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Abstract

This paper introduces a technique for ex-
tracting structure and motion using direction-
ally selective matches between linear features.
A world-centered coordinate system is used
to make these computations without the in-
termediate calculation of depth. In order
to constrain the possible structure and mo-
tion con�gurations, we assume that the three-
dimensional direction of gravity relative to
each image frame is known. The direction of
gravity, along with the directionally selective
linear feature matches, form a set of quadratic
equations which can be used to determine
structure and motion.

1 Introduction

The extraction of environmental structure and motion
from a sequence of two-dimensional images is a com-
mon problem in computer vision. Typically solutions to
this problem are expressed in camera-centered coordi-
nate systems where environmental geometry is speci�ed
by the depth along an image feature's ray of projection.
Unfortunately, parameters computed from this camera-
centered representation are dependent upon the depth to
environmental features. This leads to erroneous results
for objects located far from the camera.
The recently introduced factorization method [Tomasi

and Kanade, 1990; Tomasi and Kanade, 1992; Boult and
Brown, 1992] has attempted to overcome the disadvan-
tages associated with a camera-centered representation.
This method uses a world-centered coordinate system,
along with an orthogonal projection assumption, in order
to compute shape and motion without the intermediate
calculation of depth. A matrix of image measurements
is constructed by making point correspondences between
image frames. The matrix is then factored into a shape
matrix and a motion matrix using Singular Value De-
composition.
One problem with the factorization method is that it

relies upon accurate point correspondences between im-
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age frames. This paper introduces a method of extract-
ing shape and motion from directionally selective lin-
ear feature correspondences. This line-based algorithm
is capable of reconstructing shape and motion without
computing depth as an intermediate step. In addition to
the orthogonality assumption, we assume that the three-
dimensional direction of gravity is known relative to each
image in a motion sequence.

The algorithm begins by searching for the orientation
of one of the lines in the environment. This is a one
dimensional search over 180o, constrained by the projec-
tion of the line on one of the image planes. Each candi-
date line orientation, along with the position of gravity,
forms a set of quadratic equations which constrain all
the other lines, as well as the rotation between image
frames. An error measure is computed from the derived
line orientations and used to evaluate each shape and
motion con�guration. Once the line orientations and
parameters of rotation have been derived, the relative
positions of the lines can also be computed from simple
linear equations.

The remainder of this section introduces the notation
used throughout this paper. Section 2 shows how to
derive line orientation and camera rotation from a se-
quence of two-dimensional images. Section 3 presents a
set of linear equations which can be used to solve for the
relative line positions. The algorithms presented in the
paper are applied to synthetic data and the results are
presented in Section 4. Finally, concluding remarks are
given in Section 5.

1.1 Notation

The notation used throughout this paper is shown in
Figure 1. An image frame at time f is delineated by
unit vectors if , jf , and kf . A three-dimensional envi-
ronmental line is represented by a unit vector ds speci-
fying the line direction, and a point on the line ps. Line
(ds; ps) is projected orthographically onto image frame
f . The direction of the projected line is represented by
its unit normal ~nfs. ~pfs refers to the projection of ps.
The direction of gravity will be referred to as gf . The
two-dimensional parameters ~nfs and ~pfs as well as the
three-dimensional parameter gf are all expressed in the
coordinate system of image frame f . All other parame-
ters are speci�ed relative to the world coordinate system.
When ~nfs is speci�ed in the world coordinate system it
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Figure 2: Normals are determined by intersecting a plane
with a circular cone

Since the line normals ~nf1 were formed by orthographic
projection, they must be perpendicular to the line d1.
Therefore, one constraint is that the vectors nf1 must
lie within the plane perpendicular to d1. An additional
constraint is provided by the gravity vector gf . The an-
gle between ~nf1 and gf must be the same as the angle
between nf1 and the direction of gravity in the world
coordinate system (gw). These two constraints can be
used to solve for nf1. Figure 2 shows the geometry of
these two constraints. Each normal (nf1) is determined
by intersecting a plane with a circular cone. The plane
is de�ned by d1. The cone is constructed by rotating a
vector about the direction of gravity at the appropriate
angle. Since the origin of the cone lies within the plane,
the intersection of the plane with the cone results in two
lines. There are only two possible solutions since the
normals are known to be unit vectors.
The constraints described above will now be examined

in more detail. As stated earlier, the direction of gravity
gf relative to the line normals ~nf1 is known. This results
in the following relationship

nf1 � gw = ~nf1 � gf (1)

where gw is the direction of gravity in the world coor-
dinate system. Letting gw = (0;�1; 0) we can simplify
Equation 1

nf1y = �~nf1 � gf (2)

In addition to the angle constraint we know that nf1
lies within the plane de�ned by d1. This constraint is
expressed as

nf1 � d1 = 0 (3)

Finally, we know that the magnitude of each normal vec-
tor (nf1) equals one

knf1k = 1 (4)

Equations 2, 3, and 4 can be combined into a single
quadratic equation, resulting in two feasible solutions
for each normal vector.

2.2 Additional Line Normals

The next step in the extraction of line orientation and
rotation is to solve for the position within the world co-
ordinate system of the rest of the line normals. This is



Figure 3: Normals are determined by intersecting two
circular cones

accomplished by using the candidate line normals. The
idea is essentially the same as in the previous section.
Two constraints can be formulated from the given geom-
etry. The �rst constraint is given by the gravity vector
gf , and is identical to the constraint presented in the
previous section. The angle between ~nfs and gf must
be the same as the angle between nfs and the direction
of gravity in the world coordinate system. The second
constraint is that the angle between an image normal
vector ~nfs and the candidate image normal vector ~nf1
must be the same as the angle between the associated
world coordinate normal vectors nfs and nf1. These two
constraints can be used to solve for all the additional
normal vectors nfs. The constraints are shown geomet-
rically in Figure 3. The solution for a normal vector nfs
is essentially the result of intersecting two circular cones.
One cone is the result of rotating a vector about the di-
rection of gravity. The other cone results from rotating
a vector about the candidate normal vector nf1. The
intersection of two circular cones which share the same
origin is two lines. Once again, the normals are known
to be unit vectors, resulting in two solutions.
The following equations result from the above analy-

sis. The constraint resulting from the gravity vector gf
is identical to the one presented in Section 2. Therefore,
from Equation 2 we can write

nfsy = �~nfs � gf (5)

The second constraint relates the line normals nfs to the
candidate line normals nf1 as follows

nfs � nf1 = ~nfs � ~nf1 (6)

Finally, we know that the magnitude of each normal vec-
tor (nfs) equals one

knfsk = 1 (7)

Equations 5, 6, and 7 can be combined into a single
quadratic equation, resulting in two feasible solutions
for each normal vector.

2.3 Parameter Estimation

Once the normal vectors (nfs) have been derived, the
process of estimating the line orientations and rotational
parameters is trivial. The line orientations (ds) are easily
estimated from their associated normals (nfs) using the
following equation

ds � nfs = 0 (8)

ds can be estimated with a minimumof two non-collinear
normal vectors. When more vectors are available, ds
can be solved for using a linear least-squares technique.
The rotational parameters are also easily obtained from
the normal vectors nfs. Three linear equations can be
formulated for the three rotational parameters if , jf ,
and kf

if � nfs = ~nfsx
jf � nfs = ~nfsy

kf � nfs = 0

There are also additional constraints available. One of
these constraints is that the vectors must be orthonormal

if = jf � kf

jf = kf � if

kf = if � jf

kifk = kjfk = kkfk = 1

Additional constraints can be derived from the relation-
ship between the rotational vectors and gravity as was
done in Sections 2.1 and 2.2. These constraints are

if � gw = gfx

jf � gw = gfy

kf � gw = gfz

Of course, all of the equations presented above are not
independent, and all are not necessary. Currently we use
the following subset of equations. Initially kf is deter-
mined using a least squares formulation of

kf � nfs = 0 (9)

The technique presented in Section 2.1 is then used to
solve for if with the following equations

if � kf = 0 (10)

if � gw = gfx (11)

Finally if and kf are used to solve for jf

jf = kf � if (12)

Equation 8 is used to solve for the line orientations
ds. Equations 9, 10, 11, and 12 are used to solve for
the rotational parameters if , jf , and kf . The following
section shows how to use these derived parameters to
solve for the relative positions of the line segments, thus
completing the spatial reconstruction.

3 Line Position

The �nal step in the line segment reconstruction is to
solve for the line segment positions relative to the world



Figure 4: The �rst and last frames from a 20 image
sequence

coordinate system. Initial assumptions about the posi-
tion of the image frames relative to the world coordinate
system are made, allowing a simple linear solution to
the problem. The position of each line is represented
by a point ps which is chosen arbitrarily. The world
coordinate system will be positioned at the center of im-
age frame 1. The points ~p1s are then chosen arbitrarily
~p1s = (xs; ys). We assume that all the image planes in-
tersect along line d1. This means that the position of
each image plane is given by p1 + �fds where �f is a
parametric scale factor.
Each line position ps = (xs; ys; zs) consists of one un-

known zs. The solution for zs is trivial. Each point ps
is constrained to lie within the planes perpendicular to
nfs. These planes are positioned by choosing some ar-
bitrary point on the projection of each line, and then
determining the position of that point within the world
coordinate system. Let q be the point in world coordi-
nates

q = p1 + [if jf ] � (~pfs � ~pf1) (13)

The equation of the plane is then written as

nfsx(xs � qx � �fdsx)+

nfsy (ys � qy � �fdsy) +

nfsz (zs � qz � �fdsz ) = 0 (14)

The two unknowns in this equation are zs and �f . �f
can be removed from the equation, and a least squares
solution can be found for zs.

4 Results

The algorithm presented in this paper was implemented
and tested on several sequences of synthetic data. The
�rst and last frames from a 20 image sequence are shown
in Figure 4. Figure 5 shows 10 frames from the sequence
(every other frame is displayed). This data was pro-
duced by random rotations and translations. The ro-
tational parameters if and jf associated with this se-
quence of motion are shown in Figures 6 and 7. The
correct rotational values are displayed as solid lines, and
the derived values are displayed as dotted lines. All er-
rors are the result of perspective projection. Notice that

Figure 5: 10 image frames from a 20 image sequence
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Figure 6: The components of if for a 20 frame sequence.
The correct values are shown with solid lines, and the
derived values are shown with dotted lines.

the Y-component of if is errorless. This is because this
component is derived from the relationship between the
image frames and the gravity vector (gf ) as shown in
Equation 11. Thus the Y-component is una�ected by
the perspective projection errors.
The derived line orientations and parameters of rota-

tion were then used to reconstruct the line positions as
discussed in Section 3. A top view of the original data
is shown in Figure 8. The reconstructed data is shown
in Figure 9. Once again the errors are the result of per-
spective projection.

5 Conclusion

The technique presented in this paper is an early attempt
at constructing linear feature based depth-independent
motion algorithms. The work has only been tested on
synthetic data, and it is not clear what e�ect perspective
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Figure 7: The components of jf for a 20 frame sequence.
The correct values are shown with solid lines, and the
derived values are shown with dotted lines.

Figure 8: Top view of the house data

projection and other forms of noise will have. However,
since the formulation involves linear least squares esti-
mation, it appears that it will be robust. The ability to
deal with occlusion is also straight-forward in this over-
constrained system. Occluded line normals (nfs) are null
vectors and therefore have no e�ect on the least squares
solution. Notice that the �rst frame shown in Figure 4
contains occluded lines.

One drawback of this method is that the three-
dimensional direction of gravity is required. This mea-
surement can be provided by a gravity sensor, but we
would like to relax this restriction. One way to remove
the gravity vector from the algorithm is to replace the di-

Figure 9: Top view of the reconstructed house

rection of gravity with another consistent direction. For
example, for an object that consistently moves in one
direction (such as a vehicle), the gravity vector can be
replaced by a vector specifying this direction (the for-
ward vehicle direction).
There are several areas for future work:

� Test this algorithm on noisy data and if necessary
develop a more robust formulation that will work
well in the presence of errors, including the errors
introduced from perspective projection.

� Test the algorithm on real image sequences.

� Integrate this rotation based method with the
translation based method discussed in [Lawton,
1982]. In this case the gravity vector is replaced by
a direction of translation vector. The integration of
these two methods will probably be accomplished
through temporal �ltering using the Kalman Filter.
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