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Supply chain coordination for false failure returns 
 
 

ABSTRACT 
 

False failure returns are products that are returned by consumers to retailers with no functional or 

cosmetic defect. The cost of a false failure return includes the processing actions of testing, 

refurbishing if necessary, repackaging, the loss in value during the time the product spends in the 

reverse supply chain (a time that can exceed several months for many firms), and the loss in 

revenue because the product is sold at a discounted price. This cost is significant, and is incurred 

primarily by the manufacturer. Reducing false failure returns, however, requires effort primarily 

by the retailer, for example informing consumers about the exact product that best fits their 

needs. We address the problem of reducing false failure returns via supply chain coordination 

methods. Specifically, we propose a target rebate contract that pays the retailer a specific dollar 

amount per each unit of false failure returns below a target. This target rebate provides an 

incentive to the retailer to increase her effort, thus decreasing the number of false failures and 

(potentially) increasing net sales. We show that this contract is Pareto–improving in the majority 

of cases. Our results also indicate that the profit improvement to both parties, and the supply 

chain, is substantial.     



 

1. Introduction 

 Product returns represent a growing financial concern for firms in the United States and 

the rest of the world, with recent estimates reaching $100 billion annually for the United States 

alone (Stock et al. 2002).  Product returns are a result of two phenomena: consumer returns of 

products to the retailer during a 30, 60 or even 90 day return period, and product overstocks 

returned to the manufacturer by the retailer. Consumer product returns can occur at any time 

during the product life cycle, and are increasingly important to manufacturers. Hewlett–Packard 

(HP) recently discovered that the total costs of consumer product returns for North America 

exceed 2% of total outbound revenue (Reiss 2003).   

  Product overstocks are the subject of a large body of research, but are not directly related to 

the problem of consumer product returns since overstocks encompass units that were never sold 

to the final customer and are only returned at the end of the product lifecycle. Consumer product 

returns are driven by the ‘consumer is king’ attitude prevalent in the United States and supported 

by liberal product returns policies at most major retailers. Consumer product returns to the 

retailer are far less common in the European Union and the rest of the world, but many countries 

mandate some form of return period for Internet and catalog sales. The problems and costs of 

consumer product returns are projected to grow and many firms are just beginning to form teams 

to develop strategies and tactics to reduce the overall costs (Reiss 2003).   

Consumer return rates range from 5-9 percent of sales for most retailers and up to 35 percent 

for fashion apparel (Toktay 2003). A percentage of these returns occur due to true product 

failure, however, a large percentage of returns have no verifiable functional defect. We refer to 

this class of consumer product returns as false failure returns; returns that have no functional or 

cosmetic defect. Managers cite a number of reasons why false failure returns occur, including: 
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installation difficulties, product performance incompatibility with consumer preferences, and 

remorse (Kumar, Guide and Van Wassenhove 2002). For HP’s inkjet printer group, false failure 

returns can account for up to 80% of their inkjet printer returns (Davey 2001). Since HP’s total 

consumer product returns average slightly higher than 6% of sales, false failure returns average 

approximately 5% of sales. As of 1999, HP’s inkjet printer division handled over 50,000 

consumer returns per month in North America (Davey 2001). The problem also persists outside 

of the high-tech industry. At Bosch Power Tools North America, false failure returns account for 

2% of sales (Valenta 2002). In the United Kingdom, manufacturers are seeing an increasing 

number of consumer returns to retailers disguised as ‘defective’ products (Helbig 2002). Because 

of the significant financial impact, manufacturers are interested in reducing false failure returns 

through improved relations and contracts with retailers.   

Not all manufacturers require that retailers return any products returned by consumers. HP 

and Bosch are highly brand name conscious and have a policy that a product returned for any 

reason must be returned to their product returns centers. A manufacturer may allow a retailer to 

sell a returned item if there is nothing wrong with it. However, the determination of whether or 

not a product is defective is not always clear, and this practice allows gaming by consumers. Best 

Buy Co. has publicly announced that it will seek to discourage ‘devil’ customers, customers who 

frequently return products and then buy them back at open box discounts, from shopping at the 

store (McWilliams 2004). Other retailers are also getting aggressive about identifying customers 

with excessive returns by tracking all customer returns through a centralized database and 

refusing returns after a dollar threshold is reached (Cha 2004). These aggressive practices are 

controversial with consumers and a sign that retailers are becoming concerned with the costs 

associated with product returns.    
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When a manufacturer receives a false failure return, the product is routed through the firm’s 

reverse supply chain involving several testing steps and repackaging before the product can 

become available for sale at a secondary market, typically at a price discount. The cost of a false 

failure return includes the processing actions of testing, refurbishing if necessary1, repackaging, 

the loss in value during the time the product spends in the reverse supply chain (a time that can 

exceed several months for many firms), and the loss in revenue because the product is sold at a 

discounted price. Thus, the cost of false failure returns is significant. The per–unit cost of a false 

failure return for computer manufacturers, including HP, is around 25% of the product’s price.   

Table 1 shows information provided by HP about why consumers return products and what 

actions can be taken to eliminate the cause. The manufacturer can make design changes, but only 

in the long run (i.e., the next product generation). For the retailer, however, there are a number of 

actions that may be undertaken in the near term.  A retailer may spend extra time with customers 

and listen to their needs before recommending a particular product. By doing so, customers have 

a higher probability of purchasing a product that matches their needs the first time. Retailers may 

also train their sales force so that the proper operating procedures of a product are clearly 

explained to customers upon purchase. After–sales support by the retailer may also reduce the 

number of false failure returns from customers who have trouble configuring the new product so 

that it performs as expected. We focus on the retailer in our research since the manufacturer is 

already motivated to improve the product design with each generation, but recognizes that design 

changes will only solve a portion of the problem. Providing an incentive for the retailer to reduce 

returns provides a fast solution to a sizeable percentage of the reasons products are returned. 

 

 
                                                 
1 While false failure returns still perform functionally, they require cleaning and sometimes updating (e.g., software 
driver updates) to bring them up to the specifications of the new products being sold when they will reenter the 
marketplace.  
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Table 1- Reasons products are returned 
Rationale for Return Percentage Solutions 
True failure 20 Design 
Install/Basic Use 27.5 Design, After Sales Support 
Performance 

Print Speed 
Print Quality 

25 
Design, Retail Pre-Sales Qualification 

Packaging 2.25 Design, Retail Pre-Sales Qualification 
Sales Technique 12.75 Retail Pre-Sales Qualification 
Consumer Behavior 12.5 Retail Policy 

  

HP, along with most of their direct competitors, offers a customer returns policy to the retailer 

where the retailer receives full credit at the unit wholesale price. While the retailer incurs 

minimal processing and loss of goodwill costs, the manufacturer absorbs the majority of the false 

failure return costs. In turn, the manufacturer receives the majority of the benefits from reducing 

false failure returns. The short–term cost to reduce the number of false failure returns, however, 

may be incurred primarily by the retailer as explained above. Since the retailer incurs all effort–

related costs but, not as many benefits from reducing the number of false failure returns, there is 

a need for contracts that coordinate the supply chain such that interests are aligned. 

To address this coordination problem, we propose a target rebate contract that pays the 

retailer a specific dollar amount per each unit of false failure returns below a target T. This target 

rebate provides an incentive to the retailer to increase her effort of informing consumers about 

the exact product that best fits their needs, thus decreasing the number of false failure returns.  

We show that this contract is Pareto–improving in the majority of cases. Additionally, we show 

that increased retailer’s effort produces a magnitude of expected profit improvement per 

expected return of 31% for the supply chain, where profit is defined as revenues minus the costs 

associated with false failure returns. Profit improvements for the manufacturer and the retailer 

depend on the uncertainty in the distribution of false failure returns process.   

This paper is organized as follows. In §2, we review the relevant literature. We define our 

model in §3 and present and discuss a numerical study in §4. In §5, we give examples where 
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traditional forward contracts may lead to gaming by the retailer that increases the number of 

false failures. We also offer a forward contract design that eliminates the misalignment in 

incentives for both the double marginalization problem and the effort to reduce false failure 

returns. We conclude in §6.       

2. Literature review 

 Our research draws on two separate research streams; closed-loop supply chains and 

supply chain coordination contracts. In this section we provide an overview of recent work in 

each area and examine the implications for our research.  

Closed-loop supply chains 

There is a growing body of literature on closed-loop supply chains, where both the forward 

and reverse flows of materials are considered. For example, a recent feature issue of Interfaces 

(33(6) 2003) focuses on the practice of closed-loop supply chains in a variety of industry 

settings. Guide and Van Wassenhove (2003) identify the common processes required by a 

closed-loop supply chain: product acquisition, reverse logistics, inspection, testing and 

disposition, remanufacturing, and selling and distribution. 

General overviews of reverse logistics and remanufacturing are presented by Fleischmann 

(2001), and Guide (2000). We also refer the reader to the book, edited by Guide and Van 

Wassenhove (2003), from the First Workshop on Business Aspects of Closed-Loop Supply 

Chains. Historically, the operational aspects of remanufacturing have received the most attention, 

with numerous publications dealing with production planning and control (e.g., Ferrer and 

Ketzenberg 2004; Souza et al. 2002), and inventory control (e.g., Toktay et al. 2000; van der 

Laan et al. 1999). Ironically, product recovery is often viewed as a narrowly focused, technical 

operational problem without visibility at the corporate level. At Hewlett–Packard Company, 
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customer returns were treated as a low–level divisional problem until a thorough analysis 

showed that the total cost of product returns was equivalent to 2 percent of total outbound sales 

(Davey 2001). Unfortunately, academic research often tends to reinforce this limited view with 

its narrow focus on local optimization of operational issues.    

More recent research efforts, however, have started to analyze the strategic interaction among 

the closed–loop supply chain players. Heese et al. (2003) consider the potential competitive 

advantage for a company actively engaging in product take-back via a game-theoretic model. 

Majumder and Groenevelt (2001) recommend incentives to the original equipment manufacturer 

to increase the fraction of remanufacturable products available, or to decrease the costs of 

remanufacturing. Savaskan et al. (2004) develop a game-theoretic model that addresses the 

issues of channel choice and coordination of the channel. Debo et al. (2001) investigate the joint 

pricing and production technology problem of a manufacturer that offers both new and 

remanufactured products. Ferguson and Toktay (2004) explore how remanufacturing practices 

can be used strategically to deter competition.   

Most of the research focus on product returns to date is on end-of-life product returns or 

overstocks. Our focus, however is on consumer product returns, an area with little academic 

research; one exception is the recent work by Souza et al. (2004). They argue that returns are 

often time sensitive and firms frequently lose much of the value remaining in their returned 

products by not making quick disposition decisions. Their research focuses on the appropriate 

reverse supply chain design, responsive or efficient, based on the rate of value decay.  Our 

research is complimentary. Preventing false failure returns increases the revenue from lost sales 

while reducing the unnecessary expenses of product return, inspection, disposition and 

distribution for reuse. 

Supply chain contracting and returns policies 
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The pioneer work of Pasternack (1985) shows that if a manufacturer sells products to a 

retailer under demand uncertainty with a constant wholesale price per unit (higher than the 

manufacturer’s cost but lower than the retail price) the retailer usually stocks less than the supply 

chain’s optimal quantity. From a marketing perspective, Wood (2001) examines how returns 

policies affect consumer purchase probability and return rates. Wood shows that more lenient 

policies tend to increase product returns, but that the increase in sales is sufficient to create a 

positive net sales effect. Other research focuses on the problem of how to set a returns policy 

between a manufacturer and a retailer and the use of incentives to control the returns flow 

(Padmanabhan and Png 1997 1995, Pasternack 1985, Davis et al. 1995, Tsay 2001). Choi et al. 

(2004) study the effect of an e-marketplace on a returns policy in which internet auctions are 

used to recover value from the stream of product returns. 

A considerable amount of research has been devoted to this problem with a focus on 

appropriate contracts––a transfer payment from the manufacturer to the retailer, which provides 

incentives for retailers to stock a level of inventory that is optimal for the entire supply chain.    

Cachon (2003) provides a thorough review on these type contracts. Contracts based on rebates 

are of particular importance to our research. Based on agency theory, the provision of incentives 

for managerial effort is necessary when effort is not directly observable. Taylor (2002) offers an 

application of channel rebates to induce forward supply chain coordination when demand is 

dependent on the sales effort of the retailer. We propose a similar type contract to induce the 

supply chain optimal amount of effort to reduce the number of false failure returns; we choose a 

rebate–type contract because the number of false failure returns per period is dependent on 

retailer effort and random; as a result retailer effort is unobservable by the manufacturer.   

There is also a well-established body of research on the use of sales quotas to motivate sales 

performance. In this research, as in ours, direct effort on the part of the salesperson is not directly 
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observable (Davis and Farley 1971, Tapiero and Farley 1975, Darmon 1979). Much of the 

research is concerned with determining the residual effect of past selling effort and estimating 

the sales-effort-effectiveness functions. There are controlled experiments which show that (1) 

higher quotas lead to higher levels of effort on the part of sales people (Winer 1973), and (2) a 

quota set too high leads to a decrease in effort on the part of sales people (Chowdhury 1993). 

Gaba and Kalra (1999) also shows that with a high quota, sales people opted for more high risk 

prospects. Other research by Raju and Srinivasan (1996) shows that a basic quota plan performed 

with little loss in optimality even when there is strong heterogeneity across salespersons and 

territories. A principle-agent modeling approach is used by both Mantrala et al. (1994) and 

Manatrala et al. (1997) to determine each salesperson’s preferences for income and leisure to 

design an incentive compatible plan.  Both studies show that quotas can be used to effectively 

motivate salespeople even when direct effort is unobservable. These studies lend support to our 

contention that our model will motivate retailers to reduce returns, even if their effort is not 

directly observable. 

In the next section, we introduce a mathematical model of the false failure returns 

coordinating process, and suggest a target rebate contract to coordinate the supply chain.  

3. Model 

Consider a supply chain comprised of one manufacturer and one retailer.  We present a 

single–period model for ease of exposition, although the model can be easily extended to 

multiple periods in a stationary setting because there is no dynamic linkage (e.g., beginning 

inventory) between periods. That is, if all parameters are stationary over an infinite horizon, and 

the firm maximizes average profit, then the optimal level of effort––our decision variable––is the 

same across periods. A period, in our context, can be thought of as a quarter.     

When a consumer returns a false failure, there are three possible outcomes:  
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1. The consumer exchanges the returned product with a product from the same manufacturer, 

which could be of the same or a different model. If the consumer chooses a different model, 

then we assume, for ease of presentation, that it has an identical price p, wholesale price w, 

and manufacturing cost c as the returned product’s model. 

2. The consumer exchanges the returned product with a product from a competitor, with price 

cp  and wholesale price .  The consumer is paid cw cp p−  if cp p≤  or pays cp p−  

otherwise.       

3. The consumer returns the product, is paid p, and walks away with no product.                 

In each of the three cases, the retailer receives full credit w for the false failure return from the 

manufacturer, as discussed in the introduction. False failure returns cost the manufacturer and 

retailer m and r per unit, respectively, including any goodwill cost. We now compute the profit, 

to the manufacturer and retailer, of reducing one false failure return for each of the possible 

outcomes above. This is shown in Table 2 below, which we explain as follows. In the first 

outcome, both the retailer and the manufacturer experience a net sale (total sales minus total 

returns) of one product plus the respective return processing cost. If the false failure return had 

been avoided, both the manufacturer and retailer would also have experienced a net sale of one 

product. Consequently, the only profit to each party of avoiding a first outcome’s false failure 

return is its respective return processing cost.   

In the second outcome, each party incurs its respective return processing cost, the 

manufacturer experiences a zero net sale and the retailer experiences a net sale of one 

competitive product. Consequently, avoiding a second outcome’s false failure return implies a 

profit to the manufacturer of m + (w – c), the sum of its return processing cost plus the margin of 

the product that the consumer keeps. Avoiding a second outcome’s false failure return implies a 

profit to the retailer of , the sum of its return processing cost plus the net ( ) ( )c cr p w p w+ − − −
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margin of the product that the consumer keeps minus the margin of the competitive product, 

which the retailer would have sold in the second outcome. A similar reasoning holds for the third 

outcome.     

 
Table 2: Profit of avoiding one false failure return 

  Profit 
Outcome Probability Manufacturer Retailer 

1: exchange with product from 
same manufacturer q1 m r 

2: exchange with a competitive 
product q2 m + (w – c) r + ( p – w) – ( pc – wc) 

3: consumer walks away q3 m + (w – c) r + p – w 

 

From Table 2, we compute the expected profit of avoiding one false failure return to be m + 

(q2 + q3)(w – c) and  for the manufacture and retailer, 

respectively. Assume for simplicity that the competitive product has the same margin to the 

retailer, that is, (p – w) = (p

2 3 2( )( ) ( c cr q q p w q p w+ + − − − )

3c – wc).  Additionally, define 2δ ≡ +m q q , and 3δ ≡r q , where 

0 1r mδ δ< < < ; mδ  and rδ  can be interpreted as the sales impact to the manufacture and retailer, 

respectively, of avoiding one false failure return.  The expected profit of avoiding one false 

failure return is then m + δm (w – c) and r + δr (p – w) for the manufacture and retailer, 

respectively. 

Let ,  1,ρ ρ ≥  denote the retailer’s effort to reduce false failure returns. Effort may be thought 

of as the time the retailer spends working with the customer to choose the right product and 

demonstrating how to use it. We assume that the retailer’s cost of exerting effort is convex in her 

amount of effort ρ. A simple illustrative case is , where a > 0 can be interpreted as the 

marginal cost of effort associated with the minimum effort level 

2 / 2aρ

1ρ = .       

Given an effort ρ by the retailer, the number of false failure returns is ( ) 0X ρ ≥ , a random 

variable with cumulative distribution function (cdf) and probability density function (pdf) 

( | )F x ρ  and ( | )f x ρ  respectively. We assume that F is differentiable and strictly increasing in 
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x. Further, we assume that { ( )}E X β
ρρ = , where β is the expected number of false failure returns 

when the retailer exerts the minimum effort level 1ρ = . This assumption models diminishing 

returns to scale in the retailer’s effort, similarly to more commonly studied sales effort models.  

Thus, the expected value of the reduction in false failure return from the minimum effort level 

1ρ = , for any effort level ρ  is 1(1 )β
ρ ρβ β− = − .   

We consider here only the costs and revenues impacted by the retailer’s effort to reduce false 

failure returns. As a result, the coordinated supply chain’s expected profit ( )ρΠ  as a function of 

the retailer’s effort is  

 ( ) 21 1( ) ( ) ( ) 1
2m rm w c r p w aρ δ δ β

ρ
⎛ ⎞

Π = + − + + − − −⎜ ⎟
⎝ ⎠

ρ . (1) 

The first term in (1) is the total expected profit as a result of the reduced number of false failure 

return for an effort level ρ; the second term is the retailer’s cost of effort. The expected profit (1) 

is concave in ρ, and is maximized at  

 
1/3( ) ( )C m rm w c r p w

a
δ δρ β+ − + + −⎡= ⎢⎣ ⎦

⎤
⎥ ,   (2) 

where Cρ  denotes the optimal retailer effort in a coordinated supply chain. We assume the 

interesting case where ( )m r aβ+ > , such that the total potential cost saving of reducing false 

failure returns is greater than the retailer’s marginal cost a of exerting the minimum effort level.  

As a result,  (the coordinated supply chain exerts more than the minimum effort).       1Cρ >

In a non-coordinated supply chain, the retailer incurs the cost for reducing false failure returns 

but is only rewarded with part of the benefit. Thus, it seems unlikely that the optimal level of 

effort will be observed in the absence of some form of coordination contract. Specifically, the 

retailer’s expected profit ( )Rπ ρ  is 

 [ ]
2 1( ) ( ) 1

2R r
a r p wρπ ρ δ β

ρ
⎛

= − + + − −⎜
⎝ ⎠

⎞
⎟ . (3) 

In the absence of an incentive by the manufacturer, the retailer exerts the optimal effort level 
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 ( ){ }1/3max [ ( )] ,1D
rr p w aρ δ β= + − .   (4) 

Clearly, C Dρ ρ≥ . The manufacturer’s expected profit in this decentralized case is  

 [ ] 1( ) ( ) 1D
M m Dm w cπ ρ δ β

ρ
⎛ ⎞

= + − −⎜
⎝ ⎠

⎟ . (5) 

Since the manufacturer enjoys most of the benefits from reducing the number of false failure 

returns, the manufacturer must share some of these benefits with the retailer in order to achieve a 

coordinated solution. The manufacturer cannot mandate a given level of effort since effort is not 

observable due to the randomness in the false failure returns process.   

Given that effort is not directly contractible, a second option is for the manufacturer to either 

not pay the retailer a full credit for returns or charge the retailer a penalty for each false failure 

return. Not providing a full credit for a false failure return is problematic because false failures 

are included in the defective product returns and the retailer should not be held responsible for 

the manufacturer’s poor quality. Since the product must go through the reverse logistics process, 

a significant amount of time may expire before the manufacturer knows how many units from a 

given return are false failures. Even if we ignore the timing issues, there are other complications 

with charging the retailer a penalty for each false failure return. Charging a penalty to the retailer 

for each false failure penalizes the retailer for some effects that are not under the retailer’s 

control. Examples include when the packaging of the product misleads the customer or when the 

customer incurs buyer’s remorse despite the fact that the retailer did everything possible to 

ensure the customer purchased the correct product. For these reasons, it is unlikely that the 

retailers would agree to a pay a portion of the cost for each false failure. 

As a third option, the manufacturer may contract on the number of false failure returns 

through the use of a target rebate, and thus coordinate the supply chain. In this contract, the 

retailer receives a reward $u for every false failure return below a predetermined target level T.  

A low number of false failure returns is a signal of good effort on the retailer’s part to help the 
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customer purchase the correct product and its operation. A target rebate creates an incentive for 

the retailer to exert effort in this respect. The contract is based on false failure returns, and not 

total consumer returns (which includes true failures) because as argued before, the retailer should 

not be penalized by a manufacturer’s poor quality. Although the breakdown of returns (true vs. 

false failures) is provided by the manufacturer after the testing stage, we believe that it is not in 

the manufacturer’s best interest to over-report the number of false failures because the retailer 

always has the option of verifying the information, albeit at an additional cost. HP has 

experimented with different forms of target rebate contracts to reduce the level of false failure 

returns (Reiss 2003).          

Under a target rebate contract, the retailer’s expected profit is  

 [ ]{ } [ ]
2 1( | , ) ( ) ( ) 1

2R X r
aT u uE T X r p wρπ ρ ρ δ β

ρ
+ ⎛

= − − + + − −⎜
⎝ ⎠

⎞
⎟ , (6) 

and the manufacturer’s expected profit is 

 ( ) [{1( | , ) ( ) 1 ( )M m XT u m w c uE T Xπ ρ δ β ρ
ρ

+⎛ ⎞
= + − − − −⎜ ⎟

⎝ ⎠
] } . (7) 

We find the values of u and T that coordinate this supply chain by equating to (2) the value of 

ρ that maximizes (6), which can be obtained via first order conditions. First order conditions are 

sufficient for optimality provided that (6) is concave in ρ; a sufficient condition is given below. 

Proposition 1: If 2 ( | ) 0F x ρ ρ∂ ∂ 2 ≤ , then the retailer’s expected profit (6) under a target rebate 

contract is concave in ρ.     

Proof:   We first show that the first term of (6) is concave in ρ.   

[ ]{ } 0 0
( ) ( ) ( | ) ( | )

T T

XE T X T x f x dx F x dρ ρ+− = − =∫ ∫ xρ , where the last equality follows from 

integration by parts. If 2 ( | ) 0F x ρ ρ 2∂ ∂ ≤ , then this first term of (6) is concave in ρ, since 

concavity is maintained in integration. It is easy to check that the last two terms of (6) are 
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concave in ρ and the sum of a set of concave functions is also concave, therefore (6) is concave 

in ρ.    

To calculate u and T via first order conditions, it is necessary to know the distribution of 

( )X ρ . Based on discussions with our contacts at HP, we demonstrate our model using the 

uniform and normal distribution cases below. The uniform distribution, which has a constant 

coefficient of variation, allows us to have closed–form solutions while the normal distribution 

case covers cases with varying degrees of uncertainty (coefficient of variation) in the false failure 

returns process.      

Uniform distribution for number of false failure returns  

Consider that ( )X ρ  ~ Uniform ( )20, β
ρ  (such that { ( )}E X β

ρρ = ). In this case, 

2( | )F x xρ
βρ = , 2 ( | ) 0F x ρ ρ∂ ∂ 2 = ; thus (6) is concave in ρ according to Proposition 1. Then, 

[ ]{ }( )XE T X ρ +−  = ( ) 2
20

4
T

u T x dx T uρ
β ρ β= − ⋅ =∫ . Substituting this expression in (6) yields 

 [ ]
2 2 1( | , ) ( ) 1
4 2R r

T u aT u r p wρ ρπ ρ δ β
β ρ

⎛ ⎞
= − + + − −⎜

⎝ ⎠
⎟ . (8) 

The value ρ* that maximizes (8) must satisfy the first–order conditions:  

 [ ]2 * 2 * 3 2( ) 4 ( ) 4 ( ) 0rT u a r p wρ β ρ δ β− + + − = . (9) 

Substituting ρ* with (2), we find an expression that relates u and T, so that the supply chain is 

coordinated by the contract:    

 ( )
( )

1/ 22 /3 1/3

1/31/ 2

2 ( )
( ) ( )

m

m r

a m w c
T

u m w c r p w
β δ

δ δ

+ −
=

+ − + + −
. (10) 

For a fixed value of u, the corresponding value of T is obtained from (10). The value of u (and T) 

has to satisfy 2 /T β ρ< , that is, the upper limit in the integral  cannot exceed 

the upper limit of the uniform distribution. Substituting T from (10) and ρ from (2), yields 

{[ ( )] }XE T X ρ +−

(mu m w c)δ> + − . This is interesting since it shows that the value of u that coordinates this 
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contract is larger than the cost of a return to the manufacturer. Still, the manufacturer can be 

better off with a target rebate contract as Proposition 2 shows below.       
 

Proposition 2: Suppose ( )X ρ  is uniformly distributed.  A (u, T) contract that coordinates the 

supply chain always makes the retailer better off, and makes the manufacturer better off if and 

only if 2C Dρ ρ≥ .  

Proof:   See Appendix.  

Proposition 2 indicates that the manufacturer is better off with a target rebate only if the 

optimal centralized effort is large enough relative to the retailer’s own optimal decentralized 

effort level. If the retailer’s profit of avoiding one false failure return ( )rr p wδ+ −  is large 

enough relative to the marginal effort cost per return a /β, such that  according to (4), then 1Dρ >

2C Dρ ρ≥  is equivalent to [ ]( ) 7 (m rm w c r p wδ δ+ − ≥ + − ) . This indicates that the target rebate 

contract makes the manufacturer better off only if its own profit margin of reducing a false 

failure return is substantially larger than the retailer’s.      
 

Normal distribution for number of false failure returns 

Now, consider ( )X ρ  ~ ( / , ( ))N β ρ σ ρ . Denote by Φ(⋅) and φ(⋅) the cdf and pdf of the 

standard normal distribution, respectively. Then, ( )/
( )( | ) xF x β ρ

σ ρρ −= Φ . Proposition 1’s condition, 

2 ( | ) 0F x ρ ρ∂ ∂ 2 ≤ , may not be necessarily satisfied for a general function ( )σ ρ . It is satisfied, 

however, for two important cases. First, if ( )σ ρ σ≡  for all ρ, then 2 2( | )F x ρ ρ∂ ∂  = 

( ) ( )2 3
/ /' 0x xβ ρ β β ρ β

σ σσρ σρ
φ φ− −⋅ − ⋅ ≤2 , since ( ) 0zφ >  and '( ) 0zφ ≤  for all z. This scenario represents 

the case where the standard deviation of the number of false failure returns is independent of the 

effort level. A more interesting case, which we focus on this paper, is when ( ) v β
ρσ ρ = , where v 
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is a constant denoting the coefficient of variation of ( )X ρ ; this is representative of the case 

where the standard deviation of ( )X ρ  is proportional to its mean (and thus, inversely 

proportional to the effort level). In this case, after some algebra, (6) becomes:    

 [ ]
21 1( | , ) 1 ( ) 1

2R r
T aT u u T vL r p w

v
β ρ β ρπ ρ δ β
ρ ρ

⎧ ⎫ ⎛⎡ − ⎤⎛ ⎞= − − − + + − −⎨ ⎬⎜ ⎟ ⎜⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎩ ⎭

⎞
⎟ , (11) 

where L(⋅) is the standard normal loss function. The first–order condition with respect to ρ 

results in an implicit equation that can be solved for T, given a value of u or vice-versa: 

 ( )( )1 1C C
mm w cT Tv

v v u
δρ β ρ βφ

+ −⎛ ⎞ ⎛ ⎞− −
Φ − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (12) 

where Cρ  is given by (2), and φ (⋅) and Φ(⋅) are the standard normal pdf and cdf, respectively.  

Given that Φ(⋅) and φ (⋅) are necessarily less than one, then a necessary condition for (12) to have 

a solution is that the right–hand side of (12) is less than one, which implies ( )mu m w cδ> + − , 

just like in the uniform distribution case. Further, if we define ( )/ 1Cz T ρ β= − v

))

, and 

(arbitrarily) set , where k > 1 is a constant, we can rewrite (12) as   ( (mu k m w cδ= + −

 ( ) ( ) 1/z v z kφΦ − = . (13) 

Denoting the solution of (13) by z*, then ( )* 1T vzβ
ρ= + . Note that z* only depends on the 

coefficient of variation v and the constant k, and thus the design of such a contract is relatively 

straightforward. Unlike the uniform distribution case, however, the retailer is not always better 

off under a normal distribution for ( )X ρ ; we discuss this in depth in our comprehensive 

numerical analysis of §4. First though, we illustrate how the target rebate contract works for both 

the uniform and normal distribution cases with a numerical example below.     
 

Example 1: Consider m = 50, r = 5, p = 200, w = 150, c = 100, β = 120, a = 120, δm = 0.7,  δr = 

0.3, and 1/ 3v =  (so that the uniform and normal distribution cases have the same coefficient of 

variation, 1/ 3 ). The optimal level of effort, given by (2), is Cρ = 5.1. The coordinated supply 
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chain’s expected profit at the optimal level of effort (1) is ( )CρΠ =  $ 8,568. To coordinate the 

supply chain, different combinations of u and T are possible. A necessary condition for u, under 

both uniform and normal distributions, is ( ) 85mu m w cδ> + − = . We consider five combinations 

of u and T, for both cases; and present the results in Table 3. Note that the distribution of profits 

does not depend on the contract parameters for the uniform distribution case. This is not an 

obvious result, and is a consequence of the unique shape of the uniform distribution––the term 

{( ) }X
XE T β

ρθ
+− , the only term dependent of (u, T) in the retailer’s expected profit function (8), is 

a linear function of ρ  when ( )X ρ  is uniformly distributed. For the normal distribution case, 

however, a higher value of u (resulting in a lower T) results in increasing profits for the 

manufacturer and decreasing profits for the retailer.              

 
Table 3: Different combinations of u and T that coordinate the supply chain in example 1 

  Uniform Distr. for X(ρ) Normal Distr. For X(ρ) 
u  T πR πM T πR πM

90  49.4 2,366 6,202 50.5 2,805 5,763 
95  48.1 2,366 6,202 46.1 2,543 6,026 
100  46.9 2,366 6,202 43.4 2,401 6,168 
105  45.8 2,366 6,202 41.4 2,309 6,260 
110  44.7 2,366 6,202 39.8 2,243 6,325 

4. Numerical analysis 

In this section, we perform a numerical analysis that has several objectives: 1) to analyze the 

influence of the distribution of the uncertainty in the returns process ( )X ρ  on our results; 2) to 

quantify the benefits of coordination, and 3) to identify how the benefits of coordination vary 

with different model parameter values.       

The base numbers are grounded on product prices and returns volume for HP deskjet printers, 

and the other model parameters are varied over a wide range. We set p = $200 (median price 

across different inkjet models), m = 0.25p = $50, and a 50% gross margin, which implies c = 
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$100. We use the two distributions (uniform and normal) for the uncertainty in the returns 

process studied theoretically. We vary the remaining parameters at four levels each according to 

the full–factorial experimental design shown in Table 4, which we justify as follows.   

We consider values for the coefficient of variation v (when ( )X ρ  is normally distributed) 

from 0.15 to 0.45 (we do not consider values for v higher than 0.45 because then there is a 

significant probability of negative values for ( )X ρ ). We use values for the cost of effort per 

expected return, a /β  from $0.10 to $5. We use values for the retailer’s return processing cost 

relative to the manufacturer (r /m) from 2.5% to 10%. While the retailer has some minimal labor 

cost associated with receiving a false failure, giving the customer credit, and separating the false 

failure for shipment, the manufacturer incurs all shipping costs, the refurbishing cost, and the re–

marketing cost for the refurbished product in the secondary market. We use values for the 

parameterδm, which measures the impact of effort on net sales for the manufacturer, from the 0.3 

to 0.9. Similarly, for the retailer we consider values for /r mδ δ  from 0.3 to 0.9 (since r mδ δ< ). 

Finally, we consider values for the wholesale price as a fraction of the product’s price, w / p, 

from 0.65 to 0.95. The experimental design of Table 4 yields 5,120 cells, 1,024 for the uniform 

distribution and 4,096 for the normal distribution. Across all cells we select the contract 

parameter  with k = 1.1; we later report results using different values for k.       ( (u k m w cδ= + − ))

 
Table 4: Experimental design 

Parameter Symbol Levels 
Distribution of X (ρ) - Uniform, Normal 
Coefficient of variation for X (ρ) v 0.15, 0.25, 0.35, 0.45 
Cost of effort per expected return a / β $ 0.1, 1.0, 2.5, 5.0 
Retailer’s return processing cost relative to 
the manufacturer’s r / m 0.025, 0.05, 0.075, 0.10 

Influence of effort on sales – manufacturer δm 0.3, 0.5, 0.7, 0.9 
Influence of effort on sales – retailer 
relative to the manufacturer  

/r mδ δ  0.3, 0.5, 0.7, 0.9 

Wholesale/retail price ratio w / p 0.65, 0.75, 0.85, 0.95 
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Our main performance measure is the expected profit improvement per expected return (when 

ρ = 1) for each party or the supply chain as a result of adopting the target rebate contract. For 

example, for the retailer this is defined as ( ) ( )( )| , /C
R R RT u Dπ ρ π ρ∆ = − β , or, in relative 

terms, ( )% 100% / /D
R R Rπ ρ β∆ = ∆ ; similarly for the manufacturer and the supply chain. We 

report relative and absolute values of expected profit improvement here because both are 

important in providing a complete picture of the contract benefits, as we argue below. Detailed 

results are available upon request.   

The statistics for relative expected profit improvement %∆  for the retailer, manufacturer, and 

supply chain are reported in Table 5, tabulated by the distribution of ( )X ρ : uniform, normal 

over all cases, and normal for each value of v. We do not report the maximum values for %∆  

because they occur in cases where the non-coordinated supply chain has such a small positive 

expected profit that any improvement has a huge relative impact and relative numbers can be 

misleading. A similar phenomenon occurs in Table 5––the extremely small minimum values of 

 in the normal distribution case (first row) occurs when % R∆ ( )D
Rπ ρ  has a small absolute value.  

Again, this points out to the need for also reporting absolute values of expected profit 

improvement, which we do below.        
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Table 5: Statistics for expected profit improvement %∆  across experimental design 

  Distribution of ( )X ρ  

Statistic Party Uniform Normal Normal Normal Normal Normal 
     Overall v = 0.15 v = 0.25 v = 0.35 v = 0.45 
 Retailer 10% -∞a -∞a -∞a -2652% -307%
Minimum Manufacturer -31 -22% 2% 0% -11% -22%
  Supply chain 1% 1% 1% 1% 1% 1%
 Retailer 68% -43% -398% -93% 12% 45%
25th perc. Manufacturer -2% 9% 16% 12% 7% 2%
  Supply chain 13% 13% 13% 13% 13% 13%
 Retailer 217% 10% -81% -5% 46% 140%
Median Manufacturer 8% 26% 37% 29% 21% 14%
  Supply chain 31% 31% 31% 31% 31% 31%
 Retailer 699% 94% -17% 10% 169% 470%
75th perc. Manufacturer 37% 71% 91% 81% 67% 50%
  Supply chain 115% 115% 115% 115% 115% 115%
aVery large negative number 
 

Table 5 reveals that relative expected profit improvements are significant––the median values 

for % M∆  are 8% and 26%, and median values for % R∆  are 217% and 10%, for the uniform and 

normal distribution cases, respectively. The median value of supply chain expected profit 

improvement is 31%, which does not depend on the distribution of ( )X ρ . We caution that our 

analysis is restricted only to profit per false failure return as impacted by the retailer’s effort, not 

total profit (forward + reverse supply chain) for each party. As expected, the retailer is better off 

(  > 0) in all uniform distribution cases, while the manufacturer is better off in more than 

50% of cases––the 25

% R∆

th percentile and median for % M∆  are –2% and 8%, respectively. For the 

normal distribution case, the manufacturer is better off in more than 75% of cases, and is always 

better off if v ≤ 0.25; the retailer is better off in the majority of our test cases. The retailer’s 

(manufacturer’s) improvement increases (decreases) as the coefficient of variation of ( )X ρ , v 

increases––the median value of  is –81%, –5%, 46%, and 140% (37%, 29%, 21%, and 14%) 

for v = 0.15, 0.25, 0.35, and 0.45, respectively. The higher the level of uncertainty v in the 

returns process, the higher the expected number of returns below the target T, ceteris paribus, as 

(11) shows. Because the retailer is not penalized when returns are above the target, but is paid 

%∆
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(by the manufacturer) $u per return below the target, the retailer’s (manufacturer’s) expected 

profit increases (decreases) as uncertainty in the returns process increases, ceteris paribus.     

Next we study how absolute expected profit improvement ∆ is related to the factors in our 

experimental design. For each factor, we average ∆ across all experiments for each factor level.  

We focus on the normal distribution results and note that the results are similar for the uniform 

distribution, except that the magnitude of improvement is higher for the retailer in the uniform 

case. The results are shown in Figure 1 for factors v (left) and /a β  (right), Figure 2 for r / m 

(left) and  (right), and Figure 3 for /w p mδ  (left) and /r mδ δ  (right). We note that the average 

expected profit improvement for the supply chain is equal to the sum of improvements across the 

retailer and the manufacturer. We have already commented on the effect of v on %∆, now shown 

graphically for ∆ in Figure 1 (left).  Figure 1 (right) shows that expected profit improvement for 

all parties decrease as the retailer’s normalized effort cost /a β  decreases. A lower value of 

/a β  means that the retailer already has an incentive to exert a significant effort level in the 

decentralized case Dρ ; thus the contract does not provide an incentive for a significantly higher 

effort level.            

 
Figure 1: Average expected profit improvement ($) per expected return as a function of the coefficient of 

variation of X (left) and the retailer’s effort cost per expected return (right) 
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Figure 2 (left) shows that the retailer’s false failure processing cost relative to the 

manufacturer’s r / m impact minimally the performance of the contract; this is because r is small 

relatively to the other revenue and cost figures. Figure 2 (right) shows that the supply chain’s 

expected profit improvement increases with the wholesale price relative to product price w /p; 

this is because a higher w /p implies a higher profit margin for the manufacturer, who has the 

most to gain from reducing false failures; the opposite is true for the retailer. 

  Figure 3 (left) shows that the impact of the parameter mδ  on ∆ is relatively mild for the 

supply chain, however, expected profit improvement for the manufacturer (retailer) decreases 

(increases) as mδ  increases. From §3 and Table 2, 2 3 1m q q q1δ = + = −  is essentially the 

probability that the customer does not exchange a product with a product from the same 

manufacturer upon return; as this probability increases, the benefits of reducing false failures for 

the manufacturer decreases. Finally, Figure 3 (right) shows that expected profit improvement 

decreases as /r mδ δ  increases across all parties and the supply chain. From §3 and Table 2, 

3r qδ =  is the probability that the customer walks way with nothing after returning a false failure. 

At high levels of this probability, the retailer already has an incentive to decrease false failures in 

the decentralized case (and thus Dρ  is high) because false failure returns result in zero net sales 

for the retailer––thus, the benefit of a coordinating contract is lower.   

Finally, we analyze the impact of choosing different levels of ( )(u k m w cδ= + − )  in the 

performance of the contract. We study values of k = 1.1, 1.3, 1.5, and 1.7, and repeat, for each 

value of k, all 4,096 experiments in Table 4 for the normal distribution case; recall from example 

1 that different values of u do not impact the performance of the contract and / or expected profit 

distribution between the two parties with a uniform distribution. As expected from example 1, 

the mean value of M∆  increases as k increases: 18.7, 20.0, 20.6, and 21.1 for k = 1.1, 1.3, 1.5, 

and 1.7, respectively. Conversely, the mean value of R∆  decreases as k increases: 1.3, 0.0, –0.6, 
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and –1.1, respectively. The mean value of 20.0SC∆ =  does not depend on k. This indicates that a 

lower value of k, and consequently a lower value of u and a corresponding higher value of T, is 

indicated if both parties are to benefit from the contract. In summary, our numerical results 

indicate that a target rebate contract may result in significant improvements in the reverse supply 

chain’s expected profit. 

 
Figure 2: Average expected profit improvement ($) per expected return as a function of the retailer’s 

processing cost relative to the manufacturer r / m (left), and wholesale price (right) 

Average profit improvement per expected 
return

0

5

10

15

20

25

30

0.010 0.030 0.050 0.070 0.090
r / m 

Supply Chain Manufacturer Retailer

Average profit improvement per expected 
return

-10

0

10

20

30

40

50

0.60 0.70 0.80 0.90 1.00

w / p 

Supply Chain Manufacturer Retailer
 

 
 
Figure 3: Average expected profit improvement ($) per expected return as a function of mδ  (left) and /r mδ δ  

(right) 
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5.   Forward contracts 

In this section we study the impact of the false failure problem on traditional forward 

contracts used between a manufacturer and a retailer. The first part explores how some common 

forward contracts give the retailer an incentive to actually increase rather than decrease the 

number of false failure returns. The second part assumes the manufacturer is willing and able to 

negotiate a new forward contract with the retailer. Thus, we give suggestions on how a forward 

contract can be constructed that solves both the double marginalization problem and the effort 

incentive problem of reducing false failure returns. 

5.1. Incentives to game traditional sales contracts  

Up to this point, we have assumed that all false failure returns are unintentional on the 

retailer’s part and are due primarily to the retailer’s lack of effort in helping customers.  In this 

section, we explore whether there are incentives for the retailer to intentionally encourage false 

failure returns (a practice we term “gaming”). For example, HP offers a buy–back sales contract 

with its retailers where any unsold product may be returned to HP for a partial refund at the end 

of the product’s last selling season (the time when the demand rate for a particular product 

decreases to a point where the retailer no longer wishes to replenish it; this happens when an 

older model is being phased out to make room for its replacement version.) If the retailer is 

offered a full refund for a false-failure return (the current practice), then the retailer has an 

incentive to push a slow–selling product (during its last selling season) to consumers, fully 

knowing that the product does not fully meet the consumer’s needs and thus has a high 

probability of being returned. Thus, a relevant question is:  Does our proposed target rebate 

contract encourage or discourage the retailer to game her sales-based contract? 

   We examine several of the most popular sales–based contracts to determine where 

incentives for gaming exist at the end of the selling season, and show how our proposed target 
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rebate contract for false failure returns helps mitigate these gaming incentives.  Let  represent 

the loss of goodwill to the manufacturer and  represent the loss of goodwill to the retailer if 

the customer purchases a product that does not meet their needs. Note that this is a different 

penalty cost than the more traditional loss of goodwill due to unsatisfied demand. Let v represent 

the per unit salvage value of any unsold product for the retailer at the end of the product’s last 

selling season.  

mg

rg

Consider the simplest contract, the wholesale price-only contract, where the manufacturer 

charges the supplier a fixed wholesale price for each unit purchased. In general, this contract 

does not coordinate the supply chain, but it is easy to monitor and still common in practice. In 

the absence of a target rebate contract, the incentive to game occurs when the retailer is left with 

unsold inventory at the end of the last selling season and the retailer’s salvage value is less than 

the net benefit from a false failure return (the wholesale price minus the loss of goodwill to the 

retailer), i.e. . Our target rebate contract changes this condition to rv w g≤ −

 rv w g u≤ − −  if CT β
ρ

< , (14)  

which reduces the incentive for gaming.   

Table 6 summarizes the results for the wholesale price-only contract along with three 

commonly used forward coordination contracts. The first coordination contract is a buy–back or 

revenue sharing contract (Cachon, 2003 shows the two are equivalent under most simple 

settings). In a buy–back contract, the manufacturer sells the product to the retailer at the per unit 

wholesale price w, but pays the retailer b, b ≤ w, for each unsold unit at the end of the last selling 

season. The second contract is a quantity flexibility contract where the retailer receives a full 

refund from the manufacturer on any leftover inventory at the end of the selling season that is 

below a predetermined target level λq, where q is the retailer’s order quantity over the product’s 

last selling season and λ ∈ [0,1] is a contract parameter. To define this contract, let  be [0, ]Y ∈ Ω
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a random variable representing demand over the last selling season, with pdf ( )Yf y . The third 

contract is a quantity discount contract where the wholesale price is a decreasing function of the 

order quantity. Since this contract induces the retailer to order more by lowering the wholesale 

price instead of repurchasing unsold units, the condition for gaming is the same as the wholesale 

price–only contract except that the single price w is replaced by the average wholesale price paid, 

w , in (14) where w w< . 

Table 6: The effect of a Target Rebate contract on the incentive to game forward contracts 

Contract Type Without Target Rebate With Target Rebate 
Reduces 
Gaming 

Wholesale 
price-only 

rv w g≤ −  
rv w g u≤ − −  if 

CT β
ρ

<  Yes 

Buy-back and  
revenue sharing 

rb v w g+ ≤ −  
rb v w g u+ ≤ − −  if 

CT β
ρ

<  
Yes 

Quantity flexibility ( )Y rq
v f y dy w g

λ

Ω
≤ −∫  ( )Y rq

v f y dy w g u
λ

Ω
≤ − −∫  if 

CT β
ρ

<  Yes 

Quantity discount rv w g≤ −  
rv w g u≤ − −  if 

CT β
ρ

<  Yes 

 

One last contract type that is sometimes used in practice is the sales rebate contract. This 

contract is similar to the target rebate contract discussed in this paper, except that it offers a 

reward for each unit sold above a predetermined target threshold. The exact contractual 

definition of sale results in very different incentives for gaming. If a sale is defined as total sales, 

including units eventually returned, a clear incentive exists (above even the wholesale price only 

contract) when the retailer is above her target threshold and receives an additional bonus for each 

product sold. If a sale is defined as net–sales, where the number of false failure returns is 

subtracted out at the end, then the use of a sales rebate contract should not add any additional 

incentive for gaming. Unfortunately, sales rebate contracts do not coordinate the supply chain in 

isolation and are thus often used in combination with other coordination contracts when sales are 

dependent on the sales effort of the retailer. Thus, the incentive for gaming may still exist with 
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these contracts but can be reduced by specifying net–sales in the conditions of the sales rebate 

contract. 

Summarizing, our analysis reveals that traditional sales-based contracts designed to 

coordinate the forward supply chain may induce gaming at the end of a product’s last selling 

season. We argue, however, that our target rebate contract, designed to coordinate false failure 

returns in the reverse chain, reduces these gaming incentives when they exist. Further, we 

believe that the low volumes typically found during the last selling season combined with the 

side benefits of our target rebate contract implies that there is no need to incur the cost of altering 

existing contracts to eliminate the gaming incentives. If a manufacturer and a retailer are 

establishing a new relationship however, it is better to address the misalignment of incentives in 

the original forward contract. Thus, in the next section we offer a modification to a traditional 

forward contract that eliminates this misalignment and achieves the coordinated solution on the 

reduction of false failure returns. 

5.2. False Failure Coordinated Forward Contract 

In our experience talking with manufacturers who suffered from high levels of false failure 

returns, there is a strong reluctance to change the forward contracts already in place with the 

retailers. There are several reasons for this reluctance. The retailer often standardizes forward 

contracts so any manufacturer that refuses to abide by the standard contract faces the danger of 

having its product line dropped by the retailer. Also, renegotiating a forward contract is an 

expensive and time consuming process and the major retailers often do not fully trust the 

manufacturers so they may refuse a new forward contract even if it is Pareto improving for all 

parties. Our proposed target rebate contract avoids these problems because it results only in 

additional revenue for the retailer who has complete discretion on whether or not to alter her 
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behavior. It also does not require any modification to the current forward contract, making it 

attractive for the established supply chain relationships.     

Despite the difficulties described above, a single forward contract, that also solves the 

incentive problem on the amount of effort to spend on reducing false failures, is the ideal and 

there may be situations where negotiating such a contract is feasible. Thus, we now explore how 

such a contract should work. Before presenting our forward contract, we define some additional 

notation. Let D be random demand for a single selling period and let . The 

retailer must order a quantity q before knowing the true demand. For simplicity, assume all 

unmet demand is lost, any goodwill cost for a lost sale is zero, and the salvage value for unsold 

inventory is v. Let S(q) be the retailer’s expected sales where 

( ) ( )= ≤G y P D y

 . { }
0

( ) min( , ) ( )= = − ∫
q

DS q E q D q G y dy

Finally, let I(q) be the expected left over inventory, ( ) ( )I q q S q= − . In the absence of false 

failure returns, the coordinated supply chain’s expected profit is 

 ( ) ( ) ( )q pS q vI q cΠ = + − q . (15) 

To include the effect of false failures on the supply chain’s expected profit, we first must 

denote our expected number of false failures to be a function of q. To do so, we set 

 ( ){ ( , )} qE X q βρ
ρ

= . (16) 

We further assume that the number of false failures is a fixed percentage of sales (which depends 

on the effort level); thus ( , ) ( ) min( , )ρ γ ρ=X q q D  where  is the sales quantity and min( , )q D

( )γ ρ  is a parameter value that depends on the effort level. Taking expectations gives 

 { ( , )} ( ) ( )E X q S qρ γ ρ= . (17) 

Equating (16) to (17) gives  

 ( ) ( ) ( ),q S qβ γ ρ
ρ

=  
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where ( )γ ρ γ= ρ  and γ  represents the constant percentage of false failures (relative to actual 

sales).  Thus, ( , ) ( )X q S qρ γ= ρ . Incorporating the cost of false failures in the coordinated 

supply chain’s expected profit gives 

 
2

( , ) ( ) ( )
2

aq p S q vI q cqηγρ
ρ

⎛ ⎞
Π = − + − −⎜ ⎟

⎝ ⎠

ρ , (18) 

 ( )where  ( ) ( )m rm w c r p wη δ δ= + − + + − . 

The supply chain’s expected profit contains the normal cost of falling above or below demand 

plus the additional cost of the false failure returns and the effort spent to reduce them. Assuming 

that the expected profit (18) is well-behaved and jointly concave in q and ρ , the optimal order 

quantity and effort is found by solving 

 ( )1 ( ) c vF q
p vηγ

ρ

−
− =

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

 (19) 

for the optimal order quantity as a function of effort and 

 3
( )S q

a
ηγρ =  (20) 

for the optimal effort level as a function of the order quantity. Equations (19) and (20) can then 

be solved simultaneously resulting in the optimal decisions Cand Cq ρ .  Although closed form 

solutions do not exist for the general distribution cases, (19) and (20) can be solved numerically 

for given distributions of demand and the number of false failures. 

For the non-coordinated supply chain, the retailer’s expected total profit is 

 ( )
2

( , ) ( ) ( ) ( )
2R r

aq p r p w S q vI q wqγ ρπ ρ δ
ρ

⎡ ⎤
= − + − + − −⎢ ⎥

⎣ ⎦
. (21) 

The manufacturer’s expected total profit for a non-coordinated chain is  

 ( )( , ) ( ) ( ) ( )M mq w c q m w c S qγπ ρ δ
ρ

= − − + − . (22) 
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The second part of (22) is the additional cost incurred by the manufacturer due to false failure 

returns. A contract that induces the retailer to expend a Cρ  level of effort must assign the total 

cost of false failures to the retailer. Thus, the retailer must be charged a cost of ( )mm w cδ+ −  for 

each false failure returned to the manufacturer. To induce the retailer to accept the new contract, 

the retailer must be compensated for assuming this extra cost. This can be done through a lump 

sum payment or by choosing the exchange price w low enough so that the retailer’s expected 

profit is higher than it would be without the contract.   

While assigning all the false failure related cost to the retailer solves one problem, it does not 

solve the double-marginalization problem where the retailer’s optimal order quantity is less than 

. Cachon (2003) discusses many contract types that solve this piece of the problem. We 

choose a buy-back contract to demonstrate our forward coordination contract since it is one of 

the more commonly used in practice. Adding the partial rebate for unsold units  and 

the total false failure cost to the retailer’s expected profit gives  

Cq

( ,  )b b w≤

 
2

( , ) ( ) ( ) ( )
2R

aq p S q v b I q w qb
ηγπ ρ
ρ

⎛ ⎞
= − + + − −⎜ ⎟

⎝ ⎠

ρ . (23) 

The manufacturer’s expected profit is  

 ( , ) ( ) ( )M bq w c q bI qπ ρ = − − . (24) 

Pasternack (1985) shows that a range of buy-back parameter values {  solve the double-

marginalization problem and that every possible profit allocation is feasible. Therefore, quantity 

and effort coordination can be achieved by choosing the set of values that result in the retailer’s 

choice of 

, }bw b

C and Cq ρ as well as a Pareto improvement in the expected profits for both the retailer 

and the manufacturer over their expected profits in the absence of the contract. 
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6. Conclusion 

In this paper we propose a target rebate contract to coordinate false failure returns, which are 

consumer returns returned to the retailer that have no functional or cosmetic defect. This contract 

stipulates a payment of $u for each false failure return below a target T. We propose a simple, 

but insightful model, which reveals the substantial benefits that can be derived by enticing 

retailers to exert a higher level of effort to decrease the number of false failure returns.  This 

higher level of effort has two benefits for the supply chain. First, it reduces the overall processing 

cost for false failure returns, which is significant considering that a false failure return may cost 

25% of the product price. Second, a higher level of effort may result in a higher level of net sales 

(sales that are not returned).  

We show that our contract has a number of attractive properties, including Pareto–

improvement in a majority of cases. We find that the magnitude of profit (associated with false 

failure returns) improvement per expected return as a result of the increased retailer’s effort is 

very significant, with a median value of 10%, 26% and 31% for the retailer, manufacturer, and 

supply chain respectively.  For the retailer (manufacturer), the profit improvement per expected 

return increases (decreases) with the uncertainty in the returns process. This is because as 

uncertainty increases, ceteris paribus, the retailer’s (manufacturer’s) profit increases (decreases) 

due to an increase in the expected number of false failure returns below the contract target T.   

Our research is a first step in understanding how a target rebate contract provides incentives 

to the retailer to improve her effort in the sales process targeted at reducing the number of false 

failure returns. We use a stylized model that summarizes the retailer’s effort by a single variable, 

a common approach in the current body of contract research. We also discuss the implications of 

using quantity-based coordination contracts on the false failure return problem, and offer 

guidance on which ones provide the least incentive to game. One possibility for future research is 

to generalize our results to other settings. Another is to monitor the implementation of such a 
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contract in practice, and compare the improvements against the theory. In any event, our research 

indicates that significant savings may be obtained by reducing the number of false failure 

returns.                

Appendix: Proof of Proposition 2 

Proposition 2: Suppose ( )X ρ  is uniformly distributed.  A (u, T) contract that coordinates the 

supply chain always makes the retailer better off, and makes the manufacturer better off if 

2C Dρ ρ≥ .  

Proof:   First, consider the manufacturer. The manufacturer is better off with the (u, T) 

contract if ( ) (| ,C
M MT u )Dπ ρ π≥ ρ . The manufacturer’s expected profit (7) can be rewritten as 

  ( )
21( | , ) ( )
4

C C
C

M m C

T uT u m w c ρ ρπ ρ δ β
ρ β

⎛ ⎞−
= + − −⎜ ⎟

⎝ ⎠
. (25) 

We can rewrite (9) as  [ ]2 2 3( ) 4 ( ) 4 ( )C C
rT u a r p w 2ρ β ρ δ β= − + − , and from (2), 

( )3( ) ( ) ( ) /C
m rm w c r p w aρ δ δ= + − + + − β . Thus, 

( ) [ ]2 2 2 2( ) 4 ( ) ( ) 4 ( )C
m r rT u m w c r p w r p wρ δ δ β δ= + − + + − − + − ( )24 ( )mm w cβ δ+ −β  = .  

Substituting this in (25) yields:  

 ( ) ( ) ( )( )1 2( | , ) ( ) ( )
C C

mC
M m mC C

m w c
T u m w c m w c

β δρ ρπ ρ δ β δ β
ρ ρ

+ −⎛ ⎞ ⎛
Cρ

⎞− −
= + − − = + −⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎟
⎠

)

  

Again, we need ( ) (| ,C D
M MT uπ ρ π≥ ρ ), where ( D

Mπ ρ  is given by (5).  Simple algebra 

shows that this is true if 2C Dρ ρ≥ . 

 Now, we consider the retailer.  Define ( ) ( )| ,C
R R RT u Dπ ρ π∆ = − ρ . For the retailer to be 

better off, we need ∆R ≥ 0. From (9), [ ]2 2/ 4 ( ) /( )C C
rT u a r p wβ ρ δ β ρ= − + − , which can be 

substituted into (8), yielding   
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[ ] [ ]

[ ] [ ]

2

3

2 ( )( )( | , ) ( )
2

( ) 4 ( )
                  ( ) .

2

C
r

R rC

C
r

rC

r p waT u r p w

a r p w
r p w

δ βρπ ρ δ
ρ

ρ δ β

β

δ β
ρ

+ −
= − + + −

− + −
= + + −

) a

 (26)  

Now, from (2), (3( ) ( ) ( ) /C
m rm w c r p wρ δ δ= + − + + − β , which can be substituted in (26), 

yielding  

 
[ ]( ) [

( ) 3 ( )
( | , ) ( )

2
m r

R rC

m w c r p w
T u r p w

β δ δ
]π ρ δ

ρ
+ − − + −

= + β+ − . (27) 

In the decentralized case, note that (3) can be rewritten as  

 [ ] [
3( ) 2 ( )

( ) ( )
2

D
rD

R D

a r p w
r p w

ρ δ β ]rπ ρ
ρ

− − + −
= + δ β+ − . (28) 

But [ ]({ ) }1/3
max ( ) ,1D

rr p w aρ δ β= + − . First, consider the case where Dρ  > 1; in this case 

[ ]( )1/3
( )D

rr p w aρ δ β= + − , which implies [ ]3( ) ( )D
ra r p wρ δ= + − β  ; substituting this in (28) 

yields  

 [ ] [3 ( )
( ) ( )

2
rD

R D

r p w
r p w

δ β ]rπ ρ
ρ

+ −
= − + + −δ β . (29) 

Taking the difference (27) – (29) yields    

[ ] [ ]

[ ] [ ] [ ]

( ) 3 ( ) 3 ( )
( | , ) ( )

2 2
( ) 3 ( ) 3 ( ) ( )

       0.
2 2 2

C D

m r rC D
R R R C D

m r r m
C C C

m w c r p w r p w
T u

m w c r p w r p w m w c

ρ ρβ δ δ δ β
π ρ π ρ

ρ ρ

β δ δ δ β β δ
ρ ρ ρ

≥⎡ ⎤+ − − + − + −⎣ ⎦∆ = − = + ≥

⎡ ⎤+ − − + − + − + −⎣ ⎦ + = ≥

 (30) 

The other case to consider is if ; in this case . Thus, from (27),  1Dρ = ( ) / 2D
R aπ ρ = −

[ ]( ) [ ]
( ) 3 ( )

( | , ) ( ) ( )
2 2

m rC D
R R R rC

m w c r p w aT u r p w
β δ δ

π ρ π ρ δ β
ρ

+ − − + −
∆ = − = + + − + . (31) 

If the first term on the right–hand side of (31) is positive, then 0R∆ ≥  because the remainder 

two terms of (31) are positive. If, on the other hand, the first term on the right–hand side of (31) 

is negative, then we can write 
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[ ]( ) [ ]

[ ]( ) [ ]

1( ) 3 ( )
( )

2 2
( ) 3 ( )

     ( )
2 2

C

m r
R rC

m r
r

m w c r p w ar p w

m w c r p w ar p w

ρβ δ δ
δ β

ρ

β δ δ
δ β

≥+ − − + −
∆ = + + − + ≥

+ − − + −
= + + − +

  

[ ] [ ]

[ ] [ ]

( ) 3 ( ) 2 ( )
2 2

( ) ( ) 2 ( )
2

m r r

m r r

m w c r p w r p w a

m w c r p w r p w a

β δ δ δ β

β δ δ δ β

⎡ ⎤+ − − + − + −⎣ ⎦= +

+ − + + − − + − +
= =

2
+ =

 

[ ] [ ]

[ ] { } { }
(*) 1

3 3
2

( ) ( ) ( )
2 1

2

( )
( ) 2 1 ( ) 2 1 ( ) 1 0

2 2

C

m r r

rC C a

m w c r p w r p wa
a a

r p wa a
a

ρ

β δ δ δ β

δ β
ρ ρ

≥

⎧ ⎫⎡ ⎤+ − + + − + −⎪ ⎪⎣ ⎦= −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫+ −
= − + ≥ − + = −⎨ ⎬

⎩ ⎭
3Cρ

+

≥

, 

where in (*) we have used the fact that if [ ]( ){ }1/3
max ( ) ,1D

rr p w aρ δ β= + − , and 1Dρ = , 

then necessarily [ ]( )rr p w aδ β+ − ≤1. This completes the proof.    
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