
Digital Signal Processing Methods for Source
Function Extraction of Piezoelectric Elements

A Thesis
Presented to

The Academic Faculty

by

Tobias Kreuzinger

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in
Engineering Science and Mechanics

School of Civil and Environmental Engineering
Georgia Institute of Technology

August 2004

Copyright c© 2004 by Tobias Kreuzinger



Digital Signal Processing Methods for Source
Function Extraction of Piezoelectric Elements

Approved:

Dr. Laurence J. Jacobs, Chairman

Dr. Jennifer E. Michaels

Dr. Reginald DesRoches

Date Approved: August 18, 2004



To Mother Earth, for all her bees.



Acknowledgements

First of all, I would like to express my gratitude to Dr. Stefan Hurlebaus who gave

me great support in performing all the measurements and getting an introduction to

the theory of wave propagation. His background and practical experience helped me

enormously to start out with my thesis at a very high level! Special thanks go to

Prof. Jennifer E. Michales and Prof. Thomas E. Michaels who greatly supported me

with their extensive amount of knowledge and experience. Especially Prof. Jennifer

E. Michales helped me with an enormous intense of time to come along with the

signal processing parts of my thesis. Furthermore she helped me finding new ideas

and concepts to tackle all the problems during my research work.

Also, I am deeply indepted to my advisor Prof. Laurence J. Jacobs who knew

best how to motivate me in desperate situations. Many fruitful discussions with him

helped me to keep track of the big picture. I do not only want to thank him for being

a great advisor but also a friend with an extraordinary ambition to help as much as

possible. I thank him for his great organizational and financial commitment to give

me a chance to present the results of this thesis at the 31st Annual Review of Progress

in Quantitative Nondestructive Evaluation (QNDE) at the Colorado School of Mines

in Golden, Colorado.

Moreover, I would like to express special thanks to Prof. Lothar Gaul for choosing

me as a candidate for the ISAP Program which is financially supported by the DAAD

(German Academic Exchange Service). The DAAD is gratefully acknowledged for

supporting me with its scholarship.

Enabling me to finish my studies and stay abroad for 13 month, I would like

to express my deepest gratitude to my family, especially to my mother, and all my

friends. Furthermore I would like to thank Annette Reimet for her endless love and

patience and my great friend Juergen Fritz who made not only my studies in Stuttgart

an unforgettable chapter of my life. I would like to thank Kritsakorn Luangvilai for

iv



his help during my studies and the research part of my thesis. Last but not least,

I would like to thank Oliver Kotte, Hilde Maess, Andy Di Song, and all the other

people in the lab for being new friends to share great memories and for supporting me

during my studies at the Georgia Tech. They all contributed to making this period

of time the most beneficial in my life.

v



Table of Contents

Acknowledgements iv

List of Tables ix

List of Figures x

List of Symbols or Abbreviations xii

Summary xiv

1 Introduction 1

2 Fundamental Theory 4

2.1 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Linear Elasticity and Equation of Motion . . . . . . . . . . . . 4

2.1.2 Wave Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2.1 Reflections of P and SV-waves . . . . . . . . . . . . . 7

2.1.2.2 Rayleigh Surface Waves . . . . . . . . . . . . . . . . 8

2.1.2.3 Guided Waves . . . . . . . . . . . . . . . . . . . . . 9

2.2 Digital Signal Processing Background . . . . . . . . . . . . . . . . . . 14

2.2.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Short-Time Fourier Transform (STFT) . . . . . . . . . . . . . 16

2.2.4 Representation of Dispersion Curves . . . . . . . . . . . . . . 18

3 Experimental Procedure 20

3.1 Experimental System . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Source Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1.1 Laser source . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3.1.1.2 Piezoelectric Sources . . . . . . . . . . . . . . . . . . 22

3.1.2 Detection System . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Experiments performed . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Measurements on the Plate . . . . . . . . . . . . . . . . . . . 27

3.2.2 Measurements on the Half Space . . . . . . . . . . . . . . . . 30

3.2.3 Propagation Distance Errors . . . . . . . . . . . . . . . . . . . 33

4 The Source Function Approach 34

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Temporal and Spatial Effects:

Forward Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Temporal Effects . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Spatial Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Time Domain Deconvolution Theory . . . . . . . . . . . . . . . . . . 39

4.3.1 Least Squares Deconvolution . . . . . . . . . . . . . . . . . . . 41

4.3.1.1 Toeplitz Recursion . . . . . . . . . . . . . . . . . . . 41

4.3.1.2 Improved Toeplitz Recursion . . . . . . . . . . . . . 44

4.3.1.3 Deconvolution of Noisy Signals . . . . . . . . . . . . 46

4.3.2 Spatial Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Double Iterative Least Squares Optimization . . . . . . . . . . 49

4.4 Frequency Domain Deconvolution Theory . . . . . . . . . . . . . . . . 50

4.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.2 Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Experimental Results 59

5.1 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Single Laser Source . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



5.1.2 Averaged Laser Source . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2.1 Forward Modeling of the Averaged Laser Source . . . 64

5.1.2.2 Source Inversion for Averaged Laser Source . . . . . 67

5.2 Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Analysis of Results and Further Considerations 75

6.1 Time Domain Considerations . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Frequency Domain Considerations . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Recovery of Reflections . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Effects of Dispersion . . . . . . . . . . . . . . . . . . . . . . . 79

7 Conclusions and Future Work 83

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Reflection Recovery of Measured Data 86

Bibliography 88

viii



List of Tables

2.1 Wavespeeds and material properties of aluminum . . . . . . . . . . . 6

2.2 Angle relations for reflection on a stressfree surface . . . . . . . . . . 8

3.1 Summary of measurement sets . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Assumed signal-to-noise ratios for the recovery . . . . . . . . . . . . . 54

5.1 Chosen measurement numbers for single laser . . . . . . . . . . . . . 60

5.2 Calculated distances corresponding to the first two main peaks . . . . 61

5.3 Chosen measurement numbers for averaged laser . . . . . . . . . . . . 67

ix



List of Figures

2.1 Wave reflections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Theoretical solution for the Rayleigh surface wave. . . . . . . . . . . . 10

2.3 Waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Theoretical solution in slowness-frequency domain (dispersion curves). 12

2.5 Theoretical solution for the Lamb wave. . . . . . . . . . . . . . . . . 13

2.6 Comparison between normal and reassigned spectrogram. . . . . . . . 19

3.1 Scheme of source system. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Schematic of the dual-probe interferometer. . . . . . . . . . . . . . . 24

3.3 Photograph of the mounting device and plate. . . . . . . . . . . . . . 26

3.4 Photograph of the stop mechanism and half space. . . . . . . . . . . . 27

3.5 Image of the plate measurement set. . . . . . . . . . . . . . . . . . . 28

3.6 Measurement sets on the plate. . . . . . . . . . . . . . . . . . . . . . 29

3.7 Image of the half space measurement set. . . . . . . . . . . . . . . . . 31

3.8 Measurement sets on the half space. . . . . . . . . . . . . . . . . . . . 32

4.1 Scheme of source - receiver location. . . . . . . . . . . . . . . . . . . . 35

4.2 Plots for temporal effect discussion. . . . . . . . . . . . . . . . . . . . 37

4.3 Plots for averaging effect. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Plots for Toeplitz improvement discussion. . . . . . . . . . . . . . . . 47

4.5 Test for double iterative least squares optimization. . . . . . . . . . . 55

4.6 Test of FFT-algorithm with different assumed noise levels. . . . . . . 57

5.1 Mean square errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Source functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Simplified scheme of how single laser signals are assigned to the seg-

ments on the effective transducer or piezo surface. . . . . . . . . . . . 64

5.4 Comparison of different weight distributions for averaging laser signals. 65

5.5 Change of boundary condition due to mounting of mechanical source. 69

5.6 Effects of piezo disc on half space. . . . . . . . . . . . . . . . . . . . . 70

x



5.7 Weight distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 Source functions for averaged signals. . . . . . . . . . . . . . . . . . . 72

5.9 Frequency domain inversion of piezo source signal. . . . . . . . . . . . 74

6.1 Black-box approach remarks. . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Synthetic Dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1 Recovery of the reflection for the actually measured Rayleigh data. . 86

xi



List of Symbols or Abbreviations

| | magnitude

δij Kronecker delta

εij strain tensor
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Summary

Guided wave techniques have great potential for the structural health monitor-

ing of plate-like components. Previous research has demonstrated the effectiveness

of combining laser-ultrasonic techniques with time-frequency representations to ex-

perimentally develop the dispersion relationship of a plate; the high fidelity, broad

bandwidth and point-like nature of laser ultrasonics are critical for the success of

these results. Unfortunately, laser ultrasonic techniques are time and cost inten-

sive, and are impractical for many in-service applications. Therefore this research

develops a complementary digital signal processing methodology that uses mounted

piezoelectric elements instead of optical devices. This study first characterizes the

spatial and temporal effects of oil coupled and glued piezoelectric sources, and then

develops a procedure to interpret and model the distortion caused by their limited

bandwidth and finite size. Furthermore, it outlines any inherent difficulties for time

and frequency domain considerations. The deconvolution theory for source function

extraction in the time - and frequency domain under the presence of noise is pro-

vided and applied to measured data. These considerations give the background for

further studies to develop a dispersion relationship of a plate with the fidelity and

bandwidth similar to results possible with laser ultrasonics, but made using mounted

piezoelectric sources.

xiv



CHAPTER 1

Introduction

Laser ultrasonic techniques have proven to be effective in the generation and de-

tection of guided Lamb waves in plate-like structures. Unfortunately, laser ultrasonics

is both time and cost intensive, and oftentimes impractical for in-service structural

health monitoring. The advantages of the laser generation of guided Lamb waves are

its: point-like nature, non-contact nature (no mechanical influence on the specimen

surface) and broad frequency bandwidth (in the range of 50 kHz up to 10 MHz).

These attributes of laser generation allow for the measurement of well separated dis-

persion curves, which in turn provides the potential for quantitative structural health

monitoring.

Piezoelectric sources are a cheaper and more robust alternative to a laser source,

but they are not as effective in developing the dispersion relationship of a plate —

the dispersion curves tend to be distorted, and it is difficult to extract single modes,

making it difficult to draw conclusions about the structural health of a specimen.

This research develops a methodology to characterize the effects of a piezoelectric

source, then develops techniques to compensate for any negative influence, and finally

attempts to match the performance of a laser source. To understand the influence

of the physics and the geometry of such a source, a forward modeling approach is

presented, e.g., the temporal and spatial effects are modeled and discussed. This

investigation also reveals the effects of different ways of coupling piezoelectric sources

to a plate specimen. However, the main interest of this work is to inspect different

inversion techniques to capture the properties of a piezoelectric source in a function —

this function will be referred to a source function. A deconvolution problem is solved
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to obtain such a source function, and this deconvolution is performed in the time

domain with the Toeplitz recursion, and in the frequency domain with simple divi-

sion. Since experimentally measured signals (which are subject of all the observations

in this research) contain noise and since the deconvolution is an integral operation

(which sums noise), the effects of different noise levels and each of the methods will

be observed and compared.

Chapter 2 gives a general overview of the theory of wave propagation and the observed

wave phenomena. It describes the theoretical origin of Lamb waves and Rayleigh

waves and gives an idea of their basic features. Chapter 3 presents detailed informa-

tion about the experimental setup, the involved components and the obtained data

sets. As mentioned before, the main interest is to observe the dispersion relation-

ship of plate-like structures (Lamb waves), however, since the nature of dispersive

Lamb waves is very complicated, less complex waveforms are acquired for comparison

reasons and to understand basic properties of the developed algorithms. Therefore,

additionally to plate measurements a set of Rayleigh waves (measured on an aluminum

half space) is provided. Further, in Chapter 4 the inversion theory for solving decon-

volution problems in the presence of noise is presented. To provide some confidence

and to confirm the results obtained from the deconvolution problems, synthetic ex-

amples are performed and discussed. The extraction of dispersion curves is explained

and a method, called Reassignment, is briefly introduced. To model piezoelectric

sources, a set of laser source signals is used and to find an in least squares sense

ideal spatial weight distribution, an algorithm (called double iterative least squares

deconvolution) is developed, tested and described. Chapter 5 discusses the results

obtained from experimentally measured data. It first depicts the dispersion relation-

ships obtained from modeling the mechanical source (forward modeling) with a set

of laser source signals for spatially distributed weights and then lines out the source

inversion applied to the measured signals. Therefore it first considers a single laser

source signal as well as averaged laser source signals to extract source functions in the

time domain. This is done for both, the plate and the half space. After that, it ap-

plies the frequency domain theory for source function extraction to the measured data
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and presents the computationally obtained results. Chapter 6 analysis the results of

Chapter 5. It provides some deeper insight to the source function approach itself and

the effects of modeling the mechanical source by averaging and weighting single laser

signals. Furthermore, the modification of reflections due to specimen boundaries and

its effect on the developed methods is studied and outlined.

Note, that while this research only examines piezoelectric elements and commercial

transducers, the analysis procedure is general enough to be used to interpret any

mechanical source exhibiting spatial and temporal influences.

Previous researchers have used Lamb waves for material characterization (see Chi-

menti [7] for details), but a Lamb wave’s multi-mode and dispersive nature makes in-

terpretation of time-domain signals difficult. Other researchers (see Pinto et al. [26])

used Lamb waves in conjunction with piezoelectric elements for structural health

monitoring. Note that time-frequency representations (TFR) operate on time-domain

signals, are capable of resolving a plate’s individual modes. TFRs are well-known in

the signal processing community (see Cohen [9] for a review of TFRs). Previous re-

search has shown that TFRs based on the short-time Fourier transform (STFT) —

spectrogram, reassigned spectrogram [22]) — and the (pseudo) Wigner-Ville distri-

bution [27] are particularly well suited for representing Lamb waves. These particular

TFRs are effective in this application because of their constant time-frequency resolu-

tion over all times and frequencies [22]. Since this research deals with the extraction

of source function, the deconvolution theory will be provided (for further information

see Michaels [18]). Further, Michaels et al. [21] present applications of deconvolution

to acoustic emission signal analysis.
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CHAPTER 2

Fundamental Theory

This chapter provides a brief introduction to wave propagation in elastic solids

and to the signal processing method used in this study. There are a number of author-

itative and comprehensive books on wave propagation theory, for example [1] [13].

Digital signal processing is covered by [17] [9] [23].

2.1 Wave Propagation

2.1.1 Linear Elasticity and Equation of Motion

In linear elasticity, the traction ti on a plane nixi = d is given by

ti = σjinj, (2.1)

where σji is the stress tensor.

The balance of linear momentum for a body with volume V and surface S can be

expressed as
∫

S

σklnkdS +

∫

V

ρfldV =

∫

V

ρüldV, (2.2)

with ρ representing the material mass density and fi the body force. Gauss’ theorem

applied to Equation (2.2) leads to

∫

V

(σkl,k + ρfl − ρül)dV = 0. (2.3)

Equation (2.3) has to be fulfilled for any arbitrary volume V of the body, and therefore

the stress equations of motion becomes

σkl,k + ρfl = ρül. (2.4)
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It is often more efficient to have the equations of motion given solely in terms of the

displacement, ui (as opposed to Equation (2.4), which has terms of stress σij and

displacement ui). This can be achieved by applying Hooke’s law for a homogeneous,

isotropic and linear elastic medium, which is given by

σij = λεkkδij + 2µεij, (2.5)

where εij is the strain tensor, related to the displacement ui by

εij =
1

2
(ui,j + uj,i), (2.6)

and µ and λ are the Lamé constants. Plugging Equation (2.6) into Equation (2.5)

and subsequently into Equation (2.4) leads to Navier’s equations of motion

µui,jj + (λ + µ)uj,ji = ρüi (2.7)

µ∇2u + (λ + µ)∇∇ · u = ρü. (2.8)

Note that in this development, body forces f are neglected. Solving Equation (2.8),

however, is difficult, because it is a coupled partial differential equation (PDE). The

Helmholtz decomposition

u = ∇ϕ + ∇× ψ, (2.9)

provides a convenient way to uncouple these equations. Equation (2.9) represents

the three components of displacement u with the four functions ϕ, ψ1, ψ2 and ψ3. To

guarantee the uniqueness of the solution, an additional constraint

∇ · ψ = 0 (2.10)

is introduced. Substitution of Equation (2.9) (Helmholtz decomposition) into the dis-

placement equations of motion (Equation (2.8)) leads to two uncoupled wave equa-

tions expressed in terms of the displacement potentials ϕ and ψ

∇2ϕ =
1

c2
L

ϕ̈, ∇2ψ =
1

c2
T

ψ̈, (2.11)

whereas cL represents the wave speed of the longitudinal wave (will be shown later)

and cT the wave speed of the vertically and horizontally polarized (transverse) shear

waves,

c2
L =

λ + 2µ

ρ
, c2

T =
µ

ρ
. (2.12)
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It always holds cL > cT. Both wave speed equations are expressed in terms of material

properties density ρ and the Lamé constants µ and λ. A relationship to material

properties Young’s modulus E and Poisson’s ratio ν is given by

λ =
Eν

(1 + ν)(1 − 2ν)
, (2.13)

µ =
E

2(1 + ν)
. (2.14)

The plates used for the experiments in this study are made of aluminum. Table 2.1

presents the material properties and wave speeds of aluminum.

Table 2.1: Wavespeeds and material properties of aluminum

material ρ[ kg

m3 ] cL [m
s
] cT [m

s
] E[GPA] ν λ[GPa]

aluminum 2700 6450 3100 70 0.35 60.5

2.1.2 Wave Phenomena

Wave phenomena discussed in this section are based on the plane wave assumption,

i.e. assuming a wave with constant properties (ε, σ, u) on a plane perpendicular to its

direction of propagation p. Equation (2.15) shows the mathematical representation

of a plane wave,

u = f(x · p − ct)d, (2.15)

where d is the unit vector defining the direction of particle motion, and c is either

the longitudinal wave speed cL or the transverse wave speed cT. By substituting

Equation (2.15) into Equation (2.8), one obtains

(µ − ρc2)d + (λ + µ)(p · d)p = 0. (2.16)

Since p are two different unit vectors, it can immediately be seen that the two possible

solutions that form the basis of wave propagation are either d = ±p or p · d = 0:

• d = ±p leads to p · d = ±1 and yields with Equation (2.16), c = cL (see

Equation (2.12)). Since d and p are linearly dependent, this represents a particle

movement in the direction of propagation — a longitudinal or P-wave.

6



• p · d = 0 yields with Equation (2.16), c = cT (see Equation (2.12)). Now the

direction of motion is normal to the direction of propagation, and the wave is

called a transverse wave. If a two-dimensional plane of propagation is considered

(for example, the (x1, x2) plane), a wave with an in-plane displacement (in the

(x1, x2) plane) is called an SV-wave (vertically polarized), while a wave with out-

of-plane displacement (in the x3 direction) is called an SH-wave (horizontally

polarized).

In a homogeneous, isotropic material, transverse and longitudinal wave speeds are

independent of frequency — they are nondispersive.

2.1.2.1 Reflections of P and SV-waves

The wave types derived so far propagate independently in an infinite media. As

soon as a finite media in the direction of propagation is considered, reflections and

coupling will occur. An incident P-wave (SV-wave), which is reflected at a stress free

boundary (σ22 = 0 and σ21 = 0) normally consists of both, a P-wave (SV-wave) and

a SV-wave (P-wave). Figure 2.1 shows the reflections of an incident P and SV-wave.

PP

SV

x1

x2

θ0

θ1

θ2

(a) Reflection of a P-wave.

P

SV SV

x1

x2

θ0

θ1

θ2

(b) Reflection of a SV-wave.

Figure 2.1: Wave reflections.

The effect of a single incident wave-type producing two different waves (after reflection

from a boundary) is called mode conversion. The displacement field of a harmonic

wave in the x1, x2 plane (propagating in infinite media, plane-strain case) can be
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expressed as,

u(n) = And
(n)eikn(x1p

(n)
1 +x2p

(n)
2 −cnt), (2.17)

whereas n denotes the wave (longitudinal or transverse), kn = ω
cn

is called the

wavenumber of wave n and the respective wave speeds are cn. Using these defini-

tions, and noting that the angular frequency ω is equal for the incident and reflected

waves, it is possible to determine the relationship between the angle of the incident

and the angles of the reflected waves (see Table 2.2).

Table 2.2: Angle relations for reflection on a stressfree surface

incident θ0 reflected P θ1 reflected SV θ2

P θ1 = θ0 sin θ2 = (cT/cL) sin θ0

SV sin θ1 = (cL/cT) sin θ0 θ2 = θ0

Exceptions of mode conversion are the normal incidence with θ0 = 0 — in this case,

the waves are reflected as themselves, and if the angle θ0 is greater than a critical

angle,

θcr = arcsin
cT

cL

; (2.18)

then only a SV-wave is reflected. The P-wave portion of the reflected signal degener-

ates into a surface wave (Rayleigh wave), traveling along the surface and exponentially

decreasing in amplitude with increasing depth.

2.1.2.2 Rayleigh Surface Waves

In this research, we consider Rayleigh surface waves excited in an aluminum half

space. This kind of wave has an elliptical particle motion which is retrograde with

respect to the direction of propagation. One special feature of the Rayleigh wave is

that it has no dispersion (that is, same velocities for different frequencies). This is

an advantage in the sense of describing external effects on the waves, since we can

predict the shape of the wave for different propagation distances.

To gain a better insight in the Rayleigh wave motion and its change of shape for sev-

eral source receiver distances, a theoretical solution is implemented. The derivation of

8



this solution is outlined by Pekeris et al [25] and greatly summarized and annotated

by Graff [13].

The derivation is presented for the general case where the source is buried in the

material at a certain hight z, whereas for our purposes z = 0 which corresponds to

an excitation on the surface of the half space. Furthermore the following solution is

valid for the case of a step normal loading in the center of the half space. Since it is

helpful for later discussions we can easily obtain the response of an impulse loading

by just subtracting two step responses from each other. Then the impulse length

corresponds to a time difference of the two steps. The final result for the out of plane

displacement field is

uz(r, z, t) = uz(r, 0, t) =






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+

√
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4
−τ2

)
1

2 + ( 3
√

3−5

τ2+
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3

4
−

3

4

)
1

2 }, 1
√

3
< τ < 1

3Z
16πµr

{6 − ( 3
√

3+5
3

4
+

√

3

4
−τ2

)
1

2 }, 1 < τ < γ

3Z
8πµr

, τ > γ,

(2.19)

where γ = 1
2
(3 +

√
3)

1
2 .

Using

cT = (
µ

ρ
)

1
2 (2.20a)

τ =
cTt

r
(2.20b)

Equations (2.19) are completely described in an explicit form. The result of an

impulse load of 15 ns duration and at r = 46 mm propagation distance is depicted in

Figure 2.2.

2.1.2.3 Guided Waves

Guided waves are waves that travel in a body (waveguide) with at least one finite

and one infinite dimension. So far only single reflections have been considered, but in

a wave guide multiple reflections at the surface (as shown in Figure 2.3) are possible.

As a result of mode conversion at the upper and lower boundaries, many propagating

waves are reflected back and forth, resulting in an interference pattern across the body

thickness that guides the waves in a certain direction. To investigate wave motion in

9
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Figure 2.2: Theoretical solution for the Rayleigh surface wave.
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an elastic wave guide, potentials in the form

ϕ = Φ(x2)e
i(kx1−ωt), ψ3 = Ψ(x2)e

i(kx1−ωt), (2.21)

are assumed. The direction of propagation p is in the x1-direction. Assuming plane

strain and stress-free boundaries at x2 = ±h, one can obtain the Rayleigh-Lamb

frequency equations (see Achenbach [1] for more details)

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(2.22)

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
, (2.23)

where

p2 =
ω2

c2
L

− k2, q2 =
ω2

c2
T

− k2, (2.24)

and 2h is the plate thickness. Equation (2.22) represents the symmetric Lamb modes,

while Equation (2.23) provides the antisymmetric Lamb modes. (Anti)symmetric is

understood to be that the displacement is (anti)symmetric to the x1-axis and a Lamb

mode is an amplitude distribution over the plate thickness that oscillates with the

angular frequency ω and travels with the corresponding phase velocity c = ω
k

ob-

tained from an (ω, k) solution pair of the Rayleigh-Lamb spectrum (Equations (2.22)

and (2.23)). Note that Lamb waves are dispersive, i.e., the propagation velocity of a

Lamb mode is dependent on its oscillation frequency. The Rayleigh-Lamb equations

can only be solved numerically and Figure 2.4 shows a solution (dispersion curves)

of the Rayleigh-Lamb spectrum in the slowness-frequency domain. The symmetric

Lamb modes are named s0, s1, . . . and the antisymmetric a0, a1, . . . starting with the

mode that has the lowest angular frequency ω for a given k. The dispersion curves are

obtained by finding first a numerical solution in the (ω, k)-domain or (f, k)-domain

respectively and differentiating f numerically (partially with respect to k) for each of

the different modes to attain the group velocity

cg(f) =
2π∂f

∂k
. (2.25)

Group velocity as defined in Equation (2.25) describes the velocity of propagating

energy and has therefore a physical meaning. In contrast, points of constant phase
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Figure 2.4: Theoretical solution in slowness-frequency domain (dispersion curves).

propagate with the phase velocity c = ω
k
. However, for nondispersive media, group

and phase velocity are equal.

The energy slowness sle can then be obtained by the relationship

sle(f) =
1

cg(f)
. (2.26)

If the theoretical solution in the time-frequency domain is required, they are found

by

t(f) =
sle(f)

d
; (2.27)

the expected arrival time for a specific mode at frequency f , where d is the propaga-

tion distance source-receiver. The theoretical dispersion curves are calculated using

the numerical code Disperse developed by Pavlakovic et al [24], using material prop-

erties that are measured independently with bulk ultrasonic waves.
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Existing Matlab code is modified to perform a normal mode expansion and calcu-

late theoretical Lamb waves for a plate that is 1 mm thick and considered infinite.

The waveform of the theoretical Lamb waves is obtained by superimposition of the

first 6 symmetric and anti-symmetric modes with a modeled sampling frequency of

100 MHz. Further information about how to implement dispersion curves, expand the

normal modes and obtain formula for the theoretical Lamb wave is given by Pao [30].

Equivalent to the Rayleigh wave simulation in Section 2.1.2.2, the source receiver

distance is 46 mm and the simulated impulse duration is 15 ns. Figure 2.5 depicts

the results for the theoretical Lamb wave.
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Figure 2.5: Theoretical solution for the Lamb wave.
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2.2 Digital Signal Processing Background

2.2.1 Fourier Series

The Fourier series of a T-periodic function s(t) is

Ss(t) =
∞∑

k=−∞

cke
ikωt (2.28)

with the coefficients ck computed by

ck =
1

T

T∫

0

s(t)e−ikωtdt (2.29)

where ω = 2π
T

is called the fundamental frequency.

While Equation (2.29) is used to break down the original signal s(t) into its spectral

components; i.e., into components of different frequencies ωk = kω, k ∈ Z, Equa-

tion (2.28) combines the different spectral components into an infinite series that

represents the original signal. Clearly, the resulting Fourier series Ss(t) is also T-

perodic and composed of sines and cosines with frequency ω and their harmonics1.

For computer implementation, the discretized version of the Fourier series (DFS)

s̃[n] =
1

N

N−1∑

k=0

S̃[k]e
−i2πkn

N (2.30)

can be derived [23], where

S̃[k] =
N−1∑

n=0

s̃[n]e
i2πkn

N (2.31)

are the coefficients of the DFS and N is the sequence length. Note that in the discrete

case, it is sufficient to have at most N different frequency components to completely

synthesize the original sequence s[n] by the DFS Synthesis Equation (2.30); this is in

contrast to an infinite number required in the continuous case.

Since the DFS is not “aware” of the sampling frequency of the sequence s[n], the

index k for S̃[k] has to be converted from the normalized frequency f = k
N

∈ [0, 1] to

1since eit = cos t + isin t
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the real frequency f . The corresponding frequency for a given S̃[k] is

f =
k

N
fs (2.32)

with fs being the sampling frequency of the sequence s[n]. One should keep in mind

that whenever continuous signals are discretized, frequencies with f ≤ fs

2
= fN, where

fN is the Nyquist frequency, can only be unambiguously identified if the signal itself

is limited to a frequency band below the Nyquist frequency. Otherwise aliasing can

occur for higher frequencies; i.e., it is possible that a higher frequency appears as a

lower frequency in the sampled domain, thus creating spurious information.

2.2.2 Fourier Transform

In contrast to the periodic Fourier series, the Fourier transform represents the

limiting case of the series for T → ∞. It allows for the representation of an aperiodic

function s(t) by the Fourier integral

s(t) =
1

2π

∞∫

−∞

eiωtS(ω)dω, (2.33)

where the coefficients c(ω) are defined as

S(ω) =

∞∫

−∞

e−iωts(t)dt (2.34)

and S(ω) is called the Fourier transform of s(t). While the Fourier series represents a

signal in terms of a fundamental angular frequency ω0 and its harmonics, the Fourier

transform uses a continuous angular frequency variable ω, which is related to the

frequency f by

ω = 2πf. (2.35)

As for the Fourier series, there also exists a Fourier transform that operates on se-

quences. The corresponding equations are

s[n] =

2π∫

0

S(ω)eiωndω (2.36)
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for synthesis and

S(ω) =
1

2π

∞∑

n=−∞

s[n]e−iωn (2.37)

for analysis.

The Fourier transform S(w) of an input sequence s[n] is thus a continuous function.

It can be shown [23] that the DFS coefficients S̃[k] of the sequence s̃[n] are samples

of the Fourier transform of s[n]. From this point of view, the discrete Fourier series

is also called the discrete Fourier transform (DFT).

The frequency for a given S(ω) is calculated by Equation (2.35). If the signal length is

a power of 2,2 the calculation time of the DFT can be lowered significantly by the fast

Fourier transform algorithm proposed by Cooley and Tukey (see for example [23]).

Since the Fourier transform and the DFT are usually complex valued (where |S(ω)|,
|S̃[k]| are the magnitudes and atan

(
=(S(ω))
<(S(ω))

)

, atan
(

=(S̃[k])

<(S̃[k])

)

the phase angles for a

frequency), they are frequently presented (visualized) by the energy density spectrum

which represents the energy distribution in the frequency domain and is calculated

by

Ed = |S(ω)|2. (2.38)

Its discrete counterpart is

Ẽd[k] =
1

N
S̃[k]S̃[k], (2.39)

where S̃[k] is the conjugate complex of S̃[k].

2.2.3 Short-Time Fourier Transform (STFT)

The STFT

Sstft(ω, t) =
1

2π

∞∫

−∞

e−iωτs(τ)h(τ − t)dτ, (2.40)

where h(t) is a window function, is based on the Fourier transform. Instead of con-

sidering a transform of the entire signal at once, the signal is chopped into a series of

2If it is not, the signal can be zero-padded, i.e., zeros are appended at the end of the signal.
This does not change the result of the transform (in the sense that the value of the transform does
not change for the original discrete frequencies before and after zero-padding), but improves the
frequency resolution.
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small overlapping pieces, and each of these pieces is windowed and then individually

Fourier transformed. Its energy density spectrum

Ed(ω, t) = |Sstft(ω, t)|2 (2.41)

is called a spectrogram.

So far it seems like the TFRs are perfect, especially when compared to the 2D Fourier

transform. In theory, it appears that one measurement is enough to develop a repre-

sentation that can quantify changes in a signal’s frequency content as a function of

time. If this is the case, there would be no point in using the 2D Fourier transform.

Unfortunately, TFRs like the scalogram or the spectrogram suffer from what is known

as the Heisenberg uncertainty3, meaning (in the case of signal processing) that it is

not possible to have a perfect resolution in time and frequency simultaneously.

Stating the uncertainty principle in equation form requires a set of preliminary defi-

nitions. The square norm ‖s(t)‖ of a function s(t) is defined as

‖s(t)‖ =





∞∫

−∞

|s(t)|2dt





1
2

. (2.42)

The normalized function sn(t) is then given by

sn(t) =
s(t)

‖s(t)‖ . (2.43)

Since the square norm of a normalized function is equal to one, the squared magnitude

is regarded as a probability density function enabling one to calculate the mean time

of a function s(t) by

E[t] =

∞∫

−∞

t|sn(t)|2dt (2.44)

and the mean angular frequency by

E[ω] =

∞∫

−∞

ω|Sn(ω)|2dω, (2.45)

3In fact the term uncertainty is misleading. There is no element of chance or probability as far
as signal processing is concerned; instead it is a completely deterministic phenomenon.
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where Sn(ω) is the normalized Fourier transform of the function s(t). The variances

for t and ω are then

σ2
t =

∞∫

−∞

(t − E[t])2|sn(t)|2dt (2.46)

and

σ2
ω =

∞∫

−∞

(ω − E[ω])2|Sn(ω)|2dω. (2.47)

The uncertainty principle limits the possible resolutions by the inequality

σ2
t σ

2
ω ≥ 1

4
. (2.48)

Therefore, the standard deviation in time and frequency cannot be varied indepen-

dently, but they are related to each other.

2.2.4 Representation of Dispersion Curves

As mentioned in Section 2.2, time-frequency representations (TFR), i.e., the spec-

trogram, cannot simultaneously have perfect resolution in both time and frequency

due to the Heisenberg uncertainty principle. Thus, the resulting representation is un-

satisfactory for many applications. But it is possible to improve the time-frequency

resolution of a spectrogram with an algorithm that is referred to as reassignment [2].

In the following steps, the basic idea of the reassignment method is presented.

In reassignment, values are moved away from their point of computation to their

center of gravity, thus localizing the diffuse information of the time-frequency repre-

sentation. The reassignment method is not restricted to a specific TFR, but it can be

applied to any time-frequency shift invariant distribution of Cohen’s class. This class

of TFRs was a representation presented by Cohen et al [9, 2, 16] and later resolved

to the easier version developed by Auger and Flandrin [2]. These researchers show

that the reassigned coordinates t̂ and ω̂ for the spectrogram can be calculated as

t̂ = t − Re

(

STFTT h(x, t, ω) · STFTh(x, t, ω)

|STFTh(x, t, ω)|2

)

(2.49)

and

ω̂ = ω − Im

(

STFTDh(x, t, ω) · STFTh(x, t, ω)

|STFTh(x, t, ω)|2

)

(2.50)
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(a) Normal spectrogram of single laser.
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(b) Reassigned spectrogram of single laser.

Figure 2.6: Comparison between normal and reassigned spectrogram.

for the STFT, where STFTh(x, t, ω) is the short time Fourier transform of the signal

x using a normalized window function h(t); STFTT h(x, t, ω) and STFTDh(x, t, ω)

are the short time Fourier transforms with t · h(t), dh(t)
dt

as their respective window

functions.

The reassignment algorithm relocates each time-frequency point from the coordinates

(t, ω) to a new, reassigned position (t̂(t, ω), ω̂(t, ω)). This relocation can be expressed

by the displacement vector field

r(t, ω) =




t̂(t, ω) − t

ω̂(t, ω) − ω



 (2.51)

defined by Equations (2.49) and (2.50).

If several points from the spectrogram are moved to the same point in the reassigned

representation, their amplitudes are added up, thus conserving the energy. Calculat-

ing the reassignment of a spectrogram (Figure 2.6(b)) produces a much more distinct

time-frequency representation when compared to a non-reassigned spectrogram (Fig-

ure 2.6(a)). From now on, all TFRs will be presented in the reassigned representation

— except explicitly denoted differently.
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CHAPTER 3

Experimental Procedure

This chapter describes and illustrates the experimental procedure. While Sec-

tion 3.1 describes the individual system components which are used in the experi-

ments, Section 3.2 presents the physical arrangement of these components and de-

scribes the performance of the experiments.

3.1 Experimental System

The basic components needed to perform the experiments are: a source system,

a detection system, the specimen, and any additional instrumentation to analyze the

data.

3.1.1 Source Systems

3.1.1.1 Laser source

The laser used as the laser source is a Q-switched, Nd:YAG laser with a power

output of 405 mW (650 mJ) and a wave length of 1064 nm. The laser emits pulses

only with a pulse length of 4 to 6 ns. Since the laser light at this wavelength is

invisible, a He-Ne laser is used to align the source laser and the beam of this He-Ne

laser is controlled to be coaxial to the Nd:YAG laser beam. Figure 3.1 shows the

source system and the path of the two laser beams (Nd:YAG and He-Ne). The mirror

between the absorption plate and the lens (Figure 3.1), is mounted on a translation

stage. As will be described later, this translation stage is needed to perform a variety

of measurements with different propagation distances.

A laser source is used in these experiments because: it excites a broad frequency
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Figure 3.1: Scheme of source system.

bandwidth (typically frequencies from 100 kHz to 10 MHz are excited with this opti-

cal source); the laser source is non-contact so there are no coupling effects associated

with it, leading to good repeatability of the laser source; and because it is a point

source, which enables modeling of finite sources by convolution and is free of near-

field transducer effects, such as diffraction effects.

Generally, there are two types of laser sources possible: ablation and thermoelas-

tic. The difference between these two sources is the amount of laser energy (relative

energy, depending on a number of factors such as source spot-size). An ablation

source is created with more laser energy than a thermoelastic source. The advantage

of using a thermoelastic source is that it is truly nondestructive — a thermoelastic

source does not damage the specimen’s surface, but the energy level of ultrasonic

(acoustic) waves, excited with a thermoelastic source, is low. In contrast, an abla-

tion laser source excites ultrasonic waves with higher energy, which leads to better

signal-to-noise-ratio (SNR) — an ablation source is used in these experiments. An

ablation source, however, vaporizes a thin layer of material at the excitation point —

the point where the Nd:YAG laser beam hits the specimen. Eisenhardt [12] examines
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the repeatability of an ablation source with an emphasis on spot size and frequency

bandwidth, and determines that the ablation source is very repeatable in terms of

frequency, as long as the spot size remains constant. Note that each measurement

represents an average of 20 laser pulses; this signal averaging increases SNR by a

factor of
√

N , where N is the number of averages.

The experimental procedure uses a set of absorption plates and focusing lenses to

control laser energy and spot size at the laser source, and thus source type (ablation

versus thermoelastic). Figure 3.1 shows the location of the absorption plate and fo-

cusing lens, and a consistent laser source is ensured following the procedure described

by Eisenhardt [12]. Note that the current research uses an ablation source in all the

experiments.

3.1.1.2 Piezoelectric Sources

Two different types of piezoelectric sources are used in this research. The first one

is a commercial Panametrics V544 1 transducer that works at a center frequency of

10 MHz and has a nominal element diameter of 6 mm. Several coupling materials like

commercial engine oil, soap and food oil were tested for measurements with this trans-

ducer. The piezo in the transducer is embedded in a housing that contains a backing

unit to minimize reflections in the transducer. Basically, the backing absorbs all the

waves propagating towards the housing. The electronic connection is realized with a

screw connector that contains the negative as well as the positive pole. This source

will be referred to as the “commercial transducer” source in the reminder of the thesis.

The second piezoelectric source is a LTZ-5 piezo (PZT), ceramic crystal. Its center

frequency is roughly 10 MHz. Since this crystal is extremely small (0.24 mm in height

and 5.2 mm in diameter) it is only coupled to a specimen with glue. This source will

be referred to as the “piezo disc” source in the reminder of the thesis. The bottom

part of the piezo disc is the negative pole and the top layer is the positive pole. This

1produced by Panametrics-NDT, Waltham, MA, USA
(http://www.panametrics-ndt.com)
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property of the ceramic disc requires a conductive glue. A very effective glue is the

MG Chemicals2 silver conductive epoxy which forms high strength bonds on the one

hand and is highly conductive on the other. The electronic connection is a spring

construction, where 4 springs touch the plate surface and one spring touches the top

of the piezo disc. The advantage of this connection over a soldered connection is that

one does not have to heat up the crystal, i.e., it does not change its material structure,

and the influence of the cable connection on the oscillation behavior can be neglected.

Both piezoelectric sources are driven by a Panametrix 35 Mhz ultrasonic pulser-

receiver, model 5072PR3.

3.1.2 Detection System

The detection system used in this study is a dual probe heterodyne interferometer

that uses a 2 Watt Argon-ion-laser with a wavelength of 514.5 nm. This interferome-

ter is a modified version of the system developed as a single probe system described

in Bruttomesso et al [5] but later extended to a dual probe system by Hurlebaus [15].

The working principle of this interferometric system is the Doppler effect, which

enables measurement of the absolute particle velocity of a point on the specimen’s

surface. Figure 3.2 (similar to [15]) shows the physical setup of the dual probe inter-

ferometer.

In brief, the Argon laser produces a single beam of vertically polarized light. A λ/2-

plate rotates this beam into 45◦ polarized light, which is a superposition of horizontally

and vertically polarized light. The polarized beam passes through an acousto-optic

modulator (AOM) that splits the rotated beam into basically 2 beams. One beam,

which travels to the object (specimen) and is reflected off the object (referred to as the

object beam), while the other one serves as a reference (called the reference beam).

An AOM is comprised of a Bragg cell, which is excited by a piezoelectric transducer,

2produced by MG Chemicals, Surrey, BC, Canada
(http : //www.mgchemicals.com)

3data sheet can be found under
(http : //www.panametrics − ndt.com/nedt/pulserreceivers/downloads/5072pr.pdf)
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Figure 3.2: Schematic of the dual-probe interferometer.

causing this beam split, plus a frequency shift. Note that generally, a single beam is

split into an infinite number of separate beams, but only two of these beams (the un-

shifted and the first order shifted beam) are used in the interferometer, carrying about

95 % of the power from the original beam. The frequency shifts are of integer or-

ders of the frequency of the piezoelectric transducer — 40 MHz in this interferometer.

The object beam (unshifted) is split into horizontally and vertically polarized light

at the polarizing beam splitter (PBS) — vertically polarized light is reflected, while

horizontally polarized light passes through. The vertical (reflected) component of the

45◦ polarized light is circularly polarized by a λ/4-plate, focused by a lens and is

reflected off the specimen (object) surface. On its way back, this beam is rotated

from circular to horizontal polarization by the λ/4-plate, passes the PBS and hits the

nonpolarized beam splitter (NPBS) — approximately half of the beam energy goes

through a NPBS, while the other half is reflected at 90◦. The horizontal (passing

through the PBS) component of the object beam is reflected off a mirror, rotated

into circularly polarized light, focused by a lens and is reflected off the specimen’s

surface. On its way back this beam is rotated from circular to vertical polarization
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by the λ/4-plate, is reflected off the mirror and the PBS and also hits the NPBS.

When the two component of the object beam reflect off the specimen surface they are

frequency shifted an additional amount due to the surface velocity (Doppler effect).

After leaving the AOM, the reference beam is reflected at two mirrors and hits the

NPBS where it is recombined with the two components of the object beam. After

leaving the beam splitter cube, the recombined beams (reflected and transmitted at

the NPBS) pass through a polarizer separating the information of both object beams

and filtering the horizontally an the vertically polarized component of the recombined

beam. Both filtered beams finally hit the photodiodes converting the intensity of the

light into voltage signals.

3.1.3 Instrumentation

The instrumentation takes the output voltage from the photodiode, converts (de-

modulates) it to an absolute frequency shift and then filters and processes the signal.

This setup uses an FM discriminator (see Hurlebaus [14] for details) to demodulate

the voltage from the photodiode. The demodulated signal is low pass filtered with

10 MHz to reduce the noise level, afterwards discretized by an oscilloscope with a sam-

pling frequency of 100 MHz. The oscilloscope is connected to a personal computer

(PC) via GPIB.

3.1.4 Specimen

Two different specimens are considered in this research. One specimen is an alu-

minum 3003 plate which is plane, polished and has a size of 305 mm x 610 mm

x 0.99 mm. The other specimen is an aluminum block, considered as half space,

which is also plane, polished and has a size of (103 mm x 207 mm x 155 mm). Nei-

ther specimen has any artifical defects and note that aluminum 3003 is selected in

order to be able to compare the results of this research to those of previous research

like Eisenhardt [12] and Benz [3]. Finally, note that the relatively large plate size

(305 mm x 610 mm) is used to minimize interference of reflections from the plate
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Figure 3.3: Photograph of the mounting device and plate.

edges. In later discussions the plate is considered as “infinite.” This consideration

can be justified by relating the relatively small source receiver distance of 46 mm

to the large plate size. Furthermore, the complete set of measurements is truncated

after 100 µsec so that one can demonstrate with time-of-flight calculations that there

are no edge reflections in this time window. Looking at the half space geometry,

the statement that boundaries and edges do not influence the measured data, does

not hold anymore. Thus, reflections and their influence on the outcomes have to be

analyzed carefully.

The plate is mounted in a way that the mounting process does not interfere with the

propagation of the Lamb waves. This requirement is satisfied by mounting the plate

lengthwise on a steel base plate. As depicted in Figure 3.3, the plate is fixed on the

bottom by two metal elbows on the one side and a metal bar on the other side. The

half space, shown in Figure 3.4, is simply situated on a steel plateau and attached to

a stop to maintain its position during the measurements. Since the aluminum block

is very heavy, no further mounting devices or attaching methods are required.
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Figure 3.4: Photograph of the stop mechanism and half space.

3.2 Experiments performed

3.2.1 Measurements on the Plate

The following sets of measurements are performed on the plate:

• One set of 101 equidistant measurements (with equal step of 0.1 mm separating

each measurement location) which are performed with the laser source and laser

interferometric receiver on the plate (one single laser measurement is depicted

in Figure 3.6, plot (a)). Both, source and receiver are aligned such that the

measurement and excitation points are in the middle of the plate, and on the

same side of the plate. The largest propagation distance between source and

receiver is 51 mm (measurement location ] 1) and the shortest propagation

distance is 41 mm (measurement location ] 101) — this data set represents a

set of symmetric propagation distances centered about a propagation distance

of 46 mm. This data set of measurements will be referred to as “laser source

Lamb.”
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• One set of measurements on the plate performed with the commercial trans-

ducer (Panametrics V544 ) source and the laser interferometer (described in

Section 3.1.2) as receiver (source and receiver on the same side of the plate).

All the couplants mentioned in Section 3.1.1.2 are tested, but the food oil gave

the most repeatable performance and it will be used in all the future commercial

transducer measurements. The commercial transducer source is placed on the

plate surface such that its center is located 46 mm away from the (point) laser

receiver. This measurement will be referred to as “transducer source Lamb”

(Figure 3.6, plot (b)).

• One set of measurements on the plate performed with the glued piezo disc source

(described in Section 3.1.1.2) and the same laser interferometric receiver (source

and receiver again on the same side of the plate). The piezo disc is placed on

the plate surface such that its center is located 46 mm away from the (point)

laser receiver. This measurement will be referred to as “piezo source Lamb”

(Figure 3.6, plot (c)).
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Figure 3.5: Image of the plate measurement set.

28



Figure 3.5 is a graphical summary of all 101 laser source Lamb measurements, while

Figure 3.6 are (top-to-bottom) a representative laser source Lamb (propagation dis-

tance of 46 mm), the transducer source Lamb, and the piezo source Lamb signals.

The vertical axis of the image in Figure 3.5 corresponds to the measurement locations,

from ] 1 (propagation distance of 51 mm) at the top to ] 101 (propagation distance

of 41 mm) at the bottom. Note that the laser source Lamb measurements are each

driven with a pre-trigger of 1500 sampling points (15 µsec) — one can see a very fine

line or a peak at 1500 points (0 µsec) which corresponds to the electromagnetic noise

of the generation instrumentation in both Figures 3.5 and 3.6. There is also a very

thick line between 12000 (105 µsec) and 15000 (135 µsec) points in Figure 3.5 that

is caused by the acoustic air-pulse of the laser source. This peak does not occur for

the piezoelectric sources, since they do not emit an acoustic air-pulse. Looking at

Figure 3.5 one can detect that the earliest arrival time (for measurement ] 101) of the

Lamb waves is after 1000 points (10 µsec), excluding the pre-trigger. Moreover, there

is a very pronounced low frequency component in the Lamb wave after 4000 points

(25 µsec).
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Figure 3.6: Measurement sets on the plate.
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3.2.2 Measurements on the Half Space

The following sets of measurements are performed on the half space:

• One set of 101 equidistant measurements (with equal step of 0.1 mm sepa-

rating each measurement location) which are performed with the laser source

and laser interferometric receiver on the half space (one single laser measure-

ment is depicted in Figure 3.8, plot (a)). Both, source and receiver are aligned

such that the measurement and excitation points are in the middle of the half

space. The furthest propagation distance between source and receiver is 51 mm

(measurement location ] 1) and the shortest propagation distance is 41 mm

(measurement location ] 101) — this data set represents a set of symmetric

propagation distances centered about a propagation distance of 46 mm. For

further considerations, this set of measurements will be referred to as “laser

source Rayleigh”.

• One set of measurements on the half space performed with the commercial

transducer (Panametrics V544 ) source and the laser interferometer (described

in Section 3.1.2) as receiver. All the couplants mentioned in Section 3.1.1.2 are

tested, but the food oil gave the most repeatable performance and it will be

used in all the future commercial transducer measurements. The commercial

transducer source is placed on the half space surface such that its center is

located 46 mm away from the (point) laser receiver. This measurement will be

referred to as “transducer source Rayleigh” (Figure 3.8, plot (b)).

• One set of measurements on the half space with the glued piezo disc source

(described in Section 3.1.1.2) and the same laser interferometric receiver. The

piezo disc is placed on the half space surface such that its center is 46 mm away

from the (point) laser receiver. This measurement will be referred to as “piezo

source Rayleigh” (Figure 3.8, plot (c)).

Figure 3.7 is a graphical summary of all 101 laser source Rayleigh measurements,

while Figure 3.8 are (top-to-bottom) a representative laser source Rayleigh (prop-

agation distance of 46 mm), the transducer source Rayleigh and the piezo source
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Figure 3.7: Image of the half space measurement set.

Rayleigh signals. The vertical axis of the image in Figure 3.7 corresponds to the

measurement locations, from ] 1 (propagation distance of 51 mm) at the top to ] 101

(propagation distance of 41 mm) at the bottom. Note that the laser source Rayleigh

measurements are each driven with a pre-trigger of 1500 sampling points (15 µsec) —

one can see a very fine line or a peak at 1500 points (0 µsec) which corresponds to the

electromagnetic noise of the generation instrumentation in both Figures 3.7 and 3.8.

One significant feature in Figure 3.7 is the arrival of the Rayleigh wave after approx-

imately 1500 points (15 µsec), excluding the pre-trigger. All visible lines after 6000

points (45 µsec) are representations of reflections on the half space boundaries. The

very thick line between 12000 (105 µsec) and 15000 points (135 µsec) in Figure 3.7 is

again caused by the acoustic air-pulse of the laser source. Table 3.1 summarizes and

shows all the measurement sets performed and provided in this research.
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Figure 3.8: Measurement sets on the half space.

Table 3.1: Summary of measurement sets

name specimen source receiver

laser source Lamb plate laser laser interferometer

transducer source Lamb plate commercial laser interferometer

transducer

piezo source Lamb plate piezo disc laser interferometer

laser source Rayleigh half space laser laser interferometer

transducer source Rayleigh half space commercial laser interferometer

transducer

piezo source Rayleigh half space piezo disc laser interferometer
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3.2.3 Propagation Distance Errors

Note that for the following discussions, propagation distance errors have to be

taken into consideration. For the laser source Rayleigh and the laser source Lamb

measurement sets, a micrometer screw was used to set the equidistant locations of the

excitation points. The accuracy of the used micrometer is in the range of ± 0.005 mm.

The propagation distance error for the measurements performed with the piezo disc

and the transducer depends on two features:

• The actual effective surface of the piezo disc or the transducer

• The actual position of the center point of the piezo disc or the transducer

Inspections in Chapter 5 will show that the propagation distance error due to these

two features is below ± 0.1 mm.
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CHAPTER 4

The Source Function Approach

4.1 Motivation

Previous research results (e.g. Benz et al. [4]) have shown that it is possible to

obtain accurate dispersion curves for plates using a laser source for the wave exci-

tation. The point nature and broad bandwidth of the laser source means that the

individual modes in the dispersion curves are well separated and are clearly distin-

guishable, especially for a frequency band from 500 kHz through 5 MHz [4] for the

used excitation - and measurement system. If the dispersion curves can be accurately

measured, then there is quantitative information about the behavior of the individual

modes. Each mode interacts with the specimen and especially its defects, so that one

can detect and even characterize certain material properties and defects using these

dispersion curves. When examining a similar measurement — one made with either

a piezoelectric source (referred to as a “piezo disc”) or a commercial transducer( re-

ferred to as a “transducer”), instead of a laser source — one recognizes a tremendous

loss in information. The dispersion curves developed using a piezoelectric source (or a

transducer) are blurred (some modes are not even excited), making it difficult to dis-

tinguish between different modes, and complicating any conclusions about structural

health. The motivation of this portion of the research is to develop a methodology

to describe the effects of transducer and piezo disc sources (when compared to the

laser source), then extract the effect of these transducer and piezo disc sources, and

finally compensate for the negative influence of these sources — the ultimate goal

is to obtain dispersion curves close to those developed with an “ideal” laser signal.

Comparing the practicability, costs and sensitivity of transducers or piezo discs with

laser sources, this methodology would have a positive impact in structural health
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monitoring.

4.2 Temporal and Spatial Effects:

Forward Modeling

4.2.1 Model

A scheme of the source - receiver location is depicted in Figure 4.1. It shows the

location of a source distributed over a region of the surface S with a spatial extent

described by vector r′ and the location of the receiver described by vector r.

Figure 4.1: Scheme of source - receiver location.

The continuous representation of the equation which is subject to the further consid-

erations can be written as follows:

x(r, t) = s(t) ∗
∫

S

w(r′)G(r, r′, t)dS (4.1)

where w(r′) represents the weight for the Green’s function obtained at r (excited at r′).

The effects of the source are captured in the source time function s(t). In this research

the set of laser source signals xLSRj
(n) corresponds to the single Green’s functions (at

different locations j) and the measured transducer signal xTR(n) is described by x.

Thus, the continuous representation (Equation (4.1)) can be rewritten to the discrete

representation in Equation (4.2).

xTR(n) = s(n) ∗
∑

j

wjxLSRj
(n) (4.2)
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The following sections consider the two most intuitive physical influences of a piezo

disc or transducer on signal quality: temporal effects and spatial effects; that is, the

influence of s(n) and wj are subject of the following discussions.

4.2.2 Temporal Effects

Consider the temporal effects using a synthetic source function (Figure 4.2(b))

s(n) only that models the possible temporal influence with exponentially damped

oscillations of the transducer. This synthetic source function is convolved with a single

laser source measurement to obtain the contour plot depicted in Figure 4.2(c) — only

one w in Equation (4.2). This figure confirms that a simple oscillation of the source has

simply filtered the time-frequency laser representation of the signal in Figure 4.2(a).

This makes physical sense by noting that a convolution of a weighted sine function

with an arbitrary signal in the time domain is simply a filtering operation. This

filtering can be more clearly seen by looking at the synthetic source function in the

frequency domain. Figure 4.2(d) shows that a peak is developed at 2.75 MHz, which

corresponds to the simulated input frequency of the modeled source. Note that the

oscillations in the peripheral areas of the main lobe are due to the sharp cutoff of the

synthetic source function after 4 periods. This effect would not be present in a real

piezo source, since the temporal oscillations would die out smoothly. Recalling that

a convolution in the time domain corresponds to a multiplication in the frequency

domain, one can obtain the plot in Figure 4.2(c) by simply multiplying each horizontal

line of the plot in Figure 4.2(a) with the FFT of the synthetic source, shown in

Figure 4.2(d).

This demonstrates that one does not have to model temporal effects in order to recover

dispersion curves but the bandwidth of the source function must be sufficient in order

to recover the modes of interest.

4.2.3 Spatial Effects

Next consider the spatial influence of the transducer. To do this, examine the

Fourier transformed transducer source Lamb signal and the Fourier transform of a
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(a) STFT contour plot of perfect laser signal.
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(b) Time domain plot of synthetic source
function.
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(c) STFT contour plot of convolved laser signal.
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(d) Frequency domain plot of synthetic source
function.

Figure 4.2: Plots for temporal effect discussion.
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laser source Lamb signal. As shown in Figure 4.3(a) and Figure 4.3(b), there are

conspicuous differences in the frequency content of the two signals. Hence it is at-

tempted to model the spatial extend of a piezo disc or a transducer by averaging

laser source signals of different locations (on a distance corresponding to the effective

transducer diameter). Then compare the result of the averaged laser source signals

and the transducer signal to verify that the basic features of the transducer signal

are modeled by averaging single laser source signals. Therefore take advantage of the

laser source Lamb set by averaging 61 of the measurement points around the center

and weight each of these points so that the entire set has the shape of a Gaussian win-

dow. Note that for this case only a line source is modeled, even though the transducer

is an area source. The plot of the Fourier transform of the averaged signal is shown

in Figure 4.3(c). Figure 4.3(d), which is a contour plot of the averaged laser source

signal, indicates that spatial averaging distorts the dispersion curves. Compared to

Figure 4.2(a), note a tremendous loss in separation between the single dispersion

curves for times below 30 µsec.

All the signals in Figure 4.3 are 5 MHz low pass- and 500 kHz high pass filtered.

Note that there is a very pronounced frequency peak between 3 - and 4 MHz for the

transducer source signal of Figure 4.3(b) which is poorly developed in the single laser

source signal of Figure 4.3(a). The existence of this peak in the averaged laser source

signal shows that even a line source model (with single laser source signals) is suitable

to model the basic feature of the transducer signal (3 MHz peak). Even though one

cannot immediately say that it is possible to resolve the spatial effects of the piezo

disc or transducer sources by just averaging laser signals, this approach seems to be

promising in terms of an expansion of the model.
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(a) FFT of a single laser source Lamb signal.
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(b) FFT of the transducer source Lamb signal.
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(c) FFT of an averaged laser source Lamb

signal with Gaussian window.
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(d) Contour plot of the averaged laser source

Lamb signal.

Figure 4.3: Plots for averaging effect.

Therefore, a detailed discussion on how to select and calculate the weights in an

optimal sense is presented in Section 4.3.2.

4.3 Time Domain Deconvolution Theory

Consider a methodology to recover time domain source functions by deconvolution.

Generally, convolution integrals arise in many physical systems where the principle

of superposition can be applied. In elastic wave propagation problems, the concept

of a Green’s function leads directly to a time-domain convolution integral. In linear

systems theory, the concept of an impulse response, which is a Green’s function with
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only time as a variable, also results in a convolution integral. Hence, many wave

propagation phenomena and linearly superposed effects on the waves can be modeled

by multiple convolution integrals. This model can be generally written as

v(t) =

∫
∞

−∞

dtn−1xn(t − tn−1)

∫
∞

−∞

dtn−2xn−1(tn−1 − tn−2)

· · ·
∫

∞

−∞

dt2x3(t3 − t2)

∫
∞

−∞

dt1x2(t2 − t1)x1(t1)

(4.3)

Equation (4.3) can also be rewritten to Equation (4.4) in the convolution operator (∗)
representation

v(t) = x1(t) ∗ x2(t) ∗ · · · ∗ xn(t) (4.4)

Hence, v(t) can be simply evaluated by convolving the xi’s. The inverse problem of

finding xj from v(t) and the remaining xi’s is called time domain deconvolution. It

is basically the procedure of solving an integral equation of the form

v(t) =

∫
∞

−∞

x1(τ)x2(t − τ)dτ (4.5)

where x2(t) is the unknown component. See Michaels [18] for detailed information

about deconvolution methods and their applications. Other researchers like Ching et

al. [8], investigate additional approaches to time domain deconvolution.

Due to the sampling with a sampling interval ∆T and n samples per measurement,

digitized signals are only available in discrete form. Thus, introduce the discrete

convolution

v(n) =
∞∑

m=−∞

x1(m)x2(n − m) (4.6)

which can also be written as

v(n) = x1(n) ∗ x2(n). (4.7)

Renaming the signals in Equation (4.7) into ones more meaningful variables for the

work here, one can define

xTR(n) = xLSR(n) ∗ s(n), (4.8)
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where xTR denotes the “transducer source” signal and xLSR is a single signal of the

“laser source” set. Now, deconvolution problem in Equation (4.8) is solved to ob-

tain the source function s(n). Considering the laser source as a “perfect source”, the

source function would be a mathematical construct which is physically meaningful,

and enables interpretation of s(n). Ideally, s(n) is a mathematical representation of

the oscillations and mechanical influences of the transducer only.

Assuming that s(n) is causal — it represents a real world process — one can solve

Equation (4.8) directly by factoring a polynomial of degree N. This method can be

seen by expanding the summation in Equation (4.8) to

xTR(0) = xLSR(0) s(0)

xTR(1) = xLSR(0) s(1) + xLSR(1) s(0)

xTR(2) = xLSR(0) s(2) + xLSR(1) s(1) + xLSR(2) s(0)

... (4.9)

which yields an exact solution of the general form

s(n) = [xTR(n) −
n∑

m=1

xLSR(m)s(n − m)]
1

xLSR(0)
. (4.10)

This method, referred to as “direct solution”, although simple to implement is nu-

merically unstable and leads to exponentially increasing solutions (for details see

Michaels [18]).

4.3.1 Least Squares Deconvolution

4.3.1.1 Toeplitz Recursion

The least squares deconvolution approach is a method to approximate the exact

solution in the least squares sense by minimizing the mean square error between

the desired and actual convolution output. Robinson and Treitel [29] described this

approximation which will from now on be called x̂TR. The approximation procedure
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and an outline of how to solve it, is presented in [18]. Writing Equations (4.9) in

matrix form and assuming that xLSR is of length N , the following matrix equation

can be obtained:





















xLSR(0) 0 . . . 0

xLSR(1) xLSR(0) 0 . . . 0
... 0

xLSR(N − 1) . . . . . . xLSR(0)

0 xLSR(N − 1) . . . xLSR(N − 1 − M)
... 0

...
...

... 0 xLSR(N − 1)


































s(0)

s(1)

·
·

s(M − 1)














=























x̂TR(0)

x̂TR(1)

·
·
·
·

x̂TR(N+

M − 2)























(4.11)

Note that the approximation x̂TR is of length N + M − 1. Equation (4.11) can be

represented as

ÃS = B (4.12)

where

Aij =







0 i < j

0 i − j ≥ N

xLSR(i − j) otherwise.

The comprehensive task at this point is to find the optimal s. Since the method to

find s is an approximation, the recovered s is actually a ŝ but for simplicity reasons

it will still be called the source function s. To minimize the error Err between x̂TR

and xTR, start out with the following equation

Err =
N+M−2∑

n=0

[xTR(n) − x̂TR(n)]2 (4.13)

Defining the vector X̂TR as

X̂TR = x̂TR(i − 1),

Equation (4.13) can be represented in matrix form as

Err = (ÃS − X̂TR) · (ÃS − X̂TR) (4.14)
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The error in Equation (4.14) becomes in subscript notation

Err = (aijsj − x̂TRi
)(aiksk − x̂TRi

)

Minimizing the error in least squares sense with respect to each sn means taking the

partial derivatives of Err with respect to sn and setting them to zero.

∂Err

∂sn

= 0

=
∂

∂sn

(aijsj − xTRi
)(aiksk − xTRi

)

= (aijsj − xTRi
)ain + (aiksk − xTRi

)ain

= 2 (aijsj − xTRi
)ain = 0 (4.15)

This can again be written in matrix form as

ÃT ÃS = ÃT XTR,

where define a matrix R̃ and a vector G to be

R = ÃT Ã

G = ÃT XTR.

Note that now

R̃S = G (4.16)

has to be solved, where

Rij =







∑N−1−(i−j)
m=0 xLSR(m + i − j)xLSR(m) i ≥ j

Rij i < j

(4.17)

is the (i − j)th term of the autocorrelation of xLSR(n) and

Gi =
N−1∑

m=0

xLSR(m)xTR(m + i) (4.18)

is the ith term of the cross-correlation between xLSR(n) and xTR(n).

43



Solving the system of Equations (4.16) is in general a very computationally intensive

task. However, if it is assumed that xLSR(n) and xTR(n) are both finite length signals

of length N , then the autocorrelation matrix R̃ is in Toeplitz form and can be solved

by a very efficient method, known as Toeplitz recursion. Even though this assumption

is not generally correct, it can provide a good approximation if the signals of interest

have decayed sufficiently within the recorded time windows. Detailed information

about the Toeplitz recursion can be found in [29].

4.3.1.2 Improved Toeplitz Recursion

The effect of the finite length of the signals on the performance of the Toeplitz

recursion algorithm and a method of compensation is presented. For mathematical

simplicity, assume the signals are continuous in time, and xTR(t), xLSR(t) and s(t) are

defined. A major problem is the fact that the signals xTR and xLSR are not of finite

length, although the measured data is of finite length. This results in an artificial

transition between the non-zero and zero parts in the matrix of Equation (4.11).

Note that the Toeplitz recursion is designed for matrices in Toeplitz form. Since the

signals are of finite length, this forced sharp cutoff between signal and zeros makes

the calculated autocorrelation and cross-correlation inaccurate for values around this

transition. To avoid this sharp cutoff, the basic idea is to shape the signals with

an exponential window to smooth out the transition and thus make the correlations

more accurate. Therefore, consider the standard deconvolution problem, but now in

continuous time representation,

x̃TR = xLSR(t) ∗ s(t)

=

∫ t

0

xLSR(τ)s(t − τ)dτ. (4.19)

Multiplying both signals on the right hand side in Eg. (4.20) by an exponential win-

dow, yields the following expression:

∫ t

0

xLSR(τ)e−ατs(t − τ)e−α(t−τ)dτ
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Rearranging this expression as shown below, one can obtain a very useful result:

∫ t

0

xLSR(τ)e−αts(t − τ)dτ = e−αt

∫ t

0

xLSR(τ)s(t − τ)dτ

= e−αtx̃TR (4.20)

Thus, exponentially windowing the two signals prior to convolution yields the same

signal as exponentially windowing the result. The property of Equation (4.20) can

be used to ensure that the signals xLSR and xTR meet the length requirements nec-

essary for using Toeplitz recursion. The exponential window (the decay) is shaped

by the shaping parameter α. An appropriate value for α is simply selected such that

xLSR(n) has decayed to essentially zero by N points, and window both, xLSR and xTR

by e−αn∆T to obtain the desired source function. This technique is more powerful

then traditional windowing methods, since there are no approximations involved due

to this convolution property of an exponential window.

Figure 4.4 depicts a direct comparison between Toeplitz recursion without applying

the windowing “trick” (Figure 4.4(a), 4.4(c) and 4.4(e)), and the Toeplitz recursion

with the procedure presented in Equation (4.20) (Figure 4.4(b), 4.4(d) and 4.4(f)).

To verify this procedure, a numerical source function is implemented and convolved

with the measured laser source signal in Figure 4.4(a), which is used as the impulse

response, to represent the measured piezo disc signal (Figure 4.4(c)). Now, to check

the functionality of the Toeplitz recursion without any modifications, a deconvolution

with the known impulse response and the piezo source signal to recover the source

function is performed. As shown in Figure 4.4(e), there is a significant difference

between the original and the recovered source functions, particularly at longer times

due to the length approximation of the Toeplitz recursion.

If the same steps are performed, but now by windowing the impulse response and

the measured signal with an exponential, the performance significantly improves.

That means, if one deconvolves the theoretical source function with the windowed

impulse response in Figure 4.4(b) to get the measured signal in Figure 4.4(d), one
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obtains a recovered source function which is essentially the same as the theoretical one

(Figure 4.4(f)). However, consider the fact that due to the windowing of the signals,

some amplitude information is lost for longer times in the impulse response and in

the measured signal. But, as depicted in the comparison of the two source functions,

this effect does not play a mayor role in recovering the source function. Furthermore,

considering the Lamb wave of Figure 4.4(a), most of the key information is contained

in the first 10 - 15 µsec. As seen in Figure 4.4 the exponential window has significantly

reduced the signal amplitudes past about 15 - 20 µsec. If the case that the windowing

cuts off too much of the signal, there is the possibility to adjust α in Equation (4.20)

appropriately. Note that before comparing between the two source functions, the

recovered source function has to be un-windowed. This is easily done by multiplying

it with the inverse of the exponential function used to window the impulse response.

4.3.1.3 Deconvolution of Noisy Signals

Since one must deal with measured data, noise is superimposed on the actual

information. To take care of the noise, a simple modification is made in the algorithm

of the Toeplitz recursion. This modification is made on the basis of the discussions

about deconvolution in the presence of noise by Robins [28]. As mentioned earlier,

the calculation of the autocorrelation matrix is the basic operation in the algorithm.

Thinking of noise as unpredictable superimposed information, one can modify the

initial value for the calculation of the autocorrelation. This is done by estimating the

signal-to-noise ratio and adding it to the initial value. Note that the autocorrelation

is calculated as shown in Equation (4.21).

Rf (t) = lim
T→∞

1

2T

∫ T

−T

f(τ)f(t + τ)dτ (4.21)

To explain why one must modify the initial value, first consider a white noise signal.

The autocorrelation of this signal is zero for all values, except for a shift of zero. At

this point, the autocorrelation is infinite since the two signals are identical. Since

one does not deal with white noise, all the other values are non-zero, but one can

conclude from this white noise scenario that the most crucial autocorrelation value

to describe the influence of noise is the one at zero shift.
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Figure 4.4: Plots for Toeplitz improvement discussion.
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4.3.2 Spatial Inversion

Now, the piezo disc or transducer signal is to be modeled as a weighted sum of laser

source signals convolved with a source time function (as written in Equation (4.2)).

This section determines how to calculate optimal weights for their corresponding

Green’s functions in a sense of physical interpretability — so that the means squared

error between measured and recovered signal (xTR and ˆxTR) is minimized. Therefore

consider Equation (4.22), which gives a representation of the measured piezo disc or

transducer signal as a weighted sum of single laser source signals.

x̂TR(n) = [
M∑

j=1

wjxLSRj
(n)] ∗ s(n) (4.22)

Note that wj is the weight applied to the jth laser source signal and the source time

function s(n) is assumed to be known. One can optimize the fitting of the measured

and recovered piezo disc (or transducer) signal by minimizing the least square error

between the two signals.

Err =
N∑

n=1

[x̂TR(n) − xTR(n)]2

=
N∑

n=1

[
M∑

j=1

wj xLSRj
(n)] ∗ s(n)

︸ ︷︷ ︸

=qj(n)

−xTR(n)]2

=
N∑

n=1

[
M∑

j=1

wjqj(n) − xTR(n)]2 (4.23)

To optimize the weights, take the first derivative with respect to the kth weight and

set it to zero.

∂Err

∂wk

=
N∑

n=1

2 · [
M∑

j=1

wjqj(n) − xTR(n)]
M∑

j=1

qk(n)

0 =
N∑

n=1

2 · [
M∑

j=1

wjqj(n) − xTR(n)]qk(n)

0 =
N∑

n=1

[
M∑

j=1

wjqj(n)qk(n) − xTR(n)qk(n)] (4.24)
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Rearranging the summations in Equation (4.24), Equation (4.25) is obtained. This

equation is written so that the weights are decoupled from the summation over n.

N∑

n=1

xTR(n)qk(n) =
N∑

n=1

M∑

j=1

wjqj(n)qk(n)

=
M∑

j=1

wj

N∑

n=1

qj(n)qk(n) (4.25)

Representing Equation (4.25) in matrix form, a set of matrices is obtained which is

very convenient in terms of implementation purposes.








∑N

n=1
q1(n)q1(n) · · · ∑N

n=1
qM (n)q1(n)

...
. . .

∑N

n=1
q1(n)qM (n) · · ·

∑N

n=1
qM (n)qM (n)








︸ ︷︷ ︸

Q








w1

...

wM








=








∑N

n=1
xTR(n)q1(n)

...
∑N

n=1
xTR(n)qM (n)








(4.26)

Equation (4.26) can be solved either by using a numerical algebraic equation solver, or

by inverting matrix Q, multiplying the inverse Q−1 on both sides of Equation (4.26)

and directly calculating the weights. Note that the singularities of Q−1 must be ac-

counted for in the implementation of the direct solution.

4.3.3 Double Iterative Least Squares Optimization

Consider Equation (4.2) and assume that the piezo disc or the transducer signal

and the laser source signals are known. This section describes a procedure to extract

s(n) and wj out of Equation (4.2) in a minimum least squares sense. Note that the

recovered source function can not be longer than the length of the original laser source

signal, and due to the structure of the algorithm, the length of the number points of

useful information in the laser source signal is reduced by the length of the source

function (truncated and padded with zeros).

For the extraction of s(n) and wj the following algorithm is applied:
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1. Assume initial weights.

2. Use modified Toeplitz recursion (Section 4.3.1.2) to find s(n) .

3. Use Equation (4.26) to calculate weights wj.

4. Is error small enough? If so, quit.

5. Go back to 2.

This algorithm is referred to as the “double iterative least squares optimization” and

was developed and used for similar applications — as in this research — by Michaels

et al. [19, 20] and Chang [6]. Note that s(n) and wj are uniquely obtained only to

within a scale factor.

4.4 Frequency Domain Deconvolution Theory

This section presents a frequency domain deconvolution approach under the pres-

ence of noise, originally taken for continuous systems by Cooper and McGillem [10]

and modified by Michaels [18]. Due to the efficiency of the FFT, frequency domain

methods are computationally attractive and also can offer some other advantages over

time domain methods.

Consider the time domain case with noise in the signal that is similar to the outline

of Toeplitz recursion, but now the noise is explicitly included in the signal.

x̂TR(n) = (xLSR(n) + N(n)) ∗ s(n) (4.27)

where:

xLSR(n) = known laser signal

N(n) = noise component in the laser signal

xTR(n) = desired (measured) transducer signal

x̂TR(n) = recovered transducer signal

s(n) = unknown source function
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As written in the last section, the source function is to be determined in a least

squares sense, e.g., such that

Err =
∑

n

(xTR − x̂TR)2 (4.28)

is minimum. Substituting from Equation (4.27) and rearranging,

Err =
∑

n

[(xLSR(n) ∗ s(n) − xTR(n)) + N(n) ∗ s(n)]2 (4.29)

can be obtained. Assuming that the laser signal and its noise are uncorrelated, the

error can be separated into two components

Err = Err1 + Err2 (4.30)

where

Err1 =
∑

n

(xLSR(n) ∗ s(n) − xTR(n))2 (4.31)

Err2 =
∑

n

(N(n) ∗ s(n))2 (4.32)

Recall that the Fourier Transform X(ω) of a discrete signal x(n) is defined as

X(ω) =
∞∑

n=−∞

x(n)eiωn (4.33)

To express the problem in the frequency domain, consider Parseval’s theorem

∞∑

n=−∞

|x(n)|2 =
1

2π

∫ 2π

0

X(ω)X∗(ω)dω (4.34)

The function |X(ω)X∗(ω)|2 is called the energy density spectrum, since it determines

how the energy is distributed in the frequency domain [23]. Necessarily, the energy

density spectrum is defined only for finite-energy signals.

One also needs the convolution/multiplication property which states that a convo-

lution in the time domain corresponds to a multiplication in the frequency domain.

Thus, Equations (4.31) and (4.32) can be written in the frequency domain as

Err1 =
1

2π

∫ 2π

0

(XLSRS − XTR)(X∗

LSRS∗ − X∗

TR)dω (4.35)

Err2 =
1

2π

∫ 2π

0

NSN∗S∗dω (4.36)
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Therefore, one can represent the total error written in Equation (4.38).

Err = Err1 + Err2

=
1

2π

∫ 2π

0

(XLSRSX∗

LSRS∗ − XLSRSX∗

TR − XTRX∗

LSRS∗

+ XTRX∗

TR + NN∗SS∗)dω (4.37)

Define PN , PX , and F composed of values and their complex conjugate as

PN(ω) = N(ω)N∗(ω)

PX(ω) = XLSRX∗

LSR

F (ω)F ∗(ω) = PN(ω) + PX(ω) (4.38)

Now, use Equations (4.38) to express the overall error

Err =
1

2π

∫ 2π

0

(XTRX∗

TR − XLSRSX∗

TR − XTRX∗

LSRS∗ + FF ∗SS∗)dω (4.39)

Inside the integral, add and subtract 1
FF ∗

XTRX∗

TRXLSRX∗

LSR, to obtain the relation-

ship in Equation (4.40).

Err =
1

2π

∫ 2π

0

(FF ∗SS∗ − X∗

TRXLSRS − XTRX∗

LSRS∗ + XTRX∗

TR

+
1

FF ∗
XTRX∗

TRXLSRX∗

LSR − 1

FF ∗
XTRX∗

TRXLSRX∗

LSR)dω (4.40)

Now factor the integrand and obtain

Err =
1

2π

∫ 2π

0

[(FS − XTRX∗

LSR

F ∗
)(F ∗S∗ − X∗

TRXLSR

F
)

+
XTRX∗

TRPN

PX + PN

]dω (4.41)

Note that the last term is a constant since it has no S(ω) dependence. The two

factors in the first term are complex conjugates, e.g., the error reaches its minimum
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when either of these two factors is zero. Setting the first one equal to zero, it holds

that

FS − XTRX∗

LSR

F ∗
= 0 (4.42)

Solving for S(ω), obtain

S(ω) =
XTRX∗

LSR

PX(ω) + PN(ω)
(4.43)

For the actual implementation, where it is impossible to split the measured signal

from its noise component, a practical approach is to estimate the noise power by

taking the maximum power of the laser source signal and multiplying it with the

estimated signal-to-noise ratio (SNR). This procedure yields Equation (4.44), which

can be easily implemented.

S(n) =
XTR(n)X∗

LSR(n)

|XLSR(n)|2 + max|XLSR(n)|2SNR
(4.44)

Note that due to the structure of the fast Fourier transform (Butterfly operations), it

is advisable to pad the signals with zeros to expand their length to an integral power

of two.

4.5 Numerical Examples

This section shows deconvolution results for synthetic source functions and spatial

weights. Section 4.5.1 provides a test of the double iterative least squares method.

Section 4.5.2 shows some numerical examples for the deconvolution in the frequency

domain. These results are useful for understanding the experimental data presented

in Chapter 5.

4.5.1 Time Domain

The fact that it is possible to perfectly recover a synthetic source function out of

two single signals has already been confirmed in Section 4.3.1.2. Now consider the

combination of finding simultaneously the optimal weights wj and the optimal source

time function s(n) with the double iterative least squares algorithm. Therefore con-

sider the following scenario:
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A synthetic transducer signal xTR is obtained by evaluating Equation (4.2) — s(n)

is the synthetic source function in Figure 4.4(f) (solid line) and wj are the weights

in Figure 4.5(a) (solid line). For the recovery process the following assumptions are

made:

• For purposes of illustrating the method, a reduced set of laser source Rayleigh

signals consisting of every 5th signal for a total of 21 is used. The remainder are

not used.

• For the recovery process the initial weight distribution is rectangular (all weights

are equal).

• Three different noise levels (from zero noise to 10 % noise) are assumed for the

inversion (see Table 4.1).

Table 4.1: Assumed signal-to-noise ratios for the recovery

no noise medium noise high noise
xLSR 0 % 1 % 10 %

Now, only the synthetic transducer signal and the 21 laser source signals are pro-

vided for the double iterative least squares algorithm to recover the source function

and the weight distribution, originally taken to calculate the synthetic transducer

signal. Both, the source function and the weight-distribution are perfectly recovered

if no noise is assumed to be in the signals (original and recovered are the same) which

is correct for this synthetic data; a reasonable result is obtained for the assumption

of a medium SNR.

If one assumes a high SNR in xLSR, the general shape of the recovered weight distri-

bution (Figure 4.5(a)) is still tolerable, whereas one gets a phase shift in the recovered

source function (Figure 4.5(b)) which is obvious only for later times. This effect has

to be taken into consideration in later discussions, since the phase information is one

crucial feature for physical interpretability. Figure 4.5(c) shows that the algorithm
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converges to reasonable values even with the assumption of a high signal-to-noise

ratio — the estimated and original signals are almost identical.
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Figure 4.5: Test for double iterative least squares optimization.

4.5.2 Frequency Domain

As an numerical example for the frequency domain deconvolution, the following

scenario is performed. Consider Equations (4.45), (4.46), and (4.47), where xLSRave

denotes the average of the reduced laser source Rayleigh set (i.e., every fifth signal),

xLSRsingle
a single laser source Rayleigh signal, and xTR denotes the transducer source

Rayleigh signal. S2 and S3 can be considered as source functions, whereas S1 repre-

sents an inverse mapping function. The goal is to calculate the desired source function
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S3 directly from Equation (4.47) and compare this source function to the indirectly

recovered source function (from Equation (4.45) and Equation (4.46)) for different

noise levels.

FFT (xLSRave)FFT (s1) = FFT (xLSRsingle
) (4.45)

FFT (xLSRave)FFT (s2) = FFT (xTR) (4.46)

FFT (xLSRsingle
)FFT (s3) = FFT (xTR) (4.47)

Note that by substituting Equation (4.45) into Equation (4.46), one can see that

S3 =
S2

S1

. (4.48)

The presented frequency domain algorithm is applied to recover the source functions

and the mapping function to verify Equation (4.48) for three different assumed noise

levels.

Recall, that all the signals are filtered to have an effective frequency bandwidth from

500 kHz to 5 MHz. This frequency domain algorithm does an excellent job of re-

covering the desired source function s3(n) for the correct assumption of zero noise

(Figure 4.6(a)). If the assumed SNR is increased to 1 % in the algorithm, the parts of

the spectrum close to the cutoff frequencies of the filter are modeled worse, whereas

the effective frequencies are still modeled very well. Increasing the assumed SNR

further to 5 % worsens the fitting of the two curves. However, there is still acceptable

fitting in the center of the effective frequency bandwidth, e.g., around 2.5 MHz. Note

that the signals in this section are padded with zeros to have a total length of 16384

points (integral power of two).

56



0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

frequency in MHz

S
2
/S

1
S

3

(a) FFT test without noise.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

frequency in MHz

S
2
/S

1
S

3

(b) FFT test with 1 % noise.
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(c) FFT test with 5 % noise.
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Figure 4.6: Test of FFT-algorithm with different assumed noise levels.

A second interesting question is: How accurately can one recover the time domain

source function? To answer this, convolve a single laser source Rayleigh signal and

the synthetic source function of Figure 4.2(b), and perform a deconvolution in the

frequency domain. Then take the inverse Fast Fourier Transform of the recovered

source function and compare the result with the initial synthetic source function.

This test is also made for assumptions of different levels of noise. The results are

depicted in Figure 4.6(d), where the presented source function s3(n) consists of the

first 1000 points. Note, that there is no phase shift in the recovered source functions,

but by increasing the assumed SNR in the algorithm, the amplitude values have a

downward tendency, thus resulting in an amplitude offset.
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4.6 Discussion

The last two sections show that in general, one can expect very good deconvolu-

tion results for both, the time -and the frequency domain algorithms. However, each

method has its advantages and disadvantages as soon as one considers superimposed

noise in the signals. Recovered source functions with the time domain method are

slightly phase shifted, particularly for later times, compared to the original source

function. The ones recovered with the frequency domain algorithm exhibit an am-

plitude offset. Moreover, if one uses the frequency domain algorithm and performs

(Inverse-) Discrete Fourier Transforms, the results will be circularly shifted. As a

matter of fact, the main advantage of this method is the arbitrary length of the re-

covered source function as well as the possibility to interpret causality issues. The

advantage of the time domain deconvolution is that one does not have to deal with

the uncertainties of FFT and inverse FFT (i.e. circular shift and padding of zeros).

As seen in the numerical examples, assumed noise levels can influence the recovered

source functions. This is because deconvolution is an inverse process, and like many

inversion methods it is sensitive to the effects of even small amounts of noise in the

data.
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CHAPTER 5

Experimental Results

5.1 Time Domain

5.1.1 Single Laser Source

First consider the laser source data set and determine if it is possible to develop

an accurate source function for either (or both) the piezoelectric disc or commercial

transducer source with a single laser source signal. The mean square error between

the estimated and measured piezo disc or transducer signals (Equation (4.13)) is cal-

culated using each laser source measurement as the impulse response — this helps

determine the most appropriate laser source signal (if any) to use out of this mul-

tiple set of measurements. Figure 5.1 shows the mean square error as a function of

measurement location for the Lamb wave measurements (top) and the Rayleigh wave

measurements (bottom) for both the piezo disc and the transducer.

Consider Figures 5.1(a) and 5.1(b). It is clear from these figures that both the piezo

disc and the transducer from the Lamb wave measurements are best modeled by

taking the laser source measurement at the front edge of the source — the short-

est source receiver propagation distance. Note that the lowest measurement location

corresponds to the longest propagation distance and vice versa. In contrast, Fig-

ures 5.1(c) and 5.1(d) show that all the measurement points after ] 15 are effective

in modeling the piezo disc or commercial transducer sources — the signals are not

linearly independent. The following observations are possible:

• The results are very dependent on the wave type (Lamb or Rayleigh)

• Rayleigh waves are non-dispersive, so they are essentially just shifted versions
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of themselves; therefore it makes most sense to select a measurement distance

close to the propagation distance that corresponds to the center of the source.

Table 5.1 presents the laser measurement numbers chosen for the subsequent discus-

sions.

Table 5.1: Chosen measurement numbers for single laser

Measurement Set Location ] Source/Receiver Distance

piezo source Lamb 90 42.1 mm
transducer source Lamb 91 42 mm
piezo source Rayleigh 60 45.1 mm

transducer source Rayleigh 60 45.1 mm

Note that all the arrival times of the signals are adjusted to compensate for fixed

instrumentation delays so that the arrival of the piezo disc or transducer signal is

slightly earlier than the one of the single laser signals in the center of the measure-

ment set (by an amount equal to the propagation time from center to front edge of

piezo disc or transducer). This is because of the spatial extent of the mechanical

source. Note also that the entire set of data is bandpass filtered prior to process-

ing with a Butterworth low-pass filter (cutoff frequency 5 MHz) and a Butterworth

high-pass filter (cutoff frequency 500 kHz). Using these preprocessed signals, the

recovered source functions are shown in Figure 5.2. A first obvious feature in all

four source functions, particularly evident in the Rayleigh data, is the two very pro-

nounced peaks. The ratio between peak amplitude and the rest of the signal in the

source functions in Figure 5.2(a) and Figure 5.2(b) (Lamb data) is about half of the

ratio for the signals in Figure 5.2(c) or Figure 5.2(d) (Rayleigh data). Inspection of

the less complicated source functions of the Rayleigh signals shows that the second

peak is approximately a delayed version of the first peak. A propagation distance be-

tween the peaks is calculated from the Rayleigh wave speed and the time between the

two peaks. The outcomes of this calculation are shown in Table 5.2, where a Rayleigh

wave speed of 3100 m
s

is assumed. One can immediately see that the two major peaks

correspond to the effective width (diameter) of each of the piezoelectric sources. Note

that there is a second set of two peaks in the Rayleigh measurements that are delayed
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from the first two peaks; their time difference also corresponds to the source diameter.
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(a) Mean square error piezo source Lamb.
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(b) Mean square error transducer source Lamb.
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(c) Mean square error piezo source Rayleigh.
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Rayleigh.

Figure 5.1: Mean square errors.

Table 5.2: Calculated distances corresponding to the first two main peaks

measured time pk-pk calculated distance effective diameter

piezo disc 1.6 µsec 5.177 mm 5.2 mm
transducer 1.93 µsec 5.983 mm 6 mm

Since it is expected that the source functions describe or model the behavior of the
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mechanical source, it has to be asked why the source functions for the Lamb data

in Figures 5.2(a) and 5.2(b) are non-zero before the first large peak arrives. A delay

would not be a problem, since it would just represent the time before the piezo disc

or commercial transducer is stimulated, and in this time there would obviously be

no movement. But if the magnitudes of the source function before the first peak

are non-zero values, the source function exhibits anti-causal behavior and one must

question its usefulness as a physical interpretation of the source. In contrast, taking a

look at the source functions of the Rayleigh signals, reasonable results are obtained.

Both source functions start out at zero, gradually increase their amplitude, which

could correspond to the contraction or expansion of the piezoelectric source, until it

reaches a maximum, and expands or contracts afterwards to form the peak in the

opposite direction. This is the typical feature of a dipole.

Note that if the model were perfect, the source functions in Figures 5.2(a) and 5.2(c)

should be the same, and those of 5.2(b) and 5.2(d) should be the same, as is con-

firmed by the following argument. Suppose all external effects on the “perfect” signal

from an unbounded — such as reflections, temperature effects and internal effects in

the measurement unit — are represented by Υ(t). Since the measurements are per-

formed by the same instrumentation and at the same location on the specimen, Υ(t)

is the same for the piezo disc, commercial transducer, and laser source measurements.

Now, define G(t) to be the true impulse response of the unbounded medium (either

the plate or the half space). With the defined G(t) and Υ(t) the measured laser and

transducer signals can be expressed as written in Equations (5.2).

xLSR(t) = G(t) ∗ Υ(t)

xTR(t) = G(t) ∗ Υ(t) ∗ s(t) (5.1)

Note that s(t) denotes the transducer source function. Rewriting and substituting

Equations (5.2), Equation (5.3)is obtained, and it can be seen that the external effects
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Υ(t) simply cancel each other out.

xTR(t) ∗ Υ(t) = s(t) ∗ xLSR(t) ∗ Υ(t)

xTR(t) = s(t) ∗ xLSR(t) (5.2)
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(a) Source function piezo source Lamb.
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(b) Source function transducer source Lamb.
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(c) Source function piezo source Rayleigh.
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(d) Source function transducer source Rayleigh.

Figure 5.2: Source functions.

Hence, the fact that G(t) and Υ(t) for the half space are different from G(t) and

Υ(t) for the plate does not affect the process of recovering the source function. But,

since the source functions for the Rayleigh and Lamb measurements are significantly
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different, an expansion of the convolution model of Equation (4.8) is necessary. Now,

the spatial extent of the piezo disc or commercial transducer, as well as its temporal

effects, must be taken into account.

5.1.2 Averaged Laser Source

5.1.2.1 Forward Modeling of the Averaged Laser Source

Section 4.2 already shows that the effects of averaging the laser signals should be

taken into account in order to improve the model of the commercial transducer or

the piezo disc. Now, determine how “well” the piezo disc and commercial transducer

sources can be modeled by applying certain weight distributions to a summation of

single laser measurements. Note that all the results presented in this section are based

upon the plate data. Since the major interest of this research is in the effects of the

source on the dispersion curves, only the first arrivals of the Lamb waves is shown,

i.e., the time axis is truncated to cut off all edge reflections. Three different axially

symmetric weight distributions over the circular source area are considered: a piston

distribution, a Gaussian shaped distribution and an inverted Gaussian distribution.

Figure 5.3: Simplified scheme of how single laser signals are assigned to the segments

on the effective transducer or piezo surface.
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(b) Gaussian model.
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(c) Inverted Gaussian model.
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(d) Commercial transducer.
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Figure 5.4: Comparison of different weight distributions for averaging laser signals.

The resulting un-reassigned STFTs of the three modeled laser signals will then

be compared with the un-reassigned STFTs of the measured commercial transducer
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and piezo disc data.

The piezo disc and transducer are modeled according to the general schematic shown

in Figure 5.3. The effective surface of the mechanical source is divided into ten rings

of equal area, where each of these rings is further divided into 64 curved elements of

equal area. Each element’s area is proportional to the weight of the corresponding

“laser source Lamb”-signal. This signal is found by calculating the propagation dis-

tance from the center of the elements and assigning it to the closest available distance

in the measured laser set. The weights are further modified as needed to generate the

desired profile (i.e., piston, Gaussian, or inverted Gaussian).

All STFTs for these synthetic signals are shown in Figure 5.4 along with the actual

piezo disc and transducer STFTs. Comparing Figures 5.4(a) and 5.4(b), it can be seen

that the piston and the Gaussian profiles result in similar dispersion curves. They

both have a “hot spot” at 3.25 MHz and 20 µs. This “hot spot” seems to be charac-

teristic of the commercial transducer shown in Figure 5.4(d). Note that this highly

concentrated energy density does not appear in the dispersion curves for a single laser

signal. Furthermore, note that the piston profile shows higher energy density between

0.5 MHz and 1 MHz at 17 µs as compared to the Gaussian profile. This fact indicates

that using a Gaussian profile instead of a piston profile improves the model, since

the energy density of the commercial transducer is low below frequencies of 3 MHz.

Figure 5.4(c) shows the result obtained using the inverted Gaussian window, which

results in broader and more “broken up” dispersion curves (note the dark spots).

The energy density for this case is high for frequencies below 3 MHz, but relatively

low for higher frequencies. This phenomenon also appears for the dispersion curves

of the piezo disc. To justify the choice of an inverted Gaussian weight distribution

as a model for the piezo disc, consider the fact that the piezoelectric disc is glued

to the plate. The piezo disc is excited in the center and the mechanical force then

propagates to the outermost regions of the disc. Since the piezo disc is glued, the

excitation impulse is introduced into the specimen surface at these outermost regions.

If the mechanical source is not glued, but is instead oil coupled as for the commercial
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transducer, this energy will not be transmitted into the plate, i.e., this mechanical

energy simply propagates back and forth in the transducer and dissipates. This con-

clusion is corroborated by the finite element model results of Duquenne et al. [11],

for calculations of the normal stress of a bonded rectangular piezoelectric element.

5.1.2.2 Source Inversion for Averaged Laser Source

Now take a closer look at the error plots of Figure 5.1. As mentioned in Sec-

tion 5.1.1, the optimal single laser signal for Lamb waves to model the mechanical

source are the ones which have the closest source to receiver distance. In contrast,

the best signal to model the Rayleigh signals are the ones in the center. Taking this

knowledge into consideration, the piezo disc or commercial transducer is modeled with

h
0.1 mm

laser source signals centered at signal m for the Rayleigh waves, and h
0.1 mm

signals from l − h
0.1 mm

through l for the Lamb waves, where h is the effective surface

diameter of the mechanical source, m the optimal signal number for the Rayleigh wave

in Table 5.1 and l the optimal signal number for the Lamb waves in Table 5.1. These

relationships are used to calculate the effective measurement numbers presented in

Figure 5.3.

Table 5.3: Chosen measurement numbers for averaged laser

Measurement Range for Range for
Set Location ] Source/Receiver Distances

piezo source Lamb 38-90 47.3 mm-42.1 mm
transducer source Lamb 31-91 48 mm-42 mm
piezo source Rayleigh 34-86 47.8 mm-42.5 mm

transducer source Rayleigh 30-90 48 mm-42 mm

A large number of experiments confirms that all scenarios performed with the al-

gorithm described in Section 4.3.3 converge after 50 iterations. Now, the double

iterative least squares method is used to simultaneously recover the weight distribu-

tions in Figure 5.7 and the source functions depicted in Figure 5.8. As mentioned

in the last section, the use of ring signals is crucial to obtain physically meaningful
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results. However, the double iterative least squares optimization is implemented to

optimize the weights of a line source (line signal consists of the laser set) in contrast

to the area source (piezo disc or transducer). To make this line signal applicable to

the algorithm, only every fourth laser source measurement is taken for the commer-

cial transducer with an effective diameter of 6 mm (spatial separation distance of

0.4 mm, i.e., 16 weights) and every third laser source measurement for the piezo disc

with an effective diameter of 5.2 mm (spatial separation distance of 0.3 mm, i.e., 18

weights). To further support the idea of using reduced line signals, it is important to

note the fact that the equations do not “know” the physics of the particular sources.

Hence, the pure math will just develop the optimal solution, but not necessarily the

physically most meaningful solution, for the given amount of information — which

is the number of single laser source signals to model the mechanical source. Hence,

to avoid obtaining physically meaningless results, a reduction of this information to

a degree where the math fits or models the physics is necessary. With these initial

considerations, the distribution of the weights (Figure 5.7) for the four considered

cases is discussed.

First consider the weight distributions for the plate measurements. A bias to the

front edge of the mechanical source is visible. Note that the highest measurement

location corresponds to the shortest propagation distance. This location of the max-

imum weight correlates to the minimum least square error (mse) of the single laser

source in Figure 5.1. The correlation to the mse is meaningful in the sense that the

single signal that models the piezo disc or transducer the best, should have the biggest

weight among the set of weights. Since there is a descent of the mse in Figures 5.1(a)

and 5.1(b), it is understandable that the weights are shaped with an envelope that

roughly corresponds to the inverse of the descent.

For the physical background or meaning of weight distributions, a careful look at the

source functions in Figures 5.8(a) and 5.8(b) has to be taken. Both source functions

contain a significant 3.2 MHz component, as can be seen from their spectra (not

shown). This frequency corresponds to the reverberations in the plate; i.e., the 2-way
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travel time of the L-wave through the plate thickness. At this point, one could argue

that it is not possible that the source function contains reverberations since they

would be canceled out as shown in Equation (5.3). But this is not the whole truth for

the Lamb wave case. To explain this fact, an additional Ῠ(t) is defined — it models

how the piezo disc or the transducer modifies the impulse response. The mechanical

source which is mounted to the surface of the plate changes the boundary conditions

in the mounting area, and therefore the properties of the reflections. This scenario is

depicted in Figure 5.5.

Figure 5.5: Change of boundary condition due to mounting of mechanical source.

However, using the laser source, the boundary condition does not change. Hence, the

modified deconvolution problem can be written as follows:

xTR(t) = s(t) ∗ xLSR(t) ∗ Ῠ(t)

It is obvious that Ῠ(t) remains in the deconvolution problem and thus appears com-

bined with the recovered source function. Thus, the closer the laser signal is to the

front edge of the piezo disc or transducer, the less the modified reverberations affect

the signal, i.e., it is less distorted and therefore closer to an undistorted laser source

signal.

Now, the weight distributions of the Rayleigh signals in Figure 5.7(c) and 5.7(d) have

to be observed. There is a Gaussian like shape in both plots, which is not unexpected.

By taking a closer look at the magnitudes of the two weight distributions, one notes

that the predictions and observations made in the forward modeling of the mechani-

cal sources are confirmed. The weight distribution in Figure 5.7(c) corresponds to an
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inverted Gaussian (i.e., maximum amplitudes are at either end), whereas the weights

in Figure 5.7(d) represent a Gaussian shaped profile, multiplied by −1 (i.e., maximum

negative amplitude is in the center).

For these observations two points are crucial. The first point is that the weights for

the glued disc still tend to be biased to the front edge of the disc (shortest propagation

distance). This could be due to coupling effects, inaccuracies in the bonding process,

physics of the disc itself or oscillations in the disc. These effects are qualitatively

illustrated in Figure 5.6. The second point involves an understanding of the negative

weights for the commercial transducer. Recall that the double iterative algorithm

does not yield unique scale factors for wj and s(n) since they are present as a product

in Equation (4.2). The source function has a negative sign and the weights also have

a negative sign, which makes sense in combination.

Figure 5.6: Effects of piezo disc on half space.

Now, why does the extraction of meaningful weights seem to work for the Rayleigh

waves, but not for the Lamb waves? There are no reverberations affecting our 13 µsec
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long Rayleigh source functions, since the half space is too high; that is, the first

reflection from the bottom arrives after about 33 µsec. Figures 5.8(c) and 5.8(d)

show the corresponding Rayleigh source functions.
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(a) Weights for averaged piezo source Lamb.
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(c) Weights for averaged piezo source Rayleigh.
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Rayleigh.

Figure 5.7: Weight distributions.

Comparing these source functions with the ones from the single laser source signal

in Figure 5.2, it can be noted that the second peak at 3-3.5 µsec is much lower in

amplitude if the laser signals are averaged. This is also generally the case for the

source functions recovered from the Lamb wave measurements.
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(a) Source function for averaged piezo source

Lamb.
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(b) Source function for averaged transducer

source Lamb.
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(c) Source function for averaged piezo source

Rayleigh.
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(d) Source function for averaged transducer

source Rayleigh.

Figure 5.8: Source functions for averaged signals.

5.2 Frequency Domain

This section approaches the source function issue from a less descriptive but more

mathematical point of view. Note that up to this point, the source function was

always calculated so that when convolved with a laser signal, the measured piezo disc

source signal was obtained. This way was chosen for interpretation purposes; i.e.,

to understand the physics of the mechanical source. Now considered is a so-called

“black box” approach in which frequency domain methods are used to calculate an
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inverse function that when multiplied (in the frequency domain) with a piezo disc

or transducer signal recovers the laser signal. This inverse function does not have a

direct physical interpretation.

Figure 5.9 shows the results of the following scenarios: A 10000 point (100 µs) “laser

source Lamb”-signal (Figure 5.9(a)) and a 10000 point “piezo source Lamb”-signal

(Figure 5.9(b)) are padded with zeros to have a length of the next higher integral

power of two (16384). Then a deconvolution is performed to calculate a 16384 point

inverse function. A presence of 0.5 % SNR is assumed for the algorithm. To test

the approach, the inverse function is multiplied with the piezo disc signal (without

considering noise). The result is inverse Fourier transformed and a spectrogram is

calculated and depicted in Figure 5.9(c). It seems that the recovered “laser source

Lamb”-signal (Figure 5.9(c)) is modeled essentially perfectly up to 30 µsec, but for

later times, slight variations in the energy density of the reflections are visible. In

fact, these variations are over the entire length of the recovered signal, but are not

visible due to the high energy density of the early arrivals. These variations occur

because of the noise.

Now, a more complex case will be evaluated. An inverse function is calculated for only

the first 3000 points of the “laser source Lamb” -and the “piezo source Lamb”-signals.

Recovery of the laser signal is still performed with the 10000 points “piezo source

Lamb”-signal by multiplying the piezo signal by the inverse function in the frequency

domain. Figure 5.9(d) shows the reassigned dispersion curves of the recovered laser

signal. Despite some 0.5 MHz noise before the first arrival, the first 3000 points are

modeled fairly well by the algorithm; however, the actual range of interest is between

3000 and 10000 points. If there were perfect modeling of the laser signal in this

range, it would mean that the inverse function is able to remove the entire effect of

the mechanical source. Obviously, this is not the case; besides the noise, Figure 5.9(d)

shows the first reflection with a very high energy density compared to the laser signal

— more similar to the piezo disc signal, but not as defined. For even later components,

there is no interpretable pattern visible. Therefore it can be concluded that by simply
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applying a source function, which contains only information of about the first third of

the entire signal, to the piezo disc signal a laser-like dispersion relationship of a plate

cannot be reliably recovered. This methodology my still be effective for recovering

changes in dispersion curves due to damage; this application is not considered here.
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(a) Reassigned laser signal.
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(b) Reassigned piezo signal.
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(c) Reassigned recovered laser signal 10000 pts
source info.
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Figure 5.9: Frequency domain inversion of piezo source signal.
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CHAPTER 6

Analysis of Results and Further

Considerations

6.1 Time Domain Considerations

Recall that the source function is a representation of the modified physics and

the geometry of the piezo disc or the transducer. These modifications are due to the

following features:

• spatial extent of the mechanical source

• temporal effects, i.e., ringing of the source and instrumentation

• effects of the coupling or the glue

• modified reverberations due to change of the boundary condition

As seen in previous sections, it is very difficult to precisely extract all these fea-

tures out of the source function with the current state of understanding of the source

function approach in the time domain. To improve this understanding of the source

function itself, a more general look at the mathematical meaning of the source func-

tion is necessary.

First note that many mathematical models of the piezo disc or transducer signal are

possible, e.g.,

xTR(t) = xLSR(t) ∗ s(t) (6.1)

xTR(t) = s(t) ∗
∑

wjx
j
LSR(t)

︸ ︷︷ ︸

xLSRave (t)

. (6.2)
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All of these models incorporate a source time function which captures certain prop-

erties of the piezo disc or the transducer, e.g., in s(t) of Equation (6.1) the spatial

extent. Note that this spatial extent is not modeled in the source time function of

Equation (6.2), since it is already included in the weighted Green’s functions of the

averaged laser source signal xLSRave(t). Ideally (in a physical sense) the source time

function should only capture the temporal behavior of the source (including instru-

mentation) and not any effects of the structure, as for instance, coupling.

The better the model of all of the non-temporal aspects of the system, the more

accurate the recovered source time function will be. Modifying the model further,

so that temporal aspects are also captured, the function s(t) will converge to a delta

impulse. In this case, s(t) cannot be considered as a source time function any more.

Now, the idea of using the characteristics of the source time function to evaluate a

model is proposed; that is, the source time function is used as a metric of the model.

These characteristics are for example:

• causality

• compact support

• impulse-like nature

These characteristics were shown for the spatial extent of the piezo disc or the trans-

ducer — originally (modeling with only one single laser signal (Figure 5.2)) two

distinct peaks are visible in the source function which indicated that a spatial model

needed to be implemented to explain the behavior (Figure 5.8). Note that even

though it is a big advantage to be able to interpret some of the characteristics of

the source function, it is also possible that other features may overlap or cancel each

other out. This could be one more reason, why the source functions recovered from

the Rayleigh data differ from the ones obtained from the Lamb data.

Finally note that the source time functions in Figures 5.2(a) and 5.2(b) show that the

model is bad, since there is a large non-causal part before the actual peaks and they
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do not show any impulse like features. If these source time functions are compared

to the source time functions in Figures 5.8(a) and 5.8(a), it can be concluded that

the model is much better, since the anti-causal part almost disappears and the source

time functions look much more impulse-like, especially the plot in Figure 5.8(a).

6.2 Frequency Domain Considerations

6.2.1 Recovery of Reflections

Recall that Section 5.2 tried to determine an inverse function in the frequency

domain to recover the dispersion relationship of a laser signal from a signal obtained

with piezo disc or transducer excitation. This worked well for the case where the

original and recovered signal had identical length, but failed for the case where the

recovered signal and its reflections were predicted (in a sense to recover a reflection).

This section shows why this prediction failed by inspecting the less complex and non-

dispersive Rayleigh wave data.

Figure 6.1(a) shows two Rayleigh waveforms in the time domain truncated after the

first reflection. The solid line waveform is obtained from laser excitation and the

dashed line waveform is obtained from transducer excitation. The region of interest

is the first reflection after about 34 µsec. This first reflection is very pronounced for

the transducer excitation whereas it almost disappears for the laser excitation. To be

able to compare the reflection and the first arrivals of the two waveforms the ratios

of the amplitudes of first arrival and reflection are considered. Since the ratio for

the laser waveform differs from that of the transducer waveform, it will be impossible

to reconstruct the laser signal out of the transducer measurement, as shown in the

appendix. If the inverse function were to be applied to the transducer signal, a very

pronounced reflection would appear in the recovered laser signal — but this reflection

obviously is far smaller for the measured laser waveform.

A second observation can be made by looking at the shape of the reflection. This
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shape changes for the signal obtained by transducer excitation. The first arrival

shows two separated peaks, whereas the reflection appears to be only one peak. This

could be due to destructive interference at the receiver position. The fact that the

shape of the reflection changes is one further reason why the inverse function may

not appropriately recover the laser signal. If the reflected laser source signal does not

exhibit the same type of shape change as the transducer signal, the recovery of the

laser source signal will be poor. Figure 6.1(b) depicts the original and the recovered

laser signal (first arrival). As shown, only a single large peak is recovered.
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Figure 6.1: Black-box approach remarks.

If the shape of the reflection changes, for example, such that the reflection consists
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of two peaks instead of a damped version of the first single peak (or vice versa), the

inverse function will still “try” to recover this one peak but will actually be applied

to the two peaks and will thus recover the reflection incorrectly. This means that the

shape of the reflection (compared to the first original arrival) has to be consistent

between the laser source signal and the transducer signal.

To show the expected recovery of the laser signal from the transducer signal, the

first reflection of the laser signal is modeled in the following manner. The transducer

signal is truncated after the first arrival, e.g., after 2500 points. The truncated version

of the signal is windowed with a Kaiser window. After that, a damped copy (half

of the amplitude of the original arrival) is appended to the first original arrival.

This is a representation of the actual first arrival and its perfect or ideal reflection.

Figure 6.1(c) shows the reassigned spectrogram of the this composed signal. Now, the

inverse function can be calculated from the first 2500 points of the transducer signal

to recover the first 2500 points of the laser signal. Then this inverse function can be

applied to the 5000 point transducer signal of Figure 6.1(c). The result is depicted

in Figure 6.1(d). Here, the reflection of the laser signal is accurately recovered. This

leads to the conclusion that one major problem of predicting reflected portions of the

signal by applying the inverse function is inconsistent distortion or change of shape

of the reflections.

6.2.2 Effects of Dispersion

This section studies the effects of dispersive behavior on the inverse function (in

the frequency domain) approach. As observed in Section 6.2.1, the reflections in the

measured data are of complex shape. Since the measured dispersion curves (Lamb

waves) contain a relatively large amount of mode-information (many modes and thus

overlapping regions), the dispersion will be synthetically generated so that its effects

can be understood using simpler signals. Note that other researchers (Wilcox [31])

first compensate for the dispersion and then apply methods for further analysis of

the dispersion compensated signals. However, this approach allows only compensa-

tion for the dispersion of one single mode and is therefore not suitable for this research.
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Consider Figure 6.2(a), where the windowed first arrival of the laser source Rayleigh

signal (Figure 6.1(b)) is modified in the following manner: Two filters are applied to

this original signal — one Butterworth band-stop filter (band-stop from 1.5 MHz thru

4 MHz and filter-order of 4) and one Butterworth band-pass filter (band-pass from

1.5 MHz thru 4 MHz). This filtering procedure returns two separate time signals, one

which contains only the frequencies between 1.5 MHz and 4 MHz, and one with the

remaining frequency content of the original Rayleigh wave (reference wave). Now,

the portion with the frequencies between 1.5 MHz and 4 MHz is taken and copied

to be shifted in time. This is done to simulate two modes which both travel with an

individual velocity as a function of frequency. To model the different velocities, the

first signal (with the frequencies between 1.5 MHz and 4 MHz) is delayed by 2 µsec

(slow mode) relative to the base wave and its copy is modified to arrive 2 µsec ear-

lier (fast mode) than the base wave. Finally, the three signals (reference wave, slow

mode, fast mode) are added up to simulate the first dispersive arrival (between 10 -

and 20 µsec in Figure 6.2(a)). For the modeled reflection (between 30 - and 50 µsec

in Figure 6.2(a)), the slow mode is 0.5 µsec closer to the reference wave, whereas

the fast mode propagated 1 µsec further away from the reference wave. After adding

the three reflected waveforms up, the resulting signal is divided by two to model the

loss of energy over a certain propagation distance. Note that the compositions of the

original and the reflected waveform have both a length of 2500 points. Last but not

least, the two composed waveforms are put together by appending the reflection to

the original arrival, so that the entire signal has a total length of 5000 points. Since

three modes with different velocities are realized, the basic features of dispersive be-

havior are captured in this synthesized signal.
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(a) Original dispersive laser signal.
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(b) Original dispersive transducer signal.
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(c) Recovered dispersive laser signal.

Figure 6.2: Synthetic Dispersion.

In the second step, the exact same modifications are performed for the transducer

source Rayleigh signal, in the range from 10 - thru 20 µsec as depicted in Figure 6.1(c).

Now, basically the same black-box procedure as described in Section 6.2.1 is performed

to calculate an inverse function for the extraction of a laser-like reflection by just

providing the 5000 points long transducer signal. Therefore, first a 16384 point long

inverse function is calculated in the following way:

S(k) =
X2500

LSR (k)X∗2500
TR (k)

|X2500
TR (k)|2 + (max|X2500

TR (k)|2SNR)2
(6.3)

where the superscript of 2500 in X2500
LSR (k) and X2500

TR (k) denotes that the length of

the signals for calculating the inverse function is 2500 points (25 µsec) in the time
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domain. For this calculation a very low noise level of 0.05 % is assumed — this choice

can be justified by considering that the first arrival and the reflection are essentially

the same and therefore no additional superimposed noise has to be considered. To

observe how the obtained inverse function recovers the laser signal — especially the

reflection between 30 - and 50 µsec — look at Figure 6.2(c). The recovery is performed

as written in Equation (6.4).

X̂5000
LSR (k) = S(k)X5000

TR (k) (6.4)

where X̂5000
LSR (k) denotes the recovered 5000 points long (50 µsec) laser source signal

and X5000
TR (k) the original 5000 points long transducer source signal. As depicted, the

reflection in the laser source signal is accurately recovered. Thus, it is confirmed that

the inverse function approach is applicable for dispersive multi-mode signals.
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CHAPTER 7

Conclusions and Future Work

7.1 Summary and Conclusions

This research provides background information and a detailed discussion of results

for the application of signal processing methods to experimentally measured ultrasonic

guided wave data from both, dispersive and non-dispersive media. Six experimentally

measured data sets are acquired with a source receiver distance of 46 mm. Three of

the measurements are performed on a plate to obtain dispersive Lamb waves and the

three other measurement sets are performed on a half space to obtain non-dispersive

Rayleigh waves. The three measurement sets are further divided into one set made

with 101 laser source measurements (with equal step of 0.1 mm separating each mea-

surement location equally distributed around 46 mm propagation distance), one set

made with a piezo disc source, and one set made with a commercial transducer source.

All the waveforms are detected with a laser interferometer (in normal direction to the

specimen surface). The objective is to calculate a source time function and spatial

weights which describe and capture the effects of the piezo disc or the transducer.

During this research, the Toeplitz recursion algorithm was modified and optimized to

yield improved results for the relatively long length of the acquired data sets. This

was done by applying exponential windows to the data sets in order to have a smooth

transition between zero and non-zero values and thus obtain a perfect reconstruction

of the signals. Note that the Toeplitz recursion calculates the source function in the

time domain.

Furthermore, a second method that calculates the source function in the frequency

domain (also in the presence of noise) is provided. Both methods are compared for
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different noise levels. The outcome of this comparison is that the time domain proce-

dure shows amplitude and phase distortion for noisy signals, whereas the frequency

domain method only changes the amplitude. The frequency domain decovolution

is also used to calculate an inverse source function without any physical interpreta-

tion in the time domain (black-box approach); only time domain deconvolution is

used for physical interpretation purposes due to the restricted length of the recovered

source function. Both frequency and time domain deconvolution are applied to the

six measurement sets. The source functions extracted by using only a single laser

source signal are difficult to interpret, especially the ones obtained from the Lamb

wave measurements. However the key features of diploe-like behavior and spatial

extent of the piezo disc and the transducer are observed. It is also shown that the

source functions from the half space and plate measurements are not the same due to

reverberations in the plate that are affected and modified boundary conditions, i.e.,

the thickness of the inspected specimen relative to the source diameter plays a major

role for the shape of the extracted source time function.

Inspections of the dispersion relationship obtained from the piezo disc and transducer

are performed. It is found that temporal effects do not distort the dispersion curves

but act as a bandpass filter. The spatial extent of the piezo disc or transducer is mod-

eled by a weighted average of the laser source measurements. Different spatial weight

distributions of the single laser source signals are tested and compared with the piezo

disc and transducer (dispersion relationship in the spectrograms), and it is shown

that a Gaussian weight distribution best models an oil-coupled transducer, whereas

an inverted Gaussian weight distribution best models a glued piezo disc. Note that

the methodologies presented here are also applicable to any other mechanical source

with a finite spatial extent that is in contact with the specimen. An algorithm —

called double iterative least squares optimization — is implemented to perform source

inversion and calculation of the optimal (in least squares sense) weight distribution

of the single laser signals simultaneously. The outcome of this algorithm confirms the

general nature of the weight distributions obtained by the forward modeling approach

as being Gaussian-like for the transducer and inverted Gaussian-like for the piezo disc.
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A general approach for evaluating models by inspecting the source function in the

time domain is outlined; this approach is suitable for the evaluation and comparison

of models. It not only allows one to draw “right-wrong” conclusions, but also has

potential for interpreting model mismatches and their seriousness.

The “black-box” approach in the frequency domain is originally performed on Lamb

wave signals to recover a laser-like reflection by applying an inverse function to a mea-

sured transducer source signal. This inverse function is calculated (in the frequency

domain) to recover the first arrival of a laser source signal out of the first arrival of a

transducer source signal. It was not possible to recover the subsequent reflection of

the laser signal from the entire transducer signal. However, using synthetic examples,

it is shown that this approach works well for Rayleigh signals as well as for dispersive

signals (Lamb waves). Hence, the measured reflections are observed and it is found

that the shape of the reflections differ from the shape of the waveform of the original

arrival.

7.2 Future Work

As mentioned in Chapter 3, only out-of-plane measurements were performed.

However, the piezo disc and transducer also excite an in-plane-component which could

be measured. To further improve the model of the piezo disc and the transducer, this

in-plane component can be measured and considered in the forward modeling ap-

proach.

For another future consideration, a piezo disc or transducer should also be used as a

receiver and a receiver function r(n) can be calculated. This would give the ability to

use a laser source and a laser receiver for a baseline measurement and then for later

considerations a piezo discs or a transducers could be used as source and receiver.

By removing the effect of the source and the receiver functions from the measured

waveforms (made with piezo disc or transducer only), ideally a waveform should be

obtained similar to one made with laser source and laser receiver.
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AppendixA

Reflection Recovery of Measured Data

This sections shows the recovery of a reflection of actually measured transducer

source Rayleigh data. The recovery is performed as outlined in Section 5.2. The

inverse function is calculated with Equation (A.1).

S(k) =
X2500

LSR (k)X∗2500
TR (k)

|X2500
TR (k)|2 + (max|X2500

TR (k)|2SNR)2
(A.1)
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Figure A.1: Recovery of the reflection for the actually measured Rayleigh data.

Then the inverse function S(t) is applied as shown in Equation (A.2).

X̂5000
LSR (k) = S(k)X5000

TR (k) (A.2)
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X̂5000
LSR (k) denotes the recovered laser source Rayleigh signal depicted in Figure A.1

for the measured transducer source Rayleigh signal (5000 points). It is shown that

the region of interest (at 34 µsec) is recovered poorly (it does not have the charac-

teristics of the laser Rayleigh wave). However, the arrival time of the reflection is

modeled fairly well, i.e., is consistent with the measured laser source Rayleigh data in

Figure 6.1(a). Note the distortion of the reflection in the time range between 34 µsec

to 48 µsec (Figure A.1).
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