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Abstract

We introduce a low-level description of image
motion called the local translational de-
composition (LTD). This description asso-
ciates with image features or small image ar-
eas, a three-dimensional unit vector describing
the direction of motion of the corresponding
environmental feature or small surface area.
The local translational decomposition is de-
rived by applying a procedure for processing
purely translational motion to small overlap-
ping image areas. This intermediate represen-
tation of motion considerably simpli�es the in-
ference of motion parameters for ego-motion
and can support qualitative inferences for non-
rigid motions. We �rst show how to compute
the LTD from optic ow �elds and then show
how the LTD is used to recover the parameters
of rigid body motions. We present three cases
for which the recovery of motion parameters
is particularly robust: motion constrained to
a determined plane (the normal to the plane
is known); motion constrained to an undeter-
mined plane (the normal to the plane is not
known); arbitrary motion relative to locally
planar surfaces. We then discuss techniques
for computing the local translational decom-
position directly from real image sequences
without the initial extraction of optic ow and
other areas for future work.

1 Introduction

In previous work [Lawton, 1982], we developed a tech-
nique to process relative translational motion of a sensor
with respect to a stationary environment or indepen-
dently translating objects. This and related algorithms
[Burger and Bhanu, 1989; Jain, 1983] are based on the
strong geometric constraints on imagemotion in the case
of translation { radial motion of image features from a
focus of expansion (or contraction) determined by the
intersection of the axis of translation with an imaging
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surface [Gibson, 1950; Lee, 1980]. The technique pre-
sented in [Lawton, 1982] was based on optimizing a mea-
sure which described the quality of feature matches re-
stricted to lie along the radial ow paths associated with
a potential axis of translation. The optimization pro-
cess involved searching over the surface of a unit sphere
where each point corresponded directly to a possible di-
rection of translation. The optimization combined the
determination of the direction of translation and the cor-
responding image displacements into a single, mutually
constraining computation. It was possible to determine
the direction of translation to within a few degrees in
small image areas using a few distinctive features.

In this paper we extend the translational processing
algorithm to work with general rigid body and other
cases of motion by applying the translational procedure
to local portions of a ow �eld. This processing asso-
ciates a direction of relative environmental motion with
a local portion of a ow �eld and also an error mea-
sure reecting the validity of the translational approx-
imation. We call this description of image motion the
local translational decomposition (LTD). Comput-
ing the LTD begins by decomposing a ow �eld into
small overlapping neighborhoods and then approximat-
ing the motion for each neighborhood as being produced
by translational motion of the corresponding portion of
the environment. This approximation associates a unit
vector describing the direction of environmental motion
with local portions of a ow �eld. Each unit vector has
an associated �t-value reecting the validity of the trans-
lational approximation.

The LTD is a low level representation of environmen-
tal motion which considerably simpli�es the recovery of
the sensor motion parameters. The local directions of
motion and corresponding error measures are used as
constraints to determine the actual parameters of motion
and to recover the structure and layout of environmental
surfaces. This is broken into four cases. For motion con-
strained to a plane of a known orientation (See Section
2.1), the local translational approximation is recovered
directly from the intersection of ow vectors with the
horizon line determined by the plane of motion. For mo-
tion constrained to a plane of unknown orientation (See
Section 2.2), all of the computed LTD vectors must be
perpendicular to the normal of the unknown plane. This
constraint leads to a direct �tting procedure to recover
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Figure 1: Camera coordinate system

the plane of motion. For motion relative to locally planar
surfaces (see Section 2.3), the combination of local pla-
narity and rigidity is used. For arbitrary motion, rigidity
between environmental points is used to recover motion
parameters from a small number of image locations (See
Section 2 and Section 3.1).
The reminder of this section introduces the notation

used throughout this paper. Section 2 describes how the
local direction of translation is estimated from a ow
�eld and cases of motion for which this is particularly ro-
bust. Section 3 describes how the parameters of relative
sensor motion can be recovered from the estimated local
directions of translation. Section 4 discusses computing
the local translational decomposition directly from real
image sequences without the initial extraction of optic
ow and other areas for future work.

1.1 Notation

The coordinate system used in this paper is shown in Fig-
ure 1. The origin of this right-handed coordinate system
lies at the focal point of the camera. The image plane
is parallel to the xy-plane and is centered on the point
(0; 0; f), where f is the focal length of the camera. A

three-dimensional environmental point will be referred to
as pi;j = (xi;j; yi;j; zi;j). The corresponding image point
is ~pi;j = (~xi;j; ~yi;j). The �rst subscript i is used to dif-
ferentiate between points. The second subscript denotes
the time interval. Thus, pi;j refers to the ith point at
time j. A three-dimensional displacement which trans-
forms pi;j into pi;j+1 forms a vector. This vector will be
referred to as vi;j . The corresponding optic ow vector
on the image plane is ~vi;j. In Section 2 a method for
estimating vi;j is presented. This estimated vector will
be referred to as v̂i;j . If v̂i;j is correct, it will be parallel
to vi;j, but its depth will be unknown. v̂i;j can be posi-
tioned anywhere along the rays of projection which pass
through ~pi;j and ~pi;j+1. Unless speci�ed otherwise, v̂i;j
will be positioned at the image plane.
The motion of the camera can be described by six pa-

rameters. Let r = (rx; ry; rz) denote the axis of rotation,
and t = (tx; ty; tz) the direction of translation. We as-
sume the axis of rotation passes through the origin of
the camera coordinate system. The magnitude of r is
equal to the angle of rotation, and t is a unit vector.

2 Estimating Local Translation

In this section we show how to determine an axis of trans-
lation consistent with a local portion of a computed ow
�eld. In section 4 we briey discuss how to compute this
directly from textured images without the initial extrac-
tion of a ow �eld.
Figure 1 shows that the plane formed by a ow vec-

tor and the focal point of the camera must include the
estimated local translation vector (we refer to this as
the ow-vector plane for a given ow vector). In the
case of purely translational motion, the estimated local
translation vector will be the same for all ow vectors in
the neighborhood. Therefore, the estimated local trans-
lation vector is the vector which is parallel to all of the
ow vector planes in the neighborhood. This observation
leads directly to a method of solving for the estimated
local translation.
The plane formed by ~vi;j and the focal point of the

camera must include v̂i;j . Let this plane be designated
by its normal ni;j.

ni;j = ~pi;j � ~pi;j+1 (1)

Since ni;j is perpendicular to v̂i;j

ni;j � v̂i;j = 0 (2)

In the case of purely translational motion, the direction
of v̂i;j is constant for all i. Therefore, Equation 2 can be
rewritten as

ni;j � v̂j = 0 (3)

where v̂j = v̂i;j for all i. This equation is linear with
three unknowns, and can be solved using a least squares
technique.
An error measure is used to evaluate the validity of

the local translation approximation. The error measure
we use is the average, taken over the local neighborhood,
of the angle between each ow vector plane and the local
translation. Using the normals ni;j from Equation 1, the



Figure 2: Local translation associated with a rotating
line

error measure is de�ned as

1

m
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kni;jkkv̂jk

�
j (4)

where m is the number of ow vectors in the local neigh-
borhood. Alternatively (and with greater expense), this
measure could be optimized directly by a search proce-
dure to determine an axis of translation.
In general, v̂i;j is not constant for all i. However, in lo-

cal areas v̂i;j is approximately constant. For example, in
Figure 2, points which are nearby on a line segment are
shown to have approximately the same local translations
when the line is rotated about its midpoint. Points near
the axis of rotation would not have a good translational
approximation as would be reected in the correspond-
ing error measure. Note that if the motion is composed
of both a rotation and translation, the approximation
will also be e�ected by environmental points at di�er-
ent depths, especially at occlusion boundaries. Since the
ow vectors in the area of an occlusion boundary will
not consistently emanate from a focus of expansion, the
error measure given in Equation 4 returns a high value
in these areas. Using the error measure, the unreliable
occlusion areas can be avoided when computing the pa-
rameters of motion. Figure 3 shows the ow �eld for a
scene containing multiple depths and undergoing an ar-
bitrary motion. The error function derived from this ow
�eld is shown in Figure 4. The scene contains two planes
which occlude a planar background as well as each other.
The planes, as well as the background, are skewed with
respect to the image plane (i.e. the planes are receding
in depth). The locations of the occlusion boundaries are
obvious from the �gure.
The method of LTD estimation discussed above was

tested on several synthetic optic ow �elds like the one
shown in Figure 5. This ow �eld is the result of a
rotation of 5:73o about the axis (5; 4; 1), followed by a
translation of (100; 25;�75). All units are given in pix-
els. The �eld of view of the camera is 90o in both the
X and Y directions. The image is 63x63, and the fo-
cal length is 31. The rectangle overlayed on the ow
�eld represents the neighborhood over which the trans-
lational approximation is performed. The actual angles
between the correct local translational vectors and the
approximated local translational vectors at each position
in the ow �eld is shown in Figure 6. The computed er-
ror measure-based upon Equation 4 is shown as a surface
plot in Figure 7. Notice that the computed error measure

Figure 3: Flow �eld for an image containing occlusion

Figure 4: Error function for an image containing occlu-
sion

in Figure 7 reects a strong correspondence between the
approximated translational vectors with the least error
and the correct translational axes. This correspondence
has been found to be typical. Figure 8 (a)-(c) shows
the correct local directions of translation with the val-
ues of each component displayed as separate intensity
plots. Since the translational vectors are represented
as three-dimensional unit vectors with each component
in the range of -1.0 to 1.0, Figure 8 displays the x, y,
and z components of the local translation vectors with
pure white corresponding to the value of 1.0 and pure
black corresponding to -1.0. Figure 8 (d)-(f) shows the
local translational values that were derived from the op-
tic ow �eld using the approximation procedure. The



Figure 8: LTD vector components of an arbitrary
rigid body motion (a) x-component (b) y-component
(c) z-component (d) derived x-component (e) derived y-
component (f) derived z-component



Figure 9: Motion constrained to a plane

plane of motion. We know from Section 2 that vi;j also
lies in the plane determined by its corresponding ow
vector ~vi;j and the focal point of the camera. The es-
timated direction of motion lies along the intersection
of these planes. The estimated direction of motion v̂i;j

can be determined by intersecting these planes. Figure 9
shows the geometry, where the plane of motion is posi-
tioned so that it intersects the image plane at the base
of the ow vector ~vi;j. In terms of image geometry, this
corresponds to intersecting the horizon line, determined
by the plane of motion through the focal point, with a
ow vector. The point of intersection is a Focus of Ex-
pansion for the local axis of translation (or a Focus of
Contraction: which depends on the direction of the ow
vector relative to the point of intersection). Computing
the LTD in this case has been found to give extremely
low errors (small fractions of a degree) in the estimated
local translations.
Motion constrained to a plane is typical in terrestrial

circumstances. Several indoor robotic environments in-
volve robot motion constrained to a plane. In vehicular
environments, the translational approximation is usually
valid due to limitations in vehicle turning radii, mean-
ing that the overall motion of a vehicle can be locally
approximated as a translation.

2.2 Motion Constrained to an Undetermined
Plane

Processing in the case of motion constrained to an unde-
termined plane is similar to that of motion constrained to
a determined plane. The only di�erence is that an esti-
mate of the plane of motion must �rst be recovered. Us-
ing the technique described in Section 2 the local trans-

Figure 10: Optic ow �eld for a planar motion

lation is computed at each ow vector. Since the motion
that produced these local translations is constrained to
a plane, each of the local translations must be parallel
to this plane. This constraint can be written as

~vi;j � n = 0 (5)

where n is a vector normal to the plane of motion. Us-
ing this equation, n can be computed by a linear least
squares technique.

An example of processing in this case is shown in Fig-
ure 10 to Figure 12. Figure 10 shows the ow �eld pro-
duced by a rotation of 4:58o about the axis (�1; 1; 2),
followed by a translation of (120; 20; 50). Units are given
in pixels. This motion is constrained to lie in the plane
perpendicular to the normal (�1; 1; 2). However, the
plane is unknown, so initially the local translation vec-
tors must be computed by the method used for cases of
arbitrary motion.

The angles between the correct local translational val-
ues and the derived local translational values shown are
plotted in Figure 11. The error measure is shown in Fig-
ure 12. Since we have an error measure associated with
each point describing the error of the translational ap-
proximation, we can select several positions of minimal
error for use in Equation 5. Using the error measure from
Equation 4 the best 15 local translations were selected
for the least squares �t. The recovered plane normal is
then (�0:4107; 0:4129; 0:8129) which is o� by an angle
of 0:37o from the correct value. We can then use this
estimate to evaluate the directions of motion using the
technique for motion constrained to a determined plane
from the previous section. The computed directions of
motion are then shown in Figure 13 (d)-(f). Like the case
of motion constrained to a known plane, there is very
little error in the derived LTD vectors. The mean angle
between derived and actual LTD vectors was 0:176o and
the maximum angle was 1:274o.



Figure 13: LTD vector components of an undetermined
planar motion (LTD estimated using the determined pla-
nar motion technique) (a) x-component (b) y-component
(c) z-component (d) derived x-component (e) derived y-
component (f) derived z-component

gorithm in greater detail.

2.3.1 Local Planarity Assumption

Given a candidate LTD vector, we wish to solve for
other nearby LTD vectors. In order to derive a rela-
tionship between LTD vectors within a neighborhood,
we will assume that surfaces are locally planar. In this
case directional derivatives of the LTD vectors along the
image plane are constant. Let ~pi�1;k, ~pi;k, and ~pi+1;k be
three collinear points on the image plane. Under the pla-
nar surface assumption, we have the following constraint

v̂i+1;k � v̂i;k

k~pi+1;k � ~pi;kk
=

v̂i;k � v̂i�1;k

k~pi;k � ~pi�1;kk
(6)

Letting v̂i;k be the current candidate LTD vector, Equa-
tion 6 consists of two independent equations and six un-
knowns. The remaining equations needed to solve for
these six unknowns can be provided by the LTD vectors'
corresponding optic ow vectors. Figure 1 shows that
the plane formed by a ow vector and the focal point



Figure 14: LTD vector components of an arbitrary rigid
body motion (LTD vectors were derived using the lo-
cal planar method) (a) x-component (b) y-component
(c) z-component (d) derived x-component (e) derived y-
component (f) derived z-component

determined, the solution for the parameters of motion
becomes trivial.
Two LTD vectors v̂i;k and v̂j;k are assumed to have

undergone identical rigid body motions. We wish to �nd
the relative depth of these two vectors. Figure 15 shows
the relationship between the two vectors. One of the
vectors, v̂i;k, is �xed in depth so that it emanates from
the image plane at the point ~pi;k. The unknown depth
of the other vector can be expressed as �~pj;k where �

is some unknown scale factor. Since both of the LTD
vectors are the result of the same rigid body motion, we
have the following constraint

k�~pj;k � ~pi;kk = k�(~pj;k + v̂j;k)� (~pi;k + v̂i;k)k (10)

Squaring both sides and solving for �, Equation 10 can
be reduced to

(2~pj;k � v̂j;k + v̂j;k � v̂j;k)�
2
�

2(~pj;k � v̂i;k + ~pi;k � v̂j;k + v̂i;k � v̂j;k)�+

(2~pi;k � v̂i;k + v̂i;k � v̂i;k) = 0 (11)



Figure 15: Relative depth of two LTD vectors

This equation is quadratic in � and results in two feasible
solutions for the relative depth between two LTD vectors.

3.2 Inferring the Parameters of Motion

Once we have determined the relative depth between
LTD vectors the estimation of the parameters of motion
is trivial. The problem is equivalent to that of estimating
the motion parameters from actual three-dimensional en-
vironmental surface positions. A rigid body motion can
be expressed as

�i;jv̂i;j = r � �i;j~pi;j + t (12)

where r is the axis of rotation and t is the direction of
translation. This expression is linear and can be solved
using a least squares technique. The expression con-
sists of six parameters and two independent equations.
Therefore, it can be solved using a minimum of three
(non-collinear) LTD vectors.

3.3 Motion Parameter Inference Results

The rigidity constraints were used to compute the pa-
rameters of motion from the derived LTDs presented in
Section 2. The results are shown for the case of arbi-
trary motion, motion constrained to a determined plane,
motion constrained to an undetermined plane, and the
rigidity-based method applied to arbitrary motion. In
the previous section we noted that the parameters of
motion can actually be estimated using only three LTD
vectors. The feasibility of estimating the parameters of
motion from a minimal set of data is demonstrated in
the results presented below.

Figure 16: Optic ow �eld for motion relative to a curved
surface

3.3.1 Motion Constrained to a Determined
Plane

In the case of motion constrained to a determined
plane, the LTD vector estimates tend to be highly ac-
curate over an entire ow �eld. Typically, when using
three LTD vectors selected at random from the derived
local translations, the estimate of the axis of rotation
and translation almost always are within a degree of the
correct axes and the angle of rotation is determined to
within a hundredth of a degree.

3.3.2 Motion Constrained to an Undetermined
Plane

The case of motion constrained to an undetermined
plane is similar to the case of motion constrained to a
determined plane in that the LTD vector estimates are
very good over the entire image. Three LTD vectors were
selected at random from the derived local translations
shown in Figure 13. The estimate of the axis of rotation
was o� by 0:99o, the angle of rotation was o� by 0:04o,
and the direction of translation was o� by 0:83o.

3.3.3 Local Planar Method

The rigidity-based method presented in Section 3.1 is
also capable of accurate LTD estimates over the entire
ow �eld. Three LTD vectors were selected at random
from the derived local translations shown in Figure 14.
The estimate of the axis of rotation was o� by 2:26o, the
angle of rotation was o� by 0:18o, and the direction of
translation was o� by 2:84o.
The camera was moved about a randomly curved sur-

face. The optic ow �eld produced by this surface is
shown in Figure 16. The three-dimensional environmen-
tal surface was reconstructed from this ow �eld. Fig-
ure 17 (a) shows a plot of the original surface. Fig-
ure 17 (b) shows the results of the surface reconstruc-
tion and Figure 17 (c) shows the resulting error in the



(c)
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Figure 17: (a) Curved surface (b) Reconstructed surface
(c) Error

reconstruction. The surface shown in this example is
not planar. However, the reconstruction is fairly accu-
rate, despite the violation of the planarity assumption.
Experiments indicated that surfaces which are approxi-
mately planar in a local neighborhood can be successfully
reconstructed. Therefore, any continuous surface can be
reconstructed, given an appropriate density of optic ow
vectors.

3.3.4 Arbitrary Motion

Using the error measure shown in Figure 7 and the
derived LTD vectors shown in Figure 8, the three best
LTD vectors were selected and used to compute the pa-
rameters of motion. The estimate of the axis of rotation
was o� by 8:13o, the angle of rotation was o� by 1:09o,
and the direction of translation was o� by 12:02o. In the
previous section it was shown that the minimum num-
ber of LTD vectors which can be used to estimate the
parameters of motion is three. However, we can use a
larger set of LTD vectors in a least squares procedure
to obtain more accurate results. For example, when the
ten best LTD vectors were used, the axis of rotation was
o� by 3:65o, the angle of rotation was o� by 0:44o, and
the direction of translation was o� by 9:32o.

4 Summary and Future Work

We have introduced the local translational decomposi-
tion (LTD) as a low level representation of environmen-
tal motion which can simplify the inference of motion
parameters from optic ow �elds. We have found that
this is particularly robust and simple for cases of motion
constrained to a determined or undetermined plane, and
motion relative to locally planar surfaces. In addition, It
is possible to infer motion parameters from sparse LTDs.
Areas for further work include:

� Develop criteria to determine the the best set of es-
timated local translation vectors to estimate motion
parameters in order to take advantage of the lim-

ited number of points for which the local translation
needs to be determined to infer motion parameters.

� Investigate local translational analysis with the use
of multiple cameras and longer image sequences.

� The local translation decomposition is similar to an
array of localized looming detectors which deter-
mine whether things are coming towards or away
from an observer at a particular image position. It
may be possible to use such a distributed represen-
tation of motion relative to environmental surfaces
to control navigation and other behaviors directly,
without the inference of motion parameters from
the LTD.

� The local translation approximation can be used
as a criteria for computing ow to determine the
LTD directly without the initial computation of a
ow �eld. In the experiments presented above, we
have assumed a uniformly dense ow �eld of high
resolution. The translation procedure developed in
[Lawton, 1982] was not applied to computed ow
�elds, but to successive images for which interest-
ing points had been extracted from the initial im-
age. Given distinctive features (at least two), it
was possible to compute the direction of transla-
tion in a small image area. This use of the trans-
lational procedure can be seen as a local constraint
on the determination of image displacements such
that the corresponding environmental motion can
be interpreted as being translational. For egomo-
tion, this wouldn't require computation over the
entire ow �eld since only three LTD vectors are
needed. Where the translational approximation is
poor there will be a large value in the error mea-
sure reecting weaker con�dence in the validity of
the approximation.
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