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Low kappa factors (0.05 KF) of chlorine and chlorine dioxide were employed to chemically 

pretreat softwood haf t  pulp and associated residual lignin before an oxygen delignification 

stage. Quasi-pretreatments using nitrogen dioxide were performed in parallel and all results 

were compared to high kappa factor treatments (KF = 0.20) of pulp and lignin to exaggerate and 

examine the lignin structural changes contributing to the pulp delignification response during an 

oxygen stage. The principal spectroscopic method chosen to investigate the chemical changes in 

lignin was 31P NMR. One of the most significant results arising from these studies was the 

relatively constant content (< 30% change) of the condensed phenolics despite the efficacy of the 

chemical pretreatment stage for the lignins. Interestingly, the free phenolics were not 

appreciably consumed, strongly suggesting that these moieties should be the focus of any future 

attempts to maximize the performance of an oxygen stage. 



The issue of overcoming the limits to oxygen delignification has received increased research 

attention recently. Since oxygen provides significant environmental and economic benefits, 

reportedly being able to increase yield, successfully reduce lignin levels and thus provide 

bleaching cost savings while maintaining compatibility with recovery operations, increased 

delignification without compromising yield or pulp properties is a very desirable goal [ 1 - 101. 

One promising avenue for enhanced delignification that has witnessed considerable research 

attention is the use of pretreatments to improve the bleaching response of pulp in an oxygen 

stage [ll-131. Pretreatments may be defined as low kappa factor (KF, low molecular chlorine 

multiples/kappa of pulp) pulp bleaching stages that follow pulping to increase pulp bleachability 

without adversely affecting pulp properties. 

The current research was conducted to elucidate the chemical basis for the lirnits in oxygen 

delignification through an analysis of various significant functional groups in lignin. These groups 

were analyzed after chemical treatments that employed low and high kappa factors of chlorine and 

chlorine dioxide in addition to an intermediate kappa factor of nitrogen dioxide. Gierer and others 

have provided the fundamental chemical underpinnings for the structural changes imparted to lignin 

during oxygen delignification [ 14-1 61. Highly reactive hydroxyl radicals, for example, can react with 
aromatic and aliphatic lignm structures to generate organic radicals which are purportedly susceptible 

to attack by superoxide. Superoxide has been suggested to be involved in the scission of aromatic, 

conjugated, and aliphatic (side chains) lignin structures. Ring opening and side chain elimination 

reactions can induce carboxylic acid formation and enhance lignin solubility in alkaline conditions. 

The resistance of l i w  removal after 50% delignification during an oxygen stage has been 

extensively studied and has in part been attributed to carbon-carbon bond structures that are 

recalcitrant to degradation. For example, dimeric arylpropane units containing saturated side chains 

such as bicreosol display a reduced reactivity in oxygen systems [17]. In addition, while Lai reports 

that diphenylmethane lignin units are notoriously stable, he contends that condensed phenolic lignin 

structures are unstable, while Argyropoulos has maintained that condensed phenolic structures are the 

major factor limiting oxygen delignification [ 18-24]. Much of the work that remains to be done in this 

area requires an increased understanding of the role and fate of the 1ign.k structures that are activated 

or that remain inert during an oxygen stage. 



Herein, we report the structural changes that occur to the residual haft lignin of two mill pulps, 

manufactured by EMCCB (extended modified haft cooking) and CC (conventional cooking) 

technologies, after both chemical pretreatments (using varying kappa factor charges of chlorine, 

chlorine dioxide, and nitrogen dioxide) and followed by oxygen delignification. Specifically we have 

correlated the chemical structural changes of the lignin to the delignification efficiency observed for 

the two industrial pulps. We have obtained quantitative 31P NMR spectra and elemental analyses of 

all lignins in an effort to identify the structural factors responsible for the inactivity and reactivity of 

lignin during oxygen delignification. 

Methods 

Pulping and Oxygen Delignification. Kraft pulps were manufactured by industrial sponsors using 

typical EMCCB (MK) and Conventional Cooking (CK) technologies. The kappa numbers measured 

for the MK and CK pulps were 23.2 and 22.4, respectively. 

Oxygen delignification runs were conducted on a 300-ml PARR Instruments Pressure Reactor 

employing the following conditions: 60 minutes, 100°C, 100 psi, 2.33% NaOH charge (relative to 

mass of pulp), 10% consistency (when applicable), and subject to mild (5 hz) impeller-blade stining. 

The headspace in the PARR reactor was thoroughly flushed with oxygen before application of 

pressure. Lignin oxygen runs were done by dissolving 75 mg of each lignin into 60 mL of alkaline 

charged water and stirring. The starting and ending pHs for the runs ranged from 11.3 to 

approximately 10.. All pulps and lignins were removed after the runs and allowed to cool before 

either a thorough distilled water wash or acid precipitation, respectively. 

Lignin Isolation. The residual lignins of the MK and CK pulps were isolated by a slightly modified 

acid hydrolysis procedure that involved a 1 hour reflux of the pulps in an 0.1 N HCl solution 

containing 9: 1 p-dioxane:water for. P-dioxane was distilled over sodium borohydride powder for one 

hour immediately before use. After reflux, the supernatant was collected and the dioxane was 

removed under reduced pressure. The pH of the remaining water suspension was adjusted to 2.0; the 



resultant lignin suspension was fiozen to increase lignin coalescence, and allowed to thaw after 24 

hours The precipitate was collected by centrifugation. The preceding process was repeated in 

triplicate using fresh water rinses of pH = 2.0. The resultant lignin was lyophilized and collected. 

Product recovery yields were based on the pulp starting kappas (total lignin content) and typically 

ranged from approximately 40 to 60 %. 

High, Intermediate, and Low Kappa Factor Pretreatments. The pulp pretreatments were 

conducted at 0.05 kappa factor using freshly prepared chlorine or chlorine dioxide. In order to 

amplify and more fully explain the chemical effects induced by these pretreatments, higher kappa 

factors of 0.20 were used, in addition to the use of an intermediate kappa factor of 0.10 for a nitrogen 

dioxide pretreatment. Nitrogen dioxide pretreatments were accomplished by introducing the 

appropriate amount of a sodium nitrite solution followed by nitric acid. All pulp pretreatments were 

conducted in sealed bags and were run at 70" C for 30 minutes while maintaining a final pH of 

approximately 2.0. All pretreatment conditions used for the pulps were applied to the residual lignins, 

except that the lignin was dissolved in 9: 1 dioxane:water and stirred at ambient temperature in round 

bottom flasks. All kappa values have an experimental error of approximately 3%. Bleachability in 

this work will refer to a given level of delignification at constant conditions (caustic, temperature, and 

time of reaction). 

Recovery of Lignin from Pretreatment and Oxygen Bleaching. Lignin pretreatment and 

oxygen bleaching runs were performed after the pulp runs to provide a fundamental basis for the 

delignification observed in the pulps through analysis of discrete lignin functional groups . Thus, 

the residual lignins from the MK and CK pulps were systematically isolated and investigated 

through 31P NMR. Since our objective was to provide an accurate summary of the fate of the 

lignin structural subunits after pretreatment and a subsequent oxygen stage, it was necessary to 

recover as much of lignin as possible after pretreatment and oxygen bleaching. All lignins were 

therefore recovered as quantitatively as possible by exhaustive ethyl acetate extraction as 

described by Asgari and Argyropoulos [22]. Any remaining aqueous phase that remained after 

chemical reactions in either dioxane/water or alkaline water was removed under reduced pressure 

and DMF was added to the remaining precipitate to specifically dissolve low molecular weight 

lignin fragments [22]. The DMF layer was filtered to remove insoluble salts and the remaining 



solution was added drop-wise to diethyl ether to precipitate the lignin. Lignins were lyophilized 

and vacuum-oven dried before NMR analyses. Recovery yields for the lignins after both 

pretreatment and oxygen bleaching runs typically ranged from 5575%. 

Quantitative Lignin 31P NMR Analyses. Spectral characterization of the residual lignins was 

accomplished on a 400 MHZ Bruker DX Spectrometer employing published procedures [25]. All 

residual lignins were dissolved in a solution of 650 pL of pyridine/CDC13 (v/v 1.6/1) that contained 

either cyclohexanol or endo-N-hydroxy-5-norbomene-2,3-dicarboximide as an internal standard and 

chromium acetylacetonate as an internal relaxation agent. The samples were phosphitylated with 2- 

chloro-4,4,5,5-tetramethyl-l ,3,2-dioxaphospholanene. Regions for integration have been reported 

elsewhere [26]. The integration values have a reproducibility of approximately 95%. 

Results and Discussion 

Pulp Studies 

The initial studies focused on determining the effect of pulp pretreatments on the 

Shown in Figure 1 are the delignification delignification responses of MK and CK pulps. 

responses of the pulps after oxygen delignification. 

Figure I .  The levels of oxygen delignijkation obtained for the MK and CKpulps as a function of 

pretreatment . 



The oxygen control level of delignification achieved for both pulps is approximately 45%. The 

low KF chlorine and chlorine dioxide pretreatments increase the delignification by an additional 

30% over the threshold levels, and additionally the MK pulp has a better delignification response 

than the CK pulp by over 2 kappa units. One of the more remarkable findings in the above 

figure is the high delignification achievable by a relatively modest NO2 pretreatment. 

Obviously, modest NO2 treatments (I@ = 0.10) tremendously boost delignification in a 

subsequent oxygen stage in a manner comparable to high kappa factor pretreatments using 

chlorine and chlorine dioxide (KF = 0.20). The enhancement of the performance of an oxygen 

stage by varying concentrations of NO2 has been well described in the literature [27-291. These 

results validate the ability of this particular treatment to predispose lignin to enhanced oxygen 

delignification. It is noteworthy that this data provide evidence that the MK pulps display 

slightly better bleachability than the CK pulps (on the order of at least 10%). 

Carboxylic Acid Content 

The carboxylic acid group is typically associated with a significant increase in the oxidation state of 

lignin. It is an important structural change that occurs in any bleaching process since it the primary 

way of imparting an enhanced degree of solubility to lignin and typically follows ring opening, 

aliphatic cleavage, or other oxidative fiagmentation of lignin. Shown in Table 1 is a list of the 

carboxylic acid group changes for all the lignins analyzed in this study. A chlorine dioxide @) 

pretreatment caused approximately 30% increase in the overall acid content of both the CK and MK 

lignins, not unlke what has been previously observed in D bleaching [30]. However, chlorine (C) 

pretreatments did not induce the generation of similar acid levels. 



Table 1. The carboxylic acid content for pretreated and post-oxygen (expressed as 

pretreatment/KF/O) treatment residual MK and CK lignins expressed in moles/gram of lignin. The 

recovery yields for these lignins ranged between 55 and 75% of the original lignin mass. 

CARBOXYLIC ACID CONTENT MK CK 
(mmoledg iignin) 

Brown Stock 0.30 0.3 1 

oxygen Control 0.76 0.90 

C12/O.O5 0.24 0.26 

Cl*/O. 0.5’0 0.70 0.80 

Cl02/0.05 0.41 0.43 

C102/O .O5/O 1.04 1.01 

N02/0.10 0.24 0.22 

N02/0.10/0 0.76 0.58 

c1210.20 0.21 0.25 

c12/0.20/0 0.5 1 0.54 

c102/0.20 0.72 0.65 

c10~/0.20/0 1.39 1.09 

We found from elemental analysis, however, that there was a heavy incorporation of chlorine, up to 

15% in the lignins, which partially offset the introduction of acid groups. Also, it was found by 

Lachenal et al. that at low KFs of chlorine, acid level increases are not as appreciable as for a D 

pretreatment [31]. In fact, the generation of carbon dioxide and carbonate have been found to be 

significant pathways during chlorinations of pulp [3 13. Interestingly, carboxylic acid generation was 

not found to be as significant in NO2 pretreatments. Again, this was not surprising since significant 

incorporation of nitrogen (approximately 510%) was found and a previously described mechanism of 

NO2 reactions with lignin as shown in Figure 2 provides a partial explanation [29]. NO2 has been 

postulated by Walding et al. to induce significant depolymerization through nitration reactions. In 

fact, Samuelson has found that the tendency to delignify from such treatments owes not so much to 



increased hydrophilicity by acid incorporation, as to extensive lignin degradation into fragments 

smaller than found in ordinary bleaching sequences. 

Lignin 

Oxygen 

NaOH 
- 

bCH; 

Lignin 

Ho*No2 CH3 

Figure 2. The hydrolysis of nilrated lignin during an oxygen stage that follows a NOzpretreatment as 

described in Walding 's work is shown above. It is expected to be facile since the highly 

electronegative nitrated lignin subunit can be displaced by the a-hydroxyl group under alkaline 

conditions. 

The discrepancy between the levels of acid between CK and MK (lugher for MK, opposed to trends 

shown in Table 1) after an oxygen stage can be explained by the greater abundance of aliphatic 

hydroxyls in MK over CK by more than 10%. The a-hydroxyls can participate in a base-induced 

intramolecular expulsion of an adjoining J3-nitrated ring leaving a vicinal diol that can further oxidize 

to a terminal acid during oxygen delignification 

The control oxygen lignins demonstrated a 2-3-fold increase in acid levels and the CK lignin 

had approximately 15% higher levels. The D pretreated MK lignin shows an enhanced 

carboxylic acid content beyond what is observed for the oxygen control that is consistent with 

the slightly better bleachability of its associated pulp (see Figure 1). Employing a high KF 

pretreatment before oxygen exaggerates the acid differences between the starting and oxygen 

treated lignins consistent with the pulp data. An important difference in lignin structure to 

account for the slightly better bleachability of the MK over CK are the higher levels of 
condensed phenolics and aliphatic hydroxyls of the MK lignin. The phenolics are primary sites 



of reactivity for chlorine dioxide and the increased levels in the MK may explain the increased 

delignification response of the MK pulp. 

Phenolic Content 

Lignin contains both condensed and non-condensed (free) phenolic lignin structures which 

have tremendous importance in the overall response of lignin to oxidants. Several of the 

structures of these important functionalities which comprise the focus of our NMR investigations 

are shown in Figure 3. The salient difference between condensed and non-condensed structures 

is the substitution pattern at the 5-position of two arylpropanoid units. 

1 5-Condensed Phenolic Subunits of Lignin I 

I I 
OH OH O H  I 

OH 

I Non-condensed (free) Phenolic Subunits of Lignin I 

OH O H  

Figure 3. The structures of some typical condensed and non-condensed @ee) phenolic units in 

residual haft lignins are displayed. Notice that the salient diflerences occur in the substitution 

pattern at the 5-carbon of the lignin aromatic subunits, where condensed structures have C-C 

bonds, whereas non-condensed have C-H bonds. 

Remarkably, although C pretreatments (both high and low KFs) did not increase carboxylic 

acid levels, they nonetheless tended to afford higher levels of condensed phenolics. Shown in 

Figure 4 are the actual levels of the condensed phenolics for the pretreated lignins. Table 2 



provides a comparative analysis of the phenolic levels of all of the lignins. The levels of 

condensed phenolics in the C pretreatment are more significant than observed in the D 

pretreatment. This suggests that one of the potential side reactions of a C pretreatment is the 

formation of coupling products by radical reactions [3 1, 321. Nonetheless, this pretreatment does 

not prevent the delignification efficiency associated with a subsequent oxygen stage. 

Table 2. The non-condensed and 5-condensed phenolic content for the pretreated and post-oxygen 

(italics) residual MK and CK lignins expressed in mmoles/gam of lignin. 

PHENOLIC CONTENT MK 

(mrnoles/g lignin) 

CK 

Non-Condensed Condensed Non-Condensed Condensed 

Brown Stock 0.93 0.89 0.93 
Oxygen Control 0.60 0.64 0.69 

Cly’0.05 0.67 0.90 0.64 
Clz/O. OS/Oxygen 0.44 0.63 0.46 

- C102/0.05 0.68 
ClO,/O. OYOxygen 0.53 

0.69 0.73 
0.58 0.56 

N02/0.10 0.20 0.43 0.19 
N02/0.1 O/Oxygen 0.30 0.52 0.24 

c1210.20 0.29 
Cl,/O. 20/Oqgen 0.27 

0.69 0.28 
0.58 0.30 

0.82 
0.68 

0.86 
0.69 

0.70 
0.67 

0.44 
0.46 

0.77 
0.67 

c10*/0.20 0.36 0.54 0.28 0.5 1 
C102/0.20/0xygen 0.34 0.46 0.40 0.35 



1, I 1 

Figure 4. The content of condensedphenolics in the pretreated residual MK and CK lignins. 

An experimental result that provides insight for the level of bleachability is the level of 

carboxylic acid for the lignins after a control oxygen stage. The CK lignin has a larger 

carboxylic acid content than the MK lignin, and is in fact more bleachable as a pulp. The MK 

lignin, however, has more condensed phenolic structures than the CK that may partially explain 

its diminished bleachability, a cogent argument that has been the subject of numerous 

investigations [20, 22, 23, 36-38]. Yet, a C/O stage appears to refute this latter argument since 

the MK pulp is slightly more bleachable, although it has a higher level of condensed structures. 

This slight increase in reactivity may well be due to other structural features such as the aliphatic 

hydroxyl groups (vide infra). 

Condensed phenolic structures have received considerable attention as a major source that 

contribute to the inactivity of lignin during oxygen delignification. The current work has 

examined their role in the context of a preactivation step (pretreatments) of the lignin before 

oxygen and found that they remain relatively intransigent throughout the chemical 

bleaching/oxygen steps. Shown in Figure 5 are the levels of condensed phenolics for the lignins 

after an oxygen stage. 

The condensed levels do not vary more than 30% throughout. Moreover, the delignzjkation 

eflciency observed in the pulps is not compromised as a result of these structural components. 



The data strongly indicate that these structures are robust and therefore stable, and are not 

intrinsically the primary constituents that limit the reactivity of lignin. 

Figure 5. The content of condensedphenolics in the post-oxygen stage residual MK and CK 
lignins. 

In fact, even high kappa factor pretreatments do not significantly affect their relative 

distribution with respect to total phenolics as evidenced in Figure 6. In light of the previous 

data, Figure 6 supports the observation that condensed phenolics are not depleted as much as free 

phenolics, yet, free phenolics do not change dramatically enough to account for the 

delignification observed in the pulps. In fact, the pretreatment phenolic ratios are quite constant, 

testifying to the relative robustness of both the condensed and non-condensed phenolic contents. 

Figure 6. The ratio of condensedphenolics content to total phenolic content in the post-oxygen 

stage residual MK and CK lignins. 



Again, the consumption of the non-condensed phenolics is surprisingly inefficient. Most work 

strongly indicates that these are the primary reactive sites for D and 0 stages [32, 331. As shown 

in Table 2 (vide supra), the relative change in the non-condensed phenolics as part of a 

pretreatment is not appreciable with regard to the bleachability results for the pulps. This result 

suggests that the phenolic sites are not being consumed as would be expected to account for the 

decrease in lignin content and that alternative explanations may account for these drops. Perhaps 

lignin exhibits phenolic sites of differing reactivity based on their electrochemical potentials and 

environmental constraints and sites that contribute to increased oxidatiodsolubilization are 

activated by a pretreatment. 

Aliphatics 

As shown in Figure 7, the aliphatic levels for the pretreated lignins diminish slightly, but this is 

not unusual considering that most of the pretreatments do not attack the aliphatic side chains 

appreciably. Chlorine, however, is known to attack side chains and efficiently deplete this 

functionality which is demonstrated in the pretreatment. Interestingly, although MK has a 

greater proportion of condensed structures, suggesting that its bleachability is hindered, it is 

nevertheless more bleachable than CK, perhaps as a result of the disparity in aliphatic levels 

between the two lignins. An exaggerated high kappa factor C pretreatment, moreover, 

extensively consumes the aliphatics, further supporting the latter argument for the heightened 

bleachability of MK versus CK pulps. 

Y 

Figure 7. The content of aliphatic hydroxyl functionalities in the pretreated and post-oxygen 

stage residual MK and CK lignins. 



Conclusions 

The free phenolics of residual lignin are surprisingly not appreciably consumed in an oxygen 

bleaching stage following a pretreatment stage of chlorine, chlorine dioxide, or nitrogen dioxide 

despite the enhanced bleachability of pretreated pulps. The NMR data strongly imply that more 

than 50% of these units are resistant to oxidation, while the concentration of condensed 

phenolics remain relatively constant. The major difference between the MK and CK lignins are 

the higher levels of condensed phenolics in the MK lignin which may partially assist during 

lignin oxidation for the C and D pretreatments. The MK pulps are slightly easier to bleach and 

the NO2 pretreatment was extremely effective in promoting the bleachability of the pulps, which 

may be a consequence of its ability to fragment lignin efficiently via nitration. Condensed 

phenolics are nonetheless quite resistant to degradation and appear to remain in the lignin 

samples despite the pretreatments. Their relative robustness does not, however, appear to be the 

main rationale for the inactivity of lignin toward oxygen delignification, but serves to suggest 

that the nature and reactivity of the free phenolics deserve increasing scrutiny. 
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