
Creating Smooth Implicit Surfaces from Polygonal Meshes

Gary Yngve
gary@cc.gatech.edu

Greg Turk
turk@cc.gatech.edu

Abstract
Implicit surfaces have long been used for a myriad

of tasks in computer graphics, including modeling soft
or organic objects, morphing, and constructive solid ge-
ometry. Although operating on implicit surfaces is usu-
ally straight-forward, creating them is not — interactive
techniques are impractical for complex models, and au-
tomatic techniques have been largely unexplored. We in-
troduce a practical method for creating implicit surfaces
from polygonal models that produces high-quality results
for complex models. Whereas much previous work has
been done with primitives such as “blobbies,” we use
surfaces based on a variational interpolation technique
(the 3D generalization of thin-plate interpolation). Given
a polygonal mesh, we convert the data to a volumetric
representation and use this as a guide to create the im-
plicit surface iteratively. Carefully chosen metrics evalu-
ate each intermediate surface and control further refine-
ment. We have applied this method successfully to a va-
riety of polygonal meshes.

1 Introduction
The task of constructing smooth surfaces is ubiquitous
throughout computer graphics. The main representations
that are used are parametric surfaces and implicit sur-
faces. Parametric surfaces specialize in the ability to
identify specific locations on a surface. Although implicit
surfaces are at a disadvantage here, they provide more
information than parametric surfaces about their interior
and exterior. A parametric surface is much like a coast-
line with mileage markings, whereas an implicit surface
is a coastline plus the height of the land both above and
below the water. Determining interior and exterior for an
implicit surface is trivial; also, implicit surfaces are in-
nately manifold.

Because points can be evaluated easily as being in-
side or outside an implicit surface, many applications
considered challenging for parametric surfaces (includ-
ing polygonal meshes) become simple when applied to
implicit surfaces. Constructive solid geometry reduces
to just looking at the signs of the implicit functions —
there is no need to consider geometry such as convex-
ity or topology such as genus. Operations on implicit
surfaces that may cause a change in genus of the iso-

surface have simple implementations because the oper-
ations affect every point in space — on the isosurface, in-
side, and outside. Interpolating between implicit surfaces
effectively morphs between the two shapes of arbitrary
manifold topology. Implicit surfaces can be collided and
deformed, with fusions and separations done automati-
cally. Often in graphics, implicit functions are created by
summing several continuous and infinitely differentiable
functions, yielding surfaces that are smooth and seam-
less. The forms that they can represent are useful for
modeling organic shapes and for some classes of machine
parts that require blends and fillets.

Although implicit surfaces have these benefits, they
can be difficult to model. Parametric surfaces allow for
local finite control, while infinitely differentiable radial
basis functions, which are often used as primitives for im-
plicit surfaces, can have non-obvious influences on sur-
face position. Modeling with “blobbies”[2] suffers from
this problem since each blobby primitive only indirectly
influences the position of the isosurface.

Rather than using the more traditional blobby primi-
tives approach to implicit surfaces, we instead use vari-
ational implicit surfaces. This form of implicit surface
allows a user to specify locations that the surface will ex-
actly interpolate; this property allows more direct control
over surface creation. As we will describe more fully
later, solving a set of linear equations provides the guar-
antee that the surface will interpolate a given set of con-
straint points. In addition to this interpolating property,
variational implicit functions are smooth when the ba-
sis functions are appropriately chosen to satisfy an en-
ergy equation that is related to the desired degree of
smoothness. Our approach to creating these surfaces is to
add new constraints iteratively until the model is a close
approximation to the input polygonal mesh. Figure 1
shows four stages of this iterative process for a triceratops
model.

We have focused on the creation of implicit models
from polygonal meshes because of the large numbers of
existing high-quality polygonal meshes. Having an au-
tomatic conversion procedure from meshes to implicits
should provide a pathway towards creating a large library
of implicit surfaces. Moreover, all of the interactive mod-
eling tools for creating polygonal meshes could then used

Figure 1: Implicitization of a Triceratops: initial attempt, iteration 4, iteration 10, iteration 18 of refining.

to create implicit surfaces. This ability means that we
can avoid having to create special-purpose modeling pro-
grams for implicit surfaces. Because implicit models are
so much more compact in terms of storage, converting
from polygons to implicits can also be viewed as a com-
pression scheme.

The rest of the paper will proceed as follows: We dis-
cuss previous work in implicit-surface modeling in Sec-
tion 2. In Section 3, we explain the variational implicit
surface model. Then in Section 4, we introduce a set of
tools that will be used by the algorithm. We present the
algorithm in Section 5 and then show the results in Sec-
tion 6. Finally we conclude and discuss future work in
Section 7.

2 Previous Work
The very first implicit surfaces used in computer graphics
were quadrics (degree two polynomials ofx, y, andz),
such as spheres, ellipsoids, and cylinders. Blinn general-
ized these implicit surfaces for the purpose of modeling
molecules [2]. Basing his model from electron densities,
he developed the blobby molecule model, which consists
of Gaussian-like primitives blended together.

fi(x) = Aie
bix

2−ci

Each primitive is a radial basis function that can be tuned
to control its size and blobbiness (its tendency to blend).
This method and its variants [10] are widely used in the
computer graphics community.

Another genre of implicit surfaces is the convolution
surface [3]. A skeleton is convoluted with a kernel, such
as a Gaussian, to produce a smooth solid. The convo-
lution causes joints to be smoothed. However, the result-
ing surface can have undesirable bulges, especially where
joints meet. The skeletons for the convolutions can also
be 2D and 3D shapes, which tends to eliminate the prob-
lems with bulging. In either of these two classes of sur-
faces, the control points do not necessarily lie on the re-
sulting surfaces.

Interactive modeling techniques can be used to cre-
ate implicit surfaces of modest complexity. One elegant
method for interactive modeling was described by Witkin
and Heckbert, in which they use particles to sample and
control implicit surfaces [9]. Particles diffuse across the
surface and are created and destroyed as necessary. They
implemented their technique on blobbies; their technique
is adaptable to variational implicit surfaces as well. How-
ever, for creating complicated models, more automated
methods are needed.

Muraki developed a method to approximate range data
by a blobby implicit surface [6]. Muraki’s method incre-
mentally added primitives one at a time. At each iteration
his algorithm picks a primitive, duplicates it, and then
solves an optimization problem to minimize an energy
function. Because this requires is solving an optimization
problem every iteration, the method is exceedingly slow
— a model with 243 primitives took a few days to create
on a Stardent Titan3000 2CPU. Bittar, Tsingos, and Gas-
cuel addressed the modeling of an implicit surface from
volume data [1]. They calculate a medial axis of the vol-
ume data as an aid to implicit function creation. They
then use an optimization scheme based on Muraki’s work
to add primitives along the medial axis in substantially
less time than Muraki’s approach. However, the implicit
surfaces that they generated with their method were small
(the largest had only about 50 primitives).

This brief summary barely scratches the surface of
work on implicits in computer graphics. For an excel-
lent overview of the area, see the book by Bloomenthal et
al. [3].

3 Variational Implicit Surfaces
In this section we give the equations that describe varia-
tional implicit surfaces and we outline the algorithm that
we use to create them from polygonal meshes.

3.1 Basic Formulation
Variational implicit surfaces are created by solving a scat-
tered data interpolation problem [8]. The particular so-

lution technique is based on ideas from the calculus of
variations (solving an energy minimization problem). To
create a variational implicit function, a user specifies a set
of k constraint points{c1, c2, . . . , ck}, along with a set
of values{h1, h2, . . . , hk} at the given constraint posi-
tions. Variational implicit surfaces are controlled directly
using three types of constraints.Boundary constraints
are those positions that are specified to take on the value
zero, and the resulting implicit surface will exactly pass
through these points. In addition, we can specify that cer-
tain points will be interior or exterior or the surface.In-
terior constraintsare given positive values, andexterior
constraintsare given negative values. To create the ap-
propriate implicit function, these constraints are handed
to a sparse data interpolation routine that creates a func-
tion that exactly matches the given constraints.

The form of the function created by this technique is
a weighted set of radial basis functions and a polyno-
mial term. The weights of the basis function are found
by solving a matrix equation (given below). The ra-
dial basis function that has given us the best results is
φ(x) = |x|2 log(|x|). Using this radial basis function,
the function that we wish to create has the form

*-0.10in

f(x) =
n∑
j=1

djφ(x− cj) + P (x) (1)

In the above equation,cj are the locations of the con-
straints, thedj are the weights, andP (x) is a degree one
polynomial that accounts for the linear and constant por-
tions off .

To solve for the set ofdj that will satisfy the interpo-
lation constraintshi = f(ci), we can substitute the right
side of equation 1 forf(ci), which gives:

hi =
k∑
j=1

djφ(ci − cj) + P (ci) (2)

Since this equation is linear with respect to the un-
knowns,dj and the coefficients ofP (x), it can be for-
mulated as simple matrix equation. For interpolation in
3D, letci = (cxi , c

y
i , c

z
i) and letφij = φ(ci − cj). Then

the linear system can be written as follows:



φ11 φ12 . . . φ1k 1 cx1 cy1 cz1
φ21 φ22 . . . φ2k 1 cx2 cy2 cz2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
φk1 φk2 . . . φkk 1 cxk cy

k
czk

1 1 . . . 1 0 0 0 0
cx1 cx2 . . . cxk 0 0 0 0
cy1 cy2 . . . cy

k
0 0 0 0

cz1 cz2 . . . czk 0 0 0 0





d1
d2

.

.

.
dk
p0
p1
p2
p3

 =



h1
h2

.

.

.
hk
0
0
0
0



We used LU decomposition to solve this system for all
of the examples shown in this paper. With the coefficients
from the matrix solution, evaluating the implicit function
from Equation 1 is simple.

3.2 Outline of Our Approach
We will now examine how the constraints for a variational
implicit surface can be derived from a polygonal model.
This task is easy for models that are composed of poly-
gons that are all nearly the same size. For such polygonal
models, we may use the vertices of the model as the posi-
tions of the boundary constraints. Similarly, we can cre-
ate exterior constraints by moving out from each vertex in
the normal direction. This basic technique was originally
described in [8]. Unfortunately, most models are made
of polygons that are widely varying in size, and for such
models it is more difficult to create a variational implicit
that faithfully matches a given polygonal model.

To produce high-quality implicit models from poly-
gons, we have created an iterative method that repeatedly
adds new constraints to a variational implicit representa-
tion in a manner that is guided by a volumetric descrip-
tion of the model. To do so, we use a voxelization pro-
cess to create the volumetric model from the polygons.
The volumetric description of the given model acts as
an ideal (but storage-intensive) implicit representation of
the model that we can use to compare against the current
variational implicit surface. In addition to the volumetric
model, we also use a signed distance function to measure
errors in the current iteration and to place new interior and
exterior constraints. We repeatedly add new constraints
until the implicit model is a near match to the original
model. In the next section we will discuss the creation of
the volumetric model, the signed distance function and
the error metrics that they help to compute. Following
this, we describe in detail how they are used to define new
constraints to make a variational implicit surface that is a
close match to our original polygonal model.

4 Volumes and Error Metrics
We choose to convert the polygonal model into a volu-
metric model due to its convenience for rapid evaluation
of inside/outside queries. The disadvantages of a volu-
metric model are storage and computation costs. How-
ever, our largest volumes are about200× 200× 200 and
our running times are still quite reasonable.

4.1 Voxelization of a Polygonal Mesh
The process of converting a polygonal model into a vol-
umetric representation is much like scan-converting a 2D
polygon into a set of pixels. In 2D polygon scan conver-
sion the important operation is to find where a scanline
intersects the edges of the polygon, and to use a parity

count of the number of such intersections to determine
whether a pixel is inside or outside the polygon. Simi-
larly, to voxelize a polygonal mesh, we cast a ray through
the mesh and find all the places where the ray intersects
the surface of the mesh. Any point along the ray can be
classified as inside or outside the polygonal model based
on a simple parity count. To create a full volume, we
cast a grid of parallel rays through the mesh and regularly
sample the points along these rays. Each sample becomes
one voxel. To minimize aliasing artifacts we perform su-
persampling and filtering so that the final densities vary
continuously between zero and one. Further details of the
voxelization process, including variations to handle trou-
blesome meshes, can be found in[5].

4.2 Signed Distance Function
We use a signed distance transform to measure the error
between our original model and a given implicit repre-
sentation. We use the voxelization of a given object as an
inside-outside function of the object, and for this purpose
we clamp all densities to either zero or one. Adistance
transformof an inside-outside function is the distance of
a point to the nearest boundary (the transition regions be-
tween densities of zero and one). Asigneddistance trans-
form negates the distances of those points that are outside
the object. If one views the signed distance transform of
a 2D domain as a height field, it resembles a mountain
range with straight-walled ridges and valleys.

Calculation of the signed distance transform for a large
voxel volume can be expensive. Naively, the running
time for ann × n × n volume isO(n6). We use a 3D
version of Danielsson’s method for computing Euclidean
distances [4] to achieve a running time ofO(n3). This
method requires making a few sweeps through the entire
volume, and at each voxel only a few neighbors are ex-
amined. The final result is a set of distances at each voxel
that is a close approximation to the (signed) Euclidean
distance to the nearest boundary.

4.3 Error Metrics
To guide our surface creation method, we make use of
a metric to evaluate how closely our current variational
implicit surface matches with the original data. We are
concerned most about the surface points, i.e. the voxels
with signed-distance values of zero. We will use∂ sym-
bol to denote these boundary voxels. Using the signed
distance transform, we can quickly calculate how far a
given boundary voxel is from the other surface’s bound-
ary. We calculate this distance for all the boundary points
in the original model and similarly for all of the boundary
points on the current the implicit surface. The incremen-
tal algorithm uses these measurements to find the next
places at which to improve the surface. We define our

error metric as follows, basing it on the Hausdorff met-
ric. Note that the evaluation is fast because it consists of
lookups of the signed distance functions. We usefgoal to
represent the original model that we wish to approximate,
fcurr to represent the current implicit surface, andsdgoal

andsdcurr as their respective signed distances.

E = max
[

max
x∈∂fgoal

|sdcurr(x)|, max
x∈∂fcurr

|sdgoal(x)|
]
(3)

We useE to find candidate locations for new con-
straints. In Figure 2 we illustrate the use of the met-
ric E in two dimensions. Note that for 2D objects, the
iso-valued set is one or more closed contours. In the
black and white portions of this figure, black denotes in-
terior (positive function values) and white denotes exte-
rior (negative values). Part (a) of the figure shows the
goal shape, and part (b) shows an implicit contour that
we wish to improve. Part (d) shows the boundary (as thin
lines) of (b) overlaid atop the signed distance of (a), and
part (e) is similar but reverses the roles of (a) and (b). Our
algorithm traverses the boundary overlaid in (e) and finds
places where the signed distance takes on large values
(the darkest colors). These large signed distance values
are then used as additional constraints for the next itera-
tion of the algorithm, and the magenta dots in (a) are ex-
actly such constraints that were found from (e). Similarly,
we traverse the boundary of (d) and gather additional con-
straints (not shown). Adding those magenta constraints
shown in (a), we obtain a new implicit contour, shown
in (c). After a few more iterations, we obtain (f), a near
facsimile to the goal shape (a).

Although we find the above distance metric to be very
useful, it has a few shortcomings. The metricE only
identifies absolute errors. For example, consider the pic-
ture of the triceratops in Figure 3. A slightly thicker or
thinner belly would probably not be noticeable. However,
slightly thicker or thinner horns would be quite notice-
able. Using onlyE to refine the implicit surface would re-
sult in many unnecessary constraints being added around
the belly, possibly overconstraining the system. In addi-
tion, because evaluating an implicit surface at a point is
O(n), wheren is the number of primitives, and solving
the variational problem as a matrix equation is even more
expensive, unnecessary constraints can become costly.
We use a modified version of the above metric to elim-
inate this problem.

We use a discrete analog of theradius of regularityto
tackle these issues of curvature and thinness. A shape isr-
regular[7] if every circle of radiusr tangent to the bound-
ary of the shape does not contain points in both the inte-
rior and exterior of the shape. Our discrete analogrreg()

Figure 2: Creating a two-dimensional implicit function. First row: (a) the goal shape, obtained from blurring and
thresholding the Graphics Interface logo, (b) implicit contour at iteration3, (c) implicit contour at iteration4. Second
row: (d) signed distance ofa with the boundary ofb overlaid (red is positive, blue is negative, darker is further from
0), (e) signed distance ofb with the boundary ofa overlaid, (f) implicit contour upon completion after 14 iterations.

works as follows: From a point on the surface, proceed
up the gradient of the signed distance function. When the
distance traveled is greater than the closest distance from
that point to the boundary (plus a two voxel tolerance),
we stop and return that distance1. Usingrreg(), our new
weighted error metric becomes

Ew = max
[

max
x∈∂fgoal

|sdcurr(x)|
rreggoal(x)

, max
x∈∂fcurr

|sdgoal(x)|
rregcurr(x)

]
(4)

An error of a few voxels near the belly would be given
a small weight because of the largerreg() values in that
region. Errors of a few voxels in the redder areas of Fig-
ure 3 would be given a higher weight. Strictly scaling
the object would respectively scale the radii, soEw is
scale-independent. Empirically, we have found that the
areas of smallestrreg() are the hardest regions for the
implicit surface to fit. We use the metricEw to help de-
cide whether or not a candidate constraint should be used,
and this is described further in Section 5.3.

5 Iterative Improvement of Model
We will now describe how the above tools allow us to
model the implicit surfaces. Here is an outline of the al-
gorithm:

1Due to discretization errors, this small tolerance is necessary. This
is enough tolerance so that a large voxelized sphere is assigned a uni-
form radius of regularity over its entire surface.

Algorithm MakeImplicitSurface(Volume fgoal,
SDFunc sdgoal)

Begin
Constraints = MakeRandomConstraints(50)
fcurr = MakeImplicit(Constraints)
Repeat

sdcurr = GenSignedDist(fcurr)
GenerateCandidateConstraints()
Repeat
PruneCandidateList()
NewCandidate = SelectHighestError()
Constraints.add(NewCandidate)

Until NoMoreCandidates
fcurr = MakeImplicit(Constraints)

Until DoneRefining || TooManyIterations
End

5.1 Initialization
The algorithm needs to start with an initial guess at the
implicit surface before we can start refining. We need
to decide how many constraints to place — we want to
create a reasonable first surface, but we don’t want to
overwhelm the system with too many constraints. To
get a good balance between these two extremes, we se-
lect 50 boundary constraints randomly from the points
on the surface∂fgoal. In the event that two constraints
are too close to each other we do not add the newer of
the constraints. Constraints that are close to each other
tend to have more influence on the rest of the system and

Figure 3: This figure illustrates the radius of regular-
ity. Thin regions such as the dinosaur’s collar and high-
curvature regions such as the tips of the horns have a
smaller radius and are colored red, and lower curvature
regions are more green.

can cause the matrix to be ill-conditioned. Likewise, we
do not add constraints where the radius of regularity is
too small. A point-repulsion technique could balance the
constraints throughout the surface, but we have found that
our simple initialization technique is quite satisfactory.

In addition to placing boundary constraints, we also
place non-zero constraints to indicate what portions of
space are interior or exterior, and to give a general height
relation between the constraints. For each of the bound-
ary constraints that we placed as described previously, we
follow the gradient of the signed distance function until
we reach a local extremum. We then place an interior
or exterior constraint at this location. To decide whether
to place the interior or exterior constraint up the gradi-
ent or down the gradient, we traverse both ways and pick
the longer path. Shorter paths are in the direction that
is generally locally concave. Interior and exterior con-
straints then tend to “fan out” instead of getting clustered
in ridges or valleys of the signed distance function.

5.2 Implicit Function Evaluation
We solve the variational problem for the current set of
constraints to obtain the basis-function weights for the
corresponding implicit surface. We then evaluate the im-
plicit surface throughout the volume to find the boundary
voxels∂fcurr and the signed-distance functionsdcurr.
Using the boundary voxels and the signed-distance func-
tion, we can apply the metricE described in Section 4.

Evaluating the implicit surface throughout the volume
can be costly. Although surface-following isosurface-
extraction techniques can reduce the evaluations of the

implicit function by an order of magnitude, they make
assumptions about topology; for example they may miss
a detached portion of the surface. We wish∂fcurr to
capture all connected components, as they may indicate
error in the current implicit surface. However we do not
want to evaluate 500 radial basis functions over all the
voxels in a200 × 200 × 200 volume, which would be
computationally expensive. Our solution is to sample the
volume finely in a thin shell around the goal boundary
voxels and to sample coarsely elsewhere, then sampling
more finely if we detect a boundary. First we sample the
volume at coordinates that are all multiples of four. If any
cube does not have its eight vertices entirely in the inte-
rior or exterior or if it is within eight voxels of a boundary
of fgoal, we sample that cube voxel by voxel. Otherwise,
the4×4×4 cube is filled uniformly. This speedup brings
the running time of implicit function evaluation on par
with the other steps of the algorithm.

5.3 Refinement
Now that we can evaluate the boundary voxels accord-
ing to the metricE, we can add constraints to refine the
implicit surface further. We want to avoid adding con-
straints one at a time because performing an iteration per
constraint would be quite costly. However, we also want
to avoid having refinements influencing each other. Like-
wise, making fine adjustments to regions of the surface
could be ineffectual if more coarse adjustments are made
elsewhere on the surface because each adjustment has a
global effect.

We scan through∂fcurr and∂fgoal to find the voxel
with the maximum error. The error for a voxelx in
∂fcurr is sdgoal(x), and the error for a voxely in ∂fgoal

is sdcurr(y). We will introduce the notationsd(x) to rep-
resent both these cases. Searching for the maximum error
is equivalent to walking along the overlaid boundaries in
Figure 2 (d) and (e) and finding the largest magnitude
(darkest background color).

We pick our new constraints from the boundary voxels
∂fcurr and∂fgoal. Constraints added from∂fgoal are
boundary constraints. To prevent artifacts from the vox-
elization appearing, these constraints are actually placed
at sub-voxel precision according to the densities of the
voxels. Constraints from∂fcurr are soft interior or ex-
terior constraints, and take on the values given by the
signed distance function offgoal.

We need to be careful about adding new constraints.
Some constraints may be redundant; others are even
counterproductive. We take our current set of candidate
constraints and prune the list based on two criteria. We
prune candidates based on distance from other constraints
and based on the error metrics. First, we eliminate any
candidate that is within2 × sd(x) of a voxelx where a

Figure 4: Spock mesh (left) and resulting implicit surface (right).

constraint was added on the current iteration. This dis-
tance restriction, along with adding the constraints with
greatest errors first, guarantees that for alli, the circles of
radiussd(xi) centered atxi will be disjoint. Second, if
a candidate is less than two voxels from any pre-existing
constraint, we remove it from the candidate list. Third,
we consider boundary voxels with errors less than half
the maximum errorE (see equation 1) to require too fine
an adjustment, so those voxels are eliminated from the
candidate list. Finally, a candidate at a voxel that has a
weighted error less than 0.125 is eliminated, as the dif-
ference is most likely unnoticeable. Filtering out based
on the weighted error prevents many unnecessary points
from being added.

5.4 Termination
Algorithm termination is an important issue. Empirically
we have found that the models tend to refine themselves
quickly at first and then reach a plateau. Adding too many
constraints may even give worse results. We terminate the
algorithm under three conditions. The algorithm termi-
nates if the model has reached a certain level of accuracy
by either of the error metrics, if a model has not improved
from iterationi by iterationi+4, or if too many iterations
have passed. If successive models have the sameE, we
pick the best based from a similarly-derived RMS error.

6 Results
We tested our method on a number of different models
from a variety of sources. We used five models: Spock
(Figure 4), the bunny, the foot bones, the horse (all in

Figure 5) and the triceratops (Figure 1). Our method per-
formed well on all of these models, in contrast to the
simple method briefly described in Section 3.2, which
produces unacceptable results for most of these models.
Most of the noticeable errors fall in areas with a low ra-
dius of regularity, such as the sharp indentations by the
bunny’s leg or Spock’s lip. Our method performs the least
well on the foot model, which probably is not a good can-
didate for an implicit surface representation. The diffi-
culty is the low radius of regularity where the joints meet
— basically, two flat regions that are barely separated.
The thin bones also are difficult, but thin features in other
models, such as the horse’s legs, are handled quite well.

Each model required around twenty iterations, using
a few hundred constraints. Most of the constraints are
boundary constraints, while just a few interior or exterior
constraints are necessary to tame the surface elsewhere.
Thumbnail images from up to 40 iterations indicate that
the termination conditions in Section 5.4 are appropriate.
After this many iterations there may be no improvement
or the system might have become overconstrained and ill-
conditioned. Table 1 shows further information on the
implicit surfaces produced.

All of the implicit surfaces were created within a few
hours on a single 195 MHz R10000 processor. Table 2
shows the computation times per model. The computa-
tion times are dependent on the size of the volume, the
number of constraints, and the number of iterations nec-
essary.

Figure 5: Original polygonal meshes (on left) and resulting implicit surfaces (on right).

Table 1: Implicitization of several polygonal models
Model Number of Size of Iterations Zero Interior Exterior Max. Error

Polygons Volume to Finish Constraints Constraints Constraints (in voxels)

Bunny 69451 176× 220× 218 20 337 109 69 4
Foot Bones 2339 138× 320× 124 24 469 70 133 5
Horse 39698 286× 170× 337 22 480 108 91 5
Spock 345436 168× 170× 193 15 307 92 72 5
Triceratops 2834 124× 320× 155 22 327 93 83 3

Table 2: Running time of implicitization (in minutes)
Model Size of Time for Time for Time for Total

Volume Signed Distance Implicit Evaluation Misc Computations Time

Bunny 176× 220× 218 22.25 53.60 37.45 113.30
Foot Bones 138× 320× 124 17.27 51.10 18.78 87.15
Horse 286× 170× 337 47.42 71.72 51.35 170.49
Spock 168× 170× 193 10.87 22.47 19.87 53.21
Triceratops 124× 320× 155 17.78 40.25 24.75 82.78

7 Conclusions
We have presented an effective and viable technique to
convert polygonal meshes into implicit surfaces. Using
a volumetric model as an intermediate representation, we
fit an implicit function to match the signed distance of
the volumetric model. We refine the implicit function
iteratively, identifying areas of improvement and then
constraining them. We improve on previous polygon-to-
implicit conversion methods in both speed and quality of
results.

We have already applied the implicit surfaces we gen-
erated to morphing, as is demonstrated in the accompa-
nying video. One area for future research is to add back
fine detail with a bump or a displacement map on top of
the implicit surface. Another avenue we want to explore
is animation of the implicit surfaces. A user may wish
to animate a surface by changing joint angles or by per-
forming a deformation. We envision such changes being
applied to the locations of the constraint positions, and
then invoking the iterative improvement algorithm if the
surface requires adjustments.

References
[1] Eric Bittar, Nicolas Tsingos, and Marie-Paule Gas-

cuel. “Automatic Reconstruction of Unstructured 3D
Data: Combining a Medial Axis and Implicit Sur-
faces.” InComputer Graphics Forum (Proceedings of
Eurographics 95), volume 14, pages 457–468, 1995.

[2] James F. Blinn. “A Generalization of Algebraic Sur-
face Drawing.” ACM Transactions on Graphics,
1(3):235–256, 1982.

[3] Jules Bloomenthal, editor.Introduction to Implicit
Surfaces, chapter Convolution of Skeletons, pages
222–241. Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1997.

[4] Per-Erik Danielsson. “Euclidean Distance Mapping.”
Computer Graphics and Image Processing, 14:227–
248, 1980.

[5] F.S. Nooruddin and Greg Turk “Simplification and
Repair of Polygonal Models Using Volumetric Tech-
niques.” Technical Report GIT-GVU-99-37, Graph-
ics, Visualization and Usability Center, Georgia In-
stitute of Technology, 20 pages, 1999.

[6] Shigeru Muraki. “Volumetric Shape Description of
Range Data Using ‘Blobby Model’.” InComputer
Graphics (SIGGRAPH 91), volume 25, pages 227–
235, July 1991.

[7] J. Serra.Image Analysis and Mathematical Morphol-
ogy. Academic Press, London, 1982.

[8] Greg Turk and James F. O’Brien. “Shape Transfor-
mation Using Variational Implicit Functions.”Com-
puter Graphics Proceedings, Annual Conference Se-
ries (SIGGRAPH 99), pages 335–342, August 1999.

[9] Andrew P. Witkin and Paul S. Heckbert. “Using
Particles to Sample and Control Implicit Surfaces.”
In Computer Graphics Proceedings, Annual Confer-
ence Series (SIGGRAPH 94), pages 269–278, July
1994.

[10] Geoff Wyvill, Craig McPheeters, and Brian Wyvill.
“Data Structures for Soft Objects.”The Visual Com-
puter, 2(4):227–234, 1986.

