Submitted to: Automated Software Engineering (ASE’98) 13th IEEE International Conference

Automating UI Generation by Model Composition

Kurt Stirewalt
Department of Computer Science
Michigan State University
East Lansing, Michigan 48824
stire@cps.msu.edu

Abstract

Automated user-interface generation environments
have been criticized for their failure to deliver rich
and powerful interactive applications[24]. To spec-
ify more powerful systems, designers need multiple
specialized modeling notations[17, 19]. The model
composition problem is concerned with automatically
deriving powerful, correct, and efficient user inter-
faces from multiple models specified in different no-
tations. Solutions balance the advantages of separat-
ing code generation into specialized code generators
with deep, model-specific knowledge against the cor-
rectness and efficiency obstacles that result from such
separation. We present a solution that maximizes the
advantage of separating code generation. In our ap-
proach, highly specialized, model-specific code gen-
erators synthesize run-time modules from individual
models. We address the correctness and efficiency ob-
stacles by formalizing composition mechanisms that
code generators may assume and that are guaranteed
by a run-time infra-structure. The mechanisms oper-
ate to support run-time module composition as con-
junction in the sense defined by Zave and Jackson[28].

Keywords: Model-based user-interface generation,
conjunction as composition, LOTOS.

1 Introduction

Building user interfaces (Uls) is time consuming and
costly. Myers and Rosson[16] found that in systems
with graphical Uls (GUIs), nearly 50% of source code
lines and development time could be attributed to the
UL GUIs are usually built from a fixed set of modules
composed in regular ways. Hence, GUI construction
is a natural target for automation, and many com-
mercial and research tools exist for that purpose[26].
While these tools have been successful in support-
ing the presentation aspect of GUI functionality, they
provide only limited support for specifying behavior
and the interaction of the UI with the underlying ap-
plication functionality. The model-based approach to

Spencer Rugaber
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
spencer@cc.gatech.edu

interactive system development addresses this defi-
ciency by decomposing UI design into the construc-
tion of separate models, each of which is declara-
tively specified[5]. Once specified, automated tools
integrate the models and generate an efficient system
from them. The model composition problem is the
need to efficiently implement and automatically in-
tegrate interactive software from separate declarative
models. This paper introduces the model composi-
tion problem and presents a solution.

A model is a declarative specification of some single
coherent aspect of a user interface, such as its appear-
ance, how it interfaces to the underlying application
functionality, or how the user interacts with it. By
focusing attention on a single aspect of an interac-
tive system, a model can be expressed in a highly-
specialized notation. This property makes systems
developed using the model-based approach easier to
develop and maintain than systems produced using
other approaches.

The MASTERMIND project[5, 17] is concerned with
the automatic generation of user interfaces from three
kinds of models:

e Presentation models specifying the appearance of
user interfaces in terms of their widgets and how
the widgets behave.

e Application models specifying which parts (func-
tions and data) of applications are accessible
from the user interface.

e Dialogue models specifying end-user interactions,
how they are ordered, and how they affect the
presentation and the application.

Source code is generated from each model by a model-
specific compiler, and the resulting three modules are
composed (Figure 1). A distinguishing characteris-
tic of MASTERMIND is that the model-specific code
generators work independently of one another.
Composing the code generated from multiple mod-
els is difficult. A model, by design, represents some
aspects of a system and is neutral with respect to
others[3]. Inevitably, however, functionality speci-
fied by one model overlaps with or is dependent upon

Page 1

functionality specified by another. A button, for ex-
ample, is specified in the presentation model, but the
behavior of the button influences behavior in other
models, such as when pressing the button causes
other widgets to be enabled or disabled. Such ef-
fects are described in the dialogue model. The effect
of pressing a button might also cause some applica-
tion method to be invoked. Such effects are described
in the application model. When code generated from
multiple models must cooperate, these redundancies
and dependencies can be difficult to resolve. Resolv-
ing them automatically means that behavior in dif-
ferent models must be unified and the mechanism for
this unification must be implemented efficiently.

The model composition problem is concerned with
automatically deriving powerful, correct, and efficient
user-interfaces from separate presentation, dialogue,
and application models. We propose a two-fold solu-
tion to the model composition problem. First, we
handle model integration by formalizing the three
models as concurrent agents that synchronize on com-
mon actions (Section 3). The dialogue model ex-
presses the temporal sequencing of these actions, and
so it acts as the glue between the presentation and
application models. Second, we make the synthesis
efficient by implementing a run-time dialogue engine
that actively synchronizes actions in the code gener-
ated from presentation and application models (Sec-
tion 4). We present the results of this approach on
two examples and give evidence to show that it scales
up (Section 5).

2 Background

We now present the issues that comprise the model
composition problem and the influences on our so-
lution. A recurring characteristic of all model-
based approaches to UI generation is that models
are specified using diverse and often incompatible no-
tations. This characteristic complicates the formal
definition of model composition (Section 2.1). Re-
searchers in the Human Computer Interaction (HCI)

D
: T Application Dialogue Presentation
i rln Model Model Model
9 e
n
T T
Application ! Dialogue ' Presentation
T | |
R Module ! Module ! Module
u m | |
n. ul
Runtime Synchronization Toolkit

Figure 1: Model-based code generation

community[2, 1] address this obstacle by represent-
ing models as agents defined in a process algebra
(Section 2.2). Researchers in the Software Engineer-
ing community[27, 28] address similar problems with
multi-paradigm specifications and describe a tech-
nique called composition by conjunction that solves
the problem. These approaches deal with specifi-
cations only. Our solution to the model composi-
tion problem uses the agent-based representation of
models, suggested by Alexander[2] and Abowd[1], to
extend conjunction into a run-time mechanism for
composing generated modules. The solution makes
some assumptions about the class of applications be-
ing modeled. These assumptions are described in Sec-
tion 2.3.

2.1 Model-based UI Generation

The model-based approach to interactive system de-
velopment bases system analysis, design, and imple-
mentation on a common repository of models. Unlike
conventional software engineering, in which designers
construct artifacts whose meaning and relevance can
diverge from that of the delivered code, in the model-
based approach, designers build models of critical sys-
tem attributes and then analyze, refine, and synthe-
size these models into running systems. Model-based
UI generation works on the premise that develop-
ment and support environments may be built around
declarative models of a system. Developers using this
paradigm build interfaces by specifying models that
describe the desired interface, rather than writing a
program that exhibits the behavior[23].

One characteristic of model-based approaches is
that, by restricting the focus of a model to a sin-
gle attribute of the system, modeling notations can
be specialized and highly declarative. The MAs-
TERMIND Presentation Model[7], for example, com-
bines concepts and terminology from graphic de-
sign with mechanisms for composing complex pre-
sentations through functional constraints. Dialogue
models often use state and event constructs to de-
scribe the user-computer conversation. Example no-
tations include StateCharts[10] and Petri nets[18].
These schemes have a variety of composition mech-
anisms that include state hierarchy, orthogonality
(concurrency), and alternation. The MASTERMIND
Application Model combines concepts and terminol-
ogy from object-oriented design techniques[20] with
mechanisms for composing complex behavior based
on method invocation. These examples illustrate how
modeling notations provide intra-model composition
mechanisms that vary among the different models. It
is not clear that any one of these mechanisms are suf-
ficient for inter-model composition, the subject of this
paper.

The model composition problem can be restated as
the need to unify behavior in multiple models with-
out violating the rules of intra-model composition and

Page 2

while generating efficient code. We accomplish inter-
model composition by introducing sequencing con-
straints over actions in the presentation and appli-
cation models. The dialogue model embodies these
constraints.

2.2 Composition Techniques

Our approach to model composition blends prior re-
search on formal techniques for interactive system de-
composition with a technique that has been used to
support multi-paradigm specification.

2.2.1 Agent decomposition

Complex dynamic systems are often best understood
as a network of cooperating agents, which are sys-
tem entities with identity and behavior. A number
of researchers, including Abowd[1] and Alexander[2],
suggest that decomposing interactive systems into a
collection of specialized agents illuminates usability
and correctness properties. Often properties of a
whole system can be described as properties of a sin-
gle agent.

Alexander[2] decomposes dialogue specifications
into presentation and application agents that repre-
sent the two parties of the user-computer conversa-
tion. Each of these agents are defined formally as
processes in the CSP[13] notation, and they cooper-
ate as prescribed by the synchronous parallel compo-
sition operator (||) of CSP. This decomposition, while
nice conceptually, often distributes global behavior
into complex protocols of local behavior. We improve
upon this result by introducing a third agent, called
dialogue, that explicitly represents global sequencing
and synchronization constraints. Dialogue existed
only implicitly in Alexander’s framework. With an
explicit dialogue agent, presentation and application
may be specified more independently of each other.

There are other uses of the agents in this domain.
Abowd[1], for example, decomposes interactive sys-
tems into four cooperating agents in order to test for
usability properties. In addition, a number of run-
time architecture frameworks are based on the de-
composition of user-interfaces into a network of com-
municating agents (Section 2.3).

2.2.2 Agents and Processes

Processes are formal abstractions used to describe
concurrent, communicating agents. A process is an
entity whose internal structure can only be discovered
by observing the actions in which it participates. Pro-
cesses are often denoted by formal notations called
process algebras. The CSP notation mentioned above
is one example of a process algebra. In this paper,
we use the LOTOS[4] notation, which uses temporal
operators to specify permissible orderings and depen-
dences over actions.

A process defined in LOTOS performs actions and
interacts with other, concurrently executing, pro-
cesses. Actions are built up out of atomic units called
events. The set of events in which a process P may
participate is called the alphabet of P (denoted a(P)).
If an event e is in the alphabet of two processes, then
these processes can participate in actions that syn-
chronize on e. When processes synchronize on an
event, they simultaneously participate in actions over
that event. During synchronization, an action can of-
fer one or more values that can be observed by other
actions participating in the same event.

Complex processes may be built by either com-
bining sub-processes through an ordering operator
(e.g., process P is the sequential composition of sub-
processes P; and P») or by conjoining sub-processes
so that they run independently but synchronize on
common events. The conjoining operator speci-
fies that P; and P, act independently and concur-
rently with the exception that actions with commonly
named events synchronize. In LOTOS this is called
parallel composition and is denoted Py || Ps.

2.2.3 Agent Composition

In both CSP and LoTos, parallel composition is de-
fined so that more than two actions may synchronize
on the same event at a given time. This is useful
because, when multiple processes synchronize on the
same action, each process can be thought of as adding
a constraint to the occurrence of that action[4]. This
style of expressing behavior is often called constraint-
oriented specification. Constraint-oriented specifica-
tion has been used to rigorously define composition
in multi-paradigm specifications[27].

A multi-paradigm specification is one in which a
system is described by multiple partial specifications
written in different notations. Zave and Jackson[28]
represent partial specifications as constraints in first-
order predicate logic and note how logical conjunc-
tion specifies the simultaneous solution of these con-
straints. Specifications written in this style use math-
ematical free variables to represent values to be filled
in by other specifications. When the specifications are
conjoined, the free variables must satisfy constraints
in all specifications. Conjunction is the mechanism
for composing multi-paradigm specifications.

We adopt conjunction as the mechanism for multi-
model composition. Designers treat different models
as constraints on an overall solution, and system be-
havior is defined as any behavior that is consistent
with the conjunction of constraints imposed by the di-
alogue, presentation, and application models respec-
tively. Our results extend conjunction as a tool for
composing models into a mechanism for composing
run-time modules generated from these models.

Page 3

2.3 GUI Architecture Frameworks

MASTERMIND generates software modules from
declarative models. Modules must inter-operate in
the context of an underlying run-time environment.
Currently, there is no single run-time environment
architecture that fits all user-interface problems[3].
There are, however, two frameworks that seem to cap-
ture most cases: SmallTalk’s Model-View-Controller
(MVC)[14] and Coutaz’s Presentation-Abstraction-
Control (PAC)[8]. Both of these cast a system into
a collection of cooperating agents. An agent is a
complete information processing unit with attributes
from each model. Agents communicate with other
agents by observing, acting on, and issuing events
rather than making sequential procedure calls and
waiting for their return.

In MVC, the model' is an agent responsible for
maintaining application state, the view is an agent
that reflects the state of the model on the display,
and the controller is an agent that accepts input from
the user and initiates changes in the model. Users in
the MVC framework interact with the controller and
observe changes in the view. The MVC framework is
useful for multi-viewed user-interfaces because view
agents can be added to the framework without af-
fecting the other agents.

In PAC, the presentation® combines input and out-
put handling (the model and view agents of MVC)
into a single agent, the abstraction is similar to the
model in MVC, and the controller is an agent that en-
sures that presentation and abstraction remain syn-
chronized. The PAC framework faithfully repre-
sents the modularity decisions of object-oriented user-
interface toolkits like Artkit[12] and subArctic[9].
These toolkits package input and output together into
reusable widgets called interactors.

Interactive systems tend to be structured using ei-
ther the MVC or PAC frameworks, with the choice
depending on the nature of the application. The com-
position technique presented in this paper assumes
systems are built using the PAC framework. Those
systems that are difficult to to organize into a PAC
model may be difficult to specify and generate in
MASTERMIND.

2.4 Summary

There are three issues that must be addressed in solv-
ing the model composition problem. First, the ap-
proach must generate user-interfaces with rich dy-
namic behavior. Second, the correctness of module
composition must be demonstrated. Third, the gen-
erated modules must cooperate to form an efficient
system. The first issue is a function of the expres-
sive power of the modeling notations. In MASTER-
MIND, special-purpose modeling notations were cho-

INot to be confused with our use of the word model.
2Not to be confused with MASTERMIND Presentation.

sen to overcome this deficiency[17, 5]. This paper
is concerned with generating correct implementations
with maximal efficiency while preserving the expres-
sive power of MASTERMIND models.

3 Design Requirements

Recall from Figure 1 that each class of model has
a code generator that synthesizes run-time modules
for models in that class. The modules are generated
without detailed knowledge of the other models. At
run time, however, modules must cooperate as pre-
scribed by the conjunction of the models that gen-
erated them. In this section, we present a detailed
specification of the relationship between model com-
position and how the associated modules cooperate
at run-time.

3.1 Notation

The subject of this paper is the automatic generation
and composition of run-time modules from design-
time models. A module is a unit of code gener-
ated from a single model. We use a third class of
construct—the LOTOS process—to define composition
correctness. In formal correctness arguments, we of-
ten refer to all three types of constructs and distin-
guish them by using different fonts. MASTERMIND
models are written in the Sans Serif font (e.g., Presen-
tation, Dialogue, and Application). LOTOS processes
are written in capital italic letters (e.g., P, D, and
A, respectively). Run-time modules are written in
German letters (e.g., B, ©, and 2, respectively).

We now briefly define some process algebra termi-
nology. Suppose the behavior of an agent can be de-
scribed by the LoTOS process B. If the agent can
observe or offer values by synchronizing on event e,
its behavior from that point is be described by an-
other process B'. Notationally, the synchronization
of B on e is written B(e), and we assume there is al-
ways a unique B’ such that B(e) = B'. This assump-
tion follows the fact that the systems under study are
deterministic.

We assume that the number of generated run-time
modules is known and does not vary during the exe-
cution of a generated system. In MASTERMIND, there
are exactly three generated modules, and so the be-
havior of the system at any time can be described
as B = By || By || Bs where B; describes the future
behavior of module i. The behavior of B after syn-
chronizing on an event e (denoted B(e)) is another
process B' = B{ || By || B; where:

Bl(e) ifee CM(B,)

B! =
B; otherwise

Page 4

Any event that can be observed of a module can be
observed of all the modules in composition. This ob-
servation will be important when we define the 2 ob-
server function in Section 3.4.

We occasionally need to represent the architectural
embedding of Figure 1 equationally. In this case, we
refer to the entire run-time system, 4, as a mod-
ule composed from B, ®, and 2, using the notation
UM, D, 2.

3.2 Inter-model Composition

Model-based code generators construct a run-time
module from a design-time model. The code genera-
tion strategy is model-specific, reflecting the special-
ization of models to a particular aspect of the system.
At run time, however, modules must cooperate, and
the cooperative behavior must not violate any of the
constraints imposed by the models. There is an in-
herent distinction between behavior that is limited
to the confines of a given model and behavior that
affects or is affected by other models. Inter-model
composition is concerned with managing this latter
inter-model behavior.

Some behavior is highly model specific and nei-
ther influences nor is affected by behavior specified in
other models. In the presentation model, for example,
objects are implemented using graphical primitives in
the Amulet toolkit[15], and attribute relations are im-
plemented as declarative formulas that, at run-time,
eagerly propagate attribute changes to dependent at-
tributes. As long as changes in these attributes do not
trigger behavior in the dialogue or application mod-
els, these aspects can be ignored when considering
model composition. In the application model, object
specifications are compiled into abstract classes un-
der the assumption that the designer will later extend
these into subclasses and provide implementations for
the abstract methods. As long as the details of these
designer extensions do not trigger behavior in dia-
logue or presentation models, this behavior may also
be ignored when defining model composition.

Within a module, entities compose according to
a model-specific policy. In the presentation model,
for example, objects compose by part-whole aggre-
gation, and attributes compose by formula evalua-
tion over dependent attributes. In the application
model, objects compose using a combination of sub-
classing, aggregation, and polymorphism. When con-
sidering how models compose, some details of intra-
model composition can be abstracted away, but not
all of them. Models impose temporal sequencing con-
straints on the occurrence of inter-model actions, and
models contribute to the values computed over the
entire system. These constraints and contributions
must be captured in some form and used to reason
about model composition.

We chose to map this inter-model behavior into a
semantic domain that is common across all of the

process PrintSave[print, save, go, cancel, layout, kbd (1)
lpr, write] (2)
(Ipdhost, filename : string, (3)
doc : doctype, (4)
port : bool) : exit := (5)
Plgo, lpr, write, layout, kbd] [> (cancel ; exit) (6)
where (7)
process P[go, Ipr, write, layout, kbd] : exit := (8)
Layout[go, lpr, layout] (9)
[> (save ; F[go, lpr, write, layout, kbd]) (10)
endproc (11)
process Flgo, lpr, write, layout, kbd] : exit := (12)
Edit[go, write, kbd] (13)
[> (print ; P[go, lpr, write, layout, kbd]) (14)
endproc (15)
process Layout[go, lpr, layout] : exit := (16)
(layout ? port ; Layout|go, lpr, layout)]) (17
0 (go ; lpr pdhost!port!doc; exit) (18)
endproc (19)
process Edit[go, write, kbd] : exit := (20)
(kbd ? filename ; Edit[go, write, kbd]) (21)
O (go ; write ! doc! file ; exit)) (22)
endproc (23)
endproc (24)

Figure 2: LOTOS abstraction of print/save dialogue.

models. This domain is described by the LOTOS nota-
tion, which specifies temporal constraints on actions
and data values. We assume that LOTOS processes
can be derived from the text of a model specification
(Section 3.4). Designers may, for example, need to
designate actions of interest to other models. LOTOS
processes do not capture all of the behavior of mod-
els in composition, but they do express the essential
constraining behavior.

3.3 An Example

We now demonstrate an example of inter-model be-
havior expressed as a LOoTOS process. The dialogue
model being considered is for a Print/Save widget
similar to those found in the user interfaces of draw-
ing tools, web browsers, and word processors. Such
widgets allow the user to print a document or save it
to a file on disk. Options specific to printing, such as
print orientation (e.g., portrait vs. landscape), and
to saving, such as the file to save in, are typically en-
abled and disabled depending upon the user’s choice
of task. These ordering dependencies are reflected in
the dialogue model for this widget. The inter-model
behavior of this dialogue model can be described by
the LoTOS process in Figure 2.

The process PrintSave can synchronize on any of
the events that follow in square brackets. In this ex-

Page 5

ample, the events print, save, go, cancel, layout, and
kbd (line 1 in the figure) define points for synchroniz-
ing with the presentation; whereas the events Ipr and
write (line 2) define points for synchronizing with the
underlying application. The parameters Ipdhost and
filename (line 3) store the name of the default printer
and the user-selected filename respectively. The pa-
rameter doc (line 4) represents the document to be
printed or saved, and the parameter port (line 5) rep-
resents the print orientation (portrait if true, land-
scape if false).

A separate presentation model defines buttons la-
beled Send to Printer, Save to File, Print, and
Cancel which, when pressed, offer the events print,
save, go, and cancel respectively. The presentation
model also contains a pair of radio buttons that spec-
ify paper orientation. These buttons display graphics
of a page in either portrait or landscape mode and,
when selected, offer the event port with a value of
true if the choice is for portrait orientation and false
for landscape orientation. Finally, there is a text en-
try box in which the user can type in a file name. As
the user edits this name, the text box responds by of-
fering the kbd event parameterized by the contents of
the string typed so far. Note that the actual keys be-
ing pressed are not returned, as editing functionality
is best handled in a text widget and is not what we
would consider inter-model behavior. A separate ap-
plication model defines procedures for issuing a print
request and saving a file to disk. These procedures
are responsive to the events lpr and write respec-
tively. Actions that synchronize on these events offer
a number of values including printer name (lpdhost)
and filename (filename).

The temporal structure of dialogue, presentation,
and application model composition is given in the
behavior specification (line 6). The behavior of
PrintSave is the behavior of the process P (defined
on lines 8 through 11) with the caveat that it may be
disabled (terminated) at any time by the observation
of the cancel event. Process P represents what in-
teractions and application invocations must happen
in order to send a document to the printer. Most
of this functionality is actually expressed in the sub-
process Layout (defined on lines 16-19). P behaves
like Layout in the normal case, but it can be disabled
if the save event is observed. Recall that the save
event is offered whenever the user alternates from the
Send to Printer button to the Save to File but-
ton in the presentation model. The process F (de-
fined on lines 12-15) likewise behaves like the process
Edit (defined on lines 20-23) in the normal case, but
is disabled if the event print is observed. Note that F’
and P are mutually disabling, which means that the
user can switch back and forth between printing and
saving as many times as he or she likes until hitting
the Go button.

. A
Dialogue —~2— Process

| |

D L) TraceSets

Figure 3: Dialogue compiler correctness.

3.4 Models, Modules, and Processes

Processes like those in Figure 2 are useful for under-
standing the relationship between models and mod-
ules. This relationship is complex, and so we describe
it first for a single model and then for the three models
in composition. In this section, we formalize correct-
ness conditions for the MASTERMIND dialogue model,
but a similar formalization exists for all three of the
MASTERMIND models.

Figure 3 shows the relationship between dialogue
models (members of the set Dialogue), run-time mod-
ules generated by dialogue models (members of the
set ®), and the inter-model behavior of dialogue
models (members of the set Process). The relation-
ships between these sets are defined as functions that
map members of one set into another. The function
Cp : Dialogue — ® maps dialogue models to run-time
implementation modules. Think of Cp as an abstract
description of the dialogue model compiler. The func-
tion Ap : Dialogue — Process maps dialogue models
into LOTOS processes describing their inter-model be-
havior. Think of Ap as an abstract interpretation of
the dialogue model. The function 2 : ® — TraceSets
maps run-time implementation modules (of any kind)
into event traces of their observable behavior. Think
of 0 as an observer of run-time behavior. Finally
the function ¢r : Process — TraceSets maps a LOTOS
process to the set of all possible action traces that
can be observed of that process.

These sets and functions are related by the com-
mutative diagram of Figure 3. Externally observable
model behavior is mapped into a LOTOS process by
Ap, and the set of traces of a module’s externally
observable actions is recorded by 2. We say that
a dialogue model d € Dialogue is consistent with
the module Cp(d) if every trace ¢ € Q(Cp(d)) is
in the set tr(Ap(d)) and if there are no sequences
¢ € tr(Ap(d)) such that ¢ & Q(Cp(d)). That is, the
inter-model behavioral interpretation of d agrees ex-
actly with the observable behavior of the run-time
module generated from d. Commutativity of the di-
agram requires this property for any dialogue model
expressible in the set Dialogue.

3.5 Model-based Ul Synthesis

The correctness relationship between models and
modules (Figure 3) can be extended to specify the

Page 6

V p € Presentation
V d € Dialogue
Y a € Application
QU[Cr(p),Cp(d),Ca(a)])

tr(Ap(p) I Ap(d) || Aa(a))
Figure 4: Module composition correctness.

correctness of module composition. We now have
functions Ap, Ap, and A4 that map models into Lo-
TOS processes. Since models should compose by con-
junction, these processes should compose by parallel
composition. We also have a run-time module com-
binator $1[] that combines modules from B, D, and
2l into a single module whose actions are observable
by the € function. Figure 4 shows the constraints on
the behavior of these entities. Let p € Presentation,
d € Dialogue, and a € Application. Then the code
generated from these models is correct if, for any ob-
servable behavior o, ¢ is a legal trace in the parallel
composition of the models and vice-versa. This equa-
tion defines the conditions necessary for correct mod-
ule composition without assuming any model-specific
interpretation of these actions. It serves, therefore,
as a specification of design requirements. In the next
section, we present an implementation that satisfies
these requirements.

4 Design

We now turn to the design of the run-time synchro-
nization module and model-specific compilers of Fig-
ure 1. The correctness conditions of Figure 4 im-
pose constraints on these designs. Fortunately, these
constraints do not require model-specific knowledge
(e.g., graphical concepts in the presentation model or
data layout in the application model). This allows
us to design a generic infra-structure of inter-model
cooperation and to assume this design when craft-
ing model-specific code generation strategies. The
design refines the notions of action and synchroniza-
tion, which form the basis of inter-module communi-
cation in Figure 4, into run-time objects that imple-
ment these constraints.

4.1 Run-time Control

One concern in designing a system is the implemen-
tation of software control[20]. Control can be imple-
mented in many ways. In procedural systems, for
example, control is synonymous with location in the

code; whereas in concurrent systems, control is dis-
tributed and managed by multiple objects concur-
rently. User-interface software generally implements
an event-driven, sequential control scheme, in which
a single thread provides a facade of concurrency by
dispatching small callback routines when input de-
vice activity is sensed. In the interest of providing a
single style of control in our systems, we adopt the
event-driven, sequential implementation.

The choice of software control implementation in-
fluences the design of actions and synchronization.
Actions in the presentation module correspond to in-
put device behavior like mouse and keyboard events.
Since these events invoke callback procedures, we im-
plement synchronization as a callback. This means
that the temporal structure of the inter-model be-
havior must be implemented in such a way that all
legal actions are enabled, all illegal actions are dis-
abled, and after action synchronization, new actions
are enabled or disabled. If one model can be made to
represent this temporal structure, then functionality
provided by the other models can be abstracted into
context-independent actions and implemented using
method callbacks.

By design, the temporal structure of the dialogue
model represents the synchronization needs of the en-
tire program. This makes it natural to treat the di-
alogue module as the arbiter of system control. In
the architecture presented in Figure 1, the Dialogue
module is a reactive component that computes the
enabled/disabled status of actions in response to ac-
tion synchronizations, and the other modules are col-
lections of code that are invoked when actions syn-
chronize. At run time, every action causes the dia-
logue module to compute the next state of the sys-
tem. Based on this next state, actions embedded in
other modules are enabled, disabled, or activated as
appropriate.

4.2 Action Synchronization

The dialogue module computes the set of enabled
actions as a function of the observed actions. This
means that actions can be thought of as entities that
are enabled, disabled, and activated by an omniscient
dialogue agent, and that the model-specific interpre-
tation of said actions can be structured to occur
when the action is activated. We now describe the
Action object, a run-time entity that encapsulates
the status (enabled or disabled) of an observable ac-
tion with an activation procedure that can be special-
ized by model-specific code generators to implement
desired functionality. Figure 5 shows our design as
an OMT][20] object model.

The first thing to note about our design is that
the class Action is abstract. Specifically, it contains
an abstract method called enable() that must be
supplied by a subclass. Subclassing in the OMT no-
tation is denoted by a triangle one point of which

Page 7

Event synchronizes J Action offers ' Daia |
ven
enabled : bool {ordered} @ ValueOffer
bool enable() { abstract}
void disable()
void activate() 4L
,,,,, \ o
' Data : , Data :
Input '---7-- Output '------
void set(Data) { abstract} Data& get() { abstract}
b?OI ?b?gjeot Eager External
en = true;
reurntrue) | © Cl-------- |
void observe(); V
bool enable()
{ enabled = true;
return false; }

Figure 5: Object model for synchronization mechanism.

is connected to the superclass with one or more lines
emanating out to its subclasses. In user-interface soft-
ware, presentation model actions are associated with
presentation module interaction objects, and appli-
cation model actions are associated with the invoca-
tion of methods of objects in the application module.
When an action in the presentation model can be of-
fered, the graphical object associated with that action
must be enabled and made ready to accept user activ-
ity. When the graphical object detects such activity,
it must signal the rest of the system than an action
synchronization is occurring. When an action in the
application model can be offered, a method in the ap-
plication module must be invoked. The object model
of Figure 5 distinguishes between these interpreta-
tions of action enabling by subclassing Action into
those that are External and those that are Eager.
The synchronization requirements of an Eager ac-
tion are met when the action is enabled; whereas
External actions require both being enabled and ob-
serving activity generated by an external entity like
a mouse.

The class Action has an association called
synchronizes with the class Event. Objects of class
Event represent process events upon which multi-
ple actions synchronize. Event objects encapsulate a
unique name with the synchronization requirements
of actions from multiple models. Note that while
there is an object of class Action for every action in
any model, there is a unique object of class Event for
any distinct event.

Recall from Figure 2 that actions are usually ac-
companied by one or more value inputs or outputs.
To accommodate this, we designed the class Action
to aggregate zero or more objects of the parameter-
ized class ValueOffer. Aggregation in OMT is ex-
pressed with the diamond operator, and it means that
zero or more objects of class ValueOffer are parts of
every object of class Action. The parameter Data in

Figure 5 names a data type that parameterizes class
ValueOffer. A parameterized class (denoted as a
box with a dashed box in the upper right corner) can
define local attributes or methods whose signatures
depend vary with the parameter. Note that the sub-
classes Input and Output use the parameter value
to specialize set and get methods. These abstract
methods must be supplied by model-specific code gen-
erators, which know how to supply and receive values
in model-specific contexts.

Code generators produce code for actions given
only the name of the event and zero or more value
offers (either inputs or outputs) associated with the
synchronization of the event. Table 1 shows the syn-
tax of actions as definable in LoT0S. The only infor-
mation a code generator has about an action is the
event name, whether the value offers are inputs or
outputs, the name and type of the variable in which to
store the input, and the expression used to compute
the output. Note that objects can be constructed
from the syntax of actions in the process notation.

4.3 Run-time Execution

Event objects internalize synchronization require-

Table 1: Syntax of actions.

action ::= EventName offerx
offer = input
| output

input :="'?" Variable "' Type;

e

output :: Ezpr;

Page 8

ments of multiple actions and issue activate() and
get () and set () methods to Action and ValueOffer
objects as callbacks. To make this work, Event ob-
jects contain a pointer to all of the Action objects
that synchronize and vice-versa. When an Action
object is enabled by the dialogue module, the return
value (true or false) is recorded in the correspond-
ing Event object so that the synchronization require-
ments can be tabulated. A return value of false indi-
cates that an action is External, in which case the
Event object records that the action is enabled but
waits for external confirmation that the action has
been chosen by the user. Once all of the synchroniza-
tion requirements have been met, the Event issues
the appropriate activate, get, and set methods and
then instructs the dialogue module to compute the
next state. This process is described in greater detail
in [21].

5 Results and Status

Automatic approaches to user-interface software gen-
eration have been criticized for their failure to deliver
rich and powerful interactive applications[24]. This
deficiency has been addressed by incorporating more
and more powerful models into the development pro-
cess. This led to the model composition problem and
our present work. We validated our approach on three
points: power, correctness, and efficiency.

Power We were able to express the UI’s in several
case studies using our modeling notations. We tested
the quality of user interfaces on two specific exam-
ples: the Print/Save widget described in Section 3.3
and an airspace- and runway-executive that supports
an air-traffic controller (ATC) in a busy airport[21].
The former demonstrates the ability to generate com-
mon, highly reusable, tasks for standard graphical
user-interfaces. The latter demonstrates the ability to
support a complex task using a direct-manipulation
interface.

The ATC example testifies to the power of our
approach. When flight numbers are keyed in to a
text-entry box, an airplane graphic, augmented with
the flight number, appears in the airspace. As more
planes come into the airspace, the controller keys
their flight number in a text-entry box. When the
controller decides to change the position of a plane,
he does so by dragging the airplane graphic to a new
location on the canvas. As soon as he presses and
holds the mouse button, a feedback object shaped
like an airplane appears and follows the mouse to the
new location. When the mouse is released, the plane
icon moves to the newly selected location.

The presentation model of the ATC example is
quite rich. It specifies gridding so that airplane
graphics are always uniformly placed within the lanes,

and it specifies feedback objects that give users infor-
mation during an operation. In a real deployment,
the location of the flights would probably change
in response to asynchronous application signals from
special hardware monitors. In such a deployment,
these signals would be connected to External rather
than Eager actions and would fit into the framework
without change. For more details on this case study
and the print/save dialogue, see Stirewalt [21].

Correctness In addition to being able to generate
and manage powerful user-interfaces, the composition
of our modules is correct. Two aspects of our ap-
proach require justification on these grounds. First is
the design of run-time action synchronization. This
paper addresses the theoretical issues involved here.
In practice, we have found the design to be quite ro-
bust. Second is the synthesis of the runtime dialogue
component (member of the set D) from a dialogue
model. As we mentioned earlier, the MASTERMIND
Dialogue model notation can be thought of as a syn-
tactic sugaring for a subset of Full LoT0S. We im-
plemented a prototype dialogue model code generator
whose correctness was validated in Stirewalt[21] (also
described in [22]).

Efficiency We measured efficiency empirically by
applying our prototype code generator on the ATC
example. We generated dialogue modules and con-
nected these with hand-coded presentation and ap-
plication modules. On the examples we tried, we ob-
served no time delays between interactions. We quan-
tified these results by instrumenting the source code
to measure the use of computation resources and wall-
clock time. The maximum time taken during any in-
teraction was 0.04 seconds. This compares well to the
de facto HCI benchmark of response time, which is 0.1
seconds. We believe that more heavyweight, middle-
ware solutions, such as implementing synchronization
through object-request brokers, are not competitive
with these results.

We have presented an infra-structure of run-time
support for multi-model composition. The OMT de-
sign model provides guidance to developers of model-
specific code generators. We are currently completing
a new industrial-strength, dialogue code generator.
This new code generator is incorporating state-space
reduction technology described in [22] and will im-
prove interaction time that, in the prototype, is a
function of the depth of a dialogue expression with
constant time interaction. We are also working on
adapting the presentation model code generator de-
scribed in [7] to cooperate work within our infra-
structure.

Page 9

6 Conclusions

We began this work investigating the feasibility of
generating user-interface code from multiple declar-
ative models and quickly discovered that generating
code for a specific model is easy; whereas integrating
the code generated from these models is difficult. In-
tegration is much more complicated than mere link-
ing of compiled object modules. For models to be
declarative, they must assume that entities named in
one model have behavior that is elaborated in an-
other model. A button object described in a pre-
sentation model has temporal context defined in a
dialogue model and functionality defined in an appli-
cation model. Designers want to treat presentation,
temporal context, and effect separately because each
aspect in isolation can be expressed in a highly spe-
cialized language that would be less clear if it were
required to express the other aspects as well. For in-
teractive systems, composition by conjunction is es-
sential to separating complex specifications into man-
ageable pieces.

Unfortunately, programming languages like C++
and Java do not provide a conjunction operator. Such
an operator is difficult to implement correctly and ef-
ficiently, and in fact, we did not try to implement
it. Rather, by casting model composition into a for-
mal framework that includes parallel composition, we
were able to express a correct solution and then refine
the correct solution into an efficient design. This is a
key difference between our approach and middle-ware
solutions that try to implement parallel composition
by general event registry and callback.

Our results contribute to the body of automated
software engineering research in two ways. First, our
framework is a practical solution that helps to au-
tomate the engineering of interactive systems. Sec-
ond, our use of formal methods to identify design
constraints and the subsequent refinement of these
constraints into an object-oriented design may serve
as a model for other researchers trying to deal with
model composition in the context of code generation.
The formality of the approach allowed us to mini-
mize design constraints and was the key to arriving
at a powerful, correct, and efficient solution.

References

[1] G. D. Abowd. Formal Aspects of Human-
Computer Interaction. PhD thesis, University
of Oxford, June 1991.

[2] H. Alexander. Structuring dialogues using
CSP. In Formal Methods in Human-Computer
Interaction[11], pages 273-295. Cambridge Uni-
versity Press, 1990.

[3] L. Bass and J. Coutaz. Developing Software for
the User Interface. SEI Series in Software Engi-
neering. Addison-Wesley, 1991.

[4] T. Bolognesi and E. Brinksma. Introduction to
the ISO specification language LoT0S. Computer
Network ISDN Systems, 14(1), 1987.

[5] T. P. Browne et al. Using declarative
descriptions to model wuser interfaces with
MASTERMIND. In F. Paterno and P. Palanque,
editors, Formal Methods in Human Computer
Interaction. Springer-Verlag, 1997.

[6] H. J. Bullinger and B. Schackel, editors. Human
Computer Interaction - INTERACT’87. North
Holland, Amsterdam, 1987.

[7] P. Castells, P. Szekely, and E. Salcher. Declara-
tive models of presentation. In TUI’97: Interna-

tional Conference on Intelligent User Interfaces,
pages 137144, 1997.

[8] J. Coutaz. PAC, an object-oriented model for
dialog design. In Human Computer Interaction
- INTERACT’87 [6], pages 431-436. North Hol-
land, Amsterdam, 1987.

[9] W. K. Edwards, S. E. Hudson, R. Rodenstein,
T. Rodriguez, and I. E. Smith. Systematic out-
put modification in a 2d user interface toolkit.
In UIST’97: ACM Symposium on User Interface
Software Technology, 1997.

[10] D. Harel. On visual formalisms. Communica-
tions of the ACM, 31(5), 1988.

[11] M. Harrison and H. Thimbleby, editors. Formal
Methods in Human-Computer Interaction. Cam-
bridge University Press, 1990.

[12] T. R. Henry, S. E. Hudson, and G. L. Newell.
Integrating gesture and snapping into a user in-
terface toolkit. In Third Annual Symposium on
User Interface Software and Technology. Pro-
ceedings of the ACM SIGGRAPH Symposium,
pages 112-122, October 1990.

[13] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice/Hall International, Englewood
Cliffs, New Jersey, 1985.

[14] G. E. Krasner and S. T. Pope. A cookbook for
using the model view controller user interface
paradigm in smalltalk. Journal of Object Ori-
ented Programming, 1(3), August 1988.

[15] B. A. Myers et al. The Amulet environment:
New models for effective user interface software

development. [EEE Transactions on Software
Engineering, 23(6):347-365, June 1997.

Page 10

[16]

[23]

[24]

[25]

[26]

[27]

[28]

B. A. Myers and M. B. Rosson. Survey on user
interface programming. In SIGCHI’92: Human
Factors in Computing Systems, May 1992.

R. Neches et al. Knowledgeable development en-
vironments using shared design models. In Intel-
ligent Interfaces Workshop, pages 63—-70, 1993.

P. Palanque, R. Bastide, and V. Senges. Validat-
ing interactive system design through the veri-
fication of formal task and system models. In
Working Conference on Engineering for Human
Computer Interaction, 1995.

A. Puerta. The Mecano project: Comprehensive
and integrated support for model-based user in-
terface development. In [25], pages 19-36. Na-
mur University Press, 1996.

J. Rumbaugh et al. Object-Oriented Modeling
and Design. Prentice-Hall, 1991.

R. E. K. Stirewalt. Automatic Generation of In-
teractive Systems from Declarative Models. PhD
thesis, Georgia Institute of Technology, 1997.

R. E. K. Stirewalt and G. D. Abowd. Composi-
tion property analysis: a new strategy for model
checking user-interface designs. In Sizth Interna-
tional SIGSOFT Symposium on the Foundations
of Software Engineering (FSE’98), 1998. Sub-
mitted for publication.

P. Szekely et al. Declarative interface mod-
els for user interface construction tools : The
MASTERMIND approach. In L. Bass and
C. Unger, editors, Engineering for Human-
Computer Interaction. Chapman & Hall, 1996.

Pedro Szekely, Ping Luo, and Robert Neches.
Beyond interface builders: Model-based inter-
face tools. In Bridges Between Worlds: Human
Factors in Computing Systems: INTERCHI’93,
pages 383-390. Addison Wesley, April 1993.

J. M. Vanderdonckt, editor. Computer Aided De-
sign of User Interfaces. Namur University Press,
Namur, 1996.

Visual Edge Software Ltd., Cupertino, CA. Ez-
tending and Customizing UIMX, 1993.

P. Zave. A compositional approach to mul-
tiparadigm programming. IEEE Computer,
September 1989.

P. Zave and M. Jackson. Conjunction as com-
position. ACM Transactions on Software Engi-
neering and Methodology, 2(4):371-411, 1993.

Page 11

