
THE SIMPLE VIRTUAL
ENVIRONMENT LIBRARY

Version 2.0
User’s Guide

Drew Kessler, Rob Kooper,
Larry F. Hodges

{drew, kooper, hodges}@cc.gatech.edu

Graphics, Visualization and Usability Center,
Georgia Institute of Technology, USA.

April 16, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4674446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4/15/97

THE SIMPLE VIRTUAL
ENVIRONMENT LIBRARY

User’s Guide
Version 2.0

Drew Kessler, Rob Kooper,
Larry F. Hodges,

{drew, kooper, hodges}@cc.gatech.edu
Graphics, Visualization and Usability Center,

Georgia Institute of Technology, USA.

ABSTRACT
TheSimple Virtual Environments (SVE) C library provides a framework for the development of virtual
environment (VE) applications. The library provides the default components of simple VE applications
(such as fly-throughs), allowing these applications to be quickly implemented, and allows applications to
selectively alter, enhance, or replace components such as user interactions, animations, rendering, and
input device polling. The library also allows the hardware and software configuration (devices used and
placement in the workspace, location of remote servers, directories, etc.) to be given at run-time using an
initialization file. Therefore, SVE provides support for rapid prototyping as well as complete
implementation of simple and complex VE applications.

Differences between version 2.0 and 1.5
Although some differences exist between version 1.5 and 2.0 (see “Converting from v1.5” on page 1),
most of the changes are enhancements to the library that allow it to more completely fulfill the task of
supporting VE applications. New configurations flags have been added to separate lighting from gouraud
shading, and allow for an application with no display, or with no audio. Level of detail switching is
supported at the object level, where an object may contain a list of geometric descriptions which are used
for a particular range of distances from the user. Many new texture types are supported, including images
with 1, 2, 3, or 4 components per pixel, and two methods of blending the texture with the geometry it is
mapped onto. These features support transparent textures, among other things. In addition, a series of
textures can be given to be mapped onto a geometry, with the actual texture used for a particular frame
chosen automatically or by the application. The initialization file can now contain commands to move,
rotate, and scale objects, to alter their initial position. New functions are provided to move, rotate, and
scale objects in the coordinate system of objects other than the parent object. New functions allow the
application to alter, extend, or override object culling from the rendered scene (usually done using the
viewing volume of the user). Finally, a new function,SVE_pickObject() , allows for precise ray-object
intersections. See the files ENHANCEMENTS.FROM.V1.5 and CONVERTING.FROM.V1.5.

Acknowledgments
The following people have contributed to this library: Doug Bowman, Elizabeth Bright, Eric Brittain, Jim
Durbin, Kevin Hamilton, Drew Kessler, David Koller, Rob Kooper, E. J. Lee, Peter Lindstrom, Tom
Meyer, Greg Newton, Jouke Verlinden, Zach Wartell, and Ben Watson.

The Simple Virtual Environment Library User’s Guide 3

4/15/97

Table of Contents

1. Introduction ... 7
1.1. Example Application.. 8
1.2. On-line Help .. 11

2. SVE Basics ... 13
2.1. Initialization of the Application... 13
2.1.1. Loading an Environment. .. 14
2.2. The Interaction Loop. .. 15
2.2.1. Input Handlers ... 15
2.2.2. Animation Routines ... 16
2.2.3. Frame Drawing Routines... 17
2.3. Shutting Down... 18
2.4. Summary and Another Example ... 18
2.5. Tracker Devices and Other Configurations ... 20

3. Programming Details .. 23
3.1. Application configuration ... 23
3.1.1. Configuration Flags ... 23
3.1.2. Initialization File... 28
3.1.3. Display Configuration Files.. 31
3.1.4. Directories ... 32
3.2. The SVE System... 33
3.2.1. World State.. 33
3.2.2. System Overview .. 34
3.3. Events ... 36
3.3.1. Responding to Events ... 36
3.3.2. Generating Events... 39
3.4. Animation and Rendering.. 41
3.4.1. Animation Routines ... 41
3.4.2. Animation Callbacks.. 43
3.4.3. Rendering Callbacks ... 45
3.4.4. Object Rendering .. 46
3.4.5. Navigation ... 49
3.5. Objects .. 51
3.5.1. Creating Objects.. 52
3.5.2. Loading and Saving Objects ... 52
3.5.3. Finding Objects ... 52
3.6. Object trees... 53
3.6.1. Object tree manipulation ... 53
3.6.2. Rendered Object Tree (SVE_WORLD)... 58
3.6.3. Tracker Objects ... 61
3.6.4. Loading and Saving Object Trees... 61
3.7. Object Appearance ... 63
3.7.1. Object Position .. 63
3.7.2. Object Geometry ... 64
3.7.3. Object Boundaries... 72

4 The Simple Virtual Environment Library User’s Guide

4/15/97

3.8. Colors and materials ... 74
3.9. Lighting and Shading .. 76
3.10. Sound.. 79
3.10.1. Audio support .. 79
3.10.2. Spatial audio support... 80
3.11. Polling Devices.. 82
3.11.1. Tracking Devices... 82
3.11.2. Hand Input Devices... 83
3.11.3. User-Defined Polling Devices.. 89
3.12. 3D interactors.. 91
3.12.1. Registering a Widget Type.. 91
3.12.2. Creating a Widget.. 92
3.12.3. Creating a Widget From a File .. 94
3.12.4. Widget Event Function .. 95
3.12.5. Widget Instantiation... 96
3.12.6. Widget Deletion... 97
3.12.7. Retrieving Widget Data ... 97
3.13. Servers.. 99
3.14. Porting Version 1.5 Applications to Version 2.0 .. 100

4. Future Directions... 103

A Starter Kit... 105
1. Introduction ..105
2. General Overview ..105
3. An Example..105
4. Second Example..107
5. Using Tracking Devices ...110
6. Hardware Set Up ...110
7. Where to Find Additional Help ...110

B File Formats.. 111
1. Introduction ..111
1.1. Environment Description Files - World and Objects.. 111
1.2. Initialization File... 113
1.3. Display Configuration File ... 114
1.4. Gesture Description File.. 114
2. Formal Definition of the World Description File..117
3. Formal Definition of the Object Description File...120
4. Formal Definition of the Initialization File ...125
5. Formal Definition of the Display Configuration File..129
6. Formal Definition of the Glove Gesture File...131

C Reference Manual .. 133
1. SVE Function Reference ...133
1.1. Main SVE loop .. 133
1.2. SVE Configuration Routines ... 134
1.3. World/object utilities .. 134
1.3.1. Load/Save ... 134
1.3.2. Information .. 136

The Simple Virtual Environment Library User’s Guide 5

4/15/97

1.3.3. Object Creation and Deletion .. 137
1.3.4. Object Manipulation... 138
1.3.5. Object Geometry ... 142
1.3.6. Geometry Routines ... 143
1.3.7. Low Level Geometry Routines .. 148
1.3.8. Material Routines .. 149
1.3.9. Texture swapping.. 151
1.3.10. Automatic object animation ... 152
1.3.11. Animation Callbacks.. 152
1.3.12. Object Tree Manipulation .. 153
1.3.13. Object Boundaries... 155
1.3.14. Widgets ... 159
1.4. Callback utilities .. 160
1.4.1. Event callbacks ... 160
1.4.2. Frame callback.. 161
1.4.3. Object Frame Callbacks .. 162
1.4.4. Frame End Callbacks.. 162
1.4.5. Object Culling Callbacks ... 163
1.5. User Oriented Utilities ... 164
1.6. Rendering Functions ... 165
1.7. General utilities ... 167
1.7.1. State functions... 167
1.7.2. Matrix functions ... 169
1.8. Default User Tree Information... 170
1.8.1. Cursor Information... 170
1.8.2. HMD Information ... 170
1.9. Polling Device Routines .. 170
1.9.1. Tracker Device Routines ... 171
1.9.2. Glove Utilities .. 172
1.10. Sound utilities.. 173
1.10.1. Audio commands... 174
1.10.2. Spatial sound utilities... 175
1.11. Text Output Routines .. 175
2. Data Structure Utilities ...177
2.1. Linked List ... 177
2.2. Dynamic Array... 181
2.3. File Parser Utility ... 183
2.4. Vector Routines... 185
2.5. Matrix Routines ... 187
3. SVE Global Variables. ...188
3.1. Information .. 188
3.2. Setup... 190
4. SVE Data Structures..193

D Tracker Library ... 215
1. Using a tracker receiver ...215
2. Tracker function definitions ..216
3. Tracker data type...217

E Inset Utility .. 219

6 The Simple Virtual Environment Library User’s Guide

4/15/97

Index ...225

The Simple Virtual Environment Library User’s Guide 7

4/15/97

1. Introduction

When the Graphics, Visualization and Usability center of Georgia Tech received the necessary equipment
for a Virtual Environment set up, there was a need for common software to bring all of the hardware
together in a way in which students could quickly begin exploring the research issues within Virtual
Environments. Thus, the Simple Virtual Environment toolkit was born on November 4th, 1992 with the
purpose of providing a software toolkit that a student with limited experience in Virtual Environments or
advanced computer graphics could quickly develop a simple VE application, and have the resources to
begin developing applications and study Virtual Environments and the applications of VE to real-world
problems.

The SVE toolkit was begun from a mixture of previous efforts and experiences in developing Virtual
Environment support software (at Delft University of Technology in Holland and at the University of
Virginia in the USA), which revealed that most VE applications share a common set of functions such as
loading/saving worlds and rendering objects. Recognizing this, SVE was developed to provide the most
basic set of these functions and the more involved needs of various applications to maintain a “Virtual
World”, position tracking and hand input mechanisms. Current equipment includes a Silicon Graphics
Indigo Elan, a Silicon Graphics Crimson and Onyx machines with Reality Engine graphics subsystems,
Hewlett Packard workstations equipped with Freedom graphics from Evans and Sutherland, three Head
Mounted Displays (HMD’s) from Virtual Research (the Flight Helmet, the EYEGEN3, and the VR4), a
Virtual I/O Glasses HMD, a dual-receiver Ascension Bird 3D, a Polhemus ISOTRAK II, and a Polhemus
FASTRAK tracking system, as well as a Virtual Research Cyberglove. A diagram demonstrating the
equipment handled by the SVE system is shown in Figure 1.

The library produces an image to be shown in a HMD which is continuously updated. The library uses
either the SGI GL graphics library, or the OpenGL graphics library. It can use Wavefront objects or objects
described in a format designed for the SVE library. A virtual world can be described using a world file
format designed for the SVE library. The library is highly extensible. Code to read other geometric object
formats can be written and easily incorporated. Code to interface to tracking and other input devices not
already supported can be written and also easily incorporated. The library is designed to provide for easy

Input Devices

Mouse

FliteStik

Tracker(s)

Glove

Model

Rendering Options

Wire frame

Flat shaded

Gouraud shaded

Texture mapped

Display Options

Monitor

Head mounted

Stereo GlassesAudio Output

Maintenance

Figure 1. Configurations Provided by the SVE System

8 The Simple Virtual Environment Library User’s Guide

4/15/97

VE application development. For example, tracking devices are not needed during development, as the
keyboard and mouse can be used to interact with the environment. Therefore the tedious job of setting up
the physical devices required for VE applications need only be done for critical evaluation stages

Since this is an ongoing project and changes are constantly being made, we have felt it necessary to
provide a mailing list where people can send questions to or remarks. To become a member of this list
simply send E-mail tomajordomo@cc.gatech.edu, with subscribe sveas the body of the message. You will
then be added to the SVE mailing list. To send comments or bug report you can than send E-mail to
sve@cc.gatech.edu. Mail will in turn then be sent to everyone else on the list. Please note, however, that
SVE is currently an in-house system and only Georgia Tech and invited people will be allowed to join the
mailing list. Although we make the documentation and manuals available to the general public, the source
code is still only available within Georgia Tech. We hope to make it available outside of Georgia Tech in
the future, but that involves quite a few legal issues that we would like to avoid as long as possible.

This document is intended to be a comprehensive description and reference for the SVE system. If you
wish to quickly get your hands “dirty”, we suggest that you begin with the SVE Starter Kit, which can be
found as an independent file, Starter.fm, or in Appendix A (page 105) of this document. The Starter Kit
provides a couple illustrative examples and instructions on how to interact with SVE applications.

1.1. Example Application

Before discussing the SVE-basics, we present to you an application that demonstrates how the SVE library
allows for “simple” VE application implementations.

Source i: “Hello World” Example, My First SVE Program.
/**
 * Example1 (sve module)
 *
 * This example shows a simple Virtual Environment using SVE. The default
 * key’s as described in the SVE manual will work with this example.
 *
 **/

#include “sve.h”

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use. Look at the SVE BASICS section of
 * the manual for a description of the different configurations you can use.
 **/

printf(“Starting application\n”);
SVE_init(“Example1 (sve)”, config, &argc, argv);

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example1.world”))
{

printf(“Error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * SVE will take over control of the program until it is finnished.
 **/

printf(“Beginning event loop.\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

The Simple Virtual Environment Library User’s Guide 9

4/15/97

}

Th is p rogram uses on ly fou r SVE- func t ions :SVE_ in i t () , SVE_ loadWor l d () ,
SVE_beginEventLoop() andSVE_done() . It allows you to “walk around” a cube, with “hello world”
written the side. Neither the trackers nor the glove are used in this example (which would have to be
specified by setting the “config” variable to a different configuration from “SVE_NORMAL”). The
standard SVE key commands are recognized by this application. The mouse cursor must be over the SVE
window to execute any of the commands given in the table below.

When you run this application (by typing “example1 ”), you should see this in the bottom left corner of
your screen.

Table 1: Standard SVE Key/Mouse Commands

Key/Mouse Input Command

q or Esc Quit application.

t Toggle between NTSC (Head mounted display for systems that can’t get the
video straight from the frame buffer) and display on the monitor.

x and X Move up and down the x-axis of the world

y and Y Move up and down the y-axis of the world.

z and Z Move up and down the z-axis of the world.

up and down arrow Move viewpoint backword and forward.

left and right arrow Move viewpoint right and left.

Left mouse button and drag. Rotate the viewpoint

o Toggle the view to be/not be fixed.

Print Screen key Writes current view to disk as out_???.rgb.

Figure 2. snapshot of the first example.

10 The Simple Virtual Environment Library User’s Guide

4/15/97

The fileexample1.world defines the world by summing up all the objects that are used in the example:

Source ii: example1.world , the World Description File
Simple Virtual Object File Format version 1.0
number of objects: 2

object name: meadow
primitives file: plane.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 -1 -1 1
other attributes: 0
number of children: 0

object name: cube_text
primitives file: hello_world.object
transformation matrix:
1 0 0 0
0 1.1 0 0
0 0 1 0
0 0.5 -3 1
other attributes: 0
number of children: 0

The geometry of the objects is defined in separate files, so they can be used to describe more than one
object in the environment:

Source iii: hello_world.object, the Object Geometry File
Simple Virtual Primitive File Format version 1.1
bounding sphere 1.1 at 0.8 0.5 0.17
number of components: 3

component 1 type: text
Data of component 1:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 0.6 0.36 1
no of lines:
1
Hello World!

component 2 type: polyhedron
Data of component 2:
no of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35

no of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
30 0 0 4 0 1 2 3
30 0 0 4 0 4 5 1
30 0 0 4 5 6 2 1
30 0 0 4 6 7 3 2
30 0 0 4 7 4 0 3
30 0 0 4 7 6 5 4

The Simple Virtual Environment Library User’s Guide 11

4/15/97

component 3 type: polyhedron
Data of component 3:
no of vertices:
10
vertices: x y z
0.4 0.4 0.37
0.5 0.5 0.37
0.8 0.6 0.37
1.1 0.5 0.37
1.2 0.4 0.37
1.2 0.2 0.37
1.1 0.1 0.37
0.8 0.0 0.37
0.5 0.1 0.37
0.4 0.2 0.37
no of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...
0 20 70 10 9 8 7 6 5 4 3 2 1 0

Certain configuration details, such as which directory or directories contain the object and world files of
the application, where the window should be places, and with what dimensions, and the details about any
hardware devices used by the application (such as tracking devices) are specified in the.sve.init file.
This file is either contained in the directory from which the application is run, or, if none is there, in the
home directory of the user. Here is an example.sve.init file which indicates where the object files
should be found:

Source iv: .sve.init , the initial configuration file.
This file contains some default variables. The read routine is not
case sensitive.

DefaultObjectDirectory ../../objects
DefaultMaterialDirectory ../../objects

1.2. On-line Help

The SVE manual (this document) is available on the World Wide Web, along with hypertext links for every
function in the library. The URL for the SVE homepage, which contains a link to the latest version of the
documentation, is “http://www.cc.gatech.edu/gvu/virtual/SVE/SVE.html ”.

12 The Simple Virtual Environment Library User’s Guide

4/15/97

The Simple Virtual Environment Library User’s Guide 13

4/16/97

2. SVE Basics

The control flow in a virtual environment and in any interactive application can be characterized by the
following diagram:

This diagram is used to form the skeleton of the SVE library: the library provides functions for initializing
the VR application, processing the input, giving feedback, and shutting down the application. We’ll now
discuss each of these parts.

2.1. Initialization of the Application.
void SVE_init(char * programname, SVE_config configuration,

int *argc, char *argv[])

TheSVE_init() function should be the first SVE function call used in an application, it allocates and
initializes the various data structures SVE requires and opens a graphics window in the lower left corner of
the screen1. The program name will appear in the title bar of the window. Theconfiguration parameter
specifies which graphics modes and hardware devices are used (lighting, texture mapping, using the HMD,
etc.). Each additional option is represented by an integer (defined insve.h), the combination of multiple
devices and preferences is defined by combining the integers with a binary “or” operation.SVE_init()
will then call the initialization routines of the specified hardware devices, and define callback-routines that
define the default set of interactions for use with that configuration. The many available options are
detailed in 3.1.1 “Configuration Flags” on page 23. A few of the more common options are briefly
described below.

• SVE_NORMAL: The standard configuration (represented by 0). It does not make use of any special hardware (such
as the glove or a tracker system), just the standard input devices (keyboard, mouse, etc.).

• SVE_HMD: Uses tracking devices to determine the location and orientation of objects in the environment, including
the object representing the user’s view. The particulars of which tracker devices to use to control which objects can
be determined in an initialization file (see 3.1.2 “Initialization File” on page 28), or (less often) by the applica-
tion explicitly. This configuration is actually a combination ofSVE_TRACKER, which enables tracking devices, and
SVE_HMDMONO, which produces a monoscopic view of the environment where the viewpoint moves as if rigidly
attached to the tracker.

1. The window placement is standard for NTSC-conversion with help of the VIDI/O box. Other window
placements are possible.

init

interaction
& feedback

shutdown

Figure 3. Global control flow.

14 The Simple Virtual Environment Library User’s Guide

4/16/97

• SVE_GLOVE: Makes use of the CyberGlove. A graphical object will show the movements of the glove in the virtual
screen and simple gesture recognizing can be enabled. As is the case with the tracking devices, the details of the
glove device are given in the initialization file.

• SVE_LIT_GOURAUD: The world will be rendered with gouraud shading (flat shading is used by default) using
lights defined in the world to shade the objects. This configuration is actually a combination ofSVE_LIGHTING
andSVE_GOURAUD.

• SVE_STEREO: The library will switch the monitor to stereo mode (if available), and render the left and right eye
views, which produce a 3D view that can be seen using Crystal Eyes glasses.

• SVE_TEXTURES: Textured polygons will be rendered with their specified textures (these textured polygons are ren-
dered as ordinary polyhedrons when this option is not used).

The configuration options can be changed by an application at any time. In addition, certain configurations
come with a default behavior (event callback functions, default objects, etc.). The default behaviors can be
overridden or augmented by application specific behaviors. This is discussed in more detail in the section,
3.1. “Application configuration” on page 23.

2.1.1 Loading an Environment.
boolean SVE_loadWorld(filename)

The SVE_loadWorld() function loads objects specified in an SVE world file into an internal data
structure which is rendered automatically during the interaction loop. The function returnsFALSE when an
error occurs during loading. The file formats are described in detail in appendix B, page 111. The world
description file describes a rooted tree of geometric objects, each described by an object file. For example,
figure 4 shows a world consisting of a cube with text, a “meadow” ground plane, and two trees on the
meadow. The two tree objects are linked to the meadow object, as they are “attached” to the ground. The

world and object files that describe this environment are shown in figure 5. The world file describes the
object hierarchy (which objects are children of which objects), each object’s position in terms of their
parent’s coordinate system (or world coordinate system for top level objects), and which object file to use
for each object. The object file defines object geometry, which consists of many different types of
primitives (polygons, lines, text, textured polygons, etc.).

tree1

tree.object

Object Tree

Object Geometry (from object file)

tree1

tree.object

cube_text

hello_world.object

meadow

plane.object

root

Figure 4. Example Object Tree

The Simple Virtual Environment Library User’s Guide 15

4/16/97

2.2. The Interaction Loop.

The interaction loop of the SVE system is shown below.

The polling of the input devices and the rendering of the world is done by the system. Functionality can be
added both to the input handling and the rendering procedures. This loop is started by calling
SVE_beginEventLoop() . The loop is stopped whenSVE_stopEventLoop() or SVE_abort() is
called, or (unless over-ridden by an application function) hitting theESC key.

2.2.1 Input Handlers

The data from the input devices is automatically put in a globalSVE_state data structure. The processing
of events is done by a notifier-callback mechanism (used on most of the 2D direct manipulation systems
like SUNVIEW, X,. etc.): the system notifies the application when an event occurs by calling the
appropriate callback routine(s). (See “Concepts of a notifier mechanism and the event lookup table” on
page 17)

Each event type has their own list of callback routines. Event types include keyboard input
(SVE_KEY_PRESS, or specific key events such asSVE_ESC_KEY), mouse input (SVE_LEFT_MOUSE,
SVE_RIGHT_MOUSE, etc.), object events (SVE_OBJECT_SELECTION andSVE_OBJECT_HIGHLIGHT),
and more. A complete listing of available events can be found ininclude/event.h (in the SVE
directory). Callback routines should be of the following form.

SVE_status function(SVE_state state)

Simple Virtual Object File Format version 1.0
number of objects: 2

object name: cube_text
primitives file: hello_world.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
-0.5 0.5 -2 1
other attributes: 0
number of children: 0

object name: meadow
primitives file: plane.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 -1 0 1
other attributes: 0
number of children: 2

object name: tree1
primitives file: tree.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
8 0 -10 1
other attributes: 0
number of children: 0

object name: tree2
primitives file: tree.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
-6 0 -14 1
other attributes: 0
number of children: 0

Simple Virtual Primitive File Format version 1.1
number of components: 2

component 1 type: polyhedron
Data of component 1:
of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
30 0 0 4 0 1 2 3
30 0 0 4 0 1 5 4
30 0 0 4 1 2 6 5
30 0 0 4 2 3 7 6
30 0 0 4 3 0 4 7
30 0 0 4 4 5 6 7

component 2 type: text
Data of component 2:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 0.6 0.36 1
of lines:

Simple Virtual Primitive File Format version 1.1
number of components: 1

component 1 type: polyhedron
Data of component 1:
of vertices:
4
vertices: x y z
-100 0 -300
-100 0 100
300 0 100
300 0 -300
of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...
10 70 0 4 0 1 2 3

World file (hello_world.world) Object files

plane.object hello_world.object

Figure 5. SVE data files

Simple Virtual Primitive File Format version 1.1
bounding box -1.0 0.0 -1.0 1.0 4.0 1.0
number of components: 1

component 1 type: polyhedron
Data of component 1:
no of vertices:
24
vertices: x y z
0.1 0.0 0.0
0.1 2.0 0.0
-0.1 2.0 0.0
-0.1 0.0 0.0
0.0 0.0 0.1
0.0 2.0 0.1
0.0 2.0 -0.1
0.0 0.0 -0.1
0.5 2.0 0.0

tree.object

...

16 The Simple Virtual Environment Library User’s Guide

4/16/97

Each callback routine is added to the list of callbacks for a particular event type using the function
SVE_registerCallback() , and removed from the list by callingSVE_removeCallback() . Event
callback functions are called in the reverse order in which they were registered.

void SVE_registerCallback(int event, SVE_functionPtr function);
void SVE_removeCallback(int event, SVE_functionPtr function);

Note that the function should return a value of typeSVE_status which has the possible values:
EVENT_IGNORED andEVENT_CONSUMED. As already mentioned, some events in a specified configuration
have a “default” callback routine. No callback routines have to be registered if the default behavior is
su ffi c ien t . The de fau l t ca l lback rou t ines can be comple te ly removed w i th the
SVE_removeAllCallbacks() function.

void SVE_removeAllCallbacks(int event);

It is possible to have both user-defined and default callback routines on the list for the same event. In this
case the user-defined routine will be called prior to the default one(s). If a user-defined routine returns
EVENT_CONSUMED, the default callback (or any user-defined routines defined before this one) will not be
called.

2.2.2 Animation Routines

An application may wish to alter continuously the properties of the objects maintained by the SVE system,
or other data maintained by the application. An example of this would be a rotating cube. This is done by
defining a routine that is called on a regular basis. This routine is known as an animation callback routine.
The SVE system maintains a list of animation routines to call. These functions are called one after another
after the pending events have been handled, and before anything is rendered. A new animation routine can
be added to the front of the list using the functionSVE_addAnimationCallback() .

void SVE_addAnimationCallback(SVE_functionPtr function);

The animation callback routine should be of the same form as an event callback routine, although in this
case the return value of the function is ignored. An animation callback function can be removed from the
list using theSVE_removeAnimationCallback() function. The entire list can be cleared with the
SVE_removeAllAnimationCallbacks() function.

Poll input and process events

Render the world

Stop interaction loop

Figure 6.The interaction loop.

Animate objects

The Simple Virtual Environment Library User’s Guide 17

4/16/97

void SVE_removeAnimationCallback(SVE_functionPtr function);
void SVE_removeAllAnimationCallbacks(void);

The animation callback functions are discussed in more detail in the section 3.4.2 “Animation Callbacks”
on page 43.

2.2.3 Frame Drawing Routines

During the rendering process, the screen is cleared, the camera viewpoint is set, and the world is drawn
(more will be said about this in section 3.4.3 “Rendering Callbacks” on page 45). Additional visual effects
and other user-defined rendering functions can be added to the drawing process by registering a frame-
callback routine. This routine will be called each frame, just before the world is rendered. and is added
with SVE_setFrameCallback() .

void SVE_setFrameCallback(SVE_functionPtr function);

This function is added to the front of a list of frame callback routines. It is of the same form as the
animation callback routines (its return value is also ignored). A frame callback can be removed from the

EVENT FUNCTION POINTER(S)

Keyboard print_key

Left mousebutton shoot_bullet

Escape Key exit_app

load_bullet shoot_bullet exit_app

...

print_key

event lookup table

wait for an event

lookup event function

call event function

repeat

Figure 7. Concepts of a notifier mechanism and the event lookup table

load_bullet

18 The Simple Virtual Environment Library User’s Guide

4/16/97

list with theSVE_removeFrameCallback() function. The entire list of frame callbacks can be removed
usingSVE_removeAllFrameCallbacks() the function.

void SVE_removeFrameCallback(SVE_functionPtr function);
void SVE_removeAllFrameCallbacks(void)

Note that any action taken in a frame callback which changes the viewpoint will not take effect until the
frame after the one being drawn. Any object movements, therefore (which could move the viewpoint if the
objects representing the user’s eye point are part of the children sub-tree of the moving object), should be
done in ananimation callback routine.

2.3. Shutting Down.
void SVE_done(void)

The SVE_done() function deallocates the data structures and shuts down the I/O devices. After this
function is called,SVE_init() must be called again before any other SVE functions can be called (with
the except ion on any func t ion tha t can be ca l led before SVE is in i t ia l i zed, such as
SVE_setInitFilename()).

2.4. Summary and Another Example

In short, SVE provides a set of functions to initialize devices and rendering modes, regulate the events and
object animations, and cleanly shut down a VE application. The interaction mechanism is based on event-
callback functions, and objects that are kept in an internal database.

The total control flow of a typical SVE-based application can be described with the following diagram:

Here is another simple application, that includes a user-defined callback procedure:

Source v: example2, application using a callback
/**
 * Example2 (sve module)
 *
 * This is the second example from the “SVE Basics” section of the
 * SVE manual.
 *
 * This example is used to show how to register a callback to SVE, and
 * handle this callback. The default key’s as described in the Introduction
 * still work as they did in example1.
 **/

#include “sve.h”

/**

User Level

System Level

prologue

SVE_init &
SVE_loadWorld SVE_beginEventLoop

callback routines epilogue

SVE_done

Figure 8.The control flow of the vr-application.

The Simple Virtual Environment Library User’s Guide 19

4/16/97

 * This function handles the callback from the SVE_KEY_PRESS event.
 **/
SVE_status printKey(SVE_state state)
{

char keyPressed;

printf(“printKey\n”);
if (state->eventType == SVE_KEY_PRESS) {

keyPressed = ((SVE_keyEvent *)state->eventData)->keyVal;
printf(“Key %c pressed\n”, keyPressed);

}
return(EVENT_IGNORED);

}

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use. Look at the Initialization part of
 * the SVE Basics section of the manual for a description of the different
 * configurations you can use.
 **/

printf(“Starting application\n”);
SVE_init(“Example2 (sve)”, config, &argc, argv);

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example2.world”))
{

printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * Tell SVE that we are interested in the SVE_KEY_PRESS event, and tell SVE which
 * function will handle this callback.
 **/

printf(“Registering an input callback.\n”);
SVE_registerCallback(SVE_KEY_PRESS, printKey);

/**
 * SVE will take over control of the program until it is finnished.
 **/

printf(“Beginning event loop\n”);
SVE_setBackgroundColor(0.1, 0.1, 0.1);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

One callback function is registered in this example forSVE_KEY_PRESS events, which echoes the keys
pressed tostdout . Note that the callback function indicates that it has done nothing in response to the
input by returningEVENT_IGNORED. This way, SVE’s default function for handling keyboard input will
always be called, allowing the user to still be able to use the keyboard to move around in the environment.

Apart from the basic functions already presented in this section, the library contains many useful routines
to manage the virtual environment, The next chapter will present a more detailed and comprehensive
description of SVE functions and data structures.

20 The Simple Virtual Environment Library User’s Guide

4/16/97

2.5. Tracker Devices and Other Configurations

So far, we have only presented applications that display an environment from any point of view in the
environment. This display can be sent to a head mounted display or displayed as a stereo image on a
monitor, but it only provides part of the requirements of an immersive virtual environment application. The
item that is missing is a method to couple the point of view displayed to the actual point of view of the user.
This is usually done through some sort of tracking device, such as an electromagnetic tracker.

The SVE library supports many tracking devices. Trackers are identified on a receiver to receiver basis.
The details of what actual devices and receivers are used are given at run time by the initialization file, or,
less often, specified by the application through a function call. Each tracker receiver provides the
orientation and location of an object in the environment in reference to it’s parent object. Since tracker
receivers usually report its position in relationship to a reference point (the transmitter in the
electromagnetic tracker example), the parent object can be thought of as determining the position of the
reference point in the virtual environment. This concept is discussed in more detail in 3.6.2 “Rendered
Object Tree (SVE_WORLD)” on page 58.

There are two requirements for an application to use a tracking device, it must identify that trackers are
going to be used, and the particular tracker needs to be identified, usually in the initialization file.

If this application’sconfig is changed so that it says “config = SVE_NORMAL | SVE_HMD” 1 instead of
“config = SVE_NORMAL” it will use the trackers defined in the initialization file. This is usually done as
a response to a command line argument. Here is a modified main function for theexample2 source code
shown above which sets theconfig flag to use trackers when the command line includes a ‘t’ (i.e.
“example2 t ”).

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

printf(“Starting application\n”);
if ((argc > 1) && (strchr(argv[1],’t’) != NULL))

config = config | SVE_HMD;

SVE_init(“Example2 (sve)”, config, &argc, argv);

...

}

The second step is to specify what tracking devices to use to control which object. This is usually done in
the initialization file, which is usually the.sve.init file in the directory from which the application is
run. A tracker which is to control the application’s viewpoint usually is associated with an object called
“SVE HMD”. A tracker which is to control a representation of the user’s hand is usually associated with an
object called “SVE cursor”. Here is an example initialization file which associates the first and second
tracker of an IsotrakII device with the “SVE HMD” and “SVE cursor” objects, respectively. The file also
contains many other configuration details, which are discussed in more detail in 3.1.2 “Initialization File”
on page 28. (For example, an alternative method to indicating that the application should use the tracking
devices defined in the configuration file is to also include a “hmd true” line in the configuration file.)

1. Fish Tank VE set-ups are possible by usingSVE_TRACKER instead ofSVE_HMD. This results in the
viewplane remaining rigidly attached to the tracking reference frame (for a stationary monitor), rather
than moving the viewplane as if it were attached to the head tracker (for a head mounted display).

The Simple Virtual Environment Library User’s Guide 21

4/16/97

Source vi: .sve.init, an Example Initialization File
This file contains some default variables. The read routine is not
case sensitive.

minX 0
minY 0
sizeX 640
sizeY 480
Near 0.01
Far 5000.0
DefaultObjectDirectory ../objects
DefaultMaterialDirectory ../objects
tracker 1 buckhead isotrakii /dev/ttyd2 1 SVE HMD
tracker 2 buckhead isotrakii /dev/ttyd2 2 SVE cursor
move USER to 0.0 2.2 0.0

As an example, the last line of the file would be translated as, “the second tracker receiver (tracker 2) is
located on a machine called ‘buckhead’ (buckhead) and it is a Polhemus IsotrakII device (isotrakii)
connected to the /dev/ttyd2 serial port (/dev/ttyd2). The receiver to use is the second one (2). This
tracker receiver controls the ‘SVE cursor’ object (SVE cursor).”

The “tracker” line essentially introduces a new object into the object tree between the controlled object and
its parent. The position of this new object (called “SVE tracker X”, where X is the number ID given on the
“tracker” line) is determined by the tracking device, and determines the controlled object’s position
because it is the controlled object’s parent. Usually, the tracking device reports its position in relationship
to a reference position (the electromagnetic transmitter, for example). Therefore, the controlled object’s
original parent object (now the parent of the “SVE tracker X” object) should be positioned to reflect the
reference object’s position. The “USER” object is the parent object of the “SVE HMD” and “SVE cursor”
objects. The “move” line in the example initialization file places the tracking reference frame 2.2 meters
above the floor. See “Object trees” on page 53 for more details.

Lastly, in order for this to work, there must be a server program running on the machine to which the
tracking device is connected. The server program communicates with the device, and sends the tracker
information to all SVE applications which are interested in it. The server program is called
server-tracker , and can be found in the SVEbin directory (~vrgroup/sve/v2.0/bin). More
information on server programs can be found in 3.13. “Servers” on page 99.

USER

SVE tracker 1 SVE tracker 2

SVE HMD SVE cursor

USER

SVE HMD SVE cursor

Before After

Figure 9. Objects Inserted From Initialization File in Source vi:

22 The Simple Virtual Environment Library User’s Guide

4/16/97

The Simple Virtual Environment Library User’s Guide 23

4/16/97

3. Programming Details

This chapter describes the underlying concepts and structure of the SVE system and the many routines
provided by the SVE library to integrate an application with the SVE system. The importance of each part
of this chapter will depend greatly on the needs of the application.

3.1. Application configuration

The main service of the SVE library and system is providing a large number of possible configurations
with minimal work from the application to deal with the configurations. There are two methods to setting
and changing the configuration of the SVE system, through the configuration flags and through the
initialization file. These methods are described below.

3.1.1 Configuration Flags

There are many display and interaction options available to an SVE application. A display can be flat
shaded (the default) or gouraud shaded, black and white, wireframe, rendered with texture maps, and in
stereo for CrystalEyes(TM) glasses or red/blue (for the right/left eye) stereo. The display can be pre-
distorted for LEEP optic head mounted displays, or can have an inset that is at a higher resolution than the
outer edges. An application can use a tracking mechanism and a CyberGlove(TM) hand input device. An
application that requires selection-type interactions (object selection, button selection, etc.) can use a built-
in selection object that follows the “SVE cursor” object (which is usually the second tracker when trackers
are being used), and uses a ray to select when the mouse button is pressed (generating highlight and
selection events).

Each option is independent of other options. The entire configuration is stored in a single bit-array, which
is the “config” parameter passed toSVE_init() , the function that initializes the SVE system. Once the
configuration is set, it can be retrieved with the functionSVE_getConfig() , and changed with the
functionSVE_changeConfig() .

boolean SVE_init(char *programName, SVE_config config,
int *argc, char *argv[]);

SVE_config SVE_getConfig();
void SVE_changeConfig(SVE_config newConfig);

A particular option is set by doing a bit-wise “or” on the configuration flag variable using the appropriate
option flag. For example, the following line sets the configuration flag to render with gouraud shading:

config = config | SVE_GOURAUD;

Table 2 gives a list of the available options and a short description of each. Longer descriptions of each
option follows.

Table 2: SVE Configuration Options

Option flag Option description

SVE_NORMAL This is the standard vanilla display. The statement “config = SVE_NORMAL; ”
removes all other options.

SVE_LIGHTING This option enables lighting effects. Note that if no light sources are defined, the environ-
ment will be quite dark.

SVE_GOURAUD This option enables gouraud shading rendering, which is generally slower, but looks
more realistic. With this option enabled, curved surfaces which are represented by many
flat polygons will appear curved (except on the silhouette edges).

24 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_NORMAL

This is the vanilla configuration. Setting the configuration to this value turns off all other options and using
SVE_NORMAL in a series ofor ’d configuration flags has no effect.

SVE_LIT_GOURAUD This option is a combination of SVE_LIGHTING and SVE_GOURAUD. These options
are often used in conjunction.

SVE_BW This option causes SVE to render in black and white. This will be no faster than render-
ing in color, however.

SVE_WIREFRAME Setting this option flag will cause SVE to render objects as a wireframe. This could result
in a performance increase and reveals polygon edges.

SVE_TEXTURES This option allows for textures that are defined for a geometric primitive to be displayed.

SVE_STEREO With this option set, the SVE application will use the 120HZ refresh rate of a stereo mon-
itor coupled with a StereoGraphics(TM) emitter to render in stereo for CrystalEyes(TM)
glasses.

SVE_RBSTEREO This option causes the display to be rendered for stereo viewing such that the left eye is
rendered in blue, and the right eye is rendered in red. A stereo viewer such as the
Fakespace BOOM2C (TM) will use these signals to show a black and white stereo view.

SVE_TRACKER Setting this option enables the use of any 3D trackers that have been defined. The trackers
to use are usually defined in the initialization file, but can be defined in the SVE applica-
tion.

SVE_HMDMONO This option causes the view plane to be set up for a head mounted display. The view
plane will be attached to the object representing the user’s head rather than the world ref-
erence point.

SVE_HMDSTEREO This is the same as above except the eye objects are placed on either side of the user’s
center view (using the eye separation parameter). Only one eye is rendered, though. The
default is the left eye, but can be changed using the SVE_RIGHTEYE configuration.

SVE_RIGHTEYE The image drawn to the screen is from the point of view of the right eye, rather than the
left eye.

SVE_HMD This option is equivalent to SVE_TRACKER | SVE_HMDMONO.

SVE_GLOVE Setting this option enables the use of a Virtual Technologies CyberGlove(TM).

SVE_SELECT Setting this option causes the selection objects to appear, and allows other objects to be
selected using the right mouse button.

SVE_PREDISTORT This option causes the display to be pre-distorted in real time for leep-optics head
mounted displays. This option requires a SGI Reality Engine.

SVE_NOAUDIO Setting this flag prevents the application from producing audio, either locally or remotely
through an audio server.

SVE_NODISPLAY Runs application without a display.

SVE_SPATIALSOUND This option enables the use of spatial sounds, which requires a spatialization host.

Table 2: SVE Configuration Options

Option flag Option description

The Simple Virtual Environment Library User’s Guide 25

4/16/97

SVE_LIGHTING

With this configuration, defined light sources are used in conjunction with the material properties (diffuse
and specular response to the light sources, as well as an ambient color) of geometries to produce a lit scene.
This option requires more calculations for rendering, and therefore will result in a performance hit in the
frame rate.

SVE_GOURAUD

If this option is used, the display will be rendered using gouraud shading, rather than the default flat
shading. Gouraud shading calculates a color for each vertex of a polygon based on the vertex normal. For
surfaces which are represented by many polygons, the vertex normals are perpendicular to the surface,
rather than the polygon with which the vertex is a part. This results in a smooth shading that hides polygon
edges, and gives the appearance of the surface. The modeler can specify the vertex color before hand,
producing interesting effects where the polygon’s color changes color smoothly from one vertex to the
next.

Gouraud shading does result in a performance hit, and will cause the application to render less frames per
second.

SVE_LIT_GOURAUD

This option is equivalent to SVE_LIGHTING | SVE_GOURAUD, which combines the effect of lighting
with light sources defined in the scene and gouraud shading of the objects in the scene. This option is
provided as a convenience, as lighting and gouraud shading are often used together.

SVE_BW

With this option on, the display will be rendered in black and white. This option will not cause any
significant speed-up from a color rendering. It is mostly for displays that require black and white, as would
be the case if a display only took one of the red, green, and blue display signals.

SVE_WIREFRAME

With this option on, the display will be rendered in wireframe. This means that all polygons will be
represented by a line outline rather than a filled polygon. The lines are of the same color as the polygon
would have been. This option negates the effect of the SVE_TEXTURES option, as texture maps are not
rendered on polygons. A wire frame model is generally displayed faster than a shaded model.

SVE_TEXTURES

With this option on, polygons that have been specified to use a texture map will do so. Texture maps are
part of an objects material definit ion. They are specified in a material fi le, or using the
'textured_polyhedron” primitive option in the object description file. Texture mapping is a costly operation,
especially for low-end graphics engines. However, the detail that can be displayed using a texture map (as
compared to a extremely detailed polygonal model) can out weigh the cost.

26 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_STEREO

This option displays a rendered frame for each eye, and switches the monitor to stereo mode (if available),
which allows the screen to be viewed in stereo using shutter glasses that are sync’ed to the monitor.
Essentially, the entire screen is used to display the left and right eye views, with one view on the top, and
the other on the bottom. The stereo mode uses the entire display to show one after the other. An SVE
application can expect a decrease in rendering speed, as a larger area is being rendered, and the view is
rendered twice.

SVE_RBSTEREO

This option is similar to the SVE_STEREO option, except that the right and left eye views are rendered
entirely in red and blue, respectively. A device, such as the Boom2C by FakeSpaceTM, can use the two
outputs (red and blue) to construct a single color display in stereo (perhaps by showing the red signal to the
right eye, and the blue signal to the left eye). As in the SVE_STEREO option, this is a costly option, as the
scene is rendered twice, and usually to a larger area (full screen, in the case of the Boom2C).

SVE_TRACKER

This option enables the use of tracking devices. The particular tracking device must be specified in the
initialization file (see below), or in the application itself.

SVE_HMDMONO

This option sets the viewing plane to be attached to the head (as it really is in a head mounted display). It
also changes the default behavior for mouse (or FlitStik) button presses. The left mouse button is used to
toggle the user’s flying direction, the middle mouse button is used to fly in the direction the user is looking,
and the right mouse button is used to accelerate.

SVE_HMDSTEREO

This option is the same as SVE_HMDMONO except that the user’s two eyes are placed on either side of
the center view (which is halfway between the user’s eyes), using the eye separation parameter. Only one
image is rendered. It is the left eye, unless the SVE_RIGHTEYE configuration flag is set.

SVE_RIGHTEYE

This option causes the image to be rendered from the point of view of the user’s second (right) eye, rather
than the left eye.

SVE_HMD

This option is equivalent to SVE_TRACKER | SVE_HMDMONO. It is provided for backward
compatibility.

The Simple Virtual Environment Library User’s Guide 27

4/16/97

SVE_GLOVE

The option enable the use of a CyberGloveTM hand input device. The device must still be specified in the
initialization file (see below), or in the application itself. See 3.11.2 “Hand Input Devices” on page 83 for
more details on hand input devices.

SVE_SELECT

This option allows for a default object selection behavior. When this option is used, a standard pointer and
selection object are loaded in and automatically follow the “SVE cursor” object (usually the user’s hand).
Pressing the left and middle mouse buttons cause a ray to shoot out from the pointer object. Any selectable
object that is hit by the ray is highlighted (and anSVE_OBJECT_HIGHLIGHT event is generated). When the
mouse button is released, the ray disappears, and the object highlighted when the button is release is
“selected” (anSVE_OBJECT_SELECTION event occurs).

The default objects used for the pointer and ray are shown in Figure 18. “Widget Example Screen Shot.” on
page 91. The object used for each of these tasks can be changed in the initialization file (see below).

SVE_PREDISTORT

This option has not been tested with many other configurations, including insetting and stereo. It requires
SGI GL routines specific for Reality Engine graphics, and therefore is not available for OpenGL
implementations.

To control predistortion, users may set two externally declared variables,SVE_pdExtX andSVE_pdExtY.
These control the horizontal and vertical extent of the source window, which contains the undistorted
image. The smaller the source window, the faster the predistortion can be performed. The resolution of the
destination window is controlled by the standard window globalsSVE_minX, SVE_minY, SVE_sizeX ,
andSVE_sizeY . Note that large source extents are not really necessary HMDs with low resolution.

Users may also set several constants declared inpredistort.h . These constants are based on the HMD
viewing model contained in Robinett’s paper (see Presence Vol 1 No 1).PD_K controls the strength of the
contraction used to correct for HMD distortion.K models the strength of the stretch in the HMD’s
distortion.T, B, R andL are the normalized boundary coordinates of the undistorted graphics window,
relative to the optical axis of the HMD’s lens. The distance on the image from the axis to the top isT, to the
bottomB, to the leftL, and to the rightR. The coordinates are normalized so that the longest distance is 1.

The predistortion is performed with the SGI’s dynamic texturing hardware. The source image is treated as
a texture. In the destination window, a point grid is precalculated and predistorted. The source image is
then textured onto the predistorted grid. There is a trade-off between texel interpolation and grid precision
(the number of grid points). This may be controlled with the constantsNUM_CELLSX andNUM_CELLSY
(internal variables).

Note that image generation and predistortion must be synchronized. If not, the predistorting routines will
load incomplete frames as textures. In SVE, this is accomplished by used the same process for rendering
and predistortion.

SVE_NOAUDIO

Setting this flag prevents the application from producing audio, either locally or remotely through an audio
server.

28 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_NODISPLAY

Runs application without a display. The event-render cycle is still followed, so frame callbacks and object
frame callbacks (if the object isn’t culled) are still called, along with animation callbacks. Events can be
obtained from an event server, and the tracker and audio servers can be used.

SVE_SPATIALSOUND

This option is no longer supported. It may be supported again in the future, however.

3.1.2 Initialization File

When an application callsSVE_init() , the SVE system first reads an initialization file that sets many of
the attributes of an SVE application that do not change often, but change often enough that a re-
compilation of the application is too costly. Example attributes that can be set are default directories for
object, world, texture, and material files, which machines are running remote servers, how the SVE
application display should appear, and what types of tracking devices should be used, and what objects
they control. The default name of this file is.sve.init, and the file will be taken from the current directory,
or your home directory if there is none in the current directory. The name of the file can be changed before
SVE is initialized using the following function call:

void SVE_setInitFilename(char *initFilename);

Here is an example initialization file. Note that the ‘#’ character denotes the beginning of a comment which
runs to the end of the line, and that the file reader is case insensitive (except for file names, path names, and
object names).

Source vii: Example Initialization File
This file contains some default variables. The read routine is not
case sensitive.

minX 0
minY 0
sizeX 640
sizeY 480
DisplayConfig .sve.flighthelmet
Near 0.01
Far 5000.0
DefaultObjectDirectory ../objects
DefaultMaterialDirectory ../objects
tracker 1 buckhead isotrakii /dev/ttyd2 1 SVE HMD
tracker 2 buckhead isotrakii /dev/ttyd2 2 SVE cursor

Each attribute in the initialization file occupies its own line. The file reader ignores white space and is case
in-sensitive when reading attributes. A list of the available attributes follows. The parameters to the
attributes are specified as a type followed by the parameter number. The type is one of ‘f’ for float, ‘d’ for
integer, ‘s’ for string, ‘b’ for a boolean string (“true”, “false”, “yes”, “no”, “t”, or “f”), or ‘a’ for a
coordinate axis (“x”, “y”, or “z”).

Table 3: Initialization File Commands

Keyword Parameters Parameter description

defaultObjectDirectory s1 s1 = The directory (or list of directories separated by colons) which will be
used when objects can not be found where they are supposed to be.

defaultWorldDirectory s1 s1 = The directory (or list of directories separated by colons) which will be
used when a world file can not be found where it is supposed to be.

The Simple Virtual Environment Library User’s Guide 29

4/16/97

defaultTextureDirectory s1 s1 = The directory (or list of directories separated by colons) which will be
used when a texture file can not be found where it is supposed to be.

defaultTextureMap s1 s1 = The file name of the texture that will be used on a textured polyhe-
dron which has no texture defined for it.

defaultMaterialDirectory s1 s1 = The directory (or list of directories separated by colons) which will be
used when a material file can not be found where it is supposed to
be.

defaultConfigDirectory s1 s1 = The directory (or list of directories separated by colons) which will be
used to find other configuration files.

defaultAudioDirectory s1 s1 = The directory (or list of directories separated by colons) which will be
used to find audio files specified by the application.

eventServer s1 s1 = The address of the machine running the event-server for the applica-
tion.

audioServer s1 s1 = The address of the machine running the audio-server for the applica-
tion.

worldServer s1 s1 = The address of the machine running the world-server for the applica-
tion. Applications that connect to the same world-server will share a
set of SVE objects which contains the SVE objects of each individ-
ual application. The world-server is currently under development,
and is not guaranteed to be stable.

VRmachine s1 s1 = An address that will be used to set the eventServer and audioServer
values if none is given in the initialization file.

defaultServerDirectory s1 s1 = The directory (NOT a directory list) in which SVE should look for
server programs if it needs to start one automatically (presently done
only for tracker servers).

tracker d1 s2 s3 s4 d5 s6 This command initializes a tracker which will determine the position and
orientation of an object in the SVE application.

d1 = Unique identifier (any integer < 32 not used by another tracker)
s2 = The address of the machine to which the tracker is connected. A

tracker-server must be running on that machine.
s3 = The type of tracker. Examples of this are ‘IsotrakII’ and ‘Bird’.
s4 = The serial port identifier. An example of this is ‘/dev/ttyd1’.
d5 = The receiver number of the tracker device. Usually >= 1.
s6 = The name of the object which will follow the tracker. Note that this

name can contain spaces, but ends at the end-of-line. An example of
this would be ‘SVE HMD’ or ‘SVE cursor’.

trackerHemi d1 f2 f3 f4 This command defines the hemisphere of a tracking device, which is only
useful for devices that require it (electromagnetic).

d1 = Tracker identifier given in the ‘tracker’ command.
f2, f3, f4 = (X, Y, Z) vector defining the center of the hemisphere (where

positive Y is up.)

eyePosition f1 f2 f3 f1, f2, f3 = (X, Y, Z) position of the display in relation to the ‘SVE HMD’
object, which usually follows the head tracking receiver. This value
allows correction for the fact that the head tracking receiver is often
above the head rather than at the eye’s position.

Table 3: Initialization File Commands

Keyword Parameters Parameter description

30 The Simple Virtual Environment Library User’s Guide

4/16/97

eyeSeparation f1 f1 = The distance (in meters) between the objects representing the user’s
eyes for stereo viewing. Note that this is not necessarily the actual
distance between the user’s eyes, as the technology may require dif-
ferent values for the two images to be fused by the user’s eyes into a
stereo view.

move s1 to f2 f3 f4 s1 = SVE object to move. (Note that the “move”, “rotate” and “scale”
attributes are performed in the order given in the file, and each may
appear one or more times. Generally, if these attributes are ordered
differently, a different resulting position for the object will occur.)

f2, f3, f4 = (X, Y, Z) vector defining how far to move the object in the X,
Y, and Z directions respectively. The distances are in terms of the
object’s parent’s coordinate system.

rotate s1 by f2 around a3 s1 = SVE object to rotate.
f2 = Degrees to rotate the given object.
a3 = Axis around which the object should be rotated. Rotations are given

in terms of the object’s parent’s coordinate system.

scale s1 by f2 uniformly
(or)
s1 by f2 along a3

s1 = SVE object to scale uniformly or along a given axis.
f2 = Scale factor used to scale the object in terms of its parent’s coordinate

system.
a3 = Axis (in parent’s coordinate system) along which the scale factor

should be applied.

minX d1 d1 = Bottom left corner X of the SVE application window on the display.

sizeX d1 d1 = Width of the SVE application on the display.

minY d1 d1 = Bottom left corner Y of the SVE application window on the display.

sizeY d1 d1 = Height of the SVE application on the display.

DisplayConfig s1 s1 = Filename of the configuration file for the display. The display config-
uration file can contain a field of view/aspect ratio description or a
screen dimension, position and rotation description. It will override
the “VofY” and “aspectRatio” lines in this configuration file.

VofY d1 d1 = Field of view in Y direction in tenths of degrees.

aspectRatio f1 f1 = Aspect ratio of the width (in X) over the height (in Y) to determine
the field of view in the X direction.

near f1 f1 = Distance to the near clipping plane.

far f1 f1 = Distance to the far clipping plane.

FPSupperLimit f1 f1 = The SVE application will not be rendered at a faster frame rate than
this.

FPSlowerLimit f1 This option has no effect as of yet.

audio b1 b1 = Boolean value to determine if the application will produce any audio
output, either locally or remotely through an audio server. This value
overrides the SVE_NOAUDIO option flag of the ‘config’ parameter
to SVE_init() .

Table 3: Initialization File Commands

Keyword Parameters Parameter description

The Simple Virtual Environment Library User’s Guide 31

4/16/97

3.1.3 Display Configuration Files

The display configuration can be described in a separate file that is referred to in an initialization file using
a “DisplayConfig” line. The display configuration can describe a head mounted display, which is a certain
distance from the eye in the negative Z direction, and has a certain field of view and aspect ratio. The
display could also be described using dimensions, position and rotation, as might be done for a monitor. In
this case, the view plane begins as being parallel to the X-Y plane. The positioning of the display in the
virtual environment is critical to operating a “fish tank” set-up, where trackers are used to view a 3D
display on a monitor.

hmd b1 b1 = Boolean value to determine if the trackers will be used. This value
overrides the SVE_HMD option flag of the ‘config’ parameter to
SVE_init().

gouraud b1 b1 = Boolean value to determine if the display will be gouraud shaded or
not. This value overrides the SVE_LIT_GOURAUD option flag of
the ‘config’ parameter to SVE_init().

pointerObjectName s1 s1 = Name of an object which should be used instead of the regular pointer
(which is the object that follows the ‘SVE cursor’ object when the
SVE_SELECT option flag is set).

pointerObjectFile s1 s1 = File name of the object description which should be used instead of
the default pointer description. (The pointer is the object that follows
the ‘SVE cursor’ object when the SVE_SELECT option flag is set.)

selectorObjectName s1 s1 = Name of the object which should be used instead of the “ray” selector
object (which “shoots” from the pointer object), when the
SVE_SELECT option flag is set.

selectorObjectFile s1 s1 = File name of the object description which should be used for the
selector object if it is different from the default ray. This object is
used for selection when the SVE_SELECT option flag is set.

glove d1 s2 s3 s4 This command initializes the CyberGlove hand input device.
d1 = Unique identifier (any integer <32 not used by another glove device).
s2 = The address of the machine to which the glove is connected. Cur-

rently, remote glove servers are not supported.
s3 = The serial port identifier. An example of this is ‘/dev/ttyd1’.
s4 = The name of the object to which the graphical representation of the

hand will be attached. Note that this name can contain spaces, but
ends at the end-of-line. An example of this would be ‘SVE cursor’.

showFrameRate b1 b1 = Boolean value to determine if the frame rate of the application is
reported to standard output, or not.

verbose b1 b1 = Boolean value to determine if normal output from the SVE library
should be allowed (the default, TRUE), or suppressed (FALSE).

debug b1 b1 = Boolean value to determine if debugging output from the SVE library
should be allowed (TRUE), or suppressed (the default, FALSE).

Table 3: Initialization File Commands

Keyword Parameters Parameter description

32 The Simple Virtual Environment Library User’s Guide

4/16/97

The following table describes the parameters allowed in a display configuration file.

3.1.4 Directories

The SVE library uses various default directories to look for files when they are not found in the current
directory, or, if the file is specified with a complete path, in the directory given with the file. These default
directories can be changed at any time with the appropriate function of the ones below.

void SVE_setDefaultObjectDirectory(char *directory);
void SVE_setDefaultWorldDirectory(char *directory);
void SVE_setDefaultMaterialDirectory(char *directory);
void SVE_setDefaultTextureDirectory(char *directory);

The given directory can also be a list of path names, each separated by a colon (as is done for UNIX path
name lists). In the case of multiple path names, the directories will be searched one by one in order for the
desired file.

Table 4: Display Configuration Parameters

Keyword
Parameter

s
Parameter Description

ViewPlanePosition f1 f2 f3 f1, f2, f3 = (X, Y, Z) Position of the origin of the view plane. (usually the center
of the screen.)

ViewPlaneRotation f1 f2 f3 f1, f2, f3 = (X, Y, Z) Rotations around the X, Y, and Z axis applied to the view-
plane (in that order).

ViewPlaneMinX f1 f1 = Distance in meters from the view plane origin to the left of the window.

ViewPlaneMinY f1 f1 = Distance in meters from the viewplane origin to the bottom of the window.

ViewPlaneMaxX f1 f1 = Distance in meters from the view plane origin to the right of the window.

ViewPlaneMaxY f1 f1 = Distance in meters from the view plane origin to the top of the window.

fovY d1 d1 = Field of view in Y direction in tenths of degrees.

AspectRatio f1 f1 = Aspect ratio of the width (in X) over the height (in Y) to determine the
field of view in the X direction.

eyePosition f1 f2 f3 f1, f2, f3 = (X, Y, Z) position of the display in relation to the “SVE HMD”
object, which usually follows the head tracking receiver. This value
allows correction for the fact that the head tracking receiver is often
above the head rather than at the eye’s position. Note that the eye position
and the view plane position should not be the same (as this would result
in an undefined view direction). To avoid this problem, be sure to position
the view plane a significant distance from the eye position (generally in
the negative Z direction).

eyeSeparation f1 f1 = The distance (in meters) between the objects representing the user’s eyes
for stereo viewing. Note that this is not necessarily the actual distance
between the user’s eyes, as the technology may require different values
for the two images to be fused by the user’s eyes into a stereo view.

The Simple Virtual Environment Library User’s Guide 33

4/16/97

3.2. The SVE System

The SVE library encompasses what is really a system which handles the events and movements that occur
and the maintenance and display of the model associated with the application. This is all done in a
particular context, which includes the group of objects that make up the model, the identification of the
user and viewer of the model, and other characteristics of the system at any one time. The following
sections describe the particulars of the context of the system, and the architecture of the system.

3.2.1 World State

The context of the SVE system at any one time is stored in a structure of typeSVE_state . It is passed to
every callback function called by the SVE library to return control to the application. At all other times
(after theSVE_init() function has been called), it can be retrieved using theSVE_getWorldState()
function. The state can be changed using theSVE_setWorldState() function, which returns the old
state which has been replaced by the state given.

SVE_state SVE_getWorldState();
SVE_state SVE_setWorldState(SVE_state newState);

The following table describes the fields of theSVE_state structure which may be useful for an
application’s routine. Later sections also describe the use of certain fields in the given context.

Table 5: SVE State Fields

Field Type Description

programName char * The name of the application given in theSVE_init() call. This is the name used
as the title of the application’s window.

objectTree list This is the root of the object tree which is rendered each frame. It is a collection of
SVE object arranged in a tree structure. It is described in a later section.

viewingObject SVE_object This refers to the object from which the point of view is determined for each frame
rendered. The point of view is the origin of this object, looking toward the “SVE
view plane” object (a line from the origin of the viewingObject to the origin of the
“SVE view plane” will go through the center of the screen).

viewingObject2 SVE_object This is the second view for stereo applications. (Usually, the right eye.)

viewingMatrix M_matrix This is the viewing transformation placed on the modeling transformation stack
which allows objects to be rendered from the point of view of the viewing object
(looking at the view plane object) rather than from the world origin. This matrix is
updated just before any rendering is performed.

PespectiveMatrix M_matrix This is the current perspective matrix, which is updated just before any rendering is
performed.

currentEye char This value indicates which eye is being rendered, the left (or SVE_LEFT_EYE,
which is the default for monoscopic displays) or the right (or SVE_RIGHT_EYE).

originObject SVE_object This refers to the object that represents the user’s coordinate system, where the ori-
gin of the coordinate system on the “floor” at the user’s “feet.” This configuration is
true only if trackers are being used, and the reference point of the trackers (repre-
sented byuserObject) is correctly positioned in the virtual world (i.e. the dis-
tance between the spot below the user’s feet and the tracker reference point is
accurately reflected in the position of theuserObject). Otherwise, reasonable
default positions are used. The user can “fly” around the environment by moving and
rotating theoriginObject appropriately, which moves the user’s coordinate
system around the environment.

34 The Simple Virtual Environment Library User’s Guide

4/16/97

3.2.2 System Overview

Currently, the SVE system operates as a single process (with separate processes for interfacing with
tracking devices and audio output), which resembles the standard event loop structure of user interface
applications. Figure 10. “SVE System Overview” on page 35 shows the steps through which the system
goes to maintain the model of the application which defines the environment which is displayed. The thick
lined boxes are steps which the SVE system handles automatically. The other boxes are steps where the
SVE system allows for routines defined by the application to be executed.

userObject SVE_object This refers to the object which is considered to represent the user in the model, or,
more precisely, represents the reference frame for tracking devices, if any, that deter-
mine the position and orientation of the user’s head, hand, or other, tracked parts.

hmdObject SVE_object This refers to the object representing the user’s head, or more precisely the top of the
user’s head, in the model. A tracking device which tracks the user’s head usually
changes the position of this object.

cursorObject SVE_object This refers to the object representing the user’s hand or wrist in the model. A track-
ing device which tracks the user’s hand usually changes the position of this object.

viewPlaneObject SVE_object This refers to an object whose position and orientation determines the position and
orientation of the viewplane used to calculate the user’s current perspective (from
one of the viewing objects).

origin SVE_point This location determines the location of the user. Changes to this location will
change the user object’s location.

eventType SVE_eventType This is the type of the last event to occur.

eventData void * This pointer references a data structure describing the last event to occur. Based on
theeventType value (above), this pointer can be cast appropriately to obtain the
details of the event that occurred.

ntscOn boolean This field indicates if the monitor is in NTSC mode.

config int This field contains the configuration flags described above.

flightSpeed float This value is the speed (in m/s) which determines the distance travelled each time
the user is flown using the SVE fly command or flying routines.

beginTime struct timeVal * This is the time at which theSVE_init() function was called.

frameTime struct timeVal * This is the time the current frame rendering was begun.

lastFrameTime struct timeVal * This is the time when the frame before the current frame was begun.

framesPerSecond float This is 1/(the time between the current and last frame renderings).

Table 5: SVE State Fields

Field Type Description

The Simple Virtual Environment Library User’s Guide 35

4/16/97

event queuing

event handling

clear screen

user-defined rendering

default rendering

animation

more user rendering

Figure 10. SVE System Overview

tracker/glove polling

user defined polling

36 The Simple Virtual Environment Library User’s Guide

4/16/97

3.3. Events

3.3.1 Responding to Events

An SVE application responds to input devices using callback functions that are called by the event handler
of the SVE system. Events can occur as a result of key presses, mouse clicks, hand gesture recognition, or
object manipulation. In order to support relevant events reported by the GL library or by the X library
(depending on whether the SVE application is written for GL or OpenGL) and event specific to SVE, the
SVE library defines its own list of event types. For each event type, there exists a companion structure that
includes the details of the event. For example, the structure associated with a key press event includes the
key which was presses, and the structure associated with a right mouse button click includes the state of the
button (pressed or released). The SVE system maintains a stack of callback functions for each event type.
An SVE application enters a callback function onto the stack by callingSVE_registerCallback() .

void SVE_registerCallback(int event, SVE_functionPtr function);

The callback function, “function”, should be of this form:
SVE_status function(SVE_state state)

The function should return one of two values,EVENT_CONSUMED or EVENT_IGNORED. The return value
indicates to the event handled whether the event has been taken care of, or not. If the function returns
EVENT_CONSUMED, the event handler will not call any other functions further down the event callback
stack for the event type. If the function returnsEVENT_IGNORED, the event handler will call the next
function down the stack. The affect of registering a callback function which returnsEVENT_CONSUMED is
to prevent all other callback functions previously registered to respond to the particular event from being
called. (Note that if no value is returned,EVENT_CONSUMED is assumed.)

The event type and associated structure are contained in the “state” structure which is passed to the
callback function. The event type isstate->eventType , the associated structure is reference by the
state->eventData pointer. To examine the structure, the pointer must first be cast to the appropriate
type, which is dependent on the event type. For example, a keyboard event (SVE_KEY_PRESS) has an event
data structure of typeSVE_keyEvent . The following event callback shows how the key pressed can be
printed to standard output:

SVE_status handleKey(SVE_state state)
{

char key;

if (state->eventType == SVE_KEY_PRESS) {
key = ((SVE_keyEvent *)state->eventData)->keyVal;
printf(“Key pressed: %c\n”, key);

}
}

It is important to note that event response is independent of the display rendering in the sense that many
events can occur between display renderings. A series of events that require visual feedback for each event
should do so using an animation callback routine which uses an event history generated by the event
callback routine, or another similar technique.

A part icular event cal lback funct ion can be removed from the stack using the funct ion
SVE_removeCallback() . All of the callback functions for a particular event (including ones set by
default by the SVE system) can be removed with the functionSVE_removeAllCallbacks() . The
functionSVE_getEventCallback() returns the complete list of callback functions for a particular event
as a linked list. The list is used as a stack, which means that the first function on the list is the last put on
the list, and the first to be called.

void SVE_removeCallback(int event, SVE_functionPtr function);
void SVE_removeAllCallbacks(int event);
list SVE_getEventCallback(int event)

The Simple Virtual Environment Library User’s Guide 37

4/16/97

The entire list of event types that the SVE library recognizes can be found in the “event.h” file in the SVE
include directory. A selected list of event type, along with their default behavior, can be found in Table 6.
Descriptions of the event data structure types are given in Table 7. Note that two event types are provided
for events generated by the windowing system (GL or X), or generated by the application through the
windowing system. For these events, the event data structures contain the information provided by the
native windowing system event queue.

Table 6: Selected Event Types

Event type
(Structure Type)

Description Default behavior

SVE_KEY_PRESS
(SVE_keyEvent)

Key presses. Structure contains ASCII value
for key pressed.

Default key press responses (‘q’ quits;
‘x’, ‘y’, and ‘z’ move in the positive x, y,
and z direction, etc.).

SVE_ESC_KEY
(SVE_stateChangeEvent)

Escape key pressed or released. Quit the application

SVE_LEFT_MOUSE
(SVE_stateChangeEvent)

Left mouse pressed or released Using the trackers (SVE_HMD): reverse
flying direction. Not using the trackers:
start/end orientation change.

SVE_MIDDLE_MOUSE
(SVE_stateChangeEvent)

Middle mouse pressed or released. Not using the trackers: start/end orienta-
tion change.

SVE_RIGHT_MOUSE
(SVE_stateChangeEvent)

Right mouse pressed or released. Using the trackers (SVE_HMD): increase
flying speed. Using the selection pointer
(SVE_SELECT): cast pointer ray and test
for interaction with a selectable object.

SVE_LEFTARROW_KEY
(SVE_stateChangeEvent)

Left arrow key pressed or released. Move viewer left.

SVE_RIGHTARROW_KEY
(SVE_stateChangeEvent)

Right arrow key pressed or released. Move viewer right.

SVE_UPARROW_KEY
(SVE_stateChangeEvent)

Up arrow key pressed or released. Move viewer forward.

SVE_DOWNARROW_KEY
(SVE_stateChangeEvent)

Down arrow key pressed or released. Move viewer backward.

SVE_PRINTSCREEN_KEY
(SVE_stateChangeEvent)

Print screen key pressed or released. Dumps the current view to the current
disk directory in a file named
out_???.rgb, where ??? is a unique num-
ber.

SVE_LEFT_MOUSE_DRAG
(SVE_stateChangeEvent)

Event generated once between display ren-
derings while the left mouse button is down
and changes position.

Not using the trackers: change viewer ori-
entation so that the display moves with
the mouse.

SVE_MIDDLE_MOUSE_DRAG
(SVE_stateChangeEvent)

As SVE_LEFT_MOUSE_DRAG, but gen-
erated while the middle mouse button is
down.

Not using the trackers: fly viewer forward
(or backward) and change the viewer’s
orientation such that the display moves in
the opposite direction from the mouse,
and does so at a rate proportional to the
distance the mouse pointer is from its
original position.

38 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_RIGHT_MOUSE_DRAG
(SVE_stateChangeEvent)

As SVE_LEFT_MOUSE_DRAG, but gen-
erated while the right mouse button is down.

Using the selection pointer
(SVE_SELECT): change the viewer’s
orientation as
SVE_LEFT_MOUSE_DRAG and test
for intersection of the pointer ray with a
selectable object.

SVE_OBJECT_HIGHLIGHT
(SVE_objectEvent)

Generated when an object is being high-
lighted. The object is given in the
SVE_objectEvent structure. Its “highlight”
field indicates if the object has been high-
lighted or un-highlighted. When
SVE_SELECT is part of the configuration,
the object highlighted is the object being
pointed at, but not yet selected.

None.

SVE_OBJECT_SELECTION
(SVE_objectEvent)

Generated when an object is selected. The
object is given in the SVE_objectEvent
structure. When SVE_SELECT is part of
the configuration, the object selected is the
one the pointer ray is on when the right
mouse button is released.

None

SVE_GESTURE
(SVE_gestureEvent)

Generated when a hand gesture is recog-
nized. The value given in the
SVE_gestureEvent structure is the gesture
identifier.

None

SVE_STYLUS_BUTTON
(SVE_stateChangeEvent)

Generated when the button on tracker stylus
is pressed or released.

None

Table 6: Selected Event Types

Event type
(Structure Type)

Description Default behavior

The Simple Virtual Environment Library User’s Guide 39

4/16/97

3.3.2 Generating Events

As the SVE event handler uses an event queue (usually the one that is part of the native windowing
system), generating events as if they actually occurred can be done with the following function.

void SVE_enterEvent(SVE_eventType eventType, void *eventData);

Table 7: Event Data Structure descriptions

Event Structure Event types Fields

SVE_keyEvent SVE_KEY_PRESS
SVE_KEY_RELEASE

short int keyVal
- ASCII value of key.

SVE_stateChangeEvent Specific key states (SVE_A_KEY,
SVE_LEFTARROW_KEY,
SVE_ESC_KEY, etc.) and mouse
button states (SVE_LEFT_MOUSE,
SVE_LEFT_MOUSE_DRAG, etc.).

All event types X that cause
SVE_IS_PRESS_EVENT(X) to
return TRUE.

boolean pressed
- State of key or button.

SVE_mouseEvent SVE_MOUSE_DOWN
SVE_MOUSE_UP
SVE_MOUSE_MOTION
SVE_MOUSE_ENTER
SVE_MOUSE_LEAVE

All event types X that cause
SVE_IS_MOUSE_EVENT(X) to
return TRUE.

long int mouseButton
- Bit mask of buttons pressed. Seeevent.h.

long int xPos
- X position of mouse on screen.

long int yPos
- Y position of mouse on screen.

long int xWinPos
- X position of mouse in window.

long int yWinPos
- Y position of mouse in window.

SVE_objectEvent SVE_OBJECT_SELECTION
SVE_OBJECT_HIGHLIGHT

All event types X that cause
SVE_IS_OBJECT_EVENT(X) to
return TRUE.

SVE_object object
- SVE object involve in event.

SVE_gestureEvent SVE_GESTURE int gestureVal
- Gesture ID value.

SVE_SGIEvent SVE_OTHER_SGI_EVENT long int eventType
- GL event type.

short int eventVal
- GL event value.

SVE_X11Event SVE_OTHER_X11_EVENT Display *display
- X display.

Window window
- OpenGL window.

XEvent *eventData;
- X event data.

40 The Simple Virtual Environment Library User’s Guide

4/16/97

The event will be processed after all pending events. If the application enters an event, it should be sure to
accompany it with a pointer to the appropriate event data structure. User defined events can be entered by
using theSVE_USER_EVENT event type . TheeventData pointer given will be passed to the event
callback function in theeventData field of the given state structure.

As a convenience, functions are provided for object highlighting and object selection. An object can be
“selected” (generating the SVE_OBJECT_SELECTION event) using theSVE_selectObject()
function call.

void SVE_selectObject(SVE_object object);

An object can be “highlighted” and “un-highlighted” (generating the OBJECT_HIGHLIGHT event and
causing the object in question to be rendered “highlighted” if it has a highlight color or highlight geometry)
using theSVE_highlightObject() function call.

void SVE_highlightObject(SVE_object object, boolean highlight);

The Simple Virtual Environment Library User’s Guide 41

4/16/97

3.4. Animation and Rendering

Animation and rendering are placed in the same section not only because they are handled in a similar way,
but because they are different, and it is important to recognize the difference between them. Animation
implies a change in the state of the world, while rendering implies simply a view of the world. The SVE
system allows for an application to do its own animation and rendering above and beyond what the system
does automatically. If the application makes the mistake of doing animation-type actions when the system
expects it to be doing solely rendering actions, the application will likely run into problems. It is important,
therefore, to change the state of the world only when it is time to do animation, and render only when it is
time to do rendering. Of course, using the automatic animation facilities provided by the SVE library will
avoid these problems.

An application can specify a simple object animation through the use of the automatic animation routines
presented in section 3.4.1. More complex animations and user defined rendering are handled through the
use of callback function routines, similar to the callback functions used for event response. The SVE
system maintains a list of animation functions (see section 3.4.2), a list of frame callback routines, and a
list of object frame callback routines for each object (both described in section 3.4.3).

3.4.1 Animation Routines

SVE provides several routines to make simple object animations easier. These functions allow the
programmer to set up values for velocity, acceleration, and rotation for each object. User defined data may
also be added (more on that in a little bit). The object animation structure is defined as follows, although
these values are usually set using theSVE_setAnimationVar() function described below:

typedef struct
{

double xvel, yvel, zvel, /* Current x, y, and z velocity (in m/s) */
 xacc, yacc, zacc, /* x, y, and z acceleration */
 xrot, yrot, zrot; /* x, y, and z rotation (in degs/sec) */

double lasttime; /* Last time the object was animated */
SVE_animateObjectFunctionPtr UserFunc;

 /* User defined animation function */
boolean animate; /* True, if the object is to be animated. */
void *userdata; /* User defined data. */

} AnimationStruct;

Automatic animation is initialized and begun with a call toSVE_initAnimation() . This function
must be called before entering the SVE event loop and before any of the other animation functions
described in this section can be used.

Each object has an animation flag, defined in theSVE_object structure, that lets SVE know whether or
not that particular object is to be animated. By default, this flag is set to FALSE (indicating that the object
is not to be animated) when an object is created or loaded. To allow SVE to animate the object, you must
make a call toSVE_setObjectAnimation() and pass it theSVE_object structure pointer for the
object you wish to animate and a value of TRUE. To turn the animation of the object off again, just call
SVE_setObjectAnimation(obj, FALSE) .

A call to SVE_setObjectAnimation() alone does not automatically make the object move. Every
object has nine animation variables that correspond to velocity, acceleration, and rotation (each having a
separate component for X, Y, and Z). These values are all set to zero by default. You can make changes to
these variables by calling theSVE_setAnimationVar() function. This function allows you to set the

42 The Simple Virtual Environment Library User’s Guide

4/16/97

value of an animation variable (or several animation variables when they are passed OR’d together). The
animation variables are as follows:

In addition to the standard animation variables provided for you, you may add your own animation data to
an object by making a call toSVE_setUserDefinedData() . You, as the programmer, are responsible
for maintaining and freeing the data.

To animate objects, SVE uses a default animation function. You may, if you wish, change this function by
making a call toSVE_setDefaultAnimationFunc() and passing it the address of a function of type
SVE_animateObjectFunctionPtr . This function will be called withSVE_object as the parameter for
each object that requires animating during a frame.

Each object is also allowed to have its own animation function that can be used instead of or in addition to
the default animation function. You can set a local animation function for an object by making a call to
SVE_setAnimationFunc() and passing it anSVE_object and a pointer to a function of type
SVE_animationObjectFunction . Before a new frame is rendered, the object’s animation function is
called. If this function returnsTRUE then the default animation function is called immediately afterward. If
FALSE is returned, the default animation function will not be called for the object. This allows you to
replace or supplement the default animation function for an individual object.

The following example shows how these routines can be used to continuously rotate a cube:

Source viii: Animation Example
#include “sve.h”

void SetupAnimations(void);

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

if (argc>1 && (argv[1][0]==’v’ || argv[1][0]==’V’))
config=SVE_NORMAL | SVE_HMD;

printf(“Starting application.\n”);
SVE_init(“Playin’ (sve)”, config, &argc, argv);

if(!SVE_loadWorld(“animate.world”))

Table 8: Animation Variable

Animation Variable Description

X_VELOCITY Contains the current velocity of the object in the X direction (in meters per second).

Y_VELOCITY Contains the current velocity of the object in the Y direction (in meters per second).

Z_VELOCITY Contains the current velocity of the object in the Z direction (in meters per second).

X_ACCELERATION Contains the acceleration in the X direction (in meters per second2).

Y_ACCELERATION Contains the acceleration in the Y direction (in meters per second2).

Z_ACCELERATION Contains the acceleration in the Z direction (in meters per second2).

X_ROTATION Contains the angular velocity (in degrees per second) of the object about the X axis.

Y_ROTATION Contains the angular velocity (in degrees per second) of the object about the Y axis.

Z_ROTATION Contains the angular velocity (in degrees per second) of the object about the Z axis.

The Simple Virtual Environment Library User’s Guide 43

4/16/97

{
printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

printf(“Beginning event loop\n”);
SVE_initAnimation();
SetupAnimations();

SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

void SetupAnimations()
/* Sets up all of the animation variables for the different objects. */
{

SVE_object o;

if (o=SVE_findWorldObject(“cube1”))
{

SVE_setAnimationVar(o, Y_ROTATION, 60.0);
SVE_setAnimationVar(o, Z_ROTATION, 40.0);
SVE_setAnimationVar(o, X_ROTATION, 20.0);
SVE_setObjectAnimation(o, TRUE);

}

if (o=SVE_findWorldObject(“GT”))
{

SVE_setAnimationVar(o, Y_VELOCITY, 0.1);
SVE_setAnimationVar(o, Y_ACCELERATION, 0.5);
SVE_setObjectAnimation(o, TRUE);

}
}

Please remember that when you set up your own animation functions, they should be of type
SVE_animateObjectFunction() , which is defined by atypedef in sve.h as:

typedef boolean SVE_animateObjectFunction(SVE_object obj);

3.4.2 Animation Callbacks

If the application requires more extensive animation than the simple object animations available, the
application can provide its own animation functions, which are called every frame before the display is
rendered The routines are stored in a stack so that the last animation callback added to the list will be the
first called. Animation callbacks are of the form,

SVE_status animation(SVE_state state);

The return value is ignored.

Animation callback functions are added to the animation callback l ist with the function
SVE_addAnimationCallback() . An animation function already on the list can be removed with the
functionSVE_removeAnimationCallback() . The entire list of animation callback functions can be
cleared using the functionSVE_removeAllAnimationCallbacks() . As is the case for event callbacks,
animation callbacks are keep in a linked list which is used as a stack. Thus, the last animation callback to
be added to the stack will be the first called. The entire linked list of animation callback functions can be
retrieved with the functionSVE_getAnimationCallbacks() .

void SVE_addAnimationCallback(SVE_functionPtr function);
void SVE_removeAnimationCallback(SVE_functionPtr function);
void SVE_removeAllAnimationCallbacks(void);
list SVE_getAnimationCallbacks(void);

The following example demonstrates the use of animation and event handling. It can be found in the
example directory under the nameexample3.c . The application loads in a cube, identified in the SVE

44 The Simple Virtual Environment Library User’s Guide

4/16/97

world file example3.world , and rotates the cube left or right when the ‘l’ or ‘r’ key is pressed
respectively. Pressing the space bar will stop the cube.

Source ix: Example 3, Animation and Event Callback Demonstration
/**
 * Example3 (sve module)
 *
 * This is the example from the SVE manual.
 *
 * This example will show the power of animation callback functions. It
 * uses an event callback function to check the keyboard. When the ‘r’
 * is pressed the object, a cube, will spin around. When the ‘l’ is
 * pressed the object will spin the otherway around. It will keep on
 * spinning until the spacebar is pressed. The default key’s as described
 * in the SVE manual still work.
 **/

#include “sve.h”

/**
 * A pointer to the object to be rotated.
 **/
SVE_object cube;

/**
 * Thi animation callback function is called when you pressed an ‘l’. It
 * will rotate the cube around the y-axis.
 **/
SVE_status rotate_right(SVE_state state)
{

SVE_rotateObject(cube, 3, ‘y’);
}

/**
 * This animation callback function is called when you pressed an ‘r’. It
 * will rotate the cube the other way around the y-axis.
 **/
SVE_status rotate_left(SVE_state state)
{

SVE_rotateObject(cube, -3, ‘y’);
}

/**
 * This function handles the callback from the SVE_KEY_PRESS event. When you
 * press ‘l’ or ‘r’ it will SVE to use the correct animation callback.
 **/
SVE_status handleKey(SVE_state state)
{

SVE_status retval = EVENT_IGNORED;

if (state->eventType == SVE_KEY_PRESS) {
switch(((SVE_keyEvent *)state->eventData)->keyVal) {
case ‘r’: SVE_addAnimationCallback(rotate_right);

 retval = EVENT_CONSUMED;
 break;

case ‘l’: SVE_addAnimationCallback(rotate_left);
 retval = EVENT_CONSUMED;
 break;

case ‘ ‘: SVE_removeAllAnimationCallbacks();
 retval = EVENT_CONSUMED;
 break;

}
}
return(retval);

}

main(int argc, char *argv[])

The Simple Virtual Environment Library User’s Guide 45

4/16/97

{
SVE_config config = SVE_NORMAL;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use. Look at the SVE Basics section of
 * the manual for a description of the different configurations you can use.
 **/

printf(“Starting application.\n”);
SVE_init(“Example3 (sve)”, config, &argc, argv);

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example3.world”))
{

printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * Find in the world an object called cube.
 **/

cube = SVE_findWorldObject(“cube”);

/**
 * Tell SVE that we are interested in the SVE_KEY_PRESS event, and tell
 * SVE which function will handle this callback.
 **/

printf(“Registering an input callback.\n”);
SVE_registerCallback(SVE_KEY_PRESS, handleKey);

/**
 * SVE will take over control of the program until it is finnished.
 **/

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

The cube rotation is handled in the animation callbacksrotate_right() androtate_left() . Note
that pressing the ‘l’ or ‘r’ key adds the appropriate callback to the list, therefore the rotations are additive.
In other words, pressing the ‘l’ key and then the ‘r’ key results in a cube that appears to be stationary,
although the cube is actually rotated left by one animation callback, and then rotated right by another
animation callback. Pressing one of the keys many times results in a larger accumulated rotation, and the
cube appears to rotate faster. Pressing the space bar removes all of the animation callbacks in the list, and
therefore effectively stops the cube.

3.4.3 Rendering Callbacks

Rendering callback functions are also known as “frame callbacks” as they are called once per frame. Note
that a display can consist of 0 (no rendering done), 1, or 2 (stereo) frames. Frame callbacks are called after
the viewing and model transformations are set up to render to the frame. In the case of stereo viewing, a
frame callback function can determine which eye is being rendered by using the “currentEye ” field of
the “state ” structure, which will beSVE_LEFT_EYE or SVE_RIGHT_EYE. There are two types of frame
callbacks, one which is global to the environment, and one which is associated with an object. There are
two types ofglobal frame callbacks, one which is called before the SVE object tree is rendered, and one
which is called after the SVE object tree is rendered. Theobject frame callbacks are called just before the
particular object is rendered by the SVE system, but after the transformations are set up to render in the
object’s coordinate system. Thus, anything rendered, either using an SVE rendering function or native 3D
rendering routines, will be rendered in the object’s coordinate system.

46 The Simple Virtual Environment Library User’s Guide

4/16/97

It should be noted at this point that the SVE library uses one of two possible windowing and rendering
environments, either the GL library from SGI, or the X windowing system with the OpenGL library. The
application programmer is free to choose either one by way of changing the application’s makefile to
include the appropriate SVE library (see APPENDIX A: “Starter Kit” on page 105 for more details). If the
application programmer wishes to use native 3D graphics or windowing routines and wishes to support
both environments, the C#ifdef directive can be used to determine which SVE library has be included at
compile time (eitherGL or OPENGL is defined, depending on whether GL or OpenGL rendering is
performed, respectively).

The global frame callback functions are of the form,
SVE_status frameFunction(SVE_state state);

The return value is ignored. The functions to add to, remove from, remove all from, and get the frame
callback list are:

void SVE_setFrameCallback(SVE_functionPtr function);
void SVE_removeFrameCallback(SVE_functionPtr function);
void SVE_removeAllFrameCallbacks(void);
list SVE_getFrameCallback(void);

The corresponding functions that deal with the frame callback list which is used after all of the SVE
objects are rendered are:

void SVE_setFrameEndCallback(SVE_functionPtr function);
void SVE_removeFrameEndCallback(SVE_functionPtr function);
void SVE_removeAllFrameEndCallbacks(void);
list SVE_getFrameEndCallbacks(void);

The functions that deal with the frame callback list associated with a particular object are:
void SVE_setObjectFrameCallback(SVE_object object,

 SVE_objectFunctionPtr function);
void SVE_removeObjectFrameCallback(SVE_object object,

 SVE_objectFunctionPtr function);
void SVE_removeAllObjectFrameCallbacks(SVE_object object);
list SVE_getObjectFrameCallback(SVE_object object);

Where the frame callback function has the form,
SVE_status objectFrameFunction(SVE_object object, SVE_state state);

The “object” parameter identifies which object is about to be rendered. The return value is ignored.

3.4.4 Object Rendering

For most VE applications, the built in rendering facilities of SVE are sufficient to efficiently display the
correct view of the virtual world without any additional programming besides object animation through
altering the attributes of objects (see 3.7. “Object Appearance” on page 63). Occasionally, though, an
application may have more complex requirements where by the application needs to be able to render an
SVE object or object tree which is not part of the normal rendering tree (see 3.6. “Object trees” on
page 53), or re-render parts of the normal rendering tree in a different context. For example, imagine a
crystal ball which contains a scaled down version of one of a set of different worlds, or an application may
need to render a different view of the world in a different window (which would also require native
windowing system programming). The frame callback routines described in section 3.4.3 provide a place
to take care of these special cases. This section describes the routines that can be used to render SVE
objects and object trees that are not necessarily part of the normal rendering tree.

Before using any of these rendering routines, however, you should be sure that there isn’t an easier method
that achieves the desired result through changing object attributes. For example, if the application wishes
to show one object in some situations, and another object in other situations, it is easy to make only one
object visible at a time by changing thevisible attribute of each object appropriately. Thus, the
complexities of rendering correctly are avoided (or, more precisely, taken care of by SVE).

The Simple Virtual Environment Library User’s Guide 47

4/16/97

In order to use the rendering routines effectively, it is important to understand the steps SVE goes through
in order to render a scene. When the SVE main loop enters the “render the world” phase (shown in Figure
6. “The interaction loop.” on page 16), the system follows the following steps:

1. Generate the viewing an perspective matrixes from the position and orientation
of the eye point (usually represented by the “SVE eye” object) and the
viewplane (usually represented by the “SVE viewplane” object).

2. Determine the geometry of objects (where more than one geometry has been
specified for an object, and where objects are set to always face the user).

3. Perform view culling. If the object or its child objects are not visible by
the viewer, then the object is not rendered.

4. Render lights
5. Call the user’s frame callback functions.
6. For each object in the object tree that was not culled in step 3,

a. Set the 3D renderer to render in the object’s coordinate system,
b. Call the user’s object frame callback functions,
c. Render the object’s geometry.

7. Call the user’s frame end callback functions.
8. Display the frame in the SVE window.

As part of one of the frame callback functions, an application can cause an SVE object to be rendered in
the “current coordinate reference frame” using theSVE_renderObject() function. A list of SVE objects
(which is how a SVE object tree is represented) can be rendered in the current coordinate reference frame
using theSVE_renderObjectList() function. The entire world tree contained in a SVE world state
structure (either the current world state, or the state of a different world altogether) can be rendered in the
current coordinate reference frame using theSVE_renderWorld() function. The current coordinate
reference frame is determined by which type of frame callback the rendering function appears in. In the
regular frame callback (step 5) or frame end callback (step 7) functions, the coordinate reference frame is
in world coordinates. In the object frame callback functions (step 6b), the coordinate reference frame is
defined by the object’s coordinate system, which is defined by the coordinate transformations of it and its
parent and its ancestors combined.

Rendering In a Frame Callback

If these functions are used outside of a frame callback function, the coordinate system will not be correctly
set up, and they will not work as expected. It should be noted, also, that any object frame callback
functions for objects rendered with these functions will be called, giving the potential for an endless loop
of rendering. It is therefore good practice to ensure that object frame callbacks only render once per frame.
It should also be noted that if an object is culled because its bounding volume does not intersect the
viewing volume (i.e. it can’t be seen by the viewer), then the object frame callbacks will not be called even
if objects rendered by those callbackswould be in the viewing volume (but see the “Object Culling”
section below).

void SVE_renderObject(SVE_object obj);

The SVE_renderObject() function renders an SVE object, including its child sub-trees, after first
determining its geometry (as in step 2) and performing view culling (step 3). Note that the object’s frame
callback functions will be called.

void SVE_renderObjectList(list objectTree);

TheSVE_renderObjectList() function renders each SVE object in the given list, including their child
sub-trees, after first determining their geometries (step 2) and performing view culling (step 3). Note that
the objects’ frame callback functions will be called. IfSVE_WORLD is given for theobjectTree
parameter, the current world tree will be used.

void SVE_renderWorld(SVE_state worldState);

TheSVE_renderWorld() function renders the world tree of the world state given as is done with the
SVE_renderObjectList() . In addition, any lights contained in the world tree will be rendered (as in
step 4), although those lights will not affect objects that have already been rendered for the current frame.

48 The Simple Virtual Environment Library User’s Guide

4/16/97

If the world state given is not the current world state, then the viewing and perspective matrixes must be set
beforeSVE_renderWorld() is called. This can be done with the following function.

void SVE_getViewingAndPerspectiveMatrix(SVE_state worldState, M_matrix viewing,
 M_matrix perspective);

If the new world state does not contain an eye point object and view plane object, then the current world
state (SVE_worldState) should be given for theworldState parameter. The objects in the new world
state will be rendered, therefore, as if they were in the current world’s coordinate system.

Rendering a New Frame

If, for some reason, the application wishes to force a new frame to be rendered, then it can use one of the
following functions (even outside the “frame render” phase of the SVE loop).

void SVE_renderNow(SVE_state worldState, SVE_functionPtr frameCallback);

TheSVE_renderNow() function performs all of the steps given above for render (1 through 8) except that
for step 5, where the frame callbacks are called, only the given function,frameCallback , is called, and
step 7 (calling the frame end callbacks) is skipped. Thus, if this function appears in a frame callback, or
frame end callback (which will produce strange results, as the previous frame will not have completed and
displayed its results, and will be lost), and the given function is not the same callback function, then an
endless loop is avoided.

void SVE_renderNowWithFrameCallbacks(SVE_state worldState, boolean newFrame);

TheSVE_renderNowWithFrameCallbacks() function performs the frame rendering just as if the SVE
loop had reached the “frame render” phase. Thus, all steps (1 through 8) are performed unlessnewFrame
is FALSE. If newFrame is FALSE, then steps 1, 2, 3, 4, 5, and 8 are skipped.

If the application needs to callSVE_renderNowWithFrameCallbacks() in a frame callback routine
(which will result in the loss of the previous frame up to the point of the call unlessnewFrame is FALSE),
it is important to take precautions against an endless loop. The following code, for example, will avoid an
endless loop.

void frameCallback(SVE_state state)
{

static boolean inFrameCallback = FALSE;

if (!inFrameCallback) {
inFrameCallback = TRUE;
SVE_renderNowWithFrameCallbacks(state);
inFrameCallback = FALSE;

}
}

Object Culling

In step 3, before any SVE objects are rendered, it is first determined whether the objects are visible by the
viewer. This is normally done by testing to see if each object’s bounding volume intersects with the
viewing volume (the volume visible by the viewer). Note that an object’s bounding volume includes its
own geometry and the geometry of its children (and their children, and so on). (Object boundaries are
discussed in section 3.7.3 “Object Boundaries” on page 72.) This default behavior can be changed by
adding a new culling function, or replacing the default culling function.

A new culling function should be of the following form.
SVE_vistype SVE_cullFunction(SVE_object o, M_matrix worldToEye);

The SVE objecto is the object which is being tested for culling. TheworldToEye matrix can be used to
transform a point from world coordinates to eye coordinates (where a point (xw, yw, zw, 1) is transformed to
(xe, ye, ze, w), and where the point (xe/w, ye/w, ze/w) is visible if it is in the volume -1<x<1, -1<y<1, and -
1<z<1).

The Simple Virtual Environment Library User’s Guide 49

4/16/97

The function should return one of the following predefined values:SVE_ALL_VISIBLE (if the object and
its children are complete visible. The SVE renderer will assume the object’s children are also completely
visible), SVE_PART_VISIBLE (if the only part of the object is visible. The SVE renderer will also check
each of the object’s children for visibility),SVE_CHILDREN_ONLY_VISIBLE (if the object’s geometry is
not visible, but its children may be visible),SVE_NONE_VISIBLE (if neither the object nor the object’s
chi ldren are vis ible. The SVE renderer wi l l not render the object or i ts chi ldren), and
SVE_VISIBILITY_UNKNOWN (the SVE renderer will render the object, and will check its children for
visibility).

If more than one culling function is defined, then they are called in order until one returns
SVE_NONE_VISIBLE or SVE_CHILDREN_ONLY_VISIBLE. If no function returns one of these values, the
object’s visibility is set to the value returned by the last culling function.

The SVE system begins with one default culling function. The application can add new culling functions to
the list using theSVE_addCullingFunction() function. New functions are called before function that
a l ready ex is ted in the l i s t . A cu l l i ng func t ion can be removed by name us ing
SVE_removeCu l l i ngFunc t i on () . A l l cu l l i ng func t ions can be removed us ing
SVE_removeAllCullingFunctions() , which leaves no culling functions (in this case, every object
will use theSVE_PART_VISIBLE value for its visibility). The list of culling functions can be obtained
using theSVE_getCullingFunctions() function.

void SVE_addCullingFunction(SVE_cullFunctionPtr function);
void SVE_removeCullingFunction(SVE_cullFunctionPtr function);
void SVE_removeAllCullingFunctions(void);
list SVE_getCullingFunctions(void);

The default culling function isSVE_getObjectVisibility() . This function can be used in a user-
defined culling function to determine the object’s visibility.

SVE_vistype SVE_getObjectVisibility(SVE_object obj, M_matrix worldToEye);

3.4.5 Navigation

A common response to an event or animation callback is to move the user around the environment. The
SVE library includes functions to move the user which use the flightSpeed field of the global state structure
to determine how far the user moves each call to the function.

The default navigation method, which is common to many virtual environment applications, allows the
user to “fly” when the middle mouse button is pressed (it is a callback for the SVE_MIDDLE_MOUSE_DRAG
event), moves the user in the direction he or she is looking. This function,SVE_fly() , takes the global
state structure, and changes the position of the “origin” of the world (which is an object referred to by the
originObject field of the state structure, usually called “ORIGIN”) to move the user in the direction of
the last view rendered.

SVE_status SVE_fly(SVE_state state);

Another function,SVE_flyWithDirection() , will move the user in the direction of the negative Z
direction of the matrix given. The matrix could be the world position matrix of an object, which can be
retrieved with theSVE_getWorldMatrix() function. This function could be called by the user’s
animation or event callback routine.

void SVE_flyWithDirection(SVE_state state, M_matrix direction);

Two other functions provide the same movement of the user except that the user is constrained to be inside
the bounding volume of a given object. It should be noted that this does not strictly constrain the user
inside the object itself, as the object could be smaller than the bounding volume (usually a box) around it.
These functions work very well, however, for square rooms.

void SVE_flyInObject(SVE_state state, SVE_object o);
void SVE_flyInObjectWithDirection(SVE_state state, SVE_object o,

 M_matrix direction);

50 The Simple Virtual Environment Library User’s Guide

4/16/97

The flight speed, which is the velocity of the user as he or she flies, can be changed using the
SVE_setFlightSpeed() function.

void SVE_setFlightSpeed(float speed);

The Simple Virtual Environment Library User’s Guide 51

4/16/97

3.5. Objects

In the SVE system, an object is an entity identified with a unique character string name. It has numerous
attributes, including a location, orientation, and scale in relationship to a “parent” object; and a (possibly
empty) list of child objects. The child objects are considered part of its parent. Therefore characteristics of
an object generally affect its children. For example, an object can be invisible, which would imply that its
children (and their children and so on) are also invisible. Since an object’s position is defined relative to its
parent, when an object moves, its children will move as well as if they are rigidly attached to the parent.

An object may or may not have a geometric representation. Objects with no geometry are used to group
other objects and serve as place holders in the object tree.

As mentioned above, each SVE object is identified by a unique character string name. Thus, if an object is
created using a name that is already used by another object, the name of the other object is changed. Thus,
an object name always refers to the last object created with that name. The new name of the other object is
of the format “name:X” where X is an integer which is not associated with any other object with the same
“name” and format. Application designers are therefore discouraged from using the colon(:) character in
object names. It is possible to get a list of objects which were created using the same name.

Because the SVE system enforces the constraint of unique names, it is important that an application
changes an object’s name only through the use of the functionSVE_changeObjectName() .

void SVE_changeObjectName(SVE_object object, char *newName);

The structure that defines an SVE object contains many fields. A table describing some of the fields of the
SVE_object structure that an application may wish to examine or change, as well as a description of each,
follows.

Table 9: SVE Object Fields

Field Type Description

name char * Character string name of the object (for examination only).

parent SVE_object Parent object. NULL if the object has no parent.

children list Linked list of child objects. Empty if the object has no children.

visible boolean Determines if an object (and its children) is visible.

selectable boolean Determines if an object is selectable. Many selection and collision
detection routines will only consider an object if this flag is TRUE.

position M_matrix Matrix representation of an object’s position in relation to its parent.

highlight boolean Determines if the object is being highlighted. It is possible to set an
object’s highlight color, or a completely separate geometry that an
object uses when it is highlighted.

cullable int
(NOT_CULLABLE,
CULLABLE_BOX, or
CULLABLE_SOHERE)

Determines if an object is considered for view-frustrum culling, and if
so, whether the object is represented as a bounding box or bounding
sphere when the culling calculations are done. Culling is usually effi-
cient only for objects containing a complex geometric representation
which are not viewed constantly. (If the user is always inside a room
object, it should be NOT_CULLABLE, for example, as it is always in
the user’s view.)

facingViewerUpright boolean Setting this to TRUE gives the object the characteristic that its positive
Z axis will always point at the viewer, while staying on the world’s X-Y
plane.

52 The Simple Virtual Environment Library User’s Guide

4/16/97

3.5.1 Creating Objects

An object can be created from scratch using theSVE_createEmptyObject() function.
SVE_object SVE_createEmptyObject(char *name);

Usual ly, however, objects are retr ieved from disk or copied from exist ing objects. The
SVE_createObjectCopy() function creates a copy of another object.

SVE_object SVE_createObjectCopy(SVE_object source, char *newName,
 boolean copyChildren);

If the source object isNULL, the function creates an empty object. If thenewName character string is
NULL, the name of the source object is used (causing the source object name to be changed). The
“copyChildren” parameter specifies if the entire object tree (which the source object as its root) will be
copied, or if just the source object will be copied. In the later case, the object will have no children.

3.5.2 Loading and Saving Objects

An object’s geometry definition can be retrieved using theSVE_loadObject() routine.
SVE_object SVE_loadObject(char *filename, char *name, boolean *posInitialized);

The file identified by the givenfilename can be an SVE object file format or a WavefrontTM .obj file
format. If the file is not found in the current directory, the default object directory list will be used to search
for the file elsewhere. Thename parameter specifies the object’s name. TheposInitialized parameter
indicates if an initial position for the object has been defined (TRUE) or not (FALSE). Note that the object
file does not contain many of the attribute specifications defined in a world file. In fact, the object file only
contains the geometric description of the object, and an optional bounding volume specification. Attributes
such as “visible”, “selectable”, and “position” must be set by the application, if they are to be different
from the default, or (ifposInitialized is TRUE) if the pre-defined position is to be over-ridden.

An object’s geometry definition can be saved to a file using theSVE_saveObject() function.
boolean SVE_saveObject(SVE_object o, char *filename);

3.5.3 Finding Objects

Regardless of whether an object becomes part of an object tree (described below) or not, every object
created is referenced in an object repository maintained by the SVE system. It is possible to find any object
that has been created if the name of the object is known. TheSVE_findObjectInRepository()
function accomplishes this search.

SVE_object SVE_findObjectInRepository(char *name);

facingViewer boolean Setting this to TRUE gives the object the characteristic that its positive
Z axis will always point at the viewer.

UserPtr void * Pointer available for use by the application.

Table 9: SVE Object Fields

Field Type Description

The Simple Virtual Environment Library User’s Guide 53

4/16/97

3.6. Object trees

The SVE system maintains a tree of objects which is traversed once for each frame rendered. Objects in
this tree that have a geometric representation are therefore rendered to the display once each frame. It is
possible for other trees of objects to be created and manipulated, and for lists of objects to be created and
manipulated. An object tree is an ordered, rooted tree where each node may have many children. The
children are represented as a linked list of object nodes. In the SVE system, the relationship between a
parent object and a child object is one of location, orientation and scale (often referred to simply as its
position). Another way to express this relationship is to say that a child’s position is defined in terms of its
parent’s coordinate system, which is, in turn, defined as its position in relationship to its parent’s
coordinate system, and so on. All objects in a tree have a position that is ultimately defined in terms of the
coordinate system of the root node (the “world position” - see 3.7.1 “Object Position” on page 63).

3.6.1 Object tree manipulation

An example of an object tree called “root” is shown in the Figure 11. “Object Tree Example” on page 53.

The object definitions are shown with only a location component, although the objects could have an
orientation and scale component. The location component describes a vector between the origin of the
parent object to the origin of the child object. The view that would result if the object tree were to be
rendered is shown as well. Note that the tree “root” is of thelist type, as is the list of children for each
object. The children objects are maintained as a linked list of objects where new objects are placed at the
end of the list.

Meadow

Tree1 Tree2

Star

Meadow

Tree1
Location (1, 0, 0)

Tree2
Location (-1, 0, -1)

Star
Location (0, 4, 0)

Object origin

Object Tree Object Definitions

Object Tree View

Figure 11. Object Tree Example

root Location (0, 0, 0)

54 The Simple Virtual Environment Library User’s Guide

4/16/97

Objects can be added to a tree or object list using two different methods which differ in how the object’s
current position is handled. In one case, the object’s position in relation to the root of the object tree is
maintained. Thus, when the object is attached to another object, it’s current position is replaced with a new
position from the new parent which keeps the object where it was. TheSVE_attachToObject()
function does this.

void SVE_attachToObject(SVE_object child, SVE_object parent);

This is the function that works best when an object is “grabbed” by another object, and will be moved from
where it is currently, and then returned to its previous place in the tree, but at its new location. Note that if
the object is being moved from one tree to another, the function assumes that the roots of both trees are in
the same coordinate system.

The other method of adding an object as a child of another object does not affect the position of the object
at all. If the object has a position defined, it will determine where the object is in the coordinate system of
the new parent object.

void SVE_addChildToObject(SVE_object child, SVE_object parent);

This function is faster than the previous one in most cases.

An object can be removed from an object tree with one of the following functions, depending on whether
the object pointer or object name is to be given:

SVE_object SVE_removeObject(char *name, list *objectTree);
void SVE_removeObjectEntry(SVE_object object, boolean attachChildrenToParent);

Note tha t the ob jec t i t se l f i s no t de le ted , and can be added to a t ree aga in . The
attachChildrenToParent flag indicates if the removed object’s children should be re-attached to the
removed object’s parent (TRUE), or remain the children of the removed object (FALSE). The
SVE_deleteObject() function actually deletes the object. If theattachChildrenToParent flag is
FALSE, then its child objects are also deleted, otherwise the child objects are attached to the object’s
parent.

void SVE_deleteObject(SVE_object object, boolean attachChildrenToParent);

The following example illustrates the manipulation of the object tree through grabbing and releasing of
objects using a cursor object controlled by the user’s hand. This example will only work (without
modification, at least) with two trackers, as the only way to move the user’s hand in the example is to use a
tracking device. The example can be found asexample5.c in the examples directory.

Source x: Example5, Manipulating the Object Tree in the Environment.
/* Example5 (sve module)

 This example demostrates the use of object boundaries. The second cursor
 (which is attached to the second tracker), is used as a three dimensional
 cursor. When the left mouse button is pressed, the position of the cursor
 is used to see if an object has been selected (the cursor is in the object).
 While the mouse button is pressed, the selected object is linked to the
 cursor as a child, and therefore the object follows the cursor. When the
 mouse button is released, the object is linked back to the world in its
 new position.

*/

#include <math.h>
#include “sve.h”

/* function prototype */
SVE_status release(SVE_state state);

/* global vars: */
SVE_object current_object, current_parent;

SVE_status grab(SVE_state state)

The Simple Virtual Environment Library User’s Guide 55

4/16/97

{
SVE_object object;
SVE_object pointer;
SVE_object cursor;
M_matrix pointerPos;
float margin = 0.0;
float onlySelectable = TRUE;
SVE_status retval = EVENT_IGNORED;

printf(“trying to grab\n”);
if (SVE_IS_PRESS_EVENT(state->eventType)

&& ((SVE_stateChangeEvent *)state->eventData)->pressed) {

cursor = SVE_getCursorObject();
pointer = SVE_findObject(“pointer”, cursor->children);
SVE_getWorldMatrix(pointer, pointerPos);
object = SVE_objectMatrixHit(SVE_WORLD, pointerPos, margin,

 onlySelectable);

if(object) {
printf(“object %s grabed\n”,object->name);
SVE_changeText(pointer, “Grabbed”);
current_object = object;
current_parent = object->parent;

SVE_attachToObject(object, pointer);
SVE_removeCallback(SVE_LEFT_MOUSE, grab);
SVE_registerCallback(SVE_LEFT_MOUSE, release);

} /* if */
retval = EVENT_CONSUMED;

} /* if */
return(retval);

}

SVE_status release(SVE_state state)
{

M_matrix pos1, pos2;
SVE_object pointer;
SVE_object cursor;
SVE_status retval = EVENT_IGNORED;

if (SVE_IS_PRESS_EVENT(state->eventType)
&& !((SVE_stateChangeEvent *)state->eventData)->pressed) {

cursor = SVE_getCursorObject();
pointer = SVE_findObject(“pointer”, cursor->children);
SVE_changeText(pointer, “<=>”);

SVE_attachToObject(current_object, current_parent);
printf(“object %s released\n”,current_object->name);
current_object = NULL; /* reset globals */
current_parent = NULL;
SVE_removeCallback(SVE_LEFT_MOUSE, release);
SVE_registerCallback(SVE_LEFT_MOUSE, grab);
retval = EVENT_CONSUMED;

} /* if */
return(retval);

}

void main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;
SVE_object pointer;
boolean posInitialized;

printf(“Starting application\n”);
if ((argc > 1) && (strchr(argv[1],’t’) != NULL))

config = SVE_HMD;

SVE_init(“example 5 (sve)”, config, &argc, argv);

56 The Simple Virtual Environment Library User’s Guide

4/16/97

if(!SVE_loadWorld(“example5.world”))
{

printf(“error occured during SVE_loadWorld, exiting \n”);
SVE_done(); /* exit */

} /* if */

pointer = SVE_loadObject(“pointer.object”, “pointer”, &posInitialized);
SVE_addChildToObject(pointer, SVE_getCursorObject());

if(config & SVE_HMD)
{

SVE_removeAllCallbacks(SVE_LEFT_MOUSE);
SVE_removeAllCallbacks(SVE_LEFT_MOUSE_DRAG);
SVE_registerCallback(SVE_LEFT_MOUSE, grab);

}

printf(“Beginning graphics loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

It is possible to search a given object to find an object of a particular name using theSVE_findObject()
function.

SVE_object SVE_findObject(char *name, list objectTree);

This function returns the object in the given objectTree that has the given name. Note that, because every
object in SVE has a unique name, if more than one object is created using the same name, only the last
object created will have that name. To retrieve a list of objects that were created using the same name, the
SVE_findAllObject() function can be used.

list SVE_findAllObjects(char *name, list objectTree, boolean includingChildren);

Setting the “includingChildren” flag toFALSE will limit the search to the first level of the given object tree
only. This function returns a linked list of the objects found, which is not an object tree as the objects do
not necessarily have the same parent. The objects in this list can be retrieved using a combination of the
SVE_getFirstObject() function and the linked list functiongetNext() defined in APPENDIX C:
2.1. “Linked List” on page 177. (Note that the function requires thereference to the object list.)

SVE_object SVE_getFirstObject(list *objectList);

A demonstration of how to deal with many objects that are created with the same name is done in the
following modified version ofexample3.c (the rotating cube). The code is contained in the examples
directory asexample3mod.c , which uses the world fileexample3mod.world . The world file describes
many cubes, which are all simultaneously rotated when the ‘l’ or ‘r’ key is pressed.

Source xi: Modified Example 3, Rotating Many Cubes
/**
 * Example3 modified (sve module)
 *
 * This is an example from the SVE manual.
 *
 * This example will show the power of frame callback functions. It uses
 * a callback function to check the keyboard. When the ‘r’ is pressed
 * all cube objects will spin around. When the ‘l’ is pressed the
 * they will spin the otherway around. They will keep on spinning until
 * the spacebar is pressed. The default key’s as described on page 6 of
 * the SVE manual still work.
 **/

#include “sve.h”

/**
 * The list of objects to be rotated
 **/

The Simple Virtual Environment Library User’s Guide 57

4/16/97

list cubeList;

void rotate_cubes(float angle)
{

list nextCube;
SVE_object cube;

nextCube = cubeList;
while (!listEmpty(nextCube)) {

cube = SVE_getFirstObject(&nextCube);
SVE_rotateObject(cube, angle, ‘y’);
nextCube = getNext(nextCube);

}
}

/**
 * This animation callback function is called when you pressed an ‘l’. It will
 * rotate the cubes around the y-axis.
 **/
SVE_status rotate_right(SVE_state state)
{

rotate_cubes(3);
}

/**
 * This animation callback function is called when you pressed an ‘r’. It will
 * rotate the cube the other way around the y-axis.
 **/
SVE_status rotate_left(SVE_state state)
{

rotate_cubes(-3);
}

/**
 * This function handles the callback from the SVE_KEY_PRESS event. When you
 * press ‘l’ or ‘r’ it will SVE to use the correct animation callback.
 **/
SVE_status handleKey(SVE_state state)
{

SVE_status retval = EVENT_IGNORED;

if (state->eventType == SVE_KEY_PRESS) {
switch(((SVE_keyEvent *)state->eventData)->keyVal) {
case ‘r’: SVE_addAnimationCallback(rotate_right);

 retval = EVENT_CONSUMED;
 break;
case ‘l’: SVE_addAnimationCallback(rotate_left);

 retval = EVENT_CONSUMED;
 break;
case ‘ ‘: SVE_removeAllAnimationCallbacks();

 retval = EVENT_CONSUMED;
 break;
}

}
return(retval);

}

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use. Look at the SVE Basics section of
 * the manual for a description of the different configurations you can use.
 **/

printf(“Starting application.\n”);

58 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_init(“Example3 (sve)”, config, &argc, argv);

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example3mod.world”))
{

printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * Find in the world an object called cube.
 **/

cubeList = SVE_findAllObjects(“cube:12”, SVE_WORLD, TRUE);

/**
 * Tell SVE that we are interested in the SVE_KEY_PRESS event, and tell
 * SVE which function will handle this callback.
 **/

printf(“Registering an input callback.\n”);
SVE_registerCallback(SVE_KEY_PRESS, handleKey);

/**
 * SVE will take over control of the program until it is finnished.
 **/

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

The following routines add and remove objects to and from an object list:
void SVE_addToObjectList(SVE_object o, list *objectTree);
SVE_object SVE_removeFromObjectList(SVE_object o, list *objectList);
SVE_object SVE_removeFirstObject(list *objectList);

Although it is possible to use these functions to add and remove objects to and from the first level of the
object tree, since an object tree root is really a list of objects, it is highly recommended that the
SVE_attachToObject() , SVE_addChildToObject() , andSVE_removeObject() functions are
used instead for object trees that will be rendered.

For debugging purposes, the following function is provided to print an object tree to standard output:
void SVE_printObjectList(list objectList, boolean printChildren);

The printChildren flag determines whether the entire tree or just the first level of the tree will be
displayed.

3.6.2 Rendered Object Tree (SVE_WORLD)

The SVE system maintains one object tree that is rendered at each frame. The object tree contains a
hierarchical tree of geometries, as well as information to determine the point of view from which those
geometries are viewed. This object tree is contained in theobjectTree field of theSVE_state structure
which is passed into most SVE callback routines. In addition, any function that calls for an object tree or
object list or reference to either will accept the constantSVE_WORLD to indicate that the state’s
objectTree is to be used.

The following functions perform many common object tree routines using the state object tree implicitly:
SVE_object SVE_findWorldObject(char *name);

Returns the first object in theSVE_WORLD object tree which has the given name.
void SVE_addToWorldTree(SVE_object o);

The Simple Virtual Environment Library User’s Guide 59

4/16/97

Adds the given object to theSVE_WORLD object tree. The object will be at the first level.

void SVE_getWorldMatrix(SVE_object o, M_matrix m);

Retrieves the global position matrix of the object, which is the product of every position matrix of the
objects on the path from the root of theSVE_WORLD object tree to the given object.

Default Tree

The object tree which is maintained by the SVE system contains a default sub-tree which is used to
represent components of the user, such as the current position of the body, the hand, the head, and the eye-
point. The following figure shows a representation of the default world object tree, and the result of adding
the example object tree shown above to the SVE world tree. Note that the difference between the “HMD

setup” and the “Fish Tank VE setup” is the placement of the view plane object (“SVE view plane”) in the
tree. If the view plane (which represents the window through which the viewer sees the environment)
moves with the user’s head, as is the case with head mounted displays, then the view plane is attached to
the HMD object. If the view plane is stationary in the reference coordinate system of the user, as is the case
in Fish Tank VE setups, where the display is stationary even though the user’s head moves, then the view

state->objectTree

USER

SVE HMD SVE cursor

SVE eye

state->objectTree

USER

SVE HMD SVE cursor

SVE eye

Meadow

Tree1 Tree2

Star

Default World Tree (HMD setup)

Combined Default (HMD setup) and Example Trees

Figure 12. Default World Tree and Example World Tree

SVE other eye

SVE view plane

SVE other eye SVE view plane

ORIGIN

ORIGIN

state->objectTree

USER

SVE HMD SVE cursor

SVE eye

Default World Tree (Fish Tank VE setup)

SVE other eye

SVE view plane

ORIGIN

60 The Simple Virtual Environment Library User’s Guide

4/16/97

plane is attached to the “USER” object, which represents the reference coordinate system of the tracking
device.

Each default object serves a particular purpose. The following table lists the default objects and their
purpose. The purposes of each default object can be reassigned to other objects in the object tree by simply

changing the appropriate field in the world state structure. For example, the following SVE event callback
function renders the display from the point of view of the “Star” object in the example tree above.

SVE_status changePointOfViewToStar(SVE_state state)
{

state->viewingObject = SVE_findWorldObject(“Star”);
SVE_addChildToObject(state->viewPlaneObject, state->viewingObject);
/* May want to alter viewplane’s position, and field of view/aspect ratio

parameters */

Table 10: Default Object Associations and Uses

Object
State field

Associated With
Purpose

ORIGIN originObject Establishes a coordinate system for the user, where (conceptually)
the origin is at the feet of the user (or, more precisely, at a particular
spot on the floor). If the origin object’s position changes, then the
user’s coordinate system “moves” in the world. Thus, the user can be
tele-ported or flown to different positions in the world, or become
“attached” to different objects (by attaching the origin object to the
world object in the object tree).

USER userObject Identifies the position of the user in the world. When trackers are
used, this is the position of the tracker reference point (usually the
position of the transmitter). In this case, the position matrix of the
user object should match the position of the transmitter in relation-
ship to the desired “origin” of the user’s coordinate system (usually at
the floor). If trackers are not used, this object is placed 1.8 meters
above (along the positive Y axis) the origin object.

SVE HMD hmdObject Refers to the position of the user’s head in relationship to the user’s
position. When the trackers are being used, this object usually fol-
lows the tracker attached to the user’s head (determined in the
.sve.init file).

SVE cursor cursorObject Refers to the position of the user’s hand in relationship to the user’s
position. When the trackers are being used, this object usually fol-
lows the second tracker (determined in the .sve.init file).

SVE eye viewingObject Identifies the point of view of the display. The display is rendered
from the point of view of the origin of this object, in the direction of
the view plane object. When the trackers are being used, this object is
usually positioned to reflect the eye’s position relative to where the
tracker is attached to the user’s head (this can be set in the display
configuration file).

SVE other eye viewingObject2 Identifies the second point of view of the display for stereo display
set-ups.

SVE view plane viewPlaneObject Identifies the object whose position and orientation determines the
position and orientation of the view plane. In a head mounted display
set up, this object is usually attached to the “SVE HMD” object. In
desktop set ups, this object is usually attached to the “USER” object.

The Simple Virtual Environment Library User’s Guide 61

4/16/97

return(EVENT_CONSUMED);
}

ThehmdObject andcursorObject objects are used often in determining a user’s position and in the
user’s interaction with the world. To simplify things, the following routines are provided to retrieve the
hmdObject andcursorObject objects.

SVE_object SVE_getHMDObject(void);
SVE_object SVE_getCursorObject(void);

The world position of each object (taking into account the position of theuserObject object, and its
ancestors) can be obtained using these functions.

void SVE_getHMDPosition(M_matrix pos);
void SVE_getCursorPosition(M_matrix pos);

3.6.3 Tracker Objects

Tracker objects are empty geometric objects that are introduced automatically when a tracking device is
initialized using a “tracker” line in the initialization file, or whenSVE_initTracker() is called. The
tracker initialization includes a number identifier and the name of an object which should follow the
tracker (the “attached” object). The object that is created is called “SVE tracker X” where X is the given
identifier number. The object is inserted between the attached object and its parent. Therefore, as the

tracker object changes location and orientation, the attached objects follows. Generally, the tracking device
determines a location and orientation of the tracker receiver in relation to a reference coordinate system
(e.g. for electromagnetic trackers, defined by the transmitter). This information is placed directly into the
position matrix of the new tracker object. Thus, the parent of the tracker object, formerly the parent of the
attached object, becomes the location and orientation of the reference coordinate system of the tracker in
the world.

3.6.4 Loading and Saving Object Trees

Object trees are stored in SVE world files, where each object has a section describing its name, which
object file to use for its geometry, other attributes of the object, and a list of child objects (complete with
their descriptions).

A world file can be loaded as the SVE world object tree, which is rendered at each frame, using the
SVE_loadWorld() function.

boolean SVE_loadWorld(char *filename);

parent

MoveMe

parent

MoveMe

SVE tracker 1

Before After

Figure 13. Inserting Tracker Object as Parent of Attached Object (“MoveMe”)

62 The Simple Virtual Environment Library User’s Guide

4/16/97

The file identified by the givenfilename is searched for using the world directory list (defined in the
.sve.init file, or just the current directory if none is defined there). If the file is not found the function
returnsFALSE.

TheSVE_addObjects() function can be used to load an object tree from a world file and add it to the
SVE world tree already in existence. It returns a pointer to the part of the world tree that was just loaded.

list SVE_addObjects(char *file, SVE_state state);

A world file can be loaded as an object tree separate from the SVE world object tree using the
SVE_loadObjects() function.

list SVE_loadObjects(char *filename, SVE_object parent, SVE_state state);

The file will be searched for in the same manner as is done for theSVE_loadWorld() function. A
parent object can be specified, causing the top level objects defined in the world file to become children
of the parent object. A world file can contain an initial position for the user and an initial flight speed for
when the user fly through the world. These values are stored in theorigin andflightSpeed fields of
the givenstate structure respectively (unlessstate is NULL).

The current SVE world object tree can be saved to a world file using theSVE_saveWorld() function.
boolean SVE_saveWorld(char *filename);

This function returnsFALSE if it is unsuccessful. Any object whose geometry has been altered will be
updated using its original filename. If two objects share the same geometry description, and only one has
been altered, it will be saved to a different file using a variation of the original file name.

An object tree other than the SVE world object tree (although perhaps a sub-tree of the world tree) can be
saved to file using theSVE_saveObjects() function.

boolean SVE_saveObjects(list objectList, char *filename);

As with theSVE_saveWorld() function, only objects that have changed will be saved, and the function
returnsFALSE if it is unsuccessful.

The Simple Virtual Environment Library User’s Guide 63

4/16/97

3.7. Object Appearance

The appearance of an object depends on its position, which is its location, orientation, and scale, and what
geometric primitives make up its geometric description. Many geometric primitive types are used in the
construction of an object’s geometric description, such as simple polyhedra (textured or not textured),
polylines, and text.

3.7.1 Object Position

An object’s position is represented internally as a 4x4 matrix which is a composite of a translation, a
rotation, and a scale transformation. This matrix is used to determine the position of each point in an
object’s geometry in relationship to the object’s parent. The translation component determines where a
point at the object’s origin will be from the parent object. The rotation and scale components determine
where points away for the origin will be in relationship to that origin. It is significant to note that the
rotation component is a rotation around the object’s origin, rather than the parent object’s origin. It is
important to note, also, that changes in position of a parent object will cause position changes in its child
objects, as well. As an example, if a table top object has four child objects, which are its legs, and it is
rotated, then the legs will rotate around the parent’s origin, as shown in the following figure.

An object can be re-positioned using any of the following functions:
void SVE_moveObject(SVE_object o, SVE_point newOrigin);

Moves the object’s origin to the given location. ThenewOrigin vector is an offset from the parent object’s
origin.

void SVE_translateObjectGlobal(SVE_object o, float x, float y, float z);

Moves the object’s origin by the given increments in the X, Y, and Z directions respectively (again, in
relationship to its parent).

void SVE_rotateObject(SVE_object o, float angle, char axis);

Rotates the object around its origin by the given angle in degrees around the X, Y, or Z axis depending on
whether the “axis” parameter is ‘x’, ‘y’, or ‘z’ respectively.

void SVE_scaleObject(SVE_object o, float xScale, float yScale, float zScale);

Scales the object along the X, Y, and Z axis using the values ofxScale , yScale , andzScale
respectively.

If you wish to set the composite 4x4 matrix directly, you should use the function,
void SVE_setNewObjectPosition(SVE_object o, M_matrix newPosition);

30̊ rotation

of object Tabletop

Figure 14. The Propagation of Transformations From Parent to Child Objects.

64 The Simple Virtual Environment Library User’s Guide

4/16/97

Other routines are available that translate, rotate and scale an object inanother object’s coordinate system.
For example, a lamp contained in a room could be scaled along theroom’s X axis, even though it may not
be the lamp’s X axis.

TheSVE_translateWRT() function performs a translation to a new position in the coordinate system of
thecoordObj object, ifabsolute is TRUE, or by the vector given innewPos, if absolute isFALSE. The
functionsSVE_moveTo() andSVE_moveBy() correspond toSVE_translateWRT() for anabsolute
value ofTRUE andFALSE, respectively. TheSVE_rotateWRT() function rotates the object in the
coordinate system ofcoordObj along the givenaxis , ‘x’, ‘y’, or ‘z’. The SVE_scaleWRT() function
scales the object in the coordinate system ofcoordObj along the givenaxis , ‘x’, ‘y’, ‘z’, or ‘a’ (all axis,
which results in a uniform scale).

void SVE_translateWRT(SVE_object obj, SVE_object coordObj,
 SVE_point newPos, boolean absolute);

void SVE_moveTo(SVE_object obj, SVE_object coordObj, SVE_point newPos);
void SVE_moveBy(SVE_object obj, SVE_object coordObj,

 SVE_point moveVector);
void SVE_rotateWRT(SVE_object obj, SVE_object coordObj,

 float theDegrees, char axis);
void SVE_scaleWRT(SVE_object obj, SVE_object coordObj,

float scaleVal, char axis);

If for some reason, you change an object’s position matrix without using one of the functions described
above, youmust indicate that to the SVE system that a change has occurred, otherwise strange things may
happen.

void SVE_reCalculateWorldMatrix(SVE_object o);

3.7.2 Object Geometry

Most SVE objects have a geometric appearance defined for it which can include polyhedra, polylines, text,
and light sources. This geometry can be read from an object description file, as described above, or can be
generated dynamically. An object can actually have many potential geometries defined for it, where one is
chosen given the distance between the viewer and the object’s origin. In addition to an object’s regular
geometry, a highlight geometry can be defined which will replace the object’s regular geometry when it is
being highlighted (i.e. its “highlight ” flag is TRUE).

A geometry is defined as a list of primitives, each of which can be a polyhedron, a textured polyhedron, a
polyline, text, or a light source. A polyhedron primitive is simply a collection of polygon faces which all
use a subset of a list of vertices and normals. A textured polyhedron is a special polyhedron which contains
texture vertices information used to map textures to the polygon faces. A polyline primitive is collection of
continuous lines which all use a subset of a list of vertices. A text primitive is a possibly multi-line block of
text which has a location, orientation, and scale in relationship to the object it is a part of. The light source
primitive is a light definition, which has either a location or a direction, and color attributes. Each visible
primitive can have a highlighted material associated with it which, if no highlight geometry is specified,
will override the primitive’s usual material when the object is being highlighted. The following SVE object
fi le defines one ins tance of each of these pr imi t ive types. Th is fi le can be found as
all_primitives.object in the objects directory.

Source xii: all_primitives.object, an Example of Each Primitive Used in the SVE Library.
Simple Virtual Primitive File Format version 1.1
number of components: 5

component 1 type: light
Data of component 1:
no of attributes:
2
color 1.0 1.0 1.0
position 0.0 5.0 -10.0

component 2 type: polyhedron
Data of component 2:

The Simple Virtual Environment Library User’s Guide 65

4/16/97

no of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
no of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
255 0 0 4 0 1 2 3
 0 255 0 4 0 4 5 1
 0 0 255 4 1 5 6 2
255 0 0 4 2 6 7 3
 0 255 0 4 0 3 7 4
 0 0 255 4 4 7 6 5

component 3 type: polyline
Data of component 3:
no of vertices:
8
vertices: x y z
0 -0.1 0
0 -1 0
1.6 -1.0 0
1.6 -0.1 0
0 -0.1 0.35
0 -1.0 0.35
1.6 -1.0 0.35
1.6 -0.1 0.35
no of polylines:
6
polylines: R G B #_of_vertices v1 v2 v3 ...
255 255 255 4 0 1 2 3
255 255 255 4 0 1 5 4
255 255 255 4 1 2 6 5
255 255 255 4 2 3 7 6

Figure 15. Snap Shot of an Object Containing All Possible Primitive Types.

66 The Simple Virtual Environment Library User’s Guide

4/16/97

255 255 255 4 3 0 4 7
255 255 255 4 4 5 6 7

component 4 type: text
Data of component 4:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 1.5 0.36 1
no of lines:
1
this is text

component 5 type: textured_polyhedron
Data of component 5:
image file: gvu.rgb
repeat texture: TRUE
blending: TRUE
no of vertices:
4
vertices: x y z
-0.3 -1.2 0.0
-0.3 -0.2 0.0
 0.3 -0.2 0.0
 0.3 -1.2 0.0
no of texture vertices:
4
texture vertices: u v
0 0
0 1
1 1
1 0
no of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...[t1 t2 t3 ...]
255 255 255 4 3 2 1 0 3 2 1 0

A snapshot of the primitives defined in this file is shown in Figure 12. “Snap Shot of an Object Containing
All Possible Primitive Types.” on page 63. Note that these primitives make up one SVE object.

The SVE system maintains a list of geometry definitions indexed by a string name. In the case of
geometries read from file, the name of the geometry is the full path name of the file. This indexing method
allows SVE to re-use a geometry definition if more than one object uses it. The mechanism to deal with
duplicate geometries is automatic, and prevents unnecessary file reading and preparation for rendering.
The disadvantage to this approach is that when one object wishes to change its geometry, it must get a fresh
copy first to prevent other objects that use the same geometry to be affected. If a SVE application changes
the geometry using a SVE function, the SVE system ensures that the object has a unique geometry before
making the change. If, however, the application needs to change the geometry definition by setting a value
in the geometry structure directly, it should first call this function to ensure that the object has a unique
geometry:

void SVE_initGeometryChange(SVE_geometry *geometry, SVE_object object);

(Theobject parameter is the SVE object using the geometry if know, or NULL otherwise. It is used to
ensure that the object’s boundaries are recalculated.)

Object Geometries

As mention before, objects can have no geometry, resulting in the object having no visual presence in the
virtual world, one geometry, which defines the object’s appearance in the virtual world, or many
geometries, where one geometry will be chosen before each rendering of the scene to use as the object’s
appearance. Unless otherwise specified, any routines that deal with an object’s geometry when an object
has more than one geometry defined will use the geometry chosen for the current (or previous) rendering
phase.

The Simple Virtual Environment Library User’s Guide 67

4/16/97

When defined in an SVE world file, the object’s geometry is given by the file given on the “primitives file:”
line. More than one geometry can be specified by giving a list of “primitives file:” lines, with optional valid
range specifications. In this case, the first geometry on the list which is valid is used as the object’s
geometry for the current rendering phase. A geometry is valid if no range specification are given or if the
viewer is within the given valid range specification for that geometry (the ranges are given in meters). For
example, the following object entry in a world file defines a cube that has different geometries
(close_cube.object if the eye point is within 3 meters, medium_cube.object if the eye point is between 3
and 5 meters, and far_cube.object if the eye point is farther than 5 meters):

 object name: cube
 primitives file: close_cube.object valid to 3
 primitives file: medium_cube.object valid from 3 to 5
 primitives file: far_cube.object valid from 5
 transformation matrix:
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 -3 1
 other attributes: 0
 number of children: 0

In the next few sections, we will show how object geometries can be constructed by the application at run-
time. First, a primitive is constructed out of faces, lines, text, or a light definition. Next, the primitive is
added to a geometry definition. Finally, the geometry definition is added to the object description. A
geomet ry de fin i t i on i s added to tha t l i s t o f geomet r ies o f an ob jec t us ing the
SVE_addObjectGeometry() function.

void SVE_addObjectGeometry(SVE_object o, SVE_geometry newGeometry,
 float minDistance, float maxDistance);

The geometry is added to the end of the object’s list of geometries. IfminDistance is not negative, then
the geometry is valid if the viewer is further than the given distance away (in meters using the world
coordinate system). Similarly, ifmaxDistance is not negative, then the geometry is valid if the viewer is
closer than the given distance. If bothminDistance andmaxDistance are positive integers, then they
are used as the minimum and maximum values, respectively, of the range in which the geometry is valid.

A geomet ry in an ob jec t ’s geomet ry l i s t can be removed f rom the l i s t w i th the
SVE_removeObjectGeometry() function.

void SVE_removeObjectGeometry(SVE_object o, SVE_geometry geometry);

Primitive Construction

The most straight forward method to defining an object’s geometry is to use a series of function calls that
define the primitives of a geometry. This method is similar to the method used by a GL or OpenGL
application to render geometry primitives.

The first step of this method is to indication which primitive type you wish to create. The possible
primitive types are:POLYHEDRON, TEXTURED_POLYHEDRON, LINE , TEXT, andLIGHT. The appropriate
constant should be used for thetype parameter of theSVE_beginPrimitive() function.

void SVE_beginPrimitive(SVE_primitiveType type);

This function must be called before any of the other primitive construction functions can be called. When
the primitive has been defined by the functions described below, the construction is ended with the
SVE_endPrimitive() function.

SVE_primitive SVE_endPrimitive();

This function returns a reference to the primitive that was constructed. The next section describes how to
add the primitive to an object’s geometry.

68 The Simple Virtual Environment Library User’s Guide

4/16/97

Between the begin and end functions, the attributes of the primitive are specified. The material and
highlight material of the primitive can be specified with theSVE_primitiveMaterial() and
SVE_primitiveHighlightMaterial() functions. Note that if an object has a material defined for it,
that material will override the primitive material. (See 3.8. “Colors and materials” on page 74 for details on
creating SVE materials.)

void SVE_primitiveMaterial(SVE_material material);
void SVE_primitiveHighlightMaterial(SVE_material material);

The line width value for each primitive (for primitives containing lines) can be specified with the
SVE_primitiveLineWidth() function.

void SVE_primitiveLineWidth(int lineWidth);

If the primitive is a TEXT primitive, the text string is specified with theSVE_primitiveText()
function.

void SVE_primitiveText(char *text);

The text’s position, scale and rotation offsets from the object it is part of can be specified using the
following functions.

void SVE_primitiveTextPosition(float x, float y, float z);
void SVE_primitiveTextScale(float scale);
void SVE_primitiveTextRotation(float xrot, float yrot, float zrot);

If the primitive is a POLYHEDRON, TEXTURE_POLYHEDRON, or LINE primitive, there are two
methods to specifying the vertices of the primitive. One method is to simply begin a face or line, give the
vertices in order, and then end the face or line. The other method (which is more efficient) is to first give a
list of points (locations), each with a unique index value; a list of normals (if needed), each with a unique
index value; and a list of texture coordinates (if needed), each with a unique index value. Then a face or
line is constructed by beginning the construction, specifying each vertex in order by given the index of the
vertex point (location), normal (if needed), and texture coordinate (if needed), and then ending the face or
line. Indexes that are not to be used should be -1. Both of these methods can be used to construct as many
faces or lines required to make up a polyhedron or polyline primitive.

A face is begun with theSVE_beginPrimitiveFace() function (which returns a unique face index to
identify it apart from the other faces) and ended with theSVE_endPrimitiveFace() function (which
returns the face definition, although it would usually be ignored, as it is automatically added to the
primitive being defined).

int SVE_beginPrimitiveFace();
SVE_facePtr SVE_endPrimitiveFace();

A line is begun with theSVE_beginPrimitiveLine() function (which also returns a unique line index
to identify it apart from the other lines) and ended with theSVE_endPrimitiveLine() function (which
returns the line definition, although it would usually be ignored, as it is automatically added to the
primitive being defined).

int SVE_beginPrimitiveLine();
SVE_facePtr SVE_endPrimitiveLine();

A closed line (where a line is automatically drawn from the last vertex to the first vertex) can be begun with
the following function:

int SVE_beginPrimitiveClosedLine();

For the easy method, between the begin and end functions, theSVE_primitiveVertex() function is
called for each vertex in the face or line. The vertices should be given in order (counterclockwise around a
face), so that, if no normal is given, a correct normal can be calculated for the face. This is demonstrated by
Figure 16. “The Normal Resulting From Different Vertex Orderings.” on page 69. The reference to the
vertex is returned in case it is needed.

SVE_vertexPtr SVE_primitiveVertex(float x, float y, float z);

The Simple Virtual Environment Library User’s Guide 69

4/16/97

If a normal or texture coordinate needs to be defined for that vertex, they should be defined before the
vertex specification. The function takes an index value as the first parameter. If the application does not
wish to give a unique index, it should give -1, instead, and an index will be generated automatically (and
returned by the function). The functions are:

int SVE_primitiveNormal(int index, float x, float y, float z);
int SVE_primitiveTexCoord(int index, float s, float t);

These specifications are persistent. If many vertices have the same normal, only one call to
SVE_primitiveNormal() is needed before all of the vertices specifications.

The following example routine demonstrates how a primitive can be constructed that is a rectangle that
floats behind a text string (given). First, the size of the text (when it is displayed) is determined using the
SVE_getTextExtent() function. Then the rectangle’s normal is given, and then the four vertices (in
counter-clockwise order). Finally, the rectangle’s material is set, and the face and primitive generation is
concluded.

Source xiii: Primitive Construction Example
SVE_primitive createLabelBacking(char *label, SVE_material faceMaterial)
/*
 Create and return a label primitive, which is a square that
 closely surrounds the label text.
*/
{

SVE_primitive labelPrim;
float height = 1;
float width = 1;
float originX = 0;
float originY = 0;

SVE_getTextExtent(label, &originX, &originY, &height, &width);

/* Construct the face that will surround the text a little behind it. */
SVE_beginPrimitive(POLYHEDRON);

SVE_beginPrimitiveFace();

/* normal */
SVE_primitiveNormal(-1, 0.0, 0.0, 1.0);

/* vertices */
SVE_primitiveVertex(originX+width+0.1, originY-0.1, -0.1);
SVE_primitiveVertex(originX+width+0.1, originY+height+0.1, -0.1);

1

2

3

4

1

4

3

2

The normal points towards the reader The normal points into the screen/paper.

Figure 16. The Normal Resulting From Different Vertex Orderings.

70 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_primitiveVertex(originX-0.1, originY+height+0.1, -0.1);
SVE_primitiveVertex(originX-0.1, originY-0.1, -0.1);

SVE_primitiveMaterial(faceMaterial);

SVE_endPrimitiveFace();

labelPrim = SVE_endPrimitive();

return(labelPrim);
}

In the more efficient method, the vertices of a face or line are specified by giving a point, normal, and
texture coord inate index. The index re fers to the index va lue g iven to the funct ions
SVE_primitivePoint() , SVE_primitiveNormal() , andSVE_primitiveCoord() respectively. In
each of these functions, the index can be -1, which causes the function to generate a unique index and
return it. When the vertex is specified, the normal and/or texture coordinate index can be -1 if a normal
and/or texture coordinate value is not associated with that vertex. The normal and texture coordinate
spec i fi ca t ions have been descr ibed above. The po in t spec i fi ca t ion is done w i th the
SVE_primitivePoint() function.

int SVE_primitivePoint(int index, float x, float y, float z);

The vertex specification is done with theSVE_primitiveVertexIndexes() function.
SVE_vertexPtr SVE_primitiveVertexIndexes(int pointIndex, int normalIndex,

 int textureIndex);

The points, normals, and texture coordinates do not need to be specified before the face or line is begun,
but each point, normal, and texture coordinate needs to be specified after theSVE_beginPrimitive() ,
and before theSVE_primitiveVertexIndexes() function that refers to it.

For example, the previous example could be changed to use indexes, resulting in the following code.
/* Construct the face that will surround the text a little behind it. */
SVE_beginPrimitive(POLYHEDRON);

/* normal */
SVE_primitiveNormal(0, 0.0, 0.0, 1.0);

/* vertices */
SVE_primitivePoint(0, originX+width+0.1, originY-0.1, -0.1);
SVE_primitivePoint(1, originX-0.1, originY-0.1, -0.1);
SVE_primitivePoint(2, originX-0.1, originY+height+0.1, -0.1);
SVE_primitivePoint(3, originX+width+0.1, originY+height+0.1, -0.1);

/* indices for button polygon */
SVE_beginPrimitiveFace();
SVE_primitiveVertexIndexes(0, 0, -1);
SVE_primitiveVertexIndexes(3, 0, -1);
SVE_primitiveVertexIndexes(2, 0, -1);
SVE_primitiveVertexIndexes(1, 0, -1);

SVE_primitiveMaterial(faceMaterial);

SVE_endPrimitiveFace();

labelPrim = SVE_endPrimitive();

Primitive Copying

A primitive can be copied using theSVE_getPrimitiveCopy() function. It is copied in its entirety.
SVE_primitive SVE_getPrimitiveCopy(SVE_primitive primitive);

The Simple Virtual Environment Library User’s Guide 71

4/16/97

Primitive Incorporation

Once a primitive has been constructed or copied, it needs to be incorporated into an object’s geometry or
h igh l igh t geomet ry. A p r im i t ive can be added to an ob jec t ’s geomet ry w i th the
SVE_addPrimitiveToObject() function. This function will add the primitive to the current geometry
of the object, which is the geometry chosen for the object in the current (or previous) rendering phase.

void SVE_addPrimitiveToObject(SVE_object o, SVE_primitive primitive);

A pr im i t ive can be added to an ob jec t ’s h igh l igh ted geomet ry w i th the
SVE_addHighlightPrimitiveToObject() function.

void SVE_addHighlightPrimitiveToObject(SVE_object o, SVE_primitive primitive);

A primitive can be added to one of the other geometries which are defined for an object, or to a geometry
de fin i t i on tha t has no t ye t been ass igned to an ob jec t (descr ibed be low) us ing the
SVE_addPrimitiveToGeometry() function.

void SVE_addPrimitiveToGeometry(SVE_geometry *geometry,
 SVE_primitive primitive, SVE_object object);

Note that, ifgeometry is NULL, this routine will create a new geometry (using the empty string as its
name, and then generating a new name if there are other geometries identified by the empty string). The
object parameter is used to indicate which object needs to recalculate its boundaries with the geometry
change. It can beNULL if the object is not known or the geometry is not attached to an object.

Independent Geometries

It is possible to create a geometry that is separate from any object. The geometry will not be rendered, as
only object geometries are rendered, but it can be generated, stored, and then switched with an object’s
current geometry at an appropriate time to cause a quick geometry change.

As mentioned before, geometries are identified by unique string names, usually the full path file name of
the file from which it was read. If an application generates a geometry from scratch, it should give it a
name to identify it, and use that name whenever an instance of that geometry should be used.

A geometry is created an initialized with theSVE_createGeometry() function.
SVE_geometry SVE_createGeometry(char *name);

It is possible to find out if the geometry is an instance of another geometry that has already been created. If
theobjectLinks field of the geometry structure returned is greater than 1, there are other references to
this geometry around. A unique copy of the geometry can be obtained (in any case) using the function
SVE_initGeometryChange() described earlier.

Any geomet ry tha t has been c rea ted can be found us ing i t s name w i th the
SVE_findGeometryInRepository() function.

SVE_geometry SVE_findGeometryInRepository(char *name);

Texture Swapping

An object can become a kind of “movie screen” by way of the texture swapping routines. Texture
swapping allows for all textured polygons of an object to use one texture, which can be changed regularly
for a crude sort of “texture animation”. The additional textures are specified through a call to
SVE_defineObjectTextures() or SVE_defineObjectTextureList() . Only one texture is
“active” at a time for an object, so the application should define a callback that will determine when to
switch textures. This can be as simple as stepping through the textures defined, or something more
complex such as a swap based on Level of Detail.

int SVE_defineObjectTextures(SVE_object o, int textureMode, int n, ...);
int SVE_defineObjectTextureList(SVE_object o, int textureMode,

 int n, char* textureNames[]);

72 The Simple Virtual Environment Library User’s Guide

4/16/97

For the functionSVE_defineObjectTextures() , the texture mode to be used for all of the textures is
given, then the number of textures, and the file names of the textures, given one by one. For the function
SVE_defineObjectTextureList() , the file names of the textures are stored in an array, which is then
passed into the function.

The texture swap callback function, which is called every frame before the frame is rendered, can be set
with theSVE_setTextureSwapCallback() function.

void SVE_setTextureSwapCallback(SVE_object o, SVE_textureSwapFunctionPtr f);

The texture swap callback function should be of the following form:
typedef long SVE_textureSwapFunction(SVE_object object);

It should return the index (in the list of textures or texture array given in the define function) of the texture
which should be used. (The array of textures is 0 based.) A default texture swapping function, which swaps
the textures 60 times per second, is available. It is calledSVE_defaultTextureSwap() .

long SVE_defaultTextureSwap(SVE_object o, SVE_state state);

Miscellaneous Object Attributes

An object can be given all one color or material using theSVE_setObjectMaterial() function.
void SVE_setObjectMaterial(SVE_object o, SVE_material material);

The given material overrides the colors and materials of the primitives that make up the object’s geometry.
If the material parameter isNULL, the object will have no overall material, and the object’s geometry
will once again use its own colors and materials.

An object’s highlight color, which is used to color an entire object when it is highlighted, and no highlight
geometry is specified, can be set using theSVE_setObjectHighlightMaterial() function.

void SVE_setObjectHighlightMaterial(SVE_object o, SVE_material material,
boolean includeText);

The includeText flag indicates whether the material should apply to any text in the object or not. It
should be noted that if the text is the same color as the other primitives of the object, it will be unreadable
if it is in front of those primitives. If thematerial parameter isNULL, the objects’ primitives will have no
highlight material.

It is often the case that an object contains many graphical primitives, and one text primitive as an
identifying label. Often that label needs to be changed, and it would be tedious to search for the text
primitive in an object’s geometry and go through the steps of changing the text, making sure that it happens
correctly. As a convenience, theSVE_changeText() function will change the first text primitive it finds
in an object to the text given, freeing the old text. It returnsTRUE if it was successful in finding a text
primitive, and changed it.

boolean SVE_changeText(SVE_object o, char *newText);

3.7.3 Object Boundaries

Bounding volumes are calculated automatically for each SVE object which surround just the object’s
primitives (known as the “primitives boundaries”), and which surround the object’s primitives and object’s
child objects (known as the “object boundaries”). These boundaries are used to determine if an object can
be seen by the viewer, and for crude object collision detection. Although the boundaries can be a sphere or
a box, the SVE library generates box boundaries, and routines that use the boundaries are optimized for
box boundaries.

The object’s primitives boundaries can be obtained using theSVE_getPrimitiveBoundaries()
function. The object boundaries can be obtained using theSVE_getObjectBoundaries() function. The
coordinates of the boundaries are given in terms of the object’s coordinate system.

The Simple Virtual Environment Library User’s Guide 73

4/16/97

SVE_boundaries *SVE_getPrimitiveBoundaries(SVE_object o);
SVE_boundaries *SVE_getObjectBoundaries(SVE_object o);

The SVE_boundaries structure contains the following fields. IfhasSphere is TRUE, thesphereOrigin
andsphereRadius fields represent the origin and radius of the sphere boundary. IfhasBox is TRUE, then
theboxVertex1 andboxVertex2 fields represent two corners of the bounding box which are farthest
from each other.

typedef struct SVE_boundaries{
 boolean hasSphere;
 SVE_point sphereOrigin;
 float sphereRadius;
 boolean hasBox;
 SVE_point boxVertex1;
 SVE_point boxVertex2;
} SVE_boundaries;

The app l i ca t ion can tes t to see i f the boundar ies o f two ob jec t co l l i de us ing the
SVE_objectBoundsCollide() function. TheSVE_objectBoundsInBounds() function indicates if
an object’s boundary is contained entirely inside another object’s boundary. For each of these functions,
the caller can indicate whether the object’s children should be considered (using the “object boundaries”)
or not (using the “primitive boundaries”).

boolean SVE_objectBoundsCollide(SVE_object o1, SVE_object o2,
 boolean includeChildren);

boolean SVE_objectBoundsInBounds(SVE_object o1, SVE_object o2,
 boolean includeChildren);

The application can test to see if a point (in world coordinates) is inside an object’s primitive boundaries
using theSVE_pointHitObjectPrimitives() function, or inside the object boundaries using the
SVE_pointHitObject() function. Given an object tree and a point in world coordinates, the
SVE_objectPointHit() will return the first object (in a depth-first search) whose primitive boundaries
contains the point. For all of these functions, the given margin is a margin of error, where a positive margin
will effectively enlarge the boundaries, and a negative margin will shrink the boundaries.

boolean SVE_pointHitObjectPrimitives(SVE_object obj, SVE_point pt,
 float margin);

boolean SVE_pointHitObject(SVE_object obj, SVE_point pt, float margin);
SVE_object SVE_objectPointHit(list objectList, SVE_point pt,

 float margin, boolean onlySelectable);

For debugging purposes, the primitives and object boundaries of all objects in an object tree can be drawn
(in a frame callback, for example) using theSVE_drawBoundaries() function.

void SVE_drawBoundaries(list objects);

74 The Simple Virtual Environment Library User’s Guide

4/16/97

3.8. Colors and materials

The SVE system maintains a list of defined materials, each of which is identified by an integer index and a
unique name. Most of the time, internal SVE structures will use the index to refer to a material. The names
are usually used when reading in a material file which defines materials, and an object description file,
where the material names are used to indicate materials for graphical primitives. A material can be retrieve
from either index or name using the appropriate function call:

SVE_material SVE_getMaterialByName(char *name);
SVE_material SVE_getMaterialByIndex(int index);

If an application only deals in red, green, and blue color definitions, it is possible to get a material
definition just from the color values. The function will use a material definition for the given color or create
one if it doesn’t exist already. The color values represent the ambient and diffuse color of the material. The
function to use for this purpose isSVE_getColorMaterial() .

SVE_material SVE_getColorMaterial(float color[3]);

Any material definition contains values for ambient and diffuse colors, transparency (alpha), specular and
emission colors, a shininess value, and an optional texture map. The material definition structure looks like
this:

typedef struct SVE_materialStruct {
 char *name;
 int index;
 float ambient[3];
 float bwAmbient;
 float diffuse[3];
 float bwDiffuse;
 float specular[3];
 float bwSpecular;
 float emission[3];
 float bwEmission;
 float shininess;
 float alpha;
 int textureMode;
 long textureEnv;
 char *texture;
 char *textureFilename;
 boolean transparentTexture;
} SVE_materialStruct;
typedef struct SVE_materialStruct *SVE_material;

A material definition can be created from scratch and initialized using the following function. Note that if
another material exists by the given name, it’s definition will be returned.

SVE_material SVE_createMaterial(char *name);

Values in a material definition should be changed by an appropriate function. The following functions
change the various color values. Note that these functions also calculate the black and white equivalent for
each color, and store it for black and white rendering.

void SVE_setMaterialAmbient(SVE_material material, float ambient[3]);
void SVE_setMaterialDiffuse(SVE_material material, float diffuse[3]);
void SVE_setMaterialSpecular(SVE_material material, float specular[3]);
void SVE_setMaterialEmission(SVE_material material, float emission[3]);

The following functions change the shininess and transparency (alpha) values respectively.
void SVE_setMaterialShininess(SVE_material material, float shininess);
void SVE_setMaterialAlpha(SVE_material material, float alpha);

The Simple Virtual Environment Library User’s Guide 75

4/16/97

The SVE_setMaterialTexture() function sets the texture file name, mode, and environment. The
mode options are:SVE_TEXTURE_REPEAT, SVE_TEXTURE_CLAMP, SVE_TEXTURE_GREYSCALE. The
environment modes are given in the following table, along with a description of the effect applying the
texture will have on a face.

void SVE_setMaterialTexture(SVE_material material, char *texture,
 int textureMode, long textureEnv);

As a short cut to setting a material’s ambient and diffuse colors, and optionally the alpha value, these
functions are provided.

void SVE_setMaterial3Color(SVE_material material, float color[3]);
void SVE_setMaterial4Color(SVE_material material, float color[4]);

Table 11: Texture Environment Modes

Mode
Component type

and order
Affect on face

SVE_TEXTURE_INTENSITY Intensity The RGB color of the polyhedron is multiplied
by the texture pixel value at each pixel.

SVE_TEXTURE_INTENSITY_ALPHA Intensity, Alpha The RGB color of the polyhedron is multiplied
by the intensity value from the texture at each
pixel, the alpha value of the polyhedron is
multiplied by the alpha value from the texture
at each pixel.

SVE_TEXTURE_RGB Red, Green, Blue Texture RGB color overrides polyhedron.
Alpha of polyhedron is unaffected.

SVE_TEXTURE_RGB_LIGHTING Red, Green, Blue The RGB color of the texture is multiplied by
the RGB color of the polyhedron.

SVE_TEXTURE_RGB_ALPHA Red, Green, Blue, Alpha The RGB color of the texture and the RBG
color of the polyhedron are combined propor-
tionally to the texture’s alpha value (Texture
alpha value of 0 results in 100% polyhedron
color, value of 1 results in 100% texture color).
The polyhedron’s alpha value is unchanged.

SVE_TEXTURE_RGB_ALPHA_LIGHTING Red, Green, Blue, Alpha The RGB color and alpha values are multi-
plied by the RGB and alpha values of the tex-
ture for each pixel.

SVE_TEXTURE_DEFAULT One of the above Used to specify that the default for the number
of channels contained in the texture. The
SVE_TEXTURE_RGB_LIGHTING and
SVE_TEXTURE_RGB_ALPHA_LIGHTING
 modes are the defaults for 3 and 4 component
textures respectively.

76 The Simple Virtual Environment Library User’s Guide

4/16/97

3.9. Lighting and Shading

By default, SVE uses flat shading to render polygons using one color value, which represents the ambient
color of the polygon’s material. This results in a cartoonish looking scene with no smooth surfaces. It is
simple to provide a more realistic scene by using lighting and smooth shading effects, although at a cost of
rendering speed.

Lights can be defined as part of an SVE object’s description, and then placed in the world object tree.
Lights can be directional (parallel light rays), or can radiate from a source position. Using the defined
lights, a renderer will take into account a polygon’s material’s diffuse and specular attributes, as well as the
ambient color attribute, when rendering the polygon. An example light definition is given below. The SVE
object file actually defines two light sources, the first one is a local light source which is located behind, up
to the right (location is 10, 10, 10) and the second one is a light at infinity, like the sun. It is positioned
straight above the origin.

Source xiv: Example SVE object with lights
Simple Virtual Primitive File Format version 1.1
number of components: 2

component 1 type: light
Data of component 1:
no of attributes:
3
color 0.8 0.8 0.8
local-light TRUE
position 10.0 10.0 10.0

component 2 type: light
Data of component 2:
no of attributes:
2
color 0.8 0.8 0.8
position 0.0 1.0 0.0

Although lights are defined in the world object tree, the renderer will not actually use the lights unless told
by the application to do so using the configuration flag. If lighting effects are desired, then the
configuration flag should includeSVE_LIGHTING.

Currently, the SVE library allows for one smooth shading effect, called Gouraud shading. Gouraud
shading uses the normal at each vertex of a polygon to determine the color of that vertex (using the current
lighting configuration), then linearly interpolates the shades between the vertices to determine the pixel
color. When two polygons share a vertex and normal, therefore, the area around the vertex will be shaded
such that the vertex and its edges will not be noticeable (except in a silhouette). When a vertex of a
polygon is not given a normal value, SVE calculates the normal to the polygon (assuming the polygon’s
vertices are given in counterclockwise order), and uses that for each vertex of the polygon. Edges of these
polygons will be visible due to shading differences. Gouraud shading effects can be “turned on” by
includingSVE_GOURAUD in the configuration flag.

Here is an example application that uses lights and Gouraud shading. Note that it is our rotating cube
example, but modified to use lighting and Gouraud shading effects.

Source xv: example4, Application Using Light.
/**
 * Example4 (sve module)
 *
 * This is the example from the lighting and shading section of the SVE
 * manual.
 *
 * This example has one light source shining on its world. We’ll have a
 * cube spinning around to the difference in light. The default key’s as
 * described in the SVE manual still work.
 **/

The Simple Virtual Environment Library User’s Guide 77

4/16/97

#include “sve.h”

/**
 * Find the cube in the world and spin it around the y-axis.
 **/
SVE_status rotateCube(SVE_state state)
{

SVE_object cube;

cube = SVE_findWorldObject(“cube”);
SVE_rotateObject(cube, 3, ‘y’);

}

void main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL | SVE_LIT_GOURAUD;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use.
 * Since we use light in this example we also need to use SVE_LIT_GOURAUD.
 **/

printf(“Starting application.\n”);
SVE_init(“Example4 (sve)”, config, &argc, argv);

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example4.world”))
{

printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * Tell SVE to call the function rotateCube before rendering a new frame.
 **/

SVE_addAnimationCallback(rotateCube);

/**
 * SVE will take over control of the program until it is finnished.
 **/

printf(“Beginning event loop.\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

As you can see the only change in this example from the previous ones is the line
config = SVE_NORMAL | SVE_LIT_GOURAUD

It tells SVE to use lighting and Gouraud shading effects instead of no lights and flat shading. The
configurationSVE_LIT_GOURAUD is short hand for the combination ofSVE_LIGHTING and
SVE_GOURAUD. The placement and definition of the light appears elsewhere. Source xvi: shows the world
file used for this example.

Source xvi: World File Used in Example4.
Simple Virtual Object File Format version 1.0
number of objects: 2

object name: lightsource
primitives file: light.object
transformation matrix:
1 0 0 0

78 The Simple Virtual Environment Library User’s Guide

4/16/97

0 1 0 0
0 0 1 0
0 0 0 1
other attributes: 0
number of children: 1

object name: meadow
primitives file: plane.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
other attributes: 0
number of children: 0

object name: cube
primitives file: cube.object
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 2 -0.5 1
other attributes: 0
number of children: 0

The lights themselves are defined in the filelight.object (given above), and are loaded when you run
the application. This makes it easier to play around with the light until it is placed correctly.

The Simple Virtual Environment Library User’s Guide 79

4/16/97

3.10. Sound

3.10.1 Audio support

Auditory feedback is certainly important and sometimes even a necessary part of the user interface. Apart
from augmenting engagement (as in computer games), short sounds can be used as auditory cues for
occurring events. This kind of feedback is especially useful while performing tasks with the trackers (e.g.
grabbing objects from a pile).

The SVE library provides many functions that deal with audio. It can load multiple AIFF files and play
them simultaneously. SVE can play four samples at the same time, which is a limit of the hardware. SVE
itself can hold more than four samples in memory at the same time. This makes it possible to load all the
necessary sound samples into memory when the program is initializing. Once the program is initialized
and the sample is required, all that the program has to do is tell SVE to play the sample. The advantage to
this method is that no time is lost between the point where the sound is required and the point where it
starts playing.

The following source code is an example of loading sound files and playing them. Eight sound files are
loaded. One is repeated continuously, the others are played when the user presses one of the number keys.

Source xvii: Sound Example
/*
 sound.c

 SVE sound example

 Plays a sound continuously, and can play one of 7 other sounds
 depending on which key (1-7) is pressed.

*/

#include “sve.h”

int sound[8];

SVE_status KeypressCallback(SVE_state state)
{

char keyPressed;

if (state->eventType == SVE_KEY_PRESS) {
keyPressed = ((SVE_keyEvent *)state->eventData)->keyVal;
if((keyPressed > ‘0’) && (keyPressed < ‘8’)) {

SVE_audioReplaySound(sound[keyPressed-’0’], FALSE);
return(EVENT_CONSUMED);

}
}
return(EVENT_IGNORED);

}

void main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

printf(“Starting application\n”);

SVE_init(“Example1 (sve)”, config, &argc, argv);

sound[0] = SVE_audioOpenSound(“belltree_up2.aiff”);
sound[1] = SVE_audioOpenSound(“harp_glis.Cmj.aiff”);
sound[2] = SVE_audioOpenSound(“jar.aiff”);
sound[3] = SVE_audioOpenSound(“orch_hit.aiff”);
sound[4] = SVE_audioOpenSound(“slinky_slap.aiff”);
sound[5] = SVE_audioOpenSound(“stereo_uparp.aiff”);
sound[6] = SVE_audioOpenSound(“tag2.aiff”);
sound[7] = SVE_audioOpenSound(“tag3.aiff”);

80 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_audioReplaySound(sound[0], TRUE);

if(!SVE_loadWorld(“hello_world.world”))
{

printf(“error occured during SVE_loadWorld, exiting \n”);
SVE_done(); /* stop process */

} /* if */

SVE_registerCallback(SVE_KEY_PRESS, KeypressCallback);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

The function,
int SVE_audioOpenSound(char *filename);

loads a sound file with the given file name, and returns a number which the other audio functions use to
refer to it. If there was a problem loading the file, the function returns -1.

The following function causes a sound file to be played. ThesampleNo parameter is the number returned
by theSVE_audioOpenSound function when the sound was loaded. The “repeat ” parameter indicates if
the sound is to be repeated continuously (TRUE), or if it stops after playing once (FALSE).

void SVE_audioReplaySound(int SampleNo, boolean repeat);

Sounds can be interrupted using the function,
void SVE_audioStopSound(int SampleNo);

The following function will indicate whether a sound is finished or not (returnsFALSE or TRUE
respectively).

boolean SVE_audioCheckSound(int SampleNo);

The volume of the left and right audio signals can be set using the function,
void SVE_audioSetVolume(int left, int right);

The current volume levels can be retrieve with the function,
void SVE_audioGetVolume(int *left, int *right);

Sound volume represented by an integer between 0 and 255 (inclusive). It is a logarithmic scale.

Sound files are recorded with therecordaiff application. This application can sample sounds at various
rates, durations, numbers of channels etc. The following function was used in a speech annotator to record
7-second samples with the lowest quality:

void record(char *filename)
{

char command[200];

sprintf(command, “recordaiff -nchannels 1 -rate 8000 -time 7 %s &”,
filename);

system(command);
}

3.10.2 Spatial audio support

(NOTE: This configuration is not currently supported. Updates to return this functionality are planned for
the future.)

Some limited functions allow the spatialization of one single sound source, using the SPARCstation
nagel.cc.gatech.edu as a server.The server is started on this station by:

The Simple Virtual Environment Library User’s Guide 81

4/16/97

sounddemo

(login as vrgroup)

On the back of the ARIEL amplifier, a (continuous) sound source (CD player, radio, SGI output) has to be
hooked onto the input.

The system is activated by addingSVE_SPATIALSOUND to config when callingSVE_init() . The only
func t ions tha t a re ava i lab le to con t ro l the loca t ion o f the sound a re
SVE_attachSoundToObject(object) andSVE_changeSoundUpdateRate(number) .

82 The Simple Virtual Environment Library User’s Guide

4/16/97

3.11. Polling Devices

As it true of the real world, an interactive application can involve many events that are continuous in
nature, such as computer mouse movement and body movement. As computers generally deal in discrete
events only, the continuous events need to be translated into discrete events. This is usually done by
polling, orsampling the continuous event, where the continuous event is sampled at certain times and each
sample represents an event. In many cases, a series of sampled events can be interpreted to mean that
another, more specific, event has occurred. For example, when a hand’s position moves through the
position of a computer generated wall, acollision event might occur, or when a hand changes from having
extended fingers to being a fist, agrab event might occur.

The SVE system maintains a list of polling devices that translate continuous events into discrete events.
The “device” could be an actual hardware device, or a software animation. Polling devices are polled once
through the event-render loop, during the “event handling” phase (see figure Figure 10. “SVE System
Overview” on page 35). The SVE system handles two types of continuous events through polling: tracking
devices and hand input (glove) devices. A tracking device reports a position and orientation of a tracker,
which is usually attached to a point of interest such as a head or hand. A hand input device reports the
posture of the hand, perhaps as a set of finger and wrist bend angles. Other continuous events can be
handled using SVE’s polling system by writing an open, polling, and close function, and registering it with
the SVE system. The polling system provides the ability to associate a polling device with a SVE object.

3.11.1 Tracking Devices

Tracking devices generally determine the position and orientation of an SVE object in the environment.
The default behavior of the SVE tracker polling device is to copy the position and orientation of the tracker
to the position and orientation of the SVE object associated with that tracker. It is important, therefore, to
note that the position of the object is also determined by the position of its parent object, which would
represent the position of the tracker’s reference (usually the transmitter of an electromagnetic tracker) in
the environment.

The usual method to introducing trackers to the application is to specify them in the initialization file. This
causes the trackers to be automatically initialized and polled (if theSVE_HMD option is set in the
configuration flags). Here are some example lines in the initialization file that set up the default situation of
one tracker to determine the position of the “SVE HMD” object (and, thus determine the viewpoint
because this is theSVE_worldState->hmdObject), and another tracker to determine the “SVE cursor”
object (often held by the hand, or attached to a 3D mouse). Note that these lines specify that the trackers
are receiver 1 and 2 of an IsotrackIITM tracking system which is plugged into the/dev/ttyd2 port of a
machine called “buckhead ”.

tracker 1 buckhead isotrakii /dev/ttyd2 1 SVE HMD
tracker 2 buckhead isotrakii /dev/ttyd2 2 SVE cursor

The creation of a tracker interface has the effect of introducing a new object, called “SVE tracker X”,
where X is the id number given. This object is made a child of the parent of the “attached” object, whose
name was given (“SVE HMD” and “SVE cursor” in this example). The “attached” object is then made a
child of the “SVE tracker X” object. (See “Tracker Objects” on page 61.) When new position information
is obtained from the tracking device, it is stored in the position of the “SVE tracker X” object, effectively
moving the “attached” object in the coordinate system of its former parent. Note that the “attached” object
may have a position transformation that is combined with the tracker position to determine the “attached”
object’s world position. This can be used, for example, to correct for tracker devices that are rotated to be
mounted on the side of a hand held device.

The tracker identification number of the trackers in the example are 1 and 2 respectively, given in the
second column of the line. That number can be used to refer to the tracker if you wish to change what

The Simple Virtual Environment Library User’s Guide 83

4/16/97

object it is associated with (which object it determines the position and orientation of). The function to
change the object association is,

void SVE_attachTracker(int trackerId, char *objectName,
SVE_pollFunctionPtr pollFunction);

Note that it is possible to specify your own polling function. The format of the polling function is
discussed below. Generally, you will want to use the standard tracker polling function, which reads the
tracker information from the serial port and changes the position of the associated object appropriately. If
any buttons are associated with the tracker, they are translated to mouse button events, and queued. The
standard function can be specified by setting thepollFunction parameter toNULL, or by explicitly
specifying the standard function, which isSVE_updateTracker() .

SVE_status SVE_updateTracker(SVE_pollDevice device, SVE_state state);

It is possible to use a tracker during run-time versus specifying it in the configuration file. To do so, use the
following function,

boolean SVE_initTracker(int trackerId, char *machine, int type, char *port,
 int receiver, char *attachTo, float hemiVector[3],
 SVE_pollFunctionPtr pollFunction);

This function returnsTRUE on success,FALSE otherwise. Note that, for the most part, the parameters
match the ones given in the configuration file tracker specification. Thetype parameter is one of the types
listed in thetracker.h file of the tracker library. Currently, it should be one of the following:BIRD,
ISOTRAKII , FASTRAK, or BOOM. Theport parameter should be the name of the port to which the tracker
it attached (“/dev/ttyd1” or “/dev/tty00” for example). The default for thehemiVector , which is really
only used for electro-magnetic trackers, is [0, -1, 0], which assumes that the tracker transmitter is above the
user. If the transmitter is in front of the user, where the user is facing down the negative Z axis when
looking towards the transmitter, the hemisphere vector should be [0, 0, 1].

TheattachTo parameter is the name of the SVE object to attach to. It is not necessary that the object exist
at the time of the call toSVE_initTracker() . The tracker will automatically associate itself to the object
when it is created. As in theSVE_attachTracker() function, thepollFunction parameter is the
polling function for the tracker. It should beNULL or SVE_updateTracker() to use the default.

There is no restriction on the number of tracker devices that actually use the same tracker receiver. It is
possible to have two objects, therefore, that follow the same tracker receiver. If they have the same parent,
or if their parents are at the same location and orientation, the two objects will be at the same position. Of
course, if you wish to have two objects at the same position, it is more efficient to attach one to the other,
and set its (the attaching one’s) location to [0, 0, 0].

3.11.2 Hand Input Devices

Currently, the SVE system is capable of handling the CyberGloveTM hand input device. The use of this
device is enabled by setting the SVE_GLOVE option of the configuration flags. The glove device is treated
in a way similar to the tracking devices in terms of initialization and polling. There are two methods to
using a glove device: specifying the glove device in the initialization file and initializing a glove device
during run time. A glove device can be specified in the initialization file using a similar format to the one
used to specify a tracker. A typical example line in the initialization file that uses a glove that is attached to
the “SVE cursor” object is,

glove 1 buckhead /dev/ttyd1 SVE cursor

The second column gives the glove’s identification number which is used to refer to it in the functions to
follow. The next columns give the name of the machine and the port that the glove is attached to, and the
name of the object that the hand is attached to. The function equivalent of this is,

boolean SVE_initGlove(int gloveId, char *machine, char *port, char *attachTo);

84 The Simple Virtual Environment Library User’s Guide

4/16/97

This function returnsTRUE on success,FALSE otherwise. As in the tracker device, theattachTo
parameter identifies the object with which to associate the glove device. The SVE object of that name does
not need to exist at the time of the initialization call.

When the glove device is initialized, a hand geometry is created as an SVE object tree, which is attached to
the object with which the glove device is associated. The geometry represents the parts of the hand which
will be controlled by the sensors on the glove. A diagram of the hand SVE object tree is shown in Figure
17. Note that it is possible to find the location of the finger-tips by finding the location of the appropriate

finger-tip object (the hand size is approximated, though). Since the “palm” object is often used for
interactions between the hand and the environment, a function is provided to obtain the “palm” object
directly for a glove device attached to a particular object. The function is,

SVE_object SVE_getPalmObject(SVE_object attachedTo);

As an example, the following line of code will get the palm object for the hand geometry attached to the
cursor object:

palm = SVE_getPalmObject(SVE_getCursorObject());

Glove Calibration

The CyberGlove needs to be calibrated for each individual’s hand, although it is possible to save and
retrieve that calibration for later sessions. The following procedure will calibrate the glove device 1. The
three steps must be done in order, although they can be repeated as many times as needed.

be set interactively through these three steps (which must be done in order, but can be done at any time):

• Place the hand flat on a table top with the fingers together and the arm straight out from the hand and press ‘0’.

• Make a fist with the hand, curling the thumb in front of the fingers so that all of the finger joints are bent as much as
possible. Bring the fist back as if to knock on a door and press ‘9’.

• Spread the fingers out (as in “five”) and twist the wrist so that the hand is twisted away from the body and press ‘5’.

hand

palm

thumb

thumb_pip

thumb_dip

index

index_pip

index_dip

middle

middle_pip

middle_dip

ring

ring_pip

ring_dip

pinky

pinky_pip

pinky_dip

thumb_tip index_tip middle_tip ring_tip pinky_tip

“attachTo” object

Figure 17. Hand SVE Object Tree

The Simple Virtual Environment Library User’s Guide 85

4/16/97

After these steps, the hand in the Virtual Environment should closely resemble the hand in the physical
world. A hand calibration can be saved using the function,

void SVE_saveHandFile(char *filename, int gloveId);

A hand calibration file can be read back in, and used for a particular glove device using the function,
void SVE_readHandFile(char *filename, int gloveId);

In both routines, thegloveId parameter is the glove identification number of the glove device.

Gesture Recognition

Gesture recognition can be obtained in two fashions, which can be used concurrently if desired. A gesture
file, which defines a set of gestures, can be created and read in with the function,

void SVE_readGestureFile(char *filename, int gloveId);

ThegloveId parameter specified the glove device to use for gesture recognition. The gesture file format
is described in detail in the Appendixes. Gestures can defined most precisely using this method, as the file
can specify that only certain joints are relevant, and gestures that change over time can be defined. Here is
an example gesture file.

Source xviii: Gesture File Example
This is a gesture file

First define the default ranges used for joints

0 to 90 degree bends
joint_positions: 4
bounds:
-45 15 0 # min max consider_as
 15 45 30
 45 75 60
 75 135 90

thmb rot
thmb mphl
thmb ip
thmb abdt

indx mphl
indx pxip
indx dsip

midl mphl
midl pxip
midl dsip

ring mphl
ring pxip
ring dsip

pnky mphl
pnky pxip
pnky dsip

Abduction angles: 0 to 30 degrees
joint_positions: 4
bounds:
-45 5 0 # min max consider_as
 5 15 10
 15 25 20
 25 75 30

midl abdt
ring abdt
pnky abdt

86 The Simple Virtual Environment Library User’s Guide

4/16/97

Next, define gestures

name: grab
thmb rot 0.8 0.8 0.9 1.0 # 0, 30, 60, 90 degrees
thmb mphl 0.9 0.9 1.0 1.0
thmb ip 0.9 0.9 1.0 1.0
thmb abdt 0.5 0.7 0.9 1.0

indx mphl 0.5 0.6 1.0 1.0
indx pxip 0.5 0.6 1.0 1.0
indx dsip 0.5 0.6 1.0 1.0

midl mphl 0.5 0.6 1.0 1.0
midl pxip 0.5 0.6 1.0 1.0
midl dsip 0.5 0.6 1.0 1.0

ring mphl 0.5 0.6 1.0 1.0
ring pxip 0.5 0.6 1.0 1.0
ring dsip 0.5 0.6 1.0 1.0

pnky mphl 0.5 0.6 1.0 1.0
pnky pxip 0.5 0.6 1.0 1.0
pnky dsip 0.5 0.6 1.0 1.0

name: point
indx mphl 1.0 0.9 0.0 0.0
indx pxip 1.0 0.9 0.0 0.0

midl mphl 0.5 0.6 1.0 1.0
midl pxip 0.0 0.0 1.0 1.0

ring mphl 0.5 0.6 1.0 1.0
ring pxip 0.0 0.0 1.0 1.0

pnky mphl 0.5 0.6 1.0 1.0
pnky pxip 0.0 0.0 1.0 1.0

name: pinky_wave
indx mphl 0.5 0.6 1.0 1.0
indx pxip 0.0 0.0 1.0 1.0

midl mphl 0.5 0.6 1.0 1.0
midl pxip 0.0 0.0 1.0 1.0

ring mphl 0.5 0.6 1.0 1.0
ring pxip 0.0 0.0 1.0 1.0

pnky mphl 0.0 0.0 1.0 1.0
pnky pxip 0.0 0.0 1.0 1.0

transitions:
pnky mphl backward
pnky pxip backward

end:
pnky mphl 1.0 1.0 0.0 0.0
pnky pxip 1.0 1.0 0.6 0.0

name: thumbs_up
priority: 10
thmb rot 1.0 0.8 0.0 0.0
thmb mphl 1.0 1.0 0.0 0.0
thmb ip 1.0 1.0 0.0 0.0
thmb abdt 0.0 0.5 0.9 1.0

indx pxip 0.0 0.0 1.0 1.0

midl pxip 0.0 0.0 1.0 1.0

ring pxip 0.0 0.0 1.0 1.0

pnky pxip 0.0 0.0 1.0 1.0

The Simple Virtual Environment Library User’s Guide 87

4/16/97

Alternatively, gestures (really just hand postures) can be defined by example using the function,
void SVE_saveCurrentGesture(int gloveId, int priority,

boolean replaceOldGesture);

Each time this function is called, the hand position at the time of the last polling of glove sensor values is
saved. The gesture is identified by thepriority parameter. If thereplaceOldGesture flag isTRUE, the
gesture will be the only one associated with the priority number, otherwise the gesture is added to a list of
gestures identified with the priority number. The priority value that identifies the gesture also indicates
which gesture will be recognized first if many gestures could be recognized (low priority value indicates
higher priority in order)

In both cases, gestures made by a given glove device will not be recognized until the following function is
called with aTRUE flag.

void SVE_recognizeGestures(int gloveId, boolean flag);

If this function is called with aFALSE flag, gestures are once again not recognized. Whenever a gesture
that has been defined is recognized, aGESTURE event will be entered onto the GL event queue with the
identifying gesture priority as the event’s value. When the system is recognizing gestures, it generates a
GESTURE event with aNULL_GESTURE value each time the system goes through the SVE loop and the
current hand position does not match a gesture definition.

Gestures are recognized by “polling” each joint of the hand for an opinion as to whether a particular
gesture is being made. Each joint is assigned an angle range (the choices are defined in the gesture file),
and a probability value for each possible gesture. If a joint with that angle range could be part of the
gesture, the system reports a probability of 1.0 or less (if it isn’t too sure). If the joint in that angle range
could NOT be part of the gesture it reports a probability of 0.0. The probabilities of each joint are
multiplied together, and compared to a threshold and other gesture probabilities. Thus, a joint can “veto”
the probability of a gesture being made.

The list of gestures for a particular glove device can be reset with the function,
void SVE_resetGestureList(int gloveId);

The following example demonstrates the use of the glove. If you are not using the trackers, you will want
to press ‘g’ to move the glove out of the way of the view. Different gestures can be saved by pressing the
‘s’ key. A sample gesture file can be read by pressing ‘l’. After going through the calibration routine, you
can save the calibration file with the ‘h’ key and read it back in with the ‘H’ key.

Source xix: glove_example
/* Glove example

 starts up with the trackers if 1st parameter is “t”,
 reads a world and registers an event-callback routine for recognizing
 glove gestures and the glove button. Guestures are saved everytime the
 ‘s’ key is pressed.

 The glove can be calibrated to a hand by pressing ‘0’ when the hand is
 stretched out fingers together, pressing ‘9’ when the hand is a closed fist
 with the wrist back as if to knock on a door, and pressing ‘5’ when the
 fingers are spread out and the wrist is twisted so that the hand is turned
 to the right. The order is important, but this procedure can be repeated
 at any time.

 A calibrated hand can be saved using the ‘H’ (shift ‘h’) key, and recalled
 using the ‘h’ key.

 If the trackers aren’t being used, the glove will obscure the view. Press
 ‘g’ to move it to be just in front of the viewer.

 A set gesture list (contained in “testgestures.gest”) can be loaded using
 the ‘l’ key.
*/

88 The Simple Virtual Environment Library User’s Guide

4/16/97

#include “sve.h”

int priority = MIN_GESTURE;

SVE_status gestureCallback(SVE_state state)
{

int gestureNum;

if (state->eventType == SVE_GESTURE) {
gestureNum = ((SVE_gestureEvent *)state->eventData)->gestureVal;
if (gestureNum != NULL_GESTURE)

printf(“Gesture %d event recognized\n”, gestureNum);
}
return(EVENT_IGNORED);

}

SVE_status gloveButtonCallback(SVE_state state)
{

if (SVE_IS_PRESS_EVENT(state->eventType)) {
printf(“Glove button is now %d\n”,

 ((SVE_stateChangeEvent *)state->eventData)->pressed);
}
return(EVENT_IGNORED);

}

SVE_status setGloveStuff(SVE_state state)
{

int allright;
SVE_object hmd;
SVE_status retval = EVENT_IGNORED;

if (state->eventType == SVE_KEY_PRESS) {
switch(((SVE_keyEvent *)state->eventData)->keyVal) {
case ‘g’:

hmd = SVE_getHMDObject();
SVE_copyMatrix(hmd->position, state->cursorObject->position);
SVE_translateObjectGlobal(state->cursorObject, 0.0, -0.1, -0.2);
retval = EVENT_CONSUMED;
break;

case ‘s’:
SVE_recognizeGestures(1, TRUE);
SVE_saveCurrentGesture(1, priority, TRUE);
priority++;
retval = EVENT_CONSUMED;
break;

case ‘l’:
SVE_recognizeGestures(1, TRUE);
SVE_readGestureFile(“testgesture.gest”, 1);
retval = EVENT_CONSUMED;
break;

case ‘H’:
SVE_saveHandFile(“testhand.hand”, 1);
retval = EVENT_CONSUMED;
break;

case ‘h’:
SVE_readHandFile(“testhand.hand”, 1);
retval = EVENT_CONSUMED;
break;

} /* switch */
}
return(retval);

}

void main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL | SVE_GLOVE;

printf(“Starting application\n”);

/* Checking command line for a ‘t’ as the first paramter */

The Simple Virtual Environment Library User’s Guide 89

4/16/97

if ((argc > 1) && (strcmp(argv[1],”t”) == 0))
config = SVE_HMD | SVE_GLOVE;

SVE_init(“Glove example”, config, &argc, argv);

if(!SVE_loadWorld(“glove_example.world”))
{

printf(“error occured during SVE_loadWorld, exiting \n”);
SVE_done();

} /* if */

printf(“Registering input callbacks\n”);
SVE_registerCallback(SVE_KEY_PRESS, setGloveStuff);

SVE_registerCallback(SVE_GESTURE, gestureCallback);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

3.11.3 User-Defined Polling Devices

The polling devices handled by SVE both use an underlying polling device system that is available to the
SVE application to create other polling device-type events. Generally, a polling device goes through three
phases: initialization and opening of the device, polling the device for information, closing the device. In
addition, a polling device can be associated with a particular SVE object and a block of data specific to the
device. When a polling device is created and added to the polling device list, the SVE system calls the open
function once, then calls the polling function each time through the event-render loop, and finally calls the
close function when the SVE application callsSVE_done.

A polling device can be created using theSVE_createPollingDevice() function.
SVE_pollDevice SVE_createPollingDevice(int type, int deviceId,

SVE_pollFunctionPtr openFunction,
SVE_pollFunctionPtr pollFunction,
SVE_pollFunctionPtr closeFunction,
char *attachTo, void *data);

The type parameter identifies what kind of polling device is being created. The SVE system uses
SVE_TRACKER_DEVICE for tracking devices,SVE_GLOVE_DEVICE for hand input devices, and
SVE_MISC for other devices. An application is free to useSVE_MISC for a device type, or another integer
which does not conflict with the ones defined.

ThedeviceId is a unique identifier for each polling device. The three functions are the ones called to
open, poll, and close the device respectively. The form of these functions is,

SVE_status SVE_pollFunction(SVE_pollDevice device, SVE_state state);

TheattachTo parameter is the name of a SVE object with which the object should be associated. The
object does not need to exist at the time of this function call, and may not exist for any of the calls to the
user-defined functions. If the object does exist, the user-defined functions can obtain it using
device->attachedTo .

Thedata parameter is a pointer which is available to the user-defined functions usingdevice->data .

After a polling device is created, it needs to be added to the SVE system’s polling device list. This is done
us ing the SVE_addPo l l i ngDev i ce () func t ion , g iv ing the va lue re tu rned by the
SVE_createPollingDevice function.

void SVE_addPollingDevice(SVE_pollDevice device);

The polling device information can be retrieved using theSVE_findPollingDevice() function, which
returns a pointer to polling device structure. Of particular interest are thedata andattachedTo fields

90 The Simple Virtual Environment Library User’s Guide

4/16/97

(see structure description in section 4.11. of APPENDIX C:), which are the data assigned to the device
when is was created, and theSVE_object that the device is associated with.

SVE_pollDevice SVE_findPollingDevice(int type, int id);

The Simple Virtual Environment Library User’s Guide 91

4/16/97

3.12. 3D interactors

The most interesting Virtual Environments applications usually contain some sort of interactivity in it,
whether it is the user interacting with the elements of the environment, or the elements of the environment
interacting with each other. The set of three dimensional widgets, including buttons, menus and color
selectors which float in space is a specialized group of these interactors. The SVE library provides a
framework for 3D widgets, as well as other entities that respond to events that occur. These widgets are
treated as special SVE objects, which react to given events with a given behavior. The SVE object
represen t ing a w idge t o f a par t i cu la r w idge t t ype i s g iven a name o f the fo rm,
“<widget_type_name>:<widget_name>”. The SVE system maintains the set of registered widget types,
allows for widgets to be loaded in from a file (the format of which is determined by the widget developer),
calls the appropriate function when events occur in which the widget is interested, and allows for direct
access to information on any particular widget. An explanation of the functions used to register a widget
type, and then make instantiations of it, follow. The given code is from an example application
(“widgetExample.c”), which defines a simple button widget, and then creates two of them to interact with
(one of the them is loaded from a file). The following figure shows what is seen when this example
application is run.

3.12.1 Registering a Widget Type

The first step to building a widget type is to register the type. This is done using the function
SVE_registerWidgetType() . The function takes a string name, which is used to identify the widget
type, functions to create an instance of the widget, to create an instance of the widget from a file, and to
call when one of the given list of events occurs. The list of events is given as a linked list, which can be
built using thecreateList() andaddToList() functions of thelist library (see APPENDIX C:
section 2.1. “Linked List” on page 177).

void SVE_registerWidgetType(char *type, SVE_createWidgetFunctionPtr createFunc,
 SVE_readWidgetFunctionPtr fileCreateFunc,
 SVE_widgetFunctionPtr deleteFunc,
 SVE_widgetFunctionPtr eventFunc, list eventList);

Figure 18. Widget Example Screen Shot.

92 The Simple Virtual Environment Library User’s Guide

4/16/97

In our simple button example, the “simple_button” widget is registered in theinitSimpleButtons()
function. Note that the simple button widget is only interested inSVE_OBJECT_SELECTION events, which
occur when an object is selected.

void initSimpleButtons()
/*
 Register the simple button widget by given an identifying name, the
 creation function, the creation from file function, and the event
 callback routine, which will be called anytime an object selection
 event occurs.
*/
{
 list eventList = createList();

 addToList(&eventList, (void *) SVE_OBJECT_SELECTION);
 SVE_registerWidgetType(“simple_button”, createButton, fileCreateButton,

 deleteButton, selectButton, eventList);
}

3.12.2 Creating a Widget

The create function for the widget should be in the following form.
SVE_object createFunc(char *name, void *data);

The function takes a character string which is the widget’s name, and a pointer to data specific to the
widget. The data pointer refers to a structure specific to the widget type which is set up before, and passed
to the instantiation function,SVE_makeWidget() . The create function returns a SVE object which
represents the widget.

A widget create function should, at least, create an empty SVE object using the name given, and return it.
In our simple button example, thecreateButton() function creates an empty SVE object, then creates
the button and text geometry from the data given, and returns the object.

Source xx: Simple Button Widget Example
SVE_object createButton(char *name, void *data)
/*
 This is the widget creation function for a simple button. It creates an
 empty object, assigns a button geometry to it, and returns it.
*/
{

SVE_object button;
float color[3] = {0.8, 0.8, 0.3};
SVE_primitive primitive;

button = SVE_createEmptyObject(name);
button->geometry = SVE_createGeometry(name);
createButtonPrimitives(button, (simpleButtonStructPtr) data);

return(button);
}

The data for the simple button widget is defined in this structure definition:
/* Define the data required for each button object */

typedef struct simpleButtonStruct {
char *label;
int materialIndex;
SVE_functionPtr buttonCallback;

} simpleButtonStruct, *simpleButtonStructPtr;

The primitives for the button’s text and background are constructed in thecreateButtonPrimitives()
andcreateButtonPrimitive() functions. Note that the object containing the button is set to be
selectable , so that it can be selected, and aSVE_OBJECT_SELECTION event can occur for the object.

SVE_primitive createButtonPrimitive(simpleButtonStructPtr data)
/*

The Simple Virtual Environment Library User’s Guide 93

4/16/97

 Create and return the simple button primitive, which is a square that
 closely surrounds the button’s text.
*/
{

SVE_primitive buttonPrim;
float height = 1;
float width = 1;
float originX = 0;
float originY = 0;
SVE_material faceMaterial;

/* Find the material for the button’s face */
faceMaterial

= SVE_getMaterialByIndex(data->materialIndex);

/* Compute the extent of the button’s text */
if (data->label != NULL)

SVE_getTextExtent(data->label, &originX, &originY, &height, &width);

/* Construct the face that will surround the text a little behind it. */
SVE_beginPrimitive(POLYHEDRON);

/* vertices */
SVE_primitivePoint(0, originX+width+0.1, originY-0.1, -0.1);
SVE_primitivePoint(1, originX-0.1, originY-0.1, -0.1);
SVE_primitivePoint(2, originX-0.1, originY+height+0.1, -0.1);
SVE_primitivePoint(3, originX+width+0.1, originY+height+0.1, -0.1);

/* indices for button polygon */
SVE_beginPrimitiveFace();
SVE_primitiveVertexIndexes(0, -1, -1);
SVE_primitiveVertexIndexes(3, -1, -1);
SVE_primitiveVertexIndexes(2, -1, -1);
SVE_primitiveVertexIndexes(1, -1, -1);

SVE_primitiveMaterial(faceMaterial);

SVE_endPrimitiveFace();

buttonPrim = SVE_endPrimitive();

return(buttonPrim);
}

void createButtonPrimitives(SVE_object button, simpleButtonStructPtr data)
/*
 Create the button’s geometry, which contains the button’s text with a
 square backdrop in the button’s color.
*/
{

float color[3] = {0.8, 0.8, 0.3}; /* Highlight Color */
SVE_primitive primitive;

primitive = createButtonPrimitive(data);
SVE_addPrimitiveToObject(button, primitive);

/* Create and add the button’s text to the geometry */
if (data->label != NULL) {

SVE_beginPrimitive(TEXT);
SVE_primitiveText(data->label);
primitive = SVE_endPrimitive();
SVE_addPrimitiveToObject(button, primitive);

}

/* Important! Allow the button to be selected by the selection ray! */
button->selectable = TRUE;
SVE_setObjectHighlightMaterial(button, SVE_getColorMaterial(color), FALSE);

}

94 The Simple Virtual Environment Library User’s Guide

4/16/97

3.12.3 Creating a Widget From a File

When an application is loading in a SVE world file, it is possible for an object to be defined by a widget file
description, rather than the usual SVE object file description. The widget file name is specified on the
“primitives file:” line of the SVE world file. The widget file is identified by a header line which reads:

Simple Virtual Widget File: <widget type name>

Note that the widget type name corresponds to the type name used when registering the widget type.
Therefore, it is important to register all widget types before loading a SVE world file, so that they will be
recognized. Here is an example widget file for a simple button widget.

Simple Virtual Widget File: simple_button

This file defines a simple button

label: Hit me too
Color: 0.2 0.2 0.7

The fileCreateFunc parameter specified for theSVE_registerWidgetType() function should be a
function of the following form:

void *fileCreateFunc(SVE_object object);

The purpose of this function is to read the widget file, set up the data structure specific to the widget type,
and return that data structure. The SVE object which will represent the widget is given to the function. The
file can be parsed using two functions, FP_getNextToken() , which returns the next string of characters
which do not contain any white space (spaces, tabs, etc.), and FP_getRemainingLine() , which returns
the rest of the characters on the current line, which may include white space, and will include the carriage
return at the end. The file will be read beginning from the line following the header line. comments, which
are begun by a ‘#’ character, and continue to the end of the line, will be automatically ignored. The file
reading functions returnEND_OF_FILE when the end of the file has be reached. (See APPENDIX C:
section 2.3. “File Parser Utility” on page 183 for more information on file reading.)

The file reader for the simple button widget is shown below. It recognizes three attributes, which can
appear in any order: “label:”, which is followed by the button’s label (and can contain spaces), “material:”,
which is followed by the name of the material used for the button’s background, and “color:”, which if
followed by three values 0-1 to indicate the red, green, and blue color combination for the button’s
background.

void *fileCreateButton(int FileNo, SVE_object button)
/*
 This is the widget file creation function for a simple button. It reads
 from the given file the characteristics of the button, constructs the
 button’s data structure, and returns it.
*/
{

simpleButtonStructPtr buttonData;
char *label;
char *word;
char *materialName;
SVE_material material = NULL;
float color[3] = {0.7, 0.7, 0.7};

buttonData = (simpleButtonStructPtr) malloc(sizeof(simpleButtonStruct));

do {
if ((word = FP_getNextToken(FileNo)) != NULL) {

if (strcasecmp(word, “label:”) == 0) {
/* Read the button’s label text. */
label = FP_getRemainingLine(FileNo);
buttonData->label = strdup(label);
buttonData->label[strlen(label)-1] = ‘\0’;

} else if (strcasecmp(word, “material:”) == 0) {
/* Read the button’s material name */
materialName = FP_getNextToken(FileNo);

The Simple Virtual Environment Library User’s Guide 95

4/16/97

material = SVE_getMaterialByName(materialName);
if (material != NULL)
 buttonData->materialIndex = material->index;
else {
 /* If we can’t find the material, use a default
 instead. */
 material = SVE_getColorMaterial(color);
 buttonData->materialIndex = material->index;
}

} else if (strcasecmp(word, “color:”) == 0) {
/* Construct the button’s material from the RGB color
 triple given. */
color[0] = FP_getNextFloat(FileNo);
color[1] = FP_getNextFloat(FileNo);
color[2] = FP_getNextFloat(FileNo);
material = SVE_getColorMaterial(color);
buttonData->materialIndex = material->index;

} else
FP_reportFileError(FileNo, “Unknown attribute %s”, word);

}
} while (word != END_OF_FILE);

if (material == NULL) {
/* If no material was specified, assign a default material. */
material = SVE_getColorMaterial(color);
buttonData->materialIndex = material->index;

}

/* No callback function can be specified in the file */
buttonData->buttonCallback = NULL;

createButtonPrimitives(button, buttonData);
return((void *) buttonData);

}

3.12.4 Widget Event Function

The event function specified when a widget type is registered is similar to the normal event callback
functions of the SVE library. The only difference is that the widget event function receives the widget
object, and the data associated with that particular widget. The data is given as a “void * ”, and needs to
be cast to be a pointer to the specific data structure for the widget.

SVE_status eventFunc(SVE_object widget, SVE_state state, void *data);

This event function is called whenever one of the specified events occurs, whether or not it really involves
the particular widget. In our simple button example, we first check to make sure that the object being
selected is the same object as the widget, then, if the widget is the one selected, we call the callback
function associated with that button.

SVE_status selectButton(SVE_object button, SVE_state state, void *data)
/*
 This is the event callback function for the simple button widget. It
 will be called anytime an object is selected. If the object selected
 is the given widget (“button”), then call the callback routine stored
 for the widget.
*/
{

SVE_object selectedObject;
simpleButtonStructPtr buttonData;

buttonData = (simpleButtonStructPtr) data;

if (SVE_IS_OBJECT_EVENT(state->eventType)) {
selectedObject = ((SVE_objectEvent *)(state->eventData))->object;
if ((selectedObject == button)
 && (buttonData->buttonCallback != NULL))

return(buttonData->buttonCallback(state));
else return(EVENT_IGNORED);

} else return(EVENT_IGNORED);
}

96 The Simple Virtual Environment Library User’s Guide

4/16/97

3.12.5 Widget Instantiation

The previous sections all involve defining what a particular widget type is and how it behaves. This can be
thought of as a class of widgets, such as buttons. For a widget to actually be used, it much be instantiated,
or created using the definition for a particular type or class of widgets. The function that accomplishes this
is calledSVE_makeWidget() . It takes the string that identifies which widget type to use, a string name to
identify the particular widget being created, and a reference to a data structure which is particular to the
widget type, and has be set up for the widget being created. The function returns the SVE object that has
been created to represent that widget. If the widget object is to be seen, it needs to be added to the world
object tree. However, a widget that has been created will respond to events even if it is not part of the world
object tree (although, obviously, it will never be selected or highlighted).

SVE_object SVE_makeWidget(char *type, char *name, void *data);

In our simple button widget example, we have written a function specific to the simple button widget type
to create simple buttons, and return the SVE object that represents the button. This function sets up the data
structure used by the simple button widget type, and passes that on to the instantiation function.

SVE_object makeSimpleButton(char *name, char *label, SVE_material material,
 SVE_functionPtr buttonCallback)

/*
 The function will create an instance of a simple button widget, giving
 it the given name, label, material, and callback function. The
 callback function will be called when the button is selected.
*/
{
 SVE_object buttonObject;
 simpleButtonStructPtr buttonData;
 float color[3] = {0.7, 0.7, 0.7};
 SVE_material defaultMaterial;

 /* Create the data structure specific to simple button widgets. */
 buttonData = (simpleButtonStructPtr) malloc(sizeof(simpleButtonStruct));
 buttonData->label = strdup(label);
 if (material != NULL)

buttonData->materialIndex = material->index;
 else {

defaultMaterial = SVE_getColorMaterial(color);
buttonData->materialIndex = defaultMaterial->index;

 }
 buttonData->buttonCallback = buttonCallback;

 /* Create an instance of the simple button widget */
 buttonObject = SVE_makeWidget(“simple_button”, name, (void *) buttonData);

 return(buttonObject);
}

In the example application that uses the simple button widget, a callback function is defined, called
buttonHit() , and the simple button widget type is initialized and one button is instantiated. The button is
added to the object tree so that it is directly in front of the viewer.

SVE_status buttonHit(SVE_state state)
/* Callback routine for an instance of a simple button widget. */
{

SVE_object selectedObject;

if (SVE_IS_OBJECT_EVENT(state->eventType)) {
selectedObject = ((SVE_objectEvent *)(state->eventData))->object;
printf(“Button ‘%s’ has been hit\n”, selectedObject->name);

}
return(EVENT_CONSUMED);

}

main(int argc, char *argv[])
{

The Simple Virtual Environment Library User’s Guide 97

4/16/97

SVE_config config = SVE_SELECT; /* allow selection of the widget */
SVE_object button;
SVE_point buttonPos = {-1, 2, -2};
float buttonColor[3] = {1, 0, 0};
SVE_material buttonMaterial;

printf(“Starting application.\n”);
SVE_init(“Widget Example (sve)”, config, &argc, argv);

/* This must come before loading the world file, or button widgets in the
 world file will not be recognized */

initSimpleButtons();

/*
 Load in the world file. This function returns FALSE when the world
 could not be loaded correctly.
*/

if(!SVE_loadWorld(“widgetExample.world”))
{

printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

 }

/*
 Create an instance of the simple button widget, and add it to the
 world tree.
*/

buttonMaterial = SVE_getColorMaterial(buttonColor);
button = makeSimpleButton(“Hit”, “Hit me”, buttonMaterial, buttonHit);
SVE_addToWorldTree(button);
SVE_moveObject(button, buttonPos);

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

3.12.6 Widget Deletion

If a widget object is deleted, then the givendeleteFunc of the widget type will be called. It is of the form
SVE_status deleteFunc(SVE_object widget, SVE_state state, void *data);

The delete callback should free any memory that it is using for the widget. The following function does
this for our button example.

SVE_status deleteButton(SVE_object button, SVE_state state, void *data)
/*
 This is the delete callback function for the simple button widget. It
 will be called anytime an object is deleted.
*/
{

simpleButtonStructPtr buttonData;

buttonData = (simpleButtonStructPtr) data;
free(buttonData);

return(SVE_OK);
}

3.12.7 Retrieving Widget Data

Given a widget type, and a name of a widget of that type, theSVE_getWidgetData() function can return
a pointer to the data associated with that particular widget. This is valuable to set certain variables in the
data structure which could not be set when it was created.

void *SVE_getWidgetData(char *type, char *name);

98 The Simple Virtual Environment Library User’s Guide

4/16/97

A common example of this is demonstrated in the following function, which sets the callback function for
a simple button widget. This could be used, for example, to set the callback function for widgets created
from a file.

void addCallbackToButton(char *name, SVE_functionPtr buttonCallback)
{
 simpleButtonStructPtr buttonData;

 buttonData = SVE_getWidgetData(“simple_button”, name);
 if (buttonData != NULL)

buttonData->buttonCallback = buttonCallback;
 else fprintf(stderr, “Error -- Can’t add callback to %s, there is no”

 “button of that name\n”, name);
}

The Simple Virtual Environment Library User’s Guide 99

4/16/97

3.13. Servers

It is often the case that the machine that is rendering the graphics for the SVE application is not the
machine to which the desired tracking device it attached, and is not the machine to which the user wishes
to output audio or receive key or mouse events. These things can be handled on remote machines using
server programs that run on the machine providing the service, and which communicates with the SVE
application using that service. Server programs are separate programs that need to be run on the machine
with the service. They are found in thebin directory of the SVE directory structure. In most cases, the
initialization file indicates to the application which machines to look for server programs (See
“Initialization File” on page 28). Here are descriptions of each server used by the SVE system.

server-tracker

The location of a tracker device used by the application is specified in the initialization file, or when the
tracker is initialized by the application. Any time a tracker is used, even if it is on the same machine as the
application, a tracker server needs to be running for the communication with the trackers (so that other
applications on different machines can also use the same tracker device). The tracker server is called
server-tracker .

server-event

The event server creates a window on the bottom left part of the screen on the machine it is run. Any key
presses and mouse clicks that occur when the mouse pointer is in this window will be sent on to an
interested application. The event server is calledserver-event .

server-audio

The audio server will load and play audio files when told to do so by an application communicating with it.
The application gives the server complete path names for audio files, so as long as the audio server is run
on a machine on the correct file server, then there will be no problem loading audio files no matter where
the audio-server is run. An application can play a sound file continuously, play it only once, or stop it at
any time, just as if the audio was being taken care of by the SVE system at the host machine. The audio
server is calledserver-audio .

100 The Simple Virtual Environment Library User’s Guide

4/16/97

3.14. Porting Version 1.5 Applications to Version 2.0

The following items are things to keep in mind when porting SVE version 1.5 applications to SVE version
2.0: (This information is contained in a file called “CONVERTING.FROM.V1.5” in the root of the SVE
directory tree.)

Makefile

The Makefile has changed somewhat. Be sure to copy over aMakefile from an example directory
(examples/look is suggested), and use it. Things you will need to change in the Makefile:

include .../makeinc...

 Make sure that this line has the right directory for the appropriate “makeinc ” file, which is the root of the
SVE directory tree. For Georgia Tech, it should read:

include /net/hg43/vrgroup/sve/v2.0/makeinc.SUFFIX.GRAPHICS

where “SUFFIX” should be replaced by “sgi ” or “hp” depending on whether you are compiling your
program on an HP or SGI machine, and “GRAPHICS” should be replaced by “none ”, “ gl ”, or “opengl ”
depending on which graphics library you want to use.

For example, if you are compiling on an SGI using the OpenGL library, the include line should read:
include /net/hg43/vrgroup/sve/v2.0/makeinc.sgi.opengl

In addition, you will need to set “PROGRAM” and “SRC” to be the program named and source file(s) of
the application.

SVE Initialization

The SVE_init function has two additional arguments which are a pointer the number of command line
arguments and the array of command line arguments (from the parameters of the “main” function). These
are used by X (if appropriate) to set geometry, display, etc. from the standard X command line arguments.

boolean SVE_init(char *programName, SVE_config config, int *argc, char *argv[]);

TheSVE_GOURAUD flag, which used to provide gouraud shaded polygons with light sources, now only give
gouraud shaded polygons. To enable light sources, the flagSVE_LIGHTING should be used. The flag
SVE_LIT_GOURAUD, which is an or combination ofSVE_GOURAUD andSVE_LIGHTING, can be used in
place of the oldSVE_GOURAUD flag to achieve the same effect.

Events

The event type for event callbacks have changed. For example,KEYBD should be replaced by
SVE_KEY_PRESS, andLEFTMOUSE should be replaced bySVE_LEFT_MOUSE. See theinclude/
event.h file for additional event types.

The event data is represented differently. TheeventVal field of theSVE_state structure has been
replaced by a pointer,eventData , which points to an event structure containing the data relevant for the
event. The possible event structures are given in theinclude/event.h file. For example, here are the old
and new ways of getting a key press event, a mouse button event, and an object selection event:

The Simple Virtual Environment Library User’s Guide 101

4/16/97

===
OLD (KEYBD event):
 SVE_status handleKey(SVE_state state)
 {
 switch(state->eventVal) {
 }
 }

NEW (SVE_KEY_PRESS event):
 SVE_status handleKey(SVE_state state)
 {
 if (state->eventType == SVE_KEY_PRESS) {
 switch(((SVE_keyEvent *)state->eventData)->keyVal) {
 }
 }
 }

===
OLD (LEFTMOUSE event):
 SVE_status handleMouse(SVE_state state)
 {
 if (state->eventVal == 1) {
 }
 }

NEW (SVE_LEFT_MOUSE event):
 SVE_status handleMouse(SVE_state state)
 {
 if (SVE_IS_PRESS_EVENT(state->eventType)
 && ((SVE_stateChangeEvent *)state->eventData)->pressed) {
 }
 }

===
OLD (SVE_OBJECT_SELECTION event):
 SVE_status objectSelect(SVE_state state)
 {
 SVE_object selectedObject;

 selectedObject = state->selectedObject;
 }

NEW (SVE_OBJECT_SELECTION event):
 SVE_status objectSelect(SVE_state state)
 {
 SVE_object selectedObject;

 if (SVE_IS_OBJECT_EVENT(state->eventType)) {
 selectedObject = ((SVE_objectEvent *) (state->eventData))->object;
 }
 }

===

GL Functions

Irix GL functions and data types must be replaced. Matrix data is now represented by the type
“ M_matrix ”. Valid matrix operations can be seen in the fileinclude/matrix.h . Object position
matrixes should be manipulated through SVE functions (SVE_rotateObject() , SVE_scaleObject() ,
etc.).

SVE Function Changes

TheSVE_initGeometryChange() function takes one more parameter: anSVE_object . This object
field is optional, and can beNULL. However, when changing the shape of a geometry which is part of an

102 The Simple Virtual Environment Library User’s Guide

4/16/97

object, that object needs to re-generate its boundaries. This function will do that automatically, if you pass
in theSVE_object . You can also do this yourself with theSVE_reCalculatedObjectBoundaries()
function.

The previous discussion is also true of theSVE_addPrimitiveToGeometry() function, which takes an
additionalSVE_object parameter for the same reason.

TheSVE_registerWidgetType() function takes an additional function parameter that is called when a
widget instance is deleted. The delete function is of typeSVE_widgetFunctionPtr .

Rendering Changes

The (undocumented) feature of Wavefront texture materials using the texture as an alpha mask when the
“d” value is 1 (an early attempt at transparent textures) has been removed. Use 2 or 4 component texture
maps to achieve transparency effects.

Object File Change

The SVE object file format has changed slightly. Old SVE object files (version 1.0) are not readable by a
version 2.0 applications. Old SVE object files can be converted to the new format (version 1.1) using the
“sveObjTo11 ” utility found in the SVE bin directory.

The Simple Virtual Environment Library User’s Guide 103

4/15/97

4. Future Directions

In the near future, the following additions will be made by members of the VE-group.

• Conversion routines from/to other VR systems and CAD modelers.

• Spatial sound cues.

• Model based rendering optimizations

• Networking and shared environments.

• Voice and text annotation

• Scripts and dynamics/kinetics.

Scripts and dynamics/kinetics are very interesting solutions for managing the interaction between the user
and the objects and adding behavior to objects (here at the GVU center, we have quite a few people
working on dynamics, simulation and animation.).

We are currently working on allowing SVE applications to be a part of a shared virtual environment.

104 The Simple Virtual Environment Library User’s Guide

4/15/97

The Simple Virtual Environment Library User’s Guide 105

4/15/97

APPENDIX A: Starter Kit
The Simple Virtual Environment Library

Starter Kit, Version 2.0
Drew Kessler, Rob Kooper, Larry Hodges

drew@cc.gatech.edu, kooper@cc.gatech.edu, hodges@cc.gatech.edu

1. Introduction
The Simple Virtual Environment Library (SVE) is intended to provide a system of functions, event
handlers, and a 3D description of a Virtual World that allows for easy creation of simple Virtual
Environment (VE) applications and provides an extensive, straight-forward addition of functionality. What
this means is that, using the library, you can create a simple Virtual World which has minimal interaction (a
pure Architectural walkthrough, for example), but is extensible enough to add additional features (such as
allowing a user to move the kitchen sink) in a straight-forward and consistent manner.

2. General Overview
The SVE system works using a “don’t call us...we’ll call you” method (also known as a callback method).
Basically the application initializes the SVE system, gives the world description filename, specifies any
special cases it wants to handle itself, and then turns control over to the SVE system. When the application
relinquishes control, this is what happens:

The steps which are circled by bold lines are done by the SVE system. The steps circled by regular lines
are callback routines written by the application programmer which will be called, if they exist, at the given
moments during the execution cycle.

3. An Example
What follows is a very simple example application with a complete explanation following it. The file is
called “example1.c ” and resides in the directory “~vrgroup/sve/v2.0/examples/example1 ”. If
you wish to copy it and compile it, be sure to copy the filesMakefile , example1.world , and

Handle Input
(Key, Mouse, Tracker, Glove)

Draw New Frame Application Drawing Routines

Application Input Handlers

SVE_beginEventLoop()

Application Animation Routines

106 The Simple Virtual Environment Library User’s Guide

4/15/97

.sve.init which are in theexamples/example1 directory as well. Note that SVE looks for the
description file and any object files it needs: first in the current directory, and then in any directories
specified in the .sve.init file (on thedefaultObjectDirectory line). Thus, you need not copy the object
files unless you wish to modify them. A section describing these file formats follows later in this manual.

To compile the example, you will need to make one change to theMakefile which you copied from the
examples/example1 directory. The line that begins with “include .../makeinc... ” needs to be
changed to use the correct, full path name of one of the “makeinc ” files in the SVE root directory. The file
that should be included depends on what platform you are compiling on, and what 3D graphics library
should be used by SVE to render the scene. For example, if the SVE root directory is “/net/hg76/vrgroup/
sve/v2.0/”, and you are compiling on an SGI workstation, and wish to use the OpenGL graphics library,
then this line should read:

include /net/hg76/vrgroup/sve/v2.0/makeinc.sgi.gl

In addition to the Makefile, you will need to change the.sve.init file to indicate where the SVE system
should look to find the objects that the application needs. In this case, given the SVE root directory
mention before, theDefaultObjectDirectory line of the.sve.init file should read:

DefaultObjectDirectory /net/hg76/vrgroup/sve/v2.0/objects

After these two changes, you should be able to type “make” at the command line, and theexample1.c
file that you copied will be compiled into an executable called “example1 ”, which you can run.

/**
 * Example1 (sve module)
 *
 * This example shows a simple Virtual Environment using SVE. The default
 * key’s as described in the SVE manual will work with this example.
 *
 **/

#include “sve.h”

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use. Look at the SVE BASICS section of
 * the manual for a description of the different configurations you can use.
 **/

printf(“Starting application\n”);
SVE_init(“Example1 (sve)”, config, &argc, argv);

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example1.world”))
{

printf(“Error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * SVE will take over control of the program until it is finnished.
 **/

The Simple Virtual Environment Library User’s Guide 107

4/15/97

printf(“Beginning event loop.\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

This application initializes the SVE system with the callSVE_init (), giving the application name and its
configuration (SVE_NORMAL - this means no trackers or other special features are used). The application
then loads the Virtual World described in the “example1.world ” file with the callSVE_loadWorld ().
The SVE sys tem loop (descr ibed in the Overv iew above) i s begun w i th a ca l l to
SVE_beginEventLoop (). If the users presses ‘q’ in the application window, or the program aborts for any
reason, control returns to the application andSVE_done() is called to shut down the SVE system.

You will notice that when the cursor is in the application window (the one displaying the graphics), that
you can alter your view by pressing the arrow keys (to change X and Z), pressing ‘y’ or ‘Y’ (shift-’y’) to
change Y, and by pressing and dragging the mouse to rotate the scene. If you press ‘q’, the application
shuts down.

At this point, it should be noted that configurations, such as window size, window position, and many other
things in addition to default directories can be specified in an initialization file. This file is generally named
.sve.init and should be located in the directory from which the application is run. Thesve.init file
in theexamples directory provides an example of this file. To be used, it must be renamed to.sve.init
(note the preceding dot in the name). The format and options of this file are covered in detail in the User’s
Guide.

4. Second Example
In the second example (“example3.c ” in the examples/example3 directory), we introduce the user
specified input handler and user defined animation. These routines are called in addition to SVE’s own
input handler. In this example application, we have decided to alter a specific object in the Virtual World
each time a frame is rendered, depending on keyboard input from the user. If the “r” key is pressed the
cube in the scene will rotate to the right, if the “l” key is pressed the cube will rotate to the left, and if the
space bar is pressed the cube will stop rotating completely. If you wish to compile this program, you need
to copy the filesexample3.c , example3.world, andMakefile from theexamples directory and type
“make example3” (after making the appropriate change to theMakefile and .sve.init file as
discussed for the first example). The code follows.

/**
 * Example3 (sve module)
 *
 * This is the example from the SVE manual.
 *
 * This example will show the power of animation callback functions. It
 * uses an event callback function to check the keyboard. When the ‘r’
 * is pressed the object, a cube, will spin around. When the ‘l’ is
 * pressed the object will spin the otherway around. It will keep on
 * spinning until the spacebar is pressed. The default key’s as described
 * in the SVE manual still work.
 **/

#include “sve.h”

/**
 * A pointer to the object to be rotated.
 **/
SVE_object cube;

108 The Simple Virtual Environment Library User’s Guide

4/15/97

/**
 * Thi animation callback function is called when you pressed an ‘l’. It
 * will rotate the cube around the y-axis.
 **/
SVE_status rotate_right(SVE_state state)
{

SVE_rotateObject(cube, 3, ‘y’);
}

/**
 * This animation callback function is called when you pressed an ‘r’. It
 * will rotate the cube the other way around the y-axis.
 **/
SVE_status rotate_left(SVE_state state)
{

SVE_rotateObject(cube, -3, ‘y’);
}

/**
 * This function handles the callback from the SVE_KEY_PRESS event. When you
 * press ‘l’ or ‘r’ it will SVE to use the correct animation callback.
 **/
SVE_status handleKey(SVE_state state)
{

SVE_status retval = EVENT_IGNORED;

if (state->eventType == SVE_KEY_PRESS) {
switch(((SVE_keyEvent *)state->eventData)->keyVal) {
case ‘r’: SVE_addAnimationCallback(rotate_right);

retval = EVENT_CONSUMED;
break;

case ‘l’: SVE_addAnimationCallback(rotate_left);
retval = EVENT_CONSUMED;
break;

case ‘ ‘: SVE_removeAllAnimationCallbacks();
retval = EVENT_CONSUMED;
break;

}
}
return(retval);

}

main(int argc, char *argv[])
{

SVE_config config = SVE_NORMAL;

/**
 * Initialize SVE. This should always be the first call to SVE. This will
 * tell SVE what configuration to use. Look at the SVE Basics section of
 * the manual for a description of the different configurations you can use.
 **/

printf(“Starting application.\n”);
SVE_init(“Example3 (sve)”, config, &argc, argv);

The Simple Virtual Environment Library User’s Guide 109

4/15/97

/**
 * Load in the world file. This function returns FALSE when the world
 * could not be loaded correctly.
 **/

if(!SVE_loadWorld(“example3.world”))
{

printf(“error occured during SVE_loadWorld, exiting.\n”);
SVE_done();

}

/**
 * Find in the world an object called cube.
 **/

cube = SVE_findWorldObject(“cube”);

/**
 * Tell SVE that we are interested in the SVE_KEY_PRESS event, and tell
 * SVE which function will handle this callback.
 **/

printf(“Registering an input callback.\n”);
SVE_registerCallback(SVE_KEY_PRESS, handleKey);

/**
 * SVE will take over control of the program until it is finnished.
 **/

printf(“Beginning event loop\n”);
SVE_beginEventLoop();

printf(“Done -- Have a nice day.\n”);
SVE_done();

}

This example demonstrates many SVE concepts. We have shown that an object in the SVE world object
tree can be retrieved by the character string name it is given in the description file (using the
SVE_findWorldObject () function). The value returned can be used as a reference to that object. while
the object is still present in the object tree, it will be rendered in each frame.

We have also demonstrated a few callback routines. We have an input handler,handleKey , which will be
called every time a key is pressed and which checks for an ‘l’, ‘r’, or space bar input. This is done with a
call toSVE_registerCallback () with SVE_KEY_PRESS as the first parameter.

When an ‘r’ or ‘l’ key is pressed, we have added an animation callback to a function which will rotate the
cube for each frame. This is accomplished with a call toSVE_addAnimationCallback(). When the
space bar i s p ressed , the l i s t o f an imat ion ca l lbacks i s c lea red w i th the func t ion
SVE_removeAllAnimationCallbacks() . It is in this animation callback where the application can
alter the object tree model that SVE stores and renders each frame. Similar routines can be used to draw
something that the SVE system would not draw automatically from the object’s definition. These are called
frame callbacks.

Event, animation, and frame callback functions used in SVE (with some exceptions shown in the User’s
Guide) need to be declared in the format:

SVE_status functionName(SVE_state state)

TheSVE_state data structure contains the current state within SVE, including the definition of the world,
the user’s viewpoint and orientation, and the most recent events (such aseventData , as used above). See
the User’s Guide for more details.

110 The Simple Virtual Environment Library User’s Guide

4/15/97

5. Using Tracking Devices

Most VE applications would not be complete without head tracking, which affects the point of view from
which the scene is rendered to the screen or head mounted display. For an SVE application, adding head
tracking by a supported tracking device is easy. In terms of programming, only one change needs to be
made: the config parameter to SVE_init() should include the SVE_HMD or SVE_TRACKER flag. For
example, to change the previous examples to use a tracker, and display the results on a head mounted
display, the line that sets the config variable should read:

SVE_config config = SVE_NORMAL | SVE_HMD;

(This is usually done as a result of a command line parameter, though, so that applications can be run with
and without using the trackers without re-compiling.)

Once the application code has been change and compiled, then two additional things must be done. First,
the application must be told which tracking device to use, which receiver of that device to use, and what
machine that tracker is attached to. This is done by adding a “tracker ” line to the.sve.init file. As an
example, the following line, if it appeared in the.sve.init file:

tracker 1 buckhead isotrakii /dev/ttyd2 1 SVE HMD

would be translated as, tracker 1, which is attached to a machine called buckhead, is a Polhemus IsotrakII
and is attached to the /dev/ttyd2 serial port. The tracker receiver to use is the first one, and the tracker
should move the “SVE HMD” object (which represents the user’s head in the virtual world).

Lastly, a program called a “tracker server” must be run on the machine to which the tracker device is
attached (even if it is the same machine that the example is going to be run on). The program is called
“server-tracker ” and can be found in the SVEbin directory. After that is running, then the example
executable can be run. The application and tracker server should connect, the tracker device should be
contacted, and the tracker should control the head position and orientation. When the application is done,
then the tracker server program should quit automatically after a few minutes. If it does not go away on its
own, it can be killed using a program called “kill-servers ”, which is also in the SVEbin directory.

6. Hardware Set Up
Currently the hardware is set up so that the trackers and head mounted display (HMD) can be turned on
simply by flipping the red switch on the power strip in the VR cabinet (and the one on the floor beside the
cabinet if you wish to use the Polhemus trackers). Since the HMD has a limited lifetime, it should be
turned off when not in use. If the HMD is being used, the first tracker should be attached to the front or top
of the HMD.

7. Where to Find Additional Help
Additional documentation can be found in the directory “~vrgroup/sve/v2.0/doc ”. In particular, the
User’s Guide contains a complete description of the system with a function and date structure reference.

In addition, the manual and other information on SVE is available on-line at:
http://www.cc.gatech.edu/gvu/virtual/SVE/SVE.html

The Simple Virtual Environment Library User’s Guide 111

4/16/97

APPENDIX B: File Formats

1. Introduction

The SVE system uses many different files to allow for specification of the environment used by the
application, the application’s configuration (including what devices to use, where to find them, and how to
present the environment to the user), and specifying how a device is used (for example, by defining the
gestures that a hand device might make that the VE application might want to recognize). The format of
these files are defined in this appendix, first by example, then through a formal description.

For the formal descriptions, the following notation is used:

{} specifies a list of alternatives (1 must be chosen),

[] denotes an optional section,

[]* a section that can occur zero or more times,

[]+ denotes a section that occurs one or more times.

Basic elements:

↵ = newline

<n> = integer

<f> = float

 = boolean {‘true’, ‘false’, ‘t’, ‘f’, ‘yes’, ‘no’, ‘y’, or ‘n’}

<AXIS>= axis specification (‘x’, ‘y’, or ‘z’).

<string>= string, any character in the range [32..] (including single spaces, but no control

characters).

<stringID>= string, any character in the range {[‘0’..’9’], [‘a’..’z’], [‘A’..’Z’], ‘_’} (no spaces).

Boldfaced and capitalized entries refer to other grammatical expression.

Indentation is for clarity only, it is not necessary.

Note that the file reading routines will treat the ‘#’ sign as the beginning of a comment which continues to
the end of the current line, and is ignored.

1.1. Environment Description Files - World and Objects

There are two different file formats used to describe the Virtual World which SVE renders: theworld
description file (of which there is only one), andobject description files (of which there can be many). The
world description file refers to all the objects that are used and their positions in the virtual scene. These
are listed in a tree (for hierarchical grouping). Each of the object entries has a transformation matrix to
convert the object coordinates to the world coordinate system. The object description files describe the
geometry of the individual objects, which can be made up of many primitives (polyhedrons, text, polylines
etc.).

The advantage of defining the geometrical information of the objects in separate files is that an object can
be used among several worlds and in several places in the same world.

Here is the world description file used for the examples (“example1.world ”):
Simple Virtual Object File Format version 1.0
number of objects: 2

object name: meadow
primitives file: plane.obj
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0

112 The Simple Virtual Environment Library User’s Guide

4/16/97

0 -1 -1 1
other attributes: 0
number of children: 0

object name: text
primitives file: hello_world.obj
transformation matrix:
1 0 0 0
0 1 0 0
0 0 1 0
-0.5 0.5 -5 1
other attributes: 0
number of children: 0

Here is the object file, “all_primitives.obj ”, which contains the primitivespolyhedron, polyline, text,
light andtextured_polyhedron:

Source xxi: Object File Example
Simple Virtual Primitive File Format version 1.1
number of components: 5

component 1 type: light
Data of component 1:
no of attributes:
2
color 1.0 1.0 1.0
position 0.0 5.0 -10.0

component 2 type: polyhedron
Data of component 2:
no of vertices:
8
vertices: x y z
0 0 0
0 1.0 0
1.6 1.0 0
1.6 0 0
0 0 0.35
0 1.0 0.35
1.6 1.0 0.35
1.6 0 0.35
no of faces:
6
faces: R G B #_of_vertices v1 v2 v3 ...
255 0 0 4 0 1 2 3
 0 255 0 4 0 4 5 1
 0 0 255 4 1 5 6 2
255 0 0 4 2 6 7 3
 0 255 0 4 0 3 7 4
 0 0 255 4 4 7 6 5

component 3 type: polyline
Data of component 3:
no of vertices:
8
vertices: x y z
0 -0.1 0
0 -1 0
1.6 -1.0 0
1.6 -0.1 0
0 -0.1 0.35
0 -1.0 0.35
1.6 -1.0 0.35
1.6 -0.1 0.35
no of polylines:
6
polylines: R G B #_of_vertices v1 v2 v3 ...
255 255 255 4 0 1 2 3
255 255 255 4 0 1 5 4
255 255 255 4 1 2 6 5

The Simple Virtual Environment Library User’s Guide 113

4/16/97

255 255 255 4 2 3 7 6
255 255 255 4 3 0 4 7
255 255 255 4 4 5 6 7

component 4 type: text
Data of component 4:
transformation matrix:
0.4 0 0 0
0 0.4 0 0
0 0 0.3 0
0.1 1.5 0.36 1
no of lines:
1
this is text

component 5 type: textured_polyhedron
Data of component 5:
image file: gvu.rgb
repeat texture: TRUE
blending: TRUE
no of vertices:
4
vertices: x y z
-0.3 -1.2 0.0
-0.3 -0.2 0.0
 0.3 -0.2 0.0
 0.3 -1.2 0.0
no of texture vertices:
4
texture vertices: u v
0 0
0 1
1 1
1 0
no of faces:
1
faces: R G B #_of_vertices v1 v2 v3 ...[t1 t2 t3 ...]
255 255 255 4 3 2 1 0 3 2 1 0

1.2. Initialization File

The initialization file is read when the SVE_init() routine is called to start the SVE system in motion, The
default name for the initialization file is “.sve.init”, although that can be changed by the application. The
initialization file contains the information the SVE system needs to set up the application for a particular
physical setup. The setup includes where the window is placed on the screen, how the view is rendered for
a particular display, and where the application can find the files and the tracking and other input devices it
needs. Here is an example initialization file:

Source xxii: Initialization File Example
This file contains some default variables. The read routine is not
case sensitive.

minX 0
minY 0
sizeX 640
sizeY 480
vofY 700
AspectRatio 1.333
Near 0.01
Far 5000.0
ShowFrameRate True
DefaultObjectDirectory ../objects
DefaultWorldDirectory ../objects
DefaultMaterialDirectory ../objects
tracker 1 buckhead isotrakii /dev/ttyd2 1 SVE HMD
tracker 2 buckhead isotrakii /dev/ttyd2 2 SVE cursor

114 The Simple Virtual Environment Library User’s Guide

4/16/97

1.3. Display Configuration File

The display configuration file defines the viewing parameters to use for a particular display. This may
include a view plane that is rotated from perpendicular to the view direction. The boundaries of the
viewing volume to use for a display can be specified in one of two ways. Either the field of view in the
vertical direction (Y) and the aspect ratio of the horizontal field (X) of view to the vertical field of view can
be given, or the size and location of the view plane can be given (where the view volume can be defined by
planes intersecting the eyepoint and the edges of the view plane. Here is an example display configuration
which defines a typical head mounted display:

Source xxiii: Example Display Configuration File, Head Mounted
This file contains a definition of a view plane for an SVE
application.
This particular file defines the LEEP optic set up of the Virtual
Research Flight Helmet.

ViewPlanePosition 0.0 0.0 -0.4
fovY 584
AspectRatio 1.289

The second example shows a configuration file which defines a typical tracker and monitor (or projection
screen) setup:

Source xxiv: Example Display Configuration File, Monitor
This file contains a definition of a view plane for an SVE
application.
This particular file defines a big monitor facing upwords, with the
person viewing from 1.0 meter above.

ViewPlanePosition 0.0 -1.0 0.0
ViewPlaneRotation -90.0 0.0 0.0
ViewPlaneMinX -0.17
ViewPlaneMinY -0.13
ViewPlaneMaxX 0.17
ViewPlaneMaxY 0.13

1.4. Gesture Description File

The gesture file contains definitions of hand postures and gestures to be used as input events in the SVE
system. Postures are static hand poses; gestures are hand poses that change in time. The gesture file allows
for the definition of the angle states of the joints, a start hand pose, and a transition and end hand pose (if
needed). Here is an example gesture file (from the examples directory). The “grab” gesture is a fist hand
posture, the “pinky_wave” gesture is a straight pinky bending and then straightening out, while the other
fingers are curled in.

Source xxv: Gesture File example
This is a gesture file

First define the default ranges used for joints

0 to 90 degree bends
joint_positions: 4
bounds:
-45 15 0 # min max consider_as
 15 45 30
 45 75 60
 75 135 90

thmb rot
thmb mphl
thmb ip
thmb abdt

indx mphl

The Simple Virtual Environment Library User’s Guide 115

4/16/97

indx pxip
indx dsip

midl mphl
midl pxip
midl dsip

ring mphl
ring pxip
ring dsip

pnky mphl
pnky pxip
pnky dsip

Abduction angles: 0 to 30 degrees
joint_positions: 4
bounds:
-45 5 0 # min max consider_as
 5 15 10
 15 25 20
 25 75 30

midl abdt
ring abdt
pnky abdt

Next, define gestures

name: grab
thmb rot 0.8 0.8 0.9 1.0 # 0, 30, 60, 90 degrees
thmb mphl 0.9 0.9 1.0 1.0
thmb ip 0.9 0.9 1.0 1.0
thmb abdt 0.5 0.7 0.9 1.0

indx mphl 0.5 0.6 1.0 1.0
indx pxip 0.5 0.6 1.0 1.0
indx dsip 0.5 0.6 1.0 1.0

midl mphl 0.5 0.6 1.0 1.0
midl pxip 0.5 0.6 1.0 1.0
midl dsip 0.5 0.6 1.0 1.0

ring mphl 0.5 0.6 1.0 1.0
ring pxip 0.5 0.6 1.0 1.0
ring dsip 0.5 0.6 1.0 1.0

pnky mphl 0.5 0.6 1.0 1.0
pnky pxip 0.5 0.6 1.0 1.0
pnky dsip 0.5 0.6 1.0 1.0

name: point
indx mphl 1.0 0.9 0.0 0.0
indx pxip 1.0 0.9 0.0 0.0

midl mphl 0.5 0.6 1.0 1.0
midl pxip 0.0 0.0 1.0 1.0

ring mphl 0.5 0.6 1.0 1.0
ring pxip 0.0 0.0 1.0 1.0

pnky mphl 0.5 0.6 1.0 1.0
pnky pxip 0.0 0.0 1.0 1.0

name: pinky_wave
indx mphl 0.5 0.6 1.0 1.0
indx pxip 0.0 0.0 1.0 1.0

midl mphl 0.5 0.6 1.0 1.0
midl pxip 0.0 0.0 1.0 1.0

ring mphl 0.5 0.6 1.0 1.0

116 The Simple Virtual Environment Library User’s Guide

4/16/97

ring pxip 0.0 0.0 1.0 1.0

pnky mphl 0.0 0.0 1.0 1.0
pnky pxip 0.0 0.0 1.0 1.0

transitions:
pnky mphl backward
pnky pxip backward

end:
pnky mphl 1.0 1.0 0.0 0.0
pnky pxip 1.0 1.0 0.6 0.0

name: thumbs_up
priority: 10
thmb rot 1.0 0.8 0.0 0.0
thmb mphl 1.0 1.0 0.0 0.0
thmb ip 1.0 1.0 0.0 0.0
thmb abdt 0.0 0.5 0.9 1.0

indx pxip 0.0 0.0 1.0 1.0

midl pxip 0.0 0.0 1.0 1.0

ring pxip 0.0 0.0 1.0 1.0

pnky pxip 0.0 0.0 1.0 1.0

The Simple Virtual Environment Library User’s Guide 117

4/16/97

2. Formal Definition of the World Description File
This section describes the world file format in grammar notation. The following notation is used:

WORLDFILE:
Formal Description of file format version 1.1 ↵
[user position: <f> <f> <f>] ↵
[user speed: <f>] ↵
number of objects: <n> ↵
↵
[OBJECT_ENTRY]*

The worldfile specifies all of the objects that are to be used in the virtual environment. The only important
entry in the header is thenumber of objects. The integer given should be equal to the number of root-
objects in the scene (see the object entry for more about root objects etc.) Theuser position: anduser
speed: lines are optional. They specify a starting position for the user and a speed for when the user is
flying.

OBJECT_ENTRY:
object name: <stringID> ↵
PRIMITIVES-FILE-ENTRY+
transformation matrix: ↵
<f> <f> <f> <f> ↵
<f> <f> <f> <f> ↵
<f> <f> <f> <f> ↵
<f> <f> <f> <f> ↵
other attributes: <n> ↵
[ATTRIBUTE-ENTRY]*
number of children: <n> ↵
[OBJECT_ENTRY]*

The object is specified by a primitives file and a transformation matrix that transforms all the points of the
object (and its children) to world coordinates. The matrix defines how the object will be placed in the
virtual scene: it enables translation, rotation and scale transformations (see “Fundamentals of Interactive
Computer Graphics”, Foley and van Dam).

Extra attributes can be specified for each object. Objects can be hierarchically grouped by specifying
children. This is specified in a depth-first notation, as show in Figure 19.

PRIMITIVES-FILE-ENTRY
{
primitives file: <stringID> ↵,
primitives file: <stringID> valid to <f> ↵,
primitives file: <stringID> valid from <f> ↵,
primitives file: <stringID> valid from <f> to <f> ↵
}

The primitives file entry defines the geometry of the object. It can be a Wavefront .obj file or an SVE
primitives file (look at the object description for the file format of these) or “NULL” , which results in an
empty object which will not be rendered. A list of “primitives file:” lines can be given. The list will be

118 The Simple Virtual Environment Library User’s Guide

4/16/97

searched from first to last for a valid geometry description, and that one (and only that one) will be
rendered. A geometry description is valid if it is not followed by a “valid” keyword, or if the object is close
enough (for the “valid to” specification), far enough (for the “valid from” specification), or within a range
(for the “valid from ... to ... “ specification). The floating values are distances in meters.

ATTRIBUTE-ENTRY:
{
color COLOR_ENTRY↵,
visible ↵,
visible_sphere <f> ↵,
selectable ↵,
highlight_primitives_file: <stringID> ↵
cullable ↵
facing_viewer_upright ↵
facing_viewer ↵
title <f> <f> <f> <f> <string> ↵
linewidth <n> ↵
}

Currently, these extra attributes can be assigned to objects:

• color: this color will override the original color of the object primitives. This function is useful during highlighting
etc.

• visible: the object and its children are invisible when the flag FALSE is used.

• visible_sphere: the object is only rendered when the viewpoint is less than <f> meters.

• selectable: this will set the boolean Selectable in the object structure.

• highlight_primitives_file: gives an object file which defines the geometry for an object when it is highlighted.

• cullable: if TRUE, then the object will not be drawn if the bounding volume of the object is outside of the view of
the user. If FALSE, then the object will always be drawn (and no work will be done to determine if it is in the user’s
view or not).

• title x y z s string: a text string will be rendered on the x,y,z (object) coordinates with size s.

• linewidth: is used to change the width of polylines and text primitives.

• facing_viewer_upright: the object will orient itself to always face in the viewer’s direction, rotating only in the X-Z
plane.

A

CB

E F

D

ObjectA
of children: 2
ObjectB
of children: 1
objectD
of children: 2
ObjectE
of children: 0
ObjectF
of children: 0
ObjectC
of children: 0

Figure 19. Depth first notation of a tree hierarchy.

The Simple Virtual Environment Library User’s Guide 119

4/16/97

• facing_viewer: the object will orient itself to always face the viewer.

COLOR_ENTRY:
<f> <f> <f>

Red, green and blue values in the range [0,1] (entries larger than 1.0 will be divided by 256!)

120 The Simple Virtual Environment Library User’s Guide

4/16/97

3. Formal Definition of the Object Description File

OBJECT FILE:
Simple Virtual Primitive File Format version 1.1 ↵
[BOUNDARY-ENTRY]
number of components: <n> ↵

[PRIMITIVE-ENTRY]+

BOUNDARY-ENTRY:
{bounding box <f> <f> <f> <f> <f> <f> ↵,
 bounding sphere <f> at <f> <f> <f> ↵}

Each object can have a boundary description that can be used for collision detection1 etc. These entries are
done in object coordinates, currently two descriptions can be used:

• bounding box: 2 points that determine the box, the lower left and the upper right corner.

• boundary sphere: is determined by its radius. Because the origin of the object can be at a different coordinate than
(0,0,0), three additional parameters are needed to determine the x,y,z - origin of the sphere.

By default, the object will calculate its boundaries when the file is read in if none is given. The calculated
bounding volume will be a bounding box, as it is more straight forward to calculate even if objects are
stretched non-uniformly and rotated. Most SVE routines that use bounding volumes are optimized for
bounding boxes.

PRIMTIVE-ENTRY:

{ LIGHT,
 POLYHEDRON_ENTRY,

POLYLINEN_ENTRY ,

TEXT_ENTRY ,

TEXTURED_POLYHEDRON_ENTRY }

LIGHT
component <n> type: polyhedron ↵
Data of component <n>: ↵
no of attributes: ↵
<n>↵
[ambient COLOR_ENTRY↵]
[color COLOR_ENTRY↵]
[position <f> <f> <f> ↵]
[local-light ↵]
[spot-direction <f> <f> <f> ↵]
[spot-light <f> <f> ↵]

1.These algorithms are currently still under development, the descriptions are only loaded into the
boundaries-entry of the object.

The Simple Virtual Environment Library User’s Guide 121

4/16/97

The light primitive is based on the light source used in the GL and OpenGL renderers. Those that are
already familiar with these light sources will probably recognize the names and their meanings.

• ambient: Specifies the background color of the light source. This light is always there also when it is not reaching
the object. The numbers represent the Red Blue and Green components.

• color: Specifies the colorvalues (in Red, Green and Blue) that the light source emits. This light is used to calculate
the color of the objects.

• position: The position in the Virtual world where the light source is located.

• local-light: If this is set to TRUE, the light source will be a local light source. If this value is FALSE, the light source
will be at infinity (pointing at the origin from its position).

• spot-direction: The direction the spotlight emits its light.

• spot-light: The first number describes the intensity as a function throughout the cone and the second number tells
how wide the cone is in degrees.

POLYHEDRON_ENTRY:
component <n> type: polyhedron ↵
Data of component <n>: ↵
no of vertices: ↵
<n>↵
vertices: x y z ↵
[<f> <f> <f> ↵]+
no of faces: ↵
<n>↵
faces: R G B #_of_vertices v1 v2 v3 ... ↵
[COLOR_ENTRY <n> <n> <n> [<n>]+ ↵]

The polygons are defined by referring to the vertices lists. These indices begin at 0 (zero).

POLYLINE_ENTRY:
component <n> type: polyline ↵
Data of component <n>: ↵
no of vertices: ↵
<n>↵
vertices: x y z ↵
[<f> <f> <f> ↵]+
no of polylines: ↵
<n>↵
polylines: R G B #_of_vertices v1 v2 v3 ... ↵
[COLOR_ENTRY <n> <n> <n> [<n>]+ ↵]

Polylines are a series of lines. The series is not automatically “closed.” If the polyline should be a closed
line, then the line from the first to the last point should be included.

122 The Simple Virtual Environment Library User’s Guide

4/16/97

TEXT_ENTRY:
component <n> type: text ↵
Data of component <n>: ↵
transformation matrix: ↵
<f> <f> <f> <f> ↵
<f> <f> <f> <f> ↵
<f> <f> <f> <f> ↵
<f> <f> <f> <f> ↵
no of lines: ↵
<n>↵
[<string> ↵]+

The transformation matrix determines the position, orientation and scale of the text relative to the other
primitives of that same object. Text strings are always rendered in white, unless it is overridden the (by
having the extra attributecolor in the world file format).

TEXTURED_POLYHEDRON_ENTRY:
component <n> type: textured_polyhedron ↵
Data of component <n>: ↵
image file: <stringID> ↵
repeat texture: ↵
{
blending: {TRUE, FALSE, GREYSCALE} ↵
texture environment: {default, intensity, intensity_alpha, rgb,

rgb_lighting, rgb_alpha, rgb_alpha_lighting} ↵
}
no of vertices: ↵
<n>↵
vertices: x y z ↵
[<f> <f> <f> ↵]+
no of texture vertices: ↵
<n>↵
texture vertices: u v ↵
[<f> <f> ↵]+
no of faces: ↵
<n>↵
faces: R G B #_of_vertices v1 v2 v3 ... [t1 t2 t3 ...] ↵
[COLOR_ENTRY <n> [<v>]+ [<t>]+ ↵]

The textured polygon entry is similar to the regular polyhedron, with its only major difference being the
addition of three more lines at the beginning of the definition. These lines contain a list of two dimensional
points which map a texture on a face, an index to that list for each vertex index in the face definition, and
the name of the image file to map.

For mapping the texture map on the polygons, each vertex has two extra coordinates that refer to the (x,y)
coordinates of a 2D plane with a grid of copies of the image which are side by side. These values are
typically calledu,v or s,t coordinates and the image is defined in the range [0...1]. A of list texture vertices
made up of (0,0), (0,2), (2,2), (2,0) will result in four images on the face being defined (see Figure 20.). A
texture vertices list of (0,0), (0,0.5), (1,0.5), (1, 0) will result in the lower half of the image to be displayed
on the face. A polyhedron face is therefore defined as its color values, the number of vertices, a list of

The Simple Virtual Environment Library User’s Guide 123

4/16/97

indexes to the vertex list to define the vertices of the face, and then a list of indexes into the texture vertices
list defining, for each vertex in the vertex list.

The texture definition include three additional entries,image file, repeat texture,and either blendingor
texture environment:

• The image file entry must be a file that is of the SGI rgb format (a variety of applications can be used to convert .gif
and other file formats to these1).

• Therepeat texture flag determines whether the texture should be repeated when the s,t coordinates exceed the range
[0,1].

• Theblending flag is one way to determine how the texture is handled: TRUE will blend the colors of the texture map
with the colors of the faces, FALSE will discard the face colors. The special flag value GREYSCALE will handle
the texture map as a black-and-white image that is blended with the colors of the original faces. Using greyscale
texture maps instead of color ones will increase the rendering performance and should be used as much as possible.

• Thetexture environment flag is the other way to determine how to handle the texture. The choices are:

default:

Used to specify that the default for the number of channels contained in the texture. This is the
texture environment used by textured Wavefront objects. The default is labeled with a <D> in
the following list. (They represent the old “blending: true” texture type for each channel).

intensity: <D>

1 Channel. The RGB color of the polyhedron is multiplied by the texture pixel value at each
pixel.

intensity_alpha: <D>

2 Channel. The RGB color of the polyhedron is multiplied by the intensity value from the
texture at each pixel, the alpha value of the polyhedron is multiplied by the alpha value from
the texture at each pixel.

rgb:

3 Channel. Texture RGB color overrides polyhedron. Alpha of polyhedron is unaffected.

rgb_lighting: <D>

3 Channel. The RGB color of the texture is multiplied by the RGB color of the polyhedron.

1. Golden oldies are thefrom applications, for examplefromgif <sourcefile> <destfile>, source of these can be found in
the directory~4Dgifts/iristools/imgtools binaries are usually installed in /usr/sbin on SGI machines.

(0,0) (2,0)

(0,2)

s

t
y

x

z

(0,1)

(0,1)(0,0)

s

t

(0,1)

(0,1)

Figure 20. Mapping s,t Coordinates to Polygons

124 The Simple Virtual Environment Library User’s Guide

4/16/97

rgb_alpha:

4 Channel. The RGB color of the texture and the RBG color of the polyhedron are combined
proportionally to the texture’s alpha value (Texture alpha value of 0 results in 100%
polyhedron color, value of 1 results in 100% texture color). The polyhedron’s alpha value is
unchanged.

rgb_alpha_lighting: <D>

4 Channel. The RGB color and alpha values are multiplied by the RGB and alpha values of
the texture for each pixel.

COLOR_ENTRY:
<f> <f> <f>

Red, green and blue values in the range [0 to 1.0] (entries larger than 1.0 will be divided by 256!)

The Simple Virtual Environment Library User’s Guide 125

4/16/97

4. Formal Definition of the Initialization File
The options for the initialization file are converted to lower-case before they are examined.

INITIALIZATION-FILE:
[

DIRECTORY-ENTRY ,
VIEW-PARAMETER-ENTRY ,
OBJECT-INITIALIZATION-ENTRY ,
DEVICE-SPECIFICATION-ENTRY ,
CONFIGURATION-ENTRY ,
SERVER-LOCATION-ENTRY

]+

DIRECTORY-ENTRY:
{

defaultObjectDirectory <stringID>[:<stringID>]* ↵,
defaultWorldDirectory <stringID>[:<stringID>]* ↵,
defaultTextureDirectory <stringID>[:<stringID>]* ↵,
defaultMaterialDirectory <stringID>[:<stringID>]* ↵,
defaultConfigDirectory <stringID>[:<stringID>]* ↵,
defaultAudioDirectory <stringID>[:<stringID>]* ↵,
defaultServerDirectory <stringID> ↵

}

All of these options specify a directory or directories in which to search for the given file types. For all
options exceptdefaultServerDirectory , the given string can be a single directory, or a list of
directories separated by colons. ThedefaultObjectDirectory option specifies where to look for SVE
or Wavefront object files. ThedefaultWorldDirectory option specifies where to look for SVE world
files. ThedefaultTextureDirectory option specifies where to look for texture files. The
defaultMaterialDirectory option specifies where to look for Wavefront material files. The
defaultConfigDirectory option specifies where to look for display configuration files. The
defaul tAudioDirectory opt ion specifies where to look for audio fi les. Final ly, the
defaultServerDirectory option specifies where to find the tracker, audio, and event server programs.

126 The Simple Virtual Environment Library User’s Guide

4/16/97

VIEW-PARAMETER-ENTRY:
{

eyePosition <f> <f> <f> ↵,
eyeSeparation <f> ↵,
minX <n> ↵,
sizeX <n> ↵,
minY <n> ↵,
sizeY <n> ↵,
VofY <n> ↵,
aspectRatio <f> ↵,
near <f> ↵,
far <f> ↵,
DisplayConfig <stringID> ↵,

}

These parameters define the rendered view of the environment, either by defining the eyepoint and other
viewing parameters, or by defining the limits of the view volume and window placement on the screen.
The meaning of each parameter is described below:

• TheeyePosition option gives the (X, Y, Z) position of the display in relation to the ‘SVE HMD’ object, which
usually follows the head tracking receiver. This value allows correction for the fact that the head tracking receiver is
often above the head rather than at the eye’s position.

• TheeyeSeparation option gives the distance (in meters) between the objects representing the user’s eyes for
stereo viewing. Note that this is not necessarily the actual distance between the user’s eyes, as the technology may
require different values for the two images to be fused by the user’s eyes into a stereo view.

• TheminX , sizeX , minY, andsizeY options define the rendered window on the screen in screen coordinates,
where the (minX , minY) coordinate defines the bottom left corner of the window.

• TheVofY option gives the field of view in the Y direction in tenths of degrees.

• TheaspectRatio option gives the aspect ratio of the width (in X) over the height (in Y) to determine the field of
view in the X direction given the field of view in the Y direction.

• Thenear andfar options give the near and far clipping plane locations, respectively, as distances from the eye-
point in meters.

• TheDisplayConfig option gives the filename of the configuration file for the display. The display configuration
file can contain a field of view/aspect ratio description or a screen dimension, position and rotation description. It
will override theVofY andaspectRatio lines in this configuration file.

OBJECT-INITIALIZATION-ENTRY:
{

move <string> to <f> <f> <f> ↵,
rotate <string> by <f> around <AXIS> ↵,
scale <string> by <f> {uniformly, along <AXIS>} ↵,
pointerObjectName <string> ↵,
pointerObjectFile <stringID> ↵,
selectorObjectName <string> ↵,
selectorObjectFile <stringID> ↵

}

These options affect objects that may appear in the environment. The objects do not need to be in existence
when the initialization file is read. For the object position options, when an object is created with the name
given by these options, then the position is initialized with the given (possibly series of) position changes,

The Simple Virtual Environment Library User’s Guide 127

4/16/97

and the fact that this was done is reported by the object creation routine. A description of each option
follows:

• Themove option gives a translation positional change for an object specified by the string name. The (X, Y, Z) val-
ues are translations in meters in the local coordinate system of the object.

• Therotate option gives a rotation positional change about a given axis (‘x’, ‘y’, or ‘z’) for an object specified by
the string name. The rotation is in degrees in the object’s local coordinate system. Note that multiple rotatations for
the same object can be specified by a series ofrotate options, and that the order of the rotations is important (dif-
ferent orders may given different results).

• Thescale option given a scale positional change for an object specified by the string name along a given axis (‘x’,
‘y’, or ‘z’) in the local coordinate system, or uniformly in all directions.

• ThepointerObjectName option gives the name of an object which should be used instead of the regular
pointer which is the object that follows the “SVE cursor” object when theSVE_SELECT option flag is set).

• ThepointerObjectFile option gives the file name of the object description which should be used instead of
the default pointer description. (The pointer is the object that follows the “SVE cursor” object when the
SVE_SELECT option flag is set.)

• TheselectorObjectName option gives the name of the object which should be used instead of the “ray” selec-
tor object (which “shoots” from the pointer object), when theSVE_SELECT option flag is set.

• TheselectorObjectFile option gives the file name of the object description which should be used for the se-
lector object if it is different from the default ray. This object is used for selection when theSVE_SELECT option
flag is set.

DEVICE-SPECIFICATION-ENTRY:
{

tracker <n> <stringID> <stringID> <stringID> <n> <string> ↵,
trackerHemi <n> <f> <f> <f> ↵,
glove <n> <stringID> <stringID> <string> ↵

}

The tracker option specifies the tracking device that is to be used to control an SVE object. The first
number is a unique identifier (and integer < 32 not used by another tracker specification). The three
following strings are the name of the machine to which the tracking device is connected (and on which the
tracker server is running), the type of tracker, and the serial port identifier. The next number is the receiver
identifier (in a range 1 to the maximum number of receivers attached to the tracker). The last string is the
name of the SVE object that the tracker controls (by affecting the object’s local position matrix). The
object does not need to be created at the time at which the program is begun. An example tracker
specification would look like this:

tracker 1 mymachine fastrak /dev/ttyd2 2 SVE HMD

This line gives the specifications of tracker device 1, which is a “fastrak” tracker attached to “mymachine”
through the serial port “/dev/ttyd2”. The “SVE HMD” object will be controlled by receiver 2 of that
device.

The trackerHemi option allows for the specification of the valid tracking hemisphere for tracking
devices that require such a specification. The number identifies which tracking device (given in the tracker
option line). The three float values define a vector that points in the direction of the center of the
hemisphere within which the tracker device is correct.

Theglove option specifies the details of a hand input device in a similar way to how the tracking devices
are specified. The first number is unique identifier (an interger less than 32). The strings are the machine to
which the glove device is attached, the serial port of that machine to which the device is attached, and the
name of the SVE object to which the graphical representation of the hand will be attached.

128 The Simple Virtual Environment Library User’s Guide

4/16/97

CONFIGURATION-ENTRY:
{

defaultTextureMap <string> ↵,
FPSupperLimit <f> ↵,
FPSlowerLimit <f> ↵,
hmd ↵,
gouraud ↵,
audio ↵,
showFrameRate ↵,
verbose ↵,
debug ↵

}

These options define the initial configuration of the SVE application. Since the initialization file is read in
the SVE_init() routine, configurations given in the initialization file will override the configuration
specified for the routine. Descriptions of each of these configuration options are described below:

• ThedefaultTextureMap option gives the file name of the texture that will be used on a textured polyhedron
which has no texture defined for it (or the texture defined could not be successfully loaded).

• TheFPSupperLimit andFPSlowerLimit options define the upper and lower limit to the frame rate, respec-
tively, which the SVE system will try to maintain. Currently, only the upper limit is enforced, where the SVE appli-
cation will not be rendered at a faster frame rate than the given value (in frames per second).

• Thehmd option determines if theSVE_HMD configuration option will be set or not.

• Thegouraud option determines if theSVE_LIT_GOURAUD configuration option will be set or not.

• Theaudio option determines if theSVE_NOAUDIO configuration option will be set (false) or not (true).

• TheshowFrameRate option determines if the SVE system will report to standard output the current frame rate
(in frames per second), and other rendering information, at a regular interval.

• Theverbose option determines if the SVE system will print informative messages about the files it has read and
important stages it has passed.

• Thedebug option determines if debugging messages will be printed.

SERVER-LOCATION-ENTRY:
{

eventServer <stringID> ↵,
audioServer <stringID> ↵,
VRmachine <stringID> ↵,
worldServer <stringID> ↵

}

These options indicate which machines are running the given server type for the application that is
executed. TheeventServer andaudioServer option specify which machine is running the event server
and audio server respectively. TheVRmachine option gives a default for theeventServer and
audioServer options, if they are not used. TheworldServer option indicates which machine is running
a world server. The world server shares the SVE objects of all SVE applications that connect to it. It is a
work in progress and is not guaranteed to work.

The Simple Virtual Environment Library User’s Guide 129

4/16/97

5. Formal Definition of the Display Configuration File
The options for the display configuration file are converted to lower-case before they are examined.

DISPLAY-FILE:
[

VIEW-PLANE-POSITION-ENTRY ,
VIEW-PLANE-SIZE-ENTRY ,
VIEW-VOLUME-ENTRY,
EYE-PLACEMENT-ENTRY

]+

VIEW-PLANE-POSITION-ENTRY:
[

ViewPlanePosition <f> <f> <f> ↵,
ViewPlaneRotation <f> <f> <f> ↵

]+

The ViewPlanePosition andViewPlaneRotation options define the position of the view plane’s
origin (usually corresponds to the center of the screen), and the X, Y, and Z rotations applied to the view
plane (in that order), respectively.

VIEW-PLANE-SIZE-ENTRY:
[

ViewPlaneMinX <f> ↵,
ViewPlaneMinY <f> ↵,
ViewPlaneMaxX <f> ↵,
ViewPlaneMaxY <f> ↵

]+

The ViewPlaneMinX andViewPlaneMinY options define the bottom left corner of the view plane in
relation to the view plane’s origin. TheViewPlaneMaxX andViewPlaneMaxY options define the top
right corner of the view plane in relation to the view plane’s origin.

VIEW-VOLUME-ENTRY:
[

fovY <n> ↵,
AspectRatio <f> ↵

]+

The fovY option defines the field of view of the display in degrees across the vertical axis. The
AspectRatio defines the field of view of the display across the horizontal axis in terms of the field of
view of the display across the vertical axis.

130 The Simple Virtual Environment Library User’s Guide

4/16/97

EYE-PLACEMENT-ENTRY:
[

eyePosition <f> <f> <f> ↵,
eyeSeparation <f> ↵,

]+

These parameters define the rendered view of the environment by defining the eyepoint. The meaning of
each parameter is described below:

• TheeyePosition option gives the (X, Y, Z) position of the display in relation to the ‘SVE HMD’ object, which
usually follows the head tracking receiver. This value allows correction for the fact that the head tracking receiver is
often above the head rather than at the eye’s position. Note that the eye position and the view plane position should
not be the same (as this would result in an undefined view direction). To avoid this problem, be sure to position the
view plane a significant distance from the eye position (generally in the negative Z direction).

• The eyeSeparation option gives the distance (in meters) between the objects representing the user’s eyes for stereo
viewing. Note that this is not necessarily the actual distance between the user’s eyes, as the technology may require
different values for the two images to be fused by the user’s eyes into a stereo view.

The Simple Virtual Environment Library User’s Guide 131

4/16/97

6. Formal Definition of the Glove Gesture File

GESTURE_FILE:
[

[JOINT_DEFINITION]* ↵
[GESTURE_DEFINITION]* ↵

]*

The gesture file consists of the joint definition (a list of states and a mapping from angle to state), and a list
of gestures associated with that joint definition. There can be many gestures for a joint definition, and
many joint definitions can be defined. Note that if no joint definition is given, the default definition or the
last one defined will be used.

JOINT_STATE:
<f> <f> <f>

The joint state is the range (minimum and maximum) of angles and the value of that range.

JOINT_DEFINITION:
joint_positions: <n> ↵
bounds: ↵
[JOINT_STATE]+ ↵
[FINGER JOINT]+ ↵

The joint definition contains a break down for one or more joints of the angle range to a discrete number of
states. These states and the ranges are equivalent to those defined in JOINT_STATE. The number of states
for the joint are given after “joint_positions:”. The joints that this definition applies to follow (as “FINGER
JOINT”).

FINGER:
{thmb, indx, midl, ring, pnky, wrst}

One of 5 fingers, or the wrist.

JOINT:
{

{rot, mphl, ip, abdt},
{mphl, pxip, dsip, abdt},
{prot, ptch, yaw}

}

For the thumb, the joints are rotation, metacarpal, inter-phelangeal, and abduction. For the wrist, the joints
are palm rotation, pitch, and yaw. For all other fingers, the joints are metacarpal, proximal inter-phelangeal,
destal inter-phelangeal, and abduction. The joints are diagrammed in “SVE_gloveData” on page 212.

132 The Simple Virtual Environment Library User’s Guide

4/16/97

GESTURE_DEFINITION:
name: <stringID> ↵
[priority: <n> ↵]
[

FINGER JOINT [<f>]+ ↵
]+
[

transitions: ↵
[

FINGER JOINT TRANSITION ↵
]+
end: ↵
[

FINGER JOINT [<f>]+ ↵
]+

]+

The gesture definition consists of a name, an optional priority (lower numbers have priority), and then a
beginning pose definition. An optional transition and end pose definition may follow. The pose definitions
consist of a joint specification (FINGER JOINT), and a list of probability values (as many as the joint
states defined for that joint). The probability values are used to recognize a pose. If a joint is not specified,
the default is that all states of the joint have the probability of 1.0. This means that the joint can be in any
state, and it will not preclude that gesture from being recognized.

TRANSITION:
{none, any, forward, backward, back&forth}

Defines a transition that a joint can go through. The default is “any”.

The Simple Virtual Environment Library User’s Guide 133

4/16/97

APPENDIX C: Reference Manual

1. SVE Function Reference

1.1. Main SVE loop

boolean
• SVE_init(char *programName, SVE_config config, int *argc, char

*argv[]);

char *programName String used to label the graphics
window.

SVE_config config Conf igurat ion of the SVE system.
Defines the devices to be used and
rendering style.

int *argc Arguement count (parameter given to
main()).

char *argv[] Arguement list (parameter given to
main()).

This function must be called before any other SVE function call, except those that tell the library where to
find the configuration file or other types of files. It sets up the SVE system state. Note that any values set in
the .sve.init file will override the flags in theconfig variable.

void
• SVE_beginEventLoop(void);

This function begins the SVE system event loop. Execution will not return to this point until the
application is exited orSVE_stopEventLoop() or SVE_done() is called. The application will only
rece ives con t ro l du r ing th i s loop v ia ca l lback rou t ines de fined p r io r to execu t ing
SVE_beginEventLoop() .

void
• SVE_stopEventLoop(void);

This function causes the SVE system to exit from its event loop after the current frame is rendered. The
current state, however, is not distroyed. Therefore, the system can be resumed where it left off if the
SVE_beginEventLoop() funcion is used.

void
• SVE_done(void);

This function shuts down the SVE system, including any tracking and glove devices being used. If the
screen is being sent through the scan converter for video output, the computer screen is returned to normal
operation. If the system needs to be restarted, another call toSVE_init() is required.

134 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_abort(void);

This functoin shuts down the SVE system, cleans up, then exits with anexit(0) .

1.2. SVE Configuration Routines

void
• SVE_setInitFilename(char *initFilename);

Sets the filename of the initialization file that is read whenSVE_init() is called. By default, this is
“ .sve.init ”.

1.3. World/object utilities

1.3.1 Load/Save

boolean
• SVE_loadWorld(char *filename);

char *filename Filename of the SVE world file.

This function loads in an SVE world from the specified filename. This world is then rendered during the
rendering phase. If the given file does not exist in the path given, the Default Object Directory is used. The
function returnedFALSE if a world file could not successfully be read.

list
• SVE_loadObjects(char *filename, SVE_object parent, SVE_state

state);

char *filename Filename of an SVE world file.

SVE_object parent Parent object of all objects to be
read from the given file.

SVE_state state Current state.

Reads in the list of objects contained in the given world file (using the Default Object Directory if the file is
not found in the given path) and attaches them as children of the givenparent object. IfSVE_WORLD is
given as theparent object, the objects read are children of the root (not attached to anything). Returns an
unordered linked list with elments ofSVE_object . If the world file sets an initial origin or flight speed,
then those values will be used to set the appropriate fields of the givenstate structure. Theconfig field
of thestate structure is used to determine if the textures encountered need to read from disk.

list
• SVE_addObjects(char *filename, SVE_state state);

char *filename Filename of an SVE world file.

SVE_state state Current state.

Reads in the list of objects contained in the given world file and places them in the world as unattached
objects. The world used is the object tree of thestate given. If the given world file contains a user

The Simple Virtual Environment Library User’s Guide 135

4/16/97

position or user speed, then the appropriate fields of thestate structure will be set using those values.
Returns a linked list ofSVE_object ’s added (which may be the middle of a longer list if there where
already objects in the world).

SVE_object
• SVE_loadObject(char *filename, char *name, boolean

*posInitialized);

char *filename SVE object file name.

char *name Name to be associated with the object.

boolean *posInitialized Th is i s se t to TRUE i f ob jec t ’ s
position has been initialized.

This function allocates memory for an SVE object, reads the object definition from the given file (using the
Default Object Directory if the file is not found in the given path), and returns theSVE_object . Note that
the object isnot placed in the world object tree, and therefore will not be rendered until itis added to the
world object tree. If the initialization file initialized the object’s position, thenposInitialized is set to
TRUE, so that the application can decide whether to override that initialization or not.

boolean
• SVE_saveWorld(char *filename);

char *filename SVE world file name.

The current SVE world object hierarchy is saved in an SVE world file format in the file given. Objects
which have changed will be saved to a SVE object file. ReturnsFALSE if the function was unable to save
every file it needed to save.

boolean
• SVE_saveObjects(list objectList, char *filename);

list objectList Linked list of SVE objects to save.

char *filename File name of the file to save to.

Saves the list of objects in an SVE world file format to the filename given. If SVE_WORLD is given as the
object list(objectList) , the world state object tree will be saved. Objects which have changed will be
saved to a SVE object file. ReturnsFALSE if the function was unable to save every file it needed to save.

boolean
• SVE_saveObject(SVE_object o, char *filename);

SVE_object o SVE object to save.

char *filename File name of the file to save to.

Saves the object given in an SVE object file format to the specified file. ReturnsFALSE if the function was
unable to save the object to the given file.

136 The Simple Virtual Environment Library User’s Guide

4/16/97

1.3.2 Information

SVE_object
• SVE_findObject(char *name, list objectTree);

char *name Name of desired object.

list objectTree Object tree to search.

Searches each object in the linked list of objects given inobjectTree and their children, in a depth-first
search. The object with the same name as the givenname is returned, if found.NULL is returned if no
object of that name exists in the object tree. IfSVE_WORLD is given as theobjectTree , the world state
object tree is searched, which is equivalent to theSVE_findWorldObject() function below.

SVE_object
• SVE_findWorldObject(char *name);

char *name Name of desired object.

Searches the SVE world object tree using a depth-first search. If an object with a name that matches the
givenname, it is returned. If no object in the SVE world object tree has that name,NULL is returned.

list
• SVE_findAllObjects(char *name, list objectTree, boolean

includingChildren);

Generates a list of objects which were created with the givenname (which can include the colon-number
suffix of an object that was created with that name, but had its name changed to prevent duplicate names)
which are in the givenobjectTree . If includingChildren is TRUE, then the given object tree is
searched depth first to its leaf nodes.

SVE_object
• SVE_findObjectInRepository(char *name);

Find the object with the givenname even if it has not been added to the global world tree.

void
• SVE_getWorldMatrix(SVE_object o, M_matrix m);

SVE_object o The SVE object in question.

M_matrix m The returned result.

Returns (inm) the transformation matrix of the given object,o, in absolute world coordinates (as opposed
to its position matrix, which is only in relation to its parent).

boolean
• SVE_objectVisible(SVE_object o);

ReturnsTRUE if the object is visible, which means itsvisible attribute isTRUE, and thevisible
attribute of its parent and ancestors are alsoTRUE.

The Simple Virtual Environment Library User’s Guide 137

4/16/97

void
• SVE_printObjectList(list objectList, boolean printChildren);

list objectList SVE object tree.

boolean printChildren Flag used to shorten/lengthen output.

Prints tostderr the names of the objects in theobjectList SVE objectlist. Their children (and their
children’s children, etc.) are printed also if theprintChildren flag isTRUE. If SVE_WORLD is given for
objectList , the world state object tree is used.

float
• SVE_getNearestPoint(SVE_point testPoint, SVE_pointPtr *result,

SVE_object *pointObject, list objectList);

SVE_point testPoint Point in world coordinates to test.

SVE_pointPtr *result Reference to pointer to found vertex.

SVE_object *pointObject Object containing the point found.

list objectList List of objects to search for point.

Searches the objects of the given list (using the world state object tree ifSVE_WORLD is given for
objectList) for the closest vertex to thetestPoint . The pointer to the closest point is returned in
*result , and the SVE_object that contains that point is returned in*pointObject . The function returns
the distance fromtestPoint to the point found. If no point is found, the function returns
BIG_DISTANCE.

1.3.3 Object Creation and Deletion

SVE_object
• SVE_createEmptyObject(char *name);

char *name Name to be given to the object.

Allocates memory for an object with no geometry associated with it, basically an empty object. The
attributes of the object are set to the following values: (See the Data Structures section for a description of
theSVE_object structure.)

name = name
parent = NULL
geometry = NULL
geometryList = Empty list
visible = TRUE
selectable = FALSE
highlight = FALSE
highlightGeometry = NULL
hasVisibleSphere = FALSE
visibleSphere = 0
hascolor = FALSE
materialIndex = 0
children = Empty list
boundaries = NULL
cullable = CULLABLE_BOX
update = CALC_ALL
facingViewerUpright = FALSE
facingViewer = FALSE

138 The Simple Virtual Environment Library User’s Guide

4/16/97

frameCallback = Empty list
remoteObject = FALSE
widgetData = NULL
visibility = SVE_VISIBILITY_UNKNOWN
moreTextures = NULL
UserPtr = NULL
position = identity matrix
worldPosition = identity matrix

SVE_object
• SVE_createObjectCopy(SVE_object source, char *newName, boolean

copyChildren);

Creates a copy of the given object,source , with the name given bynewName. If copyChildren is TRUE,
the entire object tree, of which thesource object is the root, will be copied.

void
• SVE_deleteObject(SVE_object object, boolean

attachChildrenToParent);

Deletes the givenobject . If attachChildrenToParent is TRUE, the object’s child objects will be
attached to the given object’s parent (or the root of the tree, if the object is a root object). If
attachChildrenToParent is FALSE, then the child objects are deleted, also, as well as their children,
and so on.

1.3.4 Object Manipulation

These functions are the preferred method of changing the attributes of the object, as certain flags need to be
set to insure that other affected attributes are updated when needed. For example, when an object moves,
the flags that indicate that the object’s world position matrix and boundaries need to be recomputed need to
be set.

void
• SVE_changeObjectName(SVE_object object, char *newName);

Changes the givenobject ’s name to the given namenewName.

void
• SVE_setNewObjectPosition(SVE_object o, M_matrix newPosition);

SVE_object o The SVE object to move.

M_matrix newPosition The new position matrix.

Changes the object’sposition matrix (its position and orientation in relation to its parent) to the given
matrix.

The Simple Virtual Environment Library User’s Guide 139

4/16/97

void
• SVE_moveObject(SVE_object o, SVE_point newOrigin);

SVE_object o The SVE object to move.

M_matrix newOrigin The new origin of the object.

Changes the “position” part of the object’sposition matrix (the left three values of the bottom row of the
4x4 matrix) to the given origin. This will move the object to a new location using the x, y, z axis of its
parent.

void
• SVE_translateObjectGlobal(SVE_object o,float x,float y,float z);

SVE_object o The SVE object to move.

float x Amount to move in the x direction.

float y Amount to move in the y direction.

float z Amount to move in the z direction.

Moves the object by the specified amounts in the x, y, and z directions using the x, y and z axis of its parent
object.

void
• SVE_rotateObject(SVE_object o, float angle, char axis);

SVE_object o The SVE object to move.

float angle Amount (in degrees) to rotate the
object.

char axis Axis to rotate around(‘x’, ‘y’, or
‘z’).

Rotates the object around the specified axis (clockwise) using the object’s (NOT the parent’s) x, y, and z
axis.

void
• SVE_scaleObject(SVE_object o, float xScale, float yScale, float

zScale);

Scales the given object byxScale , yScale , andzScale in the X, Y, and Z directions of the object’s
coordinate system, respectively.

void
• SVE_translateWRT(SVE_object obj, SVE_object coordObj, SVE_point

newPos, boolean absolute);

Translates the given object to a new position (newPos) in the local coordinate system of thecoordObj
object if absolute isTRUE, or translates by the vector given innewPos in the local coordinate system of
coordObj if absolute isFALSE.

140 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_rotateWRT (SVE_object obj, SVE_object coordObj, float

theDegrees, char axis);

Rotates the given object by the number of degrees intheDegrees in the local coordinate system of the
coordObj object. Theaxis character defines which axis to rotate around, ‘x’, ‘y’, or ‘z’.

void
• SVE_scaleWRT (SVE_object obj, SVE_object coordObj, float scaleVal,

char axis);

Scales the given object by the scale factorscaleVal in the local coordinate system of thecoordObj
object. Theaxis character defines along which axis the scale takes effect, ‘x’, ‘y’, ‘z’, or ‘a’ (uniform
scale along all axis).

void
• SVE_moveTo(SVE_object obj, SVE_object coordObj, SVE_point

newPos);

Moves the given object to the position given innewPos in the local coordinate system of thecoordObj
object.

void
• SVE_moveBy(SVE_object obj, SVE_object coordObj, SVE_point

moveVector);

Moves the given object by the vector given inmoveVector in the local coordinate system of the
coordObj object.

void
• SVE_moveVertex(SVE_object o, SVE_pointPtr oldVertex, SVE_point

newPoint);

SVE_object o The SVE object containing the vertex
to move.

SVE_pointPtr oldVertex Pointer to the vertex to be moved.

SVE_point newPoint Point in world coordinates of the new
position of the vertex.

Moves a vertex of an SVE object to a new position in world coordinates. Any face that uses that vertex will
be affected.

void
• SVE_setVisibility(SVE_object o, boolean visible, boolean

setAncestors);

Sets the given object’svisible attribute to the value given invisible . If setAncestors is TRUE, then
thevisible attribute of the object’s parent and ancestors is also set the that value.

The Simple Virtual Environment Library User’s Guide 141

4/16/97

void
• SVE_setSelectable(SVE_object o, boolean selectable);

Sets theselectable attribute of the given object to the value given inselectable . Theselectable
attribute is generally used to keep the number of objects that can be selected by an interaction technique or
collided with other objects to a minimum.

void
• SVE_selectObject(SVE_object object);

Generate anSVE_OBJECT_SELECTION event for the given object. If defined, the appropriate event
callbacks will be called.

void
• SVE_highlightObject(SVE_object object, boolean highlight);

Generate anSVE_OBJECT_HIGHLIGHT event for the given object. If defined, the appropriate event
callbacks will be called. Ifhighlight is TRUE, and if a highlight geometry or highlight material is
defined for the object, then that will be used when rending the object.

void
• SVE_turnOnObjectLights(SVE_object o);

Turn the light definitions contained in the given object to the “on” position. If theSVE_LIGHTING
configuration is set, and the object is rendered, then the lights (if there are any in the object) will affect the
rendering of the scene.

void
• SVE_turnOffObjectLights(SVE_object o);

Turn the light definitions contained in the given object to the “off” position. This will ensure that the lights,
if any, will not affected the rendering of the scene.

boolean
• SVE_changeText(SVE_object o, char *newText);

SVE_object o The object containing the text.

char *newText The new text to assign to the object.

Searches the object for aTEXT primitive. If one is not found, this function returnsFALSE. If a TEXT
primitive is found, itstext string is changed to a copy of the givennewText and the function returns
TRUE. The oldtext string is freed from memory. Only the firstTEXT primitive in the object’s primitives
list is affected.

142 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_reCalculateWorldMatrix(SVE_object o);

SVE_object o Object which has changed.

This function should be called only when theposition matrix of the objecto has been changed without
using another SVE function. Generally, the functionSVE_reCalculateParentBoundaries() should
be called as well. After this function call is made, the next call toSVE_getWorldMatrix() will result in
the world position matrix of the object to be recalculated from the position matrixes of its parent and
ancestors.

1.3.5 Object Geometry

void
• SVE_setObjectMaterial(SVE_object o, SVE_material material);

Sets the object’s material of the given object tomaterial . The object’s material, if set, will override any
material specified in the geometry definition.

void
• SVE_setObjectHighlightMaterial(SVE_object o, SVE_material

material, boolean includeText);

Sets the given object’s highlight material to the givenmaterial . The object will be rendered entirely with
this material if the object is “highlighted” (itshighlight attribute is set toTRUE). If includeText is set
to FALSE, then any text primitives of the material will not change color (allowing them to be read if the
highlight material is not the same color as the text color).

void
• SVE_addObjectGeometry(SVE_object o, SVE_geometry newGeometry,

float minDistance, float maxDistance);

Addes a new (perhaps the first) geometry to the object’s definition. The given geometry may have a valid
range, set inminDistance andmaxDistance , which are distances in meters. IfminDistance or
maxDistance are -1, then there isn’t a limit for the minimum or maximum distance at which the
geometry is valid. If both are -1, then the goemetry is always valid. The first valid geometry is the one that
is rendered for the object. The list is searched in the order with which the geometries were added.

void
• SVE_removeObjectGeometry(SVE_object o, SVE_geometry geometry);

The given geometry is removed from the list of geometries of the given object.

void
• SVE_changeObjectGeometry(SVE_object o, SVE_geometry newGeometry);

The given geometry replaces the current geometry of the given object.

The Simple Virtual Environment Library User’s Guide 143

4/16/97

void
• SVE_addPrimitiveToObject(SVE_object o, SVE_primitive primitive);

The given pr imit ive is added to the current val id geometry of the object. The funct ion
SVE_addPrimitiveToGeometry() should be used if there is some doubt as to which geometry is valid.

void
• SVE_addHighlightPrimitiveToObject(SVE_object o, SVE_primitive

primitive);

Addes the given primitive to the highlight geometry of the given object. The highlight geometry will be
rendered instead of the object’s regular, valid, geometry if the object’shighlight attribute isTRUE. Note
that if the highlight geometry exists, it will override the highlight material. If the highlight geometry does
not yet exist, this function will create it if the given primitive is valid.

void
• SVE_updateObjectPrimitives(SVE_object o);

SVE_object o Object which has changed.

This function should be called only when any graphical aspect of the objecto has been changed, besides its
position or material, without using another SVE function. This function should not be necessary if the
SVE_initGeometryChange() function is called before any change to the object’s geometry.

void
• SVE_updateAllObjects(void);

The effect of this function is thatSVE_updateObjectPrimitives() is called on all SVE objects that
have been created. Calling this function may be necessary if the configuration has been changed (although
it is done automatically by theSVE_changeConfig() function).

1.3.6 Geometry Routines

SVE_geometry
• SVE_createGeometry(char *filename);

Creates aSVE_geometry structure, which is identified by the given name. If another geometry has been
created with the same name, and it has not been altered, then the returnedSVE_geometry will reference
the same geometry. Note that this function doesnot attempt to read a file by the given name. The name
does not necessarily need to be a filename, although geometries loaded from SVE primitives files will use
the full path name of the file from which the geometry description came to identify the geometry structure.

boolean
• SVE_emptyGeometry(SVE_geometry geometry);

Indicates if the given geometry is empty (has no description for visible appearance).

144 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_freeGeometry(SVE_geometry geometry);

Removes the given reference to the geometry. If this was the only reference to the geometry, then all
memory used to store the geometry is freed.

void
• SVE_initGeometryChange(SVE_geometry *geometry, SVE_object

object);

Indicates to the SVE system that a geometry has or will be changed. This hint will allow the SVE renderer
to correctly render the geometry, as well as treat the geometry’s boundaries correctly. If the geometry is
part of an object, then theobject should be given, so that its boundaries are recalculated. If the geometry
is independent of the object, then theobject parameter can beNULL.

SVE_geometry
• SVE_findGeometryInRepository(char *filename);

Returns a reference to the geometry referred to by the given name (which does not, necessarily, represent a
file name), even if the geometry has not been assigned to an SVE object.

void
• SVE_addPrimitiveToGeometry(SVE_geometry *geometry, SVE_primitive

primitive, SVE_object object);

Adds the givenprimitive to the geometry referred to by thegeometry parameter. If the geometry is
associated with an object (one of the geometries on its geometry list), then the object should be given, also,
so that its boundaries are recalculated. If the geometry is independent of an object, then theobject
parameter can beNULL.

void
• SVE_beginPrimitive(SVE_primitiveType type);

Begins the construction of a primitive of the giventype . The type parameter should be one of
POLYHEDRON, TEXTURED_POLYHEDRON, LINE , TEXT, or LIGHT. A call to SVE_beginPrimitive()
should be acompanied by a call toSVE_endPrimitive() to complete the construction of the primitive

int
• SVE_primitivePoint(int index, float x, float y, float z);

Stores a loca t ion (x , y, z) us ing the g iveni ndex to be used la te r by a ca l l to
SVE_primitiveVertexIndexes() . Returns the index if successful, or -1 if an error occured. If the
given index is -1, then an un-taken index will be generated and used, and returned by the function.

The Simple Virtual Environment Library User’s Guide 145

4/16/97

int
• SVE_primitivePointWithColor(int index, float x, float y, float z,

float r, float g, float b, float a);

Stores a location (x, y, z) and color at that location (r, g, b, a for red, grean, blue, and alpha) using the given
index to be used later by a call toSVE_primitiveVertexIndexes() . Returns the index if successful,
or -1 if an error occured. If the givenindex is -1, then an un-taken index will be generated and used, and
returned by the function. The color of the point will only be used for gouraud shaded scenes (i.e. the
SVE_GOURAUD configuration flag is set).

int
• SVE_primitiveNormal(int index, float x, float y, float z);

Stores the normal vector (x, y, z) using the givenindex . The last normal set by this function is used to set
the normal of a face that is created or vertex that is created bySVE_primitiveVertex() . The normal
can a lso be used at a ver tex locat ion by us ing the normal ’si ndex as a parameter to
SVE_primtiveVertexIndexes() . Vertex normals are used by the Gouraud shading algorithm to define
a surface which include all of the faces that have the vertex. The function returns theindex if successful,
or -1 if an error occured. If the givenindex is -1, then an un-taken normal index will be generated and
used, and returned by the function.

int
• SVE_primitiveTexCoord(int index, float s, float t);

Stores the texture coordinate (s, t) using the givenindex . The last texture coordinate set by this function is
used to set the texture coordinate of a vertex that is created bySVE_primtiveVertex() . The texture
coordinate can also be used at a vertex location by using the texture coordinate’s index as a parameter to
SVE_primtiveVertexIndexes() . Vertex texture coordinates are used by the texturing algorithm to
place a texture on a face. Texturing will only occur if theSVE_TEXTURES configuration flag is set. The
function returns theindex if successful, or -1 if an error occured. If the givenindex is -1, then an un-
taken texture coordinate index will be generated and used, and returned by the function.

int
• SVE_beginPrimitiveFace(void);

Begins the definition of a face. Returns a unique index that identifies the face.

int
• SVE_beginPrimitiveLine(void);

Begins the definition of a line. Returns a unique index that identifies the line.

int
• SVE_beginPrimitiveClosedLine(void);

Begins the definition of a closed line (where an additional line is drawn between the first and last vertexes
given). Returns a unique index that identifies the line.

146 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_vertexPtr
• SVE_primitiveVertexIndexes(int pointIndex, int normalIndex, int

textureIndex);

Adds a vertex to a face or line being defined. ThepointIndex , normalIndex , andtextureIndex
values given are the index values used in the primitive’s point, normal, and texture coordinate lists,
respectively. ThenormalIndex andtextureIndex values can be -1, if no normal or texture coordiate is
to be associated with this vertex. (If no normal is given, the face normal will be used by default.)

SVE_vertexPtr
• SVE_primitiveVertex(float x, float y, float z);

Adds a vertex to a face or line being defined with the given (x, y, z) location, and no normal or texture
coordinate.

void
• SVE_primitiveMaterial(SVE_material material);

Specifies the material of a primitive, face, or line being defined.

void
• SVE_primitiveHighlightMaterial(SVE_material material);

Specifies the highlight material of a primitive being defined.

SVE_facePtr
• SVE_endPrimitiveFace(void);

Completes the definition of a face (begun by aSVE_beginPrimitiveFace() call). Returns the face
definition.

SVE_facePtr
• SVE_endPrimitiveLine(void);

Comple tes the de fin i t i on o f a l i ne (begun by aSVE_beg inP r im i t i veL ine () o r
SVE_beginPrimitiveClosedLine() call). Returns the line definition.

void
• SVE_primitiveText(char *text);

Sets the character text (which can contain many lines separated by a ‘\n’ character) of aTEXT primitive.

void
• SVE_primitiveTextScale(float scale);

Sets the scale of aTEXT primitive.

The Simple Virtual Environment Library User’s Guide 147

4/16/97

void
• SVE_primitiveTextPosition(float x, float y, float z);

Sets the position of theTEXT primitive. This is the position of the bottom left corner of the first letter of the
text.

void
• SVE_primitiveTextRotation(float xrot, float yrot, float zrot);

Sets the rotation of theTEXT primitive. Rotation is applied in the following order:xrot , yrot , thenzrot .

void
• SVE_primitiveLineWidth(int lineWidth);

Sets the line width for line primitives.

SVE_primitive
• SVE_endPrimitive(void);

Completes the construction of a primitive, which was begun by a call toSVE_beginPrimitive , and
returns the constructed primitive.

void
• SVE_getTextExtent(char *text, float *originX, float *originY,

float *height, float *width);

Given a text string, returns the origin (x, y),height , andwidth of the text which would be rendered if the
text matrix was an identity matrix (i.e. the text geometry was unaltered). This routine effectively reports
the boundaries of the text, except that the origin of the text is at the bottom left corner of the first character
in the text. If the text has more than one line, the text will fall below the origin.

SVE_primitive
• SVE_createEmptyPrimitive(int tag);

Creates an empty primitive with the given idtag . For primitive construction, though, the
SVE_beginPrimitive() is prefered.

SVE_primitive
• SVE_getPrimitiveCopy(SVE_primitive primitive);

Creates a copy of the given primitive.

148 The Simple Virtual Environment Library User’s Guide

4/16/97

1.3.7 Low Level Geometry Routines

SVE_pointPtr
• SVE_createPoint(int index, float x, float y, float z);

Create the internal represenation of a 3D location in space, which can be stored in thepointList of a
primitive. Theindex should be a unique id (for the primitive), and can be used by thepointIndex record
in aSVE_vertexPtr of the primitive.

SVE_pointPtr
• SVE_createPointWithColor(int index, float x, float y, float z,

float r, float g, float b, float a, float bw);

Create the internal represenation of a 3D location in space and its color, which can be stored in the
pointList of a primitive. Theindex should be a unique id (for the primitive), and can be used by the
pointIndex record in aSVE_vertexPtr of the primitive. The color will be used when the
SVE_GOURAUD configuration is specified.

SVE_normalPtr
• SVE_createNormal(int index, float x, float y, float z);

Create the internal represenation of a normal vector, which can be stored in thenormalList of a
primitive. Theindex should be a unique id (for the primitive), and can be used by thenormalIndex
record in aSVE_vertexPtr of the primitive.

SVE_textureCoordPtr
• SVE_createTexCoord(int index, float s, float t);

Create the internal represenation of a texture coordinate on a polygon, which can be stored in the
txtvertices list of a primitive. Theindex should be a unique id (for the primitive), and can be used by
the texCoordIndex record in aSVE_vertexPtr of the primitive.

SVE_vertexPtr
• SVE_createVertex(int pointIndex, SVE_pointPtr point, int

normalIndex, SVE_normalPtr normal, int texCoordIndex,
SVE_textureCoordPtr texCoord);

Create the internal representation of a polygon vertex. ThepointIndex , normalIndex , and
texCoordIndex values identify the appropriate point, normal, and texture coordinate in the primitive’s
lists. normalIndex and texCoordIndex can be -1 to indicate no normal or texture coordinate,
respectively. ifpoint, normal , and/ortexCoord areNULL, and their respective indexes are not -1, then
their values will be optained using the indexes and appropriate lists when needed.

SVE_facePtr
• SVE_createFace(int index);

Create the internal representation of a face (with no verticies), using the given index (which should be
unique for the primitive).

The Simple Virtual Environment Library User’s Guide 149

4/16/97

SVE_facePtr
• SVE_createLine(int index);

Create the internal representation of a line (with no verticies), using the given index (which should be
unique for the primitive).

SVE_lightPtr
• SVE_createLight(void);

Create the internal representation of a light. It must be added to the geometry of an object which is
rendered to have any effect over the scene.

void
• SVE_turnOnLight(SVE_lightPtr light);

Given a light definition, turn it “on” (i.e. use it while rendering the scene if the light is contained in the
geometry of an object in the scene).

void
• SVE_turnOffLight(SVE_lightPtr light);

Given a light definition, turn it “off” (i.e. don’t use it while rendering a scene).

1.3.8 Material Routines

SVE_material
• SVE_getColorMaterial(float color[3]);

Given the red, green, blue color value, returns a material of that color, creating it if it does not already exist.

SVE_material
• SVE_getMaterialByName(char *name);

Given thename of a material, returns the material created with that name, orNULL if no material has been
created with the name.

SVE_material
• SVE_getMaterialByIndex(int index);

Given the uniqueindex of a material, returns the material created with that index, or NULL if no material
has been created with that index.

150 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_material
• SVE_createMaterial(char *name);

Creates a material with the given name. If a material of the name already exists, then that material will be
returned by the function. (Only one material for a particular name can exist.)

void
• SVE_setMaterialAmbient(SVE_material material, float ambient[3]);

Sets the ambient color of a material (color given no lights, or in shadow).

void
• SVE_setMaterialDiffuse(SVE_material material, float diffuse[3]);

Sets the diffuse color of a material (color response to light).

void
• SVE_setMaterialSpecular(SVE_material material, float

specular[3]);

Sets the specular color of a material (color response to light at the viewer angle where the light provides
specular reflection).

void
• SVE_setMaterialEmission(SVE_material material, float

emission[3]);

Sets the emission color of a material.

void
• SVE_setMaterialShininess(SVE_material material, float shininess);

Sets the shininess value of a material.

void
• SVE_setMaterialAlpha(SVE_material material, float alpha);

Sets the alpha component of a material. By default, this indicates a level of transparency of a polygon with
the given material, where 0.0 is fully transparent, and 1.0 is fully opaque.

void
• SVE_setMaterialTexture(SVE_material material, char *texture, int

textureMode, long textureEnv);

Sets the file name of the texture image to map on polygons with the given material. ThetextureMode
parameter can beSVE_TEXTURE_REPEAT, SVE_TEXTURE_CLAMP, or SVE_TEXTURE_GREYSCALE. The

The Simple Virtual Environment Library User’s Guide 151

4/16/97

t e x tu reEnv (tex tu re env i ronment) pa ramete r can beSVE_TEXTURE_DEFAULT,
SVE_TEXTURE_INTENSITY, SVE_TEXTURE_INTENSITY_ALPHA, SVE_TEXTURE_RGB,
SVE_TEXTURE_RGB_L IGHT ING, SVE_TEXTURE_RGB_ALPHA, o r
SVE_TEXTURE_RGB_ALPHA_LIGHTING.

void
• SVE_setMaterial3Color(SVE_material material, float color[3]);

Sets the ambient and diffuse colors of the material to the givencolor .

void
• SVE_setMaterial4Color(SVE_material material, float color[4]);

Sets the ambient and diffuse colors of the material to the first three values of the givencolor , and the
alpha value of the material to the last value of the givencolor .

1.3.9 Texture swapping

int
• SVE_defineObjectTextures(SVE_object o, int textureMode, int n,

...);

Defines a list of texture files to be used to texture map the given object. Then parameter indicates the
number of texture files to be given. ThetextureMode parameter indicates the mode of the given texture
files (SVE_TEXTURE_REPEAT, SVE_TEXTURE_CLAMP, or SVE_TEXTURE_GREYSCALE). The texture swap
callback indicates which of the given textures is used for a particular frame.

int
• SVE_defineObjectTextureList(SVE_object o, int textureMode, int n,

char* textureNames[]);

Defines a list of texture files, in thetextureNames array, to be used for all textures of the given object.
Then parameter indicates the number of texture files to be given. ThetextureMode parameter indicates
the mode of the given texture fi les (SVE_TEXTURE_REPEAT, SVE_TEXTURE_CLAMP, or
SVE_TEXTURE_GREYSCALE). The texture swap callback indicates which of the given textures is used for a
particular frame.

void
• SVE_setTextureSwapCallback(SVE_object o, SVE_objectFunctionPtr

f);

Sets the texture swap callback for a given object. The texture swap callback should return the index of the
texture to use for the object in the list of textures given (with 0 being the index of the first texture).

long
• SVE_defaultTextureSwap(SVE_object o, SVE_state state);

This is the default texture swap callback, which changes textures at the rate of 60 times per second, cycling
through the list of textures.

152 The Simple Virtual Environment Library User’s Guide

4/16/97

1.3.10 Automatic object animation

void
• SVE_initAnimation()

Initializes SVE’s animation routines.

void
• SVE_setObjectAnimation(SVE_object obj, boolean val)

Sets the animation flag forobj to be equal toval. A value of TRUE turns animation on for the object,
FALSE turns it off.

void
• SVE_setAnimationVar(SVE_object obj, int var, double val)

Sets the animation variable(s) specified byvar, for obj, to the value specified byval. The valid variables are
X_VELOCITY, Y_VELOCITY, Z_VELOCITY, X_ACCELERATION, Y_ACCELERATION,
Z_ACCELERATION, X_ROTATION, Y_ROTATION, and Z_ROTATION. See “Animation Variable” on
page 42 for a description of the animation variables.

void
• SVE_setAnimationFunc(SVE_object obj,

SVE_animateObjectFunctionPtr func)

Sets the object’s animation function forobj to point tofunc.

void
• SVE_setDefaultAnimationFunc(SVE_animateObjectFunctionPtr func)

Sets the default animation function to befunc.

void
• SVE_setUserDefinedData(SVE_object obj, void *data)

Sets the user defined data pointer forobj to point todata.

1.3.11 Animation Callbacks

void
• SVE_addAnimationCallback(SVE_functionPtr function);

Adds an animation callback function to the list of animation callbacks. The new function will be called
before all animation callbacks added before it.

The Simple Virtual Environment Library User’s Guide 153

4/16/97

void
• SVE_removeAnimationCallback(SVE_functionPtr function);

Removes the given animation callback,function , from the animation callback list.

void
• SVE_removeAllAnimationCallbacks(void);

Removes all animation callbacks from the system.

list
• SVE_getAnimationCallbacks(void);

Returns the linked list of animation callbacks (linked list ofSVE_functionPtr).

1.3.12 Object Tree Manipulation

void
• SVE_clearWorld(void);

Initializes the world back to how is set up whenSVE_init() is called. All objects except the default
object tree which represents the user are deleted. The default object tree is restored to its original tree
structure.

void
• SVE_attachToObject(SVE_object child, SVE_object parent);

SVE_object child The soon-to-be child object.

SVE_object parent The soon-to-be parent object.

Removes the SVE objectchild from the tree, saving its position and orientation in world coordinates, and
then attaches it to the SVE objectparent as one of it’s children, calculating itsposition matrix so that
it does not “move” in world. Although the object does not move in the world as a result of this function,
afterwards it is attached to theparent object, so that if theparent object moves, thechild object will
follow as if rigidly connected to it. This is the preferred function to use for changing links in the object
tree.

SVE_object
• SVE_removeObject(char *name, list *objectTree);

char *name Name of object to be removed.

list *objectTree Reference to an object tree (list).

Searches the object tree given for an object with the name,name (depth first search). When it is found, it is
removed (including its children) from the given object tree, and a reference to it is returned. If
SVE_WORLD is given forobjectTree (i.e. SVE_removeObject(“myobject”, SVE_WORLD) , the
world state object tree will be searched. Note that the object isnot deleted.

154 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_removeObjectEntry(SVE_object object, boolean

attachChildrenToParent);

SVE_object object Object to be removed.

boolean attachChildrenToParent

Removes the object (including its children) from the object tree it currently resides in. Note that the object
is not delected. IfattachChildrenToParent is TRUE, then the object’s children are attached to the
object’s parent. Otherwise, the object children remain attached to the object.

void
• SVE_addToWorldTree(SVE_object o);

Adds the given object to the root of the current world object tree.

void
• SVE_addChildToObject(SVE_object child, SVE_object parent);

SVE_object child The soon-to-be child object.

SVE_object parent The soon-to-be parent object.

Adds the objectchild to the front of the linked list of children objects of the objectparent .

void
• SVE_addToObjectList(SVE_object o, list *objectTree);

SVE_object o An object to add to an object tree.

list *objectTree Reference to an object tree (list).

Adds the given objecto to the list of objects referenced byobjectTree . (Added to the front of the linked
list of objects referenced byobjectTree .) If SVE_WORLD is given forobjectTree , the object will be
added to the world state object tree.

SVE_object
• SVE_removeFirstObject(list *objectList);

Removes the first object of the list of objects given asobjectList , and returns it. If the list contains no
objects, this function returnsNULL.

SVE_object
• SVE_getFirstObject(list *objectList);

Returns the first object of the objects listed inobjectList (or of the world object tree ifobjectList is
SVE_WORLD). The object isnot removed from the list.

The Simple Virtual Environment Library User’s Guide 155

4/16/97

1.3.13 Object Boundaries

SVE_boundaries *
• SVE_getObjectBoundaries(SVE_object o);

SVE_object o SVE object.

Returns the boundaries of the objecto, which include its children (and their children, etc.). If the object has
moved or changed, the boundaries will be recalculated.

SVE_boundaries *
• SVE_getPrimitiveBoundaries(SVE_object o);

SVE_object o SVE object.

Returns the primitive boundaries of the object o, which just bound its primitive components (faces, text,
etc.). If the object’s primitives have changed, the boundaries will be recalculated.

void
• SVE_getObjectCenter(SVE_object obj, SVE_point center);

SVE_object obj SVE object.

SVE_point center Point to conta in center po int o f
object.

The center of the objectobj ’s boundaries (including its children) in world coordinates is returned in
center .

SVE_object
• SVE_objectMatrixHit(list objectlist, M_matrix m, float margin,

boolean onlySelectable);

list objectlist Object list to search.

M_matrix m Matrix describing the position tested.

float margin Margin of error.

boolean onlySelectable Indicate if only “selectable” objects
are to be considered.

Tests each object in the object treeobjectlist , traversing the tree depth first, to see if the point in world
coordinates indicated by the matrixm is contained in the object’s boundary, within the givenmargin of
error (in meters). If theonlySelectable flag is true, only objects which are “selectable” (object-
>selectable == TRUE) are considered. The first object found is returned. If no objects are found, then
NULL is returned. IfSVE_WORLD is given forobjectlist , the world state object tree is searched.

156 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_object
• SVE_objectPointHit(list objectlist, SVE_point pt, float margin,

boolean onlySelectable);

list objectlist Object list to search.

SVE_point pt Point in wor ld coord inates to be
tested.

float margin Margin of error.

boolean onlySelectable Indicate if only “selectable” objects
are to be considered.

Tests each object in the object treeobjectlist , traversing the tree depth first, to see if the point in world
coordinates indicated bypt is contained in the object’s boundary, within the givenmargin of error (in
meters). If theonlySelectable flag is true, only objects which are “selectable” (object-
>selectable == TRUE) are considered. The first object found is returned. If and object is not found,
thenNULL is returned. IfSVE_WORLD is given forlist , the world state object tree is searched.

boolean
• SVE_matrixHitObject(SVE_object obj, M_matrix m, float margin);

SVE_object obj Object to be tested.

M_matrix m Matrix describing the position tested.

float margin Margin of error.

If the point in world coordinates described by the matrixm is in the objectobj ’s boundaries within the
givenmargin of error, this function returnsTRUE, otherwise it returnsFALSE.

boolean
• SVE_pointHitObject(SVE_object obj, SVE_point pt, float margin);

SVE_object obj Object to be tested.

SVE_point pt Point describing the position tested.

float margin Margin of error.

If the position in world coordinates described by the pointpt is in the objectobj ’s boundaries within the
givenmargin of error, this function returnsTRUE, otherwise it returnsFALSE.

boolean
• SVE_matrixHitObjectPrimitives(SVE_object obj, M_matrix m, float

margin);

SVE_object obj Object to be tested.

M_matrix m Matrix describing the position tested.

float margin Margin of error.

If the point in world coordinates described by the matrixm is in the objectobj ’s primitive boundaries
(which do not include its children) within the givenmargin of error, this function returnsTRUE, otherwise
it returnsFALSE.

The Simple Virtual Environment Library User’s Guide 157

4/16/97

boolean
• SVE_pointHitObjectPrimitives(SVE_object obj, SVE_point pt, float

margin);

SVE_object obj Object to be tested.

SVE_point pt Point describing the position tested.

float margin Margin of error.

If the position in world coordinates described by the pointpt is in the objectobj ’s primitive boundaries
(which do not include its children) within the givenmargin of error, this function returnsTRUE, otherwise
it returnsFALSE.

boolean
• SVE_objectBoundsCollide(SVE_object o1, SVE_object o2, boolean

includeChildren);

ReturnsTRUE if the boundaries of the given objects intersect. IfincludeChildren is TRUE, than the
boundaries of each object includes the boundaries of all their children. Note that sphere boundaries are
approximated by box boundaries for this function.

boolean
• SVE_objectBoundsInBounds(SVE_object o1, SVE_object o2, boolean

includeChildren);

ReturnsTRUE if the boundaries of objecto1 lie completely in the boundaries of objecto2 . If
includeChildren is TRUE, then the boundaries of each object includes the boundaries of all of their
children. Note that sphere boundaries are approximated by box boundaries for this function.

SVE_object
• SVE_pickObject(SVE_object pointer, list objectList, boolean

pickChildren, boolean canPickLines, float *intersectDist,
SVE_objectFunctionPtr rejectFunc);

This function returns the closest SVE object to the origin along the negative Z axis of the givenpointer
object (in thepointer object’s coordinate system) of the objects given inobjectList . If
pickChildren is TRUE, the child objects of each object is checked recursively. IfcanPickLines is
TRUE, then geometries containing lines (including text) are picked if the negative Z axis of the pointer
intersects the geometry’s bounding volume. The distance (inpointer coordinates) to the picked object
(if any) is returned ininteresectDist . If no object is intersected, the function returnsNULL. A
rejectFunc function can be provieded to reject objects that may be picked (intersects the negative Z axis,
but may not be the closest). This function takes the object pointer and the world state, and should return
SVE_REJECT or SVE_OK.

SVE_boundaries *
• SVE_createEmptyBoundaries(void);

Creates a boundary structure, but does not set any boundary values. This is done automatically when ever a
SVE function creates an object or a boundary.

158 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_boundaries *
• SVE_createSphereBoundaries(float radius, SVE_point origin);

float radius Radius of sphere boundary.

SVE_point origin Origin (in object coords) of sphere.

Creates a boundary structure which describes a sphere boundary at theorigin given (in object
coordinates) with theradius given.

void
• SVE_setSphereBoundaries(SVE_boundaries **bounds, float radius,

SVE_point origin);

Sets the given boundaries to be a sphere with the givenradius around the givenorigin .

SVE_boundaries *
• SVE_createBoxBoundaries(SVE_point x1, SVE_point x2);

SVE_point x1 Bottom left point of box boundary.

SVE_point x2 Top right point of box boundary.

Creates a box boundary described by two opposite points, the bottom left (x1) and the top right (x2). The
points are in object coordinates.

void
• SVE_setBoxBoundaries(SVE_boundaries **bounds, SVE_point x1,

SVE_point x2);

Sets the given boundaries to be a box with two opposite cornersx1 andx2 .

SVE_boundaries *
• SVE_copyBoundaries(SVE_boundaries *source, SVE_boundaries *dest);

SVE_boundaries *source Boundary to be copied.

SVE_boundaries *dest Boundary to copy to.

Copies the boundary structure given insource to the structure ofdest . Returns the boundaries that have
been copied. If dest isNULL, a new boundary structure is allocated and returned.

void
• SVE_calculateBounds(list objectTree);

list objectTree SVE object tree to calculate bounds.

This function can be used if the default behavior of calculating boundaries only when needed is not
desired. It forces the object and primitive boundaries of the objects inobjectTree and their children to
recalculate their boundaries at the time the function is called.

The Simple Virtual Environment Library User’s Guide 159

4/16/97

boolean
• SVE_getPrimitiveExtents(SVE_primitive primitive, SVE_point

minBounds, SVE_point maxBounds);

Given aprimitive definition, calculates the corners of a box which would contain all components of the
primitive.

void
• SVE_reCalculateObjectBoundaries(SVE_object o);

SVE_object o Object which has changed.

When an object’s geometry or children list is changed OUTSIDE of an SVE function, this function should
be called to insure that the object’s boundaries are recalculates when needed.

void
• SVE_reCalculateParentBoundaries(SVE_object o);

SVE_object o Object which has moved.

When an object’s position matrix is changed OUTSIDE of an SVE function, this function should be called
to insure that the objecto’s parent (and its parent, etc.) recalculates its boundaries when needed. This
function is usually called at the same time asSVE_reCalculateWorldMatrix() .

void
• SVE_drawBoundaries(list objects);

list objects Object list to display boundaries.

This function will render the object and primitive boundaries of each object in the object list and their
children. This function is usually called in a frame callback routine, as the viewing matrix must be on the
top of the matrix stack for the boundaries to be rendered correctly.

1.3.14 Widgets

void
• SVE_registerWidgetType(char *type, SVE_createWidgetFunctionPtr

createFunc, SVE_readWidgetFunctionPtr fileCreateFunc,
SVE_widgetFunctionPtr deleteFunc, SVE_widgetFunctionPtr
eventFunc, list eventList);

Registers a widget type using the given name. Instances of this widget type are created using the
SVE_makeWidget() function. When a widget instance is created, the givencreateFunc funciton is
called (if it is notNULL). If the widget is given in a file, then thefileCreateFunc function is called. If
the widget instance is deleted, then thedeleteFunc function is called before the widget is removed from
the scene and its storage deleted. When an event in the giveneventList occurs, the giveneventFunc
function is called.

160 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_object
• SVE_makeWidget(char *type, char *name, void *data);

Creates an instance of a widget of the giventype , using the givenname anddata pointer.

void
• *SVE_getWidgetData(char *type, char *name);

Given a widget type name, and a name of a widget instance, returns the widget data of that widget instance.

1.4. Callback utilities

1.4.1 Event callbacks

void
• SVE_ResetCallbacks(SVE_config config);

SVE_config config The current configuration of the SVE
system.

Resets all user-defined event callbacks toNULL, and restores the default event callbacks to their original
value, and enables them. (See “Responding to Events” on page 36.)

void
• SVE_registerCallback(int event, SVE_functionPtr function);

int event SVE or user defined event value.

SVE_functionPtr function user function to be called.

Registers a user defined function (function), which will be called every time an event (even t) reaches
the front of the event queue. The function will be added to th front of a list of event callback routines for
the event specified. If the function returnsEVENT_CONSUMED, then the callback routines further down the
list (added before this one) will not be called. If the function returnsEVENT_IGNORED, then the next
callback function on the list will be called. Seeinclude/event.h for list of event types.

void
• SVE_removeCallback(int event, SVE_functionPtr function);

int event SVE or user defined event.

SVE_functionPtr function Event callback function to be removed.

Removes the given callback function from the list of callback functions for the given event..

void
• SVE_removeAllCallbacks(int event);

Removes all of the event callbacks for the given event type.

The Simple Virtual Environment Library User’s Guide 161

4/16/97

list
• SVE_getEventCallback(int event);

int event SVE or user defined event.

Returns the linked list of the callback functions for the given event

void
• SVE_getMouseState(long int *mouseButton, long int *xPos, long int

*yPos, long int *xWinPos, long int *yWinPos);

This routine can be used to find the current position of the mouse, and the buttons that are currently
pressed. ThemouseButton parameter is a bit flag, containing the current state of the mouse buttons and
modifier keys (control, alt, etc.), 1 for down, 0 for up. Seeinclude/event.h for the appropriate bit
masks. ThexPos andyPos parameters are set to the position of the mouse on the screen. ThexWinPos
andyWinPos parameters are set to the position of the mouse in the SVE window.

void
• SVE_enterEvent(SVE_eventType eventType, void *eventData);

Enters an event of typeeventType onto the event queue using the appropriateeventData information
about the event. The event will be processed after all events that already have been entered in the event
queue by the application or SVE system. If an event callback for the event exists, it will be called when the
the event is processed.

1.4.2 Frame callback

void
• SVE_setFrameCallback(SVE_functionPtr function);

SVE_functionPtr function User defined function.

Adds the given function to the list of functions which will be called by the SVE system just after it clears
the back buffer and loads the current viewing matrix, and just before the SVE system renders all of the
objects in its object tree (given in theSVE_state structure). The functions are called in the opposite order
from which they were added (last one added is called first).

void
• SVE_removeFrameCallback(SVE_functionPtr function);

Removes the given frame callback from the list of frame callbacks.

void
• SVE_removeAllFrameCallbacks(void);

Removes all frame callbacks from the list of frame callbacks.

162 The Simple Virtual Environment Library User’s Guide

4/16/97

list
• SVE_getFrameCallback(void);

Gets the linked list of frame callback functions

1.4.3 Object Frame Callbacks

void
• SVE_setObjectFrameCallback(SVE_object object,

SVE_objectFunctionPtr function);

Adds the givenfunction to the givenobject ’s frame callback list. The function will be called after all
other frame callbacks previously added to the object’s list. These functions are called just before the
object’s geometry is rendered, after the graphics library has been set up to render in the object’s local
coordinate system.

void
• SVE_removeObjectFrameCallback(SVE_object object,

SVE_objectFunctionPtr function);

Removes the givenfunction from the list of frame callbacks of the givenobject .

void
• SVE_removeAllObjectFrameCallbacks(SVE_object object);

Removes all of the frame callback functions of the given givenobject .

list
• SVE_getObjectFrameCallback(SVE_object object);

Gets the list of frame callback functions for the givenobject (linked list ofSVE_objectFunctionPtr)

1.4.4 Frame End Callbacks

void
• SVE_setFrameEndCallback(SVE_functionPtr function);

Adds the givenfunction to the list of frame callback functions that will be called immediately after all
objects in the scene have been rendered by the SVE system (before the frame is displayed to the screen).
The given function will be called before all other frame end callbacks given before it.

void
• SVE_removeFrameEndCallback(SVE_functionPtr function);

Removes the givenfunction from the list of frame end callback functions.

The Simple Virtual Environment Library User’s Guide 163

4/16/97

void
• SVE_removeAllFrameEndCallbacks(void);

Removes all frame end callback functions.

list
• SVE_getFrameEndCallbacks(void);

Returns the list of frame end callback functions (linked list ofSVE_functionPtr).

1.4.5 Object Culling Callbacks

void
• SVE_addCullingFunction(SVE_cullFunctionPtr function);

This function allow the application to add to the list of functions called for each object to determine if the
object should be “culled”, or not drawn, given the current viewing parameters. The default list of culling
functions contains one function, which isSVE_getObjectVisibility() . If the application would like
to provide its own culling function which performs the default behavior and some additional, application
specific, work, then its culling function should callSVE_objectCull() to determine if the object’s
bounds are in the viewing frustrum. The functions on the list are called one at a time until one returns
SVE_NONE_VISIBLE or SVE_CHILDREN_ONLY_VISIBLE. If no function returns one of these
values, the object’s visibility is set to the value returned by the last culling function. The functions are
called in the reverse order from which they were added (last added is first to be called).

void
• SVE_removeCullingFunction(SVE_cullFunctionPtr function);

Removes the given function from the list of culling functions.

void
• SVE_removeAllCullingFunctions(void);

Removes all culling functions, include the default function which is added automatically by the SVE
system when it is initialized.

list
• SVE_getCullingFunctions(void);

Returns the list of culling functions that have been added.

SVE_vistype
• SVE_getObjectVisibility(SVE_object obj, M_matrix worldToEye);

Determines the visibility of the given object to the given theworldToEye matrix (which is the perspective
matrix premultiplied by the viewing matrix). The function returns one of the following predefined values:

164 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_ALL_VISIBLE (if the object and its children are complete visible. The SVE renderer will assume the
object’s children are also completely visible),SVE_PART_VISIBLE (if the only part of the object is
visible. The SVE renderer wi l l also check each of the object ’s chi ldren for vis ibi l i ty),
SVE_CHILDREN_ONLY_VISIBLE (if the object’s geometry is not visible, but its children may be visible),
SVE_NONE_VISIBLE (if neither the object nor the object’s children are visible. The SVE renderer will not
render the object or its children), andSVE_VISIBILITY_UNKNOWN (the SVE renderer will render the
object, and will check its children for visibility).

unsigned short
• SVE_objectCull(SVE_object o, M_matrix worldToEye, boolean

earlyExit);

This function determines if the given object is in the viewing frustrum determined by theworldToEye
transformation matrix (which is the perspective matrix premultiplied by the viewing matrix, and is what is
provided when the culling functions are called). The fieldearlyExit should beTRUE if it is not
important to know whether the object is fully or partially visible. This function returns one of the
following values:CULL_NOT_VISIBLE, CULL_ALL_VISIBLE , CULL_DONT_KNOW. If the function returns
a value other than these, then the object is partially visible.

1.5. User Oriented Utilities

SVE_status
• SVE_fly(SVE_state state);

SVE_state state SVE world state.

This function can be used as an animation callback, or called from another function, to have the user
(specifically theuserObject , usually named “USER”) move in the direction of the view (or the
viewingObject). Each call moves the user in the direction of the view in an amount proportional to the
flightSpeed value in thestate structure.

void
• SVE_flyWithDirection(SVE_state state, M_matrix direction);

SVE_state state SVE world state.

M_matrix direction Direction to fly in.

This function causes the user (specifically theuserObject , usually named “USER”) to move in a given
direction. If theposition matrix of an object is given as thedirection , the user will fly in the negative
Z direction in the object’s coordinate system. Each call moves the user in an amount proportional to the
flightSpeed value in thestate structure.

void
• SVE_flyInObject(SVE_state state, SVE_object o);

SVE_state state SVE world state.

SVE_object o Object within which the user can fly.

This function causes the user (specifically theuserObject , usually named “USER”) to move in the
direction of the view (or theviewingObject). Each call moves the user in the direction of the view in an
amount proportional to theflightSpeed value in the state structure, but does not allow the user to move

The Simple Virtual Environment Library User’s Guide 165

4/16/97

outside of the objecto’s boundaries. An error value is used to insure that the user cannot move outside the
object.

void
• SVE_flyInObjectWithDirection(SVE_state state, SVE_object o,

M_matrix direction);

SVE_state state SVE world state.

SVE_object o Object within which the user can fly.

M_matrix direction Direction to fly in.

This function causes the user (specifically theuserObject , usually named “USER”) to move in the
direction given. If theposition matrix of an object is given as thedirection , the user will fly in the
negative Z direction in the object’s coordinate system. Each call moves the user in an amount proportional
to theflightSpeed value in thestate structure., but does not allow the user to move outside of the
objecto’s boundaries. An error value is used to insure that the user cannot move outside the object.

1.6. Rendering Functions

The rendering of the object tree in the world state structure is done automatically each frame. The frame
callback allows the application to render anything not contained in the tree. Standard GL or OpenGL calls
can be used to render GL or OpenGL primitives not supported by the SVE primitive structure, or SVE
objects not in the world object tree can be rendered using the following routines:

void
• SVE_renderObjectList(list objectTree);

list objectTree Object tree to render.

Renders each object and their children (and their children, etc.) in the object listobjectTree . If
objectTree is SVE_WORLD, the world state object tree will be rendered (which is already done
automatically for each frame).

void
• SVE_renderObject(SVE_object obj);

SVE_object obj

Renders one object given byobj , and its children (and its children, etc.).

void
• SVE_renderWorld(SVE_state worldState);

SVE_state worldState SVE world state with an object tree
which is rendered.

This is equivalent toSVE_renderObjectList(worldState->objectTree);

166 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_renderNow(SVE_state worldState, SVE_functionPtr

frameCallback);

Renders a complete frame of the object tree stored in the givenworldState . The givenframeCallack ,
if not NULL, will be called before the object tree is rendered. Note that this frame will be independent of
any other f rame rendered by the SVE system or other cal ls toSVE_renderNow() or
SVE_renderNowWithFrameCallbacks() .

void
• SVE_renderNowWithFrameCallbacks(SVE_state worldState, boolean

newFrame);

Renders a complete frame of the object tree stored in the givenworldState . Note that, ifnewFrame is
TRUE, this frame will be independent of any other frame rendered by the SVE system or other calls to
SVE_renderNow() or SVE_renderNowWithFrameCallbacks() . All frame callbacks are called with
this routine. Therefore if you callSVE_renderNowWithFrameCallbacks() in a frame callback (or a
function that could be called from a frame callback) you must take some action that will prevent the
function from callingSVE_renderNowWithFrameCallbacks() again! For example, this will work:

void frameCallback(SVE_state state)
{

static boolean inFrameCallback = FALSE;

if (!inFrameCallback) {
inFrameCallback = TRUE;
SVE_renderNowWithFrameCallbacks(state);
inFrameCallback = FALSE;

}
}

void
• SVE_getViewingAndPerspectiveMatrix(SVE_state worldState,

M_matrix viewing, M_matrix perspective);

Returns the viewing and perspective matrixes used to set up the view given objects in world coordinates,
and the user’s world eye point and view plane position and window extents.

void
• SVE_drawTrackerExtent(float radius);

float radius Anticipated tracker range.

This function will render a sphere represented by 3 line circles (around each axis at the) surrounding the
tracker transmitter. It might be useful to provide feedback as to whether the user is approaching the limits
of the tracker. It usually is called in a frame callback routine, as the viewing matrix must be on the top of
the matrix stack for the sphere to be rendered correctly.

The Simple Virtual Environment Library User’s Guide 167

4/16/97

void
• SVE_enableBackfaceCulling(void);

Enable back face culling, which indicates that faces whose normals do not face the viewer should not be
rendered. This is the default.

void
• SVE_disableBackfaceCulling(void);

Disables the rendering optimization that removes faces whose normals do not face the viewer from the
faces that are rendered. Back face culling is enabled by default.

1.7. General utilities

1.7.1 State functions

SVE_config
• SVE_getConfig(void);

Returns the current configuration.

void
• SVE_changeConfig(SVE_config newConfig);

Changes the current configuration to the givennewConfig .

SVE_state
• SVE_getWorldState(void);

Returns the current world state.

SVE_state
• SVE_setWorldState(SVE_state newState);

Changes the current world state to the givennewState . The fields of the new state must be set correctly to
avoid many potential problems. Of critical importance is the references to the user objects, such as the eye
and view plane, as well as the various resource lists.

void
• SVE_setBackgroundColor(float r, float g, float b);

float r, g, b Red, green, and blue values. Ranging
from 0 to 1.

Sets the color to be used as the background for each frame rendered by the SVE system.

168 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_setFlightSpeed(float speed);

float speed New flight speed.

Sets the flight speed value (in meters per second) used for the flying functions.

void
• SVE_setViewPlaneExtents(float minX, float minY, float maxX, float

maxY);

Sets the extents of the window on the view plane which defines the viewing volume of the viewer, using
the viewer’s eye point and planes that pass through the eye point and each edge of the window. Given
values are ofsets from the view plane’s origin in its X-Y plane.

void
• SVE_setFieldOfView(int fieldOfViewY, float aspectRatio);

Sets the field of view (in 0.1’s of degrees, i.e. 100 = 10 degrees) and aspect ratio of the view. From these
values, the extents of the window on the view plane are calculated.

void
• SVE_setDefaultObjectDirectory(char *directory);

Sets the directory path list that is searched when object files are to be loaded. The directory path list is
given as paths separated by a colon (‘:’). The previous object directory path list is lost.

void
• SVE_setDefaultWorldDirectory(char *directory);

Sets the directory path list that is searched when world files are to be loaded. The directory path list is
given as paths separated by a colon (‘:’). The previous world directory path list is lost.

void
• SVE_setDefaultMaterialDirectory(char *directory);

Sets the directory path list that is searched when material files are to be loaded. The directory path list is
given as paths separated by a colon (‘:’). The previous material directory path list is lost.

void
• SVE_setDefaultTextureDirectory(char *directory);

Sets the directory path list that is searched when texture files are to be loaded. The directory path list is
given as paths separated by a colon (‘:’). The previous texture directory path list is lost.

The Simple Virtual Environment Library User’s Guide 169

4/16/97

1.7.2 Matrix functions

void
• SVE_invertMatrix(M_matrix mat, M_matrix inv);

M_matrix mat Operand.

M_matrix inv Result.

Inverts the given matrixmat and returns the result in the matrixinv .

void
• SVE_getRelativeMatrix(M_matrix a, M_matrix b, M_matrix result);

M_matrix a Source position matrix.

M_matrix b Destination position matrix.

M_matrix result Transformation from “a” to “b”.

Calculates the relative transformation from a position defined in the matrixa to a position defined in the
matrixb, and stores the result inresult . Thus [result][a] = [b]. For example, the following code sequence
calculates an object’s coordinate transformation from one world coordinate position (parentWorldPos)
given its own world coordinate position (childWorldPos), which is used when attaching the child object
to the parent object without changing the child object’s world coordinates position. (An object’s world
coordinate position is calculated by pre-multiplying its coodinate transform from its parent by the parent’s
world coordinate position.)

SVE_getWorldMatrix(parent, parentWorldPos);
SVE_getWorldMatrix(child, childWorldPos);
SVE_getRelativeMatrix(parentWorldPos, childWorldPos, newPos);
SVE_copyMatrix(newPos, child->position);

double
• SVE_getMatrixDist(M_matrix a, M_matrix b);

M_matrix a Operand.

M_matrix b Operand.

Calculates the euclid distance of the translational components of the matrixa and the matrixb. Returns the
result.

void
• SVE_copyMatrix(M_matrix s, M_matrix d);

M_matrix s Source matrix.

M_matrix d Destination matrix.

Copies the 4X4 matrixs to the matrixd.

void
• SVE_printMatrix(M_matrix m);

This function will print the matrix onstdout. This function can be used for debugging.

170 The Simple Virtual Environment Library User’s Guide

4/16/97

1.8. Default User Tree Information

1.8.1 Cursor Information

void
• SVE_getCursorPosition(M_matrix pos);

M_matrix pos Result.

Stores inpos the position and orientation matrix of thecursorObject , which is usually the “SVE
cursor ” object.

SVE_object
• SVE_getCursorObject(void);

Returns thecursor Object object, which usually is the “SVE cursor ” object. The “SVE cursor ” object
begins as an empty object, but can be given primitives and/or children objects which will be rendered at the
location and with the orientation of the “SVE cursor ” object.

1.8.2 HMD Information

void
• SVE_getHMDPosition(M_matrix pos);

M_matrix pos Result.

Stores inpos the world position and orientation matrix of thehmdObject , which is usually the “SVE
HMD” object.

SVE_object
• SVE_getHMDObject(void);

Returns thehmdObject object, which usually is the “SVE HMD” object. The “SVE HMD” object begins as
an empty object, but can be given primitives and/or children objects which will be rendered at the location
and with the orientation of the “SVE HMD” object.

1.9. Polling Device Routines

SVE_pollDevice
• SVE_createPollingDevice(int type, int deviceId,

SVE_pollFunctionPtr openFunction, SVE_pollFunctionPtr
pollFunction, SVE_pollFunctionPtr closeFunction, char
*attachTo, void *data);

Creates a polling device instance of the giventype anddeviceId . After the returned device is added to
the system, usingSVE_addPollingDevice() , the device is openned with the givenopenFunction ,
polled each frame with the givenpollFunction (which will be given the returnedSVE_pollDevice
structure), and closed with the givencloseFunction . If given, theattachTo parameter will be used to
set theattachTo field of the returnedSVE_pollDevice , which the object with theattachTo name.
The givendata pointer will also be stored in the returnedSVE_pollDevice structure.

The Simple Virtual Environment Library User’s Guide 171

4/16/97

SVE_pollDevice
• SVE_findPollingDevice(int type, int id);

Returns a polling device given thetype andid it was defined with.

void
• SVE_addPollingDevice(SVE_pollDevice device);

Adds the given polling device to the SVE system, which will open it, call the polling function once each
frame, and close it with the sysetem is done.

1.9.1 Tracker Device Routines

boolean
• SVE_initTracker(int trackerId, char *machine, int type, char

*port, int receiver, char *attachTo, float hemiVector[3],
SVE_pollFunctionPtr pollFunction);

Creates a new tracking device interface, using the given uniquetrackerID . The interface uses a tracker
on the givenmachine , of the giventype , port , andreceiver . TheattachTo string idenfies the name
of an object that should follow the tracker. ThehemiVector defines a vector pointed from the origin of
the tracking reference frame to the center of the hemisphere within which the tracker is to be accurate. The
pollFunction is called each frame to obtain the tracking information. TheSVE_updateTracker()
function can be used for the pollFunction.

void
• SVE_attachTracker(int trackerId, char *objectName,

SVE_pollFunctionPtr pollFunction);

Attaches the tracking device interface identified with the giventrackerId to the object with the name
objectName . The polling function of the tracker interface, which is called to optain the current tracking
information, is given in thepollFunction parameter.

SVE_status
• SVE_updateTracker(SVE_pollDevice device, SVE_state state);

Polls a tracking device for the current tracker information. Can be used as a polling function for the
SVE_initTracker() andSVE_attachTracker() routines.

boolean
• SVE_trackerExists(int trackerId);

ReturnsTRUE if a tracker device interface has been created, throughSVE_initTracker() , using the
given trackerId .

172 The Simple Virtual Environment Library User’s Guide

4/16/97

1.9.2 Glove Utilities

boolean
• SVE_initGlove(int gloveId, char *machine, char *port, char

*attachTo);

int gloveId Unique id number of the glove.

char *machine Machine to which the glove device is
attached.

char *port Port to which the glove device is
attached (“/dev/ttyd2”, for example).

char *attachTo String name of an object to attach the
glove objects that make up the hand
representation.

Initializes the glove input device connected to the givenmachine through the givenport , and sets up an
object structure for the hand’s representation in the SVE environment. The hand object structure is
retrieved from the “glove” sub-directory of the Default Object Directory, and is attached to the SVE object
identified by theattachTo name.

void
• SVE_readHandFile(char *filename, int gloveId);

char *filename Name of hand data file to read.

int gloveId Reference to glove device.

Reads a hand calibration file that contains the information needed to calibrate a particular hand to the
sensors of the CyberGlove input device. ThegloveId parameter refers to the same number that was used
to initialize the glove device.

void
• SVE_saveHandFile(char *filename, int gloveId);

char *filename Name of hand data file to save.

int gloveId Reference to glove device.

Saves a hand calibration file that contains the information needed to calibrate a particular hand to the
sensors of the CyberGlove input device. ThegloveId parameter refers to the number given when the
glove device was initialized.

void
• SVE_readGestureFile(char *filename, int gloveId);

char *filename Name of gesture file to read.

int gloveId Reference to glove device.

Reads a gesture file, and adds the gesture’s defined there to the gesture list associated with the glove device
identified by thegloveId parameter.

The Simple Virtual Environment Library User’s Guide 173

4/16/97

void
• SVE_resetGestureList(int gloveId);

int gloveId Reference to glove device.

Removes all gestures memorized and read from files for the glove device identified by thegloveId
parameter..

void
• SVE_saveCurrentGesture(int gloveId, int priority, boolean

replaceOldGesture);

int gloveId Reference to glove device.

int priority Priority value.

boolean replaceOldGesture Indicates if the gestures containing
the same priority should be replaced.

Saves the angles of each joint made by the hand in the glove at the last time it was polled (once per frame)
on a list of gestures maintained for the given glove device. The gesture list is keyed by the given priority.
There can be many gestures per priority. If this gesture should be the only one at this priority, the
r ep l aceO ldGes tu re fl ag shou ld be TRUE. When recogn iz ing ges tu res (see
SVE_recognizeGestures()), the gesture with the lowest priority number that matches each angle of
the current gesture will be considered a SVE_GESTURE event. The SVE_GESTURE event, with the priority
of the matching gesture begin the event value, will be placed on the event queue.

void
• SVE_recognizeGestures(int gloveId, boolean flag);

int gloveId Reference to glove device.

boolean flag Enable flag.

If flag is TRUE, the current gesture made by the hand in the glove input device identified bygloveId will
be checked with the list of gestures which have been saved for a match. If a match is found, an
SVE_GESTURE event will be placed on the event queue (seeSVE_saveCurrentGesture()) with an
event value corresponding to the gesture index. If no match is found, an SVE_GESTURE event will occur
with the valueNULL_GESTURE. If flag isFALSE, hand gestures made by the device will not be recognized.

SVE_object
• SVE_getPalmObject(SVE_object attachedTo);

SVE_object attachedTo Objec t to wh ich the hand
representation is attached.

Returns the object that is the palm object of the hand structure (seeSVE_initGlove()).

1.10. Sound utilities

There are currently two different kinds of audio support. The first one will load inAIFF files and the
second one will create spatial sound coming from a SUN workstation.

174 The Simple Virtual Environment Library User’s Guide

4/16/97

1.10.1 Audio commands

int
• SVE_audioOpenSound(char *filename);

char *filename audio file to load.

This function will load the audio sample into memory and return the a handle for this sample. If repeat is
set toTRUE, then the sample begins playing immediately, otherwise it is just loaded.

void
• SVE_audioReplaySound(int SampleNo, int repeat);

int SampleNo handle of the sample.

int repeat play the sound continuously?

This function will check whether the sample with handleSampleNo is not playing and play it if it isn’t. To
have the sound play continuously without user interaction make therepeat flag equal toTRUE.

void
• SVE_audioStopSound(int SampleNo);

int SampleNo handle of the sample.

If the sample withSampleNo is currently playing, it is stopped. The sample will not be deleted from
memory.

void
• SVE_audioCloseSound(int SampleNo);

int SampleNo handle of the sample.

This function will stop playing the sample corresponding toSampleNo and remove it from memory.

boolean
• SVE_audioCheckSound(int SampleNo);

int SampleNo handle of the sample.

This functions checks to see whether or not the sample corresponding to SampleNo is currently playing.
TRUE is returned if it is. OtherwiseFALSE is returned.

void
• SVE_audioSetVolume(int left, int right);

int left volume left earphone.

int right volume right earphone.

With this function the volume of both left and right earphone can be changed. The volume should be
between 0 and 255 (the scale of change is logarithmic).

The Simple Virtual Environment Library User’s Guide 175

4/16/97

voids
• SVE_audioGetVolume(int *left, int *right);

int *left volume left earphone.

int *right volume right earphone.

This function will return the volume of both the left and the right ear phone. The number will be between 0
and 255.

1.10.2 Spatial sound utilities

void
• SVE_attachSoundToObject(SVE_object object);

SVE_object object The new sound source object.

This call will activate a mechanism that automatically updates the spatial sound system running on the
SUN station (nagel.cc.gatech.edu). The sound location will be coupled to the transformation of the object.
This function can only be used when the system was initialized with the constant SVE_SPATIALSOUND.

NOTE: Spacial sound is currently not available.

void
• SVE_changeSoundUpdateRate(int rate);

int rate The update rate (in frames).

This call acts on the mechanism that automatically updates the spatial sound system running on the SUN
station (nagel.cc.gatech.edu). The update rate determines the number of frames between sending sound
updates, e.g. 1 = each frame, 10 = each tenth frame (default value is 1).Because too fast update rates will
cause digitial noise (“clicks”), this update rate should be lowered to about 10-20 frames per second. This
function can only be used when the system was initialized with the constantSVE_SPATIALSOUND.

1.11. Text Output Routines

void
• SVE_printVerbose(char *string, ...);

Outputs the given formatstring , and the value of any additional parameters as indicated by the format
string. Use in the same way thatprintf() is used. The string “SVE:” will be prepended to the output.

void
• SVE_printError(char *string, ...);

Outputs the given formatstring , and the value of any additional parameters as indicated by the format
string, toSTDERR. Use in the same way thatprintf() is used. The string “SVE ERROR:” will be
prepended to the output.

176 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• SVE_printFileError(char *filename, char *string, ...);

Outputs the given formatstring , and the value of any additional parameters as indicated by the format
string. Use in the same way thatprintf() is used. An error message, indicating that this is a file error
message and including the givenfilename , will be prepended to the output.

void
• SVE_printDebug(char *string, ...);

Outputs the given formatstring , and the value of any additional parameters as indicated by the format
string. Use in the same way thatprintf() is used. The given output will not appear if debugging has been
turned “off” (i.e. theSVE_debug global variable isFALSE) andDEBUG is not defined (when compiling).

The Simple Virtual Environment Library User’s Guide 177

4/16/97

2. Data Structure Utilities

The SVE library uses two data structures and their utilities to store various parts of its data. The linked list
data structure is used to store an ordered group of items, the number of which is unbounded. The dynaminc
array data structure is used to store a group of items, each using a index key, the number of which is
unbounded. The search time for any item in the linked list is worst case N, where N is the number of items
in the list. The worst case search time for any item in the dynamic array is worst case 1 array reference.

The SVE library uses another utility to parse files. This utility supports directory path lists, and commented
lines.

2.1. Linked List

This is a simple linked list data structure, where any item of typelist is a pointer to the first node in a
linked list. The pointer from one node to the next is also of typelist . The following routines are defined
for this data structure.

list
• createList();

Creates an empty linked list, and returns it.

void
• addToList(list *listHead, void *data);

list *listHead Reference to the list front.

void *data Data to store (cast to void *)

Stores the givendata at the front of the given list.

void
• addToListEnd(list *listHead, void *data);

list *listHead Reference to the list front.

void *data Data to store (cast to void *)

Searches for the end of the given list, and creates a new node containing the givendata at the end.

void
• addToListFront(list *listHead, void *data);

list *listHead Reference to the list head

void *data Data to store (cast to void *)

Adds a new node containing the givendata to the front of the given list.

178 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• addToListSorted(list *listHead, void *data, int

(*compareFunc)(void *a, void *b));

list *listHead Reference to the list head

void *data Data to store (cast to void *)

int (*compareFunc)(void *a, void *b)

Function that compares two data values

Adds a new node containing the givendata to the list, placing it so that the nodes up to the inserted node
are in order. The order is determined by the given compare function. The compare function is given two
data values that have been stored, and it should return an integer less than zero if the first value is less than
the second, zero if the values are equal, and greater than zero if the first value is greater than the second. As
an example, if the data values being stored are pointers to character strings (char *), then thestrcmp
function could be used as the compare function.

void *
• getData(list listHead);

list listHead The head of the list

Returns the data value stored at the node which is at the head of the given list. If the data value is not a
void*, it should be cast to the correct type.

list
• getNext(list listHead);

list listHead The head of the list

Returns the list which begins after the first node in the given list. If the list only has one node in it, this
function will return an empty list.

list
• findData(list listHead, void *data, int (*equalFunc)(void *data,

void *b));

list listHead Head of the linked list

void *data Data to search for

int (*equalFunc)(void *data, void *b)

Function used to search

This function searches the given function, looking for a data value in the list which is equal to the given
data value, based on the equal function provided. The equal function should return TRUE (1) if the two
data values given to it should be considered equal (the first parameter to the equal function is the data value
given), or FALSE(0) if they should be considered not equal. (Note that this is different from the compare
function given toaddToListSorted()). If the given equal function isNULL, then the data values will be
directly compared.

This funciton returns a list, where the first node in the list contains the data value which is “equal” to the
given data value, or it returns an empty list if no matches where found.

The Simple Virtual Environment Library User’s Guide 179

4/16/97

void *
• removeData(list *listHead, void *data, int (*equalFunc)(void

*data, void *b));

list *listHead Head of the linked list

void *data Data to search for

int (*equalFunc)(void *data, void *b)

Function used to search

This function is similar to thefindData() function, except that if a match is found (based on the given
equal function), then the node containing the match is removed from the given list, and the data value
contained in that node is returned. This function returnsNULL if no match is found.

void *
• removeFirst(list *listHead);

list *listHead Reference to the linked list head

Removes the first node in the given list and returns the data value stored in that node. If the given list is
empty, then this function returnsNULL.

boolean
• listEmpty(list listHead);

list listHead Head of the linked list

ReturnsTRUE if the list is empty,FALSE if it is not.

void
• sortList(list *listHead, int (*compareFunc)(void *a, void *b));

list *listHead Reference to the list head

int (*compareFunc)(void *a, void *b)

Function used to compare data values

This function sorts the given linked list using the given compare function to determine relative ordering
between two data values. The compare function should return an integer less than zero if the first parameter
is less than the second parameter, zero if the two parameters are equal, or an integer greater than zero if the
first parameter is greater than the second parameter.

180 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• copyList(list *dest, list source, void (*copyFunc)(void

**destData, void *sourceData));

list *dest List to copy to

list source List to copy

void (*copyFunc)(void **destData, void *sourceData)

Function to copy data values

This function copies thesource list, using the given copy function to copy the data values, and returns the
copy indest . The copy function should make a copy of thesourceData parameter, set thedestData
parameter to the copy, and return the copy. Thestrcpy function is an example which will copy string data
values.

void
• appendList(list *dest, list source);

list *dest List to append to

list source List to append

Appends the listsource to the list refered to bydest . This function does not make a copy.

void
• updateSortedList(list *listHead, list insertList, int

(*compareFunc)(void *a, void *b), void (*freeFunc)(void
*data));

list *listHead Reference to the list head

list insertList List to insert

int (*compareFunc)(void *a, void *b)

Function used to compare data values

void (*freeFunc)(void *data)

Function used to free duplicate values

This function inserts the listinsertList into the list refered to bylistHead , inserting each item so that
the resulting list is in order (if the list refered to bylistHead was in order to begin with). The compare
function is used to compare data values in the list (seesortList()). The free function is used to free any
data values that are duplicates (the compare function returns 0). If the free function isNULL, then
duplicates are not freed.

void
• freeList(list *listHead, void (*freeFunc)(void *data));

list *listHead Reference to the list head

void (*freeFunc)(void *data)Function which frees data values

This function frees the given list (setting it to be empty afterwords). The data values in the list are freed
using the given function. If the function isNULL, no function will be called to free the data values stored in
the list.

The Simple Virtual Environment Library User’s Guide 181

4/16/97

void
• printList(list listHead, void (*printFunc)(void *data));

list listHead Reference to the list head

void (*printFunc)(void *data)

Function used to print the data values

This function prints tostdout the list given, using the given print function to print out the data values at
each node.

2.2. Dynamic Array

The dynamic array utilities maintain a dynamic array data type, DA_array. This structure can be
considered an implementation of an array which is unbounded. The array grows as more items are inserted
into it, but does so in a way that preserves (almost) direct access to the items in the array.

DA_array
• DA_createArray(void);

Creates an empty dynamic array.

int
• DA_empty(DA_array d);

DA_array d The dynamic array

ReturnsTRUE(1) if the given array is empty,FALSE(0) if it is not.

int
• DA_store(DA_array *sp, void *v_ptr, int index);

DA_array *sp Reference to the dynamic array

void *v_ptr Data item to store (cast to void *)

int index Index used to store the data item

This function stores the given data item into the given dynamic array at the location identified by the index
value. Any data already at that location will be lost. The function returnsFALSE if there is not enough
memory to store the data.

void *
• DA_get(DA_array sp, int index);

DA_array sp The dynamic array

int index Index of the desired item

This function finds the data item stored in the given dynamic array at the location identified by the index
value. If there is no data item stored there, the function returnsNULL.

182 The Simple Virtual Environment Library User’s Guide

4/16/97

int
• DA_arrayMin(DA_array p);

DA_array p The dynamic array

Returns the smallest index used to store a data item. Returns -1 if the array is empty.

int
• DA_arrayMax(DA_array p);

DA_array p The dynamic array

Returns the largest index used to store a data item. Returns -1 if the array is empty.

void
• DA_merge(DA_array *A, DA_array *B);

DA_array *A Reference to a dynamic array

DA_array *B Reference to a dynamic array

This function merges the data values contained in the dynamic arrayB into the dynamic arrayA. Items inA
will be overwritten by any value inB with the same index value. The dynamic arrayB is destroyed by this
function (it is returned empty).

DA_array
• DA_makeCopy(DA_array s, void (*copyFunc)(void **dest, void

*source));

DA_array s The dynamic array to copy

void (*copyFunc)(void **dest, void *source)

Function used to copy data items

This function copies the given dynamic array, using the given copy function to copy the stored data items,
and returns the copy. If the copy function isNULL, then the items are copied directly.

void
• DA_free(DA_array *f, void (*freeFunc)(void *data));

DA_array *f The dynamic array to free

void (*freeFunc)(void *data)

Function used to free data items

This function frees the storage used by a dynamic array, freeing the data items stored in it using the given
free function. If the free function isNULL, then the items are not freed. The dynamic array is set to be
empty.

The Simple Virtual Environment Library User’s Guide 183

4/16/97

void
• DA_print(DA_array d);

DA_array d

Prints the items of the given dynamic array out tostdout .

2.3. File Parser Utility

void
• FP_prependToPath(char **path, char *directories);

Add directories given indirectories (separated by colon) to the front of the givenpath .

void
• FP_appendToPath(char **path, char *directories);

Add directories given indirectories (separated by colon) to the front of the givenpath .

int
• FP_openFile(char *filename, char *defaultPath);

Opens the file with the given filename if found in the given search path. The current directory is searched
last unless the search path contains “.”. The return value should be used for other file parser functions on
this file.

void
• FP_closeFile(int No);

Close the file refered to by the given file id (No).

char *
• FP_getFilename(int No);

Returns the filename of the file refered to by the given file id (No), including the path were it was found.

void
• FP_reportFileError(int No, char *message, ...);

Prints the givenmessage including the full pathname of the file refered to by the given file id (No). This
function should be used asfprintf() is used.

void
• FP_setCommentToken(int No, char *comment);

Sets thecomment token (which defines the beginning of a comment, which ends at the end of the line) for
the file refered to by the file id (No). Comments are ignored. The default comment is “#”.

184 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• FP_setSeparateToken(int No, char *separate);

Sets the set of characters which are considered “white space” for the file refered to by the given file id (No).
If any of these characters are encountered, then the current token is ended, and the next token begins at the
next character which is not in theseparate character set. The default separate character set contains
space, tab, and carrage return.

int
• FP_nextLine(int No);

This function will tell whether the next token in the file refered to by the file id given (No) is on a new line.

int
• FP_getNextBoolean(int No);

Returns the next token of the file refered to by the file id given (No) if it is of type boolean (TRUE or
FALSE).

float
• FP_getNextFloat(int No);

Returns the next token of the file refered to by the file id given (No) if it is of type float.

int
• FP_getNextInt(int No);

Returns the next token of the file refered to by the file id given (No) if it is of type int.

char *
• FP_getNextToken(int No);

Returns the next token of the file refered to by the file id given (No) as a character string.

int
• FP_getCurrentLine(int No);

Returns the line number on which the last token of the file refered to by the file id given (No) was read.

char *
• FP_getRemainingLine(int No);

Returns all characters from the beginning of the next token (thus skipping the “white space” characters
after the last token) until the end of the current line, not including the carrage return, of the file refered to
by the file id given (No).

The Simple Virtual Environment Library User’s Guide 185

4/16/97

/char *
• FP_findFile(char *filename, char *defaultPath);

Returns the full filename with its path of the file by the givenfilename if it is found using the given
defaultPath path list. The file isnot openned.

2.4. Vector Routines

The following routines provide homogeneous coordinates and vectors which can be used to represent
locations or directions in three dimensions. The vector’s (or location’s) fourth component is usually 1.
However, when a vector is put through a non-linear transformation, the fourth component may be given a
value other than 1. In this case, the 3D vector or coordinate is obtained by dividing the first three
components by the forth component. Note that most of the vector routines given here do not alter the forth
component of the vector(s) they use, nor do they check to make sure that the component is 1 before
performing their function.

The following types are defined for the vector routines:
typedef float V_scalar;
typedef V_scalar V_vector[4];

In addition, the constantsX, Y, Z, andW are defined to represent the first, second, third and forth
components of the vector, respectively.

void
• V_zero(V_vector);

Initializes vector to (0, 0, 0, 1).

void
• V_neg(V_vector);

Negates theX, Y, andZ components of the given vector. Thus (x, y, z, w) becomes (-x, -y, -z, w).

void
• V_norm(V_vector);

Normalizes the given vector based on the first three components (X, Y, Z). The length of the (X, Y, Z) vector
result will be 1.

V_scalar
• V_len(V_vector);

Returns the length of the given (X, Y, Z) vector.

V_scalar
• V_sqrLen(V_vector);

Returns the square of the length of the given (X, Y, Z) vector, which can be computed faster thanV_len() .

186 The Simple Virtual Environment Library User’s Guide

4/16/97

void
• V_copy(V_vector dest, V_vector source);

Copies the four component from the givensource vector to thedest vector.

void
• V_mult(V_vector, V_scalar);

Multiplies the (X, Y, Z) components of the given vector by the given scalar value.

void
• V_add(V_vector accum, V_vector operand);

Adds the (X, Y, Z) components of the givenoperand vector to the (X, Y, Z) components of the givenaccum
vector, and stores the (X, Y, Z) result in theaccum vector.

void
• V_sub(V_vector accum, V_vector operand);

Subtracts the (X, Y, Z) components of the givenoperand vector from the (X, Y, Z) components of the given
accum vector, and stores the (X, Y, Z) result in theaccum vector.

V_scalar
• V_dot(V_vector, V_vector);

Returns the dot product of (X, Y, Z) components of the given vectors.

void
• V_cross(V_vector accum, V_vector operand);

Performs the cross product of the (X, Y, Z) components of the givenaccum andoperand vectors, and
places the (X, Y, Z) vector result in theaccum vector.

void
• V_move(V_vector v, V_scalar x, V_scalar y, V_scalar z)

Sets the (X, Y, Z) components of the vectorv to (x , y, z).

void
• V_move4(V_vector v, V_scalar x, V_scalar y, V_scalar z,V_scalar w)

Sets the vectorv to (x , y, z , w).

The Simple Virtual Environment Library User’s Guide 187

4/16/97

2.5. Matrix Routines

The matrix routines deal with 4x4 transformation matrixes, which, when multiplied by a 4 component (3D)
vector, can transform a location (represented by the vector) to a new location in homogeneous coordinents.
If the transformation is non-linear, then the forth component may be a value other than 1, in which case the
actual transformed location can be obtained by dividing the first, second, and third components by the forth
component.

The following type definition is used to represent the 4x4 transformation matrix:
typedef V_vector M_matrix[4];

It should be noted that matrix transformations in SVE pre-multiply the current accumilated transformation,
and vectors are transformed by post-multiplying the accumilated transformation. Therefore, a translational
matrix will contain the X, Y, and Z translations in the (3, 0), (3, 1), and (3, 2)locations of the matrix (which
is 0 based). Thus, the translation for matrixt is contained int[3][0] , t[3][1] , andt[3][2] .

void
• M_loadID(M_matrix);

Initializes the given matrix to the identity matrix.

int
• M_invert(M_matrix);

Inverts the given matrix and stores the result in it. The multiplication of the inverted and non-inverted
forms of the same matrix results in an identity matrix.

void
• M_copy(M_matrix dest, M_matrix source);

Copies thesource matrix values to thedest matrix.

void
• M_mult(M_matrix accum, M_matrix operand);

Multiplies the givenaccum matrix with theoperand matrix, and stores the result in theaccum matrix.

void
• M_vectMatMult(V_vector, M_matrix);

Multiplies the given vector by the given matrix, and stores the result in the given vector.

void
• M_matVectMult(M_matrix, V_vector);

Multiplies the given matrix by the given vector, and stores the result in the given vector.

188 The Simple Virtual Environment Library User’s Guide

4/16/97

3. SVE Global Variables.

This section provides descriptions of the different variables the user can observe or change in an SVE
program. These variables all have default values which in most cases will not need to be changed.

3.1. Information

The following variables are provided to the application for information only. For the most part, changing
the variables will have at best no effect, and at worst will have negative consequences. (Just don’t do it.)
Generally, a function exists in the SVE library that will allow the application to make the desired change.

int
• SVE_minX,
• SVE_minY,
• SVE_sizeX,
• SVE_sizeY;

The origin and size of the window on the screen where the scene is rendered.

int
• SVE_vofY;

float
• SVE_aspectRatio;

The fie ld of v iew (in tenths of degrees) and aspect rat io used to define the v iew. See
SVE_setFieldOfView() .

float
• SVE_viewPlaneMinX,
• SVE_viewPlaneMinY,
• SVE_viewPlaneMaxX,
• SVE_viewPlaneMaxY;

Defines the extents of the viewplane (on a XY plane whose position in relationship to the eyepoint is given
in SVE_viewPlanePosition , and whose rotation from parallel to the XY plane of the coordinate system
in wh ich the v iewp lane i s de fined i s g iven inSVE_v iewP laneRo ta t i on) . See
SVE_setViewPlaneExtents() and the initialization file description.

float
• SVE_viewPlanePosition[3],
• SVE_viewPlaneRotation[3];

Defines the position of the viewplane and the rotation of the view plane from parallel to the XY plane
(given as a rotation about the X axis, then a rotation about the Y axis, then a rotation about the Z axis, in
that order). See the initialization file description.

The Simple Virtual Environment Library User’s Guide 189

4/16/97

int
• SVE_facesRendered;

Reports the number of faces rendered for the last frame.

int
• SVE_linesRendered;

Reports the number of lines rendered for the last frame.

long int
• SVE_texturesRead;

Reports the total size (in bytes) of texture images that have been read.

SH_table
• SVE_objectRepository;

A hash table that contains all SVE objects (of typeSVE_object) that have been created, even if they
haven’t been added to the rendered object tree. SeeSVE_findObjectInRepository() .

list
• SVE_geometryRepository;

A linked list of SVE geometries (of typeSVE_geometry) that have been created, even if they haven’t been
used by an object as the object’s appearance. SeeSVE_findGeometryInRepository() .

long int
• SVE_availableHardware;

Bit array that reports the hardware identified by SVE. The current hardware abilities that are identified are
SGI Reality Engine graphics (SVE_REALITY_ENGINE) and texture mapping (SVE_TEXTURE_MAPPING).

long int
• SVE_textureMemory;

Reports the maximum amount of texture memory that the hardware claims it has (if it makes any claim). If
the textures that are loaded exceed the amount of texture memory, than previous textures will be swapped
out for new textures, which can cause dramatic rendering slow-downs.

char *
• SVE_hostname;

The name of the machine on which the SVE application is running, including the domain name.

190 The Simple Virtual Environment Library User’s Guide

4/16/97

int
• SVE_facesRead;

This variable contains the total number of faces loaded in the world by the file readers.

3.2. Setup

The following global variables define information that the application may wish to access and/or change to
affect how the application functions. Most of these variables have a corresponding attribute in the
initialization file that can be set to acheive the same result.

SVE_state
• SVE_worldState;

This is the current state structure that the SVE system uses to define the environment the user is in. This
structure contains the rendered world object tree, environment attributes (such as background color),
callback function stacks, the previous event, time information for syncronizing animation, and the
identification of which objects perform special functions, among other things. See theSVE_state
description.

float
• SVE_near,
• SVE_far;

Defines the distance (in meters) to the near and far planes of the viewing volume. The distance is given in
eye coordinates (the coordinate system of the “SVE eye” object).

float
• SVE_textDashDistance;
• SVE_textInvisibleDistance;

These variables define the distance (in meters) at which text turns into dashes or becomes invisible,
respectively.

float
• SVE_backgroundColor[3];

Defines the red, green, and blue components of the background of the rendered scene. See
SVE_setBackgroundColor() .

long
• SVE_pdExtX,
• SVE_pdExtY;

Predistortion paramters. See “SVE_PREDISTORT” on page 27.

The Simple Virtual Environment Library User’s Guide 191

4/16/97

float
• SVE_FPSupperLimit,
• SVE_FPSlowerLimit;

Frame control: upper and lower limits. If -1, not a limit. Currently, only the upper limit is enforced. If the
frame rate is too fast, then the SVE system will introduce a delay that will maintain the upper frame rate
limit.

char *
• SVE_defaultTextureDirectory,
• SVE_defaultMaterialDirectory,
• SVE_defaultObjectDirectory,
• SVE_defaultWorldDirectory,
• SVE_defaultConfigDirectory,
• SVE_defaultAudioDirectory;

Defines a directory list (directories separated by a ‘:’ character) through which SVE will search for texture
files, material files, object files, world files, display configuration files, and audio files, respectively.

char *
• SVE_pointerObjectName;

Defines the name of the pointer object (used for picking). The default is “FliteStik”.

char *
• SVE_pointerObjectFile;

Defines the name of the object file used for the pointer object (used for picking). The default is
“FliteStik.obj”.

char *
• SVE_selectorObjectName;

Defines the name of the object that selects (during picking, usually a ray cast out into the environment).
The default is “ray”.

char *
• SVE_selectorObjectFile;

Defines the name of the object file used for the selector object. The default is “ray.obj”.

char *
• SVE_initFilename;

Defines the file name of the initialization file. SeeSVE_setInitFilename() .

192 The Simple Virtual Environment Library User’s Guide

4/16/97

boolean
• SVE_verbose;

Determines if general information about what is occuring with the SVE system is printed (TRUE) or not
(FALSE).

boolean
• SVE_debug;

Determines if debugging information on the SVE system as it is running is printed (TRUE) or not (FALSE).

char *
• EVENT_SERVER_MACHINE,
• AUDIO_SERVER_MACHINE,
• TRACKER_SERVER_MACHINE;

These character strings identify the machines that are running the event server, the audio server, or the
tracker server, respectively.

char *
• SVE_serverDirectory;

Defines the directory in which the server programs can be found.

boolean
• SVE_showFrameRate;

If this variable isTRUE (which is the default), SVE will continuously print the current frame rate, as well as
faces and lines rendered. If this variable isFALSE then SVE will calculate the frame rate but won’t print it.

char *
• SVE_defaultTextureMap;

When loading a wavefront object it, it may contain texture vertices when no texture is specified. In this
case, the material pointed to by this variable is loaded. By default this variable will point to the file
gvu_logo.rgb . Changing this toNULL will tell SVE not to use any default textures.

The Simple Virtual Environment Library User’s Guide 193

4/16/97

4. SVE Data Structures

This is a brief description of all data structures in the SVE environment which can be used and
manipulated by an application using the SVE system.

4.1. State information
typedef struct SVE_stateStruct {

char *programName;
short int windowType;
SVE_window windowData;
list objectTree;
list lightList;
int lastMaterial;
list materialList;
list pollingDevices;
list worlds;
SVE_object viewingObject;
SVE_object viewingObject2;
M_matrix viewingMatrix;
M_matrix perspectiveMatrix;
char currentEye;
SVE_object originObject;
SVE_object userObject;
SVE_object hmdObject;
SVE_object cursorObject;
SVE_object viewPlaneObject;
SVE_point origin;
SVE_eventType eventType;
void *eventData;
boolean ntscOn;
SVE_config config;
float flightSpeed;
int network;
struct timeval *beginTime;
struct timeval *frameTime;
struct timeval *lastFrameTime;
struct timezone *timeZone;
list userFrameCallback;
list userFrameEndCallback;
list animationCallback;
list cullingFunction;
float framesPerSecond;

} SVE_stateStruct;

typedef struct SVE_stateStruct *SVE_state;

This data structure is passed on to each callback routine defined in an SVE application. The global state
structure can also be obtained using the functionSVE_getWorldState() . This structure is the life blood
of the SVE system. Every piece of information about the current state of the world is contained within it,
including the current world definition, the current position and orientation of each tracker, and glove
information (if activated). Most fields in the state structure are intended to be a source of information
(viewingMatrix , glove , eventType , eventData , config), although some fields are intended to be
altered for desired effects.

Here is a short description of each field:

194 The Simple Virtual Environment Library User’s Guide

4/16/97

char *
• programName;

Given name of the application. This is what appears in the application window’s title bar.

short int
• windowType;

Defines the type of windowing system used. The current supported window types areSVE_NO_WINDOW,
SVE_IRIX_GL , andSVE_X. The window type used is determined at compile time by which SVE library is
used.

SVE_window
• windowData;

Stores the information on the window, which can be used by the application. If the window type is
SVE_NO_WINDOW, then this field isNULL. If the window type isSVE_IRIX_GL , then this field points to a
structure with this form:

typedef struct SVE_windowStruct {
long int windowID;

} SVE_windowStruct, *SVE_window;

wherewindowID is the id returned bywinopen() . If the window type isSVE_X, then the field points to a
structure with this form:

typedef struct SVE_windowStruct {
long int windowID;
Display *display;
Window window;
Widget widget;
XtAppContext app_context;
GLXContext glx_context;

} SVE_windowStruct, *SVE_window;

wherewindowID will be 1 if the window was successfully opened (or -1 if an error occured), and the X
widget in which the rendering occurs is referenced by thewidget field and theglx_context .

list
• objectTree;

This references another data structure that defines the objects in the SVE world (the objects SVE will
render for each frame). The variable for the current world state is also known asSVE_WORLD in most
functions.

list
• lightList;

List of light primitives (SVE_lightRenderPtr) that have been defined and will be rendered. Lights are
kept in a separate list, which is generated at each frame, because they need to be “rendered” before
anything else. This field points to a structure containing the light definition, the light id (used by the
renderer), and the object which contains the light (and, in some cases, defines the light’s position):

The Simple Virtual Environment Library User’s Guide 195

4/16/97

typedef struct SVE_lightRenderStruct {
int id;
SVE_lightPtr light;
SVE_object object;

} SVE_lightRenderStruct;
typedef SVE_lightRenderStruct *SVE_lightRenderPtr;

int
• lastMaterial;

This field holds the index to the last material created. SeeSVE_getMaterialByIndex() .

list
• materialList;

This is a linked list of materials (SVE_material) which have been defined for the object primitives.

list
• pollingDevices;

This is a linked list of defined polling devices (SVE_pollDevice). Polling devices are things such as
trackers, gloves, or other continuous input devices or routines.

list
• worlds;

This contains a linked list of world server connections. (Warning...experimental!) The list is of
SVE_worldStruct * pointers.

typedef struct SVE_worldStruct {
char *name;
char *address;
int outport;
boolean openned;
int pendingActions;
list actionBackLog;
list nameTranslation;

} SVE_worldStruct;

SVE_object
• viewingObject;

This is object used to generate the viewing matrix. The view will be towards the view plane object. This is
initially set to the “SVE eye” object.

SVE_object
• viewingObject2;

This is object used to generate the viewing matrix for a second eyepoint (for stereo views). The view will
be towards the view plane object. This is initially set to the “SVE other eye” object.

196 The Simple Virtual Environment Library User’s Guide

4/16/97

M_matrix
• viewingMatrix;

This is the viewing transformation placed on the modeling transformation stack which allows objects to be
rendered from the point of view of the viewing object (looking at the view plane object) rather than from
the world origin. This matrix is updated just before any rendering is performed. It is updated each frame
just before rendering the scene (before frame callbacks are called, but after animation callbacks are called).

M_matrix
• perspectiveMatrix;

This is the perspective transformation placed on the perspective transformation stack to define the viewing
volume from the eyepoint. It is updated each frame just before rendering the scene (before frame callbacks
are called, but after animation callbacks are called).

char
• currentEye;

This value isSVE_LEFT_EYE or SVE_RIGHT_EYE depending on which eye point is currently being
rendered. For monoscopic displays, this value will always beSVE_LEFT_EYE.

SVE_object
• originObject;

This references an empty object whose position matrix defines the position of the “origin” of the user’s
coordinate system, which is understood to be at the user’s feet when she is standing in the center of the
movement range. It is named “ORIGIN”. The object that defines the tracking reference coordinate system,
usually called “USER”, is, by default, a child of this object. Moving the origin object effectively moves the
user about in the environment.

SVE_object
• userObject;

This references an empty object whose position matrix defines either the tracker’s reference coordinate
system, which is the transmitter’s position in relation to the “origin” (if the trackers are being used), or an
average person’s height from the “origin”. It is named “USER”. The two objects that often hold the tracker
information (“SVE HMD” and “SVE cursor”) are children of this object.

SVE_object
• hmdObject;

This references, by default, the “SVE HMD” object.

The Simple Virtual Environment Library User’s Guide 197

4/16/97

SVE_object
• cursorObject;

This references, by default, the “SVE cursor” object.

SVE_object
• viewPlaneObject;

This references, by default, the “SVE view plane” object, whose world location and orientation defines the
location and orientation of the view plane, through which the user sees the scene (from the eye point(s)).

SVE_point
• origin;

OBSOLETE. Move theoriginObject SVE object (see above) to move the user around.

SVE_eventType
• eventType;

This is the event type. See “Events” on page 36. for a list of possible event types.

void *
• eventData;

This field points to the event data. It needs to be cast to the appropriate pointer based on the value in
eventType (above). See “Events” on page 36. for more details.

boolean
• ntscOn;

This flag determines if the application window is on the computer screen (FALSE), or being sent to the scan
converter for video output (TRUE).

int
• config;

This defines the configuration of the SVE system by bit-wiseORing a combination of the option values.
The options are listed in “Configuration Flags” on page 23.

float
• flightSpeed;

Determines the speed at which a user moves through the SVE world when “flying”. Its is in meters per
second.

198 The Simple Virtual Environment Library User’s Guide

4/16/97

int
• network;

This variable is used by SVE to see if it’s getting tracker information, sending audio commands, and/or
getting events over the network. It is a bit array. If theNET_TRACKER bit is set, then the tracking is done
via the network (which is always true if tracking is done at all). If theNET_EVENTS bit is set, then events
are sent to the application from a remote event server. If theNET_SOUNDS bit is set, then audio is
performed on a remote machine.

struct timeval *
• beginTime;

This is the time at which theSVE_init() function call was made.

struct timeval *
• frameTime;

This is the time at which the current frame rendering was begun.

struct timeval *
• lastFrameTime;

This is the time at which the last frame rendering was begun.

struct timezone *
• timeZone;

This is the time zone for all time values stored in theSVE_state structure.

list
• userFrameCallback;

Linked list of defined frame callbacks (of typeSVE_functionPtr).

list
• userFrameEndCallback;

Linked list of defined frame callbacks (of typeSVE_functionPtr) that occur after the SVE rendering has
been done.

list
• animationCallback;

Linked list of animation callbacks (of typeSVE_functionPtr).

The Simple Virtual Environment Library User’s Guide 199

4/16/97

list
• cullingFunction;

Linked list of culling functions (of typeSVE_cullFunctionPtr) that are called for each object to
determine if an object should be rendered or not.

float
• framesPerSecond

The number of frames generated each second. This number starts of as being -1, and is updated after each
frame.

4.2. SVE_object
typedef struct SVE_objectStruct {

SVE_object parent;
char *name;
SVE_geometry geometry;
list geometryList;
boolean highlight;
SVE_geometry highlightGeometry;
M_matrix position;
M_matrix worldPosition;
boolean visible;
boolean hascolor;
boolean selectable;
SVE_boundaries *boundaries;
int cullable;
boolean hasVisibleSphere;
float visibleSphere;
int materialIndex;
int update;
list children;
AnimationStruct animation_vars;
boolean facingViewerUpright;
boolean facingViewer;
SVE_functionPtr menu_callback;
list frameCallback;
SVE_widgetData widgetData;
SVE_vistype visibility;
boolean remoteObject;
list worldIdList;
SVE_multipleTexturesPtr moreTextures;
void *UserPtr;

} SVE_objectStruct;

typedef struct SVE_objectStruct *SVE_object;

SVE_object is a reference to a larger structure (SVE_objectStruct) which defines every detail about
an object in the SVE environment.

What follows is a short description of each field in the SVE object structure:

200 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_object
• parent;

A reference to an object’s parent. The children of the root of an object tree haveSVE_WORLD for a parent.

char *
• name;

The string identifier of an object. The SVE library ensures that this name is unique for each object.

SVE_geometry
• geometry;

This references the geometry assigned to the object. If the object has more than one possible geometry (see
below), then this is the geometry last chosen. It is possible that more than one object has the same
geometry, in which case this many be one of many references to an object’s geometry. It is important,
therefore, to indicate to the SVE system if you change an object’s geometry by hand by calling
SVE_initGeometryChange() before making any changes.

list
• geometryList;

List of posible geometries for an object. When an object is to be rendering, this list is traversed, and each
geometry is tested to see if it is “valid”. The first valid geometry is chosen, and is placed in the geometry
field. A geometry is valid if it has no distance constraints, or if the user’s eye and the object’s origin are
within the given distance constrants. This field is a linked list ofSVE_geometryEntry pointers, which
point to the following structure:

typedef struct SVE_geometryEntryStruct {
SVE_geometry geometry;
boolean minRange;
float minDist;
boolean maxRange;
float maxDist;

} SVE_geometryEntryStruct;

typedef SVE_geometryEntryStruct *SVE_geometryEntry;

boolean
• highlight;

The value indicates if the object is currently being highlighted or not. An object may have a defined color
change or geometry change when this value changes. The best method to “highlight” and “un-highlight” an
object, though, is to use theSVE_highlightObject() function.

The Simple Virtual Environment Library User’s Guide 201

4/16/97

SVE_geometry
• highlightGeometry;

This is a geometry which, if defined, will replace the object’s usual geometry when thehighlight field
of the object isTRUE.

M_matrix
• position;

This 4X4 matrix defines the position and orientation of the object in relation to its parent.

M_matrix
• worldPosition;

This 4X4 matrix defines the position and orientation of the object in world coordinates. It is not guaranteed
to be correct, as it is not updated regularly. Use theSVE_getWorldMatrix() function to find the correct
world position.

boolean
• visible;

This flag determines if the object is rendered by SVE while rendering the current frame. IfTRUE, the object
and its children are rendered, ifFALSE the object and its children are not rendered.

boolean
• hascolor;

Determines if an object has one global color value, which is defined in thematerialIndex field. This
color will override the materials given in the object’s geometry descriptions.

boolean
• selectable;

Determines if an object is considered for selection during and intersection or picking algorithm the SVE
system uses to determine which object has been selected.

SVE_boundaries *
• boundaries;

This references a structure that determines the bounding volume of the object (used for intersection
algorithms). These boundaries include the boundaries of the child objects.

202 The Simple Virtual Environment Library User’s Guide

4/16/97

int
• cullable

This value is one ofNOT_CULLABLE, CULLABLE_BOX, or CULLABLE_SPHERE. It determines if the object
can be considered for culling from the view frustrum (checking to see if the object can be seen, and if not,
not rendering it), or whether the object should be considered for culling using a bounding box or sphere
(from the object’s boundary definition).

boolean
• hasVisibleSphere;

Determines if an object has a given range within which it is visible.

float
• visibleSphere;

This is the range at which an object is visible. An object is visible if it is within this distance from the
viewing object (usually the “SVE HMD” object) in the SVE world, and not visible if the viewing object is
outside of this range.

int
• materialIndex;

This is an index to the material used to color the object whenhasColor is TRUE.

int
• update;

These are single bit flags that indicate if certain attributes of an object need to be updated. It is usually set
by SVE functions and need not be touched by an application. If, however, an attribute changes without
using an SVE function to change it, the appropriate bit should be set by doing a bit wise OR of this with the
appropriate set of these:

CALC_ALL
CALC_WORLD_MATRIX
CALC_OBJECT_BOUNDS

To s imp l i f y mat te rs , the SVE_reCa l cu l a teWor l dMa t r i x () and
SVE_reCalculateObjectBoundaries() functions are provided to set theCALC_WORLD_MATRIX and
CALC_OBJECT_BOUNDS flags, respectively, and to take care of possible problems.

AnimationStruct
• animation_vars;

This is a structure containing state variables for the animation of the object. The structure has the following
form: (See “Animation Routines” on page 41 for more details.)

typedef struct
{

double xvel, yvel, zvel,
xacc, yacc, zacc,

The Simple Virtual Environment Library User’s Guide 203

4/16/97

xrot, yrot, zrot;
double lasttime;
SVE_animateObjectFunctionPtr UserFunc;
boolean animate;
void *userdata;

} AnimationStruct;

list
• children;

This is a linked list of the child objects for this object. It is unordered and unbounded in number.

boolean
• facingViewerUpright;

This flag determines if the SVE system rotates the object so that it is always facing the user, but remaining
upright (i.e. the Z axis is always pointing towards the user on the X-Y plane).

boolean
• facingViewer;

This flag determines if the SVE system rotates the object so that it’s negative Z axis is always pointing
towards the user.

list
• frameCallback;

This is the list of frame callbacks (of typeSVE_functionPtr) associated with the object. If the object is
about to be rendered, these callback functions will be called first. Anything drawn will be drawn in the
local coordinate system of the object.

SVE_widgetData
• widgetData;

This structure contains the data associated with objects which are also 3D interactors. See “3D interactors”
on page 91.

SVE_vistype
• visibility;

Indicates the object’s visibility, as determined when SVE prepares to render a frame (before the frame
callbacks, but after the animation callbacks). The possible values for this field areSVE_ALL_VISIBLE ,
SVE_PART_V IS IBLE , SVE_CHILDREN_ONLY_V IS IBLE, SVE_NONE_VIS IBLE, and
SVE_VISIBILITY_UNKNOWN.

204 The Simple Virtual Environment Library User’s Guide

4/16/97

boolean
• remoteObject;

This field isTRUE if the object was obtained from a remote world server, not created by the SVE
application itself.

list
• worldIdList;

This is a linked list of world servers in which the object belongs. (Warning... Experimental!)

SVE_multipleTexturesPtr
• moreTextures;

If this field is not NULL, then it points to the following structure, which contains a list of textures, and a
function which can switch through the texture list to define the textures of the object’s materials.

typedef struct SVE_multipleTexturesStruct {
int nTextures;
int textureMode;
int currentIndex;
char** textureNames;
long* textureIDs;
SVE_objectFunctionPtr swapCallback;

} SVE_multipleTexturesStruct;

typedef SVE_multipleTexturesStruct *SVE_multipleTexturesPtr;

void *
• UserPtr;

This pointer is not used in SVE. The programmer can use it to attach its own data structures to an object.

4.3. SVE_geometry

The geometry of any object is stored in a separate structure so that many object can use the same geometry
if they wish to. Each geometry is uniquely identified by theprimitivesFilename field, which is usually
the name of the file, uncluding its complete path, from which the geometry was obtained. This would be an
object file.

typedef struct SVE_geometryStruct {
list primitives; /* Linked list of SVE_primitive */
int lastPrimitive;
SVE_primitive label; /* for hypertexts */
char *text; /* for hypertexts */
char *textfile;
boolean primitivesChanged;
char *primitivesFilename;
long glID;
int firstMaterial;
int lastMaterial;
int facesRendered;
int linesRendered;
SVE_boundaries *primitiveBounds;

The Simple Virtual Environment Library User’s Guide 205

4/16/97

boolean containsLight;
list transparentFaces; /* Linked list of SVE_transparentFace */
int update; /* Bit flags to indicate if certain attributes

 need to be updated when needed (lazy update) */
int objectLinks;

} SVE_geometryStruct;

typedef SVE_geometryStruct *SVE_geometry;

list
• primitives;

This is a linked list of primitives which make up the geometry. The list contains items of type
SVE_primitive .

int
• lastPrimitive;

This is the index (or tag) of the last primitive created.

SVE_primitive
• label;

Hypertext that will be displayed at the object’s position and orientation (given in the object’s world
position matrix).

char *
• text;

Obsolete.

char *
• textfile;

User to save the hypertext if it has been changed.

boolean
• primitivesChanged;

This flag indicates if a geometry has changed, which means that it needs to be saved if the object is saved
to file.

char *
• primitivesFilename;

This is the unique character string that identifies the geometry. It is usually the name of the object file from
which the geometry was loaded.

206 The Simple Virtual Environment Library User’s Guide

4/16/97

Object
• glID;

This is the handle for a GL object which represents the geometry. It is computed each time the geometry
changes. It does not include any text primitives.

SVE_boundaries *
• primitiveBounds;

This references a structure that stores the bounding volume of the group of primitives that make up the
geometry.

int
• update;

These are bit flags which indicate if certain attributes of an object need to be updated. It is usually set by
SVE functions that alter the geometry. The bits used are defined as:

CALC_ALL
CALC_PRIMITIVE_BOUNDS
CALC_GL_OBJECT

int
• objectLinks;

This is the number of objects which reference this particular geometry structure.

4.4. SVE_geometryEntry

typedef struct SVE_geometryEntryStruct {
SVE_geometry geometry;
boolean minRange;
float minDist; /* if (minRange), minimum distance from user

 to geometry origin */
boolean maxRange;
float maxDist; /* if (maxRange), maximum distance from user

 to geometry origin */
} SVE_geometryEntryStruct;

typedef SVE_geometryEntryStruct *SVE_geometryEntry;

4.5. SVE_primitive
typedef struct SVE_primitiveStruct {

int tag;
SVE_primitiveType type;
DA_array pointList; /* Dynamic array of SVE_pointPtr */
DA_array normalList; /* Dynamic array of SVE_normalPtr */
DA_array txtvertices; /* Dynamic array of SVE_textureCoordPtr */
list faceList; /* Linked list of SVE_facePtr */
int materialIndex;
char *text;

The Simple Virtual Environment Library User’s Guide 207

4/16/97

int lineWidth;
M_matrix matrix; /* only used for text primitives.. */
SVE_lightPtr light;
boolean isMenuEntry; /* only ways to tell it’s a menu obj. */
boolean isMenuHeader;
int highlightMaterial;

} SVE_primitiveStruct;

typedef SVE_primitiveStruct *SVE_primitive;

A short description of each field of the SVE_primitive follows.

int
• tag

Integer value used to distinguish a primitive from the other primitives of a geometry.

SVE_primitiveType
• type;

This defines the type if primitive. Possible values are:
POLYHEDRON Primitive consists of a list of faces.
LINE Primitive consists of one line with many points.
TEXT Primitive consists of a string of characters.
TEXTURED_POLYHEDRON The same as POLYHEDRON but has a texture.
LIGHT Declares a light source. There is a maximum of 8

light sources.

DA_array
• pointList;

Array of points defined for the primitive. Each point has a location and an optional color. The items of the
array are of typeSVE_pointPtr , which is defined below.

typedef struct SVE_pointStruct {
 int index;
 SVE_point point;
 float color[4]; /* vertex diffuse color if different */
 float bwColor;
} SVE_pointStruct;
typedef SVE_pointStruct *SVE_pointPtr;

DA_array
• normalList;

Array of normal vectors defined for the primitive. The items of the array are of typeSVE_normalPtr ,
which is defined below.

typedef struct SVE_normalStruct {
 int index;
 SVE_point normal;
} SVE_normalStruct;
typedef SVE_normalStruct *SVE_normalPtr;

208 The Simple Virtual Environment Library User’s Guide

4/16/97

DA_array
• txtvertices;

Array of texture vert ices defined for the pr imit ive. The i tems of the array are of type
SVE_textureCoordPtr , which is defined below.

typedef struct SVE_textureCoordStruct {
 int index;
 float texcoord[2];
} SVE_textureCoordStruct;
typedef SVE_textureCoordStruct *SVE_textureCoordPtr;

list
• faceList;

Linked list of faces (for aPOLYHEDRON) or lines (for aLINE). Each face has a list of vertices (which
consists of a point, an optional normal vector, and an optional texture vertex), an index to a material, and a
normal vector (which is used for flat shading). The linked list contains items of typeSVE_facePtr , which
is defined below.

typedef struct SVE_faceStruct {
 int index;
 list vertexList; /* Linked list of SVE_vertexPtr */
 int materialIndex;
 SVE_normalPtr normal; /* for flat shading */
} SVE_faceStruct;
typedef SVE_faceStruct *SVE_facePtr;

The list of vertexes of a face is a linked list of items of typeSVE_vertexPtr , which is defined below.
typedef struct SVE_vertexStruct {
 SVE_pointPtr point;
 int pointIndex;
 SVE_normalPtr normal;
 int normalIndex;
 SVE_textureCoordPtr texCoord;
 int texCoordIndex;
} SVE_vertexStruct;
typedef SVE_vertexStruct *SVE_vertexPtr;

int
• materialIndex;

An index to a material used as a global material to color the primitive.

char *
• text;

Text string used for aTEXT primitive.

int
• lineWidth;

Line width used for aLINE primitive.

The Simple Virtual Environment Library User’s Guide 209

4/16/97

M_matrix
• matrix;

Transformation matrix used for theTEXT primitive.

SVE_lightPtr
• light;

Refers to a structure which defines the parameters for aLIGHT primitive. The definition for
SVE_lightPtr is given below.

typedef struct SVE_lightStruct {
int id;
boolean on;
float ambient[3];
float emission[3];
SVE_point position;
boolean atInfinity;
float spotExponent;
float spotSpread;
SVE_point spotDirection;

} SVE_lightStruct;

typedef SVE_lightStruct *SVE_lightPtr;

These parameters mirror the options given in an object file for a light primitive, which is discussed in
“LIGHT” on page 120.

int
• highlightMaterial

This is the material index for the material used when the object which uses this geometry is highlighted. If
this value is -1, then the primitive will not change materials when the goemetry is highlighted.

4.6. SVE_boundaries

This structure defines the bounding volume of an object. There are two possible bounding shapes, a sphere
or a box. Only relevant fields are used for each object according to the type of bounding volume it has.

typedef struct SVE_boundaries{
boolean hasSphere;
SVE_point sphereOrigin;
float sphereRadius;
boolean hasBox;
SVE_point boxVertex1;
SVE_point boxVertex2;

} SVE_boundaries;

4.7. SVE_material

The SVE system maintains a list of materials which the application’s objects can use, and to which the
application can add newly created materials. The properties of a particular material are best changed using
the appropriate SVE function (See “Colors and materials” on page 74.), however it may be useful to
examine a material’s current properties. The structure for material definitions is given below.

typedef struct SVE_materialStruct {
char *name;

210 The Simple Virtual Environment Library User’s Guide

4/16/97

int index;
long changed;
float ambient[3];
float bwAmbient;
float diffuse[3];
float bwDiffuse;
float specular[3];
float bwSpecular;
float emission[3];
float bwEmission;
float shininess;
float alpha;
int textureMode;
long textureEnv;
long textureID;
char *texture;
char *textureFilename;
boolean transparentTexture;

} SVE_materialStruct;

typedef struct SVE_materialStruct *SVE_material;

4.8. SVE_point

The SVE_point data type is simply an array of three floats that define a location or vector.
typedef float SVE_point[3];

4.9. SVE_status

This type is returned by SVE callback functions. Currently, it is only significant for event callbacks, where
the callback should return one of these values:

EVENT_IGNORED
EVENT_CONSUMED

The return value indicates whether the event was used and no further action should be taken on it, or
whether it was ignored (and possibly a default handler should process the event).

Other types of callbacks can returnSVE_OK.

4.10. SVE_widgetData

When an object is used as a 3D interactor, or widget, then some additional information is stored with the
object in theSVE_widgetData structure.

typedef struct SVE_widgetDataStruct {
 char *type;
 void *data;
} SVE_widgetDataStruct, *SVE_widgetData;

The items stored are the type of widget (a character string), and the data associated with the widget, which
is dependent on the type of widget it is.

4.11. SVE_pollDevice

The data associated with a polling device is stored in a structure of typeSVE_pollDevice .
typedef struct SVE_pollDeviceStruct {

void *deviceHandle;
int type;
int id;
char *attachedToName;

The Simple Virtual Environment Library User’s Guide 211

4/16/97

SVE_object attachedTo;
SVE_pollFunctionPtr pollFunction;
SVE_pollFunctionPtr closeFunction;
void *data;

} SVE_pollDeviceStruct;

typedef struct SVE_pollDeviceStruct *SVE_pollDevice;

The meaning of each of these fields is described below.

void *
• deviceHandle;

This is usually the device handle obtained when initializing the device. Similar to a file descriptor handle.

int
• type;

This is the type of the device. Two types are already defined:SVE_TRACKER_DEVICEand
SVE_GLOVE_DEVICE. Other types can be defined.

int
• id;

This is the unique integer number identifier of the particular device amoung the devices of a particular
type.

char *
• attachedToName;

This is the name of the SVE object with which the polling device is associated.

SVE_object
• attachedTo;

This is the reference to the SVE object with which the polling device is associated. If the object identified
by theatttachedToName string does not exist yet, then this field isNULL. When the object is created,
then this field will be updated to refer to it.

SVE_pollFunctionPtr
• pollFunction;

This is the function that is called periodically to update the device’s state. The function should be of the
following form.

SVE_status SVE_pollFunction(SVE_pollDevice device, SVE_state state);

212 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_pollFunctionPtr
• closeFunction;

This is the function that is called when the device is to be closed.

void *
• data;

This pointer refers to the data specific to the polling device, which was given to the SVE system when the
device was created.

4.12. SVE_gloveData

Hand input devices are a special case of the generic polling device. The data associated with each hand
input device is of typeSVE_gloveData , and it is shown below.

typedef struct SVE_gloveData {
boolean gloveActive;
char *port;
char *handfilename;
JointCalStruct handCal[FNGRS+1][JNTS];
boolean gloveButton;
float angle[FNGRS+1][JNTS];
float tipPosition[FNGRS][3];
CyberGlove *rawGloveData;
boolean checkForGesture;
gestureStateStruct *gestureState;

} SVE_gloveData;

What follows is a short description of each field of this structure:

boolean
• gloveActive;

Determines if the glove input device is active.

char *
• port;

Interface port to which the glove device is attached to the machine.

char *
• handfilename;

File name of the last hand calibration file used.

The Simple Virtual Environment Library User’s Guide 213

4/16/97

JointCalStruct
• handCal[FNGRS+1][JNTS];

Contains the offset and gain values for each joint which are used to determine an angle from the value
given by the glove device. These values are unique for each person.

typedef struct JointCalStruct {
int offset;
float gain;

} JointCalStruct;

The formula used isangle = gain * (device_value - offset) .

boolean
• gloveButton;

Indicateswhether or not the glove button is on (TRUE) or off (FALSE).

float
• angle[FNGRS+1][JNTS];

This 2D array stores the angle values of the joints of each finger which were polled at the last input poll
stage of the SVE system. TheFNGRS andJNTS values are defined in “cg_glove.h ”. A particular angle
can be indexed as follows: (See the Cyberglove documentation for more detail.)

SVE_point
• tipPosition[FNGRS];

Position in absolute world coordinates of the fingertips.

FNGRS

THMB

INDX

MIDL

RING

PNKY

JNTSMPHL PXIP DSIPABDT

CRPLS

WRST_PTCWRST_YAW

Mapping of angle indexes to bends in hand

a

a

a

a

a m

m

p

m

m

m

d

p

p

p

p

p

d

d

d

d

d

m

214 The Simple Virtual Environment Library User’s Guide

4/16/97

CyberGlove *
• rawGloveData;

If the glove input device is active, this references the data structure used by the CyberGlove device drivers.
This should not be used if possible.

boolean
• checkForGesture ;

Flag to determine wether the current glove position should be compared to the list of possible gestures.

gestureStateStruct *
• gestureState;

This references a list of glove gestures, sorted by their given priority. If thecheckForGesture flag is set,
and the current glove position matches one of the gestures on this list, then a SVE_GESTURE event is
generated. The event value will beMIN_GESTURE + (gesture index), where the gesture index is the priority
of the gesture.

4.13. gestureStateStruct
typedef struct gestureStateStruct {

char *filename;
int numGestures;
gestureDef *gestureList;
jointDef currentJointValues[FNGRS+1][JNTS];
gestureProbType *currentProb; /* Array of gesture probabilities */
boolean *potentialGesture; /* True if a particular gesture is in

 transition from start to end */
int lastGesture;

} gestureStateStruct;

4.14. gestureDefStruct

This defines a gesture used to match against the current configuration of the glove device. The priority
determines the index value given to each gesture event that occurs when that gesture is matched. If a
current configuration matches more than one gesture, the gesture with the highest priority (1) will be given
as the match.

typedef float *probList;

typedef struct gestureDefStruct {
char *name;
short priority;
jointDef jointValues[FNGRS+1][JNTS];
int lastPosture[FNGRS+1][JNTS];
int handPosture[FNGRS+1][JNTS]; /* contains the states of each sensor

 as index into probability list */
probList startProb[FNGRS+1][JNTS];
int allowedTrans[FNGRS+1][JNTS];
probList endProb[FNGRS+1][JNTS];

} gestureDefStruct;

The Simple Virtual Environment Library User’s Guide 215

4/15/97

APPENDIX D: Tracker Library
The SVE library uses another library which handles the communication between the computer and the
tracker device through the serial line. This library abstracts out the notion of tracker devices, and deals with
tracking receivers on a one to one basis. In addition, it is possible to have many references to the same
receiver at the same time.

1. Using a tracker receiver
A particular receiver is identified with a triplet of (tracker device type, which port the device is connected
to, and which of the receivers attached to the device to use). For example, if one wished to use the second
receiver of an Isotrak II, which is connected to the second serial port of an SGI computer, the receiver
would be identified as (IsotrakII, “/dev/ttyd2”, 2).

A tracker receiver is opened with the function,TRK_open() , which takes three values representing the
triplet described above, and returns a reference to that tracker receiver of typetrkDevice . That reference
value is used to later retrieve the current position matrix of the tracker, usingTRK_getMatrix() , and, if
appropriate, the current state of the tracker’s buttons usingTRK_getButtons() . Most tracking devices do
not have buttons associated with them, but if they do, theTRK_getButtons() function returns the state
of the buttons, and which button(s) have changed since inquiring last. The tracker receiver can be “closed”,
indicating that it is no longer to be used, and structures associated with it can be freed if no one else is
using them, by calling the functionTRK_close() .

TheTRK_open() function requires three values to indicate which receiver to use. The first value is the
tracker device type, which can be one of the following values:BIRD, ISOTRAKII , FASTRAK, or BOOM;
indicating an AscensionTM Bird, PolhemusTM Isotrak II, PolhemusTM Fastrak, and FakeSpaceTM Boom
tracking device respectively. The functionsTRK_getTypeId() andTRK_getTypeName() translate
between the integer value and character string identification value for each type.

The second value is the serial port identification, which should be a string indicating port the port to which
the tracker it attached, such as “/dev/ttyd1”.

The third and last value required by theTRK_open() function is the receiver value, which is a number
greater than or equal to one. The maximum value of this parameter depends on the tracking device. For
example, a Boom device only has one tracker receiver (the head position), while a Fastrak device has up to
four receivers.

The table below outlines the configuration of each tracking device supported by the tracker library. The last
column gives the orientation of the transmitter that will produce a Y up coordinate system within which the
tracker matrix is given.

Table 12: Configuration of Supported Tracker Devices

Tracker
Tracker

type
Tracker
name

Max
receivers

Baud Buttons Orientation

Ascension Bird BIRD bird 8 38400 none Z down

Polhemus IsotrakII ISOTRAKII isotrackii 2 9600 none Y up

Polhemus Fastrak FASTRAK fastrak 4 38400 Button 4
(receiver 1)

Y up

FakeSpace Boom2C BOOM boom 1 9600 4 NA

Virtual I/O iGlasses IGLASSES iglasses 1 9600 none NA

216 The Simple Virtual Environment Library User’s Guide

4/15/97

Some tracking devices are only valid for a given hemisphere around a reference point, rather than the entire
sphere around the point. If this is the case, then the hemisphere is defined by a vector pointing in the
direction of the center of the hemisphere. This is often pointing down (towards the floor) when the
reference point is above the user’s head. For this devices, the hemisphere can be changed using the
function TRK_changeHemi() . For newer devices, this call is effective only for the receiver indicated
(although it affects all user’s of that particular receiver), for old devices, this call affects all receivers
attached to the device.

2. Tracker function definitions

An explanation for each function provided by the tracker library is given below.

trkDevice
• TRK_open(int deviceType, char *port, int receiver);

int deviceType Device type identifier.

char *portId Port name.

int receiver Receiver identifier.

Opens a given receiver of a given tracker device which is connected to the computer using the given serial
port. ThedeviceType parameter can be one ofBIRD, ISOTRAKII , FASTRAK, or BOOM. Theport
parameter is the name of the serial port (“/dev/ttyd1”, for example). Thereceiver parameter is a value
greater than or equal to 1, and less than or equal to the number of receivers attached to the specified device.
The value returned should be used in any other function calls which should use the receiver opened by this
call.

This function returnsNULL if the receiver could not be opened.

void
• TRK_getMatrix(trkDevice receiver, float matrix[4][4]);

trkDevice receiver Receiver identifier.

float matrix[4][4] Position matrix.

Sets thematrix parameter to the current position of the receiver identified by thereceiver parameter.
The position matrix includes the location and orientation of the tracker receiver.

void
• TRK_getBu t tons(t rkDev ice rece ive r , i n t bu t tons [] ,

int buttonChange[]);

trkDevice receiver Receiver identifier.

int buttons[] The current value of each button.

int buttonChange[] Which button(s) have changed.

This function returns the current state of the buttons of the givenreceiver in thebuttons array. There is
one value (0 for up, 1 for down) for each button associated with the tracker device which is stored in the
buttons array, and a value indicating if a button’s status has changed (1 for changed, 0 for no change),
which is stored in thebuttonChange array.

The Simple Virtual Environment Library User’s Guide 217

4/15/97

void
• TRK_changeHemi(trkDevice receiver, float vector[]);

trkDevice receiver Receiver identifier.

float vector[] Hemisphere center vector.

Changes the hemisphere for which the givenreceiver is valid using thevector parameter. Thevector
parameter defines the direction in which the center of the hemisphere lies. This function is only required
for certain trackers that are only valid for one hemisphere, rather than the entire sphere around a reference
point. An example of the type of tracker is an electromagnetic tracker.

void
• TRK_close(trkDevice receiver);

trkDevice receiver Receiver identifier.

Closes the givenreceiver . If this is the last reference to the particular receiver, then the receiver’s data
structures are freed. If this is the last reference to any receiver of the device it is attached to, then that
device is shut down by software.

int
• TRK_getTypeId(char *typeName);

char *typeName Character string representation of a
tracker device type.

Returns the integer value associated with a particular tracker device type representation.

char *
• TRK_getTypeName(int typeId);

int typeId Integer identification of a tracker
device type.

Returns the character string representation of a tracker device type identified by the given integer value.

3. Tracker data type

The trkDevice data type, which is returned by theTRK_open() function, and is used from then on to
identify the tracker receiver that has been open, is defined as follows:

typedef struct receiverDefStruct {
 int trkType;
 int trkPort;
 int receiver;
} receiverDefStruct;

typedef receiverDefStruct *trkDevice;

The trkType field identifies the type of the receiver’s tracker device. ThetrkPort field is an integer that
differentiates this device from other tracker devices. Thereceiver field identifies the receiver number.

218 The Simple Virtual Environment Library User’s Guide

4/15/97

The Simple Virtual Environment Library User’s Guide 219

4/16/97

APPENDIX E: Inset Utility
The inset utility used to be integrated in SVE version 1.5. Because it is dependent on GL routines specific
for the SGI Reality Engine graphics, and was developed to demonstrate a point (about perceptual
requirements of VE images in HMD’s), but does not provide a performance increase, it has been removed
from the SVE library. Interested developers may still use the utility by including the inset.c code (found in
the misc directory of the SVE source), and calling the following functions:

void INSET_init(SVE_config config);

This function should be called afterSVE_init() . It sets up the inset configuration.
void SVE_insetReset(void);

This function can be called to reset the inset configuration after parameters have been changed.

This option has not been tested with many SVE configurations, including predistortion and stereo.
(Insetting with predistortion could work, and the combination may be implemented at a later date).

To control insetting, users may set globally declared variables:SVE_hdExtX , SVE_hdExtY, SVE_ldExtX ,
andSVE_ldExtY , which control the horizontal and vertical extent of the source high and low detail
windows, andSVE_hdXPctg andSVE_hdYPctg , which are percentages and control the size of the central
image in the destination window. The extent of the destination window is controlled by the standard
window globalsSVE_minX, SVE_minY, SVE_sizeX , andSVE_sizeY . Note that large source extents are
not really necessary HMD’s with low resolution.

In order to set the source extent variables, users may want to know something about the insetting
dest inat ion window’s configura t ion. They can get th is in format ion wi th the rout ine
SVE_getInsetParams() . This routine returns two sets of four variables. The first set describes only
the non-overlapping (see below) part of the inset. The second describes the full inset, including
overlapping portions. The first two variables of each set describe the horizontal/vertical ratios of inset to
insetting window. The second two variables of each set are the field of view and aspect ratios as used by the
GL commandperspective . These latter two variables may be used quite easily with the
SVE_objectVisible() routine.

void SVE_getInsetParams(SVE_config config,
 float *hd_inHRatio, float *hd_inVRatio,
 int *hd_innerFovY, float *hd_innerARatio,
 float *hd_outHRatio, float *hd_outVRatio,
 int *hd_outerFovY, float *hd_outerARatio);

Insets of more or less than 100% in either dimension are allowed.

The routineSVE_insetReset() allows users to reset the inset configuration after the extent and
percentage variables have been changed. It is not necessary to call this routine before calling
SVE_getInsetParams() . SVE_insetReset() takes a window title as its parameter.

void SVE_insetReset(void);

The insetting composition is performed with the SGI’s dynamic texturing hardware. The source images are
treated as a textures. In the destination window, a point grid is precalculated, and the source images are
textured onto this grid. There is a trade-off between texel interpolation and grid precision (the number of
grid points). This may be controlled with the constantsNUM_CELLSX andNUM_CELLSY(internal
variables). The central inset is rendered in front of the low detail surround texture, and it overlaps that
texture at its edges. Transparency increases at the edges to achieve a gradual fade from high to low detail.

Note that image generation and insetting must be synchronized. If not, the insetting routines will load
incomplete frames as textures. In SVE, this is accomplished by used the same process for rendering and
insetting.

220 The Simple Virtual Environment Library User’s Guide

4/16/97

The Simple Virtual Environment Library User’s Guide 221

4/15/97

Index of Example Applications

“Hello World” Example, My First SVE Program. . 8
example1.world , the World Description File . 10
hello_world.object, the Object Geometry File . 10
.sve.init , the initial configuration file. 11
example2, application using a callback . 18
.sve.init, an Example Initialization File . 21
Example Initialization File . 28
Animation Example . 42
Example 3, Animation and Event Callback Demonstration . 44
Example5, Manipulating the Object Tree in the Environment. 54
Modified Example 3, Rotating Many Cubes . 56
all_primitives.object, an Example of Each Primitive Used in the SVE Library. 64
Primitive Construction Example . 69
Example SVE object with lights . 76
example4, Application Using Light. . 76
World File Used in Example4. 77
Sound Example . 79
Gesture File Example . 85
glove_example . 87
Simple Button Widget Example . 92
Object File Example . 112
Initialization File Example . 113
Example Display Configuration File, Head Mounted . 114
Example Display Configuration File, Monitor . 114
Gesture File example . 114

222 The Simple Virtual Environment Library User’s Guide

4/15/97

The Simple Virtual Environment Library User’s Guide 223

4/15/97

Index of Figures

Configurations Provided by the SVE System . 7
snapshot of the first example. . 9
Global control flow. 13
Example Object Tree . 14
SVE data files . 15
The interaction loop. . 16
Concepts of a notifier mechanism and the event lookup table . 17
The control flow of the vr-application. . 18
Objects Inserted From Initialization File in Source vi: . 21
SVE System Overview . 35
Object Tree Example . 53
Default World Tree and Example World Tree . 59
Inserting Tracker Object as Parent of Attached Object (“MoveMe”) 61
The Propagation of Transformations From Parent to Child Objects. 63
Snap Shot of an Object Containing All Possible Primitive Types. 65
The Normal Resulting From Different Vertex Orderings. 69
Hand SVE Object Tree . 84
Widget Example Screen Shot. 91
Depth first notation of a tree hierarchy. 118
Mapping s,t Coordinates to Polygons . 123

224 The Simple Virtual Environment Library User’s Guide

4/15/97

The Simple Virtual Environment Library User’s Guide 225

4/16/97

Index

A
addToList . 177
addToListEnd . 177
addToListFront . 177
addToListSorted . 178
AnimationStruct . 203
appendList . 180
AUDIO_SERVER_MACHINE . 192

C
copyList . 180
createList . 177

D
DA_arrayMax . 182
DA_arrayMin . 182
DA_createArray . 181
DA_empty . 181
DA_free . 182
DA_get . 181
DA_makeCopy . 182
DA_merge . 182
DA_print . 183
DA_store . 181

E
Event Data Structures . 39
Event Types . 37
EVENT_CONSUMED . 16
EVENT_IGNORED . 16, 19
EVENT_SERVER_MACHINE . 192

F
findData . 178
FP_appendToPath . 183
FP_closeFile .183
FP_findFile .185
FP_getCurrentLine . 184
FP_getFilename . 183
FP_getNextBoolean . 184
FP_getNextFloat . 184
FP_getNextInt . 184

226 The Simple Virtual Environment Library User’s Guide

4/16/97

FP_getNextToken . 184
FP_getRemainingLine . 184
FP_nextLine . 184
FP_openFile . 183
FP_prependToPath . 183
FP_reportFileError . 183
FP_setCommentToken . 183
FP_setSeparateToken . 184
freeList . 180

G
GESTURE .87
getData . 178
getNext . 178

L
listEmpty . 179

M
M_copy . 187
M_invert . 187
M_loadID .187
M_matrix . 187
M_matVectMult . 187
M_mult . 187
M_vectMatMult . 187

O
ORIGIN . 60

P
printList . 181

R
removeData . 179
removeFirst .179

S
server-audio . 99
server-event . 99
server-tracker . 99
sortList . 179
SVE cursor . 60
SVE eye . 60
SVE HMD .60
SVE_abort .134

The Simple Virtual Environment Library User’s Guide 227

4/16/97

SVE_addAnimationCallback . 16, 43, 152
SVE_addChildToObject . 54, 154
SVE_addCullingFunction . 49, 163
SVE_addHighlightPrimitiveToObject . 71, 143
SVE_addObjectGeometry . 67, 142
SVE_addObjects . 62, 134
SVE_addPollingDevice . 89, 171
SVE_addPrimitiveToGeometry . 71, 144
SVE_addPrimitiveToObject . 71, 143
SVE_addToObjectList . 58, 154
SVE_addToWorldTree . 58, 154
SVE_aspectRatio . 188
SVE_attachSoundToObject . 81, 175
SVE_attachToObject . 54, 153
SVE_attachTracker . 83, 171
SVE_audioCheckSound . 80, 174
SVE_audioCloseSound . 174
SVE_audioGetVolume . 80, 175
SVE_audioOpenSound . 80, 174
SVE_audioReplaySound . 80, 174
SVE_audioSetVolume . 80, 174
SVE_audioStopSound . 80, 174
SVE_availableHardware . 189
SVE_backgroundColor . 190
SVE_beginEventLoop . 15, 133
SVE_beginPrimitive . 67, 144
SVE_beginPrimitiveClosedLine . 68, 145
SVE_beginPrimitiveFace . 68, 145
SVE_beginPrimitiveLine . 68, 145
SVE_boundaries . 73, 209
SVE_BW . 24, 25
SVE_calculateBounds . 158
SVE_changeConfig . 23, 167
SVE_changeObjectGeometry . 142
SVE_changeObjectName . 51, 138
SVE_changeSoundUpdateRate . 81, 175
SVE_changeText . 72, 141
SVE_clearWorld . 153
SVE_copyBoundaries . 158
SVE_copyMatrix . 169
SVE_createBoxBoundaries . 158
SVE_createEmptyBoundaries . 157
SVE_createEmptyObject . 52, 137
SVE_createEmptyPrimitive . 147
SVE_createFace . 148
SVE_createGeometry . 71, 143

228 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_createLight . 149
SVE_createLine . 149
SVE_createMaterial . 74, 150
SVE_createNormal . 148
SVE_createObjectCopy . 52, 138
SVE_createPoint . 148
SVE_createPointWithColor . 148
SVE_createPollingDevice . 89, 170
SVE_createSphereBoundaries . 158
SVE_createTexCoord . 148
SVE_createVertex . 148
SVE_cullFunction . 48
SVE_debug . 192
SVE_defaultAudioDirectory . 191
SVE_defaultConfigDirectory . 191
SVE_defaultMaterialDirectory . 191
SVE_defaultObjectDirectory . 191
SVE_defaultTextureDirectory . 191
SVE_defaultTextureMap . 192
SVE_defaultTextureSwap . 72, 151
SVE_defaultWorldDirectory . 191
SVE_defineObjectTextureList . 71, 151
SVE_defineObjectTextures . 71, 151
SVE_deleteObject . 54, 138
SVE_disableBackfaceCulling . 167
SVE_done . 18, 133
SVE_drawBoundaries . 73, 159
SVE_drawTrackerExtent . 166
SVE_emptyGeometry . 143
SVE_enableBackfaceCulling . 167
SVE_endPrimitive . 67, 147
SVE_endPrimitiveFace . 68, 146
SVE_endPrimitiveLine . 68, 146
SVE_enterEvent . 161
SVE_facePtr . 208
SVE_facesRead . 190
SVE_facesRendered . 189
SVE_far . 190
SVE_findAllObjects . 56, 136
SVE_findGeometryInRepository . 71, 144
SVE_findObject . 56, 136
SVE_findObjectInRepository . 52, 136
SVE_findPollingDevice . 90, 171
SVE_findWorldObject . 58, 136
SVE_fly . 49, 164
SVE_flyInObject . 49, 164

The Simple Virtual Environment Library User’s Guide 229

4/16/97

SVE_flyInObjectWithDirection . 49, 165
SVE_flyWithDirection . 49, 164
SVE_FPSlowerLimit . 191
SVE_FPSupperLimit . 191
SVE_freeGeometry . 144
SVE_geometryEntry . 200
SVE_geometryRepository . 189
SVE_getAnimationCallbacks . 43, 153
SVE_getColorMaterial . 74, 149
SVE_getConfig . 23, 167
SVE_getCullingFunctions . 49, 163
SVE_getCursorObject . 61, 170
SVE_getCursorPosition . 61, 170
SVE_getEventCallback . 36, 161
SVE_getFirstObject . 56, 154
SVE_getFrameCallback . 46, 162
SVE_getFrameEndCallbacks . 46, 163
SVE_getHMDObject . 61, 170
SVE_getHMDPosition . 61, 170
SVE_getInsetParams . 219
SVE_getMaterialByIndex . 74, 149
SVE_getMaterialByName . 74, 149
SVE_getMatrixDist . 169
SVE_getMouseState . 161
SVE_getNearestPoint . 137
SVE_getObjectBoundaries . 73, 155
SVE_getObjectCenter . 155
SVE_getObjectFrameCallback . 46, 162
SVE_getObjectVisibility . 49, 163
SVE_getPalmObject . 84, 173
SVE_getPrimitiveBoundaries . 73, 155
SVE_getPrimitiveCopy . 70, 147
SVE_getPrimitiveExtents . 159
SVE_getRelativeMatrix . 169
SVE_getTextExtent . 69, 147
SVE_getViewingAndPerspectiveMatrix . 166
SVE_getWidgetData . 97, 160
SVE_getWorldMatrix . 59, 136
SVE_getWorldState . 33, 167
SVE_GLOVE . 14, 24, 27
SVE_gloveData . 212
SVE_GOURAUD . 14, 23, 25
SVE_highlightObject . 40, 141
SVE_HMD . 13, 20, 24, 26
SVE_HMDMONO . 24, 26
SVE_HMDSTEREO . 24, 26

230 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_hostname . 189
SVE_init . 13, 23, 133
SVE_initAnimation . 41, 152
SVE_initFilename . 191
SVE_initGeometryChange . 66, 144
SVE_initGlove . 83, 172
SVE_initTracker . 83, 171
SVE_INSET . 28
SVE_insetReset . 219
SVE_invertMatrix . 169
SVE_LIGHTING . 23, 25
SVE_lightRenderPtr . 195
SVE_linesRendered . 189
SVE_LIT_GOURAUD . 24, 25
SVE_loadObject . 52, 135
SVE_loadObjects . 62, 134
SVE_loadWorld . 14, 61, 134
SVE_makeWidget . 96, 160
SVE_material definition . 74
SVE_matrixHitObject . 156
SVE_matrixHitObjectPrimitives . 156
SVE_minX . 188
SVE_minY . 188
SVE_moveBy . 64, 140
SVE_moveObject . 63, 139
SVE_moveTo . 64, 140
SVE_moveVertex . 140
SVE_multipleTexturesPtr . 204
SVE_near .190
SVE_NOAUDIO . 24, 27
SVE_NODISPLAY . 24, 28
SVE_NORMAL . 13, 23, 24
SVE_object . 51, 199
SVE_object field

boundaries . 201
children . 51, 203
cullable . 51, 202
facingViewer . 52, 203
facingViewerUpright . 51, 203
frameCallback . 203
geometry . 200
hascolor . 201
hasVisibleSphere . 202
highlight . 51, 200
highlightGeometry . 201
materialIndex . 202

The Simple Virtual Environment Library User’s Guide 231

4/16/97

name . 51, 200
parent . 51, 200
position . 51, 201
selectable . 51, 201
update . 202
UserPtr . 52, 204
visible . 51, 201
visibleSphere . 202
widgetData . 203
worldPosition . 201

SVE_OBJECT_HIGHLIGHT . 27
SVE_OBJECT_SELECTION . 27
SVE_objectBoundsCollide . 73, 157
SVE_objectBoundsInBounds . 73, 157
SVE_objectCull . 164
SVE_objectMatrixHit . 155
SVE_objectPointHit . 73, 156
SVE_objectRepository . 189
SVE_objectVisible . 136, 219
SVE_pdExtX . 190
SVE_pdExtY . 190
SVE_pickObject . 157
SVE_pointerObjectFile . 191
SVE_pointerObjectName . 191
SVE_pointHitObject . 73, 156
SVE_pointHitObjectPrimitives . 73, 157
SVE_pointPtr . 207
SVE_pollFunction . 89
SVE_PREDISTORT . 24, 27
SVE_primitiveHighlightMaterial . 68, 146
SVE_primitiveLineWidth . 147
SVE_primitiveMaterial . 68, 146
SVE_primitiveNormal . 69, 145
SVE_primitivePoint . 70, 144
SVE_primitivePointWithColor . 145
SVE_primitiveTexCoord . 69, 145
SVE_primitiveText . 68, 146
SVE_primitiveTextPosition . 68, 147
SVE_primitiveTextRotation . 68, 147
SVE_primitiveTextScale . 68, 146
SVE_primitiveVertex . 68, 146
SVE_primitiveVertexIndexes . 70, 146
SVE_printDebug . 176
SVE_printError . 175
SVE_printFileError . 176
SVE_printMatrix . 169

232 The Simple Virtual Environment Library User’s Guide

4/16/97

SVE_printObjectList . 58, 137
SVE_printVerbose . 175
SVE_RBSTEREO . 24, 26
SVE_readGestureFile . 85, 172
SVE_readHandFile . 85, 172
SVE_reCalculateObjectBoundaries . 159
SVE_reCalculateParentBoundaries . 159
SVE_reCalculateWorldMatrix . 64, 142
SVE_recognizeGestures . 87, 173
SVE_registerCallback . 16, 36, 160
SVE_registerWidgetType . 91, 159
SVE_removeAllAnimationCallbacks . 16, 43, 153
SVE_removeAllCallbacks . 16, 36, 160
SVE_removeAllCullingFunctions . 49, 163
SVE_removeAllFrameCallbacks . 18, 46, 161
SVE_removeAllFrameEndCallbacks . 46, 163
SVE_removeAllObjectFrameCallbacks . 46, 162
SVE_removeAnimationCallback . 16, 43, 153
SVE_removeCallback . 16, 36, 160
SVE_removeCullingFunction . 49, 163
SVE_removeFirstObject . 58, 154
SVE_removeFrameCallback . 18, 46, 161
SVE_removeFrameEndCallback . 46, 162
SVE_removeFromObjectList . 58
SVE_removeObject . 54, 153
SVE_removeObjectEntry . 54, 154
SVE_removeObjectFrameCallback . 46, 162
SVE_removeObjectGeometry . 67, 142
SVE_renderNow . 48, 166
SVE_renderNowWithFrameCallbacks . 48, 166
SVE_renderObject . 47, 165
SVE_renderObjectList . 47, 165
SVE_renderWorld . 47, 165
SVE_ResetCallbacks . 160
SVE_resetGestureList . 87, 173
SVE_RIGHTEYE . 24, 26
SVE_rotateObject . 63, 139
SVE_rotateWRT . 64, 140
SVE_saveCurrentGesture . 87, 173
SVE_saveHandFile . 85, 172
SVE_saveObject . 52, 135
SVE_saveObjects . 62, 135
SVE_saveWorld . 62, 135
SVE_scaleObject . 63, 139
SVE_scaleWRT . 64, 140
SVE_SELECT . 24, 27

The Simple Virtual Environment Library User’s Guide 233

4/16/97

SVE_selectObject . 40, 141
SVE_selectorObjectFile . 191
SVE_selectorObjectName . 191
SVE_serverDirectory . 192
SVE_setAnimationFunc . 42, 152
SVE_setAnimationVar . 152
SVE_setBackgroundColor . 167
SVE_setBoxBoundaries . 158
SVE_setDefaultAnimationFunc . 42, 152
SVE_setDefaultMaterialDirectory . 32, 168
SVE_setDefaultObjectDirectory . 32, 168
SVE_setDefaultTextureDirectory . 32, 168
SVE_setDefaultWorldDirectory . 32, 168
SVE_setFieldOfView . 168
SVE_setFlightSpeed . 50, 168
SVE_setFrameCallback . 17, 46, 161
SVE_setFrameEndCallback . 46, 162
SVE_setInitFilename . 28, 134
SVE_setMaterial3Color . 75, 151
SVE_setMaterial4Color . 75, 151
SVE_setMaterialAlpha . 74, 150
SVE_setMaterialAmbient . 74, 150
SVE_setMaterialDiffuse . 74, 150
SVE_setMaterialEmission . 74, 150
SVE_setMaterialShininess . 74, 150
SVE_setMaterialSpecular . 74, 150
SVE_setMaterialTexture . 75, 150
SVE_setNewObjectPosition . 63, 138
SVE_setObjectAnimation . 41, 152
SVE_setObjectFrameCallback . 46, 162
SVE_setObjectHighlightMaterial . 72, 142
SVE_setObjectMaterial . 72, 142
SVE_setSelectable . 141
SVE_setSphereBoundaries . 158
SVE_setTextureSwapCallback . 72, 151
SVE_setUserDefinedData . 42, 152
SVE_setViewPlaneExtents . 168
SVE_setVisibility . 140
SVE_setWorldState . 33, 167
SVE_showFrameRate . 192
SVE_sizeX . 188
SVE_sizeY . 188
SVE_SPATIALSOUND . 24, 28
SVE_state . 15, 33, 193
SVE_state field

animationCallback . 198

234 The Simple Virtual Environment Library User’s Guide

4/16/97

beginTime . 198
config . 197
cullingFunction . 199
currentEye . 196
cursorObject . 197
eventType . 197
eventVal . 197
flightSpeed . 197
framesPerSecond . 199
frameTime . 198
hmdObject . 196
lastFrameTime . 198
lastMaterial . 195
lightList . 194
materialList . 195
network . 198
ntscOn . 197
objectTree . 194
origin . 197
originObject . 196
perspectiveMatrix . 196
pollingDevices . 195
programName . 194
timeZone . 198
userFrameCallback . 198
userFrameEndCallback . 198
userObject . 196
viewingMatrix . 196
viewingObject . 195
viewingObject2 . 195
viewPlaneObject . 197
windowData . 194
windowType . 194

SVE_status . 16
SVE_STEREO . 14, 24, 26
SVE_stopEventLoop . 15, 133
SVE_textDashDistance . 190
SVE_textInvisibleDistance . 190
SVE_TEXTURE_DEFAULT . 75
SVE_TEXTURE_INTENSITY . 75
SVE_TEXTURE_INTENSITY_ALPHA . 75
SVE_TEXTURE_RGB . 75
SVE_TEXTURE_RGB_ALPHA . 75
SVE_TEXTURE_RGB_ALPHA_LIGHTING . 75
SVE_TEXTURE_RGB_LIGHTING . 75
SVE_textureCoordPtr . 208

The Simple Virtual Environment Library User’s Guide 235

4/16/97

SVE_textureMemory . 189
SVE_TEXTURES . 14, 24, 25
SVE_texturesRead . 189
SVE_TRACKER . 24, 26
SVE_trackerExists . 171
SVE_translateObjectGlobal . 63, 139
SVE_translateWRT . 64, 139
SVE_turnOffLight . 149
SVE_turnOffObjectLights . 141
SVE_turnOnLight . 149
SVE_turnOnObjectLights . 141
SVE_updateAllObjects . 143
SVE_updateObjectPrimitives . 143
SVE_updateTracker . 83, 171
SVE_verbose . 192
SVE_vertexPtr . 208
SVE_viewPlaneMaxX . 188
SVE_viewPlaneMaxY . 188
SVE_viewPlaneMinX . 188
SVE_viewPlaneMinY . 188
SVE_viewPlanePosition . 188
SVE_viewPlaneRotation . 188
SVE_vofY . 188
SVE_widgetData . 210
SVE_window . 194
SVE_WIREFRAME . 24, 25
SVE_worldState . 190
SVE_worldStruct . 195

T
TEXT . 68
TRACKER_SERVER_MACHINE . 192
TRK_changeHemi . 217
TRK_close . 217
TRK_getButtons . 216
TRK_getMatrix . 216
TRK_getTypeId . 217
TRK_getTypeName . 217
TRK_open . 216
trkDevice . 217

U
updateSortedList . 180
USER . 60

236 The Simple Virtual Environment Library User’s Guide

4/16/97

V
V_add . 186
V_copy . 186
V_cross . 186
V_dot . 186
V_len . 185
V_move . 186
V_move4 .186
V_mult . 186
V_neg . 185
V_norm . 185
V_scalar . 185
V_sqrLen . 185
V_sub . 186
V_vector . 185
V_zero . 185

