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Edgebreaker: Connectivity compression for triangle meshes

Jarek Rossignac
GVU Center, Georgia Institute of Technology

Abstract

Edgebreaker is aimple schemér compressing thériangle/vertexincidence graphgsometimescalled connectivity or
topology) of three-dimensional triangle meshes. Edgebreaker improves upon the worst case storage repreredusyy
reported schemes, most of which require O(nlogn) bits to store the incidence graphesh af rtriangles. Edgebreaker
requires only 2n bits or less for simple meshes and can also support fully general meshes hgditgingl storage per
handleand hole. Edgebreakerssompressiorand decompression processes perfdira samdraversal ofthe mesh from
onetriangle to anadjacentone. At eachstage, compressioproduces an op-code describitige topologicalrelation
between the current triangle and the boundantha remainingpart of the meshDecompression uses thesg-codes to
reconstructthe entire incidence graphBecause Edgebreakersompressionand decompressiorare independent of the
vertex locations, they may bmombinedwith a variety of vertex-compressing techniquiast exploit topological
information about the mesh to better estimate vertex locations. Edgebreaker may be used to compress the connectivity of
an entire mesh bounding a 3D polyhedron or the connectivity of a triangulated surface patch whose boundant reeds
encoded. Its superior compression capabilities, the simplicity of its implementation, and its versatilitigdgetieaker
particularly suitable for the emerging 3Bata exchangestandardsfor interactive graphic applications. Thepaper also
offers a comparative survey of the rapidly growing field of geometric compression.

Introduction

Interactive 3D graphicalready plays an important role in
manufacturing,  architecture, petroleum, entertainment,
training, engineering analysiand simulation, medicine, and
science. It promises to revolutionigéectronic commerce and
many aspects of human-computer interactibar many of
these applications, 3DQjata sets are increasingly accessed
through the Internet. The numbamd complexity of these 3D
models is growing rapidlydue toimproved desigrand model
acquisition tools, to the widespread acceptance dhis
technology,and tothe needfor higher accuracy. Inmany of
these applications, human productivity or satisfactiauld
be significantlyenhanced byhe possibility of animmediate
access to remotely located 3D data sets for visual inspection or
manipulation. Even wheimage-based renderin@1, 20, 5]
and progressive transmissidechniques 12, 14] for adaptive
resolution graphicare used tareducethe fraction of the 3D
representatiorthat must betransferred atany given time,
geometry transferemains the bottleneck. Thanticipated
phone and network bandwidth increaseswill not, by
themselvessuffice to offsetthe explosion of the complexity
and popularity of 3D models. Consequently, it is urgent to
develop optimal bit-efficient formats and associated
compressionand fast decompressionalgorithms for 3D
models.

Although manyrepresentations have been proposed for 3D
models P8 polyhedra(or more precisely triangle meshes) are
the de facto standafdr exchangingandviewing 3D datasets.
This trend is reinforced bythe wide spread of 3Dgraphic
libraries (OpenGL 74], VRML [3]) and other 3D data
exchangefile formats, and of 3D adapterdor personal
computers thathave been optimized fairiangles. Graphic
subsystemsan converpolygonsand curvedsurfacesinto an
equivalent (or approximating) set of non-overlapping triangles,

which may be renderedefficiently using hardware-assisted
rasterizers 46, 24]. But to avoid the cost of this runtime
conversion, most applicationprecompute and store the
triangle meshes. Therefore, triangle count is a suitalgasure

of a model's complexity and triangle-meshes are an appropriate
target for current efforts on compressiaf|

A triangle mesh may beepresented byts vertexdata and by
its connectivity.Vertexdatacomprisescoordinates ofall the
vertices and optionally the coordinates of #ssociated normal
vectors and textures. In its simplest formgconnectivity
capturesthe incidencerelation betweenthe triangles of the
meshandtheir bounding vertices. It may lvepresented by a
triangle-vertexincidencetable, which associates witlkeach
triangle thereferences tdts three bounding vertices:or all
meshes thatre homeomorphic to a spherand in fact for
most meshes ipractice, the number of triangles is roughly
twice the number of vertices. Consequently, when pointers or
integer indicesare used as vertex-references atn floating
point coordinates are used t@ncode vertex locations,
connectivity dataconsumes twice more storage theertex
coordinates. Furthermore, fonost applicationsyvertex data
may be compressed down to about a tenth olutttmmpressed
connectivity data, with an average of 12bits per vertex
location and 6 bits per vertex normal 4, 33, 3T.
Consequently, weneed to deploy aggressive schemes for
compressing thdriangle-vertexincidence table, from which
most popular boundary data structures may be easily derived.

It is possible tohide some or all of the connectivity cost in
the vertex encodingFor example, onecould use some
automatically computed triangulation as a first guess for
connectivity and then only encode the necessary
transformations thagproducethe correctconnectivity. Another
approach, proposed for 2D triangulations by Deang Sohler
[7], would be to encode the vertices in a speafider, which,
when compared to dexicographical (left-to-right)sorting of
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these vertices, defines a permutation number. That number is a pointset of T {T} is the union of these pointsets for all

sequence obits, which, for sufficiently large n, suffices to
identify one among theossible labeled planar triangulated
graphs of n vertices. Unfortunately, thesgproaches are not
compatible with the schemesmentioned above for
compressing vertedata.Indeed,these schemerequire access
to the connectivity information fgpredictingthe datafor each
new vertex from previouslyencodedneighbors. They use
variable length codes for the coordinate corrections between the
predicted andhe actualdata. The better the predictions, the
shorter the codes. The lack of connectivity informatima an
encoding of vertices in aorderthat doesnot capturesome of
their proximity relationswould considerably increase the
storageneeded toencodevertex data,which already is the
bottleneck  when  previously proposed  connectivity
compression schemes are usgdf.

To meet these two objectives, weave developed a new
compression schemealled Edgebreaker. It encodago 2t
bits or less the connectivity of any meshtdfiangles that is
homeomorphic to a sphere. Tkacoding is independent of
vertex locations. Previouslgroposed approachesquire more
storage or evenexhibit non-linear asymptotiowvorst-case
storage complexity. More general meshes Wwidixterior edges
andh handlesrequire 2+b+(log,(h)+log,(t)+k)h bits or less,
wherek is a small constant. Ipractice, for meshesvith
relatively few handles and few bounding eddas,compressed
data requiredetweenl.5 and 2 bits of storage per triangle.
This ratio may beeven lower for compressing patchegh a
complex bounding loopsind relatively few interior vertices.
Their results do not rely orstatistic-based entropy or
arithmeticcoding schemes, which irgeneral perfornpoorly
on small orirregulardatasets. ConsequenthEdgebreaker is
suitable for compressing all modelad particularly attractive
for compressing large catalogs small models for remote
instant access without overhead.

Edgebreakerorganizesthe vertices of themodel along a
spiraling vertex-spanningree that is almostidentical to the
vertex-traversabrders produced byeveral recentlyproposed
compression schemes3], 37, 1(. Therefore, our connectivity
compression technique may be triviatpmbinedwith several
previously proposed schemes for compressing vertex data.

The rest of thispaper is organized asllows: we start by
defining our Terminology and Notation and proceed toa
Comparative Analysis of Prior Art; we introduce the
Edgebreaker approach fiyst focusing on simple meshes that
arehomeomorphic to &alf-sphereand provide the details of
CompressingSimple Meshesthe Compressed Formatand
Decompressing Simple Meshes; then we discuss Extensions to
More General Triangle Meshes.

Terminology and notation

To define our notation and domain, we use singaoecepts of
topology. Their precise definitionsnay befound in 2] or

other textbooks on this topic. Let |d¢notethe number of
elements in the set X. Let dlenote aset of topologically
closedtriangles T, for integeri in [1..|T|]. {T} is the closed

triangles in T. Let Vdenotethe set of the vertices of T. For
simplicity, and without loss of generality, we assume that the
vertices of V may be uniqueligentified by integer numbers
between land|V|. The connectivity may beepresented by a
triangle-vertexincidencetable, which associatesachtriangle
with three integer labels that reference its bounding vertices.

The compression algorithndescribedhere is restricted to
manifold representations of triangleeshes. In amanifold
mesh, each edge is bounding one or two trianghethe star
of each vertew (i.e., itsincident trianglesand edgesjemains
connectedwhenv is removed. By replicatingome oftheir
non-manifold vertices, non-manifold meshes may
represented using data structures for manifioéshesand may
hence be processed by our compression algorithms.

Edges that bound two trianglage callednterior edges Edges
that bound exactly one trianglare calledexterior edgesand
their union is denoted b{T} and called theundaryof {T}. The
connectedcomponents ofb{T} are one-manifold polygonal
closedcurves,calledloops Vertices of Tthat do notbound
any exterioredge arecalled interior vertices The set of all
interior vertices isdenoted V. The other verticeare called
exterior verticesand their set is denote¢.V

A choice ofthe cyclic order for the bounding vertices of a
triangle X defines an orientation for X and imposes
orientations on itsbounding edgesThe orientations of two
adjacenttriangles are compatible, if they impose opposite
orientations on their commoredge. A manifoldmesh is
orientable if andonly if thereexists achoice of orientations
that makes all pairs oddjacenttriangles compatible. Ithis
paper, we assume that the mesh is always orientisible-
orientable surfaces maybe cut into orientable pieces by
replicating interior edges by pairs of coincident exterior ones.

We define asimple meshto be a triangle mesh that forms a
connectedprientable, manifoldsurfacethat is homeomorphic
to a sphere or to a half-spheBuch meshebave nohandles
and have either ndoundary or have a boundathat is a
connectedmanifold, closedcurve,i.e.: a simple loop. The
core ofthis paper dealsvith the compression of connectivity
graphs that may—buteednot—be imbedded insuch a way
that they represent the connectivity of simple meshes.

The Euler equation for simply meshes yietdstv=1, wheret

is the number of triangles, |Mierev is the total number of
vertices, |V,|+|Vg|, andwheree is the total number of the
externalandinternal edges Sincethereare |\{| externaledges
and (3|T|-|\4])/2 internal edges, weobtain by substitution:
I TI=[Vel =3[ TI/2+[\e|/2+[Vi|+[Vel=1 and | T|=2|V{|+[Vel-2. When
[Vel<<|V||, thereare approximately twice more triangles than
vertices.

be

Comparative analysis of prior art

In this section, we firstsummarize themost relevant
approaches forcompressing vertexdata andthen review
previously published schemes for compressing

connectivity of triangle meshes. We als@ropose
improvements to some of thesechniquesand discuss their

the
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expected orworst case connectivity cost For compressed
formats, where connectivity information iscombined with
vertex data, we define the connectivity cost to bediffierence
betweenthe overall storage cosind the cost thatwould be
necessary focompressing the vertedataalone. Weorganize
the prior art of compressing connectivity into figategories:
uncompressedatastructures, triangle stripsertex insertion,
graph encoding, and vertex permutations.

Vertex data compression techniques

Typically, tessellated modelsare used for visualization,
interferencedetection, or finite-elemenanalysis. They are
often approximations of curved shapes, which rhaye to be
representedvith higherdegreesurfacesfor manufacturing and
more advancedsimulation and analysis applicationsEven
when a model represents a shéps is polyhedral by nature,
the accuracy otthe model is oftenlimited during its creation
by numericround-off errors inthe computation ofjeometric
intersections, by the limited resolution of inptéchniques
during design, or by measurement errodgplications for
which such numeridnaccuracies orsuch crude polyhedral
approximations ofcurved shapesare acceptable dmot in
general require that vertex coordinates be storedith full
floating point precision, as long as the geomengserves the
important topological and adjacency relations.

Following [6, 4, 33, we suggest torepresentthe vertex
coordinates withk bits each, as integers betweeragd ¥ -1,
defined over the smallestaxis-alignedbox that contains the
model. For example, 10-biuantization K=10) will result in
better than 0.5mm accuracy for any part afaaengine.Note
that the quantization needs not be uniform for the entire model,
but may be adjusted localljepending orthe smallestriangle
size or largessurface curvature4]. Different accuracylevels
for vertex datashould beassociatedvith different levels-of-
detail for the mesh complexity, so as to integrafgagressive
vertex data accuracy refinement with a progresdoxenload of
increasingly detailed approximations of the mesh1q).
Consequently, theoordinates of a vertemay often bestored
using less than 30 bits, instead of 3 floating point numbers.

Furthermore, the storage for vertdatamay be considerably
reduced by using variable length encodifig 13, 33, 37, 19
Indeed, if the compressiorand decompressionalgorithms
compute identicaéstimates for the location eachvertex, it
suffices to encodethe corrective displacementectors: The
decompression algorithm will estimate the location of the next
vertex andsimply add it tothe correctivevector. If thevertex
coordinates arguantized to amall number of bitand if the
estimatesaregood, many of theoordinates otthe corrective
vectors will be small integers. Entropyoding or other
variable length schemesreplace the frequently occurring
integers with shorter codes. Thus, in highdgsellated models
with guantizedcoordinates, compressiaatios for V depend
primarily on the precision of the vertex estimates.

For example, Taubirand Rossignac 33 have used vertex
estimators based onfew ancestors in a vertex-spanning tree,
whoseedges correspond teome of theedges ofthe mesh.
Each new vertex is expressedeaés-bB+cD+dD+E, whereA,
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B, C, andD arethe successive ancestors of v in thetex-
spanning treewhereE is thecorrective vectothan must be
encoded, and wheee b, c,andd are scalavaluescomputed to
minimize theE's over the entirenesh. For highlycomplex
models with finely tessellated surfacestheir technique
approaches 1bits per vertex, which represents average of
only 4 bits per coordinate (or 6 biper triangle). Touma and
Gotsman 7] suggested tause the estimat&+CB for the
third vertex of the triangléncidentupon the gate gwhereA
andB arethe vertices of gand C is the third vertex of the
other previously processed triangle incident upon g.

To provide a meaningful basis for comparing the storage costs
of the various coding schemes, we assume in this section: that
it suffices to represent vertex coordinawgth an accuracy of
1/1024 with respect tothe overall dimension of thenodel;

that |\g|«|V|; and that there are no holes or handles. To
simplify notation,v will stand for |V| throughout this section.

Uncompressed data structures

Storing each triangle independently of all other triangles as the
list of 10-bit integer coordinates foeach one of its three
vertices wouldrequire 90bits per triangle. In such a simple
representation, the connectivity is not coded explicitly, but can
be recoveredhrough geometric tests on tlvertex locations.

The location of a vertex ieepeated on averagetines. Thus,

the storage used in excess of the vertex location ibit80per
vertex or approximately 30 bits per triangle.

To avoidstoring multiple representations ofachvertex, we
could store the vertexdatatable in asequence andtore
connectivity as a sequence of triangle descriptashtriangle
beenrepresented by #teger numbers thagachidentify the
position of avertex in the above vertesequence. We would
need at modilog,(v)Cbits per reference, whefé&[1denotes the
lowest integer greater than x. For simplicity, we will omit the
"[M' from the formulae in the remainder of the paper. Vifitis
scheme, the connectivity cost is 3J@g bits per triangle.
When the vertex datdoesnot include anything but thevertex
coordinates, this solution becomes more expensive than
storing independentriangles for modelsvith more than 512
vertices.

The advantages dfoth schemes may lm®mbined bystoring
only the triangleseach represented by &ertex descriptors.
Each vertex descriptor wouldtart with a one-bit switch
indicating whetherthis is anew vertex for which thehree
coordinatesand other vertexdatafollow or whetherthe vertex
has alreadybeen encountered, iwhich casethe rest of the
vertex descriptocontains og,(i)(] bit which identify one of
the i previously encounteredvertices. This representation
requires d@otal of 3v+5vlog,(v) bits. If we subtract 39 for
the vertexcoordinatesthe connectivity cost is/(5log,(v)+1),
or approximately 2.5lofv)+0.5 bits per triangle.

The decompression algorithm may keep track of whietices
are interior to the part of the mesh that baenrecovered so
far and which verticesare still exposed,i.e., are on the
boundary ofthat part.Becauseonly the exposedverticesneed
to be referenced, it isuitable toreducetheir number.Bar-
Yehuda andGotsmanhave proposed a technique fasiting
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the triangles in amrderwhich guaranteegshat no morethan
13()°® vertices are exposed at any given tirdg [Jsing such
an improvementwould lead to a connectivity cost of
1.25log(v)+9.25 bits per triangle.

Triangle Strips

A representationbased ontriangle strips, supported by
OpenGL p4] and other graphitibraries, isused toreduce the
number of times the sanwertex is transferred and processed
by the graphicsubsystem. Basically, in a triangle strip, a
triangle is formed by combining a new vertex descriptidtm

the descriptions of the two previously sent vertices, which are
temporarily stored in two buffers. Each new triangle,sKares
an edgewith the previous triangle in the strip. Using a
convention to orient theurface ofthe strip, wecanlabel the
other two “free” edges of X as theft andthe right edge. One
bit per triangle suffices tdndicate whetherthe triangle is
incident upon the left or the right edge of the previous triangle.
The first twoverticesarethe overheador eachstrip, so it is
desirable to buildong strips, but the automation of thissk
remains a challenging problerd][ Instead ofusing such a
left/right bit, OpenGL requires toalternate betweefeft and
right edgesthroughout the strip(seeFig. 1) Note that two
consecutive right or leftmoves” may be implemented in
OpenGL by encoding a verteiwice without breaking the
strip.

30

1 1
0 S 0
Vi 3 1 0 2
2 4
6 4 4 6 4 4567
7 6
Figure 1. The triangulated boundary of apolyhedron
(left) may be cut (thick blue edges,center)into aflat
triangulated polygon without interior vertices (right).
When this polygon hasno bifurcation, it may be
representecby asingle triangle strip, where triangles
are attachedto free edgesof the previous triangle.
OpenGLrequiresto alternate betweenthe left and the
right free edgeExceptfor the first and last ones, each
vertex has 3incident edges(right). Note that, each
vertex, except for 3 and 7, which are the end-pointeef
cut, is encodedwice. Indeed,in generalverticesappear
either in the boundary of two separat&ips or are used
by non-consecutive triangles within the same strip.

Let us improve the triangle strip formand avoid vertex
replication by using as above, in lieu ofeplicatedvertex, a
reference to goreviously decodedone. Assuming strips of
length k«1 andusing one bitper triangle toindicate whether
the next triangle is attached to the left or the rigiige of the
current one and another bit per triangleirtdicate whether the
next vertex hadeenalready encodedthe connectivity cost
becomes 2 bitper triangleplus anaverage ob/6log,(v) bits
per triangle forthe references tapreviously decodedvertices.
The total connectivity cost of oumodified triangle strip
approach is (5/3)og,(v) bits.

Deering's compressed format [f] was designed for
decompression by dardware graphics adapter with very
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limited memory. Thus, random access topreviously
decompressed vertices was out of the question. Indbesiing
uses a 16-registaache tostore 16 of the previouslgecoded
vertices for subsequentferences. When previously decoded
vertex no longer in cache reeded, anew instance of imust
be decodedChow hasproposed a technique for traversing the
triangles of a mesh in awrder that exploits Deering's
architecture 4]. He sweeps a front oédges in aspiraling
pattern to avoid creating isolatedertices. Thegeneralized
triangle strip isformed by connecting thetriangle-corridors
defined bytwo consecutivgpositions of the swept front. We
estimate that oraverageone vertexout of eight must be
encoded twice.

Deering's cache idea could be adapted for software
decompression by providingccess toall previously decoded
vertices. Seven out of eighvertices would be irthe cache
when neededmore thanonce and could be identifiedusing 4
bits. One out of eight reusedvertices would be in main
memoryandwould require a reference of lg) bits. So the
average cost of identifying r@usedvertex is (7*4+ log,(v))/8,
plus one bit to distinguish theachedvertices from those in
RAM. The connectivity costvould also include one bit per
vertex to indicate whether each newdigcodedsertex should be
saved in the cache and thds per triangle toindicatehow to
form the next triangle. Assuming thaach vertex is used
twice, the total connectivity costould be 7.5+0.125log(n)
bits per vertex.

Progressive Vertex Insertion

Hoppe's Progressive Meshes3[ permit to transfer a 3D mesh
progressively, starting from @eoarsemeshand then inserting
new vertices one by one. Instead of a vertex insertion to split a
single triangle, assuggested in g for convex polyhedra,
Hoppe applies a vertex insertion that is the inverse oedge
collapse operationused in many mesh simplification
techniques12, 27, 11]. A vertex insertion identifies a vertex
andtwo of its incident edges. Ituts the mesh open #tese
edges andills the hole with two trianglesVertex v is thus

split into two vertices. InHoppe’s schemeeach vertex is
transferred onlyonce. The connectivity cost feachvertex is

the identification of one of the previoustsansferred vertices

(on averagamore than 0.5logv)) plus the cost oifdentifying

two of theincidentedges (Sbits are sufficient if no vertex is
bounding more than 32 edges). Thus, the connectivity cost per
vertex would be more than 5+0.5/09).

Taubin et al. 35 proposed togroup Hoppe's splitsinto
refinements. Each refinement doubtae number of triangles
at an average expectambst of 3.5 bitsper triangle. Each
refinement of their progressive foresgilit method identifies a
set of cutedgeswhich are groupednto maximally connected
components and stored as spanning vertex-trees. Removing the
cut edges of a tree produces a topological hole thatsimple
polygon, whoséoundary isknown. The triangulation of the
interior of that polygon, whicllloesnot contain anyinterior
vertices, may besncodedusing a simplified version of the
Topological Surgery of TaubiandRossignac 33], which, as
discussed later, exhibits a non-linear worst case behavior.
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Li and Kuo [19 combine progressive transmission of

connectivity refinements, which insert new vertices one at a

time, with progressive transmission \wdrtex datawhich adds
resolution to the vertex coordinates. They use a sivgtex-
decimation scheme to produce series of operationgiticetase
the levels-of-detail ofthe model. Theyencode the inverse
connectivity refinement operations by identifying tihase
triangle where the vertex must be insertaat] bylabeling the

surrounding edges to indicate which of these must be flipped to

restore the correct incidence. This approlecltls to araverage
connectivity cost of logv)+10 bits per vertex.

Graph encoding

The adjacency information for a simple meshwithout
boundary is a labeled triangulatpthnar graphand may be
represented by the triangle-vertex incidence table using(dlog
bits per triangle. However, if weadopt aconvention for
constructing a vertex-spannitigge of such graphsand if we
accept to label the vertices with integers tbatrespond to the
order in which theyarevisited by a traversal ahis spanning
tree, our compression problem may kegluced toone of
computing a bit-efficientrepresentation of anunlabeled
triangulated planagraph. Turan hashown that thestructure
of a labeledplanar graph may bencodedusing slightly less
than 1% bits [38]. Having a constant number of bits per
vertex has a significantadvantage over the previous
approaches, whichll include a log(v) factor, especially for
highly complex meshesTuran builds a vertex-spannirigee
and uses it to represent theundary of aopological polygon
of 2v-2 edges. The structure of this tree is encoded using 4
bits. There are amost 2/-5 edgeghat do not belong to the
vertex-spanning tree. These maydmeodedusing 4 bitseach.
The overall connectivity cost is thus, 24 bits.

A triangle-spanning tree of T is lainary tree, whoseodes
correspond to all the triangles of T and whesges correspond
to some of the interioedges of T. Adepth-first traversal of

GVU Technical Report GIT-GVU-98-35 (revised version of GIT-GVU-98-17)

page 5

If we could alwaysderive acomplete representation of the
connectivity from the spanningee ofthe triangles of T, we
would have attainedur objectivesand would have avery
simple scheme for encodingimple meshes using 2 bits per
triangle. Unfortunately, the triangle-spannitige does not
capture by itself the entire topology of the incidence giaph
Fig. 2for a counterexample).

The Topological Surgery method recently developed by Taubin
and Rossigna@pB, 34 encodes both a vertex-spanning tree and
its dual triangle-spanning treeCutting through theedges of
the vertex-spanning trgeroduces a triangulated surfatet is

a simple mesh without internalertices and thus may be
completely represented by atriangle-spanning tree. As
demonstrate@bove, encodingthat tree wouldnot, by itself,
suffice to representhe connectivity. Taubirand Rossignac
encode both the triangle-spanning teeelthe topology of the
vertex-spanning tree. Together, these two graphsvide
enough information t@ecoverthe connectivity of the mesh.
Basically, the vertex-spannirigee matchegairs of edges in
the boundary ofthe polygondefined bythe triangle-spanning
tree. Taubinand Rossignacencodeboth trees using a run
length methodEachsequence ofonsecutive ancestovgith a
single child is groupedinto a runand encoded bysimply
storing its length, usindghll bits. Two bits per branching
nodes are used teapture the topology of the tree. For
pathological cases, with a non-negligible proportion of multi-
child nodesthis approach does ntonger guarantees a linear
storagecost, butfor complex meshes, the cost emcoding
both trees may amount to less than a bit per triangle.

The author hagroposed avariation of the above Topological
Surgery methodJ1], where, instead ofusing arun-length
encoding of the vertex- and triangle-spanning trees,uses 2
bits per vertex toencodethe vertex-spanningree (one bit
indicatesthe presence of a childhile the other bitindicates
the presence of a right sibling) and 2 bits per trianglentmde

such a spanning tree corresponds to a walk on the entire mesh the triangle-spannintree (onebit indicatesthe presence of a

that starts at the root trianglend recursively visits the
neighboring triangles thatave not been previously visited.
The spanning tree may leacodedising 2 bitsper triangle as
follows. Eachtriangle is visited by coming to it from an
adjacent,previously visited neighbor triangleBecause the
surface is an orientable manifold, the other wdgesmay be
uniquely labeled as tHeft and theright edge. We camise one
bit for each one of thessdges toindicate whethethey are to
be broken or notduring the traversal (i.e., whether they
connect trianglesthat hold a parent-childrelation in the
triangle spanning tree).

Figure 2: The two meshes haidentical boundariesand
triangle-spanning treesyhich are shownby red arrows
and describedby the sequencef moves:left, right, left,
right, right, left, right.

right child, while the other biindicatesthe presence of a left
child). With twice more triangles than vertices, theranteed
worst case connectivity cost of this representation is 3 bits per
triangle.

Following Tutte's studies B9 and using an enumeration
theorem, Itaiand Rodeh 5 show that anyunlabeledrooted
non-separable triangulated planar graphs of n verfiees the
incidence graph of triangle meshes homeomorphic sphare)
may berepresented by 4bits. Furthermore, thepropose a
linear algorithm for constructing aepresentation of any
labeledplanar graphusing at most 1.5nlgfn)+6n+O(log(n))
bits, while thetheoreticalminimum is nlog(n)+O(n). Their
approachuses a triangle as the initial outer loapd then
shrinks that loop by removing one triangle at a tirfibey
always delete the triangle that is incident to the smaliedéx

v, in the outer loop and is bounded by the outer ledgethat

starts at y. They distinguish four cases: (1) Tkiard vertex
precedes yin the outer loop; (2) It follows the successor gf v
(3) It is somewhere else in the outer loapd (4) it is not on
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the outer loop. Operations (ahd(4) each require logv) bits
to identify a vertex in the not yet processed part of the mesh.

A variation of ItaiandRodeh's method was recentigported
by Gumholdand Strasser 10]. It is closely related to the
Edgebreaker method reported here. Although developed
independently, both the Edgebreaker andhe method of
Gumbhold and Strasser perfotime samdraversal ofthe mesh
and, at eaclstep,remove a triangleand encode¢he necessary
information to reconstruct the triangle by distinguishing
several casethat include the four cases ofltai and Rodeh.
Edgebreaker uses the letters L, Raf&d C toidentify cases 1
through 4 of Itai and Rodeh. Gumhold and Strasser adchee
where a boundary edge is reached. Edgebreakendoesed to
distinguish this case, since it encodes the bounding loop at the
beginning of thevertex array. HoweveiEdgebreakeadds the
case E,which corresponds tdhe situationwhere the current
triangle is notadjacent toany other remaining triangléBoth
theseapproaches avoithe log(v) bits costassociatedwith
case (4) of Itai and Rodeh by encoding the vertices ironier

in which they are used by casé4). With each case (3)
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require that with each Soperation beassociated a vertex
reference,which requires log(v) bits, prior to Huffman
compression.

Vertex permutation

Inspired by 7] and improving on23, 32], Denny and Sohler
have recently proposed a technique for encotlirgincidence
of planar triangulations of sufficientlylarge size as a
permutation of the vertices in V7J[ They show thathere are
less than 22 *°(°%) yalid triangulations of a planaset of v
points, and that for sufficiently large each triangulation may
be associateavith a different permutations of thesgoints
(there areapproximately 29 such permutations)Their
approach requirefirst transmitting an auxiliary triangle that
contains the entire sendthen the vertices of V in a suitable
order, computed byhe compression algorithm. Thdecoding
process receivesthe vertices in batches,sorts them
lexicographically, computes a permutation number
comparing theorder inwhich the verticesvere receivedvith
their lexicographic order, then sweeps over theurrent
triangulation from left to right. Aeachvertex of thecurrent

by

operation, Gumhold and Strasser must encode the reference to a patch, it identifies the enclosing triangles] andthe vertex is

vertex in thecurrent boundarywhich requires log(v) bits and
makes their storage costs a non-linear function.dflote that
Edgebreakeruses adecompression preprocessirgiep to
compute these vertex-references fromsbguence o§ymbols,
and therefore exhibits a linear storageost. For common
meshes, Gumholdand Strasser report compression results
between 1.7 and 2.15 bits per triangle using Huffmacoding

of the bit stream.

Keeler and Westbrook 6] improve on Turan's results and
propose a technique for encoding planar graphis 4.6v bits.
They also build a triangle-spanning tré&achtriangle of the
tree, excepthe root,shares aredgewith its parentand may
have zero, one, or two children and thw®, one, orzerofree
edges.They append free edges tihe leaves of thariangle-
spanningtree and label them. Encodingthe graphand the
labels requires an average dftlog,(3)/3 bits per edge. The
authors suggest eoding scheméased on aeries ofgraph
transformations.

Toumaand Gotsman 37] also encodethe vertices along the
vertex-spanning tree inthe same order as Taubin and
Rossignac, Gumholdand Strasser,and EdgebreakerThey
distinguish only two cases, whidworrespond tdhe cases (3)
and (4) of ltaiand Rodehand tothe Edgebreaker's cases S and
C. The othercasesare not encoded.Instead, Touma and
Gotsman encode the degree of eaeftex,i.e., thenumber of
incident edges anduse it to automatically identify thether
cases. During decompression, they keep track of the number of
the already decoded trianglésat are incidentupon each vertex
and arethus capable ofidentifying the R, L,and E triangles
automatically. For highly tessellated regular modedsere the
degree ofthe vertices followsalmost regular patterns, they
report compression results of less than aphit triangleusing
Huffman encoding. However, for smallend less regular
meshes, theequired storage may easilygxceed 2bits per
triangle. As Itai and Rodeand asGumholdand Strasser, they

inserted according to the incidence relatitanivedfrom the bit
string that encodesthe permutation number. Compression
constructs the successive batches through repetiape-
sweepsduring which verticesare removedncrementally and
the resulting holesre-triangulated. For each point, the
information needed to reconstrubtt triangulation issncoded

in the permutation of the vertices of the batch. The batches are
decompressed ininverse order. Although for sufficiently
complex models the cost of storing the connectivitynigl,
the unstructured order in which the verticesraceived and the
absence ofthe incidence graph during their decompression
makes it difficult to combine thiapproachwith the predictive
techniques for vertex encoding discussed eatrlier.

Compressing Simple Meshes

We focus in this sectioandthe next two on simple meshes.
Then, we explain how ta@eneralizeour scheme tonon-
manifold triangulated surfacewith an arbitrary number of
handles and several bounding loops.

The Edgebreakecompression algorithm performs a series of
steps.Eachstep removes one triangle from tberrentmesh.

At each stage, the remaining portion of the mestomposed

of one or several regions, denoted R which are simple
meshes. Technicallyachregion is the union of triangles of
T, whose interior iscontained inone maximally connected
component of the interior of the union of thremaining
triangles. Note that two regions may share a vertex, but not an
edge.The edgesboundingeachregion form aclosed manifold
polygonal curvecalledloop, which has ncself-intersections.
One edge ofeachloop is called agate. A stack contains
references, $S,, S,... to all the gates. The top of the stack,
S, references the active gate, g. Letlie the regionncident
upon g and let B denote the bounding loop gf Rote that B
contains g. This notation is illustrated in Fig. 3. Note that for
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simple meshes, the initial configuration has a singlgion
and a single loop.

AR X

E S

Figure 3: During compressionthe top of the stack, So,
points to half-edge g, called the gate, which identiftes
boundary B of the activeneshRy. The only triangle that
is incident upon g (shown in green) will be remofeain
Ro. Whenpresent,the other entriesin the stackpoint to
half-edges included in the bounding loopgejionsthat
will be compressedater. Thesewill becomegateswhen
they are popped to the top of thack.Note that Ry may
later be split into separate regions, which will vacked
using the stack.

At each step, Edgebreaker identifies the unique triangle, X, that
is part of R and is incidenupon g. Letv be the onlyvertex

of X that doesnot bound g.Edgebreakeanalyzeshe relation
that v has withrespect to Band g, distinguishing 5cases
labeled C, L, E, R, and S (see Fig. 4).

Figure 4: The triangle X, identified because it is thely
triangle in the remaining portion of the meshthat is
incident upon the gate g, will be removed. Hssociated
operation is of type C if the third vertex v of X thahig
bounding g has not yet been visited. Has beenvisited,
then it is included in B. If it both immediately followe
end-vertex of and immediately precedes the start veftex
g along B, then X is the last triangle of R record
an E operation. Ifv immediatelyfollows g, but doesnot
precedesit, werecord anR operation. If vdoes not
immediatelyfollow gbut precedest, werecord anL
operation. Finally, if v lies in B but is ndhe vertexthat
immediately precedes or follows the vertices of g, then
record an S operation.

The selection of the appropriatasemay beperformed by the
following sequence of tests:

IFv OBTHENcaseC
ELSE IF v follows g
THEN IF v precedes g THEN case E ELSE case R
ELSE IF v precedes g THEN case L ELSE case S
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Edgebreaker constructscampression history H bgppending
op-codes selecteflom the set {C, L, E, R, or S} tadentify
the successive steps that mustuked toreconstruct the mesh
during decompressiorizdgebreakeralso builds a listP of
vertex identifiers, in th@rder inwhich theyarereached by C
operations as the third vertex, of the triangleincident upon
the gate. This list willdefinethe order inwhich the vertices
will be encoded.The history H will becompressedising
binary codes or any desiredmpression scheme. Surprisingly,
as demonstrated in the section Dacompressioilgorithms
the informationcontained in H suffices teecoverthe labeled
planar triangulated graph that represehés connectivity of T.
The verticeseferenced bythe graphare labeledwith integer
indices (1, 2, 3...) thatrepresentthe order in which the
corresponding vertegatawill be recovered atdecompression.
During compression, it suffices ®ncodethe vertices in the
order of their references B For meshes witboundary,P is
initialized to the references of the vertices of ithidal loop B
as they are encountered by walking aroitnctarting with the
end-vertex of the gate. Fig.ltustrates this process.

the n

Figure 5: This mesh may represent the fi
compressiorof alarge region in the meshor the full
compressionof asmall simple mesh with boundary.
Starting at gate g, Edgebreakerremovestriangles by
following the dark arrows: first red, then green, then
blue. Triangles are color-coded as in Fig 4 indicatin

the typeof the associatedoperation(Cyellow, Rblue, S

green, L brown, and E red). The history is
H=CCRRRSLCRSERRELCRRRCRRRE. Ttiiek dotted
dark greenline is the gate. Therest of the boundaryis
shownwith athick brown line. The thick black lines
identify edgesthat haveneverbeengates. Together,the
thick solid lines defineavertex-spanningtree rooted at
the end-vertexof g andcutting the surface into a
topological polygon. The thick black dotted edgesare
Qples that have beenonthe stack. The vertices are
markedwith integer indices that indicate the order in
which their references are toe includedin P. Note that
each interior vertex correspondstoa C o (yellow |
triangle).

To clarify some implementation details, \weroduce asimple

data structure for storing both the connectivity of the mesh and

the links between the successidges inthe boundingoops.
This data structure ibased orthe concept of ahalf-edgeused
in many polyhedral representations (s#ge author'ssurvey
[28)). A half-edge h is the association of an edge e of T with a
triangle X incident upon e. Note thaach half-edge is oriented
andthat to eachinternal edge of Tcorrespondwo half-edges

with opposite orientationgachinduced bythe corresponding
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triangle. With each half-edge h, wassociate the following Then compression identifies the operation type using:

entities (see Fig. 6): IF NOT g.v.m THEN case C  # v not marked

* h.sis the starting vertex for h ELSE IF g.p==g.P # left edge of X is

* h.eis the ending vertex for h THEN IF g.n==g.N THEN case E ELSE cas (

» h.vis the third vertex of X that does not bound h ELSE IF g.n==g.N THEN case R ELSE cas ¢

« h.nis the half-edge that follows h in the boundary of X and then performs the corresponding changes to the half-edge

* h.pis the half-edge that precedes h in the boundary of X data structure, as explained in Figs. 7 to 11.

* h.ois the opposite half-edge (When e is an interior edge,
h.o associates e with the other incident triangle.)

* h.Nis the half-edge that follow h in B that contains h

* h.Pis the half-edge that precedes h in B that contains h

Figure 7: Case C
The initial mesh(left) correspondsto aC case. The

h.o result (right) is obtained by creating 3 bi-directio r
Figure 6: A half-edge, h, green arrow (left), pointsits links in B (two-headed red arrows). Thicker arrows
starting and ending vertices, h.s and h.e and to the show bounding half-edges.
oppositevertexh.v. The other two edgesof the triangle H=H|C; # append C to hist C
associated with h are denotédp and h.n (red and blue P=P|g.v; # append v to P
arrows). Theopposite half-edge, h.o (lime arrow) g.m=0; g.p.0.m=1; # update flags
providesaccesdso the adjacenttriangle whenit exists. g.n.o.m=1; g.v.m=1;
Curvedred bi-directional arrows (right) representlinks g.p.0.P=g.P; g.P.N=g.p.0; # fix red link 1 i n
h.P and h.N that organize the bounding bl&elf-edges g.p.0.N=g.n.o; g.n.0.P=g.p.o; # fix red link 2 i n
of B into a doubly-linked cyclic list. g.n.0.N;=g.N; g.N.P=g.n.o # fix red link 3 i n
For clarity, wehave extendedthe object-orientednotation to g=g.n.0; StackTop=g; # move gate
reference the various fields associatedwith a half-edge
structure. In the algorithmpresentecbelow and in Figs. 7
through 11, we assume the following semantics: The /
assignment h.x=ychangesthe content of thefield h.x
associated with h so that it points to y. For exampléhdse g.N
references were stored parallel arrays ofnteger indices, the g-n /
statement h.x=yvould becoded asx[h]=y andthe statement 9N
g.n.o.P=g.p.ocould becoded asP[o[n[g]]]=0[p[g]]. Efficient =
techniques forstoring and constructing such tables from a Figure 8: Case E g—PopStack
triangle-vertex incidence array are suggeste@ah [ H=HIE; # append E to the §
The compression algorithms also uses binary flags, and 9.-m=0; g.n.m=0; g.p.m=0; = # unmark edges

h.m, tomark eachpreviously visited vertex andeach half- PopStack; g=StackTop; # pop stack: next '

edge h that is in a bounding loop of the remaining portion of
the mesh. Theertex-flagsare used tdlistinguishbetween C
and Scaseswithout having totraverse B.The edge-flags are
usedduring S operations t@cceleratehe process ofinding

the boundinghalf-edge bsuch that gv is be. The notation
P=PJv means that the reference to vertexs appended to the
list P and H=H|C means that the op-ode for the C operation is
appended tahe history H. We also use the # sign siart
inline comments.

During the initialization part of the compressigmocess,

Figure 9: Case L

Edgebreakerloads into P the references tothe vertices Hjnl_l“d P m=0" 0.n.0.Mm=1" ##agpggt% IanrgSt ¢
encountered bymarching along the initialbbounding loop, gP;’ N‘ig n o_' g g.o'P':g_P’P' # ﬁf() red link 1 i n
starting from theend-vertex ofthe gate. It also marks the g:n..o..N:g..N.' gNP:gno " 4 fix red link 2 i n
bounding edges and vertices and sets the .P afidk&for all 0=g.n.o; Sta,ckTop:g; # move gate

bounding edges. It initializes the stack to point tohbi-edge
that is the initial gate.
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Figure 10: Case R

H=H|R; # append R to history
g-m=0; g.N.m=0; g.p.o.m=1; # update marks
0-N.N.P=g.p.0; g.p.0.N=g.N.N;# fix red link 1 in B
g.p.0.P=g.P; g.P.N=g.p.0; # fix red link 2 in B
g=g.p.o; StackTop=g; # move g

Figure 11: Case S

H=H|S; # append S to history
g.m=0; g.p.0.m=1; g.n.o.m=1; # update marks

b=g.n; # initial candidate for b

WHILE NOT b.m DO b=b.0.p;
g.P.N=g.p.o; g.p.0.P=g.P; #fix red link 1 in B
g.p.0.N=b.N; b.N.P=g.p.0; # fix red link 2 in B
b.N=g.n.o; g.n.0.P=h; #fixredlink 3inB
g.n.o.N=g.N; g.N.P=g.n.0; #fixredlink4inB
StackTop=g.p.o; PushStack; # push g.p.o on stack
g=g.n.o; StackTop=g # move g
Because the preconditions for the L, R, Ca&] Eoperations
are mutually exclusiveand cover all possible cases, and
because these operations all decrement the triangle count in T,
the compression process removes all triangles ahdalways
terminates.

Compressed format

The compressedormat contains dew Selectors the History,
and thevertex Data We discuss them in reverse order.

Vertex data
We distinguish three situations:

1. To compress an isolated, triangulated surface, we may
need to encode a simple mesh along with its boundary.

2. To compress the subset of a larger triangle meshmeee
to encode the connectivity and interior vertices airaple
mesh, butheednot encodeits bounding verticeshecause
they will be already available prior to decompression.
This, for example may be thmsewhen we compress the
refinement of a specificfeature in a largermesh
represented at a coarse level-of-defid] |
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3. To encode the triangulated boundary afimply connected
manifold solid, weneed to encode eosedmesh without
boundary.

For situation 1, thevertexdatastream starts with thexterior

vertices listed in theorder in which they occur around B,
starting with theend-vertex of gFor situation 2, that list is
omitted. For situation 3, aadge isselected ashe initial gate

andits end- andstart-verticesarefirst coded inthe vertexdata

stream.

The rest of the vertex data stream contaatfor the interior

vertices, encoded in the order specifiedhia remaining part of
P. The binary format that isisedfor encoding vertexdata

depends on which compression scheme is used.

History
The bestcoding strategies fahe history, H,depends on the
size of the mesh and on the ratiQ|/\W/|.

For very complex meshes, themost effective option is to
temporarily store H as a sequence of symbols from the set {C,
L, E, R, S} and to compute, as a post-processing compression
step, an optimal custorscheme foreach individualmesh.
Someagreed-uporconventioncould then beused to include

the description of the particular coding schemeéore H in the
compressed format. An alternative is to use progressidang
schemes 41, 40, 2% A number of general-purposedata
compression schemes may umedfor this purposeand will

not be further discussechere. They mayyield very high

# turn around v to marked bcompression rations folarge regular meshes, butoften

perform poorly for large and irregular meshesnd for small
mesheslinstead wefocus our discussion opractical schemes
that are effectivefor small meshesind ondemonstrating that
for simple mesheskEdgebreakeprovidesthe bestguaranteed
worst case compression.

If we usefixed binary op-codeswith 1 bit to encode each C
operationand 3 bits to encode eaclother operation(for
example, we use 0 for C, 100 for S, 101 for R, 110 for L, and
111 for E), the total number dfits needed toencode H is
c=|C|+3(|S|+|L|+|R|+E|Wwhere|X| denotesthe number of X-
type operations in H. Because there is a one-to-one association
betweenthe vertices of Yandthe trianglegprocessed by a C
operation, we have |C|5|V

Hence, [S|+[L[+|R|+|E|=[FIC|=[THV|| and c=|V||+3(|THV/]),
which yields: c=2|T|+(|FR|V|[). Given that |H2|V,|=|V|-2,

we obtainc=2|T|+|\,[-2. Consequently, for simpleneshes
with a relatively simple initiaboundary, we have Pk<|V|,
leading to |\¢<<|T|, and tac=2|T]|.

To encode a simple mesh without boundary, such asritie
surfacethat bounds a manifold 33olid, it suffices to“cut
open” one of its edges, declare it to be ithidal loop, B, and
include the encoding of its two vertices at the top of vibiex

list, as discussed above. In that case|=&and c=2|T|, which

is exactly 2 bits per triangle. The connectivity of smebshes

is a planar triangulated graph. Thus, we hiweduced a new
representation of such graphs, which is more compact than
previously proposed solution89, 15, 38, 23, 16
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The CL and CE sequences ofperations correspond to
situationswheretwo trianglesare identical (havethe same
vertices). By definition, these situatiorsse impossible in
simple meshes. Weanexploit this constraint tancrease the
expected compression ratio Bfigebreaker byising a slightly
more complex coding scheme. We use tiifferent codesets:
the general codset proposed above farperations that do not
follow a C operation and a speci@deset for operations that
follow a C. The special code set is still 0 for C, beduces to
a 2-bit op-code for the other two operations: 10 foa&] 11
for R. In the worst case, with longequences ofonsecutive
C'’s, this encoding methothas noeffect onthe bit-count. At
best however, when all C’are separated, iteducesthe bit-
count to an average of 1.5 bit per trianfdecause therare as
many C’s as other operations).

When Edgebreaker is used twompress smalkurface patches
with a relativelylarge number o&dges intheir boundary, the
above binarycodeswill neverexceed araverage of dits per
triangle, butarenot optimal. Because, insuch cases, the R
operation is the modtequent inthe sequencethe op-codes,
proposed earlieishould bereplaced byothers,where R is a
one-bitcode(say O)andthe other four operationsave 3-bit
codes. Under these newonditions,c=3|T|-2|R|, whiclimplies
that, if most of the trianglesorrespond to an R operation
(which is the casefor a fan of triangles),the sequence
representing G may be compressed down to 1 bit per triangle.

For meshes that do not fall in these teategories (interior-
heavy or boundary-heavy), weuggest a post-processing
compression step, whickiould computethe optimal op-code
assignment foreach operation, taking intoaccount their
frequencies anthe constraints on impossibkequences. The
resulting codeswould be transmittedefore H, using some
convention. For example, we may use length-value tuples (2
bits to encodethe bit lengthfollowed by the actualcode) for

all the 8 cases discussed earlier: C following a C, R following
a C, E following a C,andoccurrences of C, R, L, &nd E
that do not follow a C. This table will take at most 42 bits.

Selectors

The compressedormat may start with selector@dicating
whetherthe external verticesre included andvhich coding
method is used for the history.

Decompressing simple meshes

The decompression algorithm receives a binary encoding of the
history, H, which contains only theequence of op-codes
generated bythe compression algorithrdescribedabove. It
produces a triangle tableshere eachiriangle isrepresented by
threelabels. These labelsre consecutive integers assigned to
vertices in the order in which the vertica®first encountered

by the decompression algorithm. Note that it is the sonater

as the one in which there first encountered by the
compression algorithm.

Decompression performsvo traversal ofthe input stream:
Preprocessingomputes |T|, |M, |V, andthe offsets for all
the S operations, whiclre stored inthe offset table O;
Generationcreates the triangles in the order in which theye
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deleted bythe compression processd, for each triangle,
stores the labels of its 3 vertices. To compute d¢heect
labels at decompression, wa&mply increment an integer
vertex-counterg, eachtime we encounter a C operation and
usec as the label of the new vertex,vg.We provide the
details for both phases and illustrate them on an example.

Preprocessing

The Edgebreakedecompression preprocessing phesss the
input stream, i.e.: aencoding ofthe sequence of op-codes,
decodeghe op-codesone at a time, stores them in fdr the
Generationphase,and performs the actionglescribedbelow.
This process continues until the numberenétountered E op-
codes exceeds the number of encountered S op-codes.

It use the following variables and data structures:

* t, initialized to zero, tracks the total number of operations.
The final value ot is the triangle count.

* d,initialized to zero, tracks the value +§#|. d becomes
negative after processing the last E operation of H.

c, initialized to zero, tracks the number of C operations
encountered so far. The final valuecd§|V||.

* g initialized to zero, tracks the valBgE|+|L|+|Rt|C}|S].
The final value ofe is |Vg|. Values ofe resulting from S
operations will be pushed on the stack.

s, initialized to zero, tracks the number of S operations
encountered sofar. We uses to relate e to the
corresponding S, when e is pushed onto the stack.

* An initially empty stack,where we save (e,s)pairs
resulting from S operationand use themduring the
corresponding E operations to compute the offset.

* 0O, an initially empty table of offsets.

At eachstepdepending orthe op-code,Edgebreakeperforms
the following operations:
Case Se—=1; s+=1; push§,s); d+=1;
Case E:et+=3; (e's)=pop; OF|=e-e-2; d—=1;

IF d<0 THEN stop. # This is the end of the history
Case C e—=1; c+=1,
Case R:e+=1;
Case L:e+=1;
At the end of the preprocessing phase t|TW|=c, |V|=e, and
O contains the desired offsetgrted inthe order in which the
corresponding Sperationsoccur in H. The remainder ofthis
subsection explains why this simppeocedure produces the
desired results.

|T|=, because each operation corresponds to a different triangle.
Since only C operationsequire the introduction of new
vertices, |\=|C|. Deriving the count aéxternal vertices, |,

is slightly more complex. We know that at tkad of the
whole decompressioprocess, thdoundary ofthe remaining
region of T musthave zero edges, becaudes region is
empty. If wecan extracfrom H how manyedgeshave been
added ordeleted bythe steps of the compression process, we
will know the initial length of B.Each operation alters the
total count ofedges (andhus ofvertices) in B adollows. R
deletestwo edgesfrom B, but exposes aew one, thus
decreases thedgecount by 1. Ldoesthe same. E removes 3
edges. C and S increase #uge-count by 1 becauieey each
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remove oneedgefrom B andinsert two newedges. We can
track the total countegardless othe topologicalchanges in
the boundarythat may beproduced by Soperations.These
edge-counts changeead to the following formula: The
number of edges, and hence of vertices, inirtiteal bounding
loop, B, is 3|E|+|L|+|R|CHIS|.

To compute the offsets, we first note thati® Eoperations
are paired and work as parentheseshim following sense: any
sub-string of H that starts at an &nd finishes at the
corresponding E operatioencodesthe incidence graph of a
simple mesh that is a subset of T. We age trackthe value
of the expression 3|E|+|L|+{RTH|S| for thealready processed
subset of H. Thalifferencebetweenthe values ofe at the E
operation and the value efat the corresponding S operation is
the number of vertices in thieoundary ofthat subset. We
subtract 2 from that numbebgcause we aneot counting the
two vertices of g as part of the offset.

To keep track of matching S and E operations, we use a stack,
which we push for S operations and pop for E operations. The
stack is used to save thevalue foreach S.Whenthe stack is
popped, we will subtract this value from the current @ale,
which is associated with the matching E.
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The order in which S operatioase encountered in lfhay be
differentfrom the order in which the matching E operations
occur. Because eadffset value is onlycomputed when an E
operation isreached, wecannotsimply save it in the next
available entry in O.Therefore, we associateith each e
pushed onthe stack thecorresponding value o8, which
identifies the S operations. When popped from the stacks this
value, denoted’, is theindex ofthe entry in O for theffset
e-e-2, wheree'is the value o€ that waspushed orthe stack
along withs".

We illustrate thepreprocessing phase of decompression on
H=CCRRRSLCRSERRELCRRRCRRRE, whiclrresponds

to meshes with a connectivity homeomorphic to the mesh of
Fig. 5. After eachoperation, the table belowndicates the
resulting values of the variabled; c, e, ands, as defined
above. The variables ands refer to the content of the top of
the stack. Note that thigrocess first enters an offset value of
1 in O[2] andthen enters an offset value of 6 in O[1]. The
final value ofe indicates 16 vertices ithe externalloop. The
final value ofc indicates 5 internal vertices. We did niotlude

the triangle count, which is incremented from 1 to 24.

C|C|R|IR|[R|S|L|C|R|] S| El Rl Rl Ef]l L] ¢/ RR "R R 4d H R R H
d ofojofo|o| 1|1 2f 1] 2| 2| 1| 1f Oof of Oof of o 4d 49 a a0 q 11
c 1122|122 22| 3| 3| 3| 3 3] 3| 3] 3| 4 4 4 4 § 5 § 4§ 5
e 1121010 1] 0| 1] 0] 3| 4 5 8 9 8 9 1p 11 10 11 [p2 p3 (16
s ofojJof|o|oO| 1|1 2 1] 2 2] 2 2| 21 2 21 2 22 2 24 24 2 1 ?
e o(lojJofo]jJoOo|lO]jO]O
s' 1 (2111121 1]1]1
O[s 1 6
Generation At each stage, the gate, G, already identifies two ofi¢inices

The generation phase allocates a table tradngle-vertex
incidencerelations, denoted TV, of |T| entries,each will
combine thethree integer vertelabels of a triangle. Then, it
initializes thevertex counterc to |Vg|, so thatreferences to
external verticesprecedereferences tointernal vertices. It
constructs the bounding loops, Bgiecular doubly-linkedist

of |Vg| edges, each edge, Gontaining the pointer G.P to its
predecessor an@.N successor inthe loop, and aninteger
label, Ge, which identifies the end-vertex of G. The labels are
initialized with increasing integers between 1 to ||V
Edgebreakenlso creates astack of references to edges and
initializes it to a single entry, whictefers tothe firstedge in
the loop. The top of the stack éslledthe gateand will be
denoted G. Weause uppercaseletters for theedges of B to
distinguish them from the half-edgasedduring compression.
Finally, Edgebreaker initializes a triangle counterands, the
counter of S operations, to zero.

After this initialization, Edgebreaketraverses H and, fazach
operation, it increments stores the labels of the 3 vertices of
the current triangle X in entry number t of the table of
triangles, and updates B, G, and the stack, if necessary.

of the current triangle, X. Theseare G.Pe and Ge. The
computation of the third vertex depends on the cumwprtode.
Depending orthe current op-code, we perforthe operations
listed below. We use the following notation: x++ returns the x
value and then increments x white-x increments x first and
returns the result. The terms "REPEA@hd 'h TIMES"
delimit a block of instructions. For simplicity, we do not
include operations that release the menaigcated during the
process.

Case C: TV[++t]=(G.Peg, Ge, ++0C);.
New Edge A; Ae=c;

G.P.N=A; A.P=G.P;

AN=G; G.P=A;
TV[++1]=(G.Pg, Ge,G.N.g);
G.P.N=G.N; G.N.P=G.P;
G=G.N;

TV[++t]=(G.Pe, Ge, G.P.Pe);
G.P=G.P.P; G.P.P.N=G;

TV[++t]=(G.Pe, Ge,G.N.g); G=pop;

Case R:

Case L:

Case E:
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Case S: D=G.N; REPEAT D=D.N; O[++s] TIMES;
TV[++t]=(G.Peg, Ge,D.g);

New Edge A; Ae=D.g;

G.P.N=A; A.P=G.P;

pop; push(A);

A.N=D.N; D.N.P=A;

G.P=D; D.N=G;

push(G);

Although in practice only a small fraction of operati@ns of

the S type and the average length of the loop is proportional to
the square root of |\(see [LO] for a discussion othis issue),

the use of a linkedist for B implies a linear costor each S
operation, and hence makes the asymptotic worstase
complexity of the computational cost décompression @9).

This cost may beeduced to Ofogv) by maintaining a
balanced binary search tre, [rather than a doubly linkelist,

for representing the sequence of verticeshm activeloop, B.

On hardware platforms that support fast block mentiaysfer
operations, an attractive alternative is to use a liae@y to
store the ordered set of index-references to the vertices of B and
to perform insertions and deletions via block memory
transfers. This lattesolution turnsupdating Band accessing

the offset vertexinto constant cost operations, at least for
models of moderate size.

Again, we illustrate th&enerationphase of th&lecompression
process on the initial part of the saserjuence obperations,
CCRRRSLCRSERRELCRRRCRRRE,produced by the
compression of the mesh fig. 5. Given that [\¢=16, we
start with an initial loop of 1@&dgescontaining the labels 1,
2, .3... The firstedge isthe gate G, which igssociatedvith

its end-vertex labeled 1c is initialized to 16. The first C
operation fills TV[1] with the three values: 16, which is
G.Pe; 1, which is Ge; and 17, which is the result of
incrementinge. We also create a negdge, A,andstore 17 as
its label. Then we insert Aefore G byupdating the pointers
as follows: G.P.N=A; A.P=G.P; A.N=G; G.P=A. Tlkecond

C operation creates triangle (17, 1, 18) and inserts anedger
before G with the label 18. Then the firstoRerationcreates
triangle (18,1,2), deletes the gate from the laod makes the
edge labeled 2the current gate. Thesecond andthird R
operationscreatethe triangles (18,2,3and (18,3,4) reducing
the loop to contain the vertex  sequence
{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18BecauseO[1] is 6,
the first S operation skips the siertices 5, 6, 7, 8, 9, and
10. Then it fills triangle number 6 with the labels (18,4,11)
and splits the loop into {11,12,13,14,15,16,17,18} and
{4,5,6,7,8,9,10,11}. The bottom of the stack points to the
edge(18,11), the first one in the first loop. The top of the
stack points tcedge(11,4), the first one in theecondloop.
Then the L operatiogreatedriangle (11,4,10anddeletes the
last edge ofthe secondloop. At this point G is theedge
(10,4). This process continuesieachingthe second S, at
which pointthere are 3 entries in the stack pointing to the
loops: {11,12,13,14,15,16,17,18}, {7,8,9,10,19}, and {5,6,7},
which includesthe current gatg7,5). The next operation, E,
creates the triangle {7.5.6} and pops the stack, so that the new
gate is edge (19,7). The next 3 operations, Rarel, E create
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the 3 triangles of that region. We pop the stan#haveedge
(18,11) as gate. The remaining portion of H, which now
contains LCRRRCRRRE, is processed similarly.

General triangle meshes

The Edgebreakeapproach, agpresented sdar, is capable of
encodingthe connectivity of any planar triangle graphth

zero or one hole. Wedescribe herehow to extend the
Edgebreaker compressedrmat and the compression and
compression algorithms, so as to support meshes with
multiple holes and with one or more handles.

Holes

In a mesh withseveral holes, i.e.: with more than one
bounding loop, the compression algorithm may find a triangle,
whose third vertex, g.m, lies on the boundary of a holather
than on thecurrentloop. Instead ofsplitting the currentloop

into two, we merge it with the hole by opening both loops at
their commonvertex and reconnectingthem into a single
cyclic list. We use the symbol M tidentify suchcases in the
history. To distinguish these situations from the S cases, we
initialize the .m marks of alNerticesand edges othe initial
loop to 1 and of all other external vertices and external edges to
2. Internal verticeand edges arstill markedwith zero. This
assignment may be easiperformed bytraversing thehalf-
edge data structure and, each time an unmarked exéslgglis
encountered, byollowing the loop that contains iand by
marking all theverticesand edgesvith a 1 for the firstloop

and with a 2 for all subsequentoops. We assume for
simplicity that the union of allexternal edges forms a
manifold curvewith one componenper hole. Surfaceswith
non-manifold boundarymay be converted to such a
representation by replicating their non-manifold vertices.

C casesiow correspond tasituationswhereg.v.m==0Mcases
correspond to situations whereg.v.m==2, all other cases
correspond to situations where gv.m==1 and may be
distinguished as before. Ea¢tme a hole isreached, the
references to all of its vertices are appende® tatarting with
the contact vertex gw.In addition, theextendedcompression
algorithm associates with each M operation the lehgihthe
corresponding hole by appending it to a list of hole lenigth,
The processing of the M operatiaturing compression is
illustrated Fig. 12.

During the preprocessing phase of éxendeddecompression
algorithm, eachtime an M operation igeached, to correctly
compute the offset table, the valud, rather than 1, must be
subtracted from the edge-coumnt

Then, during the generation phase, @ach Moperation,after
the bounding loop haseenmergedwith the hole, as shown
Fig. 12, it contains theedges of the holasertedjust before
g. The vertex label for the last one of thesiges isc+1. The
labels of the first—1 of these edgeare assigned by successive
increments o€. The pseudo-code for the M operation follows:
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TV[++]=(G.P.e, G.e, c+1¥ new triangle with the contact point
D=G.P; # initialize an end-of-list edge pointer
REPEAT # insert | +1 edges after G.P

New Edge A, # create new edge
D.N=A; A.P=D; A.e=++c; # link it after D and set label
D=A, # move end-of-list
| TIMES; # last edge has wrong label
New Edge A; # create new edge
D.N=A; A.P=D; A.e=c— | +1; #link it after D and set label
AN=G; G.P=A; #  link end-of-list to G,
<€ [ <€
—_—
b.N p 9.P
\/ ¢h <
2(' ) 8
Y.p.o g.n.o 1\ » 4
g. .N .N
g. g.p 9 ush g
—_—
Figure 12: Case M
H=H|M; # append M to history

g.m=0; g.p.0.m=1; g.n.o.m=1; # update marks

b=g.n; # initial candidate for b
WHILE b.m #£2 DO b=b.o.p; # turn around v
g.P.N=g.p.o; g.p.0.P=g.P; #fix red link 1 in B
g.p.0.N=b.N; b.N.P=g.p.0; # fix red link 2 in B
b.N=g.n.o; g.n.0.P=h; #fixredlink 3in B
g.n.o.N=g.N; g.N.P=g.n.0; #fixredlink4inB
g=g.n.o; StackTop=g # move g

b=b.N; # start here the traversal of the new edges
1=0;
WHILE b.e #g.s DO {# until old g.v. is reached do
b.m=1; b.s.m=1; # mark hole
| ++; # counts length of hole
P=P|b.s; # append new vertex reference to P
b=b.N }; # move to next edge around hole
L=L]|I; # appends the length of hole to L

The addition ofthe M operatiorrequireschanging ourcoding
scheme. A simple approach would beute 4-bitcodesfor S
and M (for example, Scould be1000and M could be1001.
This solution adds |S| bits to the overall compressed
representation in addition tthe cost of encodingthe M
operations. If weexpectthe number of holes to be small
compared to |S|, it is advantageous to use the sadedor all

M and S operationsggnd todistinguish them by including, in
the compressedormat, right before the encoding of H, a
representation of an M-table. The M-table contains éntries
for each M operation. The first entry is the number of S
operations encountered since the previous M operation or since
the beginning of H for the first M operation. Each onehefse
numbers indicates how many consecutive S operasibosld
not betreated as Moperations. Thesecondentry in the M-
table is the lengthof the boundary of the corresponding hole.
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Handles

An S operationsplits the current boundingloop into two
parts, which may beindependently processed by the
compressiorand bythe decompressioralgorithms. However,
when an S operation iperformed as describeearlier on a
mesh where the current boundary wraps around a handle, a new
hole is createdjnstead of a separatmponent of the mesh.
Indeed, the currentloop is split into two loops without
disconnecting the remaining portion of the mesh. Susblia
may, for example, transform a toroidalrfacewith one hole
into a cylindrical surface (amesh with two holes)Several
such holes may bereatedduring compression. They will be
mergedinto the currentloop by subsequent Moperations, as
described above. However, they wilbt necessarily benerged

in the order in which they have been created.

We modify the S operation as followd&/henthe currentloop

is split into the left and right sub-loops (Fig. 11), we mark the
vertices and edges of the left sub-loop with a 3. The it
edge of this left sub-loop ipushedonto the stack along with
the location of the corresponding S op-ode in H.

During compression, when we later reach a vemexkedwith
a 3, we perform a different merging operatidentified by the
op-code M', which merges the two loops, koesnot append
to P the references tothe vertices of thehole. M' also
computes the positiorp, of theassociatedjate in thestack
and the offsetp, between that gate and the reacpeitht. p, o,
and the number of S operatioescountered aftahe previous
M' operation are stored in the M'-table.

During decompression of an M operation, Edgebreaker
performs the following steps:

D=remove(p); #  fetches and removes en t
stack

REPEAT D=D.N o TIMESijnd edge to connectin (
TV[++t]=(G.P.e, G.e, Diejiew triangle with the (
New Edge A; # create new edge

G.P.N=A; AP=G.P; # link 1

AN=D.N; D.N.P=A# link 2

D.N=G; G.P=D; # link 3

Boundaries of solid models with triangulated surfaces haae
handlesbut do nothaveholes. Therefore, when dealingith
solid models, it is nomecessary tosupport holesand the
operations of type M' may bencoded byusing the same op-
code ador the S operations. The entries of the M'-table may
be used to distinguish them, as discussed above for holes.

For meshes witlhandlesandholes, both types ofperations
must be supported. Therefore, during compressionyédhtees
may be marked with a 0, 1, a 2 or a 3. These markings permit
to distinguish between C, S, ®hd M' operations. Again, we
suggest to use eombined M-M'-table tadistinguishbetween
S, M, and M' operations and to encodethe associated
parameters.With this convention, the history still only
contains C, L, E, Rand Sop-codesFor edgeswith a small
number of handles and holes relative to the number of
triangles, the storage cost of the M-M'-table has lgffect on
the connectivity cost per triangle.
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Summary of contributions

We have presented anew compression/decompression
technique for codinghe connectivity, i.e., thériangle/vertex
incidence graph, of arbitrary trianglemeshes. Theresearch
contributions reported in this paper have bottheoretical and

a practical value. They include an extensive survey of prior art,
an improvement over the best knowamcoding of planar
triangulatedgraphs, i.e., an algorithmhich guarantees the
lowest known uppebound onthe connectivity storageost,
and a detailed description of very effectasimple compression
anddecompressiomalgorithms for the connectivity of krge
class of triangle meshes.

Our survey discusses theoreticaintributions onlabeled and
unlabeled planar triangulated graphs and practical
implementations of compression algorithndgveloped for
graphic applications3f]. We also proposseveralvariations,
which improve or combine these approaches in novel ways and
have identifiedthe associatedonnectivity cost, which we use

as a basis of comparison.

Through the introduction of a novdecompression technique,
which in one pass automatically extracts the offsets of S
operations from the compression history, H, waave
eliminated theneed to encodthese offsets explicithandthus
have achieved dinear connectivity cost for meshes with a
constant number odfiandlesand holes. This result improves
over recently publishedindependentlydeveloped approaches
[37, 14, which exhibit an asymptotic @pgv) connectivity
cost, even forsimple meshes without holes bandles. On a
more theoretical aspect, we have also improved on all previous
work on coding planar triangulated grapB8,[15, 38, 23, 16

by providing a linearcode with the lowest constant: a
guaranteed 2 bits per triangle or less.

On a practical sideghe Edgebreaketechnique introducethere
offers a simpler to implementand, in many casesmore
effective alternative to previously proposed connectigdgling
schemesfq, 13, 33, 3t The compression algorithnwhich
we describe indetails, uses @alf-edge datastructure and
simply traverses the mesh from one triangle to a neighboring
one, recording the history: a simple list of ihy@codedor the
C, E, R, L, and Soperations. Thelecompressioralgorithm
traverseghe historyonce to comput¢he number of internal
and external verticeandthe offset foreach Soperation.Then
it recreateghe triangles, one at a time, in tbeder in which
they have been visited by the compression algorithriabkls
the verticeswith successive integersthis labeling of the
vertices is alscomputed as a byproduct tfie compression
processand definesthe order in which vertexdata should be
compressed.

Edgebreakemay be easilycombinedwith a variety ofvertex

datacompression schemes8d, 37 based onvertex estimates
that are derived from the incidence graptdfrom the location
of previously decoded vertices.

Edgebreakecompresses the connectivity simply-connected
manifold triangle meshedown to betweerd.5 and 2bits per
triangle. By allowingadditional bits, the basictechnique is
extended tosupport triangle meshes with holasd handles.
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For highly complex meshes, these resulte comparable to
thosereported byother authors33, 37, 1(, who through
Huffmann coding may achieve lowbit counts,especially for
meshes with an almosgégulartopology B7]. Because general
purpose statistical compression scherpesform poorly on
smaller or very irreguladata, these compressiomethods
require more bits per triangle wherdealingwith simpler or
irregular triangle meshes. Edgebreaker doesiot rely on
statistical methods and thus guarantees its low bit counts. It is
therefore a practicaolution for compressing botharge and
small meshes.

In conclusion, Edgebreakemprovides asimple and effective
connectivity compression tool for a variety of 3D applications.

We believe that thearea of 3D compression will grow
significantly over the next few years. We plan to focus on the
integration of Edgebreaker'sonnectivity compression with
progressive methodd4, 39 for connectivity refinement and
with methods for the progressive refinementweitex-accuracy
[19]. We also plan to explore variations d&dgebreaker's
format that are suitable for hardware decompression and graphic
accelerationand would offer easier toprogram compression
algorithms and more compact formats than curreatlgilable
methods ¢, 4].
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