
Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 1
GVU Technnical Report: GIT-GVU-96-09

Abstract

In our last paper [Pitkow & Jones 1995], we presented
an integrated scheme for an intelligent publishing envi-
ronment that included a locally maintained hyperlink
database. This paper takes our previous work full cycle
by extending the scope of the hyperlink database to
include the entire Web. While the notion of hyperlink
databases has been around since the beginnings of
hypertext, the Web provides the opportunity to experi-
ment with the largest open distributed hypertext system.
The addition of hyperlink databases to the Web infra-
structure positively impacts several areas including: ref-
erential integrity, link maintenance, navigation and
visualization. This paper presents an architecture and
migration path for the deployment of a scalable hyper-
link database server called Atlas. Atlas is designed to be
scalable, autonomous, and weakly consistent. After
introducing the concept and utility of link databases, this
paper discusses the Atlas architecture and functionality.
We conclude with a discussion of subscriber and pub-
lisher policies that exploit the underlying hyperlink
infrastructure and intelligent publishing environments.

Keywords

World Wide Web, Internet infrastructure, distributed
hyperlink databases, protocol extensions, consistency,
integrity.

Introduction

At one point or another, nearly all Web users have
clicked upon a hyperlink, only to be presented with a
subsequent page containing the message “Error 404.
Not found—file doesn’t exist.” But what exactly has
happened here? In most cases, the author of the docu-
ment containing the hyperlink, incorporated the hyper-
link to facilitate the reader’s comprehension of the
document’s content1. Regardless of the content and

form of the intended anchor (glossary, different media
representation, reference material, etc.), the author
intentionally included the hyperlink—the anchor
extends the content. In the above scenario, in which the
user is not able to access the anchor, the full impact and
benefits of the provided information cannever be
achieved. This is sub-optimal from both the user’s and
author’s perspective. This is a direct and immediate
problem facing all users of the World Wide Web.

How does one go about solving this problem? An initial
solution to the problem of “dangling links,” more for-
mally known as referential integrity, was developed by
Pitkow [Pitkow 1993], called thehtml_analyzer. This
simplistic and out-dated program attempted to systemat-
ically determine the integrity of external hyperlinks for a
given website as well as identify other constraint-based
violations. This work was later augmented for use in a
distributed environment by Roy Fielding'sMom Spider
[Fielding 1994], and EIT’s link analyzer software
[McGuire 1994]. While these packages are still helpful
in identifying and removing broken links, these solu-
tions have several shortcomings.

Specifically, none of the above packages were designed
to be integrated into authoring software and as such
require post-hoc execution. Additionally, these pro-
grams are executed based on some arbitrary notion of
when the state of the Web has sufficiently changed to
warrant reexamination, not on a per change basis. Thus,
authors and content providers typically run these pro-
grams nightly, or on a weekly basis, to maintain some
level of local hyperlink consistency2.

1. For the purposes of this paper, we shall use the termsource
to refer to the document containing the hyperlink, and
anchor to refer to the document pointed to by the hyper-
link. Additionally, link and hyperlink will be used inter-
changeably.

2. Consistency is defined as a characteristic of the state of the
Web, where all hyperlinks point to existing objects.

Supporting The Web: A Distributed Hyperlink
Database System

James E. Pitkow & R. Kipp Jones
Graphics, Visualization, & Usability (GVU) Center

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
pitkow@cc.gatech.edu kjones@harbinger.net

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4674478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 2
GVU Technnical Report: GIT-GVU-96-09

While certain content providers will not be concerned
about their site’s consistency, many will as it increases
the utility of the provided content. By current estimates
[Netcraft 1996], over 100,000 Web sites exist. Hypo-
thetically, if each site contains 100 external links, and if
each site decides to employ one of the above solutions
on a nightly basis, then 10 million requests as to the
existence of the external anchors need to be issued. This
causes a problem of scale, requiring frivolous and, we
posit, unnecessary, network traffic and external server
load, often across slow network connections.

The issue of referential integrity has other profound and
substantial implications on the use and usability of the
Web. Traditional closed hypertext systems typically pro-
vide the users with navigational aids that enable the
users to determine their location in the hypertext. This is
often accomplished by utilizing visualizations of the
structural connectivity within the hypertext as node link
diagrams [Joyce 1991]. While current Web users do not
report the inability to visualize locality as a primary
problem with using the Web [Pitkow & Kehoe 1995],
more empirical evaluations as to the benefits of visual-
izations are indeed warranted.

Clearly, the Web is not a closed hypertext system. Initial
efforts towards providing end-user visualization [Domel
1994; Mukherjea 1995] typically extract the hyperlinks
contained within a document and proceed to retrieve the
contained anchors in a breadth-first manner. Once these
anchors are retrieved, their contents are parsed and the
process is repeated until the desired depth for the visual-
ization is achieved. This “gather/extract” method of dis-
playing hyperlink connectivity processes more
information than necessary, since the user has not yet
requested the retrieved content. Considerable network
bandwidth is also unnecessarily consumed.

For example, imagine that the user is attempting to visu-
alize NCSA’s “What’s New Page” and all the referenced
anchors. By the above gather/extract method, if a visual-
ization were to attempt to display two levels of connec-
tivity, the content for hundreds of sites would need to be
downloaded and processed. Not only does this falsely
inflate hit counts, but it suffers from the problems of
increased network traffic and inability to scale.

Besides facilitating end-user navigation and a global
sense of connectivity, visualizations are useful for Web-
masters and content providers, as it enables an entire site
to be visually managed. While some commercial sys-
tems are beginning to appear that provide visual mainte-
nance, these systems are limited to the local website and

rely upon the undesirable hyperlink integrity and consis-
tency solutions mentioned above.

Many content providers also desire to know which Web
pages point to their resource. Currently, this information
can be painfully gathered via logging of the “Referrer”
HTTP header, but only if this header was sent by the cli-
ent. With distributed hyperlink databases, not only can
one visualize forward links, butbacklinks as well, i.e,
which pages link to your pages. Stated differently, given
an infrastructure which provides a means for communi-
cating information between servers whose resources are
linked, the source of the external links to local resources
can be known. Backlinks typically provide as much
information as the resource itself, since links are usually
semantically related.

For example, suppose the user is visiting a page on com-
puter graphics at Site A, as in Figure 1. The user has no
navigational knowledge of the forward link from the
source document onSite B to the destination document
on Site A, though the sites contain related material. We
conjecture that for any given Web page, a user should
have the ability to view such related pages. In a bidirec-
tional hyperlink system, this information is readily
accessible, but the Web uses a unidirectional hyperlink
model, which requires additional facilities to ascertain
this information.

To summarize, existing attempts at managing referential
integrity and visualizations of the Web leave room for
improvement. Fortunately, the Web provides a unique
and fertile testbed for experimentation with alternative
solutions, one of which is our prototype called Atlas.
The remainder of this paper will discuss Atlas, which
attempts to solve the problem of referential integrity and
facilitates efficient and complete visualizations.

Site B Site A
Backlink

Forward
Link

Source Destination

D1 D2

FIGURE 1. The basic bidirectional nature of
Web based hyperlinks. Notice thebacklink is
not explicitly maintained in today’s Web

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 3
GVU Technnical Report: GIT-GVU-96-09

Atlas

Atlas is a distributed hyperlink database system that
works in conjunction with traditional Web servers. Atlas
includes a server-to-server protocol for the autonomous
maintenance of referential integrity as well as a client to
server protocol to handle queries regarding the topology
and connectivity of a site. The underlying architecture
of Atlas and the associated API are designed to enable
replacement with other technologies as appropriate. The
protocol is a minimal HTTP-like protocol called
ATLASP, that can be extended to include advanced
security and authentication. Additionally, a high degree
of distribution transparency is maintained by replicating
necessary information to the relevant servers.

The following design decisions were used throughout
the design of the Atlas architecture:

1. Completely autonomous Atlas servers;

2. Weak referential consistency;

3. Atlas servers can instigate communication.

The motivation for completely autonomous servers
stems from the unreliable nature of the Internet services
and the lifecycle of Internet software. By autonomous,
we mean that server can operate correctly in the absence
of other servers, i.e., in an isolated environment. For
example, just about all of us have experienced the
inability to connect to a desired Web server. Whether a
result of a local or remote failure, the server is unreach-
able, and therefore can not process requests. Any robust
Internet service, e.g., mail delivery via SMTP, must have
mechanisms built in to handle such failures. Because
Atlas is an autonomous service, it does not rely upon
remote services for continuous operations.

Deployment of new technologies on the Internet have
the problem of gaining a critical number of users—too
few and the technology is not widespread enough to be
useful. Too many, and the software becomes difficult to
modify. Initially, most software suffers from too few
users and generally requires a sufficient core of users to
become successful. Provided that the software is useful,
this core set of users can continue to grow while modifi-
cations and adjustments are made relatively easily and
inexpensively, e.g., the Apache group.

Atlas was designed to be a useful Internet service even if
it never reaches critical installation mass. At the local
Web site level, the hyperlink database embedded within
Atlas adds many value-added services like local mainte-
nance, visualization, and referential integrity. Still, the

full potential of Atlas isonly realized when the server-
to-server communication takes place amongst many
sites.

Clearly, given the size and indeterminable set of Web
servers and hyperlinked media, the Web willnever reach
a fully consistent state. Furthermore, even with a com-
plete directory of all existing Web servers and the pages
they contain, the Web can not reach full consistency, due
to the dynamic and distributed nature of the Web. The
next best alternative then, is to attempt to achieve some
sort of weak consistency between anchors and their
referring objects. The notion of weak consistency is that
while all hyperlinks may not currently point to existing
objects, they will eventually converge towards a consis-
tent state.

A primary directive in our effort has been to create a
system which helps bring the state of the Web towards
weak consistency. As a loosely coupled set of distrib-
uted servers, this convergence towards consistency
requiresanti-entropy processes. For the purposes of this
paper, an anti-entropy process is a process that extends
the global knowledge of the system by sharing local
knowledge. Atlas’ anti-entropy process periodically ver-
ifies the consistency of local information and then prop-
agates this information to those servers which need to
know. This requires the Atlas servers to be able to insti-
gate communication. For example in Figure 1, suppose
Site B removes the forward link to Site A, Atlas will
communicate this modification information to Site A.
For all changes to all forward links on Site B, the Atlas
server on Site B will notify all affected servers of these
changes. This notification process occurs even if certain
affected servers are currently unavailable.

Architecture

“Atlas” refers to the hyperlink database, the Atlas server,
the ATLASP protocol, and supporting utilities. Cur-
rently, the Atlas server runs in standalone mode inde-
pendent, but tightly coupled to an existing Web server.
To increase the interoperability and to facilitate experi-
mentation with different components of the system,
each functional unit was modularized and an API
defined. The hyperlink database used for the initial
implementation is Mini SQL (mSQL) [Hughes 1995],
though any database can be plugged in with the inclu-
sion of a set of backend routines. The majority of the
code was written in C for UNIX platforms. Currently,
we are in the processes of incorporating components of

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 4
GVU Technnical Report: GIT-GVU-96-09

Atlas into the repository architecture being developed
by NCSA.

Figure 2 depicts the overall architecture of Atlas. The
left side of the figure contains some of the core reposi-
tory elements. In an ideal publishing situation, the
authoring tools used to create content for the repository
are an integral part of the architecture, where the meta-
information for the newly formed content is automati-
cally extracted and stored, hyperlinks are extracted and
stored, and the integrity of the content, meta-informa-
tion and hyperlinks is verified [Pitkow & Jones 1995].
Atlas was designed to perform updates and notifications
in real-time, as part of an integrated, front-end publish-
ing environment. In the absence of such environment,
Atlas performs these functions on a configurable, peri-
odic basis. Thus, we are guaranteed that within a certain
time frame, the meta-information and hyperlink data-
bases will be locally consistent.

Initial population of the meta-information and hyperlink
databases are handled using a ‘miner' which examines
the local content. The miner walks the local filesystem,
which permits detection of retrievable files that may not
be linked in from the Web server’s root document. The
filesystem provides much of an object’s meta-informa-
tion, e.g., author, last modification time, file size, etc.
Additional meta-information is gathered when the con-
tent is an HTML object, by looking for specific tags like
title and headers. Hyperlinks are extracted for inclusion
into the link database from HTML objects as well. More
extensive exploitation of content specific meta-informa-
tion can be extracted with tools like Essence [Hardy &
Schwartz, 1994] and structured using the guidelines set

forth by the “Dublin Dozen” [Weibel 1995], though the
current Atlas prototype does not.

Additional hooks are in place to allow population of
hyperlinks by examining the inflow of HTTP “Referrer”
field headers. This ability to use outside information to
populate the database greatly adds to the usefulness of
the Atlas system initially, but will become less impor-
tant as the saturation of Atlas servers increases.

Link Representation

Traditional Dexter-based hypermedia systems have an
explicit notion of links and anchors as separate objects.
Specifically, anchors are defined as the “glue” connect-
ing network structures to the contents of particular com-
ponents and links are used to connect two or more
anchors [Halasz & Schwartz 1990]. In systems like
Hyper-G [Kappe et al. 1992], the separation of links and
anchors from the objects enables the addition of links to
arbitrary media types such as MPEG, PostScript, and
3D graphical models. While this nominally requires data
fusion by the viewer, it nicely separates the function
from content.

Several links types are identified within the Hyper-G
model [Kappe 1994]. Links are classified as either:

• core links which connect objects on a local server, or

• surface links which cross server boundaries.

Updates and inserts of core links do not require external
communication as they only affect the local subsystem.
Updates to surface links however require notification to
the server connected by the link. These servers that
share links are considered to be related.

Atlas supports link types as currently implemented on
the Web in that links are the relationship between a
source and a destination document. Extending current
practice, Atlas defines an additional set of attributes, or
meta-information, which include the following3:

• Source URL: the document from which the link
originates;

• Destination URL: the destination document
(anchor) of the link.

3. It is interesting to observe that with correct storage of link
and meta-information, the state of the Web at any time can
be recreated for archival as well as historical analysis.

Document SpaceAtlas

Miner
Process

Atlas
Server

Link
DB

Web
Server

CGI

Meta-

DB
Info

FIGURE 2. General Atlas architecture
depicting local repository processes only.

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 5
GVU Technnical Report: GIT-GVU-96-09

• Link ID : a function of the local server name and a
unique identifier within the local link name space.
The server which contains the source of the link is
responsible for proper naming of the link, and the
link ID will be replicated on the destination server;

• Creator: the author of the link;

• Creation Key: currently unused, this field was
added to authenticate the link’s origin for enhanced
security capabilities;

• Creation Time: the time the link was created;

• Update Time: the link’s last modified time;

• Permissions: contains coding of who can modify the
link. Currently defaults to world readable and owner
server write permissions.

• Label: defines a string which can be used by visual-
ization software to help provide hints to the user as
to the purpose and use of a particular link. For sim-
plicity, this can be thought of as ‘link type.’

• Locality : specifies whether the link is a surface or
core link.

As mentioned previously, theminer may not be able to
determine all of the above attributes completely. The set
of attributes is extendable and is expected to change as
the complexity of the Web evolves. It does however pro-
vide a starting point for experimentation. Note that a
surface link's meta-information is replicated on both the
source and the destination link database, thus providing
a high degree of distribution transparency.

Database

The underlying database is mSQL, though the selection
of a particular database is not important to the overall
functionality of Atlas. mSQL supports a subset of SQL
and is freely distributable to the Internet community. It
was also our intent to not limit the range of deployment
of Atlas by relying on a particular brand of potentially
proprietary database technology. The database used for
link information can also store object meta-information
and other system related data, as with NCSA’s reposi-
tory architecture, though this is not implemented in our
prototype.

An API exists to facilitate the “dropping in” of other
databases. This also allows experimentation and com-
parison amongst different flavors of databases. The data-
base API supports the six following functions:

• Insert: add a link to the database;

• Delete: remove a link from the database;

• Update: update a link in the database;

• Into : return source URLs for all links pointing a des-
tination;

• Outof: return destination URLs for all links emanat-
ing from a source;

• Query: enables link information to be retrieved from
an SQL query;

Insert, Delete, and Update all have the capability of
modifying the database. Into, Outof, and Query return a
list of links meeting the criteria. Support for other
DBMS's requires only the creation of a module that
understands these six routines.

Atlas Server

The Atlas server consists of a a stand-alone daemon
which listens for connections via either a TCP socket for
remote communication or a UNIX socket for local com-
munication. This provides multiple interfaces to per-
form link maintenance and execute queries for local and
distributed processes. This enables theminer to periodi-
cally communicate changes in the local information
space to Atlas. The Atlas communication also enables
visual site maintenance tools to extract and modify the
current state of the site’s meta-information and connec-
tivity information.

ATLASP

The protocol spoken by Atlas servers is ATLASP and
sits on top of the reliable TCP/IP transport layer.
ATLASP is connection oriented which allows for a
number of commands to be processed during one con-
nection (also referred to as batch mode processing).
Batch mode commands are more desirable over single
command transactions for the following reasons:

• All messages from one sever to another can be han-
dled at once, incurring a single TCP/IP setup/tear
down & slow start cost.

• Since real-time publishing environment software is
not prevalent, updates are determined in batch mode
via theminer. Thus breaking each change into a sin-
gle command is inefficient.

• Batch mode processing can be scheduled to occur
during off-peak CPU and network loads.

While batch mode processing contains more transac-
tions, the entire communication is designed and
expected to be brief. The results and error messages are
returned to the initiator of the connection using an
encoding similar to HTTP. This implies that the instiga-

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 6
GVU Technnical Report: GIT-GVU-96-09

tor must buffer messages until a return acknowledgment
has been received. The use of the buffer will increase
reliability by allowing for the repeating of messages
which have not been acknowledged on a periodic basis.
This property also facilitates a verification mechanism
by which the receiver of an update message can verify
the intended update is legitimate. Details of this mecha-
nism are discussed below.

ATLASP is based upon a minimal core set of commands
and controlling constraints. The required set and com-
plete specification of ATLASP commands are presented
in [Jones 1996], though we will briefly overview the
look and feel of the protocol. These commands are simi-
lar in naming and function to those previously specified
for the API.

ATLASP permits varying degrees of secure server-to-
server communication for automatic link maintenance
with minimal network impact. Atlas accomplishes this
with the LINK, UNLINK, UPDATE, and VERIFY
methods. A small set of optional commands and con-
straints are supported which allow users to modify secu-
rity information. The client-to-server communication
has requirements for small light-weight transactions,
which are supported by the INTO, OUTOF, EXISTS,
and QUERY methods.

Table 1 presents examples of various commands and
their associated responses. Each Atlas message is simi-
lar in syntax to the LINK command. Note that the proto-
col is quite similar to HTTP, though some of the
capabilities of HTTP are not necessary for Atlas. Many
of the similarities stem from the use of human readable,
easily parsed content, using standard CRLF delimiters
and name:value pairs for much of the information. A
method for negotiation is included as well as the capa-
bility to maintain a connection for multiple transactions.
In addition, a content/encryption negotiation process is
specified in ATLASP, and is currently being imple-
mented.

Upon receipt of the LINK command, the Atlas server
parses the message and places the link attributes into the
hyperlink database. Likewise, when an UPDATE mes-
sage is received, Atlas extracts the new link information
and issues the corresponding Update call via the API to
the database. The VERIFY command is used to
acknowledge the completion of a transaction (discussed
below). In the scenario where an Atlas server receives a
DELETE message regarding the removal of a hyperlink
to a local object, the Atlas server removes the surface
hyperlink from the database, but leaves the object meta-
information intact. Using Figure 1, this scenario trans-

lates to the forward link from D1 on Server B being
removed. Server B sends a DELETE message to Server
A, which removes the link for its local database.

The other DELETE situation occurs when the D2 on
Server A is removed. Server A issues a DELETE mes-
sage to Server B along with all other servers with hyper-
links to D2. Upon receipt of this message, Server B
automatically removes the hyperlink for the its local

TABLE 1.

LINK Command:

ATLASP/0.5
Content-Length:185
LINK
BeginLink
LinkID :atlas://www.yahoo.com/2812
SrcURI:http://www.yahoo.com/Statistics/
DestURI:http://www.cc.gatech.edu/gvu/user_surveys/
 [etc.]
Locality :Surface
EndLink

Typical response to LINK Command:

ATLASP/0.5
Content-Length:64
202 Message Accepted

INTO Query:

ATLASP/0.5
Content-Length:214
INTO
BeginLink
DestURI:http://www.cc.gatech.edu/CoC.html
Locality: Any
EndLink

Typical response to INTO Query:

ATLASP/0.5
Content-Length:302
202 Message Follows
BeginLink
LinkID :atlas://www.cc.gatech.edu/2057
SrcURI:http://www.cc.gatech.edu/people/index.html
 [etc.]
Locality :Core
EndLink
BeginLink
LinkID :atlas://faser.cs.olemiss.edu/39283
SrcURI:http://faser.cs.olemiss.edu/jordan/
 [etc.]
Locality :Surface
EndLink

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 7
GVU Technnical Report: GIT-GVU-96-09

database and optionally removes the reference to D2

from D1. Notification mechanisms similar to those men-
tioned in our earlier work can be invoked at this point,
i.e., email can be sent to the author of the source object.

For external server communication of updates, the pro-
tocol allows for periodic asynchronous server-to-server
communications. These mechanisms propagate mes-
sages to the appropriate servers relaying all information
that has changed since the last communication (see Fig-
ure 3). Updates which have not been acknowledged by
other servers are queued and re-issued using an expo-
nential back-off time table.

Scalability of Notification

The binary hyperlink relationship that exists between
source and destination objects warrants the use ofpoint-
to-point communication of updates. Alternative com-
munication models, like the proposedp-flood algorithm
[Kappe 1995], typically provide an infrastructure in
which all servers in theentire system receiveall notifi-
cations. An underlying assumption in the p-flood model
is that all servers are aware of all other servers. This, in
affect, causes a flat name space to be imposed upon the
entire systems. While this is certainly possible in small
scale hypertext systems, since no implementation of p-
flood currently exists, it remains to be proven that such
an architecture can scale to the size and extremely vola-
tile nature Internet communications and services.

Initial simulations of the p-flood algorithm conducted in
the Spring of 1995 [Kappe 1995] show estimated net-
work caused by the link maintenance to be in the range
of 0.005% of the total Internet traffic. These simulation
results were based on an initial value of 1,000 servers.
The network traffic is a function of the number of serv-
ers, the density of surface links, and the number of

objects in the system. The use of percent of total Internet
traffic as an empirical metric with which to gauge the
efficiency of a distributed hyperlink system, we believe,
is misleading. A more meaningful measure is to deter-
mine the amount of information the system uses and
compare this to the absolute minimal amount of infor-
mation necessary to communicate all updates (the lower
bound). The fundamental difference in these metrics is
that the former measures the cost to the current infra-
structure while the latter measures absolute efficiency.

Interestingly, in the year since the simulation was con-
ducted the number of servers has increased two orders
of magnitudes to over 100,000 servers [Netcraft 1996],
containing over 16 million objects. We know of no
existing server registration service that can manage such
a large flat name space in the heterogenous, distributed,
environment of the Internet. Existing registration ser-
vices like DNS are hierarchical in nature. The reliance
upon a registration service for distributed link mainte-
nance only adds to the complexity and subtracts from
the widespread integration of the solution. Furthermore,
both the number of servers and documents are projected
to continue to grow at an alarming rate, which further
decreases the likelihood of p-flood to scale gracefully.

Atlas, while bound by the same situation, does not rely
on notifying servers other than those with a “need to
know.” No global flat names space needs to be main-
tained. Atlas servers do not receive notification of
changes to unrelated servers. For example, the Georgia
Tech server does not need to know that Company A
placed a link to Company B and will not be notified.
With point-to-point communication, as the number of
servers grows, the percentage of servers with a “need to
know” will tend to decrease on a per server basis. In tan-
dem with the batch capabilities of Atlas, point-to-point
communication provides a highly scalable infrastructure
for link maintenance. Part of the Atlas research agenda
includes periodic monitoring of the effect of this com-
munication model has on Web servers and the Internet.

Security

Many protocols which support the Internet's infrastruc-
ture lack sufficient security features and are easily taken
advantage of by unscrupulous users. Security, even on
the level of infrastructure and support, should be recog-
nized as an integral part of network based protocols. Yet
a distinction needs to be made between the security
requirements for infrastructure activity and those for the
transmission of personal objects. Typically, the cost of
having an intruder discover that a link exists between

Site B Site A

Web
Server

Web
Server

Atlas
Server

Atlas
Server

ATLASP

FIGURE 3. Atlas servers communicate
amongst related servers. Site A and B are
related by at least one link in this diagram.

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 8
GVU Technnical Report: GIT-GVU-96-09

two objects is substantially less than having an intruder
discover the contents of the actual objects. Atlas was
developed with this in mind and its current implementa-
tion supports a subset of the security capabilities of the
protocol.

The first level of defense within ATLASP is the use of a
call-back feature for all server-to-server update requests.
These requests include inserts, deletes, and updates. It is
assumed that any update request is coming from a server
which also supports ATLASP. The second level of
defense is the use of 40 bit public key encryption tech-
nologies. The decision to use only 40 bit keys enables
non-restricted distribution of executable Atlas servers,
while providing sufficient protection against traffic anal-
ysis and intruders. Larger keys can be used for enhanced
protection. Thus, private Webs can be constructed utiliz-
ing Atlas and have a reasonable chance of remaining
private. More importantly, the integrity of the structural
information contained within each Atlas server is pre-
served. This second level of security is currently under
development.

Client Communications

As initially motivated, the benefits of Atlas are twofold:
link maintenance and providing client side navigation
and visualization capabilities. Atlas supplies the effi-
cient fuel for visualizations in that the expensive gather/
extract loop is bypassed. We envision the growth of
visualization software to occur in the browser, as helper
applications, and in authoring software. ATLASP
affords INTO and OUTOF queries. These messages
enable “What objects point to this URL” and “What
objects does this URL point to?” to be asked (respec-
tively) of any Atlas server. This information can clarify
the user's sense of location and opportunities by provid-
ing a visual representation of the information space. As
a consequence, the “lost in hyperspace” problem often

encountered and thought to constrain complex naviga-
tion, can be minimized using Atlas.

Figure 4 depicts two mechanisms for client communica-
tions. In the preferred method, the client visualization
software talks ATLASP directly to an Atlas server. The
other method uses HTTP and invokes a CGI process
which provides the gateway interface to the Atlas server.
Non ATLASP visualization software can immediately
leverage off of Atlas services. An extension to HTTP
could be provided via the newly proposed Protocol
Extension Protocol [Khare 1995] to allow a tighter inte-
gration of Atlas and Web servers.

Additionally, a general query capability is built into both
the protocol and the server. Queries of the form “Give
me all of the documents with links to a server in Austra-
lia” are readily answerable. The queries are expressed in
SQL, which opens the door for a wider range of uses
and functionality than initially anticipated. To further
expand the ability of other programs to access the infor-
mation contained in Atlas, a Java applet and a client-
side library are being developed.

Publishers, Subscribers,
and Policies

Part of the beauty of the Web is that it minimizes by
orders of magnitude the costs involved with large scale
and individual publishing while expanding by orders of
magnitude the potential audience. Authors have the abil-
ity to incorporate content developed by other authors by
simply placing a link to the supporting content. The
potential synergy that this property creates in the Web
must not be understated—the impact is indeed revolu-
tionary.

If we assume for a moment the widespread use of dis-
tributed hyperlink database technologies, certain inter-
esting abilities emerge that have implications on
generalized use of the Web as well as more controlled
and structured environments like digital libraries and
corporate intranets. The emergent properties center
around 1) the initial act of linking to existing content
and 2) when the linked content is deleted. Digital librar-
ies and corporate intranets are a prime examples.

Clearly, certain material may not be intended to be
reused by other authors in other contexts, yet this con-
straint should not necessarily forgo the publishing of the
material on the Web. Since we are assuming an infra-
structure where notifications of hyperlinks are sent to
the server which contains the destination document, pol-

Web
Server

Atlas
Server

CGI

ATLASP

HTTP

CCI

Browser

Visualization
or

Embedded
Software

1

1

2

1

FIGURE 4. Two methods of client-server
communication via HTTP (1) or ATLASP (2).

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 9
GVU Technnical Report: GIT-GVU-96-09

icies can be implemented to control appropriate linking.
In this model, thepublisher initially creates the content
(C) with authoring software. The software extracts
meta-information and hyperlinks and presents this to the
publisher for verification. It is during the verification
process that the publisher can select the desired policy
for others who may wish to link to the content. Once the
publisher selects the policy, it is entered into the reposi-
tory’s meta-information database.

After a while, another publisher sees the content (C) and
concludes that the content would be useful in an existing
document (D). Using local authoring tools, the publisher
submits a request tosubscribe to the content (C). The
server on which (C) resides handles the request and has
a few alternatives with which to reply. As is the current
policy of the Web, all users can be allowed to subscribe
to the content (C). Similar to the authorization mecha-
nism in HTTP, certain users can subscribe to the content
(C), while others are restricted. In the most extreme
case, no users could be allowed to subscribe to the con-
tent (C).

More time passes and the original publisher wishes to
remove the object from the local repository. In the sim-
ple case, no links exist to the published object and the
object can simply be removed and the object’s meta-
information updated. However, when other resources
subscribe to the published object, the situation becomes
a bit more complex. We submit that the publisher ought
to be able to control this notification process, since the
potential cost of notifying all subscribers could be quite
significant, e.g., if GNN’s “What’s New Page” were to
be deleted.

The control of the notification can be embedded into the
initial reply to subscribe as shown in Table 2. By no
means is this to be taken as an exhaustive list of possible
subscription and notification policies. Indeed, it is
expected that the set of valid policies will evolve with
real world use. For example, how do you mask the iden-
tity of subscribers?

The default policy quite naturally ought to be to allow
for all users to subscribe to content, as is current prac-
tice. Since current authoring tools are not integrated into
an intelligent publishing environment that enable con-
trol of policies, it is quite natural to expect authors to
override undesirable subscription policies. In more con-
trolled and enforceable environments like digital librar-
ies and corporate intranets, this counter-productive
behavior is not likely to occur. Furthermore, breaches of
subscriptions can be detected, reported, and repaired by
software, e.g., the miner.

Regardless of the utility of controlling subscriptions,
notifications of deletions to content is of interest to both
publishers and subscribers.

Conclusion

Atlas has been developed to solve many problems
daunting the continued utility and manageability of the
Web. The primary contributions of this method involve
the automatic maintenance of link information across
distributed servers, the gradual deployment of the serv-
ers with convergence towards consistency for the Web,
and the infrastructure for supporting efficient end user
visualizations.

Much of this work has been done with input from
NCSA in an effort to provide one piece of the proposed
‘repository’ architecture for the next generation of
World Wide Web technology. An important piece of this
is the maintenance of the repository information, and the
ability to automate as much of this work as possible.
This work has a direct benefit for the publishing process.
Updates are immediately propagated to the appropriate
servers as users publish their new or changed informa-
tion. The results of this project will be placed in the pub-
lic domain in the hopes that it will provide a basis from
which to go forth on. Additional documentation on the
protocol as well as the API’s will be provided in the near
future.

References

[Domel 1994] Domel, P. WebMap—A Graphical
Hypertext Navigation Tool. Proceedings of the Second
International World Wide Web Conference.Chicago:
1994. <URL:http://www.tm.informatik.uni-frankfurt.de/
Publications/Doemel/WWWFall94/www-fall94.html>

[Fielding 1994] Fielding, R. Maintaining Distributed
Hypertext Infostructures: Welcome to MOMspider's

TABLE 2. Subscription and notification policies.

Subscription Policy Notification Policy

Allowed by all users Notification or

No Notification

Allowed by certain users Notification or

No Notification

Not allowed Not Applicable

Supporting The Web: A Distributed Hyperlink Database System J. Pitkow & R. K. Jones
Fifth International World Wide Web Conference. Paris, France. May 6-11, 1996. 10
GVU Technnical Report: GIT-GVU-96-09

Web. Computer Networks and ISDN systems, Volume
27, issue 2, 1994.

[Jones 1996] Jones K. Atlas Protocol, Request For
Comments. Intenet RFC, to be issued in July 1996.

[Joyce 1991] Joyce, M. Storyspace as a Hypertext Sys-
tem for Writers and Readers of Varying Ability.Hyper-
text 1991 Proceedings, Pittsburgh: Association for
Computing Machinery, 1991. pp. 281-388.

[Halasz & Schwartz 1990] Halasz, F., Schwartz, M.The
Dexter Hypertext Reference Model.NIST Hypertext
Standardization Workshop, pp. 95-133, January 16-18,
1990.

[Hardy & Schwartz 1994] Hardy, D. & Schwartz M.
Customized Information Extraction as a Basis for
Resource Discovery. Technical Report CU-CS-707-94,
Department of Computer Science, University of Colo-
rado, Boulder, March 1994 (revised February 1995).

[Hughes 1995] Hughes, D. mSQL—A Lightweight
Mini SQL Database Engine. <URL:ftp://Bond.edu.au/
pub/Bond_Uni/Minerva/msql/>. 1995.

[Kappe 1995] Kappe, F. Maintaining Link Consistency
in Distributed Hyperwebs.Proceedings of INET 1995.
<URL:http://inet.nttam.com/HMP/PAPER/073/
absr.html>.

[Kappe 1994] Kappe, F. A Scalable Architecture for
Maintaining Referential Integrity in Distributed Infor-
mation Systems.IICM, Graz University of Technology,
1994.

[Kappe et al. 1992] Kappe F., Maurer H., Sherbakov N.
Hyper-G - A Universal Hypermedia System.IIG Report
333, IIG, Graz University of Technology, Austria,
March 1992. <URL:ftp://iicm.tu-graz.ac.at/pub/Hyper-
G/doc/>.

[Khare 1995] Khare, R. PEP: An Extension Mechanism
for HTTP. W3 Consortium Working Draft, December
1995.

[McGuire 1994] McGuire, J. The EIT Link Verifier
Robot. <URL:http://wsk.eit.com/wsk/dist/doc/admin/
Webtest/verify_links. html>. 1994.

[Mukherjea 1995] Mukherjea, S., Foley, J. D. Visualiz-
ing the World Wide Web with the Navigation View
Builder. Computer Networks and ISDN Systems, Vol-
ume 27, issue 6, 1995.

[Netcraft 1996] Netcraft HTTP Server Survey
<URL:http://www.netcraft.co.uk/Survey/>. 1996.

[Pitkow 1993] Pitkow, J. The Html Analyzer Documen-
tation. <URL:http://www.cc.gatech.edu/pitkow/
html_analyzer/README.html>. 1993.

[Pitkow & Jones 1995] Pitkow, J., Jones, K. Towards an
Intelligent Publishing Environment.Computer Networks
and ISDN Systems, Volume 27, issue 6, 1995.

[Pitkow & Kehoe 1995] Pitkow, J. & Kehoe, C. Results
for the Third World Wide Web User Survey.The World
Wide Web Journal, Volume 1, issue 1, 1995.

[Weibel 1995] Weibel, S., Godby, J., Miller, E., Daniel,
R.: “OCLC/NCSA Metadata Workshop Report,”
<URL:http://www.oclc.org:5046/conferences/metadata/
dublin_core_report.html>. March 1995.

Acknowledgments

Thanks to Joseph Hardin, Dan LaLiberte, Frank Kappe,
Leo Mark, and Gregory Abowd for direction and guid-
ance. Thanks to Greg Hankins and Aaron McClennon
for helping implement the prototype. And thanks to
many members of the College of Computing and the
GVU Center at Georgia Tech for their support.

