
J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 1

Edgebreaker: Connectivity compression for triangle meshes

Jarek Rossignac
GVU Center, Georgia Institute of Technology

Abstract

Edgebreaker is a simple scheme for compressing the triangle/vertex incidence graphs (sometimes called connectivity or
topology) of three-dimensional triangle meshes. Edgebreaker improves upon the worst case storage required by previously
reported schemes, most of which require O(nlogn) bits to store the incidence graph of a mesh of n triangles. Edgebreaker
requires only 2n bits or less for simple meshes and can also support fully general meshes by using additional storage per
handle and hole. Edgebreaker’s compression and decompression processes perform the same traversal of the mesh from
one triangle to an adjacent one. At each stage, compression produces an op-code describing the topological relation
between the current triangle and the boundary of the remaining part of the mesh. Decompression uses these op-codes to
reconstruct the entire incidence graph. Because Edgebreaker’s compression and decompression are independent of the
vertex locations, they may be combined with a variety of vertex-compressing techniques that exploit topological
information about the mesh to better estimate vertex locations. Edgebreaker may be used to compress the connectivity of
an entire mesh bounding a 3D polyhedron or the connectivity of a triangulated surface patch whose boundary needs not be
encoded. Its superior compression capabilities, the simplicity of its implementation, and its versatility make Edgebreaker
particularly suitable for the emerging 3D data exchange standards for interactive graphic applications. The paper also
offers a comparative survey of the rapidly growing field of geometric compression.

Introduction
Interactive 3D graphics already plays an important role in
manufacturing, architecture, petroleum, entertainment,
training, engineering analysis and simulation, medicine, and
science. It promises to revolutionize electronic commerce and
many aspects of human-computer interaction. For many of
these applications, 3D data sets are increasingly accessed
through the Internet. The number and complexity of these 3D
models is growing rapidly, due to improved design and model
acquisition tools, to the widespread acceptance of this
technology, and to the need for higher accuracy. In many of
these applications, human productivity or satisfaction would
be significantly enhanced by the possibility of an immediate
access to remotely located 3D data sets for visual inspection or
manipulation. Even when image-based rendering [21, 20, 5]
and progressive transmission techniques [12, 14] for adaptive
resolution graphics are used to reduce the fraction of the 3D
representation that must be transferred at any given time,
geometry transfer remains the bottleneck. The anticipated
phone and network bandwidth increases will not, by
themselves, suffice to offset the explosion of the complexity
and popularity of 3D models. Consequently, it is urgent to
develop optimal bit-efficient formats and associated
compression and fast decompression algorithms for 3D
models.

Although many representations have been proposed for 3D
models [28] polyhedra (or more precisely triangle meshes) are
the de facto standard for exchanging and viewing 3D data sets.
This trend is reinforced by the wide spread of 3D graphic
libraries (OpenGL [24], VRML [3]) and other 3D data
exchange file formats, and of 3D adapters for personal
computers that have been optimized for triangles. Graphic
subsystems can convert polygons and curved surfaces into an
equivalent (or approximating) set of non-overlapping triangles,

which may be rendered efficiently using hardware-assisted
rasterizers [26, 24]. But to avoid the cost of this runtime
conversion, most applications precompute and store the
triangle meshes. Therefore, triangle count is a suitable measure
of a model’s complexity and triangle-meshes are an appropriate
target for current efforts on compression [29].

A triangle mesh may be represented by its vertex data and by
its connectivity. Vertex data comprises coordinates of all the
vertices and optionally the coordinates of the associated normal
vectors and textures. In its simplest form, connectivity
captures the incidence relation between the triangles of the
mesh and their bounding vertices. It may be represented by a
triangle-vertex incidence table, which associates with each
triangle the references to its three bounding vertices. For all
meshes that are homeomorphic to a sphere, and in fact for
most meshes in practice, the number of triangles is roughly
twice the number of vertices. Consequently, when pointers or
integer indices are used as vertex-references and when floating
point coordinates are used to encode vertex locations,
connectivity data consumes twice more storage than vertex
coordinates. Furthermore, for most applications, vertex data
may be compressed down to about a tenth of the uncompressed
connectivity data, with an average of 12 bits per vertex
location and 6 bits per vertex normal [4, 33, 37].
Consequently, we need to deploy aggressive schemes for
compressing the triangle-vertex incidence table, from which
most popular boundary data structures may be easily derived.

It is possible to hide some or all of the connectivity cost in
the vertex encoding. For example, one could use some
automatically computed triangulation as a first guess for
connectivity and then only encode the necessary
transformations that produce the correct connectivity. Another
approach, proposed for 2D triangulations by Denny and Sohler
[7], would be to encode the vertices in a specific order, which,
when compared to a lexicographical (left-to-right) sorting of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4674466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 2

these vertices, defines a permutation number. That number is a
sequence of bits, which, for sufficiently large n, suffices to
identify one among the possible labeled planar triangulated
graphs of n vertices. Unfortunately, these approaches are not
compatible with the schemes mentioned above for
compressing vertex data. Indeed, these schemes require access
to the connectivity information for predicting the data for each
new vertex from previously encoded neighbors. They use
variable length codes for the coordinate corrections between the
predicted and the actual data. The better the predictions, the
shorter the codes. The lack of connectivity information and an
encoding of vertices in an order that does not capture some of
their proximity relations would considerably increase the
storage needed to encode vertex data, which already is the
bottleneck when previously proposed connectivity
compression schemes are used [6, 33].

To meet these two objectives, we have developed a new
compression scheme, called Edgebreaker. It encodes into 2t
bits or less the connectivity of any mesh of t triangles that is
homeomorphic to a sphere. The encoding is independent of
vertex locations. Previously proposed approaches require more
storage or even exhibit non-linear asymptotic worst-case
storage complexity. More general meshes with b exterior edges
and h handles require 2t+b+(log2(h)+log2(t)+k)h bits or less,
where k is a small constant. In practice, for meshes with
relatively few handles and few bounding edges, the compressed
data requires between 1.5 and 2 bits of storage per triangle.
This ratio may be even lower for compressing patches with a
complex bounding loops and relatively few interior vertices.
Their results do not rely on statistic-based entropy or
arithmetic coding schemes, which in general perform poorly
on small or irregular data sets. Consequently, Edgebreaker is
suitable for compressing all models and particularly attractive
for compressing large catalogs of small models for remote
instant access without overhead.

Edgebreaker organizes the vertices of the model along a
spiraling vertex-spanning tree that is almost identical to the
vertex-traversal orders produced by several recently proposed
compression schemes [33, 37, 10]. Therefore, our connectivity
compression technique may be trivially combined with several
previously proposed schemes for compressing vertex data.

The rest of this paper is organized as follows: we start by
defining our Terminology and Notation and proceed to a
Comparative Analysis of Prior Art; we introduce the
Edgebreaker approach by first focusing on simple meshes that
are homeomorphic to a half-sphere and provide the details of
Compressing Simple Meshes, the Compressed Format, and
Decompressing Simple Meshes; then we discuss Extensions to
More General Triangle Meshes.

Terminology and notation
To define our notation and domain, we use simple concepts of
topology. Their precise definitions may be found in [22] or
other textbooks on this topic. Let |X| denote the number of
elements in the set X. Let T denote a set of topologically
closed triangles Ti, for integer i in [1..|T|]. {Ti} is the closed

pointset of Ti. {T} is the union of these pointsets for all
triangles in T. Let V denote the set of the vertices of T. For
simplicity, and without loss of generality, we assume that the
vertices of V may be uniquely identified by integer numbers
between 1 and |V|. The connectivity may be represented by a
triangle-vertex incidence table, which associates each triangle
with three integer labels that reference its bounding vertices.

The compression algorithm described here is restricted to
manifold representations of triangle meshes. In a manifold
mesh, each edge is bounding one or two triangles and the star
of each vertex v (i.e., its incident triangles and edges) remains
connected, when v is removed. By replicating some of their
non-manifold vertices, non-manifold meshes may be
represented using data structures for manifold meshes and may
hence be processed by our compression algorithms.

Edges that bound two triangles are called interior edges. Edges
that bound exactly one triangle are called exterior edges and
their union is denoted b{T} and called the boundary of {T}. The
connected components of b{T} are one-manifold polygonal
closed curves, called loops. Vertices of T that do not bound
any exterior edge are called interior vertices. The set of all
interior vertices is denoted VI. The other vertices are called
exterior vertices and their set is denoted VE.

A choice of the cyclic order for the bounding vertices of a
triangle X defines an orientation for X and imposes
orientations on its bounding edges. The orientations of two
adjacent triangles are compatible, if they impose opposite
orientations on their common edge. A manifold mesh is
orientable, if and only if there exists a choice of orientations
that makes all pairs of adjacent triangles compatible. In this
paper, we assume that the mesh is always orientable. Non-
orientable surfaces maybe cut into orientable pieces by
replicating interior edges by pairs of coincident exterior ones.

We define a simple mesh to be a triangle mesh that forms a
connected, orientable, manifold surface that is homeomorphic
to a sphere or to a half-sphere. Such meshes have no handles
and have either no boundary or have a boundary that is a
connected, manifold, closed curve, i.e.: a simple loop. The
core of this paper deals with the compression of connectivity
graphs that may—but need not—be imbedded in such a way
that they represent the connectivity of simple meshes.

The Euler equation for simply meshes yields t–e+v=1, where t
is the number of triangles, |T|, where v is the total number of
vertices, |VI|+|VE|, and where e is the total number of the
external and internal edges. Since there are |VE| external edges
and (3|T|–|VE|)/2 internal edges, we obtain by substitution:
|T|–|VE|–3|T|/2+|VE|/2+|VI|+|VE|=1 and |T|=2|VI|+|VE|–2. When
|VE|<<|VI|, there are approximately twice more triangles than
vertices.

Comparative analysis of prior art
In this section, we first summarize the most relevant
approaches for compressing vertex data and then review
previously published schemes for compressing the
connectivity of triangle meshes. We also propose
improvements to some of these techniques and discuss their

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 3

expected or worst case connectivity cost. For compressed
formats, where connectivity information is combined with
vertex data, we define the connectivity cost to be the difference
between the overall storage cost and the cost that would be
necessary for compressing the vertex data alone. We organize
the prior art of compressing connectivity into five categories:
uncompressed data structures, triangle strips, vertex insertion,
graph encoding, and vertex permutations.
Vertex data compression techniques
Typically, tessellated models are used for visualization,
interference detection, or finite-element analysis. They are
often approximations of curved shapes, which may have to be
represented with higher degree surfaces for manufacturing and
more advanced simulation and analysis applications. Even
when a model represents a shape that is polyhedral by nature,
the accuracy of the model is often limited during its creation
by numeric round-off errors in the computation of geometric
intersections, by the limited resolution of input techniques
during design, or by measurement errors. Applications for
which such numeric inaccuracies or such crude polyhedral
approximations of curved shapes are acceptable do not in
general require that vertex coordinates be stored with full
floating point precision, as long as the geometry preserves the
important topological and adjacency relations.

Following [6, 4, 33], we suggest to represent the vertex
coordinates with k bits each, as integers between 0 and 2k -1,
defined over the smallest axis-aligned box that contains the
model. For example, 10-bit quantization (k=10) will result in
better than 0.5mm accuracy for any part of a car engine. Note
that the quantization needs not be uniform for the entire model,
but may be adjusted locally depending on the smallest triangle
size or largest surface curvature [4]. Different accuracy levels
for vertex data should be associated with different levels-of-
detail for the mesh complexity, so as to integrate a progressive
vertex data accuracy refinement with a progressive download of
increasingly detailed approximations of the mesh [19].
Consequently, the coordinates of a vertex may often be stored
using less than 30 bits, instead of 3 floating point numbers.

Furthermore, the storage for vertex data may be considerably
reduced by using variable length encoding [6, 13, 33, 37, 19].
Indeed, if the compression and decompression algorithms
compute identical estimates for the location of each vertex, it
suffices to encode the corrective displacement vectors: The
decompression algorithm will estimate the location of the next
vertex and simply add it to the corrective vector. If the vertex
coordinates are quantized to a small number of bits and if the
estimates are good, many of the coordinates of the corrective
vectors will be small integers. Entropy coding or other
variable length schemes replace the frequently occurring
integers with shorter codes. Thus, in highly tessellated models
with quantized coordinates, compression ratios for V depend
primarily on the precision of the vertex estimates.

For example, Taubin and Rossignac [33] have used vertex
estimators based on a few ancestors in a vertex-spanning tree,
whose edges correspond to some of the edges of the mesh.
Each new vertex is expressed as aA+bB+cD+dD+E, where A ,

B, C , and D are the successive ancestors of v in the vertex-
spanning tree, where E is the corrective vector than must be
encoded, and where a, b, c, and d are scalar values computed to
minimize the E's over the entire mesh. For highly complex
models with finely tessellated surfaces, their technique
approaches 12 bits per vertex, which represents an average of
only 4 bits per coordinate (or 6 bits per triangle). Touma and
Gotsman [37] suggested to use the estimate A+CB for the
third vertex of the triangle incident upon the gate g, where A
and B are the vertices of g and C is the third vertex of the
other previously processed triangle incident upon g.

To provide a meaningful basis for comparing the storage costs
of the various coding schemes, we assume in this section: that
it suffices to represent vertex coordinates with an accuracy of
1/1024 with respect to the overall dimension of the model;
that |VE|«|V|; and that there are no holes or handles. To
simplify notation, v will stand for |V| throughout this section.

Uncompressed data structures
Storing each triangle independently of all other triangles as the
list of 10-bit integer coordinates for each one of its three
vertices would require 90 bits per triangle. In such a simple
representation, the connectivity is not coded explicitly, but can
be recovered through geometric tests on the vertex locations.
The location of a vertex is repeated on average 6 times. Thus,
the storage used in excess of the vertex location is 60 bits per
vertex or approximately 30 bits per triangle.

To avoid storing multiple representations of each vertex, we
could store the vertex data table in a sequence and store
connectivity as a sequence of triangle descriptors, each triangle
been represented by 3 integer numbers that each identify the
position of a vertex in the above vertex sequence. We would
need at most log2(v) bits per reference, where x denotes the
lowest integer greater than x. For simplicity, we will omit the
" " from the formulae in the remainder of the paper. With this
scheme, the connectivity cost is 3log2(n) bits per triangle.
When the vertex data does not include anything but the vertex
coordinates, this solution becomes more expensive than
storing independent triangles for models with more than 512
vertices.

The advantages of both schemes may be combined by storing
only the triangles, each represented by 3 vertex descriptors.
Each vertex descriptor would start with a one-bit switch
indicating whether this is a new vertex for which the three
coordinates and other vertex data follow or whether the vertex
has already been encountered, in which case the rest of the
vertex descriptor contains log2(i) bit which identify one of
the i previously encountered vertices. This representation
requires a total of 31v+5vlog2(v) bits. If we subtract 30v for
the vertex coordinates, the connectivity cost is v(5log2(v)+1),
or approximately 2.5log2(v)+0.5 bits per triangle.

The decompression algorithm may keep track of which vertices
are interior to the part of the mesh that has been recovered so
far and which vertices are still exposed, i.e., are on the
boundary of that part. Because only the exposed vertices need
to be referenced, it is suitable to reduce their number. Bar-
Yehuda and Gotsman have proposed a technique for visiting

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 4

the triangles in an order which guarantees that no more than
13(v)0.5 vertices are exposed at any given time [2]. Using such
an improvement would lead to a connectivity cost of
1.25log2(v)+9.25 bits per triangle.

Triangle Strips
A representation based on triangle strips, supported by
OpenGL [24] and other graphic libraries, is used to reduce the
number of times the same vertex is transferred and processed
by the graphics subsystem. Basically, in a triangle strip, a
triangle is formed by combining a new vertex description with
the descriptions of the two previously sent vertices, which are
temporarily stored in two buffers. Each new triangle, X, shares
an edge with the previous triangle in the strip. Using a
convention to orient the surface of the strip, we can label the
other two “free” edges of X as the left and the right edge. One
bit per triangle suffices to indicate whether the triangle is
incident upon the left or the right edge of the previous triangle.
The first two vertices are the overhead for each strip, so it is
desirable to build long strips, but the automation of this task
remains a challenging problem [9]. Instead of using such a
left/right bit, OpenGL requires to alternate between left and
right edges throughout the strip (see Fig. 1). Note that two
consecutive right or left “moves” may be implemented in
OpenGL by encoding a vertex twice without breaking the
strip.

Figure 1: The triangulated boundary of a polyhedron
(left) may be cut (thick blue edges, center) into a flat
triangulated polygon without interior vertices (right).
When this polygon has no bifurcation, it may be
represented by a single triangle strip, where triangles
are attached to free edges of the previous triangle.
OpenGL requires to alternate between the left and the
right free edge Except for the first and last ones, each
vertex has 3 incident edges (right). Note that, each
vertex, except for 3 and 7, which are the end-points of the
cut, is encoded twice. Indeed, in general vertices appear
either in the boundary of two separate strips or are used
by non-consecutive triangles within the same strip.

Let us improve the triangle strip format and avoid vertex
replication by using as above, in lieu of a replicated vertex, a
reference to a previously decoded one. Assuming strips of
length k«1 and using one bit per triangle to indicate whether
the next triangle is attached to the left or the right edge of the
current one and another bit per triangle to indicate whether the
next vertex has been already encoded, the connectivity cost
becomes 2 bits per triangle plus an average of 5/6log2(v) bits
per triangle for the references to previously decoded vertices.
The total connectivity cost of our modified triangle strip
approach is (5/3)vlog2(v) bits.

Deering's compressed format [6] was designed for
decompression by a hardware graphics adapter with very

limited memory. Thus, random access to previously
decompressed vertices was out of the question. Instead, Deering
uses a 16-register cache to store 16 of the previously decoded
vertices for subsequent references. When a previously decoded
vertex no longer in cache is needed, a new instance of it must
be decoded. Chow has proposed a technique for traversing the
triangles of a mesh in an order that exploits Deering's
architecture [4]. He sweeps a front of edges in a spiraling
pattern to avoid creating isolated vertices. The generalized
triangle strip is formed by connecting the triangle-corridors
defined by two consecutive positions of the swept front. We
estimate that on average one vertex out of eight must be
encoded twice.

Deering's cache idea could be adapted for software
decompression by providing access to all previously decoded
vertices. Seven out of eight vertices would be in the cache
when needed more than once and could be identified using 4
bits. One out of eight reused vertices would be in main
memory and would require a reference of log2(v) bits. So the
average cost of identifying a reused vertex is (7*4+ log2(v))/8,
plus one bit to distinguish the cached vertices from those in
RAM. The connectivity cost would also include one bit per
vertex to indicate whether each newly decoded vertex should be
saved in the cache and two bits per triangle to indicate how to
form the next triangle. Assuming that each vertex is used
twice, the total connectivity cost would be 7.5+0.125log2(n)
bits per vertex.

Progressive Vertex Insertion
Hoppe’s Progressive Meshes [13] permit to transfer a 3D mesh
progressively, starting from a coarse mesh and then inserting
new vertices one by one. Instead of a vertex insertion to split a
single triangle, as suggested in [8] for convex polyhedra,
Hoppe applies a vertex insertion that is the inverse of the edge
collapse operation used in many mesh simplification
techniques [12, 27, 11]. A vertex insertion identifies a vertex v
and two of its incident edges. It cuts the mesh open at these
edges and fills the hole with two triangles. Vertex v is thus
split into two vertices. In Hoppe’s scheme, each vertex is
transferred only once. The connectivity cost for each vertex is
the identification of one of the previously transferred vertices
(on average more than 0.5log2(v)) plus the cost of identifying
two of the incident edges (5 bits are sufficient if no vertex is
bounding more than 32 edges). Thus, the connectivity cost per
vertex would be more than 5+0.5log2(v).

Taubin et al. [35] proposed to group Hoppe's splits into
refinements. Each refinement doubles the number of triangles
at an average expected cost of 3.5 bits per triangle. Each
refinement of their progressive forest split method identifies a
set of cut edges, which are grouped into maximally connected
components and stored as spanning vertex-trees. Removing the
cut edges of a tree produces a topological hole that is a simple
polygon, whose boundary is known. The triangulation of the
interior of that polygon, which does not contain any interior
vertices, may be encoded using a simplified version of the
Topological Surgery of Taubin and Rossignac [33], which, as
discussed later, exhibits a non-linear worst case behavior.

5

0 3
1

2

46

7

0 1
01 23

2
4

6 754

6 5

5

0 3
1

2

46

7

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 5

Li and Kuo [19] combine progressive transmission of
connectivity refinements, which insert new vertices one at a
time, with progressive transmission of vertex data, which adds
resolution to the vertex coordinates. They use a simple vertex-
decimation scheme to produce series of operations that decrease
the levels-of-detail of the model. They encode the inverse
connectivity refinement operations by identifying the base
triangle where the vertex must be inserted, and by labeling the
surrounding edges to indicate which of these must be flipped to
restore the correct incidence. This approach leads to an average
connectivity cost of log2(v)+10 bits per vertex.

Graph encoding
The adjacency information for a simple mesh without
boundary is a labeled triangulated planar graph and may be
represented by the triangle-vertex incidence table using 3log2(v)
bits per triangle. However, if we adopt a convention for
constructing a vertex-spanning tree of such graphs and if we
accept to label the vertices with integers that correspond to the
order in which they are visited by a traversal of this spanning
tree, our compression problem may be reduced to one of
computing a bit-efficient representation of an unlabeled
triangulated planar graph. Turan has shown that the structure
of a labeled planar graph may be encoded using slightly less
than 12v bits [38]. Having a constant number of bits per
vertex has a significant advantage over the previous
approaches, which all include a log2(v) factor, especially for
highly complex meshes. Turan builds a vertex-spanning tree
and uses it to represent the boundary of a topological polygon
of 2v−2 edges. The structure of this tree is encoded using 4v−4
bits. There are at most 2v−5 edges that do not belong to the
vertex-spanning tree. These may be encoded using 4 bits each.
The overall connectivity cost is thus, 12n−24 bits.
A triangle-spanning tree of T is a binary tree, whose nodes
correspond to all the triangles of T and whose edges correspond
to some of the interior edges of T. A depth-first traversal of
such a spanning tree corresponds to a walk on the entire mesh
that starts at the root triangle and recursively visits the
neighboring triangles that have not been previously visited.
The spanning tree may be encoded using 2 bits per triangle as
follows. Each triangle is visited by coming to it from an
adjacent, previously visited neighbor triangle. Because the
surface is an orientable manifold, the other two edges may be
uniquely labeled as the left and the right edge. We can use one
bit for each one of these edges to indicate whether they are to
be broken or not during the traversal (i.e., whether they
connect triangles that hold a parent-child relation in the
triangle spanning tree).

Figure 2: The two meshes have identical boundaries and
triangle-spanning trees, which are shown by red arrows
and described by the sequence of moves: left, right, left,
right, right, left, right.

If we could always derive a complete representation of the
connectivity from the spanning tree of the triangles of T, we
would have attained our objectives and would have a very
simple scheme for encoding simple meshes using 2 bits per
triangle. Unfortunately, the triangle-spanning tree does not
capture by itself the entire topology of the incidence graph (see
Fig. 2 for a counterexample).

The Topological Surgery method recently developed by Taubin
and Rossignac [33, 34] encodes both a vertex-spanning tree and
its dual triangle-spanning tree. Cutting through the edges of
the vertex-spanning tree produces a triangulated surface that is
a simple mesh without internal vertices and thus may be
completely represented by a triangle-spanning tree. As
demonstrated above, encoding that tree would not, by itself,
suffice to represent the connectivity. Taubin and Rossignac
encode both the triangle-spanning tree and the topology of the
vertex-spanning tree. Together, these two graphs provide
enough information to recover the connectivity of the mesh.
Basically, the vertex-spanning tree matches pairs of edges in
the boundary of the polygon defined by the triangle-spanning
tree. Taubin and Rossignac encode both trees using a run
length method. Each sequence of consecutive ancestors with a
single child is grouped into a run and encoded by simply
storing its length, using n bits. Two bits per branching
nodes are used to capture the topology of the tree. For
pathological cases, with a non-negligible proportion of multi-
child nodes, this approach does no longer guarantees a linear
storage cost, but for complex meshes, the cost of encoding
both trees may amount to less than a bit per triangle.

The author has proposed a variation of the above Topological
Surgery method [31], where, instead of using a run-length
encoding of the vertex- and triangle-spanning trees, one uses 2
bits per vertex to encode the vertex-spanning tree (one bit
indicates the presence of a child while the other bit indicates
the presence of a right sibling) and 2 bits per triangle to encode
the triangle-spanning tree (one bit indicates the presence of a
right child, while the other bit indicates the presence of a left
child). With twice more triangles than vertices, the guaranteed
worst case connectivity cost of this representation is 3 bits per
triangle.

Following Tutte's studies [39] and using an enumeration
theorem, Itai and Rodeh [15] show that any unlabeled rooted
non-separable triangulated planar graphs of n vertices (i.e., the
incidence graph of triangle meshes homeomorphic to a sphere)
may be represented by 4n bits. Furthermore, they propose a
linear algorithm for constructing a representation of any
labeled planar graph using at most 1.5nlog2(n)+6n+O(log2(n))
bits, while the theoretical minimum is nlog2(n)+O(n). Their
approach uses a triangle as the initial outer loop and then
shrinks that loop by removing one triangle at a time. They
always delete the triangle that is incident to the smallest vertex
v1 in the outer loop and is bounded by the outer loop edge that
starts at v1. They distinguish four cases: (1) The third vertex
precedes v1 in the outer loop; (2) It follows the successor of v1;
(3) It is somewhere else in the outer loop; and (4) it is not on

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 6

the outer loop. Operations (3) and (4) each require log2(v) bits
to identify a vertex in the not yet processed part of the mesh.

A variation of Itai and Rodeh's method was recently reported
by Gumhold and Strasser [10]. It is closely related to the
Edgebreaker method reported here. Although developed
independently, both the Edgebreaker and the method of
Gumhold and Strasser perform the same traversal of the mesh
and, at each step, remove a triangle and encode the necessary
information to reconstruct the triangle by distinguishing
several cases that include the four cases of Itai and Rodeh.
Edgebreaker uses the letters L, R, S, and C to identify cases 1
through 4 of Itai and Rodeh. Gumhold and Strasser add the case
where a boundary edge is reached. Edgebreaker does not need to
distinguish this case, since it encodes the bounding loop at the
beginning of the vertex array. However, Edgebreaker adds the
case E, which corresponds to the situation where the current
triangle is not adjacent to any other remaining triangle. Both
these approaches avoid the log2(v) bits cost associated with
case (4) of Itai and Rodeh by encoding the vertices in the order
in which they are used by case (4). With each case (3)
operation, Gumhold and Strasser must encode the reference to a
vertex in the current boundary, which requires log2(v) bits and
makes their storage costs a non-linear function of v. Note that
Edgebreaker uses a decompression preprocessing step to
compute these vertex-references from the sequence of symbols,
and therefore exhibits a linear storage cost. For common
meshes, Gumhold and Strasser report compression results
between 1.7 and 2.15 bits per triangle using Huffman encoding
of the bit stream.

Keeler and Westbrook [16] improve on Turan's results and
propose a technique for encoding planar graphs with 4.6v bits.
They also build a triangle-spanning tree. Each triangle of the
tree, except the root, shares an edge with its parent and may
have zero, one, or two children and thus two, one, or zero free
edges. They append free edges to the leaves of the triangle-
spanning tree and label them. Encoding the graph and the
labels requires an average of 1+log2(3)/3 bits per edge. The
authors suggest a coding scheme based on a series of graph
transformations.

Touma and Gotsman [37] also encode the vertices along the
vertex-spanning tree in the same order as Taubin and
Rossignac, Gumhold and Strasser, and Edgebreaker. They
distinguish only two cases, which correspond to the cases (3)
and (4) of Itai and Rodeh and to the Edgebreaker's cases S and
C. The other cases are not encoded. Instead, Touma and
Gotsman encode the degree of each vertex, i.e., the number of
incident edges and use it to automatically identify the other
cases. During decompression, they keep track of the number of
the already decoded triangles that are incident upon each vertex
and are thus capable of identifying the R, L, and E triangles
automatically. For highly tessellated regular models, where the
degree of the vertices follows almost regular patterns, they
report compression results of less than a bit per triangle using
Huffman encoding. However, for smaller and less regular
meshes, the required storage may easily exceed 2 bits per
triangle. As Itai and Rodeh and as Gumhold and Strasser, they

require that with each S operation be associated a vertex
reference, which requires log2(v) bits, prior to Huffman
compression.

Vertex permutation
Inspired by [17] and improving on [23, 32], Denny and Sohler
have recently proposed a technique for encoding the incidence
of planar triangulations of sufficiently large size as a
permutation of the vertices in V [7]. They show that there are
less than 28.2v +O(logv) valid triangulations of a planar set of v
points, and that for sufficiently large v, each triangulation may
be associated with a different permutations of these points
(there are approximately 2v log(v) such permutations). Their
approach requires first transmitting an auxiliary triangle that
contains the entire set and then the vertices of V in a suitable
order, computed by the compression algorithm. The decoding
process receives the vertices in batches, sorts them
lexicographically, computes a permutation number by
comparing the order in which the vertices were received with
their lexicographic order, then sweeps over the current
triangulation from left to right. At each vertex of the current
batch, it identifies the enclosing triangle [18] and the vertex is
inserted according to the incidence relation derived from the bit
string that encodes the permutation number. Compression
constructs the successive batches through repetitive plane-
sweeps, during which vertices are removed incrementally and
the resulting holes re-triangulated. For each point, the
information needed to reconstruct that triangulation is encoded
in the permutation of the vertices of the batch. The batches are
decompressed in inverse order. Although for sufficiently
complex models the cost of storing the connectivity is null,
the unstructured order in which the vertices are received and the
absence of the incidence graph during their decompression
makes it difficult to combine this approach with the predictive
techniques for vertex encoding discussed earlier.

Compressing Simple Meshes
We focus in this section and the next two on simple meshes.
Then, we explain how to generalize our scheme to non-
manifold triangulated surfaces with an arbitrary number of
handles and several bounding loops.

The Edgebreaker compression algorithm performs a series of
steps. Each step removes one triangle from the current mesh.
At each stage, the remaining portion of the mesh is composed
of one or several regions, denoted Ri, which are simple
meshes. Technically, each region is the union of triangles of
T, whose interior is contained in one maximally connected
component of the interior of the union of the remaining
triangles. Note that two regions may share a vertex, but not an
edge. The edges bounding each region form a closed manifold
polygonal curve, called loop, which has no self-intersections.
One edge of each loop is called a gate. A stack contains
references, S0, S1, S2,… to all the gates. The top of the stack,
S0, references the active gate, g. Let R0 be the region incident
upon g and let B denote the bounding loop of R0. Note that B
contains g. This notation is illustrated in Fig. 3. Note that for

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 7

simple meshes, the initial configuration has a single region
and a single loop.

Figure 3: During compression, the top of the stack, S0,
points to half-edge g, called the gate, which identifies the
boundary B of the active mesh R0. The only triangle that
is incident upon g (shown in green) will be removed from
R0. When present, the other entries in the stack point to
half-edges included in the bounding loops of regions that
will be compressed later. These will become gates when
they are popped to the top of the stack. Note that R0 may
later be split into separate regions, which will be tracked
using the stack.

At each step, Edgebreaker identifies the unique triangle, X, that
is part of R0 and is incident upon g. Let v be the only vertex
of X that does not bound g. Edgebreaker analyzes the relation
that v has with respect to B and g, distinguishing 5 cases
labeled C, L, E, R, and S (see Fig. 4).

Figure 4: The triangle X, identified because it is the only
triangle in the remaining portion of the mesh that is
incident upon the gate g, will be removed. The associated
operation is of type C if the third vertex v of X that is not
bounding g has not yet been visited. If v has been visited,
then it is included in B. If it both immediately follows the
end-vertex of and immediately precedes the start vertex of
g along B, then X is the last triangle of R 0 and we record
an E operation. If v immediately follows g, but does not
precedes it, we record an R operation. If v does not
immediately follow g but precedes it, we record an L
operation. Finally, if v lies in B but is not the vertex that
immediately precedes or follows the vertices of g, then we
record an S operation.

The selection of the appropriate case may be performed by the
following sequence of tests:

IF v ∉ B THEN case C
ELSE IF v follows g

THEN IF v precedes g THEN case E ELSE case R
ELSE IF v precedes g THEN case L ELSE case S

Edgebreaker constructs a compression history H by appending
op-codes selected from the set {C, L, E, R, or S} to identify
the successive steps that must be used to reconstruct the mesh
during decompression. Edgebreaker also builds a list P of
vertex identifiers, in the order in which they are reached by C
operations as the third vertex, v , of the triangle incident upon
the gate. This list will define the order in which the vertices
will be encoded. The history H will be compressed using
binary codes or any desired compression scheme. Surprisingly,
as demonstrated in the section on Decompression Algorithms,
the information contained in H suffices to recover the labeled
planar triangulated graph that represents the connectivity of T.
The vertices referenced by the graph are labeled with integer
indices (1, 2, 3…) that represent the order in which the
corresponding vertex data will be recovered at decompression.
During compression, it suffices to encode the vertices in the
order of their references in P. For meshes with boundary, P is
initialized to the references of the vertices of the initial loop B
as they are encountered by walking around it, starting with the
end-vertex of the gate. Fig. 5 illustrates this process.

Figure 5: This mesh may represent the fi nthe
compression of a large region in the mesh or the full
compression of a small simple mesh with boundary.
Starting at gate g, Edgebreaker removes triangles by
following the dark arrows: first red, then green, then
blue. Triangles are color-coded as in Fig u4 indicatin g
the type of the associated operation(C yellow, R blue, S
green, L brown, and E red). The history is
H=CCRRRSLCRSERRELCRRRCRRRE. The thick dotted
dark green line is the gate. The rest of the boundary is
shown with a thick brown line. The thick black lines
identify edges that have never been gates. Together, the
thick solid lines define a vertex-spanning tree rooted at
the end-vertex of g and cutting the surface into a
topological polygon. The thick black dotted edges are
gates that have been on the stack. The vertices are
marked with integer indices that indicate the order in
which their references are to be included in P. Note that
each interior vertex corresponds to a C o p(yellow
triangle).

To clarify some implementation details, we introduce a simple
data structure for storing both the connectivity of the mesh and
the links between the successive edges in the bounding loops.
This data structure is based on the concept of a half-edge used
in many polyhedral representations (see the author's survey
[28]). A half-edge h is the association of an edge e of T with a
triangle X incident upon e. Note that each half-edge is oriented
and that to each internal edge of T correspond two half-edges
with opposite orientation, each induced by the corresponding

X

v

C

v

X

E

X

v

R

X

v

L X

v

S

16 1 2

3

4 5 6

7

89

10

11

1213

14

15

17 18

19

20

21

C

g.v

g.p.o

g

g.n.o

g.Ng.n
g.pg.P g

g.Ng.P
1

2

3

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 8

triangle. With each half-edge h, we associate the following
entities (see Fig. 6):
• h.s is the starting vertex for h
• h.e is the ending vertex for h
• h.v is the third vertex of X that does not bound h
• h.n is the half-edge that follows h in the boundary of X
• h.p is the half-edge that precedes h in the boundary of X
• h.o is the opposite half-edge (When e is an interior edge,

h.o associates e with the other incident triangle.)
• h.N is the half-edge that follow h in B that contains h
• h.P is the half-edge that precedes h in B that contains h

Figure 6: A half-edge, h, green arrow (left), points to its
starting and ending vertices, h.s and h.e and to the
opposite vertex h.v. The other two edges of the triangle
associated with h are denoted h.p and h.n (red and blue
arrows). The opposite half-edge, h.o (lime arrow)
provides access to the adjacent triangle when it exists.
Curved red bi-directional arrows (right) represent links
h.P and h.N that organize the bounding black half-edges
of B into a doubly-linked cyclic list.

For clarity, we have extended the object-oriented notation to
reference the various fields associated with a half-edge
structure. In the algorithms presented below and in Figs. 7
through 11, we assume the following semantics: The
assignment h.x=y changes the content of the field h.x
associated with h so that it points to y. For example, if these
references were stored as parallel arrays of integer indices, the
statement h.x=y would be coded as x[h]=y and the statement
g.n.o.P=g.p.o could be coded as P[o[n[g]]]=o[p[g]]. Efficient
techniques for storing and constructing such tables from a
triangle-vertex incidence array are suggested in [30].

The compression algorithms also uses binary flags, v.m and
h.m, to mark each previously visited vertex v and each half-
edge h that is in a bounding loop of the remaining portion of
the mesh. The vertex-flags are used to distinguish between C
and S cases without having to traverse B. The edge-flags are
used during S operations to accelerate the process of finding
the bounding half-edge b such that g.v is b.e. The notation
P=P|v means that the reference to vertex v is appended to the
list P and H=H|C means that the op-ode for the C operation is
appended to the history H. We also use the # sign to start
inline comments.

During the initialization part of the compression process,
Edgebreaker loads into P the references to the vertices
encountered by marching along the initial bounding loop,
starting from the end-vertex of the gate. It also marks the
bounding edges and vertices and sets the .P and .N links for all
bounding edges. It initializes the stack to point to the half-edge
that is the initial gate.

Then compression identifies the operation type using:

IF NOT g.v.m THEN case C # v not marked
ELSE IF g.p==g.P # left edge of X is

THEN IF g.n==g.N THEN case E ELSE cas e
ELSE IF g.n==g.N THEN case R ELSE cas e

and then performs the corresponding changes to the half-edge
data structure, as explained in Figs. 7 to 11.

Figure 7: Case C
The initial mesh (left) corresponds to a C case. The
result (right) is obtained by creating 3 bi-directio n
links in B (two-headed red arrows). Thicker arrows
show bounding half-edges.

H=H|C; # append C to hist o
P=P|g.v; # append v to P
g.m=0; g.p.o.m=1; # update flags
g.n.o.m=1; g.v.m=1;
g.p.o.P=g.P; g.P.N=g.p.o; # fix red link 1 i n
g.p.o.N=g.n.o; g.n.o.P=g.p.o; # fix red link 2 i n
g.n.o.N;=g.N; g.N.P=g.n.o # fix red link 3 i n
g=g.n.o; StackTop=g; # move gate

Figure 8: Case E
H=H|E; # append E to the h
g.m=0; g.n.m=0; g.p.m=0; # unmark edges
PopStack; g=StackTop; # pop stack: next r

Figure 9: Case L
H=H|L; # append L to hist o
g.m=0; g.P.m=0; g.n.o.m=1; # update marks
g.P.P.N=g.n.o; g.n.o.P=g.P.P; # fix red link 1 i n
g.n.o.N=g.N; g.N.P=g.n.o; # fix red link 2 i n
g=g.n.o; StackTop=g; # move gate

h

h.o

h.
h.p

h.eh.s

h.v

X

v

h

h.P h.N

C

g.v

g.p.o

g

g.n.o

g.Ng.n
g.pg.P g

g.Ng.P
1

2

3

g=PopStack

X

g.v

g

g.N
g.n

g.P
g.p

C g.Ng.P

C

g.v

g

g.n.o

g.Ng.n
g.P
g.p g

g.N
g.P

1

2

g.P.
P

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 9

Figure 10: Case R
H=H|R; # append R to history
g.m=0; g.N.m=0; g.p.o.m=1; # update marks
g.N.N.P=g.p.o; g.p.o.N=g.N.N;# fix red link 1 in B
g.p.o.P=g.P; g.P.N=g.p.o; # fix red link 2 in B
g=g.p.o; StackTop=g; # move g

Figure 11: Case S
H=H|S; # append S to history
g.m=0; g.p.o.m=1; g.n.o.m=1; # update marks
b=g.n; # initial candidate for b
WHILE NOT b.m DO b=b.o.p; # turn around v to marked b
g.P.N=g.p.o; g.p.o.P=g.P; # fix red link 1 in B
g.p.o.N=b.N; b.N.P=g.p.o; # fix red link 2 in B
b.N=g.n.o; g.n.o.P=b; # fix red link 3 in B
g.n.o.N=g.N; g.N.P=g.n.o; # fix red link 4 in B
StackTop=g.p.o; PushStack; # push g.p.o on stack
g=g.n.o; StackTop=g # move g

Because the preconditions for the L, R, C, S, and E operations
are mutually exclusive and cover all possible cases, and
because these operations all decrement the triangle count in T,
the compression process removes all triangles of T and always
terminates.

Compressed format
The compressed format contains a few Selectors, the History,
and the Vertex Data. We discuss them in reverse order.

Vertex data
We distinguish three situations:

1. To compress an isolated, triangulated surface, we may
need to encode a simple mesh along with its boundary.

2. To compress the subset of a larger triangle mesh, we need
to encode the connectivity and interior vertices of a simple
mesh, but need not encode its bounding vertices, because
they will be already available prior to decompression.
This, for example may be the case when we compress the
refinement of a specific feature in a larger mesh
represented at a coarse level-of-detail [14].

3. To encode the triangulated boundary of a simply connected
manifold solid, we need to encode a closed mesh without
boundary.

For situation 1, the vertex data stream starts with the exterior
vertices listed in the order in which they occur around B,
starting with the end-vertex of g. For situation 2, that list is
omitted. For situation 3, an edge is selected as the initial gate
and its end- and start-vertices are first coded in the vertex data
stream.

The rest of the vertex data stream contains data for the interior
vertices, encoded in the order specified in the remaining part of
P. The binary format that is used for encoding vertex data
depends on which compression scheme is used.

History
The best coding strategies for the history, H, depends on the
size of the mesh and on the ratio |VE|/|VI|.

For very complex meshes, the most effective option is to
temporarily store H as a sequence of symbols from the set {C,
L, E, R, S} and to compute, as a post-processing compression
step, an optimal custom scheme for each individual mesh.
Some agreed-upon convention could then be used to include
the description of the particular coding scheme before H in the
compressed format. An alternative is to use progressive coding
schemes [41, 40, 25]. A number of general-purpose data
compression schemes may be used for this purpose and will
not be further discussed here. They may yield very high
compression rations for large regular meshes, but often
perform poorly for large and irregular meshes and for small
meshes. Instead we focus our discussion on practical schemes
that are effective for small meshes and on demonstrating that
for simple meshes, Edgebreaker provides the best guaranteed
worst case compression.

If we use fixed binary op-codes with 1 bit to encode each C
operation and 3 bits to encode each other operation (for
example, we use 0 for C, 100 for S, 101 for R, 110 for L, and
111 for E), the total number of bits needed to encode H is
c=|C|+3(|S|+|L|+|R|+E|), where |X| denotes the number of X-
type operations in H. Because there is a one-to-one association
between the vertices of VI and the triangles processed by a C
operation, we have |C|=|VI|.

Hence, |S|+|L|+|R|+|E|=|T|−|C|=|T|−|VI| and c=|VI|+3(|T|−|VI|),
which yields: c=2|T|+(|T|−2|VI|). Given that |T|−2|VI|=|VE|−2,
we obtain c=2|T|+|VE|−2. Consequently, for simple meshes
with a relatively simple initial boundary, we have |VE|<<|VI|,
leading to |VE|<<|T|, and to c≈2|T|.

To encode a simple mesh without boundary, such as the entire
surface that bounds a manifold 3D solid, it suffices to “cut
open” one of its edges, declare it to be the initial loop, B, and
include the encoding of its two vertices at the top of the vertex
list, as discussed above. In that case, |VE|=2 and c=2|T|, which
is exactly 2 bits per triangle. The connectivity of such meshes
is a planar triangulated graph. Thus, we have introduced a new
representation of such graphs, which is more compact than
previously proposed solutions [39, 15, 38, 23, 16].

C

g.v

g.p.o

g

g.N
g.ng.pg.P g

g.N

g.P
2

1g.N.N

C

g.v

g.p.o

g

g.n.o

g.Ng.n
g.pg.P

g g.N

g.P

1

3

4

bb.N

2

Push

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 10

The CL and CE sequences of operations correspond to
situations where two triangles are identical (have the same
vertices). By definition, these situations are impossible in
simple meshes. We can exploit this constraint to increase the
expected compression ratio of Edgebreaker by using a slightly
more complex coding scheme. We use two different code sets:
the general code set proposed above for operations that do not
follow a C operation and a special code set for operations that
follow a C. The special code set is still 0 for C, but reduces to
a 2-bit op-code for the other two operations: 10 for S, and 11
for R. In the worst case, with long sequences of consecutive
C’s, this encoding method has no effect on the bit-count. At
best however, when all C’s are separated, it reduces the bit-
count to an average of 1.5 bit per triangle (because there are as
many C’s as other operations).

When Edgebreaker is used to compress small surface patches
with a relatively large number of edges in their boundary, the
above binary codes will never exceed an average of 3 bits per
triangle, but are not optimal. Because, in such cases, the R
operation is the most frequent in the sequence, the op-codes,
proposed earlier, should be replaced by others, where R is a
one-bit code (say 0) and the other four operations have 3-bit
codes. Under these new conditions, c=3|T|-2|R|, which implies
that, if most of the triangles correspond to an R operation
(which is the case for a fan of triangles), the sequence
representing G may be compressed down to 1 bit per triangle.

For meshes that do not fall in these two categories (interior-
heavy or boundary-heavy), we suggest a post-processing
compression step, which would compute the optimal op-code
assignment for each operation, taking into account their
frequencies and the constraints on impossible sequences. The
resulting codes would be transmitted before H, using some
convention. For example, we may use length-value tuples (2
bits to encode the bit length followed by the actual code) for
all the 8 cases discussed earlier: C following a C, R following
a C, E following a C, and occurrences of C, R, L, S, and E
that do not follow a C. This table will take at most 42 bits.

Selectors
The compressed format may start with selectors, indicating
whether the external vertices are included and which coding
method is used for the history.

Decompressing simple meshes
The decompression algorithm receives a binary encoding of the
history, H, which contains only the sequence of op-codes
generated by the compression algorithm described above. It
produces a triangle table, where each triangle is represented by
three labels. These labels are consecutive integers assigned to
vertices in the order in which the vertices are first encountered
by the decompression algorithm. Note that it is the same order
as the one in which they are first encountered by the
compression algorithm.

Decompression performs two traversal of the input stream:
Preprocessing computes |T|, |VE|, |VI|, and the offsets for all
the S operations, which are stored in the offset table O;
Generation creates the triangles in the order in which they were

deleted by the compression process and, for each triangle,
stores the labels of its 3 vertices. To compute the correct
labels at decompression, we simply increment an integer
vertex-counter, c, each time we encounter a C operation and
use c as the label of the new vertex, g.v. We provide the
details for both phases and illustrate them on an example.

Preprocessing
The Edgebreaker decompression preprocessing phase reads the
input stream, i.e.: an encoding of the sequence of op-codes,
decodes the op-codes one at a time, stores them in H for the
Generation phase, and performs the actions described below.
This process continues until the number of encountered E op-
codes exceeds the number of encountered S op-codes.

It use the following variables and data structures:
• t, initialized to zero, tracks the total number of operations.

The final value of t is the triangle count.
• d, initialized to zero, tracks the value |S|−|E|. d becomes

negative after processing the last E operation of H.
• c, initialized to zero, tracks the number of C operations

encountered so far. The final value of c is |VI|.
• e, initialized to zero, tracks the value 3|E|+|L|+|R|−|C|−|S|.

The final value of e is |VE|. Values of e resulting from S
operations will be pushed on the stack.

• s, initialized to zero, tracks the number of S operations
encountered so far. We use s to relate e to the
corresponding S, when e is pushed onto the stack.

• An initially empty stack, where we save (e,s) pairs
resulting from S operations and use them during the
corresponding E operations to compute the offset.

• O, an initially empty table of offsets.

At each step depending on the op-code, Edgebreaker performs
the following operations:
Case S: e−=1; s+=1; push(e,s); d+=1;
Case E: e+=3; (e',s')=pop; O[s']=e−e'−2; d−=1;

IF d<0 THEN stop. # This is the end of the history
Case C: e−=1; c+=1;
Case R: e+=1;
Case L: e+=1;
At the end of the preprocessing phase, |T|=t, |VI|=c, |VE|=e, and
O contains the desired offsets, sorted in the order in which the
corresponding S operations occur in H. The remainder of this
subsection explains why this simple procedure produces the
desired results.

|T|=t, because each operation corresponds to a different triangle.
Since only C operations require the introduction of new
vertices, |VI|=|C|. Deriving the count of external vertices, |VE|,
is slightly more complex. We know that at the end of the
whole decompression process, the boundary of the remaining
region of T must have zero edges, because this region is
empty. If we can extract from H how many edges have been
added or deleted by the steps of the compression process, we
will know the initial length of B. Each operation alters the
total count of edges (and thus of vertices) in B as follows. R
deletes two edges from B, but exposes a new one, thus
decreases the edge count by 1. L does the same. E removes 3
edges. C and S increase the edge-count by 1 because they each

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 11

remove one edge from B and insert two new edges. We can
track the total count regardless of the topological changes in
the boundary that may be produced by S operations. These
edge-counts changes lead to the following formula: The
number of edges, and hence of vertices, in the initial bounding
loop, B, is 3|E|+|L|+|R|−|C|−|S|.

To compute the offsets, we first note that S and E operations
are paired and work as parentheses in the following sense: any
sub-string of H that starts at an S and finishes at the
corresponding E operation encodes the incidence graph of a
simple mesh that is a subset of T. We use e to track the value
of the expression 3|E|+|L|+|R|−|C|−|S| for the already processed
subset of H. The difference between the values of e at the E
operation and the value of e at the corresponding S operation is
the number of vertices in the boundary of that subset. We
subtract 2 from that number, because we are not counting the
two vertices of g as part of the offset.

To keep track of matching S and E operations, we use a stack,
which we push for S operations and pop for E operations. The
stack is used to save the e value for each S. When the stack is
popped, we will subtract this value from the current value of e,
which is associated with the matching E.

The order in which S operations are encountered in H may be
different from the order in which the matching E operations
occur. Because each offset value is only computed when an E
operation is reached, we cannot simply save it in the next
available entry in O. Therefore, we associate with each e
pushed on the stack the corresponding value of s, which
identifies the S operations. When popped from the stack, this s
value, denoted s', is the index of the entry in O for the offset
e−e'−2, where e' is the value of e that was pushed on the stack
along with s'.

We illustrate the preprocessing phase of decompression on
H=CCRRRSLCRSERRELCRRRCRRRE, which corresponds
to meshes with a connectivity homeomorphic to the mesh of
Fig. 5. After each operation, the table below indicates the
resulting values of the variables: d, c, e, and s, as defined
above. The variables e' and s' refer to the content of the top of
the stack. Note that this process first enters an offset value of
1 in O[2] and then enters an offset value of 6 in O[1]. The
final value of e indicates 16 vertices in the external loop. The
final value of c indicates 5 internal vertices. We did not include
the triangle count t, which is incremented from 1 to 24.

C C R R R S L C R S E R R E L C R R R C R R R E

d 0 0 0 0 0 1 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 -1

c 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5

e -1 -2 -1 0 1 0 1 0 1 0 3 4 5 8 9 8 9 10 11 10 11 12 13 16

s 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

e' 0 0 0 0 0 0 0 0

s' 1 1 1 1 2 1 1 1

O[s] 1 6

Generation
The generation phase allocates a table of triangle-vertex
incidence relations, denoted TV, of |T| entries, each will
combine the three integer vertex labels of a triangle. Then, it
initializes the vertex counter, c to |VE|, so that references to
external vertices precede references to internal vertices. It
constructs the bounding loops, B, a circular doubly-linked list
of |VE| edges, each edge, G, containing the pointer G.P to its
predecessor and G.N successor in the loop, and an integer
label, G.e, which identifies the end-vertex of G. The labels are
initialized with increasing integers between 1 to |VE|.
Edgebreaker also creates a stack of references to edges and
initializes it to a single entry, which refers to the first edge in
the loop. The top of the stack is called the gate, and will be
denoted G. We use upper case letters for the edges of B to
distinguish them from the half-edges used during compression.
Finally, Edgebreaker initializes a triangle counter, t, and s, the
counter of S operations, to zero.

After this initialization, Edgebreaker traverses H and, for each
operation, it increments t, stores the labels of the 3 vertices of
the current triangle X in entry number t of the table of
triangles, and updates B, G, and the stack, if necessary.

At each stage, the gate, G, already identifies two of the vertices
of the current triangle, X. These are G.P.e and G.e. The
computation of the third vertex depends on the current op-code.
Depending on the current op-code, we perform the operations
listed below. We use the following notation: x++ returns the x
value and then increments x while ++x increments x first and
returns the result. The terms "REPEAT" and "n TIMES"
delimit a block of instructions. For simplicity, we do not
include operations that release the memory allocated during the
process.

Case C: TV[++t]=(G.P.e, G.e, ++c);.
New Edge A; A.e=c;
G.P.N=A; A.P=G.P;
A.N=G; G.P=A;

Case R: TV[++ t]=(G.P.e, G.e, G.N.e);
G.P.N=G.N; G.N.P=G.P;
G=G.N;

Case L: TV[++ t]=(G.P.e, G.e, G.P.P.e);
G.P=G.P.P; G.P.P.N=G;

Case E: TV[++ t]=(G.P.e, G.e, G.N.e); G=pop;

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 12

Case S: D=G.N; REPEAT D=D.N; O[++s] TIMES;
TV[++ t]=(G.P.e, G.e, D.e);
New Edge A; A.e=D.e;
G.P.N=A; A.P=G.P;
pop; push(A);
A.N=D.N; D.N.P=A;
G.P=D; D.N=G;
push(G);

Although in practice only a small fraction of operations are of
the S type and the average length of the loop is proportional to
the square root of |V| (see [10] for a discussion of this issue),
the use of a linked list for B implies a linear cost for each S
operation, and hence makes the asymptotic worst case
complexity of the computational cost of decompression O(v2).
This cost may be reduced to O(vlogv) by maintaining a
balanced binary search tree [1], rather than a doubly linked list,
for representing the sequence of vertices in the active loop, B.
On hardware platforms that support fast block memory transfer
operations, an attractive alternative is to use a linear array to
store the ordered set of index-references to the vertices of B and
to perform insertions and deletions via block memory
transfers. This latter solution turns updating B and accessing
the offset vertex into constant cost operations, at least for
models of moderate size.

Again, we illustrate the Generation phase of the decompression
process on the initial part of the same sequence of operations,
CCRRRSLCRSERRELCRRRCRRRE, produced by the
compression of the mesh in Fig. 5. Given that |VE|=16, we
start with an initial loop of 16 edges containing the labels 1,
2, .3… The first edge is the gate G, which is associated with
its end-vertex labeled 1. c is initialized to 16. The first C
operation fills TV[1] with the three values: 16, which is
G.P.e; 1, which is G.e; and 17, which is the result of
incrementing c. We also create a new edge, A, and store 17 as
its label. Then we insert A before G by updating the pointers
as follows: G.P.N=A; A.P=G.P; A.N=G; G.P=A. The second
C operation creates triangle (17, 1, 18) and inserts another edge
before G with the label 18. Then the first R operation creates
triangle (18,1,2), deletes the gate from the loop and makes the
edge labeled 2 the current gate. The second and third R
operations create the triangles (18,2,3) and (18,3,4) reducing
the loop to contain the vertex sequence
{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}. Because O[1] is 6,
the first S operation skips the six vertices 5, 6, 7, 8, 9, and
10. Then it fills triangle number 6 with the labels (18,4,11)
and splits the loop into {11,12,13,14,15,16,17,18} and
{4,5,6,7,8,9,10,11}. The bottom of the stack points to the
edge (18,11), the first one in the first loop. The top of the
stack points to edge (11,4), the first one in the second loop.
Then the L operation creates triangle (11,4,10) and deletes the
last edge of the second loop. At this point G is the edge
(10,4). This process continues, reaching the second S, at
which point there are 3 entries in the stack pointing to the
loops: {11,12,13,14,15,16,17,18}, {7,8,9,10,19}, and {5,6,7},
which includes the current gate (7,5). The next operation, E,
creates the triangle {7.5.6} and pops the stack, so that the new
gate is edge (19,7). The next 3 operations, R, R, and E create

the 3 triangles of that region. We pop the stack and have edge
(18,11) as gate. The remaining portion of H, which now
contains LCRRRCRRRE, is processed similarly.

General triangle meshes
The Edgebreaker approach, as presented so far, is capable of
encoding the connectivity of any planar triangle graph with
zero or one hole. We describe here how to extend the
Edgebreaker compressed format and the compression and
compression algorithms, so as to support meshes with
multiple holes and with one or more handles.

Holes
In a mesh with several holes, i.e.: with more than one
bounding loop, the compression algorithm may find a triangle,
whose third vertex, g.n.v, lies on the boundary of a hole rather
than on the current loop. Instead of splitting the current loop
into two, we merge it with the hole by opening both loops at
their common vertex and reconnecting them into a single
cyclic list. We use the symbol M to identify such cases in the
history. To distinguish these situations from the S cases, we
initialize the .m marks of all vertices and edges of the initial
loop to 1 and of all other external vertices and external edges to
2. Internal vertices and edges are still marked with zero. This
assignment may be easily performed by traversing the half-
edge data structure and, each time an unmarked external edge is
encountered, by following the loop that contains it and by
marking all the vertices and edges with a 1 for the first loop
and with a 2 for all subsequent loops. We assume for
simplicity that the union of all external edges forms a
manifold curve with one component per hole. Surfaces with
non-manifold boundary may be converted to such a
representation by replicating their non-manifold vertices.

C cases now correspond to situations where g.v.m==0. M cases
correspond to situations where g.v.m==2, all other cases
correspond to situations where g.v.m==1 and may be
distinguished as before. Each time a hole is reached, the
references to all of its vertices are appended to P, starting with
the contact vertex g.n.v. In addition, the extended compression
algorithm associates with each M operation the length l of the
corresponding hole by appending it to a list of hole length, L.
The processing of the M operation during compression is
illustrated Fig. 12.

During the preprocessing phase of the extended decompression
algorithm, each time an M operation is reached, to correctly
compute the offset table, the value l+1, rather than 1, must be
subtracted from the edge-count e.

Then, during the generation phase, at each M operation, after
the bounding loop has been merged with the hole, as shown
Fig. 12, it contains the l edges of the hole inserted just before
g. The vertex label for the last one of these edges is c+1. The
labels of the first l–1 of these edges are assigned by successive
increments of c. The pseudo-code for the M operation follows:

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 13

TV[++t]=(G.P.e, G.e, c+1);# new triangle with the contact point

D=G.P; # initialize an end-of-list edge pointer
REPEAT # insert l +1 edges after G.P

New Edge A; # create new edge
D.N=A; A.P=D; A.e=++c; # link it after D and set label
D=A; # move end-of-list
l TIMES; # last edge has wrong label

New Edge A; # create new edge
D.N=A; A.P=D; A.e=c– l +1; # link it after D and set label
A.N=G; G.P=A; # link end-of-list to G,

Figure 12: Case M
H=H|M; # append M to history
g.m=0; g.p.o.m=1; g.n.o.m=1; # update marks
b=g.n; # initial candidate for b
WHILE b.m ≠2 DO b=b.o.p; # turn around v
g.P.N=g.p.o; g.p.o.P=g.P; # fix red link 1 in B
g.p.o.N=b.N; b.N.P=g.p.o; # fix red link 2 in B
b.N=g.n.o; g.n.o.P=b; # fix red link 3 in B
g.n.o.N=g.N; g.N.P=g.n.o; # fix red link 4 in B
g=g.n.o; StackTop=g # move g
b=b.N; # start here the traversal of the new edges
l=0;
WHILE b.e ≠g.s DO { # until old g.v. is reached do

b.m=1; b.s.m=1; # mark hole
l ++; # counts length of hole
P=P|b.s; # append new vertex reference to P
b=b.N }; # move to next edge around hole

 L = L | l ; # appends the length of hole to L

The addition of the M operation requires changing our coding
scheme. A simple approach would be to use 4-bit codes for S
and M (for example, S could be 1000 and M could be 1001.
This solution adds |S| bits to the overall compressed
representation in addition to the cost of encoding the M
operations. If we expect the number of holes to be small
compared to |S|, it is advantageous to use the same code for all
M and S operations, and to distinguish them by including, in
the compressed format, right before the encoding of H, a
representation of an M-table. The M-table contains two entries
for each M operation. The first entry is the number of S
operations encountered since the previous M operation or since
the beginning of H for the first M operation. Each one of these
numbers indicates how many consecutive S operations should
not be treated as M operations. The second entry in the M-
table is the length l of the boundary of the corresponding hole.

Handles
An S operation splits the current bounding loop into two
parts, which may be independently processed by the
compression and by the decompression algorithms. However,
when an S operation is performed as described earlier on a
mesh where the current boundary wraps around a handle, a new
hole is created, instead of a separate component of the mesh.
Indeed, the current loop is split into two loops without
disconnecting the remaining portion of the mesh. Such a split
may, for example, transform a toroidal surface with one hole
into a cylindrical surface (a mesh with two holes). Several
such holes may be created during compression. They will be
merged into the current loop by subsequent M operations, as
described above. However, they will not necessarily be merged
in the order in which they have been created.

We modify the S operation as follows. When the current loop
is split into the left and right sub-loops (Fig. 11), we mark the
vertices and edges of the left sub-loop with a 3. The first half-
edge of this left sub-loop is pushed onto the stack along with
the location of the corresponding S op-ode in H.

During compression, when we later reach a vertex marked with
a 3, we perform a different merging operation identified by the
op-code M', which merges the two loops, but does not append
to P the references to the vertices of the hole. M' also
computes the position, p, of the associated gate in the stack
and the offset, o, between that gate and the reached point. p, o,
and the number of S operations encountered after the previous
M' operation are stored in the M'-table.

During decompression of an M' operation, Edgebreaker
performs the following steps:

D=remove(p); # fetches and removes en t
stack

REPEAT D=D.N o TIMES;# find edge to connectin g
TV[++t]=(G.P.e, G.e, D.e);# new triangle with the c
New Edge A; # create new edge
G.P.N=A; A.P=G.P; # link 1
A.N=D.N; D.N.P=A;# link 2
D.N=G; G.P=D; # link 3

Boundaries of solid models with triangulated surfaces may have
handles, but do not have holes. Therefore, when dealing with
solid models, it is not necessary to support holes and the
operations of type M' may be encoded by using the same op-
code as for the S operations. The entries of the M'-table may
be used to distinguish them, as discussed above for holes.

For meshes with handles and holes, both types of operations
must be supported. Therefore, during compression, the vertices
may be marked with a 0, 1, a 2 or a 3. These markings permit
to distinguish between C, S, M and M' operations. Again, we
suggest to use a combined M-M'-table to distinguish between
S, M, and M' operations and to encode the associated
parameters. With this convention, the history still only
contains C, L, E, R, and S op-codes. For edges with a small
number of handles and holes relative to the number of
triangles, the storage cost of the M-M'-table has little effect on
the connectivity cost per triangle.

C

g.v

g.p.o

g

g.n.o

g.Ng.n
g.pg.P

g g.N

g.P

1

3

4

bb.N

2

Push

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 14

Summary of contributions
We have presented a new compression/decompression
technique for coding the connectivity, i.e., the triangle/vertex
incidence graph, of arbitrary triangle meshes. The research
contributions reported in this paper have both a theoretical and
a practical value. They include an extensive survey of prior art,
an improvement over the best known encoding of planar
triangulated graphs, i.e., an algorithm which guarantees the
lowest known upper bound on the connectivity storage cost,
and a detailed description of very effective simple compression
and decompression algorithms for the connectivity of a large
class of triangle meshes.

Our survey discusses theoretical contributions on labeled and
unlabeled planar triangulated graphs and practical
implementations of compression algorithms developed for
graphic applications [36]. We also propose several variations,
which improve or combine these approaches in novel ways and
have identified the associated connectivity cost, which we use
as a basis of comparison.

Through the introduction of a novel decompression technique,
which in one pass automatically extracts the offsets of S
operations from the compression history, H, we have
eliminated the need to encode these offsets explicitly and thus
have achieved a linear connectivity cost for meshes with a
constant number of handles and holes. This result improves
over recently published, independently developed approaches
[37, 10], which exhibit an asymptotic O(vlogv) connectivity
cost, even for simple meshes without holes or handles. On a
more theoretical aspect, we have also improved on all previous
work on coding planar triangulated graphs [39, 15, 38, 23, 16]
by providing a linear code with the lowest constant: a
guaranteed 2 bits per triangle or less.

On a practical side, the Edgebreaker technique introduced here
offers a simpler to implement and, in many cases, more
effective alternative to previously proposed connectivity coding
schemes [6, 13, 33, 34]. The compression algorithm, which
we describe in details, uses a half-edge data structure and
simply traverses the mesh from one triangle to a neighboring
one, recording the history: a simple list of the op-codes for the
C, E, R, L, and S operations. The decompression algorithm
traverses the history once to compute the number of internal
and external vertices and the offset for each S operation. Then
it recreates the triangles, one at a time, in the order in which
they have been visited by the compression algorithm. It labels
the vertices with successive integers. This labeling of the
vertices is also computed as a byproduct of the compression
process and defines the order in which vertex data should be
compressed.

Edgebreaker may be easily combined with a variety of vertex
data compression schemes [33, 37] based on vertex estimates
that are derived from the incidence graph and from the location
of previously decoded vertices.

Edgebreaker compresses the connectivity of simply-connected
manifold triangle meshes down to between 1.5 and 2 bits per
triangle. By allowing additional bits, the basic technique is
extended to support triangle meshes with holes and handles.

For highly complex meshes, these results are comparable to
those reported by other authors [33, 37, 10], who through
Huffmann coding may achieve lower bit counts, especially for
meshes with an almost regular topology [37]. Because general
purpose statistical compression schemes perform poorly on
smaller or very irregular data, these compression methods
require more bits per triangle when dealing with simpler or
irregular triangle meshes. Edgebreaker does not rely on
statistical methods and thus guarantees its low bit counts. It is
therefore a practical solution for compressing both large and
small meshes.

In conclusion, Edgebreaker provides a simple and effective
connectivity compression tool for a variety of 3D applications.

We believe that the area of 3D compression will grow
significantly over the next few years. We plan to focus on the
integration of Edgebreaker's connectivity compression with
progressive methods [14, 35] for connectivity refinement and
with methods for the progressive refinement of vertex-accuracy
[19]. We also plan to explore variations of Edgebreaker's
format that are suitable for hardware decompression and graphic
acceleration and would offer easier to program compression
algorithms and more compact formats than currently available
methods [6, 4].

Acknowledgments
The author thanks Andrzej Szymczak from Georgia Tech for
pointing out that the CL and CE combinations are impossible,
Antonio Haro from Georgia Tech for developing an early
implementation of the Edgebreaker algorithms, and Gabriel
Taubin from IBM Research, and Leonard Schulman, Peter
Lindstrom, Renato Pajarola and Greg Turk from Georgia Tech
for their comments on this work and for their input regarding
data compression schemes.

Bibliography
[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

[2] R. Bar-Yehuda and C. Gotsman, Time/space tradeoffs for
polygon mesh rendering. ACM Transactions on Graphics,
15(2):141-152, April 1996.

[3] R., Carey, G. Bell, C. Martin, The Virtual Reality
Modeling Language ISO/IEC DIS 14772-1, April 1997,
http://www.vrml.org/Specifications.VRML97/DIS.

[4] M. Chaw, Optimized Geometry Compression for Real-
time Rendering, Proc. IEEE Visualization'97, pp. 347-354,
Phoenix, AZ, October 19-24, 1997.

[5] L., Darsa, B.Costa Silva, and A. Varshney, Navigating
static environments using image-space simplification and
morphing, 1995 Symposium on Interactive 3D Graphics,
ACM Press, pp. 7-16, April 1997.

[6] M. Deering, Geometry Compression, Computer Graphics,
Proceedings Siggraph'95, 13-20, August 1995.

[7] M. Denny and C. Sohler, Encoding a triangulation as a
permutation of its point set, Proc. of the Ninth Canadian

J. Rossignac GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17) page 15

Conference on Computational Geometry, pp. 39-43, Ontario,
August 11-14, 1997.

[8] D. Dobkin and D. Kirkpatrick, A linear algorithm for
determining the separation of convex polyhedra, Journal of
Algorithms, vol. 6, pp. 381-392, 1985.

[9] F. Evans, S. Skiena, and A. Varshney, Optimizing
Triangle Strips for Fast Rendering, Proceedings, IEEE
Vizualization'96, pp. 319--326, 1996.

[10] S. Gumhold and W. Strasser, Real Time Compression of
Triangle Mesh Connectivity. Proc. ACM Siggraph 98, pp.
133-140, July 1998.

[11] P. Heckbert and M. Garland, Survey of Polygonal
Surface Simplification Algorithms, in Multiresolution Surface
Modeling Course, ACM Siggraph Course notes, 1997.

[12] H. Hoppe, T, DeRose, T, Duchamp, J, McDonald, and
W, Stuetzle, Mesh optimization, Proceedings SIGGRAPH'93,
pp:19-26, August 1993.

[13] H. Hoppe, Progressive Meshes, Proceedings ACM
SIGGRAPH'96, pp. 99-108, August 1996.

[14] H. Hoppe, View Dependent Refinement of Progressive
Meshes, Proceedings ACM SIGGRAPH'97, August 1997.

[15] A.Itai and M. Rodeh, Representation of Graphs, Acta
Informatica, No. 17, pp. 215-219. 1982.

[16] K. Keeler and J. Westbrook, Short Encodings of Planar
Graphs and Maps, Discrete Applied Mathematics, No. 58, pp.
239-252, 1995.

[17] D. Kirkpatrick, Optimal search in planar subdivisions,
SIAM Journal on Computing, vol 12, pp. :28-35, 1983.

[18] D.T. Lee and F.P. Preparata, Location of a point in a
planar subdivision and its applications. SIAM J. on
Computers, 6:594-606, 1977.

[19] J. Li, and C.C Kuo, Progressive Coding of 3D Graphic
Models, Proceedings of the IEEE, pp. 1052-1063. June 1998.

[20] Y. Mann and D. Cohen-Or, Selective Pixel
Transmission for Navigation in Remote Environments, Proc.
Eurographics’97, Budapest, Hungary, September 1997.

[21] W., Mark, L. McMillan, and G. Bishop, Post-rendering
3D warping, 1995 Symposium on Interactive 3D Graphics,
ACM Press, pp. 7-16, April 1997.

[22] W. Massey, Algebraic Topology: An Introduction,
Harcourt, Brace& World Inc., 1967.

[23] M. Naor, Succinct representation of general unlabeled
graphs, Discrete Applied Mathematics, vol. 29, pp. 303-307,
North Holland, 1990.

[24] J. Neider, T. Davis, and M. Woo, OpenGL
Programming Guide, Addison-Wesley, 1993.

[25] M. R. Nelson, LZW Data Compression, Dr. Dobb's
Journal, October 1989.

[26] A. Rockwood, K. Heaton, and T. Davis, Real-time
Rendering of Trimmed Surfaces, Computer Graphics,
23(3):107-116, 1989.

[27] R. Ronfard. and J. Rossignac, Full-range approximation
of triangulated polyhedra, Proc. Eurographics'96 , Computer
Graphics Forum, pp. C-67, Vol. 15, No. 3, August 1996.

[28] J. Rossignac, Through the cracks of the solid modeling
milestone, From Object Modelling to Advanced Visual
Communication, Eds. Coquillart, Strasser, Stucki, Springer-
Verlag, pp. 1-75, 1994.

[29] J. Rossignac, Geometric Simplification and
Compression, in Multiresolution Surface Modeling Course,
ACM Siggraph Course notes 25, Los Angeles, 1997.

[30] J. Rossignac, Edgebreaker: Compressing the incidence
graph of triangle meshes, Jarek Rossignac, GVU Technical
Report GIT-GVU-98-17, Georgia Institute of Technology,
http://www.cc.gatech.edu/gvu/reports/1998.

[31] J. Rossignac, 3D Geometry Compression: Just-in-time
upgrades for triangle meshes, in 3D Geometry Compression,
Course Notes 21, Siggraph 98, Orlando, Florida, July 18-24,
1998.

[32] J. Snoeyink and M. van Kerveld, Good orders for
incremental (re)construction, Proc. ACM Symposium on
Computational Geometry, pp. 400-402, Nice, France, June
1997.

[33] G. Taubin and J. Rossignac, Geometric Compression
through Topological Surgery, ACM Transactions on Graphics,
Volume 17, Number 2, pp. 84-115, April 1998.

[34] G. Taubin, W. Horn, F. Lazarus, and J. Rossignac,
Geometry Coding and VRML, Proceedings of the IEEE, pp.
1228-1243, vol. 96, no. 6, June 1998.

[35] G. Taubin, A. Gueziec, W. Horn, F. Lazarus,
Progressive Forest Split Compression, Proc. ACM Siggraph
98, pp. 123-132, July 1998.

[36] G. Taubin and J. Rossignac, 3D Geometry
Compression, Course Notes 21, Siggraph 98, Orlando,
Florida, July 18-24, 1998.

[37] C. Touma and C. Gotsman, Triangle Mesh
Compression, Proceedings Graphics Interface 98, pp. 26-34,
1998.

[38] G., Turan Succinct representations of graphs, Discrete
Applied Math, 8: 289-294, 1984.

[39] W.T. Tutte, The Enumerative Theory of Planar Graphs.
In A Survey of Computational Theory, J.N. Srinivasan et al.
(Eds.). North-Holland, 1973.

[40] T Welch, A Technique for High-Performance Data
Compression, Computer, June 1984.

[41] J. Ziv and A. Lempel, A Universal Algorithm for
Sequential Data Compression, IEEE Transactions on
Information Theory, May 1977.

