
Visualizing the Execution of Threads-based Parallel

Programs

Qiang A. Zhao

John T. Stasko

Graphics, Visualization and Usability Center

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

Email: fazhao,staskog@cc.gatech.edu

Technical Report GIT-GVU-95-01

January 1995

Abstract

One popular model of concurrent computing is threads-based parallel programming on

a shared memory parallel computer. A variety of di�erent vendors and machines provide

such capabilities, and support for threads programming has begun to appear in desktop

multiprocessor systems such as the Sun SPARCstation 20. Unfortunately, building parallel

programs that use threads is still quite challenging, even for veteran serial programmers.

This stems from the di�culty of controlling communication and synchronization between

the di�erent processes. We believe that the use of program visualization tools that graphi-

cally depict the state of a program's execution can help programmers develop, debug, and

understand their code faster and more easily. Most program visualization systems for paral-

lel computation have focused on performance views and views of message passing systems.

Here, we introduce a presentation methodology and a set of views particularly appropriate

for depicting the execution of threads-based parallel programs. These views were created

speci�cally for the pthreads programming library on a KSR machine, but they could easily

be adapted to other threads-based systems. We also describe our techniques for gathering

program execution data to drive the views, and we discuss what an ideal program tracing

environment should provide to support the views we developed.



1 Introduction

In shared memory threads-based parallel computation, a program begins with one thread of

control that subsequently creates (or \forks") new threads. Each active thread can access

common, shared memory areas in addition to having its own local memory. Communication

and cooperation between threads occur via barrier synchronizations, the use of mutually

exclusive code segments, and other synchronization primitives.

Making the threads communicate and synchronize properly is the primary challenge of

this type of programming. Small errors in the logic of a design or in its implementation can

result in erroneous programs that fail in any variety of ways, or that simply deadlock.

Debugging threads-based programs is di�cult for a number of reasons. First, the mul-

titude of processes simply provide more entities to keep track of. Also, examining an

individual process using a traditional serial debugger may not provide the information nec-

essary to determine the cause of the problem. Bugs in threads programs happen when

communication between processes does not occur in the planned fashion. Often, it is nec-

essary to track the state of multiple concurrent threads to diagnose a bug. To address

this problem, programmers usually annotate their code to produce trace events that have

timestamps. By tediously examining many textual trace logs of the timestamped events,

some understanding of a global system behavior (hopefully) may be gleaned.

We propose another solution to this problem: The use of program visualization tools

that help programmers understand and analyze their code. E�ective visualizations can

depict how threads communicate and can provide a better depiction of the global state of

an execution, all in a manner that textual tracing tools cannot. In particular, visualizations

provide two key bene�ts:

1. They encode a great deal of information in a relatively compact area, highlighting the

most important features of a computation while abstracting away unnecessary details.

2. The visualizations can more accurately portray the temporal ordering of program

operations to the viewer.

More speci�cally, the goal of this work is to provide a set of program views that will

help programmers better understand what is occurring during a program's execution, and

consequently be able to more quickly determine �xes for bugs. To achieve this goal, e�ective

program views are necessary. Below are the criteria that we use to characterize e�ectiveness.

First, the views must focus on the critical aspects of threads-based parallel computing.

They must illustrate the program entities and operations most critical to the success or

failure of the program. In this domain, therefore, the views must display the state of the

individual threads, barriers, and mutexes in the program under examination.

Second, the views must show the current state of execution in detail as a program is run

or retraced. A viewer should be able to gather the required information to assess problems

in the program. Also, the views must provide some notion of the history of the execution,

allowing viewers to \look back" in time and examine the program state at earlier times.

Third, the views should be natural and easily understood by programmers. One way

2



to achieve this goal is to use clear, familiar graphical notations such as program callgraphs,

timelines, and simple symbolic imagery in the views.

Finally, program views are more e�ective if it is easy for the programmer to use the

views. That is, it should be relatively straightforward to elaborate the mechanisms that

generate the program views. Extensive modi�cations of the underlying program should be

avoided, and elaborate graphical speci�cations or manipulations should not be required.

Prior work in visualization of concurrent programs has not placed a major focus on de-

picting the executions of shared memory threads programs[KS93]. Signi�cant work has been

done, however, on performance visualization, where the best-known example is the Para-

Graph system[HE91]. ParaGraph provides views of processor utilization and message pass-

ing using a set of views such as Kiviat and Gantt charts. Other signi�cant work on visualiz-

ing the operations of message-based distributed systems includes Seeplex/Seecube[Cou88],

HyperView/Tapestry[MR90], Belvedere[CHK92], and Xab[BDGS93]. Similarly, systems for

visualizing compiler-driven (FORTRAN) parallel programs such as SCHEDULE[DS87] and

SHMAP[DBKF90] have been developed. Our work focuses speci�cally on threads programs

and programming primitives, and is pioneering in its rigorous depiction of this paradigm.

In the next section we describe the system support and framework for the views we

developed. This includes both the parallel computation platform and the visualization

package. In Section 3 we describe the threads views in detail and motivate the reasons why

we chose these particular views. Section 4 discusses the limitations of our approach and

the more general environment in which the threads views can operate. Finally, Section 5

describes the status of the project and our future plans.

2 System Foundations

The particular threads implementation we chose as a prototype was Pthreads[Ken92], a

standard thread library on KSR parallel machines. This platform was available to us locally

and provided a good example of a threads implementation. Other similar threads imple-

mentations include Solaris threads from Sun and cthreads[Muk91]. We used POLKA[SK93],

an object-oriented software visualization methodology and library, as the platform to im-

plement the graphical views.

2.1 Parallel Execution Environment | KSR Pthreads and Gthreads

The KSR Pthreads interface is based on draft 4 of the proposed POSIX Threads Extension

for Portable Operating Systems standard [IEE90]. The term pthread refers to a single

sequential 
ow of control within a process, which in turn is a Mach operating system

task. Usually a program begins with one pthread and creates others to accomplish its task

concurrently.

3



2.1.1 Pthreads Overview

The Pthreads C library supports several types of objects such as pthreads themselves,

mutexes, condition variables, and barriers.

Regular data structures can be declared to be shared among all the pthreads by prepend-

ing shared quali�ers on the declaration lines. The private quali�er is available to

specify thread-speci�c variables which each pthread receives a private copy of upon thread

creation.

One pthread is automatically created by the system when a user process starts. A new

independent pthread is forked by calling library routine pthread create() which takes a

function pointer as one of its parameters. For example:

pthread_t thread_id;

void *worker_thread_function(void *);

pthread_create(

&thread_id, /* get the thread id */

pthread_attr_default, /* default attrs for new thread */

worker_thread_function, /* new thread starts there */

(void *) NULL /* arg to worker function */

);

The new pthread starts in the speci�ed function (such as the worker thread function()

in the above example) and executes from there. When that function returns, the correspond-

ing thread terminates with it.

A pthread can terminate at any time by calling pthread exit(). The Pthread library

uses either the data pointed to by the parameter passed in to pthread exit() or the return

value of the thread start function as the exit status of the terminated thread. One thread

may call pthread join() to wait until another thread terminates and acquire its exit status.

Mutexes are synchronization objects that serialize access to shared variables or segments

of code. A mutex is initialized through the call pthread mutex init(). A segment of code

that needs to be serialized should be surrounded with calls to pthread mutex lock() and

pthread mutex unlock():

pthread_mutex_lock(&ioLock);

/* ... critical region ... */

pthread_mutex_unlock(&ioLock);

Condition variables control conditionally locking and releasing mutexes. If in a critical

region a pthread needs to wait until some other work has been done by other threads, it

uses pthread cond wait() to release the mutex (so that some other thread may proceed

to access the protected resource) and block on a condition variable:

__shared char something_is_not_ready;

__shared pthread_cond_t ioCond; /* initialized elsewhere */

pthread_mutex_lock(&ioLock);

4



/* ... some processing ... */

if (something_is_not_ready) {

pthread_cond_wait(&ioCond,

&ioLock /* release the mutex */

);

/* ... the system will give me back the mutex ... */

}

pthread_mutex_unlock(&ioLock);

When the prerequisite work has �nished, a pthread cond signal() must be called to

wake up the waiting thread and lock the mutex again to ensure mutual exclusion to the

critical region:

pthread_mutex_lock(&ioLock);

/* ... some processing ... */

something_is_not_ready = 0; /* set to FALSE */

pthread_mutex_unlock(&ioLock);

pthread_cond_signal(&ioCond); /* signal one waiting thread */

As an extension to the POSIX standard, barriers help independently executing pthreads

to synchronize at certain rendezvous points in the program.

The size of a barrier, n, is set at initialization time to be the number of pthreads that will

participate in its use. Each pthread is assigned a unique logical sequence number ranging

from 0 to n � 1 when accessing the barrier. The pthread which uses the sequence number

0 is called the master and all other threads are called slaves.

Two di�erent barrier synchronization actions exist: checking in and checking out. When

checking in, the master continues and the slaves block in the barrier library routine until the

master initiates the same action. When checking out, the slaves continue and the master

blocks until all the slaves have checked out.

Barriers can be used in many di�erent ways. An example application would be a parallel

program to �nd solutions to partial di�erential equations | all tasks have to complete one

iteration before they begin the next iteration. There is a coordinator thread which manages

the execution of a set of slave threads:

__shared pthread_barrier_t barr; /* global variable */

__shared char moreWork = 1; /* global variable (boolean) */

int n; /* # of workers; set elsewhere */

int i; /* loop control variable */

pthread_t thread_id; /* dummy */

void *worker_thread_function(void *);

/* initialize the barrier - count me in we have (n + 1) threads */

pthread_barrier_init(&barr, pthread_barrierattr_default, n + 1);

/* create the threads */

for (i = 1; i <= n; i ++) {

pthread_create(&thread_id, pthread_attr_default,

worker_thread_function, (void *) i);

}

5



/* ... set up the work assignments ... */

/* coordinate with the workers */

while (moreWork) {

/* I wait for the worker threads to finish their work */

pthread_barrier_checkout(&barr, 0);

/* see if there's more work to do and set "moreWork" */

/* the worker threads wait for me */

pthread_barrier_checkin(&barr, 0);

}

The worker threads have a similar while loop:

void *

worker_thread_function(void *arg)

{

/* my sequence number has been assigned */

int my_sequence_number = (int) arg;

while (moreWork) {

/* ... compute ... */

/* the coordinator waits for all of us to finish */

pthread_barrier_checkin(&barr, my_sequence_number);

/* wait for the coordinator to make high-level decisions */

pthread_barrier_checkin(&barr, my_sequence_number);

}

return some_kind_of_result;

}

2.1.2 Gthreads

To acquire the tracing data needed to drive any visualization, we have added another layer

to the Pthreads interface, Gthreads. It uses macros to \front" the standard pthreads calls.

Thus, programmers do not have to add any code to their program beyond one explicit

initialization routine that sets up the thread monitoring environment. Our macros simply

replace the old pthreads calls (the same name is still used) and add the tracing capabil-

ity. Each macro �rst logs an annotation in a trace �le, then invokes the normal pthread

operation. For example, a Pthreads program may use pthread create() to create new

threads. With Gthreads, our macro �rst logs this operation then calls pthread create()

in the usual fashion.

Unfortunately, this macro approach is not su�cient to generate all the information

required for our views. In particular, we wanted to include a view of the function calls

of a program; Without proper representation of function invocation at the program level,

a parallel program can be confusing and di�cult to understand. Synchronization events

can appear to run together and cooperation among threads can be very di�cult to observe

without functional context for thread execution. Function calls cannot be traced using our

6



macro approach, however. Therefore, we use a compromise: we supply two supplemental

macros, gthread enter() and gthread back(), that programmers add to their code to

allow the program to signal function entry and exit, tracing information not available from

the basic Pthreads calls.

When the multi-threaded program (compiled with the Gthreads library) runs, it writes

the tracing data to a �le that is subsequently used by the visualizer to drive the animations.

Programmers can turn o� Gthread tracing completely via a compile-time 
ag when their

parallel program needs to be tested under the native system environment.

Obviously, this macro approach is not an ideal solution. A better approach would be to

instrument the compiler and/or the run-time environment in order to reduce programmer

involvement in the program tracing process. Such an approach has been used successfully

by other systems that had access to these capabilities[TSS94]. Unfortunately, such support

was not available to us. Our methods do illustrate, however, what can be done in a minimal

support environment, thus providing a truer lower bound on a visualization environment

for threads programs.

2.2 Visualization System | POLKA

We developed all the threads visualizations using the Polka animation toolkit[SK93, Sta94].

Polka is an animation design methodology and accompanying implementation that is par-

ticularly well-suited to building software visualizations. Polka is especially appropriate for

developing animations of parallel programs. This is because the Polka model makes it easy

to de�ne animations with concurrent actions occurring in the display, a necessity to properly

visualize parallel programs.

Polka supports a variety of 2-D, color, graphical objects that can be combined, manip-

ulated, and modi�ed by a variety of action primitives. For example, we can create a blue

rectangle and then schedule it to move along a path, to resize, and to change color, all

simultaneously. Similarly, we can make multiple objects change at once.

The toolkit was designed to be easy to learn and use, yet it still provides a very sophis-

ticated set of operations that can be used to build complex animations in relatively little

code. It is built in C++ and runs on top of the X Window System and Motif.

Polka can be used by anyone to build an individual animation for a particular program

or algorithm. In this work we pre-built the animation views and routines, which then are

provided to other users who need not do any Polka coding.

3 Gthreads Graphical Views

A programmer begins a debugging session by using the Gthreads macros and routines to

gather a program trace. The programmer then invokes our visualization program, thread-

view, using the program trace �le as input. At start-up threadview displays the generic

POLKA control panel (top-left thin window in Figure 1) which controls the speed and pro-

vides a single step operation. Next, the threads, function, and history views are displayed.

They are automatically created each time the visualizer is run. Mutex and barrier views are

7



Figure 1: An example threads viewing session utilizing all the di�erent program views.

8



created when needed by the visualizer. Figure 1 shows a viewing session with one example

of each di�erent view. Below, we discuss the particular views and how they work in more

detail.

3.1 The Thread View

For a programmer it is often desirable to see how many threads exist in the program, and

some simple status information such as whether they are active or not at a certain point in

time. The thread view (Figure 2) satis�es this need by listing the threads in the program.

Each rectangle represents one thread, and the rectangles are assigned unique colors to help

di�erentiate the threads.

Figure 2: The Thread View

At a particular execution point, if a thread is ready to carry out instructions or is

running, then its corresponding rectangle is fully colored. If the thread is idle and blocked,

possibly waiting on a mutex or in a barrier synchronization phase, its rectangle is half

colored. When a rectangle turns to black, it means that the thread has terminated but its

address space has not been reclaimed. The disappearance of the rectangle signi�es that the

thread has been detached and its address space has been reclaimed.

This view is used as a programming and debugging aid to remind the programmer about

shared resources, some of which may need to be better utilized and some of which may need

to be better protected from concurrent access. In the case of a deadlock situation or other

synchronization errors, the programmer can �nd and focus on the set of questionable or

strangely behaved threads. This view also acts as a legend for other views in the visualizer

as we shall see later.

9



3.2 The Function View

Beyond simple status information about the threads, it is helpful if a programmer can

determine where the threads are executing at a particular time in the program execution.

Providing a textual line number for the current execution point of a thread might be useful,

but it requires too much e�ort of the viewer to coalesce these values and understand their

signi�cance. An alternative, which is more abstract than a reference to program source

code, is to show a call graph of the program that relates program trace events to the logical

program structure.

The function view (Figure 3) shows the static call structure of a program. Each rectangle

represents a function in the parallel program. Again, unique colors (di�erent than those of

the threads) are used to di�erentiate the functions. In this view, threads are represented by

small circles or disks with color matching that in the thread view. If a disk (thread) moves

along an arrow in the call graph, it is calling the corresponding function. Movement in the

opposite direction signi�es a return from the invoked function. When a thread of control

is executing a particular function, the corresponding disk simply takes a position inside the

rectangle of the appropriate function.

Figure 3: The Function View

Each newly created thread is initially drawn as a tiny point which gradually grows to

its regular size. The new thread also moves from where its parent thread is executing to

the function in which it will begin execution.

Another interesting feature of the function view is that the program call graph is con-

structed dynamically as an execution is traced. The visualizer initially may only know the

start up function, such as main(), and this is the only rectangle shown. As new threads

10



are created and new functions are called, the visualizer learns more about the program,

creates new function rectangles, and adjusts the call graph layout to illustrate this knowl-

edge. We attempt to produce aesthetically pleasing graph layouts that indicate typical

call sequences by making levels in the graph, and by minimizing the edge crossings of the

function invocations.

A side-e�ect of this dynamic behavior is that this view does not show the complete call

structure of the program. Rather, it displays the speci�c call structure for the particular

program execution on which the trace events were generated. The program could have

unvisited functions and di�erent possible calling patterns, but we chose to abstract away

that information to focus on the speci�cs of this particular debugging session.

3.3 The History View

Although the function view depicts the overall state of an execution at any time, it does not

capture the history of functions encountered by the threads during execution. The history

view (Figure 4) was developed to show the execution history of the threads. In this view

each thread occupies one row. Time is encoded along the X-dimension and 
ows to the

right, so threads grow to the right until they terminate. The drop shadow color of each bar

(thread) identi�es the thread by matching its original color in the thread view. The lifetime

of a thread (main part of the thread bar) is divided into segments, each corresponding to a

time period during which the thread executes in a particular function. These segments of

the bar are colored to match the colors used in the function view. A tiny arrow head in a

segment pointing to the right stands for a function invocation. Similarly, a tiny arrow head

pointing to the left indicates a function return.

Figure 4: The History View

Thread creation is denoted by drawing a dotted vertical arrow pointing from the parent

thread to the beginning of the new thread. Thread joining is indicated by a dotted arrow

pointing out from the joining thread to the joined thread.

As time proceeds, the history view automatically scrolls to the right so that the current

point in time is always shown. Viewers can, however, use the Polka scroll buttons in the

lower left portion of the view to move back in time (scroll to the left) to examine previous

points of the computation.

The history view and the function view together can help verify a program execution

11



against the programmer's mental model of the computation. For example, a chain of un-

wanted recursive calls can be easily noticed in the function view. Similarly, a function call

outside of a normal pattern of calls can quickly be spotted in the history view, simply by

matching the patterns on the thread bars.

The three views discussed so far provide information about the thread objects themselves

in a multi-threaded program. For other kinds of objects such as mutexes and barriers, we

have developed separate views.

3.4 The Mutex View

Mutexes are primitive objects for protecting shared resources. Common errors in using

mutexes include circular waits which could lead to deadlock and failure to achieve mutual

exclusion. Knowledge of which of the threads are trying to lock the mutexes and which of

the threads own the mutexes are necessary information for detecting such errors.

As opposed to the previous views, a mutex view is not created automatically at start

up time. Rather, it will be created only if the target parallel program uses a mutex, and it

will be created on a case-by-case basis as each new mutex is utilized.

Figure 5: The Mutex View

A mutex is displayed as a big circle. When a thread is trying to lock the mutex, it

appears as a smaller disk (color coded to the thread view) somewhere around the circle.

When a thread gets the lock, it moves into the circle and remains there until it unlocks the

mutex. Then, it leaves the circle and disappears. Figure 5 shows a mutex with a thread

caught in the middle of a move, and another thread waiting outside to lock the mutex.

Deadlocks are obvious in the mutex views. For example, in a simple case there might

be two mutex views: mutex view 1 shows that thread 1 is holding the mutex and thread 2

is waiting outside; mutex view 2 shows that thread 2 is holding the mutex and thread 1 is

waiting outside | these two threads are deadlocked.

12



3.5 The Barrier View

In threads programs, barriers are relatively di�cult to understand and program. The barrier

view helps programmers to better understand barrier operations, and it illustrates how the

threads cooperate in the synchronization.

Like the mutex views, barrier views are created dynamically on a per barrier basis.

A barrier (Figure 6) is presented as an array of boxes. Threads are represented by small

colored disks that will �ll in the corresponding boxes to designate the check-in and check-out

phases. When a thread �nishes a barrier synchronization phase, it is not removed from the

designated box, however. Rather, it is resized smaller to indicate that the corresponding

synchronization has been performed. Removing the threads disks would create a confusing

display where it would be di�cult to assess the current status of the barrier. When a new

synchronization phase of the barrier begins, a new array of similar boxes is created below

the old one, and the threads start to use the new one.

Figure 6: The Barrier View

Like the thread history view, the barrier view scrolls when necessary to keep the current

barrier con�guration displayed inside the window.

In a particular program that computed minimum spanning trees on graphs, we modi�ed

a parameter and the program subsequently failed to produce the correct result. Using the

barrier view we found that the array of rooms for the barrier had a gap, and the colors

for the threads to the left of the gap seemed to be shifted. This looked like a sequence

number problem, and a little further investigation did reveal that some of the threads were

not using the correct sequence numbers.

13



4 Limitations

The threads views we developed have proven useful for helping to understand and trace

program executions. Nonetheless, our use of the views has exposed certain limitations. In

this section we discuss these limitations, and we describe potential improvements to the

views.

Two important issues which the Gthread visualizations do not adequately address are

scale and interaction. Our views work well and are easily understood when the number of

threads is rather modest, say, less than 40 or 50. On many systems the number of threads

in a program stays well below this threshhold due to operating system and library limi-

tations. However, many systems, particularly distributed threads systems, have programs

with hundreds or thousands of threads. Such programs would require new views to handle

this much bigger scale|Our views still would be useful to show the state of a particular

smaller set of important threads.

This last issue highlights another problem, viewer interaction with the views. It would

be advantageous if the viewer could easily compress/expand the Gthreads depiction of

particular threads, functions, barriers, and mutexes to tailor the program presentation as

desired. This would allow the viewer to focus on information of interest and remove un-

wanted details. Also, the views should provide simple user interface interactions to support

these focusing operations.

Another important limitation of our approach concerns the simple manner that program

event tracing is performed. Since all the threads write their trace events to one particular

�le, inaccuracies in logical event ordering, so-called tachyons[BS93], can easily occur. For

example, a thread can appear to join a second thread before the second thread has properly

terminated.

Any number of solutions to this problem are possible: The events can be written to

separate �les based on process-id (this causes other subtle complications in processing

and visualizing the events later); The event �le can be post-processed to remove logical

inaccuracies[BS93, NMGM95]; A logical time tracing approach can be used[TC93, TSS94].

Perhaps the easiest of these methods is to post-process one trace �le. Even if the logical

time errors are corrected, this approach still has another problem. When the one �le is read

and visualized by threadview, an essentially serial animation results. That is, each event is

animated in order as the �le dictates. One event is processed, it is animated, and then the

next event is processed|The concurrency is e�ectively removed.

Fortunately, we remedy all these tracing and timing problems by using the Gthreads

views in a broader context, a comprehensive framework called PARADE (PARallel Anima-

tion Development Environment) we are developing[Sta95]. PARADE provides the context

for visualizing many di�erent types of concurrent systems and its three primary components

involve

� Gathering tracing information about a program's execution

� Mapping the execution information to appropriate actions in the presentation com-

ponent

14



� Generating the visualizations and animations of the program execution

Key to solving the timing problems discussed above is the middle component, the map-

ping from program events to animations. In PARADE a tool called the Animation Chore-

ographer �lls this role[KS94]. It can take an event log such as a single Gthreads trace �le

produced by our macros or a set of per-thread trace �les, and \re-introduce" the potential

concurrency of the logged program events. The Animation Choreographer analyzes the

trace data and produces a program event graph depicting logical constraints between the

di�erent events. Viewers then choose one of a number of di�erent logical/temporal per-

spectives on the event graph. Finally, the corresponding program animation with all the

Gthreads views is generated to match the selected perspective.

Using the Animation Choreographer, viewers can watch an animation of their program

in which events are shown happening with respect to a global timestamp on each event

(here, tachyons might exist and they would be 
agged as necessary). Alternately, a serial

animation of the program events could be shown, much as it might appear with the simple

threadview program. Finally, the Choreographer could be used to visualize all the poten-

tial concurrency in the program execution. The Gthreads views would then have many

simultaneous actions being displayed.

5 Conclusion

We have created a set of graphical views designed to help programmers better understand

the structure and execution of multi-threaded parallel programs. The views depict thread

state, thread history, function callgraph, barrier and mutex primitives within a program.

The views use color, layout, and familiar graphical notations to help detail the state of the

program execution to the viewer. Our approach minimizes the need for program annotation

by having the thread library automatically generate trace events whenever possible. This is

performed by providing a wrapper for the library primitives using macros. The parameters

to the primitives provide us with the information necessary to generate the views. Finally,

the graphical views we have developed use smooth animation to help viewers track a program

execution. They provide both a gestalt view of the entire computation and details of the

individual operations critical to the success of the computation.

All the code and systems described in this paper are implemented and functional.

The code for the program monitoring and the graphical views is available via anonymous

ftp from ftp.cc.gatech.edu as the �les pub/people/stasko/gthread.KSRtracing.tar.Z

and gthread.Animations.tar.Z. Further information including color images of the views

is also available on the WWW through URL

http://www.cc.gatech.edu/gvu/softviz/parviz/gthread/gthread.html.

Our future plans involve view support for other threads libraries and for on-line threads

visualization support. Improvements to the views and the view library might include new

views (e.g., access/synchronization dependency graph), optimization (e.g., minimizing vi-

sual changes in the function view to preserve context), better interaction (e.g., dynamically

15



choosing from a set of levels of details, collapsing and grouping some items together), and

the issue of scale (e.g., visualizing programs with hundreds or thousands of threads).

6 Acknowledgments

Support for this project has come from the National Science Foundation under grant CCR-

9121607 and Kendall Square Research. Eileen Kraemer has provided help with the graphical

views and the content of this report.

References

[BDGS93] Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sunderam. Visualization

and debugging in a heterogeneous environment. Computer, 26(6):88{95, June

1993.

[BS93] Adam Beguelin and Erik Seligman. Causality-preserving timestamps in dis-

tributed programs. Technical Report CMU-CS-93-167, Carnegie Mellon Uni-

versity, Pittsburgh, PA, June 1993.

[CHK92] Janice E. Cuny, Alfred A. Hough, and Joydip Kundu. Logical time in visu-

alizations produced by parallel programs. In Visualization '92, Boston, MA,

October 1992.

[Cou88] Alva Couch. Graphical representations of program performance on Hyper-

cube message-passing multiprocessors. Technical Report 88-4, Tufts University,

Boston, MA, April 1988.

[DBKF90] Jack Dongarra, Orlie Brewer, James Arthur Kohl, and Samuel Fineberg. A

tool to aid in the design, implementation, and understanding of matrix algo-

rithms for parallel processors. Journal of Parallel and Distributed Computing,

9(2):185{202, June 1990.

[DS87] Jack Dongarra and Danny Sorenson. SCHEDULE: Tools for Developing and

Analyzing Parallel Fortran Programs. In L.H. Jamieson, D.B. Gannon, and

R.J. Douglass, editors, The Characteristics of Parallel Algorithms. The MIT

Press, Cambridge, MA, 1987.

[HE91] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of

parallel programs. IEEE Software, 8(5):29 {39, September 1991.

[IEE90] IEEE. Threads Extension for Portable Operating Systems (P1003.4a), 1990.

[Ken92] Kendall Square Research Corporation, Waltham, MA. KSR C Programming,

February 1992.

[KS93] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An

overview. Journal of Parallel and Distributed Computing, 18(2):105{117, June

1993.

16



[KS94] Eileen Kraemer and John T. Stasko. Toward 
exible control of the temporal

mapping from concurrent program events to animations. In Proceedings of the

8th International Parallel Processing Symposium (IPPS '94), pages 902{908,

Cancun, Mexico, April 1994.

[MR90] Allen D. Malony and Daniel A. Reed. Visualizing parallel computer system per-

formance. In Margaret Simmons, Rebecca Koskela, and Ingrid Bucher, editors,

Parallel Computer Systems: Performance Instrumentation and Visualization.

ACM, New York, 1990.

[Muk91] Bodhisattwa Mukherjee. A portable and recon�gurable threads package. In

Proceedings of Sun User Group Technical Conference, pages 101{112, June

1991.

[NMGM95] Gary J. Nutt, James E. Mankovich, Adam J. Gri�, and Je�rey D. McWhirter.

Extensible parallel program performance visualization. In Proceedings of the

MASCOTS '95 International Workshop on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, pages ??{??, Durham, NC, Jan-

uary 1995.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building application-

speci�c visualizations of parallel programs. Journal of Parallel and Distributed

Computing, 18(2):258{264, June 1993.

[Sta94] John T. Stasko. POLKA Animation Designer's Package. Unpublished Sys-

tem Documentation. Available via anonymous ftp from ftp.cc.gatech.edu as

pub/people/stasko/polka.tar.Z, 1994.

[Sta95] John T. Stasko. The PARADE environment for visualizing parallel program

executions: A progress report. Technical Report GIT-GVU-95/03, Graphics,

Visualization, and Usability Center, Georgia Institute of Technology, Atlanta,

GA, January 1995.

[TC93] Stephen J. Turner and W. Cai. The `logical clocks' approach to the visualiza-

tion of parallel programs. In G. Kotsis and G. Haring, editors, Performance

Measurement and Visualization of Parallel Programs, pages 45{66. Elsevier,

1993.

[TSS94] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Integrating visualiza-

tion support into distributed computing systems. Technical Report GIT-GVU-

94/38, Graphics, Visualization, and Usability Center, Georgia Institute of Tech-

nology, Atlanta, GA, October 1994.

17


