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ABSTRACT and store, and often fail to exploit the presence of the
Our approach to user interface animation involves simuinterface on the screen. Shneiderman [15] notes that
lating the interaction of a user with the interface by syndirect manipulation interfaces are attractive because
thetically generating the input events that drive thethey are easy to demonstrate and often self-explanatory.
session. The interaction is made explicit by displayindHence the recent interest in animation, and the efforts to
the behavior of input devices audio-visually. Such “ani-evaluate the generality and effectiveness of animated
mation” is both educational and functional, and has théelp [10,18].
potential to become a powerful new medium in the
graphical user interface domain. We describe the conanimated demonstration systems such as MacroMind
struction of a general purpose tool for animating useDirector [6] are becoming popul#@ur notion of anima-
interfaces - theanimation server Clients drive the tion is more restrictedWe define user interface anima-
server with textual scripts that describe the interactiontion as the process of emulating the interaction of a user
These may contain constructs for obtaining applicatiomith the interface. The interaction should be real, in the
context information at runtime and synchronizing withsense that it should engage the actual application. Such
other media servers. We present a few potential applicaystems are powerful because of their ability to invoke
tions for animation servers, including a groupware packactions, and expressive because they can be used to
age for loosely coupled collaboration. demonstrate interaction techniques. The effect of the
presentation may be enhanced by displaying the behav-
KEYWORDS: User interface animation, animation jor of input devices audio-visually.
server, extensible interfaces, multimedia, context-sensi-

tivity, application state, CSCW In this paper we present the architecture of a general
purpose tool for user interface animation -ahénation
INTRODUCTION server Although designed for the X environment [14]

In a world where transmission and storage overheads fgie tool has applicability to other environments as well.
exceed computational costs, animation could well be the

medium of choice for tutorial, help and session-play-EMULATING THE USER
back systems of the futurg/hy draw a picture when The emulation of the user could occur at various levels:
there is already one on the scr@ebser interfaces of
tomorrow will need to be adaptive, flexible and pro-1. Application Level: The emulator could invoke appli-
grammable. Animation provides a means of buildingcation actions directly. Many architectures allow one
functionality at a higher level than that provided by theapplication to drive another by some internal mecha-
basic interface. This allows systems to be made opemism such as Apple Events [21]. Since interaction is not
and extensible. For instance, collaborating applicationseing shown, this does not conform to our definition of
can achieve interoperability by using animation toanimation.
bridge the gap between what is available and what ig. Interface Level: The emulator could trigger interface
required by the protocol. On-line help and tutorial sys-actions and make widgets provide appropriate feedback.
tems that use video and graphics are expensive to autiibhe emulator may be integrated with the UIMS (user
interface  management system) that implements the
interface.
3. Window System : Input events could be delivered to
the interface via the window system. The emulator
could be integrated with the window system.
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Figure 1. Emulating the user at various levels
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The animator can be regarded
as a robot in the user interface

in the current context, and then to low-level interface

events which are sent to the interface controller. In

Metamouse and Eager, an agent within the application
infers procedures from interface actions and performs
actions autonomously, when a familiar sequence is
detected. Kosbie and Myers [4] suggest the use of event
hierarchies to relate high-level semantic events with the
low-level events that drive the session.

IMPLEMENTATION

Background

The animation server described in this paper evolved
from a tool called theanimator implemented in an
experiment to compare various forms of multimedia
help [18]. Fig. 2 shows the structure of thedio-Ani-

o}

domain, emulating the user at 0 Application

some level. mation Help Systemsed in the experiment. Three pro-

cesses were involved. The initiator of the help sequence

4. Input Device: Input events could be delivered to the Which was also responsible for audio playback (hence
window system as if from the device driver. This is trickycalled theaudio serve), the application being acted
because the mouse is being treated as a relative device.UPON, and the animator. The help system invoked anima-
tion by sending the animator an animation script describ-
In the Macintosh and PC environments, the UIMS is intelnd the actions to be performed (e.g. mouse moves, key
grated with the window system. Emulation at the level oftrokes, mouse clicks). When the location of a widget or
the interface provides robustness and control over the pré-Window was needed, or an application level action had
sentation. In the X environment, each application has it P& performed, the animator would interrupt the appli-
own UIMS, and it is necessary to operate at the level dyation using an asynchronous message. The application
the window system to be as general as possible. Mou¥uld respond by returning a value or performing the
and keyboard events are delivered to the X Server whichPPropriate action. Synchronous messages travelled
relays them to appropriate clients based on window plac&€tween the audio server and the animator to synchro-
ment, notification requests, notification masks and grab§ize the animation with audio playback. The audio
Thus we may create presentations that involve multipl§€rver played a sequence of audio pieces - each piece
applications and the Window Manager. The disadvantageeing synchronized with a step in the animation. The

the programmer’s interface. showed the manipulation of input devices by the user by

moving glyphs across the screen and providing audio
RELATED WORK feedback for mouse clicks and keystrokes (as shown in
Commercial record-and-playback macro packages likEig. 3).
Tempo Il [11] and Microsoft’s Recorder [8] work at the
level of window system while most programming byArchitecture . )
demonstration systems like Metamouse [7], Eager [2] an-'dh? animation server inherits most of th.e features of the
Chimera [5] work at the interface level. Triggers [13] is a@nimator descr|be_d in the previous section. The purpose
system-wide macro facility on the Macintosh that generof the generalization was to make it a shared resource,
ates keyboard and mouse events and uses pixel-level pat-
tern matching to obtain context. Cartoonist [17] is % Figure 3. Animation using events, moving icons
context-sensitive animated help system integrated with and sounds effects
the UIMS. Application actions are first mapped to action
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Figure 2. Audio-Animation Help System
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encapsulating sufficient functionality to be useful in dif-

ferent scenarios. Figure 4. The Processes Involved
The server has a hierarchical, open architecture, wit Application rtsEre
two parts - théA-shelland thekernel All device depen-

dent features are absorbed in the kernel. It has a log ‘i v

level command line interface and works in absolutg

coordinates. The kernel can be thought of as a pseu( /media . A-shell %
device driver for the mouse and the keyboard. There | \ Server Server
one kernel per site. Most applications would prefer tq

interact with theA-shell which is at a higher-level, and
has support for symbolic programming, conversior

between coordinate frames and synchronization wit Sy?chro.nous
media servergarticipating in the presentation. Each -

application has its own A-shell. The dynamic combina; Asynchronous
tion of an A-shell with the kernel is the animation
server. chronously or asynchronously, but the A-shell always

The application sends commands or scripts to the Adrives the kernel synchronously. Multiple A-shells may

shell, which translates them to the kernel command larshare a kernel by yielding control after executing a logi-
guage and drives the kernel. cally continuous segment of their animation - called a

sessionThe programmer may improve concurrency, by

Applications that desire animation often have a lot ofmaking sessions fine-grained.
contextual information to communicate to the animation
server - the location of widgets, selections and even thEhe Kemel , _ . .
very composition of the sequence may be unknown tirhe implementation of the kernel is machine specific.
runtime. The acquisition of context information depend<EVents for the keyboard and the mouse need to be syn-
on the way the UIMS and the application represent staff'etically manufactured. The kernel command set is
information and the data exchange mechanisms theWV-level, yet comprehensive. The following commands
support. Since we are building a general purpose tool, 7€ Supported:
is better to entrust this responsibility to an agent created
by the application programmer. We call this process thg- APPear at xy
infoserverand it is typically the application itself. When Disappear
. 3. Goto x,yin n steps
requested .by the A-shell, the infoserver gathe_,-rs 'dat[il. Click b button after moving to x,yin n steps
from the window system, the UIMS and the applicationg poubleclick b button after moving to x,y in n steps
and returns it an executable form. The infoserver may 8, pragAndDrop to x,y in n steps using b button
turn, leverage off a high-level data exchange mechanism pause for s secs
like Apple PPC [21] or Microsoft DDE [12]. We merely 8. Pause for m msecs
define the communication protocol between the A-shel®. Type “message”
and the infoserver. 10. Get Current Position

Fig. 4 shows the processes involved. The A-shell is typ?Where x, y are integer coordinatesy represents the

ically spawned by the application, which also appointgiumber of frames in the animatidnijs either { “left”,

any media-servers and infoservers required in the premiddle”, “right} or {"left”, “right"} depending on the

sentation. Every process maintains an input queue féglumber of buttons on the mousandm are integer val-

interprocess communication. All communication is inues representing time elapsed, in seconds and millisec-

the form of typed messages Supported by U]'\H;S(S- onds and‘nessagemay contain codes for special keys,

tem V message queues [1]. The queues allow blockinguch as <DEL>, <BSPC> and <RETN>. Upper case

non-blocking and selective access to messages. characters are decomposed into appropriate key-combi-
nations. The kernel is not case-sensitive.

The programmer’s interface to the animation server is a

library of routines to drive the A-shell and register call-A few low-level commands may also be defined :

backs. The application may the drive the A-shell syn-
11. Press Button b
12. Release Button b

1. UNIX is a trademark of AT&T. 13. Press Key k




14. Release Key k I
The command DragAndDrop represents the compounét every site there is exactly one kernel, although muilti-
action “Press Button b; Goto x,y in n steps; Release Buttople A-shell clients may be present. The queue-id of the
b.” kernel (inQ in the example) is publicly known. Anima-
tion sessions are set up with clients on a first-requested-
The only command that returns a value is Get Currerfirst-served basis. outQ is the input-queue of the client
Position which returns the current location of the cursorthat is being serviced at any given time.
This command is needed by the shell to convert from rela-
tive coordinates to absolute coordinates. The Pause codNIX message queues allow messages to be typed. This
mand is the only command that involves a reference tpermits the kernel to distinguish between session
time. Other commands merely refer to the granularity ofequests and animation commands. An A-shell initiates
the frames in an animation step. This is not a real-time sy# session by placing a SESSION_REQ message on the
tem. There is no capability to schedule a certain action atiaQ, along with its own input queue id, and waits for a
specific instant in time; nor is it possible to estimate howSESSION_START message. Thereafter it sends com-
long a certain animation step will take. Nonetheless, theands to the kernel, one at a time, in a synchronous
pause command is needed, to prevent the next action froiashion. After each command, the shell blocks on its

being invoked before the current action takes effect.

Figure 5. Kernel Sessions
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A-shells driving the kernel synchronously as shown in the
figure. The current implementation permits only one shell
to driving the kernel at a given time. The structure of the

kernel command execution loop is as folldws

Kernel_Session(QueueT inQ)
{ QueueT outQ;
[outQ:_]=blocking_readQ(inQ, SESSION_REQ);
writeQ(outQ, [ _ : SESSION_START]);
[command:code]=blocking_readQ(inQ,
KERNEL_CMD | END_SESSION);
while(code != END_SESSION)
{ switch (command)
{ case “Appear at x,y" :-...
case “Click ...":- ...
/I service command appropriately
}
writeQ(outQ, [return_value:FN_COMPLETE]);
[command:code]=blocking_readQ(inQ,
KERNEL_CMD | END_SESSION);

1. All interprocess communication is by messages of the form

[<command>:<code>]. ‘_’ denotes “Don’t Care.” The ‘|’

symbol is used to “OR” message types in the read command.

input queue, waiting for a FN_COMPLETE message.
This is necessary because the next command may not be
computable until the current one has been executed. At
the end of a session, the current client releases the kernel
with a END__ SESSION message. The kernel is then
free to service the next client on the queue.

The A-Shell

The A-shell is a high level, context-sensitive interface to
the animation kernel. It runs as a separate process and
communicates with the application via message queues,
as it does with the kernel. Thus, the A-shell is a layer
between the application and the kernel. The client appli-
cation views the shell and the kernel as a single entity,
the animation serveralthough the link gets broken at
the end of every animation session, and needs to be re-
established when needed again.

Figure 6. Interface to A-Shell
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(i) command specification routines

(i) continuations for asynchronous animation
(iif) RPC handlers for callbacks and symbols

The A-shell needs to be a separate process because, in
the callback style of programming, the process that
invokes the animation cannot block while it is in
progress if it is the recipient of input events. The client
application typically operates in asynchronous mode. It
issues an animation request to the server and returns
from the callback. The server signals the client when the



Preprocessor Commands

Command Usage Purpose
#invoke #invoke “filename” Transfers control to a script (batch mode)
#end #end Returns control to caller (A-shell or another script)
#define #define macro-name macro-expansion Defines macro, e.g. #define OK_BUTTON 100,60
#undefine #undefine macro-name Pops last definition of macro-name from the stadk
#infoserver #infoserver process-id queue-id Nominates a process as the infoserver
#mediaserver] #mediaserver server-name queue-id Registers a user defined media server with a gjven name
#play #play serverl(“msgl”), server2(“...”),.l. Invokes serverl with msgl and server2 with msgp etc.

operation is completed. Often the command will be a  #define loadFileChoice +(0,200, @fileClick)
script to be executed by the server in batch mode. The A-

shell accepts a superset of the kernel command language. : Macro invocation.

The following extensions are provided: ; Pull down the File menu and select the Load option
Goto @fileClick in 10 step

@pullDown to @loadFileChoice in 30 steps using

Preprocessor Commands. These are A-shell directives,
Left button.

beginning with a ‘# and are listed in the table. They do
not get propagated to the kernel. Macros may be used to

make the script more readable or to pass parameters o Figure 7. Script for Menu Selection
scripts. 200300
1. CUI’%O_I' rgoves
e.g. #define lconToMove filelcon LOUEPoen File” menu
#define Destination 100,100 Editor '

2. Pulls down the
menu using the
left button.

#invoke “Movelcon”

When executing the play command, the A-shell waits unti
every server referenced in the command has indicated i
readiness to accept input before sending requests.

3. Releases the
button over the
“Load” option.

Addition of Coordinates. Conversion from one coordinate
frame to another is done by prefix addition expressions. Unfortunately all coordinates are statically defined. This
e.g. +(100,500, 20,60) would evaluate to 120, 560. Thesgan be avoided using symbols.

may be nested.

When a symbol of the forr@symbol-name is encoun-
Comments and white-space. Comments start with a *;’ tered, it is sent to the infoserver which provides the
expansion for the symbol - typically a value derived
Macro Invocation, Symbols and Callbacks. When an iden-  from the state of the system (e.g. a coordinate pair repre-
tifier preceded by an ‘@’ symbol is encountered, A-shelkenting a location that cannot be computed till runtime).
first checks in the list of known macro-names for a stringive could simulate a control statement by having the
substitution. Macros may be nested but never reCUI'Sive|ygymbo| evaluate to a sequence of commands or the
name of a script.
The following example illustrates the usage of macros:
Callbacks are of the forn@callback-name(arg-string)
; Macro Definitions and are distinguished from symbols by the parentheses
#define editorWindow 200,300 enclosing the argument string. Unlike symbols, call-
zggmg 23!5?3525?;33?2?38"50 @editorwindow) backs are always executed by the A-shell support code
N P in the parent application, which unpacks the arguments
#define fileClick +(20,20, @editorFileButton) . . . ;
and invokes a function whose pointer and signature



have been registered earlier by the application. return message of the fofmt_val:RPC_DONE].

In the following example OffsetToOK is a macro repre-The stringret_val is used as the expansion for the sym-
senting a static offset, PrintPopup is a symbol that evabol. The protocol for callbacks is similar. A message of
uates to the northwest corner of the “Print” window, andthe form [callback(args):CALL_BACK] is sent to the
loadFile is a callback registered by the application withapplication. The return value is ignored and the instruc-

the A-shell support code. tion is replaced with a null-string.
#define OffsetToOK 400,50 In both cases a signal handler is responsible for reading
_ the input queue and carrying out the appropriate action.
@IloadFile(*demol.doc”) Note that in the synchronous case, the application may
+ loadFile is an application callback be waiting for an acknowledgment from the server when

the RPC request message is received. Since messages

Goto +(@PrintPopup, @OffsetToOK) in 15 steps are typed there is no collision.

; Infoserver provides the current location of

; the window designated PrintPopup PROGRAMMING THE A-SHELL

@CurrentPosition is a special symbol that causes theThe user interacts with the A-shell through a library of

kernel to be contacted instead of the infoserver. Relativ(eomInes linked with the application, called theshell

positions may be specified by expressions of the forrEUpport code Sln_ce the A-shell is sometimes driven .
+(@CurrentPosition, x_increment, y._increment). asynchronously, it needs to be a separate process and is

forked when the application starts up. The functions,

Callbacks are used to invoke actions internally, aSConneclandDisconnectmanage the connectivity of the
| A-shell to the kernel.

opposed to invoking them externally via input events.

This gives the animation designer some flexibility in_l_h ds t te the inf d all
composing the simulation. Typically they are used to € programmer needs to create the nfoserver and a

perform actions that are either impossible or tedious tgned|a-servers_ that pz_irtlmpate in the session. The same
support code is used in all cases. All processes maintain

perform using normal animation. For example, help sys- ¢ cai ith the A-shell
tems may use a callback to save the state of the applicggeues or communication wi € A-shell.

tion before performing some actions, and anothe{

callback to revert to the saved state. ssuing Comma.nds o th? A".She” . .
In most graphical applications there is a single thread of

. . . __control and all actions, including the action that brings
Symbols and callbacks make it possible for the anima- . ; L 7
. ) ; : . about animation, are invoked within callbacks. In this
tion script to access contextual information and invoke : o )
o . Lo . Style of programming, the application will be unable to
application actions.The RPC mechanism is illustrated il ° " A S
o service events until it exits the animation callback. If a

the following figure.

‘#invoke’ command was sent, then the application will
block until the script has been fully executed.If the
application needs to return to its event processing loop,

A Shell Fig 8. RPC Mechanism

a non-blocking approach may be preferred. To support
ok nametergy) CAL BACK] Application both styles of invocation we have two modes:
SIG_RPC -
[_:RPC_DONE] (i) Synchronous Mode
D e e o Figure 9. Synchronous Communication
[symbol-name : SYMBOL_NEEDED)] > Animation Requests
SIG_RPC =

When a symbol is encountered: Callback

1. Amessage, [symbol-name : SYMBOL_NEEDED], is Application Thread
placed on the input queue of the infoserver.

2. Asignal, SIG_RPC, is sent to the infoserver.

3. The A-shell blocks on its input queue waiting for a

In this protocol the application blocks on its input queue



until it receives an acknowledgment from the shell indi-  }

cating that the action has been completed. Then, ithe client which reads a CODE_FREE message gets to
issues the next animation request. This is not very usefigsue the next request to the media-server. When the ani-
because the application may need to process inpumation server needs to issue a play request to a set of
events while the animation is in progress. This facilitymedia-servers, it first obtains the right to issue requests by
helps when the process driving the A-shell is not receivieading a CODE_FREE message from each server's
ing the events or when no interface actions are beingueue. Then it starts them off together and proceeds with

invoked. the script. If all clients obtain access to media-servers in a
standard order (e.g. the alphabetical order of server
i) Asynchronous Mode names), deadlocks can be avoided.

. . A typical scenario is shown in Fig. 11. The client issues a
Figure 10. Asy.nchronous Communication “play audio(x), video(y)” request to A-shell. The shell

Animation Requests needs to wait awhile for the audio-server to become free.
On reading a CODE_FREE token from the audio-server’s
queue the shell waits for a similar token to appear on the
video-server’s queue. Having read tokens from both
queues the shell issues individual requests and proceeds
with the animation.This ensures that all media streams are
synchronized. For simplicity, propagation delays have not
been shown in the figure.

Signal
Callback Handler

Application Thread

In this protocol, the application issues a request and then
DISCUSSIONS

returns from the animation callback immediately. Whe . . .
Y nThe animation server can function as both a teacher and a

the request has been serviced, the application is mterrf—)bot in the graphical workspace. Applications may range

rupted by a signal, and control is transferred to a Sigm%rom purely educational to purely functional
handler, called aontinuation which issues the next '
request in the sequence. The default continuation do%nowledge Levels

f?‘“h”?g- The programmer rr_lay_choose fo define a Co¥ne of the strengths of our design is that the entity that
tinuation if the animated script is to be generated 'ncregenerates the animation script need not be the application
mentally. being animated. To create scripts effectively, however, this
Erocess must be privy to some information about the state

The default behavior is synchronous. Asynchronous anfss the application. The level of detail may vary:

mation commands are terminated with a ‘&’ sign.
e.g. DragAndDrop to +(@CurrentPosition, 200,50) in 40

steps & i) No State Information: Blind access works when an excel-

lent model of the application is available (amounting to a
Media Servers replicated state), or a canned presentation will suffice. This
In this section we describe the architecture of mediawill do in cases where the user does not interact with the
servers that the programmer might want to construcinterface directly, and uses audio input or types commands
They may be registered with the A-shell at the start of
the session using thémediaserver command. Media- Figure 11. Synchronizing Media Servers
servers process rgquests in a firsy-come-first-service Video Audio Clienty,
fashion. Each media-server has a single queue for bo
input and output messages, and may cater to multipl
clients at a given time. The media-server is not aware d Play audio(x),video(y)
the identity of its clients. Any process that obtains the -
queue-id of a media-server can write to it, and the ani| 5,,dio free
mation server is just another client.

The media-server loop is as follows: video free
while (1) Issue request
{writeQ( Q, [ : CODE_FREE J); T,
[ media_request: _]= y
blocking_readQ(Q,CODE_REQUEST); time

execute(media_request);



on a terminal to drive the session.

ii) Information about the state of windows and widgets:
Interface related information may be obtained from the
window system. Often widgets are located at a fixed off- Events

set from the window-origin, or at a displacement com- INTERFACE ¢
putable from the geometry of the window. Application

level state information has to be inferred from the inter- meTop\ _| get value

action history.

Figure 12. Incremental Generation of Help
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Help {\I S
iij) Application Level Information: The script-generator Requested M E
could obtain state information by sending asynchronous Generate R
queries to the application. To avoid having to poll, it Partial Plan (1 o ararscript /| TV
may request notification when certain parts of the state | E
change. If the script-generator resides within the appli- S

cation itself it will have total access to the application
state. If it is a separate process, shared memory or disk |Preempt Niain Thread End of Script
storage can be used to share state information, which

tends to be expensive and slow. Embedding a script-

generator in the application may be intrusive and . .
impractical. Query-based access seems a realistitne above architecture is due to Spaans [16]. Rather

approach, and provides a generic interface to all client1an undertake *hypothetical world” planning, the plan-
requiring state information. ner is organized so that it generates the plan in chunks.

Each chunk is converted into an animation script and
Application Support executed before the next chunk is generated. This

Applications need to be vested with the capability ofénables the planner to make use of the updated applica-
exporting state information to entities wishing to inter-tion context in generating the plans that follow. For sim-
act with them. Programs of tomorrow may requirePlicity the planner and the user interface are
“social skills” to survive in a world of collaborating implemented as threads (provided by CThreads [9], a
software. Structured design of the application, separdion-preemptive threads package). On invocation of ani-
tion of the interface from the abstraction, and a declarahated help, a new thread is forked. This thread is
tive framework for maintaining state information assist’@Sponsible for computing partial plans and dispatching
in this enterprise. We hope to integrate animated helfem to the animation server for asynchronous execu-
with UIDE (User Interface Design Environment [20]), tion. After sending the script to the animation server, the
which offers many of these features. In UIDE, pre- andelp-thread yields control to the main event-handler of
post-conditions are used to describe the partial semaffl€ user interface, so that it may receive input events.
tics of application actions. Pre-conditions are used td§Vhen the script has finished executing, the server inter-
determine the validity of actions, and post-conditionsUPts the application (as required by the asynchronous
(or rather post-assignments) register the change in staiotocol), and the help-thread regains control.

induced by the action on a global blackboard. Together

they provide sequencing control. There is a decomposlﬂere are someotential applications for the animation
tion of objects into application objects and interfaceS€rver.

objects, and actions into interaction techniques, inter-

face actions and application actions. All data and contrg}: Tutorial / Session Playback Systems
information is available in a declarative form, which 1hes€ have a lot in common with Animated Help sys-

would allow an external entity to perceive, analyze andems: However, they do not need to analyze the applica-
reason with the state of the application. This providedion context and have the advantage of starting with a
the declarative framework needed to undertake contexiNOWn or default system state. Tutorial scripts are typi-

sensitive planning and script generation. cally created by a human. The script for session play-
back may be generated from the application log,

APPLICATIONS provided interface actions have been recorded.

Context Sensitive Animated Help 2. Extending Functionality

Context sensitive help systems are required to analyz&nimation may be used to extend applications by build-
the problem context (the current state of the application)'g task-oriented tools at a level above the interface. The
and generate a plan of action that will either carry ougreation of such tools is more programming intensive
the required task or serve as a relevant example [17,19jhan creating a macro, but may have a pay-off when



used to support tasks that are frequently performedhis is accomplished by attaching code to the “Skip” and
Context sensitivity adds to the power of this facility. “Replace” buttons that causes scripts to be sent to the ani-
Also, animation can assist in the specification of parammation server. These scripts are parametrized by macros
eters by shifting input focus to appropriate parts of thelerived from the state of the settings in the tool. Note that
screen. the tool has no way of detecting when all matches have
been found. Nonetheless, it is heartening to observe how
The following example (see Fig. 13) illustrates amuch can be accomplished without support from the appli-
“Change Format” tool built on top of FrameMaksr cation.
search facility. Note that FrameMaker already has such
a utility and this is merely an example. 3. Cscw
Groupware involves replication at some level. If the levels
The extension involves the creation a new window thain an application are taken to be the view, the interface and
drives the “Search” and “Character Format” windows ofthe abstraction, the following configurations are possible:
FrameMaker. The tool initializes the “Search” window
and locates the first occurrence using the “Search” butReplicated View. (Single Interface, Single Abstraction) -
ton. Then the cursor is placed between the “Skip” androadcast display events, multiplex input events.
“Replace” buttons, allowing the user to specify the next
step. Replicated Interface. (Multiple Interfaces, Single
Abstraction) - Broadcast interface actions.

1. FrameMaker is a trademark of Frame Technologies Co. . L . .
Replicated Application. (Multiple Interfaces, Multiple

Figure 13. Task Oriented Extensions Abstractions) - Broadcast application actions.

Application actions are typically implementation indepen-
dent, and hence constitute a generic form of communica-
tion. The animation server has all the capabilities needed
for tying applications together to form collaborative work-
groups:

(i) The ability to invoke actions at the both the interface
level and the application level.

(i) Access to application context and hence the ability to
adapt remote actions to local conditions

(iif) Parametrized scripts that may be used to map applica-
tion actions to interaction techniques. Scripts are used to
bridge the gap between various interface styles.

(iv) The ability to reproduce actions at a remote site in a
demonstrative fashion, increasing the level of awareness
in the group.

The overt reproduction of actions may not always be desir-
able. Fortunately the option of invoking application
actions through callbacks is available.

(i) If the user presses the “Replace” button, the animato’E
goes through the process of choosing “Helvetica” in th%

Fopt men, selecting size 12 in the Fon_t Size n:enu, "’,1, mmunication is shown). Animation servers are present
ltalic in the Angle menu, b_efore pressing the “Apply at every site and act as agents for other sites participating
buttoq (not shown in the picture) tq make the chang% the session. At each site the local interface maps input
effective. Then the “Search” button is pressed to locat
the next occurrence, and the cursor is returned to i

default position to close the loop.

ig. 14 shows the design of a system for fully replicated
llaboration based on animation servers (only one way

Bvents to interface actions and then to application actions,
Rhich need to be communicated to other participants. If
heterogeneous applications are connected together, the

i If th the “Skip” button th imat application actions may need to be translated to a common
(i) e“ user pf’esses € P~ button n€ animatof 4 age before being broadcast. This is simplified by the
presses “Search” to locate the next word as before a

. . Mct that application actions tend to be abstract.
returns the cursor to its default position.



Figure 14. Replicated CSCW using Animation Servers
Animation Server)
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APPLICATION APPLICATION

DistEdit [3] is an example of a toolkit that allows heter-Place CSCW. The update buffer is an immutable entity
ogeneous applications to collaborate using a commotiat keeps a log of actions performed at other sites, and
language for application actions. Periodically, each sit@rovides participants who rejoin a session with a con-
transmits updates (translated application actions) overise enactment of all that transpired in their absence.
the network to other sites, where they get buffered. For

maximum flexibility participants should be allowed to 4. Audio Interfaces

import updates into their system at their own conveThe animation server may be used in conjunction with a
nience. At the same time the system must be aware speech-recognition system to assist physically handi-
the significance of the updates occurring at various sitegapped users to perform mouse based tasks on the work-
and maintain consistency. In this design we shall assung&pace.

that the system will prevent actions that have the poten-

tial to interfere with each other. The buffered update$SONCLUSIONS

may be reordered, combined and compacted intdhis work was born out of an attempt to build systems
“chunked” updates for better presentation to the usethat provide context-sensitive animated help in a clean,
The user is presented with a graphical view of the pendion-intrusive fashion. Although primarily intended to
ing updates in a form similar to the “graphical histories”‘show” how things may be done on a graphical work-
described by Kurlander in [5]. Users may choose téspace, we discovered that the design is general enough
import the updates into their system, either internally a0 provide a variety of services. It is hoped that as the
application actions, or externally (and explicitly) by ani- User community starts requiring their interfaces to be
mation. The latter option would be desirable when théelf-explanatory, extensible and collaborative, anima-
graphical history does not explain the changes suffition will take on the role of robotics in the user interface
ciently, e.g. in the case of documents that have beeforld. As a medium, animation has a long way to go
edited in numerous places. Application actions arénd a large role to play in demonstration and tutorial
retrieved from the updates using a reverse translatiopystems of the future. In addition to its primary role as a
process. The application’s structure should allow for théresentation tool, the animation server may be regarded
arbitrary introduction of application actions in the sys-as both a pseudo input-device providing a new input

tem. The change must propagate to the view, providingodality (automated tasks, replicated actions in collabo-
appropriate feedback. rative work), and as an intelligent agent capable of act-

ing on behalf of the user (context-sensitive actions).
When actions are to be imported explicitly, they are conFuture research should be directed towards finding new
verted to animation sequences using parametrize@pplications for animation and designing applications
scripts. In UIDE, the mapping from application actionsthat provide easy access to state information. We hope
to interface actions and then to interaction techniques # investigate the use of animation in CSCW and in pro-
present in the system definition. Since there is a one-tdiding speech-based access to graphical user interfaces.
one correspondence between interaction techniques and
scripts, UIDE is in a position to generate its own anima-
tion sequences.

It should be emphasized that this architecture is suited
not only for Same-Time-Different-Place collaboration
but also for the more general, Different-Time-Different-
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