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Abstract

This paper presents a new lossless compression algorithm
for computer animation image sequences. The algorithm
uses transformation information available in the animation
script and 
oating point depth and object number informa-
tion stored at each pixel to perform highly accurate motion
prediction with very low computation. The geometric data,
i.e., the depth and object number, is very e�ciently com-
pressed using motion prediction and a new technique called
direction coding, typically to 1 to 2 bits per pixel. The geo-
metric data is also useful in z-bu�er image compositing and
this new compression algorithm o�ers a very low storage
overhead method for saving the information needed for z-
bu�er image compositing. The overall compression ratio of
the new algorithm, including the geometric data overhead,
is compared to conventional spatial linear prediction com-
pression and is shown to be consistently better, by a factor
of 1.4 or more, even with large frame-to-frame motion.

CR Categories: I.4.2[compression(coding)]exact coding.
Additional keywords: compression,computer anima-
tion,computer graphics, motion prediction

1 Introduction

With the increasing popularity and falling cost of computer
animation comes a new problem: storing the enormous data
�les which even short computer animation sequences require.
Five minutes of NTSC resolution computer animation takes
up approximately 8.5 gigabytes of storage; �lm resolution
takes many times more. This amount of data cannot be
economically stored on line in high speed secondary storage
devices. Animation image �les are typically stored o�-line
on removable media.

An alternative to using o�-line storage is to compress the
image data and store it on-line. This is very desirable for
sequence editing and image manipulation, for example. For
high image quality only lossless compression is acceptable;
images can then be exactly reconstructed from their com-
pressed representation. Errors do not accumulate if images
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are combined or manipulated and run through the compres-
sion decompression cycle several times.
Much more information is available to a compression algo-

rithm for computer animation than is the case for live action
video. However, surprisingly little work has been done on ex-
ploiting the information in a computer animation script to
improve image compression e�ciency. Previous work such
as that described in [1] and [5] is actually image based com-
pression although the application is to computer animation.
The lossless compression algorithm for computer anima-

tion to be described in this paper combines elements of both
motion prediction and spatial linear prediction compression
techniques, using each when most appropriate. The new
compression algorithm uses transformation information in
the animation script to perform essentially perfect image
space motion prediction with very low computation. This
is a major advantage of the new algorithm because motion
prediction with subpixel accuracy based only the informa-
tion present in the image sequence is computationally ex-
pensive [6][3]. Poor quality motion prediction increases the
motion prediction error which reduces the maximum achiev-
able compression ratio.
One of the most e�ective lossless image compression tech-

niques is DPCM followed by entropy coding [4][8]. For typi-
cal live action video sequences the best compression achiev-
able using this method is usually less than 2 to 1 [7]. The
best computer generated images are nearly indistinguishable
from real images so we can expect that good synthetic im-
ages will not compress any better than live action video.
For scenes with fairly rapid camera and object motion

the compression ratio we have achieved with our new mo-
tion prediction compression is approximately 1.5 times that
of spatial linear prediction compression techniques - about 3
to 1 compression with the new technique as opposed to 2 to
1 compression with DPCM. As camera and object motion
decrease the compression ratio of the new technique steadily
increases while spatial prediction compression remains con-
stant at roughly 2 to 1.
Extra geometric information, the object number and the

depth at each pixel, is stored in each frame to perform mo-
tion prediction. The geometric information is compressed
very e�ciently in our new algorithm, typically to 1 or 2 bits
per pixel. For z-bu�er compositing applications [2] this is
another advantage of the new algorithm, because the depth
information needed for z-bu�er compositing is stored in very
little space.
We assume the animation script contains a homogeneous

matrix transformation for every object in every frame. The
matrix transforms the object from the model space coor-
dinate frame into the screen space coordinate frame. The
transformation matrices are stored in an auxiliary �le along
with the compressed image data and constitute part of the
overhead of the new compression algorithm. This limits
the current implementation to rigid body motion but this
is not an intrinsic limitation of the algorithm. Non-rigid
body motion can be accommodated by storing appropriate
transformation information, such as free form deformation
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mesh points for example [9], in the animation script.
The current implementation assumes that objects are rep-

resented as polygonal surfaces. Algorithms exist for convert-
ing many di�erent surface representations to approximating
polygonal surfaces. Many commercial image synthesis pro-
grams perform this conversion internally so the limitation to
a polygonal representation is not unduly restrictive.

The geometric data has special properties we exploit to
improve compression. As a consequence the coder is split
into two parts: a geometrical data coder and a color data
coder. General notation used throughout the paper is pre-
sented in Section 2.

Section 3 of the paper presents block diagrams of the algo-
rithm. Section 4 describes the geometrical data coding algo-
rithm. Section 5 describes the color data coding algorithm.
Animation test results are presented in section 6 and con-
clusions and suggestions for further research are presented
in section 7.

2 Notations and Data structure

In this paper the frame number, which is used to identify
the speci�c frame, is expressed as a superscript. A subscript
represents the object number when it is expressed as a single
value and the spatial location when it is expressed as a pair of
values. If the subscripts are omitted, that symbol represents
the whole set of the corresponding data for that frame.

The data structure of a frame is divided into two parts.
The �rst part is the set of 4�4 homogeneous matrices for all
the objects f T ij ; j = 0::No � 1 g by which the point in the
model object space is transformed to the screen space. The
other part is the 2-dimensional array of the data P i

m;n;m =
0::Nx � 1; n = 0::Ny � 1 , where No represents the number
of objects and Nx and Ny represent the number of pixels
in each direction. Each pixel datum P i

m;n is composed of

the object number N i
m;n, depth Z

i
m;n and colors Ci

m;n of the
pixel at the spatial location (m;n). For example, the point

in the i-th frame (m;n;Zi
m;n)

T is transformed to the point

(xj; yj ; zj)T in the j-th frame as follows:
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where k = N i
m;n.

As mentioned above, the symbols without the subscripts
represent the whole set of data for the frame. For example
T i stands for the set of matrices and N i, Zi, Ci represent the
whole two dimensional array, also called a �eld, containing
the object number, depth and color values of the i-th frame,
respectively. The object number N i and the depth Zi are
collectively called the geometrical data �eld. The color �eld
Ci represents the R,G,B color �elds, but sometimes can be
used for one speci�c color �eld.

The object number and color values are represented as
integers, but the depth is a real number. In our implemen-
tation, each of the RGB color values is usually represented
by 8 bits/pixel (256 levels), and the depth is double preci-
sion 
oating point. Since the compression e�ciency of the
geometrical data is highly dependent on the accuracy of the
calculation, the double precision representation is preferred.
The required number of bits for the object number depends
on the total number of objects.
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Figure 1: n-th Order Frame Encoder and Decoder

3 System Block diagrams

The heart of the coding scheme uses a linear predictive cod-
ing algorithm (DPCM) [4]. Since there exists substantial
correlation between successive frames in computer anima-
tion as well as in real-life video, good compression gain can
be achieved by these predictive schemes. Since both the
object number and depth �elds are needed to compute the
motion trajectory of each pixel and these are encoded to-
gether into one data stream Gi, the whole system is divided
into a geometrical data coding block for N i; Zi and a color
data coding block for Ci as shown in Figs 1.
The object number N i and color data Ci are coded loss-

lessly, but the depth Zi is allowed to contain error within a
speci�ed limit to achieve a high compression gain, because
Zi requires a relatively larger number of bits (64 bits/pixel

for a double precision representation) than N i; Ci.
The DPCM system requires storage for several frames de-

termined by the order of the predictor. The geometrical
data coding block stores the object number �elds N i and

the depth �elds _Zi of previous frames. Since only the de-
coded values are available for the depth �eld in the decoder,
the geometrical data encoder uses the decoded depth �eld
_Zi instead of the original depth �eld Zi for correct recon-
struction from the encoded data. The stored geometrical

data N i; _Zi are provided to the color data coding block to
predict the color data in other frames by motion prediction.

4 Geometrical Data Coding

Figs 2 show the block diagrams of the encoder and decoder
for geometrical data. The principle behind the geometri-
cal data coding is that the geometrical data of the current
frame is predicted from several previous frames which are
compared to the current original frame pixel-by-pixel. Each
pixel P i

m;n is classi�ed as matched if N i
m;n, Z

i
m;n of the cur-

rent frame are the same as ~N i
m;n, ~Zi

m;n of the predicted
frame, and unmatched otherwise. Since the object number
and depth for the matched pixels can be recovered from the
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Figure 2: Geometrical Data Encoder and Decoder

predicted frame in the decoder, the only information that
needs to be transmitted are the matching status �eld M i

which records whether or not each pixel is matched, and the
complete geometrical data for the unmatched pixels. Un-
matched pixels occur mainly in recently uncovered regions
which cannot be predicted from previous frames, or from
highly curved regions that are di�cult to predict.

For the unmatched regions the geometrical data can be
coded e�ectively by exploiting the spatial correlations be-
tween pixels, because pixels which belong to the same pla-
nar polygon satisfy the same plane equation. An algorithm
called direction coding is proposed and described later. With
direction coding, the unmatched pixels are classi�ed into di-
rection matched pixels and totally unmatched pixels. This
matching information replaces M i

m;n at the unmatched pixel

and this modi�ed matching status �eld is �M i. After the di-
rection coding, since the majority of the frame is matched,
the entropy of �M i is very small. Thus �M i can be compressed
e�ectively by entropy coding or run-length coding and the
original geometrical data N i

m;n, Z
i
m;n are transmitted in un-

compressed form only for the totally unmatched pixels.
At the receive decoder, the matching status �eld �M i

m;n,

and the geometrical data N i
m;n,Z

i
m;n for totally unmatched

pixels are obtained. For the matched pixels which can be
identi�ed by the �M i, the object number N i

m;n and the depth
~Zi
m;n are copied from the predicted frame. Then for the un-

matched pixels the N i
m;n, �Zi

m;n are recovered by the direc-
tion decoder and the complete recovered frame data is fed
into the frame predictor for the next frame prediction.

4.1 Frame Predictor

The set of four pixels P i
m;n, P

i
m;n+1, P

i
m+1;n+1 , P

i
m+1;n is

de�ned as a pixel square Sim;n. Each pixel square can be
classi�ed into one of three categories. The �rst is the plane
pixel square where all four corner pixels come from the same
planar polygon and make a planar square. The second is the
adjacent polygon pixel square where four pixels are from the
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Figure 3: Transform of Pixel Squares between Frames

two adjacent polygons that share an edge that intersects
the pixel square. The third is a non-adjacent polygon pixel
square where the polygon boundary is across the pixel square
but the polygons do not share an edge. These three cases
are illustrated in Fig. 3.
The planar pixel square can be easily transformed by Eq. 1

and rendered into other frames. For the adjacent polygon
pixel square, if the plane equations of the two polygons can
be obtained by exploiting the neighboring pixel squares, then
the pixel square can be partitioned into two polygons and
each polygon can be transformed and rendered onto other
frames in the same way. There is not enough information to
make correct partitions for the non-adjacent polygon pixel
squares, then these cannot be used to predict other frames.
The pixel square Sim;n can be de�ned as a planar pixel square
if the four pixels satisfy the following plane conditions.

N
i
m;n = N

i
m;n+1 = N

i
m+1;n+1 = N

i
m+1;n (2)

jZi
m;n + Z

i
m+1;n+1 � Z

i
m;n+1 � Z

i
m+1;n j < � (3)

In Eq. 3 the inequality is used to deal with the error due to
the limited precision of computation and the small number
� is determined as the allowable error for the depth of the
pixels which are from the same planar polygon.
In some cases, the above two conditions are not enough to

determine whether the pixel square is planar or not. For ex-
ample, the pixels lying across the boundary of two separate
polygons which are parallel to each other might satisfy these
two conditions. There are several ways of reducing the pos-
sibility of an incorrect classi�cation of a planar pixel square.
One way is to add the following conditions, which test the
relations between the depths of the surrounding pixels. If
the following plane conditions are satis�ed with regard to at
least one corner of the pixel square, Sim;n can be considered
to be a plane pixel square.

j2Zi
l;k � Zi

l�1;k � Zi
l+1;k j < �

j2Zi
l;k � Zi

l;k�1 � Zi
l;k+1j < �

for l =m;m+ 1 and k = n;n+ 1.

(4)

For the non-planar pixel square which does not satisfy the
above plane conditions, if some two pixel squares around it
are planar and if the intersection of those two planes are
found to be across the pixel square by solving the plane
equations of those two planes, then this pixel square is an
adjacent polygon pixel square that can be divided into two
polygons and transformed into other frames. One way to
�nd the two plane pixel squares is to test the above plane



conditions for each pair of pixel squares which are on the
opposite sides of the current pixel square.

The geometrical data for most of a frame can be computed
by transforming all the planar and adjacent polygon pixel
squares of the previous frame into the current frame and
rendering the transformed polygons on the frame bu�er of
geometrical data using the z-bu�er algorithm.

Since the current frame does not change much from the
previous frame, the transformed polygon of one pixel square
is small and covers only a few pixels. Under this assump-
tion, there are several e�ective techniques for geometrical
data rendering. One simple method is to �nd the bounding
box of the transformed pixel square and test whether each
pixel point inside the bounding box is inside the polygon or
not. For each inside pixel point, the depth of that point can
be computed from the plane equation of the transformed
polygon for the z-bu�er rendering process. The back-face
removal step might be applied before rendering.

There is one special case where the viewpoint and object
are not moving. In this case the transform matrices of the
current and previous frames are the same and the whole

transform matrix T
j

k (T
i
k)

�1
will be the identity matrix in

Eq. 1. For these pixels, the above complicated steps are
not necessary and the only thing to do is simply to apply
the depth of the previous frame to the z-bu�er algorithm
at the same pixel location. All these pixels are classi�ed as
matched pixels.

Due to occlusion some parts of the current frame may
not be predictable from the previous frame. The percentage
of predictable pixels can be increased by using higher order
prediction. In the n-th order case, the previous n frames
are transformed and rendered on the same frame bu�ers of
object number and depth.

The frame predictor used in both the encoder and decoder
have identical frame bu�ers for a object number and depth
for higher order prediction. The encoder and decoder should
store the same frame data in both predictors so that the
predicted frames in both blocks will be the same.

4.2 Frame Comparator

The frame comparator compares the input frame data to the
predicted frame data on a pixel-by-pixel basis and records
the result in the matching status �eld M i. If a pixel P i

m;n

of the current frame and ~P i
m;n of the predicted frame sat-

isfy the following conditions, then the pixel is considered to
be predictable from the previous frames and said to be a
matched pixel.

N
i
m;n = ~N i

m;n (5)

jZi
m;n � ~Zi

m;nj < � (6)

In Eq. 6, an inequality is used for the same reason as in
Eq. 3. If a pixel P i

m;n is found to be matched, M i
m;n is set to

1 and otherwise set to 0. Because of the similarity between
the adjacent frames, most of M i will be 1. For matched
pixels, the depth Zi

m;n of the input frame is replaced by the

predicted depth ~Zi
m;n to guarantee the consistency of data

between the encoder and decoder, because only ~Zi
m;n will

be available in the decoder. By Eq. 6 the accuracy of the

new depth ~Zi
m;n is guaranteed to be within �. This modi�ed

depth �eld is �Zi and will be given to the direction coder
along with N i and M i.
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Figure 4: Determination of Direction Matching

4.3 Direction Encoder

Unmatched regions are usually from recently uncovered re-
gions or highly curved regions that cannot be predicted.
Since the pixels in those regions might come from some plane
polygons or might be on the extension of a plane from a
surrounding matched regions, a spatial prediction technique
exploiting the plane relationship between neighboring pixels
can be used to code these pixels. One such method is to �nd
the matching direction in which two neighbor pixels lying
on a straight line match the object number and depth of the
current pixel and record the direction value by overwriting
the M i

m;n which was originally zero. Since only the recon-
structed data are available in the decoder, those two pixels
should be pixels that have been already coded. Therefore
it should be checked whether the matching status values of
those two pixels is still zero. The matching conditions for a
direction at P3 in Fig. 4 are described as follows :

M1 6= 0 and M2 6= 0 (7)

N1 = N2 = N3 (8)

jZ3 � �Z3j < � (9)

where �Z3 is the spatially predicted depth of the pixel P3 in
the speci�ed direction as in Eq. 10.

�Z3 = 2Z2 � Z1 (10)

These conditions are tested for eight directions from direc-
tion D1 to D8 as in Fig. 4. The �rst matched direction
becomes the matching direction of the pixel and the corre-
sponding direction value, which is de�ned as Di = i + 1 in
Fig. 4, is assigned to M i

m;n which was originally zero. The
depth of the current pixel is replaced by the predicted value
in the matched direction as in Eq. 10 for consistency of the
data in the encoder and decoder. If there is no matching
direction, the number 10 is assigned, corresponding to a to-
tally unmatched pixel. After direction coding, the frame
data will be:

�M i
m;n =

(
1 matched
2::9 direction matched
10 totally unmatched

(11)

_Zi
m;n =

8<
:

~Zi
m;n matched
�Zi
m;n direction matched

Zi
m;n totally unmatched

(12)

N i remains unchanged because the object number is loss-
lessly coded.
Fig. 5 shows an example of direction coding where the re-

gion inside the polygon is originally unmatched. The encod-
ing is performed from left to right and from bottom to top
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Figure 5: Example of Direction Encoding. The unmatched
region inside the dashed polygon is coded by direction cod-
ing. Coding is performed from left to right and from bottom
to top.

and the arrows represent the direction of matching. This
illustrates that the number of totally unmatched pixels is
very small and the matching directions are mostly 2 be-
cause direction 2 is the �rst test direction in Fig. 4. Since
the geometrical data for the matched and direction matched
pixels are predictable, the data to be transmitted are the
matching status �eld �M i which has very low entropy and
the fN i

m;n; Z
i
m;ng's for a few totally unmatched pixels.

4.4 Frame Synthesizer

Since the matched pixels can be identi�ed from the match-
ing status �eld �M i decoded in the receive decoder, the
frame synthesizer can recover the geometrical data for all
the matched pixels by copying the data from the predicted

frame. Then the geometrical data N̂ i
m;n, Ẑi

m;n for the
matched pixels and totally unmatched pixels are correctly
recovered whereas those for direction matched pixels remain
undetermined:

N̂
i
m;n =

( �N i
m;n = N i

m;n if �M i
m;n = 10

~N i
m;n = N i

m;n if �M i
m;n = 1

undetermined if �M i
m;n = 2::9

(13)

Ẑ
i
m;n =

( �Zi
m;n = Zi

m;n if �M i
m;n = 10

~Zi
m;n if �M i

m;n = 1
undetermined if �M i

m;n = 2::9

(14)

4.5 Direction Decoder

For the direction matched pixels, the object number N i
m;n is

recovered by copying the object number of the pixel which

is located in the matching direction and the depth _Zi
m;n be-

comes the predicted value �Zi
m;n from the two pixels located

in the matching direction as in Eq. 10. N i
m;n are recovered

correctly for all the pixels and the depth �eld _Zi is the same

as _Zi in Eq. 12. The accuracies of ~Zi
m;n for the matched pixel

and �Zi
m;n for the direction matched pixel are guaranteed by

Eq. 6 and Eq. 9, respectively. These decoded data are fed
into the predictor and are the same for both the encoder and
decoder to make the same predictions as in Fig. 2.
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Figure 6: Color Data Encoder and Decoder, where Ki =
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5 Color Data Coding

Since the (T;N;Z)'s from the geometrical data coding block
can be used to compute the locations of a current frame
pixel on the previous frames and the previous color data
frames are stored, the color of the pixel can be predicted
by estimating the color at the transformed locations in the
previous frames. The error image between the original and
the predicted frame, also called the residual image Ri, has
a relatively low entropy compared to the original. The pix-
els are classi�ed into two classes, matched and unmatched
pixels, based on whether the locations in the old frames are
traceable or not. Since this residual image still has some
spatial correlation, spatial linear prediction coding (DPCM)
can be applied to reduce the entropy. This DPCM coded
residual image is called a di�erential residual Di and en-
tropy coding using Hu�man coding or arithmetic coding,
can compress the di�erential residual losslessly. In decoder
after the residual Ri is recovered by DPCM decoding, the
original color data Ci

m;n is obtained as the sum of the pre-

dicted value ~Ci
m;n and the residual Ri

m;n for the matched

pixel. The color Ci
m;n of the unmatched pixel is the same as

residual Ri
m;n.

5.1 Color Frame Predictor

A pixel of one frame can be mapped to another frame by
the transformation in Eq. 1 and if the transformed point
satis�es the following condition, it is considered to be the
same point as the current pixel and the pixel is said to be
matched. If the pixel P i

m;n is transformed into the j-th frame

and the transformed point is inside the pixel square Sjp;q , the
matching condition is as follows:

Z
j

min � Z
j
trans � Z

j
max (15)

where the Zj
trans is the depth of the transformed point and

Z
j

min , Zj
max are the minimum and maximum depth of the

four corner pixels of Sjp;q , respectively. Since several previous
frames of geometrical and color data are available to deal
with the occlusion problem, the transformed point in the
nearest frame which satis�es the above condition is used to
predict the color data of the current pixel.



Li records the matching status values for color data which
are zeros for the unmatched and ones for the matched pix-
els. Since generally the transformed point is not the pixel
point, an interpolation is necessary for the computation of
the color.

5.2 Subtractor and DPCM Encoder

Colors of matched regions in the residual Ri are residual val-
ues generated by sutracting the predicticed colors from the
original colors whereas the colors in the unmatched regions
remain unchanged as follows:

R
i
m;n =

�
Ci
m;n if Lim;n = 0

Ci
m;n � ~Ci

m;n if Lim;n = 1
(16)

Unmatched regions are mostly from recently uncovered re-
gions and the entropy of such unmatched regions can be
reduced by spatial linear predictive coding (DPCM). The
residual image in the matched region has low entropy caused
by changes of illumination, by the movement of objects,
viewpoints or light sources between frames. Since this kind
of error has relatively slow spatial variation, DPCM can be
e�ectively applied also to the matched regions of the residual
image.

These two steps, frame subtraction and DPCM, can be
implemented with a combined operation as in Fig. 6. Since
the matched and unmatched regions have di�erent kind of
data as explained above, each region should be coded in-
dependently. Usually 2-D DPCM uses three left and lower

neighboring pixels �Cp;q to predict the current pixel C
i
m;n. If

the current pixel is an unmatched pixel, �Ci
p;q should be the

original color Ci
p;q . If the current pixel is a matched pixel,

�Ci
p;q should be the residual value. Since the residual value is

not available for an unmatched pixel, the �Ci
p;q is set to zero

when Lip;q = 0 as follows:

�Ci
p;q =

�
Ci
p;q if Lim;n = 0

Lip;q(C
i
p;q � ~Ci

p;q) if Lim;n = 1
(17)

The spatially predicted value _Ci
m;n is the integer part of a

linear combination of those as follows:

_Ci
m;n = int(� �Ci

m�1;n + � �Ci
m�1;n�1 + 
 �Ci

m;n�1) (18)

In this paper, the prediction coe�cients �, �, 
 are se-
lected to be 0.75,-0.5,0.75 respectively.

Then the di�erential residual image Di is obtained by sub-

tracting the spatially predicted value _Ci
m;n from the residual

value as follows:

D
i
m;n =

�
Ci
m;n � _Ci

m;n if Lim;n = 0

Ci
m;n � ~Ci

m;n � _Ci
m;n if Lim;n = 1

(19)

The di�erential residual Di, which has very small entropy,
can be compressed losslessly by an entropy coding technique.

5.3 Adder and DPCM decoder

The Lim;n and ~Ci
m;n in the predictor of the decoder are the

same as those in the encoder. The original color �eld Ci

is recovered by the combined step of DPCM decoding and
frame addition as follows:

C
i
m;n =

�
Di
m;n + _Ci

m;n if Lim;n = 0

Di
m;n + ~Ci

m;n + _Ci
m;n if Lim;n = 1

(20)

where the spatial prediction _Ci is the same as in the encoder.
The recovered color Ci is fed back to the predictor for the
prediction of the next frames.

6 Test Results

31 animation frames were generated to test the proposed
compression algorithm. Each frame is composed of 7 objects
and various kinds of textures were mapped by solid texture
mapping. Through the whole 31 frames the ball bounces
back and forth between the two wood blocks. In the �rst
11 frames the viewpoint does not change and in the next 10
frames the view point moves approximately 5 degrees/frame.
During the last 10 frames zooming is performed. Plate 2,3,
and 4 show the frames for above three cases.
In the case of Plate 2, since most of the objects are not

moving and the view point is �xed, all regions except the
rolling ball are matched regions. Pixel points in the cur-
rent frame are transformed exactly to the same pixel points
of other frames, then there are no errors due to bilinear
color interpolation and since even the colors on the edges of
stationary objects are predictable, the residual will have ex-
tremely small entropy which results in very high compression
gain.
Plate 3 is a more general case in which both an object

and the viewpoint are moving.There are mainly three kinds
of residual errors. First, the recently uncovered regions are
the major error regions which can be compressed only by
DPCM. Second, in matched regions the changes in illumina-
tions on the object surfaces causes residual errors. Usually
illumination changes are due to the changes of specular re-

ection which varies with the movement of the view point or
the object itself. Generally these errors change slowly and
can be lowered by DPCM. Third, since the object boundaries
are often unmatched regions which do not satisfy Eq. 15, the
residual errors are large there. And even in the case where
the pixels on the object boundary are matched, relatively
large errors due to the color interpolation occur because the
color data of these pixels were generated by antialiasing. In
Plate 4, since with zooming there are no recently uncovered
regions and the spatial frequency is decreasing, the entropy
of the residual signal will be smaller than that in Plate 3.
The second order compression algorithm was implemented

and tested on this test sequence. Fig. 7 shows the entropies
of the original pictures and the di�erential residual images
by 2-D DPCM and motion prediction algorithm. Table 1
illustrates the entropies of several frames. Plates 5 and 6
show the di�erential residual images of the RED component
by linear predictive coding (DPCM) and the new motion pre-
diction, respectively. As explained above, the major errors
in Plate 6 are on recently uncovered regions and along the
object boundaries which are often unmatched regions. The
biggest di�erences between DPCM and motion prediction
occurred on the wood texture which has relatively higher
spatial frequency than any other regions. In these high spa-
tial frequency regions, motion prediction shows much higher
performance than spatial linear predictive coding. Through
the whole 31 frames, the entropy of the original frame is
around 20.7 bits/pixel. In the �rst 11 frames where the
viewpoint is �xed, only about 1 bits/pixel is required for
the motion prediction technique, except for the �rst frame
which cannot be motion predicted and is coded only by
DPCM. This contrasts with DPCM which needs around 11.4
bits/pixel. The necessary bits/pixel for the next 10 frames
in which both the viewpoint and object are moving is around
8.3 bits/pixel which is about 3 bits/pixel gain over DPCM.



frame 5 frame 15 frame 25

NORIGINAL 20.88 20.78 20.58

NDPCM 11.35 11.23 10.59

NGEOM 0.32 1.06 0.93
NRGB 0.67 7.20 6.19
NMOTION 0.99 8.26 7.12

Table 1: Entropies of original image and residuals by DPCM
and Motion Prediction (unit : bits/pixel)
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Figure 7: Entropies of the Bouncing Ball Sequence. The
data for motion prediction are the sum of compressed geo-
metrical data and entropy of residual.

In the next 10 frames, all entropies are decreasing with zoom-
ing as expected above, but the motion prediction algorithm
still outperforms DPCM by about 3.5 bits/pixel.

7 Conclusion

The motion prediction compression algorithm for computer
animation image sequences presented here consistently out-
performs spatial linear prediction. This is true even though
the new algorithm encodes double precision depth and in-
teger object number information for a total of 96 bits/pixel
including RGB data while the spatial compression algorithm
does not. The depth and object number information are use-
ful in their own right for performing z-bu�er image composit-
ing. The compression ratio achieved by the new algorithm
was 1.4 times or more greater than that achieved with spa-
tial linear prediction even for scenes with rapid changes in
camera view point and substantial changes in object occlu-
sion relationships. The overall compression ratio achieved
with the new algorithm for image sequences with signi�cant
object and viewpoint motion was approximately 3 to 1.

There is still scope for improvement in the algorithm. We
have noticed signi�cant remaining correlation in the residual
images. Long strings of zero residual values are punctuated
by short bursts of plus and minus one residual values. Addi-
tionally the geometric overhead can be signi�cantly reduced
by storing the polygonal surface data and re-rendering it
with the z- bu�er algorithm, a process which should be no
more time consuming than re-rendering pixel squares as in

the current implementation. This makes the auxiliary data
�le more complex but for animation sequences more than a
few seconds long the geometric data overhead should drop
to .1 bit/pixel or less. We are currently implementing this
extension.
The current implementation of the algorithm is limited

to objects represented as polygonal surfaces. As discussed
in the introduction this is not an undue restriction since
e�cient algorithms exist for approximating many di�erent
surface types with polygonal surfaces. However it would
be an interesting research project to extend the geometric
coder to other surface types so that an exact, rather than
an approximating polygonal, surface representation could be
used. This extension would require modifying both the mo-
tion prediction stage and the direction coding stage to com-
pute surface equations directly from the depth information
stored in the image.
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Plate 1: Frame 5 of the test sequence

Plate 2: Frame 0,9

Plate 3: Frame 10,19

Plate 4: Frame 20,29

Plate 5: The di�erential image of frame 5 by DPCM
(512� 512).

Plate 6: The di�erential residual image of frame 5 by
motion compensation (512 � 512).


