
The Design and Implementation of the Mastermind Toolkit

R. E. Kurt Stirewalt

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

E-mail: kurt@cc.gatech.edu

Technical Report GIT-GVU-97-23

December 1996

1 Introduction

The Mastermind project[5, 7, 3] is concerned with the design, integration, and automatic gen-

eration of interactive systems from declarative models. One model describes the tasks a user will

perform as a protocol of end user actions and their a�ect on other aspects of the application.

The Mastermind Dialogue Language (MDL)[6] is a declarative notation for specifying user tasks.

The Mastermind Toolkit (MMTK) is a run-time infrastructure and collection of reusable C++

components which can be instantiated and aggregated to implement MDL[6] speci�cations. Code

generators implement an MDL expression E by aggregating MMTK components (representing the

various operators within E) into a class and connecting these components according to the syntac-

tic structure of E . This approach distributes the control policy of an MDL operator over many

independent components, which means components must implement orderings by issuing control

commands, announcing activity, and observing the state of connected components. We designed

these components around a model of machine execution in which each component is independent

and may message other components without waiting for them to return. From the code generator's

standpoint, MMTK components are concurrent and need only be aggregated and connected in or-

der to implement an MDL behavior expression. The design complexity in MMTK centers around

making components compose in this liberal fashion.

2 Syntax of Component Composition

By design, MMTK supports a simple model of composition. Components compose by aggregating

them into a tree. We devised a notation called MTREE to express the syntax of an MMTK com-

ponent tree. MTREE names a component that implements the functionality of an MDL control

Table 1: MTREE component implementations of MDL operators.

MDL Operator Mealy Machine Mdl Operator Mealy Machine

j alt [> dis

$ excl 4 int

e?x , e!x leaf � loop

opt
opt k, jjj par

�, >> seq ceiling

operator (as shown in Table 1). Note that there is no component implementing the stop process

or the hide operator, input and output communications are both implemented by the same com-

ponent (leaf), and k and jjj are both implemented by the same component (par). Instances of these

components are connected using the binary operator � � and the unary operator �. The in

these operators will contain one of the names in Table 1. So, for example, �seq� is a binary compo-

nent and loop� is a unary component. A simple syntactic transformation maps an arbitrary MDL

expression into an MTREE expression.

For example, the MDL expression: (e?x � stop) >> ((f ?y � stop) j (g?z � stop)) corresponds to

the following MTREE expression:

ceiling� (leaf � seq� (leaf � alt� leaf))

We call instances of MTREE components occurrences and use middle-of-the-alphabet letters like m

and n to represent them in formal arguments. The above MTREE expression, for example, has three

occurrences of the leaf component, and one occurrence each of the ceiling, seq, and alt components.

The reader should observe three things about this mapping:

1. the stop process maps to nothing because MDL expressions denote processes which announce

completion,

2. parentheses are retained under the mapping, and

3. the MTREE representation applies the unary operator ceiling� to the image of the MDL

expression.

Components communicate signaling information to subordinates and parents in a tree hierarchy.

This means that all the components that implement MDL control operators will expect to be con-

nected to a parent in the tree hierarchy. The special ceiling component is used to top a component

tree so that there are no unresolved communications.

3 Semantics of Component Composition

For an MTREE component tree to implement an MDL behavior expression, components must inter-

pret ordering properties as a protocol of inter-component commands. Examples of these commands

include sending a message to a subordinate component to accept activity, sending a message a sub-

ordinate component to no longer accept activity, and sending a message to a parent component to

2

announce activity. To take an example, consider a component A implementing the >> operator,

whose left subcomponent B implements an input communication and a whose right subcomponent

C implements the j operator. When A is instructed (by its parent component) to accept user ac-

tivity, it must interpret this command in a way consistent with its ordering. Since the intent of

>> is to sequentially order two processes, A instructs B to accept activity but does not instruct

C to do anything yet. Now if user activity causes the input communication associated with B to

�re, then B must announce activity to A. At this point, A will propagate this announcement to its

parent. When B announces completion, A will instruct C to accept activity. Since C implements an

ordering, it will forward this command to subordinates in a way that is consistent with its ordering

semantics. Speci�cally, it will instruct both of its children to accept activity and then, when one

announces activity, C will instruct the other to forbid activity. Components maintain internal state

which manages these coordinating messages. The internal state changes in response to a signal

which communicates a change of status from one component to another. Finally, components often

react to signals by issuing their own signals to other components. To reason about the correctness

of these components, we use a formal model which captures this type of communication.

3.1 Mealy Machines

Mealy machines[4] are �nite automata with output. Formally, a Mealy machine M is a six-tuple

(Q ;�;�; �; �; q0) where Q is a set of states, � is a set of input symbols, � is a set of output symbols,

� : Q � � ! Q is a state transition function, � : Q � � ! � is a transition output function, and

q0 2 Q is an initial state of M . A Mealy machine in state s reacts to an input symbol e by:

1. transitioning into state �(s ; e), and

2. issuing an output symbol �(s ; e)

all in one step. MMTK components can be modeled using Mealy machines because the components

maintain a �nite state, and they communicate with other components using a �xed alphabet of

signals.

Mealy machines representing MMTK components di�er on the set Q of states and the state and

output transition functions � and �. We denote the speci�c component to which these di�ering

entities belong by subscripts. So, for example, the set of states that make up the Mealy machine

associated with the alt component is denoted Qalt, the state transition function is denoted �alt, and

the output transition function is denoted �
alt
. Moreover, as we will see in the next section, the input

and output alphabets � and � di�er based on the arity of a component (ceiling, nullary, unary, or

binary), and so we represent these distinctions by �
�1, �0, �1, and �2; and �

�1, �0, �1, and �2

respectively.

The next task is to de�ne the meaning of �x� for all binary components x and y� for all unary

components y . For this, we need to adopt a policy for Mealy machine connectivity. As we will see,

this policy a�ects the design of � and �. The semantic de�nition of each component in terms of a

Mealy machine is given in Figure 2.

3

Table 2: Mealy Machine semantics of MTREE components.

Component Mealy Machine

M�alt� == (Qalt;�2;�2; �alt; �alt
; notready)

M�ceiling� == (Qceiling ;��1;��1; �ceiling ; �ceiling
; notready)

M�dis� == (Qdis;�2;�2; �dis; �dis
; notready)

M�excl� == (Qexcl;�2;�2; �excl; �excl
; notready)

M�int� == (Qint;�2;�2; �int; �int
; notready)

M�loop� == (Qloop;�1;�1; �loop; �loop
; notready)

M�leaf� == (Qleaf ;�0;�0; �leaf ; �leaf
; notready)

M�opt� == (Qopt;�1;�1; �opt; �opt
; notready)

M�par� == (Qpar;�2;�2; �par; �par
; notready)

M�seq� == (Qseq;�2;�2; �seq; �seq
; notready)

3.2 Mealy Machine Connectivity

MTREE components are connected together in a tree topology. Connectors are attributes of MMTK

components and represent a communication path between a component and one of its neighbors

in the tree topology. There are three categories of connectors: p (for parent), l (for left child),

and r (for right child). Binary components, contain all three categories of connector; whereas

unary components contain only p and l , nullary components contain only p, and the special ceiling

component contains only l . Given an occurrence of a component, the connector can be selected

by name using the selection operator '.'. That is, if x is an occurrence of the alt component, then

x :p denotes the parent connector, x :l the left child connector, and x :r the right child connector.

Components are connected according to their relative location in the tree. Connection is speci�ed

as the uni�cation of connectors. For example, if x and y are components in the tree and y is the

left child of x , then x :l = y :p is the uni�cation of connectors that expresses this connection.

The meaning of an MTREE expression like:

C�E1 �m � E2� == (m:l = root(E1):p) ^ (m:r = root(E2):p) ^ C�E1� ^ C�E2�

leaf � alt� seq is the uni�cation of connectors among the components. That is, the p connector

of the leaf component is connected to the l connector of the alt component, the p connector of the

seq component is connected to the r connector of the alt component, and the p

MTREE components communicate by issuing signals over connectors. A connector is a directed,

point-to-point communication path that maps output symbols of one machine, called the source,

to input symbols of another machine, called the target. These signals communicate the control

commands of one component to another. When a component m is issued one of these signals, it

changes state and may, in turn, issue a signal to another component. The behavior of an entire

component tree can, therefore, be expressed in terms of the behavior of individual components and

a mapping of input and output symbols to connected Mealy machine communication.

4

3.3 Control Model

The global state of an interactive system can be thought of as a sequence of reactive (or equilibrium)

states. When in these states, the system awaits a perturbing signal from the user or the application

functionality. these perturbations cause a
urry of activity among the components. During this

urry the system will not be in an equilibrium state, but rather, will be in a series of transient

states. Eventually the system settles into another equilibrium state (usually di�erent from s) and

awaits the next perturbing signal. Components in our framework obey a synchrony hypothesis[2],

which asserts that no external perturbations occur during these transient
urries of internal signals.

The distinction between equilibrium and transient states percolates down to the level of Mealy

machines. In fact, the states of each Mealy machine may be strictly partitioned into two sets:

Equilibrium and Transient .

4 Detailed Machine Design

We now describe the equilibrium states in each machine. There are six general categories of state:

notready the machine has either completed or has not been enabled,

active the machine (or one of its subordinates) has observed user activity.

committed the machine has not witnessed activity but is able to witness activity.

completable the machine has witnessed activity, and may complete on its own, or it may be

completed implicitly by the activity of other machines.

interrupted the machine has been interrupted.

skippable the machine has not witnessed activity but may be completed implicitly by the activity

of other machines.

We use these general categories for initially designing the detailed �nite control of our Mealy ma-

chines. Actually describing this detailed control requires another notation.

4.1 Alt

The alt machine implements the j ordering. In the MTREE expression E1 � alt � E2, the Mealy-

machine M�alt� must issue signals to the MTREEs E1 and E2 so that:

� The user will be presented with a choice, and

� Once a choice is observed, the other choice is no longer available.

5

Figure 1: State topology for the alt machine

To implement this, Qalt contains 110 states, of which the following 9 are equilibrium states:

LeftActivealt == flactive; lpassableg

RightActivealt == fractive; rpassableg

Choicealt == flskip rskip; lcom rskip; lskip rcom; lcom rcomg

Qalt � fnotreadyg

[Choicealt

[LeftActivealt

[RightActivealt

The set LeftActivealt describes those states that remember activity in the left child, RightActivealt

describes those states that remember activity in the right child, and Choicealt remembers describes

those states that present the user with a choice between the left and right children.

4.2 Ceiling

The ceiling machine is used to top an MTREE so that parent channels will be resolved. In the

MTREE expression ceiling�E , the Mealy-machineM�ceiling� must issue signals to the MTREE's E

so that E will be enabled. The ceiling machine has 20 states, of which the following are equilibrium

states:

Qceiling � fnotready ; ready ; active; completableg

These states merely record the abstract status of the underlying MTREE.

6

Figure 2: State topology for the ceiling machine

Figure 3: State topology for the dis machine

4.3 Dis

The dis machine implements the [> ordering. In the MTREE expression E1 � dis� E2, the Mealy-

machine M�dis� must issue signals to the MTREEs E1 and E2 so that:

1. The user may interact with and complete E1,

2. At any time the user may interact with E2, and

3. Any interaction with E2 disables any further action with E1.

This machine contains 153 states, of which the following are Equilibrium states:

Normaldis == flact rcom; lact rskip; lcom rcom; lcom rskip; lpas rcom; lpas rskip; lskip rcom; lskip rskipg

Disableddis == fractive; rpassableg

Qdis � fnotreadyg

[Normaldis

[Disableddis

Those states in the Normal set represent the enabled activity; whereas those in the Disabled set

represent activity once the normal activity has been disabled.

7

Figure 4: State topology for the excl machine

4.4 Excl

The excl machine implements the mutual disable ordering ($). In the MTREE expression E1 �

excl� E2, the Mealy-machineM�excl� must issue signals to the MTREEs E1 and E2 so that:

1. The user always has a choice between performing E1 or E2,

2. If either E1 or E2 is worked to completion, the whole task will be completed.

This machine contains 204 states, of which the following are Equilibrium states:

Left Activeexcl == flact rcom; lact rskip; lpas rcom; lpas rskipg

Right Activeexcl == flcom ract ; lcom rpas ; lskip ract ; lskip rpasg

No Choiceexcl == flcom rcom; lcom rskip; lskip rcom; lskip rskipg

Qexcl � fnotreadyg

[Left Activeexcl

[Right Activeexcl

[No Choiceexcl

4.5 Int

The int machine implements the interruption ordering (4). In the MTREE expression E1� int�E2,

the Mealy-machineM�int� must issue signals to the MTREEs E1 and E2 so that:

1. Activity within E2 may, at any time, interrupt activity within E1, and

8

2. If interrupted, activity in E1 may resume upon completion of E2.

This machine contains 184 states, of which the following are Equilibrium:

Normalint == flactive; lcommit ; lpassable; lskippable; lcom rdone; lskip rdoneg

Interruptedint == flcom ract ; lcom rpas ; lpas ract ; lpas rpas ; lskip ract ; lskip rpasg

Qexcl � fnotreadyg

[Normal int

[Interruptedint

4.6 Leaf

This machine contains 6 states.

4.7 Loop

The loop machine implements the looping ordering (�). In the MTREE expression loop � E , the

Mealy-machine M�loop� must issue signals to the MTREE E so that the user may initiate activity

with E as many times as he or she likes while also being able to skip E . This machine contains 42

states, of which the following are Equilibrium:

Qloop == fnotready ; ready ; initial ; active; passableg

4.8 Opt

The opt machine is very similar to loop, except that only one completion of the subordinate task is

allowed. This machine contains 29 states, of which the following are Equilibrium:

Qopt == fnotready ; ready ; active; passableg

4.9 Par

While the largest, this machine is the most intuitive. It contains 276 states.

4.10 Seq

This machine contains 127 states, of which the following are equilibrium:

Left Activeseq == flactive; lcommitg

Left Or Rightseq == fldone rskip; lpassable; lpas rskip; lskip rcom; lskip rskipg

Right Activeseq == fractive; rcommitg

Qseq == fnotreadyg

[Left Activeseq

[Left Or Rightseq

[Right Activeseq

9

Table 3: Mealy machine (MM) syntax.

State == Equilibrium j Transient

Equilibrium == Identi�er

Transient == '@'+ f Identi�er g

Identi�er == ['a'-'z''A'-'Z']['a'-'z''A'-'Z''0'-'9'' ']�

Transaction == Action f Reaction g

Action == f ~ g Connector '?' Signal

Reaction == '[' Connector '!' Signal ']'

Connector == 'p' /* parent */

j 'l' /* left subordinate */

j 'r' /* right subordinate */

Signal == ['a'�'z']+

5 Support infrastructure

5.1 MM: A Notation for Mealy Machine Finite Control

The MM notation graphically describes the transition relationship of a Mealy Machine using a two-

dimensional ASCII representation of state machine graphs. The de�nition of a particular machine

often consists of many such descriptions joined together by unifying the names of states. The reader

may immediately observe three things about this notation:

1. machine transitions are represented as s -- c1?e1[c2!e2] --> t, indicating that a transition

takes place from state s to state t upon receipt of signal e1 on connector c1, and results in the

issuing of signal e2 down connector c2,

2. the transitions can be laid out in two dimensions, thus simplifying input and understanding of

the state topology, and

3. states are given either mnemonic names like notready or they are unnamed and represented

with the @ placeholder. Unnamed states are taken to be transient states; whereas named states

are equilibrium states.

Table 3 describes the syntax of MM. Transitions are described as directed edges from one state

to another with an intervening transaction. Transactions describe the action that stimulates the

transition and any resulting reaction. States and transactions are connected using transition edges

which appear as ASCII lines in the MM �les. A line may be vertical, horizontal, slanted left or

right, or bent with the junction symbol +. Transitions are always directed with a unique source and

target state and a unique transaction. To specify the direction of a transition, one end must be

a�xed with an arrow point (either >, <, ^, or %) depending on whether the edge is
owing to the

right, to the left, up, or down respectively. Slanted edges cannot be given a direction, and so they

must be bent into a non-slanted edge which can then be a�xed with an arrow point. For example,

@ --- l?ack[p!ack] --> lcommit, denotes a transition whose source is the transient state @, whose

target is the state lcommit, and whose transaction is l?ack[p!ack].

10

5.2 Generating MMTK Components from MM

The ultimate output of a Mealy machine �nite control speci�cation is a reusable component in the

Mastermind toolkit. After having designed and tested the interoperation of the Mealy machines,

we invoke a tool called the Mealy Machine Compiler (mmc) to create the C++ implementations.

Mmc creates two �les{a C++ header (.h) �le and a C++ implementation (.cc) �le{for each class of

Mealy machine.

Consider, for example, the MM de�nition of the seq machine (which constitutes a number of

.mm �les). The command:

$ mmc -c -Mseq seq*.mm

creates two �les: MdlSeqOrdering.h and MdlSeqOrdering.cc. The �le MdlSeqOrdering.h de�nes the

class MdlSeqOrdering and declares it to be a subclass of class BinaryNode. MdlSeqOrdering inherits a

method called getNextState from BinaryNode. This method implements the Mealy machine transition

relationship. It is de�ned in the �le MdlSeqOrdering.cc.

Since there are ten MDL orderings, there are ten header and ten implementation �les that make

up the �nite control constituent of the Mastermind toolkit.

References

[1] L. Bass and C. Unger, editors. Engineering for Human Computer Interaction. Chapman & Hall,

1996.

[2] G�erard Berry and Georges Gonthier. The esterel synchronous programming language; design,

semantics, implementation. Science of Computer Programming, 19:87{152, 1992.

[3] Thomas Browne, David Davila, Spencer Rugaber, and Kurt Stirewalt. Using declarative de-

scriptions to model user interfaces with mastermind. In Fabio Patern�o and Philippe Palanque,

editors, Formal Methods in Human Computer Interaction. Springer-Verlag, 1997.

[4] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley Publishing Company, 1979.

[5] R. Neches, J. Foley, P. Szekely, P. Sukaviriya, P. Luo, S. Kovacevic, and S. Hudson. Knowledge-

able development environments using shared design models. In Intelligent Interfaces Workshop,

pages 63{70, January 1993.

[6] R. E. Kurt Stirewalt. Automatic Generation of Interactive Systems from Declarative Models.

PhD thesis, Georgia Institute of Technology, December 1997.

[7] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. Declarative interface

models for user interface construction tools : The mastermind approach. In L. Bass and C. Unger,

editors, Engineering for Human-Computer Interaction [1]. Chapman & Hall, 1996.

11

