

This paper has been submitted for review to Ubicomp 2001.

Integrating Meeting Capture within a Collaborative
Team Environment

Heather Richter1, Gregory D. Abowd1, Werner Geyer2, Ludwin Fuchs3, Shahrokh
Daijavad2, and Steven Poltrock3

1Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332, USA
{hrichter, abowd}@cc.gatech.edu

2IBM T.J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532, USA
{Werner.Geyer, shahrokh}@us.ibm.com

3Boeing Mathematics & Computing Technology, PO Box 3707, Seattle, WA 98124, USA
{Ludwin.Fuchs, Steven.Poltrock}@boeing.com

Abstract. Meeting capture has been a common subject of research in the
ubiquitous computing community for the past decade. However, the majority
of the research has focused on technologies to support the capture and not
enough on the motivation for accessing the captured record and the impact on
everyday work practices based on extended authentic use of a working capture
and access system. Our long-term research agenda is to build capture services
for distributed workgroups that provide appropriate motivation and further
understand how access of captured meetings impacts work practices. To do
this, we have developed a testbed for meeting capture as part of a larger
distributed work system called TeamSpace. In this paper, we discuss the
requirements for meeting capture within TeamSpace, describe the initial
prototype developed, and report on initial usage.

1 Introduction

Many work practices consist of repeated discussions among teams of people: status is
discussed, decisions are made, alternatives are considered, and details are explained.
A large amount of this rich, often informal, information that is generated during these
discussions often does not get recorded in formal documentation. Yet this information
is later useful for providing additional context, details, and decisions surrounding a
project. Ubiquitous computing has as one theme the capture, integration, and access
of everyday activities, in order to provide a multimedia record of those activities for
later perusal [3]. By applying automated capture and access technologies to work
discussions, specifically meetings, large amounts of informal project information may
be recorded and preserved for later use.

In order to understand how to capture meetings, we must first understand how the
captured information might be useful to project team members. Understanding these
potential uses is difficult, however. Meetings vary greatly, differing in purpose,
formality, and content across domains, organizations and teams. One person may
participate in a variety of different kinds of meetings, each with different importance.
People have difficulty envisioning how they would take advantage of captured

information, and what information would be most useful to their work. Thus,
understanding meeting capture will involve putting a system into real use in a variety
of situations and domains and being able to adapt the capture service to the needs of a
particular project group. Multiple meeting capture prototypes have been built over
the past decade, yet li ttle real-world evaluation of these systems has been done.
Building a system that can be used in real situations over a long period of time has
important design implications. The system must work and provide a valuable service
all of the time so we can evaluate under the conditions of authentic experience. The
system must be simple and easy to use while supporting many different users. The
system will support general purpose meeting activities, but must be evolvable to
support more specific activities as the need arises. Additionally, researchers must be
able to study how the system is used.

To support a wide variety of meetings, we focus not on supporting specific content,
but on general meeting structures and artifacts. To get a better idea of general
meeting types and information, we interviewed several meeting facilitators at Boeing
who work with multiple groups to improve or enable different types of meetings. We
learned that the meetings they deal with are very heterogeneous. Yet, most meetings
do have common and simple artifacts, such as agendas, action items, issues,
presentations, and minutes. The most important artifacts are often action items, which
can serve as valuable minutes of a meeting. Additionally, there was no standard way
to create and present most of these artifacts other than word processing software.
Thus, users may not be opposed to using new tools if they add benefit.

We have previously argued that for captured information to provide value, it needs
to be related to the rest of users’ work and everyday tasks [14]. Meeting capture
research has primarily focused on supporting and recording meetings. However,
users perform many other meeting-related activities that tools can support, and should
be able to move easily from meeting-related to other work activities. Additionally,
streams of meeting information should become just another form of multimedia
information that people will be creating, viewing and sharing. By integrating meeting
capture within a larger collaborative work environment that encompasses more than
just conducting a meeting, we not only better support the activities surrounding
meetings, but also provide a more relevant view of captured information. This
additional support wil l encourage more realistic use of captured information,
encouraging users to integrate meeting capture and access as part of their everyday
activities.

To that end, we are integrating meeting capture into a larger team environment
called TeamSpace, which is being developed in a joint project between IBM
Research, Boeing, and Georgia Tech. TeamSpace is a prototype team collaborative
workspace for managing shared work processes and maintaining shared artifacts in
distributed projects. The overriding goal of the system is to facili tate inter-company
teams, which are becoming increasingly common in large projects, such as the
development of aerospace systems. Integrating meeting capture into this environment
introduces the following additional requirement that we support inter-company
distributed meetings.

The goal of this paper is to describe the meeting system of TeamSpace that serves
as the foundation for our longer term research agenda to evaluate capture and access
in an authentic meeting environment. In Section 2 we discuss related work in

automated capture and access. In Section 3 we further discuss the many meeting-
related activities we seek to support and the benefits of integration with TeamSpace.
In Section 4 we describe the implementation of the TeamSpace prototype. In Section
5 we discuss our experiences in usage thus far and the impact on the prototype.
Finally, in Section 6, we conclude with a discussion of our future plans.

2 Related Work

Ubiquitous capture environments have been built in several domains over the past
decade: education, personal note-taking, and meetings. In exploring the meeting
domain, we are following an approach similar to the eClass project, known formerly
as Classroom 2000 [1,2], which studied capture through evolving and evaluating the
system through ongoing use in real classrooms. EClass is an education system
focused on providing automated access to lecturer’s slides and notes, augmented with
audio and video. The system has been used to record over 2000 lectures at several
universities, resulting in a deeper understanding of why capture works and how it is
useful over short and long time periods.

One reason eClass was so successful is that it aided an already important task for
students – studying. Motivation for reviewing meeting notes is less clear and more
varied, and has been the subject of some study. Whitaker et al. [17] interviewed
people on the problems of note-taking during meetings. They found many difficulties
that capture could help overcome, such as the failure to note important facts, not
enough time to write everything, reduced abil ity to participate, and the inadequacy of
notes for later detailed understanding. Meeting capture could also be used to record
information such as design and decision rationale and other informal project
information that often disappears over time. Which reasons are most important and
will drive the use of a capture system over the short and long term is unclear. We aim
to discover this through creating a prototype general enough to enable those
motivations to be discovered and then further supported through evolution of the
prototype.

Similar to the education domain, systems such as AutoAuditorium [4] and
eSeminar [15] record seminars consisting of a presenter with slides. Reviewing of
this captured information is primarily for people who were not in attendance. He et
al. at Microsoft Research have studied the access of such recorded seminars,
including access patterns and auto-summarization techniques [8,9]. Other more
general meeting capture systems, such as Notelook [5], Dolphin [16], and Filochat
[17] have focused on augmenting presentations or hand-written notes with audio and
video streams. Tivoli [12] augmented “domain objects” representing meeting
content, with audio. The objects were text and gestures that could be created and
manipulated on an electronic whiteboard. However, none of these systems has
explored meeting-specific artifacts, such as agendas or action items, nor have they
focused on integrating the captured information with other work activities.
Additionally, researchers have done l ittle evaluation of these systems in real work
environments.

The exception to this is a study by Moran et al.[13] with Tivoli, which observed
one user preparing reports based on captured meetings. They found that the user did
not merely replay meetings, but “salvaged” information by extracting, organizing, and
writing information based on multiple records. They further stated that “ the
development of effective practices of capturing and salvaging meetings must be done
by interrelating them with other work practices.” We aim to do this with TeamSpace
and plan to evaluate the system with different teams in different environments. It is
important to point out that the person salvaging with Tivoli had a real motivation, to
write a summary report of a technical topic typically out of his range of expertise.
Finding similar motivating aspects for captured meeting review is a challenge nobody
has yet faced. Exploring motivations for accessing captured meeting is the long-term
research objective that that has driven building our system.

Several commercial distributed conferencing systems, such as NetMeeting [11] and
Sametime [10], are beginning to add capture capabil ities to conferencing. These
systems allow users to conduct distributed meetings by sharing whiteboards, chat,
video, and even applications. However, the capture currently involves recording
system events and users can then replay the meeting l ike a movie. This simple form
of capture and replay does not support any browsing or searching mechanisms, and
thus wil l be inadequate to help users find pieces of information in even one meeting,
let alone a large set of them.

3 Integrating with TeamSpace

The collaborative environment we are integrating with is TeamSpace [7].
TeamSpace is a prototype team collaborative workspace for managing shared work
processes and maintaining shared artifacts in distributed projects. The goals of
TeamSpace are to support inter-company collaboration through awareness,
information sharing, communication, and coordination. TeamSpace aims to support

� ����� ��� ����	�

������

������� � ���
�������

�����! "�#
$&%�'�(

)�*,+�-�+�. *,/�0 1 2�1 0 1 3,+

46587 9;:<5,=,>

?A@�B CED
F G�H I�J G�K

L�M�M�N O P�Q�R
S T�U V�W T�X

Y,Z�[�\�] Z�^
_ `�a b�c `�d

e�fhg ihjhkhihk
k!l monEpqmqmEl r!sqm

tvu whx!yhz {hz yqw|x!yq}
~o� x!u �h�hz yqw

�v� �E���
�h� �h�o�!�q� �h� � �!�

��� �!� �q�o� �!� ��� �q�

��� � � ����� h¡o� �h¢

£8�h�E� � q¤
¥ ¦h§ � ¨ � � ¦ � � ©!

ªv« ¬h¬E ® ¯q°h±

² ¯o « ³h´�µq¶ ® ³!¯q±

·o¸!¹ º,¸!»q¼!½o¾¿¸
ÀhÁ ¼!»h¹ Â!Ã

Ä�Å�¸ Á Â!ÆqÂhÇoÇ
¸!»q¼!½o¾¿Âh¸hÈhÉ
¼E¾ ÉqÂ Á Ê Ç�¸hÈo¾ Ë Ì¿Ë ¾ Ë ÂhÇ

Í�Î¿ÏEÐ Ñ!ÒoÓqÎ!ÔqÕ!Ð ÔqÖ

× Î!Ð ÏoØ|Î!ÙEÚ ØEÛoÚ
ÏEÜqÑhÚ

ÝßÞ àoáEâqàqà8ã!âoä áqã!å8æ
ãEç¿èéåvæhæEä Þ êqë

ì,í îhïEð î�ïhñhò óqôhõ
ö îhîEð ÷ øqù

ú�ûEüEýhþ!ÿ�� ý��
� ýhý�� � �
	

�� ����� ý � ýhý�� � �
	
� � �hÿ�� ý �

��� �
�������
��� � �

 ����!�� "���#�$%��#��
�
� �'&�(
&��) &�*�) �

Figure 1. Matrix of work modes and task.

both synchronous and asynchronous team activities, and to provide a seamless
transition between the different work modes and tasks of team members. The
classification of the work modes and activities we envision are shown in Figure 1.
Team members work in different modes: individual, meeting, and social modes.
Additionally, tasks can be work-related, meeting-related, and people-related. Meeting
capture systems often focus on supporting some of the work-related activities in the
meeting mode through recording notes, audio, and video of a meeting. However,
meetings are part of many of the other activities and modes. Individuals
asynchronously prepare for meetings, create agendas or presentations, invite
participants, or schedule rooms. During a meeting, people greet and introduce each
other, take notes, and give presentations; facili tators change the agenda or the flow of
discussion. After a meeting, an individual may use the captured material to create
minutes or write a report. A user may search through meetings for pieces of
information, or people who made certain decisions. Thus, by making meeting capture
and access part of a system that supports all of these different kinds of modes and
tasks, we can potentially support more meeting-related activities and improve the
transition between non-captured and captured activities, and activities that use
captured information.

In addition to supporting more meeting-related activities, integrating into
TeamSpace will potentially allow us to relate meetings with other team artifacts that
are in the environment, such as project schedules, documents, or threaded discussions.
Thus, meetings become just another artifact in a large repository of inter-related
information. While the current object set in TeamSpace is limited to agenda, action
items, presentations, meetings, and users, we will be able to add mechanisms for
relating meetings with other kinds of artifacts when they are incorporated into
TeamSpace.

4 TeamSpace Implementation

In the previous sections we’ve highlighted how the desire for real-world usage has led
us to integrate our capture prototype within a larger work context. We will now
demonstrate how we’ve implemented this prototype as part of TeamSpace.
TeamSpace is implemented as a mostly web-based application. This allows it to be
accessible from a large number of platforms with no installation. To add meeting
capture to TeamSpace, we have added specific meeting-related objects based on the
interviews highlighted in Section 1, namely, Agenda, Action Item, Presentation,
Meeting, and Person. We have written additional software to conduct and capture
distributed meetings, and replay and review meetings. We have attempted to design
all of this software to provide general functionality, yet be flexible and evolvable so
that more specific features can be added as we better understand its use by particular
project teams. We have also focused on reliabili ty and consistency of the software
and interfaces as we want the system to be used and studied over a long period of
time. Finally, we wanted to instrument the software to facilitate understanding of
users’ interactions.

The need to gain as much information for as many users as possible leads us to
focus on public (as opposed to personal) meeting capture. While capturing personal
meeting notes is certainly important, we would l ike to make the captured information
available to as many people as possible, with as little effort in capturing as possible.
One instrumented meeting room can be used my many people for multiple meetings.
We also want to require as li ttle instrumentation as possible to enable more locations
for capture.

Meeting activities can be thought of in three phases: preparation before the
meeting, conducting of the meeting, and later review of the meeting. Each of these
phases mainly corresponds to one piece of the TeamSpace prototype implementation.
In the following sections we will discuss each in turn. To better illustrate the features
of each, we begin each discussion with a running scenario. We then continue the
discussion with the user interface implementation, and then with architectural or other
implementation issues.

4.1 Meeting Preparation: Main TeamSpace Interface

Bill, the team lead, prepares for a weekly status meeting planned the next day. He
checks the meeting information in TeamSpace to make sure the rooms are scheduled
and adds a few guest participants. He checks which action items generated
discussion last week, and adds those to the meeting. Finally, he adds a small
presentation he has prepared for the meeting. The participants are then automatically
emailed a meeting invitation.

Meeting preparation is accomplished using the main TeamSpace interface. From this
interface users can create, edit, and view any of the objects that TeamSpace supports,
such as users, agendas, action items, and meetings. Figure 2 shows a screenshot of
this interface. After logging in, users are taken to their starting page which highlights
their current day’s meetings and their open action items. Users can access additional
information using the context tabs of People, Meeting, and Task. The Meeting tab
provides both a calendar and list view of meetings. The list view is shown in Figure
2, and provides mechanisms to constrain and search the meeting l ist. Under Task a
user can view her own action items or browse the entire team list. The lower half of
the window is a document view for displaying and editing the details of each
individual object. In Figure 2, this displays the details for the selected meeting. For
the preparation scenario above, Bil l would go to the Meeting tab to create a new
meeting, then enter in all of the information in the document view. Invited
participants would then see that meeting on their calendar or meeting list when they
logged into TeamSpace that day.

Besides the meeting environment, TeamSpace is intended to support other
activities such as project management, document management, and team awareness
and communication. In other words, this interface is meant to serve as the main portal
for all team activities, including meeting capture and access. However, these
capabili ties are less mature, and have been left out of the current interface to provide a
fully functional yet simplified view of the system. As TeamSpace evolves to include

additional artifacts and activities, we wil l provide mechanisms to relate these to the
current set of information.

4.2 Meeting Capture: MeetingClient

The day of the meeting, team members in Seattle gather in their conference room.
Mary, the meeting facil itator arrives a few minutes early to log into TeamSpace and
start the meeting. Meanwhile, team members in other locations enter the virtual
meeting from their desktop browsers. After team members greet one another and chat
for a few minutes, Mary opens the meeting agenda to start. She adds any new items
proposed by the team. Pushing the agenda aside, she opens the action item list to get
an update on each of the unfinished tasks. As each team member lists their progress,
Mary updates the item list, marking off items, changing items, and adding new action
items.

The next item on the agenda is a presentation by Bil l about an interface problem
just discovered between their component and another component. Bill opens the
presentation and explains the problem. Working at her desktop in St. Louis, Sally

Figure 2. Screenshot of the main TeamSpace interface. The user is
viewing the details of one captured meeting. The top is the meeting list
view, the bottom pane is the detailed view.

Meeting List

Meeting Details

circles a region on one of the components and notes some of the manufacturing
constraints that influenced its design. Also from his desktop, Jim draws a sketch to
explain the reason for these constraints.

The presentation spawns a brainstorming session for solutions. The team sketches
their ideas on the whiteboard, with distributed team members drawing at their
desktops.

The meeting capture phase is supported through the MeetingClient interface, shown
in Figure 3. MeetingClient is launched automatically on a client’s machine from the
main TeamSpace web interface when joining a meeting. This client provides
viewing, editing, and annotating of agendas and action items, as well as viewing and
annotating of PowerPoint presentations. Thus, MeetingClient records events such as
joining and leaving a meeting; viewing, editing, and checking off agenda items;
viewing, editing, and creating action items, and viewing and annotating presentations.
Participants are not required to use or interact with any of these objects. However, the
more objects they use, the more events that are recorded, and the more indices that
will be created to help in review, as discussed next in Section 4.3.

The panel on the left of Figure 3 provides an overview and navigation of the
meeting. The list of agenda items, action items, presentations and invited participants
can be seen and individual items selected. The main view shows the selected
presentation, or the agenda or action item editor. The toolbar at the bottom of the

Figure 3. Screenshot of MeetingClient. The user is viewing an annotated
presentation. The overview bar on the left of the screen shows the agenda, action

items, presentations, and participants.

screen contains the pen and text tools. In the above scenario, Mary would begin the
meeting by selecting “Agenda” in the overview panel. She would then edit and
rearrange the agenda. Next, she would move to the action item view to go through
the list of action items. Bill would then view his presentation, which everyone could
annotate. Finally, Bill would create a blank presentation to function as a whiteboard
for the brainstorming session.

Additionally, MeetingClient provides low-bandwidth video, which is viewed in a
separate window, providing real-time awareness of other team members. All of the
meeting data and events remain synchronized between clients, and are automatically
time-stamped and stored on the server. MeetingClient does not impose any floor
control on the distributed users, thus leaving the potential for conflict and
unpredictable results. We wanted to keep the interface as simple as possible and will
investigate where social protocol is not sufficient and what tool support could help.

The most important aspect of MeetingClient is to support distributed meetings
while intruding upon them as li ttle as possible. Thus, the interface needs to be as
simple and easy to use as possible. We’ve also tried to support common meeting
activities without requiring the meeting to be structured in a certain way.
Additionally, the interface was designed to work well on both pen interfaces, such as
an electronic whiteboard in a meeting room, and on desktop machines. For example,
users wil l be able to add both text and ink annotations to presentations, agenda items,
and action items1.

In addition to interface challenges, we faced other issues in implementing a
capture system for inter-company distributed meetings, such as complicated
communication and security. The current architecture of the TeamSpace system is
shown in Figure 4. The TeamSpace server consists of servlets and Java Server Pages
(JSP) that access and store the data. MeetingClient is a Java application that connects

1 The abil ity to add text annotations to presentations and ink annotations to agenda and action

items is not currently functional but will be completed by time of publication and will be
reflected in Figure 3.

Meeting
Client

Meeting
Viewer

Main
Interface

Applets/JS

Web Browser

TeamSpace Client

XML

Raw data

Conference
Server

Conference
Listener

Meeting
Handler

Servlets/JSP

Web Server

TeamSpace Server

Meeting
Client

Meeting
Viewer

Main
Interface

Applets/JS

Web Browser

TeamSpace Client

Meeting
Client

Meeting
Viewer

Main
Interface

Applets/JS

Web Browser

Meeting
Viewer

Main
Interface

Applets/JS

Web Browser

TeamSpace Client

XML

Raw data

Conference
Server

Conference
Listener

Meeting
Handler

Servlets/JSP

Web Server

TeamSpace Server

XML

Raw data

Conference
Server

Conference
Listener

Meeting
Handler

Servlets/JSP

Web Server

TeamSpace Server

XML

Raw data

Conference
Server

Conference
Listener

Meeting
Handler

Servlets/JSP

Web Server

Meeting
Handler

Servlets/JSP

Web Server

TeamSpace Server

Figure 4. The TeamSpace architecture.

via our own protocol directly to the Conference Server, which is in charge of
distributing messages to the clients. The Conference Listener is a passive client that
stores a current version of the state so that it can update late-joining clients and store
all the data permanently on the server. This solution enables the meeting clients to
communicate through firewalls given that the server is located on the open Internet
and the firewall allows TCP and HTTP traffic. It also supports and synchronizes any
number of clients in one meeting. We further discuss security and communication
issues of this architecture in Section 5. While we use our system to distribute video
images, to eliminate transmission delays we are not transmitting and mixing audio
ourselves. We expect participants to use a conference call that is then input to any one
of the meeting clients so the audio can be recorded and digitized. The Conference
Listener stores the audio, video, and event streams as raw data on the server’ s file
system. All other information, such as action items and meeting descriptions, are
stored via XML by the servlets. While XML has been sufficient thus far, we
anticipate substituting a database as we scale to more users and teams.

4.3 Meeting Access: MeetingViewer

During the meeting, the team was split between two different solutions to their
problem and needed more discussion to make a decision. Pat and Jim meet later that
day to further discuss one of the proposed solutions. During their meeting, which
they also capture, they recall a contact Sally mentioned during the earl ier meeting.
They open up the meeting and browse through it by using a timeline that indicates the
spots where Sally was talking. They easily find and replay the portion where Sally
was sketching on the components and hear her mention her co-worker Dave. The
group looks up Dave’s contact information and gives him a call.

Chris had to leave the weekly status meeting early. Before he tackles his new
tasks, he returns to the meeting records to listen to the portions he missed. He skims
the meeting with a time slider by jumping from one agenda item to the next. Then he
dives into Bill’s presentation, using a thumbnail navigation, to replay the portion of
the presentation where the group talked about the manufacturing constraints. Chris
also listens to the comments Dave made to Pat and Jim during their conversation.

One year later, Bil l is leading a team that runs into a similar component interface
problem. He asks Harry, one of his team members, to look at the problem the old
project had, and why they chose their solution. Harry reads the documentation,
accesses the meeting records and replays pieces of various discussions, and prepares
a presentation using some of the older material to present his findings.

After a meeting is completed, the meeting records are automatically available for
retrieval. In this prototype we have focused on retrieving meeting details of one or
several meetings. Users can select completed meetings in TeamSpace and launch a
MeetingViewer applet to view and playback these meetings.

The MeetingViewer, shown in Figure 5, integrates all of the meeting information
based on time. The viewer uses a two-scale timeline for navigating a set of selected
meetings, providing random access playback. The timeline is painted with interesting
events as both a visual summary of the meeting, and as an aid for navigation.

Interesting events currently are people joining and leaving, agenda items being
discussed, action items visited or created, and slides visited, but could include any
future events such as people speaking and keyword locations. Users can control
which of these events they view and can use the events to find relevant portions
within a meeting to playback. Playback of a meeting not only involves playing the
audio and video, but also involves playback of all of the recorded events of a meeting
such as slide visits or agenda item discussion.

The remainder of the meeting information is displayed on a series of tabbed panes
for each of the objects related to the meeting, including descriptions and summaries of
the meeting, agenda, presentations, action items, and video images. These panes are a
very general approach for displaying a large amount of related information.
However, to enable customized views, each pane can be opened in a separate
window, moved and resized. In this way, users can view any subset of the
information they wish at once. Additionally, as we add more objects to TeamSpace,
we can easily add more meeting-related objects to this interface as another tabbed
pane, such as documents that were reviewed or referenced during the meeting.
When reviewing meetings in the short term, users can potentially use any kind of
context to find a piece of information – from a note, to when someone spoke, to what
the general subject matter was. For this reason, we started with a very general review
interface. We anticipate that as we learn more about the types of information users
need for various tasks, we can design task-oriented views that are simpler and more

Figure 5. Screenshot of MeetingViewer showing a single meeting. MeetingViewer
can also be used to view multiple meetings.

integrated. While detailed context is appropriate to aid short-term browsing and
search, longer-term searches, such as Harry’s in the above scenario, will probably
require different mechanisms that emphasize summaries. We would like to
investigate additional visualizations to navigate and search a large set of meetings as
our set of captured material grows.

4.4 Summary

While we have not implemented every feature our scenarios describe, we feel we
have a reasonable prototype that successfully allows users to do a number of meeting-
related activities. The capture system supports capturing both work-related artifacts,
such as presentations, but also meeting-related artifacts, such as agendas. The main
interface serves as the starting point for many of the individual mode activities, such
as preparing for a meeting and reviewing meeting information. The various objects
are inter-related and can be viewed in multiple ways, but the interface could still be
improved to make this more explicit. For example, when the user is viewing an
action item, she should be able to view where that item was discussed in a meeting
and jump directly to replaying that meeting. Additionally, we would l ike to extend
search to searching other meeting content, such as slide texts. Evaluation of the
system will hopefully help prioritize the features that can provide the most benefit to
users. Finally, as TeamSpace evolves to add additional objects and activities, we can
provide mechanisms to relate these to meetings and also integrate them into the
capture and access software without changing the structure of their interfaces.

5 Initial Experience

Our research team has been using TeamSpace to conduct and capture our distributed
meetings for the past six months. We have successfully recorded over a dozen
weekly meetings, as well as a distributed presentation for a yearly project review, and
two 4-hour strategy sessions. Typically the meetings were held at three separate
locations, in both meeting rooms and at desktop machines. The meeting environment
has been useful for brainstorming and for discussing presentations together and team
members have revisited several meetings to view the annotations we made, or review
a missed meeting.

The first thing to examine is how TeamSpace has affected our meetings. Prior to
the completion of the prototype, we did not make much use of an agenda, although
team members would often privately note items to discuss prior to the meeting. These
items are now publicly listed in the agenda, yet this hasn’ t been too important as most
meetings only contain a few agenda items. However, the agenda was used
extensively and much appreciated for the 4-hour strategy meetings. Additionally, we
now create information to be shared during a meeting in PowerPointâ . As we did not
have a standard way to share information previously, this has not been a problem,
although we would certainly like ways to share information in other formats. Finally,
we are experiencing an interesting phenomenon common to distributed collaborative

systems – knowing what the other party is seeing. One frequently asks if others can
see that he has joined or made an annotation. While this was often necessary when
the prototype was not stable, we continue to ask these questions even now. We need
to investigate how the system can give users these cues so that they do not have to
interrupt the meeting to ensure that the system is still working.

Captured information has been most useful for team members who missed the
meeting. We also find that we do have moderate needs to review information in our
meetings. Note-taking prior to TeamSpace was sparse. Yet, the annotated slides have
been useful to review brainstorming or edit a presentation. We do occasionally
discuss an action item and review the list the following week to make sure we didn’ t
forget to do anything. Thus, while a group such as ours does not do large amounts of
meeting review, we do rely on the system to record our activities and find TeamSpace
useful. One team member even likes to use TeamSpace to record other non-
distributed meetings. Capture seems to add a comfort level of knowing that the
meeting is being recorded even though we might not know if we will review it.

Our usage has highlighted several deficiencies in our interface designs, and has led
to revisions of both the main interface and MeetingClient. In a meeting, navigation,
particularly navigating between different pieces of information, such as an agenda
item and a slide, was awkward. This navigation needs to be extremely simple,
particularly for those using a pen on an electronic whiteboard. We will not learn
much about capturing meeting artifacts if information such as agendas or action items
is not captured because it is too difficult to use during a meeting. For example, we
found that it would be useful for the agenda to be more easily viewed so that moving
on to the next agenda item does not require multiple user actions. To address these
difficulties, we added the overview panel to the capture client - the left hand panel in
Figure 3. This enables a quick overview of meeting information and easy switching
between viewing any items in more detail. The look of the main TeamSpace interface
was simplified by adding multiple ways to view items, such as the calendar and l ist
views for meetings. In this way, only relevant information for each user is shown and
can be modified to reduce information overload.

We have also encountered other implementation problems in implementing such a
distributed system. Enabling inter-company collaboration is more difficult than we
expected [6]. Security is a major issue in any system, and is only compounded by
cross-firewall communication. Security infrastructures are in place to inhibit the flow
of information outside of the company, yet collaboration requires circumventing
security mechanisms without violating their principles. We first attempted to use
existing meeting conferencing software to handle communication and distribution.
However, this did not work across companies and we eventually created our own
communication protocols. While our current prototype can communicate through
firewalls, the information is not secure enough for real use as the server resides on the
open Internet. We are exploring alternative architectures to address security concerns.
We are also continuing to investigate if existing conferencing software can meet our
communication requirements so that we may take advantage of other existing
features.

6 Conclusions and Future Directions

Our long-term research agenda is to discover the impact of automated meeting
capture for distributed workgroups. While meeting capture has been a popular theme
in the ubiquitous computing research community, there has been relatively little work
reporting on the use of a capture system for an extended period of time by a
distributed workgroup. There are several requirements that must be met by a research
testbed intending to explore authentic meeting capture in this kind of setting,
including evolvability of a general purpose meeting support system that is tailorable
to the work practices of a specific team, the distribution of capture over several work
sites, the integration of meeting capture within the larger electronic workgroup
support system, and a reliable system that can be used over a long period of time to
permit observation by a research team. To meet these requirements, we have built a
meeting capture system as part of the TeamSpace project. In this paper, we described
the features of this meeting capture system, demonstrating why it is an appropriate
vehicle for further exploration in this domain.

While our experiences with TeamSpace have highlighted several technical and
usage issues, we need much more extensive usage to understand the impact of such a
capture system. TeamSpace now provides us a research vehicle for gaining that
experience. We will be deploying the current prototype to multiple teams in Boeing,
IBM, and elsewhere. We have found that our implementation has made
instrumenting the various pieces of software easy using a servlet that wil l store log
information that the software sends to it. We now need to understand the kinds of
analysis we can do with this data.

As we better understand users’ motivations for capturing and reviewing meetings,
we can evolve TeamSpace to better support these motivations. There are already a
myriad of features and capabilities we could add. We have not yet implemented a
visualization for browsing a large set of meetings. We could integrate with other
technologies, such as speaker identification or auto summarization, to make access
more powerful. It is difficult to prioritize which of these features wil l provide the
largest benefit to users, and thus help highlight important uses and motivations.

Designing and implementing a research prototype for real-world evaluation of
meeting capture has been challenging. Our research goals led us to build a system
that integrates the meeting capture into a larger team workspace, which we hope will
encourage realistic and repeated usage. We have implemented a general solution that
we feel can be used and evolved over time. We continue to face issues of any system
that is deployed for real use, such as usability, security, and scaling. But building
such a system becomes increasingly important in ubiquitous computing as we seek to
understand its impact in people’s everyday environments.

Acknowledgements

We would like to acknowledge the other members who have contributed to the
TeamSpace project: Carolyn Brodie, Tong Fin, and Tom Frauenhofer at IBM T.J.
Watson Research and Khai Truong at Georgia Tech. This work was partially

supported by DARPA/ITO under the Information Technology Expeditions,
Ubiquitous Computing, Quorum, and PCES programs, and by the National Science
Foundation (grants 9703384, 9818305 and 0070345).

References

1. Abowd, G., Atkeson, C., Brotherton, J., Enqvist, P., and LeMon, J. “ Investigating the
capture, integration, and access problem of ubiquitous computing in an educational setting,”
in Proc. CHI 98, 1998.

2. Abowd, Gregory D. “Classroom 2000: An Experiment with the Instrumentation of a
Living Educational Environment,” IBM Systems Journal, Special issue on Pervasive
Computing, 38(4): 508-530, October 1999.

3. Abowd, Gregory D., Elizabeth D. Mynatt. “Charting Past, Present and Future Research in
Ubiquitous Computing,” in ACM Transactions on Computer-Human Interaction, Special
issue on HCI in the new Mil lenium, 7(1): 29-58, March 2001.

4. AutoAuditorium Homepage: http://www.autoauditorium.com.
5. Chiu, P., Kapuskar, A., Reitmeier, S., and Wilcox, L. “Notelook: Taking Notes in

Meetings with Digital Video and Ink,” in Proceedings of ACM Multimedia ’ 99, 1999.
6. Fuchs, Ludwin, Werner Geyer, Heather Richter, Steven Poltrock, Tom Frauenhofer, and

Shahrokh Daijavad. “Enabling Inter-Company Team Collaboration,” submitted for review
to WetICE 2001, February 2001.

7. Geyer, Werner, Heather Richter, Ludwin Fuchs, Tom Frauenhofer, Shahrokh Daijavad, and
Steven Poltrock. “A Team Environment Supporting Capture and Access of Virtual
Meetings.” Submitted to Group 2001.

8. He, L., Sanocki, E., Gupta, A., and Grudin, J. “Auto-Summarization of Audio-Video
Presentations,” in Proceedings of ACM Multimedia ’ 99, 1999.

9. He, L., Sanocki, E., Gupta, A., and Grudin, J. “Comparing Presentation Summaries: Slides
vs. Reading Vs. Listening,” in Proccedings of CHI 2000, 2000.

10. Lotus Sametime Homepage, “Real-Time Collaboration That’s Fit for Business” , URL:
http://www.lotus.com/Sametime, November 2000.

11. Microsoft NetMeeting Homepage: http://www.microsoft.com/windows/netmeeting.
12. Minneman, S., Harrison, S., Janssen, B., Kurtenbach, G., Moran, T., Smith, I., and van

Melle, B. “A Confederation of Tools for Capturing and Accessing Collaborative Activity,”
in Proceedings of ACM Multimedia ’95, 1995.

13. Moran, T.P., Palen, L., Harrison, S., Chiu, P., Kimber, D., Minneman, S., vanMelle, W., and
Zelweger, P. “ ’ I’ l l Get That Off the Audio:’ A Case Study of Salvaging Multimedia
Meeting Records,” in Proc CHI ’97, Atlanta, GA, 1997.

14. Richter, Heather A., and Gregory D. Abowd. "Automating the capture of design knowledge:
a preliminary study." Technical Report GVU-99-45, Georgia Institute of Technology.
December 1999.

15. Steinmetz, Arnd, and Martin Kiezle. “The e-Seminar Lecture Recording and Distribution
System,” in Proceedings of SPIE (International Society for Optical Engineering) Vol. 4312,
Multimedia Computing and Networking, San Jose, CA 2001.

16. Streitz, M.A., Geibler, J., Haake, J.M., and Hol, J. “DOLPHIN: Integrated Meeting
Support across Local and Remote Desktop Environments and LiveBoards,” in Proceedings
of Computer Supported Collaborative Work Conference (CSCW ’94), 1994.

17. Whittaker, Steve, Patrick Hyland, and Myrtle Wiley. “Fi lochat: Handwritten Notes Provide
Access to Recorded Conversations,” in Proceedings of CHI 1994, Boston, MA, 1994.

