ADAPTIVE PROMPTING

Thomas Kihme*, Uwe Malinowski*, James D. Foley**

*Siemens Corporate Research and Development, ZFE ST SN 7, Otto-
Hahn Ring 6, D-W 8000 Mlunchen 83, Federal Republic of Germany.

**Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, 801 Atlantic Drive, Atlanta, GA 30332-0280, USA.

Phone: (+1) 404-894-9148
Fax: (+1) 404-853-0673
Email: kuehme@cc.gatech.edu

Adaptive prompting addresses problems with locating, referencing, and select-
ing interface items such as elements of directory hierarchies or menu and dialog
box entries. By drawing the user’s attention to the most appropriate and most
likely to be chosen items, adaptive prompting tries to increase users’ perfor-
mance on selections and to provide guidance in explorative environments.
Examples for adaptive prompting include an Adaptive Tool Prompter, an
Adaptive Action Prompter, and Adaptive Prompting in Dialog Boxes. In order
to deal with application contexts and evolving needs and preferences of the user,
adaptive prompting employs models of the application and the user. The chosen
approach allows for an optional user involvement into the adaptation and for
an evaluation of the embedded prompting strategies. Multimodal user inter-
faces provide further perspectives for adaptive prompting.

Keywords: Adaptive User Interfaces, Intelligent User Interfaces, Multimodal Inter-
faces, Application Model, User Model

1. Prompting In WIMP Interfaces

The provision of comprehensive prompting is considered to be a strength of WIMP interfaces
(windows, icons, menus,pointer) as it is easier to recognize a visible object rather than to
recall how to reference it. A major part of users’ interaction with systems is selecting items
from a set of alternatives, such as tools from a toolbox, files from a directory, actions from
menus, or attribute changes from a dialog box. However, only a limited number of selectable
items can be presented on the screen at the same time and even a smaller number of items can
be perceived by the user at a glance. Thus, there is still some referencing which has to be
accomplished by browsing through a structured environment of directory hierarchies, menu
hierarchies (menu bar, cascaded menus), or scrollable lists and by searching for relevant items
in directories, menus or dialog boxes.

Some forms of a more flexible prompting than that provided by static hierarchies have been
introduced in order to reduce the navigation effort. For instance, tools and files (or aliases of
them) can be put onto the desktop for a direct access. Menus and dialog boxes are sometimes
configurable (or adaptable), i.e. users can determine which items should go into a menu or

2 T. Kilhme, U. Malinowski, James D. Foley

dialog box. MS-WORD [8], e.g., provides an adaptive menu which contains the most recently
opened files. For directories and lists, users often can choose a filter, i.e. a static pattern, des-
ignating items to be included in the presentation.

Prompting may also differ in how items are presented. Often users can adapt the presentation
according to their specific needs and preferences. For instance, the presentation style (e.qg.,
“as icons” or “as text”) or the order of items in a list (e.g., “by size” or “by name”) can be
chosen in a way that the desired items can be discovered more easily.

Pointer setting strategies for pop-up menus provide a faster access to a certain menu item,
often the most recently or most frequently used. With the same intention, a dynamic reorga-
nization of menus has been proposed. Considering user-specific usage patterns is an attempt
to make prompting adaptive to particular users.

Context-sensitive prompting includes grey-shading of disabled menu-items. Also, actions
may be prompted according to previously selected objects, for instance, in object-specific
menus (most typically pop-up menus of editors and browsers) or dynamically changing con-
trol panels (e.g., in CAD systems). In addition to increasing users’ performance on item selec-
tion, such prompting provides feedback on the actual context and supports users in selecting
valid and appropriate items.

2. Goals And Basic Ideas Of Adaptive Prompting

While many of these singular mechanisms have been proven useful in contemporary user
interfaces there is no general approach to a more meaningful prompting with respect to users
and their tasks. Adaptive prompting, as proposed in this paper, aims to lead the user to those
items which are the most important prompts in any given situation.

The interpretation of “most important” depends on whether the emphasis is on increasing
users’ performance or on providing guidance. The performance aspect might be covered by
items which are most likely to be chosen whereas in the case of guidance the most appropriate
items become the important ones. Actually, there is a strong correlation between both aspects
depending on users’ experience. For instance, expert users can be expected to most likely
choose items which are also very appropriate ones while this does not necessarily hold for
novice users.

There are several reasons that a user might need to access only a few out of dozens or even
hundreds of available tools, actions, and dialog box entries. Mainly, the user’s actual tasks
determine a subset of items which are needed to perform these tasks. In addition, the users’
knowledge and preferences decide about selections. For instance, novice users know only a
subset of all the existing actions of an application. Experts, on the other hand, might have
developed preferences for certain actions as far as there are redundant actions and different
ways to perform a given task.

In a particular situation, the set of actually needed tools or actions may be even smaller. Pro-
vided the user is focussing on a certain task or a couple of concurrently performed tasks, the
needed items are those to proceed with in order to perform these tasks. In addition, the actual
context of the interaction might impose restrictions on the availability of particular items or
might rule out items which to choose would not be sensible although they are available.

Based on these assumptions, adaptive prompting tries to detect the items which are most
appropriate and most likely to be chosen by the user. Strategies to determine appropriate items

Adaptive Prompting 3

and to predict the possibly next selection are based on evaluating knowledge sources some of
which are already available in existing research prototypes of user interface environments.
For instance, the interface itself may provide information about the user’s current focus
(pointer position, current selection). An embedded model of the application can be used to
trace the context of application objects, actions, and tasks and to supply the corresponding
information. A model of a particular user’s knowledge about and preferences for certain items
can support the decision which items are likely to be selected by this user.

Once the system determines which items can be assumed to be the most important ones it pre-
sents them to the user in a way that the user’s attention is drawn to these items and that the
user can perceive them at a glance. The number of items presented as being important should
follow early experiments which determined the value 4.2 to be the average number of items
perceivable at a glance [10].

At least, there are two alternatives to bring certain items to the user’s attention without
impairing the accessibility of all the other items. First, the system could provide the user with

a separately presented preselection of the corresponding items and, second, the system could
change the appearance of these items within the regular environment. The tool prompter and
the action prompter described below are examples for the preselection method while the
adaptive prompting in dialog boxes is an example for the appearance changing approach.

In either case, adaptive prompting is intended to be a complementary aid, not a substitute for
existing interfaces. Explorative working in a rich environment should always be possible if
desired, but not by all means necessary in situations with a clear focus.

Adaptive prompting strategies can obviously not be expected to never fail. On the contrary,
the unpredictability of users’ behavior and the self-imposed restriction to the fairly small
number of items perceivable at a glance will bring down the rate of successfully guessing the
set of candidates for the next selection. Even if an item which the user is going to select is
contained in an offered preselection this might not always be the best alternative from which
to select the item. For instance, if the user knows exactly where to find an action within a pull-
down menu and if, besides, the current pointer position is close to this menu the search for
the action in a separately presented preselection obviously requires more effort than the selec-
tion from the menu.

However, all this does not argue against the prompter approach as long as users do have the
opportunity to select the items from the regular environment. There is already a gain of per-
formance if there are at least some situations in which a selection from the prompter is con-
siderably faster. So, even experts can benefit from the prompter with respect to performance
if only sometimes they are provided with an item which they do not know where to find.

Beside performance aspects, adaptive prompting attempts to provide guidance by presenting
and thereby suggesting items which are assumed to be appropriate in a given situation. How-
ever, the provision of guidance has to be designed very carefully since wrong assumptions
about the appropriateness of items can cause fatal problems. Obviously, misleading the user
would be even worse than no guidance at all.

3. Examples Of Adaptive Prompting

In the examples given in this section, adaptive prompting is applied to three major elements
of direct manipulation interfaces. The Adaptive Tool Prompter facilitates tool selection in a

4 T. Kilhme, U. Malinowski, James D. Foley

desktop environment; the Adaptive Action Prompter addresses problems of action selection
by means of menus, control panels, and direct manipulation of graphical objects; and Adap-
tive Prompting in Dialog Boxes aims to make dialog boxes easier and more effective to use.

While this section is concerned with what adaptive prompting can specifically be about and

to what purposes it might serve the next section explains how adaptive prompting can be tech-
nically achieved.

3.1. The Adaptive Tool Prompter

The adaptive tool prompter presents a choice of references to tools (programs) and related
files (data objects) which are considered to be the user’s current working set. The user can
select tools and files from either the prompter or the regular environment (i.e., desktop, file
manager) whatever is more convenient in a given situation. The prompter contents is being
dynamically adapted to context changes and evolving needs and preferences of the user. The
number of contained items is kept small (e.g., 3-5 tools and 4-6 files per tool), as opposed to
a desktop which usually keeps constantly filling up with icons, thus becoming difficult to sur-
vey. See Figure 2 for an example contents of the tool prompter.

.-’
dgl dg ideas merlot

By
Ju 8

prognosis campaig

Bs ﬁ S
T lary 1st meeting

Figure 1. The Adaptive Tool Prompter

()

—

o
c
=3
=]
®

The prompter is able to increase users’ performance on tool selection by providing those tools
the user knows and wants to use. Guidance is provided by including tools the user might not
know and could use well in the current situation. Also, guidance by prompting could be desir-
able in the case of tools the user do know but is not going to use at the moment although there
IS a necessity to do so because of external (i.e., not user-initiated) events. For instance, in an
office context the user’s favorite mail tool would be made available if there were new mail,
or, in a production automation context, an emergency management tool would be offered if a
power failure occurred in an assembly line.

3.2. The Adaptive Action Prompter

The action prompter is fairly similar to the tool prompter, except that it deals with application
actions instead of tools and files. One can think of it as a permanently visible, dynamic menu

Adaptive Prompting 5

(or control panel) into which application actions are mapped by adaptive prompting strate-
gies. The prompter contents is adjusted with every context change caused either by the user
interacting with the application or by the application itself. As in the tool prompter, users can
select actions from either the action prompter or the regular environment (i.e. from menus,
from control panels, by direct manipulation).

A sensible default value for the maximum number of items presented by the action prompter

could be 4 or 5. The items can be the same as in the regular menu in which they originally

appear or they can be extended by the objects to which the actions refer or by task-oriented
explanations with respect to the purpose of an action. Figure 2 shows according instances of
the action prompter.

a) plain menu items b) with indicating referred object

c) with task-oriented explanation

Figure 2. Instances of the Adaptive Action Prompter

Direct manipulation applications provide a huge number of actions selectable for the user. For
instance, a typical application would offer: a menu bar with 3-7 submenus with up to 10 or
more items each, sometimes even extended by cascaded menus; object-specific pop-up
menus, also often cascaded; a control panel or a few single buttons; and direct manipulation
operations such as clicking on or dragging objects, often with multiple meanings activated by
pressing modifier keys.

As discussed above, menus are considered to be a good idea to provide a comprehensive feed-
back on which actions are available. However, users have to browse through menu hierar-
chies in order to locate the desired items and to make their selections. Shortcuts address this
problem by allowing for a random access to menu items through pressing certain keys in com-

6 T. Kihme, U. Malinowski, James D. Foley

bination or sequence. But shortcuts, in turn, trade faster accessibility for again more artifacts
users have to remember.

With the adaptive action prompter, the most important actions are easily accessible in most
cases while otherwise a search through a possibly large menu hierarchy would be necessary.
Since the prompter lists the most appropriate actions one beneath the other (as opposed to
being distributed over different menus) the user has a good survey of sensible alternatives.

In the case of direct manipulation, a feedback on available actions is usually given by the pre-
sentation of the (selected) object and by the pointer shape. In order to find out about accessing
actions, users have to select and to traverse an object with the pointer while watching the
pointer shape. Sometimes, users even have to put an object into another mode to be able to
manipulate it in a certain way. Although users often find it quite intuitive to directly manipu-
late an application object there is little help on how to discover what the object’s behavior is
all about with respect to direct manipulation.

Including direct manipulation actions in the prompter is only reasonable for actions the user
does not know or does not know how to access. Direct manipulation actions are presented as
prompts telling the user that they are available and providing a pictorial information how to
select them by manipulating the object in a certain way. If the user decides to select such an
action from the prompter a mode is entered which allows for completing the action interac-
tively.

Not only that users have problems to access (i.e., locate, reference) the actions they already
know and want to select. Prior to selecting an action, users have to know if the application
provides an appropriate action at all (i.e., an action users can describe in terms of its effect).
Even more basically, users have to imagine what would be an appropriate action to precede
with in order to perform a certain task of the application domain (cf. [6]). While direct manip-
ulation interfaces are appreciated for making all available functions easily accessible at the
same time, thus allowing for an explorative working style, they generally do not support the
user in dealing with such sequencing problems. Some attempts have been made to overcome
this weakness by providing context-sensitive help on how to enable currently disabled actions
or animated help on how to perform a sequence of actions [11].

The action prompter addresses sequencing problems by considering known action sequences
and relationships between subsequent actions. Sequencing support by adaptive prompting is
given implicitly without any interruption of the application dialog.Thus, there are no meta-
dialogs which might increase the distance between the user and the field of activities within
the application domain.

3.3. Adaptive Prompting in Dialog Boxes

Dialog boxes of complex systems are often unavoidably large and difficult to survey. A con-
siderably large mental effort is necessary for even the simplest change of one single item or
for only looking around if all items are set well before clicking OK. Adaptive prompting, as
proposed here, means that the most important items of the dialog box are brought to the user’s
special attention by either highlighting these items or putting some “fog” on top of all the
other items. Additional feedback (e.g. by coloring) is provided on how usual (green) or
strange (red) a given item value is with respect to the user’s history of using the particular
dialog box. All items whether highlighted or not are left in their place and are still accessible
for the user [7]. Figure 2 shows a sample appearance of an adaptive dialog box.

Adaptive Prompting 7

Figure 3. Adaptive Prompting in a Dialog Box

Not being distracted by the uninteresting parts of the dialog box, the user is able to perceive
the most important items at a glance. Most important are those items which are likely to be

selected and changed (performance aspect) or which should be observed and controlled
(guidance aspect).

4. Concepts and Achievement of Adaptive Prompting

Adaptive prompting aims to be very specific with respect to both the application context and
the individual user. Thus, models of the application and the user are necessary ingredients of
an adaptive prompter. Numerous prompting strategies use the knowledge supplied by these
models to automatically determine items to be prompted while optional user involvement
allows for co-operatively controlling the adaptation process.

These issues of how to achieve adaptive prompting are discussed along the two examples of
the tool prompter and the action prompter. Adaptive prompting in dialog boxes has been
described earlier [7].

4.1. Application Model

Model-based user interface environments aim to capture all the application specific knowl-
edge which is relevant for interaction by an explicitly represented model. The application

model supports reasoning about this knowledge at both design-time and run-time of the appli-
cation. It can be used, for instance, to drive the interaction with the user at run-time and to
monitor the dialog.

Tool Prompter

Elements of the underlying application model &wels files, relationships between tools and
files task contextsandprojects

8 T. Kihme, U. Malinowski, James D. Foley

Relationships between tools and files are expressed by rules such asdtobk applied to
filesa,b,c,...or to files of typeX” or “work on file a requires tool$ andv”. A task context is
described by a set of tools which are used together while working on a certain task or group
of tasks. A project is defined as a set of files related to a particular project in the application
domain. At run time, tools and files monitor their own usage and communicate selections by
the user to the user model and to other elements of the application model, i.e., task contexts
resp. projects they are elements of. Selections are monitored independent of whether they are
made from the prompter or the regular environment. By keeping track of all the selections of
their elements, task contexts and projects determine if they are currently active.

Action Prompter

In order to support action prompting, the application for which actions are to be prompted is
modeled in terms obbject classeandinstanceghereofactionswith parametersandpre-
andpostcondition®f actions [13].

Object classes contain information about which actions are applicable to their instances while
action parameters in turn determine to which object types an action can be applied. Pre- and
postconditions describe under which circumstances an action is executable and which the
expected results are. An action is enabled (i.e., can be selected) if its preconditions are ful-
filled while the postconditions of an action determine the context changes which occur when

this action has been completed successfully. In addition, the notion of a task context is intro-

duced. Similarly to the tool prompter, a task context is defined as a set of actions which are
related to a certain task or group of tasks.

At run time, the application model is responsible for monitoring action selections. The mon-
itoring results are communicated to the user model and are also used inside the application
model for context detection. There are three different contexts which are instructive for adap-
tive prompting: thebject contexttheaction contextand theask context

The object context considers which application objects are in the user’s current focus. Obvi-
ously in the focus are, for instance, a selected object, an object that has explicitly received the
input focus for keyboard events, or an object which was involved in the last selected action.
While these criteria for focus detection are considered on the interface level a more subtle
mechanism based on the application model infers further assumptions about the user’s focus.
This mechanism uses the sequence of interface level detections to create, establish, and
switch between object contexts (cf. the notion offdeeis spacen [9]). Objects which are
closely connected to an obviously focussed object are included in an object context. In par-
ticular, in a hierarchical structure all the objects on the path from the root of the hierarchy to
the selected object and all the objects logically contained in the selected object would be con-
sidered to be in the user’s focus. For instance, a selected chart within a document within an
editor would mean that the editor, the document, and the elements of the chart are also in the
corresponding object context while another document or another chart are not.

The action context is given implicitly by pre- and postconditions of actions. It includes sev-
eral facets some of which can be made explicit by monitoring the values of pre- and postcon-
ditions. Particularly interesting for prompting is the information when and why (i.e., by
executing which action) the precondition of an action became true. A further evaluation can
determine, for instance, those actions which were enabled by the previously executed action.
These actions are sensible candidates to be prompted because the user might have executed

Adaptive Prompting 9

the previous action intentionally to enable one of them. On the other hand, some actions might
require to be prompted for only after being enabled for a while. For instance, a “save” action
is disabled after being executed itself and is enabled after any other action has been selected.
The action context information supports a prompting strategy that prompts for a “save” if a
certain number of actions (e.g. 100) have been selected after the “save” was enabled.

The task context considers the set of those actions which are usually used when performing
a certain task or group of tasks. A task context can be called active if a certain percentage of
all actions selected are within this context. On the one hand, this approach is less expressive
than task modeling mechanisms dealing with sequences of actions. However, the notion of
the task context seems to be just appropriate for action prompting in direct manipulation inter-
faces. The opportunity to switch between tasks and to choose any possible order of actions
provided by direct manipulation dialogs is intrinsically taken into account by the task context
approach. In addition, presenting a couple of reasonable alternatives to choose from does not
necessarily demand for predicting the very next step in the one and only task the user could
be assumed to deal with. Dealing with sequencing in terms of the action context described
above might be sufficient in many cases.

Introducing elements of task modeling in the prompting mechanisms does make sense for
enhancing the abilities to provide specific guidance on a certain task. The prompter could also
be considered as just a convenient instrument to provide the user with tutorial information

that is represented or has been produced elsewhere. Further work will be spent on this issue.

4.2. User Model

The user model serves for transforming usage patterns into information about a particular
user’s preferences and knowledge. The monitoring facilities of the application model provide
the user model with the relevant usage patterns.

Tool Prompter

The user model contains assumptions and performs reasoning about: the user’s knowledge
about the existence of tools (count how often a tool was used); the user’s preferences for cer-
tain tools (comparative analysis of usage counts and last recently used flags); the user’s over-
all experience (inferred from how many and how well tools are known and which are
preferred); and the user’s preference for performance or guidance prompting (inferred from
user’s overall experience).

Action Prompter

As in the case of the tool prompter, not only preferences and knowledge with respect to ele-
ments of the interaction such as actions and task contexts are established. Again, also more
general assumptions about the user are inferred, such as the user’s overall experience or the
preference for either performance or guidance prompting.

The stored usage patterns are not simple counters. They include additional knowledge about
contextual correlations. Thus, the user model can supply information about, for instance, the
three most preferred actions on objects of ¥ me the most preferred action among actions

A, B, andC.

10 T. Kiihme, U. Malinowski, James D. Foley

4.3. Prompting Strategies

Prompting strategies consider and prioritize all the different pieces of information contained
in the employed models.

Tool Prompter

Candidates for being prompted are those tools and files which are elements of the currently
active task contexts or projects. In general, these are still too many, so that a further preselec-
tion has to be made based on the user’s knowledge and preferences of tools and on usage pro-
files of particular files within a project. If the user prefers guidance prompting also unknown
tools are considered, as opposed to performance prompting where the preferred tools always
precede. The maximum number of presented items is adjusted, for instance, according to the
user’s overall experience (high experience / large number). In addition, event rules describe
the reaction on external events, for instance rfenwMail promptMailTool".

Action Prompter

The application model of the action prompter provides very comprehensive context informa-
tion. As opposed to the tool prompter which only deals with simple relationships between
tools and task contexts or files and projects, the strategies employed here have to consider
three different contexts action selection is related to. The object context determines the
objects the user possibly wants to select an action for; the action context states which could
be the next in a sequence of actions; and the task context provides informations about actions
dedicated to the current task or group of tasks. Considering also the user’s preferences pro-
vided by the user model, there are many cues to argue which actions to prompt for.

To find appropriate strategies to combine all the available information is a major task. Since
the user’s style of interaction determines what “appropriate” means hardwiring a particular
strategy would not help. For instance, the action context information is hardly relevant for
users who are used to switch extensively between tasks. For them, the task context informa-
tion becomes important. In order to ensure that the prompting strategies match the particular
user’s needs they have to be adaptive in a broader sense. The strategies not only have to pro-
cess information which depends on the context and the user; the process itself has to be adap-
tive.

The information determining the contents of the prompter is accumulated by interpreting each
piece of information as a vote for or against certain actions. This procedure is adaptive with
respect to the weight of each vote and the order in which the votes are collected. Since it is
possible to exclude actions under certain conditions the order is significant.

The weight and the order are predefined by the system designer and can be adjusted by the
user. In principal, the prompter could try to improve the setting of weights and order by eval-
uating the success of its prompting. Such an evaluation can be achieved by observing whether
or not the prompter contents matches the actual selection. Mechanisms for self-improving
prompting strategies are also an issue for further research.

In addition, rules can be defined to modify the context detection results of the application
model and to handle any exceptions to the prompting mechanisms, for instance: “ifSelected
anObjectactivateaTaskContexXtor “ifExecuted anAction promptanotherActioh. By this

means, also certain actions can be excluded from prompting: “Never @oAwgitori (par-

Adaptive Prompting 11

ticularly sensible for actions with well-known shortcuts). Similar to the tool prompter, also
rules to react on external events are possible.

4.4. User Involvement

While in the case of the desktop nearly all the placement of tools and files (i.e. icons) is done
explicitly by the user the tool prompter employs built-in mechanisms to determine its con-
tents. However, the prompter approach is not aimed to be at the other extreme end without
any user involvement at all. Instead, the user is widely supported in inspecting and controlling
the adaptive mechanisms if desired. This approach has been called Computer-Aided Adapta-
tion [3,4]. Although the subsequent examples were chosen from the tool prompter the action
prompter offers similar opportunities for the user to get involved.

There is a broad range of optional user involvement including: explicitly setting the maxi-
mum number of items presented in the prompter; explicitly adding or removing items to or
from the prompter; explicitly determining the currently active task context(s) and project(s);
defining and modifying task contexts (task contexts may also be designer-predefined or sys-
tem-inferred); defining and modifying projects (projects may also be system-inferred);
explicitly setting preferences in the user model (overwriting defaults or assumptions inferred
by dialog monitoring); and changing the prompting strategies by adding, modifying, or
removing rules such as “promptPermanentWyFavoriteEditof, “if (GraphTool
isPrompted) prompEalculator’, or “on diskFull promptCompressdr(event rule).

It is crucial that the user can obtain all these insights and adjustments with a minimal amount
of knowledge and effort. Therefore, the user interface for any kind of user involvement con-
sists only of simple menus and dialog boxes. There are no files to edit and no comprehensive
languages to learn. For examples see figures 4-7.

Figure 4. Interface for User Model Adjustments

12

T. Kiihme, U. Malinowski, James D. Foley

Figure 5. Interface for Prompting Rule Management

Figure 6. Interface for Task Context Management

DDD

Figure 7. Interface for Prompter Setting Adjustments

Adaptive Prompting 13

5. Adaptive Prompting In Multimodal Interfaces

Multimodal interfaces aim to relieve users from the burden of dealing with system functions
and telling the system “how to do” something. Instead, users will be enabled to communicate
their intentions and desires (i.e., “what to be done”) to the system in a more natural way by
means of gestures and spoken or written natural language. On the long run, users will no
longer have to select abstract “tools” or “actions”. However, adaptive prompting is even more
important and applicable in multimodal interfaces.

There are several observations which support this hypothesis. Most of them can be considered
again under the two aspects of performance and guidance. A third aspect refers to how adap-
tive prompting can benefit from multimodality because of the provision of additional focus
information and larger opportunities for adapting the presentation of prompting information.
However, the latter aspect is beyond the scope of this paper.

5.1. Performance Aspects

Allowing for more natural, intuitive user input requires a much larger effort for interpreting
and evaluating this input within the user interface. Since there are still application programs,
functions with parameters, and objects with attributes the user interface has to accomplish a
mapping from a fuzzy input to definite entities an application deals with. As a matter of fact,
the user interface now has the burden of selecting tools, actions, etc. according to the user’s
interaction with the system.

Internal Prompting

Adaptive prompting mechanisms can greatly support this internal selection process by pro-
viding a list of the items which are most likely to be selected. Especially in gesture and speech
recognition mechanisms, this information could be used to focus on the most probable inter-
pretations resulting in a potentially higher recognition rate.

Confirmative Prompting

As long as recognition rates are still poor, particularly too poor for certain safety-critical
application areas, prompting the user should be considered also or even just with multimodal
interfaces. For instance, an adaptive action prompter menu provides the user with a cue what
the user interface considers to be most likely meant by the next gesture or speech input. On
the one hand, the user would know that inputs which are not covered by the menu are more
likely to be misunderstood by the interface than those in the menu. On the other hand, the user
can use any prompted command (and perhaps gesture symbol) for producing a speech (or ges-
ture) input which will be understood almost for certain. Optionally, the user can choose the
desired action from the prompter.

Referencing

While it is hard to establish and to use contexts and pronominal references in natural language
dialogs the additional use of direct manipulation techniques (such as pointing) can overcome
these problems in multimodal dialogs [1]. Referencing can become even more simple with
adaptive prompting, for instance, in a dialog box (there is little evidence that dialog boxes or
something analogous will no longer be needed in multimodal dialogs). Adaptive prompting
makes the complex context of a large dialog box shrink to a simple, easy to survey context.

14 T. Kiihme, U. Malinowski, James D. Foley

If the user’s focus actually is within this restricted context the remaining referencing effort in
the speech input can be kept very little. For instance, the speech input “Set the third number
in the first column to seven!” would be reduced to “Set number to seven!” with adaptive
prompting if one number item and one text item were highlighted. This would be even more
reduced to a simple “Seven!” if only the number item was highlighted. This kind of automatic
referencing by adaptive prompting can obviously go far beyond the performance of purely
natural language referencing and may sometimes even surpass pointing. It might also be very
helpful in environments where pointing devices are not available.

5.2. Guidance Aspects

Although multimodal interfaces facilitate more intuitive dialogs than ever possible in conven-
tional direct manipulation interfaces they will not completely relieve the interface from pro-
viding guidance. This assumption is based on the every day experience that new capabilities
are fully exploited as soon as they appear. Interfaces and underlying applications will become
more powerful but hardly simpler to use in their entirety.

Intuitive Guidance

As described above, adaptive prompting provides guidance by particularly offering the most
appropriate items to be proceeded with (objects, actions, etc.). Since prompting is a regular
part of the user’s interaction with the system this kind of guidance fits intuitively into the pro-
ductive application dialog.

Guidance for Pen-Based Systems

Guidance seems also to be necessary in pen-based systems. For instance, it cannot be
assumed that users remember all the possible gestures an interface designer might have
thought of as “intuitive”. An optional guidance on gestures which are understood by the sys-
tem would be more than helpful. However, there is rather little screen space on most pen-
based systems where to provide this guidance. Adaptive prompting would be a solution since

it presents only those items which are most important in a given situation. Hence, space con-
sumption could be limited to what is just necessary.

6. Ongoing Work

Prototypes of the tool prompter and the action prompter have been developed using and
extending SX/Tools [5] for the physical user interface portion and UIDE [12, 13] for applica-
tion and user modeling. Mechanisms for adaptive prompting in dialog boxes are going to be
included. Implementation details will be described in a separate paper.

An evaluation of prompting strategies can be achieved by comparing the proposed prompts
with the actual user input. With some restrictions, such an evaluation can be carried out off-
line by using session protocols. Thus, different prompting strategies can be tested very effi-
ciently. First results of these evaluations will be presented at the conference. Further evalua-
tion includes extensive user-testing with respect to questions such as: Do users accept (i.e.
use) prompting? Does its usage improve performandeguality of dialogs? How does the
optional user involvement affect adaptive prompting?

There is virtually no application area adaptive prompting would not support. However, areas
which could benefit from adaptive prompting in particular include medical information sys-

Adaptive Prompting 15

tems and traffic management systems. These systems have in common several demanding
problems in regard to the user interface which are addressed by adaptive prompting. Among
these problems are: a community of users who are mostly no computer experts and range
widely in their domain expertise (adaptivity); an application domain which usually involves
stress situations (performance prompting); and a need for extensively using all the emerging
presentation media and interaction modalities which make interfaces more complex and not
always simpler to handle (guidance prompting).

Acknowledgements

We thank Hartmut Dieterich, Matthias Schneider-Hufschmidt, and Piyawadee “Noi”
Sukaviriya for many helpful conversations about related topics. Thanks also to Al Badre for
his comments on a draft of this article.

References
1. P. R. CoherThe Role of Natural Language in a Multimodal Interfaeeoc. UIST’'92,
Monterey, CA, Nov 15-18, 1992.

2. W. D. Gray, W. E. Hefley, D. Murray (EdsProceedings of the 1993 ACM International
Workshop on Intelligent User Interfac&3rlando, FL. ACM Press, New York, 1993.

3. T. Kihme:A User-Centered Approach to Adaptive User Interfatref?], pp. 243-245,
1993.

4. T. Kiihme, H. Dieterich, U. Malinowski, M. Schneider-Hufschmigiproaches to
Adaptivity in User Interface Technology: Survey and TaxonBmog. of the IFIP TC2/
WG2.7 Working Conf. on Engineering for HCI, Ellivuori, Finland, Aug 10-14, 1992.

5. T. Kihme, M. Schneider-Hufschmi@&X/Tools - An Open Design Environment for
Adaptable Multimedia User Interface®roc. Eurographics ‘92, Computer Graphics
Forum, Vol. 11, No. 3, pp C-93—-C-105, 1992.

6. C. Lewis, P. G. Polson: Cognitive WalkthroughAdviethod for Theory-Based Evalua-
tion of User InterfacesCHI'92 Tutorial Notes, Monterey, CA, May 4, 1992.

7. U. Malinowski:Adjusting Forms to Users’ Behavidn [2], pp. 247-249, 1993.
8. Microsoft Word 5.0, Microsoft Corporation, 1991.
9. M. A. Peréz, J. L. SiberEocus in Graphical User Interfacek [2], pp. 255-257, 1993.

10. G. SperlingThe Information Available in a Brief Visual Representatisych.
Monogr., Vol. 74, No. 11, 1960.

11. P. Sukaviriya, J. J. de Graafutomatic Generation of Context-sensitive “Show&Tell”
Help. Technical Report GIT-GVU-92-19, Georgia Institute of Technology, July 1992.

12. P. Sukaviriya, J. Foleggupporting Adaptive Interfaces in a Knowledge-based User
Interface Environmentn [2], pp. 107-113, 1993.

13. P. Sukaviriya, J. Foley, T. Griffith: A Second Generation User Interface Design Environ-
ment: The Model and The Runtime Architecture. Proc. INTERCHI'93, Amsterdam, The
Netherlands, April 24-29, 1993.

