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Abstract

Optimization techniques have been used in computer animation to search for system pa-

rameters and control inputs in a variety of animated objects and characters. Researchers rely

on numeric optimization to solve problems including behavior learning and morphology gener-

ation for characters as well as automatic tuning for weights and parameters in various models.

However, even with the diverse group of published examples, the selection of an optimization

technique for new problems can be di�cult for inexperienced animators. The choice of ap-

propriate methods and their proper implementation requires an understanding of the types of

methods and their respective advantages and limitations. Toward this end, I describe a general

approach for formulating an optimization problem to help organize the information pertinent

to the selection process and provide a common vocabulary for discussing the issues related to

this type of problem-solving. I provide a straightforward classi�cation of optimization methods

and discuss characteristics and trade-o�s related to the algorithms. Then, I describe speci�c

uses of the methods with results from recent works in computer animation. I detail solutions

for two common optimization problems namely, inverse kinematics and control gain tuning, and

make general recommendations about solving optimization problems in computer animation in

closing.
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I. Introduction

Numeric optimization methods are powerful search tools that have been employed to solve a

variety of problems in computer animation. But, even with the rich library of examples described

by the animation community, selection of an optimization method for a new problem can be

di�cult without relevant background knowledge. This report presents optimization techniques

in a simple-to-complex ordering, followed by how the techniques have been used in previous

approaches and how they may be used to solve new problems in computer animation.

Numeric optimization, used extensively in disciplines such as engineering and robotics, has

been introduced to computer animation in a case-by-case manner. I structure these individual

examples according to a classi�cation, drawn from engineering design and machine learning, to

provide a reference for animation researchers. While optimization methods �t into two main

categories based on the types of problems they are used to solve, namely parameter-tuning

problems and control approaches, this report focuses primarily on parameter-tuning problems

and will mention control techniques only for comparison. I organize this classi�cation according

to the type of information each technique requires from the system of interest.

The report starts by describing how to generate a well-formed problem statement, called the
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problem formulation. Through the formulation, the animator speci�es the parameters to be

modi�ed, the constraints that must be satis�ed, and the goals or objectives to be met during

the parameter search routine. By organizing this information, characteristics about the problem

can be identi�ed and the search method to be used is more easily selected. Numeric techniques

for solving a formulation are presented next, in a logically ordered classi�cation. Algorithms

which require no knowledge from the system of interest are described, including searches that are

random and patterned according to heuristics, followed by gradient-based methods. The report

then outlines computer animation literature that has used the described techniques and how

to use the techniques in new problems. Previous works are summarized including the type of

problem being solved, the parameters being searched for, and the objectives used for identifying

good solutions. I include two samples of common problems in animation and conclude with

solutions to these problems as well as comments about selecting optimization techniques for

other problems.

II. Formulating the optimization problem

The problem statement, or formulation, of an optimization problem plays a key role in the

selection of a suitable technique for solving the problem. A straightforward four-step formulation

can, in general, be posed in the following form:

Given a model for the system of interest,

Find the value of the selected parameters that

Satisfy the hard and soft constraints and

Minimize the given objective function.

From characteristics discerned from this formulation, the animator matches the problem to an

appropriate optimization routine.

Problem formulation begins with a model of the object of interest. This model in most

engineering settings is a representation of the actual system of interest, for example a simulation

of a turbine to model its physical counterpart. However, in computer animation the model

usually is the exact system of interest and optimization may be applied directly to this system.

At times, even in computer animation, a simpler model may be used for a particular search as

long as the simple system responds to the optimized parameters in the same way that the more

complicated system does. Some examples of common models in computer animation include

kinematic models for animated characters and physical models for simulated liquids, 
exible

and rigid body systems.

Given a model, the next step in formulating the optimization problem is to select the input

or control parameters to be modi�ed by the search. Here, the assumption is that some combi-

nation of the selected parameters will lead to a desirable solution. For example in a kinematic

model, the joint angles may be modi�ed to produce a posture with particular features. Input

parameters may be discrete or continuous. However, when choosing an optimization method,

discrete parameters will require special consideration because they cannot provide gradient or

slope information directly. Also, the number of parameters has a strong e�ect on the choice of

methods and success of an optimization process. As a rule, the smallest set of input parameters
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that produces a reasonable solution is the correct choice.

Next, hard and soft constraints may be added to the formulation. The optimization routine

must satisfy hard constraints for a solution to be valid while soft constraints may be violated

but the objective function should penalize for the degree of the violation. Hard constraints

may be used, for example, on the maximum fuel consumption or top strength of a character's

muscles while soft constraints may be used in cases where violations may be tolerated like the

max speed of a moving object or the 
exion of a physically modeled spring. At times, the

choice of hard verses soft constraints is left to the researcher's discretion. For example, joint

limits in a kinematic model may be taken as hard or soft constraints depending on the needs

of the application. Constraints limit the types of optimization methods that may be used in

solving problems because some methods cannot handle them. In some cases, constraints may be

transformed into input parameters using Lagrange multipliers [18]. In this fashion, an initially

constrained problem may be solved using unconstrained techniques at the cost of making the

problem more complex.

The �nal step in formulating the optimization problem is selecting the calculable goal or goals

used to score a potential solution. These goals are combined into a formula called the objective

function and the score is called the performance index. The numeric algorithm uses the objective

function to assess the performance index of a given solution. Therefore, this function should

be chosen carefully. When the objective function is minimized, the corresponding solution is

expected to be better than the other solutions evaluated in terms of the researcher's de�nition

of goodness. A naive choice in objective functions can lead to undesirable but numerically better

solutions. For example, in the problem of picking control inputs for a jumping motion, a naive

objective function may be to minimize energy. However, the best solution in this case could end

up with no jump at all because this solution expends the least amount of energy.

Objective functions may include single or multiple goals. While some optimization techniques

handle multiple objective functions, it is common to combine the goals into a single objective

using an Archimedian weighting scheme. In this weighting scheme, the single objective function

is comprised of a linear combination of the individual goals. In the jumping example, the

objective function may be the weighted sum of the minimum energy as well as maximum distance

covered. Proper selection of the weight constants for each goal is required to handle di�erences

in units and assign the proper importance to each particular goal.

To help clarify the method of formulating the optimization problem, I detail formulations for

two animation problems, speci�cally inverse kinematics and control gain tuning in Section V.

Given the problem formulation, the selection of an optimization method can be made by assessing

characteristics about the model, the choice of input parameters, the smoothness of the solution

space, and the contributing members of the objective function. Considerations that lead to a

particular optimization process are described for individual methods in the next section. With

a concise, well-developed problem formulation and a suitable technique, implementation is often

straightforward.
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III. Classification of optimization methods

Numeric optimization has been used in a wide variety of �elds including economics, mathe-

matics, and engineering as well as various areas within computer science such as game theory,

robotics, and computer graphics. The optimization methods presented here are drawn from

standard methods used in applied engineering design and control. Basic descriptions of the

techniques are included here, but the general engineering text by Reklaitis, Ravindran, and

Ragsdell [18] and the control text by Dyer and McReynolds [7] provide more thorough discus-

sion and analysis of many of the techniques. I describe parameter search techniques and conclude

with a brief synopsis on techniques applied to control.

In this report, I classify numeric optimization methods by the information each requires of

the system model. A numeric optimization formulation assumes that the system model may be

evaluated using the objective function for a given set of input parameters. Depending on the

information available from the model, optimization methods can solve the search problem with

di�ering degrees of success. I discuss three basic classes of methods: direct search, gradient-

based methods, and second-order methods. In direct search, the model is assumed to be a black

box, receiving a stimulus and providing a response. Gradient-based methods assume that useful

gradient information exists and that it may be determined analytically or numerically from the

model. Similarly, second-order methods require that the model contains useful second-order

gradient information.

A. Optimization methods employing direct search

The most straightforward direct search method is to perform an exhaustive search of all of the

possible scenarios and select the solution that yields the best performance. This form of direct

search is guaranteed to �nd the best global solution according to the problem statement. While

in simple cases an exhaustive search can be a satisfactory technique, its utility quickly degrades

as the optimization problem becomes more complex. As the number of input variables increase,

the searches required increase by the exponent of that number. With even a small number of

input variables (often less than ten), the search often becomes too expensive computationally

or simply infeasible.

If the problem is too complex for the solution space to be searched exhaustively, an alterna-

tive approach that does not require gradient information is to search randomly. A number of

useful algorithms follow this paradigm, some using information gathered from successive tests

to make better selections during the process. The simplest stochastic search method is aptly

called random exploration and can include either global or local exploration. Global exploration

is performed by randomly generating feasible input samples, performing queries for each and

selecting the input with the best performance index. Conversely, local exploration, also called

random walk, starts at some initial input (determined randomly or speci�ed by the user) and

takes �xed-size steps in random directions. In this algorithm, a new step is selected at random

and accepted if the corresponding performance index is better than that of the previous step.

Two algorithms based on the premise of random exploration have been used successfully in a

variety of problems, namely simulated annealing and genetic algorithms. Simulated annealing
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performs a random walk and rejects or accepts steps according to a changing probability. The

annealing algorithm, named after a heat-treating process used to grow large malleable grains

in metal by slow-cooling, rejects steps with a lower performance index according to a slowly

increasing probability. By initially accepting poor steps at a probability, the algorithm is able

to avoid local minima in search of better, more global solutions. As the annealing schedule

lowers the acceptable \temperature", poor steps are thrown out with a higher probability and

the process converges on a solution. For a detailed description and sample implementation of

simulated annealing, see Numeric Recipes [17]. Annealing is capable of �nding improvements

in discontinuous, sparse, or rough solution spaces when little is known about the underlying

space. Unlike many other algorithms, annealing seamlessly mixes discrete and continuous search

variables. However, the algorithm requires many queries which can be too slow for real-time or

interactive applications often found in computer animation.

Genetic algorithms employ a modi�ed version of local random exploration through the use

of a biological analogy to evolution. In this paradigm, each set of discrete input variables is

considered to be a unique code, similar to a set of genes. The algorithm generates a random

population of inputs, iteratively tests the population, and combines sets that perform well.

By combining genes from successful predecessors, the algorithm evolves better inputs during

successive generations. This combining process can be straightforward, taking genes from each

parent to generate a new set, or complex with mutations, crossovers, or combinations of both. In

either case, the success of the algorithm depends on the assumption that the factors that make a

good gene set will not be lost by changing some of the genes. Genetic algorithms, like simulated

annealing, accept input variables that are discrete or continuous, and can handle jumps and

discontinuities in the solution space.

Other than random or exhaustive exploration, one other direct search method incorporates

heuristic hill climbing. This class of techniques attempts to make e�cient steps toward a local

solution through the use of knowledge collected from repetitive queries with the cost of computing

the gradient avoided. In this case, the solution space is assumed to be continuous. This class

includes algorithms for pattern searches and Powell's method. In pattern search, the resulting

search path follows a particular pattern in each cycle. For example, in the pattern search

presented by Hooke and Jeeves, the algorithm assesses the local area, takes steps in a single

direction until improvement ceases, and then repeats the cycle [18]. The approach in Powell's

method attempts to quickly �nd a good solution by successively sampling the local area and

�tting it to a quadratic function. The algorithm computes the minimum of this quadratic and

steps to the approximated minimum and the process repeats. The assumption in this approach

is that if a minimum exists which is not on the boundary of the solution space, then the surface

around the minimum must �t a quadratic. Narrowing in on the solution, the estimated quadratic

can �t the local area more tightly with each iteration. A modi�ed version of Powell's method,

named conjugate directions, attempts to align the axes of the quadratic with the local geography

to reach a solution even more quickly than simple Powell's.
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B. Gradient and higher-order optimization methods

Unlike direct search, gradient-based methods use higher-order information to navigate the

solution space. These algorithms require the gradient or derivative of the objective function

with respect to the input variables. This gradient may be computed through exact calculation

or approximation such as �nite di�erences. In general, these techniques tend to take fewer

iterations to �nd solutions than direct search because the algorithms make more intelligent

steps. However, gradient methods use knowledge about the local area of the solution space and

do not make global jumps. Therefore, solutions found are local minima and are not guaranteed

to be the best globally.

A simple and popular technique that employs gradient information is called Cauchy's method

or greedy search. Computing the gradient or slope at a given starting point, the algorithm

iteratively �nds the direction of steepest descent and moves in that direction until no further

improvement is made. A non-zero gradient guarantees that there is improvement to be made

and the method attempts to move closer to the local minimum, usually quite quickly initially.

But near the minimum, as the gradient drops o�, the algorithm approaches the precise extrema

slowly.

By employing second-order information, techniques such as Newton's method can make more

knowledgeable choices and avoid the di�culty of slow termination as observed in the greedy

algorithm. Newton's method estimates the local solution space with a truncated Taylor expan-

sion. This expansion requires a local value for the second-order gradient, or Hessian, of the

solution space. Unlike greedy search, Newton's method allows steps with a negative gradient

as the algorithm moves directly to the point in the solution estimated to have a zero gradient.

This approach usually terminates more quickly than Cauchy's method. One downfall of New-

ton's method is that the Hessian is expensive to compute or unde�ned at times, especially in

high-dimensional searches.

A popular set of approaches that attempt to provide the bene�ts of Newton's method using

only �rst-order information include conjugate-gradient and quasi-Newton methods. Conjugate

gradient di�ers from Cauchy's method in that the algorithm attempts to select directions for

each step by considering previous directions as well as the gradient. By choosing step directions

carefully, conjugate gradient moves directly toward the minima and avoids the repetitive sweeps

near the minima seen in Cauchy's method. Several variations of quasi-Newton methods have

been introduced. Each mimic Newton's second-order method by approximating the Hessian

of the objective function but they di�er in the way in which the approximation is computed.

These quasi-Newton algorithms are among the most popular gradient-based methods applied in

engineering and computer animation applications.

C. Optimization methods for control

In control design, the optimal controller for a particular system is de�ned to provide the

best performance for the system according to the objective function. While theoretical optimal

solutions exist for linear systems, many systems, particularly non-linear ones, require numeric

techniques. Two popular methods for solving control optimization are dynamic programming
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and quadratic programming. In dynamic programming, the control problem is formulated as a

sequence of stages with a single optimization problem at each stage. The dynamic programming

algorithm treats each stage independently and 
oods forward one stage at a time. A more sophis-

ticated variation includes a secondary sweep method that 
oods forward initially and corrects

using a backward pass through the stages. A second approach for solving the multiple sequen-

tial optimization problem for control is quadratic programming. Unlike dynamic programming,

quadratic programming considers the entire trajectory during an optimization process.

IV. Review of previous animation results that use optimization

In this section, I summarize results from previous works in computer graphics where anima-

tion researchers have used numeric optimization. The descriptions of these e�orts are put into

categories following the classi�cation detailed in the last section.

A. Animation techniques using direct search

Researchers in computer graphics have explored direct search in the form of stochastic param-

eter optimization to animate several models. Stochastic techniques are often chosen instead of

gradient methods in situations where global solutions are needed or where gradient information

is unavailable or too expensive to compute. Simulated annealing and genetic algorithms have

been used to solve a wide spectrum of problems in computer animation. Here, I describe several

implementations of these two algorithms.

Simulated annealing is a popular technique for solving computer animation problems because

it is easy to implement and quite 
exible. Grzeszczuk and Terzopoulos propose learning control

parameters for physical models using simulated annealing [10]. In this work, simulated creatures,

such as �sh and snakes, use muscles actuated by spring networks to perform low-level behaviors

such as forward locomotion and turning, as well as high-level behaviors such as path following.

At the low-level, they use simulated annealing to solve for linearly interpolated control inputs

in a time-based controller and for parameters of sinusoidal basis functions in frequency-based

actuators. At the high level, they combine the low-level controllers using annealing to select order

and duration. The latter problem mixes discrete and continuous parameters. Their objective

functions for both problems minimize measures for distance, speed, and energy e�ciency.

Hodgins and Pollard use simulated annealing to adjust controller parameters as well [12].

Their technique uses direct scaling to modify an existing controller from one simulated humanlike

character to another followed by annealing to tune a small number of parameters for the scaled

controller. In this fashion, they are able to modify running and biking controllers for characters

with di�erent dynamic and kinematic properties. During the tuning phase, they search for high-

level parameters such as the pitch of the body and ankle thrust in running. Their objective

function includes features such as head acceleration and stride regularity. This search space is

not smooth, making local and gradient techniques less useful. Simulated annealing, on the other

hand, is able to move through this space and �nd reasonable solutions.

A third use of simulated annealing is described by van de Panne and Fiume [21]. This work

uses random exploration followed by simulated annealing in a �ne-tuning phase to generate

sensor-actuator networks for physically based models. They represent controllers as a network
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of weighted connections between the actuators of a creature and simple binary sensors for touch,

orientation, length, and sight. Their algorithm initially generates network weights randomly

and evaluates the corresponding motion according to straightforward metrics such as distance

traveled and target errors. Successful creatures go through a simulated annealing phase to make

small adjustments from the initial weights to improve performance. By keeping the step size and

the number of iterations for the simulated annealing small, they force the algorithm to act as a

local search. Their method results in successful locomotion and target-following for a variety of

two-dimensional �gures.

Because of the biological analogy, genetic algorithms are particularly appealing for generating

animated creatures. Ngo and Marks introduced genetic algorithms for generating motion to

the animation community [15]. Their approach automatically generates stimulus-response con-

trollers for characters using genetic algorithms. In their results, they include motions such as

leaping, skipping, and walking for planar stick �gures also using simple evaluation metrics such

as distance traveled. Sims used genetic algorithms for generating animation as well [20]. His

work is distinct from that of Ngo and Marks in that his e�orts were directed at evolving 3D crea-

ture morphology in addition to control. In order to evolve morphologies, virtual creatures were

described through directed graphs and a number of geometric parameters. Simulated motions

were rewarded for �tness in tasks such as swimming, jumping, locomoting, and target-following.

Although the results in this e�ort are compelling, the lack of user control over the evolution

process makes generation of a character with desired features di�cult.

B. Animation techniques using gradient-based search methods

Gradient-based techniques appear repeatedly throughout the computer animation literature.

I describe a variety of di�erent uses to expose the strengths of gradient techniques, ordered

here from simple to complex. van de Panne and Lamouret use a straightforward greedy descent

algorithm to determine desired values of joints for a locomotion controller [21]. Their approach

uses multiple stages of optimization so that each search relies on the results of the previous.

By starting with an easy task and moving to a harder one, they can use a simple search at

each stage because the search space is smooth. In order to generate a walking controller that

balances, they initially provide a helping force to balance the model. They reduce this force

through successive search stages. They report results for a simple character that locomotes while

balancing without a helping force but they were unable to �nd solutions for more complicated,

humanlike characters that balance. van de Panne and Fiume describe another example of using

a straightforward descent algorithm in their sensor-actuator work and compare the algorithm to

simulated annealing [21]. Bruderlin and Calvert use simple gradient searches as well to generate

a hybrid kinematic and dynamic walking model [5].

Implementations of more sophisticated gradient searches are described by some researchers.

For example, Newton's second-order method is employed on a locomotion controller described

by Pai [16]. In this work, a walking character is produced by specifying a small number of

loosely de�ned constraints. Pai uses automatic di�erentiation which allows fast computation

of gradient information, making Newton's method feasible. In general, however, due to fast

and reasonable approximations for computing the Hessian, Newton's method has not been used
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often in computer animation.

Grzeszczuk, Terzopoulos, and Hinton propose approximating physical models in order to speed

up computation both at run-time and when constructing controllers [11]. They suggest an ap-

proach for training neural networks that employs both greedy and conjugate-gradient algorithms

to tune parameters. With conjugate directions, they report improved performance over simple

gradient descent. In addition, they note that the neural networks that emulate their physi-

cal systems allow partial derivatives to be computed reliably which aids them in searching for

controller parameters.

Two examples of a quasi-Newton method appear in e�orts by Rose and his colleagues [19].

Their contribution focuses on the semi-automatic generation of transitions between segments of

motion capture data. They use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton

method both in preprocessing human motion data and in generating transitions between se-

quences of data. Inverse kinematics is employed in order to �x contact between the feet and

the ground using the algorithm. Because the motion is initialized from recorded human data,

a solution close to the starting position is desirable and a�orded by the local gradient search.

When creating transitions, the BFGS routine is also employed for a fast solution to their inverse

dynamics formulation. They report that BFGS allows the solution to be found within a few

iterations, considerably faster than a randomized search.

C. Animation techniques using optimal control and quadratic programming

Only a few works in computer animation report approaches using optimal control and the

methods appearing have applied dynamic programming to very simple animation problems.

One of the �rst works to propose optimal control for animated models comes from Brotman and

Netravali and applies control to a simple point mass and a single body vehicle [4]. The work of

van de Panne, Fiume, and Vranesic includes slightly more sophisticated models such as a truck

with a movable cab, and the classic cart and pole problem from robotics [22].

Quadratic programming has been used more often for control of physical models in animation.

A trend in this research is labeled as spacetime constraints after the seminal work of Witkin

and Kass [23]. In computer graphics, spacetime constraints has been used to solve a variety

of animation problems. Witkin and Kass use quadratic programming to solve for mechanically

e�cient motion in the animation of a physically simulated jumping Luxo lamp. Constraints for

their system include user-speci�ed positions, velocities at key-times as well as limited muscle

actuation for the lamp model. The problem is formulated to minimize the power consumed by

the \muscles" while avoiding violations to the speci�ed animation constraints. Results from

this work show examples of jumps with changes in parameters of the physical model and user-

speci�ed constraints.

Most physical models discussed for computer animation are initialized by a user and run to

completion without input from the user. This lack of user control is addressed in Cohen's work

on interactive systems [6]. Cohen presents an optimization system in which a user speci�es

constraints such as positions, joint con�gurations, and time-varying trajectories to control a

dynamic system. As in other work in spacetime constraints, quadratic programming is used to

compute the desired animation. Examples include two and three link systems such as a one-arm
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starting point 

motion capture
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 = desired hand position
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X

Fig. 1. Inverse kinematics for hand position. Inverse kinematics modi�es the joint angles in the arm

to satisfy the desired hand position, determined by the task being performed. For comparison, two

starting con�gurations are tested, hand-at-side as a naive starting point and the more knowledgeable

starting point from motion capture data.

basketball player that throws and catches. Another approach focusing on interactive spacetime

constraints is described by Gleicher [8, 9]. His goal is to provide a user with an interactive

system for modifying motion capture data. Gleicher trades physical constraints for a fast solver

and interactive editing. In this case, the objective function minimizes the overall di�erence

between the generated motion and the original captured data. Quadratic programming is used

to satisfy desired changes such as hand and foot holds, as well as kinematic parameters such

as limb lengths. Examples in this work include interactive motion editing for characters that

change step location in walking cycles and adapting to changes in scale while swing dancing.

V. Formulating and solving two common animation problems

In this section, I formulate and solve two animation-related problems, inverse kinematics for a

three link arm and gain parameter tuning for a balance control in a physical humanlike model.

I present solutions to these problems using multiple optimization algorithms for each problem

and discuss the bene�ts and di�erences of each method.

A. Inverse kinematics for hand positioning

An inverse kinematics solver selects joint angles for a chain of rigid links that satisfy a given

Cartesian position for the end e�ector of the chain. This is a common problem in computer

animation, for instance, placing a character's hand so that it may make contact with an object

in its environment. Inverse kinematics often does not have closed-form solutions in high degree-

of-freedom systems because of redundancy and singularities. Kinematic redundancy arises when

more degrees of freedom exist than are needed to �nd a single solution. In this case, multiple

solutions satisfy the under-constrained problem. Elbow positioning in arm postures is one

example where the hand can be placed in a particular location but the elbow is still free to

rotate in space. Singularities are special con�gurations where the link's movement is impeded

in a particular direction, such as when a joint folds back on itself. In this scenario, the outer

(or outboard) limb may not move forward or back without �rst moving out of the overlapped
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con�guration. Baillieul and Martin provide a good discussion of these and other related issues [2].

One application of inverse kinematics is the modi�cation and clean up of human motion data.

Figure 1 shows a schematic of this problem for hand positioning. In magnetic motion capture

data, joint angles and body positions are both available. While the angles alone may be used

to create a posture, the position of the end e�ector would depend on the limb lengths of the

animated character. Sometimes, the position of the hand marker is more important that the

joint angles. An inverse kinematics solver is used to modify the joint angles to satisfy desired

hand positions. When motion capture data for the joints is used as an initial guess, a local

solution for the proper hand position is reasonable, assuming that staying close to the original

posture is a good notion.

The formulation for the optimization problem requires a model of the forward kinematics

for the character, including limb length and joint center positions. No explicit joint limits are

imposed in this case. In general specifying limits for joint angles helps maintain solutions that

are more like human postures. However, assuming the character is not very di�erent from a

human in its proportions and that the the initial conditions are speci�ed from human motion,

neighboring or close-by joint postures are usually satisfactory without explicit joint limits.

In inverse kinematics, optimizing multiple goals helps handle redundancy and singularities.

For example, by specifying a target joint con�guration, all of the solutions that satisfy the

end e�ector goal may be compared to this target and a single best solution may be resolved.

The problem formulated here closely matches the approach discussed by Bodenheimer and col-

leagues [3]. To solve the inverse kinematics problem formulated, three terms are included in the

evaluation function: hand position error; hand orientation error; and elbow position error. Hand

position and orientation allow for the desired placement of the end e�ector that may be speci�ed

by the user, or by the original position and orientation of the data recorded from the motion

capture. The elbow position error is used to resolve the redundancy problem and maintain a

natural posture. An Archimedian weighting scheme is used to combine these three goals.



12

This inverse kinematics optimization problem formulation can be summarized as follows:

Given

Kinematic model

Motion capture data

joint angles (used for initial guess)
body positions (used for pos errors)

Target hand position (desired goal)

taken from motion data or user-speci�ed
Find

System Variables �i i = 1 to 9

Shoulder XYZ Euler angles
Elbow XYZ Euler angles

Wrist XYZ Euler angles

Satisfy

Kinematic Constraints

Imposed by forward kinematic model

Minimize

Single Objective Archimedian Scheme

!1 + !2 + !3

!1 = hand position error
!2 = hand orientation error

!3 = elbow position error

To solve the inverse kinematics problem, I implement two local search methods, one gradient

and one direct search. A local search is appropriate in this case because the motion capture data

provides a reasonable initial guess. While the gradient method will likely �nd a better solution, a

time critical application may dictate a faster solution because the calculation of the gradient may

be too expensive. Speci�cally, I compare the performance of BFGS, a quasi-Newton method,

and the Hooke and Jeeves pattern search algorithm to solve this problem.

The implementation of the BFGS algorithm iss from Numerical Recipes [17]. The algorithm

requires a gradient for the function being minimized and I employ a �nite di�erence approxi-

mation using the Riddler algorithm also from Numerical Recipes. Riddler includes testing the

gradient multiple times to be sure the approximation is reasonable and making the computation

of the gradient more reliable. Results for the BFGS algorithm are included in Figure 2. To show

that the motion capture provides a reasonable initial guess, a hand-at-side \zero" position is

used as a naive initial guess for comparison. Figure 3 shows the algorithm's performance with

two di�erent starting con�gurations. When the initial guess is taken from the motion capture

data, a shorter path through the solution space results and the algorithm converges more quickly.

To compare the overall performance of the BFGS algorithm, I implemented Hooke and Jeeves

as a direct search method to solve the same inverse kinematics problem. I chose this pattern

search algorithm as a basis for comparison because it did not require a gradient calculation,

which was slow and not always reliable in the BFGS solution. The two algorithms converged to

about the same end con�guration when the initial joint angle con�guration was taken from the

motion capture data. The error for a trial is compared in Figure 4. This �gure shows the Hooke

and Jeeves search wandering slowly before terminating, indicating a larger error tolerance would

lead to faster termination. I repeated the experiment for the naive initial joint angle posture and

the results comparing the two algorithms are shown in Figure 5. This comparison revealed that

Hooke and Jeeves converged faster than BFGS, most likely because the gradient information

from this posture was less useful. Also, in terms of compute time, because the gradient was not

calculated, the Hooke and Jeeves approach took about a quarter of the time per iteration. For

further insights on fast inverse kinematics solutions, I recommend the work of Lee and Shin who

employ a hybrid of analytic and numeric solvers [14].
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Fig. 2. Sample from BFGS algorithm. The

overall error resulting from several trials for

di�erent motion capture data samples. Pos-

tures with larger initial errors tend to converge

more slowly and maintain higher errors due to

larger elbow position errors.
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Fig. 3. Knowledgeable vs. naive starting

point for BFGS algorithm. Plots of di�er-

ent starting points frommotion capture (stars)

and naive hand-at-side (triangles). As ex-

pected, the better initial guess leads to a faster

convergence. Because the poor initial guess

had a poor elbow position, a lower weighting

was given to the elbow goal, resulting in the

slightly smaller objective value shown.

B. Control gain tuning for dynamic models

The second problem I investigate is tuning control parameters for a dynamic model. Many

controllers in computer animation for active dynamic systems include tuned parameters for

sti�ness and damping gains. Selection of these parameters can be di�cult because the parameter

space may be complex, especially in the case where gains are interrelated. One example of gain

tuning is the selection of sti�ness and damping terms for hip and ankle o�sets that maintain

balance in a standing model. Dynamic balance may be maintained by controlling the error

between the center of mass and the center of support in a dynamic model. Figure 6 shows

a schematic of these parameters. In this case, the sti�ness and damping gains of the error

and derivative error must be chosen carefully because the combined errors and gains are used

to adjust the desired joint angles in order to maintain balance, as described by Wooten [24].

I choose these control parameters initially by hand and modify them using an optimization

process.

In the problem formulation, dynamic models are constructed using the techniques described

by Hodgins and her colleagues [13]. Ground contact constraints, rely on force-driven penalties

associated with the feet penetrating the ground. The primary goal in this problem is to minimize

the collective error over time between the actual center of mass and the desired center of mass

for the simulation. Only solutions that remain standing are considered valid. Solutions where

the character falls over are thrown out without evaluation. An additional term for minimizing

the body attitude error is added to the evaluation function in order to keep the simulation

standing upright. Without this posture goal, as experience showed, there was no restriction on

unnatural, leaning poses.
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Fig. 4. Hooke and Jeeves vs. BFGS Algo-

rithms - Knowledgeable starting point.

The same sample con�guration using the

Hooke and Jeeves (circles) and the BFGS

(stars) algorithms. The two algorithms �nd

comparable solutions. Although the Hooke

and Jeeves algorithm terminates in more iter-

ations than BFGS, each iteration is computed

much more quickly.
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Fig. 5. Hooke and Jeeves vs. BFGS Al-

gorithms - Naive starting point. The

same sample con�guration using the Hooke

and Jeeves (diamonds) and the BFGS (trian-

gles) algorithms starting from a naive arm-

at-side posture. In this case, the Hooke and

Jeeves algorithm converges more quickly from

the start because the BFGS algorithm relies on

the gradient which is poorly estimated during

the large initial jumps in the solution space.

The general form of this gain-tuning optimization problem formulation can be summarized as
follows:

Given

Kinematic model
Dynamic model

dynamic equations of motion

Desired joint angles
nominal desired state of standing posture

Find

System Variables 
i i = 1 to 4
Sti�ness for center of mass error in X and Y

Damping for center of mass derivative error in X and Y

Satisfy

Behavior Constraints

Character must remain standing

Ground Constraints

Character must not penetrate the ground

Minimize

Single Objective Archimedian Scheme

!1 + !2

!1 = time for center of mass to settle

!2 = �nal posture orientation error

To solve the balance gain-tuning problem, I implemented two search methods, one stochastic and

one gradient. Starting from a poorly tuned but balancing simulation, the gradient-based search

should �nd a local solution that is better according to the objective. However, assuming that

the search space of gain values is highly non-linear, a stochastic search seems more appropriate.

In this case, I compare simulated annealing to the BFGS algorithm. As in the inverse kinematics

solution, the BFGS algorithm uses gradients calculated with �nite di�erence approximations.

A set of di�erent initial conditions and their results are shown for the annealing algorithm in

Figure 7. The algorithm found di�erent solutions for several sets of starting gains, implying that

the true global minimum was not found. Because the simulated annealing is global, the search
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X

Fig. 6. Balanced standing. Balance is maintained by reducing the error between the projected center

of mass for the body and the center of support created by the feet. By adjusting the hip and ankle

desired angles, this error is controlled.
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Fig. 7. Samples from Simulated annealing

algorithm. A set of simulated annealing tri-

als with the best solution found at the end of

each stage shown. In most cases, simulated

annealing found a reasonable solution in the

�rst stages of cooling, and then made small

improvements until the search was halted.
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Fig. 8. Simulated annealing vs. BFGS al-

gorithms. The same starting gains using the

simulated annealing (triangles) and the BFGS

(stars) algorithms. The BFGS algorithmmade

reasonable convergence but overall performed

more poorly than simulated annealing.

found better solutions than the gradient method as shown in Figure 8. Although simulated

annealing consistently found better solutions for each set of di�erent initial conditions, it did

run more slowly than the BFGS algorithm. A slower cooling process and more iterations in

the simulated annealing algorithm would likely have led to better results at the cost of a slower

process. With simulated annealing taking a longer time to converge than the BFGS approach,

a trade-o� between computation time and solution accuracy arises.

Overall, validation of the optimization algorithm, constructing experiments, and comparing

alternative solvers like the examples described here can ensure that an optimization routine is

robust, and that the solutions found are reasonable and e�cient. Constructing and calculating

error metrics for objective functions remain the most fragile pieces of the problem formulation.

Several objective functions may need to be tested before a satisfactory choice is made.
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Fig. 9. Stopping criterion too strict. While

this function does show a nice convergence for

the objective function, the stopping criterion is

too strict, causing several iterations to be cal-

culated without improvement before the solver

halted. This wastes calculation time and re-

sources, indicating a looser stopping criterion

should be chosen.
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Fig. 10. Tuned Optimizer. This case was mod-

i�ed from the original in two ways: the stop-

ping condition was tuned to recognize conver-

gence more quickly, and the gradient approxi-

mation was started with a tighter step size to

promote quicker gradient calculations. The

solution maintains similar characteristics, but

the solver runs and halts more quickly.

VI. Conclusions

This report includes a general framework for considering and formulating an optimization

problem and a breakdown of possible techniques to solve the problem. Published works and

detailed formulations for two problems bind the techniques to computer animation applications.

In practice, many problems can be formulated in a manner that makes them too di�cult

to be solved using numeric optimization. However, insights about the solution space found

by user exploration help establish reasonable expectations and may suggest reformulating the

problem at times. A good sampling of the solution space will reveal important factors such as

whether the space is rough and discontinuous or smooth. Choosing good initial conditions and

specifying small search ranges can make an optimization problem much easier. Also, carefully

breaking a problem into a series of smaller problems can sometimes make a �nding a solution

more manageable. However, in some cases, numeric optimization is simply not the right answer

because some spaces are too sparse to search and some do not contain good solutions. In these

cases, a closer look at the speci�c application may help reveal a simpler optimization approach

that can be formulated.

Tuning parameters such as error tolerances and termination requirements is important for

e�ciency. Figure 9 displays a plot of the untuned solver from the IK solution described. After

the majority of the improvement was made in the �rst few iterations, the BFGS algorithm

ran without much improvement for several iterations. By tuning the tolerances on the error

allowed, the solver halted more quickly. Also, the algorithm spent much of its time calculating

the gradient. A better step-size for the Riddler algorithm improved the performance. Figure 10

re
ects the tuned optimizer which has the same characteristics as the original, but runs in about

one third of the time.

In this report I introduce basic numeric techniques and recommend further investigation into

more advanced approaches. In general, optimization is a complete �eld unto itself. The ani-

mation community is interested in using optimization methods as tools for problems but this

toolset is ever-changing. Keeping a current perspective on the advances in the area of optimiza-

tion ensures that an animator is using the most powerful and appropriate methods available

when solving computer animation optimization problems.
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