
Applying Dynamic Integration as a Software Infrastructure

for Context-Aware Computing

Gregory D. Abowd & Anind Dey

College of Computing & GVU Center

Georgia Institute of Technology

Atlanta, GA 30332-0280

USA

fabowd,anindg@cc.gatech.edu

Andy M. Wood

School of Computer Science

University of Birmingham

Edgbaston, Birmingham, B15 2TT

UK

amw@cs.bham.ac.uk

ABSTRACT

Much of the software engineering literature examines
techniques and practices that help us to build systems
that we have been building for many years already.
While there is merit in seeking ways to raise the oor
of software engineering practice, we also have an obli-
gation to research software design issues that push the
envelope of existing computing technology. One of the
features of future interactive computing environments
is that they will provide context-aware services that
leverage o� of knowledge of a person's physical state
and surrounding environment. With the proliferation of
network-based computing services that are a character-
istic of an emerging ubiquitous computing society, there
is a real issue with providing a software infrastructure
that will support context-aware services. In this paper,
we examine software engineering work on component in-
tegration and introduce a prototype infrastructure that
provides a dynamic and scalable context-aware comput-
ing environment. We will describe how we have applied
this component infrastructure to build a futuristic per-
sonal information management system involving auto-
matic cooperation between desktop, network and mobile
services.

KEYWORDS

ubiquitous computing, mobile computing, context-
aware computing, software integration, personal infor-
mation management

1 INTRODUCTION

Software engineering research has become a lagging in-
dicator for software development, particularly in the
area of interactive software. This was not always the
case. In the late 60's and early 70's, the seminal work on
abstract data types that lead to object oriented design
and programming appeared at the same time that the

initial graphical user interfaces (GUIs) were being devel-
oped. The natural link between object hierarchies and
widgets in a GUI-building toolkit was discovered long
before GUI environments were commonplace. Contrast
the software engineering research of the 70's with that
in the 90's. The majority of the software engineering
literature examines how to apply tools and techniques
to systems and technology that have been prevalent for
at least 10 years. This is a disturbing trend.

There is, of course, merit in today's dominant mode of
research, but we need to focus some software engineer-
ing research e�ort on more futuristic applications. By
doing so, the software engineering community can again
become a leading indicator for software systems that will
be deployed in the coming ten years. Without this shift
in perspective, the software engineering community is
sending out the wrong message |that our research is
not intended to shape the landscape of future comput-
ing and is therefore of no interest to those who aspire to
invent tomorrow's paradigms of interaction. Software
engineering needs to become once again a leading indi-
cator for the rapid pace of technology change.

Interest in ubiquitous computing has risen over the past
few years [25, 26, 3] and one of the emerging research
themes is context-aware computing [1]. In a comput-
ing environment with universal access to information
anywhere and at any time, the end user will need lever-
age to help tame the deluge of technology. There is a
lot of information surrounding the end user |the user
context| that can be sensed and used to predict the
kinds of information needed and the form in which that
information should be delivered. From a software per-
spective, context-aware computing demands an infras-
tructure to allow intelligent mediation between software
components, allowing them to act together in ways that
might not have been predicted by the original designers
[27].

The software engineering technique that shows much
promise for context-aware computing is dynamic com-
ponent integration. The remainder of this paper will
demonstrate how dynamic integration techniques can
support context-aware computing for future interactive

1



environments.

Overview of paper

In Section 2, we will further outline our particular fo-
cus in the area of ubiquitous computing, context-aware
computing and discuss the application to personal infor-
mation management. In Section 3, we review context-
aware computing and software integration mechanisms.
In Sections 4 and 5, we will describe a generic dynamic
integration infrastructure and show how it was used to
provide the mechanisms for a novel environment for per-
sonal information management, called CyberDesk. We
discuss a future extension of the integration framework
to better support mobility of people and devices in Sec-
tion 6. We conclude in Section 7 with a summary of the
major software engineering contributions our research
has had on context-aware computing.

2 UBIQUITOUS AND CONTEXT-AWARE

COMPUTING

The history of computing is �lled with examples of rad-
ical paradigm shifts in the way humans interact with
and perceive technology. The vision of ubiquitous com-
puting |�rst expressed by Weiser [25] and grounded
in experimental work done at Xerox PARC| holds the
promise of yet another paradigm shift. The de�ning
characteristic of ubiquitous computing is the attempt
to break away from the traditional desktop interaction
paradigm and move computational power into the net-
work and environment that surrounds the user. Rather
than force the user to search out and �nd the computer's
interface, ubiquitous computing suggests that the inter-
face itself can take on the responsibility of locating and
serving the user.

Weiser admits that it is the applications themselves that
make ubiquitous computing a viable research topic for
computer science (and other disciplines)[26]. With that
in mind, our research in ubiquitous computing has been

strongly inuenced by the applications which we have
chosen to explore. One application domain we have in-
vestigated is personal information management. Today,
there is a growing number of personal devices and ap-
plications, on and o� the desktop, that allow us to keep
track of our own personal repository of electronic in-
formation. Currently this information includes contact
information, schedules, e-mail communications, but will
extend to encompass a much greater portion of our ev-
eryday lives.

As users begin to rely more and more on electronic in-
formation, they will expect it to be available to them
in a variety of di�erent situations |while in their of-
�ce, at home, on the road. With the proliferation of
mobile devices, it is possible to have access to personal
information anywhere, but this is currently done at the
expense of having to replicate similar information on a

variety of devices. The promise of reliable, ubiquitous
networking services should relieve the user of the bother
of explicit replication or synchronization of data to the
point where it is no longer a concern where information
is located.

Universally accessible data is only part of the challenge,
however. The relationship between data is important to
the user, and very di�cult to track as it becomes eas-
ier to acquire electronic information. Knowledge of the
user's context |what piece of information they are cur-
rently attending to, where they are located when they
look at some information, the time of day, or the people
around them| can help to predict when relevant ser-
vices might best be presented to a user. This requires
a software infrastructure that can detect contextual in-
formation and then use it to o�er advice to the user. It
is this latter advice-giving feature that is the focus of
this paper.

2.1 A Scenario

We illustrate the kind of exible behavior we are aiming
to support through a simple scenario using a system we
have built, called CyberDesk. Further information on
CyberDesk is provided later in this paper and other pub-
lications [28, 8].1 The following scenario is illustrated
in Figure 1. As seen in the �gure, a user is checking
e-mail, and reads a message from a friend about some
interesting research. The user decides to �nd out more
and highlights the name of the person mentioned in the
message. The interface provides a separate window of
actions that can be acted upon based on the name:

� search for the selected text in the Web-based service
AltaVista;

� search for a phone number and mailing address us-
ing the Web-based service Switchboard; or

� lookup the name in a desktop-based contact man-
ager.

The user wants to contact this researcher, so he checks
to see if the name is in the contact manager �rst. It
isn't, so he selects the Switchboard option and retrieves
the desired information.

We emphasize some important features of this simple
scenario. The services being accessed can reside any-
where |on the user's desktop machine, on the Internet,
or even on a mobile device such as a personal digital
assistant (PDA) that is connected via wireless network
[17]. Also, the user does not need to know what services

1We are limited in this paper to describing only a few possible

scenarios. To aid the reader, we have provided a Web-accessible

location for experiencing more of the behavior of CyberDesk. Go

to http://www.cc.gatech.edu/fce/cyberdesk.



Figure 1: An illustration of a typical scenario using CyberDesk to automatically integrate desktop, network and
mobile data services.

are available, as relevant services are suggested auto-
matically by the CyberDesk infrastructure and made
available to the user based on the current context. The
current context in this scenario is indicated explicitly by
the user based on text that has been highlighted with a
mouse, but we can also have more implicit context such
as a user's position, trigger integrating suggestions.

2.2 Context-awareness and Software Integration

Two issues arise when considering automatic integra-
tion of personal information services, and both have
software engineering rami�cations. First, we have to
provide ways to predict when the integration should be
o�ered to the user. This is the crux of the context-
aware problem in this application domain. In the sce-
nario above, the user simply indicates a piece of infor-
mation in a message and the system then infers how
that information can be used by other available services.
We need to provide a exible context inferencing engine
that can work on many di�erent types of information,
such as strings displayed on a screen as described in our
scenario, position information for a mobile user, current
time, knowledge of people around a given user, and even
knowledge of the physiological state of a user.

A second issue is to provide an infrastructure for in-
tegrating software applications. Software applications
often work on similar information types such as names,
addresses, dates, and locations. Collections of applica-
tions are often designed to take advantage of the poten-
tial for integration via shared information. As an ex-
ample, an electronic mail reader can be enhanced to au-

tomatically recognize Web addresses, allowing a reader
to select a URL to automatically launch a Web browser
on that location. Even more complex and useful inte-
grating behavior is available in a number of commercial
suites of applications (e.g. Microsoft O�ce 97, Lotus
SmartSuite, WordPerfect Suite).

There are some limitations, however, to the current ap-
proaches for providing this integration that impact both
the programmer and the user. From the programmer's
perspective, the integrating behavior between applica-
tions is static. That is, the behavior must be identi�ed
and supported when the applications are built. The
programmer has the impossible task of predicting all of
the possible ways users will want a given application
to work with all other applications. What results is a
limited number of software applications that are made
available in an integration suite.

From the user's perspective, integrating behavior is lim-
ited to the applications that are bound to the particular
suite being used. Further integration is either impossi-
ble to obtain or must be implemented by the user (e.g.,
by cutting and pasting between application windows or
by end-user macro programming). In addition, the in-
tegrating behavior has a strong dependence on the indi-
vidual applications in the suite. If a user would like to
substitute a comparable application for one in the suite
(e.g. use a di�erent contact manager, or word proces-
sor), she does so at the risk of losing all integrating
behavior.

Given these software engineering considerations, our



goal is to provide a more exible framework for in-
tegrating software behavior based on knowledge of a
user's context. We want our solution to work under the
assumption of a networked and heterogeneous operat-
ing environment. We aim to reduce the programming
burden in identifying and de�ning integrating behavior,
while at the same time retaining as much user freedom
in determining how integration is to occur.

3 BACKGROUND

Before we describe our infrastructure for context-aware
software integration, we will provide an overview of
context-aware computing and software integration tech-
niques. This review will help to place our work properly
in the research areas of ubiquitous computing and soft-
ware engineering.

3.1 Context-Aware Computing

We de�ne context-aware computing generally as work
that leads to the automation of a software system based
on knowledge of a user's physical, social, emotional or
informational state. Probably the most successful appli-
cation of context-aware computing has been automated
help systems that use knowledge of a user's informa-
tional state and history of interaction to provide assis-
tance with complex software programs. A good com-
mercial example of this is the Microsoft O�ce Assistant.
The user interface community also has a sub-area of re-
search called adaptive systems, which typically involves
building a model of user behavior that can be codi�ed
and used as a building block in a software system to pro-
vide services such as help or self-adapting menus [21].
Computer vision researchers have used computational
perception techniques in an attempt to match actual
facial expressions with some prescribed expressions in-
dicating the state of the human (e.g., smiling, frowning,
surprised, etc.) [9]. Though this work does not claim
to be a way to predict human emotions, there is a clear
suggestion of how this and related perception research
can improve the quality of contextual information that
can be gathered. Picard's work on a�ective computing
[16] suggests a similar objective, only through the use
bio-electric signals, coupled with theories on emotion
and cognition.

A signi�cant body of work in mobile computing takes
advantage of the most signi�cantly changing context
of a mobile user |location [2, 12, 24, 6]. The ini-
tial ubiquitous computing research at PARC provided
location-aware services for a handheld device called the
PARCTab [24], and resulted in a generalized program-
ming framework for describing location-aware objects
[20]. Using informational context, such as what is shown
on a user's graphical display (as depicted in the scenario
of Section 2.1) has also been the subject of work done at
Apple [5] and Intel [15]. This work is the most closely

related work to our own and we will discuss it further
in the next section on software integration.

3.2 Software Integration

The general topic of software integration is well re-
searched. We will focus on those aspects of integration
that are relevant to the kind of infrastructure we require
for context-aware, self-integrating software.

Our underlying infrastructure allows dynamic integra-
tion of isolated services at run-time. Such media-
tion consists of two basic steps: registration of com-
ponents and handling of events. This provides for
the kind of exible coordination or mediation between
di�erent components. We can compare our integra-
tion infrastructure with some other well-known systems,
such as UNIX pipes, Field [18, 19], Smalltalk-80 MVC
[11], Common Lisp Object System (CLOS) [7]. UNIX
pipes act as mediators that integrate UNIX programs.
They are limited to reading and writing streams of
data, stream outputs can only be input to one stream,
and they use only a single event. Field (and its ex-
tension Forest) integrate UNIX applications that have
events and methods which can be manipulated through
a method interface. Similar to our work, Field uses
centralized mediation and implicit registration, allow-
ing greater runtime exibility. However, it su�ers from
the use of special object components, creating inconsis-
tencies. Smalltalk uses a general event mechanism like
CyberDesk, but it merges relationships between compo-
nents into the components themselves, limiting exibil-
ity. CLOS uses wrappers to access data and methods
within objects, as we do, but it limits the action a com-
ponent can perform to a simple method call and return,
thereby limiting its usefulness. Sullivan and Notkin
[22, 23] have developed a very exible dynamic medi-
ation system. However, their system allows only one-
to-one relationships between components and requires
explicit registration of event-action pairs.

We depend on the use of component software acces-
sible across a network connection, similar to CORBA
(Common Object Request Broker Architecture) [14],
Microsoft's Common Object Model (COM) and Object
Linking and Embedding (OLE) [13]. OpenStep [4] and
others. A main distinction in our work is the require-
ment for a dynamic registry that records the presence
of interacting components. At a higher semantic level,
the agent research community has also spawned e�orts
to provide for integration of large-scale software systems
[10]. Such e�orts have been sponsored by the DARPA
Knowledge Sharing E�ort and have produced speci�ca-
tion languages such as the Knowledge Query and Ma-
nipulation Language (KQML) and the Knowledge In-
terchange Format (KIF).

There are two systems in particular that provide func-



tionality in the domain of personal informationmanage-
ment similar to the scenario described in Section 2.1.
They are Intel's Selection Recognition Agent [15] and
Apple Research Lab's Data Detectors [5].

Intel's Selection Recognition Agent uses a �xed data
type-action pair, allowing for only a static set of actions
for each data type recognized. The actions performed by
the agent are limited to launching an application. When
a user selects data in an application, the agent attempts
to convert the data to a particular type, and displays
an icon representative of that type (e.g. a phone icon
for a phone number). The user can view the available
option by right-clicking on the icon with a mouse. For
applications that do not \reveal" the data selected to
the agent, the user must copy the selected data to an
application that will reveal it.

Apple Data Detectors is another component architec-
ture that supports automatic integration of tools. It
works at the operating system level, using the selection
mechanism and Apple Events that most Apple appli-
cations support. It allows the selection of a large area
of text and recognizes all user-registered data types in
that selection. Users view suggested actions in a pop-up
menu by pressing a modi�er key and the mouse button.
It supports an arbitrary number of actions for each data
type. When a data type is chosen, a service can collect
related information and use it, but this collected infor-
mation is not made available to other services.

The main limitations of the Intel and Apple work for
context-aware computing is the inability to accept a
very rich set of context input. These systems report
support for only displayed information. We aim to sup-
port other forms of context such as time and position.
Extensions to our initial infrastructure to support chain-
ing and combining also provide much more powerful
context-inferencing capabilities, as we will discuss.

4 APPLYING AN INTEGRATION FRAME-

WORK

In this section, we describe a Java-based implementa-
tion of the dynamic integration infrastructure and its
application for a futuristic personal information man-
agement system as described by the scenario in Sec-
tion 2.1.

The starting point of our Java implementation was an
infrastructure called CAMEO, a C++ toolkit developed
by Andy Wood [29].2 The CAMEO infrastracture de-
�nes a component-based framework in which individual
components can observe the activities of other compo-
nents and manipulate their interfaces. A centralized
service allows for dynamic registration of components

2For further information on CAMEO, see http://www.cs-

.bham.ac.uk/ amw/cameo.

and runtime support for querying the interfaces of reg-
istered components. Observation and manipulation of
other components and the dynamic registry services of
CAMEO were su�cient motivation for us to port to
Java and take advantage of simpler cross-platform net-
work access to a multitude of Web-based, mobile and
desktop information services.

4.1 The Architecture of CyberDesk

The CyberDesk system consists of �ve main compo-
nents: a Registry, information services, type convert-
ers, an Integrator, and a user interface. The Registry
maintains a list of components in the system and the
interfaces that each supports. The information services
are the tools and functions the user ultimately wants to
use, such as an e-mail reader, a contact manager, or a
Web-based search engine. These services register their
interfaces with the Registry and announce events that
provide data/information to the rest of the system (e.g.,
the name selected in the e-mailmessage in the scenario).
The type converters accept announced data from the
system and convert it recursively to other forms of data
that may be useful (e.g. a string being converted to a
URL). The Integrator uses the Registry to automati-
cally �nd matches between user data and the services
that can use the data, a task that would normally be
performed by the system designer. The matched ser-
vices are then displayed to the user through the user
interface for integration.

The run-time relationship between the components (not
including the Registry) is depicted in Figure 2. The
components are described in greater detail below.

4.2 Registry

The Registry keeps a directory of all the other compo-
nents in the system, what interfaces they can support,
and what data they can provide, if any. As each compo-
nent joins the CyberDesk system, it provides this infor-
mation to the Registry. Some components, upon regis-
tering, tell the Registry that they are interested in other
components. Hereafter, whenever a component joins or
leaves the system, the Registry noti�es these interested
components. The Registry also provides both a white
pages and yellow pages service. When queried, the Reg-
istry provides information (reference and interfaces) on
individual components. It can also provide a list of com-
ponents that support a particular interface.

4.3 Services

Services are end-user function calls that perform actions
on provided data. Services can be stand-alone or part of
a larger application. Examples of stand-alone services
are network-based Web CGI scripts such as �nding a
phone number and address using Switchboard or search-



Figure 2: The run-time architecture of CyberDesk. Arrows indicate the ow of information and control in the system.

ing for some text in AltaVista. Examples of services in
larger applications are creating an entry or searching for
a name in a contact manager, or loading a schedule in
a day planner.

Service wrappers are used to integrate existing services
into CyberDesk. These wrappers adapt the interfaces of
the existing services to conformwith the CyberDesk reg-
istration and communication requirements. They make
the functionality of the services accessible to other com-
ponents, and provide methods for communicating with
other components and registering their interfaces with
the Registry.

Services not only provide functionality to the user, but
they can also provide data to the system, as seen in the
simple scenario. When users select data with a mouse
in an application, that data is observed by interested
components (a subsect of the type converters and the
Integrator described below). The author of the service
wrapper determines what information and functionality
is made available to the CyberDesk system.

This announced data is the contextual information, as
its origin is some user activity, such as selecting text
with the mouse.

4.4 Type Converters

Type converters are components that take data in the
system and attempt to convert it to other forms of data.
They use simple techniques to provide complex and
intelligent-like behaviors to the system. The example in

the scenario showed converting from a string to a name.
Data in the system can come from other actions than
selection with a mouse. For example, position services
provide location information such as coordinates within
a space. Type converters can be used to convert these
coordinates to a room within a building. This allows
the user to see services that are only available within
a particular room. Type converters create additional
data types to match services against (e.g. a name was
converted from a string in the scenario).

The type converters provide a separable context-
inferencing engine with arbitrary power. As the con-
version abilities of the converters improves, the ability
of the system to make relevant service suggestions also
improves. Therefore, the apparent intelligence of Cy-
berDesk is also contained within the type converters.
Since the type converters are represented as a collection
of Java classes, it is a simple matter to boost the overall
power of this context inference engine without impact-
ing any of the functionality of the rest of the system.

As mentioned in the section on the Registry, some com-
ponents are interested in the addition and removal of
other components. Type converters are examples of
this. Type converters monitor which services are added
and removed from the system, so they can determine
which components can provide data, and observe those
components.



4.5 Integrator

The Integrator also observes components that can pro-
vide data. It uses this information to �nd services that
can act on the data. For example, when the user se-
lected a name in the e-mail message, both a string and
a name (via a type converter) were made available to
the system. The Integrator took that data and found
services that could act on both strings and names.

When components register or remove themselves from
the Registry, the Integrator is noti�ed. The Integrator
uses this information to update its list of components to
observe data from and to update its list of components
that can act on various types of data. For example,
when the Switchboard service is added to CyberDesk,
it registers that it can perform a function on name infor-
mation. The Registry noti�es all components interested
in the addition and removal of components: type con-
verters and the Integrator. The Integrator contacts the
Registry to determine the kind of interface the Switch-
board service supports and �nds out that it can act on
name data. When name data enters the system, the In-
tegrator makes the Switchboard service available to the
user.

4.6 User Interface

When the Integrator �nds matching services for the data
it has observed, it makes these services available to the
user. We have experimented with creating buttons on a
separate window to display the suggested services to the
user, as shown in Figure 1. Each button is associated
with a service and the data the service can act on. When
a user clicks on a button, the service is executed with
this data.

The user interface, like the other components, is com-
pletely interchangeable. If the provided user interface
does not meet with the user's approval, it can be easily
replaced by another user interface that better informs
the user of the connection between his current context
and suggestions for future actions based on that context.

4.7 Scaling up CyberDesk

These components make up the CyberDesk framework,
supporting the automatic, context-aware integration of
software applications. We have tested out the scalabil-
ity of CyberDesk by adding more and more services and
context types. Standard desktop applications currently
included in CyberDesk prototype include two e-mail
browsers, a calendar, a scheduler, a contact manager,
and a notepad. Other services available in CyberDesk
include over 70 Web-based services, a recognition sys-
tem, and a positioning service. CyberDesk currently
uses 10 di�erent data types (and associated type con-
verters): strings, dates, times, phone numbers, names,

e-mail addresses, mailing addresses, rooms, position co-
ordinates, and food.

For ease of experimentation, the initial CyberDesk pro-
totype ran within the environment of a Web browser
and we soon realized a problem with scale. Each service
supported by CyberDesk is presented to the system as
a Java applet. Every service is available to the system
at all times, meaning that a potentially large number
of applets would be resident in the browser's Java vir-
tual machine. Current browsers are rather limited in
the number of applets that can reside concurrently. To
alleviate this bottleneck, we have reimplemented Cy-
berDesk independent of the browser environment.

5 EXTENSIONS TO CYBERDESK

The initial CyberDesk framework described above is
quite adequate for experimenting with context-aware
personal information management. It is also somewhat
similar in functionality with the Intel and Apple work
described in Section 3. In this section, we describe a
number of extensions to the initial framework.

5.1 Chaining Integration Suggestions

A shortcoming with the initial system is that all con-
text must be directly derivable from observed context
information explicitly generated by the user. In order
to get to services related to other data types, the user
has to explicitly work with those data types. For exam-
ple, a user selects a name in the contact manager and
would like to send an e-mail to this person, but does
not have the person's e-mail address. With the initial
system, the user must select the name, choose a service
that looks up an e-mail address for a given name, enter
that e-mail address into the CyberDesk system (add it
to the contact manager, for example), and then choose
a service that allows him to send an e-mail message us-
ing that e-mail address. This is more complex than it
needs to be.

A simple extension, chaining, decreases the level of com-
plexity necessary to perform such actions. Chaining is
the process of generating additional context for the pur-
pose of increasing integrating behavior. Many services
take one type of data and return another form of data
through a graphical interface, such as a Web browser.
Examples of these services are e-mail address lookups,
phone number lookups, and mailing address lookups.
By making simple modi�cations to the service wrap-
pers, services can be made to behave like type convert-
ers, taking one form of context and returning another.
The modi�cations to the CyberDesk system included
parsing the data encoded in the graphical interface to
obtain the new data and supplementing the registra-
tion information of services to be more like that of type
converters. Now services can suggest actions directly



Figure 3: An example of the chaining extension to CyberDesk.

related to the user's context and actions indirectly re-
lated to the user's context, reducing the e�ort required
by the user to �nd these services.

As an example, assume a user is reading an appointment
in her scheduler and selects the name of the person she
is supposed to be meeting (see Figure 3. As an expe-
rienced user, she expects to be presented with a list of
all possible services that can use a name: search for a
phone number, mailing address, look up in the contact
manager, search name on the Web, etc. Chaining now
adds powerful suggestions. The WhoWhere Web ser-
vice takes a name as input and returns a Web browser
showing a list of possible e-mail addresses corresponding
to that name. By making the assumption that the �rst
e-mail address returned in the list is the correct one,
we can now use this service to convert the name to an
e-mail address. The service now creates related e-mail
address data, and the user is supplied with all possible
suggestions for a string, a name, and an e-mail address.

5.2 Combining Context Data

Even with chaining, the system is still limited to ser-
vices that can use only one context data type at a time.
We can combine the data types to enable the use of
services acting on more complex context information.
When newly converted data is observed, the combining
ability takes the newly converted data and adds it to
the original data creating a more complex data object.
This new data triggers more powerful actions. Using
the previous example of a user reading an appointment
in her scheduler, the user selects a name, and a chain-
ing service like Four11 is used to obtain a mailing ad-
dress for this name. Using combining, a data object
containing both the name and the mailing address may
now be used as input to a phone number lookup service
like Switchboard. Switchboard can �nd phone numbers

when given simply a name as input, but it can perform
a more accurate search when it is provided with both a
name and a mailing address.

Most services will perform better when provided with
pertinent, additional context to work with. CyberDesk
determines how to bind data together based on the data
it currently has (the sum total of the current user con-
text) and on the services available. It will o�er a sug-
gestion to use Switchboard with just a name as input
when only name information is available, but will sug-
gest Switchboard with a name and a mailing address if
both pieces of information are available.

In a more complete example of combining, the user se-
lects the name of a person she is meeting tomorrow.
Immediately, she is o�ered suggestions of actions that
she can perform with the selected string and name. As
the chaining applications return their data, this sug-
gested list of actions is augmented with actions that can

use an e-mail address (via WhoWhere), phone numbers
and mailing addresses (via Switchboard) and URLs (via
AltaVista). At the same time, the Integrator is dynam-
ically binding these individual pieces of data for services
that bene�t frommultiple data inputs. The user chooses
to create a new entry in the contact manager. This re-
sults in a rich entry, containing the original name she
selected, an e-mail address, a URL, a phone number,
and a mailing address.

6 FUTURE WORK FOR MOBILITY

Chaining and combining are two extensions to Cy-
berDesk that arose out of a need to provide better
context-aware services. Simple extensions of the dy-
namic integration mechanism allowed for these im-
proved services. We now want to suggest yet another
application of the CyberDesk infrastructure that again



shows the merits of the dynamic registration service.
The following scenario has not yet been completed in
our lab, but it will be soon, and its descriptions helps
to show how the software engineering considerations of
our framework help to feed di�erent context-aware ap-
plications.

The Intelligent Mobile Display

A possible negative side-e�ect of CyberDesk is sugges-
tion overload. If enough services are loaded in the Cy-
berDesk system, the user could be overwhelmed with
the number of integrating suggestions made at any one
time. A further extension to CyberDesk can reduce the
number of suggestions made by predicting only the most
relevant suggestions. The Registry is dynamic, allowing
components to be added and removed at any time. The
user's context can aid in the removal of services that
are not relevant at the current time and add compo-
nents whose services should be active given the current
context.

We are developing a mobile application that takes ad-
vantage of this extension. A sample scenario follows.
At noon, a user enters his kitchen and walks up to a
mobile computing tablet hanging on his refrigerator. A
recognition system determine the identity of the user
and his location in front of the refrigerator. The tablet
displays a list of suggestions to the user: show a list of
items in the refrigerator, search for a recipe that can
be made with the items in the refrigerator, or display
the latest family pictures. The user picks up the dis-
play and moves into the living room and sits on the
couch. The positioning system recognizes that the user
and tablet have moved into the living room and the
system o�ers the following list of suggestions: view to-
day's news, read personal e-mail messages, or browse
an electronic journal. A little later, a business part-
ner drops by and the user moves to his o�ce with his
partner. The system recognizes the partner and de-
termines the current location of the display and user.
The display now suggests looking up the partner's con-
tact information, viewing business-related newsgroups,
viewing notes from the last meeting attended by both
the user and the partner.

As can be seen in this scenario, the suggestions o�ered
by the system are tailored to the current location and
identi�cation of the people using it. The services sug-
gested to the user are limited by the context of the user
and his surrounding environment, thus reducing the po-
tential problem of suggestion overload.

7 CONCLUSIONS

In this paper, we have demonstrated the value of soft-
ware engineering research focussed on applications of
future interactive technology. The CyberDesk system is
a context-aware framework that provides a novel inter-

face to personal information management, blurring the
distinction between desktop, network and mobile ser-
vices. CyberDesk's extensible context-inferencing layer
provides a new way to leverage the knowledge of user
context into more automated and personalized services.
More importantly, the infrastructure used to create Cy-
berDesk is grounded in software engineering techniques
for dynamic, component-based integration. While none
of the components of the CyberDesk infrastructure is in
itself novel, the combination into a extensible context-
aware integration framework is a contribution. Some of
the more important features of this infrastructure are:

� Recursive context-inferencing engine based on type
converters. This aspect of the framework provides
the apparent intelligence of the system. Since type
converters are simple Java classes, they can be
added or modi�ed to increase the predictive power
of the overall system. The simple insight that ser-
vices can also provide a type conversion interface
also opened up the context-inferencing engine to
arbitrary conversions that can be found anywhere
on the Internet.

� Dynamic mediation between user context and ser-
vice invocation. The Integrator in CyberDesk al-
lows the run-time observation of user context to
trigger relevant information services automatically
to the user. This relieves the designer of a par-
ticular service of the need to predict integrating
behavior at design time. It also allows the user
to substitute services within the CyberDesk frame-
work. These are two of the main objectives we had
for improving upon existing commercial integration
suites.

ACKNOWLEDGEMENTS

Anind Dey is supported by Motorola Corporation
through the University Partnerships in Research (UPR)
Program, sponsored by Dr. Ron Borgstahl. The au-
thors would like to thank the members of the Fu-
ture Computing Environments Group and the numerous
other undergraduate and graduate students at Georgia
Tech who have provided much inspiration and support
in the development of the initial CyberDesk prototype
and have o�ered us a lot of evidence for the scalability
of the infrastructure.

REFERENCES

[1] G. D. Abowd. Ubiquitous computing: Research themes

and open issues from an applications perspective. Tech-

nical Report GIT-GVU 96-24, GVU Center, Georgia

Institute of Technology, October 1996.

[2] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long,

R. Kooper, and M. Pinkerton. Cyberguide: A mobile



context-aware tour guide. ACM Wireless Networks, 3,
1997. To appear.

[3] G. D. Abowd and B. Schilit. Ubiquitous-computing:

The impact on future interaction paradigms and hci
research. CHI'97 workshop, March 1997. Materials for

the workshop are available via http://www.cc.gatech-

.edu/fac/Gregory.Abowd/ubi-workshop/.

[4] Apple Enterprise Software. Topics in openstep pro-

gramming. Available at http:www.next.com/Pubs-

/Documents/OPENSTEP/ProgrammingTopics/,
1997.

[5] Apple Research Laboratories. Apple data detectors

homepage. Available at http://www.research.apple-

.com/research/tech/AppleDataDetectors/, 1997.

[6] A. Asthana, M. Cravatts, and P. Krzyzanouski. An

indoor wireless system for personalized shopping assis-

tance. In L.-F. Cabrera and M. Sattyanarayanan, edi-
tors, Workshop on Mobile Computing Systems and Ap-

plications, pages 69{74. IEEE Computer Society Press,

December 1994.

[7] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E.

Keene, G. Kiczales, and D. A. Moon. Common lisp

object system speci�cation x3j13. In SIGPLAN Notices
23 (special issue), September 1988.

[8] A. Dey, G. D. Abowd, and A. Wood. Cyberdesk: A

framework for providing self-integrating context-aware
services. In Proceedings of the 1998 Intelligent User

Interfaces Conference | IUI'98, 1998. To appear.

[9] I. Essa and A. Pentland. Facial expression recognition

using a dynamic model and motion energy. In Pro-

ceedings of the International Conference on Computer

Vision, pages 360{367. IEEE Computer Society, Cam-

bridge, MA, 1995.

[10] T. Finin, R. Fritzson, and D. McKay. A language and

protocol to support intelligent agent interoperability. In

Proceedings of the CE & CALS Washington'92 Confer-

ence, 1992.

[11] G. E. Krasner and S. T. Pope. A cookbook for us-

ing the model-view-controler user interface paradigm in

smalltalk-80. Journal of Object-Oriented Programming,

1(3):26{49, August 1988.

[12] A. C. Long, Jr., S. Narayanaswamy, A. Burstein,

R. Han, K. Lutz, B. Richards, S. Sheng, R. W. Broder-
sen, and J. Rabaey. A prototype user interface for a

mobile multimedia terminal. In Proceedings of the 1995

conference on Human Factors in Computing Systems|

CHI'95, 1995. Interactive experience demonstration.

[13] Microsoft Corporation. Ole development homepage.

Available at http://www.microsoft.com/oledev, 1997.

[14] OMG. The Common Object Request Broker: Archi-

tecture and Speci�cation V2.0. Object Management

Group, Inc., formal/97-02-25 edition, July 1996.

[15] M. Pandit and S. Kalbag. The selection recognition
agent: Instant access to relevant information and op-

erations. In Proceedings of Intelligent User Interfaces

'97. ACM Press, 1997.

[16] R. Picard. A�ective computing. Technical Re-
port 321, MIT Media Lab, Perceptual Comput-

ing, November 1995. Available as MIT Media
Lab Perceptual Computing Techreport # 362 from

http://vismod.www.media.mit.edu/vismod/.

[17] M. Pinkerton. Ubiquitous computing: Extending ac-

cess to mobile data. Technical Report GIT-GVU-97-

09, GVU Center, Georgia Institute of Technology, June
1997. Master's thesis.

[18] S. P. Reiss. Integration mechanisms in the FIELD en-
vironment. Technical Report CS-88-18, Brown Univer-

sity, October 1988.

[19] S. P. Reiss. Connecting tools using message passing in

the FIELD environment. IEEE Software, 7(4):57{66,

July 1990.

[20] W. N. Schilit. System architecture for context-aware

mobile computing. PhD thesis, Columbia University,
1995.

[21] M. Schneider-Hufschmidt, T. K�uhme, and U. Mali-

nowski, editors. Adaptive User Interfaces: Principles

and Practice. North-Holland, 1993.

[22] K. Sullivan and D. Notkin. Reconciling environment

integration and component independence. In Proceed-

ings of SIGSOFT 90: Fourth Symposium on Software

Development Environments. ACM Press, 1990.

[23] K. J. Sullivan. Mediators: Easing the design and evo-

lution of integrated systems. PhD thesis, University of

Washington, 1994.

[24] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The

active badge location system. ACM Transactions on

Information Systems, 10(1):91{102, January 1992.

[25] M. Weiser. The computer of the 21st century. Scienti�c

American, 265(3):66{75, September 1991.

[26] M. Weiser. Some computer science issues in ubiquitous

computing. Communications of the ACM, 36(7):75{84,

July 1993.

[27] G. Wiederhold. Mediators in the architecture of fu-

ture information systems. IEEE Computer, pages 38{
49, March 1992.

[28] A. Wood, A. Dey, and G. D. Abowd. Cyberdesk: Auto-

mated integration of desktop and network services. In

Proceedings of the 1997 conference on Human Factors

in Computing Systems | CHI'97, pages 552{553, 1997.

Technical note.

[29] A. M. Wood. CAMEO: Supporting observable APIs.
Position paper for the WWW'5 Programming the Web

Workshop, May 1996.


