
To appear in the ACM Symposium on Solid Modeling and Applications, Atlanta, May 14-16, 1997.

GVU Report GIT-GVU-96-26

Structured Topological Complexes:
A Feature-based API for Non-Manifold Topologies

Jarek Rossignac

GVU / College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
 www.cc.gatech.edu/gvu/people/jarek.rossignac

jarek@cc.gatech.edu

Abstract
Much of recent research in representation schemes for solid
modeling was focused on the extension of boundary representa-
tions to support non-manifold topologies. We introduce here a
very simple, yet general formalism, which subsumes and sim-
plifies many previous attempts at defining high-level opera-
tors for creating and interrogating such models. Our Structured
Topological Complex (STC) extends our previous work on
Selective Geometric Complexes (SGC) and on Constructive
Non-Regularized Geometry (CNRG) and provides the founda-
tions for a new generation of representations−both construc-

tive and evaluated−and of APIs that are independent of the par-
ticular geometric domain and even of the particular approxima-
tion scheme for geometric primitives.

1 . INTRODUCTION
In spite of recent progress in non-manifold topological mod-
eling technologies (see the author’s survey [Rossignac94] for
a detailed review of the numerous non-manifold modeling
schemes) most CAD systems and modeling libraries support a
restricted topological domain [Requicha&Rossignac92] and
offer APIs biased to specific applications. We propose in this
paper a general shape specification scheme for creating general
non-manifold structures simultaneously with their partition
into components or features that are important for a particular
application domain. Because specialists of different applica-
tion areas may need to collaborate on the same model and may
need to manipulate different combinations of the model’s com-
ponents, our scheme supports the simultaneous creation and
interrogation of multiple views of the same design. Each view
provides a decomposition of the entire model into mutually
disjoint features. Because the partition of space into features
for one view is compatible with the partition for another view,
features from two different views may be composed in various
ways to define new features for a third view.

1.1 Contributions
Our Structured Topological Complexes (STC) support Boolean
and topological selections of topologically identifiable enti-
ties in a space subdivision that is induced by a set of primi-
tives. The primitives may be parameterized and composed of
several non-manifold components (such as composite struc-
tures or finite element meshes of shapes with internal cracks).

This paper reports several original contributions:
� Designing and maintaining simultaneous and compatible

views which partition space into mutually disjoint fea-
tures provides a unifying and clarifying framework for
dealing systematically with collections of possibly over-
lapping features and with non-manifold sets.

� The support of parameterized primitives which may have a
non-uniform structure (i.e. may be decomposed into sev-
eral non-manifold subsets, or primitive features) permits
to specify the selectable entities in a primitive set inde-
pendently of the actual representation or approximation
of their geometry. For example, a cylinder primitive may
expose its 3 faces and 2 edges, even though the cylindrical
face and the edges may be modeled with several parametric
entities in one CAD system and may be approximated with
a large number of triangular facets in another CAD system.

� Our simple, yet powerful, scheme for selecting and com-
bining the features from the various views into new fea-
tures extends the concepts of Constructive Solid Geometry
(CSG) in several ways:

� It combines Boolean operators with topological
operators and with adjacency and ordering rela-
tions;

� It supports a CSG formulation of the decomposi-
tion of the entire space into features, rather than
a formulation of a single pointset;

� It permits to simultaneously construct and main-
tain several such parameterized CSG models of
the space decomposition that are derived from
the same structured primitives.

� Our constructive design process ensures that our extended
CSG formulation of two different features of a single view
are always disjoint.

� Because our definitions of primitives, features, views, and
selection filters are completely independent of the geo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4674495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GVU Report GIT-GVU-96-26

metric domain supported by a particular geometric core
subsystem, the proposed scheme provides the theoretical
basis for a universal API for solid and non-manifold mod-
eling. Such an API will isolate the applications from a
modeler’s dependency on a particular geometric domain
and will be well suited for portable applications.

1.2 Prior art
The topological domain of the individual features that may be
defined with our Structured Topological Complex (STC) is
broadly equivalent to the domain of pointsets with non-
manifold internal structures that may be defined using the Con-
structive Non-Regularized Geometry (CNRG) design scheme
[Rossignac&Requicha91]. As such, it significantly expands
the topological domain of popular modeling kernels. STC ex-
tends the CNRG topological selection operators and the topo-
logical filters proposed by Weiler and McLachlan
[Weiler&McLachlan91] with adjacency and ordering filters,
which are important for differentiating between the connected
components of a space subdivision, and thus for capturing per-
sistent references to geometrically selected entities in parame-
terized constructive models.

The idea of multiple concurrent views upon which STCs are
based combines the traditional notion of layers (such as the
electric, mechanical, or hydraulic component of a CAD model)
found in many CAD systems with the need for supporting sets
composed of possibly overlapping non-manifold features
[Rossignac90].

Implementations of STC’s may be based on a variety of non-
manifold representation schemes [Bardis&Patrikalakis91],
including the Selective Geometric Complexes (SGC) models
[Rossignac&O'Connor89], which support decompositions of
space into connected open cells (such as vertices, edges, faces,
and regions. The GNOMES system [Sriram&...95] developed
at MIT illustrates an object-oriented geometric modeling core
based on SGCs and suitable for supporting an STC interface.
STC’s favor the decomposition of the entire space
[Cavalcanti&...] (i.e., the pointset of the model and its com-
plement).

An application that exercises a geometric modeling scheme
should be independent of the particular implementation of the
geometric modeling core. Data encapsulation, offered by ob-
ject-oriented programming interfaces, insulates the applica-
tion from the internal data-structures and access methods and
may easily offer a domain independent high-level API for solid
modeling. Unfortunately, it does not provide by itself, a uni-
versal panacea for more detailed non-manifold modeling, as
discussed in a parallel effort [Bowyer&...95]. By focusing on
topologically identifiable entities, the STC technology intro-
duced here dissociates the API from the geometric domain. For
example, an application which manipulates two cylindrical
surface primitives and interrogates the topology of their inter-
section may be consistently executed on different modeling
cores that may support implicit surfaces, parametric patches,
or faceted approximations (although of course, the topology of
the intersection may be affected by the geometry approxima-

tion scheme in use). The paper introduces a constructive model
directly accessible by the application, and an evaluated bound-
ary representation model, typically hidden from the applica-
tion. Although a particular geometric modeling core may
choose to use alternate schemes for storing the Boundary rep-
resentation (voxels, octtrees) or choose not to store the
Boundary representation at all, we discuss here the relation
between the constructive scheme and the properties of a non-
manifold Boundary representation.

1.3 Outline of the paper
Section 2 explains the details of constructing and managing
multiple views. Section 3 provides the definition of the topo-
logical entities and the details of the selection operators. Sec-
tion 4 discusses representation issues.

2 . VIEWS

2.1 Views and features
An STC model typically offers several concurrent views . Each
view is a decomposition of the entire space, E3, into features .
Each feature is a possibly non-manifold pointset. Two features
of the same view are mutually disjoint. The union of the fea-
tures of a given view covers the entire space.

A view is identified by its view-number or possibly by a view-
name, such as “pump 33”. Similarly, a feature may be identified
by a view (number or name) and a feature identifier (number or
name). For example, View1[feature3], refers to Feature3 in
View1. In this paper we will often use colors to identify the
features in a view.

2.2 Primitive view and primitive features
An application domain may have its own set of primitive
 views . Mechanical design may have simple primitive solid
shapes, such as cylinders, blocks, and spheres. AEC systems
may offer other primitive views, such as pipes.

Furthermore, each application domain may decompose its
primitive views into different sets of primitive features .

For example, a solid modeling primitive could yield a black
and white view with two features: the solid and its complement.
Some applications may prefer three-colored primitives, where
the interior, the boundary, and the complement of the solid are
distinguished. This may be useful for identifying contact re-
gions between primitives.

Further decomposition of a primitive view may identify differ-
ent subsets of the boundary of the primitive, such as its bound-
ing faces, edges, and vertices, regardless of any particular rep-
resentation or geometric approximation used for the faces and
edges. For example, a cylinder may be composed of three faces
and two edges, each distinguished by a different color, al-
though the cylindrical face may in fact be modeled as four
parametric patches or 24 triangular facets.

GVU Report GIT-GVU-96-26

Primitive views are not restricted to match the natural elements
that compose the boundary and the interior of manifold or regu-
larized sets. Each feature may be a mixed-dimensional, non-
manifold set by itself. For example, a single feature may be the
union of a cylindrical face with a disk cap and their common
circular edge. A second feature of the same view may group the
interior with the other cap and remaining edge.

The representation of primitive views is domain dependent and
its implementation is typically associated with the geometric
core, capable of displaying and intersecting the features it sup-
ports. An application may choose to ignore the topology of a
feature (for example, not differentiating between the dimen-
sionality of a region of contact between two solids) and to in-
terrogate it as a whole during analysis.

In summary, the primitive views and their decomposition into
primitive features are defined for a given application domain.
They would be specified in the API for that domain and would
be supported by all geometric modeling core sub-systems serv-
ing the domain. A primitive view is supported by a modeling
system if the view may be instantiated by invoking it through
a parameterized expression in the API and if its features may be
selected, combined, and interrogated as defined in this paper.
Note that it is not relevant how a particular modeling system
represents the individual features of a view.

2.3 Multiple views
The features of one decomposition may partly overlap with the
features of another decomposition. Thus, a point may be red in
one view (i.e. belong to a red feature in that view) and green in
another. The features of a single view correspond to the notion
of layers supported by some popular CAD systems (an object
belongs to a single layer), while the views extend the notion
of sets, hence supporting overlapping features. For example,
one view may distinguish the structural elements, pipes, wires,
and body of an airplane. Another view may split the plane into
section organized front to back. A third may provide the leaves
of a design hierarchy. A fourth may present a view of the bill-
of material reflecting the domains of a global purchasing strat-
egy.

Even more important is the fact that STC features offer a power-
ful design abstraction by providing a mechanism through
which design intent, constraints, functions, relationships and
annotations may be associated simultaneously with subsets of
several primitives. For example, in an architectural model,
design may be performed in terms of spaces (rooms, corridors)
while analysis and norm conformity tests are conducted in
terms of physical components (walls, support structures,
pipes, wires). A room feature in a space decomposition view
may combine the interior faces of four walls. A wall feature in a
material view may combine the opposite sides of a wall with
its interior.

New views may be created by combining primitive views as
explained below.

2.4 Regions and composite views
A juxtaposition of several primitive views induces a decompo-
sition of space into regions .

Each region is the intersection of a number of features, one in
each view. A region can therefore be identified by the sorted
list of names (or colors) of these features. For instance, if we
have 6 views, a feature will be identified by a vector of six col-
ors (one per view).

Note that in any given instantiation of a primitive views (i.e.,
the choice of their position and dimension parameters) most
color-vectors correspond to empty features. In fact, the number
of regions defined by simple primitive views is proportional
to the cube of the number of views. (By simple view, we mean
that the view has a finite number of primitive features.)

 Composite views are constructed by the application from its
domain dependent primitive views. The features of a new com-
posite view are typically defined as combinations of primitive
features or of features in previously defined views. The features
of a composite view may for example be set theoretic Boolean
combination of primitive features. Such a scenario would pro-
vide a simple scheme for simultaneously representing multiple
CSG models. More elaborate feature expressions, involving
topological selections, will be introduced in the following
sections.

2.5 Incremental feature definition
It would be difficult in general to ensure that the definitions of
the various features in a composite view are compatible (i.e.,
that the features are disjoint and that their union covers E3).
Therefore, features of composite STC views are constructed via
incremental color assignments, following a printing meta-
phor: A selection filter (mask) exposes a pointset to which a
color is applied for a given view. The pointset is the union of
regions defined by the primitive views.

For example, the red feature of View1 may be constructed in
three steps by painting in red over a set A, then painting in red
again over a set B possibly overlapping with A, and finally by
painting in green over a set C, which may contain points pre-
viously marked in red. A possible syntax for an assignment
may be: “view3.Paint(set,color);” where “set” represents an
expression that identifies a pointset. An example of such an
expression would be “Intersect(view2[red],view3[green])”,
which returns the identification of the geometry that corre-
sponds to the intersection of the red feature of view2 with the
green feature of view3.

Figure 1 represents, in 2D, a primitive view: View1, which has
3 features: an open dashed rectangular region (the interior of
the rectangle) colored in green, its boundary (thick line edges
and large disk vertices) colored in red, and its complement col-
ored in white. (Note that we are not showing the colors in the
figure, but are using color names to refer to the features.)

Figure 2 represents another instance of this primitive, where
the rectangle has a different position and dimension.

GVU Report GIT-GVU-96-26

.

FIG 1: Primitive view 1 with 3 features

FIG 2: Primitive view 2 with 3 features

FIG 3: Composite view 3 with 3 features

Figure 3 shows a composite view with three features: the green
open set that is the intersection of the intreriors of both trian-
gles (here dashed), the red set composed of a closed edge and
two isolated points which is the intersection of the boundaries
of both rectangles, (thick lines and points) and a white feature.
Note that features are not dimensionally homogeneous

2.6 Constructive model
The views (with their colored features) represent a decomposi-
tion of space useful for a particular application. The recipe
(sequence of primitive and composite view creation and of
color assignment operations) may be stored as a paramet e rized
 constructive model containing two entities: a geometry spec i-
 fication graph and a feature definition sequence . It is valuable
to distinguish the specification of the geometry (i.e. the
choice of the primitive views and of their parameters) from the
definitions of the features in the composite views (color as-
signment).

Furthermore, the parameter expressions and transformations
that scale and position the primitives may be stored in an in-
dependent primitive instantiation graph, which is well suited
for constraint-based design [Rossignac86] and is also inde-
pendent of feature definitions. Executing the instantiation
graph will yield the desired shape for the primitives. The exe-
cution of the sequence of color assignments will yield the sub-
division for the desired views into features. This decomposi-
tion is particularly important for supporting parametric mod-
els, as in CSG-based systems.

3 . TOPOLOGICAL DECOMPOSITION

3.1 Limitations of view-based selections
The STC scheme, as described so far is sufficient for working
with a large variety of non-manifold models. Consider for ex-
ample two primitive solids, A and B, each represented by a
view that distinguishes their interior (green), boundary (red),
and complement (white). The interference of these two solids
may be expressed as the intersection of both green features.
The contact is the intersection of the two red features. Typi-
cally, the geometric core provides simple information about
the connected components of the interference or contact re-
gions: number of components, enclosing box, or geometric
approximation used for rendering. An application may need to
know the topology of the region of contact, which may in-
volve subsets of various dimensions. The set theoretic selec-
tion filters (selecting sets by providing a color vector, one
color per view) may return possibly non-manifold pointsets of
mixed dimensionality. Many applications may require a finer
decomposition of such pointsets, and thus more powerful set
selection operators.

For example, the nature of a contact region (intersection of
boundary features) differs depending on its adjacency to re-
gions of the interference. Appropriate extensions will be dis-
cussed later in the paper, but first, we must define the building
blocks (atomic elements) of such refinements.

3.2 Decomposing arbitrary pointsets
Consider an arbitrary unknown pointset S. S may correspond
to a feature or a selection set. Assume here that the pointsets of
interest are well behaved (have nowhere dense boundaries and
their intersections have a finite number of connected compo-
nents). For example, the popular semi-algebraic sets exhibit

GVU Report GIT-GVU-96-26

such properties. We would like to establish a decomposition of
such a pointset into its parts, the natural topological constitu-
ents, so that these constituents may be easily and unambigu-
ously identified through a topological API, independently of
the particular shape of a parameterized object. This independ-
ence is key to guaranty model validity, which for example is
the principal advantage of CSG over boundary-based design.

The first step in this definition isolates the interior (three-
dimensional open region), iS, from the boundary , bS. Note
that, although iS may have several connected possibly un-
bounded components, it is always well defined. The boundary
bS may be further decomposed into its singular set (denoted sS)
and its face set (denoted fS) which represents the union of its
faces

The singular set, sS, is the set of points of bS whose neigh-
borhood with respect to bS (i.e. the intersection with bS of an
infinitely small open ball around the point) is not homeomor-
phic to a disk. Note that this definition is based on purely
topological considerations and not on surface smoothness.
Therefore cusps in a surface that bounds S will not be included
in the singular set, unless they are isolated as specific features
in a primitive view.

The face-set of S is the difference between the boundary of S
and its singularities (i.e: fS=bS-sS). Note that fS may contain
several maximally connected components called the faces of S.
Note that fS may contain non-smooth edges that join the sub-
sets of two different surfaces in some geometric realization of
the primitive views. The singular set, sS, may be further de-
composed into the edge -set. eS, of S and the vertex-set, vS, of
S. The edge-set is the set of points of sS whose neighborhood
with respect to sS is homeomorphic to an open line segment.
The vertex-set, the complement of eS in sS, is the set of non-
manifold points of sS.

Hence, each set S may be decomposed into four parts: iS, fS,
eS, and vS, each part being possibly empty or disconnected.

3.3 Simplification
FIG 4: A mixed-dimensional set S

Consider the set S depicted in figure 4. It has three parts: its
interior (Fig 5), its edge-set (Fig 6) and its vertex-set (Fig 7).

Fig 5 : The face-set (i.e. the interior) of S

Fig 6 : The edge-set of S

Fig 7 : The vetex-set of S

GVU Report GIT-GVU-96-26

The above decomposition of a set S into its interior, faces-set,
edges-set, and vertex-set is unique. When a feature S is repre-
sented in a model of the entire STC as a collection of regions,
the STC system must be able to correctly identify and process
the iS, fS, eS, and vS parts of S, independently of the way these
parts are stored in the particular representation scheme.

For example, modelers based on Simplicial Geometric Com-
plexes [Rossignac&O'Connor89 and Sriram&...95] represent
cells that are connected and relatively open subsets of smooth
sub-manifolds. SGC cells are pairwise disjoint and the bound-
ary of a higher-dimensional cell is the union of lower dimen-
sional cells in the SGC. In particular, each connected compo-
nent of a part of S (iS, fS, eS, or vS) would be represented in
SGC as the union of a number of SGC cells of possibly differ-
ent dimensions that form a connected dimensionally-
homogeneous set.

The simplification process, when applied to a pointset or fea-
ture S, identifies the pointsets of all the parts of S. When the
underlying geometric core uses cells (such as SGC cells), the
simplification process associates the cells with the part of S
they belong to. Note that it is not necessary to compute and to
represent a simplified versions of S, as long as the exact
pointset for each part of S may be identified.

On the other hand, it may be desirable to simplify the entire
space decomposition so as to reduce storage, while preserving
the compatibility of the regions of the decomposition with
each active view. (The application may declare that some views
are no-longer active and should not be referenced.)

For example, the boundary of S may contain a subset X of an-
other feature S’. In order to represent correctly kS, S’ must be
decomposed into at least two regions: X and S’-X. The exis-
tence and computability of such a refinement are fundamental
to the support of boundary and closure operations in STCs. A
solution and proof of existence were discussed as part of the
mathematical foundations of the geometric complexes that
support SGCs [Rossignac&O'Connor89].

3.4 Other topological operators
So far, we have seen two techniques for decomposing space,
given a collection of primitive views: Set theoretic Boolean
operators (i.e.: the definition of sets as the intersection of fea-
tures selected in different views by using color-vectors and
their combinations through union, intersection, difference,
and complement operators) and topological operators that de-
compose a pointset into its interior and bounding parts.

Other popular and useful operators include the complement cS,
and the closure kS. Regularization, rS, may be obtained as
k(iS) or kiS for short. Such operators take a set and return an-
other set, which may be used as argument for another operation
or for a color assignment in a view.

3.5 Operators on structures
A structure , A, is a collection of features in a view. It may be
important to perform topological operations on the pointset

of A, without destroying its internal structure, i.e. its decom-
position into features.

We consider, without loss of generality, that a structure is rep-
resented by its own view, which differentiates each feature of
the structure by a different color and where the complement of
the structure’s pointset is a single black feature.

The topological interior, iA, of a structure is a structure that
has as features the intersection of the features of A with the
interior of the pointset of S (i.e. the pointset of the union of
the non-black features of A). Note that iA is not necessarily
equivalent to the union of the interior of the features of A. For
example, an open ball A composed of two features, the ball and
its central point will be preserved under the interior operation,
while applying the interior operator to each one of the features
would eliminate the central point.

Similarly, intersection and difference operators that combine a
structure A with a pointset S will trim the features of A to their
intersection with S or to their difference with S.

 Union , boundary , and closure operations on a structure A may
add a new feature to A (i.e.: may identify a subset of the black
feature in the view associated with A and will change the color
of that subset to a new color, which must be specified by the
application).

A semantics for Boolean operations that preserve the structure
of its arguments, A and B, has been proposed as part of the
CNRG specification scheme [Rossignac&Requicha91b]. Such
operations may easily be supported in an STC environment,
since the core modeler that supports STCs must already be able
to provide a compatible subdivision of the two views associ-
ated with A and B, and since sequences of color assignments
may be executed for each combination of colors from both
views. However, specifying the resulting colors for all possi-
ble combinations of regions of overlap between a feature of A
and a feature of B may be tedious. We suggest procedural speci-
fications (macros) for color combination schemes. Alterna-
tively, it may be preferable to simply not compute the result of
a Boolean combination of structures, but to extract the specific
subsets of interest.

3.6 Syntactic considerations
So far, our discussion of STC operations has been abstract. We
do not wish to commit to any particular syntax for the STC
API, because such a choices should take under considerations
many programming aspects that fall largely outside the scope
of this paper. Some of these issues are discussed elsewhere
[Bowyer&...97].

Nevertheless, we provide below a naive API to help the reader
understand the concepts developed in the paper and to help the
designer of an STC system in her considerations of the appro-
priate syntax. We use an object-oriented notation in a high
level pseudo-language that should be self-explanatory. Decla-
rations are omitted.

GVU Report GIT-GVU-96-26

 A:= Cylinder(r1, l1, red, black);
 B:= Cylinder(r2, l2, yellow, black);
create two primitive views, A and B, that correspond to cylin-
drical solid primitives in standard position, although having
different dimensions (the first two parameters). Each view has
two features, the cylinder and its complement. The colors of
these features are defined at creation (the latter two parameters).
The complement of both cylinders is a black feature.
 B.move(M);
applies transformation M to B. For example, M may be a ma-
trix that combines the effects of scaling, rotation, and transla-
tion. Note that in some design environments, it may be desired
not to alter B, but to produce a new instance of B at the new
location.
 C:=View(black);
creates a new view and initializes it to a single black feature.
 C.Paint(Intersect(A[red],B[yellow]),green);
identifies a pointset that is the intersection of the red feature in
A with the yellow feature in B, creates the corresponding fea-
ture in C and paints it green.

3.7 Identifying connected components
The set selection operators discussed so far may fail to distin-
guish between the connected components of a part and to iso-
late the subset of a part that may exhibit a particular relation-
ship to other parts. In this section, we introduce additional
operators for distinguishing amongst the various subsets of a
part. These operators are important for expressing finer set
selections during feature definition and interrogation. We will
use the term “component” to define such subsets, although a
component needs not be connected.

A component of a part may sometimes be identified, independ-
ently of the particular shape of the part, by specifying topo-
logical relationship to other components of this or of other
parts.

For example, the face-set, fS, of a part S may always be decom-
posed into the set of dangling faces and the set of bounding
faces of S. We define these sets as follows.

The bound ing face -set of part S is the set of points of fS that is
adjacent to iS (i.e.: the set of points P such that any open ball
around P intersects iS).

The dangl ing face -set of part S is the set of points of fS that is
not adjacent to iS (i.e.: the difference between fS and its bound-
ing face-set).

Similar definitions may be useful for identifying the sets of
dangling and bounding edges and vertices,

Figure 8 and 9 illustrate such sets that decompose the face-set
of Figure 6 as a part of set S in Figure 4.

The face-sets (or edge-sets for 2D models) may be further de-
composed into components according to the three colors of the
features they belong two or bound on each side.

Fig 8 : The dangling-edges of the set S in Figure 4.

Fig 9 : The bounding-edges of set S.

The components of a face parts may be further differentiated by
identifying the colors of edge parts and vertex parts that bound
them.

Further differentiation may be obtained by considering the
different topological relationships between the face compo-
nent and its bounding elements. For example, a connected sub-
set of a red face in a given view may be distinguished from the
rest of the red face by requiring that it be abutting a red edge on
one side, a green edge on three sides (the green edge could be a
self-intersecting singularity of the surface that supports the red
face), and an isolated blue vertex (not connected to any edge
that bounds the red face).

Finally a face component may be identified because it is adja-
cent to (i.e.: it shares a common edge with) another face com-
ponent of the same view or of a different view.

Similar adjacency-based selection mechanisms may be invoked
for identifying the connected components of the interior of a
feature or set and the connected components of the edge and
vertex parts.

GVU Report GIT-GVU-96-26

Components may also be differentiated by their adjacency or-
der. Consider an oriented edge E that bounds a red, a green, and
a blue face. Several branches of each face may be abutting the
edge. Such a pathological case may be simply constructed by
attaching several thin red, green, and blue stripes to the edge as
feathers are attached to an arrow’s tail and then connecting
groups of stripes of the same color by thin face ribbons that
may involve twists. The ordering of faces around E may be de-
fined by the cyclic sequence of colors corresponding to the
colors of the abutting faces as encountered by turning around E
in a predefined direction. If each face component was orien-
table, each color in the orientation sequence may be accompa-
nied by a binary flag indicating whether the orientation of the
face is compatible with the counter-clockwise direction around
E or not. However, since a face component needs not be orien-
table (for instance it may e equivalent to a Moebius strip), this
additional binary information is not always well defined.

A component of a face part may for example be identified by
specifying that it is the component that follows or precedes
another face component around E. A similar order may be used
for edge components abutting a regular vertex of a surface
[Rossignac94]. However, difficulties may arise at singular
non-manifold vertices, such as the self-intersection point of a
torus whose two radii are equal.

3.8 Boundary representation for STCs
We suggest to use an extension of the SGC structure to repre-
sent the subdivisions and selections defined through an STC
API.

The geometric complexes introduced to support SGCs combine
cells that are bounded, connected, relatively open subsets of
smooth sub-manifolds, that are mutually disjoint, and whose
boundary is a collection of other cells in the complex. (The
term relatively open refers to the embedding of the cell in a
supporting manifold of the same dimension as the cell. For
example, an edge that does not form a loop is relatively open if
it does not contain its end-points, because the term relatively
open refers here to a curve that supports the edge. Note how-
ever, that the edge is not open relatively to a supporting sur-
face or three-space. Similarly, a face, or 2-cell, is relatively
open if it does not contain its bounding edges and vertices.
Note that the open face may have missing interior edges or
vertices. A sub-manifold is smooth if a normal is uniquely de-
fined at each one of its points. For example, a cone surface
minus its apex will form a smooth sub-manifold which con-
tains two maximally connected components.

The adjacency between cells of SGCs is stored as bi-directional
links between a cell and each one of its bounding cells. Links
between cells of consecutive dimensions were labeled with
neighborhood information which specified whether the higher
dimensional cell is abutting the lower dimensional cell on the
left, on the right, or on both sides. (Left and right were unam-
biguously defined in terms of the intrinsic orientations of both
cells.)

A significant advantage of SGC cells over other schemes for
representing cell complexes is the fact that an SGC n-cell need
not be homeomorphic to an open n-ball, but can be multiply
connected (i.e., have holes of various dimensions).

We have chosen to preserve the constraint that the cells of an
STC representation be open and connected. However, they need
not be smooth sub-manifolds of some surface or curve. Such a
departure from the semi-algebraic domain invalidates the sim-
ple three valued neighborhood exploited in SGCs. (As ex-
plained above, a face of an STC may not be orientable and may
have several branches abutting onto the same edge.)

Consequently, the links to the face cells abutting an STC edge
will be organized in a cyclic manner that reflects their order
around the edge. Several links to the same face cell may be pre-
sented in a cycle, one per abutting branch. When a face cell is
orientable, the link to the 3D elements it bounds will contain
the SGC neighborhood. Similarly, link to abutting edge cells
may be ordered in a cyclic manner around a regular vertex for
each side of each shell in the vertex cone. These shells corre-
spond to the boundaries of the connected open regions formed
by subtracting the abutting faces from an infinitely small
sphere centered at the vertex. Typically, when the vertex is
regular, there are only two regions and the two cycles are the
inverse of each other.

4 . CONCLUSIONS
In this paper we have introduced the following concepts.
� Each view of the model decomposes the entire space into

colored features.
� Each feature S is uniquely decomposable into its natural

parts (and into parts iS, fS, eS, vS) and further decom-
posed into components identified through adjacency, or-
der, and topological relationships to other parts.

� The level of refinement of features (which subset of a fea-
ture may be identified) is controlled by the definition of
the features in the primitive views supported by the par-
ticular geometric core best suited for the application at
hand. Lack of refinement may be used to hide the nature of
a particular geometric approximation scheme for curves
and surfaces or to limit which of a geometric primitive are
selectable.

� Composite views, which reflect space decompositions
that are relevant to specific aspects of an application, are
constructed through a series of painting operations that
each assign a color to a collection of part components.

� The instantiation and placement of geometric primitives
(which defines the geometry for the primitive views, and
hence the geometry for the composite views), is achieved
by executing a sequence of geometric operations that
evaluate parameters and perform operations that modify
the dimension, position, and orientation of groups of
primitives.

GVU Report GIT-GVU-96-26

� A construction model generalizes the procedural approach
to parametric models [Rossignac&...88] by using two se-
quences of operations: the geometric transformations that
affect the shape of the primitives, and the topological
transformations, that define the features in the various
views.

� The evaluated boundary model may be constructed to flesh
out the relevant part components that support all views
declared active. The model is obtained by computing the
compatible subdivision induced by the features in the
primitive views and by simplifying the representation
while guaranteeing that each feature of an active view is
represented as the union of the components of the subdi-
vision.

� The proposed boundary model representation extends the
SGC model by providing ordering information between
adjacent components and by relaxing the smoothness
constraint that SGC impose on the extents which support
SGC parts.

These concepts lead to a systematic APIs for a new breed of
geometric and topological core libraries and systems. The API
supports a fully general topology in a manner that is independ-
ent of the particular geometric instantiation, and is thus suit-
able for parametric modeling. Furthermore, the topological
entities identifiable by the API are independent of the particu-
lar geometric approximation scheme used by a geometric part
of the library.

5 . BIBLIOGRAPHY
[Bardis&Patrikalakis91], Topological Structures for General-

ized Boundary Representations, L Bardis and N. Patri-
kalakis, Design Laboratory Memorendum 91-18, Depart-
ment of Ocean Engineering, MIT, 1991.

[Bowyer&...95] Introducing Djinn: A geometric interface for
solid modeling, A. Bowyer, S. Cameron, G. Jared, A. Mid-
dleditch, M. Sabin, and J .Woodwark, The Geometric
Modeling Society, Information Geometers Ltd., Ed. J.
Woodrark. 1995.

[Bowyer&...97] Ten Questions that arose in designing the
Djinn API for Solid Modeling, A. Bowyer, S. Cameron, G.
Jared, R. Martin, A. Middleditch, M. Sabin, J. Woodwark,
to appear in the proceedings of the Shape Modeling Inter-
national'97 conference, University of Aizu, Aizu-
Wakamatsu, Japan, 3-6 March 1997, IEEE CS Press.

[Cavalcanti&...] Heterogeneous Object Representation Using
Space Decomposition, P. R. Cavalcanti, P. C. Pinto Car-
valho, L. F. Martha, IMPA-Instituto de Matematica Pura e
Aplicada, Estrada Dona Castorina, 110. 22460-320, Rio
de Janeiro, RJ, Brazil. pcezar@visgraf.impa.br.

 [Requicha&Rossignac92] Solid Modeling and Beyond, A.
Requicha and J. Rossignac. Special issue on CAGD, IEEE
Computer Graphics&.Applications, pp. 31-44, Sep-
tember 1992.

 [Rossignac90] Issues on feature-based editing and interroga-
tion of solid models, J. Rossignac. Computers&Graphics,
Vol. 14, No. 2, pp. 149-172, 1990.

 [Rossignac94] Through the cracks of the solid modeling mile-
stone, J. Rossignac, in From object modelling to ad-
vanced visualization, Eds. S. Coquillart, W. Strasser, P.
Stucki, Springer Verlag, pp. 1-75, 1994.

[Rossignac86] Constraints in Constructive Solid Geometry, J.
Rossignac, Proc. ACM Workshop on Interactive 3D
Graphics, ACM Press, pp. 93-110, Chapel Hill, 1986

[Rossignac&...88] Interactive Design with Sequences of
Parameterized Transformations, J. Rossignac, P. Borrel,
and L. Nackman, Proc. 2nd Eurographics Workshop on In-
telligent CAD Systems: Implementation Issues, April 11-
15, Veldhoven, The Netherlands, pp. 95-127, 1988.

[Rossignac&O'Connor89] SGC: A Dimension-independent
Model for Pointsets with Internal Structures and Incom-
plete Boundaries, J. Rossignac and M. O'Connor, in Geo-
metric Modeling for Product Engineering, Eds. M. Wosny,
J. Turner, K. Preiss, North-Holland, pp. 145-180, 1989.

[Rossignac&Requicha91] Constructive Non-Regularized Ge-
ometry, J. Rossignac, and A. Requicha. Computer-Aided
Design, Vol. 23, No. 1, pp. 21-32, Jan./Feb. 1991

[Sriram&...95] GNOMES: An objet-oriented nonmanifold
geometric engine, R. Sriram, A. Wong, and L.-X. He,
Computer-Aided Design, vol. 27, no. 11, pp. 853-868,
November 1995.

[Weiler&McLaclan91] Selection sets and filters in geometric
modeling and their application in a non-manifold envi-
ronment, K. Weiler and D. McLachlan, in Product Model-
ing for Computer-Aided Design and Manufacture, Ed. J.
Turner, J. Pegna, W.J. Wozny, North-Holland, pp. 117-
139.

