
Animating User Interfaces Using Animation Servers

Krishna Bharat Piyawadee “Noi” Sukaviriya

Graphics, Visualization and Usability Center
College of Computing, Atlantic Drive

Georgia Institute of Technology
Atlanta, GA 30332

{kb, noi}@cc.gatech.edu

and store, and often fail to exploit the presence of the
interface on the screen. Shneiderman [15] notes that
direct manipulation interfaces are attractive because
they are easy to demonstrate and often self-explanatory.
Hence the recent interest in animation, and the efforts to
evaluate the generality and effectiveness of animated
help [10,18].

Animated demonstration systems such as MacroMind
Director [6] are becoming popular.Our notion of anima-
tion is more restricted. We define user interface anima-
tion as the process of emulating the interaction of a user
with the interface. The interaction should be real, in the
sense that it should engage the actual application. Such
systems are powerful because of their ability to invoke
actions, and expressive because they can be used to
demonstrate interaction techniques. The effect of the
presentation may be enhanced by displaying the behav-
ior of input devices audio-visually.

In this paper we present the architecture of a general
purpose tool for user interface animation - theanimation
server. Although designed for the X environment [14]
the tool has applicability to other environments as well.

EMULATING THE USER
The emulation of the user could occur at various levels:

1. Application Level: The emulator could invoke appli-
cation actions directly. Many architectures allow one
application to drive another by some internal mecha-
nism such as Apple Events [21]. Since interaction is not
being shown, this does not conform to our definition of
animation.
2. Interface Level: The emulator could trigger interface
actions and make widgets provide appropriate feedback.
The emulator may be integrated with the UIMS (user
interface management system) that implements the
interface.
3. Window System : Input events could be delivered to
the interface via the window system. The emulator
could be integrated with the window system.

ABSTRACT
Our approach to user interface animation involves simu-
lating the interaction of a user with the interface by syn-
thetically generating the input events that drive the
session. The interaction is made explicit by displaying
the behavior of input devices audio-visually. Such “ani-
mation” is both educational and functional, and has the
potential to become a powerful new medium in the
graphical user interface domain. We describe the con-
struction of a general purpose tool for animating user
interfaces - theanimation server. Clients drive the
server with textual scripts that describe the interaction.
These may contain constructs for obtaining application
context information at runtime and synchronizing with
other media servers. We present a few potential applica-
tions for animation servers, including a groupware pack-
age for loosely coupled collaboration.

KEYWORDS: User interface animation, animation
server, extensible interfaces, multimedia, context-sensi-
tivity, application state, CSCW

INTRODUCTION
In a world where transmission and storage overheads far
exceed computational costs, animation could well be the
medium of choice for tutorial, help and session-play-
back systems of the future. Why draw a picture when
there is already one on the screen? User interfaces of
tomorrow will need to be adaptive, flexible and pro-
grammable. Animation provides a means of building
functionality at a higher level than that provided by the
basic interface. This allows systems to be made open
and extensible. For instance, collaborating applications
can achieve interoperability by using animation to
bridge the gap between what is available and what is
required by the protocol. On-line help and tutorial sys-
tems that use video and graphics are expensive to author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4674621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in the current context, and then to low-level interface
events which are sent to the interface controller. In
Metamouse and Eager, an agent within the application
infers procedures from interface actions and performs
actions autonomously, when a familiar sequence is
detected. Kosbie and Myers [4] suggest the use of event
hierarchies to relate high-level semantic events with the
low-level events that drive the session.

IMPLEMENTATION
Background
The animation server described in this paper evolved
from a tool called theanimator, implemented in an
experiment to compare various forms of multimedia
help [18]. Fig. 2 shows the structure of theAudio-Ani-
mation Help System used in the experiment. Three pro-
cesses were involved. The initiator of the help sequence
which was also responsible for audio playback (hence
called theaudio server), the application being acted
upon, and the animator. The help system invoked anima-
tion by sending the animator an animation script describ-
ing the actions to be performed (e.g. mouse moves, key
strokes, mouse clicks). When the location of a widget or
a window was needed, or an application level action had
to be performed, the animator would interrupt the appli-
cation using an asynchronous message. The application
would respond by returning a value or performing the
appropriate action. Synchronous messages travelled
between the audio server and the animator to synchro-
nize the animation with audio playback. The audio
server played a sequence of audio pieces - each piece
being synchronized with a step in the animation. The
correlation was specified within the script. The animator
showed the manipulation of input devices by the user by
moving glyphs across the screen and providing audio
feedback for mouse clicks and keystrokes (as shown in
Fig. 3).

Architecture
The animation server inherits most of the features of the
animator described in the previous section. The purpose
of the generalization was to make it a shared resource,

4. Input Device: Input events could be delivered to the
window system as if from the device driver. This is tricky
because the mouse is being treated as a relative device.

In the Macintosh and PC environments, the UIMS is inte-
grated with the window system. Emulation at the level of
the interface provides robustness and control over the pre-
sentation. In the X environment, each application has its
own UIMS, and it is necessary to operate at the level of
the window system to be as general as possible. Mouse
and keyboard events are delivered to the X Server which
relays them to appropriate clients based on window place-
ment, notification requests, notification masks and grabs.
Thus we may create presentations that involve multiple
applications and the Window Manager. The disadvantage
is that the events being generated are low level, and so is
the programmer’s interface.

RELATED WORK
Commercial record-and-playback macro packages like
Tempo II [11] and Microsoft’s Recorder [8] work at the
level of window system while most programming by
demonstration systems like Metamouse [7], Eager [2] and
Chimera [5] work at the interface level. Triggers [13] is a
system-wide macro facility on the Macintosh that gener-
ates keyboard and mouse events and uses pixel-level pat-
tern matching to obtain context. Cartoonist [17] is a
context-sensitive animated help system integrated with
the UIMS. Application actions are first mapped to actions

invoke_script

get_value,
perform_action

Events

script

Figure 2. Audio-Animation Help System

Help System
(play

Application

Animator
(send

(receive

events)

events)audio)

Application

Interface

Window
System

Devices

Figure 1. Emulating the user at various levels

The animator can be regarded
as a robot in the user interface
domain, emulating the user at
some level.

play_audio

 and sounds effects
Figure 3. Animation using events, moving icons

encapsulating sufficient functionality to be useful in dif-
ferent scenarios.

The server has a hierarchical, open architecture, with
two parts - theA-shell and thekernel. All device depen-
dent features are absorbed in the kernel. It has a low
level command line interface and works in absolute
coordinates. The kernel can be thought of as a pseudo
device driver for the mouse and the keyboard. There is
one kernel per site. Most applications would prefer to
interact with theA-shell, which is at a higher-level, and
has support for symbolic programming, conversion
between coordinate frames and synchronization with
media servers participating in the presentation. Each
application has its own A-shell. The dynamic combina-
tion of an A-shell with the kernel is the animation
server.
The application sends commands or scripts to the A-
shell, which translates them to the kernel command lan-
guage and drives the kernel.

Applications that desire animation often have a lot of
contextual information to communicate to the animation
server - the location of widgets, selections and even the
very composition of the sequence may be unknown till
runtime. The acquisition of context information depends
on the way the UIMS and the application represent state
information and the data exchange mechanisms they
support. Since we are building a general purpose tool, it
is better to entrust this responsibility to an agent created
by the application programmer. We call this process the
infoserver and it is typically the application itself. When
requested by the A-shell, the infoserver gathers data
from the window system, the UIMS and the application,
and returns it an executable form. The infoserver may in
turn, leverage off a high-level data exchange mechanism
like Apple PPC [21] or Microsoft DDE [12]. We merely
define the communication protocol between the A-shell
and the infoserver.

Fig. 4 shows the processes involved. The A-shell is typ-
ically spawned by the application, which also appoints
any media-servers and infoservers required in the pre-
sentation. Every process maintains an input queue for
interprocess communication. All communication is in
the form of typed messages supported by UNIX1 Sys-
tem V message queues [1]. The queues allow blocking,
non-blocking and selective access to messages.

The programmer’s interface to the animation server is a
library of routines to drive the A-shell and register call-
backs. The application may the drive the A-shell syn-

1. UNIX is a trademark of AT&T.

chronously or asynchronously, but the A-shell always
drives the kernel synchronously. Multiple A-shells may
share a kernel by yielding control after executing a logi-
cally continuous segment of their animation - called a
session. The programmer may improve concurrency, by
making sessions fine-grained.

The Kernel
The implementation of the kernel is machine specific.
Events for the keyboard and the mouse need to be syn-
thetically manufactured. The kernel command set is
low-level, yet comprehensive. The following commands
are supported:

1. Appear at x,y
2. Disappear
3. Goto x,y in n steps
4. Click b button after moving to x,y in n steps
5. Doubleclick b button after moving to x,y in n steps
6. DragAndDrop to x,y in n steps using b button
7. Pause for s secs
8. Pause for m msecs
9. Type “message”
10. Get Current Position

Where x, y are integer coordinates;n represents the
number of frames in the animation;b is either { “left”,
“middle”, “right”} or {“left”, “right”} depending on the
number of buttons on the mouses andm are integer val-
ues representing time elapsed, in seconds and millisec-
onds andmessage may contain codes for special keys,
such as , <BSPC> and <RETN>. Upper case
characters are decomposed into appropriate key-combi-
nations. The kernel is not case-sensitive.

A few low-level commands may also be defined :

11. Press Button b
12. Release Button b
13. Press Key k

Figure 4. The Processes Involved

Application Infoserver

kernel

A-shellMedia
Server

Media
Server

Synchronous

Asynchronous

Kernel/Shell Session Protocol
A-shells driving the kernel synchronously as shown in the
figure. The current implementation permits only one shell
to driving the kernel at a given time. The structure of the
kernel command execution loop is as follows1:

Kernel_Session(QueueT inQ)
{ QueueT outQ;

[outQ:_]=blocking_readQ(inQ, SESSION_REQ);
writeQ(outQ, [_ : SESSION_START]);
[command:code]=blocking_readQ(inQ,

KERNEL_CMD | END_SESSION);
while(code != END_SESSION)
 { switch (command)

 { case “Appear at x,y” :-...
 case “Click ...”:- ...

 // service command appropriately
 }

 writeQ(outQ, [return_value:FN_COMPLETE]);
[command:code]=blocking_readQ(inQ,

 KERNEL_CMD | END_SESSION);

1. All interprocess communication is by messages of the form
[<command>:<code>]. ‘_’ denotes “Don’t Care.” The ‘|’
symbol is used to “OR” message types in the read command.

}}
At every site there is exactly one kernel, although multi-
ple A-shell clients may be present. The queue-id of the
kernel (inQ in the example) is publicly known. Anima-
tion sessions are set up with clients on a first-requested-
first-served basis. outQ is the input-queue of the client
that is being serviced at any given time.

UNIX message queues allow messages to be typed. This
permits the kernel to distinguish between session
requests and animation commands. An A-shell initiates
a session by placing a SESSION_REQ message on the
inQ, along with its own input queue id, and waits for a
SESSION_START message. Thereafter it sends com-
mands to the kernel, one at a time, in a synchronous
fashion. After each command, the shell blocks on its
input queue, waiting for a FN_COMPLETE message.
This is necessary because the next command may not be
computable until the current one has been executed. At
the end of a session, the current client releases the kernel
with a END__SESSION message. The kernel is then
free to service the next client on the queue.

The A-Shell
The A-shell is a high level, context-sensitive interface to
the animation kernel. It runs as a separate process and
communicates with the application via message queues,
as it does with the kernel. Thus, the A-shell is a layer
between the application and the kernel. The client appli-
cation views the shell and the kernel as a single entity,
the animation server, although the link gets broken at
the end of every animation session, and needs to be re-
established when needed again.

The A-shell needs to be a separate process because, in
the callback style of programming, the process that
invokes the animation cannot block while it is in
progress if it is the recipient of input events. The client
application typically operates in asynchronous mode. It
issues an animation request to the server and returns
from the callback. The server signals the client when the

Application
Client

Figure 6. Interface to A-Shell

A-Shell

Kernel

A-shell

A-shell
cmd
language

Kernel
cmd
language

support

(i) command specification routines
(ii) continuations for asynchronous animation
(iii) RPC handlers for callbacks and symbols

code

14. Release Key k
The command DragAndDrop represents the compound
action “Press Button b; Goto x,y in n steps; Release Button
b.”

The only command that returns a value is Get Current
Position which returns the current location of the cursor.
This command is needed by the shell to convert from rela-
tive coordinates to absolute coordinates. The Pause com-
mand is the only command that involves a reference to
time. Other commands merely refer to the granularity of
the frames in an animation step. This is not a real-time sys-
tem. There is no capability to schedule a certain action at a
specific instant in time; nor is it possible to estimate how
long a certain animation step will take. Nonetheless, the
pause command is needed, to prevent the next action from
being invoked before the current action takes effect.

Kernel

A-Shell

[qid : SESSION_REQ]

[_ : SESSION_START]

qid

known_qid

[anim command : KERNEL_CMD]*
[_ : END_SESSION]

Figure 5. Kernel Sessions

[_ : FN_COMPLETE]*

operation is completed. Often the command will be a
script to be executed by the server in batch mode. The A-
shell accepts a superset of the kernel command language.
The following extensions are provided:

Preprocessor Commands. These are A-shell directives,
beginning with a ‘#’ and are listed in the table. They do
not get propagated to the kernel. Macros may be used to
make the script more readable or to pass parameters to
scripts.

e.g. #define IconToMove fileIcon
#define Destination 100,100
#invoke “MoveIcon”

When executing the play command, the A-shell waits until
every server referenced in the command has indicated its
readiness to accept input before sending requests.

Addition of Coordinates. Conversion from one coordinate
frame to another is done by prefix addition expressions.
e.g. +(100,500, 20,60) would evaluate to 120, 560. These
may be nested.

Comments and white-space. Comments start with a ‘;’

Macro Invocation, Symbols and Callbacks. When an iden-
tifier preceded by an ‘@’ symbol is encountered, A-shell
first checks in the list of known macro-names for a string
substitution. Macros may be nested but never recursively.

The following example illustrates the usage of macros:

; Macro Definitions
#define editorWindow 200,300
#define pullDown DragAndDrop
#define editorFileButton +(100, 50, @editorWindow)
#define fileClick +(20,20, @editorFileButton)

#define loadFileChoice +(0,200, @fileClick)
...
; Macro invocation.
; Pull down the File menu and select the Load option
Goto @fileClick in 10 step
@pullDown to @loadFileChoice in 30 steps using
Left button.

Unfortunately all coordinates are statically defined. This
can be avoided using symbols.

When a symbol of the form@symbol-name is encoun-
tered, it is sent to the infoserver which provides the
expansion for the symbol - typically a value derived
from the state of the system (e.g. a coordinate pair repre-
senting a location that cannot be computed till runtime).
We could simulate a control statement by having the
symbol evaluate to a sequence of commands or the
name of a script.

Callbacks are of the form@callback-name(arg-string)
and are distinguished from symbols by the parentheses
enclosing the argument string. Unlike symbols, call-
backs are always executed by the A-shell support code
in the parent application, which unpacks the arguments
and invokes a function whose pointer and signature

Figure 7. Script for Menu Selection

200,300

Editor

Load
200

File

1. Cursor moves
to the “File” menu
button.

2. Pulls down the
menu using the
left button.

3. Releases the
button over the
“Load” option.

Table 1: Preprocessor Commands

Command Usage Purpose

#invoke #invoke “filename” Transfers control to a script (batch mode)

#end #end Returns control to caller (A-shell or another script)

#define #define macro-name macro-expansion Defines macro, e.g. #define OK_BUTTON 100,50

#undefine #undefine macro-name Pops last definition of macro-name from the stack

#infoserver #infoserver process-id queue-id Nominates a process as the infoserver

#mediaserver #mediaserver server-name queue-id Registers a user defined media server with a given name

#play #play server1(“msg1”), server2(“...”),... Invokes server1 with msg1 and server2 with msg2 etc.

Preprocessor Commands

have been registered earlier by the application.
In the following example OffsetToOK is a macro repre-
senting a static offset, PrintPopup is a symbol that eval-
uates to the northwest corner of the “Print” window, and
loadFile is a callback registered by the application with
the A-shell support code.

#define OffsetToOK 400,50
...
@loadFile(“demo1.doc”)
; loadFile is an application callback
...
Goto +(@PrintPopup, @OffsetToOK) in 15 steps
; Infoserver provides the current location of
; the window designated PrintPopup

@CurrentPosition is a special symbol that causes the
kernel to be contacted instead of the infoserver. Relative
positions may be specified by expressions of the form
+(@CurrentPosition, x_increment, y_increment).

Callbacks are used to invoke actions internally, as
opposed to invoking them externally via input events.
This gives the animation designer some flexibility in
composing the simulation. Typically they are used to
perform actions that are either impossible or tedious to
perform using normal animation. For example, help sys-
tems may use a callback to save the state of the applica-
tion before performing some actions, and another
callback to revert to the saved state.

Symbols and callbacks make it possible for the anima-
tion script to access contextual information and invoke
application actions.The RPC mechanism is illustrated in
the following figure.

When a symbol is encountered:

1. A message, [symbol-name : SYMBOL_NEEDED], is
placed on the input queue of the infoserver.

2. A signal, SIG_RPC, is sent to the infoserver.
3. The A-shell blocks on its input queue waiting for a

Application
[callback-name(args) : CALL_BACK]

Fig 8. RPC Mechanism

[ret_val : RPC_DONE]

SIG_RPC

SIG_RPC

[_ : RPC_DONE]

[symbol-name : SYMBOL_NEEDED]

A Shell

Infoserver

 return message of the form [ret_val:RPC_DONE].
The stringret_val is used as the expansion for the sym-
bol. The protocol for callbacks is similar. A message of
the form [callback(args):CALL_BACK] is sent to the
application. The return value is ignored and the instruc-
tion is replaced with a null-string.

In both cases a signal handler is responsible for reading
the input queue and carrying out the appropriate action.
Note that in the synchronous case, the application may
be waiting for an acknowledgment from the server when
the RPC request message is received. Since messages
are typed there is no collision.

PROGRAMMING THE A-SHELL
The user interacts with the A-shell through a library of
routines linked with the application, called theA-shell
support code. Since the A-shell is sometimes driven
asynchronously, it needs to be a separate process and is
forked when the application starts up. The functions,
Connect andDisconnect, manage the connectivity of the
A-shell to the kernel.

The programmer needs to create the infoserver and all
media-servers that participate in the session. The same
support code is used in all cases. All processes maintain
queues for communication with the A-shell.

Issuing Commands to the A-shell
In most graphical applications there is a single thread of
control and all actions, including the action that brings
about animation, are invoked within callbacks. In this
style of programming, the application will be unable to
service events until it exits the animation callback. If a
‘#invoke’ command was sent, then the application will
block until the script has been fully executed.If the
application needs to return to its event processing loop,
a non-blocking approach may be preferred. To support
both styles of invocation we have two modes:

(i) Synchronous Mode

In this protocol the application blocks on its input queue

o o

Callback

Figure 9. Synchronous Communication

Application Thread

Animation Requests

until it receives an acknowledgment from the shell indi-
cating that the action has been completed. Then, it
issues the next animation request. This is not very useful
because the application may need to process input
events while the animation is in progress. This facility
helps when the process driving the A-shell is not receiv-
ing the events or when no interface actions are being
invoked.

ii) Asynchronous Mode

In this protocol, the application issues a request and then
returns from the animation callback immediately. When
the request has been serviced, the application is inter-
rupted by a signal, and control is transferred to a signal
handler, called acontinuation, which issues the next
request in the sequence. The default continuation does
nothing. The programmer may choose to define a con-
tinuation if the animated script is to be generated incre-
mentally.

The default behavior is synchronous. Asynchronous ani-
mation commands are terminated with a ‘&’ sign.
e.g. DragAndDrop to +(@CurrentPosition, 200,50) in 40
steps &

Media Servers
In this section we describe the architecture of media-
servers that the programmer might want to construct.
They may be registered with the A-shell at the start of
the session using the#mediaserver command. Media-
servers process requests in a first-come-first-serviced
fashion. Each media-server has a single queue for both
input and output messages, and may cater to multiple
clients at a given time. The media-server is not aware of
the identity of its clients. Any process that obtains the
queue-id of a media-server can write to it, and the ani-
mation server is just another client.

The media-server loop is as follows:

while (1)
{ writeQ(Q, [_ : CODE_FREE]);

 [media_request : _] =
blocking_readQ(Q,CODE_REQUEST);

 execute(media_request);

Callback

Application Thread

Animation Requests

Signal
Handler

Figure 10. Asynchronous Communication

}
The client which reads a CODE_FREE message gets to
issue the next request to the media-server. When the ani-
mation server needs to issue a play request to a set of
media-servers, it first obtains the right to issue requests by
reading a CODE_FREE message from each server’s
queue. Then it starts them off together and proceeds with
the script. If all clients obtain access to media-servers in a
standard order (e.g. the alphabetical order of server
names), deadlocks can be avoided.

A typical scenario is shown in Fig. 11. The client issues a
“play audio(x), video(y)” request to A-shell. The shell
needs to wait awhile for the audio-server to become free.
On reading a CODE_FREE token from the audio-server’s
queue the shell waits for a similar token to appear on the
video-server’s queue. Having read tokens from both
queues the shell issues individual requests and proceeds
with the animation.This ensures that all media streams are
synchronized. For simplicity, propagation delays have not
been shown in the figure.

DISCUSSIONS
The animation server can function as both a teacher and a
robot in the graphical workspace. Applications may range
from purely educational to purely functional.

Knowledge Levels
One of the strengths of our design is that the entity that
generates the animation script need not be the application
being animated. To create scripts effectively, however, this
process must be privy to some information about the state
of the application. The level of detail may vary:

i) No State Information: Blind access works when an excel-
lent model of the application is available (amounting to a
replicated state), or a canned presentation will suffice. This
will do in cases where the user does not interact with the
interface directly, and uses audio input or types commands

Video Audio

play audio(x),video(y)

audio free

video free

Issue request

Figure 11. Synchronizing Media Servers

Client

xy

time

on a terminal to drive the session.
ii) Information about the state of windows and widgets:
Interface related information may be obtained from the
window system. Often widgets are located at a fixed off-
set from the window-origin, or at a displacement com-
putable from the geometry of the window. Application
level state information has to be inferred from the inter-
action history.

iii) Application Level Information: The script-generator
could obtain state information by sending asynchronous
queries to the application. To avoid having to poll, it
may request notification when certain parts of the state
change. If the script-generator resides within the appli-
cation itself it will have total access to the application
state. If it is a separate process, shared memory or disk
storage can be used to share state information, which
tends to be expensive and slow. Embedding a script-
generator in the application may be intrusive and
impractical. Query-based access seems a realistic
approach, and provides a generic interface to all clients
requiring state information.

Application Support
Applications need to be vested with the capability of
exporting state information to entities wishing to inter-
act with them. Programs of tomorrow may require
“social skills” to survive in a world of collaborating
software. Structured design of the application, separa-
tion of the interface from the abstraction, and a declara-
tive framework for maintaining state information assist
in this enterprise. We hope to integrate animated help
with UIDE (User Interface Design Environment [20]),
which offers many of these features. In UIDE, pre- and
post-conditions are used to describe the partial seman-
tics of application actions. Pre-conditions are used to
determine the validity of actions, and post-conditions
(or rather post-assignments) register the change in state
induced by the action on a global blackboard. Together
they provide sequencing control. There is a decomposi-
tion of objects into application objects and interface
objects, and actions into interaction techniques, inter-
face actions and application actions. All data and control
information is available in a declarative form, which
would allow an external entity to perceive, analyze and
reason with the state of the application. This provides
the declarative framework needed to undertake context-
sensitive planning and script generation.

APPLICATIONS

Context Sensitive Animated Help
Context sensitive help systems are required to analyze
the problem context (the current state of the application)
and generate a plan of action that will either carry out
the required task or serve as a relevant example [17,19].

The above architecture is due to Spaans [16]. Rather
than undertake “hypothetical world” planning, the plan-
ner is organized so that it generates the plan in chunks.
Each chunk is converted into an animation script and
executed before the next chunk is generated. This
enables the planner to make use of the updated applica-
tion context in generating the plans that follow. For sim-
plicity the planner and the user interface are
implemented as threads (provided by CThreads [9], a
non-preemptive threads package). On invocation of ani-
mated help, a new thread is forked. This thread is
responsible for computing partial plans and dispatching
them to the animation server for asynchronous execu-
tion. After sending the script to the animation server, the
help-thread yields control to the main event-handler of
the user interface, so that it may receive input events.
When the script has finished executing, the server inter-
rupts the application (as required by the asynchronous
protocol), and the help-thread regains control.

Here are somepotential applications for the animation
server:

1. Tutorial / Session Playback Systems
These have a lot in common with Animated Help sys-
tems. However, they do not need to analyze the applica-
tion context and have the advantage of starting with a
known or default system state. Tutorial scripts are typi-
cally created by a human. The script for session play-
back may be generated from the application log,
provided interface actions have been recorded.

2. Extending Functionality
Animation may be used to extend applications by build-
ing task-oriented tools at a level above the interface. The
creation of such tools is more programming intensive
than creating a macro, but may have a pay-off when

Yield

Main Event Loop

Preempt Main Thread

Events

End of Script

A
N
I
M
A
T
I
O
N

S
E
R
V
E
R

get_value

partial script

Figure 12. Incremental Generation of Help

Generate
Partial Plan

Help
Requested

INTERFACE

used to support tasks that are frequently performed.
Context sensitivity adds to the power of this facility.
Also, animation can assist in the specification of param-
eters by shifting input focus to appropriate parts of the
screen.

The following example (see Fig. 13) illustrates a
“Change Format” tool built on top of FrameMaker1’s
search facility. Note that FrameMaker already has such
a utility and this is merely an example.

The extension involves the creation a new window that
drives the “Search” and “Character Format” windows of
FrameMaker. The tool initializes the “Search” window
and locates the first occurrence using the “Search” but-
ton. Then the cursor is placed between the “Skip” and
“Replace” buttons, allowing the user to specify the next
step.

1. FrameMaker is a trademark of Frame Technologies Co.

This is accomplished by attaching code to the “Skip” and
“Replace” buttons that causes scripts to be sent to the ani-
mation server. These scripts are parametrized by macros
derived from the state of the settings in the tool. Note that
the tool has no way of detecting when all matches have
been found. Nonetheless, it is heartening to observe how
much can be accomplished without support from the appli-
cation.

3. CSCW
Groupware involves replication at some level. If the levels
in an application are taken to be the view, the interface and
the abstraction, the following configurations are possible:

Replicated View. (Single Interface, Single Abstraction) -
Broadcast display events, multiplex input events.

Replicated Interface. (Multiple Interfaces, Single
Abstraction) - Broadcast interface actions.

Replicated Application. (Multiple Interfaces, Multiple
Abstractions) - Broadcast application actions.

Application actions are typically implementation indepen-
dent, and hence constitute a generic form of communica-
tion. The animation server has all the capabilities needed
for tying applications together to form collaborative work-
groups:

(i) The ability to invoke actions at the both the interface
level and the application level.
(ii) Access to application context and hence the ability to
adapt remote actions to local conditions
(iii) Parametrized scripts that may be used to map applica-
tion actions to interaction techniques. Scripts are used to
bridge the gap between various interface styles.
(iv) The ability to reproduce actions at a remote site in a
demonstrative fashion, increasing the level of awareness
in the group.

The overt reproduction of actions may not always be desir-
able. Fortunately the option of invoking application
actions through callbacks is available.

Fig. 14 shows the design of a system for fully replicated
collaboration based on animation servers (only one way
communication is shown). Animation servers are present
at every site and act as agents for other sites participating
in the session. At each site the local interface maps input
events to interface actions and then to application actions,
which need to be communicated to other participants. If
heterogeneous applications are connected together, the
application actions may need to be translated to a common
language before being broadcast. This is simplified by the
fact that application actions tend to be abstract.

Figure 13. Task Oriented Extensions

(i) If the user presses the “Replace” button, the animator
goes through the process of choosing “Helvetica” in the
Font menu, selecting size 12 in the Font Size menu, and
Italic in the Angle menu, before pressing the “Apply”
button (not shown in the picture) to make the change
effective. Then the “Search” button is pressed to locate
the next occurrence, and the cursor is returned to its
default position to close the loop.

(ii) If the user presses the “Skip” button the animator
presses “Search” to locate the next word as before and
returns the cursor to its default position.

DistEdit [3] is an example of a toolkit that allows heter-
ogeneous applications to collaborate using a common
language for application actions. Periodically, each site
transmits updates (translated application actions) over
the network to other sites, where they get buffered. For
maximum flexibility participants should be allowed to
import updates into their system at their own conve-
nience. At the same time the system must be aware of
the significance of the updates occurring at various sites
and maintain consistency. In this design we shall assume
that the system will prevent actions that have the poten-
tial to interfere with each other. The buffered updates
may be reordered, combined and compacted into
“chunked” updates for better presentation to the user.
The user is presented with a graphical view of the pend-
ing updates in a form similar to the “graphical histories”
described by Kurlander in [5]. Users may choose to
import the updates into their system, either internally as
application actions, or externally (and explicitly) by ani-
mation. The latter option would be desirable when the
graphical history does not explain the changes suffi-
ciently, e.g. in the case of documents that have been
edited in numerous places. Application actions are
retrieved from the updates using a reverse translation
process. The application’s structure should allow for the
arbitrary introduction of application actions in the sys-
tem. The change must propagate to the view, providing
appropriate feedback.

When actions are to be imported explicitly, they are con-
verted to animation sequences using parametrized
scripts. In UIDE, the mapping from application actions
to interface actions and then to interaction techniques is
present in the system definition. Since there is a one-to-
one correspondence between interaction techniques and
scripts, UIDE is in a position to generate its own anima-
tion sequences.

It should be emphasized that this architecture is suited
not only for Same-Time-Different-Place collaboration
but also for the more general, Different-Time-Different-

Place CSCW. The update buffer is an immutable entity
that keeps a log of actions performed at other sites, and
provides participants who rejoin a session with a con-
cise enactment of all that transpired in their absence.

4. Audio Interfaces
The animation server may be used in conjunction with a
speech-recognition system to assist physically handi-
capped users to perform mouse based tasks on the work-
space.

CONCLUSIONS
This work was born out of an attempt to build systems
that provide context-sensitive animated help in a clean,
non-intrusive fashion. Although primarily intended to
“show” how things may be done on a graphical work-
space, we discovered that the design is general enough
to provide a variety of services. It is hoped that as the
user community starts requiring their interfaces to be
self-explanatory, extensible and collaborative, anima-
tion will take on the role of robotics in the user interface
world. As a medium, animation has a long way to go
and a large role to play in demonstration and tutorial
systems of the future. In addition to its primary role as a
presentation tool, the animation server may be regarded
as both a pseudo input-device providing a new input
modality (automated tasks, replicated actions in collabo-
rative work), and as an intelligent agent capable of act-
ing on behalf of the user (context-sensitive actions).
Future research should be directed towards finding new
applications for animation and designing applications
that provide easy access to state information. We hope
to investigate the use of animation in CSCW and in pro-
viding speech-based access to graphical user interfaces.

Figure 14. Replicated CSCW using Animation Servers

VIEW INPUT

INTERFACE

APPLICATION

ABSTRACTION

VIEWINPUT

INTERFACE

APPLICATION

ABSTRACTION
Chunked Updates

Animation Server

Event Handler Event Handler

Interface
action

IA to AA IA to AA

Application
action

Application
action

Interface
action

Mapping Application

Scripts
Actions to Animation

ACKNOWLEDGEMENTS

This work was supported by the Human Interface Tech-
nology group of Sun Microsystems and the Siemens
Corporate R&D System Ergonomics and Interaction
group of Siemens Central Research Laboratory, Munich.

We appreciate the comments and contributions of Jim
Foley, Martin Frank, Mark Gray, Todd Griffith, Ellen
Isaacs, Jeyakumar, Thomas Kuehme, Anton Spaans,
Jouke Verlinden and Joseph Wehrli.

REFERENCES

1. Bach, M.J.,The Design of the UNIX Operating
System, Prentice-Hall Inc., 1986.

2. Cypher, A. EAGER: Programming Repetitive
Tasks by Example, inCHI ‘91 Conference Proceedings

(May 1991), pp. 33-39.

3. Knister, M.J. and Prakash, A. DistEdit: A Distrib-
uted Toolkit for Supporting Multiple Group Editors,
in CSCW ‘90 Conference Proceedings (1992).

4. Kosbie, D. S. and Myers, B. A., A System-
Wide Macro Facility Based on Aggregate Events :
A Proposal, inWatch What I Do - Programming by
Demonstration edited by Allan Cypher, MIT
Press (1993), Ch. 22, pp. 433-446.

5. Kurlander, D. and Feiner, S. A History-Based
Macro By Example System, inUIST ‘92
Conference Proceedings (Nov 1992), pp. 99-106.

6. MacroMind Director Overview Manual,
MacroMind Inc (Mar 1988).

7. Maulsby, D.L., Witten, I.H., and Kittlitz, K.A.
Metamouse: Specifying Graphical Procedures by
Example, inSIGGRAPH ‘89 Conference
Proceedings(Jul-Aug, 1989), pp. 127-136.

8. Microsoft Windows 3.0 Data Sheet, Microsoft
Corporation (1992).

9. Mukherjee, B. A Portable and Reconfigurable
Threads Package, inSun User Group Technical

Conference Proceedings (1991), pp. 101-112.

10. Palmiter, S. and Elkerton, J. An Evaluation of
Animated Demonstration Systems for Learning
Computer-based Tasks, inCHI ‘91 Conference
Proceedings(May 1991), pp. 257-263.

11. Pence J. and Wakefield C., Tempo II,Affinity
Microsystems, Boulder, CO 1988.

12. Petzold C., Windows 3.1 - Hello to TrueType, OLE
and Easier DDE; Farewell to Real Mode, in
Microsoft Systems Journal, Vol 6, No. 5, Sep 1991.

13. Potter, R., Triggers: Guiding Automation with
Pixels to Achieve Data Access, inWatch What I Do
- Programming by Demonstration edited by Allan
Cypher, MIT Press (1993), Ch. 17, pp. 361-382.

14. Schiefler, R.W. and Gettys, J.,X Window System -
Second Edition, Digital Press, 1990.

15. Shneiderman, B. Direct Manipulation: A Step
Beyond Programming Languages, (1983)
Computer, 16(8), pp. 57-68.

16. Spaans, A.Generating Context-Sensitive
Animated Help, Master’s Thesis (1993),TU Delft.

17. Sukaviriya, P.Automated Generation of
Context-Sensitive Help, Ph.D. Thesis (1991),
George Washington University.

18. Sukaviriya, P., Isaacs, E., and Bharat, K. Multi-
media Help: A Prototype and an Experiment,
in CHI ‘92 Proceedings (May 1992), pp. 433-434.

19. Sukaviriya, P. and Foley, J. Coupling a UI
Framework with Automatic Generation of Context-
Sensitive Animated Help, inUIST ‘90 Conference
Proceedings (Oct 1990), pp. 152-166.

20. Sukaviriya, P., Foley, J. and Griffith, T. A Second
 Generation User Interface Design Environment:
 The Model and the Runtime Architecture, in
CHI ‘93 Conference Proceedings (Apr 1993).

21. Technical Introduction to the Macintosh Family -
Second Edition, Apple Computer Inc.

