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Abstract

We describe a computer vision system for observing facial mo-
tion by using anoptimal estimationoptical flow method coupled
with geometric, physical and motion-based dynamic models de-
scribing thefacial structure. Our method produces a reliable
parametric representation of the face's independent muscle ac-
tion groups, as well as an accurate estimate of facial motion.

Previous efforts at analysis of facial expression have been
based on the Facial Action Coding System (FACS), a represen-
tation developed in order to allow human psychologists to code
expression from static pictures. To avoid use of this heuristic cod-
ing scheme, we have used our computer vision system to proba-
bilistically characterize facial motion and muscle activation in
an experimental population, thus deriving a new, more accurate
representation of human facial expressions that we call FACS+.

Finally, we show how this method can be used for coding, anal-
ysis, interpretation, and recognition of facial expressions.

Keywords: Facial Expression Analysis, Expression Recogni-
tion, Face Processing, Emotion Recognition, Facial Analysis,
Motion Analysis, Perception of Action, Vision-based HCI.

1. Introduction

Faces are much more than keys to individual identity, they
play a major role in communication and interaction that makes
machine understanding, perception and modeling of human ex-
pression an important problem in computer vision. There is a
significant amount research on facial expressions in computer vi-
sion and computer graphics (see [10, 23] for review). Perhaps
the most fundamental problem in this area is how to categorize
active and spontaneous facial expressions to extract information
about the underlying emotional states? [6]. Althougha large body
of work dealing with human perception of facial motions exists,
there have been few attempt to develop objective methods for
quantifying facial movements.

Perhaps the most important work in this area is that of Ekman
and Friesen [9], who have produced the most widely used system
for describing visually distinguishable facial movements. This
system, called theFacial Action Coding SystemorFACS, is based

on the enumeration of all “action units” of a face which cause
facial movements.

However a well recognized limitation of this method is the lack
of temporal and detailed spatial information (both at local and
global scales) [10, 23]. Additionally, the heuristic “dictionary”
of facial actions originally developed for FACS-based coding of
emotion, after initial experimentation, has proven quite difficult
to adapt for machine recognition of facial expression.

To improve this situation we would like toobjectivelyquan-
tify facial movements using computer vision techniques. Conse-
quently, the goal this paper is to provide a method for extract-
ing an extended FACS model (FACS+), by coupling optical flow
techniques with a dynamic model of motion, may it be physics-
based model of both skin and muscle, geometric representation
of a face or a motion specific model.

We will show that our method is capable of detailed, repeat-
able facial motion estimation in both time and space, with suffi-
cient accuracy to measure previously-unquantified muscle coar-
ticulations, and relates facial motions to facial expressions. We
will further demonstrate that the parameters extracted using this
method provide improved accuracy for analysis, interpretation,
coding and recognition of facial expression.

1.1 Background

Representations of Facial Motion: Ekman and Friesen [9]
have produced a system for describing “all visually distinguish-
able facial movements”, called theFacial Action Coding System
or FACS. It is based on the enumeration of all “action units”
(AUs) of a face that cause facial movements. There are 46
AUs in FACS that account for changes in facial expression. The
combination of these action units result in a large set of possible
facial expressions. For example smile expression is considered
to be a combination of “pulling lip corners (AU12+13) and/or
mouth opening (AU25+27) with upper lip raiser (AU10) and bit
of furrow deepening (AU11).” However this is only one type of a
smile; there are many variations of the above motions, each hav-
ing a different intensity of actuation. Despite its limitations this
method is the most widely used method for measuring human
facial motion for both human and machine perception.
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Tracking facial motion: There have been several attempts to
track facial expressions over time. Mase and Pentland [20] were
perhaps the first to track action units using optical flow. Although
their method was simple, without a physical model and formu-
lated statically rather than within a dynamic optimal estimation
framework, the results were sufficiently good to show the useful-
ness of optical flow for observing facial motion.

Terzopoulos and Waters [29] developed a much more sophisti-
cated method that tracked linear facial features to estimate cor-
responding parameters of a three dimensional wire-frame face
model, allowing them to reproduce facial expressions. A signifi-
cant limitation of this system is that it requires that facial features
be highlighted with make-up for successful tracking.

Haibo Li, Pertti Roivainen and Robert Forchheimer [18] de-
scribe an approach in which a control feedback loop between
what is being visualized and what is being analyzed is used for
a facial image coding system. Their work is the most similar to
ours, but both our goals and implementation are different. The
main limitation of their work is lack of detail in motion estima-
tion as only large, predefined areas were observed, and only affine
motion computed within each area. These limits may be an ac-
ceptable loss of quality for image coding applications. However,
for our purposes this limitation is severe; it means we cannot ob-
serve the “true” patterns of dynamic model changes (i.e., muscle
actuations) because the method assumes the FACS model as the
underlying representation. We are also interested in developing a
representation that is not dependent on FACS and is suitable not
just for tracking, but recognition and analysis.

Recognition of Facial Motion: Recognition of facial expres-
sions can be achieved by categorizing a set of such predetermined
facial motions as in FACS, rather than determining the motion
of each facial point independently. This is the approach taken
by several researchers [19, 20, 33, 4] for their recognition sys-
tems. Yacoob and Davis, who extend the work of Mase, detect
motion (only in eight directions) in six predefined and hand ini-
tialized rectangular regions on a face and then use simplifications
of the FACS rules for the six universal expressions for recog-
nition. The motion in these rectangular regions, from the last
several frames, is correlated to the FACS rules for recognition.
Black and Yacoob extend this method, using local parameterized
models of image motion to deal with large-scale head motions.
These methods show about 90%accuracy at recognizing expres-
sions in a database of 105 expressions [4, 33]. Mase [19] on a
smaller set of data (30 test cases) obtained an accuracy of 80%.
In many ways these are impressive results, considering the com-
plexity of the FACS model and the difficulty in measuring facial
motion within small windowed regions of the face.

In our view perhaps the principle difficulty these researchers
have encountered is the sheer complexity of describing human fa-
cial movement using FACS. Using the FACS representation, there
are a very large number ofAUs, which combine in extremely
complex ways to give rise to expressions. Moreover, there is now
a growing body of psychological research that argues that it is
the dynamics of the expression, rather than detailed spatial de-
formations, that is important in expression recognition. Several
researchers [1, 2, 6, 7, 8, 17] have claimed that the timing of ex-

pressions, something that is completely missing from FACS, is a
critical parameter in recognizing emotions. This issue was also
addressed in the NSF workshops and reports on facial expres-
sions [10, 23]. To us this strongly suggests moving away from
a static, “dissect-every-change” analysis of expression (which is
how the FACS model was developed), towards a whole-face anal-
ysis of facial dynamics in motion sequences.

2. Visual Coding of Facial Motion

2.1 Vision-based Sensing: Visual Motion

We use optical flow processing as the basis for perception
and measurement of facial motion. We have found that Simon-
celli's [28] method for optical flow computation, which uses
a multi-scale, coarse-to-fine, Kalman filtering-based algorithm,
provides good motion estimates and error-covariance informa-
tion. Using this method we compute the estimated mean velocity
vector v̂i(t), which is the estimated flow from timet to t + 1.
We also store the flow covariances�v between different frames
for determining confidence measures and for error corrections in
observations for the dynamic model (see Section 2.3 and Figure 3
[observation loop (a)]).

2.2 Facial Modeling

A priori information about facial structure is required for our
framework. We use a face model which is an elaboration of
the facial mesh developed by Platt and Badler [27]. We extend
this into a topologically invariant physics-based model by adding
anatomically-based muscles to it [11].
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Figure 1. Using the geometric mesh to determine the con-
tinuum mechanics parameters of the skin using Finite Ele-
ment Methods.

In order to conduct analysis of facial expressions and to de-
fine a new suitable set of control parameters (FACS+) using
vision-based observations, we require a model with time depen-
dentstatesand state evolutionrelationships. FACS and the re-
lated AU descriptions are purely static and passive, and therefore
the association of a FACS descriptor with a dynamic muscle is
inherently inconsistent.

2



By modeling the elastic nature of facial skin and the anatom-
ical nature of facial muscles we develop a dynamic muscle-
based model of the face, including FACS-like control param-
eters (see [11, 32] for implementation details). A physically-
based dynamic model of a face may be constructed by use of
Finite Element methods. These methods give our facial model
an anatomically-basedfacial structure by modeling facial tis-
sue/skin, and muscle actuators, with a geometric model to de-
scribe force-based deformations and control parameters [3, 15,
21].

By defining each of the triangles on the polygonal mesh as an
isoparametric triangular shell element, (shown in Figure 1), we
can calculate the mass, stiffness and damping matrices for each
element (usingdV = teldA), wheretel is thickness, given the
material properties of skin (acquired from [26, 30]). Then by the
assemblage process of the direct stiffness method [3, 15] the re-
quired matrices for the whole mesh can be determined. As the
integration to compute the matrices is done prior to the assem-
blage of matrices, each element may have different thicknesstel,
although large differences in thickness of neighboring elements
are not suitable for convergence [3].

The next step in formulating this dynamic model of the face is
the combination of the skin model with a dynamic muscle model.
This requires information about the attachment points of the mus-
cles to the face, or in our geometric case the attachment to the
vertices of the geometric surface/mesh. The work of Pieper [26]
and Waters [32] provides us with the required detailed informa-
tion about muscles and muscle attachments.

2.3 Dynamic Modeling and Estimation

Initialization of Model on an image

In developing a representation of facial motion and then using it
to compare to new data we need to locate a face and the facial
features in the image followed by a registration of these features
for all faces in the database. Initially we started our estimation
process by manually translating, rotating and deforming our 3-D
facial model to fit a face in an image. To automate this process we
are now using the View-based and Modular Eigenspace methods
of Pentland and Moghaddam [22, 24].

Using this method we can automatically extract the positions
of the eyes, nose and lips in an image as shown in Figure 2(b).
These feature positions are used to warp the face image to match
the canonical face mesh (Figure 2(c) and (d)). This allows us
to extract the additional “canonical feature points” on the im-
age that correspond to the fixed (non-rigid) nodes on our mesh
(Figure 2(f)). After the initial registering of the model to the im-
age the coarse-to-fine flow computation methods presented by Si-
moncelli [28] and Wang [31] are used to compute the flow. The
model on the face image tracks the motion of the head and the
face correctly as long as there is not an excessive amount of rigid
motion of the face during an expression. This limitation can be
addressed by using methods that attempt to track and stabilize
head movements (e.g., [12, 4]).

(a) Original Image (b)with Eyes, Lips (c) Face Model
Nose Extracted

(d) Mask of (e) Warped & (f) Canonical
Model Masked Points Extracted

Figure 2. Initialization on a face image using Modular
Eigenfeatures method with a canonical model of a face.

Images to face model

Simoncelli's [28] coarse-to-fine algorithm for optical flow com-
putations provides us with an estimated flow vector,v̂i. Now
using the a mapping function,M, we would like to compute ve-
locities for the vertices of the face modelvg. Then, using the
physically-based modeling techniques and the relevant geomet-
ric and physical models, described earlier, we can calculate the
forces that caused the motion. Since we are mapping global in-
formation from an image (over the whole image) to a geometric
model, we have to concern ourselves with translations (vector
T ), and rotations (matrixR). The Galerkin polynomial interpo-
lation functionH and the strain-displacement functionB, used
to define the mass, stiffness and damping matrices on the basis of
the finite element method are applied to describe the deformable
behavior of the model [15, 25, 3].

We would like to use only a frontal view to determine facial
motion and model expressions, and this is only possible if we
are prepared to estimate the velocities and motions in the third
axis (going into the image, thez-axis). To accomplish this, we
define a function that does a spherical mapping,S(u; v), where
areu andv are the spherical coordinates. The spherical function
is computed by use of a prototype 3-D model of a face with a
spherical parameterization; this canonical face model is then used
to wrap the image onto the shape. In this manner, we determine
the mapping equation:

vg(x; y; z)
= M(x; y; z)v̂i(x; y j z; y)
� HSR (v̂i(x; y) + T ) :

(1)

For the rest of the paper, unless otherwise specified, whenever
we talk about velocities we will assume that the above mapping
has already been applied.

Estimation and Control

Driving a physical system with the inputs from noisy motion es-
timates can result in divergence or a chaotic physical response.
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Figure 3. Block diagram of the control-theoreticapproach.
Showing the estimation and correction loop (a), the dynam-
ics loop (b), and the feedback loop (c).

This is why an estimation and control framework needs to be in-
corporated to obtain stable and well-proportioned results. Simi-
lar considerations motivated the control framework used in [18].
Figure 3 shows the whole framework of estimation and control
of our active facial expression modeling system. The next few
sections discuss these formulations.

The continuous time Kalman filter (CTKF) allows us to esti-
mate the uncorrupted state vector, and produces anoptimal least-
squares estimateunder quite general conditions [5, 16]. The
Kalman filter is particularly well-suited to this application be-
cause it is a recursive estimation technique, and so does not in-
troduce any delays into the system (keeping the system active).
The CTKF for the above system is:

_̂
X = AX̂+BU+ L

�
Y �CX̂

�
;

where:L = �eC
T�m

�1;
(2)

whereX̂ is the linear least squares estimate ofX based onY (� )
for � < t and�e the error covariance matrix for̂X. The Kalman
gain matrixL is obtained by solving the following Riccati equa-
tion to obtain the optimal error covariance matrix�e:

d

dt
�e = A�e +�eA

T +G�pG
T ��eC

T�m
�1C�e: (3)

We solve for�e in Equation (3) assuming a steady-state system
(i.e., d

dt
�e = 0).

The Kalman filter, Equation (2), mimics the noise free dynam-
ics and corrects its estimate with a term proportional to the dif-
ference(Y � CX̂), which is the innovations process. This cor-
rection is between the observation and our best prediction based
on previous data. Figure 3 shows the estimation loop (the bottom
loop) which is used to correct the dynamics based on the error
predictions.

The optical flow computation method has already established a
probability distribution (�v(t)) with respect to the observations.
We can simply use this distribution in our dynamic observations
relationships. Hence we obtain:

�m(t) =M(x; y; z)�v(t); and;Y(t) =M(x; y; z)v̂i(t):

(4)

Control, Measurement and Correction of Dynamic Motion

Now using a control theory approach we will obtain the muscle
actuations. These actuations are derived from the observed image
velocities. The control input vectorU is therefore provided by
the control feedback law:U = �GX, whereG is thecontrol
feedback gain matrix. We assume the instance of control under
study falls into the category of anoptimal regulator(as we need
some optimality criteria for an optimal solution [16]). Hence, the
optimal control lawU� is given by:

U� = �R�1BTPcX
� (5)

whereX� is the optimal state trajectory andPc is given by
solving yet anothermatrix Riccati equation[16]. HereQ is
a real, symmetric, positive semi-definitestate weightingmatrix
andR is a real, symmetric, positive definitecontrol weighting
matrix. Comparing with the control feedback law we obtain
G = R�1BTPc. This control loop is also shown in the block
diagram in Figure 3 (upper loop (c)).

2.4 Motion Templates from the Facial Model

So far we have discussed how we can extract the muscle ac-
tuations of an observed expression. These methods have relied
on detailed geometric and/or physics-based description of facial
structure. However our control-theoretic approach can also be
used to extract the “corrected” or “noise-free” 2-D motion field
that is associated with each facial expression. In other words,
as much as the dynamics of motion is implicit into our analysis,
it does not explicitly require a geometric and/or physical model
of the structure. The detailed models are there so that we can
back-projectthe facial motion onto these models and use these
models to extract a representation in the state-space of these mod-
els. We could just use the motion and velocity measurements for
analysis, interpretation and recognition without using the geo-
metric/physical models. This is possible by using 2-D motion
energy templates that encode just the motion. This encoded mo-
tion in 2-D is then used as representation for facial action.

The system shown in Figure 3 employs optimal estimation,
within an optimal control and feedback framework. It maps 2-
D motion observations from images onto a dynamic model, and
then the estimates of corrected 2-D motions (based on the opti-
mal dynamic model) are used to correct the observations model.
Figure 9 and Figure 10 show the corrected flow for the expres-
sions of raise eyebrow and smile, and also show the corrected
flow after it has been applied to a dynamic face model. Further
corrections are possible by using deformations of the facial skin
(i.e., the physics-based model) as constraints in state-space that
only measures image motion.

By using this methodology without the detailed 3-D geometric
and physical models andback-projectingthe facial motion esti-
mates into the image we can remove the complexity of physics-
based modeling from our representation of facial motion. Then
learning the “ideal” 2-D motion views (e.g., motion energy) for
each expression we can characterize spatio-temporal templates
for those expressions. Figure 4 (e) and (f) shows examples of
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(a) Surprise (b) Smile

(c) & (d) Model

(e) & (f) Motion Energy

Figure 4. Determining of expressions from video se-
quences. (a) and (b) show expressions of smile and sur-
prise, (c) and (d) show a 3-D model with surprise and smile
expressions, and (e) and (f) show the spatio-temporal mo-
tion energy representation of facial motion for these expres-
sions.

this representation of facial motion energy. It is this representa-
tion of facial motion that we use for generating spatio-temporal
“templates” for coding, interpretation and recognition of facial
expressions.

3. Analysis and Representations

The goal of this work is to develop a new representation of
facial action that more accurately captures the characteristics of
facial motion, so that we can employ them in recognition, coding
and interpretation of facial motion. The current state-of-the-art
for facial descriptions (either FACS itself or muscle-control ver-
sions of FACS) have two major weaknesses:

� The action units are purely local spatial patterns. Real facial
motion is almost never completely localized; Ekman himself
has described some of these action units as an “unnatural”
type of facial movement. Detecting a unique set of action
units for a specific facial expression is not guaranteed.

� There is no time component of the description, or only a
heuristic one. From EMG studies it is known that most fa-
cial actions occur in three distinct phases:application, re-
leaseandrelaxation. In contrast, current systems typically

Expression Magnitude of Control
Point Deformation

AU2

20
40

60Shape Control Points 2

4

6

8

10

Time
0
5

10
15
20

Defs

20
40

60pe Control Points 2

4

6

8

10

Time
0
5

10
5
0

Raising
Eyebrow

20
40

60Shape Control Points 2

4

6

8

10

Time
0
5

10
15
20

Defs

20
40

60pe Control Points 2

4

6

8

10

Time
0
5
0
5
0

Figure 5. FACS/Candide deformation vs. Observed defor-
mation for the Raising Eyebrow expression. Surface plots
(top) show deformation over time for FACS actionsAU2,
and (bottom) for an actual video sequence of raising eye-
brows.

use simple linear ramps to approximate the actuation pro-
file. Coarticulation effects are not accounted for in any facial
movement.

Other limitations of FACS include the inability to describe fine
eye and lip motions, and the inability to describe the coarticu-
lation effects found most commonly in speech. Although the
muscle-based models used in computer graphics have alleviated
some of these problems [32], they are still too simple toaccu-
rately describe real facial motion. Our method lets us character-
ize the functional form of the actuation profile, and lets us deter-
mine a basis set of “action units” that better describes the spatial
properties of real facial motion.

Evaluation is an important part of our work as we do need to
experiment extensively on real data to measure the validity of our
new representation. For this purpose we have developed a video
database of people making expressions;the results presented here
are based on 52 video sequences of 8 users making 6 different
expressions. These expressions were all acquired at 30 frames
per second at full NTSC video resolution.

Currently these subjects are video-taped while making an ex-
pression on demand. These “on demand” expressions have the
limitation that the subjects' emotion generally does not relate to
his/her expression. However we are for the moment more in-
terested in measuring facial motion and not human emotion. In
the next few paragraphs, we will illustrate the resolution of our
representation using the smile and eyebrow raising expressions.
Questions of repeatability andaccuracy will also be briefly ad-
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Figure 6. FACS/Candide deformation vs. Observed defor-
mation for the Happiness expression. Surface plots (top)
show deformation over time for FACS actionAU12, and
(bottom) for an actual video sequence of happiness.

dressed.

3.1 Spatial Patterning

To illustrate that our new parameters for facial expressions are
more spatially detailed than FACS, comparisons of the expres-
sions ofraising eyebrowandsmileproduced by standard FACS-
like muscle activations and our visually extracted muscle activa-
tions are shown in Figure 5 and Figure 6.

The top row of Figure 5 showsAU2 (“Raising Eyebrow”) from
the FACS model and the linear actuation profile of the corre-
sponding geometric control points. This is the type of spatio-
temporal patterning commonly used in computer graphics ani-
mation. The bottom row of Figure 5 shows the observed motion
of these control points for the expression ofraising eyebrowby
Paul Ekman. This plot was achieved by mapping the motion onto
the FACS model and the actuations of the control points mea-
sured. As can be seen, the observed pattern of deformation is
very different than that assumed in the standard implementation
of FACS. There is a wide distribution of motion through all the
control points, not just around the largest activation points.

Similar plots for smile expression are shown in Figure 6. These
observed distributed patterns of motion provide a detailed repre-
sentation of facial motion that we will show is sufficient for ac-
curate characterization of facial expressions.
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Figure 7. Actuations over time of the seven main muscle
groups for the expressions of raising brow. The plots shows
actuations over time for the seven muscle groups and the
expected profile of application, release and relax phases of
muscle activation.
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3.2 Temporal Patterning

Another important observation about facial motion that is ap-
parent in Figure 5 and Figure 6 is that the facial motion is far from
linear in time. This observation becomes much more important
when facial motion is studied with reference to muscles, which is
in fact theeffectorof facial motion and the underlying parameter
for differentiating facial movements using FACS.

The top rows of Figure 5 and Figure 6, that show the develop-
ment of FACS expressions can only be represented by a muscle
actuation that has a step-function profile. Figure 7 and Figure 8
show plots of facial muscle actuations for the observed smile and
eyebrow raising expressions. For the purpose of illustration, in
this figure the 36 face muscles were combined into seven local
groups on the basis of their proximity toeach other and to the
regions they effected. As can be seen, even the simplest expres-
sions require multiple muscle actuations.

Of particular interest is the temporal patterning of the muscle
actuations. We have fit exponential curves to the activation and
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release portions of the muscle actuation profile to suggest the type
of rise and decay seen in EMG studies of muscles. From this data
we suggest that the relaxation phase of muscle actuation is mostly
due to passive stretching of the muscles by residual stress in the
skin.

Note that Figure 8 for the smile expression also shows a sec-
ond, delayed actuation of muscle group 7, about 3 frames after
the peak of muscle group 1. Muscle group 7 includes all the
muscles around the eyes and as can be seen in Figure 7 is the
primary muscle group for the raising eye brow expression. This
example illustrates that coarticulation effects can be observed by
our system, and that they occur even in quite simple expressions.
By using these observed temporal patterns of muscle activation,
rather than simple linear ramps, or heuristic approaches of the
representing temporal changes, we can more accurately charac-
terize facial expressions.

3.3 Characterization of Facial Expressions

One of the main advantages of the methods presented here is
the ability to use real imagery to define representations for differ-
ent expressions. As we discussed in the last section, we do not
want to rely on pre-existing models of facial expression as they
are generally not well suited to our interests and needs. We would
rather observe subjects making expressions and use the measured
motion, either muscle actuations or 2-D motion energy, to accu-
rately characterize each expression.

Our initial experimentation on automatic characterization of
facial expression is based on 52 image sequences of 8 people
making expressions ofsmile, surprise, anger, disgust, raise brow,
andsad. Some of our subjects had problems making the expres-
sion of sad, therefore we have decided to exclude that expres-
sion from our study. Complete detail of our work on expres-
sion recognition using the representations discussed here appears
elsewhere [14]. Using two different methods; one based on our
detailed physical model and the other on our 2-D spatio-temporal
motion energy templates, both showed recognitionaccuracy rates
of 98%.

4. Discussion and Conclusions

We have developed a mathematical formulation and imple-
mented a computer vision system capable of detailed analysis of
facial expressions within an active and dynamic framework. The
purpose of this system to to analyze real facial motion in order to
derive an improved model (FACS+) of the spatial and temporal
patterns exhibited by the human face.

This system analyzes facial expressions by observing expres-
sive articulations of a subject's face in video sequences. The vi-
sual observation (sensing) is achieved by using anoptimal opti-
cal flowmethod. This motion is then coupled to a physical model
describing the skin and muscle structure, and the muscle control
variables estimated.

By observing the control parameters over a wide range of facial
motions, we can then extract a minimal parametric representation
of facial control. We can also extract a minimal parametric rep-

Figure 9. Left figure shows a motion field for the expres-
sion of raise eye brow expression from optical flow com-
putation and the right figures shows the motion field af-
ter it has been mapped to a dynamic face model using the
control-theoretic approach of Figure 3.

Figure 10. Left figure shows a motion field for the ex-
pression of smile expression from optical flow computa-
tion and the right figures shows the motion field after it has
been mapped to a dynamic face model using the control-
theoretic approach of Figure 3.

resentation of facial patterning, a representation useful for static
analysis of facial expression.

We have used this representation in real-time tracking and syn-
thesis of facial expressions [13] and have experimented with ex-
pression recognition. Currently our expression recognitionaccu-
racy is 98% on a database of 52 sequences. using either our mus-
cle models or 2-D motion energy models for classification [14].

We are working on expanding our database to cover many
other expressions and also expressions with speech. Categoriza-
tion of human emotion on the basis of facial expression is an im-
portant topic of research in psychology and we believe that our
methods can be useful in this area. We are at present in collab-
orating with several psychologists on this problem and procur-
ing funding to undertake controlled experiments in the area with
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more emphasis on evaluation and validity.
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