box.  The flask (item 

C in Figure 4.5) was quickly attached to the Schlenk apparatus shown in Figure 4.5.  The 

flask was opened and exposed to the atmosphere only for the time (≤ 1 second) that it took 

to attach it to the apparatus.  Prior to attaching flask C, the entire Schlenk setup was purged 

with N2 (99.999% purity) for at least 5 min.  This purge was carried out to remove any 

residual moisture in the apparatus that could have resulted in uncontrolled 

hydrolysis/condensation reactions in the ZP solution.  After flask C was attached to the 

Schlenk apparatus, vacuum was pulled to 5 torr using a mechanical pump (Model 2022B-

01, Welch Vacuum, Thomas Industries, East Hanover, NJ).  The apparatus was then back 

filled with N2.  This cycle was repeated at least 4 times to make sure that no traces of 

moisture remained in the setup. 

 The next step in the synthesis was to prepare acacH/alcohol solutions.  The acacH 

was diluted in alcohol for the same reasons stated above regarding the dilution of the ZP 

solution with alcohol.  The dilution was carried out in a fume hood.  1-butanol was used as 

the diluent for batch numbers 1 and 2 (33 wt% acaH/ 67 wt% 1-butanol and 60 wt% acaH/ 

40 wt% 1-butanol, respectively.).  1-propanol was used as the diluent for batch number 

ZrPM-3 and batch numbers ZrPM-5 – ZrPM-9 (60 wt% acaH/ 40 wt% 1-propanol and 45 

wt% acaH/ 55 wt% 1-propanol, respectively).  Ethanol was used as the diluent for all other  
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batches (range of 5 wt% acaH/ 95 wt% ethanol - 20 wt% acaH/ 80 wt% ethanol).  The 

amounts of alcohol used for dilution are listed in Table 4.3.  

 The acacH/alcohol solution was then added to funnel B (Figure 4.5) through 

opening A.  This was done with valve 3 open and all other valves closed. Opening A was 

then sealed and valve 3 was closed.  Vacuum was pulled and the Schlenk setup was purged 

with nitrogen to remove any traces of moisture that entered during addition of the 

acacH/alcohol solution to funnel B.  The cycle was repeated at least 4 times.  Valves 4 and 

5 were closed and then valve 2 was opened.  Valve 2 served the purpose of equalizing the 

pressure between the top and bottom nozzles of funnel B.  The acacH/alcohol solution was 

then added to the ZP/alcohol solution in flask C by opening valve 1 and adjusting the flow 

rate to approximately 1-2 drops per second (i.e., ~50 – 100 ml/min). The solution was 

stirred during the addition using a magnetic stir plate. (A magnetic stir bar had been placed 

inside flask C during the initial preparation of the ZP/alcohol solution.)  After the 

acacH/alcohol solution had been drained out of funnel B and transferred to flask C, valves 

1 and 2 were closed.  The next step was to add 5 ml of alcohol to funnel B in the same way 

that was used to add the acacH/alcohol solution.  The alcohol used in this step was the 

same type as used to prepare the acacH/alcohol solution (i.e., ethanol for most 

experiments).  The purging of the apparatus and the addition of the 5 ml of alcohol to the 

solution in flask C were carried out in the same way as before.  This last addition of alcohol 

was used to rinse acacH/alcohol solution that had remained attached to the walls of funnel 

B after it had been drained.  

 The solution in flask C was then refluxed using a heating mantle with a variac.  

This was carried out with valves 1, 2, and 3 open and valves 4 and 5 closed.   Solutions 
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were heated at temperatures in the range of 80 – 300oC for times in the range of 1-3 h (see 

Table 4.3). The temperature was measured by using a K-type thermocouple (Model 600-

1040, Barnant Co., Barrington, IL) that was placed under the bottom center of flask C.  For 

some large samples (final yield > 60 g dried powder), there was a pressure build-up inside 

the apparatus which forced the stopper at opening A to pop out.  This exposed the refluxed 

solution to atmospheric moisture and, therefore, may have resulted in uncontrolled 

hydrolysis/condensation reactions in the solution.  Therefore, a one-way check valve (Part 

No. 902209, 3-50 psi pressure range, Swagelok Co., Solon, OH) was attached at opening A 

in order to relieve the pressure when a preset limit (5 psi) was reached. The check valve 

was used in the preparation of batches ZrPM-60 – ZrPM-100.  

For most of the larger batches (including ZrPM-58 – ZrPM-100), the next 

processing step was not carried out until approximately ~0.5-1 days (but usually 14-18 

hours) after the refluxing step was complete. In contrast, processing was continued without 

a delay for most of the small batches. 

 After refluxing, flask C was removed from the apparatus and quickly sealed with a 

glass/teflon stopper.  The solution was exposed to the atmosphere for ≤ 1 second during 

this operation.  The weight of the solution inside flask C was recorded and then flask C was 

quickly attached to a vacuum rotary evaporator (Model R-114, Büchi Laborator-Technik, 

Switzerland), as shown in Figure 4.6.  

 Solvent was removed from the refluxed solution under rotary evaporation 

conditions.  Flask C was kept in constant contact with a water bath (Figure 4.6) that had the 

temperature maintained at approximately 40 to 45oC.  For most of the earlier batches (i.e., 

numbers ZrPM-1 – ZrPM-30, ZrPM-32, ZrPM-39, and ZrPM-40), essentially all liquids 
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were removed from the solution by rotary evaporation and the acac-modified ZP product 

was a solid. (Some batches, discussed in section 4.1.2.4, were directly concentrated using 

the rotary evaporator and then dried. There were no acid addition, water addition 

(hydrolysis/condensation), or aging steps.)  The liquid removal step was carried out for two 

reasons:  (1) It was intended to remove most of the "excess" acacH, i.e., acacH that did not 

react with the ZP.  Based on the boiling point and vapor pressure information in Table 4.2, 

it was presumed that the alcohols would be mostly removed during the earlier stage of 

rotary evaporation and that this would be followed by the removal of most of the excess 

acacH.  Thus, it would be necessary to remove essentially all the liquid in order to remove 

the excess acacH.   (2) It was convenient for determining the amount of acac-modified ZP 

formed in flask C if essentially all the liquid was removed. 

 A different rotary evaporation procedure was used for other batches (numbers 

ZrPM-31, ZrPM-33 – ZrPM-38, and ZrPM-41 – ZrPM-100) in which only some of the 

solvent was removed from the refluxed solution.  Hence, the product after this step was a 

solution of the acac-modified ZP in a solvent of unknown composition.  (The percentages 

of residual alcohol (ethanol, propanol, and/or butanol) and unreacted acacH were not 

known.)  The change in procedure was instituted because of concerns that uncontrolled 

hydrolysis/condensation might have occurred due to exposure of the dried acac-modified 

ZP precursor to the ambient air atmosphere during the time after the flask was removed 

from the apparatus in Fig. 4.5 and before it was subsequently attached to the rotary 

evaporator. Table 4.3 shows the approximate percentage of concentration, n, that was 

carried out on the various batches.  If the solvent was removed completely (or nearly 

completely), no calculation was made and the table entry simply states "To Solid."  This 
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was the case for batches ZrPM-1 - ZrPM-30, ZrPM-33, ZrPM-39, and ZrPM-40.   For the 

rest of the batches, the extent of concentration was calculated as a percentage based on the 

weights of the refluxed solution prior to concentration and after concentration.  The extent 

of concentration, n, is given by: 

  

100x
ionconcentratbeforesolutionofweight

ionconcentrataftersolutionofweightn =   (4-2) 

 

After evaporation of solvent to the desired extent, the flask was removed from the rotary 

evaporator and quickly (~1 second) sealed.    

 Prior to carrying out hydrolysis/condensation reactions (section 4.1.2.3), distilled 

ethanol was added back to the acac-modified ZP product obtained from the previous steps.  

(The acac-modified ZP product was either a solid or a solution depending on the particular 

batch, as indicated in Table 4.3.)  The purpose of the ethanol addition was to have a 

relatively dilute (mostly alcohol-based) solution for the hydrolysis/condensation reactions.  

Dilution would allow for more gradual mixing when water and acid were subsequently 

added to the acac-modified ZP solution.   

 The amount of ethanol added for different batches is listed in Table 4.3.  The 

amount varied in the range of 13-80 ml ethanol per gram of the starting amount of ZP 

solution (i.e., 70 wt% zirconium n-propoxide in 1-propanol).  Most of earlier experiments 

(batch numbers ZrPM-16 – ZrPM-44 and ZrPM-47 – ZrPM-57) were carried out using 

larger amounts of ethanol per gram of starting ZP solution (i.e., 80 ml/g).  The amount of 

diluent was reduced substantially when the first larger batches (e.g., ZrPM-45, 58, 59) were 

prepared.  This was done because there were limitations in the available flask sizes and 
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heating mantle sizes. It was then decided that the lower amount of diluent could be used for 

the rest of the batches (i.e., batches ZrPM-60 – ZrPM-100) because the solutions (and the 

dried powders eventually produced) were visually homogeneous. 

 The addition of the distilled ethanol to the flask containing the acac-modified ZP 

was carried out quickly in order to minimize the occurrence of uncontrolled 

hydrolysis/condensations reactions that might result from exposure of the solid or 

concentrated solution to atmospheric water vapor.  The amount of time required to add the 

ethanol depended on the batch size, but it was typically in the range of 5 - 20 sec. After the 

ethanol addition, the solution was shaken manually for approximately 30 sec. The solution 

was also mixed by a magnetic stirrer for an additional ~5 min.  

When the material was a solid product (i.e., acac-modified ZP), the dissolution time 

was usually in the range of 1 – 3 min depending on the batch size.  For all batches, the 

product after sufficent mixing time was a homogeneous solution with greenish-yellow 

color.  

 

4.1.2.2.3 Glycerol Additions 

 As discussed in Chapter III, the final C/Zr ratio in synthesized batches was 

sometimes varied by adding an "external carbon source," i.e., glycerol or phenolic resin.  In 

some cases, the external carbon source was added to the batch during the preparation of the 

acac-modified ZP.  This method will be referred to as Case #1 to distinguish it from other 

methods discussed below in section 4.1.2.3.1.  

 The overall procedure described above was modified for three batches (i.e., batch 

numbers ZrPM-80, 82, 84).  The only change was that glycerol (C3H8O3) amounts in the 
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range of 0.011 – 0.02 g (0.343 – 0.63 mol) were added to the acacH/ethanol solutions 

described earlier (see Table 4.4).  After the addition, the solution was shaken manually for 

approximately 30 sec.  The rest of the procedure was identical to that described above.  

(The acacH/ethanol/glycerol solution was added to the ZP solution and the resulting 

solution was refluxed.) 

 

4.1.2.3 Hydrolysis/Condensation (Including Methods Using "External" Carbon 

Precursors) 

4.1.2.3.1  Introduction 

 As discussed earlier (Chapter III), the zirconium n-propoxide starting material was 

partially or fully converted to zirconium 2,4-pentanedionate in order to achieve better 

control over the hydrolysis/condensation reactions that would be subsequently carried out.  

The extent and rate of the hydrolysis/condensation reactions was also controlled by varying 

the amount of water and the pH used for these reactions.  The pH was changed by using 

nitric acid (HNO3) additions.  The H2O/Zr and HNO3/Zr molar ratios used in this 

investigation were as follows:   

(i) H2O/Zr molar ratios were varied over the range of 8 – 24. 

(ii) HNO3/Zr molar ratios were varied over the range of 0.04 - 0.462. 

 In section 4.1.2.2.3, it was noted that some batches were prepared by adding 

glycerol to the acacH/ethanol solutions that were used to modify the ZP solutions.  This 

method of varying the C/Zr ratio with an external carbon source was referred to as Case #1.  

In this section, three more cases will be described:  (1) Case #2 refers to batches which 

contain no external carbon source.  The detailed procedure used to prepare these batches is 
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described below in section 4.1.2.3.2.  (2) Case #3 refers to batches in which the external 

carbon source was added after the modification of the ZP solution, but prior to carrying out 

the hydrolysis/condensation reactions.  The detailed procedure used to prepare these 

batches is described below in section 4.1.2.3.3.  (3) Case #4 refers to batches in which the 

external carbon source was added after carrying out the hydrolysis/condensation reactions.  

The detailed procedure used to prepare these batches is described in section 4.1.2.3.3.   

 

4.1.2.3.2  Batches with no External Carbon Addition (Case #2) 

 As-received concentrated nitric acid (70 wt% of HNO3 in water) was combined 

with distilled ethanol in a 250 ml vial to produce a 10 wt% HNO3/90 wt% ethanol solution.  

The solution was shaken manually for ~30 sec. The purpose of diluting the acid with 

ethanol was to allow for more gradual mixing when the acid was subsequently added to the 

acac-modified ZP solution. The pH of the acac-modified ZP solution was measured 

approximately 1 min before adding the acid solution by a pH meter (Orion 320 PerpHecT, 

Thermo Electron Corporation, Woburn, MA). The acid was added to the former solution 

(in flask C) using a 10 ml pipette.  The rate of addition was approximately 10 ml/min.  The 

solution in flask C was stirred continually (using a magnetic stirrer) during the addition and 

for approximately 1 min after the addition was complete. The pH of the solution in flask C 

was measured approximately 1 min after the mixing step was completed.  Table 4.5 gives 

the measured pH values for each batch.   

The amount of acid added to the batch was based on reaching a targeted pH value.  

For batches prepared before ZrPM-65, the amount of acid solution added to the batch was 

not explicitly measured by volume or weight.  However, the number of drops of acid added 
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to the solution was recorded for these batches.  Subsequently, "calibration" measurements 

were  made  in  order to determine the  average  weight  per  drop  of  added acid  solution.*  

This average value was then used to convert the number of added drops of acid solution in 

each batch to a total weight of added acid solution.  This, in turn, was used to determine the 

number of moles of HNO3 that was added to the batch.  For batch numbers ZrPM-65 – 

ZrPM-100, the weight of acid solution added to the batch was measured directly.  Table 4.5 

gives the number of moles of acid added to each batch.   This table also gives the HNO3/Zr  

molar ratio.  This ratio was calculated based on the initial number of moles of ZP in the 

batch.  (Hence, it was assumed that there was no loss of the ZP or the acac-modified ZP 

during the refluxing or other batch preparation steps.) The number of moles of water in the 

acid solution that were added to each batch are also listed in Table 4.5. 

 Water was used to promote hydrolysis and condensation reactions in the acac-

modified ZP precursor solution.  Deionized water was first mixed with distilled ethanol in 

weight ratios in the range of 10% water/90% ethanol to 20% water/80% ethanol (see Table 

4.5). Dilution was carried out to allow more gradual addition of the water to the acac-

modified ZP solution. 

 

 

 

__________________________________ 

* The weight of 140 drops of 20 wt% acid/80 wt% ethanol solution was measured to be    
~2 g. The same pipette size was used for this experiment as used for acid additions in 
previous batch preparations. The weight per drop was calculated and used to calculate the 
amount of acid added. 
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 The water/ethanol solution was transferred to a funnel (with a valve) that was 

attached to flask C (which contained the acac-modified ZP solution).  The water/ethanol 

solution was then added to flask C at a rate of approximately ~100 ml/min under constant 

stirring (using a magnetic stirrer). Table 4.5 gives the number of moles of water added to 

each batch.  This table also gives the H2O/Zr molar ratio.  This ratio was calculated based 

on the initial number of moles of ZP in the batch and it was assumed that there were no 

losses of Zr during the previous batch preparation steps. 

  Flask C was then sealed and placed in an air-oven (Isotemp 500 series, Fisher 

Scientific, Fair Lawn, NJ) at temperatures in the range of 50 - 66oC for 1-2 h (see Table 

4.5). The solutions after this stage were essentially the same color (greenish-yellow) as 

described for solutions after the acacH refluxing and ethanol re-dissolution steps (see 

section 4.1.2.2.2). The only difference was that the color was lighter due to the dilution 

with ethanol and water that occurred during hydrolysis/condensation. 

 The sealed flask C was taken out of the air-oven after the heat treatment period and 

then left to cool for ~0.5 h at room temperature. The pH of the solution in flask C was 

measured after the cooling period. Table 4.5 gives the measured pH for each batch. Solvent 

was then removed from the solution using rotary evaporation.  Flask C was kept in constant 

contact with a water bath that was maintained at approximately 35 - 40oC (Figure 4.6).  The 

rate of solvent removal was ~100 - 400 ml/h. The solution was concentrated until solvent 

loss was no longer obvious.   

The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent during the subsequent drying step.  The flask  
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was then placed in a vacuum oven (see Figure 4.7) (Model 5831, National Appliance 

Company, Portland, OR) and heated to 120oC for 3h. 

 It should be noted that hydrolysis and condensation reactions might continue for 

relatively long periods of time (i.e., days, weeks, or longer) after water is added to solutions 

with organometallic compounds.[61]  The reactions will continue to produce changes not 

only in the molecular structure of the condensed species in the solution, but also in various 

bulk properties of the sols (e.g., rheological properties).  The collective changes in the 

solution characteristics are often referred to as "aging" phenomena.  The processing 

conditions used in the present study may have been helpful in minimizing batch-to-batch 

differences in aging.  This is suggested based on the following considerations: 

(1) Relatively high water concentrations were used in most experiments. (Table 4.5 shows 

that most experiments were carried out using moles H2O/Zr molar ratios ≈24, while several 

experiments were carried using molar ratios in the range of ~8-16.)  The high water 

concentrations would tend to drive the hydrolysis reactions toward their maximum extent 

in a more rapid manner. 

(2) The "aging" treatment carried out at elevated temperature (i.e., 50 - 66oC) accelerated 

the hydrolysis/condensation reactions under controlled conditions.  This treatment may 

have minimized differences in aging that may have occurred because of differences in 

processing time after the water addition was made.  It was inevitable that there would be 

differences in the time required to process the batches because the batch sizes varied 

significantly.  For example, the time to remove solvent during the subsequent rotary 

evaporation step was highly dependent on batch size. 
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(3) Solvent was removed from the batches soon after the aging heat treatment in order to 

minimize the time for additional aging.  Also, solvent removal via rotary evaporation was 

carried out at a lower temperature (~35-40oC) than the aging heat treatment.  

(4) Samples were oven-dried soon after the rotary evaporation step was complete. 

 Except as noted in section 4.1.2.2.2, the processing was usually carried out without 

delays between the specific steps that have been identified.  In other words, solutions were 

not left standing between steps.  The solutions were exposed to the ambient atmosphere 

only for the time it took to make acid and water additions and to measure the pH. 

 

4.1.2.3.3  Batches with External Carbon Addition 

Case #3 

 The procedure was exactly same as described above for Case #2 except that the 

external carbon precursor was added to the acac-modified ZP solution prior to the addition 

of the HNO3 solution.  The external carbon source was either phenolic resin or glycerol.   

 Phenolic resin additions were made using ethanol-based solutions. 20 wt% phenolic 

resin was mixed with 80 wt% distilled ethanol in a flask under continuous stirring (with a 

magnetic stirrer) until the resin was completely dissolved at room temperature. (The 

dissolution time was usually < 10 min.) The phenolic resin/ethanol solution was added to 

the acac-modified ZP solution (in Flask C) under continuous stirring (with a magnetic 

stirrer) at a rate of ~100 ml/min. The solution was exposed to the ambient atmosphere only 

for the time (~10-30 sec) that it took to add the desired amount of phenolic resin.  The 

solution was stirred another 5 min after the phenolic resin addition was completed. The 

amounts of phenolic resin added to each batch are shown in Table 4.4. 
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 Glycerol additions were made by direct additions (without dilution) into the acac-

modified ZP solution under continuous stirring (with a magnetic stirrer).  The rate of 

addition was ~ 5 g/min.  The solution was exposed to the ambient atmosphere only for the 

time (~10–30 sec) that it took to add the desired amount of glycerol. The solution was 

stirred another 5 min after the glycerol addition was completed.  The amounts of glycerol 

added to each batch are shown in Table 4.4.  

 

Case #4 

 The procedure was exactly same as described above for Case #3 except that the 

external carbon precursor (phenolic resin or glycerol) was added after the water addition, 

but before subsequent "aging" heat treatment at 50 - 66oC. The mixed solution was allowed 

to stand for ~5 min prior to the “aging” heat treatment. 

 

Case #5 

 The procedure was exactly same as described above for Case #3 except that the 

external carbon precursor (phenolic resin or glycerol) was added after the water addition 

and subsequent "aging" heat treatment at 50 - 66oC.  The carbon precursor was added to 

flask C after it had been removed from the oven and allowed to cool for ~0.5 h at room 

temperature. The mixed solution was allowed to stand for ~0.5 h prior to the rotary 

evaporation step. 
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4.1.2.4 Procedural Differences Associated with Certain Specific Batches 

ZrPM-1a, 1b, 1c, and 1d were the same batch through the stage in which the ZP 

solution was refluxed with acacH at 103oC (1 h). After that stage, the solution was divided 

into four parts. One part (ZrPM-1a) was directly concentrated using the rotary evaporator 

and then dried. There were no acid addition, water addition (hydrolysis/condensation), or 

aging steps. Other parts (ZrPM-1b, 1c, and 1d) were processed in the standard way.  

Batches ZrPM-2 and ZrPM-5 – ZrPM-14 were directly concentrated, after acacH-

reflux step, using the rotary evaporator and then dried. There were no acid addition, water 

addition (hydrolysis/condensation), or aging steps.  

ZrPM-3a, 3b, and 3c were the same batch through the stage in which the ZP 

solution was refluxed with acacH at 98oC (1 h). After that stage, the solution was divided 

into three parts. All the parts (ZrPM-3a, 3b, and 3c) were then processed in the standard 

way. 

ZrPM-4a, 4b, and 4c were the same batch through the stage in which the ZP 

solution was refluxed with acacH at 80oC (1 h). After that stage, the solution was divided 

into three parts. All the parts (ZrPM-4a, 4b, and 4c) were then processed in the standard 

way. 

ZrPM-24a and ZrPM-24b were the same batch through the stage in which the ZP 

was refluxed with acacH at 145oC (1 h).  Batch ZrPM-24a was directly concentrated using 

the rotary evaporator and then dried.  There were no acid addition, water addition 

(hydrolysis/condensation), or aging steps.  The procedure used for batch ZrPM-24b was 

different from the standard method in that hydrolysis was carried out before the acid 

addition. The rest of the processing followed the standard procedure. 
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ZrPM-25a and 25b were the same batch through the stage in which the solution was 

aged at 45oC (1 h). After that stage, the solution was divided in two parts.  One part (ZrPM-

25a) was processed in the standard way. Phenolic resin was added to the other part (ZrPM-

25b) (Case #5). The rest of the processing followed the standard procedure. 

ZrPM-27a, 27b, and 27c were the same batch through the stage in which the 

solution was aged at 45oC (1 h). After that stage, the solution was divided into three parts.  

One part (ZrPM-27a) was processed in the standard way. Phenolic resin was added to a 

second portion (ZrPM-27b) (Case #5). The third portion (ZrPM-27c) was aged at 65oC (2 

h), instead of at 45oC (1 h). The rest of the processing followed the standard procedure. 

ZrPM-35 and ZrPM-36 were the same batch through the stage in which the ZP 

solution was refluxed with acacH at 170oC (3 h).  After that stage, the solution was divided 

in two parts.  One part (ZrPM-35) was processed in the standard way.  The other part 

(ZrPM-36) was refluxed for an additional 3 h at 185oC and then processed in the standard 

way. 

ZrPM-39 and ZrPM-40 were the same batch through the stage in which the water 

addition was made to the acac-modified ZP solution.  After that stage, the solution was 

divided in two parts.  One part (ZrPM-39) was aged at 65oC (3 h), while the other part 

(ZrPM-40) was aged at 50oC (2 h).  The rest of the processing followed the standard 

procedure. 

ZrPM-41 and ZrPM-42 were the same batch through the stage in which the water 

addition was made to the acac-modified ZP solution.  After that stage, the solution was 

divided in two parts.  One part (ZrPM-41) was aged at 50oC (2 h), while the other part 
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(ZrPM-42) was aged at 65oC (3 h).  The rest of the processing followed the standard 

procedure. 

ZrPM-46, ZrPM-49, and ZrPM-63 were discontinued because of extensive 

precipitation after the acacH-reflux step. 

ZrPM-51, ZrPM-52, and ZrPM-53 were the same batch through the stage in which 

the ZP solution was refluxed with acacH (275oC, 3 h), partially concentrated, and had 

ethanol added back to the partially concentrated solution.  The solution was then divided 

into three parts.  The batches were prepared with three different amounts of water.  The 

H2O/Zr molar ratios were 8:1, 16:1, and 24:1 for batches ZrPM-51, ZrPM-52, and ZrPM-

53, respectively.  The rest of the processing followed the standard procedures. 

ZrPM-54a and 54b were the same batch through the stage in which the solution was 

aged at 50oC (2 h). After that stage, the solution was divided in two parts.  One part (ZrPM-

54a) was processed in the standard way. Glycerol was added to the other part (ZrPM-54b) 

(Case #5). The solution was stored for 15 h before next processing step (i.e., 

concentration/solvent removal). The rest of the processing followed the standard procedure. 

ZrPM-55a and 55b were the same batch through the stage in which the solution was 

aged at 50oC (2 h). After that stage, the solution was divided into two parts.  One part 

(ZrPM-55a) was processed in the standard way. Glycerol was added to a second portion 

(ZrPM-55b) (Case #5). The rest of the processing followed the standard procedure. 

ZrPM-56a, b, c, and d were the same batch through the stage in which the water 

addition was made to the acac-modified ZP solution. The solution was then divided into 

four parts. One part (ZrPM-56a) was processed in the standard way. Glycerol was added to 

two different portions (ZrPM-56b and 56d) before the 50oC (2 h) aging step (Case # 4). 
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Glycerol was added to another portion (ZrPM-56c) after the 50oC (2 h) aging step        

(Case # 5).The rest of the processing followed the standard procedures. 

ZrPM-57a, b, and c were the same batch through the stage in which the water 

addition was made to the acac-modified ZP solution. The solution was then divided into 

three parts. The batches were prepared with three different amounts of glycerol which were 

added before the aging treatment (Case #4). The glycerol/Zr molar ratios were 1.03:1, 

1.72:1, and 1.03:1 for batches ZrPM-57a, b, and c, respectively.  The rest of the processing 

followed the standard procedures. 

ZrPM-64a, 64b, and 64c were the same batch through the stage in which the ZP 

solution was refluxed with acacH (195oC, 2 h), partially concentrated, and had ethanol 

added back to the partially concentrated solution.  The solution was then divided into three 

parts.  The three parts were processed separately following the standard procedures. 

  

4.1.2.5  Batches Prepared with ZTP 

ZTP powder was transferred to a flask in a glove box (Labmaster 130, M. Braun, 

Stratham, NH) under an inert atmosphere (argon, 99.999% purity). The amount of ZTP 

transferred was ~1 g. This amount was equivalent to 0.00205 mol of ZTP (i.e., based on a 

molecular weight of 487.66 g/mol for the ZTP). The flask size used was in the range of 50 - 

100 ml.   

 30 ml (~23.5 g) of distilled ethanol was used to dissolve the ZTP powder (i.e., 4 

wt% ZTP/96 wt% ethanol). The ethanol was added to the flask in glove box. The flask was 

sealed with a glass stopper and the solution was mixed with a magnetic stirrer for ~30 min. 

Some amount of ZTP remained un-dissolved in the ethanol. 
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 The sealed flask was taken out of the glove box. The acid solution was prepared as 

described in section 4.1.2.3.2 and was diluted for the same reason specified in that section. 

The acid was added to the ZTP solution using a 10 ml pipette.  The rate of addition was 

approximately 10 ml/min.  The solution was stirred continually (using a magnetic stirrer) 

during the addition and for approximately 1 min after the addition was complete. The pH of 

the solution was measured approximately 1 min after the mixing step was completed.  

Table 4.6 gives the measured pH values for each batch.  The amount of acid added to the 

batch was based on reaching a targeted pH value and achieving complete dissolution of the 

ZTP.  The amount of acid solution added was not explicitly measured by volume or weight 

but was later calculated by the method described in section 4.1.2.3.2. Table 4.6 gives the 

number of moles of acid added to each batch.  This table also gives the HNO3/Zr molar 

ratio.  This ratio was calculated based on the initial number of moles of ZTP in the batch. 

For most batches, water was used to promote hydrolysis and condensation reactions 

in the ZTP solution.  Deionized water was first mixed with distilled ethanol in weight ratio 

of 10% water/90%. Dilution was carried out for the same reasons described in section 

4.1.2.3.2. The water/ethanol solution was then added to the ZTP solution at a rate of 

approximately ~100 ml/min under constant stirring (using a magnetic stirrer). The solutions 

were transparent with no color. Table 4.6 gives the number of moles of water added to each 

batch.  This table also gives the H2O/Zr molar ratio.  This ratio was calculated based on the 

initial number of moles of ZTP in the batch. The pH of the solution was measured ~1 min 

after the mixing step. Table 4.6 gives the measured pH values for each batch which had a 

water addition. 
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 The flask was then sealed and placed in an air-oven (Isotemp 500 series, Fisher 

Scientific, Fair Lawn, NJ) at 45oC for 1 h. The sealed flask was taken out of the air-oven 

after the heat treatment period and then left to cool for ~0.5 h at room temperature. The pH 

was measured for some batches (Table 4.6). Solvent was then removed from the solution 

using rotary evaporation.  The flask was kept in constant contact with a water bath that was 

maintained at approximately 35 - 40oC (Figure 4.6).  The rate of solvent removal was ~100 

- 200 ml/h. The solution was concentrated until solvent loss was no longer obvious.  The 

flask was then sealed with aluminum foil that was perforated in order to allow removal of 

small amounts of residual solvent during the subsequent drying step.  The flask was then 

placed in a vacuum oven and heated to 120oC for 2h. 
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4.1.3   Drying and Sieving 

 After rotovapping to remove solvent, samples were dried at 120oC for 2 h under 

vacuum. The consistency and extent of agglomeration of the dried samples varied widely. 

Some samples would flow somewhat freely like a powder, while others were in the form 

of a powder "cake."  To obtain powders with more uniform consistency, all of the dried 

samples were first manually ground up using a quartz mortar and pestle (SPI Supplies, 

West Chester, PA) and then screened through a sieve (Fisher Scientific, Fair Lawn, NJ) 

with 150 mesh-size openings. The force applied during grinding was relatively small in 

order to minimize the possibility of contamination from the mortar and pestle. 

 

4.1.4   Pyrolysis 

The sieved powders (from section 4.1.3) were transferred into alumina “boats” 

(Vesuvius McDanel, Beaver Falls, PA) for pyrolysis in a tube furnace (Model 55031, 

Lindberg, Watertown, WI). The alumina boats used for pyrolysis were 6 x 0.5 x 0.5 

inches in dimensions for larger sample sizes (10 – 16 g). For smaller batch sizes (0.1 – 

0.3 g), cylindrical alumina crucibles (0.4 inches diameter, 0.4 inches high) were used for 

pyrolysis. The heating rate for all the pyrolysis experiments was 2oC/min to the desired 

temperature with a hold of 2 h at the maximum temperature. The pyrolysis experiments 

were done in flowing (100 ml/min) argon (Ar, >99.999%, Airgas, Randor, PA) 

atmosphere. The temperature range for most pyrolysis experiments was 800oC to 1100oC. 

(However, lower temperatures were used in several experiments.) The temperature was 

controlled using a Type K thermocouple. The furnace was allowed to cool naturally by 

switching off the power supply. The weights of alumina boats and powder samples were 
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recorded before and after the pyrolysis to determine the powder yields. For the rest of this 

thesis, powders that were given a pyrolysis heat treatment will be referred to as 

"pyrolyzed powders." 

C/Zr molar ratios in 1100oC-pyrolyzed samples were estimated by oxidative 

combustion of the carbon in the samples. The heating rate for all experiments was 

5oC/min to 1100oC with a hold of 1 h at the maximum temperature. These experiments 

were done in a flowing air (100 ml/min, moisture-free) atmosphere. The weight losses 

that occurred during oxidative combustion of pyrolyzed samples were determined by 

measuring the sample weight (using an analytical balance) before and after the heat 

treatment. The C/Zr molar ratios were then estimated from the weight losses by assuming 

that the (pyrolyzed) material consisted of only ZrO2 and C. 

 

4.1.5 Carbothermal Reduction Reaction 

Pyrolyzed samples were heat treated in argon at temperatures in the range of 

1100oC to 2000oC.  In most cases, these heat treatments were carried out so that 

carbothermal reduction reactions would occur in the pyrolyzed zirconia/carbon mixtures.  

For some samples, the heat treatments carried out at the highest temperatures (usually 

≥1800oC) were above that required to complete the carbothermal reduction reactions. 

Most heat treatments at temperatures <1500oC were carried out in a three-zone 

furnace (Model 54259, Lindberg, Watertown, WI) under flowing argon (Ar, >99.999%, 

Airgas, Randor, PA) atmosphere. The flow rate of Ar was in the range of 100 – 500 

ml/min. Trace amounts of water and/or oxygen in the as-received argon were reduced by 

passing the argon through a gettering furnace (Model 2-3200, Supelco Carrier Gas Purfier, 
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Sigma Aldrich, St. Louis, MO). Silicon carbide (SiC) heating elements (SE016x05x0.05, 

Starbar, Akron, NY) were used to heat the furnace. The mullite furnace tube 

(MV0161830060000, Vesuvius Mcdanel, Beaver Falls, PA) was 60 inches in length and 

had internal and external diameter of 1.75 and 2.0 inches respectively. The samples were 

placed in the center of the furnace tube. Table 4.7 shows temperatures measured at three 

locations in the furnace.  The measurements were made using a static air atmosphere. The 

"control temperature" was measured by a thermocouple that was interfaced with the 

furnace controller and was used to control the furnace temperature.  The thermocouple used 

was a Type B (94%Pt/6%Rh vs. 70%Pt/30%Rh); (Omega Engineering, Stamford, CT).  

This thermocouple was not located inside of the furnace tube where the samples had been 

placed for heat treatment.  Instead, the thermocouple was in the surrounding region of the 

furnace where the insulation and the heating elements were located. The temperatures 

reported at various positions inside the furnace tube were recorded using a separate 

thermocouple (also Type B, Omega Engineering, Stamford, CT). The values listed are 

average values obtained from measurements that were recorded by inserting the 

thermocouple from both ends of the furnace. These measurements were carried out under 

conditions in which both ends of the furnace tube were open. During the sample heat 

treatments, however, the ends of the furnace tube were sealed, so it might be expected that 

these temperatures would show a "flatter profile" along the length of the tube.  The 

temperatures reported in this study for the sample heat treatments carried out in this furnace 

are those from the "control thermocouple." The temperatures were not corrected for the 

offset between the temperature recorded by the "control thermocouple" and the temperature  
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Thermocouple reading at various positions inside the furnace tube Control Temperature 
Upstream side 

(- 5 inches) 
Center 

(0 inches) 
Downstream side 

(+ 5 inches) 

1450oC 1445oC 1465oC 1455oC 

1300oC 1318oC 1313oC 1308oC 

1200oC 1218oC 1213oC 1214oC 

   

 

recorded for the thermocouple placed in the center of the furnace tube.  Table 4.7 indicates 

that the offset is approximately on the order of 15oC. 

For temperatures >1500oC heat treatments were done in an “M-11” furnace 

(Model M11, Centorr Furnace, Nashua, NH) under flowing argon (Ar, >99.999%, Airgas, 

Randor, PA) atmosphere. The flow rate of Ar was ~500 ml/min. Trace amounts of water 

and/or oxygen in the as-received argon were reduced by passing the argon through a 

gettering furnace with a Ti charge (Model 2B200 120V, Centorr Associates Inc., Nashua, 

NH). The heating element was made of graphite and also served as the furnace tube. The 

temperature was measured at the center of the furnace tube by a Type C (95%W/5%Re vs. 

74%W/26%Re) thermocouple (W5-.01-125-M-H-U-LP-16, Flow Autoclave System Inc., 

Columbus, OH) with a Mo sheath. The samples were placed in the center of the furnace 

tube, i.e., the temperature was measured essentially at the top of the samples. The 

thermocouple had an offset of +5oC as determined by melting of pure copper metal pieces. 

Thus, the furnace was heated to 5oC above the desired temperature. (For example, if 

Table 4.7    Temperature profile of three-zone Lindberg furnace. 
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1800oC was the desired temperature, then the furnace was heated to 1805oC to compensate 

for the offset of the thermocouple.) 

The ramping rate for the heat treatments was usually 5oC/min to the desired 

temperature with a hold of 2 h at the maximum temperature. Some samples were given 

additional heat treatments after an initial CTR treatment at temperatures in the range of 

1200–1500oC. If the additional heat treatment was carried out in the M11 furnace, then 

heating rate was increased to 20oC/min for heating to the temperature of the first heat 

treatment and this was followed by 5oC/min to the desired temperature with a hold of 2 h 

at the maximum temperature. 

Graphoil® (Electrical conductive grade, Graphoil®, UCAR Carbon Company Inc., 

Cleveland, OH) was used to form containers for all powder heat treatments at 

temperatures <1500oC. The Graphoil® was shaped in the form of an open rectangular tray 

or box (with no top cover). The containers are referred to as “graphoil boats.” The 

dimensions of the graphoil boats varied depending upon the size of sample used in the 

heat treatment. Larger trays (7” x 1.5” x 0.25”) were used for large samples (~6-8 g). 

Smaller trays (1” x 0.75” x 0.25”) were used for small samples (<2 g). In most cases, the 

graphoil boats were of sufficient size such that the powder sample could be loosely 

spread to form a layer ~1–2 mm in thickness. The channels were made in the powder to 

promote the gas flow, as shown in Figure 4.8.  

The weights of graphoil boat and powder sample were recorded before each 

experiment. The powder was placed in the boat and then the boat was placed inside the 

tube furnace. The position of the boat in the furnace tube was always kept the same so 

that similar conditions could be obtained for different heat treatment experiments. 
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 "ZrC" substrates were used for some experiments in which samples were heat 

treated at temperatures ≥1600oC.  These substrates were prepared in-house using powder 

from batch ZrPM-61.  The samples were made by dry pressing the powder and by 

subsequent sintering at 1800oC for 4 h.  (The detailed procedures are described in section 

4.3.1.1.)  These samples were not pure ZrC, but also had some free carbon.  This was 

indicated from analyses of the carbon content by the "LECO method."  The results of 

these analyses are given in section 5.6.1.3.1. 

For cooling, the power to the three-zone furnace was switched off and the furnace 

was allowed to cool naturally. The M-11 furnace was programmed to cool at a rate of 

50oC/min to room temperature. (However, cooling slowed to less than 50oC/min after the 

temperature decreased ~400oC below the isothermal hold temperature.) The samples were 

then taken out of the furnace and the weights for the substrate and powder samples were 

recorded. 

For the rest of this thesis, powders which were given a carbothermal reduction 

heat treatment will be referred to as either "CTR powders" or "carbothermally-reduced 

powders." 

 

4.1.6 Milling of Powder Samples  

Some of the carbothermally-reduced powder samples were milled to break down 

“soft” agglomerates using a Spex mill (Model 8000, Spex Certiprep, Metuchen, NJ). In 

the spex mill, the “vial is swung back and forth in a shallow arc, its ends are displaced 

laterally in a “figure-8”; this distributes the grinding-ball impact over wide areas of the 

caps”.[62]   
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The powder samples were milled in a methacrylate vial (cylinder shaped with 1.5 

cm diameter and 5 cm in length). The amount of powder samples used was in the range 

of 1.5 – 1.6 g. The vial had Derlin® slip-on end caps that were lined with tungsten carbide 

(WC) inserts. The grinding media for most millings was single zirconia ball (Spex 

Certiprep, Metuchen, NJ) (10.5 mm in diameter). For some samples two WC balls (Spex 

Certiprep, Metuchen, NJ) (~8 mm in diameter) were used for milling. The time of milling 

was in the range of 10 – 40 min. 

In most of the samples, to ensure proper milling, powder was scratched off the 

walls of milling vial after every 2 minutes of milling. For larger sample size, the milling 

Figure 4.8 a) Top view of the Graphoil boat with powder sample b) Front view 
of the Graphoil boat. 

Powder sample 

Graphoil boat 

(a) 

(b) 
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procedure was repeated and different milled powder batches were mixed and the mixed 

batch was used for subsequent characterization of the particle size distribution. The 

milled powders were mixed using a procedure similar to the mixing procedure that is 

described later in section 4.2.3.3.1. 
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4.2 Techniques for powder characterization 

4.2.1 Thermogravimetric Analysis Measurements 

Thermogravimetric analysis was done on powder samples using TGA (Model 

STA 409, Netzsch, Exton, PA). In-situ measurements of the weight change as a function 

of temperature were made using as-dried unpyrolyzed powders, pyrolyzed powders, and 

CTR powders. The former samples were heat treated in a flowing argon atmosphere in 

order to study the pyrolytic decomposition behavior of the precursors (The argon was 

passed through a getter furnace (Model 2-3200) as described in section 4.1.5). 

Experiments with the pyrolyzed and CTR powders were carried in a flowing air 

atmosphere in order to remove carbon (i.e., via oxidative combustion) from the samples. 

Based on the weight loss during such a heat treatment, it was possible to obtain an 

estimate of the weight percent carbon that was originally in the sample.  

TGA experiments were carried out using 100 – 200 mg of powder. Samples were 

initially dried at 120oC (3 h) in vacuum. Powder was placed in an alumina crucible and 

the crucible was then placed in the TGA head. For the experiments carried out in flowing 

argon, the furnace chamber was sealed and initially evacuated at a controlled rate using 

an evacuation valve. The evacuation rate was critical because if the rate was too high then 

the powder in the crucible spilled out making the weight change measurements useless. 

For all the measurements, the evacuation valve was opened such that it took about 5 min 

to get to the desired vacuum level (~10 torr). The valve was then opened fully and the 

chamber was left to evacuate for 1 min before the valve was closed. Argon gas was used 

to refill the chamber and the rate of argon addition was also controlled. After the pressure 

inside the chamber reached slightly above the atmospheric pressure, the leak valve was 
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opened to allow extra argon to flow out of the chamber. The flow of argon gas was then 

continued in order to purge the chamber for another 30 min. The TGA experiment was 

then started. The argon gas flow in the chamber during the TGA experiments was kept 

constant at ~100 ml/min. The heating rate for most weight loss measurements in argon 

was 10oC/min to 150oC, 5oC/min to 175oC, 2.5oC/min to 550oC, 10oC/min to 1100oC and 

hold of 1h at 1100oC. One experiment was carried out to get information on weight loss 

that occurred during CTR. In this experiment, the starting material was an 800oC-

pyrolyzed powder. The sample was heated at 10oC/min to 800oC, then 1oC/min to 

1425oC, and then held at 1425oC for 2 h. 

For TGA experiments carried out using air, the chamber was purged with flowing 

air (100 ml/min, moisture-free) for 30 min before heating was started. The heating rate 

was 5oC/min to 1100oC with a hold of 1 h. The TGA had two thermocouples; one was 

used to control the furnace temperature (“control thermocouple”) and one was used to 

measure the temperature close to the sample (“sample thermocouple”).  The reported 

temperatures in this study were those determined with the sample thermocouple. In order 

to obtain the desired sample temperature, it was necessary to program the furnace 

controller such that the reading for the “control thermocouple” was approximately 25oC 

higher than the reading for the “sample thermocouple.”  

In addition to the in-situ weight losses measured by TGA, the weight losses that 

occurred during oxidative combustion of pyrolyzed and CTR samples were checked via 

ex-situ weight measurements made (using an analytical balance) on samples before and 

after they were heat treated. The alumina crucibles were weighed using an analytical 

balance (Model AX205, Mettler Toledo, Switzerland) both before and after the TGA 
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analysis was performed. The difference between the weights determined by the external 

analytical balance and the TGA balance were generally in the range of 1-1.5 mg. 

C/Zr molar ratios in pyrolyzed samples were estimated by oxidative combustion 

of the carbon in the samples. The pyrolyzed samples were heated in the TGA furnace at 

5oC/min to 1100oC with a hold of 1 h at the maximum temperature. The atmosphere was 

flowing air (100 ml/min, moisture-free). The C/Zr molar ratio in the starting (pyrolyzed) 

material was estimated from the weight loss which was assumed to be entirely due to 

oxidative combustion of the carbon. It was also assumed that the original sample 

consisted only of ZrO2 and C. 

 

4.2.2 Surface Area Measurements by Gas Adsorption 

Surface area measurements on heat-treated powders was carried out using the 

nitrogen gas adsorption method (Model ASAP 2000, Micromeritics, Norcross, GA).  

The powder samples were degassed (out-gassed) at temperatures ranging from 

300oC to 400oC for 2-3 h to remove any volatiles (i.e., mostly adsorbed water). The gas 

absorbate used for the measurements was nitrogen (99.999% pure).  The carrier (dilution) 

gas was helium (99.999% pure).  The adsorption measurements were done at liquid 

nitrogen temperature (-196oC).  Adsorption isotherms were collected at nitrogen relative 

pressures in the range of 0.05 to 0.25 at increments of 0.05. 

A description of some theoretical aspects of the gas adsorption method for 

determining specific surface area is given below. This description below was written by 

Zhe Cheng of the Georgia Institute of Technology.[63] 
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“From the adsorption isotherm, the specific surface area can be obtained based on 

either the BET or Langmuir equation as shown below: 

 

BET equation 
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in which P/P0 is the relative pressure (P is the equilibrium pressure and P0 is the saturation 

pressure), V is the total amount of gas (in cm3/g STP) adsorbed at P, Vm is the monolayer 

capacity (in cm3/g STP) which is the gas volume (reduced to STP) that is sufficient to form 

a complete adsorbed monolayer on the sample surface, and C and b are constants in the two 

models.[16] 

 For both BET and Langmuir equations, the specific surface area, SA (in m2/g), is 

calculated by the following equation: 

Am
m NAVSA

22414
=      (4-5) 

in which Vm is the monolayer capacity (in cm3/g STP) from the BET of the Langmuir 

equation; NA is the Avagadros constant, NA = 6.023 x 1023; Am is the cross-sectional area of 

the analysis gas.  Am = 0.162 nm2 for N2. 

 To obtain Vm, C, and b in the BET and Langmuir equations, the data from the 

adsorption isotherm (i.e., P, V values) in the relative pressure range from ~0.05 to 0.25 

(0.05 < oPP /  < 0.25) are fitted to those equations. (The BET and Langmuir models are 
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generally only applicable at pressures within this range.)  Linear regression is then carried 

out on the (
)/1(

/

o

o

PPV
PP

−
, oPP / ) data pairs for the BET model (based on equation 4-3) 

and on the (
V

PP o/ , oPP / ) etc. data pairs for the Langmuir model (based on equation 4-4). 

From the results of the linear regressions, the value of Vm (from the BET and/or Langmuir 

models) is calculated and then the specific surface areas are determined from the equation 

4-5. In addition, the values of C in the BET model, b in the Langmuir model, and the 

correlation coefficients of the linear regression, rL, for each model are obtained. The C 

value in the BET equation should be positive to have physical meaning. Actually, it is 

desirable that the C value be in the range of 80-120 [64]. For the Langmuir model, the b 

value should also be a positive value to have physical meaning, and it is desirable that the b 

value be less than 0.02. The parameters, i.e. C, b, and rL, are used to determine whether the 

BET surface area or the Langmuir surface area is more representative of the actual specific 

surface area of the sample tested.” 

The specific surface areas were reported using both the BET and Langmuir 

models. If the BET model gave a positive C value and the Langmuir model gave a 

positive b value, then measurements which gave the better correlation coefficient (rL) 

value was considered more reliable. (In most cases, the rL values were at least 0.9999.) If 

the Langmuir model gave a positive b value and the BET model gave a negative C value, 

then the surface area from Langmuir model was adopted if the rL values were good. (If rL 

value was low, the measurement was repeated.) Conversely, if the BET model gave a 

positive C value and Langmuir model gave a negative b value, then the surface area from 
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the BET model was adopted. In most cases, the measurements were repeated (two times) 

for each sample to verify the results and check the reproducibility of data. 

 

4.2.3 X-ray Diffraction (XRD) 

4.2.3.1  Phase Analysis 

 X-ray Diffraction (XRD) analysis (Model PW1800, Philips Analytical, 

Netherlands) was used to determine phases present in powders (as-prepared and heat 

treated) and in sintered samples. 

 

4.2.3.1.1  Sample Preparation 

4.2.3.1.1.1  Powders 

 The sample holders used for XRD analysis on powders were fabricated using 

glass slides. The holders were made in house in order to minimize the amount of material 

required for analysis. (The amount of material available was limited in many cases.) The 

holders were fabricated from two glass slides. A 1 cm-diameter hole was drilled through 

one slide and the slide was then ground to 500-600 microns in thickness. This slide was 

glued to a second slide that served as the base. A schematic of XRD holder is shown in 

Figure 4.9. The cylindrical cavity formed by the two glass slides had a volume of ~3.9 - 

4.7 x 10-2 cm3. The amount of powder required to fill the cavity was ~70 - 200 mg.  There 

was a significant variation in the amount of powder required to fill the cavity.  The main 

reason for this variation was because the solid density of the powders varied significantly.  

(For example, consider the difference between the oven-dried powders, pyrolyzed 

powders, and the carbothermally-reduced powders.  CTR powders consisted mostly of 
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ZrC.  Stoichiometric ZrC has a solid density of ~6.63 g/cm3.  Pyrolyzed powders 

consisted mostly of zirconia (ZrO2) and carbon and had approximate solid densities in the 

range of ~3.7 – 4.4 g/cm3.  The solid densities of the oven-dried powders were not 

estimated, but they would be expected to be considerably less than the pyrolyzed 

powders.)  The amount of powder required to fill the cavity in the glass sample holder 

may also have varied because of differences in the packing densities for the different 

powders.  

 The cavity of the sample holder was initially overfilled with powder to a slight 

extent.  The top (open) surface of the powder was then lightly compacted and leveled 

with the top glass surface of the holder.  This was done by using a smooth glass slide to 

apply a light pressure.  The glass slide was also used to lightly scrape away any excess 

powder that was present (i.e., powder that remained on the top glass surface of the 

holder). The sample holder was then placed on metal sample support with the help of 

plasticene. The glass surface (of the sample holder) was leveled with that of metal 

support as shown in Figure 4.10.  

 

 

 

 

 

 

 

 
Figure 4.9   a) Top view of the sample holder b) Front view of the sample holder. 

a) b) 
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Figure 4.10  Illustration of glass sample holder with metal support for XRD 
measurements. (This figure is reproduced exactly from the reference 63.) 

 

 

4.2.3.1.1.2 Bulk Samples 

 The surfaces of sintered samples were smoothed using a grinding machine 

(Ecomet® III, Buehler, Lake Bluff, IL) with a 12 µm diamond particle-embedded metal 

disk (TBW Industries Inc., Furlong, PA). Light pressure was applied manually during 

grinding. The sample was then placed on the same metal sample support shown in Figure 

4.10. The sample was attached to the support using plasticene and was then leveled as 

shown in Figure 4.10. 
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Powder 

Metal support 

Glass holder 
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4.2.3.1.2  Measurement Conditions and Analysis 

 The sample were placed in the XRD instrument for phase analysis. The radiation 

used for the XRD analysis was the Cu Kα line with an average wavelength of 1.54184Å, 

which was comprised of the Kα1 and Kα2 double lines (λα1 = 1.54056Å and λα2 = 

1.54439Å). The radiation was passed through a monochromator that precluded the use of 

filter.  Data was collected using a “continuous scan” mode with a step size of 0.02o and 

scan speed of 0.4 sec/step. (In the “continuous scan” mode, the sample and the detector 

move continuously and the intensity counts are integrated over the small angular step.) 

The scanning range for 2θ angles was between 10º and 100º. 

 In most cases, the phases in the XRD patterns were automatically identified using 

the instrument software (Philips PC-APD software, version 3.6, Philips Analytical, 

Netherlands). Some peaks in the XRD pattern were manually analyzed by comparing 

measured 2θ values (and d-spacings) with information on the relevant JCPDS cards. This 

was done for cases in which phase identification was difficult due to low-peak intensity 

and/or the overlap of peaks from more than one phase. 

 

4.2.3.2  Crystallite Size 

4.2.3.2.1 Sample Preparation 

 The crystallite sizes were determined only on heat-treated powder samples 

(pyrolyzed and CTR). The sample preparation conditions were same as described in 

section 4.2.3.1.1.1. 
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4.2.3.2.2 Measurement Conditions and Analysis 

Crystallite sizes were determined using XRD data that was collected for phase 

analysis. The scanning conditions were same as described in section 4.2.3.1.2.  

The crystallite sizes of tetragonal zirconia (t-ZrO2), monoclinic zirconia (m-

ZrO2), and zirconium carbide were determined from the broadening of the XRD 

diffraction lines using the Scherrer equation :  

θβ
λ

cos
9.0

hkl
hklD =                                             (4-6) 

where Dhkl  is the thickness of the crystal measured in a direction perpendicular to the 

(hkl) reflecting planes, λ is the radiation wavelength, θ is the Bragg angle, and βhkl is the 

true width of the diffraction line at a height where the intensity is one-half of the 

maximum intensity.  Because the Cu Kα double line was the radiation source, α2 stripping 

must be performed first to obtain the true line shape contributed by the Cu Kα1 line.  The 

wavelength of the Cu Kα1 line is 1.5406Å (0.15406 nm). Background subtraction was 

also necessary to obtain the true height of the diffraction line. 

If the XRD diffraction lines have Cauchy shape, the value of βhkl can be obtained 

from the following equation: 

βhkl = B – b                                                 (4-7) 

where B is the measured width of the diffraction line (or Full Width at Half Maximum, 

FWHM) and b is the portion of the measured width that is due to instrumental 

broadening.  Therefore, the crystallite size Dhkl (in nm) is given by:   

nm
bB

Dhkl θcos)(
15406.09.0
×−

×
=                                  (4-8) 

in which B, b and θ are all in radians. 
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The α2 stripping and the background subtraction were performed on XRD patterns 

using Powder 2.0 software [65]. Figure 4.11 illustrates an example of an XRD pattern 

before (a) and after (b) the automated background subtraction. 

To determine the FWHM (B), a lorentzian fit was performed on each individual 

peak using Origin® software (version 6.1, OriginLab Corporation, Northampton, MA). 

The angle range for each peak was chosen as two points where the peak started to flatten 

out and form the baseline shown in Figure 4.12a. The Lorentzian fitted curve was then 

used to determine the maximum intensity (M) and the peak position at M, as shown in 

Figure 4.12b. The FWHM (B) was the difference in the points of intersection (i.e., I2 - I1) 

of the Lorentzian curve with a line drawn parallel to x-axis at an intensity value (y-

coordinate) that was half of the maximum intensity (i.e., at M/2), as shown in Figure 

4.11b. 

Peak broadening (b) resulting from the instrument was determined from the peak 

broadening that occurred using a single crystal silicon (Si) wafer. The Si single crystal 

diffraction peak was very sharp, but it was not an ideal vertical line. There was some 

peak width due to instrumental factors. This width was determined and then used to 

correct the instrument-related broadening that contributed to the broadening in the 

powder samples. The Si XRD pattern was obtained using same conditions as used for 

powder samples. The results for peak width are listed in Table 4.8. 

 

Table 4.8. XRD peak widths of single crystal Si. 

2θ (degree) 28.667 47.524 56.331 69.346 76.570 

Width (degree) 0.058 0.069 0.089 0.093 0.123 
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Linear interpolation was used to obtain the b values for any angles within the 

different 2θ ranges. Since no data was available for angles greater than ~77o, the width 

was assumed to be same as of ~77o i.e., 0.123o. The interpolation equations are listed 

below: 

 

28.667o<2θ<47.524o b = [0.000583 × (2θ ─ 28.667)] + 0.058   (4-9) 

  47.524o<2θ<56.331o   b = [0.002270 × (2θ ─ 47.524)] + 0.069     (4-10) 

56.331o<2θ<69.346o b = [0.000307 × (2θ ─ 56.331)] + 0.089 (4-11) 

69.346o<2θ<76.570o b = [0.004150 × (2θ ─ 69.346)] + 0.093 (4-12) 

 

The crystallite size was then calculated using equation 4-8 for all diffraction peaks 

observed in the XRD pattern. It was assumed that crystallites had an equidimensional 

shape and the average values were reported as the average crystallite sizes for the          

m-ZrO2, t-ZrO2, and ZrC. 

 

4.2.3.3  Lattice parameter 

4.2.3.3.1 Sample Preparation 

 The samples for lattice parameter analysis were prepared by mixing powders with 

15wt% National Bureau of Standards (NBS) standard silicon. The powder samples and 

silicon were first weighed separately on a weighing papers (Fisher Scientific, Fair Lawn, 

NJ) and then transferred to a 5 ml glass vials. The vials were sealed by screw-on caps. 

The vials were then wrapped with Parafilm® (Fisher Scientific, Fair Lawn, NJ) to protect 

them from breaking during the subsequent mixing operation.  Up to four vials  were then  
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Figure 4.11.   a) XRD pattern of ZrC sample with background intensity b) XRD 
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placed in 500 ml polyethylene (PE) bottle (Fisher HDPE round bottles). The PE bottle 

was stuffed with Kimwipe® (Kimberly-Clark, Roswell, GA) paper to hold the glass vials 

in their position and prevent them (glass vials) from colliding with each other. The PE 

bottle was then placed on a tumbling machine (CV-79450, Norton Chemical Process 

Product Div.) for at least 2 h to achieve proper mixing of powders. 

 After mixing, the powder samples were loaded onto the XRD sample holder as 

described in section 4.2.3.1.1.1. 

 

4.2.3.3.2 Measurement Conditions and Analysis 

  The measurement conditions were same as described in section 4.2.3.1.2 except 

for the scanning conditions. Data was collected using a “step scan” mode with a step size 

of 0.02o and scan speed of 2.5 sec/step. (In the “step scan” mode, the sample and the 

detector move at fixed steps and the intensity counts are only recorded at each step for a 

specified time, i.e., 2.5 sec in this study.)  The scanning range for 2θ angles was between 

10º and 100º. 

 Lattice parameters were calculated from the raw XRD data using two different 

procedures which will be referred to as the "Extrapolation Method" and "Cohen's 

Method."[66]  Each calculation method is described below.  This is followed by an 

example of applying each method to a set of XRD data collected in this study. 

 

Extrapolation Method 

Bragg’s law is given by:   

θλ sin2d=       (4-13) 
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where λ  is the wavelength (1.5406Å) for Cu Kα1 radiation, d is the distance between 

adjacent planes or the “d-spacing”, and θ  is the peak position. 

Displacement error is caused by displacement of the specimen from the 

diffractometer axis. For a cubic crystal, an extrapolation curve based on the displacement 

error is given by : 

θ
θ

sin
cos2

0

b
a
a

d
d

=
∆

=
∆     (4-14) 

where 0a  is the lattice parameter, b is a constant, and a∆  is given by : 

a∆   = a – a0      (4-15) 

where a is the apparent lattice parameter. 

 Substituting the value of a∆  from equation 4-15 into equation (4-14) and 

rearranging the terms we have: 

θ
θ

sin
cos2

00 baaa +=     (4-16) 

This yields a  = 0a  at θ = 90.  In a cubic system, a is given by: 

222 lkhda ++=     (4-17) 

where h, k, l are the plane indices. 

Thus, values of d and a can be calculated for all the diffraction peaks observed in 

the XRD pattern using the equations (4-14) and (4-17) respectively. According to 

equation 4-16, a plot of a versus cos2θ/sinθ should yield a straight line, and the lattice 

parameter a0 can be obtained by extrapolating the values to θ = 90o.  
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Cohen’s Method 

Bragg’s law is given by equation (4-13). Squaring both sides of this equation, 

rearranging terms, and taking the natural logarithms of each side results in the following 

equation : 

dln2)
4

ln(sinln
2

2 −=
λθ     (4-18) 

Differentiation gives 

   
d

d∆
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∆ 2
sin
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2

2

θ
θ      (4-19) 

 

For a cubic material, we have 

   θ2cosK
a
a

d
d

=
∆

=
∆      (4-20) 

where K is a constant. 

)(sin)(sinsin 222 TrueObserved θθθ −=∆    (4-21) 

where sin2θ(Observed) is calculated from the measured peak position in the XRD pattern 

and sin2θ(True) is the ideal value. 

Combining Eq. (4-19) and (4-20), we have: 

θθθθθθ 2sincossin2)(sin)(sinsin 222222 DKTrueObserved =−=−=∆   (4-22)  

where D is a new constant.  

By squaring equations (4-13) and (4-17), and then rearranging the terms, the true 

value of sin2θ for any diffraction line is given by : 

   )(
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Combining Eq. (4-22) and Eq. (4-23) gives : 

θλθ 2sin)(
4

)(sin 2222
2

0

2
2 Dlkh

a
Observed +++=   (4-24) 

Therefore a plot of sin2θ versus (h2+k2+l2) should yield a straight line, and the 

lattice parameter a0 can be obtained from the slope of the straight line by using the 

equation given below: 

slope
a

20
λ

=      (4-25) 

Examples 

In this example, the lattice parameter measurements were made using a CTR 

sample consisting mostly of ZrC. The sample was given the name “ZrPM-45-1600-2”. 

 

1. Extrapolation Method 

  

 

2θ (NBS values) Measured 2θ ∆ 2θ 

28.443 28.555 0.112 

47.303 47.4 0.097 

56.123 56.21 0.087 

76.377 76.46 0.083 

88.032 88.11 0.078 

94.954 95.005 0.051 

 

 

Table 4.9.  Measured and NBS  2θ values of Si standard. 
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Table 4.9 shows the measured 2θ values obtained for the Si peaks in the sample. 

Also, listed in the table are the 2θ values provided by NBS for the Si standard. Figure 

4.13 shows a plot of the difference between these 2θ values (y-axis values) versus the 

measured 2θ values (x-axis values). The two data points were fit with a linear equation; 

the correlation coefficient (R) and the equation are given below: 

 

y =  0.13473  –  (7.95967e-4x)    (4-26)  

R = -1 

 

As seen in Table 4.9 the measured 2θ values of Si standard shifted to higher 

values as compared to values provided by NBS. This shift may be caused by the 

difference in sample positions during analysis. Thus, equation 4-26 was used to correct 

the measured 2θ values of ZrC peaks in the XRD pattern that were in the 2θ range used 

for the linear fit in equation 4-26 (For example, equation 4-26 was used to correct the 2θ 

values in ZrC peaks that were measured (see Table 4.10) at 33.145 and 38.425). This 

procedure was repeated over the entire range of measured 2θ values for ZrC. Table 4.10 

lists the measured and corrected 2θ values for the ZrC peaks observed in the XRD 

pattern. Table 4.10 also lists the d (d-spacing), hkl (indices of plane) and a (apparent 

lattice parameter) values that were calculated by using the corrected 2θ values. 
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Figure 4.13  Plot of ∆2θ vs. 2θ of Si standard. 
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Measured 2θ  
 

Corrected 2θ 
 

d 
 

h 
 

k 
 

l 
 

a 
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1 
 

1 
 

1 
 

4.69349 
 

38.425 
 

38.3209 
 

2.34737 
 

2 
 

0 
 

0 
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1.65937 
 

2 
 

2 
 

0 
 

4.69341 
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1.41521 
 

3 
 

1 
 

1 
 

4.69372 
 

82.125 
 

82.0444 
 

1.17365 
 

4 
 

0 
 

0 
 

4.69459 
 

91.405 
 

91.3403 
 

1.07687 
 

3 
 

3 
 

1 
 

4.69398 
 

94.48 
 

94.4273 
 

1.04962 
 

4 
 

2 
 

0 
 

4.69405 
 

 

 
 

Figure 4.14 shows the plot of the apparent lattice parameter, a, (y-axis values) vs. 

cos2θ/sinθ (x-axis values). The data were fit by the least-squares method. The equation 

and correlation coefficient (R) are given below: 

y = 4.69411 – 6.75082e-5x      (4-27) 

R = 0.13508 

As noted earlier, the lattice parameter, a0, is given by the y-intercept value at x = 0 (i.e., θ 

= 90o). In this case, the value is 0.4695 nm. 

 

2. Cohen’s Method 

The method used to correct the measured 2θ values for the Si standard and ZrC peaks 

observed in the XRD pattern was the same as described for the Extrapolation Method. 

Table 4-11 lists the measured and corrected 2θ values for the ZrC peaks observed in the  

Table 4.10. Measured and corrected ZrC peak positions and their corresponding d 
and hkl values. 
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XRD pattern. Table 4-11 also lists the sin2θ, hkl (indices of plane) and h2+k2+l2 values 

that were calculated by using the corrected 2θ values. 

 

 

 

Figure 4.14  Plot of “a” vs. cos2θ/sin2θ to determine the lattice parameter. 
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Figure 4.15 shows the plot of sin2θ (y-axis values) vs. h2+k2+l2 (x-axis values). 

The data were fit by the least-squares method. The equation and correlation coefficient 

(R) are given below: 

y = 3.85056e-5 + 0.02693x      (4-28) 

R = 1.0000 

As noted earlier, the lattice parameter, a0, is calculated from the slope of the equation (4-

24). In this case, the value of slope is 0.02693 and the calculated lattice parameter value 

using equation (4-25) is: 

 

nm4694.0
02693.02

54056.1
=     (4-29) 

 
 

Table 4.11. Measured and corrected ZrC 2θ values and their corresponding sin2θ 
and hkl values. 
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 The “Extrapolation Method” consistently showed poor R values compared to 

values obtained by “Cohen’s Method”. Therefore, it was decided that the lattice 

parameter values from only “Cohen’s Method” will be reported in this thesis. 

 

4.2.4 Scanning Electron Microscopy 

Scanning electron microscopy was used to observe the particle sizes and 

morphologies of carbothermally-reduced powder samples. The initial step in the sample 

preparation process was to put some double-sided adhesive-coated graphite tape (S T R 

2 4 6 8 10 12 14 16 18 20 22
0.0
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y = 3.85056e-5 + 0.02693 * x

R = 1.0000

si
n2 θ

h2+k2+l2

Figure 4.15 Plot of sin2θ vs. h2+k2+l2 for measuring the lattice parameter. 
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Tape, Shinto Paint Company, Japan) onto a cylindrical aluminum-mounting block.  A 

spatula containing the powder sample of interest was held over the tape and then the 

spatula was lightly tapped in order to deposit a thin layer of powder. The whole sample 

mount was then coated with a thin layer of gold-palladium by sputtering with a gold-

palladium target. The sputter coater (Sputter Coater, International Scientific Instruments, 

England) chamber was evacuated to 0.07 torr pressure. The coater was operated at ~20 

mA current (1.2 kilovolts) for ~1.5 min in order to coat the sample. The gold-palladium 

coating prevented the accumulation of charge on the sample during SEM observations. 

The experiments were performed by using a field emission SEM (Model 1530, LEO, 

Thornwood, NY). The acceleration voltage used for observation was in the range of 10-

20 kV.  

 

4.2.5 Electrophoretic Mobility Measurements 

Electrophoretic mobilities of ZrC-based CTR powders were determined using the 

method of microelectrophoresis (Beckman Coulter, Delsa 440SX, FL). This information 

was used to determine the optimum conditions for the preparation of electrostatically-

stabilized suspensions that were used for measurements of particle size distributions 

(section 4.2.6).  

When an electric field is applied to particles suspended in a liquid, the particles 

accelerate until they reach the terminal velocity. At the terminal velocity, the viscous 

drag force acting on the particles moving through the liquid equals the motive force of 

the  applied  electric  field. The  terminal  velocity  is typically  reached  in  µsec.[67]  The  
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electrophoretic mobility is calculated by the equation given below: 

E
vU =      (4-30) 

where U is the electrophoretic mobility (µm·cm/V·s), v is the terminal velocity (µm/s), 

and E is the applied electric field (V/cm).  

With certain restrictions, the zeta potential can be calculated from the 

electrophoretic mobility using the Helmholtz-Smoluchowski equation : 

ε
ηζ U

=      (4-31) 

where ζ is the zeta potential (volts x 10-10), η is the viscosity of the liquid (N·s/m2), and ε 

is the permittivity (farad/cm) of the liquid. 

 Electroosmosis tends to be a major source of error in measuring U. It occurs 

because of the difference in the electrical potential of glass walls of the sample cell used 

for the measurements and the bulk solution. (The sample chamber is a channel with a 

rectangular cross-section (see Figure 4.16).) This difference in electrical potential causes 

non-uniform distribution of ions in the liquid in the channel, i.e., the potential varies with 

the distance from the channel wall. At the application of external electric field, the liquid 

in the channel moves with a speed that depends on the electrical potential which, in turn, 

depends on the position in the channel. However, the electrophoresis cell chamber is a 

closed system during the measurement, so that the liquid displaced by electroosmotic 

flow must circulate back in the opposite direction by Poisseuille flow (i.e., so that the 

total liquid flow rate in the closed chamber is zero). A parabolic “flow profile” (see 

Figure 4.17) is observed in a channel with a rectangular cross-section, provided the  
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Figure 4.17 Electroosmotic flow profile. (The figure is reproduced exactly from 

reference 67.) 
 

Figure 4.16 Schematic of sample cell used for mobility measurements. (The 
figure is reproduced exactly from reference 67.) 
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potential is uniform on the cell walls. As shown in Figure 4.17, there are two locations in 

the cell chamber in which the liquid flow rates in the forward and backward directions 

are equal in magnitude (but opposite in direction). The two locations are referred to as the 

"upper stationary level" and the "lower stationary level" of the cell chamber. For accurate 

determination of the particle velocity (and, therefore, the particle electrophoretic 

mobility), measurements are made at either or both of these two locations where the 

liquid has a net zero velocity. In this study, measurements were made at both the upper 

and lower stationary level. 

 All particles do not move with the same velocity during an electrophoresis 

experiment. A light scattering method is used in the Delsa 440SX instrument to 

determine distributions of the particle velocities (and, hence, distributions of the particle 

electrophoretic mobilities).  Measurements of the velocity distributions were made at four 

different scattering angles. 

 The samples were prepared by first dispersing about 1-5 mg of powder sample in 

20 ml of deionized water (DI). The pH of the water was varied in the range of 2.9 to 10. 

The suspension was then sonicated ultrasonically for about 15-20 minutes to break any 

“soft” or “weak” powder agglomerates.  

The sample holder was cleaned using DI water at least three times prior to 

measurements. The DI water used had the same pH as that of suspension to be analyzed. 

The sample holder was filled with the sample suspension by using a 5 ml syringe. The 

sample holder was then wiped and dried with a Kimwipe® paper tissue (Kimberly-Clark, 

Roswell, GA). Special glass wipes (KP 62647-B, Kodak, Rochester, NY) were used to 

clean the glass chamber of the sample holder to prevent the formation of scratches. It was 
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important to wipe off all water from the sample holder surfaces, prior to placing the 

holder in the instrument chamber, in order to achieve good temperature equilibration.  

The instrument manufacturer recommended that sample measurements be carried out 

only when temperatures differences between the two sides of the sample holder were ≤ 

0.2oC. 

To ensure the validity of the data, measurements for solution conductivity and 

particle electrophoretic mobility were periodically checked using standards.  The solution 

conductivity standard was a 10 mS/cm KCl conductivity standard (YSI 3128, Fisher 

Scientific, Fair Lawn, NJ). A suspension of polystyrene latex particles (EMPSL7, 

Beckman Coulter, Miami, FL) was used as a standard for the electrophoretic mobility. 

 

4.2.6 Particle Size Distribution Measurements 

Particle size distributions were determined using a light scattering method (Model 

LS 13320, Beckman Coulter, Miami, FL). A schematic of the instrument used in this 

study is shown in Figure 4.18.  The basic components of the systems are a 

monochromatic source of illumination, a spatial filter to focus the light beam, a sample 

chamber which holds the sample and allows the particles to interact with the light beam, 

and an array of photodetectors that record the intensity patterns for the light scattered by 

the particles. 
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In the general case, the intensity pattern for the scattered light is rather complex 

and depends on the properties of the light source (wavelength and polarization), 

properties of the particles (sizes, shapes, concentration, and complex refractive index), 

and the angle of scattering. Experimentally, scattered light intensities are measured at 

known scattering angles using light sources with known properties and using suspensions 

with fixed particle concentration. The scattering pattern is deconvoluted using theoretical 

equations which relate the scattering intensity to the scattering angle, particle size, and 

particle shape.  Mie theory is usually applied when particles are smaller than the 

wavelength of the incident light. The theory requires knowledge of the particle complex 

refractive index.  In addition, the theory is based on the assumption that particles have a 

spherical shape.  Fraunhofer diffraction theory can be used when particles are much 

Figure 4.18 Schematic of optical system for particle size analysis. (The figure is 
reproduced exactly from reference 68.) 
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larger than the wavelength of the incident light.  Fraunhofer theory is easier to apply 

because the particle refractive index is not needed.  (For large particles (or highly 

absorptive particles), most of the scattered intensity is concentrated at very small angles 

in the forward direction (i.e., "forward diffraction"), so it is not necessary to know the 

refractive index.)  The Mie theory was required for most of the powders characterized in 

this study. For example, fully-converted CTR samples which had been milled (ground) 

had particles that were mostly submicrometer, with the smallest particles extending to the 

lower limit of detection of the instrument (~40 nm).   

Measurements of particle size distributions via light scattering are carried out 

using dilute particle/liquid suspensions.  The concentration is sufficient to provide 

enough scattered light to reach the detectors with adequate signal-to-noise ratio, but low 

enough to minimize particle-particle interactions and multiple light scattering.  In the LS 

13320 instrument, the suspensions are loaded into a "liquid module" which consists of a 

sample cell and a circulation system.  The sample cell allows the particles in the 

suspension to be exposed to the illuminating source.  The circulation system has a pump 

which allows the cell to be filled and rinsed automatically.  It also serves the function of 

keeping particles suspended in the liquid.  This becomes increasingly important as the 

size of the particles increases because the rate of particle sedimentation is proportional to 

the diameter squared.  

The light scattering method used to determine the particle size distributions 

required the use of dilute particle/liquid suspensions.  The starting materials were dry 

powders, which consisted of agglomerates (porous clusters of particles). "Soft" 

agglomerates were broken down by first mixing the powder with the suspending liquid 
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and then applying ultrasonication to the suspension.  (Mechanical mixing and 

ultrasonication are generally effective in breaking down most "soft" agglomerates, but 

will usually be ineffective in breaking down "hard" agglomerates (i.e., aggregates).  The 

latter agglomerates refer to particle clusters in which particles are held together by strong 

chemical bonds, in contrast to the weaker bonds arising from "surface forces" (e.g., van 

der Waals, capillary forces, etc.) that hold particles together in "soft" agglomerates.)   

Although mixing and ultrasonication can be used to break down powder soft 

agglomerates and to disperse particles in a liquid, the dispersed particles often have a 

tendency to re-agglomerate in the liquid (i.e., to flocculate) when the mechanical forces 

are no longer applied.  (This tendency usually becomes increasingly more important as 

the particle size decreases.)  Therefore, it is often necessary to ensure that repulsive 

forces are operative between particles in order to maintain a dispersed state.  A common 

method of producing interparticle repulsive forces is to impart a net surface charge of 

similar sign (either positive or negative) on all of the particles.  This method of stabilizing 

a suspension against particle flocculation is known as "electrostatic stabilization."  In this 

study, a surface charge (sufficient to maintain good particulate dispersion) was imparted 

on the ZrC-based particles by adjusting the pH of the suspension. (See Appendix A for 

details.) Suspensions were prepared using deionized (DI) water in which the pH was 

adjusted to ~9.5 by adding dilute ammonium hydroxide solution. The ammonium 

hydroxide (Fisher Scientific, Fair Lawn, NJ) was diluted to 10 wt% in DI water. About 7 

– 20 mg of powder sample was then put in a 20 ml polyethylene vial. Approximately 20 

ml of DI water, whose pH was adjusted to 9.5, was then added to the vial (with powder). 

The pH of the solution was adjusted to 9.5 if it varied because of the powder addition. 
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The solution was then sonicated (Model VC600, Sonics and Materials Inc., Danbury, CT) 

for about 30 min. The sonicator was operated at 600 watts and 20 kHz frequency. 

Prior to the measurements, the liquid module was first rinsed with pH 9.5 DI 

water and then filled with pH 9.5 DI water. A “de-bubbling” step was used to remove the 

air bubbles from the DI water in the liquid module prior to a “background” measurement. 

Bubbles need to be eliminated because they produced a light scattering pattern that 

causes incorrect analysis of the particle size distribution for the samples. The 

“background” measurement recorded the light scattering pattern from the liquid and glass 

sample cell (i.e., with no particles present). It was automatically subtracted from the light 

scattering pattern of the samples. The concentrated powder suspension was then added to 

the liquid module by using a pipette. The suspension was added drop by drop until the 

desired amount was added, as indicated from the instrument software. The conditions 

used for different measurements are listed in Table (4-12). The measurements were 

repeated and the average data of two results were reported. 

 

 

Condition  Comments 

De-bubbling Yes Used for each measurement 

Background Measurement Yes Used for each measurement 

Pump Speed 40 to 70% Depends upon the particle size of samples. 
Larger particles required higher pump 

speed. 
Detectors Alignment Yes Used for each measurement 

 

 

Table 4.12. Typical steps followed before particle size analysis was performed. 
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To determine the particle size distribution accurately, it was of primary 

importance to have the sample material's optical constants (i.e., real component of the 

refractive index and extinction coefficients) at the specific wavelengths of light that were 

used in the LS 13320 instrument to collect the light scattering data.  Unfortunately, this 

information was not available for ZrC.  The closest material to ZrC, in terms of structure 

and chemistry, for which the complex refractive index data were available, was titanium 

carbide (TiC).  Table 4.13 shows refractive index (real component) and extinction 

coefficient values, at the wavelengths of interest, that were obtained by Koide et al.[69] 

for TiC0.95.  The real component values of the refractive index were used in this study for 

the following reasons:   (1) As mentioned above, ZrC and TiC have similar structure and 

chemistry.  (2) Refractive index (real component) values were reported by the same 

authors for VC[69]  (another refractory transition metal carbide) and the values were very 

similar to those obtained for TiC0.95.  (3) The calculated particle size distributions showed 

only moderate differences for samples in this study when the input values for the 

refractive index (real component) were significantly varied (while maintaining the same 

extinction coefficient values).  This is illustrated in Figures 4.19 – 4.21 in which particle 

size distribution data is plotted for a ZrPM-99-800-1475 sample (milled 10 min) using 

the optical constants reported for TiC0.95 (Figure 4.19) and refractive index values that 

were decreased by 1 (Figure 4.20) or increased by 1 (Figure 4.21).   (The values used for 

Figures 4.20 and 4.21 are listed in Table 4-14 as "self-defined 1" and "self-defined 2.")   

Although there were some obvious changes in the shape of the particle size distributions 

in Figures 4.19 – 4.21, the mean diameter values, as well as the d10, d50, and d90 values, 

were quite similar (Table 4-15).  (The d10, d50, and d90 values are the diameters at the ten-
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percentile, 50-percentile, and 90-percentile points in the volume-based cumulative 

particle size distribution plot.)  Therefore, it was concluded that it would be reasonable to 

use the refractive index (real component) values reported by Koide et al. for TiC0.95 for 

the materials used in this study.   

 The choice of the extinction coefficients to use in this study was more 

problematic for the following reasons:  (1) Figure 4.19 shows that the calculated particle 

size distribution contains four modes if the values reported by Koide et al. for TiC0.95 are 

used.  This is a concern because it is unusual for a milled powder to show four modes 

when the overall range of particle sizes in the distribution is relatively narrow.  (In this 

case, essentially all the particles in the distribution in Figure 4.19 are in the range of ~0.1-

2.6 µm.)   (2) Figure 4.19 shows that all the particles in the distribution were greater than 

0.1 µm and 90% of the particles were greater than the 0.18 µm (i.e., the d10 value).  This 

is a concern because SEM observations (Figure 4.22) indicate that there are a substantial 

number of primary particles with sizes close to 0.1 µm (or less).  However, it should be 

noted that this is not conclusive proof that the particle size distribution measurements are 

in error.  It is possible that most of the primary particles remained clustered together in 

the form of aggregates of various sizes in the suspensions that were used for the particle 

size distribution measurements.  (The term "aggregates" refers to clusters of primary 

particles which are held together by strong bonding forces.  Hence, such particles do not 

break down (to any significant extent) under suspension preparation conditions of the 

type used in this type (i.e., using ultrasonication).  Although the suspensions in this study 

were prepared using electrostatic stabilization, the particles that would be dispersed under 

those conditions could be primary particles and/or aggregates.)   (3) Calculated particle 
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size distributions varied significantly when the extinction coefficient values were 

changed.  This is illustrated by comparing the results in Figure 4.19 to particle size 

distributions calculated (for the same 10-min milled ZrPM-99-800-1475 sample) using 

extinction coefficients that varied in the range of 0.01 to 0.5, while maintaining constant 

refractive index (real component) values (Figures 4.23-4.26).  (The values used for 

Figures 4.23-4.26 are listed in Table 4.14 as "self-defined-3" - "self-defined-6," 

respectively.)  Table 4.15 shows the mean diameter, d10, d50, and d90 values for these 

distributions.  Clearly, the calculated particle size distributions are highly dependent upon 

the choice of the extinction coefficient values.  (4) The extinction coefficients reported 

for SiC [70,71,72] were much lower than the values obtained by Koide et al.[69]  for 

TiC0.95 and VC.  Figure 4.27 shows the particle size distribution calculated for the 10-min 

milled ZrPM-99-800-1475 sample using the SiC refractive index and extinction 

coefficient values reported in reference 71 (see Table 4.13).  It is apparent that the much 

lower extinction coefficients used in this case (i.e., compared to the values used in Figure 

4.19) once again changed the calculated particle size distribution significantly.   (5) There 

is some concern regarding the extinction coefficients reported by Koide et al. because 

their measurements were carried out on mechanically-polished bulk samples (disks with 

~1 mm thickness).  In contrast, the materials in this study were dispersed particles with 

sizes that were mostly in the submicrometer range (i.e., for most samples).  The concern 

with using extinction coefficients obtained from bulk samples is that processing defects 

might have caused scattering and absorption effects in the optical range of the spectrum 

that were not representative of the inherent material properties.  As indicated above, the 

extinction coefficients are much lower in the visible range (<0.02) for the cubic form of 
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SiC.[71]  In addition, a limited survey of the literature showed that several ceramic 

materials (i.e., Y2O3-stabilized ZrO2, HfO2, TiO2, SiO2, Al2O3), in the form of sputtered 

or vapor-deposited thin (submicrometer) films, all had very low extinction coefficients 

(always <0.03, but usually less than <0.01) in the visible range of the 

spectrum.[73,74,75,76]  In contrast, extinction coefficients reported for ZrN thin films 

[77] were ~1-2 in the visible range.  (This ZrN material clearly showed semiconductor 

characteristics, as indicated by relatively low electrical resistivities and a gold color of the 

films.)   

 In summary, it is evident that there is not a clear basis for selecting specific 

extinction coefficient values to use for the particle size analysis in this study.  Therefore, 

a decision was made to choose an arbitrary, but intermediate, value of the extinction 

coefficient in hopes that this would not excessively bias the data toward larger or smaller 

sizes.  A value 0.05 of was used for all wavelengths. 

 

 

Metal Carbide Wavelength (nm) n k 
450 2.86 2.4000 
600 3.03 2.6000 
750 3.40 2.9000 

TiC 

900 3.59 3.2000 
450 2.80 2.1900 
600 3.00 2.5000 
750 3.20 2.7000 

VC 

900 3.40 2.9000 
450 2.69 0.0011 
600 2.62 0.0002 
750 2.62 0.0003 

SiC 

900 2.55 0.0004 
 

 

Table 4.13.   Refractive index and extinction coefficient for various metal carbides. 



able 4.14 Self defined refractive index and extinction coefficient values. 
 

T
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 Wavelength (nm) n k 
450 1.86 2.40 
600 2.03 2.60 
750 2.40 2.90 

Self-defined-1 

900 2.59 3.20 
450 3.86 2.40 
600 4.03 2.60 
750 4.40 2.90 

Self-defined-2 

900 4.59 3.20 
450 2.86 0.50 
600 3.03 0.50 
750 3.40 0.50 

Self-defined-3 

900 3.59 0.50 
450 2.86 0.10 
600 3.03 0.10 
750 3.40 0.10 

Self-defined-4 

900 3.59 0.10 
450 2.86 0.05 
600 3.03 0.05 
750 3.40 0.05 

Self-defined-5 

900 3.59 0.05 
450 2.86 0.01 
600 3.03 0.01 
750 3.40 0.01 

Self-defined-6 

900 3.59 0.01 
 

 

 

Table 4.15 Particle size distribution data for the milled ZrPM-99-800-1475 powder 
sample. 

 
 Mean D90 D50 D10 
TiC 0.64 1.77 0.35 0.80 
Self-defined-1 0.65 1.75 0.35 0.18 
Self-defined-2 0.66 1.81 0.35 0.17 
Self-defined-3 0.44 0.91 0.25 0.16 
Self-defined-4 0.11 0.22 0.07 0.05 
Self-defined-5 0.09 0.19 0.06 0.05 
Self-defined-6 0.08 0.18 0.06 0.05 
SiC 0.11 0.24 0.07 0.05 
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 Figure 4.19 Particle size distribution of milled ZrPM-99 powder samples 
using TiC data a) cumulative distribution plot b) relative 
frequency plot. 
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Figure 4.20   Particle size distribution plots for the milled ZrPM-99–800-
1475 powder using self-defined-1 data:  cumulative 
distribution plot (top) and relative frequency plot (bottom). 
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Figure 4.21   Particle size distribution plots for the milled ZrPM-99–800-

1475 powder using self-defined-2 data:  cumulative 
distribution plot (top) and relative frequency plot (bottom). 
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Figure 4.22 SEM micrograph of milled ZrPM-99-800 powder sample hea
1475oC for 2 h. 
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Figure 4.23    Particle size distribution plots for the milled ZrPM-99–800-
1475 powder using self-defined-3 data:  cumulative 
distribution plot (top) and relative frequency plot (bottom). 
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Figure 4.24   Particle size distribution plots for the milled ZrPM-99–800-
1475 powder using self-defined-4 data:  cumulative 
distribution plot (top) and relative frequency plot (bottom). 
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Figure 4.25   Particle size distribution plots for the milled ZrPM-99–800-
1475 powder using self-defined-5 data:  cumulative 
distribution plot (top) and relative frequency plot (bottom). 
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Figure 4.26   Particle size distribution plots for the milled ZrPM-99–800-
1475 powder using self-defined-6 data:  cumulative 
distribution plot (top) and relative frequency plot (bottom). 
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Figure 4.27   Particle size distribution plots for the milled ZrPM-99–800-
1475 powder using SiC data:  cumulative distribution plot 
(top) and relative frequency plot (bottom). 
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4.3 Pressureless Sintering of ZrC 

4.3.1 Sample Preparation and Sintering Conditions 
 
4.3.1.1  Green Body Preparation 

 Powder compacts were prepared from the ZrC-based powders by dry pressing.  A 

conventional polymeric "binder system" was used to facilitate the dry pressing 

operation.[78]  Binder systems used in dry pressing of powders usually contain a higher-

molecular-weight polymer (i.e., the "binder" which is used mostly to improve strength) 

and a low-molecular-weight polymer (i.e., the "plasticizer" which is used mostly to 

improve plasticity).  In this study, the binder was a polyvinyl alcohol-polyvinyl acetate 

copolymer (“PVA”, 88% hydrolyzed, grade 205 polyvinyl alcohol, 11,000-31,000 

molecular weight, Air Products and Chemicals Inc., Allentown, PA) and the plasticizer 

was polyethylene glycol (“PEG”, 1000 molecular weight, 1000NF, FCC grade 

polyethylene glycol, Union Carbide Chemicals and Plastics Company Inc., Danbury, 

CT). The ratio of binder to plasticizer for this study was 85:15 by weight.  Binder 

solutions were prepared by adding PVA and PEG, one by one, to deionized water to 

make up a 5 wt% solution. The water was heated to 60oC prior to addition of PVA/PEG 

in order to increase the dissolution rate. The solution was continuously stirred using a 

magnetic stirrer for ~20 min.  

 Powder samples used for dry pressing were prepared with approximately 10 vol% 

polymer.  The required amount of polymer solution was ~0.37 ml per gram of ZrC-based 

powder.  This amount was calculated using the following assumptions: solid density of 

ZrC-based powder = 6.6 g/cm3, solid density of binder/plasticizer = 1.15 g/cm3. The 

binder solution was added to the powder sample drop by drop using a 1 ml syringe and 
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was simultaneously mixed the powder using a spatula. The time of adding the 

binder/plasticizer solution varied with the powder sample size (~1.6–4.8 g) and was in 

the range ~45–100 sec. Extreme care was taken to add the solution slowly and thoroughly 

mix it with the powder sample using the spatula. The mixture was then dried in an air 

oven (Isotemp oven, Fisher Scientific, Fair Lawn, NJ) at 70°C for at least three hours to 

evaporate the water. The coarse powder chunks were first broken up using a spatula and 

then lightly ground using a quartz mortar and pestle. The powder was then sieved through 

a 150-mesh screen. 

The sieved powders were used to form powder compacts by uniaxial dry pressing.  

Samples were prepared using stainless steel die sets with diameters of 6.4 mm and 14 

mm. The die sets were first cleaned using Kimwipe® paper tissue. The inside surfaces of 

the dies were lubricated using a stearic acid/toluene solution which was applied by using 

a cotton swab. (The stearic acid/toluene solution was prepared by adding ~5 g of stearic 

acid (Fisher Scientific, Fair Lawn, NJ) to 100 ml of toluene (Fisher Scientific, Fair Lawn, 

NJ).)  The toluene was allowed to evaporate and a lubricating film of stearic acid 

remained on the die surfaces. ~0.7 g and ~0.4 g of powders were used for pressing in the 

14 mm and 6.4 mm dies, respectively. Most of the dry powders were compacted at ~250 

MPa using a manually-operated hydraulic press (Model #3925, Carver Inc., Wabash, IN). 

Some powder samples were compacted at pressures in the range of 140 – 210 MPa. The 

time to reach the maximum pressure was in the range of 10 – 20 sec and the hold time at 

maximum pressure was ~1 min. 
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4.3.1.2  “Pre-Sintering” Heat Treatments 

4.3.1.2.1  Binder Burnout 

After pressing, pellets were heat treated in a flowing argon (100 ml/min) 

atmosphere to remove the organic binder. The pellets were placed on an alumina 

substrate and heated to 1150oC (5oC/min to 150oC, 2oC/min to 600oC, 5oC/min to 

1150oC) with a hold of 2 h at the maximum temperature in a tube furnace (Model 55031, 

Lindberg, Watertown, WI). The dimensions and weights of the pellets before and after the 

binder burnout were recorded by using a vernier caliper (smallest measured division = 10 

µm). The measurements were made at different points on the sample and data were 

averaged for at least 5 readings. 

 

4.3.1.2.2 “Pre-Sintering” 

 Some of the samples, after binder burnout, were given a “pre-sintering” heat 

treatment. The samples were heated in the 3-zone furnace (Model 54259, Lindberg, 

Watertown, WI) under a flowing (100 ml/min) argon atmosphere. The samples were 

heated at 5oC/min to 1490oC and held at temperature for 4 h. The furnace was allowed to 

cool naturally by switching off the power.  

 Pre-sintering was carried out for two reasons:  (1) The samples produced after the 

binder burnout did not have high strength.  There was some concern that samples might 

fracture due to differential stresses that could arise because of the rapid heating rates used 

in many of the sintering experiments. The "pre-sintering" heat treatment would give the 

samples improved strength.  (2) CTR reactions, with accompanying weight loss, were not 

complete in the powders used to form the powder compacts. (Results concerning the 
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weight losses that occur during high temperature heat treatment of samples are described 

in Chapter V.) There was some concern that the evolution of gaseous volatiles during 

rapid heating might damage the samples. A "pre-sintering" heat treatment would allow 

for more CTR weight losses to occur in the samples prior to higher temperature sintering 

experiments. 

 As discussed in Chapter V (section 5.6.1), the "pre-sintering" heat treatment 

actually resulted in some densification/sintering of the samples, so the term "pre-

sintering" was not an accurate description of the process. Furthermore, it was 

subsequently determined that the "pre-sintering" heat treatment was unnecessary. This 

was because the high heating rates used in the sintering experiments did not have any 

obvious adverse effect on the samples.  None of the samples fractured during sintering. 

Hence, a "pre-sintering" heat treatment was not used for samples prepared later in the 

study.  

 

4.3.1.3  Sintering 

4.3.1.3.1 Studies Based on Only Post-Sintering Shrinkage/Densification 

Measurements 

The 1150oC heat treated and “pre-sintered” samples were placed in the M11 

furnace tube on “ZrC” substrates. The furnace chamber was evacuated and heated to 

300oC under vacuum. This was done in order to remove any water adsorbed on the 

sample and the interior parts of the furnace. The chamber was initially evacuated to 

pressures in the range of 50–100 millitorr prior to heating to 300oC. The furnace was then 
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heated at 300oC and vacuum was pulled until vacuum levels in the range of 25–35 

millitorr were obtained.  

Argon gas was then back-filled in the furnace chamber and a flow rate of 500 

ml/min was maintained for sintering experiments. The samples which had been initially 

"pre-sintered" at 1490oC were sintered with the following schedule:  (i) heating rate of 

50oC/min to 1450oC, 20oC/min to 1470oC, 10oC/min to 1480oC, 5oC/min to 1485oC, 

2oC/min to 1489oC, 1oC/min to 1490oC and 5oC/min to sintering temperatures in the 

range of 1600 – 1950oC and (ii) hold at the maximum temperature for times in the range 

of 1-16 h.  Other samples (without the "pre-sintering" treatment) were heated at ~5oC/min 

to temperatures in the range 1600-1950oC and held at the maximum temperature for 1 h. 

The furnace was programmed to cool at 50oC/min to room temperature. (However, 

cooling slowed to less than 50oC/min after the temperature decreased ~600-900oC below 

the isothermal hold temperature.) 

The weight and linear dimensions of each sample were recorded before and after 

each heat treatment in order to determine the sample weight loss, linear shrinkage, and 

bulk density. 

 

4.3.1.3.2 Studies Based on In-Situ and Post-Sintering Shrinkage Measurements 

A high-temperature dilatometer system was used to determine linear dimensional 

changes in samples during sintering at temperatures up to 2200oC. A description of some 

design aspects of the dilatometer, reproduced mostly from reference 79 is given below: 

 “The dilatometer furnace (Model 1000-2560-FP, Thermal Technology, Inc., 

Santa Rosa, CA) used for the heat treatments was comprised of graphite heating elements 



 162 

and fibrous insulation. Temperature was monitored using an optical pyrometer (Model 

MA1SC, Raytek Co., Santa Clara, CA), which was sighted on the graphite casing (which 

surrounded the dilatometer) near the sample. Measurements were made at a wavelength 

of 1.0 µm through a fused silica viewing port mounted on the furnace radial wall. The 

calibration readings of the pyrometer were within ±10oC of a tungsten-rhenium 

thermocouple for temperatures over the range of 750 to 2200oC.”[79] 

A vertical double-pushrod dilatometer (Theta Industries, Inc., Port Washington, 

NY) extended into the furnace. A cylindrical casing that covered/surrounded the 

dilatometer and the dilatometer pushrods was made of graphite (Poco Graphite Inc., 

Decatur, TX). A counterweight was applied to the sample pushrod to minimize the load 

on the sample (i.e., the load due to the weight of the pushrod). The advantage of the two-

pushrod dilatometer over a single-pushrod dilatometer was that the measurements were 

more precise and more accurate. In single-pushrod dilatometers, the expansion behavior 

of the sample may be affected by expansion of the pushrod/casing material. In two-

pushrod dilatometers, the expansion of pushrod/casing material has no affect on the 

measurements because they are recorded with respect to a reference material.  

The dilatometer used a linear variable differential transformer (LVDT) position 

transducer to measure specimen expansion/shrinkage. The voltage output of the LVDT 

was converted to units of length via a calibration constant. The electrical output of the 

LVDT was compared to that of micrometer displacement readings and a least-squares fit 

was done to obtain an optimum fit between the voltage output and the change in length.  

Dilatometry measures the overall linear dimensional changes in the sample. For a 

dense sample, the dimensional changes are due to the thermal expansion or contraction 
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that occur upon heating or cooling, plus the dimensional changes associated with any 

phase changes/chemical reactions that occur within the sample. For a sample undergoing 

sintering, there is also the shrinkage that occurs as a result of densification process.  

To separate out the dimensional changes due to sintering (densification), an 

almost 100% dense sample of ZrC was first heated in the dilatometer and its expansion 

data was recorded. The heating rate used to collect this data was same as used for 

sintering measurements. The expansion data was then subtracted, automatically by using 

the computer software, from the expansion/contraction data collected during the sintering 

experiments. 

The samples were carefully placed below the pushrod and were lowered into the 

furnace chamber. It was of primary importance that sample did not move or fall off into 

the furnace chamber while being lowered into the furnace; this was verified by noting the 

reading of LVDT before and after the sample was lowered inside the furnace chamber. 

The chamber was then sealed, evacuated, and backfilled with helium gas. This step was 

repeated to ensure that all the air had been removed from the furnace chamber. The flow 

rate of helium gas was 1 standard cubic feet per hour (scfh) for all the sintering 

experiments. The heating schedule used for the experiments was 50oC/min to 1400oC, 10 

min hold at 1400oC, and 2-10oC/min to 1900 - 2200oC. The pyrometer could only record 

temperatures above 750oC, so no data was collected below 750oC.  
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4.3.2 Characterization of Sintered Samples 

4.3.2.1  Linear Shrinkage Measurements (Axial and Radial) 

The diameter and thickness of green and sintered samples were measured using 

vernier calipers. The measurement conditions were the same as described in section 

4.3.1.2.1. The density was calculated by using the equation: 

 

Volume
WeightDensity =       (4-32) 

 
 
The volume was calculated by following equation: 
 

( ) ThicknessRadiusVolume ××= 2π      (4-33) 
 

 Determination of volume was, by far, the bigger source of error (i.e., compared to 

the weight measurement which was done using an analytical balance). This was because 

the sintered samples were not perfect cylinders. Furthermore, in some cases, some very 

small pieces were lost from the edges or faces of the samples. 

 The percent shrinkages in the axial and radial directions were calculated by the 

equations given below. 

Axial Shrinkage: 

100% ×
−

=
o

o
a t

ttshrinkage     (4-34) 

where t is sample thickness after sintering and to is sample thickness before sintering. 

Radial Shrinkage: 

100% ×
−

=
o

o
r r

rr
shrinkage     (4-35) 

where r is sample radius after sintering and ro is sample radius before sintering. 
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4.3.2.2  Bulk Density and Open Porosity Measurements by the Archimedes Method 
 

The Archimedes method was used to determine density and open porosity of the 

sintered samples. The pellet was first dried in an air oven at 70oC for at least 1 h. The 

dried weight was measured and this step was repeated to check for reproducibility of 

data. The pellet was placed in a beaker and the beaker was put in a vacuum chamber. 

This chamber was evacuated for ~2 min by using a vacuum pump (Model #8890, Welch 

Vacuum Technology Inc., Skokie, IL). Under vacuum, the beaker in the chamber was 

filled with DI water by using the set-up shown in Figure 4.28. 

The chamber was then kept under vacuum for ~2 h to promote complete 

infiltration of water into the pores, if any were present. The pellet was then taken out of 

the vacuum chamber, taking care that it remained submerged completely under water in 

the beaker. The “suspended weight” was recorded by using the set-up shown in Figure 

4.29. The sample was then taken out of water and the sample surfaces were wiped off by 

using a Kimwipe® “delicate task” wiper (Kimberly-Clark, Roswell, GA). The pellet was 

then immediately placed in a previously weighed vial and the vial was quickly sealed. 

The vial (with the sample) was weighed and the “saturated weight” of the sample was 

determined. This procedure was used in order to minimize changes in the “saturated 

weight” of the sample as a result of evaporation of water from the near-surface region of 

the sample. 

The temperature of the water was recorded to the nearest 0.1oC. The sample was 

then dried in an oven in air at 70oC until it gave a constant value for the “dry weight.” 

The bulk volume (BV), percentage open porosity (%OP), and the bulk density (BD) for 

the pellet were then calculated by using the following equations: 
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Figure 4.28  Set-up for evacuating and back filling water into a beaker. 
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Figure 4.29 Set-up to obtain the suspended weight using an analytical weighing 
balance. 
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DL
SuWSaWBV −

=       (4-36) 

 

100*% 







−
−

=
SuWSaW
DWSaWOP      (4-37) 

 

BV
DWBD =       (4-38) 

 

 

where SaW is the saturated weight, SuW is the suspended weight, DL is the density of 

liquid, and DW is the dry weight. 

 

4.3.2.3  Relative Density Calculations 

Relative density, RD, (i.e., percentage of the theoretical density of the solid 

material) were calculated by using the following equation: 

 

100×=
TD
BDRD   (4-39) 

 

where BD is the bulk density and TD is the true (theoretical) density of the pore-free 

solid.    

 The bulk density was obtained using the measurement methods described in 

section 4.3.2.2, i.e., by using the geometric dimensions of the sample and/or the 

Archimedes method.  The true density of the solid was estimated based on the phase 

composition and the true densities of each phase that was present in the solid.  However, 

the true  densities  
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were estimated values because the phase compositions and true densities of some of the 

phases were estimated.  Depending on the particular sample, the phases present included 

zirconium carbide, monoclinic zirconia (m-ZrO2), tetragonal zirconia (t-ZrO2), and/or 

carbon.  Futhermore, the "zirconium carbide" often was not stoichiometric ZrC, but 

instead was either a zirconium oxycarbide (ZrCxOy) or a carbon-deficient zirconium 

carbide (ZrC1-x).  The assumptions made in estimating the true density values for specific 

samples are given in individual sections in Chapter 5.  However, some general procedural 

considerations that were used in making the estimates are given here:  

(1)  The composition and density of the "zirconium carbide" phase were estimated by 

using measured lattice parameters and by sometimes using available compositional 

information (i.e., measured carbon contents for the overall sample).   

(2)  The amounts of t-ZrO2 and m-ZrO2 in samples were estimated based on the 

integrated peak areas in the XRD patterns.  The procedure is described in more detail in     

Appendix G.   

(3)  The amount of "free” carbon in samples was estimated from the overall carbon 

content in the sample.  The density of the "free" carbon was estimated based on the 

following considerations. Bulk density values are typically reported in the range of ~1.4-

1.6 g/cm3 for relatively coarse "glassy carbon" samples prepared by heat treatment of 

phenolic-based resins at various temperatures.[80,81,82]  However, these values are for 

samples that contained substantial amounts of closed porosity.[80,81,82]  Furata et al. 

[83] reported true (solid) densities for carbons derived from phenolic resins by using 

measured d-spacings obtained from X-ray diffraction analysis.  The density values 
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increased gradually in the range of 2.12 - 2.26 g/cm3 as the heat treatment temperature 

increased from 1000oC to 3000oC. This was due to increasing crystallinity of the carbons 

with increasing heat treatment temperature.  The highest density value (i.e., 2.26 g/cm3) is 

the true density for well-crystallized graphite.  Density values in the range of 1.9-2.1 

g/cm3 have been reported for submicrometer vapor-grown carbon fibers.[84,85]  The 

higher values in the aforementioned density range were associated with fibers which had 

a higher degree of graphitization.   

The "free" carbon regions in the "carbon-rich" CTR samples in this study are believed to 

be have fine-scale dimensions (i.e., <0.1 µm).  (This is suggested because the sizes of the 

ZrC primary particle for most CTR samples were roughly on the order of ~0.1 µm.)  

Therefore, the carbon regions in the CTR samples are not expected to have any 

significant amount of closed porosity.  Hence, it was assumed that a true (solid) density 

for carbon should be used in calculating the overall solid density of the ZrPM material. 

The carbon true density was expected to be considerably less than the value for graphite 

(2.26 g/cm3) because the carbon present in the samples in this study was not well-

crystallized.  This conclusion was reached because well-defined peaks for graphite were 

not observed in any of the XRD patterns.  (In addition, it is also known from the literature 

[refs] that carbons derived from phenolic resins usually do not shown extensive 

graphitization at the temperatures used in this study.)  Therefore, considering the glassy 

nature of the carbon in this study, it was decided that a value of 2 g/cm3 would be used as 

a rough estimate for the carbon true density.  The same value was used for all samples 

regardless of the heat treatment temperature. 
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4.3.2.4  Polishing 

Some sintered samples were polished in order to observe the microstructure under 

SEM. A hollow aluminum cylinder (2.5 mm diameter and 15 mm high) was placed on a 

flat glass piece. The sintered sample was then centrally placed inside the aluminum 

cylinder.  Quickmount® resin (Buehler Ltd., Lake Bluff, IL) solution was then poured 

into the cylinder and was allowed to cure for ~30 min. The mounted sample was 

separated from the aluminum cylinder. The surface of the mounted sample was ground 

(by the same method described in section 4.2.3.1.1.2) in order to obtain a flat surface that 

would subsequently be used for polishing. The mounted sample was then polished (~3 – 

4 days) with a 6 µm diamond suspension (Metadi® Diamond Suspension, Buehler Ltd., 

Lake Bluff, IL) using a vibratory polisher (Vibromet® I, Beuhler Ltd., Lake Bluff, IL).  

 

 

 

 

 

 

 

 

 

 

 

 



 172 

CHAPTER V 

RESULTS AND DISCUSSION  

 
5.1 Solution-Based Synthesis of Zirconium Carbide 

In this section, the effects of various solution synthesis variables on the C:Zr 

molar ratio and other characteristics of pyrolyzed powder are described.  

 

5.1.1 Processing-Related Observations for Synthesized Batches  

Table 5.1 gives processing-related qualitative observations, measured yields upon 

pyrolysis, and calculated C/Zr molar ratios (based on oxidation weight loss 

measurements) for all ZrPM batches.  The table lists qualitative observations concerning 

the following:  the occurrence of precipitation during processing of solutions, the color of 

the solution-processed powder after oven drying, the homogeneity of the oven-dried 

powders, and the occurrence of melting during pyrolysis.   

 The color of the dried powder for almost all batches ranged from light yellow to 

dark brown.  It is not known why a few batches (ZrPM-13 and ZrPM-24b) showed some 

different colors (i.e., other than yellow/brown) after drying.   The batches had similar 

color after the final concentration step, so the color differences in the dried powders were 

caused by the drying process.  The variations in color may have been related to small 

differences in the oven temperature, differences in sample and flask sizes, differences in 

phase composition of the batches, etc.  It is speculated (with no supporting evidence) that 

the darker colors (more brown) may indicate that some very early stage decomposition 

reactions had been initiated in the precursors for some batches.    
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 The term "precipitation" was used when precipitates were observed throughout 

the solution.  As a result, the solution was no longer transparent and, instead, became 

hazy.  (In some cases, settling of particles was observed if solutions were allowed to 

stand (without mixing) for an extended period.   This observation was made on a few 

batches in which processing was discontinued because the precipitation was very 

extensive.)  The precipitation that occurred during the acacH addition is referred to as 

"Type-1."  The precipitation that occurred during cooling of the solution after the acacH 

refluxing step is referred to as "Type-2."  The precipitation that occurred during the initial 

concentration after the refluxing step is referred to as "Type-3."  (Unless the processing 

was discontinued due to extensive precipitation, the Types 1-3 precipitation were 

reversed (i.e., the precipitates re-dissolved) when one of the subsequent processing steps 

(ethanol, acid, or water additions) was made.)  The precipitation that occurred after the 

water addition is referred to as "Type-4."  The precipitation that occurred during the final 

concentration is referred to as "Type-5." The author was unable to identify any 

relationships between the occurrence of a type of precipitation and any of the solution 

processing variables.  The product after the final concentration step had the appearance of 

a highly viscous liquid or a more solid-like gel.   

 There were two types of inhomogeneity observed in some of the oven-dried 

batches:  (1) Two or more colors could be observed throughout the dried powder.  This 

type of inhomogeneity is referred to as "inhomogeneous-1."  This type of inhomogeneity 

was only developed in some batches after the drying step.  (The material obtained after 

the final concentration step was homogeneous in color for all batches.)  Some batches 

that were directly concentrated after the acacH-refluxing step (i.e., without any acid 
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addition, water addition, or aging steps) exhibited "inhomogeneous-1" characteristics.   

(2) Partial melting was observed in some samples during the oven drying step (at 120oC) 

and, as a result, the dried material was an inhomogeneous mixture of powder and solid 

chunks of "melted material."  This type of inhomogeneity is referred to as 

"inhomogeneous-2."  Batches with high acacH/Zr molar ratio (i.e., >6) exhibited 

"inhomogeneous-2" characteristics. 

   The term "melting" refers to samples that melted extensively during pyrolysis in 

a flowing argon atmosphere.  The samples that melted were essentially one solid mass 

and did not retain the characteristics of a powder after pyrolysis. The term "slight 

melting" refers to samples in which some sharp edges of the powders became rounded or 

formed a bead-like shape during pyrolysis.  However, the overall sample retained the 

characteristics of a powder.  Melting was usually observed in batches which were directly 

concentrated after the acacH refluxing step and in batches that had high acacH/Zr molar 

ratio (i.e., >6). 
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5.1.2 Effect of Water Amount on Powder Characteristics 

The effect of the concentration of water on powder characteristics (especially 

C/Zr molar ratio) was investigated. Table 5.2 shows the synthesis conditions for samples 

in which the water concentration was varied, but most other processing conditions 

remained constant.  

The extent of hydrolysis in the modified zirconium precursor was reduced with 

lower amount of water. Thus, the samples with lower water/Zr molar ratio gave higher 

C/Zr molar ratio after pyrolysis. However, there tended to be more processing problems 

(e.g., inhomogeneity, precipitation, melting) with samples prepared with lower water/Zr 

molar ratios. Some samples with lower water ratio tend to form inhomogeneous solutions 

during drying (see Table 5.1). For example, after drying at 120oC, ZrPM-77 was blackish 

yellow in color and inhomogeneous, while ZrPM-78 was light yellow in color and 

homogeneous. For batches ZrPM-51 and 52, there was some precipitation observed 

during concentration (see Table 5.1). In addition, melting was also observed in batch 

ZrPM-51 during drying (see Table 5.1). No precipitation or melting was observed in the 

batch (ZrPM-53) with the highest water concentration. 

Based on the above observations, it was concluded that all subsequent batches 

(after batch ZrPM-78) would be prepared using an H2O/Zr molar ratio of 24. Although, 

higher water concentrations produced batches with lower C/Zr molar ratios, it was 

decided that it was more important to maintain good batch homogeneity and avoid 

precipitation and/or melting during processing. The C/Zr molar ratio was instead 

controlled by making changes in other synthesis variables. 
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Batch 
Number 

AcacH/Zr 
Molar 
Ratio 

Reflux 
Temp. 
(oC) 

Carbon 
Source/Zr 

Molar Ratio 

Acid/Zr 
Molar Ratio 

pH* H2O/Zr 
Molar 
Ratio 

C/Zr+ 

Molar 
Ratio 

ZrPM-51 4 275 0 0.002 5.9   8 2.7 

ZrPM-52 4 275 0 0.002 5.9 16 2.4 

ZrPM-53 4 275 0 0.002 5.9 24 1.8 

        

ZrPM-74 3 195 0 0.200 4.6   8 2.6 

ZrPM-65 3 195 0 0.200 5.5 24 2.1 

        

ZrPM-73 3 195 0 0.271 4.6 16 2.3 

ZrPM-67 3 195 0 0.271 4.4 24 2.3 

        

ZrPM-77 3 195 0 0.421 3.6 12 2.6 

ZrPM-78 3 195 0 0.421 3.7 24 2.3 

 
 * pH of the solution was measured after acid addition step during processing. 
+ Estimated from the “pyrolysis furnace” method. 

 

 

5.1.3 Effect of Acid Amount on Powder Characteristics 

The effect of the concentration of acid on powder characteristics (especially C/Zr 

molar ratio) was investigated. Table 5.3 shows the synthesis conditions for samples in 

which the acid concentration was varied, but most other processing conditions remained 

constant. 

 

 

Table 5.2 Composition of batches synthesized with varying H2O/Zr molar ratio. 
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Batch 
Number 

AcacH/Zr 
Molar 
Ratio 

Reflux 
Temp. 
(oC) 

Carbon 
Source/Zr 

Molar Ratio 

H2O/Zr 
Molar Ratio 

pH* Acid/Zr 
Molar 
Ratio 

C/Zr+  
Molar 
Ratio 

ZrPM-66 3 195 0 24 7.0 0.12 1.7 
 

ZrPM-65 3 195 0 24 5.5 0.20 2.1 
 

ZrPM-67 3 195 0 24 4.4 0.27 2.3 
 

ZrPM-70 3 195 0 24 4.1 0.35 2.4 
 

ZrPM-75 3 195 0 24 3.8 0.42 2.4 
 

 
* pH of the solution was measured after acid addition step during processing. 
+ Estimated from the “pyrolysis furnace” method. 
 

 

Figure 5.1 shows the effect of acid/Zr molar ratio on the C/Zr molar ratio in the 

pyrolyzed powders. The C/Zr molar ratio increased from 1.65 to 2.4 as the acid/Zr molar 

ratio increased from 0.12 to 0.42. The C/Zr molar ratios listed in Table 5.3 (and plotted in 

Figure 5.1) are average values determined from multiple oxidation heat treatments using 

the methods described in section 4.1.4. There was considerable scatter in the data for 

individual determinations of the C/Zr molar ratio. This is illustrated in Figure 5.2.a for 

measurements carried out using both the “in-situ TGA method” and the “ex-situ pyrolysis 

furnace” method. Figure 5.2.b shows a plot of the average values (from the individual 

data points in Figure 5.2.a) for both measurement methods. The average values from the 

“pyrolysis furnace” method were usually higher than those obtained from TGA furnace.   

Table 5.3     Composition of batches synthesized with varying acid/Zr molar ratio. 
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Table 5.3 and Figure 5.1 show that the maximum C/Zr molar ratio (i.e., 2.4) was 

well below the desired molar ratio of 3. Hence, it was concluded that other synthesis 

variables would need to be investigated to increase the C/Zr molar ratio. 

 

5.1.4 Effect of Acetylacetone (acacH) Amount on Powder Characteristics 

The effect of the concentration of acacH on powder characteristics (especially 

C/Zr molar ratio) was investigated. Table 5.4 shows the synthesis conditions for samples 

in which the acacH concentration was varied. The water/Zr molar ratio was the same for 

these batches, but the acacH reflux temperature and acid/Zr molar ratio were not kept 

constant. 

Table 5.4 shows that there was a trend toward higher C/Zr molar ratios (in the 

pyrolyzed powders) for samples prepared with higher acacH/Zr molar ratios during 

synthesis.  (It is not known why the C/Zr molar ratio was so high (5.1) for the sample with 

an acacH/Zr molar ratio of 8.)  However, the samples prepared with higher acacH/Zr molar 

ratio melted upon pyrolysis.  This was considered undesirable in terms of the ultimate 

objective of producing a highly-sinterable ZrC-based powder.  (The concern was that using 

a material which had melted during pyrolysis would eventually result in a highly 

aggregated powder after the carbothermal reduction reaction.)   
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Figure 5.1 Plot of C/Zr molar ratio vs. HNO3/Zr molar ratio for samples 
pyrolyzed at 1100oC. 



 188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 Plots of C/Zr molar ratio vs. HNO3/Zr molar ratio for samples 

pyrolyzed at 1100oC in the pyrolysis furnace and the TGA furnace:  a) 
data for individual runs for each sample and b) average values for each 
sample. 
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Batch 
Number 

Reflux 
Temp. 
(oC) 

Acid/Zr 
Molar 
Ratio 

pH* H2O/Zr 
Molar 
Ratio 

AcacH/Zr 
Molar 
Ratio 

C/Zr+ 
Molar 
Ratio 

Pyrolysis 

ZrPM-67 195 0.27 4.5 24   3 2.3 Did not melt 
 

ZrPM-47 225 0.23 5.9 24   6 2.6 Melted 
 

ZrPM-38 186 0.08 5.9 24   8 5.1 Melted 
 

ZrPM-31 125 0.51 4.5 24 24 3.0 Melted 
 

ZrPM-32 170 0.47 4.5 24 50 3.0 Melted 
 

 
* pH of the solution was measured after acid addition step during processing. 
+ Estimated from the “pyrolysis furnace” method. 
 

 

 Melting always occurred in samples prepared with acacH/Zr molar ratios >6, 

regardless of the concentrations of the other components.  Melting also occurred in some 

samples prepared with a acacH/Zr molar ratio of 4. For example, as discussed in section 

5.1.1, melting occurred during drying in samples with lower H2O/Zr molar ratio. In 

contrast, melting did not occur in some samples with acacH/Zr molar ratio of 4 if the 

acid/Zr molar ratio was in the range of 0.22 to 0.36 and H2O/Zr molar ratio was 24, as in 

batches ZrPM-39, ZrPM-40, ZrPM-45, and ZrPM-72. Nevertheless, to ensure that melting 

was avoided, all batches produced after batch ZrPM-56 (except for batch ZrPM-72) were 

produced using an acacH/Zr molar ratio of 3. 

 

Table 5.4    Composition of various batches synthesized with varying amount of 
acacH/Zr molar ratio. 
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5.1.5 Zirconium Tetra-Pentanedionate (ZTP) 

Experiments were carried out with ZTP for two reasons:  (1) The overall powder 

preparation process would be simplified by using ZTP because the steps associated with 

acacH-refluxing would not be necessary.  (2) It might be possible to obtain high C/Zr 

ratios (i.e., ≥3) without using an external carbon source.    

 Figure 5.3 shows a thermogravimetric analysis (TGA) plot of percentage residual 

weight vs. temperature for an as-received ZTP powder sample.  The sample was heated at 

2oC/min to 100oC and 1oC/min to 1050oC with a hold of 2 h at the maximum temperature.  

Most of the decomposition was completed by ~300oC, although continued small weight 

losses were observed throughout the rest of the heat treatment.  The final yield was 41.1 

wt%.  The C/Zr molar ratio in the pyrolyzed material was 5.8.  (This was determined via 

the TGA oxidation method discussed in section 4.2.1.)   This high value for the C/Zr molar 

ratio provided support for one of rationales listed above for using ZTP, i.e., it might be 

possible to prepare near-stoichiometric ZrC batches without using an external carbon 

source.   

 Table 5.5 shows that it was possible to produce pyrolyzed powders with C/Zr ratios 

>3.  As expected, a high value was obtained (5.2) for a batch (ZTP-H4) that was processed 

without using a hydrolysis step (i.e., no acid or water was added).  In addition, C/Zr ratios 

near or greater than 3 were obtained in batches (ZTP-H5 and ZTP-H9) prepared with 

relatively low H2O/Zr molar ratio (i.e., 2).  As expected, most batches prepared with 

relatively high H2O/Zr molar ratios (i.e., 16-24) resulted in pyrolyzed material with lower 

C/Zr molar ratios (i.e., usually ≤3).  However, the pyrolyzed ZTP-H6 sample unexpectedly 
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showed a C/Zr molar of 4.6. The reason for this high value is not known, but it is believed 

that the result is due to some significant experimental error. 

 Table 5.5 shows that all the batches prepared with ZTP melted during pyrolysis.  

This observation was consistent with the results discussed in section 5.1.4 in which melting 

was observed during pyrolysis for samples prepared with relatively high acacH/Zr molar 

ratios (i.e., ≥6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Plot of weight loss vs. temperature for an as-received ZTP powder 
sample. 
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5.1.6 Effect of Glycerol Amount on Powder Characteristics 

The effect of the concentration of glycerol on powder characteristics (especially 

C/Zr molar ratio) was investigated. Table 5.6 shows the synthesis conditions for samples 

in which the glycerol concentration was varied, but most other processing conditions 

remained constant. Table 5.6 shows that the C/Zr molar ratio in the pyrolyzed samples 

increased with increasing amount of glycerol.  The C/Zr molar ratio increased from ~2.3 

to ~3.5 as the glycerol/Zr molar ratio increased from 0 to 0.63. The C/Zr molar ratios 

listed in Table 5.6 (and plotted in Figure 5.4) are average values determined from 

multiple oxidation heat treatments using the methods described in section 4.1.4. There 

was considerable scatter in the data for individual determinations of the C/Zr molar ratio. 

This is illustrated in Figure 5.5.a for measurements carried out using both the “in-situ 

TGA method” and the “ex-situ pyrolysis furnace” method. Figure 5.5.b shows a plot of 

average values (from the individual data points in Figure 5.5.a) for both measurement 

methods. The average values from the “pyrolysis furnace” method were usually higher 

than those obtained from TGA furnace.   

Experiments were also carried out to determine if the C/Zr molar ratio was affected 

by the order of addition of the components during synthesis.  In one case, the glycerol was 

added just before the acacH refluxing step.  In the other case, glycerol was added after the 

water addition (which was used for hydrolysis/condensation), but prior to the 50oC aging 

heat treatment.  Table 5.7 shows the results for two different comparison experiments.  It is 

evident that the order of addition of the glycerol did not have any significant effect on the 

C/Zr molar ratio.   
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Batch 
Number 

AcacH/Zr 
Molar 
Ratio 

Reflux 
Temp. 
(oC) 

Acid/Zr 
Molar Ratio 

pH* H2O/Zr 
Molar 
Ratio 

Glycerol/
Zr Molar 

Ratio 

C/Zr+ 
Molar 
Ratio 

ZrPM-67 3 195 0.27 4.4 24 0.00 
 

2.3 

ZrPM-85 3 195 0.27 5.2 24 0.17 
 

2.8 

ZrPM-83 3 195 0.27 5.4 24 0.34 
 

3.2 

ZrPM-79 3 195 0.27 5.8 24 0.63 
 

3.5 

 
* pH of the solution was measured after acid addition step during processing. 
+ Estimated from the “pyrolysis furnace” method. 
 

 

Figure 5.4 shows a plot of the C/Zr molar ratio in the pyrolyzed samples vs. the 

glycerol/Zr molar ratio used during synthesis.  The plotted C/Zr molar ratios for the 

samples with glycerol/Zr molar ratios of 0.34 and 0.63 were the average values obtained 

from the two samples of each composition that are listed in Table 5.7.  It is evident from 

Figure 5.4 (and from Tables 5.6 and 5.7) that the C/Zr molar ratio increased with increasing 

amount of glycerol used during synthesis.  By using an external carbon source, it was 

possible to achieve (or exceed) the desired C/Zr ratio of 3. 

 

 

 

 

 

 

Table 5.6     Composition of batches synthesized with varying glycerol/Zr molar ratio. 
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Sample Name Glycerol or Resin/Zr 
molar ratio 

C/Zr molar 
ratio 

 

Glycerol added before 

ZrPM-84 0.34 3.23 AcacH Reflux 
 

ZrPM-83 0.34 3.23 50oC heat treatment 
 

    
ZrPM-80 0.63 3.44  AcacH Reflux 

 
ZrPM-79 0.63 3.48 50oC heat treatment 
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Figure 5.4    Plot of C/Zr molar ratio vs. glycerol(C3H8O3)/Zr molar ratio for 
samples pyrolyzed at 1100oC. 

Table 5.7     Composition of batches synthesized with the glycerol addition made at 
different stages of processing. 
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Figure 5.5 Plots of C/Zr molar ratio vs. C3H8O3/Zr molar ratio for samples 

pyrolyzed at 1100oC in the pyrolysis furnace and the TGA furnace: 
a) data for individual runs for each sample and  b) average values 
for each sample. 
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5.1.7 Effect of Hydrolysis/Condensation Reactions on Pyrolysis Yield 

Figure 5.6 shows a thermogravimetric analysis (TGA) plot of residual weight vs. 

temperature for sample ZrPM-1a heat treated at 1100oC for 1 h. This sample was 

prepared by concentrating an acacH-refluxed (103oC, 1 h) solution. The acacH/Zr molar 

ratio was 2. The solution had no acid or water additions, so essentially no 

hydrolysis/condensation reactions would have occurred during processing. The sample 

was then dried at 120oC for 3 h. Figure 5.7 shows the thermogravimetric analysis (TGA) 

plot of residual weight vs. temperature for sample ZrPM-1b heat treated at 1100oC for     

1 h. The initial processing through acacH-refluxing and concentration were same as for 

the ZrPM-1a sample. After concentration, the precipitate was processed according to the 

method described in section 4.1.2.2.2 using an acid/Zr molar ratio of 5.3 and a H2O/Zr 

molar ratio of 24. The solution was then concentrated and material was dried at 120oC for 

3 h. (See Tables 4.3 and 4.5 for other information concerning the synthesis of batches 

ZrPM-1a and 1b.) 

The yields after the 1100oC (1 h) treatment were ~49 wt% and ~59 wt% for the 

ZrPM-1a and ZrPM-1b samples, respectively. Thus, it was evident that 

hydrolysis/condensation reactions during synthesis were useful in giving increased yield 

in the pyrolyzed product. 
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Figure 5.6 Plot of weight loss vs. temperature for ZrPM-1a sample dried at 
120oC for 3 h. 



 199 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEMPERATURE  (oC)
0 200 400 600 800 1000 1200

W
EI

G
H

T 
(%

)

40

50

60

70

80

90

100

ARGON

Figure 5.7 Plot of weight loss vs. temperature for ZrPM-1b sample dried at 
120oC for 3 h. 
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5.2    Effect of Heat Treatment Temperature on Phase Development and Powder 

Characteristics for Two Batches with Different C/Zr Molar Ratios 

5.2.1 ZrPM-45 

5.2.1.1  Synthesis 

The synthesis procedure for ZrPM-45 is given in Appendix B.  

5.2.1.2  Low Temperature Heat Treatments (≤1100oC) 

Figure 5.8 shows a thermogravimetric analysis (TGA) plot of residual weight vs. 

temperature for a ZrPM-45 sample (initially dried at 120oC, 3 h) heat treated at 1100oC 

for 1 h. The pyrolytic decomposition of the mixed precursor started around ~180oC and 

was mostly completed by ~550oC, although small weight losses were observed 

throughout the rest of the heat treatment.  There was also a small weight loss of ~0.4% 

observed during the 1 h hold at 1100oC. The final yield was 60.9 wt%. The yields for 

samples heat treated at temperatures in the range of 800-1100oC for 2 h are shown in 

Table 5.8. (The yields were determined by measurement of sample weights before and 

after heat treatment in a tube furnace.)  

 

 
 
 
 

Temperature (oC) Yield (%) 

800 59.5 

1025 60.0 

1100 57.0 

 

Table 5.8 Pyrolysis yield of ZrPM-45 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.8 Plot of weight loss vs. temperature for the as-dried (120oC) ZrPM-
45 material. 
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Table 5.9 shows the carbon content for a sample heat treated at 1025oC for 2 h. 

The measured carbon content of the sample (analyzed by Sherry Laboratories) was 23.3 

wt% which was equivalent to a C/Zr molar ratio of 3.1, i.e., assuming that the pyrolyzed 

material contained only ZrO2 and C. The measured oxygen content of the sample 

(analyzed by Leco Corp.) was 16.3 wt%.  

Suppose the 1025oC materials contained only C and ZrO2. If the measured C 

content of 23.3 wt% is correct, then the calculated amount of oxygen (O) should be 19.9 

wt% (i.e., higher than the measured amount). In contrast, if the measured O content of 

16.3 wt% is correct, then the calculated amount of C should be 37.2 wt% (i.e., higher 

than the measured amount).  These results suggest that the 1025oC material did not 

consist of ZrO2 and C only. This is not an unreasonable conclusion considering that some 

additional weight loss was observed (see Table 5.12) upon heat treatment at higher 

temperature (i.e., 1100oC).  Furthermore, mass spectroscopy analysis of the gas species 

formed during heat treatment of a related ZrO2/C sample (ZrPM-67) showed that 

hydrogen was still being evolved at temperatures above 1000oC.[86] 

 

 

 

Temperature (oC) Carbon Contenta (wt%) Oxygen Contentb (wt%) 

1025 23.3 16.3 

 
a Measured by Sherry Laboratories. 
b Measured by Leco Corp. 

 

 

Table 5.9 Carbon and oxygen contents of a ZrPM-45 sample heat treated at 
1025oC for 2 h. 



 203 

Figure 5.9 shows the XRD patterns for samples heat treated at temperatures in the 

range of 600-1100oC for 2 h. The as-dried powder was X-ray amorphous. The XRD 

pattern for the sample pyrolyzed at 600oC (2 h) showed weak and broad diffraction peaks 

that were due to tetragonal zirconia (t-ZrO2). With further heat treatment at higher 

temperatures (800-1100oC), the only significant change in the XRD patterns were that the 

t-ZrO2 peaks increased in intensity and became sharper. Thus, it was concluded that the 

only crystalline phase formed in these samples was tetragonal zirconia and that the 

carbon present in the samples remained X-ray amorphous for all heat treatment 

conditions. 

Table 5.10 shows the average crystallite sizes (determined by XRD line 

broadening) for the tetragonal ZrO2 for samples heat treated at temperatures in the range 

of 600-1100oC for 2 h. (See Appendix C for details.) The crystallite size increased from 

~3 nm to ~17 nm as the heat treatment temperature increased from 600 to 1100oC. The 

relatively small crystallite sizes indicated that a fine scale of mixing between zirconia and 

carbon was obtained after pyrolysis. 

 

 

 

 

Heat treatment Temperature (oC) Crystallite Size (nm) 

600  3 

800  6 

900 10 

1100 17 

 

Table 5.10 Crystallite sizes for tetragonal ZrO2 in ZrPM-45 samples heat 
treated at various temperatures for 2 h. 
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Figure 5.9 X-ray diffraction patterns for as-dried (120oC) and heat treated (600-

1100oC) ZrPM-45 samples. 
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Table 5.11 shows the specific surface area values of samples heat treated at 

temperatures in the range of 800-1100oC for 2 h. (See Appendix D for details.) The 

values from both the BET and Langmuir models have been reported along with the 

constants C and b and the correlation coefficients (rL). The specific surface area of the 

800oC (2 h) pyrolyzed sample was only ~4 m2/g, even though the sample contained ZrO2 

with very small crystallite sizes (~ 6 nm). It should be noted that the pyrolyzed powder 

consisted of relatively large particles (i.e., mostly larger than 10 µm). (The dried powder 

obtained after solution processing was sieved through a relatively coarse-mesh          

(150-mesh) sieve prior to pyrolysis. The pyrolyzed particle sizes were presumably related 

in some way to the sieve size.) The pyrolyzed particles were essentially large 

agglomerates of the fine zirconia/amorphous carbon mixture. The reasons for the low 

measured specific surface area for the 800oC-pyrolyzed sample might include one or both 

of the following:   (i) The large pyrolyzed particles may have been relatively dense (i.e., 

relatively pore-free), either throughout the entire particle or at the surface.  (ii) The pores 

of the pyrolyzed particles were too fine to be penetrated by nitrogen gas.  

The specific surface area for the 900oC-pyrolyzed sample increased to 149 m2/g. 

Although there was essentially no weight loss observed upon heat treatment from 800oC 

to 900oC (see Table 5.12), the large increase in the specific surface area indicates that 

accessible porosity developed at the higher heat treatment temperatures (i.e., accessible to 

penetration by nitrogen gas). The crystallite size of the t-ZrO2 in the 900oC sample was 

9.5 nm (Table 5.10). Consider the following relationship between specific surface area 

and crystallite size (assuming monosized spheres) : 

ρ.
6

c
SA =      (5-1) 
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where SA is the specific surface area, c is the crystallite size, and ρ is the density (ρ = 

5.95 g/cm3 for t-ZrO2).[87]  The calculated specific surface area for the 900oC sample is 

106.1 m2/g. This calculated value is less than the measured value of ~149 m2/g. However, 

the material did not contain only t-ZrO2 crystallites, but instead was a mixture of 

amorphous carbon and t-ZrO2. The size of the carbon “particles” (or carbon regions) was 

not known. However, the higher measured specific surface area could be attributed to:  

(1) the presence of carbon “particles” between the zirconia crystallites that resulted in 

smaller porosity than expected for zirconia crystallites alone and/or  (2) the presence of 

fine pores within the carbon regions. The specific surface area for the 1100oC-pyrolyzed 

sample increased to 206 m2/g. (The calculated value using equation 5-1 was 60.4 m2/g. 

The crystallite size of the t-ZrO2 (1100oC sample) was 16.7 nm (Table 5.10).) In this 

case, there was some additional weight loss upon heat treatment. The increase in surface 

area (compared to the value for the 900oC sample) indicates that additional porosity 

became accessible during the heat treatment.  

 

 

 

Temperature 
(oC) 

BET 
(m2/g) 

C rL Langmuir 
(m2/g) 

b rL 

800        1.2 4.2 0.9883 4.1 0.87 0.9347 

900 106 -96 0.9981 149 0.012 0.9999 

1100 206 244 0.9995 297 0.027 0.9985 

 

 

Table 5.11 Specific surface areas and other gas adsorption results for ZrPM-45 
samples heat treated at various temperatures for 2 h. 
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Temperature (oC) Weight Loss (wt%) 

800 0.0 

900 0.0 

1025 2.4 

1100 3.3 

 

 

 

5.2.1.3 High Temperature Heat Treatments (>1100oC) 

Figure 5.10 shows the XRD patterns for samples heat treated at temperatures in 

the range of 1100 to 1400oC for 2 h. The initial formation of ZrC was observed in the 

sample that was heat treated at 1200oC (2 h).  The XRD pattern for this sample (Figure 

5.10) also showed that some t-ZrO2 had transformed to monoclinic ZrO2 (m-ZrO2).  ZrC 

became the predominant phase after heat treatment at 1300oC (2 h), although a substantial 

amount of m-ZrO2 and t-ZrO2 were still present.  ZrC was the only crystalline phase 

observed in the samples heat treated for 2 h at 1400oC (Figure 5.10) and at higher 

temperatures (shown in Figure 5.11).  Although the only phase observed in the XRD 

patterns (for samples heat treated at 1400oC or higher) was that of zirconium carbide, 

further characterization results (discussed below) showed that it was not phase pure and 

had some oxygen dissolved in the lattice. 

 

Table 5.12  Weight loss of ZrPM-45 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.10 X-ray diffraction patterns for carbothermally reduced (1100-1400oC) 
ZrPM-45 samples. 
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ZrPM-45 samples. 
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 Table 5.13 shows the carbon (analyzed by Sherry Laboratories) and oxygen 

(analyzed by Leco Corp.) contents for samples heat treated at temperatures in the range 

of 1025 to 1800oC for 2 h. (See Appendix E for details.) (The data for the 1025oC sample 

are the same as shown previously in Table 5.9.) The sample carbothermally reduced at 

1475oC (2 h) had a carbon content of 13.3 wt%.  This carbon content was greater than the 

value of 11.6 wt% that would be expected if the sample was phase-pure stoichiometric 

ZrC.  Hence, it was apparent that the sample retained some free carbon (XRD-

amorphous) after the heat treatment. Table 5.13 also shows that the amount of oxygen in 

1475oC CTR sample was ~3.3 wt%. Since the XRD pattern for samples heat treated at 

temperatures ≥1400oC did not show the presence of ZrO2  phase, it is evident that the 

oxygen present in the samples was dissolved in zirconium carbide lattice. 

Table 5.13 also shows that further heat treatment at 1800oC (2 h) produced a 

sample with carbon concentration of 11.3 wt%. This is very close to the value of 11.6 

wt% for stoichiometric ZrC  (i.e., the values are the same within experimental error of the 

measurement for the 1800oC sample.) The oxygen content of the sample also reduced to a 

very low value of 0.1 wt%.  The decrease in carbon and oxygen contents for the 

1800oC sample are consistent with the weight losses observed upon heat treatment above 

1475oC (see Table 5.14). Figure 5.12 shows a plot of weight loss vs. heat treatment 

temperature (in the range of 900-1800oC) using the data in Tables 5.12 and 5.14. Figure 

5.12 shows that there was still a significant weight loss (~7 wt%; see Table 5.14) upon 

heat treatment from 1400oC to 1800oC, even though samples heat treated at (or above) 

this temperature showed no residual ZrO2 in the XRD patterns  (see Figure 5.10). 

(Almost all of this weight loss occurred between 1400oC and 1600oC.) The weight loss 
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(Figure 5.12) and the decrease in carbon and oxygen contents (Table 5.13) upon heat 

treatment to 1800oC are attributed to a carbothermal reduction reaction in which the 

reactants were zirconium oxycarbide and free carbon: 

ZrOyC(1+y-x)  +  xC  =  ZrC  +  yCO                                (5-2) 

 

 

Temperature (oC) Carbon Contenta (wt%) Oxygen Contentb (wt%) 

1025 23.3 16.3 

1300  n.d.  n.d. 

1400  n.d.  n.d. 

1475 13.3 3.3 

1800 11.3 0.1 

 
a Measured by Sherry Laboratories. 
b Measured by Leco Corp. 
 

 

 

Temperature (oC) Weight Loss (wt%) 

1200   8.0 

1300 16.8 

1350 22.7 

1400 30.0 

1475 32.1 

1600 36.6 

1800 37.1 

 

Table 5.13 Carbon and oxygen contents of a ZrPM-45 sample heat treated at 
various temperatures for 2 h. 

Table 5.14  Weight loss of ZrPM-45 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.12 Plot of weight loss vs. temperature using the 800oC-pyrolyzed ZrPM-45 
sample as the starting material. 
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 Table 5.15 shows the zirconium carbide lattice parameters for samples heat 

treated at temperatures in the range of 1300oC to 1800oC for 2 h. (See Appendix F for 

details.)  Figure 5.13 shows a plot of lattice parameter vs. heat treatment temperatures for 

above samples. The lattice parameter value for 1300oC CTR sample was 0.4693 nm. This 

value is slightly smaller than some lattice parameter values reported for stoichiometric 

ZrC (see section 2.3[11]). This suggests that a small amount of oxygen had already 

dissolved in the zirconium carbide lattice after the 1300oC heat treatment. The lattice 

parameter value decreased slightly to 0.4691 nm for the CTR samples prepared at 

1400oC. This decrease indicated that either some additional zirconia dissolved in the 

zirconium carbide lattice or that direct formation of an oxycarbide composition (instead 

of stoichiometric ZrC) was more favorable. There was no change in lattice parameter for 

the 1475oC sample. The lattice parameter increased to 0.4696 nm for the 1600oC and 

1800oC samples. The lattice parameter value of 0.4696 nm is close to values reported for 

stoichiometric ZrC.[11]  This increase in lattice parameter value (from 0.4691 to 0.4696 

nm) is consistent with the removal of oxygen from the zirconium carbide lattice by the 

reaction shown in equation 5-2. The increase in lattice parameter from 1475oC to 1600oC 

was also consistent with the weight loss (~5 wt%) observed in Table 5.14 and Figure 

5.10. The weight loss was very small above 1600oC and this was consistent with the lack 

of change in the lattice parameter between 1600oC and 1800oC. Therefore, the results 

indicated that most of the dissolved oxygen had been removed after 1600oC heat 

treatment. 
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Temperature (oC) Lattice Parameter (nm) 

1300 0.4693 

1350 0.4693 

1400 0.4691 

1475 0.4691 

1600 0.4696 

1800 0.4696 

 

 

Figure 5.14 shows the average crystallite sizes for each phase (i.e., ZrC, t-ZrO2, 

and m-ZrO2) as a function of heat treatment temperature. (Data from Tables 5.10 and 

5.16 have been combined for these plots.) The crystallite size increased rapidly with the 

onset of carbothermal reduction reaction at temperatures >1100oC. The crystallite sizes 

for both t-ZrO2 and m-ZrO2 increased from ~35-40 nm at 1200oC to ~110-130 nm at 

1350oC during carbothermal reduction reaction. The crystallite size of ZrC also increased 

from ~40 nm at 1200oC (from onset of carbothermal reduction reaction) to ~120 nm in a 

sample heat treated at 1400oC (which contained no ZrO2 phase). 

 
 
 
 
 
 
 

Table 5.15 Lattice parameters of ZrPM-45 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.13 Plot of lattice parameter vs. temperature for carbothermally reduced 
ZrPM-45 samples. 
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The close correspondence in crystallite size growth of the ZrC and the two ZrO2 

phases was consistent with certain aspects of the reaction mechanism suggested by 

Maitre et al.[11]  in a solid-state carbothermal reduction study carried out using mixtures 

of ZrO2 and C powders.  In particular, they proposed that the transformation occurred by 

the "contracting-volume" (“shrinking-core”) mechanism in which growth of ZrOxCy 

proceeded from the surface to the interior of the ZrO2 particles. 

Figure 5.15 shows an SEM micrograph of a powder that had been carbothermally 

reduced at 1475oC (2 h). Zirconium carbide crystallites with diameters in the range of  

~100-200 nm are observed in the micrograph.  

 

 

 

 

 

 

Crystallite Size (nm) Heat treatment 
Temperature (oC) t-ZrO2 m-ZrO2 ZrC 

1200  30   45   42 

1300  69   91   56 

1350 127 115   96 

1400 - - 115 

1475 - - 127 

 

 

 

Table 5.16 Crystallite sizes for the phases observed by XRD in ZrPM-45 
samples after heat treatment at various temperatures for 2 h. 
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Figure 5.14 Plot of the t-ZrO2, m-ZrO2, and ZrC crystallite sizes (determined from 
XRD line broadening measurements) vs. heat treatment temperature for 
ZrPM-45 samples. 
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500 nm 

Figure 5.15 SEM micrographs of ZrPM-45 powder heat treated at 1475oC for 2 h. 
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Figure 5.16 shows a plot of specific surface area vs. temperature for samples heat 

treated in the range of 800 to 1475oC for 2 h. (Tables 5.11 and 5.17 show the data used to 

plot Figure 5.16.) The specific surface area initially increased with increasing heat 

treatment temperature and reached a maximum value of ~231 m2/g for the 1200oC 

sample. The calculated specific surface area using equation 5-1 would be in the range of  

~22 to ~33 m2/g. This range of specific surface areas was determined by using the 

following crystallite sizes and densities:  30 nm and 5.95 g/cm3 for t-ZrO2, 45 nm and 

5.82 g/cm3 for m-ZrO2[88], and 41.5 nm and  6.6 g/cm3 for ZrC. (See Tables 5.10 and 

5.16 for the crystallite sizes.) As discussed previously, the fact that the measured specific 

surface area is higher than the values calculated from equation 5-1 indicates that fine 

porosity (i.e., finer than the ZrC and ZrO2 crystallite sizes) is present in the sample.  

Figure 5.16 shows that the specific surface area decreased with increasing 

temperature above 1200oC. This indicates that finer pores underwent coarsening and/or 

were eliminated. Based on equation 5-1 and the crystallite sizes in Table 5.16, specific 

surface areas of 8 m2/g and 7 m2/g were calculated for the 1400oC and 1475oC samples. 

The measured values were ~39 m2/g and ~23 m2/g, respectively. XRD patterns (Figure 

5.11) showed that these samples do not have any ZrO2 present. The samples are 

comprised of zirconium carbide (with some dissolved oxygen) and some residual carbon. 

Hence, the higher measured specific surface areas (compared to the calculated values) 

may be attributed to fine pores associated with presence of the residual carbon.  

The specific surface area that was associated with residual “free” carbon in the 

ZrPM-800-1475 sample was estimated. First, the amount of the residual carbon was 

estimated. The Zr content was determined by difference to be 83.4 wt%. (The sample was 
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assumed to contain only Zr, C, and O. The C and O amounts are shown in Table 5.13.) It 

was then assumed that all the oxygen was dissolved in the zirconium carbide lattice and 

that the Zr:C molar ratio in the oxycarbide was 1:1. With these assumptions, the weight 

of “free” carbon was determined to be 2.32 wt%. The next step was to determine the 

portion of measured specific surface area (22.6 m2/g, Table 5.17) that was “contributed” 

by the “free” carbon. This was determined by difference by assuming that the specific 

surface area due to the zirconium oxycarbide was 7 m2/g. (The latter value was calculated 

using the measured crystallite size and equation 5-1, as discussed earlier in this section.) 

Therefore, the specific surface area “contributed” by the “free” carbon (2.32 wt%) was 

14.6 m2/g. Hence, the estimated specific surface area of the carbon phase alone is        

629 m2/g. 

 

 

 

 

 

Temperature 
(oC) 

BET 
(m2/g) 

C rL Langmuir 
(m2/g) 

b rL 

1200 232 232 0.9998 337 0.032 0.9979 

1300 184 208 0.9999 268 0.035 0.9971 

1350 124 127 0.9999 180 0.038 0.9963 

1400   39 100 0.9999   55 0.034 0.9983 

1475   23   65 0.9999      33.8 0.051 0.9950 

 

Table 5.17 Specific surface areas and other gas adsorption results for ZrPM-45 
samples heat treated at various temperatures for 2 h. 
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Figure 5.16 Plot of surface area vs. temperature for pyrolyzed and carbothermally 
reduced ZrPM-45 samples. 
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Figure 5.17 shows the particle size distribution for a sample which was heat 

treated at 1475oC for 2 h and then ground (using the Spex mill) for 10 min. Table 5.18 

shows some statistical data from the particle size distribution data. The mean particle size 

was ~0.1 µm and essentially all the particles were less than 1 µm. It should be noted that 

the mean particle size obtained by the light scattering method was smaller than crystallite 

size determined by XRD line broadening (~127 nm). This discrepancy is even more 

significant if the aggregated portion of the distribution in Figure 5.17 is neglected. (The 

XRD line broadening measurement reflects the crystallite size and would not be affected 

by the presence of aggregates.) The results suggest that there may be a significant error 

associated with the choice of the optical constants that were used to convert the light 

scattering data to a particle size distribution.  (The main error is presumably in the choice 

of the extinction coefficients.) 

 

 

 Diameter (µm) 

Mean 0.09 

Modes* 0.06, 0.19 

D90 0.19 

D50 0.07 

D10 0.05 

Standard Deviation 0.38 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

Table 5.18 Particle size distribution data for the 10 min-milled 1475oC ZrPM-45 
powder sample.  
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 Figure 5.17 Particle size distribution plots for the 10 min-milled 1475oC ZrPM-45 
powder:  cumulative distribution plot (top) and relative frequency plot 
(bottom). 

PARTICLE DIAMETER (µµµµm)

0.1 1 10

FR
EQ

U
EN

C
Y 

(V
O

L%
)

0

5

10

15

20

0.04

PARTICLE DIAMETER (µµµµm)
0.1 1 10

C
UM

M
U

LA
TI

VE
 V

O
LU

M
E 

(%
)

0

20

40

60

80

100

0.04



 224 

5.2.2 ZrPM-59 

5.2.2.1 Synthesis 

The synthesis procedure for ZrPM-59 is given in Appendix B. This batch differed 

from ZrPM-45 in the following ways:  (i) The external carbon source was glycerol for 

ZrPM-59, while it was phenolic resin for ZrPM-45.  (ii) The acacH/Zr molar ratio in ZrPM-

59 was 3, while it was 4 for ZrPM-45.  (iii) The acacH-reflux was done at 195oC (3 h) in 

ZrPM-59, while it was done at 130oC (3 h) for ZrPM-45.  (iv) The acid/Zr molar ratio in 

ZrPM-59 was 0.087, while it was 0.04 in ZrPM-45. 

 

5.2.2.2  Low Temperature Heat Treatments (≤1100oC) 

Figure 5.18 shows a thermogravimetric analysis (TGA) plot of residual weight vs. 

temperature for a ZrPM-59 sample (initially dried at 120oC, 3 h) heat treated at 1100oC 

for 1 h. The pyrolytic decomposition of the mixed precursor started around ~160oC and 

was mostly completed by ~500oC. However, small weight losses were observed 

throughout the rest of the heat-treatment. There was also a small weight loss of ~0.2% 

observed during the 1 h hold at 1100oC. The final yield was 56.5 wt%. The total weight 

loss observed for ZrPM-59 was 4.4 wt% more than that observed for ZrPM-45. The 

yields for samples heat treated at temperatures in the range of 800-1025oC for 2 h are 

shown in Table 5.19. (The yields were determined by measurement of sample weights 

before and after heat treatment in a tube furnace.) The yields are ~3-4 wt% lower than 

those observed in the ZrPM-45 sample (Table 5.8). 
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Figure 5.18 Plot of weight loss vs. temperature for the as-dried (120oC) 
ZrPM-59 material. 
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Temperature (oC) Yield (%) 

800 57 

1025 56 

 

 

The measured carbon content of the sample heat treated at 1025oC (2 h) (analyzed 

by Sherry Laboratories) was 19.4 wt% which was equivalent to a C/Zr molar ratio of 2.5, 

i.e., assuming that the pyrolyzed material contained only ZrO2 and C. 

Figure 5.19 shows the XRD patterns for samples heat treated at temperatures in 

the range of 800-1100oC for 2 h. The as-dried powder was X-ray amorphous. The XRD 

pattern for the sample pyrolyzed at 800oC (2 h) showed weak and broad diffraction peaks 

that were due to tetragonal zirconia (t-ZrO2). The XRD patterns for the samples heat 

treated at 1025oC and 1100oC showed some small peaks due to monoclinic zirconia (m-

ZrO2) in addition to the major peaks due to t-ZrO2. Very weak zirconium carbide (ZrC) 

peaks were observed in the XRD pattern of the 1100oC-pyrolyzed sample. The carbon 

present in the samples remained X-ray amorphous for all heat treatment conditions. 

 

 

 

 

Table 5.19 Pyrolysis yield of ZrPM-59 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.19 X-ray diffraction patterns for heat treated (800-1100oC) ZrPM-59 samples. 
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Table 5.20 shows the average crystallite sizes (determined by XRD line 

broadening) for the t-ZrO2, m-ZrO2, and zirconium carbide for samples heat treated at 

temperatures in the range of 800-1100oC for 2 h. (See Appendix C for details.) The 

crystallite size for t-ZrO2 increased from ~10 nm to ~27 nm as the heat treatment 

temperature increased from 800oC to 1100oC. The relatively small crystallite sizes 

indicated that a fine scale of mixing between zirconia and carbon was obtained after 

pyrolysis.  

 

 

 

Crystallite Size (nm) Heat treatment 
Temperature (oC) t-ZrO2 m-ZrO2 ZrC 

800 10 - - 

1025 20 - - 

1100 27 37 40 

 

 

Table 5.21 shows the specific surface area values of samples heat treated at 800oC 

and 1100oC for 2 h. (See Appendix D for details.) The values from both BET and 

Langmuir models have been reported along with the constants C and b and the correlation 

coefficients (rL). The specific surface area for the 800oC (2 h) pyrolyzed sample was     

~4 m2/g, even though the sample contained ZrO2 with small crystallite sizes (~10 nm). 

The possible reasons for the low specific surface area of the 800oC-pyrolyzed sample are 

the same as discussed for the corresponding ZrPM-45 sample.  

Table 5.20 Crystallite sizes for tetragonal zirconia, monoclinic zirconia, and 
zirconium carbide in ZrPM-59 samples heat treatment at various 
temperatures for 2 h. 
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The specific surface area for the 1025oC (2 h) pyrolyzed sample increased to    

159 m2/g. (There was a slight weight loss observed upon heat treatment from 800oC to 

1025oC (2 h) (Table 5.22).) As discussed in section 5.2.1 for the 900oC ZrPM-45 sample, 

the large increase in the specific surface area indicates that accessible porosity developed 

at the higher heat treatment temperature. The crystallite sizes for the t-ZrO2 in the 1025oC 

and 1100oC samples were 20 and 28 nm, respectively (Table 5.20). The corresponding 

calculated specific surface areas (using equation 5-1) are 50.4 and 36 m2/g, respectively. 

The calculated values are less than the measured values of ~159 and ~186 m2/g, 

respectively. As noted in section 5.2.1.2, this discrepancy is attributed to the presence of 

fine pores that are in some way associated with the amorphous carbon in the samples.  

 

 

 

Temperature 
(oC) 

BET 
(m2/g) 

C rL Langmuir 
(m2/g) 

b rL 

800       4.5    2 0.7734     -108        -3.01     -0.4489 

1025 159 135 0.9997 229 0.028 0.9985 

1100 186 475 0.9998 270 0.031 0.9980 

 

 

 

 

 

 

Table 5.21 Specific surface areas and other gas adsorption results for ZrPM-59 
samples heat treated at various temperatures for 2 h. 
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Temperature (oC) Weight Loss (%) 

800 0.0 

1025 2.4 

 

 

5.2.2.3 High Temperature Heat Treatments (>1100oC) 

Figures 5.20, 5.21 and 5.22 show XRD patterns for samples heat treated at 

temperatures in the range of 1200 to 2000oC for 2 h.  As noted earlier, the initial 

formation of ZrC was observed (Figure 5.19) in a sample that was heat treated at 1100oC 

(2 h).  The ZrC peak intensities increased significantly for the 1200oC sample, but 

tetragonal zirconia and monoclinic zirconia were still the predominant phases (Figure 

5.20).  It is also noted that the monoclinic zirconia peak intensities increased significantly 

compared to the 1100oC sample.  ZrC became the predominant phase in the sample that 

was heat treated at 1300oC (2 h), although Figure 5.20 shows that there was still a 

significant amount of m-ZrO2 and a small amount of t-ZrO2.  The amount of ZrC 

continued to increase and the amount of ZrO2 continued to decrease in the samples as the 

heat treatment temperature increased over the range of 1350oC - 1475oC (Figures 5.20 

and 5.21).  The XRD pattern for the 1475oC sample showed no t-ZrO2 and only a trace 

amount of m-ZrO2 (Figure 5.21).  The sample heat treated at 1600oC had only ZrC in the 

XRD pattern (Figure 5.21). 

  

Table 5.22 Weight loss data of ZrPM-59 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.20 X-ray diffraction patterns for carbothermally reduced (1200-1350oC) 
ZrPM-59 samples. 
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Figure 5.21 X-ray diffraction patterns for carbothermally reduced (1400-

1600oC) ZrPM-59 samples. 
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Figure 5.22 X-ray diffraction patterns for carbothermally reduced (1800-

2000oC) ZrPM-59 samples. 
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The phase evolution for the ZrPM-59 samples was different from that described in 

section 5.2.1 (Figures 5.9 - 5.11) for the ZrPM-45 samples in that zirconia persisted to 

higher temperatures in the former samples.  Recall that the ZrPM-45 samples showed 

only zirconium carbide in the XRD patterns (Figures 5.10 and 5.11) for samples heat 

treated at or above 1400oC.  This difference in phase development is consistent with the 

lower starting carbon content in the ZrPM-59 samples (i.e., a C/Zr molar ratio of 2.5 in 

the 1025oC-pyrolyzed material) compared to the ZrPM-45 samples (i.e., a C/Zr molar 

ratio of 3.1 in the 1025oC-pyrolyzed material).   

 In section 5.2.1.3, it was shown that the ZrPM-45 1400oC and 1475oC samples 

were zirconium oxycarbides, i.e., oxygen was dissolved in the ZrC lattice.  (This was 

proven by elemental analysis.  Lattice parameter measurements were also consistent with 

the formation of zirconium oxycarbide.)  Elemental analysis also showed that a 

zirconium oxycarbide phase had formed in the 1475oC ZrPM-59 sample.  Table 5.23 

shows the carbon concentrations (analyzed by Sherry Laboratories) and the oxygen 

concentrations (analyzed by Leco Corp.) for ZrPM-59 samples heat treated at 

temperatures in the range of 1025 to 2000oC for 2 h.  The sample heat treated at 1475oC 

had an oxygen content of ~4.5 wt%.  Since this sample only showed a trace amount of m-

ZrO2 in the XRD pattern (Figure 5.21), it is apparent that some oxygen must have been 

dissolved in the ZrC lattice.  Oxygen analysis was not carried out on ZrPM-59 samples 

heat treated at temperatures below 1475oC.  However, based on the XRD results for the 

ZrPM-45 sample, it is presumed that zirconium oxycarbide formation also occurred at 

lower temperatures (e.g., at least 1300-1400oC) in the ZrPM-59 samples.  Table 5.23 also 

shows that  the  1475oC  ZrPM-59  sample  had  a  carbon  content  of  9.0 wt%.   This  is  
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Temperature (oC) Carbon Contenta (wt%) Oxygen Contentb (wt%) 

1025 19.4  n.d. 

1300  n.d.  n.d. 

1400  n.d.  n.d. 

1475   9.0 4.50 

1600   9.4  n.d. 

1800   8.9 1.00 

2000  n.d. 0.56 

 
a Measured by Sherry Laboratories. 
b Measured by Leco Corp. 
 

 

considerably smaller than the carbon content in the 1475oC ZrPM-45 samples (13.3 wt%) 

and it is also smaller than the carbon content of 11.6 wt% in phase-pure stoichiometric 

ZrC.  Hence, the 1475oC ZrPM-59 sample had a "carbon-deficient" oxycarbide 

composition, ZrCxOy, in which x is <1.  

 Figure 5.22 shows the XRD patterns for ZrPM-59 samples which were heat 

treated at temperatures in the range of 1800-2000oC.  As in the 1600oC ZrPM-59 sample, 

the only phase present in these samples was zirconium carbide.  However, Figure 5.22 

shows that extensive peak splitting occurred in the XRD patterns for these samples.  This 

is illustrated more clearly in Figures 5.23a and 5.23b which show the portion of each 

XRD pattern from 30-60 degrees (2θ) and 65-95 degrees (2θ), respectively.  The peak 

splitting was apparently caused by reaction of the powder samples with the Graphoil® 

substrates that were used in the  heat treatments.   As noted above,  the ZrPM-59  samples  

Table 5.23 Carbon and oxygen contents for ZrPM-59 samples heat treated at 
various temperatures for 2 h. 
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Figure 5.23a Peak splitting (30-60o) observed in X-ray diffraction patterns for 
carbothermally reduced (1800-2000oC) ZrPM-59 samples. 
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Figure 5.23b Peak splitting (65-95o) observed in X-ray diffraction patterns 

for carbothermally reduced (1800-2000oC) ZrPM-59 samples. 
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have dissolved oxygen in the ZrC lattice at lower temperatures.  At elevated temperatures 

(e.g., >1475oC), the "carbon-deficient" zirconium oxycarbide apparent reacted with the 

carbon (Graphoil®) substrate according to the reaction shown in equation 5-2.  This 

would have resulted in the formation of some stoichiometric (or near-stoichiometric) ZrC 

at the interface between the ZrPM-59 powder and the carbon substrate.  However, in 

regions far away from the powder/substrate interface, there was no carbon source for the 

reaction (equation 5-2) and the powder would have remained carbon-deficient.  It is 

expected that a compositional gradient would have developed from the interface to the 

outer portions of the powder sample.  Experimentally, each heat-treated powder sample 

was mixed (after being collected from the carbon substrate) in order to have a 

homogenized sample for subsequent powder characterization measurements.  Therefore, 

the XRD patterns shown in Figure 5.22 were carried out on powders which had a mixture 

of phases, i.e., stoichiometric ZrC and carbon-deficient zirconium carbide (or carbon-

deficient zirconium oxycarbide).  Hence, peak splitting was observed in the XRD patterns 

because more than one "zirconium carbide" phase was present in each sample.  To 

confirm this explanation, the lattice parameters were calculated using both the "right-

side" peaks and "left-side" peaks in Figure 5.22 for the 1800oC - 1900oC ZrPM-59 

samples.  (See Appendix F for the detailed results.)  The lattice parameters obtained from 

the "left-side" peaks for these samples (1800oC - 2000oC) were all in the range of 0.4693 

– 0.4699 nm (Tables F13, F15, and F17, Appendix F), i.e., close to the values expected 

for stoichiometric ZrC.  In contrast, much lower lattice parameters (in the range of 0.4668 

– 0.4673, Table 5.24) were obtained when the "right-side" peaks were used.  This would 

be expected for a carbon-deficient zirconium carbide, as discussed in section 2.3. This  
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Temperature (oC) Lattice Parameter (nm) 

1300 0.4690 

1350 0.4692 

1400 0.4690 

1475 0.4686 

1600 0.4675 

1800 0.4673 

1900 0.4669 

2000 0.4668 

 

 

overall explanation for the peak splitting was further confirmed by the ZrPM-87 and 

ZrPM-94 results discussed in Appendix F. 

Figure 5.24 shows a plot of weight loss vs. heat treatment temperature (in the 

range of 800-1900oC) for the ZrPM-59 samples using the data in Tables 5.22 and 5.25.  

This figure shows that there was still a significant weight loss (~6 wt%; see Table 5.25) 

upon heat treatment from 1475oC to 1900oC, even though the 1475oC sample had only a 

trace of ZrO2 in the XRD pattern (Figure 5.21).  This is consistent with the previous 

conclusion that carbothermal reduction reactions continue at higher temperatures due to 

the presence of dissolved oxygen in the ZrC lattice.  The removal of oxygen from the 

lattice as a result of carbothermal reduction reactions was confirmed by elemental 

analysis.  Table 5.23 shows that the oxygen concentration decreased to ~1.0 wt% and 

~0.6 wt%  in   the   1800oC  and   2000oC   ZrPM-59   samples,  respectively.    (It  should  

Table 5.24 Lattice parameter values of ZrPM-59 samples heat treated at various 
temperatures for 2 h. 
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Figure 5.24 Plot of weight loss vs. temperature for 800oC-pyrolyzed ZrPM-59 
sample. 
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be noted that these samples were prepared using a “ZrC”-based substrate, instead of a 

carbon (Graphoil®) substrate.)  The residual oxygen concentration in the 1800oC ZrPM-

59 sample was higher than the concentration that was observed in the 1800oC ZrPM-45 

sample (i.e., ~0.1 wt%, Table 5.13).  This indicates that it was more difficult to remove 

oxygen from the zirconium oxycarbide phase when "free" carbon was not present.  Recall 

that the 1475oC ZrPM-45 sample still had ~2.32 wt% “free” carbon that was available to 

react with the dissolved oxygen in the lattice.  The CTR reaction was mostly completed 

by 1600oC in ZrPM-45 samples, as indicated by the weight loss behavior shown in Figure 

5.12 and Table 5.14.  In contrast, the 1475oC ZrPM-59 sample had a higher residual 

oxygen concentration than the 1475oC ZrPM-45 sample, as well as a carbon-deficient 

composition  (Table 5.23).  Therefore,  the  CTR  weight  losses  continued  until    higher 

temperatures.  Figure 5.24  and Table 5.25  show that small weight losses were observed 

in the ZrPM-59 samples at least up through the 1900oC heat treatment.  

 

 

 

Temperature (oC) Weight Loss (%) 

1200   8.0 

1300 16.8 

1350 22.7 

1400 30.0 

1475 32.1 

1600 36.6 

1800 37.1 

1900 38.3 

 

Table 5.25 Weight loss data of ZrPM-59 samples heat treated at various 
temperatures for 2 h. 
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  There may be more than one CTR reaction responsible for the weight losses and 

the removal of oxygen from the ZrPM-59 samples at elevated temperatures (e.g., 

>1475oC).  The reaction shown in equation 5-2 is only possible when free carbon is 

present in the sample.  Table 5.23 shows that free carbon was not present in ZrPM-59 

samples that were heat treated at or above 1475oC.  However, as noted earlier, the 

reaction shown in equation 5-2 could have occurred in ZrPM-59 samples which were 

heat treated on carbon substrates.  In contrast, this reaction would not be expected to 

occur for samples heat treated on ZrC-based substrates.  Therefore, the decrease in 

oxygen concentrations shown in Table 5.23 for the samples heat treated to 1800oC and 

2000oC must be explained by other reactions than the one given by equation 5-2.  Two 

possible CTR reactions are shown in equations 5-3 and 5-4 below: 

ZrOy-2C2(1-x)+y (s)   +   ZrO2 (s)    =    2ZrC1-x (s)   +   yCO (g)   (5-3) 

ZrOyC(1-x)+y (s)     =    ZrC1-x (s)   +   yCO (g)    (5-4) 

The first reaction (equation 5-3) would only be possible to limited extent because free 

zirconia is required.  Hence, this reaction might be possible in the 1475oC ZrPM-59 

sample (or, more likely, in samples at even lower temperatures).  In contrast, the second 

reaction (equation 5-4) could account for weight losses and decreases in oxygen 

concentration upon heat treatment (at higher temperatures) of samples which do not 

contain free zirconia. 

 There is a problem with applying equations 5-3 and 5-4 to the results obtained 

with the ZrPM-59 samples.  According to these reactions, the carbon and oxygen 

concentrations in the sample should both decrease with increasing heat treatment 
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temperature (i.e., as the reaction proceeds to a greater extent).  However, Table 5.23 

shows that there was no significant change in the carbon concentration for ZrPM-59 

samples which were heat treated in the range of 1475-1800oC.  The most likely 

explanation for this observation is that the carbon concentrations are "incorrect" for the 

1600oC and 1800oC samples because those samples were heat treated on a carbon 

substrate.  Hence, there was some reaction between the powder and substrate (according 

to equation 5-2) which removed oxygen from the zirconium oxycarbide, but allowed the 

carbon concentration to be maintained.  (According to equation 5-2, carbon is removed 

during the reaction as part of the volatile CO, but carbon is also added in the process of 

converting the carbon-deficient zirconium oxycarbide reactant to a stoichiometric (or 

near-stoichiometric) ZrC product.)   Another explanation for the essentially constant 

carbon concentrations for the 1475oC, 1600oC, and 1800oC ZrPM-59 samples is that 

oxygen was removed from the zirconium oxycarbide lattice as molecular oxygen 

(equation 5-5) or as a combination of ZrO and CO volatiles (equation 5-6), as shown in 

the reactions below: 

ZrCxOy (s)  =  ZrCx (s)  +  (y/2)O2 (g)      (5-5) 

ZrCxO2y (s)  =  yZrO (g)  +  yCO (g)  +  Zr1-yCx-y (s)    (5-6) 

where x is <1. 

This explanation seems less likely because the vapor pressures of molecular 

oxygen and ZrO vapor are probably rather low at the heat treatment temperatures used in 

this study.[11] 

 Table 5.24 shows the zirconium carbide lattice parameters for ZrPM59 samples 

that were heat treated at temperatures in the range of 1300 to 2000oC for 2 h.  Figure 5.25 
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shows a plot of lattice parameter vs. heat treatment temperatures for these samples.  The 

lattice parameter value for the 1300oC sample was 0.4690 nm.  This value is smaller than 

the lattice parameter values usually reported for stoichiometric ZrC (see section 

2.1[1,2,3,11,23]).   This suggests that either some oxygen had already dissolved in the 

zirconium carbide lattice or that there was direct formation of a zirconium oxycarbide 

phase during the CTR reaction at 1300oC.  The lattice parameter was also slightly smaller 

than that observed in the corresponding ZrPM-45 sample (Table 5.15), so it is possible 

that more oxygen was dissolved in the lattice for the ZrPM-59 sample.  However, there is 

no convincing evidence for this because the lattice parameter values for the 1350oC and 

1400oC ZrPM-59 samples were essentially the same as the value observed for a ZrPM-45 

sample that had been heat treated at 1400oC.    

 The lattice parameter decreased to 0.4686 nm for the 1475oC ZrPM-59 sample.  

One explanation for this decrease is that additional zirconia dissolved in the zirconium 

carbide lattice at the higher heat treatment temperature.  Another explanation is that the 

lattice parameter decreased due to the development of a carbon-deficient composition 

(i.e., ZrC1-x or ZrOyC1-x), as discussed in section 2.3.   There is evidence to support both 

oxygen dissolution and carbon deficiency as the reasons for the decrease in the lattice 

parameter upon heat treatment from 1400oC to 1475oC.  The latter effect is suggested by 

the low carbon content (9.0 wt%) measured in the 1475oC sample (Table 5.23).  The 

former effect is suggested by the decrease in the ZrO2 peak intensity in the XRD patterns 

upon heat treatment from 1400oC to 1475oC (Figure 5.21).  

The lattice parameter decreased from 0.4686 nm to 0.4675 nm upon heat 

treatment from 1475oC to 1600oC.  This decrease may again reflect both effects discussed  
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Figure 5.25 Plot of lattice parameter vs. temperature for carbothermally reduced 
ZrPM-59 samples. 
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above, i.e., increased oxygen dissolution and increased carbon deficiency in the ZrC 

lattice.  The former effect is possible based on the absence of ZrO2 in the XRD pattern in 

the 1600oC sample (Figure 5.22).  In contrast, the latter effect is not supported by the 

carbon analysis results in Table 5.23.   However, it was noted previously that the carbon 

content values for the samples heat treated at higher temperature samples (>1475oC) may 

be inaccurately high because of a reaction between the sample and the Graphoil® 

substrate. 

 The lattice parameter continued to decrease with increasing heat treatment 

temperature, e.g., from 0.4675 nm for the 1600oC sample to 0.4668 nm for the 2000oC 

sample.  Figure 5.24 and Table 5.25  show that weight losses are relatively small in this 

temperature  range.   Table 5.23 shows  that  the  oxygen   concentration  decreased  from     

1.0 wt% for the 1800oC sample to 0.56 wt% for the 2000oC sample.  Figure 5.22 shows 

that there is no free ZrO2 in the samples heat treated in the range of 1600-2000oC.  In 

combination, these results indicate that the decrease in lattice parameter from 1600oC to 

2000oC was due to an increased carbon deficiency in the ZrC lattice.  The only problem 

with this interpretation is that the carbon concentration showed essentially no change for 

the samples heat treated at higher temperatures.  However, as discussed earlier, this is 

probably because a reaction occurred between the sample and the Graphoil® substrate.   

Figure 5.26 shows the average crystallite sizes for each phase (i.e., ZrC, t-ZrO2, 

and m-ZrO2) as a function of heat treatment temperature. (Data from Tables 5.20 and 

5.26 have been combined for these plots.) The crystallite size increased rapidly with the 

onset of carbothermal reduction reaction at temperatures >1100oC. The crystallite sizes of 

both t-ZrO2 and m-ZrO2 increased from ~35-40 nm at 1200oC to ~100-120 nm at  1350oC  
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Figure 5.26 Plot of the t-ZrO2, m-ZrO2, and ZrC crystallite sizes (determined 
from XRD line broadening measurements) vs. heat treatment 
temperature for ZrPM-59 samples. 
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Crystallite Size (nm) Heat treatment 
Temperature (oC) t-ZrO2 m-ZrO2 ZrC 

1200   35   38   42 

1300 106   74   65 

1350 117 103 100 

1400 - 114 128 

1475 - - 140 

 

 

during carbothermal reduction reaction. The ZrC crystallite sizes also increased from  

~40 nm at 1200oC to ~140 nm in the sample heat treated at 1475oC. The crystallite size 

growth of the ZrC and two ZrO2 phases was similar to that observed for ZrPM-45 

samples and was also consistent with certain aspects of the reaction mechanism suggested 

by Maitre et al.,[11] as discussed in section 5.2.1.3. 

 Figure 5.27 shows a plot of specific surface area vs. temperature for samples heat 

treated in the range of 800 to 1475oC for 2 h. Tables 5.21 and 5.27 show the data used to 

plot Figure 5.27. The specific surface area initially increased with increasing heat 

treatment temperature and reached a maximum value of ~219 m2/g for the 1200oC 

sample. The calculated specific surface area using equation 5-1 would be in the range of  

22 to 28 m2/g. This range of specific surface areas was determined using the following 

crystallite sizes and densities:  35.4 nm and 5.95 g/cm3 for t-ZrO2, 35.4 nm and 5.82 

g/cm3 for m-ZrO2, and 41.5 nm and 6.6 g/cm3 for ZrC. (See Tables 5.20 and 5.26 for the 

crystallite sizes.)  As  discussed  in  section 5.2.1.3,  the  fact  that  the  measured  specific  

Table 5.26 Crystallite sizes for the phases observed by XRD in ZrPM-59 
samples after heat treatment at various temperatures for 2 h. 
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Figure 5.27 Plot of specific surface area vs. temperature for pyrolyzed and 
carbothermally reduced ZrPM-59 samples. 
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Temperature 
(oC) 

BET C rL Langmuir b rL 

1200 219 211 0.9999 319 0.035 0.9972 

1300 186 220 0.9999 270 0.033 0.9974 

1350 110 142 0.9999 160 0.037 0.9967 

1400  42 105 0.9999   62 0.041 0.9961 

1475    9   42 0.9997   14 0.062 0.9935 

 

 

 

surface area is higher than the values calculated from equation 5-1 indicates that fine 

porosity (i.e., finer than the ZrC and ZrO2 crystallite sizes) is present in the samples. 

Figure 5.27 shows that the specific surface area decreased with increasing 

temperature above 1200oC. This indicates that finer pores underwent coarsening and/or 

were eliminated. Based on equation 5-1 and the crystallite sizes in Table 5.26, specific 

surface areas in the range of 9 to 14 m2/g and 8 to 10 m2/g were calculated for the 1300oC 

and 1350oC samples, respectively. The measured values were ~186 m2/g and ~110 m2/g, 

respectively. 

Based on equation 5-1 and the crystallite sizes in Table 5.26, specific surface 

areas in the range of 7 to 9 m2/g and 7 m2/g were calculated for the 1400oC and 1475oC 

samples, respectively. The measured values were ~42 m2/g and ~9 m2/g, respectively. 

The measured specific surface area values were closer to the calculated values as the heat 

Table 5.27 Specific surface areas and other gas adsorption results for ZrPM-59 
samples heat treated at various temperatures for 2 h. 
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treatment temperature increased. The decrease in the measured specific surface areas with 

increasing temperature was consistent with the decrease in carbon concentration. As 

noted previously, carbon is believed to be associated with the development of fine pores 

in the heat treated samples.  (The presence of fine pores  would, in turn, be the reason  for 

increased specific surface areas.  The fine pores could be present within the carbon 

regions themselves or in regions between the phases in the carbon/zirconium 

carbide/zirconia sample.)  The good agreement between the measured specific surface 

area (~9 m2/g) and the calculated specific surface (~6.5 m2/g) for the 1475oC ZrPM-59 

sample suggests that there is no free carbon in the sample.  This is consistent with the 

results in Table 5.23 which show that the 1475oC sample has a carbon-deficient 

composition (i.e., compared to stoichiometric ZrC). 

The changes in specific surface area as a function of temperature are similar for 

the ZrPM-45 and ZrPM-59 samples at temperatures ≤1400oC.  The specific surface areas 

are very similar for the two 1400oC samples (i.e., ~39 m2/g and ~42 m2/g for the ZrPM-

45 and ZrPM-59 samples, respectively).  However, the specific surface areas are 

considerably different for the 1475oC samples.  The values are ~23 m2/g and   ~9 m2/g for 

the ZrPM-45 and ZrPM-59 samples, respectively.  This difference is attributed to the 

presence of free carbon in the ZrPM-45 sample.  This conclusion was based on the 

following considerations:  (1) The ZrC crystallite sizes are similar for the two samples, 

i.e., ~127 nm and ~140 nm for the 1475oC ZrPM-45 and ZrPM-59 samples, respectively.  

The calculated specific surface areas using these crystallite sizes and equation 5.1 (and 

assuming a ZrC density of 6.6 g/cm3) are 7.2 m2/g and 6.5 m2/g, respectively.  Therefore, 

the difference in the measured specific surface areas cannot be attributed to the 
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differences in the ZrC crystallite sizes.   (2) The XRD patterns (Figures 5.11 and 5.21) 

show that the 1475oC ZrPM-45 has no free zirconia and the 1475oC ZrPM-59 has only a 

trace of m-ZrO2.  The m-ZrO2 crystallite size was not measured for the 1475oC ZrPM-59 

sample, but the value should be comparable to or slightly greater than the ZrC crystallite 

size based on the data (in Figure 5.26 and Table 5.26) for the 1400oC ZrPM-59 sample.  

Therefore, the difference in the measured specific surface areas cannot be attributed to 

differences in the free zirconia content.  (3) As discussed in section 5.2.1.3, the 1475oC 

ZrPM-45 sample has two phases present, i.e., zirconium oxycarbide and “free” carbon.  

The amount of “free” carbon was estimated with reasonable accuracy because the overall 

carbon and oxygen concentrations in the sample were known.  It was determined that the 

sample had ~2.3 wt% “free” carbon.  In contrast, the 1475oC ZrPM-59 sample probably 

does not have any “free” carbon based on the carbon-deficient composition (i.e., relative 

to stoichiometric ZrC) shown in Table 5.23.  As shown in section 5.2.1.3, the specific 

surface area associated with the “free” carbon phase alone (i.e., a 100% carbon sample) 

was estimated to be ~630 m2/g.  

The particle size distributions for the milled ZrPM-45 and ZrPM-59 samples have 

both similarities and differences, as shown by direct comparison plots of the data in 

Figure 5.28. The ZrPM-59 sample is similar to the ZrPM-45 sample in that a bimodal 

particle size distribution is observed.  The volume fraction of particles in each mode 

differs for the two samples, but size distributions in each mode are similar.  First consider 

the mode associated with the smallest particles (~0.04 - 0.10 µm).  The distribution of 

particle sizes for this mode is extremely similar for the two powders.  As noted earlier, 

the mode for the smaller particles in the distribution represents the primary particles (and  
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 Figure 5.28 Combined particle size distribution plots for the 10 min-milled 1475oC 
ZrPM-59 and 1475oC ZrPM-45 samples: cumulative distribution plot (top) 
and relative frequency plot (bottom). 
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 Diameter (µm) 

Mean 0.10 

Modes* 0.07, 0.17 

D90 0.19 

D50 0.08 

D10 0.05 

Standard Deviation 0.06 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

possibly some very small aggregates of primary particles) which could be dispersed in 

the suspension used for the size measurement.  As expected from the XRD line 

broadening measurements, there are only small differences in the sizes of the primary 

particles for the ZrPM-45 and ZrPM-59 samples.  In contrast, the amount of particles 

associated with the mode for the smaller particles is smaller for the ZrPM-59 sample    

(68 vol%) compared to the ZrPM-45 sample (81 vol%). This indicates that the primary 

particles are more aggregated for the ZrPM-59 sample.  Of course, this is also indicated 

by the fact that the amount of particles associated with the mode for larger particles 

(~0.1-0.3 µm) is 32 vol% for the ZrPM-59 sample and 19 vol% for the ZrPM-45 sample.  

The larger particles are mostly aggregates of primary particles that were not broken down 

Table 5.28 Particle size distribution data for the 10 min-milled 1475oC ZrPM-59 
powder sample.  
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by the milling process.  The question arises as to why there was a difference in the extent 

of aggregation in the two samples.  It is speculated that the reason is associated with the 

higher free carbon content and/or the absence of ZrO2 in the 1475oC ZrPM-45.  It is well-

known that extensive sintering will occur in fine-sized ZrO2 powders at temperatures in 

the range of interest in this study.[87,89]  Hence, the formation of aggregates via neck 

growth between individual crystallites might be promoted in the ZrPM-59 sample by the 

presence of either ZrO2 crystallites and/or oxide-rich surface layers on zirconium 

oxycarbide particles.  In contrast, it is also well-known that high concentrations of free 

carbon will inhibit sintering processes in refractory carbide materials (e.g., SiC, ZrC, 

etc.).[52,90]  Hence, the formation of aggregates via neck growth between individual 

zirconium oxycarbide crystallites might be inhibited in the ZrPM-45 samples by the 

presence of a significant amount of free carbon. 

 

5.3 Effect of CTR Heat Treatment Conditions on Powder Properties 

5.3.1 Batch Size and Powder Packing  

The characteristics (i.e., particle size distribution, surface area, crystallite size, 

phase composition, etc.) of CTR powders depended upon the batch size of the powder 

sample (i.e., amount of powder used for CTR) and how the powder was packed during 

CTR. Powder samples were loaded into containers for the CTR reaction using two 

different "packing" methods. In the first method, powder was loaded into the containers 

and lightly compacted. In the second method, powder was loaded into the containers and 

channels were made in the powder as discussed in Chapter IV section 4.1.5. These two 

types of packing will be referred to as "dense packing" and "loose packing", respectively. 
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The powders were spread over a much larger surface area in case of “loose packing” as 

compared to “dense packing.” 

When a batch with larger size (i.e. ≥2 g) with dense packing was reacted with 

similar conditions as used for a batch with smaller size (i.e. ≤2 g), the yield for the larger 

sample was much higher than that obtained for smaller batch size. This indicated that the 

CTR reaction for the larger sample was less complete. For example, the yield obtained by 

using a 0.4 g ZrPM-59-800-pyrolyzed sample after heat treatment at 1400oC (2 h) was 

~70 wt%, while the yield obtained by using a 2.2 g sample was ~83 wt%. (The gas flow 

rate used during heat treatment was 100 ml/min.)  

The effect of powder packing was investigated using powder batches with 

different sizes. ZrPM-45-800-pyrolyzed samples were heat treated at 1400oC (2 h) using 

batch sizes of 0.4 g and 3.0 g and a "loose packing" arrangement in a Graphoil tray. (The 

gas flow rate used during heat treatment was 100 ml/min.)  The yields for the two 

samples were 66.4 wt% and 68.1 wt%, respectively. The fact that the yields were very 

similar in this case (i.e., compared to the first case described above) indicates the packing 

density was a dominant factor in these experiments. This was further confirmed by heat 

treatment of a 4.5 g sample of ZrPM-45-800 at 1400oC (2 h) using a "dense packing" 

arrangement.  The yield in this case was much higher (87.5 wt%). Figure 5.29 shows the 

XRD patterns for the three 1400oC heat-treated samples. It is evident that a similar extent 

of reaction occurred for the samples with “loose packing” arrangement, while the extent 

of reaction was less for the sample with “dense packing” arrangement.  

Table 5.29 shows similar results were obtained using other batches. Samples with 

different batch sizes and a "loose packing" arrangement were heat treated at 1425oC (2 h) 
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using a gas (argon) flow rate of ~500 ml/min and a heating rate of 5oC/min. The batch 

size had negligible effect on the yield when the loose packing arrangement was used. 

(Appendix G (Figures G29-G30) contains the XRD patterns for the samples listed in 

Table 5.29.)  

 

 

 

 

Sample Amount of Sample 
(g) 

Batch Size Yield (wt%)  

ZrPM-87-800-1-1425-1   0.37 Small 68.32 
ZrPM-87-800-1-1425-2 7.8 Large 68.51 

    
ZrPM-91-800-1-1425-1   0.37 Small 72.76 
ZrPM-91-800-1-1425-4 7.0 Large 71.07 

    
ZrPM-95-800-1-1425-1   0.37 Small 67.48 
ZrPM-95-800-1-1425-2 2.0 Large 67.00 

 

 

 

 

 

 

 

 

 

 

Table 5.29 Yields of various samples heat treated at 1425oC for 2 h using 
different batch sizes. 
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Figure 5.29 XRD patterns for ZrPM-45 samples heat treated at 1400oC using 
“loose packing” and “dense packing” arrangements. 
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 In summary, there is an apparent increase in reaction rate for samples with a "loose 

packing" arrangement and for samples with smaller batch size (i.e., in samples with the 

"dense packing" arrangement). Both of these effects presumably reflect the influence of 

sample size and packing arrangement on the diffusion and removal of CO from the sample 

during CTR.  The ideal CTR reaction is represented by the reaction: 

 

ZrO2 (s) +  3C (s)  =  ZrC (s)  +  2CO (g)   (5-7) 

 

It is evident from LeChatelier's principle that a high CO concentration in the surrounding 

atmosphere would tend to impede the formation of ZrC. The removal of CO from the 

reaction zone will be impeded if the volatiles must travel through porosity with a longer, 

more tortuous path or through pores that have finer diameters.  An increase in sample size 

would increase the diffusion distance that would be required for the CO volatile to be 

removed from the reaction zone. The same thing would be true for the case of the "dense 

packing" arrangement used in this study. It should be noted that the two "packing 

arrangements" probably did not have much difference in the actual powder packing density 

(and the corresponding size and volume fraction of pore within the packed powder).  

Instead, the powder was spread out over a much larger area in the "loose-packing" 

arrangement and this resulted in a much smaller depth of the powder layer.  Hence, the so-

called "packing" effect was probably due mostly to the difference in the length of the egress 

path for the CO. 
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5.3.2 Gas Flow Rate 

The effect of gas flow rate was investigated using samples with different batch 

sizes and using the "loose packing" arrangement. Two different flow rates were used: 100 

ml/min and 500 ml/min. The first experiment was carried out with a gas flow rate of 100 

ml/min using ZrPM-58-dried material with batch sizes of 1 and 20 g. The CTR heat 

treatment was carried at 1300oC for 48 h. As expected, the yield was much higher for the 

larger sample, i.e., 47.4 wt% as compared to 38.4 wt% for smaller sample. Figure 5.30.a 

shows the XRD patterns for the two 1300oC heat-treated samples. It is evident that the 

extent of reaction was less for the larger sample. 

The batch size effect was much smaller when a high gas flow rate was used.  

ZrPM-61-350-800-pyrolyzed material with batch sizes of 0.9 and 19.5 g were heat treated 

at 1300oC for 48 h using a gas flow rate of 500 ml/min. The yields for the two samples 

were 30.8 wt% and 33.5 wt%, respectively. The fact that the yields were very similar in 

this case (i.e., compared to the first experiment described above) indicates that the gas 

flow rate was a dominant factor in these experiments. Figure 5.30.b also shows the XRD 

patterns for the two 1300oC heat-treated samples. It is evident that the extent of reaction 

was similar for the two samples. 

Based on the results in sections 5.3.1 and 5.3.2, the following conditions were 

used to process larger samples (>2 g) starting with batch ZrPM-65:  a loose-packing 

arrangement in a Graphoil tray and a 500 ml/min gas flow rate. 
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Figure 5.30.a XRD patterns for ZrPM-58 samples with different batch sizes that 
were heat treated at 1300oC using a gas flow rate of 100 ml/min. 
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Figure 5.30.b XRD patterns for ZrPM-61 samples with different batch sizes that 
were heat treated at 1300oC using a gas flow rate of 500 ml/min. 
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5.4 Powder Grinding Investigation 

 Table 5.30 shows particle size distribution data for an unmilled ZrPM-90-800-

pyrolyzed powder which had been heat treated at 1475oC for 2 h. The mean diameter was 

~18 µm. Figure 5.31 shows particle size distribution plots for this sample. These plots 

showed that particles as large as 50 µm were present in the sample. Table 5.31 shows 

particle size distribution data after milling the same material for 10 min. The 

corresponding particle size distribution plots are shown in Figure 5.32. The particle size 

distribution for the milled sample had a mean diameter of  ~0.46 µm and all the particles 

were <3 µm. Thus, a significant reduction in particle size was obtained after milling the 

powder for 10 min. Such rapid size reduction suggests that the milling operation was 

primarily breaking down relatively weak powder aggregates. 

Table 5.32 and Figure 5.33 show particle size distribution data for a ZrPM-69-76-

85-800-1400 powder which was milled for 10 min.  (This sample was prepared by first 

mixing together separate 800oC-pyrolyzed samples of ZrPM-69, ZrPM-76, and ZrPM-85 

samples and then heating the mixture at 1400oC for 2 h.)  The mean diameter for this 

sample was ~0.44 µm.   Table 5.33 and Figure 5.34 show particle size distribution data 

for a ZrPM-69-76-85-800-1400 powder which was milled for 20 minutes.  The mean 

diameter for this sample was ~0.37 µm.  Comparison of Table 5.32 vs. Table 5.33 and 

Figure 5.33 vs. 5.34 shows that there was only a limited amount of particle size reduction 

during the additional 10 minutes of milling.  Since longer milling times would be 

expected to contribute more contamination to the powder batch, it was decided that the 

total milling time would 10 minutes for most batches prepared in this study. 
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 Diameter (µm) 

Mean 18.0 

Mode 28.7 

D90 35.7 

D50 16.6 

D10   2.6 

Standard Deviation 12.5 

 

 

 

  

 

 Diameter (µm) 

Mean 0.46 

Modes* 0.07, 0.17, 1.32 

D90 1.38 

D50 0.13 

D10 0.06 

Standard Deviation 0.56 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

 

Table 5.30 Particle size distribution data for the unmilled ZrPM-90-800-1475 powder 
sample.  

Table 5.31 Particle size distribution data for the 10 min-milled ZrPM-90-800-1475 
powder sample.  
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Figure 5.31  Particle size distribution plots for the unmilled ZrPM-90-800-1475 

sample:  cumulative frequency plot (top) and relative frequency plot 
(bottom). 
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Figure 5.32  Particle size distribution plots for the 10 min-milled ZrPM-90-800-
1475 sample:  cumulative frequency plot (top) and relative frequency 
plot (bottom). 
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 Diameter (µm) 

Mean 0.44 

Modes* 0.067, 0.19, 0.47, 1.45 

D90 1.54 

D50 0.08 

D10 0.05 

Standard Deviation 0.61 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

  

 

 Diameter (µm) 

Mean 0.37 

Modes* 0.06, 0.19, 0.47, 1.59 

D90 1.60 

D50 0.07 

D10 0.05 

Standard Deviation 0.59 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

 

Table 5.32 Particle size distribution data for the 10 min-milled ZrPM-69-76-85-800-
1475 powder sample.  

Table 5.33 Particle size distribution data for the 20 min-milled ZrPM-69-76-85-800-
1400 powder sample. 
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 Figure 5.33  Particle size distribution plots for the 10 min-milled ZrPM-69-76-
85-800-1400 sample:  cumulative frequency plot (top) and 
relative frequency plot (bottom). 

PARTICLE DIAMETER (µµµµm)
0.1 1 10

C
UM

M
U

LA
TI

VE
 V

O
LU

M
E 

(%
)

0

20

40

60

80

100

0.04

PARTICLE DIAMETER (µµµµm)
0.1 1 10

FR
EQ

U
EN

C
Y 

(V
O

L%
)

0

5

10

15

20

0.04



 269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34  Particle size distribution plots for the 20 min-milled ZrPM-69-76-
85-800-1400 sample:  cumulative frequency plot (top) and relative 
frequency plot (bottom). 
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Specific Surface Area (m2/g) Sample 

Before Milling After Milling 

ZrPM-45-800-1350-1400 48 46 

ZrPM-61-800-1300-1475 40 45 

ZrPM-99-800-1400 19 17 

 

  

The effect of milling on specific surface area was also studied for some samples. 

Table 5.34 shows the specific surface areas of some CTR samples before and after the 

milling. The specific surface area did not vary significantly before and after the milling 

and differences observed are probably within the range of experimental error. It should be 

noted that the milling operation primarily broke down large porous powder aggregates 

into smaller units (i.e., to smaller aggregates and primary particles). In contrast, milling 

was not expected to change the size of the dense primary particles. Hence, the milling 

operation would not produce any significant change in the solid surface area available 

from the gas adsorption measurements. 

 

5.5    Effect of Powder Characteristics on Powder Compact Density 

Table 5.35 shows the relative densities of dry pressed samples that were prepared from 

various batches.  The estimated true solid densities used to calculate the relative densities 

are  included.   (The densities   were  calculated   with  the   same  type  of    assumptions  

Table 5.34  Specific surface areas of CTR samples before and after 
milling. 
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made in calculating the solid densities for the CTR samples in section 5.6.)   Table 5.35 

includes some information on the CTR processing conditions and some measured powder 

characteristics (pyrolyzed and CTR) of the samples.  (Appendix G gives the complete 

particle size distributions for the samples which have mean diameters listed in Table 

5.35.  XRD patterns for the samples are also given in the same appendix.)  Table 5.35 

also includes similar information for some CTR samples which were not dry pressed, but 

which were prepared from the same ZrPM batch used for the samples that were pressed. 

 It is difficult to draw clear associations between the powder characteristics and the 

compact densities because many different characteristics (C/Zr ratio, phase composition, 

particle size distribution, surface area, etc.) varied simultaneously.  However, the results 

shown in Table 5.35 and Figure 5.35 indicate that the powder specific surface area was 

one of the most important variables affecting the compact relative density.  Although 

there is significant scatter of the data, Figure 5.35 shows that the relative density tends to 

increase as the specific surface area of the powder decreases.    

 The dominant effect of specific surface area on compact density is also shown 

clearly be comparing the results for the ZrPM-61-350-1-1300(48)-2-1300(8)-1 and 

ZrPM-61-350-1-1300(48)-2-1300(8)-1-1475-1 samples.  These two samples had specific 

surface areas of 112 m2/g and 40 m2/g, respectively, and relative densities of 36.3 and 

55.5, respectively.  Other powder properties for the two powders were similar.  For 

example, the XRD patterns were similar for the samples, as shown in Figures F21 and 

F23, respectively.  (The ZrPM-61-350-1-1300(48)-2-1300(8)-1 sample did have a small 

amount of residual ZrO2 and the yield upon heat treatment (from 350oC) was somewhat 

lower (Table 5.35).  This  indicated  that  the reaction  was less complete compared to the  
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Figure 5.35 Plot of specific surface area vs. relative density for various 
ZrC-based samples.  
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ZrPM-61-350-1-1300(48)-2-1300(8)-1-1475-1 sample.  However, the difference in the 

extent of reaction was relatively minor.)  In addition, the particle size distributions for 

these samples were very similar, as shown in Figures F20 and F22, respectively.  The size 

distribution measurements are presumably dominated by the sizes of the ZrC primary 

particles and aggregates.  These sizes apparently did not change substantially for the 

different CTR conditions used for these two samples.  In contrast, the rapid decrease in 

specific surface area for the ZrPM-61-350-1-1300(48)-2-1300(8)-1-1475-1 sample 

presumably reflects the coarsening and/or elimination of small, accessible pores 

associated with the carbon regions.  (This effect was discussed previously in section 

5.2.1.3 for the ZrPM-45 samples.) 

 The specific mechanism(s) responsible for the higher relative density in the 

ZrPM-61-350-1-1300(48)-2-1300(8)-1-1475-1 sample are not entirely clear.  Two 

possible reasons include the following:  (1) Lower specific surface area powders have 

less tendency to form agglomerates compared to higher specific surface area powders.  

Hence, there may have been improved powder flow and/or reduced agglomerate 

formation in the ZrPM-61-350-1-1300(48)-2-1300(8)-1-1475-1sample during the various 

processing steps that were used to form the compacts (i.e., binder additions, powder 

screening, die filling, and pressing).  (2) Some porosity associated with the carbon 

regions might have been eliminated by the higher heat treatment temperature in the 

ZrPM-61-350-1-1300(48)-2-1300(8)-1-1475-1 sample. 
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5.6 Sintering Behavior 

5.6.1 Preliminary Sintering Experiments 

Some preliminary sintering experiments were carried out to develop the procedure 

that would be used in the sintering study. These experiments were called “preliminary 

sintering experiments” primarily because certain procedures were being studied, such as 

the amount of binders added to the powder, the method of mixing the binder and the 

powder, the dry pressing conditions (e.g., maximum pressure used), the binder burnout 

conditions, etc. The amount of powders processed for these experiments was enough to 

prepare only 1-2 pellets. Thus, detailed sintering studies could not be done on these 

samples. 

 

5.6.1.1 ZrPM-45 

5.6.1.1.1 Processing Before Sintering 
 

Dried powder was sieved through a 150-mesh screen and pyrolyzed at 800oC for 

2 h. The C/Zr molar ratio of a sample pyrolyzed at 1025oC for 2 h was 3.1. (This was 

estimated from the carbon content of 23.3 wt% measured by Sherry Laboratories.) A 

pyrolyzed sample (~3 g) was heat treated first at 1350oC for 2 h and then at 1400oC (2 h) 

in a flowing argon (~100 ml/min) atmosphere in the 3-zone lindberg furnace (Model 

54259). The specific surface area of the CTR powder was 48 m2/g. (See Appendix D for 

details.)  XRD (Figure 5.36) showed only zirconium carbide in the pattern. However, it is 

expected from the results in section 5.3 that the sample has some dissolved oxygen and 

free (amorphous) carbon. Table 5.36 shows some particle size  distribution data for a  40- 
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 Diameter (µm) 
Mean 0.16 

Modes* 0.06, 0.19, 1.92 
D90 0.20 
D50 0.07 
D10 0.05 

Standard Deviation 0.38 
 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

Table 5.36 Particle size distribution data for the 40 min-milled ZrPM-45-800-1350-
1400 powder sample.  

Figure 5.36 X-ray diffraction pattern for a ZrPM-45-800 pyrolyzed sample that was heat 
treated at 1350oC (2 h) and then at 1400oC (2 h). 
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Figure 5.37 Particle size distribution plots for the 40 min-milled ZrPM-45-800-

1350-1400 powder sample:  cumulative frequency plot (top) and 
relative frequency plot (bottom). 
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min milled sample. The specific surface area of the milled powder was 46 m2/g. Particle 

size distribution plots for the milled sample are shown in Figure 5.37. 

In section 5.2.1.3, it was noted that samples prepared at temperatures in the range 

of 1400-1475oC consisted of zirconium carbide (with dissolved oxygen) and “free” 

carbon. In the present case, it was assumed that the overall carbon and oxygen 

concentrations (in the ZrPM-45-800-1350-1400) were the same as listed in Table 5.13 for 

the ZrPM-45-800-1475 sample. (This was done because data was not available for 

samples heat treated at 1400oC.) The Zr content was obtained by difference, i.e., 100 - 

(carbon wt% + oxygen wt%). In order to partition the overall carbon amount into the 

amount of free carbon and the amount of carbon that was part of the zirconium carbide, it 

was assumed for this part of the calculation that the latter material was stoichiometric 

ZrC. Hence, using the Zr content obtained by difference, the amount of carbon in the ZrC 

was determined. The weight percent of “free” carbon was then determined by difference. 

(This value was reported as 2.3 wt% in section 5.2.1.3.) The rest of the material was then 

assumed to be zirconium oxycarbide (ZrC with all the oxygen in the sample dissolved in 

the lattice). 

The solid density used for the zirconium oxycarbide was calculated by using an 

estimated y and x values in the chemical formula ZrOyCx.  The y and x values were 

estimated using the oxygen (3.3 wt%) and carbon (13.3 wt%) concentrations that were 

measured for the 1475oC ZrPM-45 sample (Table 5.13) and the estimated free carbon 

concentration of 2.3 wt%.  (The oxygen was assumed to be entirely dissolved in the 

zirconium oxycarbide lattice.)  The carbon concentration in the zirconium oxycarbide 

lattice was assumed to be 11 wt% (i.e., the difference between the overall carbon content 
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of 13.3 wt% and the estimated “free” carbon concentration of 2.3 wt%).  Hence, the 

composition of the zirconium oxycarbide phase was estimated to be ZrO0.21C0.92.  In 

Table 5.15 (section 5.2.1.3), a lattice parameter value of 0.4691 nm is given for the 

ZrPM-45-800-1400 sample.  Using this value and the estimated chemical composition, 

the solid density of the zirconium oxycarbide phase (ZrO0.21C0.92) was calculated using 

the following equation: 

  

321
233 /80.610

10022.6)4691.0(
)1621.001.1292.0224.911(4 cmg=×

××
×+×+×    (5-8) 

 

where 91.224 is the atomic mass of Zr, 12.01 is the atomic mass of C, and 16 is the 

atomic mass of O. Note that zirconium oxycarbide has a cubic crystal structure.  

The overall solid density of the ZrPM-45-800-1350-1400 sample was calculated 

by using the above value (i.e., 6.80 g/cm3) for the solid density of the zirconium 

oxycarbide phase and an assumed value of 2 g/cm3 for the free carbon.  The solid density 

is given by:  

 

density of ZrPM-45-800-1350-1400 3/44.6

2
3.2

80.6
7.97
100 cmg=
+

=   (5-9) 

 

The milled powder was mixed with 10 vol% polymer binder and plasticizer as 

described in section 4.3.1.1. Two powder compacts were uniaxially dry-pressed in a 15.4 

mm diameter die at 200 MPa. The bulk densities of these samples, determined from 
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geometric dimensions, are listed in Table 5.37. (The relative densities were calculated 

using the solid density value calculated in equation 5-9.)  

The compacts were heat treated or “pre-sintered” at 1490oC for 4 h under flowing 

argon (~100 ml/min) in 3-zone lindberg furnace (Model 54259). This resulted in burnout 

of the binder, additional CTR reaction, and partial sintering of the compacts. As noted in 

section 4.3.1.2 the “pre-sintering” was carried out to more completely react the powders 

so that less weight loss (due to evolution of gases) occurred during subsequent sintering 

heat treatments. The percentage weight loss due to binder burnout and carbothermal 

reduction reaction is listed in Table 5.37. (The weight loss expected due to the binder 

burnout alone was 1.84 wt%, i.e., based on the amount of binder that was added to the 

powder. This suggests that most of the weight loss was due to additional CTR reaction at 

1490oC for 4 h. However, this amount of weight loss is much larger than expected from 

the CTR yield data in Table 5.35 for the ZrPM-45-800-1-1350-1400-3 sample and from 

the weight loss data shown in Table 5.14. Therefore, it is concluded that there may be an 

experimental error (e.g., in recording the sample weights) associated with the weight loss 

values listed in Table 5.37.)  

The bulk densities after pre-sintering, determined from geometric dimensions, are 

also listed in Table 5.37. To calculate the relative density, it was assumed that the 1490oC 

(4 h) heat treatment produced a material that was nearly single phase stoichiometric ZrC. 

Thus, the density of powder was calculated using a lattice parameter of 0.4696 nm for 

ZrC and assuming that free carbon and dissolved oxygen were not present : 

Density of ZrPM-45-800-1350-1400-1490 

 321
233 /62.610

10022.6)4696.0(
)01.121224.911(4 cmg=×

××
×+×

=   (5-10) 
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As-Dry Pressed After Pre-sintering Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
(As-Dry 
Pressed) 

(g) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss (%) 

1 3.45  53.6 0.6729 4.08 61.6 11.7 

2 3.26 
 

50.6 0.6623 4.09 61.8 11.7 

Average 3.36 52.2 - 4.09 61.7 11.7 

 

 

Table 5.37 shows the calculated relative densities for the “pre-sintered” samples. It is 

evident that some densification occurred during this heat treatment.  

 

5.6.1.1.2 Sintering/Heat Treatment 

 The pre-sintered samples were sintered at temperatures in the range of 1600-

1900oC (see Table 5.38). The two pellets were used for repeated sequential heat 

treatments. The first pellet was sintered at 1800oC for times in the range of 1-16 h. (The 

times indicated in Table 5.38 are cumulative sintering times.) The second pellet was heat 

treated sequentially at 1600oC, 1700oC, and 1800oC for 1 h each. The sample was then 

sintered for an additional 3 h and 12 h at 1800oC. This was followed by sintering at 

1900oC for 1 h.   

Relative densities were calculated using the same solid density that was 

determined using equation 5-9. For the "pre-sintered samples," it was highly questionable 

to assume that the reaction had been completed and that the material was single-phase, 

oxygen-free, stoichiometric ZrC after heat treatment at only 1490oC (for 4 h). However, 

Table 5.37 Compact densities after dry-pressing and “pre-sintering” and weight loss 
after “pre-sintering” for ZrPM-45-800-1350-1400 samples. 
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the assumption becomes more reasonable as the heat treatment temperature increases. 

Based on the fact that weight losses for ZrPM-45 samples were small after heat treatment 

at 1600oC (see Table 5.14 in section 5.2), the assumed solid density seems reasonable 

even for the samples sintered at 1600oC. (In addition, the fact that weight losses were 

small during heat treatment at ≥1600oC was confirmed again during this sintering study, 

as shown in Table 5.38.) 

The bulk densities and relative densities (determined from geometric 

measurements) are shown in Table 5.38. This table also shows the percentage shrinkage 

in the diameter and thickness of the samples at various heat treatment temperatures. The 

weight losses observed during heat treatments at temperatures in the range of 1600-

1900oC are also shown in the table.  

 Higher densities were obtained for pellet #1 compared to pellet #2. The reason is 

not known, but it might be due to the higher "green" (initial) density for the former 

sample. It is also not known why some heat treatments resulted in substantial shrinkage 

anisotropy, while others did not.  Substantial shrinkage anisotropy was observed for most 

of the sintering heat treatments for pellet #2. 

 Figure 5.38 shows plots of bulk density and relative density vs. sintering time for 

the pellet #1 samples.  It is evident that the densification rate slows substantially after the 

first hour of sintering at 1800oC. 
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Shrinkage (%) Pellet 
# 

Temperature(oC)/ 
Time (h) Diameter Thickness 

Bulk 
Density+ 
(g/cm3) 

 Relative 
Density 

(%) 

Weight 
Loss 

(wt%)* 
Avg. 1490/4 - - 4.09 61.7 - 

1 1800/1 10.04   9.38 5.51 83.2 1.08 

1 1800/4 11.52 14.45 5.99 90.5 0.25 

1   1800/16 14.50 13.48 6.35 95.9 0.36 

2 1600/1   3.36   3.65 4.53 68.4 0.22 

2 1700/1   6.72   4.04 4.88 73.7 0.34 

2 1800/1   8.96   4.04 5.12 77.3 0.53 

2 1800/4 11.94   7.50 5.64 85.2 1.01 

2   1800/16 12.69 11.44 5.97 90.2 1.40 

2 1900/1 13.43 10.26 5.99 90.5 1.38 

 
* Weight losses listed are for individual runs 
+ Determined from the sample geometric dimensions. 
 

 

Table 5.39 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for some of the same samples listed in Table 

5.38. The density values showed significant differences from those calculated from the 

geometric measurements. It was difficult to obtain accurate results for both types of 

measurements because of the small sample sizes. This is also reflected by an obvious 

problem with some of values obtained by the Archimedes method, i.e., the summation of 

the open porosity and the relative density exceeded 100%. This indicates that either there 

was an error in the assumed solid density value used to calculate the relative density or 

there was an error in the open porosity measurement. 

Table 5.38 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 



 

 

 

Pellet # Temperature (oC)/ 
Time (h) 

Open Porosity* 
(%) 

Bulk Density* 
(g/cm3) 

Relative 
Density (%) 

1 1800/1 12.5 5.85 88.4 

1 1800/4   9.9 6.17 93.2 

1   1800/16   8.4 (8.31, 8.46) 6.19 (6.21, 6.17) 93.5 (93.8, 93.2) 

 
* Determined by the Archimedes method. When more than one measurement was made, 
the individual values are listed in the parentheses. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.38 
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Table 5.39 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
Plots of bulk density and relative density vs. sintering time at 1800oC for 
a ZrC powder compact. 
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5.6.1.2  ZrPM-58 

5.6.1.2.1 Processing Before Sintering 
 

Dried powder was sieved exactly as described in section 5.6.1.1.1. The C/Zr 

molar ratio of a sample pyrolyzed at 1025oC for 2 h was 2.23. (It was estimated from the 

carbon content of 17.86 wt%, measured by Sherry Laboratories.)  A dried sample (~7 g) 

was heat treated first at 1300oC for 57 h and then at 1350oC (16 h) in flowing argon 

(~100 ml/min) atmosphere in the 3-zone lindberg furnace (Model 54259). The powder 

was further heat treated at 1300oC (8 h) in flowing argon (500 ml/min) atmosphere. The 

specific surface area of CTR powder was ~18 m2/g. XRD (Figure 5.39) showed phases of 

t-ZrO2, m-ZrO2, and zirconium carbide in the pattern. Table 5.40 shows some particle 

size distribution data for a 10-min milled sample. Particle size distribution plots for the 

milled sample are shown in Figure 5.40.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.39 X-ray diffraction pattern for a ZrPM-58 dried powder  that was heat 

treated at 1300oC (57 h), then at 1350oC (16 h), and then at 1300oC (8 h). 
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 Diameter (µm) 

Mean 0.56 

Modes* 0.07, 0.17, 1.20 

D90 1.47 

D50 0.17 

D10 0.06 

Standard Deviation 0.66 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 
 
 

Since the lattice parameters for ZrPM-58 were not measured, they were assumed 

to be similar to ZrPM-87 samples (see section 5.6.2.2) because of similar carbon 

concentration in the pyrolyzed material. (See Appendix E for details.) A calculation was 

made for the solid density of the ZrPM-58-1300(57)-1350(16)-1300(8) sample, but it 

should be noted that the value was even more of an estimate than the value calculated for 

the ZrPM-45-800-1350-1400 sample in section 5.6.1.1.1. This is because the ZrPM-58-

1300(57)-1350(16)-1300(8) was a multiphase sample with substantial amounts of ZrO2 

and ZrC. Furthermore, the zirconia contained both the monoclinic and tetragonal phases. 

The zirconium carbide presumably had dissolved oxygen and it is not known if free 

carbon was present in the sample.  To make an estimate  of the solid density, the  relative 

 
 

Table 5.40 Particle size distribution data for the 10 min-milled ZrPM-58-1300(57)-
1350(16)-1300(8) powder sample.  



 288 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.40 Particle size distribution plots for the 10 min-milled ZrPM-58-

1300(57)-1350(16)-1300(8) powder sample:  cumulative frequency 
plot (top) and relative frequency plot (bottom). 
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amounts of ZrO2 and ZrC in the sample were very crudely estimated from the 

background-corrected, integrated intensities in the XRD pattern (Figure 5.34) for the 

highest intensity peaks of the m-ZrO2 and ZrC phases. (The t-ZrO2 phase in the sample 

was neglected.)  The procedure used to obtain the integrated intensities is described in 

Appendix H. For sample ZrPM-58-1300(57)-1350(16)-1300(8), the estimated 

composition was ~31 wt% ZrO2/~69 wt% ZrC. Therefore, the solid density of ZrPM-58-

1300(57)-1350(16)-1300(8)  sample is given by : 

3/36.6

82.5
2.31

64.6
8.68
100 cmg=
+

   (5-11) 

where 5.82 g/cm3 was used as the solid density for m-ZrO2 and 6.64 g/cm3 was used as 

the density of the zirconium oxycarbide phase. The latter value was calculated for a 

ZrPM-87-800-1425 sample (see section 5.6.2.2.1). 

The milled powder was mixed with binder and the powder compact was 

processed exactly as discussed in section 5.6.1.1.1. The bulk density of the sample, 

determined from geometric dimensions, is listed in Table 5.41. (The relative density was 

calculated using the solid density value in equation 5-11.)  

The compact was “pre-sintered” at 1490oC (4 h) for the same reasons as discussed 

in section 5.6.1.1.1. The percentage weight loss due to binder burnout and any additional 

carbothermal reduction reaction is listed in the Table 5.41. The weight loss due to 

additional CTR (at 1490oC, 4 h) is much less for this sample compared to the weight loss 

for the ZrPM-45-800-1350-1400 sample in section 5.6.1.1.1. This reinforces the earlier 

conclusion that the high weight losses in Table 5.37 may have been due to an 

experimental error. The bulk density after pre-sintering, determined from geometric  



 290 

 

 

As-Dry Pressed After Pre-sintering Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
(As-Dry 
Pressed) 

(g) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss (%) 

1 3.55 55.8 0.6685 4.26 67.0 2.88 

 

 

dimensions, is also listed in Table 5.41. It is evident that some densification occurred 

during “pre-sintering.” 

 

5.6.1.2.2 Sintering/Heat Treatment 

The pre-sintered ZrPM-58-1300(57)-1350(16)-1300(8)-1490 sample was sintered 

at temperatures in the range of 1600-1900oC. The pellet was heat treated sequentially at 

1600oC, 1700oC, and 1800oC for 1 h each. The pellet was then sintered for an additional 

3 h and 12 h at 1800oC. This was followed by sintering at 1900oC for 1 h. Relative 

densities were calculated using the same solid density that was determined for ZrPM-87-

800-1900 sample (section 5.6.2.2.2).  

The bulk densities and relative densities (determined from geometric 

measurements) are shown in Table 5.42. This table also shows the percentage shrinkage 

in the diameter and thickness at various heat treatment temperatures. The weight losses 

observed during heat treatments at temperatures in the range of 1600-1900oC are also 

shown in the table. It should be noted that the shrinkages are more isotropic at most 

temperatures compared to the samples in section 5.6.1.1.2. 

Table 5.41 Compact density after dry-pressing and “pre-sintering” and weight loss 
after “pre-sintering” for ZrPM-58-1300(57)-1350(16)-1300(8) sample. 
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Table 5.43 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for some of the same samples listed in Table 

5.42. 

 

 

 

Shrinkage (%) Pellet 
# 

Temperature (oC)/ 
Time (h) Diameter Thickness 

Bulk 
Density+ 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss 

(wt%)* 

1 1490 /4  -  - 4.26 67.0 - 

1 1600/1   0.71   1.01 4.36 66.5 0.19 

1 1700/1   4.29  - 4.63 70.6 0.29 

1 1800/1   9.29   9.02 5.65 86.1 0.66 

1 1800/4 10.71   9.72 5.83 88.9 0.82 

1   1800/16 11.43 10.03 5.97 91.0 - 

1 1900/1 11.43 10.33 5.98 91.4 - 
 

* Weight losses listed are for individual runs 
+ Determined from the sample geometric dimensions. 
 
 
 

 

Pellet # Temperature (oC)/ 
Time (h) 

Open Porosity* 
(%) 

Bulk Density* 
(g/cm3) 

Relative 
Density (%) 

1 1800/4 3.80 (4.1, 3.5) 5.91 (5.73, 6.09) 90.1 (87.3, 92.8) 

1 1900/1 1.07 6.19 94.4 

 
* Determined by the Archimedes method. When more than one measurement was made, 

the individual values are listed in the parentheses. 
 

Table 5.43 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 

Table 5.42 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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5.6.1.3 ZrPM-61 

5.6.1.3.1 Processing Before Sintering 
 

Dried powder was sieved and pyrolyzed exactly as described in section 5.6.1.1.1. 

The C/Zr molar ratio was 3.8 for a sample that was initially dried at 120oC and pyrolyzed 

at 1025oC for 2 h. (This was estimated from the carbon content of 27.1 wt% measured by 

Sherry Laboratories.)  

Some as-dried ZrPM-61 powder was initially heat treated at 350oC (2 h). 

Approximately   10 g of this powder was then heat treated at 1300oC for 48 h in a flowing 

argon (~100 ml/min) atmosphere in the 3-zone lindberg furnace (Model 54259). This was 

followed by an additional 8 h of heat treatment under the same conditions.  

The specific surface area of the CTR powder was 112 m2/g. XRD (Figure 5.41) 

showed only zirconium carbide in the pattern. However, based on the carbon 

concentration in (27.1 wt%) the 1025oC-pyrolyzed material, it is expected that a 

significant amount of “free” carbon was in the CTR sample. This was confirmed by 

analysis of the carbon concentration for a sample which was heat treated at 1475oC for    

2 h. Appendix E shows that the ZrPM-61-350-800-1475 sample had a carbon 

concentration of 19.4 wt%, i.e., well above the carbon content of 11.6 wt% in phase-pure 

stoichiometric ZrC.  

Table 5.44 shows some particle size distribution data for a 10 min-milled sample. 

Particle size distribution plots for the milled sample are shown in Figure 5.42.  
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 Diameter (µm) 
Mean 0.09 

Modes* 0.06, 0.19 
D90 0.19 
D50 0.06 
D10 0.05 

Standard Deviation 0.06 
 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 

Table 5.44 Particle size distribution data for the 10 min-milled ZrPM-61-350-1-
1300(48)-2-1300(8)-1  powder sample.  

Figure 5.41 X-ray diffraction pattern for a ZrPM-61-350 sample that was heat treated at 
1300oC (48 h) and then at 1300oC (8 h). 
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 Figure 5.42 Particle size distribution plots for the 10 min-milled ZrPM-61-350-
1-1300(48)-2-1300(8)-1 powder sample:  cumulative frequency plot 
(top) and relative frequency plot (bottom). 

PARTICLE DIAMETER (µµµµm)
0.1 1 10

FR
EQ

U
EN

C
Y 

(V
O

L%
)

0

5

10

15

20

0.04

PARTICLE DIAMETER (µµµµm)
0.1 1 10

C
UM

M
U

LA
TI

VE
 V

O
LU

M
E 

(%
)

0

20

40

60

80

100

0.04



 295 

The lattice parameter of zirconium carbide phase for the ZrPM-61-350-1-

1300(48)-2-1300(8)-1 sample was not measured, but it could be assumed to be close to 

stoichiometric value of 0.4696 nm (as for ZrPM-45-800-1800, Table 5.15) because of the 

highly carbon-rich composition. Therefore, the density of the zirconium carbide phase in 

the sample is given by :  

 

321
233 /62.610

10022.6)4696.0(
)01.121224.911(4 ZrC cmgofdensity =×

××
×+×

=    (5-12) 

 

The amounts of ZrC and “free” carbon in the ZrPM-61-350-1-1300(48)-2-

1300(8)-1 sample were estimated by using the measured carbon concentration of 19.4 

wt% for the ZrPM-61-350-800-1475 sample. This carbon concentration gives 91.3 wt% 

stoichiometric ZrC and 8.7 wt% “free” carbon. Therefore, the overall solid density of the 

ZrPM-61-350-1-1300(48)-2-1300(8)-1 is given by: 

3/51.5

2
7.8

62.6
3.91
100 cmg=
+

   (5-13) 

The milled powder was mixed with binder and the powder compact was 

processed exactly as discussed in section 5.6.1.1.1. The bulk density of the sample, 

determined from geometric dimensions, is shown in Table 5.45. (The relative density was 

calculated using the solid density value calculated using equation 5-13.) The green 

density value in Table 5.45 is consistent with the results discussed in section 5.5 (Table 

5.35); low green density values are obtained when powders with high specific surface 

areas are used. 
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The compact was “pre-sintered” at 1490oC (4 h) for the same reasons as discussed 

in section 5.6.1.1.1. The percentage weight loss due to binder burnout and carbothermal 

reduction reaction is listed in the Table 5.45. The weight loss upon heat treatment of the 

ZrPM-61-350-1-1300(48)-2-1300(8)-1 sample at 1490oC (4 h) is higher than expected. 

Table 5.35 shows that the CTR yield increased only 3.1 wt% when a ZrPM-61-350-1-

1300(48)-2-1300(8)-1 sample was heat treated for an additional 2 h at 1475oC. Binder 

burnout would contribute another ~2 wt% during the 1490oC (4 h) heat treatment. This 

would give a weight loss of ~5 wt% for additional heat treatment at 1475oC (2 h), while 

~8.4 wt% weight loss was observed during the additional heat treatment at 1490oC (4 h). 

The bulk density after pre-sintering, determined from geometric dimensions, is 

also shown in Table 5.45. The point to note is that the densification during “pre-

sintering”, for this sample, was much less compared to the ZrPM-45 and ZrPM-58 

samples discussed in sections 5.6.1.1.1 and 5.6.1.2.1.  

 

 

 

 

As-Dry Pressed After Pre-sintering Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
(As-Dry 
Pressed) 

(g) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss (%) 

1 2.00  36.3 0.6796 2.18 39.6 8.42 

 

 

 

Table 5.45 Compact density after dry-pressing and “pre-sintering” and weight loss 
after “pre-sintering” for ZrPM-61-350-1-1300(48)-2-1300(8)-1 sample. 



 297 

5.6.1.3.2 Sintering/Heat Treatment 

The pre-sintered sample was sintered sequentially at 1700oC and 1800oC for 1 h 

each. The pellet was then sintered for an additional 3 h at 1800oC.  

The lattice parameter for the ZrC phase in the 1800oC-sintered sample was 

assumed to be 0.4696 nm for the same reasons as discussed in section 5.6.1.3.1. The 

“free” carbon concentration in the 1800oC-sintered sample was estimated to be 6.7 wt%. 

In other words, it was assumed that the “free” carbon concentration decreased 2 wt% 

from the 8.7 wt% value that was assumed for the starting CTR powder and the “pre-

sintered” sample. This estimated decrease in the “free” carbon concentration was based 

on the difference in overall concentration that was observed for ZrPM-45 samples that 

had been heat treated at 1475oC (13.3 wt% carbon) and 1800oC (11.3 wt% carbon) as 

shown in Table 5.13. Therefore, the solid density of the 1800oC-sintered ZrPM-61 

sample was estimated from the following equation: 

3/73.5

2
7.6

62.6
3.93
100 cmg=
+

   (5-14) 

The bulk densities and relative densities (determined from geometric 

measurements) are shown in Table 5.46. (The relative densities were calculated using the 

solid density values calculated using equation 5-14.) This table also shows the percentage 

shrinkages in the diameter and thickness of the samples at various heat treatment 

temperatures. The weight losses observed upon heat treatments at temperatures in the 

range of 1700-1800oC are also shown in the table. Substantial shrinkage anisotropy was 

observed for the sintered samples. 

 



 298 

 

 

 

 Shrinkage (%) Pellet 
# 

Temperature(oC)
/Time (h) Diameter Thickness 

Bulk 
Density+ 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss* 
(wt%) 

1 1490 /4 - - 2.18 39.8 - 

1 1700/1  5.67   8.24 2.62 45.7 1.94 

1 1800/1  7.80 11.50 2.82 49.2 2.88 

1 1800/4 13.48 17.19 3.40 59.3 3.49 

 
* Weight losses listed are for individual runs 
+ Determined from the sample geometric dimensions. 

 

Table 5.47 shows that relatively little densification occurred in the ZrPM-61 

sample after sintering at 1800oC for 4 h. The relative density was only ~59%.  In contrast, 

the value for the corresponding ZrPM-45 sample (Table 5.38, section 5.6.1.1.2) and 

ZrPM-58 sample (Table 5.42, section 5.6.1.2.2) was ~91%.  The main reason for the poor 

densification in the ZrPM-61 sample is presumably because the “free” carbon content is 

very high.  Solid-state diffusion would be significantly inhibited if the ZrC crystallites 

were surrounded by carbon surface layers. The low initial density of the ZrPM-61 sample 

is also another factor that would contribute to the low sintered density obtained after the 

1800oC heat treatment. 

 Table 5.47 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for the same sample (1800oC/4 h) listed in Table 

5.46.  The bulk density determined by the Archimedes method  (4.41 g/cm3) is  extremely  

 

Table 5.46 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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Pellet 
# 

Temperature(oC) 
/Time (h) 

Open Porosity 
(%) 

Bulk Density 
(g/cm3) 

Relative Density 
(%) 

1 1800/4 32.8 (34.4, 32.4, 
31.6) 

4.41 (4.60, 4.39, 4.24) 77.0 (80.3, 76.6, 
74.0) 

 
* Determined by the Archimedes method. Individual values are listed in the parentheses. 
 

 

different from the value (3.40 g/cm3) obtained from the geometric measurements. Based 

on the precision of the diameter and thickness measurements used in the geometric 

determination of the density, it must be concluded that the Archimedes measurements are 

extremely inaccurate in this case. (This is also supported by the observation that the 

summation of the open porosity + relative density far exceeds 100%.) The Archimedes 

measurements might be inaccurate due to incomplete penetration of water into the open 

pores. 

 

5.6.2 Effect of Composition on Sintering Behavior 

5.6.2.1 Introduction 

ZrC-based batches with varying C/Zr molar ratios were prepared for a sintering 

study. The detailed synthesis procedures for these batches (i.e., ZrPM-87, 94, 97, and 99) 

are given in Appendix B.  Measured carbon contents (measured by Leco Corp.) and 

calculated C/Zr molar ratios are shown in Table 5.48 for the samples heat treated at 

temperatures in the range of 1025oC-1900oC. Carbon contents for samples heat treated at 

1900oC (2 h) varied from 12.6 wt% for the ZrPM-97 sample (above the value of 11.6 

Table 5.47 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
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wt% for single-phase, stoichiometric ZrC) to 7.7 wt% for the ZrPM-87 sample. The 

1900oC ZrPM-97 sample had a carbon-rich composition, so it contained some “free” 

carbon. In contrast, the 1900oC ZrPM-87 sample not only had a highly carbon-deficient 

composition, but it also contained a small amount of zirconia, as will be shown later by 

XRD. The 1900oC ZrPM-99 sample had a carbon content (~10.8 wt%) that was closest to 

the stoichiometric value, but it was still slightly carbon-deficient. The 1900oC ZrPM-94 

sample had a carbon content (~9.4 wt%) that was between the amounts for the 1900oC 

ZrPM-87 and ZrPM-99 samples. 

The main purpose of this study was to determine the effect of composition on the 

densification behavior. Thus, an attempt was made to keep the other powder and powder 

compact characteristics (e.g., particle size, surface area, compact bulk density, etc.) 

similar for the four batches. However, the starting composition governed the phase and 

structural development of the powders during the CTR heat treatments required to 

produce ZrC-based powders. Hence, it was not possible to obtain powders, for the four 

batches, that were exactly the same in their characteristics or the characteristics of the 

compacts produced from the powders.  

Powder compacts were pressed by the author. The pressureless sintering heat 

treatments and lattice parameter measurements were made by Dr. Zhaohui Yang and Ms. 

Yanli Xie of the Georgia Institute of Technology. 
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Sample Heat Treatment 
Temperature (oC) 

Carbon Content 
(wt%) 

C/Zr Molar Ratio 

ZrPM-87 1025 18.9 2.4 
ZrPM-87                  1800*   7.6 0.6 
ZrPM-87                  1900*   7.7 0.6 

    
ZrPM-94 1025 21.8 2.9 
ZrPM-94                  1800* 10.5 0.9 
ZrPM-94                  1900*   9.4 0.8 

    
ZrPM-97 1025 24.1 3.3 
ZrPM-97                  1800* 12.6 1.1 
ZrPM-97                  1900* 12.6 1.1 

    
ZrPM-99 1025 23.7 3.2 
ZrPM-99                  1800* 11.0 0.9 
ZrPM-99                  1900* 10.8 0.9 

 
* Sample was pyrolyzed at 800oC prior to heat treatment at the indicated temperature. 

 

 

5.6.2.2 ZrPM-87 

5.6.2.2.1 Processing Before Sintering 

Dried powder was sieved through a 150-mesh screen and pyrolyzed at 800oC for 

2 h. The C/Zr molar ratio was 2.38 for a sample (initially dried at 120oC) that was 

pyrolyzed at 1025oC for 2 h. (This ratio was estimated from the carbon content of       

18.9 wt%, measured by Leco Corp.)  The pyrolyzed sample (~7.8 g) was heat treated at 

1425oC for 2 h in a flowing argon (~500 ml/min) atmosphere in the 3-zone lindberg 

furnace. The specific surface area of the CTR powder was 24 m2/g. XRD (Figure 5.43) 

showed phases of zirconium carbide, t-ZrO2, and m-ZrO2 in the pattern. Table 5.49 

Table 5.48 Measured carbon contents and calculated C/Zr molar ratios for samples 
heat treated at the indicated temperatures. 
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shows some particle size distribution data for a 10 min-milled sample. Particle size 

distribution plots for the milled sample are shown in Figure 5.44.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.43 X-ray diffraction pattern for a ZrPM-87-800 pyrolyzed sample that was 
heat treated at 1425oC (2 h). 
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 Diameter (µm) 
Mean 0.28 

Modes* 0.07, 0.17, 1.59 
D90 1.40 
D50 0.08 
D10 0.05 

Standard Deviation 0.51 
 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

The measured lattice parameter for the ZrPM-87-800-1425 sample was        

0.4688 nm. (See Appendix F for details.) It was assumed that the zirconium carbide 

phase in the ZrPM-87-800-1425 sample was carbon-deficient and had some oxygen 

dissolved in its lattice, i.e., it can be described by the formula ZrCxOy (where x is <1). 

The composition of the ZrCxOy phase was estimated to be ZrC0.85O0.1 using data reported 

from the literature in Figure 2.7. (The carbon amount was obtained by drawing a line 

parallel to the x-axis (i.e., C/Zr molar ratio) in Figure 2.7 at a lattice parameter (y-axis) 

value of 0.4688.  The x-axis value at which this line intersected the plotted data set was 

used to determine the carbon amount.  The same procedure was used to determine the 

oxygen amount.) The solid density of the zirconium oxycarbide phase is given by: 

 

( ) ( ) ( )[ ]
Na

ANANAN OOCCZrZr

×
×+×+×

3)(
4    (5-15) 

 

 

Table 5.49 Particle size distribution data for the 10 min-milled ZrPM-87-800-1425 
powder sample.  
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Figure 5.44 Particle size distribution for the 10 min-milled ZrPM-87-800-

1425 powder sample:  cumulative frequency plot (top) and 
relative frequency plot (bottom). 
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where NZr, NC, and NO are the number of moles of zirconium, carbon, and oxygen, 

respectively, in the zirconium oxycarbide; AZr, AC, and AO are the atomic weights of 

zirconium, carbon, and oxygen, respectively; a is the lattice parameter of the zirconium 

oxycarbide and N  is the Avogadro’s number. Therefore, the solid density of ZrC0.85O0.1 

is given by : 

 

21
233 10

10022.6)4688.0(
)161.001.1285.0224.911(4
×

××
×+×+× 3/64.6 cmg=    (5-16) 

 

The estimated amounts of t-ZrO2 and m-ZrO2 remaining in the ZrPM-87-800-

1425 sample were ~3.4 wt% and ~7.6 wt%, respectively. (The rest of the material was 

assumed to be zirconium oxycarbide.) These amounts were determined from the XRD 

pattern (Figure 5.44), based on the relative integrated intensities of the highest peaks for 

the t-ZrO2, m-ZrO2, and zirconium oxycarbide. The solid density used for the latter 

material was that calculated according to equation 5-16. The solid density values of t-

ZrO2 and m-ZrO2 were assumed to be 5.95 g/cm3 and 5.82 g/cm3, respectively. The solid 

density for the powder mixture containing zirconium oxycarbide and zirconia is given by: 

 

22

)(100
100

ZrOmZrOtOZrC

babapowderofdensity

yx −−

++
+−

=

ρρρ

   (5-17) 

 

where a is the amount (wt%) of t-ZrO2, b is the amount (wt%) of m-ZrO2, and            

[100 - (a+b)] is the amount (wt%) of zirconium oxycarbide phase; ρZrCxOy is the solid 
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density of ZrCxOy and ρt-ZrO2 and ρm-ZrO2 are the solid densities of t-ZrO2 and m-ZrO2, 

respectively. Therefore, the solid density of ZrPM-87-800-1425 is given by :  

 

3/54.6

95.5
4.3

82.5
6.7

64.6
89

100 cmg=
++

      (5-18) 

  

 Although, the above calculation is considered the best estimate of the solid 

density, some other values were used in the calculation in order to give a rough idea of 

the range of error that might be expected. As an extreme case, it was assumed that the 

zirconium carbide phase in the ZrPM-87-800-1425 sample which was carbon-deficient 

and oxygen-free (i.e., ZrC1-x). It was also assumed, arbitrarily, that the amounts of t-ZrO2 

and m-ZrO2 in the sample were 7 wt% and 15 wt%, respectively (i.e., approximately 

twice the amounts used in equation 5-18). The ZrC1-x composition was estimated as 

ZrC0.85 by using Figure 2.7 and the lattice parameter value of 0.4688 nm. The solid 

density of ZrC0.85, calculated using equation 5-15, is 6.54 g/cm3. Therefore, the solid 

density of ZrPM-87-800-1425, calculated using equation 5-17, is 6.45 g/cm3. This solid 

density value is 1.4% lower than the solid density value given by equation 5-18. 

The milled powder was mixed with 10 vol% polymer binder and plasticizer as 

described in section 5.6.1.1.1. Five powder compacts were uniaxially dry-pressed in a   

6.4 mm diameter die at 250 MPa. The bulk densities of these samples, determined from 

geometric dimensions, are shown in Table 5.50. (The relative densities were calculated 

using the solid density value given in equation 5-18.) The compacts were heat treated at 

1150oC for 2 h under flowing argon (~100 ml/min) in a tube furnace (Model 55031). This  
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As-Dry Pressed After 1150oC (2 h) Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight (g) 
(As-Dry 
Pressed) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 
(%) 

% Weight 
Loss  

1 3.09  47.2 0.4151 3.05 46.6 2.4 
2 3.07 46.9 0.4180 3.07 46.9 2.2 
3 3.11 47.6 0.4116 3.08 47.1 2.1 
4 3.09  47.2 0.4161 3.06 46.8 1.8 
5 3.12   47.7 0.4181 3.08 47.1 1.9 

Average 3.10 47.4 - 3.07 46.9 2.1 
 

 

resulted in burnout of the binder that was added to the powder. The percentage weight loss 

due to binder burnout is also shown in Table 5.50. The weight losses were close to the 

value expected (1.84 wt%) based on the amount of binder originally added to the powder. 

(The small differences from the expected value were probably due to some adsorbed 

moisture in the samples.) Bulk density and relative density values after binder burnout, 

determined from geometric dimensions, are also shown in Table 5.50.  

 

5.6.2.2.2 Sintering/Heat Treatment  

 Figures 5.45 and 5.46 show XRD patterns for the ZrPM-87-800-1425 powder and 

for samples sintered at temperatures in the range of 1600oC to 1950oC. As indicated in 

the previous section, the XRD pattern of the 1425oC sample showed zirconium carbide 

was the predominant phase, although m-ZrO2 and t-ZrO2 were also present. XRD of 

Table 5.50 Compact densities after dry pressing and compact density and weight loss 
after 1150oC heat treatment. 
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samples heat treated at temperatures ≥1600oC showed some residual of m-ZrO2, while 

the predominant phase was zirconium carbide.  

The solid density for the 1900oC ZrPM-87 sample was calculated using three 

different approaches: 

(1) It was assumed that the zirconium carbide phase was actually a zirconium 

oxycarbide, i.e., ZrCxOy. The measured lattice parameter of a ZrPM-87-800 pyrolyzed 

powder that was subsequently heat treated at 1900oC (2 h) was 0.4664 nm. The molar 

carbon value, x, was estimated using the carbon content of 7.72 wt% reported in Table 

5.48 for the ZrPM-87-800-1900 sample. This yields a value of x = 0.64 if it is assumed 

that the samples consisted of Zr and C only. The oxygen value, y, was estimated to be 

0.25 by using Figure 2.7, as described in section 5.6.2.2.1. Thus, the composition of 

ZrCxOy  was estimated to be ZrC0.64O0.25. The solid density of ZrC0.64O0.25, calculated 

using equation (5-14), is 6.73 g/cm3. The XRD pattern for the 1900oC ZrPM-87 sample 

(Figure 5.46) shows the presence of a trace amount of m-ZrO2. The amount of m-ZrO2 

was determined to be ~4 wt%, based on the XRD integrated (peak area) intensities. 

Therefore, the density of the ZrPM-87-800-1900 sample is given by: 

 

3/60.6

82.5
4

64.6
96

100 cmg=
+

    (5-19) 
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Figure 5.45 X-ray diffraction patterns for ZrPM-87 samples heat treated at 
1425oC and 1600oC. 
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Figure 5.46 X-ray diffraction patterns for ZrPM-87 samples heat treated at 

temperatures in the range of 1800 to 1950oC. 
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However, the assumption that 0.25 moles of oxygen were dissolved in each mole of 

zirconium carbide for the 1900oC ZrPM-87 sample does not seem reasonable. This is 

because the weight losses upon heat treatment of ZrPM-87 samples above 1600oC were 

relatively small (see Table 5.51). To remove all the oxygen from a sample with 

composition ZrC0.64O0.25 would mean that an additional weight loss of ~7 wt% would be 

required (assuming oxygen was removed as CO). This is unlikely considering the total 

weight loss between 1600-1950oC was only 4.4 wt%.  

(2) It was assumed that the zirconium carbide phase was carbon-deficient and 

oxygen-free, i.e., ZrC0.64. The solid density for this phase was calculated (as ρ = 6.47 

g/cm3) using equation 5-15. The solid density for the ZrPM-87-800-1900 sample was 

then calculated from equation 5-17, by using the ZrC0.64 density, the amount of m-ZrO2 in 

the material (i.e., ~4 wt%), and the measured lattice parameter value of 0.4664 nm. The 

calculated value is 6.44 g/cm3. However, the assumption that all the oxygen would be 

removed from the zirconium carbide lattice at 1900oC is not correct because small weight 

losses were observed upon heat treatment of ZrPM-87 samples at temperatures ≥1800oC 

(Table 5.51). Furthermore, the oxygen contents determined for ZrPM-59-800-1800 and 

ZrPM-59-800-2000 samples were 1.0 wt% and 0.56 wt%, respectively (Table 5.23).  

(ZrPM-59 had a carbon content of 19.4 wt% for a sample pyrolyzed at 1025oC, so it was 

not quite as carbon-deficient (relative to the stoichiometric amount for equation 5-7) as in 

the corresponding ZrPM-87 pyrolyzed sample.)  

(3) It was assumed that the solid density of the zirconium carbide phase was between 

the two extremes of ZrC0.64O0.25 and ZrC0.64, i.e., 6.6 g/cm3. Therefore, the density of the 

ZrPM-87-800-1900 sample, calculated using equation 5-17, is 6.56 g/cm3. (The amount 



 312 

of m-ZrO2 was assumed to be ~4 wt%.) This density was used to calculate the percentage 

relative density of samples heat treated at temperatures ≥1600oC. In fact, the solid density 

will vary over the range of sintering temperatures used in this study (1600-1950oC). 

However, the actual variation in solid density values is probably well within the range of 

the error associated with the calculations that have been described in this section. 

Table 5.51 shows the bulk density values, determined from geometric 

measurements, and the corresponding calculated relative density values for the samples 

sintered at temperatures in the range of 1600-1950oC. The table also lists the percentage 

shrinkage in the diameter and thickness and the percentage weight loss for each sample. 

The weight losses were also corrected for adsorbed moisture. (The weight loss due to 

adsorbed moisture was measured separately. The average value of 1.5 wt% was applied 

as the correction for all samples.) Figure 5.47 shows a plot of weight loss (corrected for 

adsorbed moisture) vs. sintering temperature. The significant weight loss (~2.9 wt%) for 

the 1600oC sintered sample was consistent with the decreased amount of zirconia in the 

XRD pattern (Figure 5.45, i.e., compared to the 1425oC ZrPM-87 sample). The small 

weight losses observed when samples were sintered at temperatures >1600oC were again 

consistent with the slight decrease in the zirconia amount indicated in the XRD patterns 

(Figures 5.45 and 5.46). Figure 5.48 shows plots of the diameter and thickness shrinkages 

vs. sintering temperature. The shrinkage behavior in the range of 1600-1950oC was 

almost isotropic. 
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Shrinkage (%) Pellet 
# 

Temperature 
(oC) Diameter Thickness 

Bulk 
Density+ 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss 

(wt%) 

Corrected 
Weight 

Loss 
(wt%) 

2 1600 11.47 11.78 4.29 65.4 4.41 2.91 

4 1725 18.46 18.66 5.47 83.4 4.78 3.28 

5 1800 21.01 21.62 6.02 91.8 5.24 3.74 

3 1900 22.92 22.85 6.42 97.9 5.54 4.04 

1 1950 23.42 24.17 6.54 99.7 5.87 4.37 
 

+ Determined from the sample geometric dimensions. 

 

Figure 5.49 shows plots of bulk density and relative density vs. sintering 

temperature based on measurements made from the geometric dimensions of the samples. 

The relative density value of the sample sintered at 1950oC was ~100%. However, this 

value was based on a solid density calculated by making some assumptions that were 

discussed earlier in the section 5.6.2.2.1. Nevertheless, the actual value is expected to be 

within a few percent of the one reported. 

 

 

 

 

 

 

Table 5.51 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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Figure 5.47 Plot of corrected weight loss vs. sintering temperature for ZrPM-87 
powder compacts that were initially heat treated at 1150oC (2 h). The 
compacts were prepared with ZrPM-87-800-1425 powder. 
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Plots of thickness and diameter shrinkage vs. sintering
temperature for ZrPM-87 powder compacts that were initially heat
treated at 1150oC (2 h). The compacts were prepared with ZrPM-
87-800-1425 powder. 
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Figure 5.49 Plots of relative density and bulk density vs. sintering temperature for 
ZrPM-87 powder compacts that were initially heat treated at 1150oC 
(2 h). Bulk densities were determined by measurements of the sample 
dimensions. 
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Table 5.52 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for some of the same samples shown in Table 

5.51. The measurements for each sample were repeated at least twice. The individual and 

average values are listed in Table 5.52.  

The open porosity measured for the 1600oC sintered sample was ~20%. The 

summation of the open porosity and relative density (i.e., ~86%) implies that there should 

be ~14% closed porosity in the sample. However, this amount of closed porosity is highly 

unlikely for a sample that has such low relative density.[91]  This suggests that there was 

problem with penetration of water into the pores for the 1600oC sample. Hence, the open 

porosity value is considered unreliable.  In contrast to the 1600oC sample, the measured 

open porosity was zero for samples sintered at temperatures ≥1800oC. This is consistent 

with the high relative densities of the samples.  

  

 

 

 

Pellet # Temperature 
(oC) 

Open Porosity* (%) Bulk Density* 
(g/cm3) 

Relative Density 
(%) 

2 1600 19.6 (20.1, 19.3, 19.4) 4.35 (4.36, 4.34, 4.35) 66.3 (66.5, 66.2, 66.3) 

5 1800   0.0 (0.0, 0.0) 6.05 (6.08, 6.03) 92.3  (92.7, 92.0) 

3 1900   0.0 (0.0, 0.0, 0.0, 0.0) 6.45 (6.48, 6.45, 6.46, 
6.42) 

98.4 (98.8, 98.4, 98.5, 
97.9) 

1 1950   0.0 (0.0, 0.0) 6.59  (6.60, 6.57) 100.0 (100.0, 100.0) 

 
* Determined by the Archimedes method. When more that one measurement was made, 

the individual values are listed in the parenthesis.  

Table 5.52 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
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 Figure 5.50 shows plots of the bulk density (determined by the Archimedes 

method) and the calculated relative density as a function of sintering temperature for the 

ZrPM-87 samples.  The calculated relative density value was ~100% for the sample 

sintered at 1950oC.  (However, as indicated previously, the solid density used to calculate 

this relative density is based on some assumptions that may not be valid.) Figure 5.51 

shows plots comparing the bulk density values (for various sintering temperatures) that 

were determined from the Archimedes and geometric measurement methods.  The two 

methods gave similar bulk density values at each sintering temperature. 
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Figure 5.50 Plots of relative density and bulk density vs. sintering temperature for 
ZrPM-87 powder compacts that were initially heat treated at 1150oC 
(2 h). Bulk densities were determined by the Archimedes method. 
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Figure 5.51 Plots of bulk density vs. sintering temperature for ZrPM-87 powder 
compacts that were initially heat treated at 1150oC (2 h). Bulk 
densities were determined by the geometric and Archimedes 
methods. 
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5.6.2.3 ZrPM-94 

5.6.2.3.1 Processing Before Sintering 

Dried powder was sieved and pyrolyzed exactly as described in section 5.6.2.2.1. 

The C/Zr molar ratio was 2.85 for a sample (initially dried at 120oC) that was pyrolyzed 

at 1025oC for 2 h. (This ratio was estimated from the carbon content of 21.8 wt% 

measured by Leco Corp.)  The pyrolyzed sample (~8 g) was heat treated at 1475oC for    

2 h in a flowing argon (~500 ml/min) atmosphere in the 3-zone lindberg furnace. The 

specific surface area of the CTR powder was 16 m2/g. XRD (see Figure 5.52) showed 

phases of zirconium carbide, t-ZrO2, and m-ZrO2 in the pattern.  

Table 5.53 shows some particle size distribution data for a 10-min milled sample. 

Particle size distribution plots for the milled sample are shown in Figure 5.53. 

Comparison of the particle size distributions in Figures 5.44 and 5.53 shows that the 

milled 1425oC ZrPM-87 sample has more aggregates compared to the milled 1475oC 

ZrPM-94 sample.  (This is particularly evident from the mode for particles in the size 

range of ~1 - 2.5 µm in the ZrPM-87 sample.)  A similar, but less pronounced, difference 

in particle size distributions was observed for milled ZrPM-45 and ZrPM-59 powders 

(see Figure 5.28).  As discussed in section 5.2.2.3, the difference in the extent of 

aggregation in the samples may be due to compositional differences (i.e., in which 

"oxide-rich" compositions show more aggregation compared to "carbon-rich" 

compositions).  The results in Figures 5.44 and 5.53 are consistent with the previous 

results in that the sample with the more oxide-rich composition is more aggregated. 
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 Diameter (µm) 

Mean 0.09 

Modes* 0.07, 0.19, 0.47 

D90 0.20 

D50 0.07 

D10 0.05 

Standard Deviation 0.07 

 

* Mode values are listed for each distinct peak in the accompanying relative frequency 
plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.53 Particle size distribution data for the 10 min-milled ZrPM-94-800-1475 
powder sample.  
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Figure 5.52 X-ray diffraction pattern for ZrPM-94-800 pyrolyzed sample that was heat 
treated at 1475oC (2 h). 
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Figure 5.53 Particle size distribution plots for the 10 min-milled ZrPM-94-800-1475 

powder sample:  cumulative frequency plot (top) and relative frequency 
plot (bottom). 
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The measured lattice parameter for the ZrPM-94-800-1475 sample was        

0.4688 nm. (See Appendix F for details.) It was assumed that the zirconium carbide 

phase in this sample was carbon-deficient (based on the C/Zr molar ratio in the pyrolyzed 

material) and that some oxygen was dissolved in its lattice. It was also assumed that 

composition of the ZrCxOy phase was the same as in the ZrPM-87-800-1425 sample, i.e., 

ZrC0.85O0.1 (see section 5.6.2.2.1). The solid density of ZrC0.85O0.1 was calculated in 

section 5.6.2.2.1 using equations 5-15 and 5-16. The calculated value was 6.64 g/cm3. 

The estimated amounts of t-ZrO2 and m-ZrO2 remaining in the ZrPM-94-800-1475 

sample were ~2 wt% and ~3 wt%, respectively. These amounts were determined from the 

XRD pattern (Figure 5.52), based on the relative integrated intensities of the highest 

peaks for the t-ZrO2, m-ZrO2, and zirconium oxycarbide. Based on the above 

information, the solid density of ZrPM-94-800-1475 sample was calculated using the 

following equation:  

 

3/59.6

95.5
2

82.5
3

64.6
95

100 cmg=
++

   (5-20) 

 

The pressing and processing conditions for the powder compacts were exactly 

same as described in section 5.6.2.2.1. The bulk densities of these samples, determined 

from geometric dimensions, are shown in Table 5.54. (The relative densities were 

calculated using the solid density value given in equation 5-20.) The percentage weight 

losses due to binder burnout are also shown in Table 5.54. The weight losses due to the 

binder burnout were essentially the same as observed for the ZrPM-87 samples (section  
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As-Dry Pressed After 1150oC (2 h) Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight (g) 
(As-Dry 
Pressed) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 

(%) 

% Weight 
Loss 

1 3.09  46.8 0.4150 3.03  45.9 1.7 
2 3.09  46.8 0.4153 3.04  46.1 1.8 
3 3.09  46.8 0.4180 3.05  46.2 1.9 
4 3.08  46.7 0.4191 3.08  46.7 2.0 
5 3.08  46.7 0.4198 3.05  46.2 1.8 

Average 3.09 46.8 - 3.05 46.2 1.8 
 

 

5.6.2.2.1). Bulk density and relative density values after binder burnout, determined from 

geometric dimensions, are also shown in Table 5.54.  

 

5.6.2.3.2 Sintering/Heat Treatment 

Figures 5.54 and 5.55 show XRD patterns for the ZrPM-94-800-1475 powder and 

for samples sintered at temperatures in the range of 1600oC to 1950oC. As indicated in 

the previous section, the XRD pattern of the 1475oC sample showed zirconium carbide 

was the predominant phase, although m-ZrO2 and t-ZrO2 were also present. Zirconium 

carbide and a small amount of m-ZrO2 were observed in the XRD pattern for the 1600oC 

ZrPM-94 sample (Figure 5.55). Zirconium carbide was the only crystalline phase 

observed in the sample heat treated at temperatures >1600oC.  

 

Table 5.54 Compact densities after dry pressing and compact density and weight loss 
after 1150oC heat treatment. 
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 Figure 5.54 X-ray diffraction patterns for ZrPM-94 samples heat treated at 
1475oC and 1600oC. 
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Figure 5.55 X-ray diffraction patterns for ZrPM-94 samples heat treated at 

temperatures in the range of 1800 to 1950oC. 
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Table 5.55 lists percentage weight losses for ZrPM-94-800-1475 powder 

compacts which were sintered at temperatures in the range of 1600-1950oC.  The table 

also shows weight loss values which were corrected for adsorbed moisture by applying 

the same correction factor (i.e., 1.5 wt%) that was used for the ZrPM-87 samples 

discussed in section 5.6.2.2.1.  Figure 5.56 shows a plot of the corrected weight loss vs. 

sintering temperature for the samples.  The weight loss of ~1.4 wt% for the 1600oC 

ZrPM-94 sample was consistent with the decreased amount of zirconia observed in the 

XRD pattern (Figure 5.54), i.e., compared to the XRD pattern for the ZrPM-94-800-1475 

powder.  An additional ~0.9 wt% loss occurred after the 1800oC heat treatment.  This is 

consistent with the disappearance of the zirconia peaks in the 1800oC ZrPM-94 sample 

(Figure 5.55).  The small weight losses (<0.3 wt%) that occurred during heat treatments 

at temperatures above 1800oC were presumably associated with CTR reactions that 

removed small amounts of residual oxygen from the zirconium carbide lattice.    

An estimated value of the solid density of the ZrPM-94-800-1475-1900 sample 

was used to calculate relative densities for samples sintered in the temperature range of 

1600-1950oC.  This was done because the CTR reaction was substantially completed 

after the 1600oC heat treatment.  Although it is obvious from the XRD patterns and the 

weight loss data that some limited CTR reactions still occurred at higher temperatures, 

the solid densities values were not expected to vary substantially for samples sintered 

over the range of the 1600-1950oC.  As noted in section 5.6.2.2.1, the actual variation in 

solid density values in this temperature range was probably well within the range of the 

error associated with the estimation of the solid density value for the 1900oC ZrPM-94 

sample.  The solid density for this sample was estimated by assuming it was an oxygen-
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free, carbon-deficient zirconium carbide, i.e., ZrCx (where x <1).  Table 5.48 shows that 

the carbon concentration for the ZrPM-94-800-1900 sample was 9.35 wt%.  Assuming 

that the sample consists only of Zr and C, the calculated value for x is 0.78, i.e., the 

estimated formula for the carbon-deficient zirconium carbide is ZrC0.78.  The measured 

lattice parameter for the ZrPM-94-800-1900 sample was 0.4667 nm. (See Appendix F for 

details.)  Using the above information, the solid density for the ZrPM-94-800-1900 

sample is given by: 

 

321
2330.78 /57.610

10022.6)4667.0(
)01.1278.0224.911(4 ZrC cmgofdensity =×

××
×+×

=  (5-21) 

 

Table 5.55 shows the bulk density values, determined from geometric 

measurements, and the corresponding calculated relative density values for the ZrPM-94 

samples sintered at temperatures in the range of 1600-1950oC. The table also lists the 

percentage shrinkage in the diameter and thickness for each sample. Figure 5.57 shows 

plots of the diameter and thickness shrinkages vs. sintering temperature for the ZrPM-94 

samples. The shrinkage behavior in the range of 1600-1950oC was relatively isotropic, 

especially for samples sintered in the range of 1800-1950oC. Figures 5.58 shows plots of 

bulk density and relative density vs. sintering temperature based on measurements made 

from the geometric dimensions of the samples. The relative density value of the sample 

sintered at 1950oC was ~ 99%. 
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Shrinkage (%) Pellet 
# 

Temperature 
(oC) Diameter Thickness 

Bulk 
Density* 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss 

(wt%) 

Corrected 
Weight 

Loss 
(wt%) 

1 1600   9.89 10.73 4.11 62.6 2.87 1.37 

4 1725 17.28 18.30 5.33 81.1 3.25 1.75 

2 1800 19.59 20.24 5.74 87.4 3.75 2.25 

3 1900 21.74 22.40 6.25 95.1 3.90 2.40 

5 1950 22.78 23.47 6.49 98.8 4.02 2.52 

 
* Determined from the sample geometric dimensions. 
 

 

Table 5.56 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for some of the same samples shown in Table 

5.55. The measurements for each sample were repeated at least twice. The individual and 

average values are listed in Table 5.56.  

The open porosity values for the 1600oC ZrPM-94 sintered sample is considered 

highly unreliable for the same reason discussed in section 5.6.2.2.2 (for the sintered 

1600oC ZrPM-87 sample). (The summation of the relative density and the open porosity 

is ~79 % which implies that the sample contains 21 % closed porosity. This is highly 

unlikely for a sample in the early stage of sintering.)[91] In contrast, the open porosity 

forthe 1800oC sintered sample is more reasonable. (The summation of the open porosity 

and the relative density is ~96.5 %.) The reason for the apparent improvement in the 

ability of water to penetrate the pores in the 1800oC sample compared to the 1600oC 

Table 5.55 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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sample was not determined.  However, one possibility is that coarsening of the pores (and 

grains) occurred at the higher temperature.  Water penetration might have been enhanced 

in the 1800oC sample if pores with larger diameters were present. The open porosity 

decreased to zero for the 1900oC and 1950oC samples. This is consistent with the high 

relative densities of these samples. 

Figure 5.59 shows plots of the bulk density (determined by the Archimedes 

method) and the calculated relative density as a function of sintering temperature for the 

ZrPM-94 samples.  The calculated relative density value was ~99% for the sample 

sintered at 1950oC. Figure 5.60 shows plots comparing the bulk density values (for 

various sintering temperatures) that were determined from the Archimedes and geometric 

measurement methods.  The two methods gave similar bulk density values at each 

sintering temperature. 

 

 

 

 

Pellet # Temperature 
(oC) 

Open Porosity* (%) Bulk Density* 
(g/cm3) 

Relative Density 
(%) 

1 1600 14.9 (13.2, 15.7, 15.8) 4.21 (4.23, 4.21, 4.18) 64.1 (64.4, 64.1, 63.6) 
2 1800   8.8 (10.9, 7.4, 8.2) 5.75 (5.79, 5.75, 5.70) 87.5 (88.1, 87.5, 86.8) 
3 1900   0.0 (0.0, 0.0, 0.0) 6.23 (6.21, 6.25, 6.24) 94.8 (94.5, 95.1, 95.0) 
5 1950   0.0 (0.0, 0.0) 6.47 (6.48, 6.46) 98.5 (98.6, 98.3) 

 
* Determined by the Archimedes method. When more that one measurement was made, 

the individual values are listed in the parenthesis.  
 

 

Table 5.56 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
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Figure 5.56 Plot of corrected weight loss vs. sintering temperature for ZrPM-94 
powder compacts that were initially heat treated at 1150oC (2 h). The 
compacts were prepared with ZrPM-94-800-1475 powder. 
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Figure 5.57  
 
 

Plots of thickness and diameter shrinkage vs. sintering temperature
for ZrPM-94 powder compacts that were initially heat treated at
1150oC (2 h). The compacts were prepared with ZrPM-94-800-1475
powder. 
333 
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Figure 5.58 Plots of relative density and bulk density vs. sintering temperature 
for ZrPM-94 powder compacts that were initially heat treated at 
1150oC (2 h). Bulk densities were determined by measurements of 
the sample dimensions. 
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Figure 5.59 Plots of relative density and bulk density vs. sintering temperature 
for ZrPM-94 powder compacts that were initially heat treated at 
1150oC (2 h). Bulk densities were determined by the Archimedes 
method. 
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Figure 5.60 Plots of bulk density vs. sintering temperature for ZrPM-94 powder 
compacts that were initially heat treated at 1150oC (2 h). Bulk 
densities were determined by the geometric and Archimedes 
methods. 
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5.6.2.4 ZrPM-99 

5.6.2.4.1 Processing Before Sintering 

Dried powder was sieved and pyrolyzed exactly as described in section 5.6.2.2.1. 

The C/Zr molar ratio was 3.19 for a sample (initially dried at 120oC) that was pyrolyzed 

at 1025oC for 2 h. (This ratio was estimated from the carbon content of 23.7 wt% 

measured by Leco Corp.) The pyrolyzed sample (~8 g) was heat treated at 1475oC for 2 h 

in a flowing argon (~500 ml/min) atmosphere in the 3-zone lindberg furnace. The 

specific surface area of the CTR powder was 16 m2/g. The specific surface areas were 

essentially the same for the 1475oC ZrPM-94 and the 1475oC ZrPM-99 samples. These 

two samples had the same CTR heating schedule and their carbon concentrations after 

pyrolysis and after high temperature heat treatment (1800oC and 1900oC) were similar 

(Table E1 Appendix E). 

 Table 5.57 shows particle size distribution data for the 10 min-milled ZrPM-99-

800-1475 powder. Particle size distribution plots are shown in Figure 5.61.  The results 

are consistent with those discussed in section 5.6.2.3.1 in that the "carbon-rich" ZrPM-99 

sample shows less aggregation compared to the corresponding "oxide-rich" ZrPM-87 

(Figure 5.43) and ZrPM-94 (Figure 5.52) samples.  It was suggested in section 5.2.2.3 

that sintering of primary particles is inhibited in samples with more “free” carbon and/or 

it is promoted in samples with more “free” zirconia.  

Figure 5.62 shows the XRD pattern for the ZrPM-99-800-1475 sample.  The only 

crystalline phase present was ZrC.  However, this sample should also have “free” 

(amorphous) carbon based on the carbon concentration (23.7 wt%) in the 1025oC-

pyrolyzed material.  The carbon concentration for the ZrPM-99-800-1475 sample was not 
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measured.  However, it was estimated using the measured concentrations for two other 

carbon-rich samples, i.e., ZrPM-45-800-1475 and ZrPM-61-350-800-1475.  Table 5.58 

shows that a value of 13.9 wt% carbon was estimated (by interpolation) for the ZrPM-99-

800-1475 sample. Using this value and assuming that the sample consisted only of Zr and 

C, the estimated free carbon concentration was ~2.6 wt%.    

 

 

 

 

 

 Diameter (µm) 

Mean 0.09 

Modes* 0.06, 0.19 

D90 0.19 

D50 0.06 

D10 0.05 

Standard Deviation 0.06 

 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

 

 

 

 

 

Table 5.57 Particle size distribution data for the 10 min-milled ZrPM-99-800-1475 
powder sample.  
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Figure 5.61 Particle size distribution for the 10 min-milled ZrPM-99-800-

1475 powder sample:  cumulative frequency plot (top) and 
relative frequency plot (bottom). 
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Sample Temperature (oC) Total Carbon (wt%) 

ZrPM-45 1025         23.3 
ZrPM-99 1025         23.7 
ZrPM-61-350 1025         27.1 
   
ZrPM-45-800 1475         13.3 
ZrPM-99-800 1500 13.9 (interpolated) 
ZrPM-61-350-800 1475         19.4 

Table 5.58 Carbon concentrations of ZrPM-45, ZrPM-61, and ZrPM-97 pyrolyzed and 
CTR powders. 

Figure 5.62 X-ray diffraction pattern for ZrPM-99-800 pyrolyzed sample that was heat 
treated at 1475oC (2 h). 

DEGREES  (2θθθθ)
20 30 40 50 60 70 80 90 100

IN
TE

N
SI

TY

0

ZrC

!

!

!

!

!

!

!
!

!



 341 

 

The measured lattice parameter for ZrPM-99-800-1475 sample was 0.4697 nm. 

(See Appendix F for details.) The value of the lattice parameter is close to the 

stoichiometric value reported for ZrC. Assuming that there was no dissolved oxygen in 

the lattice, the solid density of ZrC is given by: 

 

321
233 /62.610

10022.6)4697.0(
)01.121224.911(4 cmg=×

××
×+×   (5-22) 

 

The solid density of the ZrPM-99-800-1475 sample was estimated with the 

following assumptions:  (i) The zirconium carbide phase was oxygen-free and had the 

stoichiometric composition.  The solid density of the ZrC phase was given by equation  

5-22.  (ii) The “free” carbon concentration was 2.6 wt% and the carbon density was         

2 g/cm3.  Based on these assumptions, the solid density of the ZrPM-99-800-1475 

powder is given by: 

 

3/25.6

2
6.2

62.6
4.97
100 cmg=
+

    (5-23) 

 

The pressing and processing conditions for powder compacts were exactly same 

as described in section 5.6.2.2.1. The bulk densities of these samples, determined from 

geometric dimensions, are shown in Table 5.59. (The relative densities were calculated 

using the solid density value given in equation 5-23.) The percentage weight losses due to 

binder burnout are also shown in Table 5.59. The weight losses due to the binder burnout  
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As-Dry Pressed After 1150oC (2 h) Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight (g) 
(As-Dry 
Pressed) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 

(%) 

% Weight 
Loss 

1 2.97  47.5 0.4118 2.92 46.7 1.7 
2 2.99  47.8 0.4127 2.93 46.9 2.1 
3 2.98  47.7 0.4199 2.92 46.7 2.0 
4 2.98  47.7 0.4131 2.92 46.7 2.2 
5 2.99  47.8 0.4153 2.94 47.0 2.1 

Average 2.98 47.7 - 2.93 46.9 2.0 
 

 

were essentially the same as observed for the ZrPM-87 and ZrPM-94 samples (sections 

5.6.2.2.1 and 5.6.2.3.1). Bulk density and relative density values after binder burnout, 

determined from geometric dimensions, are also shown in Table 5.59. 

 

 

5.6.2.4.2 Sintering/Heat Treatment 

Figures 5.63 and 5.64 show XRD patterns for the ZrPM-99-800-1475 powder and 

for samples sintered at temperatures in the range of 1600oC to 1950oC. Zirconium carbide 

was the only crystalline phase observed in the samples heat treated at temperatures 

≥1475oC.  

 

 

 

Table 5.59 Compact densities after dry pressing and compact density and weight loss 
after 1150oC heat treatment. 
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Figure 5.63 X-ray diffraction patterns for ZrPM-99 samples heat treated at 
temperatures in the range of 1475 to 1600oC. 
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Figure 5.64 X-ray diffraction patterns for ZrPM-99 samples heat treated at 
temperatures in the range of 1800 to 1950oC. 
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 Table 5.60 lists percentage weight losses for ZrPM-99-800-1475 powder 

compacts which were sintered at temperatures in the range of 1600-1950oC.  The table 

also shows weight loss values which were corrected for adsorbed moisture by applying 

the same correction factor (i.e., 1.5 wt%) that was used for the ZrPM-87 samples 

discussed in section 5.6.2.2.1.  Figure 5.65 shows a plot of the corrected weight loss vs. 

sintering temperature for the samples.  The weight loss of ~2.5 wt% for the 1600oC 

ZrPM-99 was presumably due to CTR reactions in which oxygen dissolved the ZrC 

lattice was removed.  The small additional weight losses (~0.8 wt%) that occurred for 

heat treatments above 1600oC were also presumably associated with the same type of 

CTR reactions.  The high temperature weight loss behavior is similar to that observed in a 

sample with similar pyrolyzed composition, i.e., ZrPM-45-800-1475 (section 5.2.1.3), in 

that most of the weight loss was completed after the 1600oC heat treatment. 

 An estimated value of the solid density of the ZrPM-99-800-1475-1900 sample 

was used to calculate relative densities for samples sintered in the temperature range of 

1600-1950oC.  This was done because the CTR reaction was substantially completed 

after the 1600oC heat treatment.  Although the weight loss data show that some limited 

CTR reactions still occurred at higher temperatures, the solid densities values were not 

expected to vary substantially for samples sintered over the range of the 1600-1950oC.  

As noted in section 5.6.2.2.2, the actual variation in solid density values in this 

temperature range was probably well within the range of the error associated with the 

estimation of the solid density value for the 1900oC ZrPM-99 sample.  The solid density 

for this sample was estimated by assuming it was an oxygen-free, carbon-deficient 
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zirconium carbide, i.e., ZrCx (where x <1).  Table 5.48 shows that the carbon 

concentration for the ZrPM-94-800-1900 sample was 10.8 wt%.  Assuming that the 

sample consisted only of Zr and C, the calculated value for x is 0.92, i.e., the estimated 

formula for the carbon-deficient zirconium carbide is ZrC0.92.  The measured lattice 

parameter for the ZrPM-99-800-1900 sample was 0.4696 nm.  (See Appendix F for 

details.)  Using the above information, the solid density for the ZrPM-94-800-1900 

sample is given by: 

 

321
233 /56.610

10022.6)4696.0(
)01.1292.0224.911(4 cmg=×

××
×+×   (5-24) 

 

Table 5.60 shows the bulk density values, determined from geometric 

measurements, and the corresponding calculated relative density values for the ZrPM-99 

samples sintered at temperatures in the range of 1600-1950oC. The table also lists the 

percentage shrinkage in the diameter and thickness for each sample. Figure 5.66 shows 

plots of the diameter and thickness shrinkages vs. sintering temperature. The shrinkage 

behavior in the range of 1600-1950oC showed some anisotropy, especially for the 1900oC 

and 1950oC samples. This behavior was consistent with the results in sections 5.6.1.1.2 

(Table 5.38) and 5.6.1.3.2 (Table 5.42) in that more shrinkage anisotropy was observed in 

samples with “carbon-rich” compositions. Figure 5.67 shows plots of bulk density and 

relative density vs. sintering temperature, based on measurements from geometric 

dimensions, of the samples. The relative density value of the sample sintered at 1950oC 

was close to 100%. 
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Shrinkage (%) Pellet 
# 

Temperature 
(oC) Diameter Thickness 

Bulk 
Density* 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss 

(wt%) 

Corrected 
Weight 

Loss 
(wt%) 

3 1600 10.47 12.15 4.04 61.6 3.95 2.45 

4 1725 18.01 19.56 5.24 79.9 4.13 2.63 

1 1800 22.20 22.98 6.06 92.4 4.58 3.08 

2 1900 23.15 25.98 6.50 99.1 4.70 3.20 

5 1950 23.14 26.16 6.53 99.5 4.71 3.21 

 
* Determined from the sample dimensions. 
 

 

Table 5.61 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for the some of the samples shown in Table 5.60 

The measurements for each sample were repeated at least twice. The individual and 

average values are listed in Table 5.61.  

The open porosity value for the 1600oC ZrPM-99 sintered sample is considered 

unreliable for the same reason discussed in section 5.6.2.2.2. (The summation of the 

relative density and the open porosity is ~91% which implies that the sample contains    

9% closed porosity. This does not seem likely for a sample in the early stage of 

sintering.)[91] The open porosity value for the sample sintered at 1800oC is more 

reasonable. However, it is somewhat surprising that the calculated closed porosity (i.e., 

~0.4%) is so low in a sample sintered to ~91% relative density.  (The calculated closed 

porosity is given by:  [100 - relative density - open porosity].)  If the open porosity value 

Table 5.60 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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is accurate, this suggests that the estimated solid density used to calculate the relative 

density may have been too low.  The open porosity decreased to zero for the 1900oC and 

1950oC sintered samples.  This is consistent with the high relative densities for these 

samples. 

Figure 5.68 shows plots of the bulk density (determined by the Archimedes 

method) and the calculated relative density as a function of sintering temperature for the 

ZrPM-97 samples. The calculated relative density value was ~100% for the sample 

sintered at 1950oC.  However, as noted earlier, the solid density used for the relative 

density calculation may have been too low. Nevertheless, it is still clear that high relative 

densities were obtained in these samples. Figure 5.69 shows plots comparing the bulk 

density values (for various sintering temperatures) that were determined from the 

Archimedes and geometric measurement methods.  The two methods gave similar bulk 

density values for samples sintered at temperatures in the range of 1725-1950oC. 

 

 

 

 

Pellet # Temperature 
(oC) 

Open Porosity* (%) Bulk Density* 
(g/cm3) 

Relative Density 
(%) 

3 1600 26.4 (25.7, 26.9, 26.6) 4.22 (4.22, 4.33, 4.10) 64.3 (64.3, 66.0, 62.5) 
1 1800   8.6 (9.2, 7.9) 5.97 (6.00, 5.94) 91.0 (91.5, 90.5) 
2 1900   0.0 (0.0, 0.0) 6.53 (6.53, 6.53) 99.5 (99.5, 99.5) 
5 1950   0.0 (0.0, 0.0) 6.55 (6.54, 6.55) 99.8 (99.7, 99.8) 

 
* Determined by the Archimedes method. When more that one measurement was made, 

the individual values are listed in the parenthesis.  
 

Table 5.61 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
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Figure 5.65 Plot of corrected weight loss vs. sintering temperature for ZrPM-99 
powder compacts that were initially heat treated at 1150oC (2 h). The 
compacts were prepared with ZrPM-99-800-1475 powder. 
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Figure 5.66 Plots of thickness and diameter shrinkage vs. sintering temperature 
for ZrPM-99 powder compacts that were initially heat treated at 
1150oC (2 h). The compacts were prepared with ZrPM-99-800-1475 
powder. 
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Figure 5.67 Plots of relative density and bulk density vs. sintering temperature for 
ZrPM-99 powder compacts that were initially heat treated at 1150oC 
(2 h). Bulk densities were determined by measurements of the sample 
dimensions. 
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Figure 5.68 Plots of relative density and bulk density vs. sintering temperature for 
ZrPM-99 powder compacts that were initially heat treated at 1150oC 
(2 h). Bulk densities were determined by the Archimedes method. 
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Figure 5.69 Plots of bulk density vs. sintering temperature for ZrPM-99 powder 

compacts that were initially heat treated at 1150oC (2 h). Bulk 
densities were determined by the geometric and Archimedes 
methods. 
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5.6.2.5 ZrPM-97 

5.6.2.5.1 Processing Before Sintering 

Dried powder was sieved and pyrolyzed exactly as described in section 5.6.2.2.1. 

The C/Zr molar ratio was 3.25 for a sample (initially dried at 120oC) that was pyrolyzed 

at 1025oC for 2 h. (This ratio was estimated from the carbon content of 24.1 wt% 

measured by Leco Corp.)  The pyrolyzed sample (~8 g) was heat treated at 1500oC for    

2 h in a flowing argon (~500 ml/min) atmosphere in the 3-zone lindberg furnace. The 

specific surface area of the CTR powder was 30 m2/g.  

The ZrPM-97-800-1500 sample had higher specific surface area than the ZrPM-

87-800-1425 (24 m2/g), ZrPM-94-800-1475 (16 m2/g), and ZrPM-99-800-1475 (16 m2/g) 

samples even though the CTR temperature was the highest among the four samples (i.e., 

1500oC vs. 1425-1475oC).  This is attributed to the carbon-rich composition of the ZrPM-

97 sample.  It is expected that the ZrPM-97 sample had more “free” carbon compared to 

the other samples.   

 Table 5.62 shows particle size distribution data for the 10 min-milled ZrPM97-

800-1500 powder. Particle size distribution plots are shown in Figure 5.70.  The results 

are consistent with those discussed in section 5.6.2.3.1 in that the "carbon-rich" ZrPM-97 

sample shows less aggregation compared to the corresponding "oxide-rich" ZrPM-87 

(Figure 5.44) and ZrPM-94 (Figure 5.53) samples.  It was suggested in section 5.2.2.3 

that sintering of primary particles is inhibited in samples with more “free” carbon and/or 

it is promoted in samples with more free zirconia. 

Figure 5.71 shows the XRD pattern for the ZrPM-97-800-1500 sample.  The only 

crystalline phase present was ZrC.  However, this sample should also have “free” 
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(amorphous) carbon based on the carbon concentration (24.1 wt%) in the 1025oC-

pyrolyzed material.  The carbon concentration for the ZrPM-97-800-1500 sample was not 

measured.  However, it was estimated using the measured concentrations for two other 

carbon-rich samples, i.e., ZrPM45-800-1475 and ZrPM61-350-800-1475.  Table 5.63 

shows that a value of 14.6 wt% carbon was estimated (by interpolation) for the ZrPM-97-

800-1500 sample.  Using this value and assuming that the sample consisted only of Zr 

and C, the estimated “free” carbon concentration was ~3.4 wt%.  

 

 

 

 

 Diameter (µm) 
Mean 0.08 

Modes* 0.06, 0.19 
D90 0.18 
D50 0.06 
D10 0.05 

Standard Deviation 0.06 
 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 
 

 

 

 

 

 

Table 5.62 Particle size distribution data for milled ZrPM-97-800-1500 powder 
sample.  
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Figure 5.70 Particle size distribution plots for the 10 min-milled ZrPM-

97-800-1500 powder sample:  cumulative frequency plot 
(top) and relative frequency plot (bottom). 
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The measured lattice parameter for the ZrPM-97-800-1500 sample was 0.4697 

nm. (See Appendix F for details.) The value of the lattice parameter is close to the 

stoichiometric value reported for ZrC. Assuming that there was no dissolved oxygen in 

the lattice, the solid density of the ZrC is given by: 

321
233 /62.610

10022.6)4697.0(
)01.121224.911(4 cmg=×

××
×+×   (5-25) 

Figure 5.71 X-ray diffraction pattern for a ZrPM-97-800 pyrolyzed sample that 
was heat treated at 1500oC (2 h). 
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The solid density of the ZrPM-97-800-1500 sample was estimated with the 

following assumptions:  (i) The zirconium carbide phase was oxygen-free and had a 

stoichiometric (ZrC) composition.  The solid density of the ZrC phase was given by 

equation 5-25.  (ii) The “free” carbon concentration was 3.4 wt% and the carbon density 

was 2 g/cm3.    Therefore, the solid density of ZrPM-97-800-1500 material is given by: 

 

3/14.6

2
4.3

62.6
6.96
100 cmg=
+

    (5-26) 

 

The pressing and processing conditions for the powder compacts were exactly 

same as described in section 5.6.2.2.1. The bulk densities of these samples, determined 

from geometric dimensions, are shown in Table 5.64. (The relative densities were 

calculated using the solid  density  value given in equation 5-26.)  The percentage  weight  

 

 

 

Sample Temperature (oC) Total Carbon (wt%) 

ZrPM-45 1025         23.3 
ZrPM-97 1025         24.1 
ZrPM-61-350 1025         27.1 
   
ZrPM-45-800 1475         13.3 
ZrPM-97-800 1500 14.6 (interpolated) 
ZrPM-61-350-800 1475         19.4 

 

 

Table 5.63. Carbon concentrations of ZrPM-45, ZrPM-61, and ZrPM-97 pyrolyzed and 
CTR powders. 
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As-Dry Pressed After 1150oC (2 h) Pellet # 
Bulk 

Density 
(g/cm3) 

Relative 
Density 

(%) 

Weight (g) 
(As-Dry 
Pressed) 

Bulk 
Density 
(g/cm3) 

Relative 
Density 

(%) 

% Weight 
Loss  

1 2.74 44.6 0.4140 2.57 41.9 2.4 
2 2.73 44.5 0.4127 2.58 42.0 2.3 
3 2.73 44.5 0.4140 2.58 42.0 2.3 
4 2.73 44.5 0.4127 2.60 42.3 2.0 
5 2.75 44.8 0.4192 2.61 42.5 2.0 

Average 2.74 44.6 - 2.59 42.2 2.2 
 

 

losses due to binder burnout are also shown in Table 5.64. The weight losses due to the 

binder burnout were essentially the same as observed for the corresponding ZrPM-87, 

ZrPM-94, and ZrPM-99 samples: (sections 5.6.2.2.1-5.6.2.4.1). Bulk density and relative 

density values after binder burnout, determined from geometric dimensions, are also 

shown in Table 5.64. 

 

5.6.2.5.2 Sintering/Heat Treatment 

Figures 5.72 and 5.73 show XRD patterns for the ZrPM-97-800-1500 powder and 

for samples sintered at temperatures in the range of 1600oC to 1950oC. Zirconium carbide 

was the only crystalline phase observed in the samples heat treated at temperatures 

≥1500oC.  

 

Table 5.64 Compact densities after dry pressing and compact density and weight loss 
after 1150oC heat treatment. 
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Figure 5.72 X-ray diffraction patterns for ZrPM-97 samples heat treated at 
1500oC and 1600oC. 
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Figure 5.73 X-ray diffraction patterns for ZrPM-97 samples heat treated at 
temperatures in the range of 1800 to 1950oC. 
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Table 5.65 lists percentage weight losses for ZrPM-97-800-1500 powder 

compacts which were sintered at temperatures in the range of 1600-1950oC.  The table 

also shows weight loss values which were corrected for adsorbed moisture by applying 

the same correction factor (i.e., 1.5 wt%) that was used for the ZrPM-87 samples 

discussed in section 5.6.2.2.1.  Figure 5.74 shows a plot of the corrected weight loss vs. 

sintering temperature for the samples.  The corrected weight loss of ~5.1 wt% for the 

1600oC ZrPM-97 is larger than the weight losses observed in the corresponding ZrPM-

87, ZrPM-94, and ZrPM-99 samples.  This is rather surprising considering the higher 

carbon concentration for the ZrPM-97 samples and the fact that there was essentially no 

difference in the XRD patterns for the ZrPM-97-800-1500 and ZrPM-97-800-1600 

samples.  The reason for this behavior is not understood.  One speculative suggestion is 

that more moisture was adsorbed in the ZrPM-97 sample (i.e., more than the assumed 

value of 1.5 wt%) because it had a higher specific surface area (and presumably a larger 

percentage of fine pores) compared to the other samples. 

 An estimated value of the solid density of the ZrPM-97-800-1500-1900 sample 

was used to calculate relative densities for samples sintered in the temperature range of 

1600-1950oC.  This was done because the CTR reaction was substantially completed 

after the 1600oC heat treatment.  This was indicated by the observation that only small 

weight losses occurred for heat treatments at temperatures >1600oC (Figure 5.74).  In 

addition, the XRD patterns showed essentially no changes (Figures 5.72 and 5.73) for 

samples heat treated in the range of 1600-1950oC.  As noted in section 5.6.2.2.1, the 

actual variation in solid density values in this temperature range was probably well within 

the range of the error associated with the estimation of the solid density value for the 
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1900oC ZrPM-97 sample.  The solid density of the ZrPM-97-800-1900 sample was 

estimated with the following assumptions:   

(1) The zirconium carbide phase was oxygen-free and had the stoichiometric 

composition.  The solid density of the ZrC phase was calculated using the measured 

lattice parameter of 0.4696 nm (Appendix F): 

 

 321
233 /62.610

10022.6)4696.0(
)01.121224.911(4 cmg=×

××
×+×  (5-27) 

 

(2) The amount of “free” carbon in the ZrPM-97-800-1900 sample was estimated based 

on the overall carbon concentration.  Table 5.48 shows that the measured carbon 

concentration was 12.6 wt% (determined by Leco Corp.). Using this value and assuming 

that the sample consisted only of Zr and C, the estimated free carbon concentration was 

~1.1 wt%. 

Using the above information, the solid density for the ZrPM-94-800-1900 sample is 

given by: 

 

3/46.6

2
1.1

62.6
9.98
100 cmg=
+

   (5-28) 

   

Table 5.65 shows the bulk density values, determined from geometric 

measurements, and the corresponding calculated relative density values for the samples 

sintered at temperatures in the range of 1600-1950oC. The table also lists the percentage 

shrinkage in the diameter and thickness for each sample.  
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Shrinkage (%) Pellet 
# 

Temperature 
(oC) Diameter Thickness 

Bulk 
Density* 
(g/cm3) 

Relative 
Density 

(%) 

Weight 
Loss 

(wt%) 

Corrected 
Weight 

Loss 
(wt%) 

1 1600 13.23 16.32 3.87 59.9 6.63 5.13 

4 1725 21.80 24.70 5.30 82.0 7.21 5.71 

2 1800 23.38 26.21 5.40 83.6 8.21 6.71 

5 1900 25.24 30.26 6.26 96.9 7.55 6.05 

3 1950 26.16 30.68 6.33 98.0 7.73 6.23 

 
* Determined from the sample geometric dimensions. 

 

 

Figure 5.75 shows plots of the diameter and thickness shrinkages vs. sintering 

temperature. The shrinkage behavior in the range of 1600-1950oC showed significant 

anisotropy. The reason for the shrinkage anisotropy is not understood.  However, it is 

apparent that the effect is more significant in carbon-rich samples (i.e., samples with 

more free carbon).  Significant shrinkage anisotropy was observed for the "carbon-rich" 

ZrPM-45 and ZrPM-61 samples described in sections 5.6.1.1.2 (Table 5.38) and 5.6.1.3.2 

(Table 5.42).  In contrast, there was less shrinkage anisotropy for the "oxide-rich" 

samples ZrPM-58 (section 5.6.1.2.2, Table 5.46), ZrPM-87 (section 5.6.2.2.2, Table 5.51 

and Figure 5.48), and ZrPM-94 (section 5.6.2.3.2, Table 5.55 and Figure 5.57). 

 

 

 

Table 5.65 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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Figure 5.74 Plot of corrected weight loss vs. sintering temperature for ZrPM-97 
powder compacts that were initially heat treated at 1150oC (2 h). The 
compacts were prepared with ZrPM-97-800-1500 powder. 
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Plots of thickness and diameter shrinkage vs. sintering temperature
for ZrPM-97 powder compacts that were initially heat treated at
1150oC (2 h). The compacts were prepared with ZrPM-97-800-1500
powder. 
366 
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Figures 5.76 shows plots of bulk density and relative density vs. sintering 

temperature, based on measurements from the geometric dimensions of the samples. The 

relative density value of the sample sintered at 1950oC was ~98%. The 1800oC data point 

does not follow well the trend exhibited by the other data points. It is possible that a piece 

broke off from the sample.  This would have resulted in an overestimation of the sample 

volume (which was calculated from the diameter and thickness by assuming a perfect 

cylindrical shape). In turn, this would have resulted in a low bulk density value.  The loss 

of a piece of the sample is also suggested by the anomalously high weight loss for the 

1800oC sample, as shown in Table 5.65 and Figure 5.74. 

Table 5.66 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for the some of the samples shown in Table 5.65. 

The measurements for each sample were repeated at least twice. The individual and 

average values are listed in Table 5.66. Figure 5.77 shows plots of the bulk density 

(determined by the Archimedes method) and the calculated relative density as a function 

of sintering temperature for the ZrPM-97 samples. 

The open porosity values for the 1600oC sintered sample is considered unreliable 

for the same reason discussed in section 5.6.2.2.2. It is also possible that the open 

porosity values for the 1800-1950oC samples are unreliable.  This is because the 

summation of the open porosity (OP) and relative density (RD) values at each 

temperature exceeded 100%.  Although the open porosity measurement could be 

inaccurate, another possibility is that the assumed value for the solid density was too low.  

This is suggested because the problem (of OP+RD > 100%) was not observed in the 

corresponding ZrPM-87, ZrPM-94, and ZrPM-99 sintered samples.  In any case, the error 
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seems to be relatively small because the summation of the open porosity and relative 

density values was in the range of 101-102% for all the samples.   

The ZrPM-97 samples were the only ones in the series (i.e., ZrPM-87, -94, -97, 

and -99) in which open porosity was detected in the 1900oC and 1950oC sintered samples 

(see Tables 5.52, 5.56, 5.61, and 5.66).  If the open porosities are accurate, then the 

relative densities for the 1900oC and 1950oC ZrPM-97 samples are really no higher than 

97.2% and 98.1%, respectively.  It seems reasonable that the "final" relative densities in 

the ZrPM-97 samples would be lower compared to the other samples.  This is because the 

ZrPM-97 samples are apparently the only ones in which free carbon remains after heat 

treatment at 1900oC and 1950oC.  Previous investigations with SiC have shown that the 

addition of small amounts of “free” carbon is highly beneficial for densification of 

powder compacts.[92,93]  However, addition of larger amounts of carbon is detrimental 

for densification of SiC powder compacts.[90]  It has also been shown that densification 

of ZrC is inhibited by carbon additions in the range of 5-10 wt%.[52]  In the present 

study, the calculated amount of free carbon in the ZrPM-97-800-1900 sample was      

~1.1 wt%.  Although this may seem like a small amount of carbon, it should be 

recognized that the amount is more significant when the difference in carbon and 

zirconium carbide densities are considered.  Using the density values assumed earlier in 

this section, the amounts of carbon and zirconium carbide in the sample on a volume 

basis are 3.6 vol% and 96.4%, respectively.  
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Pellet 
# 

Temperature 
(oC) 

Open Porosity* (%) Bulk Density* 
(g/cm3) 

Relative Density (%) 

1 1600 27.9 (29.1, 27.2, 27.3) 3.94 (3.93, 3.97, 3.92) 61.0 (60.8, 61.5, 60.8) 
2 1800   9.8 (10.7, 9.6, 9.2) 5.92 (5.90, 5.93, 5.94) 91.6 (91.3, 91.8, 92.0) 
5 1900   2.8 (3.1, 2.7, 2.5) 6.38 (6.37, 6.38, 6.39) 98.8 (98.6, 98.8, 98.9) 
3 1950   1.9 (1.5, 2.2) 6.41 (6.42, 6.40) 99.2 (99.4, 99.1) 

 
* Determined by the Archimedes method. When more that one measurement was made, 

the individual values are listed in the parenthesis.  
   

 

 Figure 5.78 shows plots comparing the bulk density values (for various sintering 

temperatures) that were determined from the Archimedes and geometric measurement 

methods.  The large difference in values observed for the 1800oC ZrPM-97 sample 

presumably reflects a major error in the geometric measurement, as discussed earlier in 

this section. However, it is still noted that the difference between the bulk density values 

determined by the two methods for the 1900oC and 1950oC ZrPM-97 samples is slightly 

larger than observed for the corresponding ZrPM-87, ZrPM-94, and ZrPM-99 samples 

(see sections 5.6.2.2.2 (Figure 5.51), 5.6.2.3.2 (Figure 5.60), and 5.6.2.4.2 (Figure 5.69), 

respectively).  One possible explanation is that there was some difficulty in achieving 

complete penetration of water into the pores in the ZrPM-97 samples. (The ZrPM-87, 

ZrPM-94, and ZrPM-99 samples showed zero open porosity after the 1900oC and 1950oC 

heat treatments, while the ZrPM-97 samples still showed ~2% open porosity.) 

 

Table 5.66 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
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Figure 5.76 Plots of relative density and bulk density vs. sintering temperature for 
ZrPM-97 powder compacts that were initially heat treated at 1150oC 
(2 h). Bulk densities were determined by measurements of the sample 
dimensions. 
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Figure 5.77 Plots of relative density and bulk density vs. sintering 
temperature for ZrPM-97 powder compacts that were initially 
heat treated at 1150oC (2 h). Bulk densities were determined by 
the Archimedes method. 
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Figure 5.78 Plots of bulk density vs. sintering temperature for ZrPM-97 powder 
compacts that were initially heat treated at 1150oC (2 h). Bulk 
densities were determined by the geometric and Archimedes 
methods. 
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5.6.2.6 Comparison of ZrPM-87, 94, 97, and 99 

Figures 5.79 and 5.80 show plots of bulk density, determined by the geometric 

and Archimedes measurement methods, respectively, as a function of sintering 

temperature for the ZrPM-87, ZrPM-94, ZrPM-97, and ZrPM-99 samples.  These plots 

show that the overall trend in densification is similar for all samples.  However, it was not 

possible to draw any significant conclusions regarding differences in the densification 

behavior that might be due to compositional differences.  This is because the samples 

have different solid densities.  

 Figure 5.81 shows a plot of relative density, calculated from the bulk density data 

using the geometric measurements, as a function of sintering temperature for the ZrPM-

87, ZrPM-94, ZrPM-97, and ZrPM-99 samples. Although there is substantial uncertainty 

in the calculation of the relative densities, the results in Figure 5.81 suggest that 

composition has relatively little effect on densification behavior, i.e., for the range of 

compositions investigated in this study.  There does appear to be a small enhancement of 

the densification rate for the "oxide-rich" ZrPM-87 samples.  This is consistent with 

results reported by Min-Haga et al.[54] 
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Figure 5.79 Plots of bulk density (determined by geometric measurements) vs. 
sintering temperature for ZrC-based powder compacts. 
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Figure 5.80 Plots of bulk density (determined by the Archimedes method) vs. 
sintering temperature for ZrC-based powder compacts. 
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Figure 5.81 Plots of relative density (based on using geometric 
measurements) vs. sintering temperature for ZrC-based 
powder compacts. 
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Figure 5.82 shows plots of the shrinkage in sample diameter (determined from 

geometric measurements) as a function of sintering temperature for the ZrPM-87, ZrPM-

94, ZrPM-97, and ZrPM-99 samples. The differences in the diameter shrinkage are very 

similar for the ZrPM-87, ZrPM-94, and ZrPM-99 samples, while the ZrPM-97 sample 

shows larger shrinkages.  The larger shrinkages for the latter sample are presumably 

associated with the lower relative densities for the starting samples (as-dry pressed and 

1150oC powder compacts).  The diameter shrinkage at 1600oC for each sample in a given 

series (ZrPM-87, ZrPM-94, ZrPM-97, and ZrPM-99) was subtracted from the 

corresponding shrinkage at each temperature in the range from 1600-1950oC.  The 

difference in shrinkage was plotted as a function of temperature.  Figure 5.83 shows the 

results for each series of samples. There was relatively little difference in shrinkage 

behavior during sintering at temperatures above 1600oC.  The ZrPM-99 and ZrPM-97 

samples tended to have slightly higher values than the ZrPM-87 and ZrPM-94 samples. 

 Figure 5.84 shows plots of the shrinkage in sample thickness (determined from 

geometric measurements) as a function of sintering temperature for the ZrPM-87, ZrPM-

94, ZrPM-97, and ZrPM-99 samples.  The ZrPM-87 and ZrPM-94 samples showed very 

similar thickness shrinkages over the entire range of temperatures, while the ZrPM-99 

samples showed slightly larger shrinkages at the higher temperatures and the ZrPM-97 

sample shows considerably larger shrinkages for all temperatures.  As noted earlier, the 

larger shrinkages for the ZrPM-97 samples are presumably related to the lower starting 

relative density.  The larger shrinkage for the ZrPM-99 sample (compared to the ZrPM-87 

and ZrPM-94 samples) at the highest temperature (1950oC) was unexpected because the 

calculated  relative  densities of  the  starting  materials were very similar for the  ZrPM-87,  
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Figure 5.82 Plots of diameter shrinkage vs. sintering temperature for ZrC-
based powder compacts. 
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Figure 5.83 Plots of the difference in diameter shrinkage vs. sintering 
temperature for ZrC-based powder compacts. 
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Figure 5.84 Plots of thickness shrinkage vs. sintering temperature for ZrC-based 
powder compacts. 
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ZrPM-94, and ZrPM-99 samples.  This result suggests that there were errors in the 

estimated starting relative densities of the samples.  This is suggested because there is no 

evidence indicating that the “final” (1950oC) relative density for the ZrPM-99 sample was 

significantly different from the “final” relative densities of the ZrPM-87 and ZrPM-94 

samples. 

 The thickness shrinkage at 1600oC for each sample in a given series (ZrPM-87, 

ZrPM-94, ZrPM-97, and ZrPM-99) was subtracted from the corresponding shrinkage at 

each temperature in the range from 1600-1950oC.  The difference in shrinkage was plotted 

as a function of temperature.  Figure 5.85 shows the results for each series of samples. The 

ZrPM-97 and ZrPM-99 samples showed somewhat larger differences in shrinkage at most 

temperatures compared to the ZrPM-87 and ZrPM-94 samples, especially at the higher 

temperatures.  As indicated earlier, the result for the ZrPM-97 samples is attributed to the 

lower starting density.  In contrast, the higher values for the ZrPM-99 samples are more 

likely due to some errors in calculating the starting densities (i.e., either for the ZrPM-99 

sample and/or for the ZrPM-87 and ZrPM-94 samples.) 

 Figure 5.86 shows plots of the weight loss as a function of sintering temperature 

for the ZrPM-87, ZrPM-94, ZrPM-97, and ZrPM-99 samples. The weight loss at 1600oC 

for each sample in a given series (ZrPM-87, ZrPM-94, ZrPM-97, and ZrPM-99) was 

subtracted from the corresponding weight loss at each temperature in the range from 

1600-1950oC.  The difference in weight loss was plotted as a function of temperature.  

Figure 5.87 shows the results for each series of samples. (Note that the y-axis scale has 

been expanded for this plot.)  Figures 5.86 and 5.87 illustrate that most of the differences 

in  weight  loss  between  the  different  samples  had  occurred  during  the  1600oC  heat  
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Figure 5.85 Plots of the difference in thickness shrinkage vs. sintering 
temperature for ZrC-based powder compacts. 
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Figure 5.86 Plots of weight loss vs. sintering temperature for ZrC-based 
powder compacts. 
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Figure 5.87 Plots of the difference in weight loss vs. sintering 
temperature for ZrC-based powder compacts. 
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treatment.  The reasons for the large differences during this heat treatment are not 

understood.  The relatively high weight loss at 1600oC for the ZrPM-87 sample was 

anticipated because the original CTR temperature was lower compared to the other 

samples (1425oC).  In contrast, the high weight loss at 1600oC for the ZrPM-97 was 

surprising since the original CTR temperature was 1500oC.  Figure 5.87 illustrates that 

the weight loss differences for the various samples were relatively small during heat 

treatment at temperatures >1600oC.  (As noted previously, the anomalous result at 

1800oC for the ZrPM-97 sample was probably due to a piece of the sample breaking off.)  

However, it is noted that the weight losses are leveling off more at the highest 

temperatures for the ZrPM-94, ZrPM-97, and ZrPM-99 samples compared to the ZrPM-

87 sample.  This difference is attributed to the highly "oxide-rich" composition of the 

ZrPM-87 sample.  As shown in section 5.6.2.2.2 (Figures 5.45 and 5.46), the ZrPM-87 

samples still contained a small amount of ZrO2 after heat treatment at each temperature.  

Hence, small weight losses would be expected to occur with continued high temperature 

heat treatment until the zirconia is removed, either by reaction with the zirconium carbide 

or by direct volatilization. 
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5.6.3 Dilatometry 

5.6.3.1 Processing Before Sintering 
 

Dilatometry experiments were carried out using powder from batch ZrPM-45. 

Dried powder was sieved through a 150-mesh screen and pyrolyzed at 800oC for 2 h. The 

C/Zr molar ratio was 3.1 for a sample (initially dried at 120oC) that was pyrolyzed at 

1025oC, as discussed in section 5.6.1.1.1.  A pyrolyzed sample (~4 g) was heat treated 

first at 1400oC (2 h) and then at 1475oC (2 h) in flowing argon (~100 ml/min) atmosphere 

in the 3-zone lindberg furnace. 

The specific surface area for the ZrPM-45-800-1400-1475 sample was 13 m2/g.  

This value is lower than the value of 48 m2/g that was reported in section 5.6.1.1 for the 

ZrPM-45-800-1350-1400 sample. This is attributed to the higher maximum CTR reaction 

temperature for the ZrPM-45-800-1400-1475 sample.   The specific surface area for this 

sample is also lower than the value of 23 m2/g that was reported in section 5.2.1.3 for the 

ZrPM-45-800-1475 sample.  This is probably due to the additional heat treatment time at 

1400oC for the ZrPM-45-800-1400-1475 sample.  

Table 5.67 shows particle size distribution data for a 10 min-milled ZrPM-45-

800-1400-1475 powder. Particle size distribution plots are shown in Figure 5.88.  The 

particle size distribution is similar to the distribution reported in section 5.6.1.1 for the 

ZrPM-45-800-1350-1400 sample (Figure 5.37).  However, the latter sample contains ~3.8 

vol% of larger aggregated particles with sizes in the range of ~1.5 – 2.8 µm, while the 

former sample contains only ~1.1 vol% of smaller aggregated particles with sizes in the 

range of ~0.4 - 0.6 µm.  This difference is probably due to a difference in the milling 

procedure. The ZrPM-45-800-1400-1475 sample was milled using the "5 x 2 min" 
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method described in Chapter 4 (section 4.1.6).  The ZrPM-45-800-1350-1400 sample was 

milled sequentially for periods of 5, 5, 10 and 20 min (i.e., total time of 40 min). 

However, the walls of the milling vial were never scraped, to remove adhered powder, 

between each milling step. Despite the much longer milling time, the latter method was 

much less efficient because powder tended to cling to the walls of the vial and 

agglomerates were not broken down effectively. 

The particle size distribution for the 10 min-milled ZrPM-45-800-1400-1475 

powder (Figure 5.88) is even more similar to the distribution reported in section 5.2.1.3 

for the ZrPM-45-800-1475 sample (Figure 5.17).  A minor difference is that the 

distribution for the latter sample does not contain the aggregated particles with sizes in 

the range of ~0.4 - 0.6 µm. It is speculated that this reflects a difference in the initial 

degree of aggregation in the two powders, i.e., before milling.  The ZrPM-45-800-1400-

1475 powder had the additional heat treatment at 1400oC, so it may have been more 

aggregated before milling.  (The lower surface specific surface for this sample is 

consistent with this speculation.) 

  

 

 

 Diameter (µm) 
Mean 0.10 

Modes* 0.07, 0.19, 0.47 
D90 0.20 
D50 0.07 
D10 0.05 

Standard Deviation 0.07 
 
* Mode values are listed for each distinct peak in the accompanying relative frequency 

plot. 

Table 5.67 Particle size distribution data for the 10 min-milled ZrPM-45-800-1400-
1475 powder sample.  
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Figure 5.88 Particle size distribution plots for the 10 min-milled ZrPM-45-800-

1400-1475 powder sample:  cumulative frequency plot (top) and 
relative frequency plot (bottom). 
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The milled powder was mixed with 10 vol% polymer binder and plasticizer as 

described in section 4.3.1.1. Six powder compacts were uniaxially dry-pressed in a 6.4 

mm diameter die at 250 MPa. The bulk densities and relative densities of these samples, 

determined from the geometric dimensions, are shown in Table 5.68. (The relative 

densities were evaluated using the same solid density value of 6.44 g/cm3 determined 

(using equation 5-9) in section 5.6.1.1.1 for the ZrPM-45-800-1350-1400 sample.) The 

reason for the lower green density for pellets #2 and #3 (i.e., compared to pellet #'s 4-6) 

is not known.  The result was surprising because the pellets were prepared from the same 

milled powder.  It is noted, however, that the powders were mixed with binder and dry 

pressed at different times. The green densities for the ZrPM-45-800-1400-1475 samples 

(Table 5.68) were mostly lower than the green densities for the ZrPM-45-800-1350-1400 

samples (Table 5.37).  The reason for this difference is not understood.  The result was 

very surprising because the specific surface area was considerably higher for the ZrPM-

45-800-1350-1400 sample. 

The as-pressed compacts were heat treated at 1150oC for 2 h under flowing argon 

(100 ml/min) in a tube furnace (Model 55031). This resulted in burnout of the binder that 

was added to the powder. The percentage weight losses due to binder burnout are also 

shown in Table 5.68. The weight losses were close to the value expected (~1.8 wt%), as 

discussed in section 5.6.2.2.1. Bulk density and relative density values after binder 

burnout, determined from the geometric dimensions, are also shown in Table 5.68.  

The pellets were then heat treated or “pre-sintered” at 1490oC for 4 h exactly as 

discussed in section 5.6.1.1.1. The percentage weight losses during “pre-sintering” are 

shown in Table 5.68. The bulk density and relative density  values  for the  “pre-sintered”  
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As-Dry Pressed After 1150oC (2 h) After Pre-sintering Pellet 
# Bulk 

Density* 
(g/cm3) 

Relative 
Density 

(%) 

Bulk 
Density* 
(g/cm3) 

Relative 
Density 

(%) 

% Weight 
Loss 

(1150oC) 
Bulk 

Density* 
(g/cm3) 

Relative 
Density 

(%) 

% Weight 
Loss 

(1490oC) 

2 2.98 46.3 - - 2.3 3.77 56.9 2.8 
3 2.97 46.1 - - 2.1 3.45 52.1 2.9 
4 3.27 50.8 3.28 50.9 1.9 3.90 58.9 1.1 
5 3.21 49.8 3.10 48.1 2.4 3.95 59.7 0.5 
6 3.22 50.0 3.19 49.5 2.5 4.13 62.4 0.7 

 
* Determined from the sample geometric dimensions. 

 

 

samples, determined from the geometric dimensions, are also shown in Table 5.68. (The 

relative densities were calculated using the solid density value (6.62 g/cm3) given in 

equation 5-10, section 5.6.1.1.1.)  

 

5.6.3.2 Sintering/Heat Treatment 

The "pre-sintered" samples were sintered in the dilatometer, as described in 

Chapter 4 (section 4.3.1.3.2).  The samples were heated at 5oC/min to temperatures in the 

range of 1900-2200oC and then held at the maximum temperature for times in the range 

of 0-15 h.  

Table 5.69 shows the bulk density values, determined from geometric 

measurements, and the corresponding calculated relative density values for the samples 

sintered   at  temperatures  in  the  range of  1900-2200oC.   (The  relative  densities  were  

Table 5.68 Compact densities after dry pressing and compact density and weight loss 
after 1150oC heat treatment. 
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Shrinkage (%) Pellet 
# 

Temperature (oC)/ 
Time (h) Diameter Thickness 

Bulk 
Density* 
(g/cm3) 

 Relative 
Density 

(%) 

Weight Loss 
(wt%) 

2 2150/1 16.10 16.50 6.20 93.7 3.26 

3 2000/5 16.75 17.50 6.34 95.8 2.68 

4 2200/0 16.47 15.87 6.51 98.3 1.95 

5   1900/15 15.03 15.00 6.31 95.3 1.94 

6 2200/0 14.09 13.50 6.33 95.6 2.06 

 
* Determined from the geometric dimensions. 
 

 

calculated using the solid density (6.62 g/cm3 given in equation 5-10, section 5.6.1.1.2). 

The table also lists the percentage shrinkage in the diameter and thickness and the 

percentage weight loss for each sample.  

Table 5.70 shows open porosity, bulk density, and relative density values, 

determined by the Archimedes method, for the same samples shown in Table 5.69. 

Tables 5.69 and 5.70 show that there were significant differences in the densities 

obtained by the two measurements methods.  (In most cases, these differences are 

considerably larger than observed in other samples, such as the ZrPM-87, ZrPM-94, 

ZrPM-97, and ZrPM-99 samples in section 5.6.2.)   The reason for the large differences is 

not understood. 

 

 

Table 5.69 Densities (bulk and relative), percent shrinkages, and percent weight losses 
for sintered samples. 
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Pellet # Temperature (oC)/ 
Time (h) 

Open Porosity* 
(%) 

Bulk Density* 
(g/cm3) 

Relative 
Density (%) 

2 2150/1 n.a. n.a. n.a. 

3 2000/5 1.39 6.62 100 

4 2200/0 0.33 6.66 100 

5   1900/15 0.17 6.52      98.5 

6 2200/0 0.34 6.65 100 

 
* Determined by the Archimedes method. When more that one measurement was made, 

the individual values are listed in the parenthesis. 
 

  

 As described in Chapter 4 (section 4.3.1.3.2), the use of dilatometry for sintering 

studies requires a knowledge of the changes in thermal expansion (or contraction) that 

occur in the solid material during heating.  This information is used to extract the portion 

of the overall dimensional change of the sample that is due to any shrinkage (i.e., 

densification) that occurs during sintering.  Sintered pellet #4 (Tables 5.69 and 5.70) was 

used to study thermal expansion behavior in this study.  This sample was chosen for two 

reasons.  First, ZrPM-45 samples heat treated at or above 1900oC were expected to be 

nearly single-phase, nearly stoichiometric ZrC.  Second, pellet #4 had the highest relative 

density (lowest porosity) of all the sintered ZrPM-45 samples. 

 Figure 5.89 shows plots of the fractional change in length (∆L/Lo) vs. 

temperature (over the range 1600-2000oC) for four independent heat treatments using 

pellet #4.  Figure 5.90 shows corresponding plots of the thermal expansion coefficient vs.  

 

Table 5.70 Densities (bulk and relative) and percentage open porosity for sintered 
samples. 
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Figure 5.89 Plot of fractional change in length vs. temperature for four 
independent dilatometer experiments using a ZrPM-45-800-1400-
1475-1490-2200 sample which had a near-stoichiometric ZrC 
composition and a high relative density (~98 %). 
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Figure 5.90 Plot of thermal expansion coefficient vs. temperature for four 
independent dilatometer experiments using a ZrPM-45-800-
14001475-1490-2200 sample which had a near-stoichiometric ZrC 
composition and a high relative density (~98 %). 
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temperature (1600-2000oC) which was calculated from the data in Figure 5.89.  Figure 

5.91 shows a plot of the average thermal expansion coefficient vs. temperature (1600-

2000oC) which was determined by averaging the four independent runs in Figure 5.90.  

Table 5.71 lists the average thermal expansion coefficients and standard deviations at 

specific temperatures in the range of 1600-2000oC, as well as the average value and 

standard deviation for the entire temperature range. 

The thermal expansion coefficient data obtained in this study was compared with 

data reported by Houska.[93]  Figure 5.92 shows plots of the thermal expansion 

coefficient vs. temperature for the ZrPM-45-800-1400-1475-1490-2200 sample and for 

the data from reference 93.  It is evident that the ZrPM-45 sample had much higher 

thermal expansions coefficients over the entire range of temperatures that were used.  The 

reason for the difference in the thermal expansion coefficients in the two studies is not 

known.  However, the values obtained in this study are high relative to those reported by 

other investigators for several refractory carbides (i.e., ZrC, HfC, SiC, TiC).[3,23] 

Therefore, the data obtained in this study may not be reliable. 

 Figure 5.93 shows plots of the fractional change in length (∆L/Lo) vs. sintering 

temperature for pellets 5 and 6 (from Table 5.69).  Note that pellet 5 was heated to a 

maximum temperature of only 1900oC and then held for 15 h at this temperature, while 

pellet 6 was heated to a maximum temperature of 2200oC (with no hold time at 2200oC).  

Figure 5.94 shows plots of the percentage linear shrinkage vs. sintering temperature for 

pellets 5 and 6 after applying a correction for the average thermal expansion coefficient 

data shown in Figure 5.91.  The two samples show significant differences in the 

shrinkage  behavior  over the range  of temperatures (1500-1900oC) in  which the  heating  
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Temperature (oC) Thermal Expansion Coefficient  
(x 10-6 /oC) 

Standard Deviation 
(x 10-6 /oC) 

1600 11 0.4 

1650 11 0.5 

1700 11 0.6 

1750 11 0.7 

1800 11 0.7 

1850 12 0.8 

1900 12 0.8 

1950 12 0.8 

2000 12 0.9 

Average (1600-2000oC) 11 0.4 

 

 

 

 

Shrinkage (%) Bulk Density (g/cm3) 

Geometric Measurements (GM) Dilatometry 

Pellet 

Diameter Thickness Thickness 

GM Dilatometry 

5 15.0 15.0 16.1 6.31 6.55 

6 14.1 13.5 16.0 6.33 6.81 

 

 

 

Table 5.71 Average thermal expansion coefficient data for a ZrPM-45-800-1400-
1475-1490-2200 sample which had a near-stoichiometric ZrC composition 
and a high relative density (~98 %). 

Table 5.72 Bulk density and percent shrinkages from geometric measurements 
and dilatometry. 
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Figure 5.91 Plot of average thermal expansion coefficient vs. temperature for a 
ZrPM-45-800-1400-1475-1490-2200 sample which had a near-
stoichiometric ZrC composition and a high relative density (~98 %). 
The average value was obtained from the four independent 
experiments shown in Figure 5.90. 
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Figure 5.92 Plot of average thermal expansion coefficient vs. temperature for a 
ZrPM-45-800-1400-1475-1490-2200 sample and data from the 
reference 106. 

1500 1600 1700 1800 1900 2000 2100
0

5

10

15

20

25

30

 Average
 Houska

 

 
TH

ER
M

AL
 E

XP
AN

SI
O

N 
CO

EF
FI

CI
EN

T 
(x

 1
0-6

/o C)

TEMPERATURE(oC)



 399 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1500 1600 1700 1800 1900 2000 2100 2200 2300
-20

-15

-10

-5

0

5

 Pellet 5
 Pellet 6

 

 

FR
AC

TI
O

NA
L 

CH
AN

G
E 

IN
 L

EN
G

TH
 (L

 - 
L o/L

o)

TEMPERATURE(oC)

Figure 5.93 Plot of fractional change in length vs. temperature for two different 
ZrC-based powder compacts. 
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Figure 5.94 Plot of corrected fractional change in length vs. temperature for two 
different ZrC-based powder compacts. 
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conditions were the same.  It is not clear if these differences are due to instrumental 

considerations or due to differences in the characteristics of the initial powder compacts.  

In regard to the latter issue, Table 5.68 shows that the two samples had essentially the 

same densities after dry pressing.  However, the densities after the 1150oC and 1490oC 

heat treatments showed more significant differences.  The relative density of the 1490oC 

pellet 6 sample was almost 3% higher than the 1490oC pellet 5 sample. 

 The bulk density of pellets 5 and 6 were calculated based on the final (and 

maximum) linear shrinkage that was observed in Figure 5.94.  In order to make this 

calculation, it was necessary to assume that the shrinkage was isotropic.  Table 5.72 

shows the linear shrinkages (corrected for thermal expansion) and the calculated bulk 

density values. The table also includes the diameter and thickness shrinkages that were 

determined by measuring (with calipers) the sample dimensions before and after the heat 

treatment in the dilatometer.  Table 5.72 shows that the thickness shrinkages determined 

by the dilatometer were larger than the corresponding shrinkages determined by 

measuring the dimensions with the calipers.  As a result, the calculated bulk densities 

were much higher also. The bulk density value obtained for pellet 6 (6.81 g/cm3) is 

higher than true solid density value for the sample, so the result is clearly in error.  The 

error may be due to instrumental inaccuracy and/or the assumption of isotropic shrinkage.  

The measurements of the thickness and diameter of the sample using the calipers shows 

that there was some anisotropic shrinkage for pellet 6 (see Table 5.72).  However, the 

diameter shrinkage was greater than the thickness shrinkage.  If this result was applied to 

the dilatometry data, then the calculated bulk density value would be even higher.  
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Therefore, the major source of the error appears to be related to instrumental 

inaccuracies. 

 Based on the experiments described in this section, it was decided that the 

dilatometer would not be used for further investigations.  It was originally intended that 

dilatometry would be used to investigate the effect of sample composition (i.e., C/Zr 

ratio) on densification kinetics.  However, based on the results in Figures 5.89 and 5.94 

and Tables 5.71 and 5.72, it was concluded that the data was not reliable or reproducible 

enough to obtain meaningful results. 
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CHAPTER VI 

Summary 

 

 Zirconium carbide (ZrC) powders were produced by carbothermal reduction 

reactions using fine-scale carbon/metal oxide mixtures as the starting materials.  The 

reactant mixtures were prepared by pyrolytic decomposition of solution-derived precursors.  

 The first step in the solution process involved refluxing zirconium alkoxide with 2,4 

pentanedione ("acacH") in order to partially or fully convert the zirconium alkoxy groups 

to a chelated zirconium diketonate structure ("zirconium acac").  This was followed by the 

addition of water (under acidic conditions) in order to promote hydrolysis/condensation 

reactions. Precursors with variable carbon/metal ratios were produced by varying the 

concentrations of the solution reactants (i.e., the zirconium alkoxide, "acacH," water, and 

acid concentrations.) It was necessary to add a secondary soluble carbon source (i.e., 

phenolic resin or glycerol) during solution processing in order to obtain a C/Zr molar ratio 

close to or above 3 in the pyrolyzed powders. A C/Zr molar ratio of 3 was required to 

produce a stoichiometric (or near-stoichiometric) zirconium carbide. 

 The phase development during carbothermal reduction was investigated in detail 

using pyrolyzed powders with carbon/metal oxide molar ratio of ~3.1 and ~2.5.  The 

pyrolyzed powders initially consisted of fine-scale mixtures of the tetragonal phase of ZrO2  

(~ 15-20 nm) and amorphous carbon.  The tetragonal phase transformed to the monoclinic 

phase during heat treatment at or above 1100oC.  The initial formation of ZrC was clearly 

evident after heat treatment at 1200oC and the reaction was substantially, but not fully, 

completed after heat treatments in the range of ~1400-1500oC for powders with C/Zr molar 
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ratio ~3.1. For the pyrolyzed powder with C/Zr molar ratio ~2.5, some m-ZrO2 phase could 

be observed after ~1500oC heat treatment. However, no zirconia phase was observed when  

the powder was heat treated at 1600oC, suggesting that the material developed a carbon-

deficient and/or oxygen-rich ZrC lattice.  

 ZrC crystallite sizes (determined by XRD line broadening) were ~130-140 nm for 

powders produced at 1475oC. Weight loss measurements, lattice parameter measurements, 

and elemental analyses of the carbon and oxygen concentrations showed that the 1475oC 

sample with starting C/Zr molar ratio ~3.1 consisted of zirconium carbide with some 

oxygen dissolved in the lattice and some residual free carbon.  Heat treatment at higher 

temperatures (>1600oC) was required to produce near-stoichiometric zirconium carbide 

with low oxygen content for this material. In contrast, non-stoichiometric ZrC1-x (with 

small amounts of dissolved oxygen) was obtained using the pyrolyzed powder with C/Zr 

molar ratio ~2.5 after heat treatments above 1600oC. 

 ZrC powders, with varying C/Zr molar ratios (~2.4 to ~3.3) in the pyrolyzed 

material, were dry-pressed to form "green" compacts with relative density in the range of 

~45 to ~48 %.  The compacts were sintered at temperatures in the range of 1600-1950oC   

(2 h).  The samples prepared from pyrolyzed materials with C/Zr molar ratios up to ~3.2 

had zero open porosity and relative densities in the range of ~98-100% after sintering at 

1950oC for 2 h. A sample with higher carbon concentration (C/Zr molar ratio of ~3.3 in the 

pyrolyzed material) ~2 % open porosity and ~98 % relative density after sintering at 

1950oC for 2 h. 
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APPENDIX B 

DETAILED SYNTHESIS PROCEDURE FOR SPECIFIC ZrPM BATCHES 

 

This section gives the detailed step-by-step procedures for synthesis of some 

specific ZrPM batches. The overall procedure followed was same as described in section 

4.1.2.2.  

 

ZrPM-45 

1. 73.000 g (0.156 mol) of zirconium propoxide (ZP) solution was weighed into a 

two-liter round bottom flask. 657.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 62.40 g of acac was mixed with 249.6 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 130oC for 2 h using a heating mantle with a variac. 



 411 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for ~18 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40–45oC. The weights of the 

solution before and after the evaporation were not recorded. The amount of 

solution left after concentration was assumed to be 30 – 35 wt% of the initial 

amount. 

8. The flask was removed from the rotovap and 1000 ml of distilled ethanol was 

added to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow and the pH of 

the solution was 8.8. 

9. 140 drops of 20 wt% nitric acid (HNO3) solution in 80 wt% distilled ethanol was 

then added to the above solution. The time taken to add the acid solution was ~ 3 

min. The solution was simultaneously stirred with a magnetic stirrer. The pH 

recorded after the addition was acid was 6.85. The amount of acid added               

(calculated later) corresponded to an HNO3/Zr molar ratio of 0.04. The amount of 

water (from the nitric acid solution) corresponded to an H2O/Zr molar ratio of 

0.01. 

10. 336.96 g of 20 wt% deionized (DI) water in 80 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The conductivity of DI 

water was not measured. The water solution was added in ~ 6 – 7 min. The 

amount of water from this step corresponded to an H2O/Zr molar ratio of 24. 
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11. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

12. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 4.64. 

13. 4.21 g of phenolic resin was mixed with distilled ethanol to form a 20 wt% 

solution. This 20 wt% solution of phenolic resin was then added to the solution in 

step 12. The solution was mixed by a magnetic stirrer for ~10 min and then left 

for an additional 20 min prior to the next processing step.  

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a highly viscous yellow liquid. 

15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The weights of the material before and after drying 

were 68.83 g and 44.26 g, respectively. The material was a homogeneous dark 

yellow powder. 

 

ZrPM-58 

1. 73.000 g (0.156 mol) of zirconium propoxide (ZP) solution was weighed into a 

two-liter round bottom flask. 657.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  
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2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 46.80 g of acac was mixed with 187.20 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 3 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for ~15 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were not recorded. The amount of 

solution left after concentration was assumed to be 30 wt% of the initial amount. 

8. The flask was removed from the rotovap and 1000 ml of distilled ethanol was 

added to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow.  

9. 14.784 g of glycerol was added to the solution in ~3 min. The solution was 

shaken manually for ~30 sec and was stirred for additional ~5 min with a 
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magnetic stirrer. The amount of glycerol added in this step corresponded to  a 

glycerol/Zr molar ratio of 1.03. 

10. 270 drops of 20 wt% nitric acid (HNO3) solution in 80 wt% distilled ethanol was 

then added to the above solution. The time taken to add the acid solution was ~ 3 

min. The solution was simultaneously stirred with a magnetic stirrer. The pH 

recorded after the addition was acid was 5.8. The amount of acid (calculated later) 

added corresponded to an HNO3/Zr molar ratio of 0.077. The amount of water 

(from the nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.49. 

11. 336.96 g of 20 wt% deionized (DI) water in 80 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The water solution was 

added in ~ 10 – 12 min. The amount of water from this step corresponded to an 

H2O/Zr molar ratio of 24. 

12. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

13. The flask was then taken out of the oven and allowed to cool for ~30 min.  

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a highly viscous yellow liquid. 

15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The material was a homogeneous fractured powder 

cake and was yellow in color. 

 



 415 

ZrPM-59 

1. 73.000 g (0.156 mol) of zirconium propoxide (ZP) solution was weighed into a 

two-liter round bottom flask. 657.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 46.80 g of acac was mixed with 187.20 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 3 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for ~15 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were not recorded. The amount of 

solution left after concentration was assumed to be 30 wt% of the initial amount. 
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8. The flask was removed from the rotovap and 1000 ml of distilled ethanol was 

added to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow.  

9. 24.656 g of glycerol was added to the solution in ~3 min. The solution was 

shaken manually for ~30 sec and was stirred for additional ~5 min with a 

magnetic stirrer. The amount of glycerol added in this step corresponded to  a 

glycerol/Zr molar ratio of 1.72. 

10. 304 drops of 20 wt% nitric acid (HNO3) solution in 80 wt% distilled ethanol was 

then added to the above solution. The time taken to add the acid solution was ~ 3 

min. The solution was simultaneously stirred with a magnetic stirrer. The pH 

recorded after the addition was acid was 5.6. The amount of acid (calculated later) 

added corresponded to an HNO3/Zr molar ratio of 0.087. The amount of water 

(from the nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.15. 

11. 336.96 g of 20 wt% deionized (DI) water in 80 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The water solution was 

added in ~ 10 – 12 min. The amount of water from this step corresponded to an 

H2O/Zr molar ratio of 24. 

12. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

13. The flask was then taken out of the oven and allowed to cool for ~30 min.  

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a highly viscous yellow liquid. 
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15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The material was a homogeneous fractured powder 

cake and was dark yellow in color. 

 

ZrPM-67 

1. 15.000 g (0.032 mol) of zirconium propoxide (ZP) solution was weighed into a 

half-liter round bottom flask. 135.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 9.62 g of acac was mixed with 38.64 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 2 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for 16 h before the next processing step.  
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7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were 231.96 g and 119.09 g, 

respectively. This was equivalent to ~51 wt% solution left after evaporation. 

8. The flask was removed from the rotovap and 300 ml of distilled ethanol was 

added to the flask in ~10 – 15 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow and the pH of 

the solution was 9.51. 

9. 5.5 g (6.3 ml) of 10 wt% nitric acid (HNO3) solution in 90 wt% distilled ethanol 

was then added to the above solution. The time taken to add the acid solution was 

~ 2 min. The solution was simultaneously stirred with a magnetic stirrer. The pH 

recorded after the addition was acid was 4.51. The amount of acid added 

corresponded to an HNO3/Zr molar ratio of 0.27. The amount of water (from the 

nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.47. 

10. 138.45 g of 10 wt% deionized (DI) water in 90 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The water solution was 

added in ~ 5 – 7 min and the pH recorded after water addition was 5.26. The 

amount of water from this step corresponded to an H2O/Zr molar ratio of 24. 

11. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

12. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 4.2. 
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13. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a yellow gel. 

14. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The weights of the material before and after drying 

were 10.12 g and 8.42 g, respectively. The material was a homogeneous fractured 

powder cake and was light yellow in color. 

 

ZrPM-79 

1. 15.000 g (0.032 mol) of zirconium propoxide (ZP) solution was weighed into a 

half-liter round bottom flask. 135.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 9.62 g of acac was mixed with 38.64 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 
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4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 2 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for 15 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were 232.17 g and 111.52 g, 

respectively. This was equivalent to ~48 wt% solution left after evaporation. 

8. The flask was removed from the rotovap and 300 ml of distilled ethanol was 

added to the flask in ~10 – 15 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow and the pH of 

the solution was 9.49. 

9. 1.86 g of glycerol was added to the solution in ~1 min. The solution was shaken 

manually for ~30 sec and was stirred for an additional ~5 min with a magnetic 

stirrer. The amount of glycerol added in this step corresponded to a glycerol/Zr 

molar ratio of 0.63. 

10. 5.5 g (6.4 ml) of 10 wt% nitric acid (HNO3) solution in 90 wt% distilled ethanol 

was then added to the above solution. The time taken to add the acid solution was 

~ 3 min. The solution was simultaneously stirred with a magnetic stirrer. The pH 

recorded after the addition was acid was 5.78. The amount of acid added 
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corresponded to an HNO3/Zr molar ratio of 0.272. The amount of water (from the 

nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.47. 

11. 138.46 g of 10 wt% deionized (DI) water in 90 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The conductivity of DI 

water was measured to be 0.33 µS/cm. The water solution was added in ~ 5 – 7 

min and the pH recorded after water addition was 5.39. The amount of water from 

this step corresponded to an H2O/Zr molar ratio of 24. 

12. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

13. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 4.98. 

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a yellow gel. 

15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The weights of the material before and after drying 

were 11.46 g and 9.74 g, respectively. The material was a homogeneous fractured 

powder cake and was light yellow in color. 

 

ZrPM-87 

1. 75.000 g (0.160 mol) of zirconium propoxide (ZP) solution was weighed into a 

three-liter round bottom flask. 675.0 g of distilled ethanol was added and the flask 



 422 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 48.07 g of acac was mixed with 193.20 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 2 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for 16 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were 986.77 g and 371.69 g, 

respectively. This was equivalent to ~38 wt% solution left after evaporation. 

8. The flask was removed from the rotovap and 1500 ml of distilled ethanol was 

added to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the 
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solutions for ~5 min. The color of the solution was greenish yellow and the pH of 

the solution was 10.3. 

9. 3.5 g of glycerol was added to the solution in ~1 min. The solution was shaken 

manually for ~30 sec and was stirred for additional ~5 min with a magnetic 

stirrer. The pH of the solution was 10.14. The amount of glycerol added in this 

step corresponded to a glycerol/Zr molar ratio of 0.238. 

10. 27.5 g (32.5 ml) of 10 wt% nitric acid (HNO3) solution in 90 wt% distilled 

ethanol was then added to the above solution. The time taken to add the acid 

solution was ~ 3 min. The solution was simultaneously stirred with a magnetic 

stirrer. The pH recorded after the addition was acid was 5.31. The amount of acid 

added corresponded to an HNO3/Zr molar ratio of 0.272. The amount of water 

(from the nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.46. 

11. 345.21 g of 20 wt% deionized (DI) water in 80 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The conductivity of DI 

water was measured to be 0.30 µS/cm. The water solution was added in ~ 6 – 7 

min and the pH recorded after water addition was 6.2. The amount of water from 

this step corresponded to an H2O/Zr molar ratio of 24. 

12. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

13. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 5.29. 

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 
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was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a yellow gel with some liquid remaining. 

15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The weights of the material before and after drying 

were 56.43 g and 44.81 g, respectively. The material was a homogeneous fractured 

powder cake and was light yellow in color. 

 

ZrPM-94 

1. 75.000 g (0.160 mol) of zirconium propoxide (ZP) solution was weighed into a 

three-liter round bottom flask. 675.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 48.07 g of acac was mixed with 193.20 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 
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5. The solution was refluxed at 195oC for 2 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for 15 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were 989.19 g and 413.09 g, 

respectively. This was equivalent to ~42 wt% solution left after evaporation. 

8. The flask was removed from the rotovap and 1500 ml of distilled ethanol was 

added to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow and the pH of 

the solution was 9.94. 

9. 7.46 g of glycerol was added to the solution in ~2 min. The solution was shaken 

manually for ~30 sec and was stirred for additional ~5 min with a magnetic 

stirrer. The pH of the solution was 9.52. The amount of glycerol added in this step 

corresponded to a glycerol/Zr molar ratio of 0.506. 

10. 27.5 g (32.5 ml) of 10 wt% nitric acid (HNO3) solution in 90 wt% distilled 

ethanol was then added to the above solution. The time taken to add the acid 

solution was ~ 3 min. The solution was simultaneously stirred with a magnetic 

stirrer. The pH recorded after the addition was acid was 5.83. The amount of acid 

added corresponded to an HNO3/Zr molar ratio of 0.272. The amount of water 

(from the nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.46. 
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11. 692.11 g of 10 wt% deionized (DI) water in 90 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The conductivity of DI 

water was measured to be 0.32 µS/cm. The water solution was added in ~ 10 – 12 

min and the pH recorded after water addition was 5.98. The amount of water from 

this step corresponded to an H2O/Zr molar ratio of 24. 

12. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

13. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 5.2. 

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a yellow gel with some liquid remaining. 

15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The weights of the material before and after drying 

were 58.58 g and 49.68 g, respectively. The material was a homogeneous fractured 

powder cake and was light yellow in color. 

 

ZrPM-97 

1. 75.000 g (0.160 mol) of zirconium propoxide (ZP) solution was weighed into a 

three-liter round bottom flask. 675.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  
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2. The flask was taken out of the glove box and attached to the Schlenk apparatus. 

The procedure followed was same as described in section 4.1.2.2.2. 

3. 48.07 g of acac was mixed with 193.20 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 

min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 2 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached 

to the Schlenk apparatus for 15 h before the next processing step.  

7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature 

of the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were 989.60 g and 378.40 g, 

respectively. This was equivalent to ~38 wt% solution left after evaporation. 

8. The flask was removed from the rotovap and 1500 ml of distilled ethanol was 

added to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the 

solutions for ~5 min. The color of the solution was greenish yellow and the pH of 

the solution was 9.93. 
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9. 27.5 g (32.5 ml) of 10 wt% nitric acid (HNO3) solution in 90 wt% distilled 

ethanol was then added to the above solution. The time taken to add the acid 

solution was ~ 3 min. The solution was simultaneously stirred with a magnetic 

stirrer. The pH recorded after the addition was acid was 4.86. The amount of acid 

added corresponded to an HNO3/Zr molar ratio of 0.272. The amount of water 

(from the nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.46. 

10. 692.11 g of 10 wt% deionized (DI) water in 90 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The conductivity of DI 

water was measured to be 0.27 µS/cm. The water solution was added in ~ 6 – 7 

min and the pH recorded after water addition was 5.26. The amount of water from 

this step corresponded to an H2O/Zr molar ratio of 24. 

11. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

12. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 4.38. 

13. 4.66 g of phenolic resin was mixed with distilled ethanol to form a 20 wt% 

solution. This 20 wt% solution of phenolic resin was then added to the solution in 

step 12. The solution was mixed by a magnetic stirrer for ~10 min and then left 

for an additional 20 min prior to the next processing step. The pH of the solution 

was 4.25. 

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath 

was maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a yellow gel. 
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15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 2 h. The weights of the material before and after drying 

were 53.23 g and 43.63 g, respectively. The material was homogeneous fractured 

powder cake and was yellow in color. 

 

ZrPM-99 

1. 75.000 g (0.160 mol) of zirconium propoxide (ZP) solution was weighed into a 

three-liter round bottom flask. 675.0 g of distilled ethanol was added and the flask 

was shaken manually to mix the contents. The total concentration of ZP was 10 

wt%. The whole procedure was done in a glove box.  

2. The flask was taken out of the glove box and attached to the Schlenk apparatus. The 

procedure followed was same as described in section 4.1.2.2.2. 

3. 48.07 g of acac was mixed with 193.20 g of distilled ethanol in a 500 ml flask in a 

fume hood. The total concentration of acac was 20 wt%. The flask was shaken 

manually to mix the contents. This solution was then transferred to the Schlenk 

apparatus and added to the ZP solution. The procedure followed was same as 

described in section 4.1.2.2.2. The time taken to add acac solution was ~ 4 – 5 min. 

4. 5 ml of distilled ethanol was used to rinse the funnel walls as described in section 

4.1.2.2.2. 

5. The solution was refluxed at 195oC for 2 h using a heating mantle with a variac. 

6. After the solution was refluxed it was allowed to cool. The flask was left attached to 

the Schlenk apparatus for 18 h before the next processing step.  
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7. The flask was then removed from the Schlenk apparatus and attached to a rotary 

evaporator (“rotovap”). The solution was partially concentrated. The temperature of 

the water bath was maintained in the range of 40 – 45oC. The weights of the 

solution before and after the evaporation were 988.75 g and 407.75 g, respectively. 

This was equivalent to ~41 wt% solution left after evaporation. 

8. The flask was removed from the rotovap and 1500 ml of distilled ethanol was added 

to the flask in ~15 – 30 sec. A magnetic stirrer was used to mix the solutions for ~5 

min. The color of the solution was greenish yellow and the pH of the solution was 

9.91. 

9. 27.5 g (32.5 ml) of 10 wt% nitric acid (HNO3) solution in 90 wt% distilled ethanol 

was then added to the above solution. The time taken to add the acid solution was   

~3 min. The solution was simultaneously stirred with a magnetic stirrer. The pH 

recorded after the addition was acid was 5.09. The amount of acid added 

corresponded to an HNO3/Zr molar ratio of 0.272. The amount of water (from the 

nitric acid solution) corresponded to an H2O/Zr molar ratio of 0.46. 

10. 692.11 g of 10 wt% deionized (DI) water in 90 wt% distilled ethanol was then 

added to the solution under constant magnetic stirring. The conductivity of DI water 

was measured to be 0.26 µS/cm. The water solution was added in ~ 6 – 7 min and 

the pH recorded after water addition was 5.75. The amount of water from this step 

corresponded to an H2O/Zr molar ratio of 24. 

11. The flask was sealed and then placed in an air oven at 50oC for 2 h. 

12. The flask was then taken out of the oven and allowed to cool for ~30 min. The pH 

of the solution was 4.64. 
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13. 4.25 g of phenolic resin was mixed with distilled ethanol to form a 20 wt% solution. 

This 20 wt% solution of phenolic resin was then added to the solution in step 12. 

The solution was mixed by a magnetic stirrer for ~10 min and then left for an 

additional 20 min prior to the next processing step. The pH of the solution was 4.53. 

14. The flask was then attached to the rotovap. The solution was concentrated until 

solvent loss was no longer obvious visually. The temperature of the water bath was 

maintained in the range of 35 – 40oC. After concentration, the material can be 

described as a yellow gel with some liquid remaining. 

15. The flask was then sealed with aluminum foil that was perforated in order to allow 

removal of small amounts of residual solvent. The flask was put in a vacuum oven 

and heated to 120oC for 3 h. The weights of the material before and after drying were 

59.86 g and 46.91 g, respectively. The material was a homogeneous fractured powder 

cake and was light yellow in color. 
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APPENDIX E 

CARBON AND OXYGEN CONTENTS OF VARIOUS ZrC-BASED 
SAMPLES 

 
 
 
 
 

Sample Carbon* (wt%) C/Zr Molar 
Ratio 

Oxygen* (wt%) 

ZrPM-45-1025 23.26 3.1 16.25 (15.2, 17.3) 

ZrPM-45-800-1475 13.36 1.3 3.32 (average of #1, #2)  
#1:  3.8 
#2:  2.85 (2.83, 2.86) 

ZrPM-45-800-1800 11.25 1.1 0.107 (0.103, 0.111) 

ZrPM-58-1025 17.86 2.2 n.a. 

ZrPM-58-800-1475 8.05 0.8 n.a. 

ZrPM-59-1025 19.40 2.5 n.a. 

ZrPM-59-800-1475 8.99 0.9 4.48 (4.41, 4.55) 
ZrPM-59-800-1800 9.38 0.9 1.02 (average of #1, #2) 

#1:  1.15 (1.22, 1.07) 
#2:  0.89 (0.91, 0.87) 

ZrPM-59-800-2000 8.94 0.8 0.56 (average of #1, #2) 
#1:  0.42 
#2:  0.70 (0.71, 0.69) 

ZrPM-61-350-1025 27.10 3.8 n.a. 

ZrPM-61-350-800-1475 19.35 2.1 n.a. 

ZrPM-86-1025 18.30 (18.20, 18.40) 2.3 n.a. 

ZrPM-87-1025 18.85 (19.0, 18.70) 2.4 n.a. 

ZrPM-87-800-1800 7.60 0.6 n.a. 

ZrPM-87-800-1900 7.72 (7.85, 7.59) 0.6 n.a. 

ZrPM-88-1025 17.90 (17.90, 17.90) 2.2 n.a. 

ZrPM-89-1025 15.60 (15.60, 15.60) 1.9 n.a. 

ZrPM-90-1025 14.75 (14.70, 14.80) 1.8 n.a. 

ZrPM-91-1025 18.50 (18.40, 18.60) 2.3 n.a. 

ZrPM-94-1025 21.75 (21.60, 21.90) 2.9 n.a. 

 

Table E1  Carbon (from Sherry Laboratories and Leco Corp.) and oxygen (from Leco 
Corp.) contents of various ZrC-based samples. 
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Table E1 continued. 
 

Sample Carbon* (wt%) C/Zr Molar 
Ratio 

Oxygen* (wt%) 

ZrPM-94-800-1800 10.50 (10.50, 10.50) 0.9 n.a. 

ZrPM-94-800-1900 9.35 (9.43, 9.27) 0.8 n.a. 

ZrPM-95-1025 22.40 (22.40, 22.4) 3.0 n.a. 

ZrPM-95-800-1800 10.90 (11.00, 10.80) 0.9 n.a. 

ZrPM95-800-1900 9.71 (9.76, 9.66) 0.8 n.a. 

ZrPM-97-1025 24.05 (24.00, 24.10) 3.3 n.a. 

ZrPM-97-800-1800 12.60 (12.50, 12.70) 1.1 n.a. 

ZrPM-97-800-1900 12.60 (12.60, 12.60) 1.1 n.a. 

ZrPM-98-1025 23.30 (23.30, 23.30) 3.1 n.a. 

ZrPM-98-800-1800 10.75 (10.70, 10.80) 0.9 n.a. 

ZrPM-98-800-1900 10.10 (10.00, 10.20) 0.9 n.a. 

ZrPM-99-1025 23.70 (23.90, 23.50) 3.2 n.a. 

ZrPM-99-800-1800 11.00 (11.00, 11.00) 0.9 n.a. 

ZrPM-99-800-1900 10.75 (10.80, 10.70) 0.9 n.a. 

ZrPM-100-1025 21.30 (21.20, 21.40) 2.8 n.a. 

ZrPM-100-800-1800 10.70 (10.60, 10.80) 0.9 n.a. 

ZrPM-100-800-1900 8.60 (8.49, 8.71) 0.7 n.a. 

 
* The values in the parentheses are individual measurements. The number in the larger 

font is the average value. 
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APPENDIX F 

 
LATTICE PARAMETER CALCULATIONS FOR VARIOUS ZrC-BASED 

SAMPLES 
 

In section 5.2.2.3, XRD patterns with peak splitting were observed for "oxide-

rich" ZrPM-59 samples which had been heat treated at temperatures in the range of 1800-

2000oC (Figure 5.22).  This was attributed to reaction between the powder sample and the 

carbon substrate that was used during the heat treatment.  This explanation was 

confirmed in experiments carried out with "oxide-rich" ZrPM-87 and ZrPM-94 samples.  

ZrPM87-800-pyrolyzed and ZrPM-94-800-pyrolyzed samples were heat treated at 

1900oC using two different substrates -- a carbon (Graphoil®) substrate and a ZrC-based 

substrate.  (The latter substrate is the same as described in section 4.1.5.)   Figures F1 and 

F2 shows the XRD patterns for the 1900oC ZrPM-87 and ZrPM-94 samples, respectively.  

It is evident from these figures that peak splitting had occurred for both samples when the 

carbon substrate was used.  (This is consistent with the results described in section 5.2.2.3 

for the heat treated ZrPM-59 samples.)  In contrast, peak splitting did not occur when the 

samples were heat treated using the ZrC-based substrate.  Tables F19 and F23 shows the 

calculated lattice parameters for the 1900oC ZrPM-87 and 1900oC ZrPM-94 samples, 

respectively.  These lattice parameters were obtained from the XRD patterns shown in 

Figures 5.46 and 5.55, respectively.  The lattice parameter calculations were made for 

both the "right peak" and "left peak" for the cases in which peak splitting was observed.  

Tables F20 and F24 show that the lattice parameters calculated from the “right peaks” 

agree very closely with the lattice parameters calculated from the corresponding XRD 

patterns which did not show peak splitting (i.e., for the corresponding samples heat 
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treated on the ZrC-based substrates).  These lattice parameters have relatively low values, 

as would be expected for carbon-deficient zirconium oxycarbides (i.e., ZrOyCx where x 

<1).  Tables F21 and F25 also show that the lattice parameters calculated from the “left 

peaks” (in the XRD patterns with peak splitting) have values that would be expected for a 

zirconium carbide with stoichiometric (or near-stoichiometric) composition (i.e., ZrC).  

This is consistent with the explanation presented in section 5.2.2.3, i.e., that the "oxide-

rich" zirconium oxycarbide samples reacted with the carbon substrate and thereby formed 

stoichiometric (or near-stoichiometric) ZrC. 
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Figure F1a Combined XRD graphs of ZrPM-87-800-pyrolyzed powder 
sample heat treated at 1900oC using “ZrC” and Graphoil® 
substrates (30-60o). 
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Figure F1b Combined XRD graphs of ZrPM-87-800-pyrolyzed powder 
sample heat treated at 1900oC using “ZrC” and Graphoil® 
substrates (60-100o). 

DEGREES  (2θθθθ)
60 70 80 90 100

IN
TE

N
SI

TY

0

IN
TE

N
SI

TY

“ZrC” Substrate 

Graphoil® Substrate 

IN
TE

NS
IT

Y
IN

TE
NS

IT
Y



 446 

 

 

 

Figure F2a Combined XRD graphs of ZrPM-94-800-pyrolyzed powder 
sample heat treated at 1900oC using “ZrC” and Graphoil® 
substrates (30-60o). 
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Figure F2b Combined XRD graphs of ZrPM-94-800-pyrolyzed powder 
sample heat treated at 1900oC using “ZrC” and Graphoil® 
substrates (60-100o). 
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y = 4.6267e-6 + 0.02694 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-45-800-1300 

a = 0.4693 nm 

 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.632 28.443  111 33.239 33.048 

220 47.500 47.303  200 38.530 38.337 

311 56.304 56.123  220 55.524 55.337 

400 n.a. 69.131  311 66.125 65.945 

331 76.551 76.377  400 82.209 82.029 

422 88.187 88.032  331 91.520 91.368 

511 95.067 94.954  420 94.616 94.486 

 

 

 

 

 

 

 

 

 

 Figure F3    Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F1 Measured and corrected ZrC 2θ values and corresponding Si 
values used for correction. 
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y = -2.59946E-4 + 0.02694 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-45-800-1350 

a = 0.4693 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.600 28.443  111 33.130 32.972 

220 47.465 47.303  200 38.423 38.264 

311 56.280 56.123  220 55.393 55.236 

400 n.a. 69.131  311 66.022 65.875 

331 76.515 76.377  400 82.128 81.997 

422 88.155 88.032  331 91.391 91.269 

511 95.075 94.954  420 94.462 94.341 

 

 

 

 

 

 

 

 

 

 

 

Figure F4    Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F2 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 2.81788E-5 + 0.02696 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-45-800-1400 

a = 0.4691 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.553 28.443  111 33.153 33.045 

220 47.403 47.303  200 38.447 38.342 

311 56.224 56.123  220 55.450 55.349 

400 n.a. 69.131  311 66.090 66.002 

331 76.450 76.377  400 82.195 82.122 

422 88.105 88.032  331 91.470 91.397 

511 n.a. 94.954  420 94.570 94.497 

 

 

 

 

 

 

 

 

 

 

 

Figure F5    Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F3 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = -9.430022e-5 + 0.02697 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-45-800-1475 

a = 0.4691 nm 

 

 

Si (hkl) Measured 
Si 2θ 

NBS 
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.605 28.443  111 33.21 33.048 

220 47.465 47.303  200 38.495 38.333 

311 n.a. 56.123  220 55.48 55.319 

400 n.a. 69.131  311 66.135 65.976 

331 76.535 76.377  400 82.26 82.119 

422 88.155 88.032  331 91.55 91.437 

511 n.a. 94.954  420 94.575 94.471 

 

 

 

 

 

 

 

 

 

 

 

Figure F6     Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F4 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 



 452 

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

y = 7.1127E-5 + 0.02691 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-45-800-1600 

a = 0.4696 nm 

 

 

Si (hkl) Measured 
 Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.543 28.443  111 33.130 33.028 

220 47.408 47.303  200 38.423 38.320 

311 n.a. 56.123  220 55.393 55.297 

400 n.a. 69.131  311 66.022 65.938 

331 76.450 76.377  400 82.128 82.052 

422 88.111 88.032  331 91.391 91.312 

511 n.a. 94.954  420 94.462 94.383 

 

 

 

 

 

 

 

 

 

 

 

Figure F7       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F5 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 8.12891E-5 + 0.02691 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-45-800-1800 

a = 0.4696 nm 

 

 

Si (hkl) Measured 
 Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.596 28.443  111 33.177 33.027 

220 47.445 47.303  200 38.462 38.315 

311 56.267 56.123  220 55.437 55.318 

400 n.a. 69.131  311 66.062 65.927 

331 76.502 76.377  400 82.144 82.028 

422 88.139 88.032  331 91.411 91.307 

511 95.054 94.954  420 94.493 94.392 

 

 

 

 

 

 

 

 

 

 

 

Figure F8         Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F6 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 1.56972e-5 - 0.02697 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-800-1300 

a = 0.4690 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS 
 Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.600 28.443  111 33.175 33.041 

220 47.410 47.303  200 38.440 38.310 

311 56.220 56.123  220 55.440 55.325 

400 n.a. 69.131  311 66.095 65.989 

331 76.475 76.377  400 82.240 82.147 

422 88.145 88.032  331 91.420 91.335 

511 95.025 94.954  420 94.555 94.473 

 

 

 

 

 

 

 

 

 

 

 

Figure F9        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F7 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-59-800-1350 

a = 0.4692 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.57 28.443  111 33.18 33.054 

220 47.41 47.303  200 38.455 38.331 

311 56.255 56.123  220 55.475 55.358 

400 n.a. 69.131  311 66.075 65.962 

331 76.5 76.377  400 82.23 82.124 

422 88.115 88.032  331 91.42 91.317 

511 95.06 94.954  420 94.575 94.474 
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y = 1.72456e-4 - 0.02695 * x

R = 1

si
n2 θ

h2+k2+l2

Figure F10       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F8 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 8.61874E-5 + 0.02697 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-800-1400 

a = 0.4690 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.572 28.443  111 33.2 33.071 

220 47.431 47.303  200 38.4885 38.359 

311 56.250 56.123  220 55.4919 55.365 

400 n.a. 69.131  311 66.1502 66.033 

331 76.484 76.377  400 82.2464 82.144 

422 88.129 88.032  331 91.5359 91.438 

511 n.a. 94.954  420 94.6258 94.528 

 

 

 

 

 

 

 

 

 

 

 

Figure F11        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F9 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 8.06936E-5 + 0.02703 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-800-1475 

a = 0.4686 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.582 28.443  111 33.26 33.116 

220 47.461 47.303  200 38.564 38.415 

311 56.264 56.123  220 55.580 55.438 

400 n.a. 69.131  311 66.223 66.087 

331 76.509 76.377  400 82.388 82.267 

422 88.142 88.032  331 91.692 91.583 

511 n.a. 94.954  420 94.777 94.668 

 

 

 

 

 

 

 

 

 

 

 

Figure F12        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F10 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 8.61874E-5 + 0.02715 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-800-1600  

a = 0.4675 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.626 28.443  111 33.350 33.171 

220 47.469 47.303  200 38.655 38.481 

311 n.a. 56.123  220 55.720 55.556 

400 n.a. 69.131  311 66.415 66.255 

331 76.534 76.377  400 82.565 82.418 

422 88.169 88.032  331 91.950 91.813 

511 n.a. 94.954  420 94.695 94.558 

 

 

 

 

 

 

 

 

 

 

 

Figure F13        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F11 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 9.91858E-6+ 0.02717 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-1800 (“Right peaks”) 

a = 0.4673 nm 

 

 

Si (hkl) Measured 
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.616 28.443  111 33.382 33.210 

220 47.471 47.303  200 38.691 38.520 

311 56.290 56.123  220 55.787 55.620 

400 n.a. 69.131  311 66.484 66.320 

331 76.537 76.377  400 82.674 82.530 

422 88.160 88.032  331 91.998 91.870 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F14        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F12 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-59-800-1800 (“Left peaks”) 

a = 0.4693 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.616 28.443  111 33.222 33.050 

220 47.471 47.303  200 38.521 38.350 

311 56.290 56.123  220 55.517 55.350 

400 n.a. 69.131  311 66.144 65.980 

331 76.537 76.377  400 82.264 82.120 

422 88.160 88.032  331 91.478 91.350 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F15        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F13 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 6.52472E-5+ 0.02722 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-800-1900 (“Right peaks”) 

a = 0.4669 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.652 28.443  111 33.4329 33.219 

220 47.527 47.303  200 38.7549 38.537 

311 56.312 56.123  220 55.8583 55.666 

400 n.a. 69.131  311 66.5607 66.382 

331 76.544 76.377  400 82.7749 82.602 

422 88.208 88.032  331 92.1688 91.992 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F16         Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F14 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-59-800-1900 (“Left peaks”) 

a = 0.4699 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.652 28.443  111 33.234 33.020 

220 47.527 47.303  200 38.528 38.310 

311 56.312 56.123  220 55.482 55.290 

400 n.a. 69.131  311 66.089 65.910 

331 76.544 76.377  400 82.212 82.040 

422 88.208 88.032  331 91.367 91.190 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F17        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F15 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 4.13394E-4+ 0.02723 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-59-800-2000 (“Right peaks”) 

a = 0.4668 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.543 28.443  111 33.328 33.225 

220 47.414 47.303  200 38.645 38.539 

311 56.212 56.123  220 55.747 55.656 

400 n.a. 69.131  311 66.459 66.364 

331 76.470 76.377  400 82.707 82.620 

422 88.107 88.032  331 92.073 91.998 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F18       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F16 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-59-800-2000 (“Left peaks”) 

a = 0.4696 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.543 28.443  111 33.124 33.017 

220 47.414 47.303  200 38.458 38.346 

311 56.212 56.123  220 55.344 55.216 

400 n.a. 69.131  311 66.058 65.920 

331 76.470 76.377  400 82.108 81.955 

422 88.107 88.032  331 91.436 91.274 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F19        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F17 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 5.18787E-5 + 0.02699 * x

R = 1
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n2 θ
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ZrPM-87-800-1425 

a = 0.4688 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.605 28.443  111 33.245 33.083 

220 47.465 47.303  200 38.525 38.363 

311 56.265 56.123  220 55.535 55.393 

400 n.a. 69.131  311 66.190 66.045 

331 76.525 76.377  400 82.320 82.180 

422 88.155 88.032  331 91.600 91.479 

511 95.075 94.954  420 94.695 94.575 

 

 

 

 

 

 

 

 

 

 

 
Figure F20       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F18 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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y = 3.65028E-5 + 0.02728 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-87-800-1900 (“ZrC” substrate) 

a = 0.4664 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.520 28.443  111 33.3450 33.264 

220 47.395 47.303  200 38.6700 38.584 

311 56.210 56.123  220 55.7850 55.697 

400 n.a. 69.131  311 66.5150 66.437 

331 76.445 76.377  400 82.7700 82.707 

422 88.090 88.032  331 92.1650 92.108 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F21        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F19 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-87-800-1900 (“Right peaks”; “Graphoil” substrate) 

a = 0.4664 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.645 28.443  111 33.340 33.140 

220 47.495 47.303  200 38.650 38.453 

311 56.315 56.123  220 55.815 55.623 

400 n.a. 69.131  311 66.530 66.350 

331 76.545 76.377  400 82.865 82.708 

422 88.180 88.032  331 92.260 92.113 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F22       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F20 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-87-80-1900 (“Left peaks”; “Graphoil” substrate) 

a = 0.4696 nm 

 

 

Si (hkl) Measured 
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.645 28.443  111 33.240 33.040 

220 47.495 47.303  200 38.525 38.328 

311 56.315 56.123  220 55.515 55.323 

400 n.a. 69.131  311 66.140 65.960 

331 76.545 76.377  400 82.235 82.077 

422 88.180 88.032  331 91.530 91.383 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F23        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F21 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 

2 4 6 8 10 12 14 16 18 20 22
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 
 

y = 2.85764E-5 + 0.02691 * x

R = 1

si
n2 θ

h2+k2+l2



 469 

2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

y = -1.18856E-4 + 0.02705 * x

R = 1

si
n2 θ

h2+k2+l2

ZrPM-94-800-1475 

a = 0.4688 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 
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ZrC 2θ 

111 28.605 28.443  111 33.255 33.095 

220 47.460 47.303  200 38.550 38.392 

311 56.285 56.123  220 55.565 55.401 

400 n.a. 69.131  311 66.240 66.095 

331 76.50 76.377  400 82.405 82.282 

422 88.150 88.032  331 91.690 91.573 

511 95.075 94.954  420 94.765 94.647 

 

 

 

 

 

 

 

 

 

 

 
Figure F24        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F22 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.585 28.443  111 33.3900 33.248 

220 47.445 47.303  200 38.7100 38.568 

311 56.245 56.123  220 55.8200 55.698 

400 n.a. 69.131  311 66.5400 66.414 

331 76.505 76.377  400 82.7900 82.679 

422 88.13 88.032  331 92.1700 92.063 

511 95.06 94.954  420 95.3000 95.189 

 

 

 

 

 

 

 

 

 

 

 

Figure F25        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F23 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.580 28.443  111 33.370 33.232 

220 47.445 47.303  200 38.690 38.550 

311 56.265 56.123  220 55.790 55.648 

400 n.a. 69.131  311 66.510 66.380 

331 76.495 76.377  400 82.745 82.627 

422 88.150 88.032  331 92.130 92.012 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F26        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F24 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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ZrPM-94-800-1900 (“Left peaks”; “Graphoil” substrate) 

a = 0.4695 nm 

 

 

Si (hkl) Measured  
Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.580 28.443  111 33.336 33.198 

220 47.445 47.303  200 38.663 38.523 

311 56.265 56.123  220 55.779 55.637 

400 n.a. 69.131  311 66.501 66.371 

331 76.495 76.377  400 82.761 82.643 

422 88.150 88.032  331 92.144 92.026 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F27        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F25 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Si 2θ 
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 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.605 28.443  111 33.190 33.030 

220 47.460 47.303  200 38.465 38.306 

311 56.275 56.123  220 55.445 55.294 

400 n.a. 69.131  311 66.075 65.930 

331 76.515 76.377  400 82.175 82.045 

422 88.150 88.032  331 91.445 91.246 

511 95.065 94.954  420 94.505 94.307 

 

 

 

 

 

 

 

 

 

 

 
Figure F28        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F26 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.605 28.443  111 33.185 33.012 

220 47.510 47.303  200 38.470 38.284 

311 56.275 56.123  220 55.440 55.282 

400 n.a. 69.131  311 66.065 65.934 

331 76.485 76.377  400 82.140 82.022 

422 88.160 88.032  331 91.405 91.285 

511 95.065 94.954  420 94.490 94.377 

 

 

 

 

 

 

 

 

 

 

 

Figure F29       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F27 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Si 2θ 

NBS  
Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.600 28.443  111 33.200 33.044 

220 47.450 47.303  200 38.495 38.342 

311 56.255 56.123  220 55.470 55.336 

400 n.a. 69.131  311 66.115 65.982 

331 76.510 76.377  400 82.170 82.045 

422 88.150 88.032  331 91.565 91.449 

511 95.060 94.954  420 94.505 94.394 

 

 

 

 

 

 

 

 

 

 

 

Figure F30        Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F28 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Si 2θ 
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Si 2θ 

 ZrC (hkl) Measured 
ZrC 2θ 

Corrected 
ZrC 2θ 

111 28.525 28.443  111 33.105 33.023 

220 47.385 47.303  200 38.395 38.313 

311 56.205 56.123  220 55.375 55.293 

400 n.a. 69.131  311 66.000 65.924 

331 76.445 76.377  400 82.085 82.017 

422 88.100 88.032  331 91.365 91.297 

511 95.020 94.954  420 94.445 94.378 

 

 

 

 

 

 

 

 

 

 

 
Figure F31       Plot of sin2θ vs. h2+k2+l2 for calculating the lattice parameter. 

Table F29 Measured and corrected ZrC 2θ values and corresponding Si values 
used for correction. 
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Figure G29 XRD patterns for ZrPM-87 samples with different batch sizes that 
were heat treated at 1425oC using a gas flow rate of 500 ml/min. 
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Figure G30 XRD patterns for ZrPM-91 samples with different batch sizes that 
were heat treated at 1425oC using a gas flow rate of 500 ml/min. 
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were heat treated at 1425oC using a gas flow rate of 500 ml/min. 
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APPENDIX H 

PROCEDURE TO OBTAIN THE AMOUNTS OF VARIOUS PHASES FROM 
INTEGRATED INTENSITIES OF PEAKS 

 

 The amounts of each crystalline phase present in the sample (i.e., t-ZrO2, m-ZrO2, 

and/or ZrC) were roughly determined from integrated intensities of the highest intensity 

peaks in the XRD pattern. The highest intensity peak for each of the phases was from the 

111 plane. To measure the integrated intensity of the peak, a 2θ-angle range was chosen 

by selecting two 2θ angles (one on each side of the peaks) where the peak started to 

flatten out and merge with the baseline. This is shown in Figure G1.  A line was drawn 

(using the Philips PC-APD instrument software, version 3.6, Philips Analytical, 

Netherlands) through the baseline such that the integrated intensity of the background 

“noise” was zero. The integrated intensity of the peak was then calculated using the 

instrument software. This procedure was repeated for all phases present in the sample. 

The amount of a particular phase was then calculated by taking the ratio of the integrated 

intensity of its peak to the sum of integrated intensities of the corresponding peaks for all 

of the phases present. 

 

  

 

 

 

 

 

Figure G1   XRD pattern to illustrate measurement of integrated intensity. 
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