
Machine Learning for Video-Based

Rendering

Arno Sch�odl

arno@schoedl.org
Irfan Essa

irfan@cc.gatech.edu

Georgia Institute of Technology
GVU Center / College of Computing

Atlanta, GA 30332-0280, USA.

Abstract

We recently introduced a new paradigm for computer animation,
video textures , which allows us to use a recorded video to generate
novel animations by replaying the video samples in a new order.
Video sprites are a special type of video texture. Instead of storing
whole images, the object of interest is separated from the back-
ground and the video samples are stored as a sequence of alpha-
matted sprites with associated velocity information. They can be
rendered anywhere on the screen to create a novel animation of the
object. To create such an animation, we have to �nd a sequence
of sprite samples that is both visually smooth and shows the de-
sired motion. In this paper we address both problems. To estimate
visual smoothness, we train a linear classi�er to estimate visual
similarity between video samples. If the motion path is known
in advance, we then use a beam search algorithm to �nd a good
sample sequence. We can also specify the motion interactively by
precomputing a set of cost functions using Q-learning.

1 Introduction

Computer animation of realistic characters requires an explicitly de�ned model with
control parameters. The animator de�nes keyframes for these parameters, which
are interpolated to generate the animation. Both the model generation and the
motion parameter adjustment are often manual, costly tasks.

Researchers in computer graphics and computer vision have proposed eÆcient meth-
ods to generate novel views by analyzing captured images. These techniques, called
image-based rendering, require minimal user interaction [3] and allow photorealistic
synthesis of still scenes.

In [7] we introduced a new paradigm for image synthesis, which we call video tex-
tures . In that paper, we extended the paradigm of image-based rendering into
video-based rendering , generating novel animations from video. A video texture
turns a �nite duration video into a continuous in�nitely varying stream of images.
We treat the video sequence as a collection of image samples, from which we auto-

...

original order

velocity vector

transitions

54213

Figure 1: An animation is created from reordered video sprite samples. Transitions
between samples that are played out of the original order must be visually smooth.

matically select suitable sequences to form the new animation.

Instead of using the image as a whole, we can also record an object against a blue-
screen and separate it from the background using background-subtraction. We store
the created opacity image (alpha channel) and the motion of the object for every
sample. We can then render the object at arbitrary image locations to generate
animations, as shown in Figure 1. We call this special type of video texture a video
sprite.

Our original paper [7] describes the paradigm and basic techniques for creating
video textures. It also shows some initial results for video sprites. In this paper,
we address the controlled animation of video sprites. To generate video textures
or video sprites, we must optimize the sequence of samples so that the resulting
animation looks continuous and smooth, even if the samples are not played in their
original order. This optimization requires a visual similarity metric between sprite
images, which has to be as close as possible to the human perception of similarity.
The simple L2 image distance used in [7] gives poor results for our example video
sprite, a �sh swimming in a tank. In Section 2 we describe how to improve the
similarity metric by training a classi�er on manually labeled data [1].

Video sprites usually require some form of motion control. For example, even a
randomly swimming �sh must still be constrained to stay within the �sh tank. In
this paper, we develop two techniques to control the sprite motion while preserving
the visual smoothness of the sequence. In Section 3 we compute a good sequence
of samples for a motion path scripted in advance. Since the number of possible
sequences is too large to explore exhaustively, we use beam search to make the
optimization manageable.

For applications like computer games we would like to control the motion of the
sprite interactively. We achieve this goal using a technique similar to Q-learning,
as described in Section 4.

1.1 Previous work

Before the advent of 3D graphics, the idea of creating animations by sequencing
2D sprites showing di�erent poses and actions was widely used in computer games.
Almost all characters in �ghting and jump-and-run games are animated in this
fashion. Game artists had to generate all these animations manually.

i

j

i+1

j-1

transition i j→Di, j-1 D
i+1, j

Figure 2: Relationship between image similarities and transitions.

There is very little earlier work in research on automatically sequencing 2D views
for animation. Video Rewrite [2] is the work most closely related to video textures.
It creates lip motion for a new audio track from a training video of the subject
speaking by replaying short subsequences of the training video �tting best to the
sequence of phonemes. To our knowledge, nobody has automatically generated an
object animation from video thus far.

Of course, we are not the �rst applying learning techniques to animation. The
NeuroAnimator [4], for example, uses a neural network to simulate a physics-based
model. Neural networks have also been used to improve visual similarity classi�ca-
tion [6].

2 Training the similarity metric

Video textures reorder the original video samples into a new sequence. If the se-
quence of samples is not the original order, we have to insure that transitions be-
tween samples that are out of order are visually smooth. More precisely, in a
transition from sample i to j, we substitute the successor of sample i by sample
j and the predecessor of sample j by sample i. So sample i should be similar to
sample j � 1 and sample i+ 1 should be similar to sample j (Figure 2).

The distance function Dij between two samples i and j should be small if we can
substitute one image for the other without a noticeable discontinuity or \jump".
The simple L2 image distance used in [7] gives poor results for the �sh sprite, because
it fails to capture important information like the orientation of the �sh. Instead
of trying to code this information into our system, we train a linear classi�er from
manually labeled training data. The classi�er is based on six features extracted
from a sprite image pair:

� di�erence in velocity magnitude,

� di�erence in velocity direction, measured in angle,

� sum of color L2 di�erences, weighted by the minimum of the two pixel alpha
values,

� sum of absolute di�erences in the alpha channel,

� di�erence in average color,

� di�erence in blob area, computed as the sum of all alpha values.

The manual labels for a sprite pair are binary: visually acceptable or unacceptable.
To create the labels, we guess a rough estimator and then manually correct the
classi�cation of this estimator. Since it is more important to avoid visual glitches
than to exploit every possible transition, we penalize false-positives 10 times higher
than false-negatives in our training.

pk

lk

segment boundary

d p l(,)k k ∠ (,)p lk k

Figure 3: The components of the path cost function.

All sprite pairs that the classi�er rejected are no longer considered for transitions.
If the pair of samples i and j is kept, we use the value of the linear classifying
function as a measure for visual di�erence Dij . The pairs i; j with i = j are treated
just as any other pair, but of course they have minimal visual di�erence. The cost
for a transition Tij from sample i to sample j is then Tij =

1

2
Di; j�1 +

1

2
Di+1; j .

3 Motion path scripting

A common approach in animation is to specify all constraints before rendering the
animation [8]. In this section we describe how to generate a good sequence of sprites
from a speci�ed motion path, given as a series of line segments. We specify a cost
function for a given path, and starting at the beginning of the �rst segment, we
explore the tree of possible transitions and �nd the path of least cost.

3.1 Sequence cost function

The total cost function is a sum of per-frame costs. For every new sequence frame,
in addition to the transition cost, as discussed in the previous section, we penalize
any deviation from the de�ned path and movement direction. We only constrain
the motion path, not the velocity magnitude or the motion timing because the fewer
constraints we impose, the better the chance of �nding a smooth sequence using
the limited number of available video samples.

The path is composed of line segments and we keep track of the line segment that
the sprite is currently expected to follow. We compute the error function only with
respect to this line segment. As soon as the orthogonal projection of the sprite
position onto the segment passes the end of the current segment, we switch to the
next segment. This avoids the ambiguity of which line segment to follow when paths
are self-intersecting.

We de�ne an animation sequence (i1; p1; l1); (i2; p2; l2):::(iN ; pN ; lN) where ik, 1 �
k � N , is the sample shown in frame k, pk is the position at which it is shown, and
lk is the line segment that it has to follow. Let d(pk; lk) be the distance from point
pk to line lk, v(ik) the estimated velocity of the sprite at sample ik, and 6 (v(ik); lk)
is the angle between the velocity vector and the line segment. The cost function C
for the frame k from this sequence is then

C(k) = Tik�1; ik + w1 j6 (v(ik); lk)j+ w2 d(pk ; lk)
2; (1)

where w1 and w2 are user-de�ned weights that trade o� visual smoothness against
the motion constraints.

3.2 Sequence tree search

We seed our search with all possible starting samples and set the sprite position
to the starting position of the �rst line segment. For every sequence, we store the
total cost up to the current end of the path, the current position of the sprite, the
current sample and the current line segment.

Since from any given video sample there can be many possible transitions and it
is impossible to explore the whole tree, we employ beam search to prune the set
of sequences after advancing the tree depth by one transition. At every depth we
keep the 50000 sequences with least accumulated cost. When the sprite reaches the
end of the last segment, the sequence with lowest total cost is chosen. Section 5
describes the running time of the algorithm.

4 Interactive motion control

For interactive applications like computer games, video sprites allow us to generate
high-quality graphics without the computational burden of high-end modeling and
rendering. In this section we show how to control video sprite motion interactively
without time-consuming optimization over a planned path.

The following observation allows us to compute the path tree in a much more
eÆcient manner: If w2 in equation (1) is set to zero, the sprite does not adhere to
a certain path but still moves in the desired general direction. If we assume the
line segment is in�nitely long, or in other words is indicating only a general motion
direction l, equation (1) is independent of the position pk of the sprite and only
depends on the sample that is currently shown. We now have to �nd the lowest
cost path through this set of states, a problem which is solved using Q-learning [5]:
The cost Fij for a path starting at sample i transitioning to sample j is

Fij = Tij + w1 j6 (v(j); l)j + � min
k

Fjk : (2)

In other words, the least possible cost, starting from sample i and going to sample
j, is the cost of the transition from i to j plus the least possible cost of all paths
starting from j. Since this recursion is in�nite, we have to introduce a decay term
0 � � � 1 to assure convergence. To solve equation (2), we initialize with Fij = Tij
for all i and j and then iterate over the equation until convergence.

4.1 Interactive switching between cost functions

We described above how to compute a good path for a given motion direction l. To
interactively control the sprite, we precompute Fij for multiple motion directions,
for example for the eight compass directions. The user can then interactively specify
the motion direction by choosing one of the precomputed cost functions.

Unfortunately, the cost function is precomputed to be optimal only for a certain
motion direction, and does not take into account any switching between cost func-
tions, which can cause discontinuous motion when the user changes direction. Note
that switching to a motion path without any motion constraint (equation (2) with
w1 = 0) will never cause any additional discontinuities, because the smoothness
constraint is the only one left. Thus, we solve our problem by precomputing a cost
function that does not constrain the motion for a couple of transitions, and then
starts to constrain the motion with the new motion direction. The response delay
allows us to gracefully adjust to the new cost function. For every precomputed

Figure 4: The results from left to right: the maze, the interactive �sh and the �sh
tank.

motion direction, we have to precompute as many additional functions as there are
unconstrained transition steps N . The additional functions are computed as

Fn
ij = Tij + � min

k
Fn�1
jk ; (3)

for n = 1; :::; N and F 0 = F . When changing the error function, we use FN for
the �rst transition after the change, FN�1 for the second, down to F 1, after which
we use the original F . In practice, �ve steps without motion constraint gave the
best trade-o� between smooth motion, responsiveness to user input and memory
consumption for storing the precomputed function tables.

5 Results

To demonstrate our technique, we generated various animations of a �sh swimming
in a tank. The main diÆculty with �sh is that we cannot in
uence the distribution
of samples that we get with the video recording { �sh do not take instructions.
Rendering �sh is easier than rendering many other objects. They do not cast
shadows and show few perspective e�ects because their motion is restricted to the
tank.

6240 training samples at 30 samples/s of a freely swimming �sh were used to gen-
erate the �sh animation. We trained the linear classi�er from 741 manually labeled
sample pairs. The �nal training set had 197 positive and 544 negative examples. See
http://www.cc.gatech.edu/cpl/projects/videotexture/NIPS2000/ for videos.

Maze. This example shows the �sh swimming through a simple maze. The motion
path was scripted in advance. It contains a lot of vertical motion, for which there
are far fewer samples available than for horizontal motion. The computation time
is approximately 100x real time on a Intel Pentium II 450 MHz processor. The
motion is smooth and looks mostly natural. The �sh deviates from the scripted
path by up to a half of its length.

Interactive �sh. Here the �sh is made to follow the red dot which is controlled
interactively with the mouse. We use precomputed cost functions for the eight
compass directions and insert �ve motion-constraint-free frame transitions when
the cost function is changed.

Fish Tank. The �nal animation combines multiple video textures to generate a
�shtank. The �sh are controlled interactively to follow the number outlines, but the
control points are not visible in this animation. Animations like this one are easier

to create using the scripting technique presented in this paper, because interactive
control requires the user to adapt to the delays in the sprite response.

6 Conclusion and future work

Video sprites are a type of video-based rendering. First we record a video of the
object to animate. We treat the recorded video as a collection of sprite samples,
which are bitmaps with associated opacity and velocity information. The new
animation is created by sequencing these samples and rendering them according to
their opacity mask and velocity. In this paper, we solved three problems associated
with video sprites. We �rst showed how to improve the distance metric used to
measure visual smoothness of the sequence by learning a classi�er from manually
labeled training data. We then demonstrated how to generate a sample sequence
that, in addition to being visually smooth, moves on a scripted motion path. We
also developed a technique to interactively control the motion of a video sprite using
Q-learning.

The six sample pair features we described in this paper were only tested on the
�sh example. Other types of objects may require di�erent sample pair features.
We plan to investigate features for other important applications, such as animating
humans. Another possible extension to video sprites is to animate parts of the
object independently and to assemble the object from those animated parts. It is
possible that not all samples of one part can be combined with all samples of the
other parts, in which case additional constraints may have to be imposed to use only
matching sets of samples. We believe that video sprites will be a useful low-cost
and high-quality alternative for generating photorealistic animations for computer
games and movies, and that optimization and machine learning techniques will
continue to play an important role in their analysis and synthesis.

Acknowledgements. We would like to thank Richard Szeliski for his help in
writing this paper.

References

[1] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford 1995, Oxford Uni-
versity Press.

[2] C. Bregler, M. Covell, and M. Slaney. Video rewrite: Driving visual speech with
audio. In Computer Graphics Proceedings, Annual Conference Series, pages 353{360,
Proc. SIGGRAPH'97 (New Orleans), August 1997. ACM SIGGRAPH.

[3] P. Debevec et al., editors. Image-Based Modeling, Rendering, and Lighting, SIG-
GRAPH'99 Course 39, August 1999.

[4] R. Grzeszczuk, D. Terzopoulos, G. Hinton. NeuroAnimator: Fast Neural Network
Emulation and Control of Physics-Based Models. In Computer Graphics Proceedings,
Annual Conference Series, pages 9{20, Proc. SIGGRAPH'98 (Orlando), July 1998.
ACM SIGGRAPH.

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
In Journal of Arti�cial Intelligence Research, Volume 4, pages 237-285, 1996.

[6] B. Kamgar-Parsi, B. Kamgar-Parsi, A. K. Jain. Automatic Aircraft Recognition:
Toward Using Human Similarity Measure in a Recogntion System. In Computer
Vision and Pattern Recognition (CVPR'99), Colorado, USA, June 1999.

[7] A. Sch�odl, R. Szeliski, D. Salesin, I. Essa. Video Textures. To appear in Computer
Graphics Proceedings, Annual Conference Series, Proc. SIGGRAPH'2000 (New Or-
leans), July 2000. ACM SIGGRAPH.

[8] A. Witkin, M. Kass. Spacetime Constraints. In Computer Graphics Proceedings,
Annual Conference Series, pages 159{168, Proc. SIGGRAPH'88 (Atlanta), August
1988. ACM SIGGRAPH.

