
Matrix Transform Imager Architecture for On–Chip

Low–Power Image Processing

A Thesis
Presented to

The Academic Faculty

by

Abhishek Bandyopadhyay

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

July 2004

Matrix Transform Imager Architecture for On–Chip

Low–Power Image Processing

Approved by:

Professor Paul Hasler, Adviser

Professor David Anderson

Professor Stephen DeWeerth

Professor Joel Jackson

Dr. Mark T. Smith
(Hewlett-Packard Laboratories)

Date Approved: 27 July 2004

To my parents

iii

ACKNOWLEDGEMENTS

I wish to gratefully acknowledge my advisor, Dr. Paul Hasler, for helping me during my

stay at Gatech for three years, providing an opportunity, guiding my research and reviewing

this thesis. I also want to thank Dr. David Anderson, and Dr. Joel Jackson for all the

discussions we had and for reviewing this thesis. Many thanks also to the committee for

the fruitful reviews.

I would like to thank Jungwon Lee for all the help he provided and the fruitful discussions

we had during my stay at Gatech. I had a very enjoyable time working with all the members

of icelab specially David Abramson, Faik Baskaya, Ravi Chawla, Ryan Robucci, Guillermo

Serrano, and Venkatesh Srinivasan.

Many thanks are due to Haw–Jing Low and Heejong Yoo for proof reading the thesis.

Last but not the least, I want to thank all my friends for all their help and for the

wonderful time I had during my stay in Atlanta.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xiii

I EXISTING APPROACHES IN VISION PROCESSING 1

1.1 Overview of Human visual system . 1

1.2 Photodiode and photoconduction . 3

1.3 Charge coupled device . 5

1.4 CMOS imagers . 8

1.4.1 Passive Pixel Sensor . 8

1.4.2 Active Pixel Sensor (APS) . 10

1.4.3 Neuromorphic imagers . 11

1.5 Recent work on on–chip image transforms, convolutions and compression
implementations . 16

1.6 Cooperative analog/digital signal processing 22

1.7 Motivation for MATIA . 23

II ADAPTIVE PROGRAMMING OF FLOATING GATES ARRAYS . 26

2.1 Introduction . 26

2.2 Chip architecture . 27

2.3 Floating gates . 28

2.4 Novel programming scheme . 33

2.4.1 Calibration procedure . 33

2.4.2 Adaptive programming . 38

2.5 Test setup . 39

2.6 Measured results . 41

2.7 Simplified model . 47

2.8 Conclusion . 50

v

III BASIC TRANSFORM IMAGER PIXEL ELEMENT 51

3.1 Imager pixels . 51

3.2 MATIA pixel . 51

3.2.1 Pixel Structure and Tessellation . 53

3.3 Characterization of MATIA pixel . 56

3.3.1 Dark current . 56

3.3.2 Signal–to–noise issues . 58

3.3.3 Gain, offset mismatch . 60

3.3.4 Linearity and Harmonic distortion of the pixel 64

3.3.5 Correction of computation errors in MATIA 68

3.3.6 Bandwidth of MATIA pixel . 69

3.4 Conclusion . 71

IV FOUR–QUADRANT CURRENT–MODE VECTOR–MATRIX MUL-
TIPLIER . 72

4.1 Overview of vector–matrix multiplier . 72

4.2 Current–mode vector–matrix multiplier 75

4.3 Experimental results, applications and discussions 78

4.3.1 Programming VMM . 78

4.3.2 Frequency and speed measurements 79

4.3.3 Performing DCT using VMM . 82

4.4 Conclusion . 83

V MATRIX TRANSFORM IMAGER ARCHITECTURE (MATIA) . . 85

5.1 Digital image compression . 85

5.2 Separable transforms . 87

5.3 Architecture description . 91

5.3.1 On–chip bias generation . 94

5.3.2 Four–Quadrant current–mode multiplier 98

5.3.3 On–chip single slope ADC . 101

5.3.4 Peripheral circuits . 102

5.3.5 Floor planning and isolation . 109

5.4 Flash structure for video processing . 112

vi

5.4.1 System overview . 113

5.4.2 Current mode comparators . 115

5.4.3 Floating–gate reference circuits . 117

5.4.4 Characterization of the flash structure 118

5.5 PCB and timing sequence . 120

5.6 On-chip image transforms . 123

5.7 Low–power baseline JPEG . 127

5.8 Conclusion . 134

VI APPLICATIONS AND IMPACT . 136

6.1 Impact of this work . 136

6.2 Applications for MATIA . 140

6.2.1 Depth from Stereo . 140

6.2.2 Temporal filtering . 141

6.2.3 Universal Matrix Image Transforms 142

6.2.4 Preprocessing for Optical Flow . 142

6.2.5 DCT based classification . 143

6.2.6 Super–resolution techniques for high resolution images 143

APPENDIX A — OPTICAL TEST BENCH 145

APPENDIX B — FLOATING GATE RAMPUP/RAMPDOWN TRAN-
SIENTS . 149

APPENDIX C — PRINTED CIRCUIT BOARD 153

APPENDIX D — DESCRIPTION OF CHIPS FABRICATED 157

REFERENCES . 159

vii

LIST OF TABLES

Table 1 Summary of performance for programming algorithm 46

Table 2 Summary of performance for proposed VMM 83

Table 3 Table of parameters and results for the current-input comparator cell for
a Flash ADC array. 122

Table 4 Comparison of JPEG implementations . 131

Table 5 Summary of MATIA characteristics . 134

Table 6 Parts for the universal test setup . 148

viii

LIST OF FIGURES

Figure 1 Human Eye . 2

Figure 2 Classic diagram of vertebrate retina . 2

Figure 3 Principle of photo diodes . 4

Figure 4 Cross–section of a CCD . 5

Figure 5 Clocking for CCD . 6

Figure 6 CCD architectures . 7

Figure 7 Passive pixel sensor . 9

Figure 8 Active pixel sensor . 10

Figure 9 Silicon retina . 12

Figure 10 Implementation of OPL layer . 13

Figure 11 Adaptive photoreceptor . 15

Figure 12 Overall architecture for Gruev’s GIP . 19

Figure 13 Chip schematic for DCT chip designed by Kawahito et.al. 20

Figure 14 Chip schematic for design by Graupner et.al. 21

Figure 15 Illustration of the tradeoffs in cooperative analog/digital signal processing 22

Figure 16 Chip schematic for programming of floating–gate arrays 27

Figure 17 3-D view of a floating gate transistor . 29

Figure 18 Injection rate of a floating–gate transistor 30

Figure 19 Isolation of floating gates for programming 31

Figure 20 Drain/gate isolation for programming . 32

Figure 21 Characterization curves for accurate programming 34

Figure 22 Measured injection rates . 35

Figure 23 Variation of model constants . 36

Figure 24 Variation of change in current log(∆I) with VDS for various Iinitial 37

Figure 25 Test setup for programming . 39

Figure 26 Timing diagram for programming . 40

Figure 27 Accuracy of adaptive programming . 41

Figure 28 Percentage error for adaptive programming 42

Figure 29 Subthreshold programmed values . 43

ix

Figure 30 Above threshold programmed values . 44

Figure 31 Programmed DCT values . 45

Figure 32 Die micrograph for programming chip . 46

Figure 33 Variation of m with Iinitial . 47

Figure 34 Variation of f with Iinitial . 48

Figure 35 Comparison of methods . 49

Figure 36 Transform imager pixel . 52

Figure 37 Operation of pixel . 54

Figure 38 Pixel tessellation . 55

Figure 39 Dark current distribution . 57

Figure 40 Effective analytical circuit for estimating noise and computation speed . . 58

Figure 41 Schematic for offset calculations . 61

Figure 42 Variations of voltage offsets . 63

Figure 43 Gain mismatch across the array . 64

Figure 44 Variation of kappa . 65

Figure 45 Variations of linearity . 66

Figure 46 Correction for imager errors . 68

Figure 47 Block diagram of chip . 73

Figure 48 Schematic of four–quadrant current–mode multiplier 74

Figure 49 Measurements from two–quadrant current–mode multiplier 76

Figure 50 Measurements from four–quadrant current–mode multiplier 77

Figure 51 Linearity of four–quadrant current–mode multiplier 78

Figure 52 Voltage mode VMM . 79

Figure 53 Programmed values . 80

Figure 54 Frequency response . 81

Figure 55 8x8 block DCT of a 128x128 image . 82

Figure 56 Block diagram of chip . 83

Figure 57 Image transform matrix examples . 88

Figure 58 Top view of MATIA . 92

Figure 59 Top-level view of our basis generation circuitry 94

Figure 60 Schematic of current–to–voltage converter 95

x

Figure 61 Bias generator outputs . 96

Figure 62 Coefficient storage and multiplication . 97

Figure 63 On–chip current mode multiplier . 99

Figure 64 Input stage for current–mode VMM . 100

Figure 65 Output stage for current–mode VMM . 101

Figure 66 Layout of the output stage of the VMM 102

Figure 67 Circuits for current read–out . 103

Figure 68 Layout of the integrating I–V . 104

Figure 69 Operation of I–V . 105

Figure 70 Clock distribution circuitry . 106

Figure 71 Off–chip driver circuit . 107

Figure 72 Flip-Flop using 1 phase clocks with reset 108

Figure 73 Decoder with a pitch of 22.5λ . 109

Figure 74 Decoder with variable pitch . 110

Figure 75 Floor plan of the chip . 111

Figure 76 Architectural blocks for flash ADCs . 114

Figure 77 Current mode comparators . 116

Figure 78 Top-level view of our reference generation circuitry 117

Figure 79 Programming reference currents on–chip 119

Figure 80 Comparison of different comparators . 120

Figure 81 Flash test chip . 121

Figure 82 Schematic of the printed circuit board (PCB) 121

Figure 83 Timing sequence for image readout . 122

Figure 84 Different transforms on a 16×16 imager block 124

Figure 85 Images from 48x40 MATIA . 125

Figure 86 Programmed DCT values for JPEG compression using MATIA 125

Figure 87 Discrete cosine transforms (DCT) . 126

Figure 88 Haar Transforms . 126

Figure 89 Block diagram of JPEG algorithm . 128

Figure 90 JPEG Compression . 130

Figure 91 Motion JPEG Using MATIA . 131

xi

Figure 92 Reconstruction of Motion JPEG . 132

Figure 93 Motion JPEG using Walsh-Hadamard Transform 133

Figure 94 Die Micrograph . 135

Figure 95 Architecture for stereo . 141

Figure 96 Block diagram for a motion (optical flow) computation system 143

Figure 97 Block diagram of Imager test setup . 146

Figure 98 Schematic of the optical test setup . 146

Figure 99 Optical test setup . 147

Figure 100Ramp up transients for various initial currents 150

Figure 101Ramp down transients for various initial currents 151

Figure 102Ramp down transients for various supply voltages (VDD) 152

Figure 103Schematic of imager board - I . 154

Figure 104Schematic of imager board - II . 155

Figure 105Pictures of PCB . 156

xii

SUMMARY

Camera–on–a–chip systems have tried to include carefully chosen signal processing

units for better functionality, performance and also to broaden the applications they can be

used for. Image processing sensors have been possible due advances in CMOS active pixel

sensors (APS) and neuromorphic focal plane imagers. Some of the advantages of these

systems are compact size, high speed and parallelism, low power dissipation, and dense

system integration. One can envision using these chips for portable and inexpensive video

cameras on hand–held devices like personal digital assistants (PDA) or cell–phones

In neuromorphic modeling of the retina it would be very nice to have processing ca-

pabilities at the focal plane while retaining the density of typical APS imager designs.

Unfortunately, these two goals have been mostly incompatible. We introduce our MAtrix

Transform Imager Architecture (MATIA) that uses analog floating–gate devices to make it

possible to have computational imagers with high pixel densities. The core imager performs

computations at the pixel plane, but still has a fill–factor of 46 percent—comparable to the

high fill–factors of APS imagers. The processing is performed continuously on the image

via programmable matrix operations that can operate on the entire image or blocks within

the image.

The resulting data-flow architecture can directly perform all kinds of block matrix image

transforms. Since the imager operates in the subthreshold region and thus has a low power

consumption, this architecture can be used as a low–power front end for any system that

utilizes these computations. Various compression algorithms (e.g. JPEG), that use block

matrix transforms, can be implemented using this architecture. Since MATIA can be used

for gradient computations, cheap image tracking devices can be implemented using this

architecture. Other applications of this architecture can range from stand-alone universal

transform imager systems to systems that can compute stereoscopic depth.

xiii

CHAPTER I

EXISTING APPROACHES IN VISION PROCESSING

1.1 Overview of Human visual system

Light is the electromagnetic radiation that stimulates our visual response.Visual perception

occurs in two stages: light being converted into electrical signals by a special sensory organ

called the retina, and transmission of these signals through the optical nerve to the brain

for further processing of these signals. The retina of the human eye contains two types

of photoreceptors called the rods and cones. Figure 1 shows the cross–sectional view of a

human eye. The rods are about 100 million in number and provide scotopic vision (visual

response at low magnitudes of illumination). The cones are fewer in number, have less

sensitivity compared to rods and provide photopic vision. Cones mediate colour vision and

provide greater spatial and temporal resolution. Unlike most neurons, rods and cones do

not fire action potential instead they respond to light with graded changes in membrane

potential [66]. This change in membrane potential is caused by change in ionic fluxes across

the membranes of the rods and cones.

The output neurons of the retina are the ganglion cells. Their axons form the optic nerve

which project to the Lateral Geniculate Nucleus (LGN) and other parts of the brain. Unlike

the photoreceptors the ganglion cells transmit information as trains of action potential. In

between the ganglion cells and the photoreceptors are three classes of interneurons: bipolar,

horizontal, and amacrine cells (Fig. 2). These cells transmit signals from the photoreceptor

to the ganglion cells and also combine signals from several photoreceptors, so that the

electrical responses evoked in ganglion cells depend critically on the image pattern and the

temporal changes associated with the image. Cone signals are conveyed to the ganglion

cells through direct and lateral pathways. The properties of the ganglion cells enhance

the ability of detecting weak contrasts and rapid changes in visual image. Under low light

conditions ganglion cells cease to be detectors of local contrast and instead become effective

1

Figure 1: Human Eye: Cross–sectional view of the Human eye. The retina of the human eye contains
two types of photoreceptors called the rods and cones.

Bipolar
cells

Ganglion
cells

optic nerve (towards LGN)

Amacrine
cells

OPL

IPL

Horizontal

cells

Figure 2: Classic diagram of vertebrate retina: Retina is organized as layers of neurons with various
spatial interactions; these layers are organized as the Outer Plexiform Layer (OPL) and Inner Plexiform
Layer (IPL). Gap junctions form electrical synapses (as opposed to typical chemical synapses) between
neurons on a given layer. The retina model implements various linear and non-linear spatio-temporal filters
whose outputs are further filtered through visual cortex.

light detectors. The organizational principles of the visual system are the segregation of

information into parallel processing pathways and the shaping of response by inhibitory

lateral connections.

2

1.2 Photodiode and photoconduction

The fundamental purpose of photo detectors is to convert an input photonic signal into

an electrical signal. The application in which the detector is used affects the performance

criterion. For imaging applications a photodetector should provide good spatial resolution,

gray-scale resolution, need to be two dimensional without introducing spatial aliasing in

either direction, should be able to operate at both low and high light intensities, etc.

Inner photo electric effect is the process by which an electron absorbs incident photonic

energy. If this energy is more than the bandgap energy then electrons from the valence band

are excited to the conduction band. Hence in the exposed area illumination increases the

concentration of mobile charge carriers above the thermal equilibrium value. Photoconduc-

tion happens when separation of electron hole pairs, under the influence of an electric field,

contribute to an electric output signal. A diode is a photosensor because the presence of

depletion region reduces dark current, while the built-in potential enables charge separation

even in the absence of externally applied fields. The resultant reverse bias current is the

photocurrent. Figure 3 shows the principle of operation of a photodiode. Generation of

excess carriers within the depletion region enhances the reverse bias current. Therefore, if

a reversed biased junction is illuminated with light energy in excess of the bandgap energy,

the reverse bias current is significantly increased because of the presence of photogenerated

carriers. The reverse bias also aids the operation of the device. This bias enhances absorp-

tion by increasing the depletion width in which the light is absorbed. The photogenerated

electron-hole pairs are separated by the action of the drift field. Hence, if the reversed bias

is sufficiently high high carrier drift velocities are obtained and impact ionization can occur.

This implies that carrier multiplication and current gain can occur in the device.

Photodiodes provide high quantum efficiency and high bandwidths. The bandwidth

depends on the drift time within the depletion region, the capacitance of the depletion

region, and the carrier diffusion to the depleted region [17]. Increasing the depletion width

increases the incident radiation absorption but reduces the bandwidth by increasing the

transit time across the junction. The speed also depends on the junction capacitance.

3

-
+

++

+

+

+

+
+

+

+
+

+ -

-
--

-

-
-

-
--+

-
-

-

-

+

+

+

+

+ +

+

+

-

n region p region

Depletion

DriftElectron

diffusion

Hole

diffusion

Photon

Photon

(a)

I

V

Iph

(b)

Figure 3: Principle of photo diodes: (a)Schematic showing the effect of incident photons and the
creation of electron–hole pairs. (b)Current–to–voltage characteristics of a photodiode. It has the same shape
as a normal diode. Illumination causes the curve to shift down, as shown in the figure.

4

Figure 4: Cross–section of a CCD: Cross–sectional view of a charge coupled device. It shows the
three polysilicon gates.

1.3 Charge coupled device

The charge coupled device (CCD) has dominated the digital imaging market due to it’s low

fixed pattern noise (FPN), low readout noise, higher quantum efficiency and higher sensi-

tivity. A CCD consists of an array of photogates that integrate the photogenerated charge

[17]. The charge integration of the whole array takes place at the same time. The signal

charge packets of the different pixels are simultaneously moved underneath the semiconduc-

tor surface towards the readout circuitry. Most CCDs are either buried channel CCDs that

consists of bulk-storage photogates, or surface channel CCDs where storage and transport

occurs at the semiconductor interface. Buried–channel CCDs are fabricated using special

processes and suffer from blooming - spilling of excess charge into adjacent packets when

charge packet gets overfilled. Surface–channel CCDs are fabricated on CMOS–compatible

processes, but suffers from inefficient charge transfer across a large array, as the silicone-

oxide interface of a standard CMOS process does not guarantee efficient charge transfer, as

required for CCD imaging.

A single CCD pixel (picture element) is illustrated in Fig. 4. This figure shows three

polysilicon gates oriented perpendicular to two-channel stop regions. Between the channel

stop regions lies the buried channel. If the potential on the middle electrode is more positive

than that applied to either of the other two gates, a local potential energy minimum will

be formed under the middle gate. When photons strike the pixel, electron-hole pairs are

created via the photoelectric effect. Electrons created within the potential minimum will

5

t=t1

t=t2

t=t3

t=t4

t=
t1

t=
t2

t=
t3

t=
t4

Figure 5: Clocking for CCD: Schematic of charge transport using a three phase clocking scheme. The
charge packets, symbolized by the hatched areas, are shifted from left to right as time progresses.

be collected there. Electrons that are created in the channel stop region or in the substrate

beneath the pixel may diffuse to the minimum potential area and be collected. In either

case, the holes diffuse to and are collected in the p-type substrate. The quantity of charge

that is collected in the well is linearly related to the intensity of the photon flux and to the

time over which the light is allowed to fall on the pixel (integration time). The prevalence

of the three phase technology is principally due to high yield and process tolerance of this

technology. A single CCD pixel has no means to read out the quantity of charge accumulated

beneath the integrating electrode. The process of reading out this signal charge involves

moving the packet from the site of collection to a charge detecting amplifier located at the

6

Imaging array

Horizontal readout register

Vertical

readout

register

Transfer gate

Horizontal readout register

Imaging

array

Vertical

readout

register

(a) (b)

Figure 6: CCD architectures: (a) Frame–transfer CCD and (b) interline–transfer. The hatched areas
indicate MIS gates that are shielded from light. The arrows indicate the direction of charge flow [80].

end of the linear array. Figure 5 shows the three phase clocking scheme required to read

charge information from a CCD imager.

Quantum efficiency (QE) is the measure of the efficiency with which incident photons

are detected. Some incident photons may not be absorbed due to reflection or may be

absorbed where the electrons cannot be collected. The quantum efficiency is the ratio of

the number of detected electrons divided by the product of the number of incident photons

times the number of electrons each photon can be expected to generate [17].

CCDs can be categorized according the manner in which the charge is readout. Frame–

transfer CCDs (Fig. 6(a))transport the charge underneath the photogates themselves,

while Interline–transfer CCDs first transfer charge packets to parallel running lines of MIS

gates and the charge is then transported underneath those (Fig. 6(b)) [80]. Frame–transfer

CCDs have higher fill–factor but Interline–transfer CCDs have a simpler clocking scheme.

CCDs have various disadvantages:

• Large number of clock signals are required to operate a CCD system. These are

relatively high voltage clocks and hence the system has a high power budget.

7

• Since CCDs are tuned for charge transfer quality the MOS transistors available in

these processes have poor characteristics.

• Multi–die system or a multi–chip system is required for performing complex image

processing. Addition and subtraction are the only operations available in a CCD

process. Hence system integration is not easy when CCDs are used for image capture.

1.4 CMOS imagers

In most machine vision systems the image capture and processing modules are viewed as

two separate systems, and often no interaction between these stages exist. On the other

hand the biological approach towards computer vision attempts to benefit by emulating

biological systems based on basic observations of these systems. The two features that

make the biological system very efficient are the relative simplicity of the visual processing

elements and the parallel computation that takes place in the visual pathway. Biological

systems have close interaction between the retina (image capture) and the subsequent opto-

neuro pathways (processing). Vision chips that mimic this interaction by integrating both

of these stages on the same chip offer several advantages over the conventional systems,

including compact size, higher speed and parallelism, power dissipation and dense system

integration.

CMOS technology provides an attractive alternative to CCD technology or implementing

low-power, low-cost images with high levels of integration. In CMOS imagers we see a

tradeoff between large–scale focal–plane processing, and fill factor. In neuromorphic imagers

most of the computation is performed at the pixel-level and thus the fill–factor is small. On

the other hand passive pixel sensors (PPS) and active pixel sensors (APS) use the pixel to

read the photo-transduced current and most of the processing is performed at the periphery,

hence the fill factor in these systems are high.

1.4.1 Passive Pixel Sensor

Passive pixel sensor (PPS) were the first image-sensor devices used in the 1967 [112]. In

passive-pixel CMOS sensors, as shown in Fig. 7, a photodiode converts photons into an

8

Row

C
o

l

Row

C
o

l

Figure 7: Passive pixel sensor: Schematic of a passive pixel sensor (PPS). The readout in PPS
architecture is destructive.

electrical charge. When the access transistor is activated, the photodiode is connected to

a vertical column bus. A charge integrating amplifier readout circuit at the bottom of the

column bus keeps the voltage on the column bus constant and reduces kTC noise [38].

When the photodiode is accessed, the voltage on the photodiode is reset to the column bus

voltage, and the charge, proportional to the photo signal, is converted to a voltage by the

amplifier. The single-transistor photodiode passive pixel allows the highest design fill factor

for a given pixel size or the smallest pixel size for a given design fill factor for a particular

CMOS process [38, 39].

The advantages are high fill–factor, true X-Y addressing possible by adding a second

selective transistor, and high quantum efficiency, due to large fill–factor. Some of the

disadvantages are that the readout noise level appears as a background pattern in the

image and the fact that these imagers do not scale well to larger size and or/faster pixel

readout rates. This is because both increased bus capacitance and faster readout speeds

result in higher readout noise.

Though not many groups are using this technology there is still some research going

on in this area. Fujimori has presented 256x256 CMOS differential passive pixel imager

9

RST

RS

To col bus

VDD

Figure 8: Active pixel sensor: Schematic of an active pixel sensor (APS). The amplifier is usually a
source follower.

with FPN reduction techniques at ISSCC 2000 [41]. This chip was deigned in 0.6µm 2–poly

3–metal CMOS process and the pixel size was 20µm x 20µm with a fill–factor of 40%.

1.4.2 Active Pixel Sensor (APS)

These approaches, typically credited to Fossum, et al., [37, 38, 78, 114, 115] worked with

photodiode–based arrays with minimal circuitry in the pixel (shown in Fig. 8), resulting

in large imaging arrays, and therefore, a technology viable for digital cameras and more

sophisticated peripheral computations. A sensor with an active amplifier within each pixel

is referred to as an active pixel sensor or APS. Since each amplifier is only activated during

readout, power dissipation is minimal and is generally less than a CCD. Pixels are typically

designed for a fill factor of 20–30%. Some of the recent pixels are 3µmx3µm or 4µmx4µm

in size. Loss in optical signal is more than compensated by reduction in read noise for a

net increase in signal-to-noise (S/N) ratio and dynamic range.

Much work has been done in improving the quality of pictures from an APS imager

[24, 36, 39, 50, 22]. These imagers usually contain a APS array, readout circuitry, on–chip

ADC for fast readouts. There have been many implementations where peripheral circuitry is

added for post processing on images. Some of the recent work in APS imagers are discussed

10

below.

Cho has presented a 1.5–V 550-µW 176x144 autonomous CMOS APS sensor [21, 22];

Krymski has reported a high-speed, 240-frames/s, 4.1-Mpixel CMOS sensor [74]; Takayanagi

has reported a 1 1/4 inch 8.3M pixel digital output CMOS APS for UDTV application [106].

Sodini’s group has been actively working on APS imagers [26, 45]. Recently they have

published a predictive multiple sampling algorithm with overlapping integration intervals

for linear wide dynamic range integrating image sensors [2] and a 256 x 256 CMOS imaging

array with wide dynamic range pixels and column–parallel digital output [26].

Gamal’s group has also done extensive studies of APS imagers. Discussion on temporal

noise in CMOS photodiode can be found in [109]. His group has also looked into designing

ADCs for fast image readout [116, 117]

1.4.3 Neuromorphic imagers

Neuromorphic imagers are essentially vision chips that try to mimic general characteristics of

the vertebrate retina like adaptation to light intensity and edge enhancement. Early retina

model systems used focal–plane processing to mimic the edge enhancement properties in

the early retina processing based on photodiodes and phototransistors that naturally occur

in a silicon CMOS process [5, 84, 87]. Another group of spatial signal processing chips

target more global features like object position, orientation, and centroid. In foveated

sensors, the physical size and placement of the photoreceptors form a linear–polar or log–

polar mapping on the image. Neuromorphic imagers chips are characterized by significant

amounts of signal processing occurring at the image plane, but usually at the cost of a

small fill–factor. Retinal processing imagers and research are focused primarily on machine

vision tasks where the required pixel count can be smaller thus emulating lower order

biological systems; for example, flies can accomplish amazing things with a small number of

pixels [51, 52]. Although much can be explored in vision problems at the level of flies, many

neuromorphic visual signal processing systems aim toward modelling much larger organisms.

Later designs improved so as to be usable in systems at high density levels [16, 5, 14] and

for high performance [28]. From these retina chips, several higher level processing ICs have

11

GND

GND

Vout

Vdd

Figure 9: Silicon retina: Circuit diagram of the first retina implementation by Mahwold and Mead
[84]. The spatial distribution of resistors is used to perform spatial filtering which models the gap junctions
and some of the computation of the horizontal cells in IPL. The inset shows the basic circuit element at each
node. Each node has a photoreceptor circuit built from an on-chip photodiode and log-compression of the
resulting signal. The gm-C filter is used to create a temporally high-pass, spatially edge-enhanced, filtered
output.

been built to investigate stereo processing [83, 82], communication architectures for action

potentials [15], attention computations, and motion [29, 30, 51, 52, 64, 100, 108]. Typically,

because of the large pixel size associated with the large number of transistors in each pixel,

image sensors with retinal computation typically only have a fairly small number of pixels

on a given IC. In only a very few cases will one see more than 50k image elements on a

fairly large IC [5].

12

Phot o
Ce l l

GND

Vu
Vf

Vg

Phot o
Ce l l

GND

Vu
Vf

Vg

Phot o
Ce l l

GND

Vu
Vf

Vg

Figure 10: Implementation of OPL layer: Current mode implementation by Bohean and Andreou
[16] of the OPL layer. This efficient implementation models many of the linear and nonlinear processing of
this approach. Since this implementation, there have been several additional models for the entire retina
based upon these techniques.

Mahowald’s silicon retina was among the first neuromorphic vision chips [84, 87]. This

chip performed computation based on the distal layers of the retina. The cones were the

light detectors. These were implemented using phototransistors and diode connected I-

Vs. Bipolar cells detect the difference between the input and the averaged output of the

horizontal cells. Averaging is performed using a hexagonal network of active resistors,

as shown in Fig. 9 . An exponential smoothing operation is performed by the resistive

network. The smoothing factor depends on the diffusion constant in semiconductors (value

of the resistors). An enhanced version of this silicon retina was Mead’s adaptive retina. This

chip used floating–gate MOSFET (FGMOS) as a feedback element for offset and mismatch

correction [86, 88].

The outer–plexiform of retinal processing layer has been modelled on silicon by Andreou

and Boahen [16]. The implementation uses a compact circuit, which enabled the realization

of a 210x230 array of image sensors. A diffusive network, as shown in Fig. 10, is used in this

chip. This circuit includes two layers of the diffusive networks. The upper layer corresponds

to the horizontal layer, while the lower layer to cones.

Blum et.al. have designed a CMOS imager with real–time frame differencing and cen-

troid computation [13, 31]. The current steering circuitry in the pixel allows for direct

readout, programming, x–centroid computation and y–centroid. The pixel size is 900µm2

with a fill–factor of 18%. The centroid computation is based on the DeWeerth’s aggregation

13

network. A spatially sweeping reference voltage is required for this circuit. This is provided

by a resistive voltage divider with it’s ends connected to reference voltages. Polysilicon

resistors are used for the voltage divider. An analysis for constant background illumination

and constant width and intensity is given in [31].

In Mitshubishi’s CMOS retina chip the photocurrent output from a photodiode is di-

rectly modulated [43, 44]. It is an artificial retina chip consisting of an array of variable

sensitivity photo–detector cells (VSPD) which accomplishes both nondestructive output and

programmable positive or negative sensitivity. Despite its simple structure, this VSPD ar-

ray realizes programmable focal plane image processing by employing between-pixel current

mode calculations, together with a novel addressing method in which filtering is executed

by varying the addressing pattern generated by a scanning unit. The chip consists of a

256x256 n-MOS array. The pixel size was 35µmx26µm with a fill–factor of 25% in a 2µm

n-MOS process. The work has demonstrated image capture in video mode and edge extrac-

tion mode, and light spot tracing using pattern matching in conjunction with the random

access function.

Tanner and Mead have reported a optic flow motion detector chip [108].The chip consists

of phototransistors, and spatial and temporal differential circuits for computing the various

gradients required for the algorithm. the computations are carried out collectively across

the chip. The output of the chip is a global signal indicating the motion flow of the whole

image. This is one of the first vision chips that demonstrated that mathematical algorithms

can be implemented on VLSI.

Delbrück has presented a correlation–based motion detector [29]. This is a more robust

method for motion detection as it uses correlation to extract information rather than gradi-

ents. The chip has an array of photodetectors, time delay elements, and anti–bump circuits.

Delbrück has implemented a hexagonal 2–D motion sensor. Photodetection is performed

using the novel adaptive photodetector pixel deigned by Delbrück [28], as shown in Fig. 11.

The output of the motion detector is obtained from the anti–bump circuit.

Meitzler et.al. has described a 1–D motion detector chip similar to the Reichardt cor-

relation based motion detectors [90]. In this implementation sample and hold circuits have

14

Vdd
Adaptive

element

Vdd

GND

Vdd

V
b

V
out

GND

Figure 11: Adaptive photoreceptor: This circuit practically senses currents over seven orders of
magnitude in light intensity (bright sunlight to candlelight).

been used instead of the delay elements of the Reichardt model. The front end of the chip

uses Andreou retina cells. The sample and hold circuit has a relatively long retention time.

In this chip, absolute difference function has been used to replace the multiplier units of a

the Reichardt model. The chip was fabricated in 2µm CMOS process. Each of the 22 pixels

occupied an area of 365x77µm2.

Etienne–Cummings’ has presented a motion detection chip based on a modified Re-

ichardt algorithm, called temporal domain optical flow measurement (TDOFM) [35]. In

this algorithm motion is detected by locating the zero–crossings and determining their ap-

pearance or reappearance. Velocity is calculated by computing the time an edge takes to

move from one pixel to a neighboring pixel. A passive network is used to perform spatial

smoothing of the input image.The chip consists of photodetectors, zero–crossing edge detec-

tors, positive and negative edge motion pulse generators, correlator and speed measurement

circuits. This chip was fabricated using a 2µm CMOS process.

15

1.5 Recent work on on–chip image transforms, convolu-
tions and compression implementations

Recent progress in CMOS based image sensors and cameras has created new opportunities

for developing low–power, low–cost, system–on–a chip cameras that include various image

processing functions. Some to the recent work relevant to this thesis are discussed below:

• A four image reorganization IC for real–time difference encoding for hierarchial loss-

less image compression was reported by Kemeny et.al. Two image reorganization

processors are realized on the focal plane and two were designed for hybridization

to a separate IC. This represents the first integration of a 256x256 buried–channel

frame–transfer CCD image sensor with additional charge domain circuits for video

rate image reformatting. The reformatting circuitry occupied 2% of the chip area.

Pixel data reorganization is performed through simultaneous readout of three rows of

data, followed by pixel resequencing and sampling to provide differential output. This

system of ICs provide real–time image reorganization to enable pyramidal, differential

output of image data, thus simplifying downstream electronics, reducing power, size

and weight of lossless hierarchial compression hardware. The drawback of this system

is that it is a multi–chip system and hence interfacing is not trivial. Similar big pixel

processors have been proposed by Paillet et.al. and Dudek et.al. Paillet et.al have

designed a pixel consisting of 50 transistors containing a tiny digital processor [93].

In order to reduce the chip area required, the chip has a small grayscale resolution

only. It is mainly suited for image segmentation and other related image processing

like pattern recognition. Dudek and Hicks have presented a smart–sensor VLSI cir-

cuit for focal plane processing of gray–scale images. Each pixel has a processing unit

consisting of a switched current microprocessor, and the architecture is based on a

fine–grain software programmable SIMD array. A 21x21 prototype was fabricated in

a 0.6µm CMOS process. The pixel size was 98.6µm x 98.6µm. Although the imager

has flexible functionality the pixel size is large.

• Chiang and LaFranchise has proposed a programmable image processor that can be

16

used as a 2-D matched filter to perform spatial filtering with 20 different 7x7 spatial

filters. Hence it can be used for applications such as noise removal, image enhance-

ment and feature extraction. The processor was developed based on CCD technology.

This chip was fabricated with a double–polysilicon, double metal, buried channel

CCD/CMOS process.

• Spirig et.al. have designed a fully parallel focal plane CCD array which performs image

acquisition and convolution with arbitrary kernels [105]. The real-time programmable

spatial convolution is generated for all pixels in parallel during the exposure period.

The 2-D convolution is performed by shifting a charge pattern in two dimensions and

the exposure time is varied in proportion to the weight of each kernel coefficient. The

size of the pixel is 63µm x 65µm. This CCD imager with convolution capabilities is

suitable only for slow moving or static images.

• Luo and Harris have reported a on–sensor wavelet compressor for CMOS imager [81].

The Haar transform algorithm has been embedded into the architecture. An efficient

transform scheme is proposed which required two computational units: a 2x2 element

two–dimensional transform unit and an adder or subtractor. the image is readout in

a column parallel fashion. The chip was designed and fabricated on a 0.5µm CMOS

process. This imager contains a standard APS pixel. At the bottom of each column

a network of switches and capacitors are used to perform the transform. CDS is

used to suppress fixed pattern noise, and pixel KTC noise. This architecture is not

programmable and can only perform 4x4 modified haar transform.

• A computational image sensor using conditional replenishment has been reported by

Aizawa et.al. Conditional replenishment is employed for the compression algorithm

[3]. Conditional replenishment is based on detection and coding of the moving areas

so that it makes use of temporal redundancy to compress image signals. Conditional

replenishment was originally proposed in the early age of image compression as a

digital compression method which could be easily implemented in silicon. In each

pixel, current pixel value is compared to that in the last replenished frame. The value

17

and the address of the pixel are extracted and coded if the magnitude of the difference

is greater than a threshold. Analog circuits have been designed for processing in each

pixel. The pixel was 190µm x 190µm in a 2µm CMOS process. Since the pixel size is

large this is not suited for high resolution sensor.

• Sjöström et.al. had implemented a DCT chip for real–time video applications [101].

This chip used features like distributed arithmetic and application specific pipelined

RAM memory. The implementation was not based on any ”fast algorithm” but on

a direct implementation of equations. Distributed arithmetic was used to compute

the required inner products. This chip can be the sub–block of a bigger system also

containing a pixel array. One or two dimensional transforms of lengths 4, 8, 16 can

be calculated. Pipelining was also used in this architecture. The chip was designed

using 2µm CMOS process.

• Etienne–Cummings et.al. have presented a programmable focal–plane Multiple In-

struction Multiple Data (MIMD) image processor chip. The chip employs a MIMD

architecture to provide five spatially processed images in parallel [36]. Gruev and

Etienne–Cummings have designed a pseudogeneral image processor for realizing steer-

able spatial and temporal filters at the focal-plane based on previous work [50]. Figure

12 shows the schematic of the proposed architecture. The convolution of the image

with programmable kernels is realized with area-efficient and real-time circuits. The

chips architecture allows photoreceptor cells to be small and densely packed by per-

forming all analog computations on the read-out, away from the array. The orienta-

tion of the spatial filters can be changed on the fly. The main components of the GIP

are the 16 rows by 16 columns photo pixel array, three vertical and three horizontal

scanning registers, and a single processing unit. The processing unit, which consists

of four identical but independent sub–processors, is implemented with digitally con-

trolled analog multipliers and adders. The multipliers and adders scale each of the

pixel photocurrents according to the convolution kernel being implemented. Each of

18

Figure 12: Overall architecture for Gruev’s GIP: A prototype (16x16 pixel array) of the GIP has
been fabricated in a standard 1.2µm CMOS process and its spatiotemporal capabilities have been successfully
tested [50].

the four sub–processors can be independently programmed in parallel, allowing for dif-

ferent spatiotemporal convolutions to be performed on the incident image in parallel.

A prototype (16x16 pixel array) of the GIP has been fabricated in a standard 1.2µm

CMOS process and its spatiotemporal capabilities have been successfully tested. The

pixel is composed of a photodiode, a nonlinear photocurrent amplification circuit, a

sample-and-hold image delay element, and pixel selection switches. The pixel size was

30µm x 30µm, and the fill factor was 20%.

• Kawahito et.al. have developed a CMOS imager sensor with on–chip compression

19

Figure 13: Chip schematic for DCT chip designed by Kawahito et.al.: The prototype was
fabricated in triple–metal double–poly 0.35µm CMOS technology. The maximum peak signal–to–noise ratio
(PSNR) was 36.7 dB. The pixel size was 16.1µm x 16.1µm, and the fill factor was 56.5% [67].

using an analog two–dimensional discrete cosine transform processor with a variable

quantization level ADC [67]. Figure 13 shows the schematic of the proposed archi-

tecture. Fully differential switched–capacitor circuits have been used to design the

8x8 point analog 2-D DCT processor. The accumulated signal charge in the pixel

is converted to a voltage using the readout circuits. The analog 2-D DCT processor

computes in parallel as an unit of column. This 8x8 DCT processor consists of a 1-D

DCT processor and an 8x8 analog memory cell. For computing the eight point DCT

parallel data is read out eight times from the image sensor block. Two 2-D DCT cores

are used for increasing throughput. The imager array has a dedicated eight channel

parallel readout scheme. Quantization is performed by the variable quantization level

ADC. Hence the compression ratio can be adaptively changed depending on the image

quality and the type of image. This adaptive ADC is particularly useful for reducing

the power dissipation of video ADCs. The authors claim that they could not get the

whole system working and data from just the the 2-D DCT processor is presented in

the paper. The prototype was fabricated in triple–metal double–poly 0.35µm CMOS

technology. The maximum peak signal–to–noise ratio (PSNR) was 36.7 dB. The pixel

size was 16.1µm x 16.1µm, and the fill factor was 56.5%. This unit achieves reasonable

20

Figure 14: Chip schematic for design by Graupner et.al.: The chip was designed using 0.6µ CMOS
technology. The pixel size was 12µm x 12µm with a fill factor of 48% [49].

quality but the flexibility is limited to the just performing 2-D DCT operations.

• Graupner et.al. have presented a single–chip integration of a CMOS sensor with

embedded flexible processing array and dedicated ADC [49]. Figure 14 shows the

schematic of the proposed architecture. The array can perform convolution and trans-

form algorithms with arbitrary kernels. The kernels are stored digitally. The analog

output from the photo sensors are multiplied with the stored kernels and the results

are added. The processor unit operates on a potion of the image only. It is organized

in slices of 8x8 elements corresponding to a square image block. Each slice consists

of 64 analog memories, 64 bit–serial multipliers, and a multi–input adder. During

operation, the image data of eight rows is transferred from the sensor array into the

processing unit. For every applied bit level of the kernel, all the necessary multiplica-

tions and additions are carried out in parallel. Each processor computes one analog

value per bit level. These are then fed to the ADC after being rearranged in a first–in

first–out (FIFO) memory. The kernel coefficients are provided from off–chip compo-

nents. After eight rows of the captured image have been copied into the processor, the

kernels are applied subsequently. When all the kernels have been applied the compu-

tation is started again. The processing element consists of a current memory cell to

21

A/D

Convertor

DSP

Processor

Computer

(digital)

DSP

Processor

Real

world

(analog)

DSP

Processor

ASP

IC
A/DASP

IC
A/D

Specialized A/D

Figure 15: Illustration of the tradeoffs in cooperative analog/digital signal processing: We
assume the typical model of signals coming from analog sensors that need to be utilized by digital computers.
The inverse problem, digital signals going to real-world actuators, is similar in nature. One approach is to
put an analog-to-digital (A/D) converter as close to the sensor signals as possible, and allow the remainder of
the computations to be performed digitally. An alternate approach is to perform some of the computations
using analog signal processing, thus requiring simpler A/D converters, and reducing the computational
load of the resulting digital processors. One could group this analog computation and A/D converter as a
specialized A/D converter that gives more refined information (Fourier coefficients, phonemes, etc.) than a
literal map of the incoming signal. The question of where to put this boundary line strongly depends upon
the particular requirements of an application.

store image data and two switches for multiplication. The prototype was fabricated

in double–metal double–poly 0.6µ CMOS technology. The pixel is a standard three

transistor integrating pixel cell comprising a diffusion well diode, source follower, a

reset and a select switch. The pixel size was 12µm x 12µm with a fill factor of 48%.

Although this architecture gives reasonably good data, the kernel has to supplied ex-

ternally, the processor occupies large area while computing transforms just one block

of the image at a time.

1.6 Cooperative analog/digital signal processing

Neither analog signal processing nor digital signal processing can exist in current tech-

nologies without the other; that is, real–world signals are analog while much of the mod-

ern control and communication is digital. Figure 15 shows two ways of addressing this

22

problem. Typically, one does not think of analog and programmability together—analog

circuits are primarily used for front end processing, while programmability has been an ex-

clusively feature of digital processors. However, new advances in analog VLSI circuits have

made it possible to perform operations that more closely reflect those done in digital signal

processing applications. Furthermore, analog circuits and systems can be programmable,

reconfigurable, adaptive, and at a density comparable to digital memories [54, 55, 61, 77].

We define cooperative analog–digital signal processing (CADSP) as looking at the issues

of using combinations of programmable analog signal processing and digital signal process-

ing techniques for real–world processing architectures [4, 56]. Our goal in CADSP is to

build systems that benefit from the advantages of both types of signal processing to make

something better than the sum of its parts and to enhance the overall functionality of a

system by utilizing analog/digital computations in mutually beneficial way. Therefore, one

might wonder if we have both digital and analog signal processing available, how does one

choose a particular solution for a given application. The question of where to partition the

analog–digital boundary, as shown in Fig. 15, is still an open research question and depends

on the application.

1.7 Motivation for MATIA

As energy-crucial portable and multimedia applications are becoming more popular the em-

phasis of VLSI design is shifting to high performance, low power, and low voltage techniques.

For imager systems as pixel size increases the scan-read-out process is a fundamental lim-

itation for high resolution/frame-rate imaging systems [32, 117]. Compression algorithms

can be used to overcome the communication bottleneck [48]. Discrete cosine transform

(DCT) and wavelet transform (WT), among various block transforms, are popular in im-

age/video compression applications including the standards like JPEG, MPEG, H.261 and

H.263 [69, 67]. Although these can be realized using digital methods, low power analog

techniques enable these functions to be performed in a more space and power efficient

manner.

For performing matrix transforms one needs to store the matrix coefficients on-chip and

23

perform multiplications while maintaining a high fill factor [50]. Although these can be

done using digital storage and multiplication blocks, analog and floating gate technologies

enable these functions to be performed in a much more space and power efficient manner. We

present our fully programmable block MAtrix Transform Imager Architecture (MATIA) that

can preform all of the above mentioned functions. The pixel has a fill–factor of 46%. The

matrix coefficients, which are stored on–chip, can be programmed to any desired arbitrary

values. It also consists of differential current mode vector–matrix multipliers (VMM), and

row parallel readout circuitry for faster image capture. The chip consumes 80µW/frame of

power for a supply of 3.3V.

Our new imaging architecture is made possible largely by advancements in analog

floating–gate circuit technology and its applications [55, 77, 54]. Floating–gate devices

in imaging can be used to eliminate fixed pattern noise and to enable programmable and

adaptive signal processing applied toward the images [24, 13]. These circuits have the added

advantage that they can be built in standard CMOS or double-poly CMOS processes.

As we had seen from the previous sections, there have been several implementations

of transform and/or convolution single–system chips, but none of them have the flexibility

of functionality that is provided by MATIA. It can perform block transforms of full/sub

images at 25 frames per second (fps). This architecture can be used for various applications

like stereo, motion estimation using optical flow methods, super resolution, implementation

of spatio-temporal filters, DCT-based feature extraction, and front end encoders for low

power transform based JPEG/MPEG systems. The resulting architecture is a data–flow

structure that allows for continuous computation of these matrix transform operations. The

architecture’s scalability makes it feasible to compute large scale digital camera resolution

images. Of all the implementations it is also the most power efficient architecture. Some of

the novel features of this system are:

• It has a new pixel architecture which allows for focal–plane processing while main-

taining a high fill–factor (46%).

• It has a true column parallel architecture. Hence all the sub–blocks along a row are

24

being processed at the same time.

• It is fully programmable because of the use of floating–gate circuits.

• It is low power consumption(VDD = 3.3V) of 80µW/frame

• The processing is entirely current–mode.

• It is capable of performing convolution and block transforms of images using the same

architecture.

• It can easily be scaled to other processes.

The thesis is organized into six chapters. In Chapter 2, we present an overview of

floating–gate devices, and present an adaptive algorithm for programming floating gates

accurately over a wide range of currents. In Chapter 3, we present the basic pixel elements

and their characterization as well as the mathematics needed to predict the performance

for a given application based on experimental measurements, including estimates of noise,

speed, etc. In Chapter 4, we present the design of a four quadrant current–mode vector

matrix multiplier. We present the concept and also characterization data from a test chip.

In Chapter 5, we present the imager system architecture. The various sub–blocks and

their interconnections are described here. We show system data of various on–chip image

transforms. We also show the implementation of a low–power JPEG compressor using

MATIA. We compare this implementation with a FPGA–only implementation for power

comparisons. In Chapter 6, we describe some future directions in which these MATIA chips

can be used and also conclude with the impact of this work.

25

CHAPTER II

ADAPTIVE PROGRAMMING OF FLOATING GATES

ARRAYS

2.1 Introduction

Floating gates have been used as computational and memory elements in various applica-

tions that include adaptive circuits [18, 92], mass storage [99], data converters [65, 113],

imagers [7, 25], etc. They have been used to store digital information for extended periods

in structures such as EPROMs, EEPROMs, and flash memories. Floating gates can retain

analog data for long periods, and the reported retention accuracy is about 6 bits for 15

years at more than 125◦C [1, 92].

Programming of floating gates can be done using Fowler-Nordheim (FN) tunneling or

hot–electron injection processes [25, 79, 92, 99, 113]. Pulse width modulation methods have

been used to program floating gates [70] but accuracy is limited by the minimum pulse width

that can be used for programming [72, 71]. In these methods a trade–off between accuracy

and pulse width is observed. The total program time, using FN tunneling, increases with

higher precision because of the logarithmic behavior of the mechanism [71]. Hot-electron

injection can be used to program these memory elements with higher accuracy at very fast

rates without the use of any special process.

We present a novel method that can be used to precisely program large floating–gate

arrays with more than 99.8% of accuracy over a wide range of currents (more than 3.5

decades). This algorithm modulates the drain–to–source voltage of the pFET floating–gate

transistor for a constant pulse width. Before each update, the algorithm finds the most

optimal VDS to be used for accurate programming of that element. In this paper we present

measured data from arrays of floating gates that were fabricated in 0.25µm and 0.5µm

N-well CMOS processes.

26

VDD

VG

VD

Vfg

VTUN

ID

I to V #1

I to V #2

I to V #48

I to V #47

I to V #49

I to V #50

I to V #96

I to V #95

Digital control and gate

selection circuitry

Read-out

control

D
ig

it
al

 c
o
n
tr

o
l

an
d
 d

ra
in

se
le

ct
io

n
 c

ir
cu

it
ry

Read-out

control

Floating-Gate Array

[16x96]

Figure 16: Chip schematic for programming of floating–gate arrays: The chip consists of
a 96x16 array of floating–gate elements, peripheral digital control for isolation of floating–gate elements
during programming, and row parallel readout circuitry.

This chapter consists of seven sections. Section 2.2 describes the chip architecture

that was used for testing the proposed algorithm. Section 2.3 describes floating gates and

programming methodology. Section 2.4 illustrates the proposed algorithm. Test setup and

experimental data are discussed in sections 2.5 and 2.6, respectively. A simplified model

of the proposed algorithm is presented in section 2.7. Finally the relevant aspects of this

paper are summarized in the conclusion.

2.2 Chip architecture

The block diagram of the chip is shown in Fig. 16. The chip consists of a 96x16 array

of floating–gate elements, peripheral circuitry for accurate programming, and an array of

current readout circuits. The floating–gate transistors have the dimensions (W/L) of 6λ/4λ.

All the tunnel junctions were connected together so that FN tunneling can be used as a

global erase.

Decoders and switching circuits are used for digital control and isolation of individual

27

floating gates for accurate programming. In program mode, we can easily reconfigure this

circuitry on the outside edges for programming, resulting in very high circuit density. In

the operation mode the floating gates can be used collectively for different applications.

In this mode the peripheral programming circuitry is turned off and the floating gates are

connected to their respective operation mode circuits. Integrating type I–V are used for

reading the currents.

2.3 Floating gates

The cross sectional diagram of a floating–gate (FG) pFET is shown in Fig. 17(a). A floating

gate is a polysilicon gate surrounded by silicon dioxide [76], a high quality insulator. This

allows charge on the floating gate to be stored permanently, providing long term memory.

The floating–gate voltage is determined by the charge stored on the floating node. It

modulates a channel between a source and drain, therefore can be used in computation.

The current of this transistor will be determined by the capacitively coupled input voltage

and the floating–gate voltage. This floating gate can be the gate of a MOSFET and can be

capacitively connected to other layers. A floating–gate transistor is programmed by adding

or removing charge from its floating node. The charge stored on a FG transistor can be

modified using the following methods:

• UV photo injection: The classical method for modifying the charge on a FG is

using short–wave ultra violet light, known as UV–C. Exposing silicon dioxide to UV–

C will impart enough energy to some carriers to surmount the silicon–dioxide energy

barrier. This method has been used extensively in the case of memory elements. It is

perfect for normalizing arrays. Some of the drawbacks of this method are:

1. Requires costly package

2. Programming time is lengthy

3. Difficult to isolate and selectively program individual elements

• Electron tunneling: FN tunneling [40, 79] is used to remove electrons from the

floating gate. The tunneling junction is schematically represented by a capacitor,

28

p

n+ n+ n+

p

Poly 2

Control Gate
Poly 1

Floating Gate

n+ source

diffusion

n+ drain

diffusion

p substrate

implant

in
je
ct
io
n

tu
n

n
elin

g

tunneling

junction

(a)

Input poly-poly

capacitor

Vin

VS VD

Vfg

Vtun

Floating-gate

transistor
Floating-gate

MOS tunneling

capacitor

SiO2
SiO2

Metal1 layer

Input poly-poly

capacitor

Vin

VS VD

Vfg

Vtun

Floating-gate

transistor
Floating-gate

MOS tunneling

capacitor

SiO2
SiO2

Metal1 layer

(b)

(c)

Figure 17: Floating–gate element: (a)Cross section of a floating–gate (FG) transistor. The FG
transistor is a standard pFET transistor in a N-well process, with its gate connected to a poly-poly capacitor
and a MOS capacitor. This allows charge to be stored at this node, providing long term memory. The
floating–gate charge can be changed by using tunneling and hot–electron injection processes, (b) Shows the
layout, cross–sectional view, and symbol of single FG, (C) Shows the layout of a 4x4 matrix of FG transistors.

29

10-8 10-7 10 -6 10-5

10
-8

Initial current (I)

 (
∆

I)
C

h
an

g
e

in
 c

u
rr

en
t

p
er

 p
u

ls
e

Figure 18: Injection rate: A plot of change in drain current per pulse vs initial current. A 100µs
pulse width and a 3.8V VDS where used. The rate falls drastically after 2µA for a transistor with a W/L of
1.8λ/1.2λ in a 0.25µm process.

which couples the tunneling voltage terminal to the floating gate, as shown in Fig.

17(a,b). The arrow on the capacitor denotes the charge flow. Increasing the voltage

across this tunneling capacitor, either by increasing the tunneling voltage or decreasing

the effective floating–gate voltage, increases the effective electric field across the oxide,

thereby increasing the probability of the electron tunneling through the barrier. The

strength of the field required for tunneling to occur depends on the thickness of silicon–

dioxide. An inherent problem of FN tunneling is the texture of most insulators growing

on silicon resulting in variable thickness. Since FN tunneling is an exponential of

both the field and the silicon–dioxide thickness, most of the current flows through

the thinnest area. These local spots are called ”hot–spots”. The currents can be so

high that the silicon’s diamond shaped lattice breaks down, leaving open traps for

free carriers. The long term effect of these is called ”wear–out” which makes silicon–

dioxide leaky. Tunneling selectivity along a row in an array is entirely a function of

how far apart the two floating gates are pushed by the gate inputs. This is due to the

30

m1

m2

m3

m4

m5

m6 m9

m8

m7

prog

R3

R’
3

D’
3

prog

R2

R’
2

D’
2

prog

Dprog
R1

R’
1

D’
1

Dprog

Dprog

prog

C1 C’
1

prog

C2 C’
2

prog

C3 C’
3

Gprog Grun Gprog Grun Gprog Grun

Mode FG Selection Drain of FG selected Gate of FG selected

Dprog
Vdd

D#
Vdd

Gprog

Grun

Vdd

Vdd

Yes

No

Yes

No

prog

prog

run

run

Figure 19: Isolation of floating gates: This schematic shows how floating–gate elements can be
isolated from an array for accurate programming. Peripheral digital control has been used for isolation
hence high density arrays are feasible.

fact that the amount of tunneled current is based on the voltage across the tunneling

capacitor. Typical tunneling voltages (Vtun) for a 0.5µm and a 0.25µm process are

16V and 7V, respectively.

• Hot–Electron Injection: Hot–electron injection [23, 107] is used to add electrons

to the floating gate. In order for injection to occur two conditions must be meet, a

high current flowing through the transistor and a high gate to drain electric field. The

injection rate will be determine by the Vds voltage and the pulse width used. The

hot-hole impact ionization (in a pFET carrier are holes) creates electrons at the drain

edge of the drain to channel depletion region due to the high electric fields there. The

31

Sel

Drain current

(pin)

Prog

Drain (Floating

gates)

(a) (b)

Figure 20: Drain/gate isolation for programming: (a) Schematic, (b) layout (2 cells) of isolation
multiplexors used for isolation of floating gates for accurate programming.

hole impact–ionization current is proportional to the pFET source current (Is) and is

the exponential of a smooth function of the drain-to-channel potential (φdc). These

electrons travel back into the channel region, gaining energy as they go. When their

kinetic energy exceeds that of the silicon–dioxide barrier, they can be injected into

the oxide and transported to the floating gate.

We increase or decrease the output current of the floating–gate device by using hot-

electron injection [23] or electron tunneling [79], respectively. To perform injection of a

floating–gate transistor, VDD (1.8V and 3.3V for the 0.25µm and 0.5µm processes, respec-

tively) is increased to a HIGH VDD (3.8V and 6.5V for the 0.25µm and 0.5µm processes,

respectively). All other voltages are also increased with respect of VDD. This process will

be referred to as ramping up; its counterpart will be referred as ramping down. To get

the high currents necessary for injection to occur, the drain voltage (VD) is then pulsed

to a lower voltage for a certain amount of time (tpulse), thus creating a high VDS voltage.

Typical VDS voltages used for injection ranges from 4.0V to 6.5V for a 0.5µm process. After

injection is completed all voltages are restored to their original values (ramped down). The

electron injection rate is a function of tpulse and the VDS voltage when pulsed.

32

The injection rate of a pFET, in 0.25µm process, is shown in Fig. 18. Here a pFET

is successively pulsed, using same the source–drain voltage for the same duration for each

pulse. The change in current is plotted versus initial current on a log–log scale. It can be

observed that the rate increases for subthreshold currents and decreases for above threshold

currents. For this transistor the rate peaks at about 2.8µA.

In our scheme, devices are precisely programmed using hot-electron injection while a

global erase is achieved with tunneling. Figure 19 illustrates how each floating gate can

be isolated from an array for precise programming. The isolation circuitry is made of

multiplexors that switch the drain and gate voltages of the desired element onto a common

bus for each signal. Other elements are switched to a separate voltage to ensure that those

devices do not inject. The table shows the different operations and how each gate and

drain lines are switched for isolation and accurate programming. This scheme allows for

simultaneous reading or computation along a column. Figure 20 shows the multiplexors

that were used for isolation. They were designed such that they can be tiled seamlessly and

also have a pitch of 45λ (13.5µm) in one direction.

2.4 Novel programming scheme

The predictive algorithm uses both VDS control and pulse width modulation to perform

accurate and fast programming of large arrays of floating gates. We perform two types

of calibration on the chip. The first is the VDS calibration for fixed pulse width (20µs),

while the second one is the pulse width calibration for fixed VDS (6.5V). These enable us to

predict the required VDS and pulse width for accurate and fast programming over a wide

range of currents (both sub–threshold and above threshold).

Pulse width modulation is used for bringing an element closer to the target initially if

the element is very far off from the target, after which VDS control is used for fine tuning

of injection rates. The pulse width is increased only if the calculated VDS is more than the

HIGH VDD.

2.4.1 Calibration procedure

For the VDS calibration the following is performed:

33

10
-9

10 -8 10
-7

10
-10

10
-9

10
-8

10
-7

VDS
 = 6.45 V

VDS
 = 6.34 V

VDS
 = 6.22 V

VDS
 = 6.17 V

VDS
 = 6.01 V

VDS
 = 5.78 VVDS

 = 5.89 V

p=1

Log (Iinitial)

L
o

g
 (

∆
I)

p=2
p=3

p=4

p=5

p=6

p=7

(a)

5.7 5.8 5.9 6 6.1 6.2 6.3

10
-9

10
-8

p=1

p=2

p=3

p=4

p=5

p=6

p=7

VDS

Iinitial = 20n A

L
o

g
 (

∆
I)

(b)

Figure 21: Characterization curves: These plots show the characterization that was conducted for
VDS calibration. (a)Shows the variation of injected currents for different initial currents as a function of
different VDS . (b)A plot of change in current for different VDS for Iinitial = 20nA. This plot is obtained
from plot (a).

34

10
- 9 10- 8

10
- 7

10
- 8

10
- 7

Log (Iinitial)

L
o
g
 (

∆
I)

Figure 22: Measured injection rates: The measured injection rates are shown for 6 elements (thin
lines) for a given VDS . The average regressed rate for this VDS is given by the thick line. The regression
was obtained from ten elements (six of which are shown here for clarity) for the same pulse width and same
VDS .

1. The chip is ramped up.

2. Each element is pulsed (injected) once for the given VDS and a constant tpulse.

3. The chip is ramped down.

4. The current of each element is read and stored.

5. Steps 1 to 4 are performed for the same VDS until the measured current exceeds an

upper threshold (500nA).

6. Steps 1 to 5 are then performed for various VDS .

7. The change in current vs initial currents (Iinitial) is plotted for different VDS . A second

order fit is used to regress the data. Figure 21(a) shows the output for one of the

calibrations. A first order fit would suffice for sub–threshold currents but for above

35

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4
-12

-10

-8

-6

-4

-2

0

2

k1

k2

k0

VDS

M
o
d
el

 c
o
n
st

an
ts

Figure 23: Variation of model constants: The variations of k0, k1, and k2 with VDS are plotted.

threshold currents a second order gives a better estimate, as the injection efficiency

goes down for above threshold currents as shown previously in Fig. 18.

Pulse width calibration is performed the same way as VDS calibration but with changing

pulse width and fixed VDS . Calibrations are conducted for elements spaced across the array

so that process and size mismatches average out. This takes care of run to run and chip to

chip mismatch of different injection rates for different floating–gate elements.

The calibration was conducted for 10 elements for each regressed curve as shown in

Fig. 22, but it can be conducted for lesser number of elements. Here measured data from

six elements are shown for clarity. The data was regressed using a second order fit (thick

solid line). Since observed mismatches in the injection rate curves are small, an asymptotic

approach precludes the need for calibration of every element. Figure 24 shows the variation

of log(∆I) vs VDS for various initial currents. It is observed that for a given VDS injection

rate increases with increasing initial current. The family of curves are parallel to each other

36

5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3

10
-10

10
-9

10
-8

10
-7

VDS

L
o
g
 (

∆
I)

Iinitia
l
= 216n A

Iinitia
l
= 117n A

Iinitia
l
= 63.2n A

Iinitia
l
= 34.2n A

Iinitia
l
= 18.5n A

Iinitia
l
= 10n A

Iinitia
l
= 400n A

Figure 24: Variation of change in current log(∆I) with VDS for various Iinitial: The bubbles
indicate measured data, while the lines show a first order approximation for each Iinitial. It can be observed
that the slopes of the curves are constant, while the intercept depends on Iinitial.

and the intercept depends on the initial current. A linear regressed fit can be used to model

this variation, as observed from the solid lines on Fig. 24.

Mathematically, the variation of log(∆I) with Iinitial for various VDS has been modelled

as follows:

log

(

∆I

IX

)

= k2

[

log

(

Iinitial

IX

)]2

+ k1 log

(

Iinitial

IX

)

+ k0 (1)

where k0, k1, and k2 are unitless functions of VDS (as can be observed on Fig. 21(a)), and

IX is a scaling factor with units of Amperes. The variations of k0, k1, and k2 with VDS

are plotted in Fig. 23. It can be observed that k0 is a linear function while k1, and k2 are

almost constants.

From Fig. 21(a) the variation of log(∆I) with VDS for various Iinitial has been plotted

in Fig. 21(b). This can be modelled as a linear function:

37

log

(

∆I

IX

)

= mVDS + f (2)

where m is the slope (unit of 1/Volts), f is the intercept (unitless), and I0 is a scaling factor

with units of Amperes, for a given Iinitial. Both m and f are functions of Iinitial (as can be

observed from Fig. 24.

2.4.2 Adaptive programming

The adaptive programming procedure is as follows:

1. Measure initial currents for the array to be programmed.

2. For each current and the target current the optimal VDS is calculated using the cal-

ibration data already obtained. From Fig. 21(a) for each Iinitial the variation of

log(∆I) vs VDS is obtained. This data is then regressed using (2). An optimal VDS

is then calculated for the required ∆I as shown in Figure 21(b). For example, for an

initial current of 20nA, a VDS of 5.98V is required for a 2nA change (Fig. 21).

3. If the calculated VDS is more than HIGH VDD then pulse width modulation is used

to obtain higher injection rates. The optimal pulse width required can be obtained

from the pulse width characterization curves.

4. The chip is then ramped up to a voltage of HIGH VDD so that the drain can be pulsed

to the calculated VDS .

5. Each element in the array is then injected individually by changing the drain-to-source

voltage to the calculated VDS .

6. The chip is ramped down to the working VDD.

7. The currents are measured. If measured currents are less than the respective target

currents then steps 2 to 7 are performed until the element has been injected to the

desired current.

38

Figure 25: Test setup for programming: This printed circuit board was fabricated to facilitate
experimental measurements. The board, which is digitally controlled with an FPGA, provides the necessary
digital and analog voltages for the operation of the chip.

Since there would be an error associated with injection at higher VDS , the injection

process is performed in stages so that the target current is reached in a maximum of ten

steps. This ensures that larger VDS is used for moving the chosen element closer to the

target when it is very far off (when required percentage change > 100%) from the target

while smaller VDS is used when the element is very close to the target current, for better

accuracy. For each step a target current is set depending on the difference of Iinitial and

Itarget. The algorithm predicts the required VDS for each element for each stage of injection.

2.5 Test setup

A four layered printed circuit board (PCB), shown in Fig. 25, was designed to test this

chip and validate our algorithm. The PCB provides the necessary analog voltages and level

shifted digital signals for programming. It also supplies the analog signals for the chip

operation. The analog voltages are generated using 12-bit DACs, while the I-V voltage

39

1

clk

read currents

select column

select row

reset

integrate

hold

read adc

VDS calculations

prog

ramp chip

pulse drain

1 2

1 96 1 96 1 96 1 96 1 96 1 96 1 96 1 96

2 16151615

Figure 26: Timing diagram: Sequence of steps followed during one programming cycle. First, all the
currents on the array are monitored. Then the necessary VDS voltage is calculated for each element in the
array. Finally, the whole array is pulsed with its respective calculated VDS . This process is repeated until
each element is programmed to the desired value.

outputs are obtained through 10Msps 14-bit ADCs. All the digital control signals coming

from the field programmable gate array (FPGA) are level shifted so that the same board

can be used for testing chips from different technologies.

The PCB is controlled using a commercially available FPGA. Communication with the

personal computer (PC) is available through a 100Mbit Ethernet connection. A MATLAMTM

interface that provides a direct link to the FPGA has been developed. The FPGA provides

digital control of all devices on the PCB and also generates high speed and accurate con-

trolled signals needed for programming.

Figure 26 shows the timing diagram of the chip for one cycle (pulse all floating gates

once) of programming. The floating gates are first chosen and the respective currents are

then measured in a parallel fashion. The currents for all the floating gates along a single

column are integrated at the same time on their respective I-Vs. During the hold time all

the voltages are read out in a sequence. After this the next column is selected, the I-Vs are

reset, and the procedure is repeated for current readout. After all the currents have been

readout the respective VDS are calculated from the characterization data. The chip is then

configured for programming and is ramped up to HIGH VDD. The floating gates are then

chosen one by one, and are pulsed sequentially for programming each to their desired values.

40

10
-8

10
-7

10
-6

1 3 5 7 9 11

11nA

18.2nA

49.7nA

30nA

81.6nA

134.7nA

222.4nA

367.1nA

605.9nA

1µA

Pulses

T
ar

g
et

 c
u
rr

en
ts

 (
A

)

Figure 27: Accuracy of adaptive programming : Plots showing asymptotic approach towards
different target currents. The dash lines are the target currents, while the bubbles indicate injected currents
after each pulse. The average number of pulses required to hit a target current within two decades is 7-8.

After the whole array has been pulsed once, the chip is ramped down, and the currents are

readout again for comparison with the target values. If a floating gate has already reached

the target value then it is not pulsed during the next cycle.

2.6 Measured results

The algorithm was tested using large floating–gate arrays in 0.25µm and 0.5µm N–well

CMOS processes. The chips were calibrated for different drain to source voltages. Different

elements were chosen for each calibration.

Figure 27 shows how ten different elements were programmed asymptotically using the

proposed algorithm. Each element had an initial current of 10nA (an arbitrary choice).

The dashed lines show the target currents. The programming procedure stops when an

element has been programmed to within 0.2% of the target current. The number of pulses

increase with increasing target currents. The average number of pulses required are 7-8 for

programming currents within 2 decades.

41

10-10 10 -9 10-8 10 -7 10 -6
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

%
 d

ev
ia

ti
o

n
 f

ro
m

 t
ar

g
et

 c
u

rr
en

t

Target current

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

10-9 10-8 10-7 10-6

%
 d

ev
ia

ti
o

n
 f

ro
m

 t
ar

g
et

 c
u

rr
en

t
Target current

Figure 28: Percentage error for adaptive programming: The plot shows the percentage error for
a wide range of currents. The inset shows the same for 3.5 decades of programmed currents. The average
error was 0.05% while the maximum error was 0.12%

This algorithm can be used to program both deep sub–threshold currents and above

threshold currents. The average percentage error (for 50 samples for each target current)

for the whole range is plotted in Fig. 28. The algorithm can be used to program with

more than 0.2% of accuracy over 3.5 decades of target currents (as shown in inset) in both

0.25µm and 0.5µm N-well CMOS processes. This accuracy is limited by the resolution of

the on–chip I–Vs used for measuring the currents and also by the accuracy of the DACs

used for pulsing the drain.

Floating–gate architectures have been used as analog computational elements in a num-

ber of applications. Arbitrary waveforms can be stored on–chip accurately using the pro-

posed algorithm. Figure 29 shows sine waves of 4nA p–p, 40nA p–p, and 80nA p–p that

were programmed onto 50 floating gates. The DC of these sine waves were 100nA. The

bubbles indicate the programmed values while the solid lines represent the ideal targeted

sine waves. The pulse width used for this experiment was 20µs. The average number of

42

5 10 15 20 25 30 35 40 45 50

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x 10-7

P
ro

g
ra

m
m

ed
 c

u
rr

en
t

(A
)

Floating gate position

- 4nA p-p

- 40nA p-p

- 80nA p-p

4nA p-p

80nA p-p

40nA p-p

Mean %

error

Std. Dev. of

% error

0.027

-0.046 0.061

0.055

0.0620.029

(a)

- 4nA p-p

- 40nA p-p

- 80nA p-p

5 10 15 20 25 30 35 40 45 50

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-1

Floating gate position

%
 d

ev
ia

ti
o

n
 f

ro
m

 t
ar

g
et

 c
u

rr
en

t

(b)

Figure 29: Subthreshold programmed values: Sine waves of different amplitudes were programmed
on to the floating–gate transistors. The DC of the sine waves were 100nA. The bubbles indicate the stored
values while the solid lines represent the ideal sine waves. The percentage deviation for each element was
signal independent.

43

0 5 10 15 20 25 30 35 40 45 50
0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

P
ro

g
ra

m
m

ed
 c

u
rr

en
t

(µ
A

)

Floating gate position

(a)

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1
x 10

-1

%
 d

ev
ia

ti
o

n
 f

ro
m

 t
ar

g
et

 c
u

rr
en

t

Floating gate position

(b)

Figure 30: Above threshold programmed values: (a) A programmed sine wave of 40nA p-p that
was programmed onto 50 floating gates. The DC of the sine wave was 1 µA. The bubbles indicate the stored
values while the solid line represents the ideal sine wave. (b) Percentage error for the programmed sine wave.

44

-5
0

5

-5
0

5

-5
0
5

-5
0

5

-5

0
5

-5
0
5

-5
0

5

-5
0
5

Row

C
o
lu

m
n
 (

n
A

)

21 876543

Figure 31: Programmed DCT values: A 8x8 DCT kernel was programmed onto a 8x8 array. The
values were programmed around a DC of 10nA. The DC was subtracted for clarity of display. The maximum
percentage deviation for the array was 0.07%.

pulses required to approach the target currents asymptotically were 4-6 pulses. It can be

observed that the maximum error is less than 0.2%. This algorithm works over a wide

range of currents. A 40nA p–p sine wave having a DC of 1µA was programmed using this

algorithm as shown in the inset of Fig. 30. It also shows the error per element for this

operation. The percentage error was ±0.05%. The percentage deviation for each element

was signal independent. As an application specific example we chose to program a 8x8 DCT

kernel on the array. The programmed values are shown in Fig. 31. The maximum average

deviation for the programmed values of 8x8 array was 0.07%.

This algorithm was also tested using other floating–gate application chips fabricated in

45

Table 1: Summary of performance for programming algorithm
Technology 0.25µm and 0.5µm N-well CMOS

Floating–gate Dim.(W/L) 6λ / 4λ

Array size 96×16

Maximum % error < ±0.2%

Pulse width 20µs

I-V type Integrator

Global erase Fowler-Nordheim tunnel

Programming mechanism Hot–electron injection

Target range (current) 150pA to 1.5µA

Avg. no. of pulses for programming 7-8

0.5µm N–well CMOS processes. Table 1 summarizes the chip and algorithm performance.

Figure 32 shows the micrograph of the chip that was fabricated to test the programming

algorithm. Since the algorithm does not depend on the size of the array, large arrays can

be programmed in parallel using this algorithm.

Figure 32: Die micrograph for programming chip: This chip was designed in 0.5µ N-well CMOS
technology. It consists of an array of 96x16 floating–gate elements, on–chip I–Vs, and digital control for
accurate programming.

46

10 -10 10 -9 10 -8 10 -7 10
-6

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Log (Iinitial)

m

m = 0.018x2+0.255x+2.939

where, x = Log(Iinitial/IX)

Figure 33: Variation of m with Iinitial: The bubbles indicate slope of the data from Fig. 24. The
line is a second order approximation of the same.

The usefulness of floating–gate memories will be determined by its ability to store the

charge. Naturally occurring charge loss or charge gain has been described in [1]. Based upon

extrapolations of these intrinsic charge loss mechanisms, it can be stated that a floating–

gate memory can retain data for long periods at room temperature. It has been shown that

the retention accuracy of a floating-gate memory is about 6-bits for 15 years at more than

125◦C [1, 92]. Although these measurements were done using a different device from what

we used in our experiments, we can expect a similar behavior.

2.7 Simplified model

The proposed method is computationally intense. It requires the storage of characterization

parameters for a family of VDS . A linear regression also has to be performed before the

exact VDS can be calculated.

The required computation can be simplified by observing the variation of m and f with

Iinitial (Fig. 24). Figure 33 shows the variation of m with Iinitial while Fig. 34 shows the

variation of f with Iinitial. Both variations can be approximated by using second order

47

10
-10

10
-9

10
-8

10
-7

10
-6-27

-26

-25

-24

-23

-22

-21

-20

-19

f

Log (Iinitial)

f = -[0.248x2+2.732x+27.107]

where, x = Log(Iinitial/IX)

Figure 34: Variation of f with Iinitial: The bubbles indicate intercept of the data from Fig. 24. The
line is a second order approximation of the same.

relationships. The solid lines show the fit for each data set. Hence,

m = a2

[

log

(

Iinitial

IX

)]2

+ a1 log

(

Iinitial

IX

)

+ a0 (3)

where a0, a1 and a2 are regressed parameters with units of 1/Volts, and IX is a scaling

factor with units of Amperes.

Similarly,

f = b2

[

log

(

Iinitial

IX

)]2

+ b1 log

(

Iinitial

IX

)

+ b0 (4)

where b0, b1 and b2 are unitless regressed parameters, and I0 is a scaling factor with units

of Amperes. By substituting m and f from (2) with (3) and (4), and solving for VDS we

get:

VDS =
log

(

∆I
IX

)

− b2

[

log
(

Iinitial

IX

)]2
+ b1 log

(

Iinitial

IX

)

+ b0

a2

[

log
(

Iinitial

IX

)]2
+ a1 log

(

Iinitial

IX

)

+ a0

, (5)

where VDS is a function of both, Iinitial and ∆I.

48

10 -8 10-7

5.2

5.4

5.6

5.8

6

6.2

6.4

C
al

cu
la

te
d
 V

D
S

Log (Iinitial)

∆I=1nA

∆I=3.31nA∆I=1.82nA

∆I=6.03nA

∆I=10.99nA

∆I=20nA

(a)

10 -8 10 -7 10 -6

-0.5

0

0.5

1

1.5

2

2.5

3

∆ I=1.82nA

∆ I=20nA

∆ I=6.03nA

∆ I=10.99nA

∆ I=3.31nA

∆ I=1nA

D
if

fe
re

n
ce

 i
n

 c
al

cu
la

te
d

 V
D

S

b
et

w
ee

n
 t

h
e

tw
o

 m
et

h
o

d
s

(m
V

)

Log (Iinitial)

(b)

Figure 35: Comparison of methods: (a) The calculated VDS is plotted for the two proposed methods.
Symbols are for the first method while the solid line is for the simplified version. (b) Plot of deviation of
calculated VDS values using the two proposed methods.

49

Since this equation is a direct calculation of VDS , the computational complexity has

been reduced, as compared to the previous approach. Only six parameters (a0, a2, a2, b0,

b1, and b2) need to be stored, and no regression has to be performed. Figure 35(a) shows

the calculated VDS using the two methods, while Fig. 35(b) shows the deviation of between

VDS calculated using the simplified model and the VDS calculated using the first method. It

can be seen that the error is very small and lesser than the DAC resolution which was used

for programming. Experimental measurements showed that the programming accuracy of

this simplified method was the same as the first method described.

2.8 Conclusion

This chapter presents a predictive algorithm that can be used to program large arrays

of floating–gate elements at fast rates with 0.2% of accuracy over a wide range of target

currents (over 3.5 decades). Experimental measurements and examples for different appli-

cations have been demonstrated. A simplified less computation intensive implementation

has also been explored. Hot–electron injection is used for better control of programming

over wide ranges. The algorithm was tested using large floating–gate arrays in 0.25µm and

0.5µm N-well CMOS processes.

50

CHAPTER III

BASIC TRANSFORM IMAGER PIXEL ELEMENT

3.1 Imager pixels

Pixels are the basic building blocks for any imager. There have been various topologies over

the years with some being used just for reading an image while others for performing more

complex computations with resultant reduction in fill–factor. Some of the common pixels

are: logarithmic compression pixel, logarithmic compression pixel with feedback amplifier,

buffered logarithmic pixel, adaptive photo–pixel, current amplifier pixel, passive pixel, and

active pixel. Most of the pixels used today are variants of these photo circuits.

The matrix transform imager architecture (MATIA) pixel which can be used for perform-

ing matrix multiplications at the focal plane is introduces in this chapter. For performing

matrix multiplications one needs to have the ability for element–by–element multiplication

and also sum of products along a column. The MATIA pixel performs the element–by–

element multiplication in the focal plane, while having a high fill–factor (46%). The output

of this multiplication is drain currents. Since the processing is being carried out in current–

mode, and the pixels along a column are connected together, the sum of products along the

column is achieved by Kirchoff’s current addition law.

This chapter consists of two sections. Section 3.2 introduces the MATIA pixel and

discusses pixel tessellation issues. Section 3.3 discusses the various characterization that

was carried out on the MATIA pixel like: dark currents, signal to noise, gain and offset

mismatch across an array, linearity and harmonic distortion, correction of computation

errors while using MATIA and bandwidth.

3.2 MATIA pixel

Each pixel is composed of a photodiode sensor element and an analog multiplier. Figure

36(a) shows that the circuit element for this multiplication is an nFET differential pair.

51

I+

Isensor

I-

v+ v-

(a)

metal2

45λ = 13.5 µm

45λ
=13.5

µm

metal1 contact

n+ n+

n+

n+

n+ n+

n+

n+

diffusionpoly

Photodiode Photodiode

PhotodiodePhotodiode

1 1 2 2

I1
+

I1
-

V + V - V + V -

(b)

Figure 36: Transform imager pixel: (a) Basic Circuit: To multiply the transduced photodiode current
by incoming basis functions, we use a differential pair to modulate a fraction of the sensor current through
the transistors. (b) Layout of a 2×2 pixel array. The pixel has a rectangular tessellation and has a fill–factor
of 46%. The dimensions given are those used in fabricating this element in a double poly 0.5µm CMOS
process.

52

Figure 36(b)a shows the layout for a 2x2 pixel block. The pixel has a size of 13.5µm

x13.5µm. For the differential pair operating with subthreshold bias currents (which should

always be the case due to the low–level image sensor currents), we can express the differential

output current as,

I+ − I− = Isensor tanh

(

κ(V + − V −)

2UT

)

(6)

where κ is the gate coupling efficiency into the transistor surface potential (typically 0.6 -

0.8), and UT is kT/q [87]. When this circuit is in its linear range, that is when V + − V − is

less than 2UT /κ, we get

I+ − I− = Isensor

(

κ(V + − V −)

2UT

)

(7)

therefore the differential output current is a linear product of the sensor current and the

applied differential voltage.

The experimental data in Fig. 37 shows that linear multiplication takes place within

the linear range. A single pixel would result in 300pA current levels from typical room

fluorescent lights at roughly 2 meters from the imager without a lens to focus the light. This

pixel could include more advanced image sensor elements or circuits with a corresponding

modification to the resulting fill factor. Additionally, each pixel could be directly read out

by this technique, since a column scan is equivalent to multiplication by a digital value

moving by one position for each step (tanh(x) ≈ 1 or −1 for large values of x).

3.2.1 Pixel Structure and Tessellation

An imager maps light intensity from a three dimensional space into a two dimensional image

in the focal plane. For any bandlimited signal there is an infinite number of possible ways

to sample the signal. In 1–D systems regular sampling is described by a single parameter,

the sample period T . In general, the sampling pattern is determined by two independent

vectors v1 and v2. In 1–D systems, the sample points are defined as t = nT whereas in 2–D

systems, the sample points are defined as t = n1v1 + n2v2. For convenience the sampling

vectors are usually combined into a matrix V = [v1|v1] [33].

The issues that need to be considered while choosing the tessellation structures of vision

chips are as follows:

53

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-3

-2

-1

0

1

2

3
x 10

-10

Differential input voltage (V)

D
if

fe
re

n
ti

al
 o

u
tp

u
t

cu
rr

en
t

(A
)

P
h

o
to

 s
en

so
r

cu
rr

en
t

I

1.77I

2.53I

Figure 37: Operation of pixel: A DC characterization of the pixel was carried out using various
intensity of input illumination (I, 1.77I, 2.53I). This corroborates the theoretical transfer function.

• Neighborhood distance

• Layout complexity

• Data manipulation

• Biological plausibility

Among the numerous possibilities only two sampling strategies are common – rectan-

gular and hexagonal sampling. Hexagonal sampling is more symmetric with respect to

neighborhood connectivity and distance maps, hence produces the same equidistant maps

for different metrics (such as Euclidean, city block, or chess board) between neighboring

pixels. Hexagonal tessellation of the image plane is also of great interest because it more

similar to the sampling used in most biological systems. In addition, for band–limited

signals, hexagonal sampling in two dimensions results in a 13.4% efficiency gain in the num-

ber of sample points required. However, the large number of interconnects required for

54

(a) (b)

Figure 38: Pixel tessellation: Rectangular and hexagonal sampling are the most common types of
sampling used in imagers. The choice of the type of sampling used depends on the application and the
complexity of the design.

a hexagonal pixel array along with the associated layout complexity makes the hexagonal

pixel configuration less attractive as compared to the rectangular configuration. Due to

its simplicity, a rectangular sampling grid is the preferred option in this architecture. A

rectangular tessellation provides a more convenient representation of a 2-D image. Further-

more, the savings in area realized by using a rectangular structure in place of a hexagonal

structure allow us to have a denser imager with higher fill–factor and more pixels per unit

chip area.

The only potential problem that remains when using rectangular sampling to model

a hexagonally sampled system is the implementation of various operations. For linear

operations this problem can be overcome by resampling the band–limited impulse response

of the desired filter operation [33]. Since our sampling grid is more dense than could

be achieved by using a hexagonal tessellation of the imager, nothing is lost relative to a

hexagonal architecture.

In addition to chip area economy arguments, fill–factor has signal processing implications

as well. The finite photodetector size acts as a simple spatial averaging window. This

appears as a sinc function (sin(x)/x) in the spatial frequency domain and causes aliasing of

the high spatial frequency contents of the image. Increasing photo–receptor area decreases

this aliasing effect. Any aliasing that is not decreased by increased fill–factor must be

55

reduced by applying optical anti-aliasing filters (e.g. intentional blurring) [91].

3.3 Characterization of MATIA pixel

In practice, the elements will not be perfect multipliers and will not be exactly identical

to the other elements. The MATIA pixels were characterized for dark currents, frequency

response, offset errors, linearity mismatch, gain and kappa mismatch. For this architecture

and algorithm, as long as offsets and linear range are bounded, the errors are set by gain

errors. This error occurs primarily due to kappa mismatch. The MATIA pixel has square

edges and the various mismatches can be reduced by reducing the edges in the pixel layout.

This section contains results from those characterization experiments.

3.3.1 Dark current

Dark current is due to charge generation independent of any input signal. The total dark

current density can be expressed as [17]:

Jd = qni[
niLp

noτp
+

W

2τo
+

vr

2
] + qηφB + Jtunnel (8)

where ni is the intrinsic carrier concentration, no is the equilibrium concentration, Lp is the

diffusion length, τp is the hole lifetime, W is the depletion region width, q is the electronic

charge, η is the quantum efficiency, φB is the background photon flux density, vr is the

maximum surface recombination velocity, and Jtunnel is the tunneling current.

The first term is due to the minority carrier diffusion current generated in the bulk

region; the second term is the drift current within depletion; the third term is the surface

recombination current due to generation-recombination processes by means of interface

states; the forth term is the background current due to photo–generated carriers; and the

fifth term is due to electrons tunneling from the valence bond to the conduction band [17].

Tunneling is important in narrow–bandgap materials. In these materials, under sufficient

bias, electrons can tunnel out of the valence band into the conduction band, thereby leaving

holes behind in the valance band and producing electrons in the conduction band.

The MATIA pixel was characterized for dark current by measuring the current under

56

0

5

10

15

20

0

5

10

15

20

13.5

14

14.5

15

15.5

16

rows

columns

D
ar

k
 c

u
rr

en
t

(n
A

/c
m

2
)

Figure 39: Dark current distribution: This figure shows the dark current distribution in a 16×16
block taken from the middle of the imager. The average dark current was measured to be 14.9 nA/cm2

reset condition with no chip illumination. Figure 39 shows the distribution of dark currents

from a 16×16 block of a larger imager. The average dark current was measured to be

14.9 nA/cm2. Edge effects are not observed in this case as this block was from the middle

of the imager. The variations have been observed to follow no trends and are random in

nature. These measurements were taken under no illumination conditions with the MATIA

configured to read an image. Conventional dark current methods would give a lower value

than that measured here, as we have extra parasitics in the signal path when using our

method of measuring dark currents. In applications where very high performance (and

therefore, nearly zero offsets) is required, one could use floating–gate tuning techniques

[25], with the accompanying decreases in fill factor, or subtract these offsets from a bank of

floating-gate elements.

57

Iout

+

Vdd

GND

Vdd
VtunVddVddVtun

Csensor

DC biasDC bias

Iout

-

Image Array

Pattern Generation

Figure 40: Effective analytical circuit for estimating noise and computation speed: Part
of this circuit is in the pixel array, and part of the circuit is in the basis generating circuits. The output
current lines need to be appropriately terminated, typically with active feedback to eliminate the resulting
line capacitance.

3.3.2 Signal–to–noise issues

Since the pixel currents are fairly low (subthreshold), thermal noise contributes to most of

the transistor noise. Thermal noise is modelled as

Î2 = 2qI∆f (9)

Î2

I2
=

2q

I
∆f (10)

where I is the current level; larger current results in larger noise power, but smaller percent-

age of noise. The bandwidth (∆f) is the approximate highest frequency (i. e. the fastest

generated signal) of the basis generator. For a 1 million pixel array and ∆f = 60kHz the

relative noise level is 0.14 for a 1pA bias current through a single transistor.

Due to the low currents, 1/f noise only becomes noticeable at low frequencies (e. g. 10Hz).

Noise generated at frequencies less than the frame rate will be eliminated from the final

computation, so the low 1/f noise will not affect these circuits. This property is similar

58

to the computation in correlated double-sampling techniques. Therefore, we only need to

address thermal noise generated from the sensor circuits.

It can be shown that this circuit has effectively three differential pairs worth of noise

(1.5 transistors worth of noise–assuming noise power splits evenly between differential and

common mode) at the bias current determined by the light incident on the pixel sensor.

Figure 40 shows the effective circuit to look at this noise analysis. The noise comes from

two sources: the differential pair transistors on the photodiode contributes one differential

pair worth of noise while the basis generation structures contribute two differential pairs

worth of noise at the sensor’s bias current. For very small signals, the system looks like

a current mirror with different transconductances (the gain = gm2/gm1), resulting in two

differential pairs worth of noise (two because of no common-mode rejection for this circuit

component). The noise from the photodiode gets modulated in–band by the incoming

signals, and therefore, is negligible in practice.

Noise power is equal to, 2qIsignal + 2 (gm2/gm1) 2qIbias. If M1 is operating in the sub-

threshold region, then gm1/Ibias = κ/UT . For noise, 2qIsignal + 2 (gm2/gm1) 2qIbias ≈

2qIsignal(1 + 2) = 3(2qIsignal).

The next issue is the resulting noise of a single pixel or group of pixels in an array. Since

each noise source is independent of the other noise sources, the noise power of each source

increases linearly with the number of sources (N). Therefore, the noise relative to the signal

from a single pixel is

Î2 = 2qIN∆f (11)

Î2

I2
=

2qN

I
∆f (12)

For the 1 million pixel example above, the relative noise level for the entire pixel sensor

is 6.73 (-16.6dB) for a 1pA bias current and 0.673 (3.43dB) for 100pA bias current. For

a completely correlated feature, which means all 1K elements contribute to a large output

signal, we get a relative noise level of 0.0066 (43.6 dB). Therefore, for this imager setup,

either higher illumination or more coherent features (features selected by the basis genera-

tor) will result in increased higher SNR. This SNR value is similar to the SNR if each pixel

59

was measured at the 60Hz frame rate; therefore, correlated features have the same SNR as

reading the pixel array, but uncorrelated pixels will have very low SNR.

3.3.3 Gain, offset mismatch

The pixel operates in the subthreshold region as the photo currents are very small (tens of

nA). For long channel the subthreshold drain current can be written as [17]:

ID = µ
Cox

κ

W

L
U2

T (exp
κ(VGS − VTH)

UT
)(1 − exp

−VDS

UT
) (13)

where Cox denotes the oxide capacitance, UT = kT/q, κ = (Cox)/(Cox + Cd + CFS) is

the gate coupling efficiency into the transistor surface potential (typically 0.6 - 0.8), Cd =
√

εsiqNsub/(4φB) denotes the capacitance of the depletion region under the gate area, and

CFS is the capacitance due to fast surface states. In saturation (VDS ≥ 4UT) the above

expression reduces to:

ID = µ
Cox

κ

W

L
U2

T (exp
κ(VGS − VTH)

UT
) (14)

Hence solving for VGS ,

VGS =
UT

κ
ln(

IDκ

µCox
W
L U2

T

) + VTH (15)

To calculate the input referred voltage for two devices in Figure 41, the mismatches

are incorporated as VTH1 = VTH , VTH2 = VTH + ∆VTH , (W/L)1 = (W/L), (W/L)2 =

(W/L) + ∆(W/L), ID1 = ID, ID2 = ID + ∆ID. For simplicity, the variations in the other

terms are neglected.

Since VOS,in = VGS1 − VGS2, we have

VOS,in =
UT

κ
[ln{ ID

ID + ∆ID

(W/L) + ∆(W/L)

(W/L)
}] − ∆VTH (16)

VOS,in =
UT

κ
[ln{{1 +

∆ID

ID
} + ln{1 +

∆(W/L)

(W/L)
}] − ∆VTH (17)

Since, ln(1 + x) ≈ x for small values of x, we have

60

- +

- +

VOS,nmos

VOS,pmos

Vb

M4M3

M2M1

Isensor

Figure 41: Schematic for offset calculations : The effective circuit for input referred offset voltage
calculations for the basic pixel structure along with readout transistors

VOS,in =
UT

κ
[−∆ID

ID
+

∆(W/L)

(W/L)
] − ∆VTH (18)

This equation reveals the dependence of VOS,in on device mismatches and bias con-

ditions. Just like in the above threshold case the threshold voltage mismatch is directly

referred to the input. Hence the input referred voltage can be reduced by increasing the

aspect ratio of the input transistors. Also the variation of threshold voltage can be approx-

imated as,

∆VTH =
Aox√
WL

mV (19)

where Aox is a proportionality factor determined from measurements. Aox has been observed

to scale down with gate–oxide thickness. Therefore, ∆VTH can be reduced by increasing

61

the area of the input transistors. Since the channel capacitance is proportional to WLCox,

we note that ∆VTH , and the channel capacitance bear a trade–off. Also in a pixel fill–factor

places a constraint on the size of the transistors to be used in the pixel.

The basic readout circuitry is shown in Figure 41. The total input referred voltage for

the circuit can be written as:

VOS,in,TOT = VOS,pmos
gm,pmos

gm,nmos
+ VOS,nmos (20)

Therefore, for low input offset voltage gm,pmos should be made smaller than gm,nmos.

Since in subthreshold region for our configuration gm,nmos = gm,pmos, as they are both

proportional to current flowing through them (same in this case), the total input referred

voltage is as follows:

VOS,in,TOT = VOS,pmos + VOS,nmos (21)

It should be noted that in this case VOS,nmos is the dominant term and is much larger than

VOS,pmos, as the PMOS acts as a switch and the on–resistance will match as they have

been laid out next to each other. Although the values across a large array may not match

that accurately when comparisons are made between switches from different positions in

the array.

The offset voltages for a small array of pixels are shown in Figure 42. The mean and the

standard deviation are 8.9mV and 6.7mV respectively. Offset errors are primarily due to

offsets in the differential pair transistors. As long as the modulation signal is roughly within

the linear range of the differential amplifier, we can eliminate offsets by eliminating the low

frequency signal (less than the frame rate) from the result, because there is no signal at

these low frequencies (we are modulating the pixels) except for the effect of offsets. Pixels

with these large offsets will result in significant image distortion at these points. We found

that most of the offsets were within 10mV of the other elements along the column. We can

account for average column offsets by appropriately programming the input basis functions

Gain error is primarily due to κ mismatch in the differential pair transistors. Typically

κ matches fairly well for transistors with similar currents and for similar source voltages.

62

5
10

15
20

25
30

35 40

10

20

30

40

0

20

40

Column

Row

V
o
lt

ag
e

O
ff

se
t

(m
V

)

(a)

−40 −30 −20 −10 0 10 20 30
0

10

20

30

40

Voltage Offset (mV)

P
er

ce
nt

ag
e

of
 P

ix
el

s

(b)

Figure 42: Variations of voltage offsets: The variations of voltage offsets for a 48x40 array is shown
above. The mean and the standard deviation are 8.9mV and 6.7mV respectively.

The variation of gain for a small array of pixels are shown in Fig. 43(a). The mean and the

standard deviation are 2.12nA/V and 0.0336nA/V respectively. The histogram of gain is

plotted in Fig. 43(b). Similarly the variation of κ is determined from the gain plots. Figure

44 shows the variation of κ with position. The mean and the standard deviation are 0.7149

and 0.0072 respectively.

63

10
20

30

10
20

30
40

1

1.5

2

Column
Row

G
ai

n
 (

n
A

/V
)

(a)

2 2.05 2.1 2.15 2.2 2.25
0

5

10

15

20

25

30

35

Gain (nA/V)

P
er

ce
nt

ag
e

of
 P

ix
el

s

(b)

Figure 43: Gain mismatch across the array: The (a) spatial variations, (b) histogram of gain
mismatches for a 48x40 array is shown above. The mean and the standard deviation are 2.12nA/V and
0.0336nA/V, respectively. This mismatch is primarily due to the mismatch of κ.

3.3.4 Linearity and Harmonic distortion of the pixel

Since the pixel is used for multiplication linearity of the pixel is important. The linearity

of the pixel is extracted from the DC sweeps. Figure 45 shows the spatial variation and

the histogram of range of linear multiplication with position. The mean and the standard

deviation are 54.4mV and 4.3mV respectively. Harmonic distortion can be analyzed using

the transfer function for the pixel.

64

10
20

30

10
20

30
40

0.68

0.7

0.72

0.74

Column
Row

K
ap

p
a

(a)

0.68 0.69 0.7 0.71 0.72 0.73 0.74
0

10

20

30

40

50

Kappa

P
er

ce
nt

ag
e

of
 P

ix
el

s

(b)

Figure 44: Variation of kappa: The variations of Kappa for a 48x40 array is shown above. The
mean and the standard deviation are 0.7149 and 0.0072 respectively. This mismatch is primarily due to the
mismatch of the gate coupling efficiency into the transistor surface potential.

The transfer function of the pixel can be written as:

∆I = Isensor tanh

(

κ(∆V)

2UT

)

(22)

if m = κ(∆V)
2UT

then,

∆I = Isensor tanhm = Isensor
sinh(m)

cosh(m)
(23)

now,

65

5
10

15
20

25
30

35
40

10

20

30

40

20

40

60

Column

Row

L
in

ea
r

R
an

g
e

(m
V

)

(a)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

Linear Range (mV)

P
er

ce
nt

ag
e

of
 P

ix
el

s

(b)

Figure 45: Variations of linearity: The variations of linearity for a 48x40 array is shown above. The
mean and the standard deviation are 54.4mV and 4.3mV respectively.

sinh(m) = m +
m3

3!
+

m5

5!
+

m7

7!
(24)

and,

cosh(m) = 1 +
m2

2!
+

m4

4!
+

m6

6!
(25)

Therefore substituting these in Eq. 22,

66

∆I = Isensor[
m + m3

3! + · · ·
1 + m2

2! + · · ·
] (26)

for m ¿ 1,

∆I = Isensor[(m +
m3

3!
+ · · ·)(1 − m2

2!
+ · · ·)] (27)

∆I = Isensor[m − m3

3
+ · · ·] (28)

substituting for m, and ∆V = Vscos(wt),

∆I = Isensor[
κ

2UT
Vscos(wt) − (

κ

2UT
)3

(Vscos(wt))3

3
+ · · ·] (29)

since cos3(wt) = [3cos(wt)+ cos(3wt)]/4, we obtain the following after substitution and

rearranging,

∆I = Isensor
κ

2UT
[Vs{1 − (

κ

2UT
)2

V 2
s

4
}cos(wt) − (

κ

2UT
)2

V 3
s

12
cos(3wt) + · · ·] (30)

As expected from a differential circuit the even order harmonics are not present. From

Eq. 30,

AHD3

AF
= (

κ

2UT
)2

V 2
s

12[1 − (κ
2UT

)2 V 2
s

4]
(31)

If [1 − (κ
2UT

)2 V 2

4] ¿ 1 this simplifies to:

AHD3

AF
≈ (

κ

2UT
)2

V 2
s

12
(32)

It can be observed that the harmonics are independent of the photodiode current and

depends on the input signal amplitude. Similarly the other odd order harmonics can be

found out. The total harmonic distortion can be figured out from the expression:

THD =
[A2

HD3 + A2
HD5 + · · · + A2

HD(2n+1)]
1/2

AF
(33)

67

Transform
Imager

ΣImage
Storage

Corrected
Output

Figure 46: Correction for imager errors: Imager architecture for taking image differences; we
need a separate array to store one frame. An array of floating-gate devices (similar to the basis generation
array) would implement image storage for eliminating nearly constant images such as offset errors from dark
currents, or constant background images.

Harmonic distortion effectively results in the spreading of modulation energy to other

pixels. This spreading is independent of the sensor signals since the modulation signal

stays at the same amplitude. The modulation signals can be modified to account for this

spreading such that the transform is effectively free of this signal spreading.

3.3.5 Correction of computation errors in MATIA

We focus on multiplication errors because addition of currents by KCL is an ideal compu-

tation. Another source of error comes from the dark currents, which are typically in the

femto–ampere range and therefore, are important for pixels operating in low–light levels.

We can use floating-gate elements to eliminate them, as shown in Fig. 46. An array of

floating-gate devices (similar to the basis generation array) would implement image storage

for eliminating nearly constant images such as offset errors from dark currents, or constant

background images. Currents can be scaled, and typically the current from a transform

imager will be scaled as well; therefore, removing dark currents, which are typically in

femto–ampere range, would be subtracted with a current in the high pico–ampere range.

An array of sample–and–hold elements would implement image storage for temporal filter-

ing and temporal derivatives associated with motion. This technique can be generalized for

a wide range of temporal filters; the number of temporal delays proportionally increases the

image storage. The advantage of subtracting a fixed image is that we get higher system

density, since we don’t need to integrate the two core cells into a single element with the

supporting control logic. Also, any floating-gate elements are removed from potential UV

light, therefore reducing any floating-gate charge drift issues.

68

One can modify the modulation signals to account for this spreading such that the

transform is effectively free of this signal spreading. To analyze this problem, we decompose

all modulated signals, x(t), into a finite Fourier series because the signals repeat for each

frame, and the signals have a maximum frequency by the clock rate of the basis generator.

We write the Fourier series as

xk(t) =
N

∑

`=−N

ak`e
jwframe` (34)

where akl is the `th coefficient for the kth signal, and wframe is 2π times the frequency of

the frame rate. Note ak0 = 0 because there is no DC signal component. In matrix form

x(t) = Af(t) where f`(t) = ejwframe`. The output from the imager is

y = Px = PAf(t) (35)

where P is the matrix of sensor values. If the multiplication distorts the computation

(i.e. from the differential transistor pairs), we can reformulate the result of second, third,

and higher order harmonics by modifying A by A1, which takes these terms into account.

Furthermore, we can invert this process to modify the starting matrix A to get a matrix

A1, which gives the desired transform of interest. The correction will depend on the desired

transform.

3.3.6 Bandwidth of MATIA pixel

Frequency response and resulting harmonic distortion of these pixel elements are important.

These measurements show that this pixel element shows little change from dc to 100Hz,

which is the limit of the present off-chip current measurements. This frequency response

will be dependent upon the incoming light levels. A corner frequency of 30Hz is observed for

light intensities four orders of magnitude lower than that obtained from average room light.

From these measurements, bandwidths upto 100kHz are possible using on-chip measurement

techniques. This will be sufficient for a 1024x1024 imager performing full matrix operations

at 60Hz image rate.

Since we are modulating the input pixel currents, one should consider the highest mod-

ulation frequency that a particular pixel can support. We define the bandwidth as the

69

difference of the highest frequency (i.e, the fastest generated signal) minus the lowest fre-

quency (i.e, the frame rate or block rate); typically assuming the bandwidth as related to

the highest frequency is sufficient. This maximum frequency/bandwidth defines a trade-

off between the resulting frame rate and the number of available pixel elements. We are

looking at the frequency response for a differential signal, therefore, the source node of the

differential pair is nearly fixed. Sensor capacitance and any capacitance in parallel with the

phototransduction sensor have negligible effect on the frequency response.

For example, for a 1 million pixel imager (1Kx1K pixel array), we need 60KHz modu-

lation for a 60Hz frame rate. If the current output lines use one-stage active feedback (as

used in the adaptive photoreceptor [28]) to reduce capacitive effects, then we could approach

these frequencies for 10pA of sensor current. A limit of 10pA significantly limits the range

of input illumination, for lower currents either the image size must decrease or the frame

rate must slow down accordingly.

We can reduce this minimum current level by using stronger active feedback or by

changing the phototransduction method in the pixel cell. Stronger active feedback will

improve the frequency response at a given current, and therefore reduce the minimum

current that can be modulated. However, the stronger active feedback requires more gain,

and therefore more power consumed and increased stability issues. One can change the

phototransduction element to a vertical BJT to amplify the current, but this approach

results in a more than proportional increase in the element noise, as well as decreases in

pixel-circuit fill factor. Experimental measurements have qualitatively verified these results.

Often, early levels of image processing are based upon block transforms rather than full

image transforms, and the bandwidth behaves similarly. For block processing, we often

turn on a basis block when being used, and turn it off when not being used. The frequency

response of turning on or turning off a block is fairly quick for both operations. Turning on

the block, which means we are bringing up the resulting output voltage, looks like a source

follower using nFETs on the upswing. That is, we are working on the fast transition region

of this circuit. Turning off the block, which means we are pulling down the resulting output

voltage, looks like we quickly drop the gate voltage below the source voltage, and therefore,

70

the current through the differential-pair FETs is very small.

3.4 Conclusion

In this chapter we have introduced the MATIA pixel. The pixel has a fill factor of 46% and

can perform focal–plane multiplication. This pixel can be used either as a pixel for image

readout or for performing various focal–plane processing. The pixel has a pitch of 45λ in

a 0.5µ N-well CMOS process. It was also fabricated in 0.25µ N-well CMOS and has been

characterized for proper operation.

Large arrays of this pixel has been fabricated for characterizing this pixel using 0.5µ

N-well CMOS. We have characterized the pixel for dark currents, signal to noise, gain and

offset mismatch across an array, linearity and harmonic distortion, and bandwidth. We

have also discussed how some of these errors can be eliminated when this pixel is used as

an imager.

71

CHAPTER IV

FOUR–QUADRANT CURRENT–MODE

VECTOR–MATRIX MULTIPLIER

4.1 Overview of vector–matrix multiplier

Vector-matrix multiplication(VMM) is the fundamental operation in a lot of signal process-

ing based computations. It is an important step in developing a variety of analog signal

processing techniques such as 2-D block transforms for image processing systems [42], and

FIR filtering [118]. The basic vector-matrix multiplication is defined as :

Yj = ΣiWjiIi (36)

An analog implementation of such an operation can be compact, low power, and can elimi-

nate data conversion in case of analog interfaces. On the other hand, a digital realization of

this operation is both area and power intensive for a reasonably sized array, thus making it

impractical for large VLSI systems [42]. Also, the computation can be done in parallel and

faster in analog since the weights stored at each multiplier site saves the fetch time [6, 47].

Previous implementations have used some modification of EEPROM cells [68] or some

variation of multiple-input floating-gates for analog storage [89]. The programming schemes

used were slow and inaccurate. On the other hand, our adaptive programming technique

allows for fast and accurate programming [76].

There have been various proposed implementations for the analog multiplication op-

eration in voltage-mode. These implementations had limitations such as the use of MOS

transistors in triode that are sensitive to drain-source variations [75], MOS transistors op-

erating in saturation based on ’quarter-square algebraic identity’ that used at least 12

transistors [103], dual-input floating-gate MOS that requires two capacitors per cell and

have offsets in the final results that have to be corrected for off-chip [6]. Along with these,

the maximum linearity available in voltage-mode implementations is limited up to power

72

I1 INI I
N-1

Prog

Others Selected
Gate

A
d
d
re

ss
O

th
er

s
S

el
ec

te
d

D
ra

in

Prog

Address

Y1

Y2

YN

YN-1

Y4

Y3

Gate Mux for Programming

D
ra

in
 M

u
x

 f
o
r

P
ro

g
ra

m
m

in
g

C
o
lu

m
n
 o

f
cu

rr
en

t

su
b
tr

ac
to

rs
 /

 a
m

p
li

fi
er

s

C
o
lu

m
n
 o

f
I-

V
s

Vt un

Vg

Vdd

I
out

Vtun

Vg

Vdd

I
out

(a)

(b)

Floating gate
Floating gate symbol

Vg

Vdd

I
out

2

Figure 47: Block diagram of chip: (a) The chip consists of a 128x32 array of floating–gate vector
matrix multiplier elements, peripheral digital control for isolation of floating–gate elements during program-
ming, and current amplifiers; (b) Symbol used or a floating–gate (FG) device.

supply rails. All of these implementations operated at slow speeds and had high power con-

sumption, which can be a limiting factor in some of the portable high-speed applications

like video processing.

In order to achieve high power efficiency and low power operation, a sub-threshold

implementation is ideal. A voltage-mode implementation operating in sub-threshold will

have limited linearity due to the exponential I-V relationship of the transistor operating

in saturation. This limitation in linearity can be alleviated to a certain extent by using

73

In
-I1

+

w
1
+

w
1
- w

n
-

w
n
+

Vcas

Vcas

Yj

jth row

To other rows

w
1
-

w
1
+

In
+

-

I1
-

w
n
-

w
n
+

Input row

Figure 48: Schematic of four–quadrant current–mode multiplier: Circuit schematic showing the
jth row for a fully–differential current–mode vector–matrix multiplier.

methods like source degeneration, which degrades the frequency response for a particular

power. A current-mode implementation can be used to overcome some of these limitations.

This chapter introduces this current–mode VMM. Section 4.2 introduces the architecture

of this four quadrant multiplier. Section 4.3 discusses different issues like programming the

VMM, frequency and speed of operation. We also present results for 8x8 block DCT on

128x128 images using this architecture. We conclude by summarizing the performance of

this architecture.

74

4.2 Current–mode vector–matrix multiplier

Fig. 47 shows the block diagram of our programmable current-mode VMM architecture

using floating-gate (FG) elements. The input vector values Ii are multiplied along each

column by the stored weight Wji and the results are summed along each horizontal row.

The weights are stored as charge on a floating-gate transistor and the results Yi are available

in parallel along each row. Digital logic consisting of switches, decoders and multiplexors

are used to isolate any individual floating-gate transistor for programming. Also, to aid in

measurement, the output currents are amplified and then converted into a voltage-mode

signal using linear I-V Converters.

Fig. 48 shows a detailed circuit schematic of the VMM system. The proposed multiplier

makes use of a floating gate current mirror with the two floating-gates programmed to

different charges. The difference in charge (∆Vcharge,ji) represents the intrinsic stored weight

with which the input signal gets multiplied. The weight is given by,

Wji = e−κ(∆Vcharge,ji)/UT (37)

where κ is defined as the variation of the surface potential with the gate voltage and UT is

the thermal voltage given by kT/q. In this fashion, the multiplier provides a non-volatile

weight storage that is intrinsic to the structure and can be easily programmed to any desired

value. In a floating-gate device, the output impedance is degraded primarily due to the

drain voltage (Vd) variation coupling onto the floating-gate node through Cgd rather than

Channel Length Modulation; cascoding helps in reducing the Cgd-coupling effect by making

the drain of the floating-gate a low impedance node while maintaining a high impedance at

the output. Also, the cascode transistors can be used as switches in the program mode to

better isolate the elements and thus, serve a dual purpose.

Our VMM chip affords the flexibility of configuring the system as either a two-quadrant

or a four-quadrant multiplier for both positive and negative weights. Different rows were

programmed to different weights and all the weights in one particular row were programmed

75

0 1 2 3 4 5 6
-4.8

-3.2

-1.6

0

3.2

4.8

Input currents (nA)

D
if

fe
re

n
ti

al
 o

u
tp

u
t

cu
rr

en
t

(n
A

)

0.75w

0.5w

0.25w

-0.25w

-0.5w

-0.75w

0

1.6

Figure 49: Measurements from two–quadrant current–mode multiplier: Plot of measured
differential output current vs. input current on a linear scale, for the pseudo–differential configuration.

identical. Figure 49 and 50 demonstrate the functionality as a two-quadrant and four-

quadrant multiplier respectively. Four-quadrant operation eliminates output DC offsets on-

chip and helps improve linearity, which is evident from Figure 49 and 50 and the equation

given below:

Pseudo–differential:

Yj = Σ[(w+
ji − w−

ji)I
+
i + (w+

ji − w−
ji)∆I+

i (38)

+
(w+

ji
2 − w−

ji
2
)∆I+

i

2
+

(w+
ji

3 − w−
ji

3
)∆I+

i

3
]

Fully–differential:

Yj = Σ[(w+
ji − w−

ji)(∆I+
i − ∆I−i) (39)

+
(w+

ji − w−
ji)

3((∆I+
i)3 − (∆I−i)3)

3
]

76

-4 -2 0 2 4 6

-10

-5

0

5

10

Differential input currents (nA)

D
if

fe
re

n
ti

al
 o

u
tp

u
t

cu
rr

en
t

(n
A

)

0.75w

0.5w

0.25w

-0.25w

-0.5w

-0.75w

0

Figure 50: Measurements from four–quadrant current–mode multiplier: Measured differential
output current vs. differential input current for the fully–differential configuration.

The linear range of the multiplier can be estimated from Figure 51 which shows the

differential output current vs. the input current for various positive weights. Different

weights show up as different intercepts in the log-scale. Linearity is clearly limited on

the lower level of currents, which is not evident from the previous plots. The linearity is

measured to be greater than two decades, beyond which the multiplier deviates from the

ideal linear curve with an error that is higher than 2.5%. This linearity limitation is partly

due to the difference in κ between identical transistors programmed to different currents and

the variation of κ with the gate voltage. This effect can be alleviated by programming the

elements relatively close to each other. Fig. 51 also emphasizes the point that a current-mode

implementation gives decades of linearity in signal swing that is especially hard to obtain

in voltage-mode circuits without consuming more power. For instance, in [6], a linear range

of 1V - 4V is obtained at the expense of 0.39mW of power dissipation. Figure 52 shows

the linear range for a voltage–mode implementation. In the current–mode implementation,

77

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

Input currents

D
if

fe
re

n
ti

al
 o

u
tp

u
t

cu
rr

en
ts

Figure 51: Linearity of four–quadrant current–mode multiplier: Plot showing the limits of
linearity for the current–mode configuration for the pseudo–differential configuration.

the DC level of input current determines both the speed and the power dissipation and can

be programmed to any desired value.

4.3 Experimental results, applications and discussions

4.3.1 Programming VMM

FG devices, as shown in Fig. 47, are a good option to implement programmable systems.

One of critical aspects in the design of programmable VMM system is programming accu-

racy. Previous implementation using FGs used programming scheme similar to that used

for EEPROMs based on electron tunneling [6]. This method required special oxide and

at least a dual gate implementation adding extra fabricating steps. It also required an

extra switch per element to select the cell to be programmed, along with the decoders, and

thus increasing area/cell [6]. The method was based on giving small pulses of constant

drain-to-source voltages (VDS) which affected the accuracy of programmed weights.

Our programming scheme is based on using both hot-electron injection and electron

78

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

0

0.1w

0.25w

0.4w

0.55w

0.7w

0.85w

-0.1w

-0.25w

-0.4w

-0.55w

-0.7w

-0.85w

Differential input voltage

D
if

fe
re

n
ti

al
 o

u
tp

u
t

cu
rr

en
t

-5

Figure 52: Voltage mode VMM: Measured differential current output vs. differential input voltage
for a voltage–mode configuration.

tunneling. We do not need any special oxide or extra gate to program these devices enabling

easy integration in typical CMOS processes. Our adaptive programming method enables

us to perform accurate and fast programming [76]. The algorithm computes the VDS steps

based on the device current and target current. This value is adjusted automatically as

the device current approaches the target current. Number of steps required to hit a target

are on average 10-15 pulses. Fig. 53(a) shows sine-wave coefficients programmed on 128

elements of a single row. Percentage error plot between the programmed value and the

target current,as shown in Fig. 53(b), gives a 0.2% of worse case deviation.

4.3.2 Frequency and speed measurements

A custom PCB was fabricated to perform speed measurements for low input currents. An

on-chip current amplifier with variable gain along with an off-chip I–V converter was used

for taking measurements especially with lower currents. Figure 54(a) shows the measured

79

0 20 40 60 80 100 120
0.7

0.8

0.9

1

1.1

1.2

1.3
x 10

-8

Floating gate position

P
ro

g
ra

m
m

ed
 c

u
rr

en
ts

 (
A

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Floating gate position
20 40 60 80 100 120

(a)

(b)

%
 e

rr
o
r

Figure 53: Programmed values: (a) A sine wave with 5 nA p–p and a DC of 10 nA was programmed
onto 128 floating–gate elements; (b) Percentage error per element is shown.

and simulated frequency response for different DC input currents. The measured corner

frequencies (f−3dB) match closely to the simulated results. The plot shows that the VMM

would easily operate up to 10MHz if it was not limited by the frequency response of the

I–V converter (Bandwidth = 5MHz) at the output. Figure 54(b) shows a plot of measured

corner frequencies with the input DC bias current on a log-log scale. The data points

follow a straight line with a slope of 1 as expected in sub-threshold. The deviation for

80

400pA

2nA

8nA

32nA

Legend

102 103 104 105 106 107

-30

-25

-20

-15

-10

-5

0

Frequency (Hz)

N
o

rm
al

iz
ed

 g
ai

n
 (

d
B

)

(a)

 Measured data

Regressed data

(slope =1)

10-11 10-10 10 -9 10-8

10
3

10
4

105

10 6

DC input current (A)

f -
3
 d

B
 c

u
to

ff
 f

re
q
u
en

cy

f-3 dB Freq. DC current

1 KHz 35 pA

10 KHz 350 pA

100 kHz 3.5 nA

1Mhz 40 nA

10 Mhz 512 nA

(simulated)

(b)

Figure 54: Frequency response: (a) Plot of frequency response of current mode multipliers. The solid
lines represent measured data while dashed lines represent simulation results; (b) Variation of f

−3dB cut–off
frequency vs. DC input current (per FG device) is plotted. For subthreshold currents a linear relationship is
observed, as expected. The table shows the measured DC input current (per FG device) required for various
f
−3dB cut–off frequency.

81

(a) (b) (c)

Figure 55: 8x8 block DCT of a 128x128 image: (a) Original input image; (b) Image after inverse
DCT, when block matrix transformation was performed off–chip, using the measured weight matrix from the
VMM chip. (c) Output of the VMM chip (after inverse DCT) for 8x8 block transform that was performed
on–chip.

higher current levels is due to the transistor moving from sub-threshold regime to the above

threshold region. The bias currents required for a bandwidth of 1MHz and 10MHz are

40nA (measured) and 512nA (simulated), respectively for each FG device.The VMM chip

required 531nW/MHz (from Fig. 54(b)) for each differential cell clearly demonstrating the

speed vs. power tradeoff. The DC bias current however can be set solely on the basis

of speed requirements as the Signal-to-Noise Ratio (SNR) is independent of the input DC

bias level. The SNR however is directly proportional to the Gate-Source Capacitance (Cgs)

and can be increased at the expense of chip area. A PCB was fabricated to perform the

measurements.

4.3.3 Performing DCT using VMM

The proposed VMM architecture can be used to perform real–time block matrix transforms

of input images in a row–parallel manner as proposed in [7]. We have demonstrated DCT

using the VMM as it is used for various applications. Fig. 55(a) shows the 128x128 image

that was placed as an input to the chip. For a fair comparison of the multiplier, we have

shown the output (after inverse transformation) when the programmed weights were mea-

sured and the block DCT (8x8) was performed off–chip in Fig. 55(b). Fig. 55(c) shows

the image obtained, after inverse transformation, when the block transform (8x8) was per-

formed on–chip. It can be observed that the results for part (b) and (c) are similar. The

distortion observed in both the images are due to the programming accuracy limitations

82

Table 2: Summary of performance for proposed VMM
Parameter Proposed VMM VMM in [6]

Technology 0.5µm N-Well CMOS 1.5µm single
poly CMOS/EEPROM

Power Supply 3.3V 5V

FG Dim.(W/L) 18λ / 4λ N/A

Array size 128×32 16×16

Chip area 0.83mm2 1mm2

Programming % error < ±0.2% <10mV

BW/power per cell 531 nW/MHz N/A

Linearity > 2 decades 3V

Power per cell 7.2 µW @10MHz 0.39mW @60KHz

Programming scheme Hot–electron injection Electron Tunneling
and Tunneling

Programming Time 1mS 100mS
per Wji

VM M

Figure 56: Block diagram of chip: The VMM chip consists of a 128x32 array of floating–gate elements,
current amplifiers, and peripheral digital control for isolation of floating–gate elements during programming.

(0.2% error).

Table 2 summarizes the performance of our VMM along with that of [6]. As can be

observed, the proposed architecture is both power and area efficient. Fig. 56 shows the

micrograph of the VMM chip that was fabricated in a 0.5µm N-well CMOS process.

4.4 Conclusion

A programmable fully differential current mode VMM architecture has been presented in

this chapter. Fig. 56 shows the micrograph of the VMM chip that was fabricated in 0.5µm

N-well CMOS. Table 2 summarizes the chip performance. We have demonstrated block

83

matrix transforms using this architecture. The architecture is suitable for low power ap-

plications and has bandwidth-to-frequency ratio of 531nW/MHz per differential multiplier.

For a bandwidth of less than 10MHz, this architecture is capable of performing 1 million

MAC/0.9µW as compared to a commercially available DSP (TMS32005x series), which

gives 1 million MAC/0.25mW. The VMM chip can be used for applications like audio and

video processing.

84

CHAPTER V

MATRIX TRANSFORM IMAGER ARCHITECTURE

(MATIA)

5.1 Digital image compression

Digital image processing involves storing images in short–time memories for convenient

access, processing them on a pixel by pixel basis, and achieving the processed data or

transmitting the results to another location. However, the demand for handling more and

more data continues to outpace advances in microelectronics technology and upgrades in

telecommunications infrastructure. Digital image compression represents an immediate and

practical approach to help address storage limitations and transmission channel bottlenecks.

If images can be stored in compressed form then the amount of stored data on a given

storage device can be increased by orders of magnitude, depending on the methods used.

For transmission applications if images can be compressed a similar improvement can be

realized.

Images can be compressed because they contain redundancies. By removing these re-

dundancies the size of the image can be reduced, i.e. the number of bits needed to represent

the image can be reduced. From a mathematical viewpoint this amounts to transforming

a 2-D pixel array into a statistically uncorrelated data set. In digital image compression,

three basic data redundancies can be identified and exploited: coding redundancy, interpixel

redundancy, and psychovisual redundancy [48]. Data compression can be achieved when

one or more of these redundancies are removed. The transform is applied prior to storage

or transmission of the image. Later the compressed image is decompressed to reconstruct

the image or an approximation of it.

The compression can be either lossless or lossy. The advantage of lossless compression is

that the accuracy of representation is preserved accurately. Hence, this type of compression

85

is useful in applications like image archiving (e.g. legal or medical records) as images or

data can be stored and retrieved without any loss of data. The disadvantage is that the

amount of compression is very limited. To achieve higher compression, factors of 10–to–

1, some amount of redundancy has to be tolerated. This type of compression is called

lossy compression. Even with lossy compression, in most applications the distortion can be

made so small that the image quality is more than acceptable after reconstruction. Lossy

image compression is useful in applications like broadcast television, video conferencing,

and facsimile transmission, in which a certain amount of error is acceptable trade-off for

increased compression performance [48].

Traditionally these compression have been performed in the digital domain. These

compression methods use block transforms, which essentially mean repeated matrix multi-

plications between the compression kernel and the image sub–block. Matrix multiplication

involves element–by–element multiplication and then sum of products along a column. Per-

forming these operations in analog domain can reduce power consumption and also space

required, as compared to these being performed in the digital domain. In a previous chap-

ter we had presented a pixel that can be used for matrix multiplication. The element–by–

element multiplication is performed at the pixel itself, while the addition takes place by

Kirchhoff’s current law (KCL) because of the way the pixels are connected together. In this

chapter we will focus on a MAtrix Transform Image Architecture (MATIA) that uses the

above mentioned pixel and performs image compression (baseline JPEG).

This chapter describes the MATIA system and also the experimental results obtained

from it. Section 5.2 describes separable transforms and the various kernels that can be

stored on the MATIA. Section 5.3 describes the system architecture including the on–chip

bias generation and kernel storage, four–quadrant current–mode multiplier, on–chip I–V

for image readout, peripheral circuits used for this system and also floor planning and

isolation issues. Section 5.4 illustrates how an on–chip flash can be used for faster readout.

Section 5.5 and Section 5.6 deals with the PCB that was fabricated for testing purposes

and the various on–chip image transforms that can be performed using MATIA. Low–

power JPEG/motion JPEG compression implementations using MATIA are described in

86

5.7. The chapter concludes by presenting a summary of performance of this system–on–a–

chip camera.

5.2 Separable transforms

Separable transforms are those in which operations can be applied separately to the rows

and columns. Consider the following general transform equation:

y[k1, k2] =
N−1
∑

n1=0

N−1
∑

n2=0

x[n1, n2]φn1,n2
[k1, k2] (40)

The transform is separable if the kernel φn1,n2
[k1, k2] can be expressed in the separable

form φn1
[k1]φn2

[k2]. If so then Eq. 40 can be be written as:

y[k1, k2] =
N−1
∑

n2=0

g[k1, n2]φn2
[k2] (41)

where:

g[k1, n2] =
N−1
∑

n1=0

x[n1, n2]φn1
[k1] (42)

Thus the new image (after inner summation), g[k1, n2] is a 1-D transform in the variable

n1. N of these N–point transforms are performed, one for each value of n2. The outer

summation is a series of 1-D transforms in the variable n2, one for each value of k1. Hence,

separable implementation involves N 1-D transforms in n1, and another N transforms in n2,

resulting in a total of 2N 1-D transform evaluations.

MATIA can compute arbitrary separable 2-D linear operations. These operations are

expressed as two matrix multiplications on the image,

Y = AT PB (43)

where P is the image array of pixels, Y is the computed output image array, and A and

B are the transform matrices [48]. The values of A and B are stored in analog floating-gate

arrays for on–chip processing.

In image processing, the most common linear operations consist of FIR filtering and real

transforms such as the discrete cosine transform (DCT) or wavelet transforms. Examples

of the left–side matrices, AT , for these operations are shown in Figure 57. For the FIR

87

























h0,0 h0,1 h0,2 h0,3 h0,4 h0,5 h0,6 h0,7

h1,0 h1,1 h1,2 h1,3 h1,4 h1,5 h1,6 h1,7

h2,0 h2,1 h2,2 h2,3 h2,4 h2,5 h2,6 h2,7

h3,0 h3,1 h3,2 h3,3 h3,4 h3,5 h3,6 h3,7

h4,0 h4,1 h4,2 h4,3 h4,4 h4,5 h4,6 h4,7

h5,0 h5,1 h5,2 h5,3 h5,4 h5,5 h5,6 h5,7

h6,0 h6,1 h6,2 h6,3 h6,4 h6,5 h6,6 h6,7

h7,0 h7,1 h7,2 h7,3 h7,4 h7,5 h7,6 h7,7

























(a)
























h0,0 h0,1 h0,2 h0,3 0 0 0 0
h1,0 h1,1 h1,2 h1,3 0 0 0 0
h2,0 h2,1 h2,2 h2,3 0 0 0 0
h3,0 h3,1 h3,2 h3,3 0 0 0 0
0 0 0 0 h0,0 h0,1 h0,2 h0,3

0 0 0 0 h1,0 h1,1 h1,2 h1,3

0 0 0 0 h2,0 h2,1 h2,2 h2,3

0 0 0 0 h3,0 h3,1 h3,2 h3,3

























(b)
























h′
0 h′

1 0 0 0 0 0 0
h−1 h0 h1 0 0 0 0 0
0 h−1 h0 h1 0 0 0 0
0 0 h−1 h0 h1 0 0 0
0 0 0 h−1 h0 h1 0 0
0 0 0 0 h−1 h0 h1 0
0 0 0 0 0 h−1 h0 h1

0 0 0 0 0 0 h′
−1 h′

0

























(c)
























h0,0 h0,1 h0,2 h0,3 h0,4 h0,5 h0,6 h0,7

h1,0 h1,1 h1,2 h1,3 h1,4 h1,5 h1,6 h1,7

h2,0 h2,1 h2,2 h2,3 0 0 0 0
0 0 0 0 h2,0 h2,1 h2,2 h2,3

h3,0 h3,1 0 0 0 0 0 0
0 0 h3,0 h3,1 0 0 0 0
0 0 0 0 h3,0 h3,1 0 0
0 0 0 0 0 0 h3,0 h3,1

























(d)

Figure 57: Image transform matrix examples: The transform imager can perform
many types of operations of the type Y = ATPB where AT operates on the columns of
the image P and B operates on the rows. Examples of AT are shown here for different
types of operations. (a) A transform of the entire image where hi,j represent the windowed
transform basis elements. (b) Block transform of the type more likely to be used in image
compression. (c) FIR filter applied to the image, (d) Wavelet transform of the image, note
a block wavelet transform could also be applied.

88

filter (Figure 57(c)) note that the corner coefficients are denoted with ′’s because they are

often normalized to account for the shorter length of the filter at that point; or they may

be changed to accomplish filtering of a symmetrically extended image with h′
0 = h0 and

h′
1 = 2h1, etc.

The range of operations possible within the architecture, which is expressed in Eq. 43,

is significant. For example, it is possible to use differentiating FIR filters to do better

edge detection or lapped orthogonal transforms for image compression without blocking

artifacts. Smoothing filters combined with a decimation scheme could provide simple data

reduction. Arbitrary transforms can be considered, because computational complexity and

efficient algorithms are not a concern. Additionally, cascaded operations can be performed

by collapsing the matrices describing the multiple operations:

Y = CT
[

ATPB
]

D (44)

= ÂTPB̂

where Â = AC and B̂ = BD.

Note that even though arbitrary matrices can be used without considering traditional

computational complexity, the connectivity complexity should be considered. For example,

a full image transform requires the instantiation and routing of the full transform matrices

while a block transform can be implemented using only enough elements and interconnects

for the non-zero transform matrix elements.

The basis matrix has the following structure:

A =



















v[0, 0] v[0, 1] · · · v[0, N − 1]

v[1, 0] v[1, 1] · · · v[1, N − 1]

...
...

. . .
...

v[N − 1, 0] v[N − 1, 1] · · · v[N − 1, N − 1]



















(45)

where,

v[n, k]=Ck cos[(2n+1)kn
2N], for DCT-II;

89

v[n, k]=
√

2
N+1 sin[π(k+1)(n+1)

N+1], for DST.

The Hadamard transform can be written in the matrix format as:

A2n = A2n−1 ⊗ A2 = A2 ⊗ A2n−1 (46)

where,

A2 =







1 1

1 −1






(47)

Similarly Haar and Slant transforms can also be written in the matrix format for different

sizes [48, 102]. To read an image one needs to program the kernel A to an unitary matrix

so that,

v[n, k]= 1, for n = k; else v[n, k]=0.

The MATIA chips can also be used for image enhancement using spatial filters. Various

sized smoothing filters (lowpass or averaging filters) can be programmed onto the chip.

This can be used to reduce ”sharp” transitions in gray levels. Since random noise typically

consists of sharp transitions in gray levels, the most obvious application of smoothing filters

is noise reduction. Unfortunately this method also blurs the edges (sharp transitions in

gray levels), and this is an undesirable side effect of these filters. Examples of these filters

are as follows:

A =
1

4







1 1

1 1






(48)

A =
1

9













1 1 1

1 1 1

1 1 1













(49)

Similarly sharpening spatial filters can be implemented too. These are essentially spatial

differentiation filters. The simplest isotropic derivative operator is the Laplacian. The filter

90

mask can be as follows:

A =













0 −1 0

−1 4 −1

0 −1 0













(50)

A high–boost filtering technique can be implemented using the following kernel:

A =













0 −1 0

−1 b + 4 −1

0 −1 0













(51)

where b ≥ 1. When b = 1, high boost filter becomes the ”standard” Laplacian filter. As

b increases, the contribution of the sharpening process becomes less and less important.

Eventually, if b is large enough, the high–boost image will approximately equal to the

original image multiplied by a constant.

5.3 Architecture description

This section describes the system architecture for our transform imager. The transform

imager architecture is both modular and programmable making it ideal for image data–flow

computations. This approach allows for retina and higher–level bio-inspired computation

in a programmable architecture that still possesses high fill–factor pixels characteristic of

APS imagers. Figure 58 shows the block diagram of MATIA.

This imaging architecture is made possible largely by advancements in analog floating–

gate circuit technology [63]. These circuits have the added advantage that they can be

built in standard CMOS or double-poly CMOS processes. In this approach, the floating–

gate circuits store and reproduce arbitrary analog waveforms for image transforms, allow

for correction factors to account for device mismatch, as well as perform matrix-vector

computations.

The basis functions for the various block matrix transforms are stored on-chip using

floating gates. Each floating gate can be individually programmed to a store one coefficient.

Peripheral digital control allows for individual floating gates to be selected and programmed

to any arbitrary current for any gate voltage. The mechanisms involved in this programming

91

Pixel array

(104x128)

D
ig

it
al

co

n
tr

o
l

fo
r

 k
er

n
el

an
d

 b
lo

ck
 s

el
ec

ti
o

n

Kernel #n

D
ig

it
al

 c
o

n
tr

o
l

fo
r

 p
ro

g
ra

m
m

in
g

fl
o

at
in

g

-

g
at

e
b

ia
s

ci
rc

u
it

s

Gate selection circuitry

for kernel

M
o

d
u

le
 f

o
r

im
ag

er
 t

es
ti

n
g

Array multipliers using floating
 -

gates for weight storage

Differencing circuits

Row parallel I
-
V converters with

sample and hold circuits

D
ig

it
al

 c
o

n
tr

o
l

fo
r

p
ro

g
ra

m
m

in
g

 f
lo

at
in

g

-

g
at

e
m

u
lt

ip
li

er
 c

ir
cu

it
s

Kernel #2

Kernel #1

Pixel

(13.5umx13.5um)

V
+
 V
_

I
+
 I
_

I
sensor

Gate selection

circuitry for

multiplier

Chip output (V)

Pixel array

(104x128)

D
ig

it
al

co

n
tr

o
l

fo
r

 k
er

n
el

an
d

 b
lo

ck
 s

el
ec

ti
o

n

Kernel #n

D
ig

it
al

 c
o

n
tr

o
l

fo
r

 p
ro

g
ra

m
m

in
g

fl
o

at
in

g

-

g
at

e
b

ia
s

ci
rc

u
it

s

Gate selection circuitry

for kernel

M
o

d
u

le
 f

o
r

im
ag

er
 t

es
ti

n
g

Array multipliers using floating
 -

gates for weight storage

Differencing circuits

Row parallel I
-
V converters with

sample and hold circuits

D
ig

it
al

 c
o

n
tr

o
l

fo
r

p
ro

g
ra

m
m

in
g

 f
lo

at
in

g

-

g
at

e
m

u
lt

ip
li

er
 c

ir
cu

it
s

Kernel #2

Kernel #1

Pixel

(13.5umx13.5um)

V
+
 V
_

I
+
 I
_

I
sensor

Gate selection

circuitry for

multiplier

Chip output (V)

Figure 58: Top view of MATIA: This programmable architecture performs arbitrary separable block
matrix image transforms. Each pixel processor multiplies the matrix coefficients with the measured image
sensor output. The basis functions are stored on–chip using floating–gate circuits.

phase are electron tunnelling and hot electron injection. In the transform phase, the drains

of the floating gates are connected to current–to–voltage (I–V) converters which convert

the respective currents to the bias voltages required for the transform. The imager array is

designed such that multiplications can occur at the pixel level. The corresponding output is

then placed in a parallel fashion to the vector matrix multiplier (VMM) for the second matrix

multiplication. The VMM consists of an array of floating gates for further multiplication.

For the second multiplication floating gates are used instead of normal pFETs to reduce

area and also perform arbitrary multiplications. These floating gates can be programmed

to multiply incoming currents by any arbitrary factor depending on the transform being

92

performed.

The architecture was designed such that different kernels can be programmed onto the

chip at once. The kernels can be applied individually to the imager using digital control.

These kernels can also be used in a feedback loop (with the computer in the loop for now)

to fine tune a kernel for better performance. They can also be used in the ”ping–pong”

method where one kernel is being used for image transformation, while the other one is

being fine tuned. The roles can be switched when the fine tuning process is complete. This

method can be used to reduce noise and enhance performance of the imager on the fly,

depending on the kernel and the image.

The output currents are transduced to voltages by means of integrating type I–V con-

verters. These have been deigned for column parallel operation. The resultant voltage is

sampled and held, after the integration has been performed for a fixed amount of time,

using open loop sample and hold circuits. The opamp for the I-V is a wide swing two stage

opamp using high swing cascodes for better PSRR, and noise performance. The biases

required for the opamp are generated on chip using power supply independent bias circuits.

The values are then read sequentially using on–chip decoders. These can then be digitized

by either using on–chip methods or using on–board ADCs.

The peripheral circuits include:

• Clock distribution circuits.

• Decoders for isolation and accurate programming of floating gates

• Decoders for image readout and other controls

• On–chip drivers

The architecture’s scalability makes it feasible to compute large scale digital camera

resolution images. Furthermore, MATIA allows for data reduction that is compatible with

machine vision and biological modelling, as the computation is performed in the focal plane.

This architecture can be directly extended to a number of applications like depth computa-

tion from stereo, motion estimation by optical flow methods, spatial and temporal filtering

93

Vd1

I-V

Drain Mux
Vdd

I-V I-V I-V I-V

Prog

Prog

To gate lines of imager cells

Vd2 Vd3 Vd4 Vdm

Vgn

Vg3

Vg2

Vg1

n-well n-wellp-sub

Floating-Gate(p1) n+

p+ gatedrain

Vtun
Vdd

Floating-Gate(p1)

(source)
Vd

Vg

Vd-prog

Figure 59: Top-level view of our basis generation circuitry: In operation (transform) mode we
have an array of stored values that are output in sequence. Low-pass filtering on the output results in a
continuous-time analog result. In programming mode we can easily reconfigure this circuitry on the outside
edges for programming.

[53]. The next few sections give detailed description of the various sub–blocks of the MATIA

system.

5.3.1 On–chip bias generation

Floating-gate circuit elements are used to store and generate arbitrary basis functions

needed for the matrix-vector multiplication on the imager [62, 56, 60]. Figure 59 shows

the top-level view of our basis generation circuitry. In programming mode, we can easily re-

configure this circuitry on the outside edges for programming. This approach is compatible

94

I+ I-

Blk
Blk

V+ V-

From FG

To Pixel

Figure 60: Schematic of current–to–voltage converter: This circuit is used to convert FG
generated current to the corresponding bias voltage to be transmitted to the pixel. The bias voltages (V +

and V −) are turned off if the block is not chosen.

with our standard programming structure and algorithm. Each floating gate can be isolated

for programming using the peripheral digital control circuits. The array of floating gates

are initially tunnelled so that they have almost negligible currents for the operating gate

voltage. They are then programmed, using hot electron injection, to the various currents

needed for the bias generation. The floating gates can be used to store arbitrary waveforms.

The floating gates are programmed so that they supply different currents for the same bias

gate voltage. More details of floating gate programming can be found in Chapter 2.

In operation (transform) mode these currents are converted to the corresponding bias

voltages (V + and V −), which are required for different matrix transforms, before they are

transmitted to the pixel array. We use voltage outputs because we can eliminate the effect

of offsets from our images. Current outputs form a current mirror, and therefore differential

pair offsets become gain errors. We also show the effect of varying the floating-gate bias

voltage, resulting in significant changes of current to the current to voltage (I–V) converter,

95

2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Position

D
iff

er
en

tia
l C

ur
re

nt
 (µ

A
)

0 2 4 6 8 10 12 14 16
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Position

C
u

rr
e

n
t

(µ
A

)

Floating gate position

(a) (b)

0 2 4 6 8 10 12 14 16
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Position

D
iff

er
en

tia
l C

ur
re

nt
 (µ

A
)

0 2 4 6 8 10 12 14 16
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

-6

Position

C
u
rr

en
t
(

µ
A

)

Floating gate position

(c) (d)

2 4 6 8 10 12 14 16

0.8

0.9

1

1.1

1.2

1.3

1.4

Position

O
ut

pu
t V

ol
ta

ge
 (µ

A
)

V
g
 = 0.6V (programmed value)

V
g
 = 0V

V
g
 = 1.1V

(e)

Figure 61: Bias generator outputs: (a) Sine wave (current), (b) Differential sinusoidal current
waveforms, (c) Triangle wave (current), (d) Differential triangular current waveforms, (e) Programmed
sinusoidal voltage outputs for different floating gate bias voltages.

resulting in a change in the bias voltage level. Figure 60 shows the schematic of the I–V

converter used. These I–Vs are active only when the chip is in the transform mode. In the

96

α
11

α
12 …….. α1n

α
m1

α
m2 …… α

mn

α
21

α
22 …….. α2n

β
11

β
12 …….. β1n

β
21

β
22 …….. β2n

β
m1

β
m2 …….. βmn

δ
11

δ
12 …….. δ1n

δ
21

δ
22 …….. δ2n

δ
m1

δ
m2 …….. δmn

δ
11

δ
12 …….. δ1n

α
11

α
12

α
1n

α
m1

α
m2

α
mn

α
21

α
22

α
2n

β
11

β
21

β
m1

β
12

β
22

β
m2

β
1n

β
2n

β
mn

β’
11

β’
21

β’
m1

β’
12

β’ 22

β,
m2

δ’
11

δ’
12 …..

X =

Basis functions Pixel block Output

Gate selection

α
11

α
12 …….. α1n

α
m1

α
m2 …… α

mn

α
21

α
22 …….. α2n

β
11

β
12 …….. β1n

β
21

β
22 …….. β2n

β
m1

β
m2 …….. βmn

δ
11

δ
12 …….. δ1n

δ
21

δ
22 …….. δ2n

δ
m1

δ
m2 …….. δmn

δ
11

δ
12 …….. δ1n

α
11

α
12

α
1n

α
m1

α
m2

α
mn

α
21

α
22

α
2n

β
11

β
21

β
m1

β
12

β
22

β
m2

β
1n

β
2n

β
mn

β’
11

β’
21

β’
m1

β’
12

β’ 22

β,
m2

δ’
11

δ’
12 …..

X =

Basis functions Pixel block Output

Gate selection

(a)

α
11

α
12 …….. α1n

α
m1

α
m2 …… α

mn

α
21

α
22 …….. α2n

β
11

β
12 …….. β1n

β
21

β
22 …….. β2n

β
m1

β
m2 …….. βmn

δ
11

δ
12 …….. δ1n

δ
21

δ
22 …….. δ2n

δ
m1

δ
m2 …….. δmn

α
11

α
12

α
1n

α
m1

α
m2

α
mn

α
21

α
22

α
2n

β
11

β
21

β
m1

β
12

β
22

β
m2

β
1n

β
2n

β
mn

β’
11

β’
21

β’
m1

β’
12

β’ 22

β,
m2

δ’
21

δ’
22 …..

X =

Basis functions Pixel block Output

δ
21

δ
22 …….. δ2nGate selection

α
11

α
12 …….. α1n

α
m1

α
m2 …… α

mn

α
21

α
22 …….. α2n

β
11

β
12 …….. β1n

β
21

β
22 …….. β2n

β
m1

β
m2 …….. βmn

δ
11

δ
12 …….. δ1n

δ
21

δ
22 …….. δ2n

δ
m1

δ
m2 …….. δmn

α
11

α
12

α
1n

α
m1

α
m2

α
mn

α
21

α
22

α
2n

β
11

β
21

β
m1

β
12

β
22

β
m2

β
1n

β
2n

β
mn

β’
11

β’
21

β’
m1

β’
12

β’ 22

β,
m2

δ’
21

δ’
22 …..

X =

Basis functions Pixel block Output

δ
21

δ
22 …….. δ2nGate selection

(b)

α
11

α
12 …….. α1n

α
m1

α
m2 …… α

mn

α
21

α
22 …….. α2n

β
11

β
12 …….. β1n

β
21

β
22 …….. β2n

β
m1

β
m2 …….. βmn

δ
11

δ
12 …….. δ1n

δ
21

δ
22 …….. δ2n

δ
m1

δ
m2 …….. δmn

α
11

α
12

α
1n

α
m1

α
m2

α
mn

α
21

α
22

α
2n

β
11

β
21

β
m1

β
12

β
22

β
m2

β
1n

β
2n

β
mn

β’
11

β’
21

β’
m1

β’
12

β’ 22

β,
m2

δ’
m1

δ’
m2 …..

X =

Basis functions Pixel block Output

δ
m1

δ
m2 …….. δmnGate selection

α
11

α
12 …….. α1n

α
m1

α
m2 …… α

mn

α
21

α
22 …….. α2n

β
11

β
12 …….. β1n

β
21

β
22 …….. β2n

β
m1

β
m2 …….. βmn

δ
11

δ
12 …….. δ1n

δ
21

δ
22 …….. δ2n

δ
m1

δ
m2 …….. δmn

α
11

α
12

α
1n

α
m1

α
m2

α
mn

α
21

α
22

α
2n

β
11

β
21

β
m1

β
12

β
22

β
m2

β
1n

β
2n

β
mn

β’
11

β’
21

β’
m1

β’
12

β’ 22

β,
m2

δ’
m1

δ’
m2 …..

X =

Basis functions Pixel block Output

δ
m1

δ
m2 …….. δmnGate selection

(c)

Figure 62: Coefficient storage and multiplication: Shows how the coefficients are stored, the
sequence of steps for performing matrix multiplication, and the row–parallel operation of the MATIA system

97

program mode these are turned off because there is no path for the current, from the FGs,

to flow. The outputs of the I–V are then placed on to the chosen pixel block by using digital

control (block sel). If a particular block is chosen then the outputs from the corresponding

I–Vs are placed onto the V + and V − busses for that particular block. If a block is not

chosen it is turned off by connecting the V + and V − busses to ground as shown in Fig. 60.

Figure 61 shows the programmed outputs for a single row of floating gates. Since the

pixel structure is differential two voltages are required per pixel. The single ended and

differential sinusoidal and triangular waveform are shown as examples of kernel storage.

Figure 61(e) shows how after programming the DC value of a sinusoid can be changed

just by changing the gate voltage with minimal distortion. As expected, since the FG is a

PMOS, the DC increases with decreasing gate voltage, and vise versa.

Figure 62 illustrates how a basis function is actually stored for block matrix multipli-

cation. For multiplying two matrices a row of the first matrix is selected. This is then

multiplied on an element–by–element basis with all the columns of the second matrix. A

sum–of–product of these multiplications give the corresponding row of the output matrix.

Figure 62 also illustrates the sequence of digital control required for a block matrix trans-

form. The transpose of the kernel (first matrix) is stored as shown in the figures. A

corresponding row of the kernel is chosen by using gate selection (red when chosen, green

otherwise). When a row is chosen the corresponding kernel coefficients are placed onto the

V + and V − busses. These are transmitted to all pixels of the chosen image block. Figure

62(a) shows how the first row of the output matrix is obtained in a column parallel fashion

by just choosing the first row of the kernel matrix. Similarly the other rows of the kernel

are chosen and the corresponding rows of the transformed image are readout.

5.3.2 Four–Quadrant current–mode multiplier

We use the floating-gate circuit elements to compute analog multiplications of a signal

vector with a stored programmable matrix. We can perform vector matrix computations

using current mode differential VMM. Using the output image stream this system will

compute a transposed matrix transform.

98

V
tun

V
g

V
ddI

out

I
1

I
N

Y
M

Y
1

Y
2

Y
3

Y
4

Y
M-1

I
2

I
3

I
N-1

Prog

Prog

Others

Selected
Gate

Address Others
Selected

Drain

Gate Mux for Programming

Figure 63: On–chip current mode multiplier: This programmable four quadrant multiplier operates
at 3.3V supply, consumes 531nW/MHz and is linear for over two decades of current range. It consists of
programmable floating–gate elements and hence is very area efficient.

Voltage implementations are possible, but they suffer from limited linearity, slow speeds,

and high power consumption. A current–mode subthreshold implementation can achieve low

power operation, high power efficiency and high linearity. Figure 63 shows the schematic

of the differential current-mode VMM which was used in this system. It also shows the

digital logic used while programming for isolation of individual FG transistors and accurate

programming of the weights. This block is capable of over 2 decades of linearity (for a

worst case error of 2.5%) and has a bandwidth of 1MHz for bias current of 40nA for each

FG element. The floating-gate current mirror elements are cascoded for reducing channel

length modulation effects, and increasing noise performance for the frequency of interest.

It operates with VDD of 3.3V, and the total area of this multiplier is 0.83mm2. It is capable

of performing 1 million multiply–accumulate (MAC) operations per 0.27µW.

Figure 64 shows the schematic and the layout of the input stage of the current mirrors.

This structure is connected as a diode–connection when the chip is in transform mode.

When in program mode the the cascodes (pcas and ncas) is turned off and the drain pin

99

Drain_pg

Prog

Tunnel

gate

pcas

ncas

From pixel

(a) (b)

Figure 64: Input stage for current–mode VMM: This shows the schematic (a) and the layout
(b) of the input stage for the current–mode VMM. It consists of a FG transistor, cascode transistors and
switched that are used during programming.

of the FG is connected to Drain pg. This pin can then be pulsed for injecting the FG or

measuring the corresponding current through the FG.

Figures 65 and 66 show the schematic and the layout, respectively, of the output FG

transistors of the VMM. In this case the cascode transistors are fully turned on so that

the same drain pin can be used for programming the respective FG as well as for reading

currents.

100

pcas1

pcas1 pcas1

pcas1

drain-<1>

drain+<1>

drain-<2>

drain+<2>

g
at

e-
<

1
>

g
at

e+
<

1
>

g
at

e+
<

2
>

g
at

e-
<

2
>

Figure 65: Output stage for current–mode VMM: The schematic of the output stage of the VMM
is shown here. It also shows how the transistors are connected. It uses cascodes which are turned sully on
during the program mode, while used as normal cascode transistors during operation mode.

5.3.3 On–chip single slope ADC

Figure 67(a) shows the integrating type I–V used for row parallel current readout. We use

an open loop sample and hold, which is buffered out for readout. A wide swing two stage

OTA is used as the integrating opamp. A wide range cascode structure is used for higher

output swing and higher gain. The cascode biases are generated on–chip using temperature

independent bias generators. The integrating capacitors were chosen such that they match

across the array while enabling quick readout of low currents. The currents from the array

are integrated at the same time (for a whole column) and their respective voltages are

then readout sequentially during the hold phase. This enables parallel readout and reduces

readout time. Each row of floating gates has a I–V converter for current readout. Figure

68 shows the layout of such a I–V converter. It has a guard ring around it for isolation.

The output waveforms are shown in Fig. 69. The I–Vs are first reset and then allowed to

101

Figure 66: Layout of the output stage of the VMM: The layout of a part of the output stage of
the VMM is shown here. It shows how each output stage was laid out such that they can be tiled in one
direction.

integrate. At the end of the integration cycle the final value is sampled. The sample signal

was designed to be active low as shown in Fig. 69.

5.3.4 Peripheral circuits

I have designed, simulated and tested on–chip clock buffers. These are used to clean up a

digital signal coming into the chip from an FPGA through a bond pad. These were used

as the inputs to various decoders and multiplexors used in the MATIA system. Figure 70

102

VDD

VG

VTUN

ID

RST

Vdrain

HOLD SEL

RST

Isolated Floating gate

C

(a)

Vp

V+V-

Vn

Out

Bias

(b)

Figure 67: Circuit elements: (a) Shows the schematic for the integrator type I-V that was used for
row parallel current readout. The schematic of a pFET floating-gate transistor is also presented. (b) Shows
the schematic of the wide swing OTA that was used for the integrator.

shows the schematic and layout of the on–chip clock buffers. Since these digital signals

would be driving large on–chip loads a multi–stage buffer is used. The ratio for minimum

delay associated with a buffer is e = 2.7182 [96]. Upscaling by this ratio implies a large

number of stages for driving a given load, hence I have chosen a ratio of three. This circuit

also minimizes the propagation delay between clk and clk n. To reduce ground bounce and

isolation I have surrounded each clock buffer with guard rings. I have also designed digital

buffers for driving off–chip capacitance (upto 100pF) with a speed of 40MHz. The layout

was done using interdigitated fingers for big transistors. This was a four stage buffer, as

shown in Fig. 71. I have used these circuits extensively for all the chips that I have designed

103

Figure 68: Layout of the integrating I–V: The layout of the integrating type single slope I-V along
with an open–loop sample and hold circuit.

and fabricated.

NO-RAce logic targets the implementation of fast and pipelined datapaths using dy-

namic logic. A NORA datapath typically consists of a chain of alternating φ and φ. NORA

design style can be simplified, so that single clock is sufficient to correctly operate dynamic

sequential CMOS circuit [119]. The resulting design methodology is called true single phase

clock logic (TSPC) because it allows for the implementation of dynamic sequential circuits

with a single clock phase. Figure 72 shows the schematic and layout of a D flip–flop that

was designed to fit a pitch of 45λ in one direction. The layout was done such that these

can be tiled next to each other in pitch. This circuit has two clock connections hence the

clock load is reduced, compared to other implementation needing more clock connections,

especially for circuits employing many registers such as large shift registers.

When clk is high, the latch is in the transparent evaluate mode and corresponds to four

cascaded inverters; hence it is noninverting. On the other hand, when clk is low, both the

inverters are disabled, and the latch is in the hold mode. In this case only the pull–up

104

Figure 69: Operation of I–V: The output of two channels of I–V (channels 1 and 2) are shown above
along with the sample (channels 3) and reset (channels 4) waveforms.

transistor are active. No signal can propagate from the input of the latch to the output in

this operation mode. Hence, races are eliminated. During this operation (not reset mode)

phi is connected to clk. During the reset mode the reset signal is connected to clk. The

circuit is reset by forcing the input nodes of the second inverter to ground. The circuit was

designed, simulated and tested on silicon.

Since this register is dynamic it can be slowed down for test purposes by introducing a

small capacitor at the output. But since this is a dynamic logic the circuit will malfunction

if the slope of the clock is not sufficiently high. Slow clocks cause both the PMOS and

the NMOS transistors to be turned on simultaneously, resulting in undefined values of the

state and race conditions. The clock slopes should be carefully controlled with the help of

local buffers. Also because of the dynamic nature of the circuit the high impedance storage

modes make the circuit sensitive to noise and leakage. Often, a feedback transistor is added

to the structure (like in the case of DOMINO logic) to make the gate pseudostatic [96].

105

Iin

clk_n

clk

6/2

18/2
18/2

18/2

6/2

6/2

18/2

18/2

54/2

54/2

54/2

54/2

162/2

162/2

(a)

(b)

Figure 70: Clock distribution circuitry: (a) Schematic of on–chip clock distribution circuitry, (b)
Layout of the the circuit shown in (a). The circuit has been designed such that the propagation delay
between clk and clk n is minimal.

This TSPC D-FF can be used to implement shift registers and counters. The connections

106

Figure 71: Off–chip driver circuit: A multi–stage buffer circuit was used to drive off–chip components
for digital outputs.

required for implementing a shift register and counter are the same as ones as with any D-

FF. The shift register circuit was designed and simulated for operations upto 80MHz for a

shift register of 10 bits. It was tested for operation uptill 15MHz (limitation of the signal

generator). The design can be modified depending on the application for which it will be

used for. Similarly a 80 MHz 8-bit counter was designed using this TSPC latch. This was

also tested for operation.

I have designed various decoders for the purpose of digital control during FG program-

ming, block selection, and image grabbing. Figure 73 shows a part of the layout for a

decoder that is used for programming FG. This decoder has a pitch of 22.5λ. It was simu-

lated (post–layout) for operations upto 80 MHz, and has been tested for operations upto 15

MHz (limitation of the signal generator use for the test). The decoder shown in Figure 74

is the layout of a basic 2x2 decoder that was used extensively for various digital control. I

have designed a p-cell such that an arbitrary sized decoders (output bits) can be generated

with an user given pitch. It also has drivers at the end so that the slopes of the output

107

D
qqnot

clkclk

rs
t

phi
clk

rst

rstnot

rst

phi

D rs
t

rs
tn

o
t q

qnot

symbol

(a)

(b)

Figure 72: Flip-Flop using 1 phase clocks with reset: (a) Schematic of Flip-Flop using 1 phase
clocks with reset, (b) Layout of the the circuit shown in (a). The circuit has been designed such that they
can be tiled in a pitch of 45λ

and output are cleaned up, and also the propagation delay between the two are minimized.

This was also simulated (post–layout) for operations upto 80 MHz. For further increase in

speed other topologies can be chosen, and careful layout should be done to reduce parasitic

108

Figure 73: Decoder with a pitch of 22.5λ: A close at the decoder designed for a pitch of 22.5λ.
These decoders are used for isolation during programming of floating gates. This decoder was also simulated
(post–layout) for operations upto 80 MHz.

effects.

5.3.5 Floor planning and isolation

The chip is a mixed–signal system. There are analog parts and digital parts and they have

to be isolated for proper operation. Also because of the way the chip operates there is a lot

of interplay between the two. Hence floor planning was important in a system–on–a–chip

like this. Care was taken to isolate the analog and digital parts as far as possible given

the area I had for layout. The information required to construct a floorplan includes area

estimates for each cell and an area estimate of the whole die. Routing area should also be

considered during this stage. Figure 75 shows the floor plan for this chip.

Routing was an issue in this chip. Some of the issues that need to be considered are

wiring resistance, electron migration, noise coupling, and heat distribution. Since the chip

109

Figure 74: Decoder with variable pitch: A close at the decoder designed for variable pitch. The
variables that can be controlled are output pitch and number of digital outputs. This decoder was also
simulated (post–layout) for operations upto 80 MHz.

operates in the sub–threshold region the expected current density is not that high hence

issues like electronmigration are not an issue. In general care was taken for consideration

of the widths of wires for the power lines to minimize metal resistance as much as possible.

The minimum width considerations are determined by electronmigration. The minimum

lead width can be calculated if the DC currents, maximum allow current density, and the

thickness of the metal are known. For the power leads when connecting different metals

together, the connections were made through many vias. This is because vias not only

increase the resistance of the lead but also limit the amount of current that it can conduct

before electron migration causes vias to fail. I have used channel routing wherever it was

possible as it was quicker to implement and easier to modify. This also minimizes the need

for jumpers and thus results in the best utilization of channel space.

Floorplanning also helps to reduce noise. Most of the noise problems encountered in an

integrated circuit are caused by capacitive coupling of signals from one circuit to another.

A capacitor appears when a lead crosses or runs along another lead. Although the vale of

the capacitor itself is very small the amount of energy coupled through them increases with

frequency. In MATIA, I was careful not to run digital signals over sensitive analog parts

110

Analog Parts

Digital parts

D
ig

it
al

 p
ar

ts

D
ig

it
al

 p
ar

ts
D

ig
it

al

p
ar

ts

Guard

Ring

Figure 75: Floor plan of the chip: The floor plan of the chip is illustrated above. The analog parts
consist of the pixel array, the FG bias generators, FG VMM and other bias circuits. The digital parts consist
of various decoders, multiplexors, clock distribution circuitry and digital buffers.

of wires carrying sensitive signals. If I had to run something over a sensitive part then I

shielded that part using a metal layer in between which was held a fixed potential (ground).

This layout method reduces the cross–talk effects. It, however, is obtained at the cost of

more complex wiring and greater capacitance between the signals and ground. Since the

architecture is differential most of the cross–talk is reduced to common–mode disturbance.

Hence cross–talk is much reduced in this system. In low noise applications, long signal

wires, with sheet resistance of 40 to 80 mΩ/¤, may introduce substantial thermal noise

[97].

Since this is a mixed signal chip there are a number of references that have to be

provided. These were distributed in the current domain rather than voltage domain. The

idea is to route the reference current to the vicinity of the building block and then perform

111

the current mirror operation locally. Using this method reduces the systematic mismatch

due to the voltage drop along the ground line.

Substrate coupling is an important issue as CMOS technologies use a heavily–doped

p+ substrate to minimize latchup susceptibility. However, unwanted paths are created

between various device in the circuit due to the low resistivity of the substrate. Since the

architecture is differential the circuits are less sensitive to the common–mode noise. I have

also distributed the clocks in complementary form to reduce the net coupling noise. I have

also used guard rings to isolate the sensitive sections from the substrate noise produced

by other sections. A guard ring is usually a continuous ring made of substrate ties that

surround the circuit. It provides a low–impedance path to ground for the charge carriers

produced in the circuit. An n-well ring helps too as with it’s large depth it stops noise

currents flowing near the surface. I have also connected ground and substrate on–chip and

brought out through a single wire. The substrate is connected to the analog gnd. If these

have unequal bounce then the drain currents are corrupted by substrate noise. I have also

separated the analog and digital grounds and also have separate analog and digital supplies.

These are connected off-chip at only one point. If pin limited then I connect them on–chip

at only one place right after the supply pads.

All the above mentioned layout techniques and floor planning have significantly improved

the quality of images that can be read using the MATIA.

5.4 Flash structure for video processing

There has been an increasing demand for low–cost, and high–speed integrated analog–to–

digital converter (ADC), in the field of video signal processing. The potential of flash

architectures for realizing high resolution and fast ADCs have been demonstrated in a

number of deigns [12, 98, 46]. However, these designs require high speed sample and hold

amplifier, a high precision ADC, and have large power dissipation. These factors along

with space constraints prevent conventional ADCs to be incorporated into large imaging

architectures. Integration of analog and digital components in system–on–chips also pose

problems for voltage-mode flash ADCs. Voltage mode ADCs also require precise resistors

112

and capacitors, which need fabrication steps that might not be provided by many digital

processes. The high speed and low power constraints can be realized by using current–

mode techniques. Current–mode circuits provide advantages like immunity from deleterious

influences like ground and power supply noise, and signal line impedance [110]. These circuit

techniques have also been used for high-speed applications [12, 73].

We propose a novel current-mode cell that can be used in one or two-step flash ADCs

for video applications. This cell uses floating-gate technology to store the reference currents

on–chip. The structure is programmable and thus can be fine-tuned for better performance.

The cells have been implemented such that they can be tiled for parallel readout and fit

within a pitch of 13.5 µm.

Section 5.4.1 gives an overview of the ADC cells. In section 5.4.2 the current–mode

comparators used for the cells have been described. Section 5.4.3 deals with the floating

gate current reference circuits. The results are presented in section 5.4.4.

5.4.1 System overview

In this section two cells are proposed that can be used for building two-step and one-step

flash ADCs. Floating gates technology enables the reference currents to be stored on–chip.

Figure 76(a) shows the proposed cell for the first stage of a two–step flash. The input

current (Iin) is mirrored using PMOS transistors and is transmitted to all the stages. For

each stage this current is compared to the reference current (Iref) for that stage. This

reference current is being generated by a floating gate transistor (M1). For comparison with

the input current this reference current is mirrored using nmos transistors (M2-M5). The

comparison is done using the comparator structures described in section 5.4.2. The output

is high if the input current is less than the reference current and is low for the opposite case.

The output of this comparison (OUTn) is then AND-ed with the inverted output of the

next stage (b) to generate the thermometer output for this cell. If the thermometer output

is high then a fixed bias current (Iref−1) is subtracted from the input current. This residual

current is then mirrored (M6-M9) and is transmitted as the input to the second-stage of the

two-step flash architecture (M10 and M11). The operations can be summarized as follows:

113

Vrefn

Vrefn-1

Vcn

Vcp

Vcn

Vcp

Sel
To

encoder

Outn

a

a

b

(from

subsequent

stage)

(To second

stage)

Comp

(To next cell

of first stage)

Input current after

being mirrored

M1

M2

M3 M4

M5

M6

M7 M8

M9

M10

M11

(a)

Vrefn

Vcn

Vcp

Sel
To

encoder

Outn

a

a

b

(from subsequent

stage)

Comp

(To next cell

of same stage)

Input current after

being mirrored

M1

(b)

Figure 76: Architectural blocks for flash ADCs: (a) Cell for the first stage of a two–step flash
ADC, (b) Cell for a one–step flash or the second stage of a two–step flash ADC.

114

IF (Iin) < (Iref)

THEN a is HIGH;

ELSE IF (Iin) > (Iref)

THEN a is LOW;

IF (a AND b = HIGH)

THEN Iref−1 is subtracted from Iin;

For the second-stage of the two-step flash architecture or for implementing a one–step

flash, the cell described in Figure 76(b) can be used. In this cell the input current (Iin)

is compared to the reference current for that cell (Iref). Like the first cell the reference

current is generated by a floating gate transistor (M1). The output, for this cell, is high

if the input current is less than the reference current and is low for the opposite case. For

generation of the thermometer code this output is AND-ed with the inverted output of the

next stage (b). The output is then placed on to the encoder depending on the signal Sel.

The Sel signal is used to multiplex the outputs of the different ADC cells when these would

be tiled for parallel operation.

5.4.2 Current mode comparators

Since the expected current input is in the lower nano-amperes range a comparator with

very high accuracy and high speed for low currents has to be used. Figure 77(a) shows the

current comparator that was proposed in [111]. This comparator uses a source follower as

the input stage and a CMOS inverter as the positive feedback, which enables faster response

time. The dynamic response of this comparator, for small input currents, suffers because

there exists a deadband region in which the two input transistors are temporarily turned

off. Since the input resistance increases during this time the dynamic response time for

smaller input currents increases.

We use an asynchronous mode current comparator that uses non-linear feedback to

combine the advantages of capacitive–input and resistive–input [27] as shown in Figure

77(b). In order to achieve faster response times for the current switch comparators input

and output nodes have been uncoupled. Simple inverters have been used as amplifiers

115

Iin Out

(a)

Iin
Out

Vcp1

Vcn1

Vcp2

Vcn2

M1

M2

(b)

Figure 77: Current mode comparators: (a) Conventional CMOS comparators [111], (b) Current
comparators which employs nonlinear feedback to obtain high accuracy and high speed for low input currents
[27].

116

V
d

1

D
ra

in
 C

o
n

tr
o

l
L

o
g
ic

V

d
d

Prog Prog

V
d

2
V

d
3

V
d

4
V

d
m

V
g

p
ro

g
V

Gate control logic

Floating-gate 4

Floating-gate 3

Floating-gate 2

Floating-gate 1

Floating-gate m

Iref1

Iref2

Irefm

Iref4

Iref3

T
o
 f

la
sh

 c
el

ls

Figure 78: Top-level view of our reference generation circuitry: (a) In operation (transform)
mode we have an array of stored values that are output in sequence. In programming mode we can easily
reconfigure this circuitry on the outside edges for programming.

to increase speed. Cascode transistors have been used at the output node to reduce the

effect of the overlap capacitances. The input current is integrated at the input capacitance.

For positive currents the input voltage continuously increases. the amplifier causes output

voltage to decease faster than the input voltage. This causes Vgs of M1 to increase while

decreasing Vgs of M2. M1 in driven into on state and a negative feedback loop is created

around the amplifier. For negative currents a similar situation occurs with M2 providing

the negative feedback.

5.4.3 Floating–gate reference circuits

Floating–gate circuit elements are used to store and generate currents needed for the various

references for each ADC cell. This section deals with the programming of floating–gate

117

arrays.

Figure 78 shows the top–level view of our reference generation circuit. In programming

mode, we can easily reconfigure this circuitry on the outside edges for programming. This

approach is compatible with our standard programming structure and algorithm. Each

floating–gate can be isolated for programming using the peripheral digital control circuits.

The array of floating–gates are initially tunnelled so that they have almost negligible

currents for the operating gate voltage. The tunnelling voltage required for this process is 15

V. They are then programmed, using hot electron injection, to the various currents needed

for the reference generation. The floating–gates can be used to store arbitrary waveforms.

The floating–gates are programmed so that they supply different currents for the same bias

gate voltage. In operation (transform) mode these currents (Iref) are used as trip points

for the current–mode comparators.

5.4.4 Characterization of the flash structure

The cells were fabricated using 0.5µm N-well CMOS technology. They were simulated, from

the extracted values, using SpectreS. The cells have a pitch of 13.5µ. The cell described

by Figure 76(a) has a size of 13.5µm x 122.7µm, while the one in Figure 76(b) has a size

of 13.5µm x 87.15µm. They were designed such that they can be tiled together for parallel

readout. These cells can be used for current readout from imagers or any other structure

that requires fast parallel readout and has current outputs. These cells were designed to

operate for small current inputs.

Figure 79 shows that accurate current trip points can be stored on–chip. For Figure

79(a), 256 equidistant current reference values have been programmed between 150pA and

40nA. These can be the trip points for a 8–bit one–step flash ADC using these cells. Figure

79(b) shows the values of the first sixteen values. These can be reference values for the

second stage of a two–stage flash structure. Since we can program any reference current

values on–chip we can operate the flash cells over various ranges. We can also change the

trip points as necessary for better SNR and performance.

The transient response of the comparators were tested for input square–wave currents

118

0 50 100 150 200 250 300
0

1

2

3

4
x 10-8

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5
x 10-9

Floating gates

(a)

Floating gates

T
ri

p
 p

o
in

ts
 (

cu
rr

en
t)

T

ri
p

 p
o

in
ts

 (
cu

rr
en

t)

(b)

Figure 79: Programming reference currents on–chip: (a) Plot showing programmed values of
reference currents. These are the trip points for a 8–bit one stage flash structure. (b) Plot showing that
accurate programming can be achieved for on-chip reference currents.

with amplitudes ranging upto +50µA. Figure 80 shows the propagation delay for the differ-

ent comparators for various differential current inputs. The comparator in Figure 77(b) has

a faster response for lower currents, as expected. For higher currents the propagation delays

are almost same. For that comparator 20pA of differential input current induces 3.7µs of

propagation delay, while for 50µA of differential input current the propagation delay is 2ns.

If an ADC is designed using these structures it can be observed that if the differential

currents are in the order of tens of micro–amperes then operations in the vicinity of 125

MSamples/sec are possible with careful design of the additional circuitry. It is also observed

that for small currents, in the range of tens of pico–amperes, the overall ADC can operate

at rates of 100 KSamples/sec. Figure 81 shows the layout of a test chip that was fabricated

119

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

Input current (A)

D
el

ay
 (

s)

Comparator in Fig. 2 (a)

Comparator in Fig. 2 (b)

Figure 80: Comparison of different comparators: Plot of propagation time versus differential input
currents for the comparators described in Figure 77.

using 0.5µm Nwell CMOS.

5.5 PCB and timing sequence

Figure 82 shows the schematic of the printed circuit board used to control the imager. The

analog biases (drain voltage, gate voltage, tunneling voltage, and power supply) required by

the imager chip are provided by octal-DACs which are controlled by the FPGA. There are

additional circuitry for generating the tunnel voltage (15 V), and all the analog voltages are

buffered before they are presented to the imager chip. Since a high power supply (6V–6.5V)

is required for programming, the digital signals to be used during that phase go through level

shifters. The board also has 14-bit 10 MS/s ADCs for image capture. We test our imagers

by projecting a directed light source on our imager through a complex lens system. During

our experiments we have seen little noticeable movement of the floating gate elements from

their respective programmed values. The PCB is a four layered board with separate supply

and ground planes, and was designed using EAGLETM .

120

Figure 81: Flash test chip: The flash test chip consists of a 3 bit flash and a 8 bit two step flash.
Bubble suppression and decoders were also designed for proper read–out.

CMOS

Imager

ChipI-
to

-V

C
o

n
v

er
te

rs

L
ev

el
 S

h
if

te
rsFG column

FG row

Program

Im ager colum n

14-bit

Differential-

input ADC

Output
Output

Image

I-to-V
Converter

14-bit

ADC

Drain

Current

Digital control

from FPGA

Analog bias circuits

and buffers

Analog

Voltages 4
-c

h
an

n
el

D
A
CD

ra
in

V
o

lt
ag

e

T
u

n
n

el

G
at

e

V
D

D

Drain

Current

D
ig

it
al

 c
o

n
tr

o
l

si
g
n

al
s

fr
o

m
 F

P
G

A

Digital control

from FPGA

Figure 82: Schematic of the printed circuit board (PCB): A PCB was designed for providing
the analog biases and the digital control required for the chip. All the digital control are provided by a field
programmable gate array (FPGA). The digital outputs are acquired and stored using the FPGA for further
processing.

121

Table 3: Table of parameters and results for the current-input comparator cell for a Flash
ADC array.

Process 0.5µm Nwell CMOS

Supply 3.3V

Cell area 13.5µm x 87.15µm (1 stage–Fig.76a)
13.5µm x 122.7µm (2 stage–Fig.76b)

Propagation Delay
Iin = 20pA 3.7µs
Iin = 50µA 2ns

Tunneling Voltage 15V - 18V

Injection Vdd 5V - 6.5V

Figure 83: Timing sequence for image readout: The images are readout in a column parallel
fashion. Random access is possible for reading parts of the image. The timing sequence is provided using a
FPGA.

The FPGAs used are Altera Stratix and Xilinx Virtex-E. The VHDL modules for con-

trolling the different modules in the board were controlled using embedded microprocessors,

Nios and Microblazer, respectively. This was in turn controlled by MATLABTM . The test

setup was configured such that it can be fully controlled through MATLABTM . The data

was transferred from the FPGA to the computer through an ethernet connection.

122

Figure 83 shows the timing sequence for image readout. The blocks are selected first

and the different rows of the basis function are presented to the chosen block using kernel

column selection. The outputs are readout using column parallel I-Vs and open loop sample

and hold circuits. After all the rows of the basis function have been presented for in-pixel

multiplication and the outputs have been readout, the block selection is changed, and the

above process is repeated for reading that block.

5.6 On-chip image transforms

I have built several functional imagers in 0.5µm CMOS technology of sizes 16x16, 48x40,

and 128x128. The 128×128 size imager uses a block transform window of 16, therefore

requires an array of 252x16 floating gates to store the required basis functions. All of these

systems contain the necessary control circuits that allow for programming of individual

floating gates. We program the floating gate elements to arbitrary values using an external

programming board that only requires an external power supply and field programmable

gate array FPGA interface.

Figure 84 shows the effects of different transforms on an image. These results are from

a 16×16 imager block. Figure 84(a) shows the image of a line, while Fig. 84(b) shows

the smoothed image obtained from a 2×2 low pass filter kernel. As expected some edge

information is lost and the speckle–type noise, as seen in Fig. 84(a), has been smoothed

out. Figure 84(c) shows that thresholding an high–boost filtered [48] image leads to edge

detection. The thresholding was done using using MATLABTM but it would be easy to im-

plement on–chip. Figures 84(d–f) show the block DST, DCT type -II, and Walsh-Hadamard

transforms of the image, respectively. A common characteristic of these images is that their

magnitude responses have most of their energy concentrated in the low frequency regions

of the plot. MATIA can be configured to read an image as shown in Fig. 85. Figure 85(a)

shows the high resolution original image that was placed on the MATIA. Figure 85(b) shows

the image of Fig. 85(a) subsampled to 48x40 using MATLABTM , wile Fig. 85(d) shows

the output of a 48x40 MATIA when it was configured to read an image. There was no

averaging of frames performed for this image and the quality can be improve by averaging

123

(a) (b)

(c) (d)

(e) (f)

Figure 84: Different transforms on a 16×16 imager block: (a) Image of a line; (b) Smoothed
image obtained from a 2×2 low pass filter; (c) Edge detection after high boost filter and thresholding;
(d) Result of a block DST transform; (e) Result of a block DCT type -II transform; (f)Result of a block
Walsh-Hadamard transform.

over several frames. Figure 85(c) shows the smoothed image (2x2 low pass filtered version of

Fig. 85(b)) performed using MATLABTM , while Fig. 85(e) shows the output of the 48x40

MATIA when the smoothing was performed on–chip. Different sizes smoothing kernels can

be programmed onto the MATIA and convolution can be performed.

A transform imager is capable of computing block transforms. Due to its programmabil-

ity, we can implement various block transform such as DCT, DST, Hardamard transform,

124

(a)

(b) (c)

(e)(d)

Figure 85: Images from 48x40 MATIA: (a) High resolution original image, (b) Original image sub–
sampled to 48x40, using MATLABTM , (c) Smoothed version of (b) using a 2x2 filter using MATLABTM ,
(d) Image from MATIA when it was configured to read an image, (e) Smoothed image (2x2 low pass filter)
using MATIA

-.08 -.06 -.04 -.02 0 .02 .04 .06

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Current (nA) Error (%)

(a) (b)

Figure 86: Programmed DCT values for JPEG compression using MATIA: A 8x8 DCT kernel
was programmed onto a 8x8 array. The values were programmed around a DC of 10nA. The DC was
subtracted for clarity of display. The maximum percentage deviation for the array was 0.07%.

125

Original
 DCT
 Reconstructed

(a)
 (b)
 (c)

Figure 87: Discrete cosine transforms (DCT): Floating gates can be accurately programmed to any
desired current for any set gate voltage. The above plots show the output of two rows (each of 16 elements)
that have been programmed to differential sinusoidal current waveforms and differential triangular current
waveforms, respectively.

(a) (b) (c)

Figure 88: Haar Transforms: Floating gates can be accurately programmed to any desired current
for any set gate voltage. The above plots show the output of two rows (each of 16 elements) that have
been programmed to differential sinusoidal current waveforms and differential triangular current waveforms,
respectively.

Haar transform, and so on. We show DCT and Haar transform as examples because DCT is

a well known useful block transform for years, and Haar transform is used for wavelet-based

compression, which is adopted in JPEG2000.

For implementing DCT the DCT coefficients had to be programmed onto the MATIA.

Figure 86 shows the programmed DCT values and the corresponding programming error.

126

The error seems to be random and is the case for every experiment. Figure 87 shows the

original image as acquired by the transform imager, the 8x8 block DCT output of the im-

ager, and the corresponding reconstructed image without compression. The reconstructed

images from the DCT coefficients show that the computation process has introduced min-

imal sources of error. The difference between reconstruction from the compressed image

and reconstruction starting from the original image is negligible. Figure 88 shows the Haar

transform results. We programmed the transform imager with 8x8 Haar transform. Fig-

ure 88(b) shows Haar transform before reordering, and Figure 88(c) is a reconstructed image

to verify the operation of the chip. In all the above experiments no averaging over frames

was performed. We have observed that averaging over frames enhances the image quality,

but as can be observed from the presented data even for single frames we get ’clean’ trans-

forms. We have computed these images and transforms up to 25 frame per second (fps).

We have characterized our single-column pixel reading speed and found we could achieve

greater than 60 fps for one Mega pixel imager.

5.7 Low–power baseline JPEG

It has been recognized for several decades that block transforms represent attractive trans-

form operatives for image coding. There are many unitary image block transforms that have

the property of packing signal energy at the beginning of the transformed image, and thus,

image compression algorithms can be built around this idea. JPEG, which stands for Joint

Photographic Experts Group, is the accepted block transform coding standard. It is the

official algorithm of the International Standard Organization (ISO) for image compression,

adopted in 1992. The JPEG algorithm has four modes: baseline-sequential, progressive,

lossless and hierarchial. We focus on the baseline system. Figure 89 shows the block dia-

grams of the various methods in which JPEG can be implemented. Figure 89(a) shows the

conventional implementation where all the processing is performed in the digital domain;

Figure 89(b) shows present implementations using MATIA, while Figure 89(c) shows a sin-

gle chip implementation of the whole system. The image transform coding strategy can be

described as follows [102]:

127

Conventional

Imager

text

text

DCT
 Quantizer

Huffman

coder

Quantizer

Huffman

Coder

Analog to

Digital

Converter

JPEG

Image

JPEG

Image

FPGA

FPGA

DCT

Analog to

Digital

Converter

Imager

Transform Imager

Programmable

(a)

(b1)

Analog to

Digital

Converter

Transform

Imager

text

Matlab

Analog

Computing

Array

Quantizer

Huffman

coder

JPEG

Image

FPGA

(b2)

text
Quantizer

Huffman

Coder

JPEG

Image

FPGA

DCT

Analog to

Digital

Converter

Imager

Programmable
 (c)

Transform Imager

Figure 89: Block diagram of JPEG algorithm using MATIA: Top level view of our JPEG system
used as an application for signal processing. (a) Conventional approach (b) Our proposed system systems.
MATIA will be used to compute the DCT transform. FPGA would be used for encoding. (c) Ideal single
chip system.

• Partition the image into contiguous blocks. By convention these blocks are typically

square N×N blocks where N = 8. Square partitionings of this sort assume inherently

that the input image dimensions are multiples of N. Alternately, circular or symmetric

extensions can be employed.

• Compute the DCT of each block. The DCT has become the overwhelming favorite for

128

image compression because it can be implemented very efficiently and its performance

for natural images is the best of the candidates available.

• Quantize the block transform coefficients. This implies that some attention is given

to the number of quantization levels that should be allotted to each block and what

type of quantizer should be used.

• Entropy code the transform coefficients. The first coefficient in each block is the DC

component and is typically larger in amplitude compared to the AC values. The DC

coefficients are coded by first computing the first backward difference and then using

a DC Huffman table. The AC coefficients are all coded on a block–by–block basis.

Runlength coding is used to code the AC elements. The baseline JPEG is considered

to be ”sequential” because the blocks are processed and coded in a scanned order,

starting from the upper left block and terminating with the lower right.

For JPEG the DCT-II equations are as follows:

X[k1, k2] =
1

4

7
∑

n1=0

7
∑

n2=0

Ck1
Ck2

x[n1, n2]cos[
(2n1 + 1)k1π

16
]cos[

(2n2 + 1)k1π

16
] (52)

with inverse as:

x[n1, n2] =
1

4

7
∑

k1=0

7
∑

k2=0

Ck1
Ck2

X[k1, k2]cos[
(2n1 + 1)k1π

16
]cos[

(2n2 + 1)k1π

16
] (53)

where,

Ck1
, Ck2

= {
1√
2

for k1, k2 = 0

1 otherwise
(54)

The Q matrix is given below:

129

bpp = 5.9740
psnr = 47.12

bpp = 1.3646
psnr = 32.12

bpp = 0.8819
psnr = 30.48

bpp = 0.5833
psnr = 25.73

Figure 90: JPEG Compression: Floating gates can be accurately programmed to any desired
current for any set gate voltage. The above plots show the output of two rows (each of 16 elements)
that have been programmed to differential sinusoidal current waveforms and differential triangular current
waveforms, respectively.

A2 =















































16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99















































(55)

As can be observed that the values in the low–frequency region are small compared

with the values in the high–frequency region. This gives preference to the dominant low

frequencies. The precise amount of compression can be controlled by scaling the Q–matrix.

Our architecture can be used as a JPEG encoder. The block DCT is computed on–chip.

The output can then be encoded using a FPGA. Since most of the digital coding involves

looking up the corresponding code from a look–up table this can be easily performed on

the FPGA.

Figure 90 gives the peak signal to noise ratio (PSNR) of the images with different

compression ratios. The following PSNR formula was used.

PSNR = 20 log
1√

MSE
(56)

130

Table 4: Comparison of JPEG implementations
Implementation FPGA-only Proposed

Number of slices 1751 519

Number of slice flip flops 2615 467

Number of 4 input LUTs 799 35

Number of BRAMS 2 0

Total power estimation 183mW 37mW

10 20 30

40 50 60

70 80 90

100 110 120

130 140 150

Figure 91: Motion JPEG Using MATIA: Output of MATIA system when it was configured to
compute DCT of each frame at 20fps. The numbers indicate the frame number.

where images are normalized to [0,1] and MSE is the mean squared error between them.

131

10 20 30

40 50 60

70 80 90

100 110 120

130 140 150

Figure 92: Reconstruction of Motion JPEG : Reconstruction was performed on a frame–by–frame
basis using MATLABTM . The numbers indicate the frame number.

The fully digital JPEG compression system was implemented in an FPGA using VHDL

for power consumption comparison with our system using MATIA. The results are summa-

rized in Table 4. Total power consumption of the fully digital implementation was estimated

at 183mW by the FPGA power estimate worksheet. We could save 146mW using the same

estimation method by removing the DCT computation part, which is processed in MATIA,

from the system. Note that we used a generic DCT module which is not designed for a

low power solution. However, considering even low power DCT modules consume about

30∼50mW [94, 85], our system still can achieve significant amount of power improvement.

132

10 20 30

40 50 60

70 80 90

100 110 120

130 140 150

Figure 93: Motion JPEG using Walsh-Hadamard Transform: Motion JPEG was performed
on moving images using Walsh-Hadamard Transform. Reconstruction was performed on a frame–by–frame
basis using MATLABTM . The numbers indicate the frame number.

Video compression can be achieved by compressing the frames of the digital video se-

quence individually. This approach can be used with JPEG compression algorithm and

is called motion JPEG. We have used MATIA to implement motion JPEG using DCT

and Walsh–Hadamard transforms as the block transforms. Figure 91 shows the output of

16x16 block DCT performed at every frame, while Fig. 92 shows the reconstructed frames.

Reconstruction was performed using MATLABTM . Similarly, Fig. 93 shows the recon-

structed frames after on–chip 16x16 block Walsh-Hadamard transform was performed for

133

Table 5: Summary of MATIA characteristics
Technology 0.5µ N-well CMOS

Array size 104×128

Pixel size 13.5 µm×13.5µm

Fill factor 46%

Kernel size 2×2 to 16×16

Programming error < 0.2% for 2.5 decades

Programming mechanisms Hot electron injection
and electron tunneling

No. of programmable 6656
parameters

Frame rate 25 fps

Dark current 14.9nA/cm2

Weber ratio 0.1211

Transistor count 74K

Frequency response (pixel) DC–100KHz

Power consumption(VDD = 3.3V) 80µW/frame

every frame. Since DCT gives better energy compaction on a block–by–block basis, when

compared to Walsh–Hadamard transform, JPEG using DCT would give higher compres-

sion for the same image. Although motion JPEG, which only exploits spatial redundancy,

reduces the bit rate significantly higher compression rates can be obtained by exploiting

spatio–temporal redundancy inherent in video sequences.

The general characteristics of the MATIA chip are summarized in Table 5. Figure 94

shows the die micrograph of our 128x128 MATIA. Much larger arrays are possible without

much impact on the performance of the scanning and processor unit. In a larger array most

of the additional area will be used in the photo array as overhead required for the scanning

and processing will be similar to that in this chip.

5.8 Conclusion

MATIA is enabled by programmable floating–gate circuits built in standard CMOS (single

or double-poly) processes. The floating-gate circuits allow for arbitrary pattern generation

as well as analog matrix-vector multiplication of images. This architecture is capable of

performing different matrix operations on an image. The pixel used in this architecture

performs matrix multiplication while maintaining a high fill-factor (46%), comparable to

134

Figure 94: Die Micrograph: This 128×128 MATIA chip was designed in 0.5µ N-well CMOS technology.
The chip has a photosensitive area of 2.99mm2

active pixel sensors. Floating gates are used to store the arbitrary matrix coefficients on–

chip. The chip operates in the subthreshold domain and thus has low power consumption

(80µW/frame). Since this architecture is fully programmable various transforms can imple-

mented using the same architecture. We have illustrated the use to MATIA for JPEG and

motion JPEG systems. The resulting data-flow architecture directly allows computation

of spatial transforms, motion computations, and stereo computations, in a straightforward

on-chip or multi-chip architecture.

135

CHAPTER VI

APPLICATIONS AND IMPACT

6.1 Impact of this work

Previously there were two schools of thought in imagers: APS and neuromorphic imagers.

Groups working with APS imagers have traditionally concentrated on large and fast imagers

used only for reading images. Their main concern was accuracy and speed for the imagers.

Neuromorphic imagers on the other hand have concentrated on emulating functionality of

biological systems. As as result these imagers have smaller fill factor but perform complex

computation at the pixel–level. MATIA is the first architecture that performs high level

computation while maintaining a high fill factor. This imager is also fully programmable

and hence can be used in various applications as discussed above. The impact of this work

can be summarized as below:

1. Adaptive programming large floating gate arrays: I, along with Mr. Guillermo Serrano,

have developed an adaptive programming algorithm for accurately programming large

arrays of analog computational memory elements within 0.2% of accuracy for 3.5

decades of currents. The average number of pulses required are 7-8 (20µs each). This

algorithm uses hot–electron injection for accurate programming and Fowler-Nordheim

tunneling for global erase. This methodology has been tested for programming large

floating–gate arrays in 0.25µm and 0.5µm N-well CMOS processes. This is the first

time that an algorithm can effectively program both in the sub–threshold and the

above threshold region using only one prior characterization. This is also the first

time that large floating–gate arrays have been programmed with this accuracy and

speed. The accuracy, right now, is limited by the resolution of the onchip I-Vs used

for measuring the currents and also by the accuracy of the DACs used for pulsing the

drain.

136

The proposed method is computationally intense. It requires the storage of character-

ization parameters for a family of VDS . A linear regression also has to be performed

before the exact VDS can be calculated. We have also proposed and proved a simpli-

fied model for this algorithm that has the same accuracy. Using this method only six

parameters have to be measured and stored. Since this method is a direct calculation,

the computational complexity is reduced, and no regression has to be performed.

These algorithms have been extensively used by several members of the lab. It has

been tested over processes and with different sized floating gates in various systems,

like DACs, FPAAs, audio systems and imagers.

I have designed, fabricated and characterized different capacitors (double poly and

MOS capacitors) that can be used with floating gates. Faster processes (0.25µm

TSMC etc.) do not allow double poly capacitors and this characterization was per-

formed to investigate if MOS capacitors can be used, instead of the usual double poly

capacitors, in the floating gate arrays.

2. Designing, analysis, simulation and testing of single pixel structure: I have designed,

simulated and tested single pixel structures in various processes for functionality. This

pixel has been used in larger systems for image transforms. This pixel can be used for

either reading an image or performing multiplication in the subthreshold region. Since

the operation is in the subthreshold region the overall power consumption is less. I

have also analyzed the pixel for noise and SNR, threshold mismatches, harmonic

distortion, gain errors, and dark currents. I, along with Mr. Ryan Robucci, have

measured the above mentioned parameters.

3. Designing, analysis, simulation and testing of current–mode four quadrant vector ma-

tric multipliers: I, along with Mr. Ravi Chawla and Mr. Venkatesh Srinivasan,

have designed, simulated, tested and analyzed a 128x32 current–mode analog vector–

matrix multiplier (VMM). This fully–differential current–mode VMM architecture is

fully programmable.

In order to achieve high power efficiency and low power operation, a sub-threshold

137

implementation is ideal. A voltage mode implementation operating in sub-threshold

will have limited linearity due to the exponential I-V relationship of the transistor op-

erating in saturation. This limitation in linearity can be alleviated to a certain extent

by using methods like source degeneration, which degrades the frequency response for

a particular power. A current-mode implementation can be used to overcome some

of these limitations.

The architecture is suitable for low power applications and has bandwidth-to-frequency

ratio of 531nW/MHz per differential multiplier. For a bandwidth of less than 10MHz,

this architecture is capable of performing 1 million MAC/0.9µW as compared to a

commercially available DSP (TMS32005x series), which gives 1 million MAC/0.25mW.

The VMM chip gives a linearity of over 2 decades with a worst case error of ±2.5%.

The area of the chip is 0.83mm2. The IC prototype was fabricated in a 0.5µm CMOS

MOSIS process. We have demonstrated block matrix transforms using this architec-

ture. The VMM chip can be used for applications like audio and video processing.

4. A working system for block matrix transforms: I have designed, simulated and tested

a low power image processor. This imager is capable of performing programmable

matrix operations on an image. The imager architecture is both modular and pro-

grammable. The pixel used in this architecture performs matrix multiplication while

maintaining a high fill-factor (46%), comparable to active pixel sensors. Floating

gates are used to store the arbitrary matrix coefficients on–chip. The chip operates

in the subthreshold domain and thus has low power consumption (80µW/frame). I

have tested the various sub-blocks of the imager system for functionality. The various

decoders and other peripheral circuits, used for automatic programming and image

read–out have been tested individually. These system chips were designed for differ-

ential current outputs. Peripheral circuits for automatic programming of large arrays

using an external programming board were also included. These system chips were

designed so that each sub-block could be tested individually.

I have successfully programmed and acquired images and system data from 14x14,

138

16x16, 64x72 and 128x128 imagers that were fabricated using 0.5µm AMI technology.

I have also gathered data which prove that the system architecture can be used for

different types of on–chip filtering and transforms.

5. A low power reconfigurable JPEG compressor : I have implemented a low pow JPEG

compressor using MATIA. By partitioning the algorithm into analog and digital parts,

significant amount of power improvement can be achieved compared to the conven-

tional digital implementation. Peak signal–to–noise ratio (PSNR) of compressed im-

ages with different bit per pixel (bpp) are measured to verify the operation and the

performance of the system, and power improvement was verified using our FPGA only

implementation.

The fully digital JPEG compression system was implemented in an FPGA using

VHDL for power consumption comparison with our system using MATIA. Total power

consumption of the fully digital implementation was estimated at 183mW by the

FPGA power estimate worksheet. We could save 146mW using the same estimation

method by removing the DCT computation part, which is processed in MATIA, from

the system. Note that we used a generic DCT module which is not designed for a

low power solution. However, considering even low power DCT modules consume

about 30∼50mW, our system still can achieve significant amount of power improve-

ment. I have demonstrated the use of MATIA for motion JPEG using DCT and

Walsh–Hadamard block transforms.

I have designed and populated a PCB that can be used for faster image capture and

programming of floating gates. The PCB is to be controlled by a FPGA. The layout

was done by Mr. Faik Baskaya. The VHDL code for testing the system imager was

written by Mr. Jungwon Lee.

6. An optical bench for universal imager testing :

I have designed a versatile test setup for testing our imagers. This setup can be used

to test any imager that have been designed for still or video applications. The test

setup is interfaced with the computer such that arbitrary images can be focussed onto

139

the chip being tested. It is designed so that arbitrary images or video can be focussed

onto the photodiode array area of any imager chip. The setup consists of a liquid

crystal display (LCD) which is connected to the computer being used. Any image

that is displayed on the LCD is focussed onto the chip using complex lenses. I have

assembled and tested this testing bench.

The work finished has been published in seven conferences [7, 8, 19, 57, 58, 59, 95], five

journal papers [9, 10, 11, 20, 53] and one patent [34]

6.2 Applications for MATIA

The MATIA architecture can be used for various other applications other than as transform

imagers or as image encoders. This imager can be used for any applications that need block

transforms of images for operation. It can also be used just as an imager as it can be

programmed to read an image using the same architecture.

6.2.1 Depth from Stereo

Figure 95 shows a block diagram using these transform imagers to compute depth from

two imagers (stereo image processing). Since the two imagers have pixels aligned along one

axis, computing depth from stereo only requires computing offsets on a row–by–row basis.

In our architecture, the pixel offset function for each row can be calculated using either

a correlation–based technique or, with slight modification, an absolute difference squared

approach. The pixel offset function is calculated instantaneously for each row as it is

presented to the stereo correlation circuit from the two transform imagers. One advantage of

using the transform imagers is that calibration can be performed on the individual imagers

making the stereo processing possible in easily manufactured systems. It should also be

noted that the correlation–based stereo pixel offset calculation is similar to Maholwald’s

one-dimensional stereo imager design [82] based on models of perception [104]. One could

also imagine similar algorithms to compute three-dimensional motion enabled by two or

more imagers.

140

Analog Correlation
Processor

Rows
Aligned

Resulting Image Flow of Depth Computation for each Pixel

Figure 95: Using two transform imagers to compute stereo computation: Because each row
is aligned with another row on the second imager along the same axis, finding depth for each pixel is a
row by row operation, which maps directly into the transform imager’s output. The inputs to the stereo
processing could be outputs from two imagers, or any symmetric processing starting from two imagers. The
resulting computation is similar to Maholwald’s one-dimensional stereo imager design, although a variety of
algorithms can be computed using this architecture.

6.2.2 Temporal filtering

One interesting question with this flow model is how to perform temporal filtering. We can

either build the filters directly into the pixel, which would result in much larger pixels and

greatly increase the system cost for a given resolution, or we can store a delayed version

of the transformed image. This approach requires a temporary storage array for currents

or voltages for each delay thus limiting the number of temporal delays that can be built in

practice (Fig. 46).

Applications of temporal filtering include subtraction of constant background images,

141

temporal differencing, motion estimation, and, by using an array of floating-gate elements

instead of the sample–and–hold elements, fixed images such as offset errors from dark cur-

rents may be subtracted out. In general, however, temporal filters should be used sparingly

or after spatial compression due to the number of required sample–and–hold elements.

6.2.3 Universal Matrix Image Transforms

MATIA can be used to test any arbitrary transforms on silicon since it is fully pro-

grammable. It compute arbitrary separable 2-D linear operations. These operations are

expressed as two matrix multiplications on the image

Y = ATPB (57)

where P is the image array of pixels, Y is the computed output image array, and A

and B are the transform matrices corresponding respectively to the transform on the image

plane by the basis functions and the the floating-gate enabled multiplication after the image

plane. Furthermore, if the input waveforms are continuous, then the result is a continuous

waveform, resulting in added computational options. For example, the choice of output

signal sampling will result in different discrete–time inspired computations with an identical

setup.

6.2.4 Preprocessing for Optical Flow

Figure 96 shows the block diagram using these imagers and additional matrix computations

as a front-end processor to compute optical flow. One must design separate spatial (for x and

y directions) and temporal differencing blocks. The spatial differencing is performed using

a multi-resolution differencing matrix so that subsequent processing can identify smooth

large–object motion as well as detail motion. The temporal differencing block requires a set

of current sample–and–hold elements built into an array that could be used for computing

temporal derivatives of this image. These outputs can then be used by digital processing to

compute global displacement estimation, target location, and other higher–level information

with reduced complexity.

142

Transform
Imager

(one stage)

Interface circuitry /
Digital Signal Processing
(FPGA based computing)Ethernet interface

to computer(s)

Additional
Image

Enhancement

X-derivative /
Image

Enhancement

Y-derivative /
Image

Enhancement

Temporal
Filtering /

Derivatives

Figure 96: Block diagram for a motion (optical flow) computation system: This system
computes the two spatial derivatives (x and y), a temporal derivative, and a filtered version of the original
image. These derivatives are required for any optical flow system. We can make fairly smooth derivative
operations in the spatial domain by combining a smoothing filter with the derivative kernel over a moderate
window size (16x16 or greater). The time derivative is computed by subtracting two or more successive
frames, which require a sample and hold for each image frame.

6.2.5 DCT based classification

Texture as a primitive visual cue has been studied for a long time. Various techniques have

been developed for texture segmentation, texture classification and texture synthesis. In

general, neighboring pixels within an image tend to be highly correlated. As such, it is

desired to use an invertible transform to concentrate randomness into fewer, decorrelated

parameters. The Discrete Cosine Transform (DCT) has been shown to be near optimal for

a large class of images in energy concentration and decorrelating. The idea is to use a few

of the most ”informative” coefficients to represent the image space, and classify each image

based on these coefficients.

Most of these algorithms have been looked at from a software point of view, but using

the MATIA these algorithm can be tested on silicon. Since this architecture is current–mode

other current mode post–processing can be performed on images.

6.2.6 Super–resolution techniques for high resolution images

The idea of super-resolution, combining images by combining pieces from an image sequence

into a single image with higher resolution than any of the individual images, has been around

for years. Every image in a sequence provides some additional information, provided they

are not noise–free, focussed, and Nyquist sampled.

143

The MATIA chip is capable of fast image readout. The factors that slow down the

architecture are subthreshold operation and the ADCs that are used for image capture.

Standard current boosting and cascoding techniques can be used to circumvent the first

limitation. The imager can be operating in the subthreshold region but the current outputs

can be boosted for faster operation of the subsequent stages. The ADC that is being used

right now is the integrating type. This is a slow but accurate ADC. Faster ADCs, like

pipelined, successive approximation or flash ADCs can be implemented, in either voltage or

current mode for faster readout at the cost of higher power consumption. These fast ADC

need not be column parallel and the outputs can be pipelined too for faster image readout.

The MATIA can be used as a front end in a system implementing super–resolution images.

The other operations required for the whole system can be implemented either using DSP

techniques or traditional and neuromorphic analog techniques.

144

APPENDIX A

OPTICAL TEST BENCH

I have designed a versatile test setup for testing our imagers. This setup can be used to

test any imager that have been designed for still or video applications. The test setup is

interfaced with the computer such that arbitrary images or video can be focussed onto the

chip being tested.

Figure 97 shows the the block diagram of the overall setup. The test bench has been

designed such that everything is controlled using a main PC or laptop. The setup has two

monitors. One of the video outputs go to a video splitter and then to the second monitor

and the LCD display. This way, anything that is displayed on the second monitor also

comes on the LCD. Hence this setup can be used for testing either still imagers or video

imagers, as these can be effectively focussed onto to the test chip. The setup also consists

of an FPGA board and the optical test bench. The VHDL modules for controlling the

test board and also for image capture run on the FPGA. This FPGA is controlled though

MATLABTM running on the main PC/laptop.

Figure 98 shows the schematic of the optical test bench. A DC regulated light source is

used as a back light for the LCD screen, so that AC interference is minimized. The LCD

is interfaced with a computer through a video splitter. Since the LCD (1024×768) needs

polarized light for operation two polarizers have been used. The image is then focussed

onto the light sensitive area of the imager chip through a complex lens system. The chip is

mounted onto a XYZ translator so that the image can be focussed onto the chip accurately.

All of the components used are mounted on a optical slide for easier movement along one

plane. Figure 99(a) and (b) show the front view and the side view of the optical test bench.

It also shows how the PCB and the test chip are mounted onto the optical test bench. Table

6 lists the parts required to assemble the optical test bench.

145

Main PC/Laptop

Video

Splitter

FPGA

board

Monitor 1

Optical

test bench

Monitor 2

Figure 97: Imager test setup Schematic of the universal imager test setup

L
en

s

L
ig

h
t

S
o
u
rc

e

Optical Bench

Mounting

Posts

Imager

Chip

LCD interfaced

with the computer

P
o
la

ri
ze

r

P
o
la

ri
ze

r

XYZ

Translator

Optical

Slide

Figure 98: Optical test setup Schematic of the universal imager test setup. It can be used for both
still–image and video chip testing.

146

(a)

(b)

Figure 99: Optical test setup Different views of the optical test setup

147

Table 6: Parts for the universal test setup
Optical rail, Dovetail, 36” Carrier: 2.5”,1.5”, 0.5”

Wratten neutral density filter Std. Post holders, 6” (10)
(0.1, 0.3, 0.4, 0.6,0.9, 2) O.D.

Mounting post, 6” (10) Composite breadboard table
23”x35”

Post colar lock ring (10) Optical cell assembly (3)

Medium 2.62” square translation stage X–Y Metric stage
three axis (X–Y–Z)

Mounted polarizing filters (2) Rotating polarizer holder (2)

Lens kit Mounted std. Iris diaphragm

Allen wrench Allen head set screw

Flat head Phillips screw Heat absorbing glass 50mm x 50mm

Fixed filter mount Beam splitter (2)

Rectangular optical mount (2) Prism holder (2)

Bar–type lens mount 40mm (2) PCX lens 40mm

1/4–20 English socket head cap screw Angle mount, 3”

Video camera, Fixed focal length lens,
Monochrome high resolution Manual Iris, 25mm

Fixed focal length DC regulated fiber optic
C–mount spacer kit illuminator PL-900

Fiber optic light guide 2 port VGA video splitter
adapter SX–10

Video card Video cables

GPIB card LCD display (1024×768)

ball driver (3/16) TV 13” monitor

148

APPENDIX B

FLOATING GATE RAMPUP/RAMPDOWN

TRANSIENTS

The floating gates are programmed using FN tunneling and Hot–electron injection processes.

For injection the chip has to be ramped up and ramped down, as explained in Chapter 2.

When these are performed some current transients are observed. Measured currents seem

to change over a period of minutes after injecting.

The transients for different initial currents are plotted in Fig. 100. It can be observed

that lower ramp up currents induce longer transients and thus takes a longer time to settle

to a final value. Similarly the transients can be observed during the ramp down phase too,

as shown in Fig. 101. Again it is observed that the lower currents induce larger settling

times. The transients are also observed for changing supply voltages Ramp down transients

for various supply voltages (VDD) as shown in Fig. 102.

These transients have been observed in almost all chips fabricated in 0.25µ and 0.5µ

N-well CMOS processes. Much thorough study needs to be conducted to understand these

effects.

149

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−6

Time (s)

C
ur

re
nt

 (
A

)

(a)

0 100 200 300 400 500 600 700 800 900
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Time (s)

N
or

m
al

iz
ed

 C
ur

re
nt

(b)

Figure 100: Ramp up transients for various initial currents: (a) Initial measured ramp up
currents, (b) Normalized currents for comparing transients.

150

0 100 200 300 400 500 600 700 800 900
10

−10

10
−9

10
−8

10
−7

10
−6

Time (s)

C
ur

re
nt

 (
A

)

(a)

0 100 200 300 400 500 600 700 800 900
1

1.05

1.1

1.15

Time (s)

N
or

m
al

iz
ed

 C
ur

re
nt

(b)

Figure 101: Ramp down transients for various initial currents: (a) Initial measured ramp down
currents, (b) Normalized currents for comparing transients.

151

0 5 10 15
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

Time (m)

N
or

m
al

iz
ed

 C
ur

re
nt

(a)

0 5 10 15
1

1.02

1.04

1.06

1.08

1.1

Time (m)

N
or

m
al

iz
ed

 C
ur

re
nt

(b)

Figure 102: Ramp down transients for various supply voltages (VDD): (a) During ramp up, (b)
During ramp down.

152

APPENDIX C

PRINTED CIRCUIT BOARD

Two printed circuit boards were designed for testing, programming, and fast image capture

from the imager chips. Figure 103 and Fig. 104 show the schematic of the second board.

The features of the board are as follows:

• The analog biases (drain voltage, gate voltage, tunneling voltage, and power supply)

required by the imager chip are provided by octal-DACs which are controlled by a

FPGA. There are additional circuitry for generating the tunnel voltage (15 V) and

all the analog voltages are buffered before they are presented to the imager chip.

• All the DACs are controlled through FPGA.

• The board board also has 14-bit 10 MS/s ADCs for image capture.

• The digital signals to be used during the rampup phase go through level shifters, since

a high power supply (6V 6.5V) is required for programming.

• The data was transferred from the FPGA to the computer through an ethernet con-

nection.

• The VHDL modules for controlling the different modules in the board were controlled

using a C core. This was in turn controlled by MATLABTM . The test setup was

configured such that it can be fully controlled through MATLABTM .

153

Figure 103: Schematic of imager board - I: Schematic of the imager board. It was designed using
EAGLE.

154

Figure 104: Schematic of imager board - II: Schematic of the imager board. It was designed using
EAGLE.

155

(a)

(b)

Figure 105: Pictures of PCB: (a) Top, and (b) bottom view of the PCB.

156

APPENDIX D

DESCRIPTION OF CHIPS FABRICATED

The following chips have been fabricated:

Pixel characterization chips

Chip no. Description

T16W CR Pixel Characterization chip (AMI 05)(Hasler, Smith)

Imager system chips

Chip no. Description

T21R EF 16x16 system chip using poly capacitors for floating gate capacitors (AMI 05)

T21R DU 16x16 system chip using MOS capacitors for floating gate capacitors (AMI

05)

T21S BC 128x128 system chip using poly capacitors for floating gate capacitors (AMI

05)

T26Y BG Modified 128x128 system chip using poly capacitors for floating gate capacitors

(AMI 05)

T2AK AU 16x16 system chip using poly capacitors for floating gate capacitors with ACA

(AMI 05)

T29U AP 512x460 system chip (TSMC 0.25)

T29U PR 16x16 system chip using poly capacitors for floating gate capacitors and having

integrating type on-chip A/D (AMI 05)

T29U PB 48x40 system chip using poly capacitors for floating gate capacitors and having

integrating type on-chip A/D (AMI 05)

157

Peripheral Test structures

Chip no. Description

T1BD BQ 14x14 array of current copiers (AMI 05)

T21R EX Current mode sigma delta A/D for column parallel readout (AMI 05)

T23R CC 4x4 system chip using MOS capacitors for floating gate capacitors and having

on-chip programming structures(AMI 05)

T23R BE Test structures for faster pitch constrained decoders, shifters and counters

(AMI 05)

158

REFERENCES

[1] “IEEE standard definitions and characterization of floating gate semiconductor ar-
rays,” June 1998.

[2] Acosta-Serafini, P. M., Masaki, I., and Sodini, C., “Predictive multiple sam-
pling algorithm with overlapping integration intervals for linear wide dynamic range
integrating image sensors,” IEEE Transactions on Intelligent Transportation Systems,
vol. 5, pp. 33–41, March 2004.

[3] Aizawa, K., Ohno, H., Egi, Y., Hamamoto, T., Hatori, M., Maruyama, H.,
and Yamazaki, J., “On sensor image compression,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 7, pp. 543–548, June 1997.

[4] Anderson, D. V. and Hasler, P., “Cooperative analog/digital signal processing,”
in World Conference on Systemics, Cybernetics, and Informatics, (Orlando, FL), July
2001.

[5] Andreou, A. G., “Low power analog VLSI systems for sensory information process-
ing,” in Microsystems technologies for multimedia applications (Sheu, B., Sanchez-

Sinencio, E., and Ismail, M., eds.), pp. 501–522, Los Alamitos, CA: IEEE Press,
1995.

[6] Aslam-Siddiqi, A., Brockherde, W., and Hosticka, B., “A 16 x 16 nonvolatile
programmable analog vector-matrix multiplier,” IEEE Journal of Solid-State Circuits,
vol. 33, pp. 1502–1509, Oct. 1998.

[7] Bandyopadhyay, A. and Hasler, P., “A fully programmable CMOS block ma-
trix transform imager architecture,” in Proceedings of the Custom Integrated Circuits
Conference, (San Jose, CA), pp. 2233–2236, 2003.

[8] Bandyopadhyay, A., Lee, J., Robucci, R., and Hasler, P., “A 80µW/frame
104x128 cmos imager front end for jpeg compression,” to be submitted, 2004.

[9] Bandyopadhyay, A., Lee, J., Robucci, R., and Hasler, P., “MATIA: A pro-
grammable 80µW/frame CMOS block matrix transform imager architecture,” to be
submitted, 2004.

[10] Bandyopadhyay, A., P.Hasler, and Anderson, D., “A CMOS floating-gate ma-
trix transform imager,” IEEE sensors, in press.

[11] Bandyopadhyay, A., Serrano, G., and Hasler, P., “Adaptive algorithm us-
ing hot–electron injection for programming analog computational memory elements
within 0.2% of accuracy over 3.5 decades,” to be submitted, 2004.

[12] Bell, J. A., Bruce, J. W., Blalock, B. J., and Stubberud, P. A., “CMOS
current mode flash analog to digital converter,” MWCAS, pp. 272–275, 2001.

159

[13] Blum, R., Wilson, C., Hasler, P., and DeWeerth, S. P., “A CMOS imager
with real-time frame differencing and centroid computation,” in Proceedings of the
International Symposium on Circuits and Systems, vol. 3, (Phoenix, AZ), pp. 329–
332, May 2002.

[14] Boahen, K., “The retinomorphic approach: pixel-parallel adaptive amplification,
filtering, and quantization,” Analog Integrated Circuits and Signal Processing, vol. 13,
pp. 53–68, May-June 1997.

[15] Boahen, K., “A throughput-on-demand address-event transmitter for neuromorphic
chips,” in Advanced Research in VLSI, (Atlanta, GA), pp. 72–86, 1999.

[16] Boahen, K. and Andreou, A., “A contrast-sensitive retina with reciprocal
synapses,” in Advances in Neural Information Processing Systems 4 (Moody, J. E.,
ed.), San Mateo, CA: Morgan Kaufman Publishers, 1991.

[17] Brennan, K. F., The Physics of Semiconductors. Cambridge, UK: Cambridge Uni-
versity Press, 1999.

[18] Cauwenberghs, G., Neugebauer, C., and Yariv, A., “An adaptive cmos matrix-
vector multiplier for large scale analog hardware neural network applications,” Joint
Conference on Neural Networks, vol. 1, pp. 507–511, July 1991.

[19] Chawla, R., Bandyopadhyay, A., Srinivasan, V., and Hasler, P., “A
531nW/MHz, 128x32 current mode programmable analog vector-matrix multiplier
with over 2 decades of linearity,” in Proceedings of the Custom Integrated Circuits
Conference, (Orlando, CA), 2004.

[20] Chawla, R., Bandyopadhyay, A., Srinivasan, V., and Hasler, P., “A
531nW/MHz, 128x32 current mode programmable analog vector-matrix multiplier
with over 2 decades of linearity,” to be submitted, 2004.

[21] Cho, K. and Fossum, A. I. K. E. R., “A 1.5–v 550-µw 176x144 autonomous cmos
aps sensor,” IEEE Transactions on Electron Devices, vol. 50, pp. 96–105, Jan 2003.

[22] Cho, K., Krymski, A., and Fossum, E. R., “A 1.2 V micropower CMOS active
pixel image sensor for portable applications,” in International Solid-State Circuits
Conference, (San Francisco), pp. 114–115, Feb. 2000.

[23] Chung, S., Kuo, S., Yih, C., and Chao, T., “Performance and reliability evalua-
tions of p-channel flash memories with different programming schemes,” IEDM Tech.
Dig., pp. 295–298, 1997.

[24] Cohen, M. and Cauwenberghs, G., “Floating-gate adaptation for focal-plane on-
line nonuniformity correction,” IEEE Transactions on Circuits and Systems II, vol. 48,
pp. 83–89, Jan. 2001.

[25] Cohen, M. and Cauwenberghs, G., “Floating-gate adaptation for focal-plane on-
line nonuniformity correction,” IEEE Transactions on Circuits and Systems II, vol. 48,
pp. 83–89, Jan. 2001.

160

[26] Decker, S., McGrath, R. D., Brehmer, K., and Sodini, C. G., “A 256 x 256
CMOS imaging array with wide dynamic range pixels and column–parallel digital
output,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, 1998.

[27] del Rio-Fernandez, R., Linan-Cembrano, G., Dominguez-Castro, R.,
and Rodriguez-Vazquez, A., “A mismatch-insensitive high-accuracy high-speed
continuous-time current comparator in low voltage cmos,” 2nd IEEE-CAS Region 8
Workshop on Analog and Mixed IC Design, pp. 111–116, 1997.

[28] Delbrück, T., “An electronic photoreceptor sensitive to small changes in intensity,”
in Advances in Neural Information Processing Systems 1 (Touretzky, D. S., ed.),
pp. 720–727, Morgan Kaufman, 1988.

[29] Delbrück, T., “Silicon retina with correlation-based velocity-tuned pixels,” IEEE
Transactions on Neural Networks, vol. 4, no. 3, pp. 529–541, 1993.

[30] Delbrück, T. and Mead, C. A., “Time-derivative adaptive silicon photorecep-
tor array,” in Proceedings SPIE, Infrared sensors: Detectors, Electronics, and Signal
Processing, vol. 1541, (San Diego, CA), pp. 92–99, July 1991.

[31] DeWeerth, S., “Analog VLSI circuits for stimulus localization and centroid,” In-
ternational Journal of Computer Vision, pp. 191–202, 1992.

[32] Doswald, D. and et. al., “A 30-frames/s megapixel real time CMOS image pro-
cessor,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1732–1743, Nov. 2000.

[33] Dudgeon, D. E. and Mersereau, R. M., eds., Multidimensional Digital Signal
Prosessing. Englewood Cliffs, New Jersey: Prentice-Hall, 1984.

[34] Duggar, J. D., Hall, T. S., Hasler, P., Anderson, D. V., Smith, P. D., Ku-

cic, M. R., and Bandyopadhyay, A., “Floating–gate analog circuit.” U.S. Patent
Application No. 20030183871, 2003. Patent Pending.

[35] Etienne-Cummings, R., van fer Spiegel, J., and Mueller, P., “A focal plane
visual motion measurement sensor,” IEEE Transactions on Circuits and Systems,
vol. 44, pp. 55–66, Jan. 1997.

[36] Etienne-Cummings, R., Kalayjian, Z. K., and Cai, D., “A programmable focal-
plane MIMD image processor chip,” IEEE Journal of Solid-State Circuits, vol. 36,
pp. 64–73, Jan. 2001.

[37] Fossum, E. R., “CMOS image sensors: electronic camera on a chip,” in International
Electron Devices Meeting, (Washington, D. C.), pp. 17–25, Dec. 1995.

[38] Fossum, E. R., “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans-
actions on Electron Devices, vol. 44, pp. 1689–1698, Oct. 1997.

[39] Fossum, E. R., “Digital camera system on a chip,” IEEE Micro, vol. 18, pp. 8–15,
May 1998.

[40] Fowler, R. H. and Nordheim, L., “Electron emission in intense electric fields,”
Proceedings of the Royal Society of London, vol. A119, pp. 173–181, 1928.

161

[41] Fujimori, I., Wang, C., and Sodini, C., “A 256256 CMOS differential passive pixel
imager with fpn reduction techniques,” IEEE Int. Solid-State Circuits Conference,
pp. 106–107, Feb. 2000.

[42] Fujishima, H., Takemoto, Y., Onoye, T., and Shirakawa, I., “An architec-
ture of a matrix-vector multiplier dedicated to video decoding and three-dimensional
graphics,” IEEE Transactions on Circuits and Systems II, vol. 9, pp. 306–314, Mar.
1999.

[43] Funatsu, E., Hara, K., Toyoda, T., Miyake, Y., Ohta, J., and Kyuma, K.,
“An artificial retina chip made of a 128x128 pn–pn variable sensitivity photodetector
array,” IEEE Photonics Technology Letters, vol. 7, pp. 188–190, Feb. 1995.

[44] Funatsu, E., Nitta, Y., Miyake, Y., Toyoda, T., Ohta, J., and Kyuma, K.,
“An artificial retina chip with current-mode focal plane image processing functions,”
IEEE Transactions on Circuits and Systems, vol. 44, no. 10, pp. 1777–1782, 1997.

[45] Gealow, J. C., Herrmann, F. P., Hsu, L. T., and Sodini, C. G., “System
design for pixel-parellel image processing,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 4, Jan. 1996.

[46] Geelen, G., “A 6b 1.1GSamples/s CMOS A/D converter,” ISSCC, pp. 128–129,
2001.

[47] Genov, R. and Cauwenberghs, G., “Charge-mode parallel architecture for vector-
matrix multiplication,” IEEE Transactions on Circuits and Systems II, vol. 48,
pp. 930–936, Oct. 2001.

[48] Gonzales, R. C. and Woods, R. E., Digital Image Processing. Delhi, India: Pear-
son Education Asia, 2002.

[49] Graupner, A., Schreiter, J., Getzlaff, S., and Schffny, R., “CMOS im-
age sensor with mixed-signal processor erray,” IEEE Journal of Solid-State Circuits,
vol. 38, pp. 948–957, June 2003.

[50] Gruev, V. and Etienne-Cummings, R., “Implementation of steerable spatiotem-
poral image filters on the focal plane,” IEEE Transactions on Circuits and Systems
II, vol. 49, pp. 65–73, Apr. 2002.

[51] Harrison, R. R. and Koch, C., “An analog VLSI implementation of a visual in-
terneuron: enhanced sensory processing through biophysical modeling,” International
Journal of Neural Systems, vol. 9, pp. 391–395, Oct. 1999.

[52] Harrison, R. R. and Koch, C., “A robust analog VLSI reichardt motion sensor,”
Analog Integrated Circuits and Signal Processing, vol. 24, pp. 213–229, Sept. 2000.

[53] Hasler, P., Bandyopadhyay, A., and Anderson, D. V., “High fill-factor imagers
for neuromorphic processing enabled by floating gates,” EURASIP Journal on Applied
Signal processing, pp. 676–689, 2003.

[54] Hasler, P., Diorio, C., Minch, B. A., and Mead, C. A., Advances in Neural
Information Processing Systems 7, ch. Single transistor learning synapses, pp. 817–
824. Cambridge, MA: MIT Press, 1995.

162

[55] Hasler, P. and Lande, T. S., “Special issue on floating-gate devices, circuits, and
systems,” IEEE Journal of Circuits and Systems, vol. 48, Jan. 2001.

[56] Hasler, P. and Anderson, D. V., “Cooperative analog-digital signal processing,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. IV, (Orlando, FL), pp. 3972–3975, May 2002.

[57] Hasler, P. and Bandyopadhyay, A., “A matrix transform imager and architec-
ture,” in IEEE Sensors, (Orlando), pp. 177–182, June 2002.

[58] Hasler, P., Bandyopadhyay, A., and Anderson, D. V., “Low-power analog
image processing using transform imagers,” in IEEE Digital Signal Processing Work-
shop, 2002 and the 2nd Signal Processing Education Workshop, pp. 333 – 338, Oct.
2002.

[59] Hasler, P., Bandyopadhyay, A., and Smith, P., “A matrix transform imager
allowing high fill factor,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, (Phoenix, AZ), pp. 337–340, May 2002.

[60] Hasler, P. and Dugger, J., “Correlation learning rule in floating-gate pFET
synapses,” IEEE Transactions on Circuits and Systems II, vol. 48, pp. 65–73, Jan.
2001.

[61] Hasler, P. and Minch, B. A., Floating-Gate Devices, Circuits, and Systems. IEEE
Press, 2002.

[62] Hasler, P., Minch, B. A., Dugger, J., and Diorio, C., “Adaptive circuits and
synapses using pFET floating-gate devices,” in Learning in Silicon (Cauwenbergs,

G., ed.), pp. 33–65, Kluwer Academic, 1999.

[63] Hasler, P., Minch, B. A., Dugger, J., and Diorio, C., Learning in Silicon,
ch. Adaptive Circuits and Synapses Using pFET Floating-Gate Devices, pp. 33–65.
Kluwer Academic, 1999.

[64] Higgins, C. M. and Koch, C., “A modular multi-chip neuromorphic architecture for
real-time visual motion processing,” Analog Integrated Circuits and Signal Processing,
vol. 24, pp. 195–211, Sept. 2000.

[65] Hyde, J., Humes, T., Diorio, C., Thomas, M., and Figueroa, M., “A 300-
MS/s 14-bit digital-to-analog converter in logic CMOS,” IEEE Journal of Solid-State
Circuits, vol. 38, pp. 734–740, May 2003.

[66] Kandel, E. R., Schwartz, J. H., and Jessel, T. M., eds., Principles of Neural
Science. New York: Elsevier, 1991.

[67] Kawahito, S., Yoshida, M., Sasaki, M., Umehara, K., Miyazaki, D., Ta-

dokoro, Y., Murata, K., Doushou, S., and Matsuzawa, A., “A CMOS image
sensor with analog two-dimensional DCT-based compression circuits for one-chip cam-
eras,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 2030–2041, Dec. 1997.

[68] Khachab, N. and Ismail, M., “A 16 x 16 nonvolatile programmable analog vector-
matrix multiplier,” vol. 33, pp. 1502–1509, Oct. 1998.

163

[69] Kim, K. and Koh, J., “An area efficient DCT architecture for MPEG-2 video en-
coder,” IEEE Transactions on consumer electronics, vol. 45, pp. 62–67, Feb. 1999.

[70] Kim, K., Lee, K., Jung, T., and Suh, K., “An 8-bit-resolution, 360-s write
time nonvolatile analog memory based on differentially balanced constant-tunneling-
current scheme (DBCS),” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1758–
1762, November 1998.

[71] Kinoshita, S., Morie, T., Nagata, M., and Iwata, A., “A PWM analog memory
programming circuit for floating-gate MOSFETs with 75-µs programming time and
11-bit updating resolution,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1286–
1290, May 2003.

[72] Kordesch, A. and et. al., “A programming method for multilevel analog flash
memory using coarse and fine sequence,” Int. Symposium on VLSI Technology, Sys-
tems, and Applications, pp. 146–149, April 2001.

[73] Krenik, W. R., Hester, R. K., and DeGroat, R. D., “Current-mode flash A/D
conversion based on current-splitting techniques,” Proceedings of the International
Symposium on Circuits and Systems, pp. 585 –588, 1992.

[74] Krymski, A. I., Bock, N. E., Tu, N., Blerkom, D. V., and Fossum, E. R., “A
high-speed, 240-frames/s, 4.1-mpixel cmos sensor,” IEEE Transactions on Electron
Devices, vol. 50, pp. 130–135, Jan 2003.

[75] Kub, F., Moon, K., Mack, I., and Long, F., “Programmable analog vector-matrix
multipliers,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 207–214, Feb. 1990.

[76] Kucic, M., Low, A., Hasler, P., and Neff, J., “A programmable continuous-
time floating-gate fourier processor,” IEEE Transactions on Circuits and Systems II,
vol. 48, pp. 90–99, Jan. 2001.

[77] Kucic, M., Hasler, P., Dugger, J., and Anderson, D. V., “Programmable and
adaptive analog filters using arrays of floating-gate circuits,” in 2001 Conference on
Advanced Research in VLSI (Brunvand, E. and Myers, C., eds.), pp. 148–162,
IEEE Computer Society, March 2001.

[78] Kyomasu, M., “A new MOS imager using photodiode as current source,” IEEE
Journal of Solid-State Circuits, vol. 26, pp. 1116–1122, Aug. 1991.

[79] Lenzlinger, M. and Snow, E., “Fowler Nordheim tunneling into thermally grown
sio,” Journal of Applied Physics, vol. 40, no. 6, pp. 278–283, 1969.

[80] Liu, S., Kramer, J., Indiveri, G., Delbruck, T., and Douglas, R., Analog
V LSI: circuits and principles. London, England: MIT press, 2002.

[81] Luo, Q. and Harris, J., “A novel integration of on-sensor wavelet compression for a
CMOS imager,” Proceedings of the International Symposium on Circuits and Systems,
pp. 325–328, May 2002.

[82] Mahowald, M., “Analog VLSI chip for stereocorrespondence,” in Proceedings of
the International Symposium on Circuits and Systems, vol. 6, (London), pp. 347–350,
May 1994.

164

[83] Mahowald, M., An Analog VLSI Stereoscopic Vision System. Boston, MA: Kluwer
Academic Publishers, 1994.

[84] Mahowald, M. and Mead, C., “The silcon retina,” Scientific American, vol. 264,
no. 5, pp. 76–82, 1991.

[85] Martina, M., Molino, A., and Vacca, F., “Reconfigurable and low power 2D-DCT
IP for ubiquitous multimedia streaming,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 26–29, 2002.

[86] Mead, C. A. and Ismail, M., eds., Analog VLSI Implementation of Neural Systems.
Norwell, MA: Kluwer Academic Publishers, 1989.

[87] Mead, C., Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989.

[88] Mead, C. A., “Neuromorphic electronic systems,” IEEE Proceedings, vol. 78,
pp. 1629–1636, Oct. 1990.

[89] Mehrvarz, H. and Kwok, C., “A novel multi-input floating-gate MOS four quad-
rant analog multiplier,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1123–1131,
Aug. 1996.

[90] Meitzler, R., Andreou, A., Strohbehn, K., and Jenkins, R., “A sampled–data
motion chip,” Proc. Midwest Symposium on circuits and systems.

[91] Moini, A., ed., Vision Chips. Boston/Dordrecht/London: Kluwer Academic Pub-
lishers, 1999.

[92] Morie, T., Fujita, O., and Uchimura, K., “Self learning analog neural network
LSI with high-resolution nonvolatile analog memory and a partially serial weight-
update architecture,” IEICE Trans. Electron, vol. E80-C, no. 7, pp. 990–995, 1997.

[93] Paillet, F., Mercier, D., and Bernard, T., “Second generation programmable
artificial retina,” Proc. IEEE ASIC/SOC Conf., pp. 304–309, September 1999.

[94] Park, J., Kwon, S., and Roy, K., “Low power reconfigurable DCT design based
on sharing multiplication,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 3, pp. 3116–3119, 2002.

[95] Pereira, A., Brady, P., Bandyopadhyay, A., and Hasler, P., “Experimental
investigations of floating–gate circuits for Delta-Sigma modulators,” in IEEE Midwest
Circuits and Systems, vol. 1, (Tulsa, OH), pp. 208–211, 2002.

[96] Rabaey, J. M., Digital integrated circuits: A design perspective. New Jersey 07458:
Prentice hall, Uppr Saddle River, 1996.

[97] Razavi, B., Design of analog CMOS integrated circuits. New Delhi, India: TATA
Mcgraw–Hill, 2002.

[98] Razavi, B. and Wooley, B. A., “A 12-b 5-msamples/s two–step CMOS A/D con-
verter,” IEEE Journal of Solid-State Circuits, pp. 1667–1678, 1992.

165

[99] Rolandi, P. L., Canegallo, R., Chioffi, E., Gerna, D., Issartel, C., Lher-

met, F., Passotti, M., and Kramer, A., “A 1M-cell 6b/cell analog flash memory
for digital storage,” IEEE Int. Solid-State Circuits Conference, pp. 334–335, 1998.

[100] Sarpeshkar, R., Bair, W., and Koch, C., “Visual motion computation in analog
VLSI using pulses,” in Advances in Neural Information Processing Systems 5 (Han-

son, S., Cowan, J., and Giles, C., eds.), pp. 781–788, San Mateo, CA: Morgan
Kaufman, 1993.

[101] Sjöström, U., Defilippis, I., Ansorge, M., and Pellandini, F., “Discrete co-
sine trsnsform chip for real–time viseo applications,” Proceedings of the International
Symposium on Circuits and Systems, pp. 1620–1623, May 1990.

[102] Smith, M. J. T. and Docef, A., Digital Image Processing. Riverdale, GA: Scientific
Publishers, 1999.

[103] Song, H. and Kim, C., “An nMOS four-quadrant analog multiplier using simple two-
input squaring circuits with source followers,” IEEE Journal of Solid-State Circuits,
vol. 25, pp. 841–848, June 1990.

[104] Spillman, L. and Werner, J. S., Visual Perception: The Neurophysiological Foun-
dations. San Diego, CA: Academic Press, 1990.

[105] Spirig, T., Seitz, P., Vietze, O., and Heitger, F., “A smart CCD image sensor
with real-time programmable parallel convolution capabilities,” IEEE Transactions
on Circuits and Systems, vol. 44, pp. 465–468, May 1997.

[106] Takayanagi, I., Shirakawa1, M., Mitani1, K., Sugawara, M., Iversen, S.,
Moholt, J., Nakamura, J., and Fossum, E. R., “11/4 inch 8.3m pixel digital
output cmos aps for udtv application,” IEEE Int. Solid-State Circuits Conference,
pp. 216–217, 2003.

[107] Tam, S. and et. al., “Lucky electron model of channel hot-electron injection in
MOSFETs,” vol. 31, pp. 1116–1125, 1984.

[108] Tanner, J. and Mead, C., “An integrated analog optical motion sensor,” in VLSI
Signal Processing II (Brodersen, R. W. and Moscovitz, H. S., eds.), pp. 59–87,
New York: IEEE, 1988.

[109] Tian, H., Fowler, B., and Gamal, A. E., “Analysis of temporal noise in CMOS
photodiode active pixel sensor,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 92–
101, Jan. 2001.

[110] Toumazou, C., Lidgey, F. J., and Haigh, D. G., Analogue IC design: The current
mode approach. London: Peter Peregrinus, 1990.

[111] Traff, H., “Novel approach to high speed CMOS current comparators,” Electronics
Letters, pp. 310–312, 1992.

[112] Weckler, G. P., “Operation of p–n junction photodetectors in a photon flux inte-
grating mode,” IEEE Journal of Solid-State Circuits, pp. 65–73, 1967.

166

[113] Wong, L., Kwok, C., and Rigby, G., “A 1-v CMOS D/A converter with
multi-input floating-gate MOSFET,” IEEE Journal of Solid-State Circuits, vol. 34,
pp. 1386–1390, October 1999.

[114] Yadid-Pecht, O. and Fossum, E. R., “Wide intrascene dynamic range CMOS APS
using dual sampling,” IEEE Transactions on Electron Devices, vol. 44, pp. 1721–1723,
Oct. 1997.

[115] Yadid-Pecht, O., Ginosar, R., and Diamand, Y. S., “A random access photo-
diode array for intelligent image capture,” IEEE Transactions on Electron Devices,
vol. 38, pp. 1772–1780, Aug. 1991.

[116] Yang, D. X. D., Fowler, B., and Gamal, A. E., “A nyquist rate pixel level adc
for cmos image sensors,” Custom Integrated Circuits Conference, pp. 237–240, May
1998.

[117] Yang, D. X. D., Gamal, A. E., Fowler, B., and Tian, H., “A 640x512 CMOS
image sensor with ultrawide dynamic range floating–point pixel level ADC,” IEEE
Journal of Solid-State Circuits, vol. 34, pp. 1821–1832, Dec 1999.

[118] Yee, C. and Buchwald, A., “A sampled-data switched-current analog 16-tap FIR
filter with digitally programmable coefficients in 0.8µm CMOS,” IEEE Int. Solid-State
Circuits Conference, vol. 33, pp. 54–54, Feb 1997.

[119] Yuan, J. and Svensson, C., “High–speed CMOS circuit technique,” IEEE Journal
of Solid-State Circuits, vol. 24, pp. 62–70, Feb. 1989.

167

